Science.gov

Sample records for air pressure variations

  1. Variation of the pressure limits of flame propagation with tube diameter for propane-air mixtures

    NASA Technical Reports Server (NTRS)

    Belles, Frank E; Simon, Dorothy M

    1951-01-01

    An investigation was made of the variation of the pressure limits of flame propagation with tube diameter for quiescent propane with tube diameter for quiescent propane-air mixtures. Pressure limits were measured in glass tubes of six different inside diameters, with a precise apparatus. Critical diameters for flame propagation were calculated and the effect of pressure was determined. The critical diameters depended on the pressure to the -0.97 power for stoichiometric mixtures. The pressure dependence decreased with decreasing propane concentration. Critical diameters were related to quenching distance, flame speeds, and minimum ignition energy.

  2. Drip flow variations under a stalactite of the Père Noël cave (Belgium). Evidence of seasonal variations and air pressure constraints

    NASA Astrophysics Data System (ADS)

    Genty, Dominique; Deflandre, Guy

    1998-11-01

    The study of drip rate and seepage water electrical conductivity (hereafter called conductivity) under one stalactite in the Père Noël cave (Belgium), with data produced from an automatic station since 1991, demonstrates several previously unobserved features: (1) measurement of drop volume shows that, for 94% of the time series, drop volume is constant (=0.14 ml), but when discharge exceeds 48.2 drips min -1, drop volume decreases, probably because of secondary drop formation; (2) the interannual drip rate variation is correlated to the annual water excess and its correlant, rainfall (R 2=0.98; exponential model); this result introduces a new improvement in the understanding of the previously investigated relationships between stalagmite annual laminae thickness and mean annual rainfall; (3) the drip rate shows a well marked seasonality: it increases abruptly in late fall or early winter and decreases slowly during spring, summer and fall. Increased discharge is accompanied by an increase in conductivity, which suggests that the flushed water is more mineralized and was stored in the karst aquifer for several months; (4) superimposed on these seasonal variations, there are two kinds of flow regimes which are driven by the atmospheric pressure: (i) a "wiggles regime", whose duration is 1-7 days in length and which is inversely proportional to the air pressure wiggles; it is explained by either a "shut-off faucet" process due to the rock formation stress, or to a change in the two-phases flow component proportions (air/water); (ii) an "unstable regime" characterized by abrupt switches (<2 h) or oscillations with variable periodicities, from a few minutes to a few hours. These occur when the drip rate reaches a threshold (i.e. 240 drops 10 min -1); the chaotic behaviour of this phenomenon is discussed.

  3. Air separation with temperature and pressure swing

    DOEpatents

    Cassano, Anthony A.

    1986-01-01

    A chemical absorbent air separation process is set forth which uses a temperature swing absorption-desorption cycle in combination with a pressure swing wherein the pressure is elevated in the desorption stage of the process.

  4. Laser plasma at low air pressure

    NASA Astrophysics Data System (ADS)

    Vas'kovskii, Iu. M.; Moiseev, V. N.; Rovinskii, R. E.; Tsenina, I. S.

    1993-01-01

    The ambient-pressure dependences of the dynamic and optical characteristics of a laser plasma generated by CO2-laser irradiation of an obstacle are investigated experimentally. The change of the sample's surface roughness after irradiation is investigated as a function of air pressure. It is concluded that the transition from the air plasma to the erosion plasma takes place at an air pressure of about 1 mm Hg. The results confirm the existing theory of plasma formation near the surface of an obstacle under the CO2-laser pulse effect in air.

  5. Impacts of Changes of Indoor Air Pressure and Air Exchange Rate in Vapor Intrusion Scenarios.

    PubMed

    Shen, Rui; Suuberg, Eric M

    2016-02-01

    There has, in recent years, been increasing interest in understanding the transport processes of relevance in vapor intrusion of volatile organic compounds (VOCs) into buildings on contaminated sites. These studies have included fate and transport modeling. Most such models have simplified the prediction of indoor air contaminant vapor concentrations by employing a steady state assumption, which often results in difficulties in reconciling these results with field measurements. This paper focuses on two major factors that may be subject to significant transients in vapor intrusion situations, including the indoor air pressure and the air exchange rate in the subject building. A three-dimensional finite element model was employed with consideration of daily and seasonal variations in these factors. From the results, the variations of indoor air pressure and air exchange rate are seen to contribute to significant variations in indoor air contaminant vapor concentrations. Depending upon the assumptions regarding the variations in these parameters, the results are only sometimes consistent with the reports of several orders of magnitude in indoor air concentration variations from field studies. The results point to the need to examine more carefully the interplay of these factors in order to quantitatively understand the variations in potential indoor air exposures.

  6. Impacts of Changes of Indoor Air Pressure and Air Exchange Rate in Vapor Intrusion Scenarios

    PubMed Central

    Shen, Rui; Suuberg, Eric M.

    2016-01-01

    There has, in recent years, been increasing interest in understanding the transport processes of relevance in vapor intrusion of volatile organic compounds (VOCs) into buildings on contaminated sites. These studies have included fate and transport modeling. Most such models have simplified the prediction of indoor air contaminant vapor concentrations by employing a steady state assumption, which often results in difficulties in reconciling these results with field measurements. This paper focuses on two major factors that may be subject to significant transients in vapor intrusion situations, including the indoor air pressure and the air exchange rate in the subject building. A three-dimensional finite element model was employed with consideration of daily and seasonal variations in these factors. From the results, the variations of indoor air pressure and air exchange rate are seen to contribute to significant variations in indoor air contaminant vapor concentrations. Depending upon the assumptions regarding the variations in these parameters, the results are only sometimes consistent with the reports of several orders of magnitude in indoor air concentration variations from field studies. The results point to the need to examine more carefully the interplay of these factors in order to quantitatively understand the variations in potential indoor air exposures. PMID:28090133

  7. Diffusion and thermodynamic equilibrium under pressure variations

    NASA Astrophysics Data System (ADS)

    Moulas, Evangelos; Tajčmanová, Lucie; Vrijmoed, Johannes; Podladchikov, Yuri

    2015-04-01

    Pressure is one of the most fundamental variables in mineral thermodynamics. In that respect, pressure-sensitive mineral reactions provide an important constraint on pressure under which the rock was developed. One implicit assumption when interpreting such pressure estimates is that the state-of-stress is close to hydrostatic, homogeneous and that the differential stress is negligible. Recent spectroscopic data from the mineral scale documenting pressure variations do not support this assumption. In addition to observations, mechanical models (numerical and analytical) suggest that rocks can develop and maintain heterogeneous pressure distributions at geological time scales. The recently developed unconventional barometry explains chemical zoning in minerals as a result of a pressure variation. We focus to apply the unconventional barometry in cases where chemical zoning in minerals cannot be explained by sluggish kinetics. In that respect, the unconventional barometry offers an alternative view of the chemical zoning which is consistent with thermodynamic equilibrium. However, to distinguish between a pressure-controlled chemical zoning and a zoning reflecting an incomplete chemical reaction is still challenging, especially for multicomponent systems. In this contribution, different types of chemical zoning are discussed. We investigate plagioclase rims around kyanite from an amphibolitized eclogite from Rhodope Metamorphic Complex (Greece-Bulgaria) as a case study and compare them with similar published textures from the Bohemian Massif. Mineral microstructures and phase equilibrium suggest that both rocks experienced near-isothermal decompression at high (>700C) temperatures. However, several distinct microstructural features suggest the development and/or the decay of mechanically maintained heterogeneous pressure distributions. We discuss our results and interpretations based on phase-equilibrium modeling, unconventional barometry and diffusion modeling under

  8. Neighborhood Disadvantage and Variations in Blood Pressure

    ERIC Educational Resources Information Center

    Cathorall, Michelle L.; Xin, Huaibo; Peachey, Andrew; Bibeau, Daniel L.; Schulz, Mark; Aronson, Robert

    2015-01-01

    Purpose: To examine the extent to which neighborhood disadvantage accounts for variation in blood pressure. Methods: Demographic, biometric, and self-reported data from 19,261 health screenings were used. Addresses of participants were geocoded and located within census block groups (n = 14,510, 75.3%). Three hierarchical linear models were…

  9. Monitoring Air Circulation Under Reduced Pressures

    NASA Astrophysics Data System (ADS)

    Rygalov, Vadim

    Adequate air circulation is required for controlled environments to maintain uniform temperature and humidity control, and hence the ability to measure air flow accurately is important. Human and associated life support habitats (e.g.,. plant production systems) for future space missions will likely be operated at pressures less than 100 kPa to minimize gas leakage and structural mass. Under such reduced pressures, the outputs from conventional anemometers for monitoring air flow can change and require re-calibration. These effects of atmospheric pressure on different types of air flow measurements are not completely understood; hence we compared the performance of several air flow sensors across a range of hypobaric pressures. Sensors included a propeller type anemometer, a hot-wire anemometer, and a Pitot-tube based device. Theoretical schematics (including mathematical models) underlying these measurements were developed. Results demonstrated that changes in sensor outputs were predictable based on their operating principles, and that corrections could be developed for sensors calibrated under normal Earth atmosphere pressure ( 100 kPa) and then used at different pressures. The potential effects of hypobaric atmospheres and their altered air flows on plant physiology are also discussed.

  10. Microfluidic pressure sensing using trapped air compression.

    PubMed

    Srivastava, Nimisha; Burns, Mark A

    2007-05-01

    We have developed a microfluidic method for measuring the fluid pressure head experienced at any location inside a microchannel. The principal component is a microfabricated sealed chamber with a single inlet and no exit; the entrance to the single inlet is positioned at the location where pressure is to be measured. The pressure measurement is then based on monitoring the movement of a liquid-air interface as it compresses air trapped inside the microfabricated sealed chamber and calculating the pressure using the ideal gas law. The method has been used to measure the pressure of the air stream and continuous liquid flow inside microfluidic channels (d approximately 50 microm). Further, a pressure drop has also been measured using multiple microfabricated sealed chambers. For air pressure, a resolution of 700 Pa within a full-scale range of 700-100 kPa was obtained. For liquids, pressure drops as low as 70 Pa were obtained in an operating range from 70 Pa to 10 kPa. Since the method primarily uses a microfluidic sealed chamber, it does not require additional fabrication steps and may easily be incorporated in several lab-on-a-chip fluidic applications for laminar as well as turbulent flow conditions.

  11. Pressure Drop in Radiator Air Tubes

    NASA Technical Reports Server (NTRS)

    Parsons, S R

    1921-01-01

    This report describes a method for measuring the drop in static pressure of air flowing through a radiator and shows (1) a reason for the discrepancy noted by various observers between head resistance and drop in pressure; (2) a difference in degree of contraction of the jet in entering a circular cell and a square cell; (3) the ratio of internal frictional resistance to total head resistance for two representative types; (4) the effect of smoothness of surface on pressure gradient; and (5) the effects of supplying heat to the radiator on pressure gradient. The fact that the pressure gradients are found to be approximately proportional to the square of the rate of flow of air appears to indicate turbulent flow, even in the short tubes of the radiator. It was found that the drop in the static pressure in the air stream through a cellular radiator and the pressure gradient in the air tubes are practically proportional to the square of the air flow in a given air density; that the difference between the head resistance per unit area and the fall of static pressure through the air tubes in radiators is apparent rather than real; and that radiators of different types differ widely in the amount of contraction of the jet at entrance. The frictional resistance was found to vary considerably, and in one case to be two-thirds of the head resistance in the type using circular cells and one-half of the head resistance of the radiator type using square cells of approximately the same dimensions.

  12. Modeling systolic pressure variation due to positive pressure ventilation.

    PubMed

    Messerges, Joanne

    2006-01-01

    Although many clinical techniques have been proposed to assess blood volume none have been established as an undisputed standard practice, Volume studies suggest systolic pressure variation (SPV) as a promising volume indicator but underlying influences on SPV are not well understood. Successful modeling of SPV will reveal the major SPV influencers, guide algorithm development to accommodate these influencers, and potentially lead to a more clinically relevant interpretation of SPV values, thus improving upon current clinical methods for assessing blood volume. This study takes a first step towards identifying SPV influencers by investigating three variations of an existing pressure-flow cardiovascular model. Each successive version introduces an additional modification in attempt to model SPV under normovolemic and hypovolemic conditions, where the last model accounts for positive pressure ventilation, venous compression, and a rightward septum shift. Under normovolemic conditions, each model yields SPV values of 5.8, 6.4, and 6.7 mmHg, respectively. Under hypovolemic conditions the results do not agree with clinical findings, suggesting these three mechanisms alone do not dictate the clinical SPV response to a decrease in volume. Model results are used to suggest improvements for future work.

  13. Building pressurization control with rooftop air conditioners

    SciTech Connect

    Winter, S.

    1982-10-01

    The modulated exhaust fan appears to be the most cost effective positive means to maintain close building pressure control with rooftop air conditioning, but because building construction and applications vary, every building's pressure control needs must be analyzed. Requirements will vary from no relief to barometric dampers to return fans to modulated exhaust fans. As heating and cooling costs continue to rise and tighter building codes prevail, proper selection of building pressure control is one area that must be monitored more carefully by the HVAC system designer.

  14. Basic Studies on High Pressure Air Plasmas

    DTIC Science & Technology

    2006-08-30

    33, 2268 (2000). [3] Non- Equilibrium Air Plasmas at Atmospheric Pressure, K.H. Becker, U. Kogelschatz, K.H. Schoenbach, and R.J. Barker, eds., IOP...10). Note that LIFBASE assumes local thermodynamic equilibrium . 120 100 oExperimentalm Siuation 80 60 20- 0 -J ~ LkXi 3060 3070 3080 3090 3100...Dual laser interferometer for plasma density measurements on large tokamaks >>, Rev. Sci. Instrum. 49 p.919 (1978) [5] C.W. Gowers, C. Lamb, « A

  15. 49 CFR 195.104 - Variations in pressure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Variations in pressure. 195.104 Section 195.104... PIPELINE Design Requirements § 195.104 Variations in pressure. If, within a pipeline system, two or more components are to be connected at a place where one will operate at a higher pressure than another,...

  16. 49 CFR 195.104 - Variations in pressure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Variations in pressure. 195.104 Section 195.104... PIPELINE Design Requirements § 195.104 Variations in pressure. If, within a pipeline system, two or more components are to be connected at a place where one will operate at a higher pressure than another,...

  17. 49 CFR 195.104 - Variations in pressure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Variations in pressure. 195.104 Section 195.104... PIPELINE Design Requirements § 195.104 Variations in pressure. If, within a pipeline system, two or more components are to be connected at a place where one will operate at a higher pressure than another,...

  18. 49 CFR 195.104 - Variations in pressure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Variations in pressure. 195.104 Section 195.104... PIPELINE Design Requirements § 195.104 Variations in pressure. If, within a pipeline system, two or more components are to be connected at a place where one will operate at a higher pressure than another,...

