Science.gov

Sample records for air pressure measurements

  1. Method and Apparatus for Measuring Surface Air Pressure

    NASA Technical Reports Server (NTRS)

    Lin, Bing (Inventor); Hu, Yongxiang (Inventor)

    2014-01-01

    The present invention is directed to an apparatus and method for remotely measuring surface air pressure. In one embodiment, the method of the present invention utilizes the steps of transmitting a signal having multiple frequencies into the atmosphere, measuring the transmitted/reflected signal to determine the relative received power level of each frequency and then determining the surface air pressure based upon the attenuation of the transmitted frequencies.

  2. Air Flow and Pressure Drop Measurements Across Porous Oxides

    NASA Technical Reports Server (NTRS)

    Fox, Dennis S.; Cuy, Michael D.; Werner, Roger A.

    2008-01-01

    This report summarizes the results of air flow tests across eight porous, open cell ceramic oxide samples. During ceramic specimen processing, the porosity was formed using the sacrificial template technique, with two different sizes of polystyrene beads used for the template. The samples were initially supplied with thicknesses ranging from 0.14 to 0.20 in. (0.35 to 0.50 cm) and nonuniform backside morphology (some areas dense, some porous). Samples were therefore ground to a thickness of 0.12 to 0.14 in. (0.30 to 0.35 cm) using dry 120 grit SiC paper. Pressure drop versus air flow is reported. Comparisons of samples with thickness variations are made, as are pressure drop estimates. As the density of the ceramic material increases the maximum corrected flow decreases rapidly. Future sample sets should be supplied with samples of similar thickness and having uniform surface morphology. This would allow a more consistent determination of air flow versus processing parameters and the resulting porosity size and distribution.

  3. Thermal separation of soil particles from thermal conductivity measurement under various air pressures

    NASA Astrophysics Data System (ADS)

    Lu, Sen; Ren, Tusheng; Lu, Yili; Meng, Ping; Zhang, Jinsong

    2017-01-01

    The thermal conductivity of dry soils is related closely to air pressure and the contact areas between solid particles. In this study, the thermal conductivity of two-phase soil systems was determined under reduced and increased air pressures. The thermal separation of soil particles, i.e., the characteristic dimension of the pore space (d), was then estimated based on the relationship between soil thermal conductivity and air pressure. Results showed that under both reduced and increased air pressures, d estimations were significantly larger than the geometrical mean separation of solid particles (D), which suggested that conductive heat transfer through solid particles dominated heat transfer in dry soils. The increased air pressure approach gave d values lower than that of the reduced air pressure method. With increasing air pressure, more collisions between gas molecules and solid surface occurred in micro-pores and intra-aggregate pores due to the reduction of mean free path of air molecules. Compared to the reduced air pressure approach, the increased air pressure approach expressed more micro-pore structure attributes in heat transfer. We concluded that measuring thermal conductivity under increased air pressure procedures gave better-quality d values, and improved soil micro-pore structure estimation.

  4. Thermal separation of soil particles from thermal conductivity measurement under various air pressures.

    PubMed

    Lu, Sen; Ren, Tusheng; Lu, Yili; Meng, Ping; Zhang, Jinsong

    2017-01-05

    The thermal conductivity of dry soils is related closely to air pressure and the contact areas between solid particles. In this study, the thermal conductivity of two-phase soil systems was determined under reduced and increased air pressures. The thermal separation of soil particles, i.e., the characteristic dimension of the pore space (d), was then estimated based on the relationship between soil thermal conductivity and air pressure. Results showed that under both reduced and increased air pressures, d estimations were significantly larger than the geometrical mean separation of solid particles (D), which suggested that conductive heat transfer through solid particles dominated heat transfer in dry soils. The increased air pressure approach gave d values lower than that of the reduced air pressure method. With increasing air pressure, more collisions between gas molecules and solid surface occurred in micro-pores and intra-aggregate pores due to the reduction of mean free path of air molecules. Compared to the reduced air pressure approach, the increased air pressure approach expressed more micro-pore structure attributes in heat transfer. We concluded that measuring thermal conductivity under increased air pressure procedures gave better-quality d values, and improved soil micro-pore structure estimation.

  5. Thermal separation of soil particles from thermal conductivity measurement under various air pressures

    PubMed Central

    Lu, Sen; Ren, Tusheng; Lu, Yili; Meng, Ping; Zhang, Jinsong

    2017-01-01

    The thermal conductivity of dry soils is related closely to air pressure and the contact areas between solid particles. In this study, the thermal conductivity of two-phase soil systems was determined under reduced and increased air pressures. The thermal separation of soil particles, i.e., the characteristic dimension of the pore space (d), was then estimated based on the relationship between soil thermal conductivity and air pressure. Results showed that under both reduced and increased air pressures, d estimations were significantly larger than the geometrical mean separation of solid particles (D), which suggested that conductive heat transfer through solid particles dominated heat transfer in dry soils. The increased air pressure approach gave d values lower than that of the reduced air pressure method. With increasing air pressure, more collisions between gas molecules and solid surface occurred in micro-pores and intra-aggregate pores due to the reduction of mean free path of air molecules. Compared to the reduced air pressure approach, the increased air pressure approach expressed more micro-pore structure attributes in heat transfer. We concluded that measuring thermal conductivity under increased air pressure procedures gave better-quality d values, and improved soil micro-pore structure estimation. PMID:28054663

  6. A falling-pressure method for measuring air permeability of asphalt in laboratory

    NASA Astrophysics Data System (ADS)

    Li, Hailong; Jiao, Jiu Jimmy; Luk, Mario

    2004-01-01

    This paper presents a simple analytical solution for estimating air permeability using the test data obtained by a falling-pressure method in laboratory. The perimeter of the column-shaped sample is fixed in a steel cylinder with the upper sample surface open to the atmosphere. The lower surface of the sample and the cylinder form an air chamber. A water manometer is connected to the air chamber to measure the air pressure inside after the chamber is pressurized. The data of pressure versus time in the air chamber are recorded and analyzed. An approximate analytical solution is derived to describe the pressure-time relationship in the air chamber. The air permeability can be easily estimated using the approximate analytical solution based on the linear least-squares fitting to the recorded pressure-time test data. This method is used to estimate the falling-pressure test data of 15 asphalt samples. The agreement between the test data and the analytical prediction is satisfactory for all the samples. To investigate the error caused by the approximate analytical solution, the air permeabilities are also estimated based on fully numerical solutions. The permeability values obtained from analytical and numerical solutions are very close. The maximum relative error is less than 6% for samples with more than five pressure-time records. A quantitative condition is given under which the analytical solution applies with negligible estimation error. Compared with the common, steady-state method for measuring air permeability, the falling-pressure method has its advantages such as simplicity and economy. The steady-state method has to measure the air flux through the sample, while the falling-pressure method does not.

  7. Calibrating airborne measurements of airspeed, pressure and temperature using a Doppler laser air-motion sensor

    NASA Astrophysics Data System (ADS)

    Cooper, W. A.; Spuler, S. M.; Spowart, M.; Lenschow, D. H.; Friesen, R. B.

    2014-09-01

    A new laser air-motion sensor measures the true airspeed with a standard uncertainty of less than 0.1 m s-1 and so reduces uncertainty in the measured component of the relative wind along the longitudinal axis of the aircraft to about the same level. The calculated pressure expected from that airspeed at the inlet of a pitot tube then provides a basis for calibrating the measurements of dynamic and static pressure, reducing standard uncertainty in those measurements to less than 0.3 hPa and the precision applicable to steady flight conditions to about 0.1 hPa. These improved measurements of pressure, combined with high-resolution measurements of geometric altitude from the global positioning system, then indicate (via integrations of the hydrostatic equation during climbs and descents) that the offset and uncertainty in temperature measurement for one research aircraft are +0.3 ± 0.3 °C. For airspeed, pressure and temperature, these are significant reductions in uncertainty vs. those obtained from calibrations using standard techniques. Finally, it is shown that although the initial calibration of the measured static and dynamic pressures requires a measured temperature, once calibrated these measured pressures and the measurement of airspeed from the new laser air-motion sensor provide a measurement of temperature that does not depend on any other temperature sensor.

  8. A change for the better? Measuring improvements in upgraded alternating-pressure air mattresses.

    PubMed

    Rithalia, S V; Heath, G H

    2000-10-01

    This study used measurements of interface pressure over time (the pressure relief index) to investigate improvements made to two alternating-pressure air mattresses. Two older models, the Nimbus 2 (Huntleigh Technology) and Pegasus Airwave (Pegasus Egerton), were compared with two new versions, the Nimbus 3 and Cairwave systems, respectively. Pressure relief was improved in seven out of 12 areas in the Nimbus 3 system, and in four out of 12 areas in the Cairwave. Significant differences in pressure relief index measurements at the heel between the Nimbus 3 and Cairwave products may explain the former's better clinical outcomes in this area, but superior pressure relief index performance at the sacrum did not predict better clinical outcomes. Therefore, different levels of pressure relief may be needed at different body sites. Individual practitioners must decide whether these improvements merit list price increases of 11% and 15%, respectively, and whether other features justify a 20% price difference between the two new systems.

  9. Calibrating airborne measurements of airspeed, pressure and temperature using a Doppler laser air-motion sensor

    NASA Astrophysics Data System (ADS)

    Cooper, W. A.; Spuler, S. M.; Spowart, M.; Lenschow, D. H.; Friesen, R. B.

    2014-03-01

    A new laser air-motion sensor measures the true airspeed with an uncertainty of less than 0.1 m s-1 (standard error) and so reduces uncertainty in the measured component of the relative wind along the longitudinal axis of the aircraft to about the same level. The calculated pressure expected from that airspeed at the inlet of a pitot tube then provides a basis for calibrating the measurements of dynamic and static pressure, reducing standard-error uncertainty in those measurements to less than 0.3 hPa and the precision applicable to steady flight conditions to about 0.1 hPa. These improved measurements of pressure, combined with high-resolution measurements of geometric altitude from the Global Positioning System, then indicate (via integrations of the hydrostatic equation during climbs and descents) that the offset and uncertainty in temperature measurement for one research aircraft are +0.3 ± 0.3 °C. For airspeed, pressure and temperature these are significant reductions in uncertainty vs. those obtained from calibrations using standard techniques. Finally, it is shown that the new laser air-motion sensor, combined with parametrized fits to correction factors for the measured dynamic and ambient pressure, provides a measurement of temperature that is independent of any other temperature sensor.

  10. Torricelli and the Ocean of Air: The First Measurement of Barometric Pressure

    PubMed Central

    2013-01-01

    The recognition of barometric pressure was a critical step in the development of environmental physiology. In 1644, Evangelista Torricelli described the first mercury barometer in a remarkable letter that contained the phrase, “We live submerged at the bottom of an ocean of the element air, which by unquestioned experiments is known to have weight.” This extraordinary insight seems to have come right out of the blue. Less than 10 years before, the great Galileo had given an erroneous explanation for the related problem of pumping water from a deep well. Previously, Gasparo Berti had filled a very long lead vertical tube with water and showed that a vacuum formed at the top. However, Torricelli was the first to make a mercury barometer and understand that the mercury was supported by the pressure of the air. Aristotle stated that the air has weight, although this was controversial for some time. Galileo described a method of measuring the weight of the air in detail, but for reasons that are not clear his result was in error by a factor of about two. Torricelli surmised that the pressure of the air might be less on mountains, but the first demonstration of this was by Blaise Pascal. The first air pump was built by Otto von Guericke, and this influenced Robert Boyle to carry out his classical experiments of the physiological effects of reduced barometric pressure. These were turning points in the early history of high-altitude physiology. PMID:23455767

  11. Torricelli and the ocean of air: the first measurement of barometric pressure.

    PubMed

    West, John B

    2013-03-01

    The recognition of barometric pressure was a critical step in the development of environmental physiology. In 1644, Evangelista Torricelli described the first mercury barometer in a remarkable letter that contained the phrase, "We live submerged at the bottom of an ocean of the element air, which by unquestioned experiments is known to have weight." This extraordinary insight seems to have come right out of the blue. Less than 10 years before, the great Galileo had given an erroneous explanation for the related problem of pumping water from a deep well. Previously, Gasparo Berti had filled a very long lead vertical tube with water and showed that a vacuum formed at the top. However, Torricelli was the first to make a mercury barometer and understand that the mercury was supported by the pressure of the air. Aristotle stated that the air has weight, although this was controversial for some time. Galileo described a method of measuring the weight of the air in detail, but for reasons that are not clear his result was in error by a factor of about two. Torricelli surmised that the pressure of the air might be less on mountains, but the first demonstration of this was by Blaise Pascal. The first air pump was built by Otto von Guericke, and this influenced Robert Boyle to carry out his classical experiments of the physiological effects of reduced barometric pressure. These were turning points in the early history of high-altitude physiology.

  12. Emission measurements for a lean premixed propane/air system at pressures up to 30 atmospheres

    NASA Technical Reports Server (NTRS)

    Roffe, G.; Venkataramani, K. S.

    1978-01-01

    The emissions of a lean premixed system of propane/air were measured in a flametube apparatus. Tests were conducted at inlet temperatures of 600K and 800K and pressures of 10 atm and 30 atm over a range of equivalence ratios. The data obtained were combined with previous data taken in the same apparatus to correlate nitrogen oxide emissions with operating conditions. Sampling probe design was found to have a pronounced effect on measured CO levels but did not influence measurements. The most effective probe tested was one which combined thermal and pressure quenching of the gas sample.

  13. Two-Dimensional Electron Density Measurement of Positive Streamer Discharge in Atmospheric-Pressure Air

    NASA Astrophysics Data System (ADS)

    Inada, Yuki; Ono, Ryo; Kumada, Akiko; Hidaka, Kunihiko; Maeyama, Mitsuaki

    2016-09-01

    The electron density of streamer discharges propagating in atmospheric-pressure air is crucially important for systematic understanding of the production mechanisms of reactive species utilized in wide ranging applications such as medical treatment, plasma-assisted ignition and combustion, ozone production and environmental pollutant processing. However, electron density measurement during the propagation of the atmospheric-pressure streamers is extremely difficult by using the conventional localized type measurement systems due to the streamer initiation jitters and the irreproducibility in the discharge paths. In order to overcome the difficulties, single-shot two-dimensional electron density measurement was conducted by using a Shack-Hartmann type laser wavefront sensor. The Shack-Hartmann sensor with a temporal resolution of 2 ns was applied to pulsed positive streamer discharges generated in an air gap between pin-to-plate electrodes. The electron density a few ns after the streamer initiation was 7*1021m-3 and uniformly distributed along the streamer channel. The electron density and its distribution profile were compared with a previous study simulating similar streamers, demonstrating good agreement. This work was supported in part by JKA and its promotion funds from KEIRIN RACE. The authors like to thank Mr. Kazuaki Ogura and Mr. Kaiho Aono of The University of Tokyo for their support during this work.

  14. Laser-based measurements of OH in high pressure CH4/air flames

    NASA Technical Reports Server (NTRS)

    Battles, B. E.; Hanson, R. K.

    1991-01-01

    Narrow-linewidth laser absorption measurements are reported from which mole fraction and temperature of OH are determined in high-pressure (1-10 atm), lean CH4/air flames. These measurements were made in a new high pressure combustion facility which incorporates a traversable flat flame burner, providing spatially and temporally uniform combustion gases at pressures up to 10 am. A commercially avialable CW ring dye laser was used with an intracavity doubling crystal to provide near-UV single mode output at approximately 306 nm. The UV beam was rapidly scanned over 120 GHz (0.1 sec scan duration) to resolve the absorption lineshape of the A-X (0,0) R1(7)/R1(11) doublet of the OH radical. From the doublet's absorption lineshape, the temperature was determined; and from peak absorption, Beer's Law was employed to find the mole fraction of OH. These data were obtained as a function of height above the flame at various pressures.

  15. Advancing a smart air cushion system for preventing pressure ulcers using projection Moiré for large deformation measurements

    NASA Astrophysics Data System (ADS)

    Cheng, Sheng-Lin; Tsai, Tsung-Heng; Lee, Carina Jean-Tien; Hsu, Yu-Hsiang; Lee, Chih-Kung

    2016-03-01

    A pressure ulcer is one of the most important concerns for wheelchair bound patients with spinal cord injuries. A pressure ulcer is a localized injury near the buttocks that bear ischial tuberosity oppression over a long period of time. Due to elevated compression to blood vessels, the surrounding tissues suffer from a lack of oxygen and nutrition. The ulcers eventually lead to skin damage followed by tissue necrosis. The current medical strategy is to minimize the occurrence of pressure ulcers by regularly helping patients change their posture. However, these methods do not always work effectively or well. As a solution to fundamentally prevent pressure ulcers, a smart air cushion system was developed to detect and control pressure actively. The air cushion works by automatically adjusting a patient's sitting posture to effectively relieve the buttock pressure. To analyze the correlation between the dynamic pressure profiles of an air cell with a patient's weight, a projection Moiré system was adopted to measure the deformation of an air cell and its associated stress distribution. Combining a full-field deformation imaging with air pressure measured within an air cell, the patient's weight and the stress distribution can be simultaneously obtained. By integrating a full-field optical metrology with a time varying pressure sensor output coupled with different active air control algorithms for various designs, we can tailor the ratio of the air cells. Our preliminary data suggests that this newly developed smart air cushion has the potential to selectively reduce localized compression on the tissues at the buttocks. Furthermore, it can take a patient's weight which is an additional benefit so that medical personnel can reference it to prescribe the correct drug dosages.

  16. Measured pressure distributions of large-angle cones in hypersonic flows of tetrafluoromethane, air, and helium

    NASA Technical Reports Server (NTRS)

    Jones, R. A.; Hunt, J. L.

    1973-01-01

    An experimental study of surface pressure distributions on a family of blunt and sharp large angle cones was made in hypersonic flows of helium, air, and tetrafluoromethane. The effective isentropic exponents of these flows were 1.67, 1.40, and 1.12. Thus, the effect of large shock density ratios such as might be encountered during planetary entry because of real-gas effects could be studied by comparing results in tetrafluoromethane with those in air and helium. It was found that shock density ratio had a large effect on both shock shape and pressure distribution. The differences in pressure distribution indicate that for atmospheric flight at high speed where real-gas effects produce large shock density ratios, large-angle cone vehicles can be expected to experience different trim angles of attack, drag coefficient, and lift-drag ratios than those for ground tests in air wind tunnels.

  17. Calculating osmotic pressure of glucose solutions according to ASOG model and measuring it with air humidity osmometry.

    PubMed

    Wei, Guocui; Zhan, Tingting; Zhan, Xiancheng; Yu, Lan; Wang, Xiaolan; Tan, Xiaoying; Li, Chengrong

    2016-09-01

    The osmotic pressure of glucose solution at a wide concentration range was calculated using ASOG model and experimentally determined by our newly reported air humidity osmometry. The measurements from air humidity osmometry were compared with the well-established freezing point osmometry and ASOG model calculations at low concentrations and with only ASOG model calculations at high concentrations where no standard experimental method could serve as a reference for comparison. Results indicate that air humidity osmometry measurements are comparable to ASOG model calculations at a wide concentration range, while at low concentrations freezing point osmometry measurements provide better comparability with ASOG model calculations.

  18. SOIL-AIR PERMEABILITY MEASUREMENT WITH A TRANSIENT PRESSURE BUILDUP METHOD

    EPA Science Inventory

    An analytical solution for transient pressure change in a single venting well was derived from mass conservation of air, Darcy's law of flow in porous media, and the ideal gas law equation of state. Slopes of plots of Pw2 against ln (t+Δt)/Δt similar to Homer's plot were used to ...

  19. Measurement of Pressure Dependent Fluorescence Yield of Air: Calibration Factor for UHECR Detectors

    SciTech Connect

    Belz, J.W.; Burt, G.W.; Cao, Z.; Chang, F.Y.; Chen, C.C.; Chen, C.W.; Chen, P.; Field, C.; Findlay, J.; Huntemeyer, Petra; Huang, M.A.; Hwang, W.-Y.P.; Iverson, R.; Jones, B.F.; Jui, C.C.H.; Kirn, M.; Lin, G.-L.; Loh, E.C.; Maestas, M.M.; Manago, N.; Martens, K.; /Montana U. /Utah U. /Taiwan, Natl. Taiwan U. /SLAC /Rutgers U., Piscataway

    2005-07-06

    In a test experiment at the Final Focus Test Beam of the Stanford Linear Accelerator Center, the fluorescence yield of 28.5 GeV electrons in air and nitrogen was measured. The measured photon yields between 300 and 400 nm at 1 atm and 29 C are Y(760 Torr){sup air} = 4.42 {+-} 0.73 and Y(760 Torr){sup N{sub 2}} = 29.2 {+-} 4.8 photons per electron per meter. Assuming that the fluorescence yield is proportional to the energy deposition of a charged particle traveling through air, good agreement with measurements at lower particle energies is observed.

  20. Blood pressure measurement

    MedlinePlus

    ... reading; Measuring blood pressure; Hypertension - blood pressure measurement; High blood pressure - blood pressure measurement ... High blood pressure has no symptoms so you may not know if you have this problem. High blood pressure ...

  1. Pressure Measurement in Supersonic Air Flow by Differential Absorptive Laser-Induced Thermal Acoustics

    NASA Technical Reports Server (NTRS)

    Hart, Roger C.; Herring, Gregory C.; Balla, Robert J.

    2007-01-01

    Nonintrusive, off-body flow barometry in Mach-2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, stream-wise velocity and static gas temperature of the same spatially-resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.

  2. Pressure measurement in supersonic air flow by differential absorptive laser-induced thermal acoustics.

    PubMed

    Hart, Roger C; Herring, G C; Balla, R Jeffrey

    2007-06-15

    Nonintrusive, off-body flow barometry in Mach 2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, the streamwise velocity and static gas temperature of the same spatially resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature, and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.

  3. Explosion bomb measurements of ethanol-air laminar gaseous flame characteristics at pressures up to 1.4 MPa

    SciTech Connect

    Bradley, D.; Lawes, M.; Mansour, M.S.

    2009-07-15

    The principal burning characteristics of a laminar flame comprise the fuel vapour pressure, the laminar burning velocity, ignition delay times, Markstein numbers for strain rate and curvature, the stretch rates for the onset of flame instabilities and of flame extinction for different mixtures. With the exception of ignition delay times, measurements of these are reported and discussed for ethanol-air mixtures. The measurements were in a spherical explosion bomb, with central ignition, in the regime of a developed stable, flame between that of an under or over-driven ignition and that of an unstable flame. Pressures ranged from 0.1 to 1.4 MPa, temperatures from 300 to 393 K, and equivalence ratios were between 0.7 and 1.5. It was important to ensure the relatively large volume of ethanol in rich mixtures at high pressures was fully evaporated. The maximum pressure for the measurements was the highest compatible with the maximum safe working pressure of the bomb. Many of the flames soon became unstable, due to Darrieus-Landau and thermo-diffusive instabilities. This effect increased with pressure and the flame wrinkling arising from the instabilities enhanced the flame speed. Both the critical Peclet number and the, more rational, associated critical Karlovitz stretch factor were evaluated at the onset of the instability. With increasing pressure, the onset of flame instability occurred earlier. The measured values of burning velocity are expressed in terms of their variations with temperature and pressure, and these are compared with those obtained by other researchers. Some comparisons are made with the corresponding properties for iso-octane-air mixtures. (author)

  4. Extractive probe/TDLAS measurements of acetylene in atmospheric-pressure fuel-rich premixed methane/air flames

    SciTech Connect

    Gersen, S.; Mokhov, A.V.; Levinsky, H.B.

    2005-11-01

    The profiles of C{sub 2}H{sub 2} mole fractions were measured in flat atmospheric-pressure rich-premixed methane/air flames using microprobe gas sampling followed by tunable diode laser absorption spectroscopy (TDLAS), and compared the results with predictions of one-dimensional flame calculations. Acetylene concentrations are also determined by spontaneous Raman scattering to quantify possible uncertainties due to chemical reactions on the probe surface or acceleration of the combustion products into the probe.

  5. Optimal frequency selection of multi-channel O2-band different absorption barometric radar for air pressure measurements

    NASA Astrophysics Data System (ADS)

    Lin, Bing; Min, Qilong

    2017-02-01

    Through theoretical analysis, optimal selection of frequencies for O2 differential absorption radar systems on air pressure field measurements is achieved. The required differential absorption optical depth between a radar frequency pair is 0.5. With this required value and other considerations on water vapor absorption and the contamination of radio wave transmission, frequency pairs of present considered radar system are obtained. Significant impacts on general design of differential absorption remote sensing systems are expected from current results.

  6. Heat transfer and pressure drop measurements in an air/molten salt direct-contact heat exchanger

    SciTech Connect

    Bohn, M.S.

    1988-11-01

    This paper presents a comparison of experimental data with a recently published model of heat exchange in irrigated packed beds. Heat transfer and pressure drop were measured in a 150 mm (ID) column with a 610-mm bed of metal Pall rings. Molten nitrate salt and preheated air were the working fluids with a salt inlet temperature of approximately 440{degree}C and air inlet temperatures of approximately 230{degree}C. A comparison between the experimental data and the heat transfer model is made on the basis of heat transfer from the salt. For the range of air and salt flow rates tested, 0.3 to 1.2 kg/m{sup 2} s air flow and 6 to 18 kg/m{sup 2} s salt flow, the data agree with the model within 22% standard deviation. In addition, a model for the column pressure drop was validated, agreeing with the experimental data within 18% standard deviation over the range of column pressure drop from 40 to 1250 Pa/m. 25 refs., 7 figs., 2 tabs.

  7. Probe measurements of electron energy spectrum in Helium/air micro-plasma at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Demidov, V. I.; Adams, S. F.; Miles, J. A.; Koepke, M. E.; Kurlyandskaya, I. P.; Hensley, A. L.; Tolson, B. A.

    2016-09-01

    It is experimentally demonstrated that a wall probe may be a useful instrument for interpretation of electron energy spectrum in a micro-plasma with a nonlocal electron distribution function at atmospheric pressure. Two micro-plasma devices were fabricated with three layers of molybdenum metal foils with thickness of 0.1 mm separated by two sheets of mica insulation with thickness of 0.11 mm. In one device a hole with the diameter of 0.2 mm formed a cylindrical discharge cavity that passed through the entire five layers. In the second device the hole has the diameter of 0.065 mm. In both devices the inner molybdenum layer formed a wall probe, while the outer layers of molybdenum served as the hollow cathode and anode. The discharge was open into air with flow of helium gas. It is found that the wall probe I-V trace is sensitive to the presence of helium metastable atoms. The first derivative of the probe current with respect to the probe potential shows peaks revealing fast electrons at specific energies arising due to plasma chemical reactions. The devices may be applicable for developing analytical sensors for extreme environments, including high radiation and vibration levels and high temperatures. This work was performed while VID held a NRC Research Associateship Award at AFRL.

  8. Optimally accurate thermal-wave cavity photopyroelectric measurements of pressure-dependent thermophysical properties of air: theory and experiments.

    PubMed

    Kwan, Chi-Hang; Matvienko, Anna; Mandelis, Andreas

    2007-10-01

    An experimental technique for the measurement of thermal properties of air at low pressures using a photopyroelectric (PPE) thermal-wave cavity (TWC) was developed. In addition, two theoretical approaches, a conventional one-dimensional thermal-wave model and a three-dimensional theory based on the Hankel integral, were applied to interpret the thermal-wave field in the thermal-wave cavity. The importance of radiation heat transfer mechanisms in a TWC was also investigated. Radiation components were added to the purely conductive model by linearizing the radiation heat transfer component at the cavity boundary. The experimental results indicate that the three-dimensional model is necessary to describe the PPE signal, especially at low frequencies where thermal diffusion length is large and sideways propagation of the thermal-wave field becomes significant. Radiation is found to be the dominant contributor of the PPE signal at high frequencies and large cavity lengths, where heat conduction across the TWC length is relatively weak. The three-dimensional theory and the Downhill Simplex algorithm were used to fit the experimental data and extract the thermal diffusivity of air and the heat transfer coefficient in a wide range of pressures from 760 to 2.6 Torr. It was shown that judicious adjustments of cavity length and computational best fits to frequency-scanned data using three-dimensional photopyroelectric theory lead to optimally accurate value measurements of thermal diffusivity and heat transfer coefficient at various pressures.

  9. Measurement and Simulation of Spontaneous Raman Scattering Spectra in High-Pressure, Fuel-Rich H2-Air Flames

    NASA Technical Reports Server (NTRS)

    Kojima, Jun; Nguyen, Quang-Viet

    2003-01-01

    Rotational vibrational spontaneous Raman spectra (SRS) of H2, N2, and H2O have been measured in H2-air flames at pressures up to 30 atm as a first stem towards establishing a comprehensive Raman spectral database for temperatures and species in high-pressure combustion. A newly developed high-pressure burner facility provides steady, reproducible flames with a high degree of flow precision. We have obtained an initial set of measurements that indicate the spectra are of sufficient quality in terms of spectral resolution, wavelength coverage, and signal-to-noise ratio for use in future reference standards. The fully resolved Stokes and anti-Stokes shifted SRS spectra were collected in the visible wavelength range (400-700 nm) using pulse-stretched 532 nm excitation and a non-intensified CCD spectrograph with a high-speed shutter. Reasonable temperatures were determined via the intensity distribution of rotational H2 lines at stoichiometry and fuel-rich conditions. Theoretical Raman spectra of H2 were computed using a semi-classical harmonic-oscillator model with recent pressure broadening data and were compared with experimental results. The data and simulation indicated that high-J rotational lines of H2 might interfere with the N2 vibrational Q-branch lines, and this could lead to errors in N2-Raman thermometry based on the line-fitting method. From a comparison of N2 Q-branch spectra in lean H2 low-pressure (1.2 atm) and high-pressure (30 atm) flames, we found no significant line-narrowing or -broadening effects at the current spectrometer resolution of 0.04 nm.

  10. Two-photon absorption laser induced fluorescence measurement of atomic oxygen density in an air atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Conway, Jim; Gogna, Gurusharan; Daniels, Stephen

    2016-09-01

    Two-photon Absorption Laser Induced Fluorescence (TALIF) is used to measure atomic oxygen number density [O] in an air Atmospheric Pressure Plasma Jet (APPJ). A novel technique based on photolysis of O2 is used to calibrate the TALIF system ensuring the same species (O) is probed during calibration and measurement. As a result, laser intensity can be increased outside the TALIF quadratic laser power region without affecting calibration reliability as any high intensity saturation effects will be identical for calibration and experiment. Higher laser intensity gives stronger TALIF signals helping overcome weak TALIF signals often experienced at atmospheric pressure due to collisional quenching. O2 photo-dissociation and two-photon excitation of the resulting [O] are both achieved within the same laser pulse. The photolysis [O] is spatially non-uniform and time varying. To allow valid comparison with [O] in a plasma, spatial and temporal correction factors are required. Knowledge of the laser pulse intensity I0(t), and wavelength allows correction factors to be found using a rate equation model. The air flow into the jet was fixed and the RF power coupled into the system varied. The resulting [O] was found to increase with RF power.

  11. Intraoperative measurement of intraocular pressure in vitrectomized aphakic air-filled eyes using the Tono-Pen XL.

    PubMed

    Badrinath, S S; Vasudevan, R; Murugesan, R; Basti, S; Nicholson, A D; Singh, P; Gopal, L; Sharma, T; Rao, S B; Abraham, C

    1993-01-01

    The Tono-Pen XL (Bio-Rad, Santa Ana, CA) was compared with manometer readings for intraoperative measurement of intraocular pressure (IOP) in 40 eyes of 40 consecutive patients after vitrectomy, lensectomy, and fluid-air exchange. Tono-Pen readings corresponding to manometer readings of 10, 20, 30, 40, and 50 mmHg were obtained in a masked fashion with a randomized sequence of manometer readings. A correlation was obtained between the manometer and Tono-Pen readings (r = 0.96 in emmetropic eyes and r = 0.93 in myopic eyes). The regression curve that represents the calibration curve of Tono-Pen in terms of the manometer readings for air-filled vitrectomized eyes was obtained. Any Tono-Pen reading can be easily translated into the corresponding manometer reading by referring to the curve. The Tono-Pen can therefore be effectively used to accurately determine intraoperative IOP in eyes undergoing vitrectomy, lensectomy, and fluid-air exchange.

  12. Microfluidic pressure sensing using trapped air compression.

    PubMed

    Srivastava, Nimisha; Burns, Mark A

    2007-05-01

    We have developed a microfluidic method for measuring the fluid pressure head experienced at any location inside a microchannel. The principal component is a microfabricated sealed chamber with a single inlet and no exit; the entrance to the single inlet is positioned at the location where pressure is to be measured. The pressure measurement is then based on monitoring the movement of a liquid-air interface as it compresses air trapped inside the microfabricated sealed chamber and calculating the pressure using the ideal gas law. The method has been used to measure the pressure of the air stream and continuous liquid flow inside microfluidic channels (d approximately 50 microm). Further, a pressure drop has also been measured using multiple microfabricated sealed chambers. For air pressure, a resolution of 700 Pa within a full-scale range of 700-100 kPa was obtained. For liquids, pressure drops as low as 70 Pa were obtained in an operating range from 70 Pa to 10 kPa. Since the method primarily uses a microfluidic sealed chamber, it does not require additional fabrication steps and may easily be incorporated in several lab-on-a-chip fluidic applications for laminar as well as turbulent flow conditions.

  13. Measured pressure distributions, aerodynamic coefficients and shock shapes on blunt bodies at incidence in hypersonic air and CF4

    NASA Technical Reports Server (NTRS)

    Miller, C. G., III

    1982-01-01

    Pressure distributions, aerodynamic coefficients, and shock shapes were measured on blunt bodies of revolution in Mach 6 CF4 and in Mach 6 and Mach 10 air. The angle of attack was varied from 0 deg to 20 deg in 4 deg increments. Configurations tested were a hyperboloid with an asymptotic angle of 45 deg, a sonic-corner paraboloid, a paraboloid with an angle of 27.6 deg at the base, a Viking aeroshell generated in a generalized orthogonal coordinate system, and a family of cones having a 45 deg half-angle with spherical, flattened, concave, and cusp nose shapes. Real-gas effects were simulated for the hperboloid and paraboloid models at Mach 6 by testing at a normal-shock density ratio of 5.3 in air and 12 CF4. Predictions from simple theories and numerical flow field programs are compared with measurement. It is anticipated that the data presented in this report will be useful for verification of analytical methods for predicting hypersonic flow fields about blunt bodies at incidence.

  14. Monitoring Air Circulation Under Reduced Pressures

    NASA Astrophysics Data System (ADS)

    Rygalov, Vadim

    Adequate air circulation is required for controlled environments to maintain uniform temperature and humidity control, and hence the ability to measure air flow accurately is important. Human and associated life support habitats (e.g.,. plant production systems) for future space missions will likely be operated at pressures less than 100 kPa to minimize gas leakage and structural mass. Under such reduced pressures, the outputs from conventional anemometers for monitoring air flow can change and require re-calibration. These effects of atmospheric pressure on different types of air flow measurements are not completely understood; hence we compared the performance of several air flow sensors across a range of hypobaric pressures. Sensors included a propeller type anemometer, a hot-wire anemometer, and a Pitot-tube based device. Theoretical schematics (including mathematical models) underlying these measurements were developed. Results demonstrated that changes in sensor outputs were predictable based on their operating principles, and that corrections could be developed for sensors calibrated under normal Earth atmosphere pressure ( 100 kPa) and then used at different pressures. The potential effects of hypobaric atmospheres and their altered air flows on plant physiology are also discussed.

  15. High Precision Pressure Measurement with a Funnel

    ERIC Educational Resources Information Center

    Lopez-Arias, T.; Gratton, L. M.; Oss, S.

    2008-01-01

    A simple experimental device for high precision differential pressure measurements is presented. Its working mechanism recalls that of a hydraulic press, where pressure is supplied by insufflating air under a funnel. As an application, we measure air pressure inside a soap bubble. The soap bubble is inflated and connected to a funnel which is…

  16. Study on measurement of the coal powder concentration in pneumatic pipes of a boiler with relationship between air velocity and pressure drop

    SciTech Connect

    Pan, W.; Shen, F.; Lin, W.; Chen, L.; Zhang, D.; Wang, Q.; Ke, J.; Quan, W.

    1999-07-01

    According to the theoretical relationship between air velocity and pressure drop in different solid-air mass flow in vertical pipes with the condition of upward air-solid flowing, the experimental research on measuring the coal powder concentration is directed against the pneumatic pipes of a boiler's combustion system in the energy industry. Through analyzing the experimental results, a mathematical model for measuring the coal powder concentration in pneumatic pipes is obtained. Then, the error analysis is done, and the method of on-line measurement and its function are provided.

  17. A passive measurement of dissociated atom densities in atmospheric pressure air discharge plasmas using vacuum ultraviolet self-absorption spectroscopy

    SciTech Connect

    Laity, George; Fierro, Andrew; Dickens, James; Neuber, Andreas; Frank, Klaus

    2014-03-28

    We demonstrate a method for determining the dissociation degree of atmospheric pressure air discharges by measuring the self-absorption characteristics of vacuum ultraviolet radiation from O and N atoms in the plasma. The atom densities are determined by modeling the amount of radiation trapping present in the discharge, without the use of typical optical absorption diagnostic techniques which require external sources of probing radiation into the experiment. For an 8.0 mm spark discharge between needle electrodes at atmospheric pressure, typical peak O atom densities of 8.5 × 10{sup 17} cm{sup −3} and peak N atom densities of 9.9 × 10{sup 17} cm{sup −3} are observed within the first ∼1.0 mm of plasma near the anode tip by analyzing the OI and NI transitions in the 130.0–132.0 nm band of the vacuum ultraviolet spectrum.

  18. Diode laser absorption measurement and analysis of HCN in atmospheric-pressure, fuel-rich premixed methane/air flames

    SciTech Connect

    Gersen, S.; Mokhov, A.V.; Levinsky, H.B.

    2008-10-15

    Measurements of HCN in flat, fuel-rich premixed methane/air flames at atmospheric pressure are reported. Quartz-microprobe sampling followed by wavelength modulation absorption spectroscopy with second harmonic detection was used to obtain an overall measurement uncertainty of better than 20% for mole fractions HCN on the order of 10 ppm. The equivalence ratio, {phi}, was varied between 1.3 and 1.5, while the flame temperature was varied independently by changing the mass flux through the burner surface at constant equivalence ratio. Under the conditions of the experiments, the peak mole fractions vary little, in the range of 10-15 ppm. Increasing the flame temperature by increasing the mass flux had little influence on the peak mole fraction, but accelerated HCN burnout substantially. At high equivalence ratio and low flame temperature, HCN burnout is very slow: at {phi}=1.5, {proportional_to}10ppm HCN is still present 7 mm above the burner surface. Substantial quantitative disagreement is observed between the experimental profiles and those obtained from calculations using GRI-Mech 3.0, with the calculations generally overpredicting the results significantly. Changing the rates of key formation and consumption reactions for HCN can improve the agreement, but only by making unreasonable changes in these rates. Inclusion of reactions describing NCN formation and consumption in the calculations improves the agreement with the measurements considerably. (author)

  19. Pressure Drop in Radiator Air Tubes

    NASA Technical Reports Server (NTRS)

    Parsons, S R

    1921-01-01

    This report describes a method for measuring the drop in static pressure of air flowing through a radiator and shows (1) a reason for the discrepancy noted by various observers between head resistance and drop in pressure; (2) a difference in degree of contraction of the jet in entering a circular cell and a square cell; (3) the ratio of internal frictional resistance to total head resistance for two representative types; (4) the effect of smoothness of surface on pressure gradient; and (5) the effects of supplying heat to the radiator on pressure gradient. The fact that the pressure gradients are found to be approximately proportional to the square of the rate of flow of air appears to indicate turbulent flow, even in the short tubes of the radiator. It was found that the drop in the static pressure in the air stream through a cellular radiator and the pressure gradient in the air tubes are practically proportional to the square of the air flow in a given air density; that the difference between the head resistance per unit area and the fall of static pressure through the air tubes in radiators is apparent rather than real; and that radiators of different types differ widely in the amount of contraction of the jet at entrance. The frictional resistance was found to vary considerably, and in one case to be two-thirds of the head resistance in the type using circular cells and one-half of the head resistance of the radiator type using square cells of approximately the same dimensions.

  20. Operation Greenhouse. Scientific Director's report. Annex 1. 6. Blast measurements. Part 2. Free-air peak-pressure measurements. Section 1. Nuclear explosions, 1951

    SciTech Connect

    Moulton, J.F.; Simonds, B.T.

    1984-10-31

    The primary objective of this experiment was to obtain accurate information on the pressure in the shock wave in the free-air region. In particular, it was desired to know the peak pressure as a function of distance in this region. Secondary objectives were to determine the path of the triple point and to determine the peak pressure in the Mach-stem region.

  1. Measurement of endolymphatic pressure.

    PubMed

    Mom, T; Pavier, Y; Giraudet, F; Gilain, L; Avan, P

    2015-04-01

    Endolymphatic pressure measurement is of interest both to researchers in the physiology and pathophysiology of hearing and ENT physicians dealing with Menière's disease or similar conditions. It is generally agreed that endolymphatic hydrops is associated with Menière's disease and is accompanied by increased hydrostatic pressure. Endolymphatic pressure, however, cannot be measured precisely without endangering hearing, making the association between hydrops and increased endolymphatic pressure difficult to demonstrate. Several integrated in vivo models have been developed since the 1960s, but only a few allow measurement of endolymphatic hydrostatic pressure. Models associating measurement of hydrostatic pressure and endolymphatic potential and assessment of cochlear function are of value to elucidate the pathophysiology of endolymphatic hydrops. The present article presents the main types of models and discusses their respective interest.

  2. Blade pressure measurements

    NASA Astrophysics Data System (ADS)

    Chivers, J. W. H.

    Three measurement techniques which enable rotating pressures to be measured during the normal operation of a gas turbine or a component test rig are described. The first technique was developed specifically to provide steady and transient blade surface pressure data to aid both fan flutter research and general fan performance development. This technique involves the insertion of miniature high frequency response pressure transducers into the fan blades of a large civil gas turbine. The other two techniques were developed to measure steady rotating pressures inside and on the surface of engine or rig turbine blades and also rotating pressures in cooling feed systems. These two low frequency response systems are known as the "pressure pineapple' (a name which resulted from the shape of the original prototype) and the rotating scanivalve.

  3. Note: Measurement of extreme-short current pulse duration of runaway electron beam in atmospheric pressure air

    SciTech Connect

    Tarasenko, V. F.; Rybka, D. V.; Burachenko, A. G.; Lomaev, M. I.; Balzovsky, E. V.

    2012-08-15

    This note reports the time-amplitude characteristic of the supershort avalanche electron beam with up to 20 ps time resolution. For the first time it is shown that the electron beam downstream of small-diameter diaphragms in atmospheric pressure air has a complex structure which depends on the interelectrode gap width and cathode design. With a spherical cathode and collimator the minimum duration at half maximum of the supershort avalanche electron beam current pulse was shown to be {approx}25 ps. The minimum duration at half maximum of one peak in the pulses with two peaks can reach {approx}25 ps too.

  4. Note: measurement of extreme-short current pulse duration of runaway electron beam in atmospheric pressure air.

    PubMed

    Tarasenko, V F; Rybka, D V; Burachenko, A G; Lomaev, M I; Balzovsky, E V

    2012-08-01

    This note reports the time-amplitude characteristic of the supershort avalanche electron beam with up to 20 ps time resolution. For the first time it is shown that the electron beam downstream of small-diameter diaphragms in atmospheric pressure air has a complex structure which depends on the interelectrode gap width and cathode design. With a spherical cathode and collimator the minimum duration at half maximum of the supershort avalanche electron beam current pulse was shown to be ~25 ps. The minimum duration at half maximum of one peak in the pulses with two peaks can reach ~25 ps too.

  5. [Measuring blood pressure].

    PubMed

    Estrada Reventos, Dolors; Pujol Navarro, Ester

    2008-09-01

    High blood pressure is one of the main factors which lead to cardiovascular cerebral-vascular and kidney diseases; therefore, nursing professionals should have enough basic knowledge to enable them to carry out a precocious diagnosis and correct follow-up procedures. Although students in nursing schools are taught how to correctly measure blood pressure, often this teaching does not meet the recommendations provided by different national and international guidelines. Thus it is important to know how to use the correct methodology to measure blood pressure.

  6. Measuring combined exposure to environmental pressures in urban areas: an air quality and noise pollution assessment approach.

    PubMed

    Vlachokostas, Ch; Achillas, Ch; Michailidou, A V; Moussiopoulos, Nu

    2012-02-01

    This study presents a methodological scheme developed to provide a combined air and noise pollution exposure assessment based on measurements from personal portable monitors. Provided that air and noise pollution are considered in a co-exposure approach, they represent a significant environmental hazard to public health. The methodology is demonstrated for the city of Thessaloniki, Greece. The results of an extensive field campaign are presented and the variations in personal exposure between modes of transport, routes, streets and transport microenvironments are evaluated. Air pollution and noise measurements were performed simultaneously along several commuting routes, during the morning and evening rush hours. Combined exposure to environmental pollutants is highlighted based on the Combined Exposure Factor (CEF) and Combined Dose and Exposure Factor (CDEF). The CDEF takes into account the potential relative uptake of each pollutant by considering the physical activities of each citizen. Rather than viewing environmental pollutants separately for planning and environmental sustainability considerations, the possibility of an easy-to-comprehend co-exposure approach based on these two indices is demonstrated. Furthermore, they provide for the first time a combined exposure assessment to these environmental pollutants for Thessaloniki and in this sense they could be of importance for local public authorities and decision makers. A considerable environmental burden for the citizens of Thessaloniki, especially for VOCs and noise pollution levels is observed. The material herein points out the importance of measuring public health stressors and the necessity of considering urban environmental pollution in a holistic way.

  7. Basic Studies on High Pressure Air Plasmas

    DTIC Science & Technology

    2006-08-30

    33, 2268 (2000). [3] Non- Equilibrium Air Plasmas at Atmospheric Pressure, K.H. Becker, U. Kogelschatz, K.H. Schoenbach, and R.J. Barker, eds., IOP...10). Note that LIFBASE assumes local thermodynamic equilibrium . 120 100 oExperimentalm Siuation 80 60 20- 0 -J ~ LkXi 3060 3070 3080 3090 3100...Dual laser interferometer for plasma density measurements on large tokamaks >>, Rev. Sci. Instrum. 49 p.919 (1978) [5] C.W. Gowers, C. Lamb, « A

  8. Measurement of Off-Body Velocity, Pressure, and Temperature in an Unseeded Supersonic Air Vortex by Stimulated Raman Scattering

    NASA Technical Reports Server (NTRS)

    Herring, Gregory C.

    2008-01-01

    A noninvasive optical method is used to make time-averaged (30 sec) off-body measurements in a supersonic airflow. Seeding of tracer particles is not required. One spatial component of velocity, static pressure, and static temperature are measured with stimulated Raman scattering. The three flow parameters are determined simultaneously from a common sample volume (0.3 by 0.3 by 15 mm) using concurrent measurements of the forward and backward scattered line shapes of a N2 vibrational Raman transition. The capability of this technique is illustrated with laboratory and large-scale wind tunnel testing that demonstrate 5-10% measurement uncertainties. Because the spatial resolution of the present work was improved to 1.5 cm (compared to 20 cm in previous work), it was possible to demonstrate a modest one-dimensional profiling of cross-flow velocity, pressure, and translational temperature through the low-density core of a stream-wise vortex (delta-wing model at Mach 2.8 in NASA Langley's Unitary Plan Wind Tunnel).

  9. Clinical evaluation of an air-capsule technique for the direct measurement of intra-abdominal pressure after elective abdominal surgery

    PubMed Central

    Otto, Jens; Kaemmer, Daniel; Biermann, Andreas; Jansen, Marc; Dembinski, Rolf; Schumpelick, Volker; Schachtrupp, Alexander

    2008-01-01

    Background The gold standard for assessment of intraabdominal pressure (IAP) is via intravesicular pressure measurement (IVP). This accepted technique has some inherent problems, e.g. indirectness. Aim of this clinical study was to assess direct IAP measurement using an air-capsule method (ACM) regarding complications risks and agreement with IVP in patients undergoing abdominal surgery. Methods A prospective cohort study was performed in 30 patients undergoing elective colonic, hepatic, pancreatic and esophageal resection. For ACM a Probe 3 (Spiegelberg®, Germany) was placed on the greater omentum. It was passed through the abdominal wall paralleling routine drainages. To compare ACM with IVP t-testing was performed and mean difference as well as limits of agreement were calculated. Results ACM did not lead to complications particularly with regard to organ lesion or surgical site infection. Mean insertion time of ACM was 4.4 days (min-max: 1–5 days). 168 pairwise measurements were made. Mean ACM value was 7.9 ± 2.7 mmHg while mean IVP was 8.4 ± 3.0 mmHg (n.s). Mean difference was 0.4 mmHg ± 2.2 mmHg. Limits of agreement were -4.1 mmHg to 5.1 mmHg. Conclusion Using ACM, direct IAP measurement is feasible and uncomplicated. Associated with relatively low pressure ranges (<17 mmHg), results are comparable to bladder pressure measurement. PMID:18925973

  10. Noncontact Monitoring of Respiration by Dynamic Air-Pressure Sensor.

    PubMed

    Takarada, Tohru; Asada, Tetsunosuke; Sumi, Yoshihisa; Higuchi, Yoshinori

    2015-01-01

    We have previously reported that a dynamic air-pressure sensor system allows respiratory status to be visually monitored for patients in minimally clothed condition. The dynamic air-pressure sensor measures vital information using changes in air pressure. To utilize this device in the field, we must clarify the influence of clothing conditions on measurement. The present study evaluated use of the dynamic air-pressure sensor system as a respiratory monitor that can reliably detect change in breathing patterns irrespective of clothing. Twelve healthy volunteers reclined on a dental chair positioned horizontally with the sensor pad for measuring air-pressure signals corresponding to respiration placed on the seat back of the dental chair in the central lumbar region. Respiratory measurements were taken under 2 conditions: (a) thinly clothed (subject lying directly on the sensor pad); and (b) thickly clothed (subject lying on the sensor pad covered with a pressure-reducing sheet). Air-pressure signals were recorded and time integration values for air pressure during each expiration were calculated. This information was compared with expiratory tidal volume measured simultaneously by a respirometer connected to the subject via face mask. The dynamic air-pressure sensor was able to receive the signal corresponding to respiration regardless of clothing conditions. A strong correlation was identified between expiratory tidal volume and time integration values for air pressure during each expiration for all subjects under both clothing conditions (0.840-0.988 for the thinly clothed condition and 0.867-0.992 for the thickly clothed condition). These results show that the dynamic air-pressure sensor is useful for monitoring respiratory physiology irrespective of clothing.

  11. Laser-based air data system for aircraft control using Raman and elastic backscatter for the measurement of temperature, density, pressure, moisture, and particle backscatter coefficient.

    PubMed

    Fraczek, Michael; Behrendt, Andreas; Schmitt, Nikolaus

    2012-01-10

    Flight safety in all weather conditions demands exact and reliable determination of flight-critical air parameters. Air speed, temperature, density, and pressure are essential for aircraft control. Conventional air data systems can be impacted by probe failure caused by mechanical damage from hail, volcanic ash, and icing. While optical air speed measurement methods have been discussed elsewhere, in this paper, a new concept for optically measuring the air temperature, density, pressure, moisture, and particle backscatter is presented, being independent on assumptions on the atmospheric state and eliminating the drawbacks of conventional aircraft probes by providing a different measurement principle. The concept is based on a laser emitting laser pulses into the atmosphere through a window and detecting the signals backscattered from a fixed region just outside the disturbed area of the fuselage flows. With four receiver channels, different spectral portions of the backscattered light are extracted. The measurement principle of air temperature and density is based on extracting two signals out of the rotational Raman (RR) backscatter signal of air molecules. For measuring the water vapor mixing ratio-and thus the density of the moist air-a water vapor Raman channel is included. The fourth channel serves to detect the elastic backscatter signal, which is essential for extending the measurements into clouds. This channel contributes to the detection of aerosols, which is interesting for developing a future volcanic ash warning system for aircraft. Detailed and realistic optimization and performance calculations have been performed based on the parameters of a first prototype of such a measurement system. The impact and correction of systematic error sources, such as solar background at daytime and elastic signal cross talk appearing in optically dense clouds, have been investigated. The results of the simulations show the high potential of the proposed system for

  12. Automated Blood Pressure Measurement

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The Vital-2 unit pictured is a semi-automatic device that permits highly accurate blood pressure measurement, even by untrained personnel. Developed by Meditron Instrument Corporation, Milford, New Hampshire, it is based in part on NASA technology found in a similar system designed for automatic monitoring of astronauts' blood pressure. Vital-2 is an advancement over the familiar arm cuff, dial and bulb apparatus customarily used for blood pressure checks. In that method, the physician squeezes the bulb to inflate the arm cuff, which restricts the flow of blood through the arteries. As he eases the pressure on the arm, he listens, through a stethoscope, to the sounds of resumed blood flow as the arteries expand and contract. Taking dial readings related to sound changes, he gets the systolic (contracting) and diastolic (expanding) blood pressure measurements. The accuracy of the method depends on the physician's skill in interpreting the sounds. Hospitals sometimes employ a more accurate procedure, but it is "invasive," involving insertion of a catheter in the artery.

  13. Air separation with temperature and pressure swing

    DOEpatents

    Cassano, Anthony A.

    1986-01-01

    A chemical absorbent air separation process is set forth which uses a temperature swing absorption-desorption cycle in combination with a pressure swing wherein the pressure is elevated in the desorption stage of the process.

  14. Laser plasma at low air pressure

    NASA Astrophysics Data System (ADS)

    Vas'kovskii, Iu. M.; Moiseev, V. N.; Rovinskii, R. E.; Tsenina, I. S.

    1993-01-01

    The ambient-pressure dependences of the dynamic and optical characteristics of a laser plasma generated by CO2-laser irradiation of an obstacle are investigated experimentally. The change of the sample's surface roughness after irradiation is investigated as a function of air pressure. It is concluded that the transition from the air plasma to the erosion plasma takes place at an air pressure of about 1 mm Hg. The results confirm the existing theory of plasma formation near the surface of an obstacle under the CO2-laser pulse effect in air.

  15. Remote air pollution measurement

    NASA Technical Reports Server (NTRS)

    Byer, R. L.

    1975-01-01

    This paper presents a discussion and comparison of the Raman method, the resonance and fluorescence backscatter method, long path absorption methods and the differential absorption method for remote air pollution measurement. A comparison of the above remote detection methods shows that the absorption methods offer the most sensitivity at the least required transmitted energy. Topographical absorption provides the advantage of a single ended measurement, and differential absorption offers the additional advantage of a fully depth resolved absorption measurement. Recent experimental results confirming the range and sensitivity of the methods are presented.

  16. Elevation correction factor for absolute pressure measurements

    NASA Technical Reports Server (NTRS)

    Panek, Joseph W.; Sorrells, Mark R.

    1996-01-01

    With the arrival of highly accurate multi-port pressure measurement systems, conditions that previously did not affect overall system accuracy must now be scrutinized closely. Errors caused by elevation differences between pressure sensing elements and model pressure taps can be quantified and corrected. With multi-port pressure measurement systems, the sensing elements are connected to pressure taps that may be many feet away. The measurement system may be at a different elevation than the pressure taps due to laboratory space or test article constraints. This difference produces a pressure gradient that is inversely proportional to height within the interface tube. The pressure at the bottom of the tube will be higher than the pressure at the top due to the weight of the tube's column of air. Tubes with higher pressures will exhibit larger absolute errors due to the higher air density. The above effect is well documented but has generally been taken into account with large elevations only. With error analysis techniques, the loss in accuracy from elevation can be easily quantified. Correction factors can be applied to maintain the high accuracies of new pressure measurement systems.

  17. Pressure Measurement Sensor

    NASA Technical Reports Server (NTRS)

    1997-01-01

    FFPI Industries Inc. is the manufacturer of fiber-optic sensors that furnish accurate pressure measurements in internal combustion chambers. Such an assessment can help reduce pollution emitted by these engines. A chief component in the sensor owes its seven year- long development to Lewis Research Center funding to embed optical fibers and sensors in metal parts. NASA support to Texas A&M University played a critical role in developing this fiber optic technology and led to the formation of FFPI Industries and the production of fiber sensor products. The simple, rugged design of the sensor offers the potential for mass production at low cost. Widespread application of the new technology is forseen, from natural gas transmission, oil refining and electrical power generation to rail transport and the petrochemical paper product industry.

  18. Vibrational and Rotational CARS Measurements of Nitrogen in Afterglow of Streamer Discharge in Atmospheric Pressure Fuel/Air Mixtures

    DTIC Science & Technology

    2012-01-01

    distribution unlimited 13. SUPPLEMENTARY NOTES J. Phys. D: Appl. Phys. 45 (2012) 495401 (8pp) 14. ABSTRACT The use of nonequilibrium plasma generated by...nanosecond discharges to ignite fuel/air mixtures, known as transient plasma ignition (TPI), has been shown to effectively reduce ignition delay and...improve engine performance relative to spark ignition for combustion engines. While this method is potentially useful for many engine applications, at

  19. Operation Upshot-Knothole. Project 1.1d Dynamic Pressure versus Time and Supporting Air Blast Measurements

    DTIC Science & Technology

    1954-02-01

    It also conducted a feasibility study of nev and modified ga^es to aeasure ctynsmic pres- sure, density, temperature, and particle velocity...caoponenta of particle velocity nonaal to the reflect- ing plane are equal and oppoaite for the incident and reflected ahock v*vea and that the...equations for isentroplc flov. Porzelä has given these theoretical values of overpressure, dynamic pressure, particle velocity, and den- sity, both at

  20. Explosion pressures of hydrocarbon-air mixtures in closed vessels.

    PubMed

    Razus, Domnina; Movileanu, Codina; Brinzea, Venera; Oancea, D

    2006-07-31

    An experimental study on pressure evolution during closed vessel explosions of several gaseous fuel-air mixtures was performed, at various initial pressures within 0.3-1.2 bar and ambient initial temperature. Explosion pressures and explosion times are reported for methane-, n-pentane-, n-hexane-, propene-, butene-, butadiene-, cyclohexane- and benzene-air mixtures. The explosion pressures measured in a spherical vessel (Phi=10 cm) and in three cylindrical vessels with different diameter/height ratios are examined in comparison with the adiabatic explosion pressures, computed by assuming chemical equilibrium within the flame front. The influence of initial pressure, fuel concentration and heat losses during propagation (determined by the size and shape of the explosion vessel and by the position of the ignition source) on explosion pressures and explosion times are discussed for some of the examined systems.

  1. Tongue-Palate Contact Pressure, Oral Air Pressure, and Acoustics of Clear Speech

    ERIC Educational Resources Information Center

    Searl, Jeff; Evitts, Paul M.

    2013-01-01

    Purpose: The authors compared articulatory contact pressure (ACP), oral air pressure (Po), and speech acoustics for conversational versus clear speech. They also assessed the relationship of these measures to listener perception. Method: Twelve adults with normal speech produced monosyllables in a phrase using conversational and clear speech.…

  2. Temperature and pressure influence on explosion pressures of closed vessel propane-air deflagrations.

    PubMed

    Razus, Domnina; Brinzea, Venera; Mitu, Maria; Oancea, Dumitru

    2010-02-15

    An experimental study on pressure evolution during closed vessel explosions of propane-air mixtures was performed, for systems with various initial concentrations and pressures ([C(3)H(8)]=2.50-6.20 vol.%, p(0)=0.3-1.2 bar). The explosion pressures and explosion times were measured in a spherical vessel (Phi=10 cm), at various initial temperatures (T(0)=298-423 K) and in a cylindrical vessel (Phi=10 cm; h=15 cm), at ambient initial temperature. The experimental values of explosion pressures are examined against literature values and compared to adiabatic explosion pressures, computed by assuming chemical equilibrium within the flame front. The influence of initial pressure, initial temperature and fuel concentration on explosion pressures and explosion times are discussed. At constant temperature and fuel/oxygen ratio, the explosion pressures are linear functions of total initial pressure, as reported for other fuel-air mixtures. At constant initial pressure and composition, both the measured and calculated (adiabatic) explosion pressures are linear functions of reciprocal value of initial temperature. Such correlations are extremely useful for predicting the explosion pressures of flammable mixtures at elevated temperatures and/or pressures, when direct measurements are not available.

  3. Optical Measurements of Air Plasma

    DTIC Science & Technology

    2008-05-05

    generated in air by means of an electron beam is highly efficient. Fast electrons propagating through air result in production of electron- ion pairs...through the mechanism of impact ionization, which requires 33.7 eV per electron- ion pair. The air pressure, concentration of variable species, such as...and polyatomic species. Because our time scales are in the 1 ms to 10 ms range, there is a strong possibility of obtaining real-time absorption

  4. Building pressurization control with rooftop air conditioners

    SciTech Connect

    Winter, S.

    1982-10-01

    The modulated exhaust fan appears to be the most cost effective positive means to maintain close building pressure control with rooftop air conditioning, but because building construction and applications vary, every building's pressure control needs must be analyzed. Requirements will vary from no relief to barometric dampers to return fans to modulated exhaust fans. As heating and cooling costs continue to rise and tighter building codes prevail, proper selection of building pressure control is one area that must be monitored more carefully by the HVAC system designer.

  5. A novel target-type low pressure drop bidirectional optoelectronic air flow sensor for infant artificial ventilation: Measurement principle and static calibration

    NASA Astrophysics Data System (ADS)

    Saccomandi, Paola; Schena, Emiliano; Silvestri, Sergio

    2011-02-01

    An optoelectronic target-type volumetric air flow-rate transducer for bidirectional measurements is presented. The sensor is composed of a T-shaped target and two nominally identical LED-photodiode couples which are operated in differential mode. The sensitive surfaces of the photodiodes are differentially shadowed by the deflection of the target, which in turn depends on the gas flow-rate. The principle of operation is described in mathematical terms and the design parameters have been optimized in order to obtain the highest sensitivity along with minimal pressure drop and reduced dimensions. The sensor is placed in a 20 mm diameter hose and was tested with air flow-rate in the typical temperature range of mechanical ventilation between 20 and 40 °C. The theoretical model was validated through experiments carried out in the volumetric flow range from -7.0 to +7.0 l min-1. The nonlinear behavior allows sensitivities equal to 0.6 V l-1 min for flow rates ranging from -2.0 to +2.0 l min-1, equal to 2.0 V l-1 min for flow rates ranging from -3.0 to -2.0 l min-1 and from +2.0 to +3.0 l min-1, up to 5.7 V l-1 min at higher flow rates ranging from -7.0 to -3.0 l min-1 and from +3.0 to +7.0 l min-1. The linear range extends from 3.0 to 7.0 l min-1 with constant sensitivity equal to 5.7 V l-1 min. The sensor is able to detect a flow-rate equal to 1.0 l min-1 with a sensitivity of about 400 mV l-1 min. The differential nature of the output minimizes the influence of the LEDs' power supply variations and allows to obtain a repeatability in the order of 3% of full scale output. The small pressure drop produced by the sensor placed in-line the fluid stream, of about 2.4 Pa at 7 l min-1, corresponds to a negligible fluid dynamic resistance lower than 0.34 Pa l-1 min.

  6. A novel target-type low pressure drop bidirectional optoelectronic air flow sensor for infant artificial ventilation: Measurement principle and static calibration

    SciTech Connect

    Saccomandi, Paola; Schena, Emiliano; Silvestri, Sergio

    2011-02-15

    An optoelectronic target-type volumetric air flow-rate transducer for bidirectional measurements is presented. The sensor is composed of a T-shaped target and two nominally identical LED-photodiode couples which are operated in differential mode. The sensitive surfaces of the photodiodes are differentially shadowed by the deflection of the target, which in turn depends on the gas flow-rate. The principle of operation is described in mathematical terms and the design parameters have been optimized in order to obtain the highest sensitivity along with minimal pressure drop and reduced dimensions. The sensor is placed in a 20 mm diameter hose and was tested with air flow-rate in the typical temperature range of mechanical ventilation between 20 and 40 deg. C. The theoretical model was validated through experiments carried out in the volumetric flow range from -7.0 to +7.0 l min{sup -1}. The nonlinear behavior allows sensitivities equal to 0.6 V l{sup -1} min for flow rates ranging from -2.0 to +2.0 l min{sup -1}, equal to 2.0 V l{sup -1} min for flow rates ranging from -3.0 to -2.0 l min{sup -1} and from +2.0 to +3.0 l min{sup -1}, up to 5.7 V l{sup -1} min at higher flow rates ranging from -7.0 to -3.0 l min{sup -1} and from +3.0 to +7.0 l min{sup -1}. The linear range extends from 3.0 to 7.0 l min{sup -1} with constant sensitivity equal to 5.7 V l{sup -1} min. The sensor is able to detect a flow-rate equal to 1.0 l min{sup -1} with a sensitivity of about 400 mV l{sup -1} min. The differential nature of the output minimizes the influence of the LEDs' power supply variations and allows to obtain a repeatability in the order of 3% of full scale output. The small pressure drop produced by the sensor placed in-line the fluid stream, of about 2.4 Pa at 7 l min{sup -1}, corresponds to a negligible fluid dynamic resistance lower than 0.34 Pa l{sup -1} min.

  7. A novel target-type low pressure drop bidirectional optoelectronic air flow sensor for infant artificial ventilation: measurement principle and static calibration.

    PubMed

    Saccomandi, Paola; Schena, Emiliano; Silvestri, Sergio

    2011-02-01

    An optoelectronic target-type volumetric air flow-rate transducer for bidirectional measurements is presented. The sensor is composed of a T-shaped target and two nominally identical LED-photodiode couples which are operated in differential mode. The sensitive surfaces of the photodiodes are differentially shadowed by the deflection of the target, which in turn depends on the gas flow-rate. The principle of operation is described in mathematical terms and the design parameters have been optimized in order to obtain the highest sensitivity along with minimal pressure drop and reduced dimensions. The sensor is placed in a 20 mm diameter hose and was tested with air flow-rate in the typical temperature range of mechanical ventilation between 20 and 40 °C. The theoretical model was validated through experiments carried out in the volumetric flow range from -7.0 to +7.0 l min(-1). The nonlinear behavior allows sensitivities equal to 0.6 V l(-1) min for flow rates ranging from -2.0 to +2.0 l min(-1), equal to 2.0 V l(-1) min for flow rates ranging from -3.0 to -2.0 l min(-1) and from +2.0 to +3.0 l min(-1), up to 5.7 V l(-1) min at higher flow rates ranging from -7.0 to -3.0 l min(-1) and from +3.0 to +7.0 l min(-1). The linear range extends from 3.0 to 7.0 l min(-1) with constant sensitivity equal to 5.7 V l(-1) min. The sensor is able to detect a flow-rate equal to 1.0 l min(-1) with a sensitivity of about 400 mV l(-1) min. The differential nature of the output minimizes the influence of the LEDs' power supply variations and allows to obtain a repeatability in the order of 3% of full scale output. The small pressure drop produced by the sensor placed in-line the fluid stream, of about 2.4 Pa at 7 l min(-1), corresponds to a negligible fluid dynamic resistance lower than 0.34 Pa l(-1) min.

  8. Precision ozone vapor pressure measurements

    NASA Technical Reports Server (NTRS)

    Hanson, D.; Mauersberger, K.

    1985-01-01

    The vapor pressure above liquid ozone has been measured with a high accuracy over a temperature range of 85 to 95 K. At the boiling point of liquid argon (87.3 K) an ozone vapor pressure of 0.0403 Torr was obtained with an accuracy of + or - 0.7 percent. A least square fit of the data provided the Clausius-Clapeyron equation for liquid ozone; a latent heat of 82.7 cal/g was calculated. High-precision vapor pressure data are expected to aid research in atmospheric ozone measurements and in many laboratory ozone studies such as measurements of cross sections and reaction rates.

  9. Direct Measurement of Intracellular Pressure

    PubMed Central

    Petrie, Ryan J.; Koo, Hyun

    2014-01-01

    A method to directly measure the intracellular pressure of adherent, migrating cells is described in the Basic Protocol. This approach is based on the servo-null method where a microelectrode is introduced into the cell to directly measure the physical pressure of the cytoplasm. We also describe the initial calibration of the microelectrode as well as the application of the method to cells migrating inside three-dimensional (3D) extracellular matrix (ECM). PMID:24894836

  10. Experimental investigation of air pressure affecting filtration performance of fibrous filter sheet.

    PubMed

    Xu, Bin; Yu, Xiao; Wu, Ya; Lin, Zhongping

    2017-03-01

    Understanding the effect of air pressure on their filtration performance is important for assessing the effectiveness of fibrous filters under different practical circumstances. The effectiveness of three classes of air filter sheets were investigated in laboratory-based measurements at a wide range of air pressures (60-130 KPa). The filtration efficiency was found most sensitive to the air pressure change at smaller particle sizes. As the air pressure increased from 60 to 130 KPa, significant decrease in filtration efficiency (up to 15%) and increase in pressure drop (up to 90 Pa) were observed. The filtration efficiency of the filter sheet with largest fiber diameter and smallest solid volume fraction was affected most, while the pressure drop of the filter sheet with smallest fiber diameter and largest solid volume fraction was affected most. The effect of air pressure on the filtration efficiency was slightly larger at greater filter face air velocity. However, the effect of air pressure on the pressure drop was negligible. The filtration efficiency and pressure drop were explicitly expressed as functions of the air pressure. Two coefficients were empirically derived and successfully accounted for the effects of air pressure on filtration efficiency and pressure drop.

  11. Inverse association between air pressure and rheumatoid arthritis synovitis.

    PubMed

    Terao, Chikashi; Hashimoto, Motomu; Furu, Moritoshi; Nakabo, Shuichiro; Ohmura, Koichiro; Nakashima, Ran; Imura, Yoshitaka; Yukawa, Naoichiro; Yoshifuji, Hajime; Matsuda, Fumihiko; Ito, Hiromu; Fujii, Takao; Mimori, Tsuneyo

    2014-01-01

    Rheumatoid arthritis (RA) is a bone destructive autoimmune disease. Many patients with RA recognize fluctuations of their joint synovitis according to changes of air pressure, but the correlations between them have never been addressed in large-scale association studies. To address this point we recruited large-scale assessments of RA activity in a Japanese population, and performed an association analysis. Here, a total of 23,064 assessments of RA activity from 2,131 patients were obtained from the KURAMA (Kyoto University Rheumatoid Arthritis Management Alliance) database. Detailed correlations between air pressure and joint swelling or tenderness were analyzed separately for each of the 326 patients with more than 20 assessments to regulate intra-patient correlations. Association studies were also performed for seven consecutive days to identify the strongest correlations. Standardized multiple linear regression analysis was performed to evaluate independent influences from other meteorological factors. As a result, components of composite measures for RA disease activity revealed suggestive negative associations with air pressure. The 326 patients displayed significant negative mean correlations between air pressure and swellings or the sum of swellings and tenderness (p = 0.00068 and 0.00011, respectively). Among the seven consecutive days, the most significant mean negative correlations were observed for air pressure three days before evaluations of RA synovitis (p = 1.7 × 10(-7), 0.00027, and 8.3 × 10(-8), for swellings, tenderness and the sum of them, respectively). Standardized multiple linear regression analysis revealed these associations were independent from humidity and temperature. Our findings suggest that air pressure is inversely associated with synovitis in patients with RA.

  12. Inverse Association between Air Pressure and Rheumatoid Arthritis Synovitis

    PubMed Central

    Furu, Moritoshi; Nakabo, Shuichiro; Ohmura, Koichiro; Nakashima, Ran; Imura, Yoshitaka; Yukawa, Naoichiro; Yoshifuji, Hajime; Matsuda, Fumihiko; Ito, Hiromu; Fujii, Takao; Mimori, Tsuneyo

    2014-01-01

    Rheumatoid arthritis (RA) is a bone destructive autoimmune disease. Many patients with RA recognize fluctuations of their joint synovitis according to changes of air pressure, but the correlations between them have never been addressed in large-scale association studies. To address this point we recruited large-scale assessments of RA activity in a Japanese population, and performed an association analysis. Here, a total of 23,064 assessments of RA activity from 2,131 patients were obtained from the KURAMA (Kyoto University Rheumatoid Arthritis Management Alliance) database. Detailed correlations between air pressure and joint swelling or tenderness were analyzed separately for each of the 326 patients with more than 20 assessments to regulate intra-patient correlations. Association studies were also performed for seven consecutive days to identify the strongest correlations. Standardized multiple linear regression analysis was performed to evaluate independent influences from other meteorological factors. As a result, components of composite measures for RA disease activity revealed suggestive negative associations with air pressure. The 326 patients displayed significant negative mean correlations between air pressure and swellings or the sum of swellings and tenderness (p = 0.00068 and 0.00011, respectively). Among the seven consecutive days, the most significant mean negative correlations were observed for air pressure three days before evaluations of RA synovitis (p = 1.7×10−7, 0.00027, and 8.3×10−8, for swellings, tenderness and the sum of them, respectively). Standardized multiple linear regression analysis revealed these associations were independent from humidity and temperature. Our findings suggest that air pressure is inversely associated with synovitis in patients with RA. PMID:24454853

  13. Blood Pressure Self-Measurement.

    PubMed

    Wagner, Stefan

    2016-10-19

    Blood pressure self-measurement has been used extensively as part of several clinical processes including in the home monitoring setting for mitigating white coat effect and gaining more detailed insights into the blood pressure variability of patients over time. Self-measurement of BP is also being used as part of telemonitoring and telemedicine processes, as well as in the waiting rooms and self-measurement rooms of general practice clinics, specialized hospital department's outpatient clinics, and in other types of care facilitates and institutions.The aim of this review is to provide an overview of where, when, and how blood pressure self-measurement is being used, which official clinical guidelines and procedures are available for its implementation, as well as the opportunities and challenges that are related to its use.

  14. 21 CFR 880.5550 - Alternating pressure air flotation mattress.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Alternating pressure air flotation mattress. 880... Personal Use Therapeutic Devices § 880.5550 Alternating pressure air flotation mattress. (a) Identification. An alternating pressure air flotation mattress is a device intended for medical purposes...

  15. 21 CFR 880.5550 - Alternating pressure air flotation mattress.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Alternating pressure air flotation mattress. 880... Personal Use Therapeutic Devices § 880.5550 Alternating pressure air flotation mattress. (a) Identification. An alternating pressure air flotation mattress is a device intended for medical purposes...

  16. 21 CFR 880.5550 - Alternating pressure air flotation mattress.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Alternating pressure air flotation mattress. 880... Personal Use Therapeutic Devices § 880.5550 Alternating pressure air flotation mattress. (a) Identification. An alternating pressure air flotation mattress is a device intended for medical purposes...

  17. Measurement Methods to Determine Air Leakage Between Adjacent Zones

    SciTech Connect

    Hult, Erin L.; Dickerhoff, Darryl J.; Price, Phillip N.

    2012-09-01

    Air leakage between adjacent zones of a building can lead to indoor air quality and energy efficiency concerns, however there is no existing standard for measuring inter-zonal leakage. In this study, synthesized data and field measurements are analyzed in order to explore the uncertainty associated with different methods for collecting and analyzing fan pressurization measurements to calculate interzone leakage.

  18. Instrumentation for air quality measurements.

    NASA Technical Reports Server (NTRS)

    Loewenstein, M.

    1973-01-01

    Comparison of the new generation of air quality monitoring instruments with some more traditional methods. The first generation of air quality measurement instruments, based on the use of oxidant coulometric cells, nitrogen oxide colorimetry, carbon monoxide infrared analyzers, and other types of detectors, is compared with new techniques now coming into wide use in the air monitoring field and involving the use of chemiluminescent reactions, optical absorption detectors, a refinement of the carbon monoxide infrared analyzer, electrochemical cells based on solid electrolytes, and laser detectors.

  19. Inflation pressure effect on performance of air-filled wheelchair cushions.

    PubMed

    Krouskop, T A; Williams, R; Noble, P; Brown, J

    1986-02-01

    Air-filled wheelchair cushions are frequently used in the prevention of pressure sores. Their effectiveness in reducing interface pressures and in redistributing body weight (BW) appears dependent on their internal inflation pressure. This pilot study examines and defines this relationship. Interface pressures were measured with the TIPE (Texas Interface Pressure Evaluator) system for 14 subjects while sitting on each of three commercially available air-filled wheelchair cushions. This relationship between interface pressure and internal pressure was then determined for each of the three body-build categories. In each category the interface pressure displayed a higher degree of sensitivity to underinflation than to overinflation. A high correlation found between BW and internal air pressure (IAP), may be useful in the design of a customized pressure indicator system. The study documents the influence of IAP on seating pressure and supports the need for further research in the development of an indicator system that alerts users to under- or overinflation of the cushion.

  20. Impacts of Changes of Indoor Air Pressure and Air Exchange Rate in Vapor Intrusion Scenarios.

    PubMed

    Shen, Rui; Suuberg, Eric M

    2016-02-01

    There has, in recent years, been increasing interest in understanding the transport processes of relevance in vapor intrusion of volatile organic compounds (VOCs) into buildings on contaminated sites. These studies have included fate and transport modeling. Most such models have simplified the prediction of indoor air contaminant vapor concentrations by employing a steady state assumption, which often results in difficulties in reconciling these results with field measurements. This paper focuses on two major factors that may be subject to significant transients in vapor intrusion situations, including the indoor air pressure and the air exchange rate in the subject building. A three-dimensional finite element model was employed with consideration of daily and seasonal variations in these factors. From the results, the variations of indoor air pressure and air exchange rate are seen to contribute to significant variations in indoor air contaminant vapor concentrations. Depending upon the assumptions regarding the variations in these parameters, the results are only sometimes consistent with the reports of several orders of magnitude in indoor air concentration variations from field studies. The results point to the need to examine more carefully the interplay of these factors in order to quantitatively understand the variations in potential indoor air exposures.

  1. Impacts of Changes of Indoor Air Pressure and Air Exchange Rate in Vapor Intrusion Scenarios

    PubMed Central

    Shen, Rui; Suuberg, Eric M.

    2016-01-01

    There has, in recent years, been increasing interest in understanding the transport processes of relevance in vapor intrusion of volatile organic compounds (VOCs) into buildings on contaminated sites. These studies have included fate and transport modeling. Most such models have simplified the prediction of indoor air contaminant vapor concentrations by employing a steady state assumption, which often results in difficulties in reconciling these results with field measurements. This paper focuses on two major factors that may be subject to significant transients in vapor intrusion situations, including the indoor air pressure and the air exchange rate in the subject building. A three-dimensional finite element model was employed with consideration of daily and seasonal variations in these factors. From the results, the variations of indoor air pressure and air exchange rate are seen to contribute to significant variations in indoor air contaminant vapor concentrations. Depending upon the assumptions regarding the variations in these parameters, the results are only sometimes consistent with the reports of several orders of magnitude in indoor air concentration variations from field studies. The results point to the need to examine more carefully the interplay of these factors in order to quantitatively understand the variations in potential indoor air exposures. PMID:28090133

  2. Review of air flow measurement techniques

    SciTech Connect

    McWilliams, Jennifer

    2002-12-01

    Airflow measurement techniques are necessary to determine the most basic of indoor air quality questions: ''Is there enough fresh air to provide a healthy environment for the occupants of the building?'' This paper outlines airflow measurement techniques, but it does not make recommendations for techniques that should be used. The airflows that will be discussed are those within a room or zone, those between rooms or zones, such as through doorways (open or closed) or passive vents, those between the building and outdoors, and those through mechanical air distribution systems. Techniques that are highlighted include particle streak velocimetry, hot wire anemometry, fan pressurization (measuring flow at a given pressure), tracer gas, acoustic methods for leak size determination, the Delta Q test to determine duct leakage flows, and flow hood measurements. Because tracer gas techniques are widely used to measure airflow, this topic is broken down into sections as follows: decay, pulse injection, constant injection, constant concentration, passive sampling, and single and multiple gas measurements for multiple zones.

  3. Air and gas pockets in sewerage pressure mains.

    PubMed

    Lubbers, C L; Clemens, F

    2005-01-01

    In The Netherlands, wastewater is collected in municipal areas and transported to large centralised WWTPs by means of an extensive system of pressure mains. Over the past decades these pressure mains did not receive much attention in terms of monitoring of performance or maintenance. For that reason, in practice their state of functioning is often not known. Failure of operation is only noticed when the capacity of the system proves to be insufficient to fulfil the minimum design capacity demand. A recent inventory showed that half of the pressure mains show an increased pressure loss for no directly obvious reason. Many causes may account for the reduction of the system's nominal capacity like an increased wall roughness, scaling or occurrence of free gas in the pipeline. The occurrence of free gas may be caused by degassing of dissolved (bio) gas or by air entrained at the pumps' inlet or at air valves. A research study is started that will focus on three main issues: The description of the gas-water phenomena in wastewater pressure mains with respect to transportation and dynamic hydraulic behaviour, A method to diagnose gas problems, and To overcome future problems by either applying remedial measures or improving the design of wastewater pressure systems. For this study, two experimental facilities are constructed, a small circuit for the study of multi-phase flow and a second, larger one for the research into diagnostic methods. This paper describes the preliminary results of the experiments in the multi-phase circuit.

  4. Automatic blood pressure measuring system (M092)

    NASA Technical Reports Server (NTRS)

    Nolte, R. W.

    1977-01-01

    The Blood Pressure Measuring System is described. It measures blood pressure by the noninvasive Korotkoff sound technique on a continual basis as physical stress is imposed during experiment M092, Lower Body Negative Pressure, and experiment M171, Metabolic Activity.

  5. 21 CFR 880.5550 - Alternating pressure air flotation mattress.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... body pressure. The device is used to prevent and treat decubitus ulcers (bed sores). (b) Classification... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Alternating pressure air flotation mattress. 880... Personal Use Therapeutic Devices § 880.5550 Alternating pressure air flotation mattress. (a)...

  6. Measurements of air-broadened and nitrogen-broadened Lorentz width coefficients and pressure shift coefficients in the nu4 and nu2 bands of C-12H4

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.; Smith, Mary Ann H.; Devi, V. Malathy; Benner, D. Chris

    1988-01-01

    Air-broadened and N2-broadened halfwidth and pressure shift coefficients of 294 transitions in the nu4 and nu2 bands of C-12H4 have been measured from laboratory absorption spectra recorded at room temperature with the Fourier transform spectrometer in the McMath solar telescope facility of the National Solar Observatory. Total pressures of up to 551 Torr were employed with absorption paths of 5-150 cm, CH4 volume mixing ratios of 2.6 percent or less, and resolutions of 0.005 and 0.01/cm. A nonlinear least-squares spectral fitting technique has been utilized in the analysis of the twenty-five measured spectra. Lines up to J double-prime = 18 in the nu4 band and J double-prime = 15 in the nu2 band have been analyzed.

  7. Neutron probe measurements of air saturation near an air sparging well

    SciTech Connect

    Acomb, L.J.; McKay, D.; Currier, P.; Berglund, S.T.; Sherhart, T.V.; Benediktsson, C.V.

    1995-12-31

    In situ air sparging is being used to remediate diesel-fuel-contaminated soils in the zone of water table fluctuation at a remote Alaskan Federal Aviation Administration (FAA) air navigation aid site. A neutron probe was used to measure changes in percent air saturation during air sparging in a uniform, aeolian sand. Air was injected about 15 ft below the water table at air flowrates of 4 to 16 ft{sup 3}/min (cfm). The neutron probe data show that during air sparging the distribution of injected air changed through time, initially expanding outward from the sparge well screen, then consolidating around the air sparging well, until a steady-state condition was reached. The maximum radius of influence, measured at an air flowrate of 16 cfm, was about 15 ft during steady-state flow. At all air flowrates the percent air saturation was highest near the air sparging well and decreased radially away from the sparging well. Near the sparging well, the percent air saturation ranged from about 30% to >50% at air injection rates of 4 to 16 cfm. Where the percent air saturation is similar to that in the vadose zone, volatilization and biodegradation may occur at rates similar to those in the vadose zone. Selected air saturation results are presented, and dissolved oxygen and saturated zone pressure data are summarized.

  8. DETONATION PRESSURE MEASUREMENTS ON PETN

    SciTech Connect

    Green, L G; Lee, E L

    2006-06-23

    PETN is widely recognized as an example of nearly ideal detonation performance. The chemical composition is such that little or no carbon is produced in the detonation products. The reaction zone width is less than currently detectable. (<1 ns) Observations on PETN have thus become a baseline for EOS model predictions. It has therefore become important to characterize the detonation parameters as accurately as possible in order to provide the most exacting comparisons of EOS predictions with experimental results. We undertook a painstaking review of the detonation pressure measurements reported in an earlier work that was presented at the Fifth Detonation Symposium and found that corrections were required in determining the shock velocity in the PMMA witness material. We also refined the impedance calculation to account for the difference between the usual ''acoustic'' method and the more accurate Riemann integral. Our review indicates that the CJ pressures previously reported for full density PETN require an average lowering of about 6 percent. The lower densities require progressively smaller corrections. We present analysis of the records, supporting hydrodynamic simulations, the Riemann integral results, and EOS parameter values derived from the revised results.

  9. Pressurized solid oxide fuel cell integral air accumular containment

    DOEpatents

    Gillett, James E.; Zafred, Paolo R.; Basel, Richard A.

    2004-02-10

    A fuel cell generator apparatus contains at least one fuel cell subassembly module in a module housing, where the housing is surrounded by a pressure vessel such that there is an air accumulator space, where the apparatus is associated with an air compressor of a turbine/generator/air compressor system, where pressurized air from the compressor passes into the space and occupies the space and then flows to the fuel cells in the subassembly module, where the air accumulation space provides an accumulator to control any unreacted fuel gas that might flow from the module.

  10. Air pollution measurements from satellites

    NASA Technical Reports Server (NTRS)

    Ludwig, C. B.; Griggs, M.; Malkmus, W.; Bartle, E. R.

    1973-01-01

    A study is presented on the remote sensing of gaseous and particulate air pollutants which is an extension of a previous report. Pollutants can be observed by either active or passive remote sensing systems. Calculations discussed herein indicate that tropospheric CO, CO2, SO2, NO2, NH3, HCHO, and CH4 can be measured by means of nadir looking passive systems. Additional species such as NO, HNO3, O3, and H2O may be measured in the stratosphere through a horizon experiment. A brief theoretical overview of resonance Raman scattering and resonance fluorescence is given. It is found that radiance measurements are most promising for general global applications, and that stratospheric aerosols may be measured using a sun occultation technique. The instrumentation requirements for both active and passive systems are examined and various instruments now under development are described.

  11. [Aerodynamics study on pressure changes inside pressure-type whole-body plethysmograph produced by flowing air].

    PubMed

    Xu, Wei-Hua; Shen, Hua-Hao

    2010-02-25

    When using pressure-type plethysmography to test lung function of rodents, calculation of lung volume is always based on Boyle's law. The precondition of Boyle's law is that perfect air is static. However, air in the chamber is flowing continuously when a rodent breathes inside the chamber. Therefore, Boyle's law, a principle of air statics, may not be appropriate for measuring pressure changes of flowing air. In this study, we deduced equations for pressure changes inside pressure-type plethysmograph and then designed three experiments to testify the theoretic deduction. The results of theoretic deduction indicated that increased pressure was generated from two sources: one was based on Boyle's law, and the other was based on the law of conservation of momentum. In the first experiment, after injecting 0.1 mL, 0.2 mL, 0.4 mL of air into the plethysmograph, the pressure inside the chamber increased sharply to a peak value, then promptly decreased to horizontal pressure. Peak values were significantly higher than the horizontal values (P<0.001). This observation revealed that flowing air made an extra effect on air pressure in the plethysmograph. In the second experiment, the same volume of air was injected into the plethysmograph at different frequencies (0, 0.5, 1, 2, 3 Hz) and pressure changes inside were measured. The results showed that, with increasing frequencies, the pressure changes in the chamber became significantly higher (P<0.001). In the third experiment, small animal ventilator and pipette were used to make two types of airflow with different functions of time. The pressure changes produced by the ventilator were significantly greater than those produced by the pipette (P<0.001). Based on the data obtained, we draw the conclusion that, the flow of air plays a role in pressure changes inside the plethysmograph, and the faster the airflow is, the higher the pressure changes reach. Furthermore, the type of airflow also influences the pressure changes.

  12. Dynamic-pressure measurements using an electronically scanned pressure module

    NASA Technical Reports Server (NTRS)

    Chapin, W. G.

    1983-01-01

    Frequency response was measured for different lengths and diameters of tubing between a sinusoidal pressure source and a pressure sensing module from an electronically scanned pressure measuring system. Measurements were made for straight runs of both steel and vinyl tubing. For steel tubing, measured results are compared with results calculated by using equations developed by Tijdeman and Bergh. Measurements were also made with a bend in the vinyl tubing at the module. In addition, measurements were made with two coils placed in the tubing near the middle of the run.

  13. Measuring Intracranial Pressure And Volume Noninvasively

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.; Yost, William T.

    1994-01-01

    Ultrasonic technique eliminates need to drill into brain cavity. Intracranial dynamics instrument probes cranium ultrasonically to obtain data for determination of intracranial pressure (ICP) and pressure-volume index (PVI). Instrument determines sensitivity of skull to changes in pressure and by use of mechanical device to exert external calibrated pressure on skull. By monitoring volume of blood flowing into jugular vein, one determines change of volume of blood in cranial system. By measuring response of skull to increasing pressure (where pressure increased by tilting patient known amount) and by using cranial blood pressure, one determines intial pressure in cerebrospinal fluid. Once PVI determined, ICP determined.

  14. Vapor Pressure Measurements in a Closed System

    ERIC Educational Resources Information Center

    Iannone, Mark

    2006-01-01

    An alternative method that uses a simple apparatus to measure vapor pressure versus temperature in a closed system, in which the total pressure is the vapor pressure of the liquid sample, is described. The use of this apparatus gives students a more direct picture of vapor pressure than the isoteniscope method and results have generally been quite…

  15. Noninvasive, quantitative respirator fit testing through dynamic pressure measurement.

    PubMed

    Carpenter, D R; Willeke, K

    1988-10-01

    A new method has been invented for the noninvasive and quantitative determination of fit for a respirator. The test takes a few seconds and requires less expensive instrumentation than presently used for invasive testing. In this test, the breath is held at a negative pressure for a few seconds, and the leak-induced pressure decay inside the respirator cavity is monitored. A dynamic pressure sensor is attached to a modified cartridge of an air-purifying respirator or built into the respirator body or into the air supply line of an air-supplied respirator. The method is noninvasive in that the modified cartridge can be mounted onto any air-purifying respirator. The pressure decay during testing quantifies the airflow entered through the leak site. An equation has been determined which gives the air leakage as a function of pressure decay slope, respirator volume and the pressure differential during actual wear--all of which are determined by the dynamic pressure sensor. Thus, the ratio of air inhaled through the filters or via the air supply line to the leak rate is a measure of respirator fit, independent of aerosol deposition in the lung and aerosol distribution in the respirator cavity as found for quantitative fit testing with aerosols. The new method is shown to be independent of leak and sensor locations. The concentration and distribution of aerosols entered through the leak site is dependent only on the physical dimensions of the leak site and the air velocity in it, which can be determined independently.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Cuff for Blood-Vessel Pressure Measurements

    NASA Technical Reports Server (NTRS)

    Shimizu, M.

    1982-01-01

    Pressure within blood vessel is measured by new cufflike device without penetration of vessel. Device continuously monitors blood pressure for up to 6 months or longer without harming vessel. Is especially useful for vessels smaller than 4 or 5 millimeters in diameter. Invasive methods damage vessel wall, disturb blood flow, and cause clotting. They do not always give reliable pressure measurements over prolonged periods.

  17. Measuring Time-Averaged Blood Pressure

    NASA Technical Reports Server (NTRS)

    Rothman, Neil S.

    1988-01-01

    Device measures time-averaged component of absolute blood pressure in artery. Includes compliant cuff around artery and external monitoring unit. Ceramic construction in monitoring unit suppresses ebb and flow of pressure-transmitting fluid in sensor chamber. Transducer measures only static component of blood pressure.

  18. Air brake-dynamometer accurately measures torque

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Air brake-dynamometer assembly combines the principles of the air turbine and the air pump to apply braking torque. The assembly absorbs and measures power outputs of rotating machinery over a wide range of shaft speeds. It can also be used as an air turbine.

  19. Vapor pressure measured with inflatable plastic bag

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Deflated plastic bag in a vacuum chamber measures initial low vapor pressures of materials. The bag captures the test sample vapors and visual observation of the vapor-inflated bag under increasing external pressures yields pertinent data.

  20. Laboratory performance of alternating pressure air mattresses component and sequelae.

    PubMed

    Bain, Duncan

    The performance of three different alternating pressure air mattresses with different geometries of air cell were compared (Nimbus 3, Heritage, Tamora Plus), using simple performance indices based on pressure mapping. The aim of this study was to examine the effect on performance of elevating the backrest and thigh section of the bed into sitting position. Ten healthy volunteers of various sizes were pressure-mapped over the full pressure cycle on three alternating pressure air mattresseses with differing cell geometries. This was then repeated with the beds profiled to a sitting position. Performance of the alternating pressure air mattresses in terms of their ability to redistribute pressure dynamically was assessed in the different positions. The different alternating pressure air mattresses performed similarly with the bed in the lying flat position, but smaller cells appeared to be more effective in the sitting position. A conclusion was made that cell geometry may have an effect on the ability of the mattress to achieve alternating behaviour in the sitting position.

  1. 58. AIR PRESSURIZATION TANK BEING LIFTED INTO PLACE ON THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    58. AIR PRESSURIZATION TANK BEING LIFTED INTO PLACE ON THE VAL BRIDGE STRUCTURE AT ISLIP CANYON, April 9, 1948. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  2. 27. EXTENSION OF SURGE CHAMBER AND AIR PIPES TO PRESSURE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. EXTENSION OF SURGE CHAMBER AND AIR PIPES TO PRESSURE LINE, HIGHLINE PUMPING PLANT. December 11, 1920 - Highline Canal & Pumping Station, South side of Salt River between Tempe, Phoenix & Mesa, Tempe, Maricopa County, AZ

  3. Indirect Blood Pressure Measuring Device

    NASA Technical Reports Server (NTRS)

    Hum, L.; Cole, C. E.

    1973-01-01

    Design and performance of a blood pressure recording device for pediatric use are reported. A strain gage transducer with a copper-beryllium strip as force sensing element is used to monitor skin movements and to convert them into electrical signals proportional to those displacements. Experimental tests with this device in recording of force developed above the left femoral artery of a dog accurately produced a blood pressure curve.

  4. Underground storage systems for high-pressure air and gases

    NASA Technical Reports Server (NTRS)

    Beam, B. H.; Giovannetti, A.

    1975-01-01

    This paper is a discussion of the safety and cost of underground high-pressure air and gas storage systems based on recent experience with a high-pressure air system installed at Moffett Field, California. The system described used threaded and coupled oil well casings installed vertically to a depth of 1200 ft. Maximum pressure was 3000 psi and capacity was 500,000 lb of air. A failure mode analysis is presented, and it is shown that underground storage offers advantages in avoiding catastrophic consequences from pressure vessel failure. Certain problems such as corrosion, fatigue, and electrolysis are discussed in terms of the economic life of such vessels. A cost analysis shows that where favorable drilling conditions exist, the cost of underground high-pressure storage is approximately one-quarter that of equivalent aboveground storage.

  5. Heart-rate monitoring by air pressure and causal analysis

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Naoki; Nakajima, Hiroshi; Hata, Yutaka

    2011-06-01

    Among lots of vital signals, heart-rate (HR) is an important index for diagnose human's health condition. For instance, HR provides an early stage of cardiac disease, autonomic nerve behavior, and so forth. However, currently, HR is measured only in medical checkups and clinical diagnosis during the rested state by using electrocardiograph (ECG). Thus, some serious cardiac events in daily life could be lost. Therefore, a continuous HR monitoring during 24 hours is desired. Considering the use in daily life, the monitoring should be noninvasive and low intrusive. Thus, in this paper, an HR monitoring in sleep by using air pressure sensors is proposed. The HR monitoring is realized by employing the causal analysis among air pressure and HR. The causality is described by employing fuzzy logic. According to the experiment on 7 males at age 22-25 (23 on average), the correlation coefficient against ECG is 0.73-0.97 (0.85 on average). In addition, the cause-effect structure for HR monitoring is arranged by employing causal decomposition, and the arranged causality is applied to HR monitoring in a setting posture. According to the additional experiment on 6 males, the correlation coefficient is 0.66-0.86 (0.76 on average). Therefore, the proposed method is suggested to have enough accuracy and robustness for some daily use cases.

  6. A microwave pressure sounder. [for remote measurement of atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Peckham, G. E.; Flower, D. A.

    1981-01-01

    A technique for the remote measurement of atmospheric surface pressure will be described. Such measurements could be made from a satellite in polar orbit and would cover many areas for which conventional meteorological data are not available. An active microwave instrument is used to measure the strength of return echoes from the ocean surface at a number of frequencies near the 60 GHz oxygen absorption band. Factors which affect the accuracy with which surface pressure can be deduced from these measurements will be discussed and an instrument designed to test the method by making measurements from an aircraft will be described.

  7. A Comparative Study of Sound Speed in Air at Room Temperature between a Pressure Sensor and a Sound Sensor

    ERIC Educational Resources Information Center

    Amrani, D.

    2013-01-01

    This paper deals with the comparison of sound speed measurements in air using two types of sensor that are widely employed in physics and engineering education, namely a pressure sensor and a sound sensor. A computer-based laboratory with pressure and sound sensors was used to carry out measurements of air through a 60 ml syringe. The fast Fourier…

  8. Further experiments on the stability of laminar and turbulent hydrogen-air flames at reduced pressures

    NASA Technical Reports Server (NTRS)

    Fine, Burton

    1957-01-01

    Stability limits for laminar and turbulent hydrogen-air burner flames were measured as a function of pressure, burner diameter, and composition. On the basis of a simple flame model, turbulent flashback involved a smaller effective penetration distance than laminar flashback. No current theoretical treatment predicts the observed pressure and diameter dependence of laminar and turbulent blowoff.

  9. Palpatory Method of Measuring Diastolic Blood Pressure

    PubMed Central

    Sahu, Dinesh; Bhaskaran, M

    2010-01-01

    Background: Most common method for measuring blood pressure is palpatory but only systolic pressure can be measured with this method. In this study we are describing palpatory method of measuring diastolic blood pressure as well. Patients & Methods: We have studied in 200 patients and compared systolic as well as diastolic blood pressures with two methods, auscutatory and palpatory. Systolic and diastolic blood pressure were measured by one of the authors with new palpatory method and noted down. Then an independent observer, who was blinded to the palpatory method's values, measured blood pressure by auscultatory method and noted down. The values were compared in term of range and percentage. Results: The difference were analysed and found that 102 (51%) patients had systolic and diastolic blood pressure measured by palpatory method, within ± 2 mmHg of auscutatory method, 37 (19%) patients had within ± 4 mmHg, 52 (25%) patients had same readings as with auscutatory method, and in 9 (0.5%) patients it could not be measured. Conclusion: The palpatory method would be very useful where frequent blood pressure measurement are being done manually like in wards, in busy OPD, patient on treadmill and also whenever stethoscope is not available. The blood pressure can be measured in noisy environment too. PMID:21547184

  10. Pressure of air on coming to rest from various speeds

    NASA Technical Reports Server (NTRS)

    Zahm, A F

    1927-01-01

    The text gives theoretical formulas from which is computed a table for the pressure of air on coming to rest from various speeds, such as those of aircraft and propeller blades. Pressure graphs are given for speeds from 1 cm. Sec. up to those of swift projectiles.

  11. Teaching Science: Air Pressure "Eggs-periments."

    ERIC Educational Resources Information Center

    Leyden, Michael B.

    1994-01-01

    Discusses how teachers can introduce students to various scientific concept concerning motion, air composition, and heat by conducting an experiment: A peeled, hard-boiled egg is sucked into a bottle neck slightly smaller than the egg, after the bottle has been filled and emptied of hot water. Also discusses how students' understanding of the…

  12. Foot Plantar Pressure Measurement System: A Review

    PubMed Central

    Razak, Abdul Hadi Abdul; Zayegh, Aladin; Begg, Rezaul K.; Wahab, Yufridin

    2012-01-01

    Foot plantar pressure is the pressure field that acts between the foot and the support surface during everyday locomotor activities. Information derived from such pressure measures is important in gait and posture research for diagnosing lower limb problems, footwear design, sport biomechanics, injury prevention and other applications. This paper reviews foot plantar sensors characteristics as reported in the literature in addition to foot plantar pressure measurement systems applied to a variety of research problems. Strengths and limitations of current systems are discussed and a wireless foot plantar pressure system is proposed suitable for measuring high pressure distributions under the foot with high accuracy and reliability. The novel system is based on highly linear pressure sensors with no hysteresis. PMID:23012576

  13. Spatial resolution in plantar pressure measurement revisited.

    PubMed

    Pataky, Todd C

    2012-08-09

    Plantar pressures are typically measured using sensors of finite area, so the accuracy with which one can measure true maximum pressure is dependent on sensor size. Measurement accuracy has been modeled previously for one patient's metatarsals (Lord, 1997), but has not been modeled either for general subjects or for other parts of the foot. The purposes of this study were (i) to determine whether Lord's (1997) model is also valid for heel and hallux pressures, and (ii) to examine how sensor size relates to measurement accuracy in the context of four factors common to many measurement settings: pressure pulse size, foot positioning, pressure change quantification, and gross pressure redistribution. Lord's (1997) model was first generalized and was then validated using 10 healthy walking subjects, with relatively low RMSE values on the order of 20 kPa. Next, postural data were used to show that gross pressure redistributions can be accurately quantified (p<0.002), even with rather gross sensor sizes of 30 mm. Finally, numerical analyses revealed that the relation between sensor size and measurement accuracy is highly complex, with deep dependency on the measurement context. In particular, the critical sensor widths required to achieve 90% accuracy ranged from 1.7 mm to 17.4 mm amongst the presently investigated scenarios. Since measurement accuracy varies so extensively with so many factors, the current results cannot yield specific recommendations regarding spatial resolution. It is concluded simply that no particular spatial resolution can yield a constant measurement accuracy across common plantar pressure measurement tasks.

  14. Differential absorption lidar measurements of atmospheric temperature and pressure profiles

    NASA Technical Reports Server (NTRS)

    Korb, C. L.

    1981-01-01

    The theory and methodology of using differential absorption lidar techniques for the remote measurement of atmospheric pressure profiles, surface pressure, and temperature profiles from ground, air, and space-based platforms are presented. Pressure measurements are effected by means of high resolution measurement of absorption at the edges of the oxygen A band lines where absorption is pressure dependent due to collisional line broadening. Temperature is assessed using measurements of the absorption at the center of the oxygen A band line originating from a quantum state with high ground state energy. The population of the state is temperature dependent, allowing determination of the temperature through the Boltzmann term. The results of simulations of the techniques using Voigt profile and variational analysis are reported for ground-based, airborne, and Shuttle-based systems. Accuracies in the 0.5-1.0 K and 0.1-0.3% range are projected.

  15. Correction of static pressure on a research aircraft in accelerated flight using differential pressure measurements

    NASA Astrophysics Data System (ADS)

    Rodi, A. R.; Leon, D. C.

    2012-11-01

    A method is described that estimates the error in the static pressure measurement on an aircraft from differential pressure measurements on the hemispherical surface of a Rosemount model 858AJ air velocity probe mounted on a boom ahead of the aircraft. The theoretical predictions for how the pressure should vary over the surface of the hemisphere, involving an unknown sensitivity parameter, leads to a set of equations that can be solved for the unknowns - angle of attack, angle of sideslip, dynamic pressure and the error in static pressure - if the sensitivity factor can be determined. The sensitivity factor was determined on the University of Wyoming King Air research aircraft by comparisons with the error measured with a carefully designed sonde towed on connecting tubing behind the aircraft - a trailing cone - and the result was shown to have a precision of about ±10 Pa over a wide range of conditions, including various altitudes, power settings, and gear and flap extensions. Under accelerated flight conditions, geometric altitude data from a combined Global Navigation Satellite System (GNSS) and inertial measurement unit (IMU) system are used to estimate acceleration effects on the error, and the algorithm is shown to predict corrections to a precision of better than ±20 Pa under those conditions. Some limiting factors affecting the precision of static pressure measurement on a research aircraft are discussed.

  16. Generation of high pressure homogeneous dielectric barrier discharge in air

    NASA Astrophysics Data System (ADS)

    Osawa, Naoki; Takashi, Ami; Yoshioka, Yoshio; Hanaoka, Ryoichi

    2013-02-01

    We succeeded in generating an atmospheric pressure Townsend discharge (APTD) in air by using a simple DBD device that consists of alumina barriers and plane electrodes. So far, we applied the APTD to an ozonizer and found that the ozone generation efficiency was higher by the APTD mode than by the conventional DBD mode in larger specific input energy region. It is well known that an operation under an optimized high gas pressure is advantageous for efficient ozone generation from air. In this paper, we investigated whether the Townsend discharge (TD) in dry air in high pressure up to 0.17 MPa can be generated or not. From the observation results of current waveforms and discharge photographs, we found that (1) the discharge currents flow continuously and have only one peak in every half cycle in all gas pressure and (2) filamentary discharges are not recognized between barriers in all gas pressure. These features completely agree with the features of the APTD we reported. Therefore, we concluded that our TD can be generated even in dry air in the pressure range of 0.1 and 0.17 MPa. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

  17. Automatic blood pressure measuring system (M091)

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Leg Volume Measuring System is used to measure leg calf girth changes that occur during exposure to lower body negative pressure as a result of pooling of blood and other fluids in the lower extremities.

  18. Optical Measurement Of Sound Pressure

    NASA Technical Reports Server (NTRS)

    Trinh, Eugene H.; Gaspar, Mark; Leung, Emily W.

    1989-01-01

    Noninvasive technique does not disturb field it measures. Sound field deflects laser beam proportionally to its amplitude. Knife edge intercepts undeflected beam, allowing only deflected beam to reach photodetector. Apparatus calibrated by comparing output of photodetector with that of microphone. Optical technique valuable where necessary to measure in remote, inaccessible, or hostile environment or to avoid perturbation of measured region.

  19. Plain-jet airblast atomization of alternative liquid petroleum fuels under high ambient air pressure conditions

    NASA Astrophysics Data System (ADS)

    Jasuja, A. K.

    1982-04-01

    The effects that air and fuel properties have upon the spray mean drop size characteristics of a plain-jet airblast atomizer of the type employed in the gas turbine engine are investigated. The tests used kerosene, gas oil and a high-viscosity blend of gas oil in residual fuel oil, and covered a wide range of ambient air pressures. Laser light-scattering technique was employed for drop size measurements. It is concluded that the atomizer's measured mean drop size characteristics are only slightly different from those of the pre-filming type, especially when operating on low-viscosity kerosene under higher ambient air pressure. The beneficial effect of increased levels of ambient air pressure on mean drop size is shown to be much reduced in the case of high-viscosity fuels, thus making the attainment of good atomization performance on such fuels difficult. An expression is derived for correlating the obtained mean drop size data.

  20. Air Monitoring, Measuring, and Emissions Research

    EPA Pesticide Factsheets

    Measurement research is advancing the ability to determine the composition of sources of air pollution, conduct exposure assessments, improve monitoring capabilities and support public health research.

  1. Disruptive Innovation in Air Measurement Technology: Reality ...

    EPA Pesticide Factsheets

    This presentation is a big picture overview on the changing state of air measurement technology in the world, with a focus on the introduction of low-cost sensors into the market place. The presentation discusses how these new technologies may be a case study in disruptive innovation for the air pollution measurement field. The intended audience is primarily those with experience in air pollution measurement methods, but much of the talk is accessible to the general public. This is a keynote presentation on emerging air monitoring technology, to be provided at the AWMA measurements conference in March, 2016.

  2. Cavity gas pressure measurements on DIAMOND FORTUNE

    SciTech Connect

    Smith, C.W.; Breeze, S.P.

    1993-10-01

    Five measurements were made of the gas pressure in the cavity as a function of time on the DIAMOND FORTUNE event. The measurements were obtained with a fast and slow blowdown technique; an additional transducer on the cavity side of the explosive valve provided valuable data. Data from three of the five transducers are nearly coincident data from the other two show temperature-related shifts. The timeframe of the credible measurements extends from 0.1 second to four hours. The pressure at two seconds was 2,100 kPa (300 Psi). On the logarithmic time scale this level decays monotonically to 210 kPa (30 Psi) at 1,000 seconds. During the next decade of time the cavity pressure approached atmospheric pressure. Over the initial few seconds the measured amplitude is close to the S-Cubed prediction; with increased time the measured pressure decays at a faster rate.

  3. Variation of the pressure limits of flame propagation with tube diameter for propane-air mixtures

    NASA Technical Reports Server (NTRS)

    Belles, Frank E; Simon, Dorothy M

    1951-01-01

    An investigation was made of the variation of the pressure limits of flame propagation with tube diameter for quiescent propane with tube diameter for quiescent propane-air mixtures. Pressure limits were measured in glass tubes of six different inside diameters, with a precise apparatus. Critical diameters for flame propagation were calculated and the effect of pressure was determined. The critical diameters depended on the pressure to the -0.97 power for stoichiometric mixtures. The pressure dependence decreased with decreasing propane concentration. Critical diameters were related to quenching distance, flame speeds, and minimum ignition energy.

  4. Measuring Viscosities of Gases at Atmospheric Pressure

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Mall, Gerald H.; Hoshang, Chegini

    1987-01-01

    Variant of general capillary method for measuring viscosities of unknown gases based on use of thermal mass-flowmeter section for direct measurement of pressure drops. In technique, flowmeter serves dual role, providing data for determining volume flow rates and serving as well-characterized capillary-tube section for measurement of differential pressures across it. New method simple, sensitive, and adaptable for absolute or relative viscosity measurements of low-pressure gases. Suited for very complex hydrocarbon mixtures where limitations of classical theory and compositional errors make theoretical calculations less reliable.

  5. Measurement of static pressure on aircraft

    NASA Technical Reports Server (NTRS)

    Gracey, William

    1958-01-01

    Existing data on the errors involved in the measurement of static pressure by means of static-pressure tubes and fuselage vents are presented. The errors associated with the various design features of static-pressure tubes are discussed for the condition of zero angle of attack and for the case where the tube is inclined to flow. Errors which result from variations in the configuration of static-pressure vents are also presented. Errors due to the position of a static-pressure tube in the flow field of the airplane are given for locations ahead of the fuselage nose, ahead of the wing tip, and ahead of the vertical tail fin. The errors of static-pressure vents on the fuselage of an airplane are also presented. Various methods of calibrating static-pressure installations in flight are briefly discussed.