  19. 21 CFR 880.5550 - Alternating pressure air flotation mattress.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Alternating pressure air flotation mattress. 880... Personal Use Therapeutic Devices § 880.5550 Alternating pressure air flotation mattress. (a) Identification. An alternating pressure air flotation mattress is a device intended for medical purposes...

  20. 21 CFR 880.5550 - Alternating pressure air flotation mattress.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Alternating pressure air flotation mattress. 880... Personal Use Therapeutic Devices § 880.5550 Alternating pressure air flotation mattress. (a) Identification. An alternating pressure air flotation mattress is a device intended for medical purposes...

  1. 21 CFR 880.5550 - Alternating pressure air flotation mattress.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Alternating pressure air flotation mattress. 880... Personal Use Therapeutic Devices § 880.5550 Alternating pressure air flotation mattress. (a) Identification. An alternating pressure air flotation mattress is a device intended for medical purposes...

  2. Air temperature variation across the seed cotton dryer mixpoint

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eighteen tests were conducted in six gins in the fall of 2008 to measure air temperature variation within various heated air seed cotton drying systems with the purpose of: checking validation of recommendations by a professional engineering society and measuring air temperature variation across the...

  3. Modeling Cyclic Variation of Intracranial Pressure

    DTIC Science & Technology

    2001-10-25

    with increasing vascular dilation induced by increasing the level of the partial pressure of carbon dioxide (PCO2) within the arterial blood ...ventilation. Simulated model recordings demonstrated that the correlation index between arterial blood pressure and ICP progressively increased... blood pressure (ABP) recording, the ICP Figure 1. Experimental Recordings of ABP and ICP during Normocapnia and Hypercapnia. a) Normocapnia with

  4. 21 CFR 880.5550 - Alternating pressure air flotation mattress.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... body pressure. The device is used to prevent and treat decubitus ulcers (bed sores). (b) Classification... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Alternating pressure air flotation mattress. 880... Personal Use Therapeutic Devices § 880.5550 Alternating pressure air flotation mattress. (a)...

  5. Air Flow and Pressure Drop Measurements Across Porous Oxides

    NASA Technical Reports Server (NTRS)

    Fox, Dennis S.; Cuy, Michael D.; Werner, Roger A.

    2008-01-01

    This report summarizes the results of air flow tests across eight porous, open cell ceramic oxide samples. During ceramic specimen processing, the porosity was formed using the sacrificial template technique, with two different sizes of polystyrene beads used for the template. The samples were initially supplied with thicknesses ranging from 0.14 to 0.20 in. (0.35 to 0.50 cm) and nonuniform backside morphology (some areas dense, some porous). Samples were therefore ground to a thickness of 0.12 to 0.14 in. (0.30 to 0.35 cm) using dry 120 grit SiC paper. Pressure drop versus air flow is reported. Comparisons of samples with thickness variations are made, as are pressure drop estimates. As the density of the ceramic material increases the maximum corrected flow decreases rapidly. Future sample sets should be supplied with samples of similar thickness and having uniform surface morphology. This would allow a more consistent determination of air flow versus processing parameters and the resulting porosity size and distribution.

  6. Preliminary investigation of cooling-air ejector performance at pressure ratios from 1 to 10

    NASA Technical Reports Server (NTRS)

    Ellis, C W; Hollister, D P; Sargent, A F , Jr

    1951-01-01

    Preliminary investigation was made of conical cooling air ejector at primary pressure ratios from 1 to 10. The cooling-air flow was maintained at zero and the resulting pressure variation in the shroud indicated pumping ability. The cooling-air flow was maintained at zero and the resulting pressure variation in the shroud indicated pumping ability. The gross thrust of the ejector and nozzle were compared. Several ratios of the spacing between the nozzle and shroud exit to the nozzle exit diameter were investigated for several shroud to nozzle exit diameter ratios. Maximum gross thrust loss occurred under conditions of zero cooling-air flow and was as much as 35 percent below nozzle jet thrust. For minimum thrust loss, ejector should be designed with as low diameter and spacing ratio as possible.

  7. Noncontact Monitoring of Respiration by Dynamic Air-Pressure Sensor.

    PubMed

    Takarada, Tohru; Asada, Tetsunosuke; Sumi, Yoshihisa; Higuchi, Yoshinori

    2015-01-01

    We have previously reported that a dynamic air-pressure sensor system allows respiratory status to be visually monitored for patients in minimally clothed condition. The dynamic air-pressure sensor measures vital information using changes in air pressure. To utilize this device in the field, we must clarify the influence of clothing conditions on measurement. The present study evaluated use of the dynamic air-pressure sensor system as a respiratory monitor that can reliably detect change in breathing patterns irrespective of clothing. Twelve healthy volunteers reclined on a dental chair positioned horizontally with the sensor pad for measuring air-pressure signals corresponding to respiration placed on the seat back of the dental chair in the central lumbar region. Respiratory measurements were taken under 2 conditions: (a) thinly clothed (subject lying directly on the sensor pad); and (b) thickly clothed (subject lying on the sensor pad covered with a pressure-reducing sheet). Air-pressure signals were recorded and time integration values for air pressure during each expiration were calculated. This information was compared with expiratory tidal volume measured simultaneously by a respirometer connected to the subject via face mask. The dynamic air-pressure sensor was able to receive the signal corresponding to respiration regardless of clothing conditions. A strong correlation was identified between expiratory tidal volume and time integration values for air pressure during each expiration for all subjects under both clothing conditions (0.840-0.988 for the thinly clothed condition and 0.867-0.992 for the thickly clothed condition). These results show that the dynamic air-pressure sensor is useful for monitoring respiratory physiology irrespective of clothing.

  8. Pressurized solid oxide fuel cell integral air accumular containment

    DOEpatents

    Gillett, James E.; Zafred, Paolo R.; Basel, Richard A.

    2004-02-10

    A fuel cell generator apparatus contains at least one fuel cell subassembly module in a module housing, where the housing is surrounded by a pressure vessel such that there is an air accumulator space, where the apparatus is associated with an air compressor of a turbine/generator/air compressor system, where pressurized air from the compressor passes into the space and occupies the space and then flows to the fuel cells in the subassembly module, where the air accumulation space provides an accumulator to control any unreacted fuel gas that might flow from the module.

  9. Evaluation of indoor air composition time variation in air-tight occupied spaces during night periods

    NASA Astrophysics Data System (ADS)

    Markov, Detelin

    2012-11-01

    This paper presents an easy-to-understand procedure for prediction of indoor air composition time variation in air-tight occupied spaces during the night periods. The mathematical model is based on the assumptions for homogeneity and perfect mixing of the indoor air, the ideal gas model for non-reacting gas mixtures, mass conservation equations for the entire system and for each species, a model for prediction of basal metabolic rate of humans as well as a model for prediction of O2 consumption rate and both CO2 and H2O generation rates by breathing. Time variation of indoor air composition is predicted at constant indoor air temperature for three scenarios based on the analytical solution of the mathematical model. The results achieved reveal both the most probable scenario for indoor air time variation in air-tight occupied spaces as well as the cause for morning tiredness after having a sleep in a modern energy efficient space.

  10. Observation of pressure variation in the cavitation region of submerged journal bearings

    NASA Technical Reports Server (NTRS)

    Etsion, I.; Ludwig, L. P.

    1981-01-01

    Visual observations and pressure measurements in the cavitation zone of a submerged journal bearing are described. Tests are run at speeds of 1840 and 3000 rpm, and at each speed, four different levels of the ambient supply pressure are applied, ranging from 13.6 KPa to 54.4 KPa. A strong reverse flow is detected inside the cavitation area adjacent to its downstream end, and significant pressure variations on the order of 50 KPa are found inside the cavitation region at the downstream portion of its circumferential extent. Results indicate that the assumption of a constant cavitation pressure is incorrect in the case of enclosed cavitations, and it is postulated that oil which is saturated with air under atmospheric pressure becomes oversaturated in the subcavity pressure loop.

  11. Correction of Temperatures of Air-Cooled Engine Cylinders for Variation in Engine and Cooling Conditions

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Pinkel, Benjamin; Ellerbrock, Herman H , Jr

    1939-01-01

    Factors are obtained from semiempirical equations for correcting engine-cylinder temperatures for variation in important engine and cooling conditions. The variation of engine temperatures with atmospheric temperature is treated in detail, and correction factors are obtained for various flight and test conditions, such as climb at constant indicated air speed, level flight, ground running, take-off, constant speed of cooling air, and constant mass flow of cooling air. Seven conventional air-cooled engine cylinders enclosed in jackets and cooled by a blower were tested to determine the effect of cooling-air temperature and carburetor-air temperature on cylinder temperatures. The cooling air temperature was varied from approximately 80 degrees F. to 230 degrees F. and the carburetor-air temperature from approximately 40 degrees F. to 160 degrees F. Tests were made over a large range of engine speeds, brake mean effective pressures, and pressure drops across the cylinder. The correction factors obtained experimentally are compared with those obtained from the semiempirical equations and a fair agreement is noted.

  12. Pressure variations on a train - Where is the threshold to railway passenger discomfort?

    PubMed

    Schwanitz, Sandra; Wittkowski, Martin; Rolny, Vinzent; Basner, Mathias

    2013-03-01

    The implementation of recent guidelines for tunnel construction in Germany leads to extended air pressure variations inside trains and reduces pressure comfort for railway passengers. A questionnaire survey with 262 passengers revealed that pressure variations are rated less important for riding comfort than climatic and spatial aspects (study 1). A laboratory experiment (study 2) in the pressure chamber at the DLR Institute of Aerospace Medicine with 31 subjects (mean age = 37.7, SD = 12.7; 51.6% male) investigated the effects of systematic pressure variations on discomfort. The pressure changes (pressure increases and decreases) ranged from 1 to 100 mbar and were realized within 1-100 s. We derived thresholds for healthy passengers by means of random effects linear and logistic regression analysis. Logistic dose-response curves revealed amplitude/time combinations leading to a certain percentage of passengers perceiving discomfort (e.g. 50% dissatisfied passengers regarding a pressure increase of approximately 30 mbar within 5 s). The findings may help design engineers to meet passengers' comfort requirements.

  13. Laboratory performance of alternating pressure air mattresses component and sequelae.

    PubMed

    Bain, Duncan

    The performance of three different alternating pressure air mattresses with different geometries of air cell were compared (Nimbus 3, Heritage, Tamora Plus), using simple performance indices based on pressure mapping. The aim of this study was to examine the effect on performance of elevating the backrest and thigh section of the bed into sitting position. Ten healthy volunteers of various sizes were pressure-mapped over the full pressure cycle on three alternating pressure air mattresseses with differing cell geometries. This was then repeated with the beds profiled to a sitting position. Performance of the alternating pressure air mattresses in terms of their ability to redistribute pressure dynamically was assessed in the different positions. The different alternating pressure air mattresses performed similarly with the bed in the lying flat position, but smaller cells appeared to be more effective in the sitting position. A conclusion was made that cell geometry may have an effect on the ability of the mattress to achieve alternating behaviour in the sitting position.

  14. 58. AIR PRESSURIZATION TANK BEING LIFTED INTO PLACE ON THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    58. AIR PRESSURIZATION TANK BEING LIFTED INTO PLACE ON THE VAL BRIDGE STRUCTURE AT ISLIP CANYON, April 9, 1948. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  15. 27. EXTENSION OF SURGE CHAMBER AND AIR PIPES TO PRESSURE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. EXTENSION OF SURGE CHAMBER AND AIR PIPES TO PRESSURE LINE, HIGHLINE PUMPING PLANT. December 11, 1920 - Highline Canal & Pumping Station, South side of Salt River between Tempe, Phoenix & Mesa, Tempe, Maricopa County, AZ

  16. Explosion pressures of hydrocarbon-air mixtures in closed vessels.

    PubMed

    Razus, Domnina; Movileanu, Codina; Brinzea, Venera; Oancea, D

    2006-07-31

    An experimental study on pressure evolution during closed vessel explosions of several gaseous fuel-air mixtures was performed, at various initial pressures within 0.3-1.2 bar and ambient initial temperature. Explosion pressures and explosion times are reported for methane-, n-pentane-, n-hexane-, propene-, butene-, butadiene-, cyclohexane- and benzene-air mixtures. The explosion pressures measured in a spherical vessel (Phi=10 cm) and in three cylindrical vessels with different diameter/height ratios are examined in comparison with the adiabatic explosion pressures, computed by assuming chemical equilibrium within the flame front. The influence of initial pressure, fuel concentration and heat losses during propagation (determined by the size and shape of the explosion vessel and by the position of the ignition source) on explosion pressures and explosion times are discussed for some of the examined systems.

  17. Techniques for estimating blood pressure variation using video images.

    PubMed

    Sugita, Norihiro; Obara, Kazuma; Yoshizawa, Makoto; Abe, Makoto; Tanaka, Akira; Homma, Noriyasu

    2015-01-01

    It is important to know about a sudden blood pressure change that occurs in everyday life and may pose a danger to human health. However, monitoring the blood pressure variation in daily life is difficult because a bulky and expensive sensor is needed to measure the blood pressure continuously. In this study, a new non-contact method is proposed to estimate the blood pressure variation using video images. In this method, the pulse propagation time difference or instantaneous phase difference is calculated between two pulse waves obtained from different parts of a subject's body captured by a video camera. The forehead, left cheek, and right hand are selected as regions to obtain pulse waves. Both the pulse propagation time difference and instantaneous phase difference were calculated from the video images of 20 healthy subjects performing the Valsalva maneuver. These indices are considered to have a negative correlation with the blood pressure variation because they approximate the pulse transit time obtained from a photoplethysmograph. However, the experimental results showed that the correlation coefficients between the blood pressure and the proposed indices were approximately 0.6 for the pulse wave obtained from the right hand. This result is considered to be due to the difference in the transmission depth into the skin between the green and infrared light used as light sources for the video image and conventional photoplethysmogram, respectively. In addition, the difference in the innervation of the face and hand may be related to the results.

  18. Method and Apparatus for Measuring Surface Air Pressure

    NASA Technical Reports Server (NTRS)

    Lin, Bing (Inventor); Hu, Yongxiang (Inventor)

    2014-01-01

    The present invention is directed to an apparatus and method for remotely measuring surface air pressure. In one embodiment, the method of the present invention utilizes the steps of transmitting a signal having multiple frequencies into the atmosphere, measuring the transmitted/reflected signal to determine the relative received power level of each frequency and then determining the surface air pressure based upon the attenuation of the transmitted frequencies.

  19. Underground storage systems for high-pressure air and gases

    NASA Technical Reports Server (NTRS)

    Beam, B. H.; Giovannetti, A.

    1975-01-01

    This paper is a discussion of the safety and cost of underground high-pressure air and gas storage systems based on recent experience with a high-pressure air system installed at Moffett Field, California. The system described used threaded and coupled oil well casings installed vertically to a depth of 1200 ft. Maximum pressure was 3000 psi and capacity was 500,000 lb of air. A failure mode analysis is presented, and it is shown that underground storage offers advantages in avoiding catastrophic consequences from pressure vessel failure. Certain problems such as corrosion, fatigue, and electrolysis are discussed in terms of the economic life of such vessels. A cost analysis shows that where favorable drilling conditions exist, the cost of underground high-pressure storage is approximately one-quarter that of equivalent aboveground storage.