  6. Measuring Pressure Has a New Standard

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Force-Balanced Piston Gauge (FPG) tests and calibrates instrumentation operating in the low pressure range. The system provides a traceable, primary calibration standard for measuring pressures in the range of near 0 to 15 kPa (2.2 psi) in both gauge and absolute measurement modes. The hardware combines a large area piston-cylinder with a load cell measuring the force resulting from pressures across the piston. The mass of the piston can be tared out, allowing measurement to start from zero. A pressure higher than the measured pressure, which keeps the piston centered, lubricates an innovative conical gap located between the piston and the cylinder, eliminating the need for piston rotation. A pressure controller based on the control of low gas flow automates the pressure control. DHI markets the FPG as an automated primary standard for very low-gauge and absolute pressures. DHI is selling the FPG to high-end metrology laboratories on a case by case basis, with a full commercial release to follow.

  7. Fuel Cells Utilizing Oxygen From Air at Low Pressures

    NASA Technical Reports Server (NTRS)

    Cisar, Alan; Boyer, Chris; Greenwald, Charles

    2006-01-01

    A fuel cell stack has been developed to supply power for a high-altitude aircraft with a minimum of air handling. The fuel cell is capable of utilizing oxygen from ambient air at low pressure with no need for compression. For such an application, it is advantageous to take oxygen from the air (in contradistinction to carrying a supply of oxygen onboard), but it is a challenging problem to design a fuel-cell stack of reasonable weight that can generate sufficient power while operating at reduced pressures. The present fuel-cell design is a response to this challenge. The design features a novel bipolar plate structure in combination with a gas-diffusion structure based on a conductive metal core and a carbon gas-diffusion matrix. This combination makes it possible for the flow fields in the stack to have a large open fraction (ratio between open volume and total volume) to permit large volumes of air to flow through with exceptionally low backpressure. Operations at reduced pressure require a corresponding increase in the volume of air that must be handled to deliver the same number of moles of oxygen to the anodes. Moreover, the increase in the open fraction, relative to that of a comparable prior fuel-cell design, reduces the mass of the stack. The fuel cell has been demonstrated to operate at a power density as high as 105 W/cm2 at an air pressure as low as 2 psia (absolute pressure 14 kPa), which is the atmospheric pressure at an altitude of about 50,000 ft ( 15.2 km). The improvements in the design of this fuel cell could be incorporated into designs of other fuel cells to make them lighter in weight and effective at altitudes higher than those of prior designs. Potential commercial applications for these improvements include most applications now under consideration for fuel cells.

  8. Measuring pressure under burns pressure garments using the Oxford Pressure Monitor.

    PubMed

    Harries, C A; Pegg, S P

    1989-06-01

    Pressure garments are used extensively in the treatment of hypertrophic scarring following burn injuries. The Oxford Pressure Monitor was used to measure garment-scar interface pressure (mmHg) using a number of fabric types over various body parts. The results indicate a wide range of pressure values between different garments and body parts with the greatest pressures found over the dorsum of hands and feet. The problems of achieving 'optimal pressure' over hypertrophic scarring are discussed with emphasis on the need for more accurate measuring equipment.

  9. The Determination of the Percent of Oxygen in Air Using a Gas Pressure Sensor

    ERIC Educational Resources Information Center

    Gordon, James; Chancey, Katherine

    2005-01-01

    The experiment of determination of the percent of oxygen in air is performed in a general chemistry laboratory in which students compare the results calculated from the pressure measurements obtained with the calculator-based systems to those obtained in a water-measurement method. This experiment allows students to explore a fundamental reaction…

  10. Accurate, reproducible measurement of blood pressure.

    PubMed Central

    Campbell, N R; Chockalingam, A; Fodor, J G; McKay, D W

    1990-01-01

    The diagnosis of mild hypertension and the treatment of hypertension require accurate measurement of blood pressure. Blood pressure readings are altered by various factors that influence the patient, the techniques used and the accuracy of the sphygmomanometer. The variability of readings can be reduced if informed patients prepare in advance by emptying their bladder and bowel, by avoiding over-the-counter vasoactive drugs the day of measurement and by avoiding exposure to cold, caffeine consumption, smoking and physical exertion within half an hour before measurement. The use of standardized techniques to measure blood pressure will help to avoid large systematic errors. Poor technique can account for differences in readings of more than 15 mm Hg and ultimately misdiagnosis. Most of the recommended procedures are simple and, when routinely incorporated into clinical practice, require little additional time. The equipment must be appropriate and in good condition. Physicians should have a suitable selection of cuff sizes readily available; the use of the correct cuff size is essential to minimize systematic errors in blood pressure measurement. Semiannual calibration of aneroid sphygmomanometers and annual inspection of mercury sphygmomanometers and blood pressure cuffs are recommended. We review the methods recommended for measuring blood pressure and discuss the factors known to produce large differences in blood pressure readings. PMID:2192791

  11. Blade Tip Pressure Measurements Using Pressure Sensitive Paint

    NASA Technical Reports Server (NTRS)

    Wong, Oliver D.; Watkins, Anthony Neal; Goodman, Kyle Z.; Crafton, James; Forlines, Alan; Goss, Larry; Gregory, James W.; Juliano, Thomas J.

    2012-01-01

    This paper discusses the application of pressure sensitive paint using laser-based excitation for measurement of the upper surface pressure distribution on the tips of rotor blades in hover and simulated forward flight. The testing was conducted in the Rotor Test Cell and the 14- by 22-ft Subsonic Tunnel at the NASA Langley Research Center on the General Rotor Model System (GRMS) test stand. The Mach-scaled rotor contained three chordwise rows of dynamic pressure transducers for comparison with PSP measurements. The rotor had an 11 ft 1 in. diameter, 5.45 in. main chord and a swept, tapered tip. Three thrust conditions were examined in hover, C(sub T) = 0.004, 0.006 and 0.008. In forward flight, an additional thrust condition, C(sub T) = 0.010 was also examined. All four thrust conditions in forward flight were conducted at an advance ratio of 0.35.

  12. Remote query pressure measurement using magnetoelastic sensors

    NASA Astrophysics Data System (ADS)

    Grimes, C. A.; Stoyanov, P. G.; Kouzoudis, D.; Ong, K. G.

    1999-12-01

    Two magnetostriction-based methods for measuring atmospheric pressure are presented. Each technique correlates changes in pressure with the characteristic resonant frequency of a magnetoelastic magnetostrictive thick-film sensor. In each case the sensor is monitored remotely, using an adjacently located pickup coil, without the use of physical connections to the sensor.

  13. Measurement and Applications of Radiation Pressure

    NASA Astrophysics Data System (ADS)

    Ma, Dakang; Garrett, Joseph; Murray, Joseph; Munday, Jeremy; Munday Lab Team

    Light reflected off a material or absorbed within it exerts radiation pressure through the transfer of momentum. Measuring and utilizing radiation pressure have aroused growing interest in a wide spectrum of research fields. Micromechanical transducers and oscillators are good candidates for measuring radiation pressure, but accompanying photothermal effects often obscure the measurement. In this work, we investigate the accurate measurement of the radiation force on microcantilevers in ambient conditions and ways to separate radiation pressure and photothermal effects. Further, we investigate an optically broadband switchable device based on polymer dispersed liquid crystal which has potential applications in solar sails and maneuvering spacecraft without moving parts. The authors would like to thank NASA Early Career Faculty Award and NASA Smallsat Technology Partnership Award for their funding support.

  14. The Belt Method for Measuring Pressure Distribution

    NASA Technical Reports Server (NTRS)

    Corson, Blake W , Jr

    1943-01-01

    The measurement of pressure distribution may be accomplished rapidly for any number of locations deemed necessary in model or full-scale investigations by use of the "belt" method. Reasonable accuracy may be obtained by careful use of this method.

  15. An experimental study of geyser-like flows induced by a pressurized air pocket

    NASA Astrophysics Data System (ADS)

    Elayeb, I. S.; Leon, A.; Choi, Y.; Alnahit, A. O.

    2015-12-01

    Previous studies argues that the entrapment of pressurized air pockets within combined sewer systems can produce geyser flows, which is an oscillating jetting of a mixture of gas-liquid flows. To verify that pressurized air pockets can effectively produce geysers, laboratory experiments were conducted. However, past experiments were conducted in relatively small-scale apparatus (i.e. maximum φ2" vertical shaft). This study conducted a set of experiments in a larger apparatus. The experimental setup consists of an upstream head tank, a downstream head tank, a horizontal pipe (46.5ft long, φ6") and a vertical pipe (10ft long, φ6"). The initial condition for the experiments is constant flow discharge through the horizontal pipe. The experiments are initiated by injecting an air pocket with pre-determined volume and pressure at the upstream end of the horizontal pipe. The air pocket propagates through the horizontal pipe until it arrives to the vertical shaft, where it is released producing a geyser-like flow. Three flow rates in the horizontal pipe and three injected air pressures were tested. The variables measured were pressure at two locations in the horizontal pipe and two locations in the vertical pipe. High resolution videos at two regions in the vertical shaft were also recorded. To gain further insights in the physics of air-water interaction, the laboratory experiments were complemented with numerical simulations conducted using a commercial 3D CFD model, previously validated with experiments.

  16. DDT in fuel air mixtures at elevated temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Card, J.; Rival, D.; Ciccarelli, G.

    2005-11-01

    An experimental study was carried out to investigate flame acceleration and deflagration-to-detonation transition (DDT) in fuel air mixtures at initial temperatures up to 573 K and pressures up to 2 atm. The fuels investigated include hydrogen, ethylene, acetylene and JP-10 aviation fuel. The experiments were performed in a 3.1-m long, 10-cm inner-diameter heated detonation tube equipped with equally spaced orifice plates. Ionization probes were used to measure the flame time-of-arrival from which the average flame velocity versus propagation distance could be obtained. The DDT composition limits and the distance required for the flame to transition to detonation were obtained from this flame velocity data. The correlation developed by Veser et al. (run-up distance to supersonic flames in obstacle-laden tubes. In the proceedings of the 4th International Symposium on Hazards, Prevention and Mitigation of Industrial Explosions, France (2002)) for the flame choking distance proved to work very well for correlating the detonation run-up distance measured in the present study. The only exception was for the hydrogen air data at elevated initial temperatures which tended to fall outside the scatter of the hydrocarbon mixture data. The DDT limits obtained at room temperature were found to follow the classical d/λ = 1 correlation, where d is the orifice plate diameter and λ is the detonation cell size. Deviations found for the high-temperature data could be attributed to the one-dimensional ZND detonation structure model used to predict the detonation cell size for the DDT limit mixtures. This simple model was used in place of actual experimental data not currently available.

  17. Centrifugal pump inlet pressure site affects measurement.

    PubMed

    Augustin, Simon; Horton, Alison; Butt, Warwick; Bennett, Martin; Horton, Stephen

    2010-09-01

    During extracorporeal life support (ECLS), blood is exposed to a myriad of unphysiological factors that can affect outcome. One aspect of this is the sub-atmospheric pressure generated by the ECLS pump and imparted to blood elements along the pump inlet line. This pressure can be measured on the inlet line close to the pump head by adding a connector, or at the venous cannula connection site. We compared the two measurement sites located at both points; between the venous cannula-inlet tubing and inlet tubing-pump, with a range of cannulae and flows. We also investigated the effects on inlet pressure from pump afterload and increasing inlet tubing length.

  18. Air Combat Maneuvering Performance Measurement

    DTIC Science & Technology

    1979-09-01

    several major purposes. First, it would provide improved feedback to Air Combat Maneuvering (ACM) students concerning their progress through the flight...materials and syllabi. Consistent patterns of weakness in the students would serve as an indicator of a need for adjustment and improvement in the program...adversary maneuvers. BFM students learn to perceive the aspect angle, angle-off, and closure rate of the opposing aircraft. They learn the proper maneuver

  19. The Jar Magic--Instructional Activities for Teaching Air Pressure

    ERIC Educational Resources Information Center

    Ku, Bing-Hong; Chen, Chyong-Sun

    2013-01-01

    There are a variety of impressive activities designed for teaching the concept of air pressure to junior high school students. Water, glasses, balloons, plastic bottles, and suction cups are some of the items commonly used in these experiments. For example, if we take a glass of water, cover it with a piece of cardboard, and invert the glass,…

  20. 21 CFR 880.5550 - Alternating pressure air flotation mattress.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Alternating pressure air flotation mattress. 880.5550 Section 880.5550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital...

  1. Experimental Air Pressure Tank Systems for Process Control Education

    ERIC Educational Resources Information Center

    Long, Christopher E.; Holland, Charles E.; Gatzke, Edward P.

    2006-01-01

    In process control education, particularly in the field of chemical engineering, there is an inherent need for industrially relevant hands-on apparatuses that enable one to bridge the gap between the theoretical content of coursework and real-world applications. At the University of South Carolina, two experimental air-pressure tank systems have…

  2. Improved fireman's compressed air breathing system pressure vessel development program

    NASA Technical Reports Server (NTRS)

    King, H. A.; Morris, E. E.

    1973-01-01

    Prototype high pressure glass filament-wound, aluminum-lined pressurant vessels suitable for use in a fireman's compressed air breathing system were designed, fabricated, and acceptance tested in order to demonstrate the feasibility of producing such high performance, lightweight units. The 4000 psi tanks have a 60 standard cubic foot (SCF) air capacity, and have a 6.5 inch diamter, 19 inch length, 415 inch volume, weigh 13 pounds when empty, and contain 33 percent more air than the current 45 SCF (2250 psi) steel units. The current steel 60 SCF (3000 psi) tanks weigh approximately twice as much as the prototype when empty, and are 2 inches, or 10 percent shorter. The prototype units also have non-rusting aluminum interiors, which removes the hazard of corrosion, the need for internal coatings, and the possibility of rust particles clogging the breathing system.

  3. Pancreas tumor interstitial pressure catheter measurement

    NASA Astrophysics Data System (ADS)

    Nieskoski, Michael D.; Gunn, Jason; Marra, Kayla; Trembly, B. Stuart; Pogue, Brian W.

    2016-03-01

    This paper highlights the methodology in measuring interstitial pressure in pancreatic adenocarcinoma tumors. A Millar Mikrotip pressure catheter (SPR-671) was used in this study and a system was built to amplify and filter the output signal for data collection. The Millar pressure catheter was calibrated prior to each experiment in a water column at 37°C, range of 0 to 60 inH2O (112 mmHg), resulting in a calibration factor of 33 mV / 1 inH2O. The interstitial pressures measured in two orthotopically grown pancreatic adenocarcinoma tumor were 57 mmHg and 48 mmHg, respectively. Verteporfin uptake into the pancreatic adenocarcinoma tumor was measured using a probe-based experimental dosimeter.

  4. Blood pressure measurement using finger cuff.

    PubMed

    Lee, J; Choi, E; Jeong, H; Kim, K; Park, J

    2005-01-01

    Many research groups have studied blood pressure measurement in finger artery because of its convenience. But, low accuracy prohibits many hypertension patients from using this device. So, we suggest measurement algorithm that measure systolic and diastolic blood pressure in finger artery. And we also develop calibration method that decreases the error from difference of finger circumference by subjects. We apply our methods for 90 subjects (age form 20 to 49, 55 male, 35 female) to test feasibility of our method by AAMI SP10 standard. The mean difference of our system is ±4.7mmHg for systolic pressure, ±4.2mmHg for systolic pressure. It proved that the feasibility of our method is clinically acceptable.(under ±5mmHg).

  5. The measurement of maximum cylinder pressures

    NASA Technical Reports Server (NTRS)

    Hicks, Chester W

    1929-01-01

    The work presented in this report was undertaken at the Langley Memorial Aeronautical Laboratory of the National Advisory Committee for Aeronautics to determine a suitable method for measuring the maximum pressures occurring in aircraft engine cylinders. The study and development of instruments for the measurement of maximum cylinder pressures has been conducted in connection with carburetor and oil engine investigations on a single cylinder aircraft-type engine. Five maximum cylinder-pressure devices have been designed, and tested, in addition to the testing of three commercial indicators. Values of maximum cylinder pressures are given as obtained with various indicators for the same pressures and for various kinds and values of maximum cylinder pressures, produced chiefly by variation of the injection advance angle in high-speed oil engine. The investigations indicate that the greatest accuracy in determining maximum cylinder pressures can be obtained with an electric, balanced-pressure, diaphragm or disk-type indicator so constructed as to have a diaphragm or disk of relatively large area and minimum seat width and mass.

  6. Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure.

    PubMed

    Ran, Zengling; Liu, Shan; Liu, Qin; Huang, Ya; Bao, Haihong; Wang, Yanjun; Luo, Shucheng; Yang, Huiqin; Rao, Yunjiang

    2014-08-07

    Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure are demonstrated. These two cascaded microcavities are an air cavity and a composite cavity including a section of fiber and an air cavity. They are both placed into a pressure chamber inside a furnace to perform simultaneous pressure and high-temperature tests. The thermal and pressure coefficients of the short air cavity are ~0.0779 nm/°C and ~1.14 nm/MPa, respectively. The thermal and pressure coefficients of the composite cavity are ~32.3 nm/°C and ~24.4 nm/MPa, respectively. The sensor could be used to separate temperature and pressure due to their different thermal and pressure coefficients. The excellent feature of such a sensor head is that it can withstand high temperatures of up to 400 °C and achieve precise measurement of high-pressure under high temperature conditions.

  7. Air Quality Measurements for Science and Policy

    EPA Science Inventory

    Air quality measurements and the methods used to conduct them are vital to advancing our knowledge of the source-to-receptor-to-health effects continuum1-3. This information then forms the basis for evaluating and managing air quality to protect human health and welfa...

  8. Measurement of Air Pollutants in the Troposphere

    ERIC Educational Resources Information Center

    Clemitshaw, Kevin C.

    2011-01-01

    This article describes the principles, applications and performances of methods to measure gas-phase air pollutants that either utilise passive or active sampling with subsequent laboratory analysis or involve automated "in situ" sampling and analysis. It focuses on air pollutants that have adverse impacts on human health (nitrogen…

  9. Flame structures in the pressurized methane-air combustor

    SciTech Connect

    Yamamoto, Tsuyoshi; Miyazaki, Tomonaga, Furuhata, Tomohiko; Arai, Norio

    1998-07-01

    This study has been carried out in order to investigate the applicability of a pressurized and fuel-rich burner at a first stage combustor for a newly proposed chemical gas turbine system. The flammability limits, exhaust gas composition and the NO{sub x} emission characteristics under the pressurized conditions of 1.1--4.1 MPa have been investigated in a model combustor. This paper focuses on the influence of pressure and F/A equivalence ratio on flame structures of pressurized combustion with methane and air to obtain detailed data for designing of fuel-rich combustor for gas turbine application. The flame under fuel-rich condition and pressure of 1 MPa showed underventilated structure like other atmospheric fuel-rich flames while the flame under pressure over 1.5 MPa had shapes as fuel-lean flame. The flame becomes longer as the pressure was increased under the fuel-lean conditions, which under fuel-rich condition the influence of pressure on flame length was smaller in comparison with the flame under fuel-lean conditions. These results give an opportunity for developing smaller combustor under fuel-rich and pressurized condition compared to fuel-lean one. Numerical simulation has been done for defining the temperature profile in the model combustor using the k-{var{underscore}epsilon} turbulence model and three-step reaction model. The comparison between theoretical results and experimental data showed fair agreements.

  10. Working meeting on blood pressure measurement: suggestions for measuring blood pressure to use in populations surveys.

    PubMed

    2003-11-01

    As part of the Pan American Hypertension Initiative (PAHI), the Pan American Health Organization and the National Heart, Lung, and Blood Institute of the National Institutes of Health of the United States of America conducted a working meeting to discuss blood pressure (BP) measurement methods used in various hypertension prevalence surveys and clinical trials, with the objective of developing a BP measurement protocol for use in hypertension prevalence surveys in the Americas. No such common protocol has existed in the Americas, so it has been difficult to compare hypertension prevention and intervention strategies. This piece describes a proposed standard method for measuring blood pressure for use in population surveys in the Region of the Americas. The piece covers: considerations for developing a common blood pressure measurement protocol, critical issues in measuring blood pressure in national surveys, minimum procedures for blood pressure measurement during surveillance, and quality assessment of blood pressure.

  11. One-Component Pressure-Temperature Phase Diagrams in the Presence of Air

    ERIC Educational Resources Information Center

    Andrade-Gamboa, Julio; Martire, Daniel O.; Donati, Edgardo R.

    2010-01-01

    One-component phase diagrams are good approximations to predict pressure-temperature ("P-T") behavior of a substance in the presence of air, provided air pressure is not much higher than the vapor pressure. However, at any air pressure, and from the conceptual point of view, the use of a traditional "P-T" phase diagram is not strictly correct. In…

  12. Measuring unsteady pressure on rotating compressor blades

    NASA Technical Reports Server (NTRS)

    Englund, D. R.; Grant, H. P.; Lanati, G. A.

    1979-01-01

    Miniature semiconductor strain gage pressure transducers mounted in several arrangements were studied. Both surface mountings and recessed flush mountings were tested. Test parameters included mounting arrangement, blade material, temperature, local strain in the acceleration normal to the transducer diaphragm, centripetal acceleration, and pressure. Test results show no failures of transducers or mountings and indicate an uncertainty of unsteady pressure measurement of approximately + or - 6 percent + 0.1 kPa for a typical application. Two configurations were used on a rotating fan flutter program. Examples of transducer data and correction factors are presented.

  13. Air bubble migration rates as a proxy for bubble pressure distribution in ice cores

    NASA Astrophysics Data System (ADS)

    Dadic, Ruzica; Schneebeli, Martin; Bertler, Nancy

    2015-04-01

    Air bubble migration can be used as a proxy to measure the pressure of individual bubbles and can help constrain the gradual close-off of gas bubbles and the resulting age distribution of gases in ice cores. The close-off depth of single bubbles can vary by tens of meters, which leads to a distribution of pressures for bubbles at a given depth. The age distribution of gases (along with gas-age-ice-age differences) decreases the resolution of the gas level reconstructions from ice cores and limits our ability to determine the phase relationship between gas and ice, and thus, the impact of rapid changes of greenhouse gases on surface temperatures. For times of rapid climate change, including the last 150 years, and abrupt climate changes further back in the past, knowledge of the age distribution of the gases trapped in air bubbles will enable us to refine estimates of atmospheric changes. When a temperature gradient is applied to gas bubbles in an ice sample, the bubbles migrate toward warmer ice. This motion is caused by sublimation from the warm wall and subsequent frost deposition on the cold wall. The migration rate depends on ice temperature and bubble pressure and is proportional to the temperature gradient. The spread in migration rates for bubbles in the same samples at given temperatures should therefore reflect the variations in bubble pressures within a sample. Air bubbles with higher pressures would have been closed off higher in the firn column and thus have had time to equilibrate with the surrounding ice pressure, while air bubbles that have been closed off recently would have pressures that are similar to todays atmospheric pressure above the firn column. For ice under pressures up to ~13-16 bar, the pressure distribution of bubbles from a single depth provides a record of the trapping function of air bubbles in the firn column for a certain time in the past. We will present laboratory experiments on air bubble migration, using Antarctic ice core

  14. Pressure Pulse Measurements Using Optical Hydrophone Principles

    NASA Astrophysics Data System (ADS)

    Ueberle, Friedrich; Jamshidi-Rad, Abtin

    2011-02-01

    Pressure pulses are used in extracorporeal lithotripsy, pain therapy and other medical applications. Typical lithotripter pulses reach positive pressure amplitudes of ca. 20 to more than 100 MPa and negative pressures of -5 to more than -20 MPa, depending on the focusing properties and energy settings of the source. The IEC standard 61846, which defines the acoustic parameters of pressure pulse fields, describes the properties of "Focus-" and "Field-" type hydrophones, which were originally specified as PVDF sensors. During recent years, two types of optical sensors were developed, which are based on the principle of measuring reflection changes of a laser beam at a glass-water surface: The fiber optic sensor using bare optical fibers and the "light spot" sensor using a thick glass block. Measurements with both hydrophone types were made with a low pressure transducer (p+max=3 MPa), and two electromagnetic lithotripter sources with the same total acoustic energy (E5MPa=90mJ), one with a wide focus (FWHM = 11 mm, p+max = 30 MPa) and the other with a small focus (FWHM = 3,5 mm, p+max = 83 MPa). The results show that both optical sensor types provide high pressure-time signal fidelity comparable to PVDF membrane sensors. Both optical hydrophones can serve as "Focus-" and "Field-" hydrophones as defined in the lithotripsy measurement standard IEC 61846.

  15. Appropriateness of plantar pressure measurement devices: a comparative technical assessment.

    PubMed

    Giacomozzi, Claudia

    2010-05-01

    Accurate plantar pressure measurements are mandatory in both clinical and research contexts. Differences in accuracy, precision and reliability of the available devices have prevented so far the onset of standardization processes or the definition of reliable reference datasets. In order to comparatively assess the appropriateness of the most used pressure measurement devices (PMD) on-the-market, in 2006 the Institute the author is working for approved a two-year scientific project aimed to design, validate and implement dedicated testing methods for both in-factory and on-the field assessment. A first testing phase was also performed which finished in December 2008. Five commercial PMDs using different technologies-resistive, elastomer-based capacitive, air-based capacitive-were assessed and compared with respect to absolute pressure measurements, hysteresis, creep and COP estimation. The static and dynamic pressure tests showed very high accuracy of capacitive, elastomer-based technology (RMSE<0.5%), and quite a good performance of capacitive, air-based technology (RMSE<5%). High accuracy was also found for the resistive technology by TEKSCAN (RMSE<2.5%), even though a complex ad hoc calibration was necessary.

  16. Generation of subnanosecond electron beams in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Kostyrya, I. D.; Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Rybka, D. V.

    2009-11-01

    Optimum conditions for the generation of runaway electron beams with maximum current amplitudes and densities in nanosecond pulsed discharges in air at atmospheric pressure are determined. A supershort avalanche electron beam (SAEB) with a current amplitude of ˜30 A, a current density of ˜20 A/cm2, and a pulse full width at half maximum (FWHM) of ˜100 ps has been observed behind the output foil of an air-filled diode. It is shown that the position of the SAEB current maximum relative to the voltage pulse front exhibits a time shift that varies when the small-size collector is moved over the foil surface.

  17. Measuring Extreme Vacuum Pressure with Ultraintense Lasers

    NASA Astrophysics Data System (ADS)

    Paredes, Angel; Novoa, David; Tommasini, Daniele

    2012-12-01

    We show that extreme vacuum pressures can be measured with current technology by detecting the photons produced by the relativistic Thomson scattering of ultraintense laser light by the electrons of the medium. We compute the amount of radiation scattered at different frequencies and angles when a Gaussian laser pulse crosses a vacuum tube and design strategies for the efficient measurement of pressure. In particular, we show that a single day experiment at a high repetition rate petawatt laser facility such as Vega, that will be operating in 2014 in Salamanca, will be sensitive, in principle, to pressures p as low as 10-16Pa, and will be able to provide highly reliable measurements for p≳10-14Pa.

  18. Pressure Change Measurement Leak Testing Errors

    SciTech Connect

    Pryor, Jeff M; Walker, William C

    2014-01-01

    A pressure change test is a common leak testing method used in construction and Non-Destructive Examination (NDE). The test is known as being a fast, simple, and easy to apply evaluation method. While this method may be fairly quick to conduct and require simple instrumentation, the engineering behind this type of test is more complex than is apparent on the surface. This paper intends to discuss some of the more common errors made during the application of a pressure change test and give the test engineer insight into how to correctly compensate for these factors. The principals discussed here apply to ideal gases such as air or other monoatomic or diatomic gasses; however these same principals can be applied to polyatomic gasses or liquid flow rate with altered formula specific to those types of tests using the same methodology.

  19. Air volume measurement of 'Braeburn' apple fruit.

    PubMed

    Drazeta, Lazar; Lang, Alexander; Hall, Alistair J; Volz, Richard K; Jameson, Paula E

    2004-05-01

    The radial disposition of air in the flesh of fruit of Malus domestica Borkh., cv 'Braeburn' was investigated using a gravimetric technique based on Archimedes' principle. Intercellular air volume was measured by weighing a small tissue sample under water before and after vacuum infiltration to remove the air. In a separate procedure, the volume of the same sample was measured by recording the buoyant upthrust experienced by it when fully immersed in water. The method underestimates tissue air volume due to a slight invasion of the intercellular air spaces around the edges of the sample when it is immersed in water. To correct for this error, an adjustment factor was made based upon an analysis of a series of measurements of air volume in samples of different dimensions. In 'Braeburn' there is a gradient of declining air content from just beneath the skin to the centre of the fruit with a sharp discontinuity at the core line. Cell shape and cell packing were observed in the surface layers of freshly excised and stained flesh samples using a dissecting microscope coupled to a video camera and a PC running proprietary software. Tissue organization changed with distance below the skin. It is speculated that reduced internal gas movement, due to the tightly packed tissue of 'Braeburn' and to the potential diffusion barrier at the core line between the cortex and the pith, may increase susceptibility of the flesh to disorders associated with tissue browning and breakdown.

  20. An instrument for measuring turbulent pressure fluctuations

    NASA Astrophysics Data System (ADS)

    Papadimitrakis, Yiannis Alex; Hsu, En Yu; Street, Robert L.

    1986-04-01

    An instrument is described for laboratory measurements of the fluctuating static pressure in the turbulent boundary layer above progressive water waves. It consists of a disk-shaped sensing head properly designed to minimize the dynamic pressure variation to an acceptable level, a commercially available piezocrystal transducer housed inside a casing, and a forward-bent connecting tube. Pressure fluctuations sampled by the disk are converted into an electrical signal by the piezocrystal transducer. Through low-pass filtering, only the frequency range of interest is retained. The instrument was tested successfully for frequency response, dynamic and mechanical noise sensitivity, and response to spurious pressure fluctuations (produced when operating in a Eulerian wave-following mode) inside a cylindrical chamber and in a wind-wave facility, and some sample results along with the calibration procedures and data analysis are presented.

  1. Microcontrolled air-mattress for ulcer by pressure prevention

    NASA Astrophysics Data System (ADS)

    Pasluosta, Cristian F.; Fontana, Juan M.; Beltramone, Diego A.; Taborda, Ricardo A. M.

    2007-11-01

    An ulcer by pressure is produced when a constant pressure is exerted over the skin. This generates the collapse of the blood vessels and, therefore, a lack in the contribution of the necessary nutrients for the affected zone. As a consequence, the skin deteriorates, eventually causing an ulcer. In order to prevent it, a protocol must be applied to the patient, which is reflected on time and cost of treatment. There are some air mattresses available for this purpose, but whose performance does not fulfill all requirements. The prototype designed in our laboratory is based on the principle of the air mattress. Its objective is to improve on existing technologies and, due to an increased automation, reduce time dedication for personnel in charge of the patient. A clinical experience was made in the local Emergencies Hospital and also in an institution dedicated to aged patients care. In both cases, the results obtained and the comments from the personnel involved were favorable.

  2. The Jar Magic -- Instructional Activities for Teaching Air Pressure

    NASA Astrophysics Data System (ADS)

    Ku, Bing-Hong; Chen, Chyong-Sun

    2013-12-01

    There are a variety of impressive activities designed for teaching the concept of air pressure to junior high school students. Water, glasses, balloons, plastic bottles, and suction cups are some of the items commonly used in these experiments. For example, if we take a glass of water, cover it with a piece of cardboard, and invert the glass, amazingly, no water spills out. Further, one may also use balloons and plastic bottles as the components in another experiment. Place a balloon in a plastic bottle and spread the balloon's mouth over the bottle's rim. Inflate the balloon by blowing into it. Students will be astonished at the fact that the balloon remains inflated even though its mouth is open. Making suction cups "stick" to the wall is also an instance of proving how air pressure works.

  3. Measurement of endotracheal tube cuff pressure: Instrumental versus conventional method

    PubMed Central

    Khan, Mueen Ullah; Khokar, Rashid; Qureshi, Sadia; Al Zahrani, Tariq; Aqil, Mansoor; Shiraz, Motasim

    2016-01-01

    Objective: To evaluate the conventional practice of endotracheal tube (ETT) cuff inflation and pressure measurement as compared to the instrumental method. Study Design: Prospective observational study. Place and Duration of Study: Department of Anaesthesia, King Saud University Hospital, Riyadh, Saudi Arabia (June 2014–July 2014). Methods: A total of 100 adult patients were observed according to the syringe size used Group-1 (10 ml) and Group-2 (20 ml) for ETT cuff inflation in general anesthesia. Patients with anticipated difficult intubation, risk for aspiration, known anatomical laryngotracheal abnormalities, and emergency cases were excluded. Trachea was intubated with size 8 or 8.5 mm and 7.0 or 7.5 mm ETT in male and female patients respectively. The ETT cuff was inflated with air by one of the anesthesia technician. Cuff pressures were measured using aneroid manometer. ETT cuff pressure of 20–30 cm of water was considered as standard. Results: In 69% of the patients, the cuff pressure measurements were above the standard. Age (P = 0.806), weight (P = 0.527), height (P = 0.850), and gender (P = 1.00) were comparable in both groups. The mean cuff pressure in Group-1 and Group-2 was 32.52 ± 6.39 and 38.90 ± 6.60 cm of water (P = 0.001). The cuff inflation with 20 ml syringe resulted in higher cuff pressure as compared to 10cc syringe 37.73 ± 4.23 versus 40.74 ± 5.01 (86% vs. 52%, P = 0.013). Conclusion: The conventional method for ETT cuff inflation and pressure measuring is unreliable. As a routine instrumental cuff pressure, monitoring is suggested. PMID:27833487

  4. Optical pressure/density measuring means

    DOEpatents

    Veligdan, J.T.

    1995-05-09

    An apparatus and method are disclosed for rapidly and accurately determining the pressure of a fluid medium in either a static or dynamic state. The pressure is determined by making a measurement of the velocity of a light beam that is directed through the fluid medium along a pathway that enables an integrated pressure measurement to be made along the pathway, rather than making such a measurement only at a single point in the medium. A HeNe laser is configured to emit a beam of two frequencies separated by about 2 MHz. One of these beam frequencies is directed through the fluid medium and is reflected back through the medium to a non-linear diode detector. The other beam frequency is passed directly to a diode detector without traversing said medium. The diode detector is operated to determine the frequency shift or beat frequency between the two beam frequencies. Any variation in the frequency of said reflected beam that is caused by a change in its velocity as it is passed through the fluid medium causes a change in the beat frequency. This beat frequency change is then converted to an output signal value corresponding to the pressure of the medium. The measurement instrument apparatus is remotely positioned relative to the medium being measured, thus the apparatus is immune from electro-magnetic interference and can operate in conditions of high radiation, corrosion and extraordinarily high temperature. 4 figs.

  5. Optical pressure/density measuring means

    DOEpatents

    Veligdan, James T.

    1995-05-09

    An apparatus and method for rapidly and accurately determining the pressure of a fluid medium in either a static or dynamic state. The pressure is determined by making a measurement of the velocity of a light beam that is directed through the fluid medium along a pathway that enables an integrated pressure measurement to be made along the pathway, rather than making such a measurement only at a single point in the medium. A HeNe laser is configured to emit a beam of two frequencies separated by about 2 MHz. One of these beam frequencies is directed through the fluid medium and is reflected back through the medium to a non-linear diode detector. The other beam frequency is passed directly to a diode detector without traversing said medium. The diode detector is operated to determine the frequency shift or beat frequency between the two beam frequencies. Any variation in the frequency of said reflected beam that is caused by a change in its velocity as it is passed through the fluid medium causes a change in the beat frequency. This beat frequency change is then converted to an output signal value corresponding to the pressure of the medium. The measurement instrument apparatus is remotely positioned relative to the medium being measured, thus the apparatus is immune from electro-magnetic interference and can operate in conditions of high radiation, corrosion and extraordinarily high temperature.

  6. Measurement of colloid osmotic pressure in submicrolitre samples.

    PubMed

    Wiig, H; Halleland, E G; Fjaertoft, M; Aukland, K

    1988-04-01

    A colloid osmometer for submicrolitre samples was constructed from solid polymethylmetacrylate and acrylnitrilmethylmetacrylate blocks, exposing a 0.85 mm diameter area of a Diaflo PM-30 ultrafiltration membrane. The unknown sample, contained in a 1-microliter glass micropipette, was applied to the membrane by suction, providing minimal exposure to air. The lower limit for successful application was 0.1-0.2 microliter. The accuracy of colloid osmotic pressure (COP) measurement depends strongly on the effective compliance of the pressure transducer. We tested three different systems: (i) A Hewlett-Packard 1280 'medical' transducer gave acceptable measurements on 1-microliter samples. In smaller samples (0.1-0.5 microliter) COP was underestimated, especially at COP greater than 10 mmHg. The equilibration time was 10-30 min. (ii) As (i), but with air pressure applied to the sample by a servoregulated pump, minimizing fluid transport through the membrane. Accurate measurements on 0.2-microliter samples were obtained in the course of 2-3 min, but the system required special instrumentation and some operating experience. (iii) An 'industrial' transducer, SensoNor AE-88o, with very low compliance, gave accurate measurements in the course of 1-3 min on samples as small as 0.1-0.2 microliter and COP up to 37 mmHg. We recommend system (iii) for samples smaller than 1 microliter.

  7. AIR SEPARATION BY PRESSURE SWING ADSORPTION USING SUPERIOR ADSORBENTS

    SciTech Connect

    Ralph T. Yang

    2001-08-31

    Li-X zeolite (Si/Al = 1.0) is currently the best sorbent for use in the separation of air by adsorption processes. In particular, pressure swing adsorption (PSA) using zeolite sorbents is being increasingly used for air separation. Silver is also known to strongly affect the adsorptive properties of zeolites; and it is known that thermal vacuum dehydration of silver zeolites leads to the formation of silver clusters within the zeolite. In this work we have synthesized type X zeolites containing Ag and also varying mixtures of Li and Ag. In this project, we developed the Ag-containing zeolite as the best sorbent for air separation. We have also studied Co-ligand compounds as oxygen-selective sorbents. Syntheses, structural characterization and adsorption properties have been performed on all sorbents. The results are described in detail in 5 chapters.

  8. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Air flow measurement specifications... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method... incorporates devices that affect the air flow measurement (such as air bleeds) that result in......

  9. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Air flow measurement specifications... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method... incorporates devices that affect the air flow measurement (such as air bleeds) that result in......

  10. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Air flow measurement specifications. 89... Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method used... incorporates devices that affect the air flow measurement (such as air bleeds) that result in......

  11. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Air flow measurement specifications... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method... incorporates devices that affect the air flow measurement (such as air bleeds) that result in......

  12. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Air flow measurement specifications... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method... incorporates devices that affect the air flow measurement (such as air bleeds) that result in......

  13. High Temperature Dynamic Pressure Measurements Using Silicon Carbide Pressure Sensors

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S.; Meredith, Roger D.; Chang, Clarence T.; Savrun, Ender

    2014-01-01

    Un-cooled, MEMS-based silicon carbide (SiC) static pressure sensors were used for the first time to measure pressure perturbations at temperatures as high as 600 C during laboratory characterization, and subsequently evaluated in a combustor rig operated under various engine conditions to extract the frequencies that are associated with thermoacoustic instabilities. One SiC sensor was placed directly in the flow stream of the combustor rig while a benchmark commercial water-cooled piezoceramic dynamic pressure transducer was co-located axially but kept some distance away from the hot flow stream. In the combustor rig test, the SiC sensor detected thermoacoustic instabilities across a range of engine operating conditions, amplitude magnitude as low as 0.5 psi at 585 C, in good agreement with the benchmark piezoceramic sensor. The SiC sensor experienced low signal to noise ratio at higher temperature, primarily due to the fact that it was a static sensor with low sensitivity.

  14. [Measurements of surface ocean carbon dioxide partial pressure during WOCE

    SciTech Connect

    Not Available

    1992-01-01

    This paper discusses the research progress of the second year of research under Measurement of Surface Ocean Carbon Dioxide Partial Pressure During WOCE'' and proposes to continue measurements of underway pCO[sub 2]. During most of the first year of this grant, our efforts to measure pCO[sub 2] on WOCE WHP legs were frustrated by ship problems. The R/V Knorr, which was originally scheduled to carry out the first work on WHP lines P19 and P16 in the southeastem Pacific during the 1990-91 austral summer, was delayed in the shipyard during her mid-life refit for more than a year. In the interim, the smaller R/V Thomas Washington, was pressed into service to carry out lower-latitude portions of WHP lines P16 and P17 during mid-1991 (TUNES Expedition). We installed and operated our underway chromatographic system on this expedition, even though space and manpower on this smaller vessel were limited and no one from our group would be aboard any of the 3 WHP expedition legs. The results for carbon dioxide and nitrous oxide are shown. A map of the cruise track is shown for each leg, marked with cumulative distance. Following each track is a figure showing the carbon dioxide and nitrous oxide results as a function of distance along this track. The results are plotted as dry-gas mole fractions (in ppm and ppb, respectively) in air and in gas equilibrated with surface seawater at a total pressure equal to the barometric pressure. The air data are plotted as a 10-point running mean, and appear as a roughly horizontal line. The seawater data are plotted as individual points, using a 5-point Gaussian smoother. Equal values Of xCO[sub 2] in air and surface seawater indicate air-sea equilibrium.

  15. Low pressure high speed Stirling air engine. Final technical report

    SciTech Connect

    Ross, M.A.

    1980-06-16

    The purpose of this project was to design, construct and test a simple, appropriate technology low pressure, high speed, wood-fired Stirling air engine of 100 W output. The final design was a concentric piston/displacer engine of 454 in. bore and 1 in. stroke with a rhombic drive mechanism. The project engine was ultimately completed and tested, using a propane burner for all tests as a matter of convenience. The 100 W aim was exceeded, at atmospheric pressure, over a wide range of engine speed with the maximum power being 112 W at 1150 rpm. A pressure can was constructed to permit pressurization; however the grant funds were running out, and the only pressurized power test attempted was unsuccessful due to seal difficulties. This was a disappointment because numerous tests on the 4 cubic inch engine suggested power would be more than doubled with pressurization at 25 psig. A manifold was designed and constructed to permit operation of the engine over a standard No. 40 pot bellied stove. The engine was run successfully, but at reduced speed and power, over this stove. The project engine started out being rather noisy in operation, but modifications ultimately resulted in a very quiet engine. Various other difficulties and their solutions also are discussed. (LCL)

  16. Characterization of the respiratory and heart beat signal from an air pressure-based ballistocardiographic setup.

    PubMed

    Willemen, Tim; Van Deun, Dorien; Verhaert, Vincent; Van Huffel, Sabine; Haex, Bart; Vander Sloten, Jos

    2014-01-01

    Off-body detection of respiratory and cardiac activity presents an enormous opportunity for general health, stress and sleep quality monitoring. The presented setup detects the mechanical activity of both heart and lungs by measuring pressure difference fluctuations between two air volumes underneath the chest area of the subject. The registered signals were characterized over four different sleep postures, three different base air pressures within the air volumes and three different mattress top layer materials. Highest signal strength was detected in prone posture for both the respiratory and heart beat signal. Respiratory signal strength was the lowest in supine posture, while heart beat signal strength was lowest for right lateral. Heart beat cycle variability was highest in prone and lowest in supine posture. Increasing the base air pressure caused a reduction in signal amplitude for both the respiratory and the heart beat signal. A visco-elastic poly-urethane foam top layer had significantly higher respiration amplitude compared to high resilient poly-urethane foam and latex foam. For the heart beat signal, differences between the top layers were small. The authors conclude that, while the influence of the mattress top layer material is small, the base air pressure can be tuned for optimal mechanical transmission from heart and lungs towards the registration setup.

  17. Effect of pressure on structure and NO sub X formation in CO-air diffusion flames

    NASA Technical Reports Server (NTRS)

    Maahs, H. G.; Miller, I. M.

    1979-01-01

    A study was made of nitric oxide formation in a laminar CO-air diffusion flame over a pressure range from 1 to 50 atm. The carbon monoxide (CO) issued from a 3.06 mm diameter port coaxially into a coflowing stream of air confined within a 20.5 mm diameter chimney. Nitric oxide concentrations from the flame were measured at two carbon monoxide (fuel) flow rates: 73 standard cubic/min and 146 sccm. Comparison of the present data with data in the literature for a methane-air diffusion flame shows that for flames of comparable flame height (8 to 10 mm) and pseudoequivalence ratio (0.162), the molar emission index of a CO-air flame is significantly greater than that of a methane-air flame.

  18. Measurement of viscosity of gaseous mixtures at atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Mall, G. H.; Chegini, H.

    1986-01-01

    Coefficients of viscosity of various types of gas mixtures, including simulated natural-gas samples, have been measured at atmospheric pressure and room temperature using a modified capillary tube method. Pressure drops across the straight capillary tube section of a thermal mass flowmeter were measured for small, well-defined, volume flow rates for the test gases and for standard air. In this configuration, the flowmeter provides the volumetric flow rates as well as a well-characterized capillary section for differential pressure measurements across it. The coefficients of viscosity of the test gases were calculated using the reported value of 185.6 micro P for the viscosity of air. The coefficients of viscosity for the test mixtures were also calculated using Wilke's approximation of the Chapman-Enskog (C-E) theory. The experimental and calculated values for binary mixtures are in agreement within the reported accuracy of Wilke's approximation of the C-E theory. However, the agreement for multicomponent mixtures is less satisfactory, possible because of the limitations of Wilkes's approximation of the classical dilute-gas state model.

  19. Measurement of formaldehyde in clean air

    SciTech Connect

    Neitzert, V.; Seiler, W.

    1981-01-01

    A method for the measurement of small amounts of formaldehyde in air has been developed. The method is based on the derivatization of HCHO with 2.4-Denetrophenylhydragine, forming 2.4-Dentrophylhydragine, measured with GC-ECD-technique. HCHO is preconcentrated using a cryogenic sampling technique. The detection limit is 0.05 ppbv for a sampling volume of 200 liter. The method has been applied for measurements in continental and marine air masses showing HCHO mixing ratios of 0.4--5.0 ppbv and 0.2--1.0 ppbv, respectively. HCHO mixing ratios show diurnal variations with maximum values during the early afternoon and minimum values during the early morning. In continental air, HCHO mixing ratios are positively correlated with CO and SO/sub 2/, indicating anthropogenic HCHO sources which are estimated to be 6--11 x 10/sup 12/g/year/sup -1/ on a global scale.

  20. Noninvasive measurement of central venous pressure

    NASA Technical Reports Server (NTRS)

    Webster, J. G.; Mastenbrook, S. M., Jr.

    1972-01-01

    A technique for the noninvasive measurement of CVP in man was developed. The method involves monitoring venous velocity at a point in the periphery with a transcutaneous Doppler ultrasonic velocity meter while the patient performs a forced expiratory maneuver. The idea is the CVP is related to the value of pressure measured at the mouth which just stops the flow in the vein. Two improvements were made over the original procedure. First, the site of venous velocity measurement was shifted from a vein at the antecubital fossa (elbow) to the right external jugular vein in the neck. This allows for sensing more readily events occurring in the central veins. Secondly, and perhaps most significantly, a procedure for obtaining a curve of relative mean venous velocity vs mouth pressure was developed.

  1. Basic principles for measurement of intramuscular pressure

    NASA Technical Reports Server (NTRS)

    Hargens, A. R.; Ballard, R. E.

    1995-01-01

    We review historical and methodological approaches to measurements of intramuscular pressure (IMP) in humans. These techniques provide valuable measures of muscle tone and activity as well as diagnostic criteria for evaluation of exertional compartment syndrome. Although the wick and catheter techniques provide accurate measurements of IMP at rest, their value for exercise studies and diagnosis of exertional compartment syndrome is limited because of low frequency response and hydrostatic (static and inertial) pressure artifacts. Presently, most information on diagnosis of exertional compartment syndromes during dynamic exercise is available using the Myopress catheter. However, future research and clinical diagnosis using IMP can be optimized by the use of a miniature transducer-tipped catheter such as the Millar Mikro-tip.

  2. 78 FR 1735 - Airworthiness Directives; Honeywell International Inc. Air Data Pressure Transducers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-09

    ... International Inc. Air Data Pressure Transducers AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... certain Honeywell International Inc. air data pressure transducers as installed on various aircraft. This AD requires various tests or checks of equipment having certain air data pressure transducers,...

  3. PTV analysis of the entrained air into the diesel spray at high-pressure injection

    NASA Astrophysics Data System (ADS)

    Toda, Naoki; Yamashita, Hayato; Mashida, Makoto

    2014-08-01

    In order to clarify the effect of high-pressure injection on soot reduction in terms of the air entrainment into spray, the air flow surrounding the spray and set-off length indicating the distance from the nozzle tip to the flame region in diffusion diesel combustion were investigated using 300MPa injection of a multi-hole injector. The measurement of the air entrainment flow was carried out at non-evaporating condition using consecutive PTV (particle tracking velocimetry) method with a high-speed camera and a high-frequency pulse YAG laser. The set-off length was measured at highpressure and high-temperature using the combustion bomb of constant volume and optical system of shadow graph method. And the amount of air entrainment into spray until reaching set-off length in diffusion combustion was studied as a factor of soot formation.

  4. Method for noninvasive intracranial pressure measurement

    SciTech Connect

    Sinha, Dipen N.

    2000-01-01

    An ultrasonic-based method for continuous, noninvasive intracranial pressure (ICP) measurement and monitoring is described. The stress level in the skull bone is affected by pressure. This also changes the interfacial conditions between the dura matter and the skull bone. Standing waves may be set up in the skull bone and the layers in contact with the bone. At specific frequencies, there are resonance peaks in the response of the skull which can be readily detected by sweeping the excitation frequency on an excitation transducer in contact with a subject's head, while monitoring the standing wave characteristics from the signal received on a second, receiving transducer similarly in contact with the subject's head. At a chosen frequency, the phase difference between the excitation signal and the received signal can be determined. This difference can be related to the intracranial pressure and changes therein.

  5. Acute changes in pulse pressure in relation to constituents of particulate air pollution in elderly persons

    SciTech Connect

    Jacobs, Lotte; Buczynska, Anna; Walgraeve, Christophe; Delcloo, Andy; Potgieter-Vermaak, Sanja; Van Grieken, Rene; Demeestere, Kristof; Dewulf, Jo; Van Langenhove, Herman; De Backer, Hugo; Nemery, Benoit; Nawrot, Tim S.

    2012-08-15

    An increased pulse pressure (difference between systolic and diastolic blood pressure) suggests aortic stiffening. The objective of this study was to examine the acute effects of both particulate matter (PM) mass and composition on blood pressure, among elderly persons. We carried out a panel study in persons living in elderly homes in Antwerp, Belgium. We recruited 88 non-smoking persons, 70% women with a mean age of 83 years (standard deviation: 5.2). Blood pressure was measured and a blood sample was collected on two time points, which were chosen so that there was an exposure contrast in ambient PM exposure. The elemental content of the collected indoor and outdoor PM{sub 2.5} (particulate matter with an aerodynamic diameter <2.5 {mu}m) mass concentration was measured. Oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) on outdoor PM{sub 10} (particulate matter with an aerodynamic diameter <10 {mu}m) were measured. Each interquartile range increase of 20.8 {mu}g/m Superscript-Three in 24-h mean outdoor PM{sub 2.5} was associated with an increase in pulse pressure of 4.0 mmHg (95% confidence interval: 1.8-6.2), in persons taking antihypertensive medication (n=57), but not in persons not using antihypertensive medication (n=31) (p for interaction: 0.02). Vanadium, iron and nickel contents of PM{sub 2.5} were significantly associated with systolic blood pressure and pulse pressure, among persons on antihypertensive medication. Similar results were found for indoor concentrations. Of the oxy-PAHs, chrysene-5,6-dione and benzo[a]pyrene-3,6-dione were significantly associated with increases in systolic blood pressure and pulse pressure. In elderly, pulse pressure was positively associated with acute increases in outdoor and indoor air pollution, among persons taking antihypertensive medication. These results might form a mechanistic pathway linking air pollution as a trigger of cardiovascular events.

  6. Electrets to measure ion concentration in air.

    PubMed

    Kotrappa, P

    2005-08-01

    Positive and negative ions are produced in air, mainly due to radon and terrestrial/cosmic radiation sources. Measuring ion concentration in air indirectly provides a measure of these sources. Electrets (electrically charged pieces of Teflon), when exposed in the environment, collect ions of opposite sign leading to a measurable decrease in charge, depending upon the exposure time and ion concentration. This work describes a method of correlating electret discharge rate to the ion concentration as measured by a calibrated ion density meter. Once calibrated, electrets can then be used to measure ion concentration of either sign. The ion concentration in ambient air was measured to be about 200 ions mL(-1), measured over several hours. Both positive and negative ion concentrations were similar. In a typical room, negative ion concentration was about 3,500 ions mL(-1), and, surprisingly, there were no positive ions at all in that room. Being an integrating passive device, the method provides the unique possibility of measuring low or high concentrations of positive or negative ions over extended periods, which is difficult to do with other ion concentration measuring instruments.

  7. Low-frequency sound absorption measurements in air

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.; Meredith, R. W.

    1984-01-01

    Thirty sets of sound absorption measurements in air at a pressure of 1 atmosphere are presented at temperatures from 10 C to 50 C, relative humidities from 0 to 100 percent, and frequencies from 10 to 2500 Hz. The measurements were conducted by the method of free decay in a resonant tube having a length of 18.261 m and bore diameter of 0.152 m. Background measurements in a gas consisting of 89.5 percent N2 and 10.5 percent Ar, a mixture which has the same sound velocity as air, permitted the wall and structural losses of the tube to be separated from the constituent absorption, consisting of classical rotational and vibrational absorption, in the air samples. The data were used to evaluate the vibrational relaxation frequencies of N2 and/or O2 for each of the 30 sets of meteorological parameters. Over the full range of humidity, the measured relaxation frequencies of N2 in air lie between those specified by ANSI Standard S1.26-1978 and those measured earlier in binary N2H2O mixtures. The measured relaxation frequencies could be determined only at very low values of humidity, reveal a significant trend away from the ANSI standard, in agreement with a prior investigation.

  8. Breakdown of air pockets in downwardly inclined sewerage pressure mains.

    PubMed

    Lubbers, C L; Clemens, F H L R

    2006-01-01

    In the Netherlands, wastewater is collected in municipal areas and transported to centralised WWTPs by an extensive system of pressure mains. Over the last decades these pressure mains did not receive much attention in terms of monitoring of performance or maintenance. A recent inventory showed that half of the pressure mains show an increased pressure loss for no directly obvious reason. One of the many causes that account for the reduction of the flow capacity is the occurrence of free gas in the pipeline. During dry weather periods with low flow velocities, gas may accumulate at high points in the system. Once the velocity increases during storm weather flow, the air pockets may be broken down and transported to the end of the system. A research study is started focussing on the description of the gas-water phenomena in wastewater pressure mains with respect to transportation of gas. An experimental facility is constructed for the study of multi-phase flow. This paper describes the preliminary results of experiments on breakdown rates of gas pockets as a function of inclination angle and water flow rate. The results show an increasing breakdown rate with increasing inclination angle.

  9. 40 CFR 92.108 - Intake and cooling air measurements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....108 Intake and cooling air measurements. (a) Intake air flow measurement. Measurement of the flow rate..., the measurement technique shall conform to the following: (1) The air flow measurement method used... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Intake and cooling air......

  10. 40 CFR 92.108 - Intake and cooling air measurements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....108 Intake and cooling air measurements. (a) Intake air flow measurement. Measurement of the flow rate..., the measurement technique shall conform to the following: (1) The air flow measurement method used... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Intake and cooling air......

  11. 40 CFR 92.108 - Intake and cooling air measurements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and cooling air measurements. (a) Intake air flow measurement. Measurement of the flow rate of intake... measurement technique shall conform to the following: (1) The air flow measurement method used must have a... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Intake and cooling air......

  12. 40 CFR 92.108 - Intake and cooling air measurements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....108 Intake and cooling air measurements. (a) Intake air flow measurement. Measurement of the flow rate..., the measurement technique shall conform to the following: (1) The air flow measurement method used... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Intake and cooling air......

  13. 40 CFR 92.108 - Intake and cooling air measurements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....108 Intake and cooling air measurements. (a) Intake air flow measurement. Measurement of the flow rate..., the measurement technique shall conform to the following: (1) The air flow measurement method used... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake and cooling air......

  14. Testing of heat exchangers in membrane oxygenators using air pressure.

    PubMed

    Hamilton, Carole; Stein, Jutta; Seidler, Rainer; Kind, Robert; Beck, Karin; Tosok, Jürgen; Upterfofel, Jörg

    2006-03-01

    All heat exchangers (HE) in membrane oxygenators are tested by the manufacturer for water leaks during the production phase. However, for safety reasons, it is highly recommended that HEs be tested again before clinical use. The most common method is to attach the heater-cooler to the HE and allow the water to recirculate for at least 10 min, during which time a water leak should be evident. To improve the detection of water leaks, a test was devised using a pressure manometer with an integrated bulb used to pressurize the HE with air. The cardiopulmonary bypass system is set up as per protocol. A pressure manometer adapted to a 1/2" tubing is connected to the water inlet side of the oxygenator. The water outlet side is blocked with a short piece of 1/2" deadend tubing. The HE is pressurized with 250 mmHg for at least 30 sec and observed for any drop. Over the last 2 years, only one oxygenator has been detected with a water leak in which the air-method leaktest was performed. This unit was sent back to the manufacturer who confirmed the failure. Even though the incidence of water leaks is very low, it does occur and it is, therefore, important that all HEs are tested before they are used clinically. This method of using a pressure manometer offers many advantages, as the HE can be tested outside of the operating room (OR), allowing earlier testing of the oxygenator, no water contact is necessary, and it is simple, easy and quick to perform.

  15. Rapid miniature fiber optic pressure sensors for blast wave measurements

    NASA Astrophysics Data System (ADS)

    Zou, Xiaotian; Wu, Nan; Tian, Ye; Niezrecki, Christopher; Chen, Julie; Wang, Xingwei

    2013-02-01

    Traumatic brain injury (TBI) is a serious potential threat to soldiers who are exposed to explosions. Since the pathophysiology of TBI associated with a blast wave is not clearly defined, it is crucial to have a sensing system to accurately quantify the blast wave dynamics. This paper presents an ultra-fast fiber optic pressure sensor based on Fabry-Perot (FP) interferometric principle that is capable of measuring the rapid pressure changes in a blast event. The blast event in the experiment was generated by a starter pistol blank firing at close range, which produced a more realistic wave profile compared to using compressed air driven shock tubes. To the authors' knowledge, it is also the first study to utilize fiber optic pressure sensors to measure the ballistics shock wave of a pistol firing. The results illustrated that the fiber optic pressure sensor has a rise time of 200 ns which demonstrated that the sensor has ability to capture the dynamic pressure transient during a blast event. Moreover, the resonant frequency of the sensor was determined to be 4.11 MHz, which agrees well with the specific designed value.

  16. Compensated vibrating optical fiber pressure measuring device

    DOEpatents

    Fasching, George E.; Goff, David R.

    1987-01-01

    A microbending optical fiber is attached under tension to a diaphragm to se a differential pressure applied across the diaphragm which it causes it to deflect. The fiber is attached to the diaphragm so that one portion of the fiber, attached to a central portion of the diaphragm, undergoes a change in tension; proportional to the differential pressure applied to the diaphragm while a second portion attached at the periphery of the diaphragm remains at a reference tension. Both portions of the fiber are caused to vibrate at their natural frequencies. Light transmitted through the fiber is attenuated by both portions of the tensioned sections of the fiber by an amount which increases with the curvature of fiber bending so that the light signal is modulated by both portions of the fiber at separate frequencies. The modulated light signal is transduced into a electrical signal. The separate modulation signals are detected to generate separate signals having frequencies corresponding to the reference and measuring vibrating sections of the continuous fiber, respectively. A signal proportional to the difference between these signals is generated which is indicative of the measured pressure differential across the diaphragm. The reference portion of the fiber is used to compensate the pressure signal for zero and span changes resulting from ambient temperature and humidity effects upon the fiber and the transducer fixture.

  17. An investigation of air solubility in Jet A fuel at high pressures

    NASA Technical Reports Server (NTRS)

    Faeth, G. M.

    1981-01-01

    Problems concerned with the supercritical injection concept are discussed. Supercritical injection involves dissolving air into a fuel prior to injection. A similar effect is obtained by preheating the fuel so that a portion of the fuel flashes when its pressure is reduced. Flashing improves atomization properties and the presence of air in the primary zone of a spray flame reduces the formation of pollutants. The investigation is divided into three phases: (1) measure the solubility and density properties of fuel/gas mixtures, including Jet A/air, at pressures and correlate these results using theory; (2) investigate the atomization properties of flashing liquids, including fuel/dissolved gas systems. Determine and correlate the effect of inlet properties and injector geometry on mass flow rates, Sauter mean diameter and spray angles; (3) examine the combustion properties of flashing injection in an open burner flame, considering flame shape and soot production.

  18. Decay of femtosecond laser-induced plasma filaments in air, nitrogen, and argon for atmospheric and subatmospheric pressures

    NASA Astrophysics Data System (ADS)

    Aleksandrov, N. L.; Bodrov, S. B.; Tsarev, M. V.; Murzanev, A. A.; Sergeev, Yu. A.; Malkov, Yu. A.; Stepanov, A. N.

    2016-07-01

    The temporal evolution of a plasma channel at the trail of a self-guided femtosecond laser pulse was studied experimentally and theoretically in air, nitrogen (with an admixture of ˜3% O2), and argon in a wide range of gas pressures (from 2 to 760 Torr). Measurements by means of transverse optical interferometry and pulsed terahertz scattering techniques showed that plasma density in air and nitrogen at atmospheric pressure reduces by an order of magnitude within 3-4 ns and that the decay rate decreases with decreasing pressure. The argon plasma did not decay within several nanoseconds for pressures of 50-760 Torr. We extended our theoretical model previously applied for atmospheric pressure air plasma to explain the plasma decay in the gases under study and to show that allowance for plasma channel expansion affects plasma decay at low pressures.

  19. Heat transfer and pressure distributions on hemisphere-cylinders in methane-air combustion products at Mach 7

    NASA Technical Reports Server (NTRS)

    Weinstein, I.

    1973-01-01

    Heat-transfer and pressure distributions were measured over the surfaces of three hemisphere-cylinder models tested at a nominal Mach number of 7 in the Langley 8-foot high-temperature structures tunnel which uses methane-air products of combustion as a test medium. The results showed that the heat-transfer and pressure distributions over the surface of the models were in good agreement with experimental data obtained in air and also with theoretical predictions.

  20. Unsteady Pressure and Velocity Measurements in Pumps

    DTIC Science & Technology

    2006-11-01

    to reproduce the data with controlled experiments . For example, the rotor exit flow measured by means of a stationary high response probe will be...Turbomachinery by Means of High-Frequency Pressure Transducers. ASME, J. of Turbomachinery, Vol. 114, pp. 100-107. [3] Castorph, D. (1975): Messung ...Dreiß, A.; Kosyna, G. (1997): Experimental Investigations of Cavitation-States in a Radial Pump Impeller. JSME CENTENNIAL GRAND CONGRESS Proceedings of

  1. Automatic Blood Pressure Measurements During Exercise

    NASA Technical Reports Server (NTRS)

    Weaver, Charles S.

    1985-01-01

    Microprocessor circuits and a computer algorithm for automatically measuring blood pressure during ambulatory monitoring and exercise stress testing have been under development at SRI International. A system that records ECG, Korotkov sound, and arm cuff pressure for off-line calculation of blood pressure has been delivered to NASA, and an LSLE physiological monitoring system that performs the algorithm calculations in real-time is being constructed. The algorithm measures the time between the R-wave peaks and the corresponding Korotkov sound on-set (RK-interval). Since the curve of RK-interval versus cuff pressure during deflation is predictable and slowly varying, windows can be set around the curve to eliminate false Korotkov sound detections that result from noise. The slope of this curve, which will generally decrease during exercise, is the inverse of the systolic slope of the brachial artery pulse. In measurements taken during treadmill stress testing, the changes in slopes of subjects with coronary artery disease were markedly different from the changes in slopes of healthy subjects. Measurements of slope and O2 consumption were also made before and after ten days of bed rest during NASA/Ames Research Center bed rest studies. Typically, the maximum rate of O2 consumption during the post-bed rest test is less than the maximum rate during the pre-bed rest test. The post-bed rest slope changes differ from the pre-bed rest slope changes, and the differences are highly correlated with the drop in the maximum rate of O2 consumption. We speculate that the differences between pre- and post-bed rest slopes are due to a drop in heart contractility.

  2. On Static Pressure Fluctuation between Sirocco Fan Blades in a Car Air-Conditioning System

    NASA Astrophysics Data System (ADS)

    Sakai, Yasuhiko; Kato, Takaaki; Moriguchi, Yuu; Sakai, Masaharu; Ito, Kouji; Mitsuishi, Yasushi; Nagata, Kouji; Kubo, Takashi

    In this study, special attention is directed to static pressure fluctuation in a sirocco fan for a car air-conditioning system, because it is expected that there is a close connection between the fluid noise and the pressure fluctuation. The final purpose of this study is to clarify the relationship between the static pressure fluctuation between fan blades and the sound noise emitted to the outside of the fan, and to develop an air-conditioning system with highly low noise level. For this purpose, first of all, a new micro probe for the measurement of static pressure fluctuation has been developed. This new micro probe is composed of an L-type static pressure tube (the outer diameter is 0.5 mm and the inner diameter is 0.34 mm) and a very small pressure transducer. This probe exhibits a flat frequency response until approximately 2,000 Hz, and it is set between the blades of the fan rotating at 1,500 rpm. The measurements of the static pressure fluctuation between the blades have been performed, and the intensity of sound source was quantified from the second derivative of the phase-averaged static pressure fluctuation signals on the basis of Ribner's formula (Ribner 1962). The experiments have been made in two different modes, i.e., the cooling mode (FACE MODE) and the heating mode (FOOT MODE). It is shown that the static pressure increases rapidly as the blade approaches to the nose of the casing. It is also found that the sound source for FACE MODE shows the larger value than that for FOOT MODE as a whole. In particular, the largest intensity of sound source is observed when the blade approaches to the nose. From these results, it is confirmed that the present new static pressure probe is useful to specify the distributions of sound source in a sirocco fan.

  3. Measuring Air Density in the Introductory Lab

    ERIC Educational Resources Information Center

    Calza, G.; Gratton, L. M.; Lopez-Arias, T.; Oss, S.

    2010-01-01

    The measurement of the mass, or the density, of air can easily be done with very simple materials and offers many interesting phenomena for discussion--buoyancy and its effects being the most obvious but not the only one. Many interesting considerations can be done regarding the behavior of gases, the effect of the external conditions in the…

  4. 21 CFR 890.1600 - Intermittent pressure measurement system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Intermittent pressure measurement system. 890.1600... Intermittent pressure measurement system. (a) Identification. An intermittent pressure measurement system is an evaluative device intended for medical purposes, such as to measure the actual pressure between the...

  5. 21 CFR 890.1600 - Intermittent pressure measurement system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Intermittent pressure measurement system. 890.1600... Intermittent pressure measurement system. (a) Identification. An intermittent pressure measurement system is an evaluative device intended for medical purposes, such as to measure the actual pressure between the...

  6. Measure Guideline: Guide to Attic Air Sealing

    SciTech Connect

    Lstiburek, J.

    2014-09-01

    The Guide to Attic Air Sealing was completed in 2010 and although not in the standard Measure Guideline format, is intended to be a Measure Guideline on Attic Air Sealing. The guide was reviewed during two industry stakeholders meetings held on December 18th, 2009 and January 15th, 2010, and modified based on the comments received. Please do not make comments on the Building America format of this document. The purpose of the Guide to Attic Air Sealing is to provide information and recommendations for the preparation work necessary prior to adding attic insulation. Even though the purpose of this guide is to save energy - health, safety and durability should not be compromised by energy efficiency. Accordingly, combustion safety and ventilation for indoor air quality are addressed first. Durability and attic ventilation then follow. Finally, to maximize energy savings, air sealing is completed prior to insulating. The guide is intended for home remodelers, builders, insulation contractors, mechanical contractors, general contractors who have previously done remodeling and homeowners as a guide to the work that needs to be done.

  7. Vandenberg Air Force Base Pressure Gradient Wind Study

    NASA Technical Reports Server (NTRS)

    Shafer, Jaclyn A.

    2013-01-01

    Warning category winds can adversely impact day-to-day space lift operations at Vandenberg Air Force Base (VAFB) in California. NASA's Launch Services Program and other programs at VAFB use wind forecasts issued by the 30 Operational Support Squadron Weather Flight (30 OSSWF) to determine if they need to limit activities or protect property such as a launch vehicle. The 30 OSSWF tasked the AMU to develop an automated Excel graphical user interface that includes pressure gradient thresholds between specific observing stations under different synoptic regimes to aid forecasters when issuing wind warnings. This required the AMU to determine if relationships between the variables existed.

  8. 40 CFR 91.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the...

  9. 40 CFR 91.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the...

  10. 40 CFR 91.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the...

  11. 40 CFR 91.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the...

  12. Gas Pressure Measurements on Space Shuttle Mission-39.

    DTIC Science & Technology

    2007-11-02

    AIR FORCE BASE, MA 01731-3010 D2 fC QUPC BP TD 1 GAS PRESSURE MEASUREMENTS ON SPACE SHUTTLE MISSION-39 William F. Denig Rodney A. Viereck 9 April 1996...DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time...VA 22202-4302. and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188), Washington, DC 20503. 1 . AGENCY USE ONLY (Leave

  13. Principles of Blood Pressure Measurement - Current Techniques, Office vs Ambulatory Blood Pressure Measurement.

    PubMed

    Vischer, Annina S; Burkard, Thilo

    2016-07-15

    Blood pressure measurement has a long history and a crucial role in clinical medicine. Manual measurement using a mercury sphygmomanometer and a stethoscope remains the Gold Standard. However, this technique is technically demanding and commonly leads to faulty values. Automatic devices have helped to improve and simplify the technical aspects, but a standardised procedure of obtaining comparable measurements remains problematic and may therefore limit their validity in clinical practice. This underlines the importance of less error-prone measurement methods such as ambulatory or home blood pressure measurements and automated office blood pressure measurements. These techniques may help to uncover patients with otherwise unrecognised or overestimated arterial hypertension. Additionally these techniques may yield a better prognostic value.

  14. Measurement error in air pollution exposure assessment.

    PubMed

    Navidi, W; Lurmann, F

    1995-01-01

    The exposure of an individual to an air pollutant can be assessed indirectly, with a "microenvironmental" approach, or directly with a personal sampler. Both methods of assessment are subject to measurement error, which can cause considerable bias in estimates of health effects. If the exposure estimates are unbiased and the measurement error is nondifferential, the bias in a linear model can be corrected when the variance of the measurement error is known. Unless the measurement error is quite large, estimates of health effects based on individual exposures appear to be more accurate than those based on ambient levels.

  15. 40 CFR 89.326 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air humidity measurement... Test Equipment Provisions § 89.326 Engine intake air humidity measurement. (a) Humidity conditioned air supply. Air that has had its absolute humidity altered is considered humidity- conditioned air. For...

  16. 40 CFR 89.326 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air humidity measurement... Test Equipment Provisions § 89.326 Engine intake air humidity measurement. (a) Humidity conditioned air supply. Air that has had its absolute humidity altered is considered humidity- conditioned air. For...

  17. 40 CFR 89.326 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air humidity measurement... Test Equipment Provisions § 89.326 Engine intake air humidity measurement. (a) Humidity conditioned air supply. Air that has had its absolute humidity altered is considered humidity- conditioned air. For...

  18. 40 CFR 89.326 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air humidity measurement... Test Equipment Provisions § 89.326 Engine intake air humidity measurement. (a) Humidity conditioned air supply. Air that has had its absolute humidity altered is considered humidity- conditioned air. For...

  19. 40 CFR 89.326 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air humidity measurement... Test Equipment Provisions § 89.326 Engine intake air humidity measurement. (a) Humidity conditioned air supply. Air that has had its absolute humidity altered is considered humidity- conditioned air. For...

  20. Measure Guideline: Guide to Attic Air Sealing

    SciTech Connect

    Lstiburek, Joseph

    2014-09-01

    The purpose of this measure guideline is to provide information and recommendations for the preparation work necessary prior to adding attic insulation. Even though the purpose of this guide is to save energy, health, safety, and durability should not be compromised by energy efficiency. Accordingly, combustion safety and ventilation for indoor air quality are addressed first. Durability and attic ventilation then follow. Finally, to maximize energy savings, air sealing is completed prior to insulating. The guide is intended for home remodelers, builders, insulation contractors, mechanical contractors, general contractors who have previously done remodeling and homeowners as a guide to the work that needs to be done.

  1. Subsonic tests of an all-flush-pressure-orifice air data system

    NASA Technical Reports Server (NTRS)

    Larson, T. J.; Siemers, P. M., III

    1981-01-01

    The use of an all-flush-pressure-orifice array as a subsonic air data system was evaluated in flight and wind tunnel tests. Two orifice configurations were investigated. Both used orifices arranged in a cruciform pattern on the airplane nose. One configuration also used orifices on the sides of the fuselage for a source of static pressure. The all-nose-orifice configuration was similar to the shuttle entry air data system (SEADS). The flight data were obtained with a KC-135A airplane. The wind tunnel data were acquired with a 0.035-scale model of the KC-135A airplane. With proper calibration, several orifices on the vertical centerline of the vehicle's nose were found to be satisfactory for the determination of total pressure and angle of attack. Angle of sideslip could be accurately determined from pressure measurements made on the horizontal centerline of the aircraft. Orifice pairs were also found that provided pressure ratio relationships suitable for the determination of Mach number. The accuracy that can be expected for the air data determined with SEADS during subsonic orbiter flight is indicated.

  2. Versatile radar measurement of the electron loss rate in air

    NASA Astrophysics Data System (ADS)

    Dogariu, Arthur; Shneider, Mikhail N.; Miles, Richard B.

    2013-11-01

    We present an experimental method that makes possible in-situ measurements of the electron loss rate in arbitrary gas mixtures. A weakly ionized plasma is induced via resonant multiphoton ionization of trace amounts of nitric oxide seeded into the gas, and homodyne microwave scattering detection is used to study the dynamics of the electron loss mechanisms. Using this approach, the attachment rate for electrons to molecular oxygen in room temperature, atmospheric pressure air is determined. The measured 0.76 × 108 s-1 attachment rate is in very good agreement with predictions based on literature data.

  3. Versatile radar measurement of the electron loss rate in air

    SciTech Connect

    Dogariu, Arthur; Shneider, Mikhail N.; Miles, Richard B.

    2013-11-25

    We present an experimental method that makes possible in-situ measurements of the electron loss rate in arbitrary gas mixtures. A weakly ionized plasma is induced via resonant multiphoton ionization of trace amounts of nitric oxide seeded into the gas, and homodyne microwave scattering detection is used to study the dynamics of the electron loss mechanisms. Using this approach, the attachment rate for electrons to molecular oxygen in room temperature, atmospheric pressure air is determined. The measured 0.76 × 10{sup 8} s{sup −1} attachment rate is in very good agreement with predictions based on literature data.

  4. Amine Measurements in Boreal Forest Air

    NASA Astrophysics Data System (ADS)

    Hemmilä, Marja; Hellén, Heidi; Makkonen, Ulla; Hakola, Hannele

    2015-04-01

    Amines are reactive, volatile bases in the air with a general formula of RNH2, R2NH or R3N. Especially small amines can stabilize sulphuric acid clusters and hence affect nucleation. Amines react rapidly with hydroxyl radical (OH˙) thus affecting oxidative capacity of the atmosphere. The amine concentrations are higher in forest air than in urban air (Hellén et al., 2014), but the sources are not known. In order to get more information concerning amine sources, we conducted a measurement campaign in a boreal forest. At SMEAR II station at Hyytiälä, Southern Finland (61°510'N, 24°170'E, 180 m a.s.l.) The measurements cover seven months, from June to December 2014. For sampling and measuring we used MARGA (The instrument for Measuring AeRosols and Gases in Ambient air) which is an on-line ion chromatograph (IC) connected to a sampling system. The IC component of the MARGA system was coupled to an electrospray ionization quadrupole mass spectrometer (MS) to improve sensitivity of amine measurements. This new set-up enabled amine concentration measurements in ambient air both in aerosol and gas phases with a time resolution of only 1 hour. With MARGA-MS we analysed 7 different amines: monomethylamine (MMA), dimethylamine (DMA), trimethylamine (TMA), ethylamine (EA), diethylamine (DEA), propylamine (PA) and butylamine (BA). In preliminary data-analysis we found out, that in June and July most of the measured amines were in gas phase, and particle phase amine concentrations were mostly under detection limits (<1.7 pptv). In June the gaseous amine concentrations were higher than in July. The measured concentrations of gaseous amines followed temperature variation, which could indicate that amines are produced and emitted from the environment or re-emitted from the surfaces as temperature rises after deposition during night-time. All measured amines had similar diurnal variation with maxima during afternoon and minima during night. Results from other months will also

  5. 21 CFR 870.1130 - Noninvasive blood pressure measurement system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Noninvasive blood pressure measurement system. 870... Noninvasive blood pressure measurement system. (a) Identification. A noninvasive blood pressure measurement... three pressures can be derived through the use of tranducers placed on the surface of the body....

  6. Effect of Different Levels of Pressure Relieving Air-Mattress Firmness on Cough Strength.

    PubMed

    Kamikawa, Norimichi; Taito, Shunsuke; Takahashi, Makoto; Sekikawa, Kiyokazu; Hamada, Hironobu

    2016-01-01

    Cough is an important host-defense mechanism. The elderly and patients who are severely ill cannot cough effectively when lying in the supine position. Furthermore, pressure relieving air-mattresses are recommended for preventing the development of pressure ulcers. In this study, we clarified whether or not the cough peak flow (CPF), an index of cough strength, is affected by different firmness levels of a pressure relieving air-mattress in healthy volunteers in the supine position. Fifty-two healthy young men participated. All the measurements were carried out on each participant in the supine position on a pressure relieving air-mattress. The participants were assessed at two firmness levels, a "hard" and "soft" mode. The CPF, forced vital capacity (FVC), maximal expiratory pressure (PEmax), and maximal inspiratory pressure (PImax) were determined for each mode. The sinking distance of the body into the mattress was measured without any activity and the difference between the sinking distances of the two firmness levels was determined. The CPF, FVC, PEmax, and PImax were determined for each mode. The sinking distance of the body into the mattress was measured and the difference between the sinking distances of the two firmness levels was determined. The CPF, FVC, PEmax and PImax values of the participants coughing on the mattress were significantly lower when the mattress was in "soft" than in "hard" mode. The differences between the sinking distances of the mattress in "soft" and "hard" modes were larger for the anterior superior iliac spine. A harder mattress may lead to increased CPF in healthy young men lying in the supine position, and increased CPF may be important for host defense.

  7. Air pressure waves from Mount St. Helens eruptions

    SciTech Connect

    Reed, J.W.

    1987-10-20

    Weather station barograph records as well as infrasonic recordings of the pressure wave from the Mount St. Helens eruption of May 18, 1980, have been used to estimate an equivalent explosion airblast yield for this event. Pressure amplitude versus distance patterns in various directions compared with patterns from other large explosions, such as atmospheric nuclear tests, the Krakatoa eruption, and the Tunguska comet impact, indicate that the wave came from an explosion equivalent of a few megatons of TNT. The extent of tree blowdown is considerably greater than could be expected from such an explosion, and the observed forest damage is attributed to outflow of volcanic material. The pressure-time signature obtained at Toledo, Washington, showed a long, 13-min duration negative phase as well as a second, hour-long compression phase, both probably caused by ejacta dynamics rather than standard explosion wave phenomenology. The peculiar audibility pattern, with the blast being heard only at ranges beyond about 100 km, is explicable by finite amplitude propagation effects. Near the source, compression was slow, taking more than a second but probably less than 5 s, so that it went unnoticed by human ears and susceptible buildings were not damaged. There was no damage as Toledo (54 km), where the recorded amplitude would have broken windows with a fast compression. An explanation is that wave emissions at high elevation angles traveled to the upper stratosphere, where low ambient air pressures caused this energetic pressure oscillation to form a shock wave with rapid, nearly instantaneous compression. Atmospheric refraction then returned part of this wave to ground level at long ranges, where the fast compressions were clearly audible. copyright American Geophysical Union 1987

  8. Pressurized air cathodes for enhanced stability and power generation by microbial fuel cells

    NASA Astrophysics Data System (ADS)

    He, Weihua; Yang, Wulin; Tian, Yushi; Zhu, Xiuping; Liu, Jia; Feng, Yujie; Logan, Bruce E.

    2016-11-01

    Large differences between the water and air pressure in microbial fuel cells (MFCs) can deform and damage cathodes. To avoid deformation, the cathode air pressure was controlled to balance pressure differences between the air and water. Raising the air pressures from 0 to 10 kPa at a set cathode potential of -0.3 V (versus Ag/AgCl) enhanced cathode performance by 17%, but pressures ≥25 kPa decreased current and resulted in air leakage into the solution. Matching the air pressure with the water pressure avoided cathode deformation and improved performance. The maximum power density increased by 15%, from 1070 ± 20 to 1230 ± 70 mW m-2, with balanced air and water pressures of 10-25 kPa. Oxygen partial pressures ≥12.5 kPa in the cathode compartment maintained the oxygen reduction rate to be within 92 ± 1% of that in ambient air. The use of pressurized air flow through the cathode compartments can enable closer spacing of the cathodes compared to passive gas transfer systems, which could make the reactor design more compact. The energy cost of pressurizing the cathodes was estimated to be smaller than the increase in power that resulted from the use of pressurized cathodes.

  9. Travel of the center of pressure of airfoils transversely to the air stream

    NASA Technical Reports Server (NTRS)

    Katzmayr, Richard

    1929-01-01

    The experiments here described were performed for the purpose of obtaining the essential facts concerning the distribution of the air force along the span. We did not follow, however, the time-consuming method of point-to-point measurements of the pressure distribution on the wing surfaces, but determined directly the moment of mean force about an axis passing through the middle of the span parallel to the direction of flight.

  10. Optical refractive index of air: dependence on pressure, temperature and composition.

    PubMed

    Owens, J C

    1967-01-01

    The theoretical background and present status of formulas for the refractive index of air are reviewed. In supplement to Edlén's recently revised formula for relative refractivity, the density dependence of refractive index is reanalyzed. New formulas are presented for both phase and group refractive index which are more useful over a wide range of pressure, temperature, and composition than any presently available. The application of the new formulas to optical distance measuring is briefly discussed.

  11. Response of transonic diffuser flows to abrupt increases of back pressure: Wall pressure measurements

    NASA Astrophysics Data System (ADS)

    Bogar, T. J.; Sajben, M.

    1986-10-01

    The propagation of compression pulses in a supercritically operated transonic diffuser was investigated by use of pressure measurements along the top wall of the model. The pulses were generated at the downstream end of the diffuser by the abrupt injection of a secondary flow of air. Two types of waves were observed: (1) an upstream-traveling acoustic wave and (2) a downstream-traveling convective wave which resulted from the impingement of the acoustic wave on the shock. Wave speeds were determined for a range of diffuser pressure ratios including separated, strong-shock flows and fully attached, weak-shock flows. Streamwise distributions of initial and reflected pulse amplitudes were determined for one weak and one strong-shock case over a 3-to-1 range of initial pulse strengths.

  12. 40 CFR 91.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air humidity measurement... Provisions § 91.310 Engine intake air humidity measurement. This section refers to engines which are supplied... air, the ambient testcell humidity measurement may be used. (a) Humidity conditioned air supply....

  13. 40 CFR 91.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air humidity measurement... Provisions § 91.310 Engine intake air humidity measurement. This section refers to engines which are supplied... air, the ambient testcell humidity measurement may be used. (a) Humidity conditioned air supply....

  14. 40 CFR 91.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air humidity measurement... Provisions § 91.310 Engine intake air humidity measurement. This section refers to engines which are supplied... air, the ambient testcell humidity measurement may be used. (a) Humidity conditioned air supply....

  15. 40 CFR 91.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air humidity measurement... Provisions § 91.310 Engine intake air humidity measurement. This section refers to engines which are supplied... air, the ambient testcell humidity measurement may be used. (a) Humidity conditioned air supply....

  16. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  17. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  18. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  19. Investigation of air solubility in jet A fuel at high pressures

    NASA Technical Reports Server (NTRS)

    Rupprecht, S. D.; Faeth, G. M.

    1981-01-01

    The solubility and density properties of saturated mixtures of fuels and gases were measured. The fuels consisted of Jet A and dodecane, the gases were air and nitrogen. The test range included pressures of 1.03 to 10.34 MPa and temperatures of 298 to 373 K. The results were correlated successfully, using the Soave equation of state. Over this test range, dissolved gas concentrations were roughly proportional to pressure and increased slightly with increasing temperature. Mixture density was relatively independent of dissolved gas concentration.

  20. Elevated Plasma Endothelin-1 and Pulmonary Arterial Pressure in Children Exposed to Air Pollution

    PubMed Central

    Calderón-Garcidueñas, Lilian; Vincent, Renaud; Mora-Tiscareño, Antonieta; Franco-Lira, Maricela; Henríquez-Roldán, Carlos; Barragán-Mejía, Gerardo; Garrido-García, Luis; Camacho-Reyes, Laura; Valencia-Salazar, Gildardo; Paredes, Rogelio; Romero, Lina; Osnaya, Hector; Villarreal-Calderón, Rafael; Torres-Jardón, Ricardo; Hazucha, Milan J.; Reed, William

    2007-01-01

    Background Controlled exposures of animals and humans to particulate matter (PM) or ozone air pollution cause an increase in plasma levels of endothelin-1, a potent vasoconstrictor that regulates pulmonary arterial pressure. Objectives The primary objective of this field study was to determine whether Mexico City children, who are chronically exposed to levels of PM and O3 that exceed the United States air quality standards, have elevated plasma endothelin-1 levels and pulmonary arterial pressures. Methods We conducted a study of 81 children, 7.9 ± 1.3 years of age, lifelong residents of either northeast (n = 19) or southwest (n = 40) Mexico City or Polotitlán (n = 22), a control city with PM and O3 levels below the U.S. air quality standards. Clinical histories, physical examinations, and complete blood counts were done. Plasma endothelin-1 concentrations were determined by immunoassay, and pulmonary arterial pressures were measured by Doppler echocardiography. Results Mexico City children had higher plasma endothelin-1 concentrations compared with controls (p < 0.001). Mean pulmonary arterial pressure was elevated in children from both northeast (p < 0.001) and southwest (p < 0.05) Mexico City compared with controls. Endothelin-1 levels in Mexico City children were positively correlated with daily outdoor hours (p = 0.012), and 7-day cumulative levels of PM air pollution < 2.5 μm in aerodynamic diameter (PM2.5) before endothelin-1 measurement (p = 0.03). Conclusions Chronic exposure of children to PM2.5 is associated with increased levels of circulating endothelin-1 and elevated mean pulmonary arterial pressure. PMID:17687455

  1. Effects of pressure on syngas/air turbulent nonpremixed flames

    NASA Astrophysics Data System (ADS)

    Lee, Bok Jik; Im, Hong G.; Ciottoli, Pietro Paolo; Valorani, Mauro

    2016-11-01

    Large eddy simulations (LES) of turbulent non-premixed jet flames were conducted to investigate the effects of pressure on the syngas/air flame behavior. The software to solve the reactive Navier-Stokes equations was developed based on the OpenFOAM framework, using the YSLFM library for the flamelet-based chemical closure. The flamelet tabulation is obtained by means of an in-house code designed to solve unsteady flamelets of both ideal and real fluid mixtures. The validation of the numerical setup is attained by comparison of the numerical results with the Sandia/ETH-Zurich experimental database of the CO/H2/N2 non-premixed, unconfined, turbulent jet flame, referred to as "Flame A". Two additional simulations, at pressure conditions of 2 and 5 atm, are compared and analyzed to unravel computational and scientific challenges in characterizing turbulent flames at high pressures. A set of flamelet solutions, representative of the jet flames under review, are analyzed following a CSP approach. In particular, the Tangential Stretching Rate (TSR), representing the reciprocal of the most energetic time scale associated with the chemical source term, and its extension to reaction-diffusion systems (extended TSR), are adopted.

  2. Exposure measurement for air-pollution epidemiology

    SciTech Connect

    Ferris, B.G.; Ware, J.H.; Spengler, J.D.

    1988-08-01

    The chapter describes the evolution of air-pollution epidemiology over a period when changes in pollution technologies have both lowered total exposures and dispersed them over vastly greater areas. Since personal exposure and microenvironmental measurements are expensive, studies oriented toward measurements of total exposure will be smaller and more intensive. The shift in emphasis to total human exposure also will affect health risk assessment and raise difficult issues in the regulatory domain. Considering that outdoor exposures (for which EPA has a regulatory mandate) occur in the context of exposures from other sources, the potential effect of regulatory action would probably be small. The regulatory issues are even more difficult for particulate air pollution since cigarette smoking is the strongest determinant of indoor levels but the EPA lacks regulatory responsibility for cigarette smoke.

  3. Implantable flexible pressure measurement system based on inductive coupling.

    PubMed

    Oliveira, Cristina C; Sepúlveda, Alexandra T; Almeida, Nuno; Wardle, Brian L; da Silva, José Machado; Rocha, Luís A

    2015-02-01

    One of the currently available treatments for aortic aneurysms is endovascular aneurysm repair (EVAR). In spite of major advances in the operating techniques, complications still occur and lifelong surveillance is recommended. In order to reduce and even eliminate the commonly used surveillance imaging exams, as well as to reduce follow-up costs, new technological solutions are being pursued. In this paper, we describe the development, including design and performance characterization, of a flexible remote pressure measurement system based on inductive-coupling for post-EVAR monitoring purposes. The telemetry system architecture and operation are described and main performance characteristics discussed. The implantable sensor details are provided and its model is presented. Simulations with the reading circuit and the sensor's model were performed and compared with measurements carried out with air and a phantom as media, in order to characterize the telemetry system and validate the models. The transfer characteristic curve (pressure versus frequency) of the monitoring system was obtained with measurements performed with the sensor inside a controlled pressure vacuum chamber. Additional experimental results which proof the system functionality were obtained within a hydraulic test bench that emulates the aorta. Several innovative aspects, when compared to the state of the art, both in the sensor and in the telemetry system were achieved.

  4. Dense gas boundary layer experiments: Visualization, pressure measurements, concentration evaluation

    SciTech Connect

    Reichenbach, H.; Neuwald, P.; Kuhl, A.L.

    1992-11-01

    This technical report describes methods that were applied to investigate turbulent boundary layers generated by inviscid, baroclinic effects. The Cranz-Schardin 24-sparks camera was used to visualize the interactions of a planar shock wave with a Freon R12-layer. The shock propagates more slowly in the Freon layer than in air because of its smaller sound speed. This causes the shock front to be curved and to be reflected between the wall and the layer interface. As a consequence of the reflection process, a series of compression and expansion waves radiate from the layer. Large fluctuations in the streamwise velocity and in pressure develop for about 1 ms. These waves strongly perturb the interface shear layer, which rapidly transitions to a turbulent boundary flow. Pressure measurements showed that the fluctuations in the Freon layer reach a peak pressure 4 times higher than in the turbulent boundary flow. To characterize the preshock Freon boundary layer, concentration measurements were performed with a differential interferometry technique. The refraction index of Freon R12 is so high that Mach-Zehnder interferometry was not successful in these experiments. The evaluation of the concentration profile is described here in detail. Method and results of corresponding LDV measurements under the same conditions are presented in a different report, EMI Report T 9/92. The authors plan to continue the dense gas layer investigations with the gas combination helium/Freon.

  5. Partial pressure measurements with an active spectrometer

    SciTech Connect

    Brooks, N.H.; Jensen, T.H.; Colchin, R.J.; Maingi, R.; Wade, M.R.; Finkenthal, D.F.; Naumenko, N.; Tugarinov, S.

    1998-07-01

    Partial pressure neutral ga measurements have been made using a commercial Penning gauge in conjunction with an active spectrometer. In prior work utilizing bandpass filters and conventional spectrometers, trace concentrations of the hydrogen isotopes H, D, T and of the noble gases He, Ne and Ar were determined from characteristic spectral lines in the light emitted by the neutral species of these elements. For all the elements mentioned, the sensitivity was limited by spectral contamination from a pervasive background of molecular hydrogen radiation. The active spectrometer overcomes this limitations by means of a digital lock-in method and correlation with reference spectra. Preliminary measurements of an admixture containing a trace amount of neon in deuterium show better than a factor of 20 improvement in sensitivity over conventional techniques. This can be further improved by correlating the relative intensities of multiple lines to sets of reference spectra.

  6. Bronchomotor response to cold air or helium-oxygen at normal and high ambient pressures.

    PubMed

    Jammes, Y; Burnet, H; Cosson, P; Lucciano, M

    1988-05-01

    Effects of inhalation of cold air or helium-oxygen mixture on lung resistance (RL) were studied in anesthetized and tracheotomized rabbits under normal ambient pressure and in human volunteers under normo- and hyperbaric conditions. In artificially ventilated rabbits, an increase in RL occurred when the tracheal temperature fell to 10 degrees C. This effect was more than double with helium breathing compared to air, despite a lower respiratory heat loss by convection (Hc) with helium. In 3 normal humans, inhalation of cold air (mouth temperature = 8 degrees C) at sea level had no effect on RL value. However, with a helium-nitrogen-oxygen mixture, a weak but significant increase in RL due to cold gas breathing was measured in 1 subject at 2 ATA and in 2 individuals at 3.5 ATA. The density of inhaled gas mixture (air or He-N2-O2) was near the same in the three circumstances (1, 2, and 3.5 ATA) but Hc value increased with helium. At 8 ATA a 30-55% increase in RL occurred in the 3 divers during inhalation of cold gas (Hc was multiplied by 6 compared to air at sea level) and at 25 ATA the cold-induced bronchospasm ranged between 38 and 95% (Hc multiplied by 27). Thus, in rabbits and humans helium breathing enhanced the cold-induced increase in RL at normal or elevated ambient pressure, and this effect was interpreted as resulting from different mechanisms in the two circumstances.

  7. Direct measurement of the wetting front capillary pressure in a clay brick ceramic

    NASA Astrophysics Data System (ADS)

    Ioannou, Ioannis; Hall, Christopher; Wilson, Moira A.; Hoff, William D.; Carter, Margaret A.

    2003-12-01

    The absorption of a liquid into a rectangular bar of an initially dry porous material that is sealed on all surfaces except the inflow face is analysed in terms of Sharp Front theory. Sharp Front models are developed for both complete and incomplete displacement of air ahead of the advancing wetting front. Experiments are described from which a characteristic capillary potential of the material is obtained by measuring the equilibrium pressure of the air displaced and compressed ahead of the advancing wetting front. Results for the absorption of water and n-heptane by a fired clay brick ceramic suggest that this wetting front capillary pressure (or capillary potential) scales approximately with the surface tension and also that the permeability scales inversely with the liquid viscosity. The pressure of the air trapped in the wetted region is found to be the same as the pressure of the displaced air. For this material the wetting front capillary pressure for water at 20°C is 0.113 MPa, equivalent to a hydraulic tension head of 11.5 m and to a Young-Laplace pore diameter of 2.6 µm. The capillary pressure so measured is apparently a fundamental percolation property of the material that can be interpreted as the air pressure at which liquid phase continuity and unsaturated conductivity both vanish. The method described can be applied generally to porous materials.

  8. Design of a two dimensional planer pressurized air labyrinth seal test rig

    NASA Astrophysics Data System (ADS)

    Konicki, Joseph S.

    1993-12-01

    A two-dimensional planer labyrinth seal test rig was designed to operate with air supplied at 45 psig and temperatures up to 150 F. The rig operates with a manually specified test section pressure up to 30 psig yielding Mach numbers to 0.9 and gap Reynolds numbers to 100,000. The air flow rate through the seal will be controlled by setting inlet pressure and adjusting an outlet control valve. The test section measurements are 18 inches wide by 1.5 inches depth by 6 inches in length and provides for 10:1 large scale geometry seals to be used to facilitate measurements. Design maximum seal gap size is 0.15 inches. The test section has a glass viewing port to allow flow field measurement by non-intrusive means such as Laser Doppler Velocimeter (LDV) with seals containing up to 5 sealing knives. Measurements of pressure, temperature and flow fields can also be simultaneously measured by probes inserted in the seal itself, or mounted on the removable/replaceable top plate. Inlet flow is conditioned through the use of a dump diffuser incorporating screens, honeycombs, expansion and contraction portions. The inlet flow to the test section can be modified from uniform to various non-uniform conditions by employing profile generators such as screens and winglets. A detailed mechanical design has been conducted including stress analysis and seal flow rate predictions.

  9. Miniature, Cooled Pressure-Measuring Probe

    NASA Technical Reports Server (NTRS)

    Ashby, George C., Jr.; Eves, John W.; White, David R.

    1994-01-01

    Probe designed to reduce settling time dramatically. Pressure-sensing transducer mounted in probe and connected to tip by short tube having cross-sectional area substantially smaller than conventional connecting tubes. Probe includes stainless-steel cylindrical exterior housing holding closed pressure chamber in which piezoelectric pressure transducer mounted. Open connecting tube passes portion of high-velocity, high-temperature fluid stream into closed pressure chamber. Any change of pressure in sampled stream propagates into closed pressure chamber with settling time inversely proportional to cross-sectional area of connecting tube. Cooling chamber formed around pressure chamber connected to source of water or other cooling fluid via inlet and outlet tubes.

  10. Parameters of a supershort avalanche electron beam generated in atmospheric-pressure air

    SciTech Connect

    Tarasenko, V. F.

    2011-05-15

    Conditions under which the number of runaway electrons in atmospheric-pressure air reaches {approx}5 Multiplication-Sign 10{sup 10} are determined. Recommendations for creating runaway electron accelerators are given. Methods for measuring the parameters of a supershort avalanche electron beam and X-ray pulses from gas-filled diodes, as well as the discharge current and gap voltage, are described. A technique for determining the instant of runaway electron generation with respect to the voltage pulse is proposed. It is shown that the reduction in the gap voltage and the decrease in the beam current coincide in time. The mechanism of intense electron beam generation in gas-filled diodes is analyzed. It is confirmed experimentally that, in optimal regimes, the number of electrons generated in atmospheric-pressure air with energies T > eU{sub m}, where U{sub m} is the maximum gap voltage, is relatively small.

  11. Parameters of a supershort avalanche electron beam generated in atmospheric-pressure air

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.

    2011-05-01

    Conditions under which the number of runaway electrons in atmospheric-pressure air reaches ˜5 × 1010 are determined. Recommendations for creating runaway electron accelerators are given. Methods for measuring the parameters of a supershort avalanche electron beam and X-ray pulses from gas-filled diodes, as well as the discharge current and gap voltage, are described. A technique for determining the instant of runaway electron generation with respect to the voltage pulse is proposed. It is shown that the reduction in the gap voltage and the decrease in the beam current coincide in time. The mechanism of intense electron beam generation in gas-filled diodes is analyzed. It is confirmed experimentally that, in optimal regimes, the number of electrons generated in atmospheric-pressure air with energies T > eU m , where U m is the maximum gap voltage, is relatively small.

  12. Study of flow fields induced by surface dielectric barrier discharge actuator in low-pressure air

    SciTech Connect

    Che, Xueke E-mail: st@mail.iee.ac.cn; Nie, Wansheng; Tian, Xihui; Hou, Zhiyong; He, Haobo; Zhou, Penghui; Zhou, Siyin; Yang, Chao; Shao, Tao E-mail: st@mail.iee.ac.cn

    2014-04-15

    Surface dielectric barrier discharge (SDBD) is a promising method for a flow control. Flow fields induced by a SDBD actuator driven by the ac voltage in static air at low pressures varying from 1.0 to 27.7 kPa are measured by the particle image velocimetry method. The influence of the applied ac voltage frequency and magnitude on the induced flow fields is studied. The results show that three different classes of flow fields (wall jet flow field, complex flow field, and vortex-shape flow field) can be induced by the SDBD actuator in the low-pressure air. Among them, the wall jet flow field is the same as the tangential jet at atmospheric pressure, which is, together with the vertical jet, the complex flow field. The vortex-shape flow field is composed of one vertical jet which points towards the wall and two opposite tangential jets. The complex and the vortex-shape flow fields can be transformed to the wall jet flow field when the applied ac voltage frequency and magnitude are changed. It is found that the discharge power consumption increases initially, decreases, and then increases again at the same applied ac voltage magnitude when the air pressure decreases. The tangential velocity of the wall jet flow field increases when the air pressure decreases. It is however opposite for the complex flow field. The variation of the applied ac voltage frequency influences differently three different flow fields. When the applied ac voltage magnitude increases at the same applied ac voltage frequency, the maximal jet velocity increases, while the power efficiency increases only initially and then decreases again. The discharge power shows either linear or exponential dependences on the applied ac voltage magnitude.

  13. Kerbside DOAS measurements of air pollutants

    NASA Astrophysics Data System (ADS)

    Schäfer, Klaus; Ling, Hong; Legelli, Stefan; Münkel, Christoph; Emeis, Stefan

    2014-10-01

    Emission sources as well as wind speed and direction and MLH are important factors which influence high air pollutant concentrations. This is generally known (Schäfer et al., 2006) but the detailed understanding of processes directing certain air pollutant concentrations like HCHO is not complete. To study these processes a long-term campaign in Augsburg, Germany, was performed since March 2012. The concentrations of NO, NO2, O3 and HCHO, which were measured with a DOAS from OPSIS across a main traffic road and a nearby park area, are analysed. A ceilometer CL31 from Vaisala which is an eye-safe commercial mini-lidar system is applied to detect layering of the lower atmosphere continuously. Special software for this ceilometer with MATLAB provides routine retrievals of lower atmosphere layering from vertical profiles of laser backscatter data. Meteorological data were measured by a ground-based weather station at the measurement site as well as taken from monitoring data archives of the German National Meteorological Service (DWD), which are measured by radiosondes (Oberschleißheim). Correlation analyses are applied to show the coupling of temporal variations of NO, NO2, O3 and HCHO concentrations with temperature, mixing layer height and wind speed. HCHO which is emitted from both anthropogenic and biogenic sources is studied especially.

  14. 40 CFR 90.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake air flow measurement... Gaseous Exhaust Test Procedures § 90.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure...

  15. 40 CFR 90.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Intake air flow measurement... Gaseous Exhaust Test Procedures § 90.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure...

  16. 40 CFR 90.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Intake air flow measurement... Gaseous Exhaust Test Procedures § 90.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure...

  17. 40 CFR 90.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Intake air flow measurement... Gaseous Exhaust Test Procedures § 90.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure...

  18. Fluid-filled blood pressure measurement systems.

    PubMed

    Li, J K; van Brummelen, A G; Noordergraaf, A

    1976-05-01

    The performance of catheter-manometer systems for the measurement of pulsatile pressure has been evaluated by both experimental techniques and theoretical considerations. The former approach has shown, on occasion, multiple maxima in the amplitude response. The latter has been approached in a variety of ways, ranging from extreme lumping to application of transmission line theory while employing different configurations in the system's representation. Multiple maxima have also been seen, The present paper identifies the sources of the differences found and compares the relative merits of various theoretical approaches. It introduces the compliance of the system as a figure of merit and provides a simple first-order approximation formula for evaluation of the quality of a system. Damping and impedance matching to improve the system's frequency response were studied. It was found that they were not needed in a very stiff or a very compliant system, nor should one worry about the representation of such a system.

  19. Effect of air on energy and rise-time spectra measured by proportional gas counter

    SciTech Connect

    Kawano, T.; Tanaka, M.; Isozumi, S.; Isozumi, Y.; Tosaki, M.; Sugiyama, T.

    2015-03-15

    Air exerts a negative effect on radiation detection using a gas counter because oxygen contained in air has a high electron attachment coefficient and can trap electrons from electron-ion pairs created by ionization from incident radiation in counting gas. This reduces radiation counts. The present study examined the influence of air on energy and rise-time spectra measurements using a proportional gas counter. In addition, a decompression procedure method was proposed to reduce the influence of air and its effectiveness was investigated. For the decompression procedure, the counting gas inside the gas counter was decompressed below atmospheric pressure before radiation detection. For the spectrum measurement, methane as well as various methane and air mixtures were used as the counting gas to determine the effect of air on energy and rise-time spectra. Results showed that the decompression procedure was effective for reducing or eliminating the influence of air on spectra measurement using a proportional gas counter. (authors)

  20. EFFECT OF LASER LIGHT ON LASER PLASMAS: Laser plasma at low air pressure

    NASA Astrophysics Data System (ADS)

    Vas'kovskiĭ, Yu M.; Moiseev, V. N.; Rovinskiĭ, R. E.; Tsenina, I. S.

    1993-01-01

    The dynamic and optical characteristics of the laser plasma produced during the application of a CO2 laser pulse to a target have been studied as a function of the ambient air pressure. The changes in the surface roughness of the sample after bombardment were studied as a function of the air pressure. It is concluded from the results that a transition from an air plasma to an erosion plasma occurs at a residual air pressure on the order of 1 torr. The experiment data support the existing picture of the process by which a plasma is produced near the surface of a target in air by laser pulses.

  1. Focused excimer laser initiated, radio frequency sustained high pressure air plasmas

    SciTech Connect

    Giar, Ryan; Scharer, John

    2011-11-15

    Measurements and analysis of air breakdown processes and plasma production by focusing 193 nm, 300 mJ, 15 MW high power laser radiation inside a 6 cm diameter helical radio frequency (RF) coil are presented. Quantum resonant multi-photon ionization (REMPI) and collisional cascade laser ionization processes are exploited that have been shown to produce high-density (n{sub e} {approx} 7 x 10{sup 16}/cm{sup 3}) cylindrical seed plasmas at 760 Torr. Air breakdown in lower pressures (from 7-22 Torr), where REMPI is the dominant laser ionization process, is investigated using an UV 18 cm focal length lens, resulting in a laser flux of 5.5 GW/cm{sup 2} at the focal spot. The focused laser power absorption and associated shock wave produce seed plasmas for sustainment by the RF (5 kW incident power, 1.5 s) pulse. Measurements of the helical RF antenna load impedance in the inductive and capacitive coupling regimes are obtained by measuring the loaded antenna reflection coefficient. A 105 GHz interferometer is used to measure the plasma electron density and collision frequency. Spectroscopic measurements of the plasma and comparison with the SPECAIR code are made to determine translational, rotational, and vibrational neutral temperatures and the associated neutral gas temperature. From this and the associated measurement of the gas pressure the electron temperature is obtained. Experiments show that the laser-formed seed plasma allows RF sustainment at higher initial air pressures (up to 22 Torr) than that obtained via RF-only initiation (<18 Torr) by means of a 0.3 J UV laser pulse.

  2. Long-Term Air Pollution Exposure and Blood Pressure in the Sister Study

    PubMed Central

    Chan, Stephanie H.; Van Hee, Victor C.; Bergen, Silas; Szpiro, Adam A.; DeRoo, Lisa A.; London, Stephanie J.; Marshall, Julian D.; Sandler, Dale P.

    2015-01-01

    Background Exposure to air pollution has been consistently associated with cardiovascular morbidity and mortality, but mechanisms remain uncertain. Associations with blood pressure (BP) may help to explain the cardiovascular effects of air pollution. Objective We examined the cross-sectional relationship between long-term (annual average) residential air pollution exposure and BP in the National Institute of Environmental Health Sciences’ Sister Study, a large U.S. cohort study investigating risk factors for breast cancer and other outcomes. Methods This analysis included 43,629 women 35–76 years of age, enrolled 2003–2009, who had a sister with breast cancer. Geographic information systems contributed to satellite-based nitrogen dioxide (NO2) and fine particulate matter (≤ 2.5 μm; PM2.5) predictions at participant residences at study entry. Generalized additive models were used to examine the relationship between pollutants and measured BP at study entry, adjusting for cardiovascular disease risk factors and including thin plate splines for potential spatial confounding. Results A 10-μg/m3 increase in PM2.5 was associated with 1.4-mmHg higher systolic BP (95% CI: 0.6, 2.3; p < 0.001), 1.0-mmHg higher pulse pressure (95% CI: 0.4, 1.7; p = 0.001), 0.8-mmHg higher mean arterial pressure (95% CI: 0.2, 1.4; p = 0.01), and no significant association with diastolic BP. A 10-ppb increase in NO2 was associated with a 0.4-mmHg (95% CI: 0.2, 0.6; p < 0.001) higher pulse pressure. Conclusions Long-term PM2.5 and NO2 exposures were associated with higher blood pressure. On a population scale, such air pollution–related increases in blood pressure could, in part, account for the increases in cardiovascular disease morbidity and mortality seen in prior studies. Citation Chan SH, Van Hee VC, Bergen S, Szpiro AA, DeRoo LA, London SJ, Marshall JD, Kaufman JD, Sandler DP. 2015. Long-term air pollution exposure and blood pressure in the Sister Study. Environ Health

  3. 21 CFR 886.4280 - Intraocular pressure measuring device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Intraocular pressure measuring device. 886.4280... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4280 Intraocular pressure measuring device. (a) Identification. An intraocular pressure measuring device is a manual or AC-powered...

  4. 21 CFR 886.4280 - Intraocular pressure measuring device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Intraocular pressure measuring device. 886.4280... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4280 Intraocular pressure measuring device. (a) Identification. An intraocular pressure measuring device is a manual or AC-powered...

  5. 21 CFR 886.4280 - Intraocular pressure measuring device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Intraocular pressure measuring device. 886.4280... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4280 Intraocular pressure measuring device. (a) Identification. An intraocular pressure measuring device is a manual or AC-powered...

  6. Flutter spectral measurements using stationary pressure transducers

    NASA Technical Reports Server (NTRS)

    Kurkov, A. P.

    1980-01-01

    Engine-order sampling was used to eliminate the integral harmonics from the flutter spectra corresponding to a case-mounted static pressure transducer. Using the optical displacement data, it was demonstrated that the blade-order sampling of pressure data may yield erroneous results due to the interference caused by blade vibration. Two methods are presented which effectively eliminate this interference yielding the blade-pressure-difference spectra. The phase difference between the differential-pressure and the displacement spectra was evaluated.

  7. Measurements of octanol-air partition coefficients, vapor pressures and vaporization enthalpies of the (E) and (Z) isomers of the 2-ethylhexyl 4-methoxycinnamate as parameters of environmental impact assessment.