  20. Pressure of air on coming to rest from various speeds

    NASA Technical Reports Server (NTRS)

    Zahm, A F

    1927-01-01

    The text gives theoretical formulas from which is computed a table for the pressure of air on coming to rest from various speeds, such as those of aircraft and propeller blades. Pressure graphs are given for speeds from 1 cm. Sec. up to those of swift projectiles.

  1. Teaching Science: Air Pressure "Eggs-periments."

    ERIC Educational Resources Information Center

    Leyden, Michael B.

    1994-01-01

    Discusses how teachers can introduce students to various scientific concept concerning motion, air composition, and heat by conducting an experiment: A peeled, hard-boiled egg is sucked into a bottle neck slightly smaller than the egg, after the bottle has been filled and emptied of hot water. Also discusses how students' understanding of the…

  2. Seasonal variations of air pollutant concentrations within Krasnoyarsk City.

    PubMed

    Mikhailuta, Sergey V; Taseiko, Olga V; Pitt, Anne; Lezhenin, Anatoly A; Zakharov, Yuri V

    2009-02-01

    This paper examines the significant differences in seasonal variations of criteria pollutant concentrations in various parts of a large urban area. These differences are caused by the microclimatic heterogeneity of the city and show the influence of breeze and orographic-type circulations on urban air pollution. The temperature heterogeneity of Krasnoyarsk territory during the winter leads to an increase of 150% in CO air pollution levels in the central part of city. During the summer the orographical heterogeneity of Krasnoyarsk City leads to increases of up to 400% in air pollution for different areas.

  3. Modeling of patient's blood pressure variation during ambulance transportation

    NASA Astrophysics Data System (ADS)

    Sakatani, Kenji; Ono, Takahiko; Kobayasi, Yasuhide; Hikita, Shinichi; Saito, Mitsuyuki

    2007-12-01

    In an emergency transportation by ambulance, a patient is transported in a supine position. In this position, a patient's blood pressure (BP) variation depending on an inertial force which occurs when an ambulance accelerates or decelerates. This BP variation causes a critical damage for a patent with brain disorder. In order to keep a patient stable during transportation, it is required to maintain small BP variation. To analyze the BP variation during transportation, a model of the BP variation has so far been made. But, it can estimate the BP variation only in braking. The purpose of this paper is to make a dynamical model of the BP variation which can simulate it in both braking and accelerating. First, to obtain the data to construct the model, we used a tilting bed to measure a head-to-foot acceleration and BP of fingertip. Based on this data, we build a mathematical model whose input is the head-to-foot acceleration and output is the Mean BP variation. It is a switched model which switches two models depending on the jerk. We add baroreceptor reflex to the model as a offset value.

  4. Generation of high pressure homogeneous dielectric barrier discharge in air

    NASA Astrophysics Data System (ADS)

    Osawa, Naoki; Takashi, Ami; Yoshioka, Yoshio; Hanaoka, Ryoichi

    2013-02-01

    We succeeded in generating an atmospheric pressure Townsend discharge (APTD) in air by using a simple DBD device that consists of alumina barriers and plane electrodes. So far, we applied the APTD to an ozonizer and found that the ozone generation efficiency was higher by the APTD mode than by the conventional DBD mode in larger specific input energy region. It is well known that an operation under an optimized high gas pressure is advantageous for efficient ozone generation from air. In this paper, we investigated whether the Townsend discharge (TD) in dry air in high pressure up to 0.17 MPa can be generated or not. From the observation results of current waveforms and discharge photographs, we found that (1) the discharge currents flow continuously and have only one peak in every half cycle in all gas pressure and (2) filamentary discharges are not recognized between barriers in all gas pressure. These features completely agree with the features of the APTD we reported. Therefore, we concluded that our TD can be generated even in dry air in the pressure range of 0.1 and 0.17 MPa. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

  5. Diurnal blood pressure variation and related behavioral factors.

    PubMed

    Kawano, Yuhei

    2011-03-01

    Blood pressure (BP) varies according to many internal and external factors, and behavioral factors have an important role in diurnal BP variation. BP rises sharply on waking in the morning and falls during sleep at night, although it varies throughout the day and night. These changes in BP are closely related to mental and physical activities, and the sympathetic nervous system mainly contributes to the diurnal variation in BP. Other behavioral factors, such as food consumption and obesity, dietary intake of sodium, drinking and smoking habits, consumption of coffee and tea, and bathing, also affect the diurnal variation in BP. Alterations in diurnal BP variation due to behavioral factors are frequently seen in patients with hypertension and can be classified as morning hypertension, daytime hypertension and nighttime hypertension. Appropriate lifestyle modifications may normalize or improve both the level and rhythm of BP in these patients.

  6. The variation of the relative humidity of air released from canisters after ambient sampling

    SciTech Connect

    McClenny, W.A.; Schmidt, S.M.; Kronmiller, K.G.

    1997-12-31

    Dalton`s Law of partial pressures and the hypothesis that water vapor equilibrium above a canister surface is identical to that established above liquid water are used to predict the variation of the percent relative humidity (%RH) of air released from canisters used in ambient air sampling, typically 6L canisters pressurized with 18L of air. During sampling, some water vapor is adsorbed on the canister wall. When (and if) the water vapor partial pressure exceeds its saturation vapor pressure, water vapor condensation begins and the condensation rate equals the sampling rate of water vapor into the canister. Under constant temperature conditions, the air subsequently released from the canister is less humid than the original sample, following the relationship, %RH = 100% (6L/V{sub s}) for V{sub s} > V{sub r} where V{sub s} is the residual air volume and V{sub r} is the residual air volume at which water is completely removed (except for adsorbed water vapor) from the canister wall. For V{sub s} < V{sub r} the %RH is constant and equal to its value at V{sub r}, V{sub r} is shown to depend on the %RH of the ambient air sample. Experimental values to agree reasonably well with predictions; however, experimental values were systematically lower than predicted especially when ambient air with mid-range %RH was sampled. This difference is related to the mass of water vapor remaining adsorbed on the canister surface as water evaporates. This paper has been reviewed in accordance with the U.S. Environmental Protection Agency`s peer and administrative review policies and approved for presentation and publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

  7. Temperature and pressure influence on explosion pressures of closed vessel propane-air deflagrations.

    PubMed

    Razus, Domnina; Brinzea, Venera; Mitu, Maria; Oancea, Dumitru

    2010-02-15

    An experimental study on pressure evolution during closed vessel explosions of propane-air mixtures was performed, for systems with various initial concentrations and pressures ([C(3)H(8)]=2.50-6.20 vol.%, p(0)=0.3-1.2 bar). The explosion pressures and explosion times were measured in a spherical vessel (Phi=10 cm), at various initial temperatures (T(0)=298-423 K) and in a cylindrical vessel (Phi=10 cm; h=15 cm), at ambient initial temperature. The experimental values of explosion pressures are examined against literature values and compared to adiabatic explosion pressures, computed by assuming chemical equilibrium within the flame front. The influence of initial pressure, initial temperature and fuel concentration on explosion pressures and explosion times are discussed. At constant temperature and fuel/oxygen ratio, the explosion pressures are linear functions of total initial pressure, as reported for other fuel-air mixtures. At constant initial pressure and composition, both the measured and calculated (adiabatic) explosion pressures are linear functions of reciprocal value of initial temperature. Such correlations are extremely useful for predicting the explosion pressures of flammable mixtures at elevated temperatures and/or pressures, when direct measurements are not available.

  8. Fuel Cells Utilizing Oxygen From Air at Low Pressures

    NASA Technical Reports Server (NTRS)

    Cisar, Alan; Boyer, Chris; Greenwald, Charles

    2006-01-01

    A fuel cell stack has been developed to supply power for a high-altitude aircraft with a minimum of air handling. The fuel cell is capable of utilizing oxygen from ambient air at low pressure with no need for compression. For such an application, it is advantageous to take oxygen from the air (in contradistinction to carrying a supply of oxygen onboard), but it is a challenging problem to design a fuel-cell stack of reasonable weight that can generate sufficient power while operating at reduced pressures. The present fuel-cell design is a response to this challenge. The design features a novel bipolar plate structure in combination with a gas-diffusion structure based on a conductive metal core and a carbon gas-diffusion matrix. This combination makes it possible for the flow fields in the stack to have a large open fraction (ratio between open volume and total volume) to permit large volumes of air to flow through with exceptionally low backpressure. Operations at reduced pressure require a corresponding increase in the volume of air that must be handled to deliver the same number of moles of oxygen to the anodes. Moreover, the increase in the open fraction, relative to that of a comparable prior fuel-cell design, reduces the mass of the stack. The fuel cell has been demonstrated to operate at a power density as high as 105 W/cm2 at an air pressure as low as 2 psia (absolute pressure 14 kPa), which is the atmospheric pressure at an altitude of about 50,000 ft ( 15.2 km). The improvements in the design of this fuel cell could be incorporated into designs of other fuel cells to make them lighter in weight and effective at altitudes higher than those of prior designs. Potential commercial applications for these improvements include most applications now under consideration for fuel cells.

  9. Inverse association between air pressure and rheumatoid arthritis synovitis.

    PubMed

    Terao, Chikashi; Hashimoto, Motomu; Furu, Moritoshi; Nakabo, Shuichiro; Ohmura, Koichiro; Nakashima, Ran; Imura, Yoshitaka; Yukawa, Naoichiro; Yoshifuji, Hajime; Matsuda, Fumihiko; Ito, Hiromu; Fujii, Takao; Mimori, Tsuneyo

    2014-01-01

    Rheumatoid arthritis (RA) is a bone destructive autoimmune disease. Many patients with RA recognize fluctuations of their joint synovitis according to changes of air pressure, but the correlations between them have never been addressed in large-scale association studies. To address this point we recruited large-scale assessments of RA activity in a Japanese population, and performed an association analysis. Here, a total of 23,064 assessments of RA activity from 2,131 patients were obtained from the KURAMA (Kyoto University Rheumatoid Arthritis Management Alliance) database. Detailed correlations between air pressure and joint swelling or tenderness were analyzed separately for each of the 326 patients with more than 20 assessments to regulate intra-patient correlations. Association studies were also performed for seven consecutive days to identify the strongest correlations. Standardized multiple linear regression analysis was performed to evaluate independent influences from other meteorological factors. As a result, components of composite measures for RA disease activity revealed suggestive negative associations with air pressure. The 326 patients displayed significant negative mean correlations between air pressure and swellings or the sum of swellings and tenderness (p = 0.00068 and 0.00011, respectively). Among the seven consecutive days, the most significant mean negative correlations were observed for air pressure three days before evaluations of RA synovitis (p = 1.7 × 10(-7), 0.00027, and 8.3 × 10(-8), for swellings, tenderness and the sum of them, respectively). Standardized multiple linear regression analysis revealed these associations were independent from humidity and temperature. Our findings suggest that air pressure is inversely associated with synovitis in patients with RA.

  10. Inverse Association between Air Pressure and Rheumatoid Arthritis Synovitis

    PubMed Central

    Furu, Moritoshi; Nakabo, Shuichiro; Ohmura, Koichiro; Nakashima, Ran; Imura, Yoshitaka; Yukawa, Naoichiro; Yoshifuji, Hajime; Matsuda, Fumihiko; Ito, Hiromu; Fujii, Takao; Mimori, Tsuneyo

    2014-01-01

    Rheumatoid arthritis (RA) is a bone destructive autoimmune disease. Many patients with RA recognize fluctuations of their joint synovitis according to changes of air pressure, but the correlations between them have never been addressed in large-scale association studies. To address this point we recruited large-scale assessments of RA activity in a Japanese population, and performed an association analysis. Here, a total of 23,064 assessments of RA activity from 2,131 patients were obtained from the KURAMA (Kyoto University Rheumatoid Arthritis Management Alliance) database. Detailed correlations between air pressure and joint swelling or tenderness were analyzed separately for each of the 326 patients with more than 20 assessments to regulate intra-patient correlations. Association studies were also performed for seven consecutive days to identify the strongest correlations. Standardized multiple linear regression analysis was performed to evaluate independent influences from other meteorological factors. As a result, components of composite measures for RA disease activity revealed suggestive negative associations with air pressure. The 326 patients displayed significant negative mean correlations between air pressure and swellings or the sum of swellings and tenderness (p = 0.00068 and 0.00011, respectively). Among the seven consecutive days, the most significant mean negative correlations were observed for air pressure three days before evaluations of RA synovitis (p = 1.7×10−7, 0.00027, and 8.3×10−8, for swellings, tenderness and the sum of them, respectively). Standardized multiple linear regression analysis revealed these associations were independent from humidity and temperature. Our findings suggest that air pressure is inversely associated with synovitis in patients with RA. PMID:24454853

  11. Air bubble migration rates as a proxy for bubble pressure distribution in ice cores

    NASA Astrophysics Data System (ADS)

    Dadic, Ruzica; Schneebeli, Martin; Bertler, Nancy

    2015-04-01

    Air bubble migration can be used as a proxy to measure the pressure of individual bubbles and can help constrain the gradual close-off of gas bubbles and the resulting age distribution of gases in ice cores. The close-off depth of single bubbles can vary by tens of meters, which leads to a distribution of pressures for bubbles at a given depth. The age distribution of gases (along with gas-age-ice-age differences) decreases the resolution of the gas level reconstructions from ice cores and limits our ability to determine the phase relationship between gas and ice, and thus, the impact of rapid changes of greenhouse gases on surface temperatures. For times of rapid climate change, including the last 150 years, and abrupt climate changes further back in the past, knowledge of the age distribution of the gases trapped in air bubbles will enable us to refine estimates of atmospheric changes. When a temperature gradient is applied to gas bubbles in an ice sample, the bubbles migrate toward warmer ice. This motion is caused by sublimation from the warm wall and subsequent frost deposition on the cold wall. The migration rate depends on ice temperature and bubble pressure and is proportional to the temperature gradient. The spread in migration rates for bubbles in the same samples at given temperatures should therefore reflect the variations in bubble pressures within a sample. Air bubbles with higher pressures would have been closed off higher in the firn column and thus have had time to equilibrate with the surrounding ice pressure, while air bubbles that have been closed off recently would have pressures that are similar to todays atmospheric pressure above the firn column. For ice under pressures up to ~13-16 bar, the pressure distribution of bubbles from a single depth provides a record of the trapping function of air bubbles in the firn column for a certain time in the past. We will present laboratory experiments on air bubble migration, using Antarctic ice core

  12. Tongue-Palate Contact Pressure, Oral Air Pressure, and Acoustics of Clear Speech

    ERIC Educational Resources Information Center

    Searl, Jeff; Evitts, Paul M.

    2013-01-01

    Purpose: The authors compared articulatory contact pressure (ACP), oral air pressure (Po), and speech acoustics for conversational versus clear speech. They also assessed the relationship of these measures to listener perception. Method: Twelve adults with normal speech produced monosyllables in a phrase using conversational and clear speech.…

  13. Experimental study of pulsed corona discharge in air at high pressures

    NASA Astrophysics Data System (ADS)

    Lin, Yunghsu; Singleton, Dan; Sanders, Jason; Kuthi, Andras; Gundersen, Martin A.

    2012-10-01

    Understanding of the dynamics of nanosecond scale pulse discharges in air at multiatmospheric pressure is essential for the development of transient plasma enhanced combustion in internal combustion engines. Here we report the result of our experimental investigation of cathode-directed streamer discharges in synthetic air at pressures ranging from 1 to 20 bar. Two pulse generators with maximum pulse amplitudes of 50 kV and 65 kV, pulse width of approximately 12 ns and 85 ns and pulse rise times of 5 ns and 50 ns are used to generate streamers. The electrodes are coaxial with various radial gaps up to 11.75 mm. The discharge chamber is evacuated and backfilled with synthetic dry air at room temperature. Optical data is obtained from PI-MAX 3 ICCD camera with 3 ns gate width. The streamer propagation velocity variation with applied voltage, different pressures and reduced electric field, E/P, will be shown. Preliminary results indicate that the (pd) similarity law is violated at high pressures in agreement with other recent experiments [1].[4pt] [1] ``Nanosecond Scale Discharge Dynamics in High Pressure Air,'' Pierre Tardiveau, Nicolas Moreau, Francois Jorand, Christian Postel, St'ephane Pasquiers, and Pierre Vervisch, IEEE Trans. on Plasma Sci., Vol. 36, No. 4, 2008.

  14. The Jar Magic--Instructional Activities for Teaching Air Pressure

    ERIC Educational Resources Information Center

    Ku, Bing-Hong; Chen, Chyong-Sun

    2013-01-01

    There are a variety of impressive activities designed for teaching the concept of air pressure to junior high school students. Water, glasses, balloons, plastic bottles, and suction cups are some of the items commonly used in these experiments. For example, if we take a glass of water, cover it with a piece of cardboard, and invert the glass,…

  15. 21 CFR 880.5550 - Alternating pressure air flotation mattress.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Alternating pressure air flotation mattress. 880.5550 Section 880.5550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital...

  16. Experimental Air Pressure Tank Systems for Process Control Education

    ERIC Educational Resources Information Center

    Long, Christopher E.; Holland, Charles E.; Gatzke, Edward P.

    2006-01-01

    In process control education, particularly in the field of chemical engineering, there is an inherent need for industrially relevant hands-on apparatuses that enable one to bridge the gap between the theoretical content of coursework and real-world applications. At the University of South Carolina, two experimental air-pressure tank systems have…

  17. Predictors of intra-community variation in air quality

    PubMed Central

    FRANKLIN, MEREDITH; VORA, HITA; AVOL, EDWARD; McCONNELL, ROB; LURMANN, FRED; LIU, FEIFEI; PENFOLD, BRYAN; BERHANE, KIROS; GILLILAND, FRANK; GAUDERMAN, W. JAMES

    2015-01-01

    Air quality has emerged as a key determinant of important health outcomes in children and adults. This study aims to identify factors that influence local, within-community air quality, and to build a model for traffic-related air pollution (TRP).We utilized concentrations of NO2, NO, and total oxides of nitrogen (NOx), which were measured at 942 locations in 12 southern California communities. For each location, population density, elevation, land-use, and several indicators of traffic were calculated. A spatial random effects model was used to study the relationship of these predictors to each TRP.Variation in TRP was strongly correlated with traffic on nearby freeways and other major roads, and also with population density and elevation. After accounting for traffic, categories of land-use were not associated with the pollutants. Traffic had a larger relative impact in small urban (low regional pollution) communities than in large urban (high regional pollution) communities. For example, our best fitting model explained 70% of the variation in NOx in large urban areas and 76% in small urban areas. Compared with living at least 1,500m from a freeway, living within 250m of a freeway was associated with up to a 41% increase in TRP in a large urban area, and up to a 75% increase in small urban areas.Thus, traffic strongly affects local air quality in large and small urban areas, which has implications for exposure assessment and estimation of health risks. PMID:22252279

  18. Cortical representation of tympanic membrane movements due to pressure variation: an fMRI study.

    PubMed

    Job, Agnès; Paucod, Jean-Charles; O'Beirne, Greg A; Delon-Martin, Chantal

    2011-05-01

    Middle ear sensory information has never been localized in the homunculus of the somatosensory cortex (S1). We investigated the somatosensory representation of the middle ear in 15 normal hearing subjects. We applied small air pressure variations to the tympanic membrane while performing a 3T-fMRI study. Unilateral stimulations of the right ear triggered bilateral activations in the caudal part of the postcentral gyrus in Brodmann area 43 (BA 43) and in the auditory associative areas 42 (BA 42) and 22 (BA 22). BA 43 has been found to be involved in activities accompanying oral intake and could be more largely involved in pressure activities in the oropharynx area. The tympanic membrane is indirectly related to the pharynx area through the action of tensor tympani, which is a Eustachian tube muscle. The Eustachian tube muscles have a role in pressure equalization in the middle ear and also have a role in the pharyngeal phase of swallowing. Activation of BA 42 and BA 22 could reflect activations associated with the bilateral acoustic reflex triggered prior to self-vocalization to adjust air pressure in the oropharynx during speech. We propose that BA 43, 42, and 22 are the cortical areas associated with middle ear function. We did not find representation of tympanic membrane movements due to pressure in S1, but its representation in the postcentral gyrus in BA 43 seems to suggest that at least part of this area conveys pure somatosensory information.

  19. Improved fireman's compressed air breathing system pressure vessel development program

    NASA Technical Reports Server (NTRS)

    King, H. A.; Morris, E. E.

    1973-01-01

    Prototype high pressure glass filament-wound, aluminum-lined pressurant vessels suitable for use in a fireman's compressed air breathing system were designed, fabricated, and acceptance tested in order to demonstrate the feasibility of producing such high performance, lightweight units. The 4000 psi tanks have a 60 standard cubic foot (SCF) air capacity, and have a 6.5 inch diamter, 19 inch length, 415 inch volume, weigh 13 pounds when empty, and contain 33 percent more air than the current 45 SCF (2250 psi) steel units. The current steel 60 SCF (3000 psi) tanks weigh approximately twice as much as the prototype when empty, and are 2 inches, or 10 percent shorter. The prototype units also have non-rusting aluminum interiors, which removes the hazard of corrosion, the need for internal coatings, and the possibility of rust particles clogging the breathing system.

  20. Flame structures in the pressurized methane-air combustor

    SciTech Connect

    Yamamoto, Tsuyoshi; Miyazaki, Tomonaga, Furuhata, Tomohiko; Arai, Norio

    1998-07-01

    This study has been carried out in order to investigate the applicability of a pressurized and fuel-rich burner at a first stage combustor for a newly proposed chemical gas turbine system. The flammability limits, exhaust gas composition and the NO{sub x} emission characteristics under the pressurized conditions of 1.1--4.1 MPa have been investigated in a model combustor. This paper focuses on the influence of pressure and F/A equivalence ratio on flame structures of pressurized combustion with methane and air to obtain detailed data for designing of fuel-rich combustor for gas turbine application. The flame under fuel-rich condition and pressure of 1 MPa showed underventilated structure like other atmospheric fuel-rich flames while the flame under pressure over 1.5 MPa had shapes as fuel-lean flame. The flame becomes longer as the pressure was increased under the fuel-lean conditions, which under fuel-rich condition the influence of pressure on flame length was smaller in comparison with the flame under fuel-lean conditions. These results give an opportunity for developing smaller combustor under fuel-rich and pressurized condition compared to fuel-lean one. Numerical simulation has been done for defining the temperature profile in the model combustor using the k-{var{underscore}epsilon} turbulence model and three-step reaction model. The comparison between theoretical results and experimental data showed fair agreements.

  1. Using Advanced Tensiometers to Monitor Temporal Variations in Pore Pressure

    NASA Astrophysics Data System (ADS)

    Nichols, R. L.; Young, M. H.; Dixon, K. L.; Rossabi, J.; Hyde, W. K.; Holmes-Burns, H.

    2002-12-01

    The Savannah River Site has installed a comprehensive vadose zone monitoring system (VZMS) at it's low level radioactive waste disposal facility to collect the necessary information to calculate contaminant flux. The VZMS includes water content reflectometers, suction lysimeters, advanced tensiometers (ATs), water flux meters, access ports for neutron probes, and a tipping bucket rain gauge. Forty one ATs were installed from 1999 to 2001 at depths ranging from 2 to 60 feet and have been operated continuously. The installation depths were based on a hydrostatigraphic model developed from core logs, cone penetrometer logs, moisture content profiles, water retention curves model that were obtained during the phased installation of the VZMS. An AT consists of a porous cup installed at a prescribed depth with casing back to the surface and a pressure transducer that is lowered into the casing and connects with the porous cup. The pressure transducer transmits it's signal to a datalogger where the data is stored for future retrieval using a cellular phone communications package. Results from the 2 year operating period show that the AT calibrations are stable and t ATs are capable of extended monitoring of pore pressures in the 0 to 300 cm H2 O range. The ATs had sufficient resolution to detect the naturally occurring fluctuations in pore pressure (1 to 100 cm H2 O over 1 to 72 hours) that resulted from infiltration events at the site. The stable performance of the ATs combined with their ability to detect naturally occurring fluctuations in pore pressure make the ATs a useful tool in measuring temporal pore pressure variations for use in calibrating numerical models of fluid flow in variably saturated porous media.

  2. Pressure variation under the ischial tuberosity during a push cycle.

    PubMed

    Dabnichki, P; Taktak, D

    1998-06-01

    The present study is devoted to the variation of the magnitude of the compressive loading acting on the soft seating parts of a disabled person and the related pressure distribution under the ischial tuberosity during wheelchair propulsion. A combined experimental and computational approach was designed to predict correctly the change in magnitude of the maximum internal shear and compressive stresses produced by different propulsion speeds, cushion characteristics and body position of the subject. The results obtained show that the vertical force acting on the seating parts increases with the propulsion speed and exceeds the body weight by more than 100%. The related pressure under the ischial tuberosity shows a significant increase of 125% on the tissue/seat interface and an estimated increase of 185% in the peak compressive stress. It is concluded that computer modelling using a quasi-static approach provides a reliable estimate of the pressure values by the observed loading frequencies of 0-4 Hz. It can also be noted that the time independent material model utilised for the bulky soft tissue proved adequate for the estimate of the pressure level occurring under the ischial tuberosity during a push cycle.

  3. Pressure variation of melting temperatures of alkali halides

    NASA Astrophysics Data System (ADS)

    Arafin, Sayyadul; Singh, Ram N.

    2017-02-01

    The melting temperatures of alkali halides (LiCl, LiF, NaBr, NaCl, NaF, NaI, KBr, KCl, KF, KI, RbBr, RbCl, RbI and CsI) have been evaluated over a wide range of pressures. The solid-liquid transition of alkali halides is of considerable significance due to their huge industrial applications. Our formalism requires a priori knowledge of the bulk modulus and the Grüneisen parameter at ambient conditions to compute Tm at high pressures. The computed values are in very good agreement with the available experimental results. The formalism can satisfactorily be used to compute Tm at high pressures where the experimental data are scanty. Most of the melting curves (Tm versus P) exhibit nonlinear variation with increasing pressure having curvatures downward and exhibit a maximum in some cases like NaCl, RbBr, RbCl and RbI. The values of Tmmax and Pmax corresponding to the maxima of the curves are given.

  4. Latitudinal variation in herbivore pressure in Atlantic Coast salt marshes.

    PubMed

    Pennings, Steven C; Ho, Chuan-Kai; Salgado, Cristiano S; Wieski, Kazimierz; Davé, Nilam; Kunza, Amy E; Wason, Elizabeth L

    2009-01-01

    Despite long-standing interest in latitudinal variation in ecological patterns and processes, there is to date weak and conflicting evidence that herbivore pressure varies with latitude. We used three approaches to examine latitudinal variation in herbivore pressure in Atlantic Coast salt marshes, focusing on five abundant plant taxa: the grass Spartina alterniflora, the congeneric rushes Juncus gerardii and J. roemerianus, the forb Solidago sempervirens, and the shrubs Iva frutescens and Baccharis halimifolia. Herbivore counts indicated that chewing and gall-making herbivores were typically > or = 10 times more abundant at low-latitude sites than at high-latitude sites, but sucking herbivores did not show a clear pattern. For two herbivore taxa (snails and tettigoniid grasshoppers), correctly interpreting latitudinal patterns required an understanding of the feeding ecology of the species, because the species common at high latitudes did not feed heavily on plant leaves whereas the related species common at low latitudes did. Damage to plants from chewing herbivores was 2-10 times greater at low-latitude sites than at high-latitude sites. Damage to transplanted "phytometer" plants was 100 times greater for plants transplanted to low- than to high-latitude sites, and two to three times greater for plants originating from high- vs. low-latitude sites. Taken together, these results provide compelling evidence that pressure from chewing and gall-making herbivores is greater at low vs. high latitudes in Atlantic Coast salt marshes. Sucking herbivores do not show this pattern and deserve greater study. Selective pressure due to greater herbivore damage at low latitudes is likely to partially explain documented patterns of low plant palatability to chewing herbivores and greater plant defenses at low latitudes, but other factors may also play a role in mediating these geographic patterns.

  5. Air and gas pockets in sewerage pressure mains.

    PubMed

    Lubbers, C L; Clemens, F

    2005-01-01

    In The Netherlands, wastewater is collected in municipal areas and transported to large centralised WWTPs by means of an extensive system of pressure mains. Over the past decades these pressure mains did not receive much attention in terms of monitoring of performance or maintenance. For that reason, in practice their state of functioning is often not known. Failure of operation is only noticed when the capacity of the system proves to be insufficient to fulfil the minimum design capacity demand. A recent inventory showed that half of the pressure mains show an increased pressure loss for no directly obvious reason. Many causes may account for the reduction of the system's nominal capacity like an increased wall roughness, scaling or occurrence of free gas in the pipeline. The occurrence of free gas may be caused by degassing of dissolved (bio) gas or by air entrained at the pumps' inlet or at air valves. A research study is started that will focus on three main issues: The description of the gas-water phenomena in wastewater pressure mains with respect to transportation and dynamic hydraulic behaviour, A method to diagnose gas problems, and To overcome future problems by either applying remedial measures or improving the design of wastewater pressure systems. For this study, two experimental facilities are constructed, a small circuit for the study of multi-phase flow and a second, larger one for the research into diagnostic methods. This paper describes the preliminary results of the experiments in the multi-phase circuit.

  6. One-Component Pressure-Temperature Phase Diagrams in the Presence of Air

    ERIC Educational Resources Information Center

    Andrade-Gamboa, Julio; Martire, Daniel O.; Donati, Edgardo R.