    PubMed

    Pegoraro, César N; Chiappero, Malisa S; Montejano, Hernán A

    2015-11-01

    2-Ethylhexyl 4-methoxycinnamate is one of the UVB blocking agents more widely used in a variety of industrial fields. There are more than one hundred industrial suppliers worldwide. Given the enormous annual consumption of octinoxate, problems that arise due to the accumulation of this compound in nature should be taken into consideration. The GC-RT was used in this work with the aim of determining the vapor pressure, enthalpies of vaporization and octanol-air partition coefficient, for the BBP, DOP, E- and Z-EHMC esters. The results showed that Z-EHMC is almost five times more volatile than E-EHMC. Moreover, BBP, Z-EHMC and E-EHMC can be classified as substances with a relatively low mobility since they lie within the range of 810 and log(PL/Pa)<-4, therefore, a low mobility can be expected. From these parameters, their particle-bound fraction and gas-particle partition coefficient were also derived.

  8. Quasi-static vapor pressure measurements on reactive systems in inert atmosphere box

    NASA Technical Reports Server (NTRS)

    Fischer, A. K.

    1968-01-01

    Apparatus makes vapor pressure measurements on air-sensitive systems in an inert atmosphere glove box. Once the apparatus is loaded with the sample and all connections made, all measuring operations may be performed outside the box. The apparatus is a single-tube adaptation of the double-tube quasi-static technique.

  9. Response of entrained air-void systems in cement paste to pressure

    NASA Astrophysics Data System (ADS)

    Frazier, Robert

    2011-12-01

    Scope and Method of Study: Determine the response of entrained air-void systems in fresh cement paste to applied pressures by utilizing micro-computed tomography. Compare results to those suggested by the ASTM C231 Type B pressure meter calibration equations. Findings and Conclusions: The results of this research suggest that although the Type B pressure meter assumptions are valid for the compression of individual voids, the volume of air-voids which dissolve under pressure is significant enough to register noticeable errors when using a synthetic air-entraining admixture with the Type B pressure meter test. Results currently suggest that air-void systems with a significant percentage of small voids present will have higher deviation from the Boyle's Law model used by the Type B pressure meter due to the dissolution of these air-voids.

  10. The meteorological data of William Hutchinson and a Liverpool air pressure time series spanning 1768-1999

    NASA Astrophysics Data System (ADS)

    Woodworth, Philip L.

    2006-10-01

    This paper discusses some of the meteorological measurements made at Liverpool by Captain William Hutchinson in the second half of the eighteenth century. It gives an overview of the various data sets, most of which are now in computer-accessible form, and provides assessments of their quality, the aim being to gain an overall impression of how good an observer Hutchinson was. His air pressure data have been studied in detail, through comparisons with information from other UK stations, and via investigation of the sea-level response to air pressure changes as observed in his tidal measurements. A first attempt has been made to construct a Liverpool air pressure time series spanning 1768-1999, by means of the combination of Hutchinson's data with later information from the Liverpool docks and Bidston Observatory.

  11. Measurement Adherence in the Blood Pressure Self-Measurement Room

    PubMed Central

    Buus, Niels Henrik; Jespersen, Bente; Ahrendt, Peter; Bertelsen, Olav W.; Toftegaard, Thomas S.

    2013-01-01

    Abstract Background: Patients with hypertension or receiving blood pressure (BP)-lowering treatment are often required to self-measure their BP in a dedicated self-measurement room before consultation. Current praxis does not guarantee valid measurements, possibly leading to misdiagnoses or inappropriate antihypertensive medication. The aim of this study was to investigate patients' ability to correctly self-report and follow recommendations. Patients and Methods: We used a context-aware system to gather information on BP measurements and relevant context parameters. Patients were not informed that the system automatically collected behavior data and were instructed to self-report their measurements on a paper sheet as usual. We then compared the automatically recorded data with the self-reported data in order to detect any nonadherent reporting behavior. Also, we investigated the patients' ability to adhere to the measurement recommendations. Results: We found that (1) a third of all 113 participating patients failed to self-report measured BP data correctly and (2) none of the 642 measurements obtained adhered fully to the recommendations. Conclusions: Results indicate that context-aware technology may be useful for accurately modeling aspects of nonadherent patient behavior. This may be used to inform staff of the validity of the measurement and pinpoint patients in need of additional training or to design better aids to assist the patients. The developed system is generally applicable to other self-measurement environments, including the home setting and remote outpatient clinics, as it is built using telemedicine technology and thus well suited for remote monitoring and diagnosis. PMID:23631589

  12. 40 CFR 90.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air humidity measurement... Emission Test Equipment Provisions § 90.310 Engine intake air humidity measurement. This section refers to... for the engine intake air, the ambient test cell humidity measurement may be used. (a)...

  13. 40 CFR 90.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air humidity measurement... Emission Test Equipment Provisions § 90.310 Engine intake air humidity measurement. This section refers to... for the engine intake air, the ambient test cell humidity measurement may be used. (a)...

  14. 40 CFR 90.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air humidity measurement... Emission Test Equipment Provisions § 90.310 Engine intake air humidity measurement. This section refers to... for the engine intake air, the ambient test cell humidity measurement may be used. (a)...

  15. 40 CFR 90.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air humidity measurement... Emission Test Equipment Provisions § 90.310 Engine intake air humidity measurement. This section refers to... for the engine intake air, the ambient test cell humidity measurement may be used. (a)...

  16. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  17. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  18. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  19. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  20. Measurements of Surface Ocean Carbon Dioxide Partial Pressure During WOCE

    SciTech Connect

    Weiss, R.F.

    1998-10-15

    All of the technical goals of the World Ocean Circulation Experiment (WOCE) field program which were supported under the Department of Energy research grant ''Measurements of Surface Ocean Carbon Dioxide Partial Pressure During WOCE'' (DE-FG03-90ER60981) have been met. This has included the measurement of the partial pressures of carbon dioxide (C0{sub 2}) and nitrous oxide (N{sub 2}O) in both the surface ocean and the atmosphere on 24 separate shipboard expedition legs of the WOCE Hydrographic Programme. These measurements were made in the Pacific, Indian and Atlantic Oceans over a six-and-a-half year period, and over a distance of nearly 200,000 kilometers of ship track. The total number of measurements, including ocean measurements, air measurements and standard gas measurements, is about 136,000 for each gas, or about 34,000 measurements of each gas in the ocean and in the air. This global survey effort is directed at obtaining a better understanding of the role of the oceans in the global atmospheric budgets of two important natural and anthropogenic modulators of climate through the ''greenhouse effect'', CO{sub 2} and N{sub 2}O, and an important natural and anthropogenic modulator of the Earth's protective ozone layer through catalytic processes in the stratosphere, N{sub 2}O. For both of these compounds, the oceans play a major role in their global budgets. In the case of CO{sub 2}, roughly half of the anthropogenic production through the combustion of fossil fuels has been absorbed by the world's oceans. In the case of N{sub 2}O, roughly a third of the natural flux to the atmosphere originates in the oceans. As the interpretation of the variability in the oceanic distributions of these compounds improves, measurements such as those supported by this research project are playing an increasingly important role in improving our understanding of natural and anthropogenic influences on climate and ozone. (B204)

  1. Non-invasive method of measuring cerebral spinal fluid pressure

    NASA Technical Reports Server (NTRS)

    Borchert, Mark S. (Inventor); Lambert, James L. (Inventor)

    2000-01-01

    The invention provides a method of non-invasively determining intracranial pressure from measurements of an eye. A parameter of an optic nerve of the eye is determined, along with an intraocular pressure of the eye. The intracranial pressure may be determined from the intraocular pressure and the parameter.

  2. Study of short atmospheric pressure dc glow microdischarge in air

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Anatoly; Bogdanov, Eugene; Chirtsov, Alexander; Emelin, Sergey

    2011-10-01

    The results of experiments and simulations of short (without positive column) atmospheric pressure dc glow discharge in air are presented. We used metal steel electrodes with a gap of 5-100 microns. The experimental voltage-current characteristic's (VAC) have a constant or slightly increasing form at low gap. The most stable microdischarges were burning with a flat cathode and rounded anode, when the length of the discharge is automatically established near the minimum of the Paschen curve by changing their binding on the anode. In this case microdischarge was stable and it had growing VAC. For simulations we used 2D fluid model with kinetic description of electrons. We solved the balance equations for the vibrationally- and the electronically-excited states of a nitrogen and oxygen molecules; nitrogen and oxygen atoms; ozone molecule; and different nitrogen and oxygen ions with different plasmochemical reactions between them. Simulations predicted the main regions of the dc glow discharges including cathode and anode sheath and plasma of negative glow, Faraday dark space and transition region. Gas heating plays an important role in shaping the discharge profiles. The results of experiments and simulations of short (without positive column) atmospheric pressure dc glow discharge in air are presented. We used metal steel electrodes with a gap of 5-100 microns. The experimental voltage-current characteristic's (VAC) have a constant or slightly increasing form at low gap. The most stable microdischarges were burning with a flat cathode and rounded anode, when the length of the discharge is automatically established near the minimum of the Paschen curve by changing their binding on the anode. In this case microdischarge was stable and it had growing VAC. For simulations we used 2D fluid model with kinetic description of electrons. We solved the balance equations for the vibrationally- and the electronically-excited states of a nitrogen and oxygen molecules; nitrogen

  3. Compression-ignition Engine Performance at Altitudes and at Various Air Pressures and Temperatures

    NASA Technical Reports Server (NTRS)

    Moore, Charles S; Collins, John H

    1937-01-01

    Engine test results are presented for simulated altitude conditions. A displaced-piston combustion chamber on a 5- by 7-inch single cylinder compression-ignition engine operating at 2,000 r.p.m. was used. Inlet air temperature equivalent to standard altitudes up to 14,000 feet were obtained. Comparison between performance at altitude of the unsupercharged compression-ignition engine compared favorably with the carburetor engine. Analysis of the results for which the inlet air temperature, inlet air pressure, and inlet and exhaust pressure were varied indicates that engine performance cannot be reliably corrected on the basis of inlet air density or weight of air charge. Engine power increases with inlet air pressure and decreases with inlet air temperatures very nearly as straight line relations over a wide range of air-fuel ratios. Correction factors are given.

  4. Experimental characterization of the effects of pneumatic tubing on unsteady pressure measurements

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Lindsey, William T.; Curry, Robert E.; Gilyard, Glenn B.

    1990-01-01

    Advances in aircraft control system designs have, with increasing frequency, required that air data be used as flight control feedback. This condition requires that these data be measured with accuracy and high fidelity. Most air data information is provided by pneumatic pressure measuring sensors. Typically unsteady pressure data provided by pneumatic sensing systems are distorted at high frequencies. The distortion is a result of the pressure being transmitted to the pressure sensor through a length of connective tubing. The pressure is distorted by frictional damping and wave reflection. As a result, air data provided all-flush, pneumatically sensed air data systems may not meet the frequency response requirements necessary for flight control augmentation. Both lab and flight test were performed at NASA-Ames to investigate the effects of this high frequency distortion in remotely located pressure measurement systems. Good qualitative agreement between lab and flight data are demonstrated. Results from these tests are used to describe the effects of pneumatic distortion in terms of a simple parametric model.

  5. High-Reynolds-number turbulent-boundary-layer wall pressure fluctuations with skin-friction reduction by air injection.

    PubMed

    Winkel, Eric S; Elbing, Brian R; Ceccio, Steven L; Perlin, Marc; Dowling, David R

    2008-05-01

    The hydrodynamic pressure fluctuations that occur on the solid surface beneath a turbulent boundary layer are a common source of flow noise. This paper reports multipoint surface pressure fluctuation measurements in water beneath a high-Reynolds-number turbulent boundary layer with wall injection of air to reduce skin-friction drag. The experiments were conducted in the U.S. Navy's Large Cavitation Channel on a 12.9-m-long, 3.05-m-wide hydrodynamically smooth flat plate at freestream speeds up to 20 ms and downstream-distance-based Reynolds numbers exceeding 200 x 10(6). Air was injected from one of two spanwise slots through flush-mounted porous stainless steel frits (approximately 40 microm mean pore diameter) at volume flow rates from 17.8 to 142.5 l/s per meter span. The two injectors were located 1.32 and 9.78 m from the model's leading edge and spanned the center 87% of the test model. Surface pressure measurements were made with 16 flush-mounted transducers in an "L-shaped" array located 10.7 m from the plate's leading edge. When compared to no-injection conditions, the observed wall-pressure variance was reduced by as much as 87% with air injection. In addition, air injection altered the inferred convection speed of pressure fluctuation sources and the streamwise coherence of pressure fluctuations.

  6. Applying Chemical Potential and Partial Pressure Concepts to Understand the Spontaneous Mixing of Helium and Air in a Helium-Inflated Balloon

    ERIC Educational Resources Information Center

    Jee-Yon Lee; Hee-Soo Yoo; Jong Sook Park; Kwang-Jin Hwang; Jin Seog Kim

    2005-01-01

    The spontaneous mixing of helium and air in a helium-inflated balloon is described in an experiment in which the partial pressure of the gases in the balloon are determined from the mole factions and the total pressure measured in the balloon. The results described provide a model for teaching concepts of partial pressure, chemical potential, and…

  7. Calibration of NASA Turbulent Air Motion Measurement System

    NASA Technical Reports Server (NTRS)

    Barrick, John D. W.; Ritter, John A.; Watson, Catherine E.; Wynkoop, Mark W.; Quinn, John K.; Norfolk, Daniel R.

    1996-01-01

    A turbulent air motion measurement system (TAMMS) was integrated onboard the Lockheed 188 Electra airplane (designated NASA 429) based at the Wallops Flight Facility in support of the NASA role in global tropospheric research. The system provides air motion and turbulence measurements from an airborne platform which is capable of sampling tropospheric and planetary boundary-layer conditions. TAMMS consists of a gust probe with free-rotating vanes mounted on a 3.7-m epoxy-graphite composite nose boom, a high-resolution inertial navigation system (INS), and data acquisition system. A variation of the tower flyby method augmented with radar tracking was implemented for the calibration of static pressure position error and air temperature probe. Additional flight calibration maneuvers were performed remote from the tower in homogeneous atmospheric conditions. System hardware and instrumentation are described and the calibration procedures discussed. Calibration and flight results are presented to illustrate the overall ability of the system to determine the three-component ambient wind fields during straight and level flight conditions.

  8. New data for aerosols generated by releases of pressurized powders and solutions in static air

    SciTech Connect

    Ballinger, M.Y.; Sutter, S.L.; Hodgson, W.H.

    1987-05-01

    Safety assessments and environmental impact statements for nuclear fuel cycle facilities require an estimate of potential airborne releases. Aerosols generated by accidents are being investigated by Pacific Northwest Laboratory to develop radioactive source-term estimation methods. Experiments measuring the mass airborne and particle size distribution of aerosols produced by pressurized releases were run. Carbon dioxide was used to pressurize uranine solutions to 50, 250, and 500 psig before release. The mass airborne from these experiments was higher than for comparable air-pressurized systems, but not as great as expected based on the amount of gas dissolved in the liquid and the volume of liquid ejected from the release equipment. Flashing sprays of uranine at 60, 125, and 240 psig produced a much larger source term than all other pressurized releases performed under this program. Low-pressure releases of depleted uranium dioxide at 9, 17.5, and 24.5 psig provided data in the energy region between 3-m spills and 50-psig pressurized releases.

  9. Intramuscular Pressure Measurement During Locomotion in Humans

    NASA Technical Reports Server (NTRS)

    Ballard, Ricard E.

    1996-01-01

    To assess the usefulness of intramuscular pressure (IMP) measurement for studying muscle function during gait, IMP was recorded in the soleus and tibialis anterior muscles of ten volunteers during, treadmill walking, and running using transducer-tipped catheters. Soleus IMP exhibited single peaks during late-stance phase of walking (181 +/- 69 mmHg, mean +/- S.E.) and running (269 +/- 95 mmHg). Tibialis anterior IMP showed a biphasic response, with the largest peak (90 +/- 15 mmHg during walking and 151 +/- 25 mmHg during running) occurring shortly after heel strike. IMP magnitude increased with gait speed in both muscles. Linear regression of soleus IMP against ankle joint torque obtained by a dynamometer in two subjects produced linear relationships (r = 0.97). Application of these relationships to IMP data yielded estimated peak soleus moment contributions of 0.95-165 Nm/Kg during walking, and 1.43-2.70 Nm/Kg during running. IMP results from local muscle tissue deformations caused by muscle force development and thus, provides a direct, practical index of muscle function during locomotion in humans.

  10. Observer error in blood pressure measurement.

    PubMed Central

    Neufeld, P D; Johnson, D L

    1986-01-01

    This paper describes an experiment undertaken to determine observer error in measuring blood pressure by the auscultatory method. A microcomputer was used to display a simulated mercury manometer and play back tape-recorded Korotkoff sounds synchronized with the fall of the mercury column. Each observer's readings were entered into the computer, which displayed a histogram of all readings taken up to that point and thus showed the variation among observers. The procedure, which could easily be adapted for use in teaching, was used to test 311 observers drawn from physicians, nurses, medical students, nursing students and others at nine health care institutions in Ottawa. The results showed a strong bias for even-digit readings and standard deviations of roughly 5 to 6 mm Hg. The standard deviation for the systolic readings was somewhat smaller for the physicians as a group than for the nurses (3.5 v. 5.9 mm Hg). However, the standard deviations for the diastolic readings were roughly equal for these two groups (approximately 5.5 mm Hg). Images Fig. 1 PMID:3756693

  11. Air Pressure Responses to Sudden Vocal Tract Pressure Bleeds during Production of Stop Consonants: New Evidence of Aeromechanical Regulation.

    ERIC Educational Resources Information Center

    Zajac, David J.; Weissler, Mark C.

    2004-01-01

    Two studies were conducted to evaluate short-latency vocal tract air pressure responses to sudden pressure bleeds during production of voiceless bilabial stop consonants. It was hypothesized that the occurrence of respiratory reflexes would be indicated by distinct patterns of responses as a function of bleed magnitude. In Study 1, 19 adults…

  12. Previous blood pressure measurement and associated factors in student adolescents

    PubMed Central

    Magalhães, Marina Gabriella Pereira de Andrada; Farah, Breno Quintella; de Barros, Mauro Virgilio Gomes; Ritti-Dias, Raphael Mendes

    2015-01-01

    Objective To identify prevalence of previous blood pressure measurement and analyze some associated factors in adolescents. Methods This cross-sectional study included 6,077 adolescents aged 14 to 19 years. Demographic characteristics included (sex, age, period of study, region of residence, work, skin color, and economic) status, history of blood pressure measurement within last 12 months, local of blood pressure measurement, and reading obtained. To assess associations between previous blood pressure measurement with demographic characteristics and high blood pressure we used descriptive statistics and logistic regression analysis. Results Out of the adolescents, 56.8% reported no blood pressure measurement within the last 12 months. The health centers and the physician’s office were most mentioned places for blood pressure measurement (28.3% and 36.9%, respectively). Boys (odds ratio of 1.64 95%CI: 1.46-1.84) aged 14 to 16 years (odds ratio of 1.12; 95%CI: 1.01-1.25), whose economic status was unfavorable (odds ratio of 1.48; 95%CI: 1.32-1.67) were significantly associated with no blood pressure measurement. Working was a protective factor for was not blood pressure measurement (odds ratio of 0.84; 95%CI: 0.73-0.97). Conclusion Most of adolescents did not have their blood pressure measured within the last 12 months. Boys aged 14 to 16 years and those with unfavorable economic status had higher chance of not having their blood pressure measured. PMID:26466061

  13. 21 CFR 870.1130 - Noninvasive blood pressure measurement system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Noninvasive blood pressure measurement system. 870.1130 Section 870.1130 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Noninvasive blood pressure measurement system. (a) Identification. A noninvasive blood pressure...

  14. 21 CFR 870.1130 - Noninvasive blood pressure measurement system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Noninvasive blood pressure measurement system. 870.1130 Section 870.1130 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Noninvasive blood pressure measurement system. (a) Identification. A noninvasive blood pressure...

  15. 21 CFR 870.1130 - Noninvasive blood pressure measurement system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Noninvasive blood pressure measurement system. 870.1130 Section 870.1130 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Noninvasive blood pressure measurement system. (a) Identification. A noninvasive blood pressure...

  16. 21 CFR 870.1130 - Noninvasive blood pressure measurement system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Noninvasive blood pressure measurement system. 870.1130 Section 870.1130 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Noninvasive blood pressure measurement system. (a) Identification. A noninvasive blood pressure...

  17. Dual-pump CARS of Air in a Heated Pressure Vessel up to 55 Bar and 1300 K

    NASA Technical Reports Server (NTRS)

    Cantu, Luca; Gallo, Emanuela; Cutler, Andrew D.; Danehy, Paul M.

    2014-01-01

    Dual-pump Coherent anti-Stokes Raman scattering (CARS) measurements have been performed in a heated pressure vessel at NASA Langley Research Center. Each measurement, consisting of 500 single shot spectra, was recorded at a fixed location in dry air at various pressures and temperatures, in a range of 0.03-55×10(exp 5) Pa and 300-1373 K, where the temperature was varied using an electric heater. The maximum output power of the electric heater limited the combinations of pressures and temperatures that could be obtained. Charts of CARS signal versus temperature (at constant pressure) and signal versus pressure (at constant temperature) are presented and fit with an empirical model to validate the range of capability of the dual-pump CARS technique; averaged spectra at different conditions of pressure and temperature are also shown.

  18. Laser-Machined Microcavities for Simultaneous Measurement of High-Temperature and High-Pressure

    PubMed Central

    Ran, Zengling; Liu, Shan; Liu, Qin; Huang, Ya; Bao, Haihong; Wang, Yanjun; Luo, Shucheng; Yang, Huiqin; Rao, Yunjiang

    2014-01-01

    Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure are demonstrated. These two cascaded microcavities are an air cavity and a composite cavity including a section of fiber and an air cavity. They are both placed into a pressure chamber inside a furnace to perform simultaneous pressure and high-temperature tests. The thermal and pressure coefficients of the short air cavity are ∼0.0779 nm/°C and ∼1.14 nm/MPa, respectively. The thermal and pressure coefficients of the composite cavity are ∼32.3 nm/°C and ∼24.4 nm/MPa, respectively. The sensor could be used to separate temperature and pressure due to their different thermal and pressure coefficients. The excellent feature of such a sensor head is that it can withstand high temperatures of up to 400 °C and achieve precise measurement of high-pressure under high temperature conditions. PMID:25106018

  19. Respiratory and Laryngeal Responses to an Oral Air Pressure Bleed during Speech

    ERIC Educational Resources Information Center

    Huber, Jessica E.; Stathopoulos, Elaine T.

    2003-01-01

    Researchers have hypothesized that the respiratory and laryngeal speech subsystems would respond to an air pressure bleed, but these responses have not been empirically studied. The present study examined the nature of the responses of the respiratory and laryngeal subsystems to an air pressure bleed in order to provide information relevant to the…

  20. [An integrated system of blood pressure measurement with bluetooth communication].

    PubMed

    Wang, Wei; Wang, Jing; Sun, Hongyang; Xu, Zuyang; Chai, Xinyu

    2012-07-01

    The development of the integrated blood pressure system with bluetooth communication function is introduced. Experimental results show that the system can complete blood pressure measurement and data transmission wireless effectively, which can be used in m-Health in future.

  1. High pressure flame system for pollution studies with results for methane-air diffusion flames

    NASA Technical Reports Server (NTRS)

    Miller, I. M.; Maahs, H. G.

    1977-01-01

    A high pressure flame system was designed and constructed for studying nitrogen oxide formation in fuel air combustion. Its advantages and limitations were demonstrated by tests with a confined laminar methane air diffusion flame over the pressure range from 1 to 50 atm. The methane issued from a 3.06 mm diameter port concentrically into a stream of air contained within a 20.5 mm diameter chimney. As the combustion pressure is increased, the flame changes in shape from wide and convex to slender and concave, and there is a marked increase in the amount of luminous carbon. The height of the flame changes only moderately with pressure.

  2. Global trends of measured surface air temperature

    NASA Technical Reports Server (NTRS)

    Hansen, James; Lebedeff, Sergej

    1987-01-01

    The paper presents the results of surface air temperature measurements from available meteorological stations for the period of 1880-1985. It is shown that the network of meteorological stations is sufficient to yield reliable long-term, decadal, and interannual temperature changes for both the Northern Hemisphere and the Southern Hemisphere, despite the fact that most stations are located on the continents. The results indicate a global warming of about 0.5-0.7 C in the past century, with warming of similar magnitude in both hemispheres. A strong warming trend between 1965 and 1980 raised the global mean temperature in 1980 and 1981 to the highest level in the period of instrumental records. Selected graphs of the temperature change in each of the eight latitude zones are included.

  3. Prototype Systems for Measuring Outdoor Air Intake Rates in Rooftop Air Handlers

    SciTech Connect

    Fisk, William J.; Chan, Wanyu R.; Hotchi, Toshifumi

    2015-01-01

    The widespread absence of systems for real-time measurement and feedback control, of minimum outdoor air intake rates in HVAC systems contributes to the poor control of ventilation rates in commercial buildings. Ventilation rates affect building energy consumption and influence occupant health. The project designed fabricated and tested four prototypes of systems for measuring rates of outdoor air intake into roof top air handlers. All prototypes met the ±20% accuracy target at low wind speeds, with all prototypes accurate within approximately ±10% after application of calibration equations. One prototype met the accuracy target without a calibration. With two of four prototype measurement systems, there was no evidence that wind speed or direction affected accuracy; however, winds speeds were generally below usually 3.5 m s-1 (12.6 km h-1) and further testing is desirable. The airflow resistance of the prototypes was generally less than 35 Pa at maximum RTU air flow rates. A pressure drop of this magnitude will increase fan energy consumption by approximately 4%. The project did not have resources necessary to estimate costs of mass produced systems. The retail cost of components and materials used to construct prototypes ranged from approximately $1,200 to $1,700. The test data indicate that the basic designs developed in this project, particularly the designs of two of the prototypes, have considerable merit. Further design refinement, testing, and cost analysis would be necessary to fully assess commercial potential. The designs and test results will be communicated to the HVAC manufacturing community.

  4. Measurement of the resistivity of porous materials with an alternating air-flow method.

    PubMed

    Dragonetti, Raffaele; Ianniello, Carmine; Romano, Rosario A

    2011-02-01

    Air-flow resistivity is a main parameter governing the acoustic behavior of porous materials for sound absorption. The international standard ISO 9053 specifies two different methods to measure the air-flow resistivity, namely a steady-state air-flow method and an alternating air-flow method. The latter is realized by the measurement of the sound pressure at 2 Hz in a small rigid volume closed partially by the test sample. This cavity is excited with a known volume-velocity sound source implemented often with a motor-driven piston oscillating with prescribed area and displacement magnitude. Measurements at 2 Hz require special instrumentation and care. The authors suggest an alternating air-flow method based on the ratio of sound pressures measured at frequencies higher than 2 Hz inside two cavities coupled through a conventional loudspeaker. The basic method showed that the imaginary part of the sound pressure ratio is useful for the evaluation of the air-flow resistance. Criteria are discussed about the choice of a frequency range suitable to perform simplified calculations with respect to the basic method. These criteria depend on the sample thickness, its nonacoustic parameters, and the measurement apparatus as well. The proposed measurement method was tested successfully with various types of acoustic materials.

  5. Rotor Blade Pressure Measurement in a Rotating Machinery Using Pressure and Temperature Sensitive Paints

    NASA Technical Reports Server (NTRS)

    Torgerson, S.; Liu, T.; Sullivan, J.

    1998-01-01

    Pressure and temperature sensitive paints have been utilized for the measurement of blade surface pressure and temperature distributions in a high speed axial compressor and an Allied Signal F109 gas turbine engine. Alternate blades were painted with temperature sensitive paints and then pressure sensitive paint. This combination allows temperature distributions to be accounted for when determining the blade suction surface pressure distribution. Measurements were taken and pressure maps on the suction surface of a blade were obtained over a range of rotational speeds. Pressure maps of the suction surface show-strong shock waves at the higher speeds.

  6. Integrated LTCC Pressure/Flow/Temperature Multisensor for Compressed Air Diagnostics†

    PubMed Central

    Fournier, Yannick; Maeder, Thomas; Boutinard-Rouelle, Grégoire; Barras, Aurélie; Craquelin, Nicolas; Ryser, Peter

    2010-01-01

    We present a multisensor designed for industrial compressed air diagnostics and combining the measurement of pressure, flow, and temperature, integrated with the corresponding signal conditioning electronics in a single low-temperature co-fired ceramic (LTCC) package. The developed sensor may be soldered onto an integrated electro-fluidic platform by using standard surface mount device (SMD) technology, e.g., as a standard electronic component would be on a printed circuit board, obviating the need for both wires and tubes and thus paving the road towards low-cost integrated electro-fluidic systems. Several performance aspects of this device are presented and discussed, together with electronics design issues. PMID:22163518

  7. Energy distribution of runaway electrons generated by a nanosecond discharge in atmospheric-pressure air

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Kostyrya, I. D.; Lomaev, M. I.; Petin, V. K.; Rybka, D. V.; Shlyakhtun, S. V.

    2008-12-01

    The spectra of an ultrashort avalanche electron beam generated by a nanosecond discharge in atmospheric-pressure air were investigated. The temporal characteristics of the beam current pulses, gap voltage, and discharge current in a gas diode were measured with a time resolution of ˜0.1 ns. A simple technique was developed for recovering electron spectra from the curves of beam attenuation by aluminum foils. The effect of the cathode design, electrode gap length, and generator parameters on the electron spectra were studied using seven setups. It is shown that generation of electrons with anomalously high energies requires the use of cathodes with increased curvature radius.

  8. Integrated LTCC pressure/flow/temperature multisensor for compressed air diagnostics.

    PubMed

    Fournier, Yannick; Maeder, Thomas; Boutinard-Rouelle, Grégoire; Barras, Aurélie; Craquelin, Nicolas; Ryser, Peter

    2010-01-01

    We present a multisensor designed for industrial compressed air diagnostics and combining the measurement of pressure, flow, and temperature, integrated with the corresponding signal conditioning electronics in a single low-temperature co-fired ceramic (LTCC) package. The developed sensor may be soldered onto an integrated electro-fluidic platform by using standard surface mount device (SMD) technology, e.g., as a standard electronic component would be on a printed circuit board, obviating the need for both wires and tubes and thus paving the road towards low-cost integrated electro-fluidic systems. Several performance aspects of this device are presented and discussed, together with electronics design issues.

  9. Energy distribution of runaway electrons generated by a nanosecond discharge in atmospheric-pressure air

    SciTech Connect

    Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Kostyrya, I. D.; Lomaev, M. I.; Petin, V. K.; Rybka, D. V.; Shlyakhtun, S. V.

    2008-12-15

    The spectra of an ultrashort avalanche electron beam generated by a nanosecond discharge in atmospheric-pressure air were investigated. The temporal characteristics of the beam current pulses, gap voltage, and discharge current in a gas diode were measured with a time resolution of {approx}0.1 ns. A simple technique was developed for recovering electron spectra from the curves of beam attenuation by aluminum foils. The effect of the cathode design, electrode gap length, and generator parameters on the electron spectra were studied using seven setups. It is shown that generation of electrons with anomalously high energies requires the use of cathodes with increased curvature radius.

  10. Noninvasive Measurement of Central Vascular Pressures With Arterial Tonometry: Clinical Revival of the Pulse Pressure Waveform?

    PubMed Central

    Nelson, Matthew R.; Stepanek, Jan; Cevette, Michael; Covalciuc, Michael; Hurst, R. Todd; Tajik, A. Jamil

    2010-01-01

    The arterial pulse has historically been an essential source of information in the clinical assessment of health. With current sphygmomanometric and oscillometric devices, only the peak and trough of the peripheral arterial pulse waveform are clinically used. Several limitations exist with peripheral blood pressure. First, central aortic pressure is a better predictor of cardiovascular outcome than peripheral pressure. Second, peripherally obtained blood pressure does not accurately reflect central pressure because of pressure amplification. Lastly, antihypertensive medications have differing effects on central pressures despite similar reductions in brachial blood pressure. Applanation tonometry can overcome the limitations of peripheral pressure by determining the shape of the aortic waveform from the radial artery. Waveform analysis not only indicates central systolic and diastolic pressure but also determines the influence of pulse wave reflection on the central pressure waveform. It can serve as a useful adjunct to brachial blood pressure measurements in initiating and monitoring hypertensive treatment, in observing the hemodynamic effects of atherosclerotic risk factors, and in predicting cardiovascular outcomes and events. Radial artery applanation tonometry is a noninvasive, reproducible, and affordable technology that can be used in conjunction with peripherally obtained blood pressure to guide patient management. Keywords for the PubMed search were applanation tonometry, radial artery, central pressure, cardiovascular risk, blood pressure, and arterial pulse. Articles published from January 1, 1995, to July 1, 2009, were included in the review if they measured central pressure using radial artery applanation tonometry. PMID:20435839

  11. Measurement Corner: Volume, Temperature and Pressure

    ERIC Educational Resources Information Center

    Teates, Thomas G.

    1977-01-01

    Boyle's Law and basic relationships between volume and pressure of a gas at constant temperature are presented. Suggests two laboratory activities for demonstrating the effect of temperature on the volume of a gas or liquid. (CS)

  12. Use of nose cap and fuselage pressure orifices for determination of air data for space shuttle orbiter below supersonic speeds

    NASA Technical Reports Server (NTRS)

    Larson, T. J.; Siemers, P. M., III

    1980-01-01

    Wind tunnel pressure measurements were acquired from orifices on a 0.1 scale forebody model of the space shuttle orbiter that were arranged in a preliminary configuration of the shuttle entry air data system (SEADS). Pressures from those and auxiliary orifices were evaluated for their ability to provide air data at subsonic and transonic speeds. The orifices were on the vehicle's nose cap and on the sides of the forebody forward of the cabin. The investigation covered a Mach number range of 0.25 to 1.40 and an angle of attack range from 4 deg. to 18 deg. An air data system consisting of nose cap and forebody fuselage orifices constitutes a complete and accurate air data system at subsonic and transonic speeds. For Mach numbers less than 0.80 orifices confined to the nose cap can be used as a complete and accurate air data system. Air data systems that use only flush pressure orifices can be used to determine basic air data on other aircraft at subsonic and transonic speeds.

  13. Effect of air pressure differential on vapor flow through sample building walls

    SciTech Connect

    Stewart, W.E. Jr.

    1998-12-31

    Laboratory scale experiments were performed on two small sample composite walls of typical building construction to determine the approximate opposing air pressure difference required to stop or significantly reduce the transmission of water vapor due to a water vapor pressure difference. The experiments used wall section samples between two controlled atmosphere chambers. One chamber was held at a temperature and humidity condition approximating that of a typical summer day, while the other chamber was controlled at a condition typical of indoor conditioned space. Vapor transmission data through the wall samples were obtained over a range of vapor pressure differentials and opposing air pressure differentials. The results show that increasing opposing air pressure differences decrease water vapor transmission, as expected, and relatively small opposing air pressure differentials are required for wall materials of small vapor permeability and large air permeability. The opposing air pressure that stopped or significantly reduced the flow of water vapor through the wall sample was determined experimentally and also compared to air pressures as predicted by an analytical model.

  14. Correlation and spectral measurements of fluctuating pressures and velocities in annular turbulent flow. [PWR; BWR

    SciTech Connect

    Wilson, R.J.; Jones, B.G.; Roy, R.P.

    1980-02-01

    An experimental study of the fluctuating velocity field, the fluctuating static wall pressure and the in-stream fluctuating static pressure in an annular turbulent air flow system with a radius ratio of 4.314 has been conducted. The study included direct measurements of the mean velocity profile, turbulent velocity field; fluctuating static wall pressure and in-stream fluctuating static pressure from which the statistical values of the turbulent intensity levels, power spectral densities of the turbulent quantities, the cross-correlation between the fluctuating static wall pressure and the fluctuating static pressure in the core region of the flow and the cross-correlation between the fluctuating static wall pressure and the fluctuating velocity field in the core region of the flow were obtained.

  15. [Measurement of blood pressure variability and the clinical value].

    PubMed

    Kékes, Ede; Kiss, István

    2014-10-19

    Authors have collected and analyzed literature data on blood pressure variability. They present the methods of blood pressure variability measurement, clinical value and relationships with target organ damages and risk of presence of cardiovascular events. They collect data about the prognostic value of blood pressure variability and the effects of different antihypertensive drugs on blood pressure variability. They underline that in addition to reduction of blood pressure to target value, it is essential to influence blood pressure fluctuation and decrease blood pressure variability, because blood pressure fluctuation presents a major threat for the hypertensive subjects. Data from national studies are also presented. They welcome that measurement of blood pressure variability has been included in international guidelines.

  16. Remote Sensing Global Surface Air Pressure Using Differential Absorption BArometric Radar (DiBAR)

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Harrah, Steven; Lawrence, Wes; Hu, Yongxiang; Min, Qilong

    2016-01-01

    Tropical storms and severe weathers are listed as one of core events that need improved observations and predictions in World Meteorological Organization and NASA Decadal Survey (DS) documents and have major impacts on public safety and national security. This effort tries to observe surface air pressure, especially over open seas, from space using a Differential-absorption BArometric Radar (DiBAR) operating at the 50-55 gigahertz O2 absorption band. Air pressure is among the most important variables that affect atmospheric dynamics, and currently can only be measured by limited in-situ observations over oceans. Analyses show that with the proposed space radar the errors in instantaneous (averaged) pressure estimates can be as low as approximately 4 millibars (approximately 1 millibar under all weather conditions). With these sea level pressure measurements, the forecasts of severe weathers such as hurricanes will be significantly improved. Since the development of the DiBAR concept about a decade ago, NASA Langley DiBAR research team has made substantial progress in advancing the concept. The feasibility assessment clearly shows the potential of sea surface barometry using existing radar technologies. The team has developed a DiBAR system design, fabricated a Prototype-DiBAR (P-DiBAR) for proof-of-concept, conducted lab, ground and airborne P-DiBAR tests. The flight test results are consistent with the instrumentation goals. Observational system simulation experiments for space DiBAR performance based on the existing DiBAR technology and capability show substantial improvements in tropical storm predictions, not only for the hurricane track and position but also for the hurricane intensity. DiBAR measurements will lead us to an unprecedented level of the prediction and knowledge on global extreme weather and climate conditions.

  17. Measurement of unsteady surface pressure on rotor blades of fans by pressure-sensitive paint

    NASA Astrophysics Data System (ADS)

    Yokoyama, Hiroshi; Miura, Kouhei; Iida, Akiyoshi

    2017-01-01

    To clarify the unsteady pressure distributions on the rotor blades of an axial fan, a pressure-sensitive paint (PSP) technique was used. To capture the image of the rotating fan as a static image, an optical derotator method with a dove prism was adopted. It was confirmed by preliminary experiments with a resonator and a speaker that the pressure fluctuations with 347 Hz can be measured by the present PSP. The measured mean pressure distributions were compared with the predicted results based on large-eddy simulations. The measured instantaneous surface pressure is instrumental to identify acoustic source of fan noise in the design stage.

  18. Formaldehyde preparation methods for pressure and temperature dependent laser-induced fluorescence measurements.

    PubMed

    Burkert, A; Müller, D; Rieger, S; Schmidl, G; Triebel, W; Paa, W

    2015-12-01

    Formaldehyde is an excellent tracer for the early phase of ignition of hydrocarbon fuels and can be used, e.g., for characterization of single droplet ignition. However, due to its fast thermal decomposition at elevated temperatures and pressures, the determination of concentration fields from laser-induced fluorescence (LIF) measurements is difficult. In this paper, we address LIF measurements of this important combustion intermediate using a calibration cell. Here, formaldehyde is created from evaporation of paraformaldehyde. We discuss three setups for preparation of formaldehyde/air mixtures with respect to their usability for well-defined heating of formaldehyde/air mixtures. The "basic setup" uses a resist heater around the measurement cell for investigation of formaldehyde near vacuum conditions or formaldehyde/air samples after sequential admixing of air. The second setup, described for the first time in detail here, takes advantage of a constant flow formaldehyde/air regime which uses preheated air to reduce the necessary time for gas heating. We used the constant flow system to measure new pressure dependent LIF excitation spectra in the 343 nm spectral region (41 (4) absorption band of formaldehyde). The third setup, based on a novel concept for fast gas heating via excitation of SF6 (chemically inert gas) using a TEA (transverse excitation at atmospheric pressure) CO2 laser, allows to further minimize both gas heating time and thermal decomposition. Here, an admixture of CO2 is served for real time temperature measurement based on Raman scattering. The applicability of the fast laser heating system has been demonstrated with gas mixtures of SF6 + air, SF6 + N2, as well as SF6 + N2 + CO2 at 1 bar total pressure.

  19. Formaldehyde preparation methods for pressure and temperature dependent laser-induced fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Burkert, A.; Müller, D.; Rieger, S.; Schmidl, G.; Triebel, W.; Paa, W.

    2015-12-01

    Formaldehyde is an excellent tracer for the early phase of ignition of hydrocarbon fuels and can be used, e.g., for characterization of single droplet ignition. However, due to its fast thermal decomposition at elevated temperatures and pressures, the determination of concentration fields from laser-induced fluorescence (LIF) measurements is difficult. In this paper, we address LIF measurements of this important combustion intermediate using a calibration cell. Here, formaldehyde is created from evaporation of paraformaldehyde. We discuss three setups for preparation of formaldehyde/air mixtures with respect to their usability for well-defined heating of formaldehyde/air mixtures. The "basic setup" uses a resist heater around the measurement cell for investigation of formaldehyde near vacuum conditions or formaldehyde/air samples after sequential admixing of air. The second setup, described for the first time in detail here, takes advantage of a constant flow formaldehyde/air regime which uses preheated air to reduce the necessary time for gas heating. We used the constant flow system to measure new pressure dependent LIF excitation spectra in the 343 nm spectral region (414 absorption band of formaldehyde). The third setup, based on a novel concept for fast gas heating via excitation of SF6 (chemically inert gas) using a TEA (transverse excitation at atmospheric pressure) CO2 laser, allows to further minimize both gas heating time and thermal decomposition. Here, an admixture of CO2 is served for real time temperature measurement based on Raman scattering. The applicability of the fast laser heating system has been demonstrated with gas mixtures of SF6 + air, SF6 + N2, as well as SF6 + N2 + CO2 at 1 bar total pressure.

  20. Applying large datasets to developing a better understanding of air leakage measurement in homes

    SciTech Connect

    Walker, I. S.; Sherman, M. H.; Joh, J.; Chan, W. R.

    2013-03-01

    Air tightness is an important property of building envelopes. It is a key factor in determining infiltration and related wall-performance properties such as indoor air quality, maintainability and moisture balance. Air leakage in U.S. houses consumes roughly 1/3 of the HVAC energy but provides most of the ventilation used to control IAQ. There are several methods for measuring air tightness that may result in different values and sometimes quite different uncertainties. The two main approaches trade off bias and precision errors and thus result indifferent outcomes for accuracy and repeatability. To interpret results from the two approaches, various questions need to be addressed, such as the need to measure the flow exponent, the need to make both pressurization and depressurization measurements and the role of wind in determining the accuracy and precision of the results. This article uses two large datasets of blower door measurements to reach the following conclusions. For most tests the pressure exponent should be measured but for wind speeds greater than 6 m/s a fixed pressure exponent reduces experimental error. The variability in reported pressure exponents is mostly due to changes in envelope leakage characteristics. Finally, it is preferable to test in both pressurization and depressurization modes due to significant differences between the results in these two modes.

  1. Applying large datasets to developing a better understanding of air leakage measurement in homes

    DOE PAGES

    Walker, I. S.; Sherman, M. H.; Joh, J.; ...

    2013-03-01

    Air tightness is an important property of building envelopes. It is a key factor in determining infiltration and related wall-performance properties such as indoor air quality, maintainability and moisture balance. Air leakage in U.S. houses consumes roughly 1/3 of the HVAC energy but provides most of the ventilation used to control IAQ. There are several methods for measuring air tightness that may result in different values and sometimes quite different uncertainties. The two main approaches trade off bias and precision errors and thus result indifferent outcomes for accuracy and repeatability. To interpret results from the two approaches, various questions needmore » to be addressed, such as the need to measure the flow exponent, the need to make both pressurization and depressurization measurements and the role of wind in determining the accuracy and precision of the results. This article uses two large datasets of blower door measurements to reach the following conclusions. For most tests the pressure exponent should be measured but for wind speeds greater than 6 m/s a fixed pressure exponent reduces experimental error. The variability in reported pressure exponents is mostly due to changes in envelope leakage characteristics. Finally, it is preferable to test in both pressurization and depressurization modes due to significant differences between the results in these two modes.« less

  2. 29 CFR 1915.172 - Portable air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., 1963. They shall be subjected to a hydrostatic pressure test of one and one-half times the working... quarterly by a competent person. They shall be subjected yearly to a hydrostatic pressure test of one and... 29 Labor 7 2012-07-01 2012-07-01 false Portable air receivers and other unfired pressure...

  3. 29 CFR 1915.172 - Portable air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., 1963. They shall be subjected to a hydrostatic pressure test of one and one-half times the working... quarterly by a competent person. They shall be subjected yearly to a hydrostatic pressure test of one and... 29 Labor 7 2011-07-01 2011-07-01 false Portable air receivers and other unfired pressure...

  4. 29 CFR 1915.172 - Portable air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., 1963. They shall be subjected to a hydrostatic pressure test of one and one-half times the working... quarterly by a competent person. They shall be subjected yearly to a hydrostatic pressure test of one and... 29 Labor 7 2013-07-01 2013-07-01 false Portable air receivers and other unfired pressure...

  5. 29 CFR 1915.172 - Portable air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., 1963. They shall be subjected to a hydrostatic pressure test of one and one-half times the working... quarterly by a competent person. They shall be subjected yearly to a hydrostatic pressure test of one and... 29 Labor 7 2014-07-01 2014-07-01 false Portable air receivers and other unfired pressure...

  6. Direct measurement of capillary blood pressure in the human lip

    NASA Technical Reports Server (NTRS)

    Parazynski, S. E.; Tucker, B. J.; Aratow, M.; Crenshaw, A.; Hargens, A. R.

    1993-01-01

    In this study, we developed and tested a new procedure for measuring microcirculatory blood pressures above heart level in humans. Capillary and postcapillary venule blood pressures were measured directly in 13 human subjects by use of the servonulling micropressure technique adapted for micropuncture of lip capillaries. Pressure waveforms were recorded in 40 separate capillary vessels and 14 separate postcapillary venules over periods ranging from 5 to 64 s. Localization and determination of capillary and postcapillary vessels were ascertained anatomically before pressure measurements. Capillary pressure was 33.2 +/- 1.5 (SE) mm Hg in lips of subjects seated upright. Repeated micropunctures of the same vessel gave an average coefficient of variation of 0.072. Postcapillary venule pressure was 18.9 +/- 1.6 mm Hg. This procedure produces a direct and reproducible means of measuring microvascular blood pressures in a vascular bed above heart level in humans.

  7. ASRDI oxygen technology survey. Volume 8: Pressure measurement

    NASA Technical Reports Server (NTRS)

    Arvidson, J. M.; Brennan, J. A.

    1975-01-01

    Pressure transducers and their current uses with gaseous or liquid oxygen are reviewed. All transducer types such as strain gage, capacitance, potentiometric, piezoelectric, etc., are included. Topics covered include: cryogenic pressure measurement; material compatibility with gaseous and liquid oxygen; cleaning procedures; pressure tap connections; transducer types and descriptions; and calibration techniques.

  8. Insect hygroreceptor responses to continuous changes in humidity and air pressure

    PubMed Central

    Tichy, H.; Kallina, W.

    2011-01-01

    The most favored model of humidity transduction views the cuticular wall of insect hygroreceptive sensilla as a hygromechanical transducer. Hygroscopic swelling or shrinking alters the geometry of the wall, deforming the dendritic membranes of the moist and dry cells. The small size the sensilla and their position surrounded by elevated structures creates technical difficulties to mechanically stimulate them by direct contact. The present study investigated hygroreceptors on the antennae of the cockroach and the stick insect. Accurately controlled, homogeneous mechanical input was delivered by modulating air pressure. Both the moist and dry cells responded not only to changes in air pressure, but also in the opposite direction, as observed during changes in air humidity. The moist-cell’s excitatory response to increasing humidity and increasing air pressure implies that swelling of the hygroscopic cuticle compresses the dendrites, and the dry-cell’s excitatory response to decreasing humidity and decreasing air pressure implies that shrinking of the hygroscopic cuticle expands the dendrites. The moist and dry cells of the stick insect are more sensitive to pressure changes than those of the cockroach, but the responses to air pressure are generally weaker than to humidity. Therefore, the hygroreceptive sensilla differ in their physical properties and constitutions. Furthermore, the mechanical parameters associated with homogeneous changes in air pressure on the sensillum surface can only partially account for the responses of the moist and dry cells of both species to humidity stimulation. PMID:20375249

  9. Next-generation air measurement technologies | Science ...

    EPA Pesticide Factsheets

    This is a presentation at a workshop in Chicago on emerging air monitoring technologies, hosted by a local nonprofit. The audience is composed of a mixture of technical backgrounds. This presentation will be part of an opening panel and the goal is to give an overview of the state of science on emerging air sensor technology. This is a presentation at a workshop in Chicago on emerging air monitoring technologies, hosted by a local nonprofit. The audience is composed of a mixture of technical backgrounds. This presentation will be part of an opening panel and the goal is to give an overview of the state of science on emerging air sensor technology.

  10. Pressure and Magnetics Measurements of Single and Merged Jets

    NASA Astrophysics Data System (ADS)

    Messer, S.; Case, A.; Brockington, S.; Bomgardner, R.; Witherspoon, F. D.

    2010-11-01

    We present pressure and magnetic data from both a single full scale coaxial gun and from the merging of jets from several minirailguns. The magnetic probes measure all three components of field, and include an array of probes inside the coaxial gun. Magnetic measurements beyond the muzzle of the gun show the scale of currents trapped in the plasma plume. The pressure probe measures adiabatic stagnation pressure and shows how this quantity decreases with distance from the gun as well as the changes in stagnation pressure through the merge process. Stagnation pressure is influenced by density, temperature, and velocity, and serves as a check on spectroscopic and interferometer measurements. Unlike optical measurements, stagnation pressure is taken at a definite location. These guns are early prototypes of guns to be installed on the Plasma Liner eXperiment at LANL. The jet-merging results are reviewed in the context of what is expected for PLX.

  11. Measurement of viscosity and elasticity of lubricants at high pressures

    NASA Technical Reports Server (NTRS)

    Rein, R. G., Jr.; Charng, T. T.; Sliepcevich, C. M.; Ewbank, W. J.

    1975-01-01

    The oscillating quartz crystal viscometer has been used to investigate possible viscoelastic behavior in synthetic lubricating fluids and to obtain viscosity-pressure-temperature data for these fluids at temperatures to 300 F and pressures to 40,000 psig. The effect of pressure and temperature on the density of the test fluids was measured concurrently with the viscosity measurements. Viscoelastic behavior of one fluid, di-(2-ethylhexyl) sebacate, was observed over a range of pressures. These data were used to compute the reduced shear elastic (storage) modulus and reduced loss modulus for this fluid at atmospheric pressure and 100 F as functions of reduced frequency.

  12. A method enabling simultaneous pressure and temperature measurement using a single piezoresistive MEMS pressure sensor

    NASA Astrophysics Data System (ADS)

    Frantlović, Miloš; Jokić, Ivana; Lazić, Žarko; Smiljanić, Milče; Obradov, Marko; Vukelić, Branko; Jakšić, Zoran; Stanković, Srđan

    2016-12-01

    In this paper we present a high-performance, simple and low-cost method for simultaneous measurement of pressure and temperature using a single piezoresistive MEMS pressure sensor. The proposed measurement method utilizes the parasitic temperature sensitivity of the sensing element for both pressure measurement correction and temperature measurement. A parametric mathematical model of the sensor was established and its parameters were calculated using the obtained characterization data. Based on the model, a real-time sensor correction for both pressure and temperature measurements was implemented in a target measurement system. The proposed method was verified experimentally on a group of typical industrial-grade piezoresistive sensors. The obtained results indicate that the method enables the pressure measurement performance to exceed that of typical digital industrial pressure transmitters, achieving at the same time the temperature measurement performance comparable to industrial-grade platinum resistance temperature sensors. The presented work is directly applicable in industrial instrumentation, where it can add temperature measurement capability to the existing pressure measurement instruments, requiring little or no additional hardware, and without adverse effects on pressure measurement performance.

  13. Air Circulation and Heat Exchange Under Reduced Pressures

    NASA Technical Reports Server (NTRS)

    Rygalov, V.; Wheeler, R.; Dixon, M.; Fowler, P.; Hillhouse, L.

    2010-01-01

    Heat exchange rates decrease non-linearly with reductions in atmospheric pressure. This decrease creates risk of thermal stress (elevated leaf temperatures) for plants under reduced pressures. Forced convection (fans) significantly increases heat exchange rate under almost all pressures except below 10 kPa. Plant cultivation techniques under reduced pressures will require forced convection. The cooling curve technique is a reliable means of assessing the influence of environmental variables like pressure and gravity on gas exchange of plant. These results represent the extremes of gas exchange conditions for simple systems under variable pressures. In reality, dense plant canopies will exhibit responses in between these extremes. More research is needed to understand the dependence of forced convection on atmospheric pressure. The overall thermal balance model should include latent and radiative exchange components.

  14. Blood pressure measurement and display system

    NASA Technical Reports Server (NTRS)

    Farkas, A. J.

    1972-01-01

    System is described that employs solid state circuitry to transmit visual display of patient's blood pressure. Response of sphygmomanometer cuff and microphone provide input signals. Signals and their amplitudes, from turn-on time to turn-off time, are continuously fed to data transmitter which transmits to display device.

  15. Accuracy of the Iscan Pressure Measurement System

    DTIC Science & Technology

    2001-05-01

    transducer is limited because only the peak pressure and total area are recorded for a given load cycle. The Iscan system ( Tekscan , Boston, MA) makes...aluminum indentors. Both sides of the Tekscan sensor were lubricated with water and surgical jelly to reduce shear. In all tests, a 5 s long ramp function

  16. Air humidity and water pressure effects on the performance of air-cathode microbial fuel cell cathodes

    NASA Astrophysics Data System (ADS)

    Ahn, Yongtae; Zhang, Fang; Logan, Bruce E.

    2014-02-01

    To better understand how air cathode performance is affected by air humidification, microbial fuel cells were operated under different humidity conditions or water pressure conditions. Maximum power density decreased from 1130 ± 30 mW m-2 with dry air to 980 ± 80 mW m-2 with water-saturated air. When the cathode was exposed to higher water pressures by placing the cathode in a horizontal position, with the cathode oriented so it was on the reactor bottom, power was reduced for both with dry (1030 ± 130 mW m-2) and water-saturated (390 ± 190 mW m-2) air. Decreased performance was partly due to water flooding of the catalyst, which would hinder oxygen diffusion to the catalyst. However, drying used cathodes did not improve performance in electrochemical tests. Soaking the cathode in a weak acid solution, but not deionized water, mostly restored performance (960 ± 60 mW m-2), suggesting that there was salt precipitation in the cathode that was enhanced by higher relative humidity or water pressure. These results showed that cathode performance could be adversely affected by both flooding and the subsequent salt precipitation, and therefore control of air humidity and water pressure may need to be considered for long-term MFC operation.

  17. Optical zero-differential pressure switch and its evaluation in a multiple pressure measuring system

    NASA Technical Reports Server (NTRS)

    Powell, J. A.

    1977-01-01

    The design of a clamped-diaphragm pressure switch is described in which diaphragm motion is detected by a simple fiber-optic displacement sensor. The switch was evaluated in a pressure measurement system where it detected the zero crossing of the differential pressure between a static test pressure and a tank pressure that was periodically ramped from near zero to fullscale gage pressure. With a ramping frequency of 1 hertz and a full-scale tank pressure of 69 N/sq cm gage (100 psig), the switch delay was as long as 2 milliseconds. Pressure measurement accuracies were 0.25 to 0.75 percent of full scale. Factors affecting switch performance are also discussed.

  18. Effects of ear-canal pressurization on middle-ear bone- and air-conduction responses

    PubMed Central

    Homma, Kenji; Shimizu, Yoshitaka; Kim, Namkeun; Du, Yu; Puria, Sunil

    2014-01-01

    In extremely loud noise environments, it is important to not only protect one’s hearing against noise transmitted through the air-conduction (AC) pathway, but also through the bone-conduction (BC) pathways. Much of the energy transmitted through the BC pathways is concentrated in the mid-frequency range around 1.5–2 kHz, which is likely due to the structural resonance of the middle ear. One potential approach for mitigating this mid-frequency BC noise transmission is to introduce a positive or negative static pressure in the ear canal, which is known to reduce BC as well as AC hearing sensitivity. In the present study, middle-ear ossicular velocities at the umbo and stapes were measured using human cadaver temporal bones in response to both BC and AC excitations, while static air pressures of ±400 mm H2O were applied in the ear canal. For the maximum negative pressure of −400 mm H2O, mean BC stapes-velocity reductions of about 5–8 dB were observed in the frequency range from 0.8 to 2.5 kHz, with a peak reduction of 8.6(± 4.7) dB at 1.6 kHz. Finite-element analysis indicates that the peak BC-response reduction tends to be in the mid-frequency range because the middle-ear BC resonance, which is typically around 1.5–2 kHz, is suppressed by the pressure-induced stiffening of the middle-ear structure. The measured data also show that the BC responses are reduced more for negative static pressures than for positive static pressures. This may be attributable to a difference in the distribution of the stiffening among the middle-ear components depending on the polarity of the static pressure. The characteristics of the BC-response reductions are found to be largely consistent with the available psychoacoustic data, and are therefore indicative of the relative importance of the middle-ear mechanism in BC hearing. PMID:19944139

  19. Method and apparatus for monitoring oxygen partial pressure in air masks

    NASA Technical Reports Server (NTRS)

    Kelly, Mark E. (Inventor); Pettit, Donald R. (Inventor)

    2006-01-01

    Method and apparatus are disclosed for monitoring an oxygen partial pressure in an air mask and providing a tactile warning to the user. The oxygen partial pressure in the air mask is detected using an electrochemical sensor, the output signal from which is provided to a comparator. The comparator compares the output signal with a preset reference value or range of values representing acceptable oxygen partial pressures. If the output signal is different than the reference value or outside the range of values, the air mask is vibrated by a vibrating motor to alert the user to a potentially hypoxic condition.

  20. Optical emission spectroscopy of nanosecond repetitively pulsed microplasmas generated in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Orriere, Thomas; Moreau, Eric; Benard, Nicolas; Pai, David

    2015-09-01

    Nanosecond repetitively pulsed (NRP) microplasmas are generated in room temperature air at atmospheric pressure, in order to investigate the enhanced control of discharge properties via the combined effects of spatial confinement and nanosecond repetitive pulsing. Discharges were generated using high-voltage pulses of 15-ns duration applied to a tungsten pin-to-pin reactor, with inter-electrode gap distances (d) from 2 mm down to 0.2 mm. Optical emission spectroscopy and electrical characterization performed on the discharge indicate that heat transfer and plasma chemistry are influenced by the microplasma geometry. Ultrafast gas heating is observed upon deducing the rotational temperature of N2 from the measured emission spectrum of the N2 (C -->B) (0, 2) and (1, 3) transition bands, but use of the microplasma geometry (d = 0.2 mm) results in lower gas temperatures than in larger discharge gaps (d = 2 mm), including at high pulse repetition frequency (30 kHz) where substantial steady-state gas heating can occur. The measured Stark broadening of the Hα transition is significantly greater than for previously studied NRP discharges in air at atmospheric pressure, indicating that the maximum electron number density may be correspondingly much greater, up to 1018 cm-3. Furthermore, for NRP microplasmas, the intensities of emission from excited atomic ions (O+ and N+) are much higher than those of excited neutral atoms (O and N), in contrast to NRP discharges generated in larger discharge gaps.

  1. An objective definition of air mass types affecting Athens, Greece; the corresponding atmospheric pressure patterns and air pollution levels.

    PubMed

    Sindosi, O A; Katsoulis, B D; Bartzokas, A

    2003-08-01

    This work aims at defining characteristic air mass types that dominate in the region of Athens, Greece during the cold (November-March) and the warm (May-September) period of the year and also at evaluating the corresponding concentration levels of the main air pollutants. For each air mass type, the mean atmospheric pressure distribution (composite maps) over Europe and the Mediterranean is estimated in order to reveal the association of atmospheric circulation with air pollution levels in Athens. The data basis for this work consists of daily values of thirteen meteorological and six pollutant parameters covering the period 1993-97. The definition of the characteristic air mass types is attempted objectively by using the methods of Factor Analysis and Cluster Analysis. The results show that during the cold period of the year there are six prevailing air mass types (at least 3% of the total number of days) and six infrequent ones. The examination of the corresponding air pollution concentration levels shows that the primary air pollutants appear with increased concentrations when light or southerly winds prevail. This is usually the case when a high pressure system is located over the central Mediterranean or a low pressure system lays over south Italy, respectively. Low levels of the primary pollutants are recorded under northeasterly winds, mainly caused by a high pressure system over Ukraine. During the warm period of the year, the southwestern Asia thermal low and the subtropical anticyclone of the Atlantic Ocean affect Greece. Though these synoptic systems cause almost stagnant conditions, four main air mass types are dominant and ten others, associated with extreme weather, are infrequent. Despite the large amounts of total solar radiation characterizing this period, ozone concentrations remain at low levels in central Athens because of its destruction by nitric oxide.

  2. Design and Development of a Pressure Transducer for High Hydrostatic Pressure Measurements up to 200 MPa

    NASA Astrophysics Data System (ADS)

    Kumar, Anuj; Yadav, Sanjay; Agarwal, Ravinder

    2016-06-01

    A number of pressure transducers, based on strain gauge, capacitance/inductance type, frequency resonators, are commercially available and are being used for sensing and producing an electrical output proportional to applied pressure. These sensors have their own advantages and limitations due to operational ease, measurement uncertainty and the costs. Strain gauge type transducers are now well established devices for accurate and precise measurement of pressure within measurement uncertainty up to 0.1 % of full scale. In the present research work, an indigenous strain gauge pressure transducer has been designed, developed, tested and calibrated for pressure measurement up to 200 MPa. The measurement uncertainty estimated using the pressure transducer was found better than 0.1 % of full scale. This transducer was developed using four foil type strain gauges, bonded, two in axial direction while other two in radial direction, to the controlled stress zones of a tubular maraging steel active cylinder working also as diaphragm. The strain gages were then connected to a Wheatstone bridge arrangement to measure stress generated strains. The pressure was applied through matching connector designed in the same tubular transducer active element. The threaded unique design in a single piece through collar, ferule and tubing arrangement provides leak proof pressure connections with external devices without using additional seals. The calibration and performance checking of the pressure transducer was carried out using dead weight type national pressure standard using the internationally accepted calibration procedure.

  3. Velocity and pressure distribution behind bodies in an air current

    NASA Technical Reports Server (NTRS)

    Betz, A

    1924-01-01

    The following experiments on the air flow behind bodies were made for the purpose of assisting in the explanation of the phenomena connected with air resistance. The first two series of experiments dealt with the phenomena behind a cylinder. The third series of experiments was carried out behind a streamlined strut.

  4. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  5. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  6. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  7. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  8. Tip vortex core pressure estimates derived from velocity field measurements

    NASA Astrophysics Data System (ADS)

    Sinding, Kyle; Krane, Michael

    2016-11-01

    We present estimates of tip vortex core pressure derived from velocity field measurements of a high Reynolds number flow over a lifting surface. Tip vortex cavitation decreases propulsor efficiency and contributes to both unwanted noise and surface damage. Coordinated load cell, pressure, and velocity measurements were performed in the 12-inch tunnel at the Applied Research Laboratory at Penn State University, over a range of angles of attack and flow speeds. Stereo PIV imaging planes were oriented normal to the tunnel axis. Pressure estimates in each measurement plane were estimated from the velocity field. Visual cavitation calls were performed over the same range of conditions as the optical velocity measurements, by varying the tunnel pressure until tip vortex cavitation was observed to initiate. The pressure differences between the tip vortex and the tunnel ambient pressure obtained with these two methods were then compared.

  9. Rummy high-altitude pressure measurements and analysis

    SciTech Connect

    Banister, J.R.; Hereford, W.V.

    1982-01-01

    Five pressure-measurement canisters equipped with parachutes were deployed from an A7C aircraft on the Rummy test. Their altitudes above Yucca flat were over 8.5 km when the pressure pulse arrived. Three successful measurements were obtained. These time histories showed a more complicated behavior than histories obtained on Pahute Mesa tests because the Rummy event developed double spall closures over a large area. Excellent agreement was obtained between the observed pressure histories and those calculated from surface acceleration measurements. The Yucca Flat terrain was so level that pressure pulses were not appreciably changed or weakened by elevation differences.

  10. Sideslip-induced static pressure errors in flight-test measurements

    NASA Technical Reports Server (NTRS)

    Parks, Edwin K.; Bach, Ralph E., Jr.; Tran, Duc

    1990-01-01

    During lateral flight-test maneuvers of a V/STOL research aircraft, large errors in static pressure were observed. An investigation of the data showed a strong correlation of the pressure record with variations in sideslip angle. The sensors for both measurements were located on a standard air-data nose boom. An algorithm based on potential flow over a cylinder that was developed to correct the pressure record for sideslip-induced errors is described. In order to properly apply the correction algorithm, it was necessary to estimate and correct the lag error in the pressure system. The method developed for estimating pressure lag is based on the coupling of sideslip activity into the static ports and can be used as a standard flight-test procedure. The estimation procedure is discussed and the corrected static-pressure record for a typical lateral maneuver is presented. It is shown that application of the correction algorithm effectively attenuates sideslip-induced errors.

  11. Performance of a hydrogen burner to simulate air entering scramjet combustors. [simulation of total temperature, total pressure, and volume fraction of oxygen of air at flight conditions

    NASA Technical Reports Server (NTRS)

    Russin, W. R.

    1974-01-01

    Tests were conducted to determine the performance of a hydrogen burner used to produce a test gas that simulates air entering a scramjet combustor at various flight conditions. The test gas simulates air in that it duplicates the total temperature, total pressure, and the volume fraction of oxygen of air at flight conditions. The main objective of the tests was to determine the performance of the burner as a function of the effective exhaust port area. The conclusions were: (1) pressure oscillations of the chugging type were reduced in amplitude to plus or minus 2 percent of the mean pressure level by proper sizing of hydrogen, oxygen, and air injector flow areas; (2) combustion efficiency remained essentially constant as the exhaust port area was increased by a factor of 3.4; (3) the mean total temperature determined from integrating the exit radial gas property profiles was within plus or minus 5 percent of the theoretical bulk total temperature; (4) the measured exit total temperature profile had a local peak temperature more than 30 percent greater than the theoretical bulk total temperature; and (5) measured heat transfer to the burner liner was 75 percent of that predicted by theory based on a flat radial temperature profile.

  12. Flight Investigation of the Effects of Pressure-Belt Tubing Size on Measured Pressure Distributions

    NASA Technical Reports Server (NTRS)

    Rivers, Natale A.; vanDam, Cornielious P.; Brown, Phillip W.; Rivers, Robert A.

    2001-01-01

    The pressure-belt technique is commonly used to measure pressure distributions on lifting and nonlifting surfaces where flush, through-the-surface measurements are not possible. The belts, made from strips of small-bore, flexible plastic tubing, are surface-mounted by a simple, nondestructive method. Additionally, the belts require minimal installation time, thus making them much less costly to install than flush-mounted pressure ports. Although pressure belts have been used in flight research since the early 1950s, only recently have manufacturers begun to produce thinner, more flexible tubing, and thin, strong adhesive tapes that minimize the installation-induced errors on the measurement of surface pressures. The objective of this investigation was to determine the effects of pressure-belt tubing size on the measurement of pressure distributions. For that purpose, two pressure belts were mounted on the right wing of a single-engine, propeller-driven research airplane. The outboard pressure belt served as a baseline for the measurement and the comparison of effects. Each tube had an outer diameter (OD) of 0.0625 in. The inboard belt was used to evaluate three different tube sizes: 0.0625-, 0.1250-, and 0.1875-in. OD. A computational investigation of tube size on pressure distribution also was conducted using the two-dimensional Multielement Streamtube Euler Solver (MSES) code.

  13. Equipment for Measuring Air Flow, Air Temperature, Relative Humidity, and Carbon Dioxide in Schools. Technical Bulletin.

    ERIC Educational Resources Information Center

    Jacobs, Bruce W.

    Information on equipment and techniques that school facility personnel may use to evaluate IAQ conditions are discussed. Focus is placed on the IAQ parameters of air flow, air temperature, relative humidity, as well as carbon dioxide and the equipment used to measure these factors. Reasons for measurement and for when the measurement of these…

  14. Auto-ignition of lubricating oil working at high pressures in a compressor for an air conditioner.

    PubMed

    Kim, Chul Jin; Choi, Hyo Hyun; Sohn, Chae Hoon

    2011-01-15

    Auto-ignition of lubricating oil working in a compressor for an air conditioner is studied experimentally. The adopted lubricating oil is an unknown mixture with multi-components and known to have flash point temperature of 170 °C. First, its auto-ignition temperature is measured 365 °C at atmospheric pressure. The lubricating oil works under high-pressure condition up to 30 atm and it is heated and cooled down repeatedly. Accordingly, auto-ignition temperatures or flammable limits of lubricating oil are required at high pressures with respect to fire safety. Because there is not a standard test method for the purpose, a new ignition-test method is proposed in this study and thereby, auto-ignition temperatures are measured over the pressure range below 30 atm. The measured temperatures range from 215 °C to 255 °C and they strongly depend on pressure of gas mixture consisting of oil vapor, nitrogen, and oxygen. They are close to flash point temperature and the lubricating oil can be hazardous when it works for high-pressure operating condition and abundant air flows into a compressor.

  15. Influence of air pressure on the performance of plasma synthetic jet actuator

    NASA Astrophysics Data System (ADS)

    Li, Yang; Jia, Min; Wu, Yun; Li, Ying-hong; Zong, Hao-hua; Song, Hui-min; Liang, Hua

    2016-09-01

    Plasma synthetic jet actuator (PSJA) has a wide application prospect in the high-speed flow control field for its high jet velocity. In this paper, the influence of the air pressure on the performance of a two-electrode PSJA is investigated by the schlieren method in a large range from 7 kPa to 100 kPa. The energy consumed by the PSJA is roughly the same for all the pressure levels. Traces of the precursor shock wave velocity and the jet front velocity vary a lot for different pressures. The precursor shock wave velocity first decreases gradually and then remains at 345 m/s as the air pressure increases. The peak jet front velocity always appears at the first appearance of a jet, and it decreases gradually with the increase of the air pressure. A maximum precursor shock wave velocity of 520 m/s and a maximum jet front velocity of 440 m/s are observed at the pressure of 7 kPa. The averaged jet velocity in one period ranges from 44 m/s to 54 m/s for all air pressures, and it drops with the rising of the air pressure. High velocities of the precursor shock wave and the jet front indicate that this type of PSJA can still be used to influence the high-speed flow field at 7 kPa. Project supported by the National Natural Science Foundation of China (Grant Nos. 51407197, 51522606, 51336011, 91541120, and 11472306).

  16. Atmospheric pressure resistive barrier air plasma jet induced bacterial inactivation in aqueous environment

    NASA Astrophysics Data System (ADS)

    Thiyagarajan, Magesh; Sarani, Abdollah; Gonzales, Xavier

    2013-03-01

    An atmospheric pressure resistive barrier air plasma jet is designed to inactivate bacteria in aqueous media in direct and indirect exposure modes of treatment. The resistive barrier plasma jet is designed to operate at both dc and standard 50-60 Hz low frequency ac power input and the ambient air at 50% humidity level was used as the operating gas. The voltage-current characteristics of the plasma jet were analyzed and the operating frequency of the discharge was measured to be 20 kHz and the plasma power was measured to be 26 W. The plasma jet rotational temperatures (Trot) are obtained from the optical emission spectra, from the N2C-B(2+) transitions by matching the experimental spectrum results with the Spectra Air (SPECAIR) simulation spectra. The reactive oxygen and nitrogen species were measured using optical emission spectroscopy and gas analyzers, for direct and indirect treatment modes. The nitric oxides (NO) were observed to be the predominant long lived reactive nitrogen species produced by the plasma. Three different bacteria including Staphylococcus aureus (Gram-positive), Escherichia coli (Gram-negative), and Neisseria meningitidis (Gram-negative) were suspended in an aqueous media and treated by the resistive barrier air plasma jet in direct and indirect exposure modes. The results show that a near complete bacterial inactivation was achieved within 120 s for both direct and indirect plasma treatment of S. aureus and E. coli bacteria. Conversely, a partial inactivation of N. meningitidis was observed by 120 s direct plasma exposure and insignificant inactivation was observed for the indirect plasma exposure treatment. Plasma induced shifts in N. meningitidis gene expression was analyzed using pilC gene expression as a representative gene and the results showed a reduction in the expression of the pilC gene compared to untreated samples suggesting that the observed protection against NO may be regulated by other genes.

  17. Quantitative Assessment of the Impact of Blood Pulsation on Intraocular Pressure Measurement Results in Healthy Subjects

    PubMed Central

    2017-01-01

    Background. Blood pulsation affects the results obtained using various medical devices in many different ways. Method. The paper proves the effect of blood pulsation on intraocular pressure measurements. Six measurements for each of the 10 healthy subjects were performed in various phases of blood pulsation. A total of 8400 corneal deformation images were recorded. The results of intraocular pressure measurements were related to the results of heartbeat phases measured with a pulse oximeter placed on the index finger of the subject's left hand. Results. The correlation between the heartbeat phase measured with a pulse oximeter and intraocular pressure is 0.69 ± 0.26 (p < 0.05). The phase shift calculated for the maximum correlation is equal to 60 ± 40° (p < 0.05). When the moment of measuring intraocular pressure with an air-puff tonometer is not synchronized, the changes in IOP for the analysed group of subjects can vary in the range of ±2.31 mmHg (p < 0.3). Conclusions. Blood pulsation has a statistically significant effect on the results of intraocular pressure measurement. For this reason, in modern ophthalmic devices, the measurement should be synchronized with the heartbeat phases. The paper proposes an additional method for synchronizing the time of pressure measurement with the blood pulsation phase. PMID:28250983

  18. Pressure measurements on a thick cambered and twisted 58 deg delta wing at high subsonic speeds

    NASA Technical Reports Server (NTRS)

    Chu, Julio; Lamar, John E.

    1987-01-01

    A pressure experiment at high subsonic speeds was conducted by a cambered and twisted thick delta wing at the design condition (Mach number 0.80), as well as at nearby Mach numbers (0.75 and 0.83) and over an angle-of-attack range. Effects of twin vertical tails on the wing pressure measurements were also assessed. Comparisons of detailed theoretical and experimental surface pressures and sectional characteristics for the wing alone are presented. The theoretical codes employed are FLO-57, FLO-28, PAN AIR, and the Vortex Lattice Method-Suction Analogy.

  19. Measurement of Radon in Indoor Air.

    ERIC Educational Resources Information Center

    Downey, Daniel M.; Simolunas, Glenn

    1988-01-01

    Describes a laboratory experiment to teach the principles of air sampling, gamma ray spectroscopy, nuclear decay, and radioactive equilibrium. Analyzes radon by carbon adsorption and gamma ray counting. Provides methodology and rate of decay equations. (MVL)

  20. Differential Intracochlear Sound Pressure Measurements in Normal Human Temporal Bones

    NASA Astrophysics Data System (ADS)

    Nakajima, Hideko Heidi; Dong, Wei; Olson, Elizabeth S.; Merchant, Saumil N.; Ravicz, Michael E.; Rosowski, John J.

    2009-02-01

    We present the first simultaneous sound pressure measurements in scala vestibuli and scala tympani of the cochlea in human cadaveric temporal bones. Micro-scale fiberoptic pressure sensors enabled the study of differential sound pressure at the cochlear base. This differential pressure is the input to the cochlear partition, driving cochlear waves and auditory transduction. Results showed that: pressure of scala vestibuli was much greater than scala tympani except at low and high frequencies where scala tympani pressure affects the input to the cochlea; the differential pressure proved to be an excellent measure of normal ossicular transduction of sound (shown to decrease 30-50 dB with ossicular disarticulation, whereas the individual scala pressures were significantly affected by non-ossicular conduction of sound at high frequencies); the middle-ear gain and differential pressure were generally bandpass in frequency dependence; and the middle-ear delay in the human was over twice that of the gerbil. Concurrent stapes velocity measurements allowed determination of the differential impedance across the partition and round-window impedance. The differential impedance was generally resistive, while the round-window impedance was consistent with a compliance in conjunction with distributed inertia and damping. Our techniques can be used to study inner-ear conductive pathologies (e.g., semicircular dehiscence), as well as non-ossicular cochlear stimulation (e.g., round-window stimulation) - situations that cannot be completely quantified by measurements of stapes velocity or scala-vestibuli pressure by themselves.

  1. Capillaroscopy and the measurement of capillary pressure

    PubMed Central

    Shore, Angela C

    2000-01-01

    Capillaries play a critical role in cardiovascular function as the point of exchange of nutrients and waste products between the tissues and circulation. Studies of capillary function in man are limited by access to the vascular bed. However, skin capillaries can readily be studied by the technique of capillaroscopy which enables the investigator to assess morphology, density and blood flow velocity. It is also possible to estimate capillary pressure by direct cannulation using glass micropipettes. This review will describe the techniques used to make these assessments and will outline some of the changes that are seen in health and disease. PMID:11136289

  2. Firefighter's compressed air breathing system pressure vessel development program

    NASA Technical Reports Server (NTRS)

    Beck, E. J.

    1974-01-01

    The research to design, fabricate, test, and deliver a pressure vessel for the main component in an improved high-performance firefighter's breathing system is reported. The principal physical and performance characteristics of the vessel which were required are: (1) maximum weight of 9.0 lb; (2) maximum operating pressure of 4500 psig (charge pressure of 4000 psig); (3) minimum contained volume of 280 in. 3; (4) proof pressure of 6750 psig; (5) minimum burst pressure of 9000 psig following operational and service life; and (6) a minimum service life of 15 years. The vessel developed to fulfill the requirements described was completely sucessful, i.e., every category of performence was satisfied. The average weight of the vessel was found to be about 8.3 lb, well below the 9.0 lb specification requirement.

  3. Measurement of Radiation Pressure in an Ambient Environment

    NASA Astrophysics Data System (ADS)

    Ma, Dakang; Garrett, Joseph; Munday, Jeremy

    2015-03-01

    Light has momentum and thus exerts ``radiation pressure'' when it is reflected or absorbed due to the conservation of momentum. Micromechanical transducers and oscillators are suitable for measurement and utilization of radiation pressure due to their high sensitivities. However, other light-induced mechanical deformations such as photothermal effects often obscure accurate measurements of radiation pressure in these systems. In this work, we investigate the radiation pressure and photothermal force on an uncoated silicon nitride microcantilever under illumination by a 660 nm laser in an ambient environment. To magnify the mechanical effects, the cantilever is driven optically from dc across its resonance frequency, and the amplitude and phase of its oscillation are acquired by an optical beam deflection method and a lockin amplifier. We show that radiation pressure and photothermal effects can be distinguished through the cantilever's frequency response. Furthermore, in a radiation pressure dominant regime, our measurement of the radiation force agrees quantitatively with the theoretical calculation.

  4. Ultrasonic Apparatus and Technique to Measure Changes in Intracranial Pressure

    NASA Astrophysics Data System (ADS)

    Yost, William T.; Cantrell, John H.

    2002-11-01

    Changes in intracranial pressure can be measured dynamically and non-invasively by monitoring one or more cerebrospinal fluid pulsatile components. Pulsatile components such as systolic and diastolic blood pressures are partially transferred to the cerebrospinal fluid by way of blood vessels contained in the surrounding brain tissue and membrane. As intracranial pressure varies these cerebrospinal fluid pulsatile components also vary. Thus, intracranial pressure can be dynamically measured. Furthermore, use of acoustics allows the measurement to be completely non-invasive. In the preferred embodiment, phase comparison of a reflected acoustic signal to a reference signal using a constant frequency pulsed phase-locked-loop ultrasonic device allows the pulsatile components to be monitored. Calibrating the device by inducing a known change in intracranial pressure allows conversion to changes in intracranial pressure.

  5. Ultrasonic Apparatus and Technique to Measure Changes in Intracranial Pressure

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, John H. (Inventor)

    2002-01-01

    Changes in intracranial pressure can be measured dynamically and non-invasively by monitoring one or more cerebrospinal fluid pulsatile components. Pulsatile components such as systolic and diastolic blood pressures are partially transferred to the cerebrospinal fluid by way of blood vessels contained in the surrounding brain tissue and membrane. As intracranial pressure varies these cerebrospinal fluid pulsatile components also vary. Thus, intracranial pressure can be dynamically measured. Furthermore, use of acoustics allows the measurement to be completely non-invasive. In the preferred embodiment, phase comparison of a reflected acoustic signal to a reference signal using a constant frequency pulsed phase-locked-loop ultrasonic device allows the pulsatile components to be monitored. Calibrating the device by inducing a known change in intracranial pressure allows conversion to changes in intracranial pressure.

  6. Measurement of airflow and pressure characteristics of a fan built in a car ventilation system

    NASA Astrophysics Data System (ADS)

    Pokorný, Jan; Poláček, Filip; Fojtlín, Miloš; Fišer, Jan; Jícha, Miroslav

    2016-03-01

    The aim of this study was to identify a set of operating points of a fan built in ventilation system of our test car. These operating points are given by the fan pressure characteristics and are defined by a pressure drop of the HVAC system (air ducts and vents) and volumetric flow rate of ventilation air. To cover a wide range of pressure drops situations, four cases of vent flaps setup were examined: (1) all vents opened, (2) only central vents closed (3) only central vents opened and (4) all vents closed. To cover a different volumetric flows, the each case was measured at least for four different speeds of fan defined by the fan voltage. It was observed that the pressure difference of the fan is proportional to the fan voltage and strongly depends on the throttling of the air distribution system by the settings of the vents flaps. In case of our test car we identified correlations between volumetric flow rate of ventilation air, fan pressure difference and fan voltage. These correlations will facilitate and reduce time costs of the following experiments with this test car.

  7. The rate of pressure rise of gaseous propylene-air explosions in spherical and cylindrical enclosures.

    PubMed

    Razus, Domnina; Movileanua, Codina; Oancea, Dumitru

    2007-01-02

    The maximum rates of pressure rise of propylene-air explosions at various initial pressures and various fuel/oxygen ratios in three closed vessels (a spherical vessel with central ignition and two cylindrical vessels with central or with top ignition) are reported. It was found that in explosions of quiescent mixtures the maximum rates of pressure rise are linear functions on total initial pressure, at constant initial temperature and fuel/oxygen ratio. The slope and intercept of found correlations are greatly influenced by vessel's volume and shape and by the position of the ignition source--factors which determine the amount of heat losses from the burned gas in a closed vessel explosion. Similar data on propylene-air inert mixtures are discussed in comparison with those referring to propylene-air, revealing the influence of nature and amount of inert additive. The deflagration index KG of centrally ignited explosions was also calculated from maximum rates of pressure rise.

  8. Stable Algorithm For Estimating Airdata From Flush Surface Pressure Measurements

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen, A. (Inventor); Cobleigh, Brent R. (Inventor); Haering, Edward A., Jr. (Inventor)

    2001-01-01

    An airdata estimation and evaluation system and method, including a stable algorithm for estimating airdata from nonintrusive surface pressure measurements. The airdata estimation and evaluation system is preferably implemented in a flush airdata sensing (FADS) system. The system and method of the present invention take a flow model equation and transform it into a triples formulation equation. The triples formulation equation eliminates the pressure related states from the flow model equation by strategically taking the differences of three surface pressures, known as triples. This triples formulation equation is then used to accurately estimate and compute vital airdata from nonintrusive surface pressure measurements.

  9. Measurement of pulse pressure in plasma by crusher gauge

    SciTech Connect

    Kalachnikov, E.V.; Rogovtsev, P.N.

    1988-06-01

    Results are presented of pressure measurements in the plasma of a stabilized pinched discharge with axial blow through of the current channel by plasma using static and dynamic methods for crusher gauge calibration. Accuracies for maximum pressure measurements for both calibration methods are evaluated. The dynamic properties of the crusher gauge are taken into account experimentally in studying pulse forces and pressures in the 1-100 MPa range for times of 10/sup /minus/5/ to 10/sup /minus/3/ seconds. A piezoelectric method and device for dynamic calibration of the pressure gauges is described.

  10. Measurement of the acoustic reflex without a pressure seal.

    PubMed

    Surr, R K; Schuchman, G I

    1976-03-01

    Obtaining a hermetic seal in the external auditory canal is often a major obstacle in impedance audiometry. In the present study, the acoustic reflex threshold was determined for three groups of subjects, first with and then without a pressure-tight seal. It was found that for subjects with normal hearing or sensorineural hearing loss and normal tympanograms, 96% of the measurements obtained without a pressure seal were within 5 dB of those obtained with a seal. Among the subjects who exhibited negative middle ear pressure, the acoustic reflex could be measured consistently at the point of maximum compliance, while no response was observed without a pressure seal.

  11. The upper explosion limit of lower alkanes and alkenes in air at elevated pressures and temperatures.

    PubMed

    Van den Schoor, F; Verplaetsen, F

    2006-01-16

    The upper explosion limit (UEL) of ethane-air, propane-air, n-butane-air, ethylene-air and propylene-air mixtures is determined experimentally at initial pressures up to 30 bar and temperatures up to 250 degrees C. The experiments are performed in a closed spherical vessel with an internal diameter of 200 mm. The mixtures are ignited by fusing a coiled tungsten wire, placed at the centre of the vessel, by electric current. Flame propagation is said to have taken place if there is a pressure rise of at least 1% of the initial pressure after ignition of the mixture. In the pressure-temperature range investigated, a linear dependence of UEL on temperature and a bilinear dependence on pressure are found except in the vicinity of the auto-ignition range. A comparison of the UEL data of the lower alkanes shows that the UEL expressed as equivalence ratio (the actual fuel/air ratio divided by the stoichiometric fuel/air ratio) increases with increasing carbon number in the homologous series of alkanes.

  12. Lower cost air measurement technology – what is on the ...

    EPA Pesticide Factsheets

    This presentation is to the MARAMA 2014 annual monitoring meeting and is an invited talk to provide an overview on lower cost air measurement technology. This presentation is to the MARAMA 2014 annual monitoring meeting and is an invited talk to provide an overview on lower cost air measurement technology.

  13. 40 CFR 90.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air humidity measurement... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Emission Test Equipment Provisions § 90.310 Engine intake air humidity measurement. This section refers...

  14. 40 CFR 91.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air humidity measurement... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Test Equipment Provisions § 91.310 Engine intake air humidity measurement. This section refers to engines which are...

  15. Perfluorocarbon tracer method for air-infiltration measurements

    DOEpatents

    Dietz, R.N.

    1982-09-23

    A method of measuring air infiltration rates suitable for use in rooms of homes and buildings comprises the steps of emitting perfluorocarbons in the room to be measured, sampling the air containing the emitted perfluorocarbons over a period of time, and analyzing the samples at a laboratory or other facility.

  16. Direct Measurement of Left Atrial Pressure during Routine Transradial Catheterization

    PubMed Central

    Fa'ak, Faisal; Younis, George

    2016-01-01

    Left atrial pressure indicates the left ventricular filling pressure in patients who have systolic or diastolic left ventricular dysfunction or valvular heart disease. The use of indirect surrogate methods to determine left atrial pressure has been essential in the modern evaluation and treatment of cardiovascular disease because of the difficulty and inherent risks associated with direct methods (typically the transseptal approach). One method that has been widely used to determine left atrial pressure indirectly is Swan-Ganz catheterization, in which a balloon-flotation technique is applied to measure pulmonary capillary wedge pressure; however, this approach has been associated with several limitations and potential risks. Measuring left ventricular end-diastolic pressure has also been widely used as a simple means to estimate filling pressures but remains a surrogate for the gold standard of directly measuring left atrial pressure. We describe a simple, low-risk method to directly measure left atrial pressure that involves the use of standard coronary catheterization techniques during a transradial procedure. PMID:28100968

  17. A Plutonium Storage Container Pressure Measurement Technique

    SciTech Connect

    Grim, T.J.

    2002-05-10

    Plutonium oxide and metal awaiting final disposition are currently stored at the Savannah River Site in crimp sealed food pack cans. Surveillances to ensure continued safe storage of the cans include periodic lid deflection measurements using a mechanical device.

  18. The application of esophageal pressure measurement in patients with respiratory failure.

    PubMed

    Akoumianaki, Evangelia; Maggiore, Salvatore M; Valenza, Franco; Bellani, Giacomo; Jubran, Amal; Loring, Stephen H; Pelosi, Paolo; Talmor, Daniel; Grasso, Salvatore; Chiumello, Davide; Guérin, Claude; Patroniti, Nicolo; Ranieri, V Marco; Gattinoni, Luciano; Nava, Stefano; Terragni, Pietro-Paolo; Pesenti, Antonio; Tobin, Martin; Mancebo, Jordi; Brochard, Laurent

    2014-03-01

    This report summarizes current physiological and technical knowledge on esophageal pressure (Pes) measurements in patients receiving mechanical ventilation. The respiratory changes in Pes are representative of changes in pleural pressure. The difference between airway pressure (Paw) and Pes is a valid estimate of transpulmonary pressure. Pes helps determine what fraction of Paw is applied to overcome lung and chest wall elastance. Pes is usually measured via a catheter with an air-filled thin-walled latex balloon inserted nasally or orally. To validate Pes measurement, a dynamic occlusion test measures the ratio of change in Pes to change in Paw during inspiratory efforts against a closed airway. A ratio close to unity indicates that the system provides a valid measurement. Provided transpulmonary pressure is the lung-distending pressure, and that chest wall elastance may vary among individuals, a physiologically based ventilator strategy should take the transpulmonary pressure into account. For monitoring purposes, clinicians rely mostly on Paw and flow waveforms. However, these measurements may mask profound patient-ventilator asynchrony and do not allow respiratory muscle effort assessment. Pes also permits the measurement of transmural vascular pressures during both passive and active breathing. Pes measurements have enhanced our understanding of the pathophysiology of acute lung injury, patient-ventilator interaction, and weaning failure. The use of Pes for positive end-expiratory pressure titration may help improve oxygenation and compliance. Pes measurements make it feasible to individualize the level of muscle effort during mechanical ventilation and weaning. The time is now right to apply the knowledge obtained with Pes to improve the management of critically ill and ventilator-dependent patients.

  19. Response of pulmonary veins to increased intracranial pressure and pulmonary air embolization

    SciTech Connect

    Peterson, B.T.; Grauer, S.E.; Hyde, R.W.; Ortiz, C.; Moosavi, H.; Utell, M.J.

    1980-01-01

    To see whether air emboli to the lungs rather than brain compression caused these findings, anesthetized dogs received intravenous air infusions, subdural air infusions, or brain compression from balloons inflated in the subdural space. Subdural air and intravenous air resulted in similar vascular responses. Pulmonary artery pressure (Ppa) increased 160% (P < 0.01) and pulmonary venous pressure transiently rose 13 +- 5 Torr (P < 0.05) without an increase in left atrial pressure or cardiac output (Q). The end-tidal PCP/sub 2/ fell 55% (P < 0.01) and the postmortem weight of the lungs increased 55% (P < 0.05). Brain compression with a subdural balloon instead of air only caused a 20% rise in Ppa and Q without pulmonary edema. Thus, pulmonary air emboli rather than brain compression accounts for the edema and pulmonary hypertension caused by subdural air. Catheters in pulmonary veins and the left atrium showed that air emboli cause transient pulmonary venous hypertension as well as a reproducible form of noncardiogenic pulmonary edema.

  20. Measuring Fluid Pressure on the Pore-scale

    NASA Astrophysics Data System (ADS)

    Giordano, N.; Petrovitch, C.; Pyrak-Nolte, L. J.

    2008-12-01

    The capillary pressure plays an important role in theoretical descriptions of immiscible two-phase flow in porous media. Most measurements of capillary pressure on the pore-scale are either based on external measurements of the fluid pressure of two immiscible fluids in a porous media or extracted from the analysis of interfacial curvature from digital-photomicroscopy. Experimentally, it is very difficult to measure local pressure at the interface of a two-phase flow system at the pore scale. In this study, we developed micro- capacitors for measuring local pressures in two-dimensional micro-models. Micro-models are transparent microfluidic flow cells that enable direct imaging of fluid distributions in known pore geometries. They are made using photo-projection lithography to make percolative structures that have areal dimensions of 600 µm x 600 µm with an aperture of 2.0 μ m. The size of the micro-model enables full-frame optical imaging during drainage and imbibition experiments. We have modified the micro-model fabrication process to include micro-capacitors to measure local pressure. We added two thin metal films to the opposing glass substrates prior to our normal micromodel assembly. The metal films act as a parallel plate capacitor. The capacitance depends on the dielectric material inside the plates which in our study is decane and nitrogen. As the pressure in the fluids changes, there is a corresponding change in the density of the fluid, and hence a change in the dielectric constant. The changes in dieletric constant are measured via precision measurements of the capacitance. Capacitance changes as small of 1/107 are measured which corresponds to pressure changes of 102 Pa. This pressure resolution is approximately 1% of the full range in our typical drainage/imbibition cycles. This capacitance method enables us to make measurements of small pressure changes with high spatial resolution. The spatial resolution is set by the size of the capacitor

  1. Measurements of electron avalanche formation time in W-band microwave air breakdown

    SciTech Connect

    Cook, Alan M.; Hummelt, Jason S.; Shapiro, Michael A.; Temkin, Richard J.

    2011-08-15

    We present measurements of formation times of electron avalanche ionization discharges induced by a focused 110 GHz millimeter-wave beam in atmospheric air. Discharges take place in a free volume of gas, with no nearby surfaces or objects. When the incident field amplitude is near the breakdown threshold for pulsed conditions, measured formation times are {approx}0.1-2 {mu}s over the pressure range 5-700 Torr. Combined with electric field breakdown threshold measurements, the formation time data shows the agreement of 110 GHz air breakdown with the similarity laws of gas discharges.

  2. Measurements of electron avalanche formation time in W-band microwave air breakdown

    NASA Astrophysics Data System (ADS)

    Cook, Alan M.; Hummelt, Jason S.; Shapiro, Michael A.; Temkin, Richard J.

    2011-08-01

    We present measurements of formation times of electron avalanche ionization discharges induced by a focused 110 GHz millimeter-wave beam in atmospheric air. Discharges take place in a free volume of gas, with no nearby surfaces or objects. When the incident field amplitude is near the breakdown threshold for pulsed conditions, measured formation times are ˜0.1-2 μs over the pressure range 5-700 Torr. Combined with electric field breakdown threshold measurements, the formation time data shows the agreement of 110 GHz air breakdown with the similarity laws of gas discharges.

  3. Non-intrusive measurement of internal pressure and flow in pipelines using fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Salgado, Pedro; Filograno, Massimo L.; Senent, Fernando D.; Corredera, Pedro

    2013-10-01

    In this paper we propose and demonstrate a non-intrusive measurement method for internal pressure and water flow in hydraulic pipeline systems. Fiber Bragg Gratings are used to measure deformations in the external side of pipes under different working conditions for two different experiments. In the first experiment a PVC sewerage pipeline with a diameter of 90 mm was subjected to a variable air pressures up to 4 bars; in the second a PVC sewerage pipeline with a diameter of 32 mm was subjected to a water flow between 10 and 35 liters per minute.

  4. Nonadherence to Recommended Guidelines for Blood Pressure Measurement.

    PubMed

    Levy, Jack; Gerber, Linda M; Wu, Xian; Mann, Samuel J

    2016-11-01

    Accuracy of blood pressure readings, both in the physician's office and at home, is crucial in properly managing hypertension. Few studies have investigated adherence to measurement guidelines. This study focused on two important aspects of blood pressure measurement: waiting time before measurement and number of readings taken. A total of 103 patients completed self-report questionnaires about office and home blood pressure measurements, with 77% reporting that physician measurements were obtained without waiting, and 56% reporting that only one reading was obtained. The proportions were even higher when measured by a nurse/technician, 96% and 81%, respectively. Home readings were taken without waiting by 60%, and 40% reported taking only a single reading. Most patients received no measurement instructions. Nonadherence to measurement guidelines is common, and may be affecting the validity of readings obtained both in physicians' offices and at home, with significant and potentially harmful effects on treatment decisions.

  5. Next-generation air measurement technologies

    EPA Science Inventory

    This is a presentation at a workshop in Chicago on emerging air monitoring technologies, hosted by a local nonprofit. The audience is composed of a mixture of technical backgrounds. This presentation will be part of an opening panel and the goal is to give an overview of the st...

  6. Measuring Air Resistance in a Computerized Laboratory.

    ERIC Educational Resources Information Center

    Takahashi, Ken; Thompson, D.

    1999-01-01

    Presents an activity that involves dropping spherical party balloons onto a sonic motion sensor to show that the force associated with the air resistance is proportional to both the square of the velocity and the cross-sectional area of the balloon. (Author/WRM)

  7. Pico gauges for minimally invasive intracellular hydrostatic pressure measurements.

    PubMed

    Knoblauch, Jan; Mullendore, Daniel L; Jensen, Kaare H; Knoblauch, Michael

    2014-11-01

    Intracellular pressure has a multitude of functions in cells surrounded by a cell wall or similar matrix in all kingdoms of life. The functions include cell growth, nastic movements, and penetration of tissue by parasites. The precise measurement of intracellular pressure in the majority of cells, however, remains difficult or impossible due to their small size and/or sensitivity to manipulation. Here, we report on a method that allows precise measurements in basically any cell type over all ranges of pressure. It is based on the compression of nanoliter and picoliter volumes of oil entrapped in the tip of microcapillaries, which we call pico gauges. The production of pico gauges can be accomplished with standard laboratory equipment, and measurements are comparably easy to conduct. Example pressure measurements are performed on cells that are difficult or impossible to measure with other methods.

  8. Optimizing the temperature compensation of an electronic pressure measurement system

    SciTech Connect

    Maxey, L.C.; Blalock, T.V.

    1990-08-01

    In an effort to minimize temperature sensitivity, the pressure measurement channels in the sensor/electronics modules of a high-resolution multiplexed pressure measurement system were analyzed. The pressure sensor (a silicon diaphragm strain gage) was known to have two temperature-dependent parameters. Component testing revealed that the current source driving the pressure sensor was also temperature sensitive. Although the transducer manufacturer supplies empirically selected temperature compensation resistors with each transducer, it was determined that the temperature sensitivity compensation could be optimized for this application by changing one of these resistors. By modifying the value of the sensitivity compensation resistor to optimize performance in this application, the temperature sensitivity of the pressure measurement channels was reduced by more than 60%.

  9. Brain tissue pressure measurements in perinatal and adult rabbits.

    PubMed

    Hornig, G W; Lorenzo, A V; Zavala, L M; Welch, K

    1987-12-01

    Brain tissue pressure (BTP) in pre- and post-natal anesthetized rabbits, held in a stereotactic head holder, was measured with a fluid filled 23 gauge open-ended cannula connected distally to a pressure transducer. By advancing the cannula step wise through a hole in the cranium it was possible to sequentially measure pressure from the cranial subarachnoid space, cortex, ventricle and basal ganglia. Separate cannulas and transducers were used to measure CSFP from the cisterna magna and arterial and/or venous pressure. Pressure recordings obtained when the tip of the BTP cannula was located in the cranial subarachnoid space or ventricle exhibited respiratory and blood pressure pulsations equivalent to and in phase with CSF pulsations recorded from the cisterna magna. When the tip was advanced into brain parenchymal sites such pulsations were suppressed or non-detectable unless communication with a CSF compartment had been established inadvertently. Although CSF pressures in the three spinal fluid compartments were equivalent, in most animals BTP was higher than CSFP. However, after momentary venting of the system BTP equilibrated at a pressure below that of CSFP. We speculate that venting of the low compliance system (1.20 x 10(-5) ml/mmHg) relieves the isometric pressure build-up due to insertion of the cannula into brain parenchyma. Under these conditions, and at all ages examined, BTP in the rabbit is consistently lower than CSFP and, as with CSFP, it increases as the animal matures.

  10. Soot Surface Oxidation in Laminar Hydrocarbon/Air Diffusion Flames at Atmospheric Pressure. Appendix I

    NASA Technical Reports Server (NTRS)

    Xu, F.; El-Leathy, A. M.; Kim, C. H.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2003-01-01

    Soot surface oxidation was studied experimentally in laminar hydrocarbon/air diffusion flames at atmospheric pressure. Measurements were carried out along the axes of round fuel jets burning in coflowing dry air considering acetylene-nitrogen, ethylene, propyiene-nitrogen, propane and acetylene-benzene-nitrogen in the fuel stream. Measurements were limited to the initial stages of soot oxidation (carbon consumption less than 70%) where soot oxidation occurs at the surface of primary soot particles. The following properties were measured as a function of distance above the burner exit: soot concentrations by deconvoluted laser extinction, soot temperatures by deconvoluted multiline emission, soot structure by thermophoretic sampling and analysis using Transmission Electron Microscopy (TEM), concentrations of major stable gas species (N2, H2O, H2, O2, CO, CO2, CH4, C2H2, C2H6, C3H6, C3H8, and C6H6) by sampling and gas chromatography, concentrations of some radical species (H, OH, O) by deconvoluted Li/LiOH atomic absorption and flow velocities by laser velocimetry. For present test conditions, it was found that soot surface oxidation rates were not affected by fuel type, that direct rates of soot surface oxidation by O2 estimated from Nagle and Strickland-Constable (1962) were small compared to observed soot surface oxidation rates because soot surface oxidation was completed near the flame sheet where O2 concentrations were less than 3% by volume, and that soot surface oxidation rates were described by the OH soot surface oxidation mechanism with a collision efficiency of 0.14 and an uncertainty (95% confidence) of +/- 0.04 when allowing for direct soot surface oxidation by O2, which is in reasonably good agreement with earlier observations of soot surface oxidation rates in both premixed and diffusion flames at atmospheric pressure.

  11. Operation JANGLE. Project 1(9)a. Ground Acceleration, Ground and Air Pressures for Underground Test

    DTIC Science & Technology

    1952-04-01

    Salmon 0, April .1952 -0o So 0 * per telecon w/Betty Fox ( DNA Tech Libr, Chief), the classified references contained herein may remain. 6-Z I- 7...73 693 Earth Pr.essure . 77 6.4 Damage Criteria - Surface Stracture .... 78 6.5 D-miage Criteria - Underground Targets ... 8...ground pressures, and air pressures produced by a buried shallow) nuclear explosive. AU2 of these physical quantities are functions of at least two

  12. Wall pressure measurements of flooding in vertical countercurrent annular air–water flow

    SciTech Connect

    Choutapalli, I., Vierow, K.

    2010-01-01

    An experimental study of flooding in countercurrent air-water annular flow in a large diameter vertical tube using wall pressure measurements is described in this paper. Axial pressure profiles along the length of the test section were measured up to and after flooding using fast response pressure transducers for three representative liquid flow rates representing a wide range of liquid Reynolds numbers (ReL = 4Γ/μ; Γ is the liquid mass flow rate per unit perimeter; μ is the dynamic viscosity) from 3341 to 19,048. The results show that flooding in large diameter tubes cannot be initiated near the air outlet and is only initiated near the air inlet. Fourier analysis of the wall pressure measurements shows that up to the point of flooding, there is no dominant wave frequency but rather a band of frequencies encompassing both the low frequency and the broad band that are responsible for flooding. The data indicates that flooding in large diameter vertical tubes may be caused by the constructive superposition of a plurality of waves rather than the action of a single large-amplitude wave.

  13. Preliminary investigation of cooling-air ejector performance at pressure ratios from 1 to 10

    NASA Technical Reports Server (NTRS)

    Ellis, C W; Hollister, D P; Sargent, A F , Jr

    1951-01-01

    Preliminary investigation was made of conical cooling air ejector at primary pressure ratios from 1 to 10. The cooling-air flow was maintained at zero and the resulting pressure variation in the shroud indicated pumping ability. The cooling-air flow was maintained at zero and the resulting pressure variation in the shroud indicated pumping ability. The gross thrust of the ejector and nozzle were compared. Several ratios of the spacing between the nozzle and shroud exit to the nozzle exit diameter were investigated for several shroud to nozzle exit diameter ratios. Maximum gross thrust loss occurred under conditions of zero cooling-air flow and was as much as 35 percent below nozzle jet thrust. For minimum thrust loss, ejector should be designed with as low diameter and spacing ratio as possible.

  14. Air pressure waves from Mount St. Helens eruptions

    NASA Astrophysics Data System (ADS)

    Reed, Jack W.

    1987-10-01

    Infrasonic recordings of the pressure wave from the Mount St. Helens (MSH) eruption on May 18, 1980, together with the weather station barograph records were used to estimate an equivalent explosion airblast yield for this eruption. Pressure wave amplitudes versus distance patterns were found to be comparable with patterns found for a small-scale nuclear explosion, the Krakatoa eruption, and the Tunguska comet impact, indicating that the MSH wave came from an explosion equivalent of about 5 megatons of TNT. The peculiar audibility pattern reported, with the blast being heard only at ranges beyond about 100 km, is explained by consideration of finite-amplitude shock propagation developments.

  15. An experimental and kinetic modeling study of the autoignition of {alpha}-methylnaphthalene/air and {alpha}-methylnaphthalene/n-decane/air mixtures at elevated pressures

    SciTech Connect

    Wang, Haowei; Warner, Steven J.; Oehlschlaeger, Matthew A.; Bounaceur, Roda; Biet, Joffrey; Glaude, Pierre-Alexandre; Battin-Leclerc, Frederique

    2010-10-15

    The autoignition of {alpha}-methylnaphthalene (AMN), the bicyclic aromatic reference compound for the cetane number (CN), and AMN/n-decane blends, potential diesel surrogate mixtures, was studied at elevated pressures for fuel/air mixtures in a heated high-pressure shock tube. Additionally, a comprehensive kinetic mechanism was developed to describe the oxidation of AMN and AMN/n-decane blends. Ignition delay times were measured in reflected shock experiments for {phi} = 0.5, 1.0, and 1.5 AMN/air mixtures (CN = 0) for 1032-1445 K and 8-45 bar and for {phi} = 1.0 30%-molar AMN/70%-molar n-decane/air (CN = 58) and 70%-molar AMN/30%-molar n-decane/air mixtures (CN = 28) for 848-1349 K and 14-62 bar. Kinetic simulations, based on the comprehensive AMN/n-decane mechanism, are in good agreement with measured ignition times, illustrating the emerging capability of comprehensive mechanisms for describing high molecular weight transportation fuels. Sensitivity and reaction flux analysis indicate the importance of reactions involving resonance stabilized phenylbenzyl radicals, the formation of which by H-atom abstractions with OH radicals has an important inhibiting effect on ignition. (author)

  16. Effect of non-thermal air atmospheric pressure plasma jet treatment on gingival wound healing

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Hwan; Choi, Eun-Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2016-02-01

    Non-thermal atmospheric pressure plasmas have been applied in the biomedical field for the improvement of various cellular activities. In dentistry, the healing of gingival soft tissue plays an important role in health and aesthetic outcomes. While the biomedical application of plasma has been thoroughly studied in dentistry, a detailed investigation of plasma-mediated human gingival fibroblast (HGF) migration for wound healing and its underlying biological mechanism is still pending. Therefore, the aim of this study is to apply a non-thermal air atmospheric pressure plasma jet (NTAAPPJ) to HGF to measure the migration and to reveal the underlying biological mechanisms involved in the migration. After the characterization of NTAAPPJ by optical emission spectroscopy, the adherent HGF was treated with NTAAPPJ or air with a different flow rate. Cell viability, lipid peroxidation, migration, intracellular reactive oxygen species (ROS), and the expression of migration-related genes (EGFR, PAK1, and MAPK3) were investigated. The level of statistical significance was set at 0.05. NTAAPPJ and air treatment with a flow rate of 250-1000 standard cubic centimetres per minute (sccm) for up to 30 s did not induce significant decreases in cell viability or membrane damage. A significant increase in the migration of mitomycin C-treated HGF was observed after 30 s of NTAAPPJ treatment compared to 30 s air-only treatment, which was induced by high levels of intracellular reactive oxygen species (ROS). An increase in migration-related gene expression and EGFR activation was observed following NTAAPPJ treatment in an air flow rate-dependent manner. This is the first report that NTAAPPJ treatment induces an increase in HGF migration without changing cell viability or causing membrane damage. HGF migration was related to an increase in intracellular ROS, changes in the expression of three of the migration-related genes (EGFR, PAK1, and MAPK1), and EGFR activation. Therefore

  17. Automatic noninvasive measurement of systolic blood pressure using photoplethysmography

    PubMed Central

    Nitzan, Meir; Patron, Amikam; Glik, Zehava; Weiss, Abraham T

    2009-01-01

    Background Automatic measurement of arterial blood pressure is important, but the available commercial automatic blood pressure meters, mostly based on oscillometry, are of low accuracy. Methods In this study, we present a cuff-based technique for automatic measurement of systolic blood pressure, based on photoplethysmographic signals measured simultaneously in fingers of both hands. After inflating the pressure cuff to a level above systolic blood pressure in a relatively slow rate, it is slowly deflated. The cuff pressure for which the photoplethysmographic signal reappeared during the deflation of the pressure-cuff was taken as the systolic blood pressure. The algorithm for the detection of the photoplethysmographic signal involves: (1) determination of the time-segments in which the photoplethysmographic signal distal to the cuff is expected to appear, utilizing the photoplethysmographic signal in the free hand, and (2) discrimination between random fluctuations and photoplethysmographic pattern. The detected pulses in the time-segments were identified as photoplethysmographic pulses if they met two criteria, based on the pulse waveform and on the correlation between the signal in each segment and the signal in the two neighboring segments. Results Comparison of the photoplethysmographic-based automatic technique to sphygmomanometry, the reference standard, shows that the standard deviation of their differences was 3.7 mmHg. For subjects with systolic blood pressure above 130 mmHg the standard deviation was even lower, 2.9 mmHg. These values are much lower than the 8 mmHg value imposed by AAMI standard for automatic blood pressure meters. Conclusion The photoplethysmographic-based technique for automatic measurement of systolic blood pressure, and the algorithm which was presented in this study, seems to be accurate. PMID:19857254

  18. Numerical simulation of high pressure release and dispersion of hydrogen into air with real gas model

    NASA Astrophysics Data System (ADS)

    Khaksarfard, R.; Kameshki, M. R.; Paraschivoiu, M.