    2010-01-01

    One-component phase diagrams are good approximations to predict pressure-temperature ("P-T") behavior of a substance in the presence of air, provided air pressure is not much higher than the vapor pressure. However, at any air pressure, and from the conceptual point of view, the use of a traditional "P-T" phase diagram is not strictly correct. In…

  7. Analysis of Pressure Variations in a Low-Pressure Nickel-Hydrogen Battery - Part 1.

    PubMed

    Purushothaman, B K; Wainright, J S

    2012-05-15

    A low pressure nickel-hydrogen battery using either a metal hydride or gaseous hydrogen for H(2) storage has been developed for use in implantable neuroprosthetic devices. In this paper, pressure variations inside the cell for the gaseous hydrogen version are analyzed and correlated with oxygen evolution side reaction at the end of charging, the recombination of oxygen with hydrogen during charging and a subsequent rest period, and the self-discharge of the nickel electrode. About 70% of the recombination occurred simultaneously with oxygen evolution during charging and the remaining oxygen recombined with hydrogen during the 1(st) hour after charging. Self-discharge of the cell varies linearly with hydrogen pressure at a given state of charge and increased with increasing battery charge levels. The coulometric efficiency calculated based on analysis of the pressure-time data agreed well with the efficiency calculated based on the current-time data. Pressure variations in the battery are simulated accurately to predict coulometric efficiency and the state of charge of the cell, factors of extreme importance for a battery intended for implantation within the human body.

  8. Generation of subnanosecond electron beams in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Kostyrya, I. D.; Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Rybka, D. V.

    2009-11-01

    Optimum conditions for the generation of runaway electron beams with maximum current amplitudes and densities in nanosecond pulsed discharges in air at atmospheric pressure are determined. A supershort avalanche electron beam (SAEB) with a current amplitude of ˜30 A, a current density of ˜20 A/cm2, and a pulse full width at half maximum (FWHM) of ˜100 ps has been observed behind the output foil of an air-filled diode. It is shown that the position of the SAEB current maximum relative to the voltage pulse front exhibits a time shift that varies when the small-size collector is moved over the foil surface.

  9. Indicator system provides complete data of engine cylinder pressure variation

    NASA Technical Reports Server (NTRS)

    Mc Jones, R. W.; Morgan, N. E.

    1966-01-01

    Varying reference pressure used together with a balanced pressure pickup /a diaphragm switch/ to switch the electric output of the pressure transducer in a reference pressure line obtains precise engine cylinder pressure data from a high speed internal combustion engine.

  10. [Effects of sudden air temperature and pressure changes on mortality in the Czech Republic].

    PubMed

    Plavcová, E; Kyselý, J

    2009-04-01

    We have developed an algorithm for identifying sudden changes in air pressure and temperature over the Czech Republic. Such events were retrieved from the data covering in 1986-2005 and were matched with the daily numbers of all-cause deaths and deaths due to cardiovascular diseases from the national database, separately for the whole population and that aged 70 years and over. Excess daily mortality was determined by calculating deviations of the observed number of deaths from the expected number of deaths for each day in the respective groups. The relative deviation of the mortality the mean was calculated as the ratio of the excess mortality to the expected number of deaths. We used 3-hour air pressure data from 10 meteorological stations and hourly air temperature data from 9 stations representative of the Czech Republic. Pressure changes were evaluated on time scales of 3, 6 and 12 hours, separately for summer and winter time. Temperature changes were evaluated on a 24-hour time scale, separately for summer and winter season. Events characterized by pressure or temperature changes above the critical threshold and recorded within 24 hours at more than 50% of meteorological stations were retrieved. The critical thresholds were defined separately for each station using quantiles of distributions of air pressure and temperature changes. Relative mortality deviations for days D-2 (2 days before the change) to D+7 (7 days after the change) were averaged over the retrieved events. Statistical significance of the mean relative deviation was tested using the Monte Carlo method. Increased mortality followed large temperature increases and large pressure drops both in summer and winter months. Decreased mortality was observed after large pressure increases and large temperature drops in summer. Mortality variations are usually more pronounced in the population aged 70 years and over, and cardiovascular diseases account for most deaths after sudden temperature changes.

  11. Microcontrolled air-mattress for ulcer by pressure prevention

    NASA Astrophysics Data System (ADS)

    Pasluosta, Cristian F.; Fontana, Juan M.; Beltramone, Diego A.; Taborda, Ricardo A. M.

    2007-11-01

    An ulcer by pressure is produced when a constant pressure is exerted over the skin. This generates the collapse of the blood vessels and, therefore, a lack in the contribution of the necessary nutrients for the affected zone. As a consequence, the skin deteriorates, eventually causing an ulcer. In order to prevent it, a protocol must be applied to the patient, which is reflected on time and cost of treatment. There are some air mattresses available for this purpose, but whose performance does not fulfill all requirements. The prototype designed in our laboratory is based on the principle of the air mattress. Its objective is to improve on existing technologies and, due to an increased automation, reduce time dedication for personnel in charge of the patient. A clinical experience was made in the local Emergencies Hospital and also in an institution dedicated to aged patients care. In both cases, the results obtained and the comments from the personnel involved were favorable.

  12. The Jar Magic -- Instructional Activities for Teaching Air Pressure

    NASA Astrophysics Data System (ADS)

    Ku, Bing-Hong; Chen, Chyong-Sun

    2013-12-01

    There are a variety of impressive activities designed for teaching the concept of air pressure to junior high school students. Water, glasses, balloons, plastic bottles, and suction cups are some of the items commonly used in these experiments. For example, if we take a glass of water, cover it with a piece of cardboard, and invert the glass, amazingly, no water spills out. Further, one may also use balloons and plastic bottles as the components in another experiment. Place a balloon in a plastic bottle and spread the balloon's mouth over the bottle's rim. Inflate the balloon by blowing into it. Students will be astonished at the fact that the balloon remains inflated even though its mouth is open. Making suction cups "stick" to the wall is also an instance of proving how air pressure works.

  13. Ocean bottom pressure variation associated with path variations of the Kuroshio south of Japan

    NASA Astrophysics Data System (ADS)

    Nagano, Akira; Hasegawa, Takuya; Matsumoto, Hiroyuki; Ariyoshi, Keisuke

    2016-04-01

    The Kuroshio south of Japan takes a stable southward meandering path, called the large meander (LM), on interannual to decadal timescales. During the non-LM period, mesoscale disturbances of the Kuroshio path, called small meanders, occasionally occur in the region southeast of Kyushu and propagate eastward. Some of them develop to the LM, possibly associated with deep eddies. In order to reveal the relationship between the development of path disturbances and bottom current (or hydrostatic pressure), we examined variations of ocean bottom pressure obtained by pressure sensors deployed in the region off Shikoku (capes Ashizuri and Muroto). Bottom pressure on the continental slope is found to increase abruptly lagging a few months behind an elevation of sea surface height (SSH) due to the formation of the LM in July 2014. Geopotential distance from the sea surface to 2000 dbar based on hydrographic data at the Affiliated Surveys of the Kuroshio off Cape Ashizuri (ASUKA) line abruptly increases from early to late July. The reduction of density stratification, i.e., the weakened baroclinicity, causes the temporal delay of the increase of bottom pressure relative to the elevation of SSH associated with the formation of the LM.

  14. AIR SEPARATION BY PRESSURE SWING ADSORPTION USING SUPERIOR ADSORBENTS

    SciTech Connect

    Ralph T. Yang

    2001-08-31

    Li-X zeolite (Si/Al = 1.0) is currently the best sorbent for use in the separation of air by adsorption processes. In particular, pressure swing adsorption (PSA) using zeolite sorbents is being increasingly used for air separation. Silver is also known to strongly affect the adsorptive properties of zeolites; and it is known that thermal vacuum dehydration of silver zeolites leads to the formation of silver clusters within the zeolite. In this work we have synthesized type X zeolites containing Ag and also varying mixtures of Li and Ag. In this project, we developed the Ag-containing zeolite as the best sorbent for air separation. We have also studied Co-ligand compounds as oxygen-selective sorbents. Syntheses, structural characterization and adsorption properties have been performed on all sorbents. The results are described in detail in 5 chapters.

  15. The influence from synoptic weather on the variation of air pollution and pollen exposure

    NASA Astrophysics Data System (ADS)

    Grundström, Maria; Dahl, Åslög; Chen, Deliang; Pleijel, Håkan

    2014-05-01

    Exposure to elevated air pollution levels can make people more susceptible to allergies or result in more severe allergic reactions for people with an already pronounced sensitivity to pollen. The aim of this study was to investigate the relationships between urban air pollution (nitrogen oxides, ozone and particles) and airborne Betula pollen in Gothenburg, Sweden, during the pollen seasons for the years 2001-2012. Further, the influence from atmospheric weather pattern on pollen/pollution related risk, using Lamb Weather Types (LWT), was also considered. Daily LWTs were obtained by comparing the variation in atmospheric pressure from a 16 point grid over a given region on earth (scale ~1000km) and essentially describe the air mass movement for the region. They include two non-directional types, cyclonic (C) and anticyclonic (A) and eight directional types depending on the wind direction (N, NE, E... etc.). LWTs with dry and calm meteorological character e.g. limited precipitation and low to moderate wind speeds (A, NE, E, SE) were associated with strongly elevated air pollution and pollen levels where Betula was exceptionally high in LWTs NE and E. The co-variation between Betula pollen and ozone was strong and significant during situations with LWTs A, NE, E and SE. The most important conclusion from this study was that LWTs A, NE, E and SE were associated with high pollen and air pollution levels and can therefore be classified as high risk weather situations for combined air pollution and pollen exposure. Our study shows that LWTs have the potential to be developed into an objective tool for integrated air quality forecasting and a warning system for risk of high exposure situations.

  16. Ice-Shelf Tidal Flexure and Subglacial Pressure Variations

    NASA Technical Reports Server (NTRS)

    Walker, Ryan T.; Parizek, Byron R.; Alley, Richard B.; Anandakrishnan, Sridhar; Riverman, Kiya L.; Christianson, Knut

    2013-01-01

    We develop a model of an ice shelf-ice stream system as a viscoelastic beam partially supported by an elastic foundation. When bed rock near the grounding line acts as a fulcrum, leverage from the ice shelf dropping at low tide can cause significant (approx 1 cm) uplift in the first few kilometers of grounded ice.This uplift and the corresponding depression at high tide lead to basal pressure variations of sufficient magnitude to influence subglacial hydrology.Tidal flexure may thus affect basal lubrication, sediment flow, and till strength, all of which are significant factors in ice-stream dynamics and grounding-line stability. Under certain circumstances, our results suggest the possibility of seawater being drawn into the subglacial water system. The presence of sea water beneath grounded ice would significantly change the radar reflectivity of the grounding zone and complicate the interpretation of grounded versus floating ice based on ice-penetrating radar observations.

  17. Micrometoric Impact Effects: Peak Pressure versus Spectral Variation

    NASA Technical Reports Server (NTRS)

    Jensen, Elizabeth; Lederer, S. M.; Wooden, D. H.; Lindsay, S. S.; Keller, L. P.; Cintala, M. J.; Zolensky, M. E.

    2013-01-01

    At the Experimental Impact Laboratory at NASA Johnson Space Center, we have investigated the surface properties of asteroids caused by collisions in the mid-infrared (2.5 to 16 microns) by impacting forsterite and enstatite across a range of velocities (as predicted by the Nice Model) and at varying temperatures. The crystal structure in these minerals can be deformed by the shock wave from the impact as well as sheared into smaller particle sizes. Our current focus is on the differing effects between 2.3 and 2.6 km/sec, as well as the differences between a cold sample at -20C and a room temperature sample at 25C. We find that the spectral variation and crystal deformation varies non-linearly with the peak shock pressure.

  18. Low pressure high speed Stirling air engine. Final technical report

    SciTech Connect

    Ross, M.A.

    1980-06-16

    The purpose of this project was to design, construct and test a simple, appropriate technology low pressure, high speed, wood-fired Stirling air engine of 100 W output. The final design was a concentric piston/displacer engine of 454 in. bore and 1 in. stroke with a rhombic drive mechanism. The project engine was ultimately completed and tested, using a propane burner for all tests as a matter of convenience. The 100 W aim was exceeded, at atmospheric pressure, over a wide range of engine speed with the maximum power being 112 W at 1150 rpm. A pressure can was constructed to permit pressurization; however the grant funds were running out, and the only pressurized power test attempted was unsuccessful due to seal difficulties. This was a disappointment because numerous tests on the 4 cubic inch engine suggested power would be more than doubled with pressurization at 25 psig. A manifold was designed and constructed to permit operation of the engine over a standard No. 40 pot bellied stove. The engine was run successfully, but at reduced speed and power, over this stove. The project engine started out being rather noisy in operation, but modifications ultimately resulted in a very quiet engine. Various other difficulties and their solutions also are discussed. (LCL)

  19. Long-term variations of radionuclides in the Bratislava air.

    PubMed

    Sýkora, Ivan; Holý, Karol; Ješkovský, Miroslav; Müllerová, Monika; Bulko, Martin; Povinec, Pavel P

    2017-01-01

    Variations of aerosol radionuclides (2001-2015) in the ground-level air in Bratislava (Slovakia) showed (7)Be maxima in spring/early summer and minima in winter, however, an inverse trend was observed for (210)Pb, (137)Cs and (40)K. A decreasing amplitude and splitting of summer maxima for (7)Be in the last years has been found. A temporal behavior of the (7)Be/(210)Pb activity ratio showed higher levels during warm seasons due to vertical convection of air masses from higher altitudes. The (137)Cs activity concentration in the surface air between 2003 and 2010 was decreasing with an effective half-life of 1.9 ± 0.3 years. The yearly average (137)Cs concentrations during 2009-2014 were almost constant, disturbed only by the Fukushima accident in 2011. The increased atmospheric (137)Cs and (40)K levels observed during the autumn-winter season may be due to surface soil resuspension, biomass burning and radionuclide transport by winds. Seasonal variations of (222)Rn activity concentrations were found with maxima at the end of autumn and in winter, and minima in spring. The variability of the average annual course of (222)Rn has been larger than that of (210)Pb. The (210)Pb/(222)Rn activity ratio was highest at the end of winter and in the spring, while from June to December remained nearly constant. More intensive atmospheric mixing in spring months caused a decrease in the (222)Rn activity concentration, while the aerosol component of the atmosphere has been affected mainly during the autumn and winter seasons. The mean residence time of aerosols in the atmosphere was calculated using the (210)Pb/(222)Rn method to be 4.5 ± 0.9 days.

  20. 78 FR 1735 - Airworthiness Directives; Honeywell International Inc. Air Data Pressure Transducers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-09

    ... International Inc. Air Data Pressure Transducers AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... certain Honeywell International Inc. air data pressure transducers as installed on various aircraft. This AD requires various tests or checks of equipment having certain air data pressure transducers,...