    2010-06-01

    Hydrogen is a renewable and clean source of energy, and it is a good replacement for the current fossil fuels. Nevertheless, hydrogen should be stored in high-pressure reservoirs to have sufficient energy. An in-house code is developed to numerically simulate the release of hydrogen from a high-pressure tank into ambient air with more accuracy. Real gas models are used to simulate the flow since high-pressure hydrogen deviates from ideal gas law. Beattie-Bridgeman and Abel Noble equations are applied as real gas equation of state. A transport equation is added to the code to calculate the concentration of the hydrogen-air mixture after release. The uniqueness of the code is to simulate hydrogen in air release with the real gas model. Initial tank pressures of up to 70 MPa are simulated.

  19. Measurement of partial pressures in vacuum technology and vacuum physics

    NASA Technical Reports Server (NTRS)

    Huber, W. K.

    1986-01-01

    It is pointed out that the measurement of gaseous pressures of less than 0.0001 torr is based on the ionization of gas atoms and molecules due to collisions with electrons. The particle density is determined in place of the pressure. The ionization cross sections for molecules of various gases are discussed. It is found that the true pressure in a vacuum system cannot be determined with certainty if it is unknown which gas is present. Effects of partial pressure determination on the condition of the vacuum system are discussed together with ion sources, systems of separation, and ion detection.

  20. A technique to measure eyelid pressure using piezoresistive sensors.

    PubMed

    Shaw, Alyra J; Davis, Brett A; Collins, Michael J; Carney, Leo G

    2009-10-01

    In this paper, novel procedures were developed using a thin (0.17 mm) tactile piezoresistive pressure sensor mounted on a rigid contact lens to measure upper eyelid pressure. A hydrostatic calibration system was constructed, and the influence of conditioning (prestressing), drift (continued increasing response with a static load), and temperature variations on the response of the sensor were examined. To optimally position the sensor-contact lens combination under the upper eyelid margin, an in vivo measurement apparatus was constructed. Calibration gave a linear relationship between raw sensor output and actual pressure units for loads between 1 and 10 mmHg ( R(2) = 0.96 ). Conditioning the sensor prior to use regulated the measurement response, and sensor output stabilized about 10 s after loading. While sensor output drifts slightly over several hours, it was not significant beyond the measurement time of 1 min used for eyelid pressure. The error associated with calibrating at room temperature but measuring at ocular surface temperature led to a very small overestimation of pressure. Eyelid pressure readings were observed when the upper eyelid was placed on the sensor, and removed during a recording. When the eyelid pressure was increased by pulling the lids tighter against the eye, the readings from the sensor significantly increased.

  1. Theory and practice of manual blood pressure measurement.

    PubMed

    Cork, Alison

    This article outlines the process of taking a manual blood pressure measurement. The author suggests that it is a skill that nursing students should be using in clinical practice rather than relying on automated monitors.

  2. Automated analysis of blood pressure measurements (Korotkov sound)

    NASA Technical Reports Server (NTRS)

    Golden, D. P.; Hoffler, G. W.; Wolthuis, R. A.

    1972-01-01

    Automatic system for noninvasive measurements of arterial blood pressure is described. System uses Korotkov sound processor logic ratios to identify Korotkov sounds. Schematic diagram of system is provided to show components and method of operation.

  3. Radiation Pressure Measurements on Micron-Size Individual Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Witherow, W. K.; West, E. A.; Gallagher, D. L.; Adrian, M. L.; Fishman, G. J.; Tankosic, D.; LeClair, A.

    2003-01-01

    Measurements of electromagnetic radiation pressure have been made on individual silica (SiO2) particles levitated in an electrodynamic balance. These measurements were made by inserting single charged particles of known diameter in the 0.2- to 6.82-micron range and irradiating them from above with laser radiation focused to beam widths of approximately 175- 400 microns at ambient pressures particle due to the radiation force is balanced by the electrostatic force indicated by the compensating dc potential applied to the balance electrodes, providing a direct measure of the radiation force on the levitated particle. Theoretical calculations of the radiation pressure with a least-squares fit to the measured data yield the radiation pressure efficiencies of the particles, and comparisons with Mie scattering theory calculations provide the imaginary part of the refractive index of SiO2 and the corresponding extinction and scattering efficiencies.

  4. Measure Guideline: Air Sealing Attics in Multifamily Buildings

    SciTech Connect

    Otis, C.; Maxwell, S.

    2012-06-01

    This Building America Measure Guideline is intended for owners, builders, contractors, homeowners, and other stakeholders in the multifamily building industry, and focuses on challenges found in existing buildings for a variety of housing types. It explains why air sealing is desirable, explores related health and safety issues, and identifies common air leakage points in multifamily building attics. In addition, it also gives an overview of materials and techniques typically used to perform air sealing work.

  5. Measure Guideline. Air Sealing Attics in Multifamily Buildings

    SciTech Connect

    Otis, Casey; Maxwell, Sean

    2012-06-01

    This Building America Measure Guideline is intended for owners, builders, contractors, homeowners, and other stakeholders in the multifamily building industry, and focuses on challenges found in existing buildings for a variety of housing types. It explains why air sealing is desirable, explores related health and safety issues, and identifies common air leakage points in multifamily building attics. In addition, it also gives an overview of materials and techniques typically used to perform air sealing work.

  6. Ultra High Pressure Air Properties and CFD Code

    DTIC Science & Technology

    2007-02-28

    than the inconsistencies. To incorporate property consistency in the reconstructed results we use bivariate polynomials of the form 22 23, z(x,.y)= jjq...times faster while the maximum advantage occurs for air where reconstruction is as much as 2500 times faster. The savings achieved by the reconstruction...refined to the deepest level) Table II Column Information in Table I Column Heading Information I Fluid Fluid Type 2 Zone Zone 3 Max Err Maximum error of

  7. Laser-induced cooling of a Yb:YAG crystal in air at atmospheric pressure.

    PubMed

    Soares de Lima Filho, Elton; Nemova, Galina; Loranger, Sébastien; Kashyap, Raman

    2013-10-21

    We report for the first time the experimental demonstration of optical cooling of a bulk crystal at atmospheric pressure. The use of a fiber Bragg grating (FBG) sensor to measure laser-induced cooling in real time is also demonstrated for the first time. A temperature drop of 8.8 K from the chamber temperature was observed in a Yb:YAG crystal in air when pumped with 4.2 W at 1029 nm. A background absorption of 2.9 × 10⁻⁴ cm⁻¹ was estimated with a pump wavelength at 1550 nm. Simulations predict further cooling if the pump power is optimized for the sample's dimensions.

  8. Subnanosecond pulsed X-ray source based on nanosecond discharge in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Kostyrya, I. D.; Tarasenko, V. F.

    2009-06-01

    We have studied the characteristics of an X-ray source based on a gas diode filled with air at atmospheric pressure. Driven by a SLEP-150 pulser with a maximum voltage amplitude of ˜140 kV, a pulse full width at half maximum (FWHM) of ˜1 ns, and a leading front width of ˜0.3 ns, a soft X-ray source produces subnanosecond pulses with an FWHM not exceeding 600 ps and an exposure dose of ˜3 mR per pulse. It is shown that the main contribution to the measured exposure dose is due to X-ray quanta with an effective energy of ˜7.5 keV.

  9. Influence of the voltage polarity on the properties of a nanosecond surface barrier discharge in atmospheric-pressure air

    SciTech Connect

    Nudnova, M. M.; Aleksandrov, N. L.; Starikovskii, A. Yu.

    2010-01-15

    The properties of a surface barrier discharge in atmospheric-pressure air at different polarities of applied voltage were studied experimentally. The influence of the voltage polarity on the spatial structure of the discharge and the electric field in the discharge plasma was determined by means of spectroscopic measurements. It is found that the energy deposited in the discharge does not depend on the voltage polarity and that discharges of positive polarity are more homogenous and the electric fields in them are higher.

  10. Measurement of the differential pressure of liquid metals

    DOEpatents

    Metz, H.J.

    1975-09-01

    This patent relates to an improved means for measuring the differential pressure between any two points in a process liquid metal coolant loop, wherein the flow of liquid metal in a pipe is opposed by a permanent magnet liquid metal pump until there is almost zero flow shown by a magnetic type flowmeter. The pressure producing the liquid metal flow is inferred from the rate of rotation of the permanent magnet pump. In an alternate embodiment, a differential pressure transducer is coupled to a process pipeline by means of high-temperature bellows or diaphragm seals, and a permanent magnet liquid metal pump in the high-pressure transmission line to the pressure transducer can be utilized either for calibration of the transducer or for determining the process differential pressure as a function of the magnet pump speed. (auth)

  11. Atmospheric Airborne Pressure Measurements Using the Oxygen A Band for the ASCENDS Mission

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Rodriguez, Mike; Stephen, Mark; Hasselbrack, William; Allan, Graham; Mao, Jiamping,; Kawa, Stephan R.; Weaver, Clark J.

    2011-01-01

    We report on airborne atmospheric pressure measurements using new fiber-based laser technology and the oxygen A-band at 765 nm. Remote measurements of atmospheric temperature and pressure are required for a number of NASA Earth science missions and specifically for the Active Sensing of CO2 Emissions Over Nights, Days, and Seasons (ASCENDS) mission. Accurate measurements of tropospheric CO2 on a global scale are very important in order to better understand its sources and sinks and to improve predictions on any future climate change. The ultimate goal of a CO2 remote sensing mission, such as ASCENDS, is to derive the CO2 concentration in the atmosphere in terms of mole fraction in unit of parts-per-million (ppmv) with regard to dry air. Therefore, both CO2 and the dry air number of molecules in the atmosphere are needed in deriving this quantity. O2 is a stable molecule and uniformly mixed in the atmosphere. Measuring the O2 absorption in the atmosphere can thus be used to infer the dry air number of molecules and then used to calculate CO2 concentration. With the knowledge of atmospheric water vapor, we can then estimate the total surface pressure needed for CO2 retrievals. Our work, funded by the ESTO IIP program, uses fiber optic technology and non-linear optics to generate 765 nm laser radiation coincident with the Oxygen A-band. Our pulsed, time gated technique uses several on- and off-line wavelengths tuned to the O2 absorption line. The choice of wavelengths allows us to measure the pressure by using two adjacent O2 absorptions in the Oxygen A-band. Our retrieval algorithm fits the O2 lineshapes and derives the pressure. Our measurements compare favorably with a local weather monitor mounted outside our laboratory and a local weather station.

  12. Atmospheric Airborne Pressure Measurements Using the Oxygen A Band for the ASCENDS Mission

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Rodriguez, Mike; Stephen, Mark; Hasselbrack, William; Allan, Graham; Mao, Jianping; Kawa, Stephen R.; Weaver, Clark J.

    2010-01-01

    We report on airborne atmospheric pressure measurements using new fiber-based laser technology and the oxygen A-band at 765 nm. Remote measurements of atmospheric temperature and pressure are required for a number of NASA Earth science missions and specifically for the Active Sensing of CO2 Emissions Over Nights, Days, and Seasons (ASCENDS) mission. Accurate measurements of tropospheric CO2 on a global scale are very important in order to better understand its sources and sinks and to improve predictions on any future climate change. The ultimate goal of a CO2 remote sensing mission, such as ASCENDS, is to derive the CO2 concentration in the atmosphere in terms of mole fraction in unit of parts-per-million (ppmv) with regard to dry air. Therefore, both CO2 and the dry air number of molecules in the atmosphere are needed in deriving this quantity. O2 is a stable molecule and uniformly mixed in the atmosphere. Measuring the O2 absorption in the atmosphere can thus be used to infer the dry air number of molecules and then used to calculate CO2 concentration. With the knowledge of atmospheric water vapor, we can then estimate the total surface pressure needed for CO2 retrievals. Our work, funded by the ESTO IIP program, uses fiber optic technology and non-linear optics to generate 765 nm laser radiation coincident with the Oxygen A-band. Our pulsed, time gated technique uses several on- and off-line wavelengths tuned to the O2 absorption line. The choice of wavelengths allows us to measure the pressure by using two adjacent O2 absorptions in the Oxygen A-band. Our retrieval algorithm fits the O2 lineshapes and derives the pressure. Our measurements compare favorably with a local weather monitor mounted outside our laboratory and a local weather station.

  13. Air-Sea Interaction Measurements from the Controlled Towed Vehicle

    NASA Astrophysics Data System (ADS)

    Khelif, D.; Bluth, R. T.; Jonsson, H.; Barge, J.

    2014-12-01

    The Controlled Towed Vehicle (CTV) uses improved towed drone technology to actively maintain via a radar altimeter and controllable wing a user-set height that can be as low as the canonical reference height of 10 m above the sea surface. After take-off, the drone is released from the tow aircraft on a ~700-m stainless steel cable. We have instrumented the 0.23 m diameter and 2.13 m long drone with high fidelity instruments to measure the means and turbulent fluctuations of 3-D wind vector, temperature, humidity, pressure, CO2 and IR sea surface temperature. Data are recorded internally at 40 Hz and simultaneously transmitted to the tow aircraft via dedicated wireless Ethernet link. The CTV accommodates 40 kg of instrument payload and provides it with 250 W of continuous power through a ram air propeller-driven generator. Therefore its endurance is only limited by that of the tow aircraft.We will discuss the CTV development, the engineering challenges and solutions that have been successfully implemented to overcome them. We present results from recent flights as low as 9 m over the coastal ocean and comparisons of profiles and turbulent fluxes from the CTV and the tow aircraft. Manned aircraft operation at low-level boundary-layer flights is very limited. Dropsondes and UAS (Unmanned Aerial Systems) and UAS are alternates for measurements near the ocean surface. However, dropsondes have limited sensor capability and do not measure fluxes, and most present UAS vehicles do not have the payload and power capacity nor the low-flying ability in high winds over the oceans. The CTV therefore, fills a needed gap between the dropsondes, in situ aircraft, and UAS. The payload, capacity and power of the CTV makes it suitable for a variety of atmospheric research measurements. Other sensors to measure aerosol, chemistry, radiation, etc., could be readily accommodated in the CTV.

  14. System for measuring multiphase flow using multiple pressure differentials

    DOEpatents

    Fincke, James R.

    2003-01-01

    An improved method and system for measuring a multi-phase flow in a pressure flow meter. An extended throat venturi is used and pressure of the multi-phase flow is measured at three or more positions in the venturi, which define two or more pressure differentials in the flow conduit. The differential pressures are then used to calculate the mass flow of the gas phase, the total mass flow, and the liquid phase. The system for determining the mass flow of the high void fraction fluid flow and the gas flow includes taking into account a pressure drop experienced by the gas phase due to work performed by the gas phase in accelerating the liquid phase.

  15. A comparison of systolic blood pressure measurement obtained using a pulse oximeter, and direct systolic pressure measurement in anesthetized sows.

    PubMed Central

    Caulkett, N A; Duke, T; Bailey, J V

    1994-01-01

    Systolic blood pressure measurement obtained with a pulse oximeter has been compared to values obtained by other indirect methods in man. Direct pressure measurement is subject to less error than indirect techniques. This study was designed to compare systolic pressure values obtained using a pulse oximeter, with values obtained by direct arterial pressure measurement. The pulse oximeter waveform was used as an indication of perfusion. A blood pressure cuff was applied proximal to the pulse oximeter probe. The cuff was inflated until the oximeter waveform disappeared, this value was recorded as the systolic pressure at the disappearance of the waveform (SPD). The cuff was inflated to a pressure > 200 mmHg, then gradually deflated until the waveform reappeared, this value was recorded as the systolic pressure at reappearance of the waveform (SPR). The average of the two values, SPD and SPR, was calculated and recorded as SPA. The study was performed in sows (n = 21) undergoing cesarean section under epidural anesthesia and IV sedation. A total of 280 measurements were made of SPD, SPR and SPA. Regression analysis of SPA and direct measurement revealed a correlation coefficient (r) of 0.81. Calculation of mean difference (bias) and standard deviation of the bias (precision) for direct pressure--SPA revealed a value of 1.3 +/- 12.1. When compared with direct measurement, the correlation of this technique was similar to that recorded for other indirect techniques used in small animals. This indicates that this technique would be useful for following systolic pressure trends.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8004540

  16. Surface pressure measurement by oxygen quenching of luminescence

    NASA Technical Reports Server (NTRS)

    Gouterman, Martin P. (Inventor); Kavandi, Janet L. (Inventor); Gallery, Jean (Inventor); Callis, James B. (Inventor)

    1994-01-01

    Methods and compositions for measuring the pressure of an oxygen-containing gas on an aerodynamic surface, by oxygen-quenching of luminescence of molecular sensors is disclosed. Objects are coated with luminescent films containing a first sensor and at least one of two additional sensors, each of the sensors having luminescences that have different dependencies on temperature and oxygen pressure. Methods and compositions are also provided for improving pressure measurements (qualitative or quantitive) on surfaces coated with a film having one or more types of sensor.

  17. Surface pressure measurement by oxygen quenching of luminescence

    NASA Technical Reports Server (NTRS)

    Gouterman, Martin P. (Inventor); Kavandi, Janet L. (Inventor); Gallery, Jean (Inventor); Callis, James B. (Inventor)

    1993-01-01

    Methods and compositions for measuring the pressure of an oxygen-containing gas on an aerodynamic surface, by oxygen-quenching of luminescence of molecular sensors is disclosed. Objects are coated with luminescent films containing a first sensor and at least one of two additional sensors, each of the sensors having luminescences that have different dependencies on temperature and oxygen pressure. Methods and compositions are also provided for improving pressure measurements (qualitative or quantitive) on surfaces coated with a film having one or more types of sensor.

  18. The measurement error analysis when a pitot probe is used in supersonic air flow

    NASA Astrophysics Data System (ADS)

    Zhang, XiWen; Hao, PengFei; Yao, ZhaoHui

    2011-04-01

    Pitot probes enable a simple and convenient way of measuring mean velocity in air flow. The contrastive numerical simulation between free supersonic airflow and pitot tube at different positions in supersonic air flow was performed using Navier-Stokes equations, the ENN scheme with time-dependent boundary conditions (TDBC) and the Spalart-Allmaras turbulence model. The physical experimental results including pitot pressure and shadowgraph are also presented. Numerical results coincide with the experimental data. The flow characteristics of the pitot probe on the supersonic flow structure show that the measurement gives actually the total pressure behind the detached shock wave by using the pitot probe to measure the total pressure. The measurement result of the distribution of the total pressure can still represent the real free jet flow. The similar features of the intersection and reflection of shock waves can be identified. The difference between the measurement results and the actual ones is smaller than 10%. When the pitot probe is used to measure the region of L=0-4 D, the measurement is smaller than the real one due to the increase of the shock wave strength. The difference becomes larger where the waves intersect. If the pitot probe is put at L=8 D-10 D, where the flow changes from supersonic to subsonic, the addition of the pitot probe turns the original supersonic flow region subsonic and causes bigger measurement errors.

  19. Air Density Measurements in a Mach 10 Wake Using Iodine Cordes Bands

    NASA Technical Reports Server (NTRS)

    Balla, Robert J.; Everhart, Joel L.

    2012-01-01

    An exploratory study designed to examine the viability of making air density measurements in a Mach 10 flow using laser-induced fluorescence of the iodine Cordes bands is presented. Experiments are performed in the NASA Langley Research Center 31 in. Mach 10 air wind tunnel in the hypersonic near wake of a multipurpose crew vehicle model. To introduce iodine into the wake, a 0.5% iodine/nitrogen mixture is seeded using a pressure tap at the rear of the model. Air density was measured at 56 points along a 7 mm line and three stagnation pressures of 6.21, 8.62, and 10.0 MPa (900, 1250, and 1450 psi). Average results over time and space show rho(sub wake)/rho(sub freestream) of 0.145 plus or minus 0.010, independent of freestream air density. Average off-body results over time and space agree to better than 7.5% with computed densities from onbody pressure measurements. Densities measured during a single 60 s run at 10.0 MPa are time-dependent and steadily decrease by 15%. This decrease is attributed to model forebody heating by the flow.

  20. Comparison of three techniques to measure unsaturated-zone air permeability at Picatinny Arsenal, NJ

    NASA Astrophysics Data System (ADS)

    Olson, Mira Stone; Tillman, Fred D.; Choi, Jee-Won; Smith, James A.

    2001-12-01

    The purpose of this study is to compare three techniques to measure the air permeability of the unsaturated zone at Picatinny Arsenal, NJ and to examine the effects of moisture content and soil heterogeneity on air permeability. Air permeability was measured in three ways: laboratory experiments on intact soil cores, field-scale air pump tests and calibration of air permeability to air pressures measured in the field under natural air pressure conditions using a numerical airflow model. The results obtained from these three methods were compared and found to be similar. Laboratory experiments performed on intact cores measured air permeability values on the order of 10 -14 to 10 -9 m 2. Low-permeability cores were found between land surface and a depth of 0.6 m. The soil core data were divided into two layers with composite vertical permeability values of 1.3×10 -13 m 2 from land surface to a 0.6-m depth and 3.8×10 -10 m 2 for the lower layer. Analyses of the field-scale pump tests were performed for two scenarios: one in which the entire unsaturated zone was open to the atmosphere and one assuming a cap of low permeability extending 0.6 m below land surface. The vertical air permeability values obtained for the open scenario ranged from 1.2×10 -9 to 1.5×10 -9 m 2, and ranged from 3.6×10 -9 to 6.8×10 -9 m 2 in the lower layer, assuming an upper cap permeability of 6.0×10 -14 m 2. The results from the open scenario are much higher than expected and the possible reasons for this ambiguity are discussed. The results from the capped scenario matched closely with those from the other methods and indicated that it is important to have background information on the study site to correctly analyze the pump test data. The optimized fit of the natural subsurface air pressure was achieved with an intrinsic permeability value of 3.3×10 -14 m 2. When the data were refitted to the model assuming two distinct layers of the unsaturated zone, the optimized fit was achieved

  1. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... must be made within 100 cm of the air-intake of the engine. The measurement location must be either in... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Test...

  2. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... must be made within 100 cm of the air-intake of the engine. The measurement location must be either in... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Test...

  3. Intradiscal pressure measurements: A challenge or a routine?

    PubMed

    Bashkuev, Maxim; Vergroesen, Pieter-Paul A; Dreischarf, Marcel; Schilling, Christoph; van der Veen, Albert J; Schmidt, Hendrik; Kingma, Idsart

    2016-04-11

    Intradiscal pressure (IDP) is an essential biomechanical parameter and has been the subject of numerous in vivo and in vitro investigations. Although currently available sensors differ in size and measurement principles, no data exist regarding inter-sensor reliability in measuring IDP. Moreover, although discs of various species vary significantly in size and mechanics, the possible effects of sensor insertion on the IDP have never been investigated. The present in vitro study aimed to address these issues. The synchronized signals of two differently sized pressure transducers (Ø1.33 and Ø0.36 mm) obtained during the measurements in two species (bovine and caprine) and their influence on the measured pressure were compared. First, the discs were subjected to three loading periods, and the pressure was measured simultaneously to assess the inter-sensor reliability. In the second test, the effect of the sensor size was evaluated by alternatingly inserting one transducer into the disc while recording the resulting pressure change with the second transducer. Although both sensors yielded similar pressure values (ICC: consistency: 0.964-0.999; absolute agreement: 0.845-0.996) when used simultaneously, the sensor size was determined to influence the measured pressure during the insertion tests. The magnitude of the effect differed between species; it was insignificant in the bovine specimens but significant in the caprine specimens, with a pressure increase of 0.31-0.64 MPa (median: 0.43 MPa) obtained when the larger sensor was inserted. The results suggest that sensor selection for IDP measurements requires special attention and can be crucial for species with smaller disc sizes.

  4. Downhole steam generator using low pressure fuel and air supply

    DOEpatents

    Fox, Ronald L.

    1983-01-01

    An apparatus for generation of steam in a borehole for penetration into an earth formation wherein a spiral, tubular heat exchanger is used in the combustion chamber to isolate the combustion process from the water being superheated for conversion into steam. The isolation allows combustion of a relatively low pressure oxidant and fuel mixture for generating high enthalpy steam. The fuel is preheated by feedback of combustion gases from the top of the combustion chamber through a fuel preheater chamber. The hot exhaust gases of combustion at the bottom of the combustion chamber, after flowing over the heat exchanger enter an exhaust passage and pipe. The exhaust pipe is mounted inside the water supply line heating the water flowing into the heat exchanger. After being superheated in the heat exchanger, the water is ejected through an expansion nozzle and converts into steam prior to penetration into the earth formation. Pressure responsive doors are provided at a steam outlet downstream of the nozzle and close when the steam pressure is lost due to flameout.

  5. Development of a Pressure Sensitive Paint System for Measuring Global Surface Pressures on Rotorcraft Blades

    NASA Technical Reports Server (NTRS)

    Watkins, A. Neal; Leighty, Bradley D.; Lipford, William E.; Wong, Oliver D.; Oglesby, Donald M.; Ingram, JoAnne L.

    2007-01-01

    This paper will describe the results from a proof of concept test to examine the feasibility of using Pressure Sensitive Paint (PSP) to measure global surface pressures on rotorcraft blades in hover. The test was performed using the U.S. Army 2-meter Rotor Test Stand (2MRTS) and 15% scale swept rotor blades. Data were collected from five blades using both the intensity- and lifetime-based approaches. This paper will also outline several modifications and improvements that are underway to develop a system capable of measuring pressure distributions on up to four blades simultaneously at hover and forward flight conditions.

  6. Tumor-dependent kinetics of partial pressure of oxygen fluctuations during air and oxygen breathing.

    PubMed

    Cárdenas-Navia, L Isabel; Yu, Daohai; Braun, Rod D; Brizel, David M; Secomb, Timothy W; Dewhirst, Mark W

    2004-09-01

    The primary purpose of this study was to examine the kinetics of partial pressure of oxygen (pO2) fluctuations in fibrosarcoma (FSA) and 9L tumors under air and O2 breathing conditions. The overall hypothesis was that key factors relating to oxygen tension fluctuations would vary between the two tumor types and as a function of the oxygen content of the breathing gas. To assist in the interpretation of the temporal data, spatial pO2 distributions were measured in 10 FSA and 8 9L tumors transplanted into the subcutis of the hind leg of Nembutal-anesthetized (50 mg/kg) Fischer 344 rats. Recessed-tip oxygen microelectrodes were inserted into the tumor, and linear pO2 measurements were recorded in 50-microm steps along a 3-mm path, and blood pressure was simultaneously measured via femoral arterial access. Additionally, pO2 was measured at a single location for 90 to 120 minutes in FSA (n=11) or 9L tumors (n=12). Rats were switched from air to 100% O2 breathing after 45 minutes. Temporal pO2 records were evaluated for their potential radiobiological significance by assessing the number of times they crossed a 10-mm-Hg threshold. In addition, the data were subjected to Fourier analysis for air and O2 breathing. FSA and 9L tumors had spatial median pO2 measurements of 4 and 1 mm Hg, respectively. 9L had more low pO2 measurements < or =2.5 mm Hg than did FSA, whereas between 2.5 and 10 mm Hg this pattern was reversed. Pimonidazole staining patterns in FSA and 9L tumors supported these results. Temporal pO2 instability was observed in all experiments during air and O2 breathing. Threshold analyses indicated that the 10 mm Hg threshold was crossed 2 to 5 times per hour, independent of tumor type. However, the magnitude of 9L pO2 fluctuations was approximately eight times greater than FSA fluctuations, as assessed with Fourier transform analysis (Wilcoxon, P < 0.005). O2 breathing significantly increased median pO2 in FSA from 3 to 8 mm Hg (P < 0.005) and caused a

  7. In-shoe plantar pressure measurement and analysis system based on fabric pressure sensing array.

    PubMed

    Shu, Lin; Hua, Tao; Wang, Yangyong; Qiao Li, Qiao; Feng, David Dagan; Tao, Xiaoming

    2010-05-01

    Spatial and temporal plantar pressure distributions are important and useful measures in footwear evaluation, athletic training, clinical gait analysis, and pathology foot diagnosis. However, present plantar pressure measurement and analysis systems are more or less uncomfortable to wear and expensive. This paper presents an in-shoe plantar pressure measurement and analysis system based on a textile fabric sensor array, which is soft, light, and has a high-pressure sensitivity and a long service life. The sensors are connected with a soft polymeric board through conductive yarns and integrated into an insole. A stable data acquisition system interfaces with the insole, wirelessly transmits the acquired data to remote receiver through Bluetooth path. Three configuration modes are incorporated to gain connection with desktop, laptop, or smart phone, which can be configured to comfortably work in research laboratories, clinics, sport ground, and other outdoor environments. A real-time display and analysis software is presented to calculate parameters such as mean pressure, peak pressure, center of pressure (COP), and shift speed of COP. Experimental results show that this system has stable performance in both static and dynamic measurements.

  8. Air release measurements of V-oil 1404 downstream of a micro orifice at choked flow conditions

    NASA Astrophysics Data System (ADS)

    Freudigmann, H.-A.; Iben, U.; Pelz, P. F.

    2015-12-01

    This study presents measurements on air release of V-oil 1404 in the back flow of a micro orifice at choked flow conditions using a shadowgraph imaging method. The released air was determined at three positions downstream of the orifice for different pressure conditions. It was found that more than 23% of the initially dissolved air is released and appears downstream of the orifice in the form of bubbles.

  9. Air fluorescence efficiency measurements for AIRWATCH based mission: Experimental set-up

    SciTech Connect

    Biondo, B.; Catalano, O.; Celi, F.; Fazio, G.; Giarrusso, S.; La Rosa, G.; Mangano, A.; Bonanno, G.; Cosentino, R.; Di Benedetto, R.; Scuderi, S.; Richiusa, G.; Gregorio, A.

    1998-06-15

    In the framework of the AIRWATCH project we present an experimental set-up to measure the efficiency of the UV fluorescence production of the air using hard X-ray stimulus. The measures will be carried out at different pressure and temperature to emulate the same condition of the upper layers of the atmosphere where X-ray and gamma ray photons of Gamma Ray Bursts are absorbed.

  10. Measuring Concentrations of Particulate 140La in the Air

    DOE PAGES

    Okada, Colin E.; Kernan, Warnick; Keillor, Martin; ...

    2016-01-01

    This article discusses deployment of air-samplers to measure the concentration of radioactive material in the air during the Full-Scale Radiological Dispersal Device experiments. Positioned 100-600 meters downwind of the release point, the filters were collected immediately and analyzed in a field laboratory. The article discusses quantities for total activity collected on the air filters as well as additional information to compute the average or integrated air concentrations. In the case of a public emergency, this type of information would be important for decision makers and responders.

  11. Non-invasive pressure measuring device and method

    NASA Astrophysics Data System (ADS)

    Welch, Jeanne A.

    1990-12-01

    The invention relates generally to measuring devices and to devices for measuring the pressure in a sealed container. More particularly, the invention relates to a non-invasive device and method for measuring the pressure of a gas in a double-envelope lamp. An infrared gaseous discharge lamp of integrated double-envelope construction has an inner chamber or envelope filled with a gaseous medium under relatively high pressure which provides illumination when the lamp is energized. The outer chamber or envelope is normally evacuated or otherwise provided with a relatively low-pressure gas. Double-envelope lamps are subject to gas leaks from the inner chamber to the outer chamber. Eventually, these leaks may lead to catastrophic lamp failure by a mechanism that involves electric arcing in the outer chamber.

  12. A global ground truth view of the lunar air pressure tide L2

    NASA Astrophysics Data System (ADS)

    Schindelegger, Michael; Dobslaw, Henryk

    2016-01-01

    A comprehensive model of the lunar air pressure tide L2 is developed on the basis of 2315 ground truth estimates from land barometers and moored buoys. Regional-scale features of the tide and its seasonal modulations are well resolved by the in situ scatter and gridded to a 2° mesh through multiquadric interpolation. The resulting climatologies serve as an independent standard to validate the lunar semidiurnal tidal signal that is present in ERA-Interim reanalysis products despite the absence of L2-related gravitational forcing mechanisms in the prescribed model physics. Inconsistencies between the reanalysis solution of the barometric lunar tide and its empirical account are generally small, yet when averaged over the period 1979-2010, ERA-Interim underestimates the 100 μbar open ocean tidal amplitude in the Tropics by up to 20 μbar and produces times of peak pressure that are too early by 10 lunar minutes. Large-amplitude features of the reanalysis tide off the coast of Alaska, the eastern U.S., and Great Britain are evidently spurious, introduced to the analysis system by assimilating marine pressure data at an invariant reference surface instead of properly accounting for vertical sensor movements associated with the M2 ocean tide. Additionally, a credible L2 signal is documented for the ERA-20C pilot reanalysis of the twentieth century. The fact that this model rests upon input data from mere surface observations provides an unambiguous indication that the lunar tidal oscillation in atmospheric analysis systems is closely tied to the assimilation of conventional pressure measurements from stations and marine objects.

  13. Impact of sample geometry on the measurement of pressure-saturation curves: Experiments and simulations

    NASA Astrophysics Data System (ADS)

    Moura, M.; Fiorentino, E.-A.; Mâløy, K. J.; Schäfer, G.; Toussaint, R.

    2015-11-01

    In this paper, we study the influence of sample geometry on the measurement of pressure-saturation relationships, by analyzing the drainage of a two-phase flow from a quasi-2-D random porous medium. The medium is transparent, which allows for the direct visualization of the invasion pattern during flow, and is initially saturated with a viscous liquid (a dyed glycerol-water mix). As the pressure in the liquid is gradually reduced, air penetrates from an open inlet, displacing the liquid which leaves the system from an outlet on the opposite side. Pressure measurements and images of the flow are recorded and the pressure-saturation relationship is computed. We show that this relationship depends on the system size and aspect ratio. The effects of the system's boundaries on this relationship are measured experimentally and compared with simulations produced using an invasion percolation algorithm. The pressure build up at the beginning and end of the invasion process are particularly affected by the boundaries of the system whereas at the central part of the model (when the air front progresses far from these boundaries), the invasion happens at a statistically constant capillary pressure. These observations have led us to propose a much simplified pressure-saturation relationship, valid for systems that are large enough such that the invasion is not influenced by boundary effects. The properties of this relationship depend on the capillary pressure thresholds distribution, sample dimensions, and average pore connectivity and its applications may be of particular interest for simulations of two-phase flow in large porous media.

  14. Automated office blood pressure measurement in primary care

    PubMed Central

    Myers, Martin G.; Kaczorowski, Janusz; Dawes, Martin; Godwin, Marshall

    2014-01-01

    Abstract Objective To provide FPs with detailed knowledge of automated office blood pressure (AOBP) measurement, its potential role in primary care, and its proper use in the diagnosis and management of hypertension. Sources of information Comprehensive monitoring and collection of scientific articles on AOBP by the authors since its introduction. Main message Automated office blood pressure measurement maintains a role for blood pressure (BP) readings taken in the office setting. Clinical research studies have reported a substantially stronger relationship between awake ambulatory BP measurement and AOBP measurement compared with manual BP recorded during routine visits to the patient’s physician. Automated office blood pressure measurement produces mean BP values comparable to awake ambulatory BP and home BP values. Compared with routine manual office BP measurement, AOBP correlates more strongly with awake ambulatory BP measurement, shows less digit preference, is more consistent from visit to visit, is similar both within and outside of the physician’s office, virtually eliminates office-induced hypertension, and is associated with less masked hypertension. It is estimated that more than 25% of Canadian primary care physicians are now using AOBP measurement in their office practices. The use of AOBP to diagnose hypertension has been recommended by the Canadian Hypertension Education Program since 2010. Conclusion There is now sufficient evidence to incorporate AOBP measurement into primary care as an alternative to manual BP measurement. PMID:24522674

  15. Thermodynamic and Transport Properties of Real Air Plasma in Wide Range of Temperature and Pressure

    NASA Astrophysics Data System (ADS)

    Wang, Chunlin; Wu, Yi; Chen, Zhexin; Yang, Fei; Feng, Ying; Rong, Mingzhe; Zhang, Hantian

    2016-07-01

    Air plasma has been widely applied in industrial manufacture. In this paper, both dry and humid air plasmas' thermodynamic and transport properties are calculated in temperature 300-100000 K and pressure 0.1-100 atm. To build a more precise model of real air plasma, over 70 species are considered for composition. Two different methods, the Gibbs free energy minimization method and the mass action law method, are used to determinate the composition of the air plasma in a different temperature range. For the transport coefficients, the simplified Chapman-Enskog method developed by Devoto has been applied using the most recent collision integrals. It is found that the presence of CO2 has almost no effect on the properties of air plasma. The influence of H2O can be ignored except in low pressure air plasma, in which the saturated vapor pressure is relatively high. The results will serve as credible inputs for computational simulation of air plasma. supported by the National Key Basic Research Program of China (973 Program)(No. 2015CB251002), National Natural Science Foundation of China (Nos. 51521065, 51577145), the Science and Technology Project Funds of the Grid State Corporation (SGTYHT/13-JS-177), the Fundamental Research Funds for the Central Universities, and State Grid Corporation Project (GY71-14-004)

  16. MEASUREMENT OF FRICTIONAL PRESSURE DIFFERENTIALS DURING A VENTILATION SURVEY

    SciTech Connect

    B.S. Prosser, PE; I.M. Loomis, PE, PhD

    2003-11-03

    During the course of a ventilation survey, both airflow quantity and frictional pressure losses are measured and quantified. The measurement of airflow has been extensively studied as the vast majority of ventilation standards/regulations are tied to airflow quantity or velocity. However, during the conduct of a ventilation survey, measurement of airflow only represents half of the necessary parameters required to directly calculate the airway resistance. The measurement of frictional pressure loss is an often misunderstood and misapplied part of the ventilation survey. This paper compares the two basic methods of frictional pressure drop measurements; the barometer and the gauge and tube. Personal experiences with each method will be detailed along with the authors' opinions regarding the applicability and conditions favoring each method.

  17. A handheld low temperature atmospheric pressure air plasma gun for nanomaterial synthesis in liquid phase

    SciTech Connect

    Yu, Shuang; Wang, Kaile; Zuo, Shasha; Liu, Jiahui; Zhang, Jue Fang, Jing

    2015-10-15

    A handheld low temperature atmospheric pressure air plasma gun based on a dielectric barrier structure with hollow electrodes was proposed. The portable plasma gun with an embedded mini air pump was driven by a 12 V direct voltage battery. The air plasma jet generated from the gun could be touched without a common shock hazard. Besides working in air, the plasma gun can also work in water. The diagnostic result of optical emission spectroscopy showed the difference in reactive species of air plasma jet between in air and in water. The plasma gun was excited in 20 ml chloroauric acid aqueous solution with a concentration of 1.214 mM. A significant amount of gold nanoparticles were synthesized after 2 min continuous discharge. The plasma gun with these unique features is applicable in plasma medicine, etching, and s-nthesis of nanomaterials.

  18. A handheld low temperature atmospheric pressure air plasma gun for nanomaterial synthesis in liquid phase

    NASA Astrophysics Data System (ADS)

    Yu, Shuang; Wang, Kaile; Zuo, Shasha; Liu, Jiahui; Zhang, Jue; Fang, Jing

    2015-10-01

    A handheld low temperature atmospheric pressure air plasma gun based on a dielectric barrier structure with hollow electrodes was proposed. The portable plasma gun with an embedded mini air pump was driven by a 12 V direct voltage battery. The air plasma jet generated from the gun could be touched without a common shock hazard. Besides working in air, the plasma gun can also work in water. The diagnostic result of optical emission spectroscopy showed the difference in reactive species of air plasma jet between in air and in water. The plasma gun was excited in 20 ml chloroauric acid aqueous solution with a concentration of 1.214 mM. A significant amount of gold nanoparticles were synthesized after 2 min continuous discharge. The plasma gun with these unique features is applicable in plasma medicine, etching, and s-nthesis of nanomaterials.

  19. Ultrasonic wave based pressure measurement in small diameter pipeline.

    PubMed

    Wang, Dan; Song, Zhengxiang; Wu, Yuan; Jiang, Yuan

    2015-12-01

    An effective non-intrusive method of ultrasound-based technique that allows monitoring liquid pressure in small diameter pipeline (less than 10mm) is presented in this paper. Ultrasonic wave could penetrate medium, through the acquisition of representative information from the echoes, properties of medium can be reflected. This pressure measurement is difficult due to that echoes' information is not easy to obtain in small diameter pipeline. The proposed method is a study on pipeline with Kneser liquid and is based on the principle that the transmission speed of ultrasonic wave in pipeline liquid correlates with liquid pressure and transmission speed of ultrasonic wave in pipeline liquid is reflected through ultrasonic propagation time providing that acoustic distance is fixed. Therefore, variation of ultrasonic propagation time can reflect variation of pressure in pipeline. Ultrasonic propagation time is obtained by electric processing approach and is accurately measured to nanosecond through high resolution time measurement module. We used ultrasonic propagation time difference to reflect actual pressure in this paper to reduce the environmental influences. The corresponding pressure values are finally obtained by acquiring the relationship between variation of ultrasonic propagation time difference and pressure with the use of neural network analysis method, the results show that this method is accurate and can be used in practice.

  20. An Analytical Explanation for the X-43A Flush Air Data Sensing System Pressure Mismatch Between Flight and Theory

    NASA Technical Reports Server (NTRS)

    Ellsworth, Joel C.

    2010-01-01

    Following the successful Mach 7 flight test of the X-43A, unexpectedly low pressures were measured by the aft set of the onboard Flush Air Data Sensing System s pressure ports. These in-flight aft port readings were significantly lower below Mach 3.5 than was predicted by theory. The same lower readings were also seen in the Mach 10 flight of the X-43A and in wind-tunnel data. The pre-flight predictions were developed based on 2-dimensional wedge flow, which fails to predict some of the significant 3-dimensional flow features in this geometry at lower Mach numbers. Using Volterra s solution to the wave equation as a starting point, a three-dimensional finite wedge approximation to flow over the X-43A forebody is presented. The surface pressures from this approximation compare favorably with the measured wind tunnel and flight data at speeds of Mach 2.5 and 3.

  1. AIR INFILTRATION MEASUREMENTS USING TRACER GASES: A LITERATURE REVIEW

    EPA Science Inventory

    The report gives results of a literature review of air filtration measurements using tracer gases, including sulfur hexafluoride, hydrogen, carbon monoxide, carbon dioxide, nitrous oxide, and radioactive argon and krypton. Sulfur hexafluoride is the commonest tracer gas of choice...

  2. Soot Oxidation in Hydrocarbon/Air Diffusion Flames at Atmospheric Pressure. Appendix K

    NASA Technical Reports Server (NTRS)

    Xu, F.; El-Leathy, A. M.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    Soot oxidation was studied experimentally in laminar hydrocarbon/air diffusion flames at atmospheric pressure. Measurements were carried out along the axes of round jets burning in coflowing air considering acetylene, ethylene, propylene and propane as fuels. Measurements were limited to the initial stages of soot oxidation (carbon consumption less than 70%) where soot oxidation mainly occurs at the surface of primary soot particles. The following properties were measured as a function of distance above the burner exit: soot concentrations by deconvoluted laser extinction, soot temperatures by deconvoluted multiline emission, soot structure by thermophoretic sampling and analysis using Transmission Electron Microscopy (TEM), concentrations of stable major gas species (N2, H2O, H2, O2, CO, CO2, CH4, C2H2,C2H4, C2H6, C3H6, and C3H8) by sampling and gas chromatography, concentrations of some radical species (H, OH, O) by the deconvoluted Li/LiOH atomic absorption technique and flow velocities by laser velocimetry. It was found that soot surface oxidation rates are not particularly affected by fuel type for laminar diffusion flames and are described reasonably well by the OH surface oxidation mechanism with a collision efficiency of 0.10, (standard deviation of 0.07) with no significant effect of fuel type in this behavior; these findings are in good agreement with the classical laminar premixed flame measurements of Neoh et al. Finally, direct rates of surface oxidation by O2 were small compared to OH oxidation for present conditions, based on estimated O2 oxidation rates due to Nagle and Strickland-Constable (1962), because soot oxidation was completed near the flame sheet where O2 concentrations were less than 1.2% by volume.

  3. Soot Oxidation in Laminar Hydrocarbon/Air Diffusion Flames at Atmospheric Pressure. Appendix D

    NASA Technical Reports Server (NTRS)

    Xu, F.; El-Leathy, A. M.; Faeth, G. M.

    2000-01-01

    Soot oxidation was studied experimentally in laminar hydrocarbon/air diffusion flames at atmospheric pressure. Measurements were carried out along the axes of round jets burning in coflowing air considering acetylene, ethylene, proplyene and propane as fuels. Measurements were limited to the initial stages of soot oxidation (carbon consumption less than 70%) where soot oxidation mainly occurs at the surface of primary soot particles. The following properties were measured as a function of distance above the burner exit: soot concentrations by deconvoluted laser extinction, soot temperatures by deconvoluted multiline emission, soot structure by thermophoretic sampling and analysis using Transmission Electron Microscopy (TEM), concentrations of stable major gas species (N2, H2O, H2, 02, CO, CO2, CH4, C2H2, C2H4, C2H6, C3H6, and C3H8) by sampling and gas chromatography, concentrations of some radical species (H, OH, O) by the deconvoluted Li/LiOH atomic absorption technique and flow velocities by laser velocimetry. It was found that soot surface oxidation rates are not particularly affected by fuel type for laminar diffusion flames and are described reasonably well by the OH surface oxidation mechanism with a collision efficiency of 0.10, (standard deviation of 0.07) with no significant effect of fuel type in this behavior; these findings are in good agreement with the classical laminar premixed flame measurements of Neoh et al. Finally, direct rates of surface oxidation by O2 were small compared to OH oxidation for present conditions, based on estimated O2 oxidation rates due to Nagle and Strickland-Constable, because soot oxidation was completed near the flame sheet where O2 concentrations were less than 1.2% by volume.

  4. Optical Air Flow Measurements in Flight

    NASA Technical Reports Server (NTRS)

    Bogue, Rodney K.; Jentink, Henk W.

    2004-01-01

    This document has been written to assist the flight-test engineer and researcher in using optical flow measurements in flight applications. The emphasis is on describing tradeoffs in system design to provide desired measurement performance as currently understood. Optical system components are discussed with examples that illustrate the issues. The document concludes with descriptions of optical measurement systems designed for a variety of applications including aeronautics research, airspeed measurement, and turbulence hazard detection. Theoretical discussion is minimized, but numerous references are provided to supply ample opportunity for the reader to understand the theoretical underpinning of optical concepts.

  5. A miniature fiber optic pressure sensor for intradiscal pressure measurements of rodents

    NASA Astrophysics Data System (ADS)

    Nesson, Silas; Yu, Miao; Hsieh, Adam H.

    2007-04-01

    Lower back pain continues to be a leading cause of disability in people of all ages, and has been associated with degenerative disc disease. It is well accepted that mechanical stress, among other factors, can play a role in the development of disc degeneration. Pressures generated in the intervertebral disc have been measured both in vivo and in vitro for humans and animals. However, thus far it has been difficult to measure pressure experimentally in rodent discs due to their small size. With the prevalent use of rodent tail disc models in mechanobiology, it is important to characterize the intradiscal pressures generated with externally applied stresses. In this paper, a miniature fiber optic Fabry-Perot interferometric pressure sensor with an outer diameter of 360 μm was developed to measure intradiscal pressures in rat caudal discs. A low coherence interferometer based optical system was used, which includes a broadband light source, a high-speed spectrometer, and a Fabry-Perot sensor. The sensor employs a capillary tube, a flexible, polymer diaphragm coated with titanium as a partial mirror, and a fiber tip as another mirror. The pressure induced deformation of the diaphragm results in a cavity length change of the Fabry-Perot interferometer which can be calculated from the wavelength shift of interference fringes. The sensor exhibited good linearity with small applied pressures. Our validation experiments show that owing to the small size, inserting the sensor does not disrupt the annulus fibrosus and will not alter intradiscal pressures generated. Measurements also demonstrate the feasibility of using this sensor to quantify external load intradiscal pressure relationships in small animal discs.

  6. Methods of measuring intracranial pressure via the fontanelle without puncture

    PubMed Central

    Wealthall, S. R.; Smallwood, R.

    1974-01-01

    It is suggested that non-invasive techniques for measuring intracranial pressure should be suitable for use in the unsedated infant and should be capable of measuring pressure continuously. Methods described by other authors are reviewed. After investigation of 18 patients the technique relying upon the pulsation of the fontanelle described by Purin was rejected as being difficult to perform and applicable only in certain patients with large fontanelles. The technique of using a modified Schiotz tonometer was examined but rejected on grounds of inaccuracy, the need to perform the measurement with the infant in a vertical position, and the varying compressibility of the fontanelle. A method for indirectly estimating intracranial pressure using a modified aplanation principle is described, and a comparison of the pressures so measured and needle pressures is reported. The possible uses of a `fontanometer' using the aplanation principle are discussed and a preliminary report given of its use to monitor the changes of intracranial pressure caused by drugs. Images PMID:4813429

  7. Measurement of thermal diffusivity of rocks at high pressure

    SciTech Connect

    Mirkovich, V.V.; Durham, W.B.; Heard, H.C.

    1982-10-01

    A method for measurement of thermal diffusivity at high hydrostatic pressure was developed by adapting a radial symmetry heat flow method wherein a sinusoidal heat wave is applied to the cylindrical surface of the sample. The accuracy of the measuring system was tested using Pyroceram 9606. Data obtained were within 5% of published values at all temperatures to 400/sup 0/C and no dependence upon pressure was observed. Thermal diffusivity of three crystalline igneous rock specimens was measured at temperatures from 32 to 400/sup 0/C and pressures from 0.1 to 200 MPa. The results for Creighton quartz diorite showed only limited temperature and pressure dependence. In the case of Stripa and Westerly granites, this dependence was found to be more substantial. Thermal diffusivity of Stripa granite decreased by more than 50% from 32 to 400/sup 0/C and that of Westerly granite decreased by approximately 40% over the same range. At 32/sup 0/C and 200 MPa, thermal diffusivity for both rocks was higher by approximately 10% than that measured at 0.1 MPa. At higher temperatures the difference in thermal diffusivity between the two pressure levels increased. An anomaly was observed in Stripa and Westerly granite in the temperature range 32 to 65/sup 0/C: thermal diffusivity increased with increasing temperature. The anomaly is consistent with recently observed thermal expansivity in these rocks as a function of pressure and temperature.

  8. Pressure Gradient Estimation Based on Ultrasonic Blood Flow Measurement

    NASA Astrophysics Data System (ADS)

    Nitta, Naotaka; Homma, Kazuhiro; Shiina, Tsuyoshi

    2006-05-01

    Mechanical load to the blood vessel wall, such as shear stress and pressure, which occurs in blood flow dynamics, contribute greatly to plaque rupture in arteriosclerosis and to biochemical activation of endothelial cells. Therefore, noninvasive estimations of these mechanical loads are able to provide useful information for the prevention of vascular diseases. Although the pressure is the dominant component of mechanical load, for practical purposes, the pressure gradient is also often important. So far, we have investigated the estimation of the kinematic viscosity coefficient using a combination of the Navier-Stokes equations and ultrasonic velocity measurement. In this paper, a method for pressure gradient estimation using the estimated kinematic viscosity coefficient is proposed. The validity of the proposed method was investigated on the basis of the analysis with the data obtained by computer simulation and a flow phantom experiment. These results revealed that the proposed method can provide a valid estimation of the pressure gradient.

  9. Hydraulic Resistance and Liberation of Air in Aviation Kerosene Flow Through Diaphragms at Low Pressure

    NASA Astrophysics Data System (ADS)

    Kitanin, É. L.; Kitanina, E. É.; Zherebtsov, V. A.; Peganova, M. M.; Stepanov, S. G.; Bondarenko, D. A.; Morisson, D.

    2016-09-01

    This paper presents the results of experimental investigations of the liberation of air in gravity flow of aviation fuel through a pipeline with diaphragms. Experiments were carried out in the pressure range 0.2-1.0 bar and temperature range -20 to +20°C. The TC-1 kerosene was preliminarily saturated with air at atmospheric pressure. The liberation of air after the diaphragms with three ratios of the flow area to the cross-sectional area of the pipeline has been investigated. The results of investigations of the two-phase flow in several experimental pipelines containing one or two diaphragms and other local hydraulic resistances have been generalized. The obtained approximation equations permit calculating the hydraulic resistance of the diaphragm in the two-phase flow and the mass gas content of air after the diaphragm in pipelines of complex geometry.

  10. Atmospheric-pressure air microplasma jets in aqueous media for the inactivation of Pseudomonas fluorescens cells

    SciTech Connect

    Zhang, Xianhui; Yang, Si-ze; Liu, Dongping; Song, Ying; Sun, Yue

    2013-05-15

    The hollow fiber-based cold air microplasma jet array running at atmospheric pressure has been designed to inactivate Pseudomonas fluorescens (P. fluorescens) cells in vitro in aqueous media. The influences of electrode configurations, air flow rate, and applied voltage on the discharge characteristics of the single microplasma jet operating in aqueous media are presented, and the bactericidal efficiency of the hollow fibers-based and large-volume microplasma jet array is reported. Optical emission spectroscopy is utilized to identify excited species during the antibacterial testing of plasma in solutions. These well-aligned and rather stable air microplasma jets containing a variety of short-lived species, such as OH and O radicals and charged particles, are in direct contact with aqueous media and are very effective in killing P. fluorescens cells in aqueous media. This design shows its potential application for atmospheric pressure air plasma inactivation of bacteria cells in aqueous media.

  11. Short-range optical air data measurements for aircraft control using rotational Raman backscatter.

    PubMed

    Fraczek, Michael; Behrendt, Andreas; Schmitt, Nikolaus

    2013-07-15

    A first laboratory prototype of a novel concept for a short-range optical air data system for aircraft control and safety was built. The measurement methodology was introduced in [Appl. Opt. 51, 148 (2012)] and is based on techniques known from lidar detecting elastic and Raman backscatter from air. A wide range of flight-critical parameters, such as air temperature, molecular number density and pressure can be measured as well as data on atmospheric particles and humidity can be collected. In this paper, the experimental measurement performance achieved with the first laboratory prototype using 532 nm laser radiation of a pulse energy of 118 mJ is presented. Systematic measurement errors and statistical measurement uncertainties are quantified separately. The typical systematic temperature, density and pressure measurement errors obtained from the mean of 1000 averaged signal pulses are small amounting to < 0.22 K, < 0.36% and < 0.31%, respectively, for measurements at air pressures varying from 200 hPa to 950 hPa but constant air temperature of 298.95 K. The systematic measurement errors at air temperatures varying from 238 K to 308 K but constant air pressure of 946 hPa are even smaller and < 0.05 K, < 0.07% and < 0.06%, respectively. A focus is put on the system performance at different virtual flight altitudes as a function of the laser pulse energy. The virtual flight altitudes are precisely generated with a custom-made atmospheric simulation chamber system. In this context, minimum laser pulse energies and pulse numbers are experimentally determined, which are required using the measurement system, in order to meet measurement error demands for temperature and pressure specified in aviation standards. The aviation error margins limit the allowable temperature errors to 1.5 K for all measurement altitudes and the pressure errors to 0.1% for 0 m and 0.5% for 13000 m. With regard to 100-pulse-averaged temperature measurements, the pulse energy using 532 nm

  12. Surface treatment of polypropylene (PP) film by 50 Hz dielectric barrier discharge produced in air and argon/air mixture at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Joshi, Ujjwal Man; Subedi, Deepak Prasad

    2015-07-01

    Thin films of polypropylene (PP) are treated for improving hydrophilicity using non-thermal plasma generated by 50 Hz line frequency dielectric barrier discharge produced in air and argon/air mixture at atmospheric pressure. PP samples before and after the treatments are studied using contact angle measurements, surface free energy calculations and scanning electron microscopy (SEM). Distilled water (H2O), glycerol (C3H8O3) and diiodomethane (CH2I2) are used as test liquids. The contact angle measurements between test liquids and PP samples are used to determine total surface free energy using sessile drop technique. PP films show a remarkable increase in surface free energy after plasma treatment. SEM analysis of the plasma-treated PP films shows that plasma treatment introduces greater roughness on the surface leading to the increased surface free energy. Furthermore, it is found that introducing a small quantity of argon can enhance the surface treatment remarkably.

  13. [Measuring pressure distribution on the human tibia in ski boots].

    PubMed

    Schaff, P; Hauser, W

    1987-09-01

    Pressure distribution inside shoes is of great importance for orthopaedic and biomechanical inquiries. Especially in sports, safety and comfort depend essentially on this quantity, which also determines whether a shoe is well suited for a certain discipline. Therefore, the measurement of pressure distribution allows detailed and objective statements about these factors. Using a set of newly developed thin and highly flexible measuring mats and the corresponding electronic equipment, such statements have become possible. First results with this method were obtained in alpine skiing. 8 different types of ski boots (sizes 5 and 8) worn by 14 subjects were tested on different foreward leans and temperatures using 7-point measuring mats (2 cm2/point) fixed between the boot shaft and the front of the lower leg of each leg. Additional measurements on three different types of boots using a 3 x 24-point mat (1 cm2/point) for the lower leg, as well as measurements underneath the foot with a 14-point (2 cm2/point) and a 80-point (1 cm2/point) mat were performed. A complementary determination of the force at the heel element of a ski binding and a registration of muscular activity (EMG) helped in the interpretation of the results. Some field research using telemetry completed our study. Considerable variations between different boots were found in value and location of pressure maxima. Traditional boots show high pressure values over the instep at foreward leans of 35 degrees and a rise of pressure underneath the forefoot while fixing the buckles, whereas minimal pressure over the instep, no compression of the forefoot and a pressure maximum near the upper end of the shaft are observed in rear entry boots. The force at the heel-important for binding release-varies widely between different boots at the same foreward lean. There was no asymmetry between the pressure distributions of right and left. The pressure distributions for different subjects measured in the same boot were

  14. Respiratory effects of warm and dry air at increased ambient pressure.

    PubMed

    Thorsen, E; Rønnestad, I; Segadal, K; Hope, A

    1992-03-01

    We have measured in 7 divers forced vital capacity (FVC), forced expired volume in 1 s (FEV1), and forced midexpiratory flow rate (FEF25-75%) before and after exposure to dry or humid breathing gas of 35.3 degrees-36.8 degrees C (air) when diving to pressures of 117-600 kPa. The response was compared with the subjects' reactivity to pharmacologic bronchoprovocation with methacholine. Baseline FEV1 and FEF25-75% decreased in accordance with increasing gas density. Relative to baseline, there was a significant reduction after the dives in FEV1 of 4.0 +/- 6.1% (P less than 0.05) and in FEF25-75% of 8.6 +/- 9.7% (P less than 0.01) with exposure to dry breathing gas. By analysis of variance the reduction in the lung function variables below baseline were related to the breathing gas characteristic (dry/humid) (P less than 0.01), bronchial hyperreactivity (P less than 0.02), and ambient pressure (P less than 0.02) independently of each other. There was no significant change in FVC after the exposures. Humid breathing gas was considered more comfortable than dry breathing gas, and the upper comfort limit for breathing gas temperature was higher with humid breathing gas. Convective respiratory heat loss was negligible in these experiments, indicating that dry gas itself had a significant bronchoconstrictive effect. Bronchial hyperreactivity may cause increased risk of development of bronchial obstruction and air trapping during diving.

  15. A technique for measuring absolute toe pressures: evaluation of pressure-sensitive film techniques.

    PubMed

    Tuckman, A S; Werner, F W; Fortino, M D; Spadaro, J A

    1992-05-01

    Although a number of pathologies of the forefoot in ballet dancers on pointe have been described, pressures and deforming forces have not been adequately measured. To evaluate the possible use of pressure-sensitive film (PSF) in measuring the pressures on the external soft tissues in such a confined space as the dancer's toe shoe, it was tested and calibrated with 20 cadaver toes. Each cadaver toe was internally stabilized and loaded longitudinally against PSF on a flat surface. The resultant films were analyzed with a video imaging system and the pressures and total forces were determined. Results showed that the linearity of the PSF to pressure had a regression value of 0.98. By using two sensitivity ranges of films, the total force measured by the PSF was found to be within 10% of the known applied force on each toe. The PSF, therefore, may very well be a useful and accurate method of measuring external soft tissue pressures on the forefoot.

  16. Personal black carbon exposure influences ambulatory blood pressure: air pollution and cardiometabolic disease (AIRCMD-China) study.

    PubMed

    Zhao, Xiaoyi; Sun, Zhichao; Ruan, Yanping; Yan, Jianhua; Mukherjee, Bhramar; Yang, Fumo; Duan, Fengkui; Sun, Lixian; Liang, Ruijuan; Lian, Hui; Zhang, Shuyang; Fang, Quan; Gu, Dongfeng; Brook, Jeffrey R; Sun, Qinghua; Brook, Robert D; Rajagopalan, Sanjay; Fan, Zhongjie

    2014-04-01

    Few prospective studies have assessed the blood pressure effect of extremely high air pollution encountered in Asia's megacities. The objective of this study was to evaluate the association between combustion-related air pollution with ambulatory blood pressure and autonomic function. During February to July 2012, personal black carbon was determined for 5 consecutive days using microaethalometers in patients with metabolic syndrome in Beijing, China. Simultaneous ambient fine particulate matter concentration was obtained from the Beijing Municipal Environmental Monitoring Center and the US Embassy. Twenty-four-hour ambulatory blood pressure and heart rate variability were measured from day 4. Arterial stiffness and endothelial function were obtained at the end of day 5. For statistical analysis, we used generalized additive mixed models for repeated outcomes and generalized linear models for single/summary outcomes. Mean (SD) of personal black carbon and fine particulate matter during 24 hours was 4.66 (2.89) and 64.2 (36.9) μg/m(3). Exposure to high levels of black carbon in the preceding hours was associated significantly with adverse cardiovascular responses. A unit increase in personal black carbon during the previous 10 hours was associated with an increase in systolic blood pressure of 0.53 mm Hg and diastolic blood pressure of 0.37 mm Hg (95% confidence interval, 0.17-0.89 and 0.10-0.65 mm Hg, respectively), a percentage change in low frequency to high frequency ratio of 5.11 and mean interbeat interval of -0.06 (95% confidence interval, 0.62-9.60 and -0.11 to -0.01, respectively). These findings highlight the public health effect of air pollution and the importance of reducing air pollution.

  17. Air pressure waves from Mount St. Helens eruptions

    SciTech Connect

    Reed, J.W.

    1980-01-01

    Barograms from a number of National Weather Service stations were assembled for the May 18, 1980, eruption and compared to airblast wave propagations from large explosions. Wave amplitudes at 50 to 300 km distances were about what might be expected from a nuclear explosion of between 1 megaton and 10 megaton yield. Pressure-time signatures could not be resolved for the first compression phase, because of the slow paper recording speed. The 900 s negative phase duration was much too long for comparison with the negative phase of an explosion. Nevertheless, positive and negative amplitudes were about equal, as often observed at long distances from explosions. Calculations have been made for a simple finite amplitude propagation model. These show rough bounds on the source compression rate, to give the observed inaudible waves at least to 54 km distance, yet cause audibly rapid compression at Seattle, near 150 km, and beyond.

  18. Investigating the electron density of multi-MeV X-ray-induced air plasmas at low pressures based on electromagnetic resonant cavity analysis

    NASA Astrophysics Data System (ADS)

    Ribière, M.; d'Almeida, T.; Cessenat, O.; Maulois, M.; Pouzalgues, R.; Crabos, B.; Delbos, C.; Garrigues, A.; Azaïs, B.

    2016-12-01

    We investigate air plasmas generated by multi-MeV pulsed X-rays at pressures ranging from 10-5 to 10-1 mbar. The experimental approach used for these studies is based on measurements of resonant frequencies damping and shift for different electromagnetic modes within a cylindrical cavity. Time-integrated electron densities in X-ray-induced air plasmas are inferred from the damping rate of the measured magnetic fields and their corresponding frequency shifts. In the present study, electron densities ranging from 108 to 109 cm-3 at pressures ranging from 10-3 to 10-1 mbar have been measured. Experimental results were confronted to 3D Maxwell-Vlasov Particle-In-Cell simulations incorporating a radiation-induced electric conductivity model. The method used in this work enables determining microscopic and macroscopic physical quantities within low pressure air plasmas generated by pulsed X-ray.

  19. Factors influencing validation of ambulatory blood pressure measuring devices.

    PubMed

    O'Brien, E; Atkins, N; Staessen, J

    1995-11-01

    With the introduction of 24 h ambulatory blood pressure monitoring into clinical practice a vast market for ambulatory blood pressure monitoring devices has been created. To satisfy this market manufacturers are producing an array of ambulatory blood pressure monitoring devices. There is no obligation on manufacturers to have such devices validated independently, even though two national protocols, one from the British Hypertension Society (BHS) and the other from the Association for the Advancement of Medical Instrumentation (AAMI), call for independent validation and state the means of doing so. However, many factors can influence the validation procedure. They include compliance to the protocol being employed; the accuracy of the standard; establishing precisely the model being validated; the influences of blood pressure level, age and exercise on device accuracy; the provisions necessary for special populations, such as pregnant women, the elderly and children; the influence of oscillometric versus Korotkoff sound detection and electrocardiographic gating on comparative measurements; the assessment of performance as distinct from accuracy; and the relevance of general factors, such as the algorithm being employed and computer compatibility. Forty-three ambulatory blood pressure monitoring devices have been marketed for ambulatory blood pressure measurement and of those only 18 have been validated according to either the BHS or the AAMI protocol. The influence of the factors listed above on the validation studies of those devices will be considered and the relevance of validation procedures to the clinical use of ambulatory blood pressure monitoring devices will be discussed.

  20. Etching of polymers, proteins and bacterial spores by atmospheric pressure DBD plasma in air

    NASA Astrophysics Data System (ADS)

    Kuzminova, A.; Kretková, T.; Kylián, O.; Hanuš, J.; Khalakhan, I.; Prukner, V.; Doležalová, E.; Šimek, M.; Biederman, H.

    2017-04-01

    Many studies proved that non-equilibrium discharges generated at atmospheric pressure are highly effective for the bio-decontamination of surfaces of various materials. One of the key processes that leads to a desired result is plasma etching and thus the evaluation of etching rates of organic materials is of high importance. However, the comparison of reported results is rather difficult if impossible as different authors use diverse sources of atmospheric plasma that are operated at significantly different operational parameters. Therefore, we report here on the systematic study of the etching of nine different common polymers that mimic the different structures of more complicated biological systems, bovine serum albumin (BSA) selected as the model protein and spores of Bacillus subtilis taken as a representative of highly resistant micro-organisms. The treatment of these materials was performed by means of atmospheric pressure dielectric barrier discharge (DBD) sustained in open air at constant conditions. All tested polymers, BSA and spores, were readily etched by DBD plasma. However, the measured etching rates were found to be dependent on the chemical structure of treated materials, namely on the presence of oxygen in the structure of polymers.

  1. Diffuse plasma treatment of polyamide 66 fabric in atmospheric pressure air

    NASA Astrophysics Data System (ADS)

    Li, Lee; Peng, Ming-yang; Teng, Yun; Gao, Guozhen

    2016-01-01

    The polyamide 66 (PA66) fabrics are hard to be colored or glued in industrial production due to the poor hydrophily. Diffuse plasma is a kind of non-thermal plasma generated at atmospheric pressure in air. This paper proposes that large-scale diffuse plasma generated between wire electrodes can be employed for improving the hydrophily of PA66 fabrics. A repetitive nanosecond-pulse diffuse-discharge reactor using a cylindrical wire electrode configuration is presented, which can generate large-scale non-thermal plasmas steadily at atmospheric pressure without any barrier dielectric. Then the reactor is used to treat PA66 fabrics in different discharge conditions. The hydrophilicity property of modified PA66 is measured by wicking test method. The modified PA66 is also analyzed by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) to prove the surface changes in physical microstructure and chemical functional groups, respectively. What's more, the effects of treatment time and treatment frequency on surface modification are investigated and discussed.

  2. Measurement and Control of the Variability of Scanning Pressure Transducer Measurements

    NASA Technical Reports Server (NTRS)

    Kuhl, David D.; Everhart, Joel L.; Hallissy, James B.

    2003-01-01

    This paper describes the new wall pressure measurement system and data-quality monitoring software installed at 14x22 Ft subsonic tunnel at the NASA Langley Research Center. The monitoring software was developed to enable measurement and control of the variability of the reference pressures and approximately 400 tunnel wall pressure measurements. Variability of the system, based upon data acquired over a year of wind tunnel tests and calibrations, is presented. The level of variation of the wall pressure measurements is shown to be predictable.

  3. Method and apparatus for simultaneously measuring temperature and pressure

    DOEpatents

    Hirschfeld, Tomas B.; Haugen, Gilbert R.

    1988-01-01

    Method and apparatus are provided for simultaneously measuring temperature and pressure in a class of crystalline materials having anisotropic thermal coefficients and having a coefficient of linear compression along the crystalline c-axis substantially the same as those perpendicular thereto. Temperature is determined by monitoring the fluorescence half life of a probe of such crystalline material, e.g., ruby. Pressure is determined by monitoring at least one other fluorescent property of the probe that depends on pressure and/or temperature, e.g., absolute fluorescent intensity or frequency shifts of fluorescent emission lines.

  4. Measurement of the Pressure Distribution on Two Model Propellers

    DTIC Science & Technology

    1982-07-01

    dynamometer. This dynamometer system uses two 500 hp (0.372 MW) electric drive motors located in a pod attached to thp- 3ower end of a strut. The test...the laboratory without the 1000 hp dynamometer cabling and sliprings connected through the measurement system. The propeller pressure gages were...process. 9 I I The final calibrations used during the test were conducted in the laboratory with water in the pressure tank and gage cavities. A

  5. A website for blood pressure measuring devices: dableducational.com.

    PubMed

    O'Brien, Eoin

    2003-08-01

    Consumers are faced with an ever-increasing array of blood pressure measuring devices, whether for use in clinical areas or for use by individuals anxious to measure their own blood pressure. Validation protocols that allow for independent evaluation of blood pressure measuring devices are available, and some of the devices on the market have been evaluated according to these protocols. The results of such evaluations have been published periodically in medical journals. However, such surveys are not readily available to the public and to health care authorities with responsibility for purchasing blood pressure measuring equipment for use in clinical medicine, and because of the necessarily lengthy publication process they are no longer up-to-date at the time of publication. Moreover, the results of published validation studies are often flawed because of protocol violations and the conclusions may not be valid. These considerations have been the stimulus for the establishment of an independent non-profit website, which will provide quarterly updates on the accuracy and performance of blood pressure measuring devices on the market as well as an expert assessment of the validation procedures on which recommendations are based. The ethos of the website is primarily educational and it is hoped that it will serve as a forum for the provision of much-needed information that will ultimately improve the management of hypertension. The website is due to be launched shortly and this paper outlines the general principles that have governed its establishment and the facilities that it will provide.

  6. Afterglow chemistry of atmospheric-pressure helium-oxygen plasmas with humid air impurity

    NASA Astrophysics Data System (ADS)

    Murakami, Tomoyuki; Niemi, Kari; Gans, Timo; O'Connell, Deborah; Graham, William G.

    2014-04-01

    The formation of reactive species in the afterglow of a radio-frequency-driven atmospheric-pressure plasma in a fixed helium-oxygen feed gas mixture (He+0.5%O2) with humid air impurity (a few hundred ppm) is investigated by means of an extensive global plasma chemical kinetics model. As an original objective, we explore the effects of humid air impurity on the biologically relevant reactive species in an oxygen-dependent system. After a few milliseconds in the afterglow environment, the densities of atomic oxygen (O) decreases from 1015 to 1013 cm-3 and singlet delta molecular oxygen (O2(1D)) of the order of 1015 cm-3 decreases by a factor of two, while the ozone (O3) density increases from 1014 to 1015 cm-3. Electrons and oxygen ionic species, initially of the order of 1011 cm-3, recombine much faster on the time scale of some microseconds. The formation of atomic hydrogen (H), hydroxyl radical (OH), hydroperoxyl (HO2), hydrogen peroxide (H2O2), nitric oxide (NO) and nitric acid (HNO3) resulting from the humid air impurity as well as the influence on the afterglow chemistry is clarified with particular emphasis on the formation of dominant reactive oxygen species (ROS). The model suggests that the reactive species predominantly formed in the afterglow are major ROS O2(1D) and O3 (of the order of 1015 cm-3) and rather minor hydrogen- and nitrogen-based reactive species OH, H2O2, HNO3 and NO2/NO3, of which densities are comparable to the O-atom density (of the order of 1013 cm-3). Furthermore, the model quantitatively reproduces the experimental results of independent O and O3 density measurements.

  7. Experimental study of pulsed corona discharge in air at high pressures

    NASA Astrophysics Data System (ADS)

    Lin, Yunghsu; Singleton, Dan; Sanders, Jason; Kuthi, Andras; Gundersen, Martin A.

    2012-10-01

    Understanding of the dynamics of nanosecond scale pulse discharges in air at multiatmospheric pressure is essential for the development of transient plasma enhanced combustion in internal combustion engines. Here we report the result of our experimental investigation of cathode-directed streamer discharges in synthetic air at pressures ranging from 1 to 20 bar. Two pulse generators with maximum pulse amplitudes of 50 kV and 65 kV, pulse width of approximately 12 ns and 85 ns and pulse rise times of 5 ns and 50 ns are used to generate streamers. The electrodes are coaxial with various radial gaps up to 11.75 mm. The discharge chamber is evacuated and backfilled with synthetic dry air at room temperature. Optical data is obtained from PI-MAX 3 ICCD camera with 3 ns gate width. The streamer propagation velocity variation with applied voltage, different pressures and reduced electric field, E/P, will be shown. Preliminary results indicate that the (pd) similarity law is violated at high pressures in agreement with other recent experiments [1].[4pt] [1] ``Nanosecond Scale Discharge Dynamics in High Pressure Air,'' Pierre Tardiveau, Nicolas Moreau, Francois Jorand, Christian Postel, St'ephane Pasquiers, and Pierre Vervisch, IEEE Trans. on Plasma Sci., Vol. 36, No. 4, 2008.

  8. Wavenumber-frequency Spectra of Pressure Fluctuations Measured via Fast Response Pressure Sensitive Paint

    NASA Technical Reports Server (NTRS)

    Panda, J.; Roozeboom, N. H.; Ross, J. C.

    2016-01-01

    The recent advancement in fast-response Pressure-Sensitive Paint (PSP) allows time-resolved measurements of unsteady pressure fluctuations from a dense grid of spatial points on a wind tunnel model. This capability allows for direct calculations of the wavenumber-frequency (k-?) spectrum of pressure fluctuations. Such data, useful for the vibro-acoustics analysis of aerospace vehicles, are difficult to obtain otherwise. For the present work, time histories of pressure fluctuations on a flat plate subjected to vortex shedding from a rectangular bluff-body were measured using PSP. The light intensity levels in the photographic images were then converted to instantaneous pressure histories by applying calibration constants, which were calculated from a few dynamic pressure sensors placed at selective points on the plate. Fourier transform of the time-histories from a large number of spatial points provided k-? spectra for pressure fluctuations. The data provides first glimpse into the possibility of creating detailed forcing functions for vibro-acoustics analysis of aerospace vehicles, albeit for a limited frequency range.

  9. Miniature optical fiber pressure microsensors for in vivo measurement of intramuscular pressure

    NASA Astrophysics Data System (ADS)

    Cottler, P. S.; Blevins, D.; Averett, J.; Wavering, T. A.; Morrow, D. A.; Shin, A. Y.; Kaufman, K. R.

    2007-02-01

    An innovative fiber optic pressure microsensor has been developed that is based upon on Luna Innovations' patented extrinsic Fabry-Perot interferometric (EFPI) technique. The basic physics governing the operation of these sensors makes them relatively tolerant or immune to the effects of high-temperature, high-EMI, and highly-corrosive environments. Luna's pressure microsensor is extremely small, with an outer diameter of only 200 microns and a length of less than 1mm. The pressure microsensor has a high sensitivity that allows for sub-mmHg resolution over a dynamic range of 0-300 mmHg. The combination of these features makes this pressure microsensor ideal for medical applications where small size, high sensitivity and accuracy, EMI immunity, biocompatibility, and survivability (e.g. sterilizable - steam, ethylene oxide) are important. One example medical application of the pressure microsensor has been to adapt the microsensor for measurement of intramuscular pressure in vivo during active and passive muscle activation. Clinically it is difficult to study the in vivo mechanical properties of individual skeletal muscles for a variety of reasons. Initial experiments have demonstrated a correlation between intramuscular pressure and force. Such measurements can be a useful diagnostic tool for clinicians assessing muscular deficits in patients.

  10. Simplified configuration for the combustor of an oil burner using a low pressure, high flow air-atomizing nozzle

    DOEpatents

    Butcher, Thomas A.; Celebi, Yusuf; Fisher, Leonard

    2000-09-15

    The invention relates to clean burning of fuel oil with air. More specifically, to a fuel burning combustion head using a low-pressure, high air flow atomizing nozzle so that there will be a complete combustion of oil resulting in a minimum emission of pollutants. The improved fuel burner uses a low pressure air atomizing nozzle that does not result in the use of additional compressors or the introduction of pressurized gases downstream, nor does it require a complex design. Inventors:

  11. Hugoniot measurements at near Gbar pressures at the NIF

    NASA Astrophysics Data System (ADS)

    Kritcher, Andrea; Swift, Damian; Doeppner, Tilo; Collins, Gilbert; Bachmann, Benjamin; Nilsen, Joe; Chapman, Dave; Correa, Alfredo; Sterne, Phil; Benedict, Lorin; Gaffney, Jim; Kraus, Dominik; Falcone, Roger; Glenzer, Siegfried; Rothman, Steve

    2015-11-01

    Laboratory measurements of the Equation of State (EOS) of matter at high pressure are of great importance in the understanding and accurate modeling of matter at extreme conditions. For example, at hundreds of Mbars - Gbar pressures atomic shell effects may come into play, which can change the predicted compressibility at given pressure due to pressure and temperature ionization. In this work we present measurements of the strong shock hugoniot, at pressures up to 720 Mbar for CH and 630 Mbar for High Density Carbon (HDC, or diamond) at the National Ignition Facility (NIF). Spherically convergent shocks are launched into solid CH or diamond samples, using a hohlraum radiation drive. X-ray radiography is applied to measure the shock speed and infer the mass density profile, enabling determining of the shock pressure and Hugoniot equation of state. This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48. Supported by LDRD 08-ERI-003.

  12. Rural southeast Texas air quality measurements during the 2006 Texas Air Quality Study.

    PubMed

    Schade, Gunnar W; Khan, Siraj; Park, Changhyoun; Boedeker, Ian

    2011-10-01

    The authors conducted air quality measurements of the criteria pollutants carbon monoxide, nitrogen oxides, and ozone together with meteorological measurements at a park site southeast of College Station, TX, during the 2006 Texas Air Quality Study II (TexAQS). Ozone, a primary focus of the measurements, was above 80 ppb during 3 days and above 75 ppb during additional 8 days in summer 2006, suggestive of possible violations of the ozone National Ambient Air Quality Standard (NAAQS) in this area. In concordance with other air quality measurements during the TexAQS II, elevated ozone mixing ratios coincided with northerly flows during days after cold front passages. Ozone background during these days was as high as 80 ppb, whereas southerly air flows generally provided for an ozone background lower than 40 ppb. Back trajectory analysis shows that local ozone mixing ratios can also be strongly affected by the Houston urban pollution plume, leading to late afternoon ozone increases of as high as 50 ppb above background under favorable transport conditions. The trajectory analysis also shows that ozone background increases steadily the longer a southern air mass resides over Texas after entering from the Gulf of Mexico. In light of these and other TexAQS findings, it appears that ozone air quality is affected throughout east Texas by both long-range and regional ozone transport, and that improvements therefore will require at least a regionally oriented instead of the current locally oriented ozone precursor reduction policies.

  13. Optical Air Flow Measurements for Flight Tests and Flight Testing Optical Air Flow Meters

    NASA Technical Reports Server (NTRS)

    Jentink, Henk W.; Bogue, Rodney K.

    2005-01-01

    Optical air flow measurements can support the testing of aircraft and can be instrumental to in-flight investigations of the atmosphere or atmospheric phenomena. Furthermore, optical air flow meters potentially contribute as avionics systems to flight safety and as air data systems. The qualification of these instruments for the flight environment is where we encounter the systems in flight testing. An overview is presented of different optical air flow measurement techniques applied in flight and what can be achieved with the techniques for flight test purposes is reviewed. All in-flight optical airflow velocity measurements use light scattering. Light is scattered on both air molecules and aerosols entrained in the air. Basic principles of making optical measurements in flight, some basic optical concepts, electronic concepts, optoelectronic interfaces, and some atmospheric processes associated with natural aerosols are reviewed. Safety aspects in applying the technique are shortly addressed. The different applications of the technique are listed and some typical examples are presented. Recently NASA acquired new data on mountain rotors, mountain induced turbulence, with the ACLAIM system. Rotor position was identified using the lidar system and the potentially hazardous air flow profile was monitored by the ACLAIM system.

  14. Pressure-loss and flow coefficients inside a chordwise-finned, impingement, convection, and film air-cooled turbine vane

    NASA Technical Reports Server (NTRS)

    Hippensteele, S. A.

    1974-01-01

    Total-pressure-loss coefficients, flow discharge coefficients, and friction factors were determined experimentally for the various area and geometry changes and flow passages within an air-cooled turbine vane. The results are compared with those of others obtained on similar configurations, both actual and large models, of vane passages. The supply and exit air pressures were controlled and varied. The investigation was conducted with essentially ambient-temperature air and without external flow of air over the vane.

  15. High Pressure Burn Rate Measurements on an Ammonium Perchlorate Propellant

    SciTech Connect

    Glascoe, E A; Tan, N

    2010-04-21

    High pressure deflagration rate measurements of a unique ammonium perchlorate (AP) based propellant are required to design the base burn motor for a Raytheon weapon system. The results of these deflagration rate measurements will be key in assessing safety and performance of the system. In particular, the system may experience transient pressures on the order of 100's of MPa (10's kPSI). Previous studies on similar AP based materials demonstrate that low pressure (e.g. P < 10 MPa or 1500 PSI) burn rates can be quite different than the elevated pressure deflagration rate measurements (see References and HPP results discussed herein), hence elevated pressure measurements are necessary in order understand the deflagration behavior under relevant conditions. Previous work on explosives have shown that at 100's of MPa some explosives will transition from a laminar burn mechanism to a convective burn mechanism in a process termed deconsolidative burning. The resulting burn rates that are orders-of-magnitude faster than the laminar burn rates. Materials that transition to the deconsolidative-convective burn mechanism at elevated pressures have been shown to be considerably more violent in confined heating experiments (i.e. cook-off scenarios). The mechanisms of propellant and explosive deflagration are extremely complex and include both chemical, and mechanical processes, hence predicting the behavior and rate of a novel material or formulation is difficult if not impossible. In this work, the AP/HTPB based material, TAL-1503 (B-2049), was burned in a constant volume apparatus in argon up to 300 MPa (ca. 44 kPSI). The burn rate and pressure were measured in-situ and used to calculate a pressure dependent burn rate. In general, the material appears to burn in a laminar fashion at these elevated pressures. The experiment was reproduced multiple times and the burn rate law using the best data is B = (0.6 {+-} 0.1) x P{sup (1.05{+-}0.02)} where B is the burn rate in mm/s and

  16. Intraoperative Sac Pressure Measurement During Endovascular Abdominal Aortic Aneurysm Repair

    SciTech Connect

    Ishibashi, Hiroyuki; Ishiguchi, Tsuneo; Ohta, Takashi; Sugimoto, Ikuo; Iwata, Hirohide; Yamada, Tetsuya; Tadakoshi, Masao; Hida, Noriyuki; Orimoto, Yuki; Kamei, Seiji

    2010-10-15

    PurposeIntraoperative sac pressure was measured during endovascular abdominal aortic aneurysm repair (EVAR) to evaluate the clinical significance of sac pressure measurement.MethodsA microcatheter was placed in an aneurysm sac from the contralateral femoral artery, and sac pressure was measured during EVAR procedures in 47 patients. Aortic blood pressure was measured as a control by a catheter from the left brachial artery.ResultsThe systolic sac pressure index (SPI) was 0.87 {+-} 0.10 after main-body deployment, 0.63 {+-} 0.12 after leg deployment (P < 0.01), and 0.56 {+-} 0.12 after completion of the procedure (P < 0.01). Pulse pressure was 55 {+-} 21 mmHg, 23 {+-} 15 mmHg (P < 0.01), and 16 {+-} 12 mmHg (P < 0.01), respectively. SPI showed no significant differences between the Zenith and Excluder stent grafts (0.56 {+-} 0.13 vs. 0.54 {+-} 0.10, NS). Type I endoleak was found in seven patients (15%), and the SPI decreased from 0.62 {+-} 0.10 to 0.55 {+-} 0.10 (P = 0.10) after fixing procedures. Type II endoleak was found in 12 patients (26%) by completion angiography. The SPI showed no difference between type II endoleak positive and negative (0.58 {+-} 0.12 vs. 0.55 {+-} 0.12, NS). There were no significant differences between the final SPI of abdominal aortic aneurysms in which the diameter decreased in the follow-up and that of abdominal aortic aneurysms in which the diameter did not change (0.53 {+-} 0.12 vs. 0.57 {+-} 0.12, NS).ConclusionsSac pressure measurement was useful for instant hemodynamic evaluation of the EVAR procedure, especially in type I endoleaks. However, on the basis of this small study, the SPI cannot be used to reliably predict sac growth or regression.

  17. GSOD Based Daily Global Mean Surface Temperature and Mean Sea Level Air Pressure (1982-2011)

    SciTech Connect

    Xuan Shi, Dali Wang

    2014-05-05

    This data product contains all the gridded data set at 1/4 degree resolution in ASCII format. Both mean temperature and mean sea level air pressure data are available. It also contains the GSOD data (1982-2011) from NOAA site, contains station number, location, temperature and pressures (sea level and station level). The data package also contains information related to the data processing methods

  18. Investigation of Ozone Yield of Air Fed Ozonizer by High Pressure Homogeneous Dielectric Barrier Discharge

    DTIC Science & Technology

    2013-07-01

    homogeneous dielectric barrier discharge ( DBD ) in dry air by using a simple DBD device. So far, we have tried to apply the homogeneous DBD to an...specific input energy region. In this work, we investigated the effect of gas pressure (from 0.1 MPa to 0.2 MPa) on the ozone yield by homogeneous DBD . The...homogeneous DBD decreased with increasing the gas pressure. 1. Introduction The dielectric barrier discharge ( DBD ) is composed of many filamentary micro

  19. Miniature fiber optic pressure sensor with composite polymer-metal diaphragm for intradiscal pressure measurements

    PubMed Central

    Nesson, Silas; Yu, Miao; Zhang, Xuming; Hsieh, Adam H.

    2009-01-01

    We developed a miniature fiber optic pressure sensor system and utilized it for in vitro intradiscal pressure measurements for rodents. One of the unique features of this work is the design and fabrication of a sensor element with a multilayer polymer-metal diaphragm. This diaphragm consists of a base polyimide layer (150 nm thick), a metal reflective layer (1 μm thick), and another polyimide layer for protection and isolation (150 nm thick). The sensor element is biocompatible and can be fabricated by simple, batch-fabrication methods in a non-cleanroom environment with good device-to-device uniformity. The fabricated sensor element has an outer diameter of only 366 μm, which is small enough to be inserted into the rodent discs without disrupting the structure or altering the intradiscal pressures. In the calibration and in vitro rodent intradiscal pressure measurements, the sensor element exhibits a linear response to the applied pressure over the range of 0–70 kPa, with a sensitivity of 0.0206 μm/kPa and a resolution of 0.17 kPa. To our best knowledge, this work is the first successful demonstration of rodent intradiscal pressure measurements. PMID:19021367

  20. System for water level measurement based on pressure transducer

    NASA Astrophysics Data System (ADS)

    Paczesny, Daniel; Marzecki, Michał; Woyke, Michał; Tarapata, Grzegorz

    2016-09-01

    The paper reports system for water level measurement, which is designed to be used for measuring liquid levels in the tanks of an autonomous industrial cleaning robot. The selected method of measurement utilized by the designed system is based on pressure measurement. Such system is insensitive on vibrations, foams presence and liquid impurities. The influences of variable pressure on the measurements were eliminated by utilizing the differential method and as well as the system design. The system is capable of measuring water level in tanks up to 400 mm of height with accuracy of about 2,5%. The system was tested in a container during filling and emptying with various liquids. Performed tests exhibited the linearity of the sensor characteristic and the lack of hysteresis. Obtained sensitivity of the sensor prototype was approximately 6,2 mV/mm H2O.

  1. Effects of hydraulic pressure on the performance of single chamber air-cathode microbial fuel cells.

    PubMed

    Cheng, Shaoan; Liu, Weifeng; Guo, Jian; Sun, Dan; Pan, Bin; Ye, Yaoli; Ding, Weijun; Huang, Haobin; Li, Fujian

    2014-06-15

    Scaling up of microbial fuel cells (MFCs) without losing power density requires a thorough understanding of the effect of hydraulic pressure on MFC performance. In this work, the performance of an activated carbon air-cathode MFC was evaluated under different hydraulic pressures. The MFC under 100 mmH2O hydraulic pressure produced a maximum power density of 1260 ± 24 mW m(-2), while the power density decreased by 24.4% and 44.7% as the hydraulic pressure increased to 500 mmH2O and 2000 mmH2O, respectively. Notably, the performance of both the anode and the cathode had decreased under high hydraulic pressures. Electrochemical impedance spectroscopy tests of the cathode indicated that both charge transfer resistance and diffusion transfer resistance increased with the increase in hydraulic pressure. Denaturing gradient gel electrophoresis of PCR-amplified partial 16S rRNA genes demonstrated that the similarity among anodic biofilm communities under different hydraulic pressures was ≥ 90%, and the communities of all MFCs were dominated by Geobacter sp. These results suggested that the reduction in power output of the single chamber air-cathode MFC under high hydraulic pressures can be attributed to water flooding of the cathode and suppression the metabolism of anodic exoelectrogenic bacteria.

  2. Femtosecond frequency comb based distance measurement in air.

    PubMed

    Balling, Petr; Kren, Petr; Masika, Pavel; van den Berg, S A

    2009-05-25

    Interferometric measurement of distance using a femtosecond frequency comb is demonstrated and compared with a counting interferometer displacement measurement. A numerical model of pulse propagation in air is developed and the results are compared with experimental data for short distances. The relative agreement for distance measurement in known laboratory conditions is better than 10(-7). According to the model, similar precision seems feasible even for long-distance measurement in air if conditions are sufficiently known. It is demonstrated that the relative width of the interferogram envelope even decreases with the measured length, and a fringe contrast higher than 90% could be obtained for kilometer distances in air, if optimal spectral width for that length and wavelength is used. The possibility of comb radiation delivery to the interferometer by an optical fiber is shown by model and experiment, which is important from a practical point of view.

  3. Bias and variability in blood pressure measurement with ambulatory recorders.

    PubMed

    Pannarale, G; Bebb, G; Clark, S; Sullivan, A; Foster, C; Coats, A J

    1993-10-01

    This study sought to determine whether patient characteristics such as age, sex, blood pressure, and pulse pressure differently affect the accuracy of an oscillometric (SpaceLabs 90207) and a microphonic (TM2420 version 7) blood pressure monitor. Blood pressure recorded by two oscillometric and two microphonic ambulatory monitors was compared with simultaneous readings by two pairs of trained, blinded observers using random-zero sphygmomanometry. One hundred and eighteen subjects (53 men and 65 women, aged 17 to 94 years; systolic pressure, 89 to 211 mm Hg; diastolic, 44 to 116 mm Hg) were studied. There were no significant differences within each observer pair or between the two observer pairs as well as no correlation between interobserver differences and patient characteristics. The differences between the monitor and trained observers' readings were 2.8 +/- 9.9 mm Hg systolic and 3.9 +/- 6.8 mm Hg diastolic for the SpaceLabs and 5.0 +/- 5.2 mm Hg systolic and 3.4 +/- 6.1 mm Hg diastolic for the TM2420. Patient characteristics that predicted measurement error were defined by multiple regression. For oscillometry, systolic measurement error was highly correlated with systolic pressure, pulse pressure, and subject age. The diastolic error was significantly correlated with pulse pressure, diastolic pressure, and subject sex. For the oscillometric monitor, patient characteristics accounted for 36.6% of the variation of the systolic error and 34.7% of the variation of the diastolic error. For the microphonic monitor, only age correlated with diastolic error, and no significant correlations were seen with systolic error. Patient characteristics accounted for only 1.2% of the systolic and 8.9% of the diastolic error.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Ambient Air Pollution and Increases in Blood Pressure: Role ...

    EPA Pesticide Factsheets

    Particulate matter (PM) is a complex mixture of extremely small particles and liquid droplets made up of a number of components including elemental carbon, organic chemicals, metals, acids (such as nitrates and sulfates), and soil and dust particles. Epidemiological studies consistently show that exposure to PM in urban areas across the globe is associated with increases in short- and long-term cardiovascular mortality and morbidity, most notably for myocardial infarction, heart failure and ischemic stroke.1 The range in strength of these associations is likely related to variation in PM sources and composition across space and time, and attests to the need to understand the contribution of specific sources to ultimately inform regulatory, public health and clinical strategies to reduce risk. Commentary: In 2014 a systematic review and meta-analysis published in this journal reported a positive association between short-term exposure to PM2.5 and blood pressure.2 The paper discussed potential mechanisms including PM-induced activation of pulmonary nociceptive receptors, pulmonary inflammatory responses and release of endothelin-1, and suggested that activation of pulmonary receptors and vagal afferents could lead to shifts in autonomic balance and vasoconstriction. Other effects including oxidative stress and decreased NO availability, as well as systemic inflammation and endothelial dysfunction have also been widely reported in association with PM compo

  5. Characteristics of short dc glow microdischarges in atmospheric pressure air

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Anatoly

    2013-09-01

    The main reason that high pressure current-carrying plasmas tend to be unstable is various instability (primarily thermal) of the positive column (PC). So a promising approach is to use short (without PC) discharges that have growing voltage-current characteristic (VAC). These discharges are ignited near the minimum of the Paschen breakdown curve Lmin and it usually have a gap pL <10-20 cm Torr when a distinct PC is absent. In this report the most stable microdischarges were burning with a flat cathode and rounded (or thin rod) anode, which located to a distance less than Lmin when the microdischarge ``choose'' their length itself, so that to match the stable work near Lmin by changing their binding on the anode. For simulations we used 2D hybrid model. Simulations predicted the main regions of the dc glow discharges including cathode and anode sheath and plasma of negative glow, Faraday dark space and transition region, in which the electric field is distributed no uniformly and plasma is nonlocal. Gas heating plays an important role in shaping the discharge profiles. Work supported by FZP and SPbSU.

  6. Dynamic tire pressure sensor for measuring ground vibration.

    PubMed

    Wang, Qi; McDaniel, James Gregory; Wang, Ming L

    2012-11-07

    This work presents a convenient and non-contact acoustic sensing approach for measuring ground vibration. This approach, which uses an instantaneous dynamic tire pressure sensor (DTPS), possesses the capability to replace the accelerometer or directional microphone currently being used for inspecting pavement conditions. By measuring dynamic pressure changes inside the tire, ground vibration can be amplified and isolated from environmental noise. In this work, verifications of the DTPS concept of sensing inside the tire have been carried out. In addition, comparisons between a DTPS, ground-mounted accelerometer, and directional microphone are made. A data analysis algorithm has been developed and optimized to reconstruct ground acceleration from DTPS data. Numerical and experimental studies of this DTPS reveal a strong potential for measuring ground vibration caused by a moving vehicle. A calibration of transfer function between dynamic tire pressure change and ground acceleration may be needed for different tire system or for more accurate application.

  7. Dynamic Tire Pressure Sensor for Measuring Ground Vibration

    PubMed Central

    Wang, Qi; McDaniel, James Gregory; Wang, Ming L.

    2012-01-01

    This work presents a convenient and non-contact acoustic sensing approach for measuring ground vibration. This approach, which uses an instantaneous dynamic tire pressure sensor (DTPS), possesses the capability to replace the accelerometer or directional microphone currently being used for inspecting pavement conditions. By measuring dynamic pressure changes inside the tire, ground vibration can be amplified and isolated from environmental noise. In this work, verifications of the DTPS concept of sensing inside the tire have been carried out. In addition, comparisons between a DTPS, ground-mounted accelerometer, and directional microphone are made. A data analysis algorithm has been developed and optimized to reconstruct ground acceleration from DTPS data. Numerical and experimental studies of this DTPS reveal a strong potential for measuring ground vibration caused by a moving vehicle. A calibration of transfer function between dynamic tire pressure change and ground acceleration may be needed for different tire system or for more accurate application. PMID:23202206

  8. 42 CFR 84.157 - Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... test; Type C supplied-air respirator, pressure-demand class; minimum requirements. (a) The static...) per minute shall not exceed the static pressure in the facepiece by more than 51 mm. (2 inches)...

  9. Detecting deterministic nature of pressure measurements from a turbulent combustor

    NASA Astrophysics Data System (ADS)

    Tony, J.; Gopalakrishnan, E. A.; Sreelekha, E.; Sujith, R. I.

    2015-12-01

    Identifying nonlinear structures in a time series, acquired from real-world systems, is essential to characterize the dynamics of the system under study. A single time series alone might be available in most experimental situations. In addition to this, conventional techniques such as power spectral analysis might not be sufficient to characterize a time series if it is acquired from a complex system such as a thermoacoustic system. In this study, we analyze the unsteady pressure signal acquired from a turbulent combustor with bluff-body and swirler as flame holding devices. The fractal features in the unsteady pressure signal are identified using the singularity spectrum. Further, we employ surrogate methods, with translational error and permutation entropy as discriminating statistics, to test for determinism visible in the observed time series. In addition to this, permutation spectrum test could prove to be a robust technique to characterize the dynamical nature of the pressure time series acquired from experiments. Further, measures such as correlation dimension and correlation entropy are adopted to qualitatively detect noise contamination in the pressure measurements acquired during the state of combustion noise. These ensemble of measures is necessary to identify the features of a time series acquired from a system as complex as a turbulent combustor. Using these measures, we show that the pressure fluctuations during combustion noise has the features of a high-dimensional chaotic data contaminated with white and colored noise.

  10. Noninvasive blood pressure measurement scheme based on optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Liu, Xianxuan; Yuan, Xueguang; Zhang, Yangan

    2016-10-01

    Optical fiber sensing has many advantages, such as volume small, light quality, low loss, strong in anti-jamming. Since the invention of the optical fiber sensing technology in 1977, optical fiber sensing technology has been applied in the military, national defense, aerospace, industrial, medical and other fields in recent years, and made a great contribution to parameter measurement in the environment under the limited condition .With the rapid development of computer, network system, the intelligent optical fiber sensing technology, the sensor technology, the combination of computer and communication technology , the detection, diagnosis and analysis can be automatically and efficiently completed. In this work, we proposed a noninvasive blood pressure detection and analysis scheme which uses optical fiber sensor. Optical fiber sensing system mainly includes the light source, optical fiber, optical detector, optical modulator, the signal processing module and so on. wavelength optical signals were led into the optical fiber sensor and the signals reflected by the human body surface were detected. By comparing actual testing data with the data got by traditional way to measure the blood pressure we can establish models for predicting the blood pressure and achieve noninvasive blood pressure measurement by using spectrum analysis technology. Blood pressure measurement method based on optical fiber sensing system is faster and more convenient than traditional way, and it can get accurate analysis results in a shorter period of time than before, so it can efficiently reduce the time cost and manpower cost.

  11. Long-term ambient air pollution exposure and risk of high blood pressure among citizens in Nis, Serbia.

    PubMed

    Stanković, Aleksandra; Nikolić, Maja

    2016-01-01

    Epidemiological studies suggest that long-term exposure to air pollution increases the risk for high blood pressure (BP). The aim of our study is to evaluate any effects in BP in citizens exposed to long-term ambient air pollution. The subjects are 1136 citizens, aged 18-70 years, living for more than 5 years in the same home in the areas with a different level of air pollution. The air concentrations of black smoke and sulfur dioxide were determined in the period from 2001 to 2011. We measured systolic and diastolic BP and heart rate. Multivariate methods were used in the analysis. Alcohol consumption had the greatest influence on the incidence of hypertension as a risk factor (RR: 3.461; 95% CI: 1.72-6.93) and age had the least (RR: 1.23; 95% CI: 1.183-1.92). Exposure to air pollution increases risk for developing hypertension 2.5 times (95% CI: 1.46-4.49). Physical activity has proved to be statistically significant protective factor for the development of hypertension. Long-term exposure to low levels of main air pollutants is significantly associated with elevated risk of hypertension.

  12. Temperature measurements behind reflected shock waves in air. [radiometric measurement of gas temperature in self-absorbing gas flow

    NASA Technical Reports Server (NTRS)

    Bader, J. B.; Nerem, R. M.; Dann, J. B.; Culp, M. A.

    1972-01-01

    A radiometric method for the measurement of gas temperature in self-absorbing gases has been applied in the study of shock tube generated flows. This method involves making two absolute intensity measurements at identical wavelengths, but for two different pathlengths in the same gas sample. Experimental results are presented for reflected shock waves in air at conditions corresponding to incident shock velocities from 7 to 10 km/s and an initial driven tube pressure of 1 torr. These results indicate that, with this technique, temperature measurements with an accuracy of + or - 5 percent can be carried out. The results also suggest certain facility related problems.

  13. Identification and influence of spatial outliers in air quality measurements

    NASA Astrophysics Data System (ADS)

    O'Leary, B. F.; Lemke, L. D.

    2015-12-01

    The heterogeneous nature of urban air complicates the analysis of spatial and temporal variability in air quality measurements. Evaluation of potentially inaccurate measurements (i.e., outliers) poses particularly difficult challenges in extensive air quality datasets with multiple measurements distributed in time and space. This study investigated the identification and impact of outliers in measurements of NO­2, BTEX, PM2.5, and PM10 in the contiguous Detroit, Michigan, USA and Windsor, Ontario, Canada international airshed. Measurements were taken at 100 locations during September 2008 and June 2009 and modeled at a 300m by 300m scale resolution. The objective was to determine if outliers were present and, if so, to quantify the magnitude of their impact on modeled spatial pollution distributions. The study built upon previous investigations by the Geospatial Determinants of Health Outcomes Consortium that examined relationships between air pollutant distributions and asthma exacerbations in the Detroit and Windsor airshed. Four independent approaches were initially employed to identify potential outliers: boxplots, variogram clouds, difference maps, and the Local Moran's I statistic. Potential outliers were subsequently reevaluated for consistency among methods and individually assessed to select a final set of outliers. The impact of excluding individual outliers was subsequently determined by revising the spatially variable air pollution models and recalculating associations between air contaminant concentrations and asthma exacerbations in Detroit and Windsor in 2008. For the pollutants examined, revised associations revealed weaker correlations with spatial outliers removed. Nevertheless, the approach employed improves the model integrity by increasing our understanding of the spatial variability of air pollution in the built environment and providing additional insights into the association between acute asthma exacerbations and air pollution.

  14. Air earth current measurements at Kew, London, 1909 1979

    NASA Astrophysics Data System (ADS)

    Harrison, R. G.; Ingram, W. J.

    2005-07-01

    A vertical conduction current arises from the global ionospheric potential and the integrated electrical resistance between the Earth's surface and the ionosphere. The conduction current density varies with the ionospheric potential and the vertical (columnar) resistance. At the surface, the conduction current density is known as the air-earth current. C.T.R. Wilson developed a measurement technique for the air-earth current in 1906, which was implemented by the British Meteorological Office at its Kew Observatory (51° 28'N, 0° 19'W) near London in 1909. Simultaneous measurements of air-earth current, potential gradient and positive air conductivity were made almost continuously until 1979 using the Wilson method on fine afternoons. A summary of the complete set of monthly mean measurements is presented here for the first time. The data span the nuclear weapons testing period and the UK Clean Air Act of 1956, both of which influenced the measurements obtained. Annual average values of the air earth current density at Kew are 0.97 pA·m -2 (1909-1931), 1.04 pA·m -2 (1932-1949) and 1.41 pA·m -2 (1967-1979).

  15. Fiber optic pressure sensors in skin-friction measurements

    NASA Technical Reports Server (NTRS)

    Kidwell, R.

    1985-01-01

    Fiber optic lever pressure sensors intended for use in a low speed wind tunnel environment were designed, constructed and tested for the measurement of normal and shear displacements associated with the pressures acting on a flat aluminum plate. On-site tests performed along with several static and dynamic measurements made have established that, with proper modifications and improvements, the design concepts are acceptable and can be utilized for their intended use. Several elastomers were investigated for use in sensors and for their incorporation into these sensors. Design and assembly techniques for probes and complete sensors were developed.

  16. Optimizing a remote sensing instrument to measure atmospheric surface pressure

    NASA Technical Reports Server (NTRS)

    Peckham, G. E.; Gatley, C.; Flower, D. A.

    1983-01-01

    Atmospheric surface pressure can be remotely sensed from a satellite by an active instrument which measures return echoes from the ocean at frequencies near the 60 GHz oxygen absorption band. The instrument is optimized by selecting its frequencies of operation, transmitter powers and antenna size through a new procedure baesd on numerical simulation which maximizes the retrieval accuracy. The predicted standard deviation error in the retrieved surface pressure is 1 mb. In addition the measurements can be used to retrieve water vapor, cloud liquid water and sea state, which is related to wind speed.

  17. Laminar burning velocities of lean hydrogen-air mixtures at pressures up to 1.0 MPa

    SciTech Connect

    Bradley, D.; Lawes, M.; Liu, Kexin; Woolley, R.; Verhelst, S.

    2007-04-15

    Values of laminar burning velocity, u{sub l}, and the associated strain rate Markstein number, Ma{sub sr}, of H{sub 2}-air mixtures have been obtained from measurements of flame speeds in a spherical explosion bomb with central ignition. Pressures ranged from 0.1 to 1.0 MPa, with values of equivalence ratio between 0.3 and 1.0. Many of the flames soon became unstable, with an accelerating flame speed, due to Darrieus-Landau and thermodiffusive instabilities. This effect increased with pressure. The flame wrinkling arising from the instabilities enhanced the flame speed. A method is described for allowing for this effect, based on measurements of the flame radii at which the instabilities increased the flame speed. This enabled u{sub l} and Ma{sub sr} to be obtained, devoid of the effects of instabilities. With increasing pressure, the time interval between the end of the ignition spark and the onset of flame instability, during which stable stretched flame propagation occurred, became increasingly small and very high camera speeds were necessary for accurate measurement. Eventually this time interval became so short that first Ma{sub sr} and then u{sub l} could not be measured. Such flame instabilities throw into question the utility of u{sub l} for high pressure, very unstable, flames. The measured values of u{sub l} are compared with those predicted by detailed chemical kinetic models of one-dimensional flames. (author)

  18. Design Considerations of a Fiber Optic Pressure Sensor Protective Housing for Intramuscular Pressure Measurements.

    PubMed

    Go, Shanette A; Jensen, Elisabeth R; O'Connor, Shawn M; Evertz, Loribeth Q; Morrow, Duane A; Ward, Samuel R; Lieber, Richard L; Kaufman, Kenton R

    2017-03-01

    Intramuscular pressure (IMP), defined as skeletal muscle interstitial fluid pressure, reflects changes in individual muscle tension and may provide crucial insight into musculoskeletal biomechanics and pathologies. IMP may be measured using fiber-optic fluid pressure sensors, provided the sensor is adequately anchored to and shielded from surrounding muscle tissue. Ineffective anchoring enables sensor motion and inadequate shielding facilitates direct sensor-tissue interaction, which result in measurement artifacts and force-IMP dissociation. The purpose of this study was to compare the effectiveness of polyimide and nitinol protective housing designs to anchor pressure sensors to muscle tissue, prevent IMP measurement artifacts, and optimize the force-IMP correlation. Anchoring capacity was quantified as force required to dislodge sensors from muscle tissue. Force-IMP correlations and non-physiological measurement artifacts were quantified during isometric muscle activations of the rabbit tibialis anterior. Housing structural integrity was assessed after both anchoring and activation testing. Although there was no statistically significant difference in anchoring capacity, nitinol housings demonstrated greater structural integrity and superior force-IMP correlations. Further design improvements are needed to prevent tissue accumulation in the housing recess associated with artificially high IMP measurements. These findings emphasize fundamental protective housing design elements crucial for achieving reliable IMP measurements.

  19. Measurement of suction and discharge pressure pulsations in waterflood facilities

    SciTech Connect

    Wurzbach, W.M.; Happel, P.E.

    1983-10-01

    Recent mechanical problems with reciprocating water injection pumps prompted a study of suction and discharge pressure conditions in the Red River Bull Bayou Unit, Red River Parish, Louisiana. Frequent failures in plunger pump components and discharge lines were occurring at several injection sites within the unit. Electronic surveillance equipment consisting of an oscilloscope and pressure transducers was utilized to locate and identify large suction and discharge pressure pulses. The severity of these pulses could not be identified with standard pressure gauges. The data obtained with the electronic equipment indicated that cavitation was occurring on the suction side of the pumps due to insufficient net positive suction head. The large pressure pulsations caused by this cavitation problem were carried through the pump and amplified on the discharge side. This resulted in excessive vibration and equipment overload. Subsequent changes in the suction and discharge piping design eliminated cavitation and effectively reduced the peak pressure pulses. These piping changes were done systematically to measure the effect of each change individually. The resulting measurements gave better insight to future piping design for both suction and discharge installations.

  20. Soot Formation in Laminar Acetylene/Air Diffusion Flames at Atmospheric Pressure. Appendix H

    NASA Technical Reports Server (NTRS)

    Xu, F.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    The flame structure and soot-formation (soot nucleation and growth) properties of axisymmetric laminar coflowing jet diffusion flames were studied experimentally. Test conditions involved acetylene-nitrogen jets burning in coflowing air at atmospheric pressure. Measurements were limited to the axes of the flames and included soot concentrations, soot temperatures, soot structure, major gas species concentrations, radical species (H, OH, and O) concentrations, and gas velocities. The results show that as distance increases along the axes of the flames, detectable soot formation begins when significant H concentrations are present, and ends when acetylene concentrations become small. Species potentially associated with soot oxidation-O2, CO2, H2O, O, and OH-are present throughout the soot-formation region so that soot formation and oxidation proceed at the same time. Strong rates of soot growth compared to soot nucleation early in the soot-formation process, combined with increased rates of soot nucleation and oxidation as soot formation proceeds, causes primary soot particle diameters to reach a maximum relatively early in the soot-formation process. Aggregation of primary soot particles proceeds, however, until the final stages of soot oxidation. Present measurements of soot growth (corrected for soot oxidation) in laminar diffusion flames were consistent with earlier measurements of soot growth in laminar premixed flames and exhibited encouraging agreement with existing hydrogen-abstraction/carbon-addition (HACA) soot growth mechanisms in the literature that were developed based on measurements within laminar premixed flames. Measured primary soot particle nucleation rates in the present laminar diffusion flames also were consistent with corresponding rates measured in laminar premixed flames and yielded a crude correlation in terms of acetylene and H concentrations and the temperature.