  1. Stratospheric age of air variations between 1600 and 2100

    NASA Astrophysics Data System (ADS)

    Muthers, S.; Kuchar, A.; Stenke, A.; Schmitt, J.; Anet, J. G.; Raible, C. C.; Stocker, T. F.

    2016-05-01

    The current understanding of preindustrial stratospheric age of air (AoA), its variability, and the potential natural forcing imprint on AoA is very limited. Here we assess the influence of natural and anthropogenic forcings on AoA using ensemble simulations for the period 1600 to 2100 and sensitivity simulations for different forcings. The results show that from 1900 to 2100, CO2 and ozone-depleting substances are the dominant drivers of AoA variability. With respect to natural forcings, volcanic eruptions cause the largest AoA variations on time scales of several years, reducing the age in the middle and upper stratosphere and increasing the age below. The effect of the solar forcing on AoA is small and dominated by multidecadal total solar irradiance variations, which correlate negatively with AoA. Additionally, a very weak positive relationship driven by ultraviolett variations is found, which is dominant for the 11 year cycle of solar variability.

  2. Breakdown of air pockets in downwardly inclined sewerage pressure mains.

    PubMed

    Lubbers, C L; Clemens, F H L R

    2006-01-01

    In the Netherlands, wastewater is collected in municipal areas and transported to centralised WWTPs by an extensive system of pressure mains. Over the last decades these pressure mains did not receive much attention in terms of monitoring of performance or maintenance. A recent inventory showed that half of the pressure mains show an increased pressure loss for no directly obvious reason. One of the many causes that account for the reduction of the flow capacity is the occurrence of free gas in the pipeline. During dry weather periods with low flow velocities, gas may accumulate at high points in the system. Once the velocity increases during storm weather flow, the air pockets may be broken down and transported to the end of the system. A research study is started focussing on the description of the gas-water phenomena in wastewater pressure mains with respect to transportation of gas. An experimental facility is constructed for the study of multi-phase flow. This paper describes the preliminary results of experiments on breakdown rates of gas pockets as a function of inclination angle and water flow rate. The results show an increasing breakdown rate with increasing inclination angle.

  3. Testing of heat exchangers in membrane oxygenators using air pressure.

    PubMed

    Hamilton, Carole; Stein, Jutta; Seidler, Rainer; Kind, Robert; Beck, Karin; Tosok, Jürgen; Upterfofel, Jörg

    2006-03-01

    All heat exchangers (HE) in membrane oxygenators are tested by the manufacturer for water leaks during the production phase. However, for safety reasons, it is highly recommended that HEs be tested again before clinical use. The most common method is to attach the heater-cooler to the HE and allow the water to recirculate for at least 10 min, during which time a water leak should be evident. To improve the detection of water leaks, a test was devised using a pressure manometer with an integrated bulb used to pressurize the HE with air. The cardiopulmonary bypass system is set up as per protocol. A pressure manometer adapted to a 1/2" tubing is connected to the water inlet side of the oxygenator. The water outlet side is blocked with a short piece of 1/2" deadend tubing. The HE is pressurized with 250 mmHg for at least 30 sec and observed for any drop. Over the last 2 years, only one oxygenator has been detected with a water leak in which the air-method leaktest was performed. This unit was sent back to the manufacturer who confirmed the failure. Even though the incidence of water leaks is very low, it does occur and it is, therefore, important that all HEs are tested before they are used clinically. This method of using a pressure manometer offers many advantages, as the HE can be tested outside of the operating room (OR), allowing earlier testing of the oxygenator, no water contact is necessary, and it is simple, easy and quick to perform.

  4. Pluto's Insolation History: Latitudinal Variations and Effects on Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Earle, Alissa M.; Binzel, Richard P.

    2014-11-01

    Since previous insolation modeling in the early 1990’s, new atmospheric pressure data, increased computational power, and the upcoming flyby of the Pluto system by NASA’s New Horizons spacecraft have generated new motivation and increased capabilities for the study of Pluto’s complex long-term (million-years) insolation history. The two primary topics of interest in studying Pluto’s insolation history are the variations in insolation patterns when integrated over different intervals and the evolution of diurnal insolation patterns over the last several decades. We find latitudinal dichotomies when comparing average insolation over timescales of days, decades, centuries, and millennia. Depending on the timescales of volatile migration, some consequences of these insolation patterns may be manifested in the surface features revealed by New Horizons. For any single rotation of Pluto there is a latitude that receives more insolation relative to the others. Often this is the sub-subsolar latitude but it can also be an arctic circle latitude when near-polar regions of Pluto experience the "midnight sun". We define the amount of that greatest insolation value over the course of one rotation as the "maximum diurnal insolation" (MDI). We find that MDI is driven to its highest values when Pluto’s obliquity creates a long arctic summer (or “midnight sun”) beginning just after perihelion. Pluto’s atmospheric pressure, as measured through stellar occultation observations during the past three decades, appears to correlate with Pluto's currently occurring midnight sun as quantified by the MDI parameter. If insolation (as parameterized by the MDI value) is the single dominant factor driving Pluto's atmospheric pressure, this “Midnight Sun Model” predicts that Pluto's maximum atmospheric pressure will be reached in 2017 followed by a steady decline. Pluto's maximum diurnal insolation value begins dropping after 2017 due to two factors: Pluto’s sub-solar point

  5. Study of flow fields induced by surface dielectric barrier discharge actuator in low-pressure air

    SciTech Connect

    Che, Xueke E-mail: st@mail.iee.ac.cn; Nie, Wansheng; Tian, Xihui; Hou, Zhiyong; He, Haobo; Zhou, Penghui; Zhou, Siyin; Yang, Chao; Shao, Tao E-mail: st@mail.iee.ac.cn

    2014-04-15

    Surface dielectric barrier discharge (SDBD) is a promising method for a flow control. Flow fields induced by a SDBD actuator driven by the ac voltage in static air at low pressures varying from 1.0 to 27.7 kPa are measured by the particle image velocimetry method. The influence of the applied ac voltage frequency and magnitude on the induced flow fields is studied. The results show that three different classes of flow fields (wall jet flow field, complex flow field, and vortex-shape flow field) can be induced by the SDBD actuator in the low-pressure air. Among them, the wall jet flow field is the same as the tangential jet at atmospheric pressure, which is, together with the vertical jet, the complex flow field. The vortex-shape flow field is composed of one vertical jet which points towards the wall and two opposite tangential jets. The complex and the vortex-shape flow fields can be transformed to the wall jet flow field when the applied ac voltage frequency and magnitude are changed. It is found that the discharge power consumption increases initially, decreases, and then increases again at the same applied ac voltage magnitude when the air pressure decreases. The tangential velocity of the wall jet flow field increases when the air pressure decreases. It is however opposite for the complex flow field. The variation of the applied ac voltage frequency influences differently three different flow fields. When the applied ac voltage magnitude increases at the same applied ac voltage frequency, the maximal jet velocity increases, while the power efficiency increases only initially and then decreases again. The discharge power shows either linear or exponential dependences on the applied ac voltage magnitude.

  6. Temperature Variations Recorded During Interinstitutional Air Shipments of Laboratory Mice

    PubMed Central

    Syversen, Eric; Pineda, Fernando J; Watson, Julie

    2008-01-01

    Despite extensive guidelines and regulations that govern most aspects of rodent shipping, few data are available on the physical environment experienced by rodents during shipment. To document the thermal environment experienced by mice during air shipments, we recorded temperatures at 1-min intervals throughout 103 routine interinstitutional shipments originating at our institution. We found that 49.5% of shipments were exposed to high temperatures (greater than 29.4 °C), 14.6% to low temperatures (less than 7.2 °C), and 61% to temperature variations of 11 °C or more. International shipments were more likely than domestic shipments to experience temperature extremes and large variations in temperature. Freight forwarders using passenger airlines rather than their own airplanes were more likely to have shipments that experienced temperature extremes or variations. Temperature variations were most common during stopovers. Some airlines were more likely than others to experience inflight temperature extremes or swings. Most domestic shipments lasted at least 24 h, whereas international shipments lasted 48 to 72 h. Despite exposure to high and low temperatures, animals in all but 1 shipment arrived alive. We suggest that simple measures, such as shipping at night during hot weather, provision of nesting material in shipping crates, and specifying aircraft cargo-hold temperatures that are suitable for rodents, could reduce temperature-induced stress. Measures such as additional training for airport ground crews, as previously recommended by the American Veterinary Medical Association, could further reduce exposure of rodents to extreme ambient temperatures during airport stopovers. PMID:18210996

  7. Experimental investigation of air pressure affecting filtration performance of fibrous filter sheet.

    PubMed

    Xu, Bin; Yu, Xiao; Wu, Ya; Lin, Zhongping

    2017-03-01

    Understanding the effect of air pressure on their filtration performance is important for assessing the effectiveness of fibrous filters under different practical circumstances. The effectiveness of three classes of air filter sheets were investigated in laboratory-based measurements at a wide range of air pressures (60-130 KPa). The filtration efficiency was found most sensitive to the air pressure change at smaller particle sizes. As the air pressure increased from 60 to 130 KPa, significant decrease in filtration efficiency (up to 15%) and increase in pressure drop (up to 90 Pa) were observed. The filtration efficiency of the filter sheet with largest fiber diameter and smallest solid volume fraction was affected most, while the pressure drop of the filter sheet with smallest fiber diameter and largest solid volume fraction was affected most. The effect of air pressure on the filtration efficiency was slightly larger at greater filter face air velocity. However, the effect of air pressure on the pressure drop was negligible. The filtration efficiency and pressure drop were explicitly expressed as functions of the air pressure. Two coefficients were empirically derived and successfully accounted for the effects of air pressure on filtration efficiency and pressure drop.

  8. Vandenberg Air Force Base Pressure Gradient Wind Study

    NASA Technical Reports Server (NTRS)

    Shafer, Jaclyn A.

    2013-01-01

    Warning category winds can adversely impact day-to-day space lift operations at Vandenberg Air Force Base (VAFB) in California. NASA's Launch Services Program and other programs at VAFB use wind forecasts issued by the 30 Operational Support Squadron Weather Flight (30 OSSWF) to determine if they need to limit activities or protect property such as a launch vehicle. The 30 OSSWF tasked the AMU to develop an automated Excel graphical user interface that includes pressure gradient thresholds between specific observing stations under different synoptic regimes to aid forecasters when issuing wind warnings. This required the AMU to determine if relationships between the variables existed.

  9. Variation in the urban vegetation, surface temperature, air temperature nexus.

    PubMed

    Shiflett, Sheri A; Liang, Liyin L; Crum, Steven M; Feyisa, Gudina L; Wang, Jun; Jenerette, G Darrel

    2017-02-01

    Our study examines the urban vegetation - air temperature (Ta) - land surface temperature (LST) nexus at micro- and regional-scales to better understand urban climate dynamics and the uncertainty in using satellite-based LST for characterizing Ta. While vegetated cooling has been repeatedly linked to reductions in urban LST, the effects of vegetation on Ta, the quantity often used to characterize urban heat islands and global warming, and on the interactions between LST and Ta are less well characterized. To address this need we quantified summer temporal and spatial variation in Ta through a network of 300 air temperature sensors in three sub-regions of greater Los Angeles, CA, which spans a coastal to desert climate gradient. Additional sensors were placed within the inland sub-region at two heights (0.1m and 2m) within three groundcover types: bare soil, irrigated grass, and underneath citrus canopy. For the entire study region, we acquired new imagery data, which allowed calculation of the normalized difference vegetation index (NDVI) and LST. At the microscale, daytime Ta measured along a vertical gradient, ranged from 6 to 3°C cooler at 0.1 and 2m, underneath tall canopy compared to bare ground respectively. At the regional scale NDVI and LST were negatively correlated (p<0.001). Relationships between diel variation in Ta and daytime LST at the regional scale were progressively weaker moving away from the coast and were generally limited to evening and nighttime hours. Relationships between NDVI and Ta were stronger during nighttime hours, yet effectiveness of mid-day vegetated cooling increased substantially at the most arid region. The effectiveness of vegetated Ta cooling increased during heat waves throughout the region. Our findings suggest an important but complex role of vegetation on LST and Ta and that vegetation may provide a negative feedback to urban climate warming.

  10. Pulse pressure variation and stroke volume variation under different inhaled concentrations of isoflurane, sevoflurane and desflurane in pigs undergoing hemorrhage

    PubMed Central

    Oshiro, Alexandre Hideaki; Otsuki, Denise Aya; Hamaji, Marcelo Waldir M; Rosa, Kaleizu T; Ida, Keila Kazue; Fantoni, Denise T; Auler, José Otavio Costa

    2015-01-01

    OBJECTIVES: Inhalant anesthesia induces dose-dependent cardiovascular depression, but whether fluid responsiveness is differentially influenced by the inhalant agent and plasma volemia remains unknown. The aim of this study was to compare the effects of isoflurane, sevoflurane and desflurane on pulse pressure variation and stroke volume variation in pigs undergoing hemorrhage. METHODS: Twenty-five pigs were randomly anesthetized with isoflurane, sevoflurane or desflurane. Hemodynamic and echocardiographic data were registered sequentially at minimum alveolar concentrations of 1.00 (M1), 1.25 (M2), and 1.00 (M3). Then, following withdrawal of 30% of the estimated blood volume, these data were registered at a minimum alveolar concentrations of 1.00 (M4) and 1.25 (M5). RESULTS: The minimum alveolar concentration increase from 1.00 to 1.25 (M2) decreased the cardiac index and increased the central venous pressure, but only modest changes in mean arterial pressure, pulse pressure variation and stroke volume variation were observed in all groups from M1 to M2. A significant decrease in mean arterial pressure was only observed with desflurane. Following blood loss (M4), pulse pressure variation, stroke volume variation and central venous pressure increased (p<0.001) and mean arterial pressure decreased in all groups. Under hypovolemia, the cardiac index decreased with the increase of anesthesia depth in a similar manner in all groups. CONCLUSION: The effects of desflurane, sevoflurane and isoflurane on pulse pressure variation and stroke volume variation were not different during normovolemia or hypovolemia. PMID:26735220

  11. Integrating environmental variation, predation pressure, phenotypic plasticity and locomotor performance.

    PubMed

    Fu, Shi-Jian; Cao, Zhen-Dong; Yan, Guan-Jie; Fu, Cheng; Pang, Xu

    2013-10-01

    The Wujiang River, a tributary of the Three Gorges Reservoir, has many dams along its length. These dams alter the river's natural habitat and produce various flow regimes and degrees of predator stress. To test whether the swimming performance and external body shape of pale chub (Zacco platypus) have changed as a result of alterations in the flow regime and predator conditions, we measured the steady (U(crit)) and unsteady (fast-start) swimming performances and morphological characteristics of fish collected from different sites along the Wujiang River. We also calculated the maximum respiratory capacity and cost of transport (COT). We demonstrated significant differences in swimming performance and morphological traits among the sampling sites. Steady swimming performance was positively correlated with water velocity and negatively correlated with the abundance of predators, whereas unsteady swimming performance was negatively correlated with water velocity. The body shape was significantly correlated with both swimming performance and ecological parameters. These findings suggested that selection pressure on swimming performance results in a higher U(crit) and a more streamlined body shape in fast-flow and (or) in habitats with low predator stress and subsequently results in a lower COT. These characteristics were accompanied by a poorer fast-start performance than that of the fish from the slow-flow and (or) high-predator habitats. The divergence in U(crit) may also be due in part to variation in respiratory capacity.

  12. Morphological variation of stimuli-responsive polypeptide at air-water interface

    NASA Astrophysics Data System (ADS)

    Shin, Sungchul; Ahn, Sungmin; Cheng, Jie; Chang, Hyejin; Jung, Dae-Hong; Hyun, Jinho

    2016-12-01

    The morphological variation of stimuli-responsive polypeptide molecules at the air-water interface as a function of temperature and compression was described. The surface pressure-area (π-A) isotherms of an elastin-like polypeptide (ELP) monolayer were obtained under variable external conditions, and Langmuir-Blodgett (LB) monolayers were deposited onto a mica substrate for characterization. As the compression of the ELP monolayer increased, the surface pressure increased gradually, indicating that the ELP monolayer could be prepared with high stability at the air-water interface. The temperature in the subphase of the ELP monolayer was critical in the preparation of LB monolayers. The change in temperature induced a shift in the π-A isotherms as well as a change in ELP secondary structures. Surprisingly, the compression of the ELP monolayer influenced the ELP secondary structure due to the reduction in the phase transition temperature with decreasing temperature. The change in the ELP secondary structure formed at the air-water interface was investigated by surface-enhanced Raman scattering. Moreover, the morphology of the ELP monolayer was subsequently imaged using atomic force microscopy. The temperature responsive behavior resulted in changes in surface morphology from relatively flat structures to rugged labyrinth structures, which suggested conformational changes in the ELP monolayers.

  13. Heart-rate monitoring by air pressure and causal analysis

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Naoki; Nakajima, Hiroshi; Hata, Yutaka

    2011-06-01

    Among lots of vital signals, heart-rate (HR) is an important index for diagnose human's health condition. For instance, HR provides an early stage of cardiac disease, autonomic nerve behavior, and so forth. However, currently, HR is measured only in medical checkups and clinical diagnosis during the rested state by using electrocardiograph (ECG). Thus, some serious cardiac events in daily life could be lost. Therefore, a continuous HR monitoring during 24 hours is desired. Considering the use in daily life, the monitoring should be noninvasive and low intrusive. Thus, in this paper, an HR monitoring in sleep by using air pressure sensors is proposed. The HR monitoring is realized by employing the causal analysis among air pressure and HR. The causality is described by employing fuzzy logic. According to the experiment on 7 males at age 22-25 (23 on average), the correlation coefficient against ECG is 0.73-0.97 (0.85 on average). In addition, the cause-effect structure for HR monitoring is arranged by employing causal decomposition, and the arranged causality is applied to HR monitoring in a setting posture. According to the additional experiment on 6 males, the correlation coefficient is 0.66-0.86 (0.76 on average). Therefore, the proposed method is suggested to have enough accuracy and robustness for some daily use cases.

  14. Thermal separation of soil particles from thermal conductivity measurement under various air pressures

    NASA Astrophysics Data System (ADS)

    Lu, Sen; Ren, Tusheng; Lu, Yili; Meng, Ping; Zhang, Jinsong

    2017-01-01

    The thermal conductivity of dry soils is related closely to air pressure and the contact areas between solid particles. In this study, the thermal conductivity of two-phase soil systems was determined under reduced and increased air pressures. The thermal separation of soil particles, i.e., the characteristic dimension of the pore space (d), was then estimated based on the relationship between soil thermal conductivity and air pressure. Results showed that under both reduced and increased air pressures, d estimations were significantly larger than the geometrical mean separation of solid particles (D), which suggested that conductive heat transfer through solid particles dominated heat transfer in dry soils. The increased air pressure approach gave d values lower than that of the reduced air pressure method. With increasing air pressure, more collisions between gas molecules and solid surface occurred in micro-pores and intra-aggregate pores due to the reduction of mean free path of air molecules. Compared to the reduced air pressure approach, the increased air pressure approach expressed more micro-pore structure attributes in heat transfer. We concluded that measuring thermal conductivity under increased air pressure procedures gave better-quality d values, and improved soil micro-pore structure estimation.

  15. Thermal separation of soil particles from thermal conductivity measurement under various air pressures.

    PubMed

    Lu, Sen; Ren, Tusheng; Lu, Yili; Meng, Ping; Zhang, Jinsong

    2017-01-05

    The thermal conductivity of dry soils is related closely to air pressure and the contact areas between solid particles. In this study, the thermal conductivity of two-phase soil systems was determined under reduced and increased air pressures. The thermal separation of soil particles, i.e., the characteristic dimension of the pore space (d), was then estimated based on the relationship between soil thermal conductivity and air pressure. Results showed that under both reduced and increased air pressures, d estimations were significantly larger than the geometrical mean separation of solid particles (D), which suggested that conductive heat transfer through solid particles dominated heat transfer in dry soils. The increased air pressure approach gave d values lower than that of the reduced air pressure method. With increasing air pressure, more collisions between gas molecules and solid surface occurred in micro-pores and intra-aggregate pores due to the reduction of mean free path of air molecules. Compared to the reduced air pressure approach, the increased air pressure approach expressed more micro-pore structure attributes in heat transfer. We concluded that measuring thermal conductivity under increased air pressure procedures gave better-quality d values, and improved soil micro-pore structure estimation.

  16. Thermal separation of soil particles from thermal conductivity measurement under various air pressures

    PubMed Central

    Lu, Sen; Ren, Tusheng; Lu, Yili; Meng, Ping; Zhang, Jinsong

    2017-01-01

    The thermal conductivity of dry soils is related closely to air pressure and the contact areas between solid particles. In this study, the thermal conductivity of two-phase soil systems was determined under reduced and increased air pressures. The thermal separation of soil particles, i.e., the characteristic dimension of the pore space (d), was then estimated based on the relationship between soil thermal conductivity and air pressure. Results showed that under both reduced and increased air pressures, d estimations were significantly larger than the geometrical mean separation of solid particles (D), which suggested that conductive heat transfer through solid particles dominated heat transfer in dry soils. The increased air pressure approach gave d values lower than that of the reduced air pressure method. With increasing air pressure, more collisions between gas molecules and solid surface occurred in micro-pores and intra-aggregate pores due to the reduction of mean free path of air molecules. Compared to the reduced air pressure approach, the increased air pressure approach expressed more micro-pore structure attributes in heat transfer. We concluded that measuring thermal conductivity under increased air pressure procedures gave better-quality d values, and improved soil micro-pore structure estimation. PMID:28054663

  17. Air pressure waves from Mount St. Helens eruptions

    SciTech Connect

    Reed, J.W.

    1987-10-20

    Weather station barograph records as well as infrasonic recordings of the pressure wave from the Mount St. Helens eruption of May 18, 1980, have been used to estimate an equivalent explosion airblast yield for this event. Pressure amplitude versus distance patterns in various directions compared with patterns from other large explosions, such as atmospheric nuclear tests, the Krakatoa eruption, and the Tunguska comet impact, indicate that the wave came from an explosion equivalent of a few megatons of TNT. The extent of tree blowdown is considerably greater than could be expected from such an explosion, and the observed forest damage is attributed to outflow of volcanic material. The pressure-time signature obtained at Toledo, Washington, showed a long, 13-min duration negative phase as well as a second, hour-long compression phase, both probably caused by ejacta dynamics rather than standard explosion wave phenomenology. The peculiar audibility pattern, with the blast being heard only at ranges beyond about 100 km, is explicable by finite amplitude propagation effects. Near the source, compression was slow, taking more than a second but probably less than 5 s, so that it went unnoticed by human ears and susceptible buildings were not damaged. There was no damage as Toledo (54 km), where the recorded amplitude would have broken windows with a fast compression. An explanation is that wave emissions at high elevation angles traveled to the upper stratosphere, where low ambient air pressures caused this energetic pressure oscillation to form a shock wave with rapid, nearly instantaneous compression. Atmospheric refraction then returned part of this wave to ground level at long ranges, where the fast compressions were clearly audible. copyright American Geophysical Union 1987

  18. Pressurized air cathodes for enhanced stability and power generation by microbial fuel cells

    NASA Astrophysics Data System (ADS)

    He, Weihua; Yang, Wulin; Tian, Yushi; Zhu, Xiuping; Liu, Jia; Feng, Yujie; Logan, Bruce E.

    2016-11-01

    Large differences between the water and air pressure in microbial fuel cells (MFCs) can deform and damage cathodes. To avoid deformation, the cathode air pressure was controlled to balance pressure differences between the air and water. Raising the air pressures from 0 to 10 kPa at a set cathode potential of -0.3 V (versus Ag/AgCl) enhanced cathode performance by 17%, but pressures ≥25 kPa decreased current and resulted in air leakage into the solution. Matching the air pressure with the water pressure avoided cathode deformation and improved performance. The maximum power density increased by 15%, from 1070 ± 20 to 1230 ± 70 mW m-2, with balanced air and water pressures of 10-25 kPa. Oxygen partial pressures ≥12.5 kPa in the cathode compartment maintained the oxygen reduction rate to be within 92 ± 1% of that in ambient air. The use of pressurized air flow through the cathode compartments can enable closer spacing of the cathodes compared to passive gas transfer systems, which could make the reactor design more compact. The energy cost of pressurizing the cathodes was estimated to be smaller than the increase in power that resulted from the use of pressurized cathodes.

  19. Noise in pressure transducer readings produced by variations in solar radiation

    USGS Publications Warehouse

    Cain, S. F.; Davis, G.A.; Loheide, S.P.; Butler, J.J.

    2004-01-01

    Variations in solar radiation can produce noise in readings from gauge pressure transducers when the transducer cable is exposed to direct sunlight. This noise is a result of insolation-induced heating and cooling of the air column in the vent tube of the transducer cable. A controlled experiment was performed to assess the impact of variations in solar radiation on transducer readings. This experiment demonstrated that insolation-induced fluctuations in apparent pressure head can be as large as 0.03 m. The magnitude of these fluctuations is dependent on cable color, the diameter of the vent tube, and the length of the transducer cable. The most effective means of minimizing insolation-induced noise is to use integrated transducer-data logger units that fit within a well. Failure to address this source of noise can introduce considerable uncertainty into analyses of hydraulic tests when the head change is relatively small, as is often the case for tests in highly permeable aquifers or for tests using distant observation wells.

  20. Effects of pressure on syngas/air turbulent nonpremixed flames

    NASA Astrophysics Data System (ADS)

    Lee, Bok Jik; Im, Hong G.; Ciottoli, Pietro Paolo; Valorani, Mauro

    2016-11-01

    Large eddy simulations (LES) of turbulent non-premixed jet flames were conducted to investigate the effects of pressure on the syngas/air flame behavior. The software to solve the reactive Navier-Stokes equations was developed based on the OpenFOAM framework, using the YSLFM library for the flamelet-based chemical closure. The flamelet tabulation is obtained by means of an in-house code designed to solve unsteady flamelets of both ideal and real fluid mixtures. The validation of the numerical setup is attained by comparison of the numerical results with the Sandia/ETH-Zurich experimental database of the CO/H2/N2 non-premixed, unconfined, turbulent jet flame, referred to as "Flame A". Two additional simulations, at pressure conditions of 2 and 5 atm, are compared and analyzed to unravel computational and scientific challenges in characterizing turbulent flames at high pressures. A set of flamelet solutions, representative of the jet flames under review, are analyzed following a CSP approach. In particular, the Tangential Stretching Rate (TSR), representing the reciprocal of the most energetic time scale associated with the chemical source term, and its extension to reaction-diffusion systems (extended TSR), are adopted.

  1. Inflation pressure effect on performance of air-filled wheelchair cushions.

    PubMed

    Krouskop, T A; Williams, R; Noble, P; Brown, J

    1986-02-01

    Air-filled wheelchair cushions are frequently used in the prevention of pressure sores. Their effectiveness in reducing interface pressures and in redistributing body weight (BW) appears dependent on their internal inflation pressure. This pilot study examines and defines this relationship. Interface pressures were measured with the TIPE (Texas Interface Pressure Evaluator) system for 14 subjects while sitting on each of three commercially available air-filled wheelchair cushions. This relationship between interface pressure and internal pressure was then determined for each of the three body-build categories. In each category the interface pressure displayed a higher degree of sensitivity to underinflation than to overinflation. A high correlation found between BW and internal air pressure (IAP), may be useful in the design of a customized pressure indicator system. The study documents the influence of IAP on seating pressure and supports the need for further research in the development of an indicator system that alerts users to under- or overinflation of the cushion.

  2. Observation of pressure variation in the cavitation region of submerged journal bearings

    NASA Technical Reports Server (NTRS)

    Etsion, I.; Ludwig, L. P.

    1980-01-01

    Visual observations and pressure measurements in the cavitation zone of a submerged journal bearing are described. Tests were performed at various shaft speeds and ambient pressure levels. Some photographs of the cavitation region are presented showing strong reverse flow at the downstream end of the region. Pressure profiles are presented showing significant pressure variations inside the cavitation zone, contrary to common assumptions of constant cavitation pressure.

  3. Ozone production in parallel multichannel dielectric barrier discharge from oxygen and air: the influence of gas pressure

    NASA Astrophysics Data System (ADS)

    Yuan, Dingkun; Wang, Zhihua; Ding, Can; He, Yong; Whiddon, Ronald; Cen, Kefa

    2016-11-01

    This research aims to investigate the influence of gas pressure (0.1 Mpa-0.2 Mpa) on ozone generation in a parallel multichannel dielectric barrier discharge (DBD) reactor with a narrow gap (0.2 mm). In addition to determining ozone concentration and ozone yield characteristics with gas pressure variation, this paper examines the possible reasons leading to the inconsistency with previous reported results. All the experimental results are plotted on the basis of specific input energy (SIE) in order to conduct the comparison within identical power density. By reviewing the experimental results, the possible cause leading to the inconsistency concerning gas pressure dependences of ozone generation was found using different comparison bases. Results show that ozone generation is slightly suppressed with an increase of gas pressure with an initial increase in SIE. The results of the ozone yield show that an increase of gas pressure would have a favorable effect on ozone production efficiency with an SIE larger than 400 J l-1 in oxygen while ozone yield reaches the maximum at 0.14 Mpa with an SIE larger than 150 J l-1 in air. Increasing gas pressure would lead to a higher critical SIE value at which ozone yield firstly decreases with an increase of SIE both in oxygen and air. The results of nitrogen oxide byproducts show that both NO x byproducts emission and the discharge poisoning effect are suppressed by increasing gas pressure in air plasmas.

  4. Spatial variation in environmental noise and air pollution in New York City.

    PubMed

    Kheirbek, Iyad; Ito, Kazuhiko; Neitzel, Richard; Kim, Jung; Johnson, Sarah; Ross, Zev; Eisl, Holger; Matte, Thomas

    2014-06-01

    Exposure to environmental noise from traffic is common in urban areas and has been linked to increased risks of adverse health effects including cardiovascular disease. Because traffic sources also produce air pollutants that increase the risk of cardiovascular morbidity, associations between traffic exposures and health outcomes may involve confounding and/or synergisms between air pollution and noise. While prior studies have characterized intraurban spatial variation in air pollution in New York City (NYC), limited data exists on the levels and spatial variation in noise levels. We measured 1-week equivalent continuous sound pressure levels (Leq) at 56 sites during the fall of 2012 across NYC locations with varying traffic intensity and building density that are routinely monitored for combustion-related air pollutants. We evaluated correlations among several noise metrics used to characterize noise exposures, including Leq during different time periods (night, day, weekday, weekend), Ldn (day-night noise), and measures of intermittent noise defined as the ratio of peak levels to median and background levels. We also examined correlations between sound pressure levels and co-located simultaneous measures of nitric oxide (NO), nitrogen dioxide (NO2), fine particulate matter (PM2.5), and black carbon (BC) as well as estimates of traffic and building density around the monitoring sites. Noise levels varied widely across the 56 monitoring sites; 1-week Leq varied by 21.6 dBA (range 59.1-80.7 dBA) with the highest levels observed during the weekday, daytime hours. Indices of average noise were well correlated with each other (r > 0.83), while indices of intermittent noise were not well correlated with average noise levels (r < 0.41). One-week Leq correlated well with NO, NO2, and EC levels (r = 0.61 to 0.68) and less so with PM2.5 levels (r = 0.45). We observed associations between 1-week noise levels and traffic intensity within 100 m of the monitoring sites (r = 0

  5. Cold-flow performance of several variations of a ram-air-cooled plug nozzle for supersonic-cruise aircraft

    NASA Technical Reports Server (NTRS)

    Harrington, D. E.; Nosek, S. M.; Straight, D. M.

    1974-01-01

    Experimental data were obtained with a 21.59 cm (8.5 in.) diameter cold-flow model in a static altitude facility to determine the thrust and pumping characteristics of several variations of a ram-air-cooled plug nozzle. Tests were conducted over a range of nozzle pressure ratios simulating supersonic cruise and takeoff conditions. Primary throat area was also varied to simulate afterburner on and off. Effect of plug size, outer shroud length, primary nozzle geometry, and varying amounts of secondary flow were investigated. At a supersonic cruise pressure ratio of 27, nozzle efficiencies were 99.7 percent for the best configurations.

  6. Variation of Azeotropic Composition and Temperature with Pressure

    ERIC Educational Resources Information Center

    Gibbard, H. Frank; Emptage, Michael R.

    1975-01-01

    Describes an undergraduate physical chemistry experiment in which an azeotropic mixture is studied using the vapor pressures of the components as functions of temperature and the azeotropic composition and temperature at one pressure. Discusses in detail the mathematical treatment of obtained thermodynamic data. (MLH)

  7. EFFECT OF LASER LIGHT ON LASER PLASMAS: Laser plasma at low air pressure

    NASA Astrophysics Data System (ADS)

    Vas'kovskiĭ, Yu M.; Moiseev, V. N.; Rovinskiĭ, R. E.; Tsenina, I. S.

    1993-01-01

    The dynamic and optical characteristics of the laser plasma produced during the application of a CO2 laser pulse to a target have been studied as a function of the ambient air pressure. The changes in the surface roughness of the sample after bombardment were studied as a function of the air pressure. It is concluded from the results that a transition from an air plasma to an erosion plasma occurs at a residual air pressure on the order of 1 torr. The experiment data support the existing picture of the process by which a plasma is produced near the surface of a target in air by laser pulses.

  8. Diurnal radon variations in the upper soil layers and at the soil-air interface related to meteorological parameters.

    PubMed

    Schubert, M; Schulz, H

    2002-07-01

    Measurements of the radon concentration in a column (1 m2 x 2 m) consisting of a homogeneous mixture of dry sand and uranium tailings have been performed to obtain information on the radon transport under well defined conditions. The dependence of the radon concentration has been exclusively studied on the soil/air temperature gradient and on the wind speed. The soil moisture content has been kept constant. Significant diurnal variations of the radon concentration were detected in the uppermost soil layer and at the soil/air interface. Such a behavior was not found in 30 cm and deeper soil layers. It is argued that the diurnal radon variation in the uppermost soil layer is mainly associated with the diurnal inversion of the soil/air temperature gradient giving rise to a convective soil gas migration additional to the common upward diffusion processes, whereas the diurnal variation of the radon concentration at the soil/air interface is caused by the interplay of the temperature gradient and the wind speed. No impact of atmospheric pressure variations on the radon migration has been observed.

  9. Pressure variation of reentrant transition temperature in liquid crystals

    NASA Astrophysics Data System (ADS)

    Srivastava, A.; Sa, D.; Singh, S.

    2007-02-01

    High pressure experimental studies show that in certain mesogenic materials, the nematic-smectic A (N-Sm A) transition temperature TAN exhibits nonlinear pressure dependence. As a consequence, the material shows reentrant phenomena that is a phase sequence nematic — smectic A — reentrant nematic appears. The characteristic features of this phenomenon have been addressed here within the framework of Landau-de-Gennes theory, where the coupling between nematic and smectic A order parameters (γ, λeff) plays an important role. The cubic coupling γ is chosen to be negative in order to form Sm A phase whereas the biquadratic coupling λeff is made large and positive to obtain reentrant behaviour. In the present work, we incorporate the pressure dependence in the theory through γ and λeff which justifies the experimental pressure dependence in the reentrant transition temperature tilde{T}REAN. The pressure dependence of γ and λeff are employed in the calculation of excess specific heat capacity near the reentrant transition. The computed heat capacity shows strong pressure dependence near the reentrant transition which can be confirmed from high pressure measurement.

  10. [Aerodynamics study on pressure changes inside pressure-type whole-body plethysmograph produced by flowing air].

    PubMed

    Xu, Wei-Hua; Shen, Hua-Hao

    2010-02-25

    When using pressure-type plethysmography to test lung function of rodents, calculation of lung volume is always based on Boyle's law. The precondition of Boyle's law is that perfect air is static. However, air in the chamber is flowing continuously when a rodent breathes inside the chamber. Therefore, Boyle's law, a principle of air statics, may not be appropriate for measuring pressure changes of flowing air. In this study, we deduced equations for pressure changes inside pressure-type plethysmograph and then designed three experiments to testify the theoretic deduction. The results of theoretic deduction indicated that increased pressure was generated from two sources: one was based on Boyle's law, and the other was based on the law of conservation of momentum. In the first experiment, after injecting 0.1 mL, 0.2 mL, 0.4 mL of air into the plethysmograph, the pressure inside the chamber increased sharply to a peak value, then promptly decreased to horizontal pressure. Peak values were significantly higher than the horizontal values (P<0.001). This observation revealed that flowing air made an extra effect on air pressure in the plethysmograph. In the second experiment, the same volume of air was injected into the plethysmograph at different frequencies (0, 0.5, 1, 2, 3 Hz) and pressure changes inside were measured. The results showed that, with increasing frequencies, the pressure changes in the chamber became significantly higher (P<0.001). In the third experiment, small animal ventilator and pipette were used to make two types of airflow with different functions of time. The pressure changes produced by the ventilator were significantly greater than those produced by the pipette (P<0.001). Based on the data obtained, we draw the conclusion that, the flow of air plays a role in pressure changes inside the plethysmograph, and the faster the airflow is, the higher the pressure changes reach. Furthermore, the type of airflow also influences the pressure changes.

  11. Response of entrained air-void systems in cement paste to pressure

    NASA Astrophysics Data System (ADS)

    Frazier, Robert

    2011-12-01

    Scope and Method of Study: Determine the response of entrained air-void systems in fresh cement paste to applied pressures by utilizing micro-computed tomography. Compare results to those suggested by the ASTM C231 Type B pressure meter calibration equations. Findings and Conclusions: The results of this research suggest that although the Type B pressure meter assumptions are valid for the compression of individual voids, the volume of air-voids which dissolve under pressure is significant enough to register noticeable errors when using a synthetic air-entraining admixture with the Type B pressure meter test. Results currently suggest that air-void systems with a significant percentage of small voids present will have higher deviation from the Boyle's Law model used by the Type B pressure meter due to the dissolution of these air-voids.

  12. DDT in fuel air mixtures at elevated temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Card, J.; Rival, D.; Ciccarelli, G.

    2005-11-01

    An experimental study was carried out to investigate flame acceleration and deflagration-to-detonation transition (DDT) in fuel air mixtures at initial temperatures up to 573 K and pressures up to 2 atm. The fuels investigated include hydrogen, ethylene, acetylene and JP-10 aviation fuel. The experiments were performed in a 3.1-m long, 10-cm inner-diameter heated detonation tube equipped with equally spaced orifice plates. Ionization probes were used to measure the flame time-of-arrival from which the average flame velocity versus propagation distance could be obtained. The DDT composition limits and the distance required for the flame to transition to detonation were obtained from this flame velocity data. The correlation developed by Veser et al. (run-up distance to supersonic flames in obstacle-laden tubes. In the proceedings of the 4th International Symposium on Hazards, Prevention and Mitigation of Industrial Explosions, France (2002)) for the flame choking distance proved to work very well for correlating the detonation run-up distance measured in the present study. The only exception was for the hydrogen air data at elevated initial temperatures which tended to fall outside the scatter of the hydrocarbon mixture data. The DDT limits obtained at room temperature were found to follow the classical d/λ = 1 correlation, where d is the orifice plate diameter and λ is the detonation cell size. Deviations found for the high-temperature data could be attributed to the one-dimensional ZND detonation structure model used to predict the detonation cell size for the DDT limit mixtures. This simple model was used in place of actual experimental data not currently available.

  13. Study of short atmospheric pressure dc glow microdischarge in air

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Anatoly; Bogdanov, Eugene; Chirtsov, Alexander; Emelin, Sergey

    2011-10-01

    The results of experiments and simulations of short (without positive column) atmospheric pressure dc glow discharge in air are presented. We used metal steel electrodes with a gap of 5-100 microns. The experimental voltage-current characteristic's (VAC) have a constant or slightly increasing form at low gap. The most stable microdischarges were burning with a flat cathode and rounded anode, when the length of the discharge is automatically established near the minimum of the Paschen curve by changing their binding on the anode. In this case microdischarge was stable and it had growing VAC. For simulations we used 2D fluid model with kinetic description of electrons. We solved the balance equations for the vibrationally- and the electronically-excited states of a nitrogen and oxygen molecules; nitrogen and oxygen atoms; ozone molecule; and different nitrogen and oxygen ions with different plasmochemical reactions between them. Simulations predicted the main regions of the dc glow discharges including cathode and anode sheath and plasma of negative glow, Faraday dark space and transition region. Gas heating plays an important role in shaping the discharge profiles. The results of experiments and simulations of short (without positive column) atmospheric pressure dc glow discharge in air are presented. We used metal steel electrodes with a gap of 5-100 microns. The experimental voltage-current characteristic's (VAC) have a constant or slightly increasing form at low gap. The most stable microdischarges were burning with a flat cathode and rounded anode, when the length of the discharge is automatically established near the minimum of the Paschen curve by changing their binding on the anode. In this case microdischarge was stable and it had growing VAC. For simulations we used 2D fluid model with kinetic description of electrons. We solved the balance equations for the vibrationally- and the electronically-excited states of a nitrogen and oxygen molecules; nitrogen

  14. Variation of plantar pressure in Chinese diabetes mellitus.

    PubMed

    Yang, Chuan; Xiao, Huisheng; Wang, Chuan; Mai, LiFang; Liu, Dan; Qi, Yiqing; Ren, Meng; Yan, Li

    2015-01-01

    To investigate dynamic changes in plantar pressure in Chinese diabetes mellitus patients and to provide a basis for further preventing diabetic foot. This is a cross-sectional investigation including 649 Chinese diabetes mellitus patients (diabetes group) and 808 "normal" Chinese persons (nondiabetes group) with normal blood glucose levels. All the subjects provided a complete medical history and underwent a physical examination and a 75-g oral glucose tolerance test. All subjects walked barefoot with their usual gait, and their dynamic plantar forces were measured using the one-step method with a plantar pressure measurement instrument; 5 measurements were performed for each foot. No significant differences were found in age, height, body weight, or body mass index between the two groups. The fasting blood glucose levels, plantar contact time, maximum force, pressure-time integrals and force-time integrals in the diabetes group were significantly higher than those in the nondiabetes group (p < 0.05). However, the maximum pressure was significantly higher in the nondiabetes group than in the diabetes group (p < 0.05). No difference was found in the contact areas between the two groups (p > 0.05). The maximum plantar force distributions were essentially the same, with the highest force found for the medial heel, followed by the medial forefoot and the first toe. The peak plantar pressure was located at the medial forefoot for the nondiabetes group and at the hallucis for the diabetes group. In the diabetes group, the momentum in each plantar region was higher than that in the nondiabetes group; this difference was especially apparent in the heel, the lateral forefoot and the hallucis. The dynamic plantar pressures in diabetic patients differ from those in nondiabetic people with increased maximum force and pressure, a different distribution pattern and significantly increased momentum, which may lead to the formation of foot ulcers.

  15. Compression-ignition Engine Performance at Altitudes and at Various Air Pressures and Temperatures

    NASA Technical Reports Server (NTRS)

    Moore, Charles S; Collins, John H

    1937-01-01

    Engine test results are presented for simulated altitude conditions. A displaced-piston combustion chamber on a 5- by 7-inch single cylinder compression-ignition engine operating at 2,000 r.p.m. was used. Inlet air temperature equivalent to standard altitudes up to 14,000 feet were obtained. Comparison between performance at altitude of the unsupercharged compression-ignition engine compared favorably with the carburetor engine. Analysis of the results for which the inlet air temperature, inlet air pressure, and inlet and exhaust pressure were varied indicates that engine performance cannot be reliably corrected on the basis of inlet air density or weight of air charge. Engine power increases with inlet air pressure and decreases with inlet air temperatures very nearly as straight line relations over a wide range of air-fuel ratios. Correction factors are given.

  16. Variation of Pressure Waveforms in Measurements of Extracorporeal Shock Wave Lithotripter

    NASA Astrophysics Data System (ADS)

    Inose, Naoto; Ide, Masao

    1993-05-01

    In this paper, we describe measurement of variation in pressure waveforms of the acoustic field of an extra-corporeal shock-wave lithotripter (ESWL). Variations in the measured acoustic fields and pressure waveform of an underwater spark-gap-type ESWL with an exhausted spark plug electrode have been reported by researchers using crystal sensors. If the ESWL spark plugs become exhausted, patients feel pain during kidney, biliary stone disintegration. We studied the relationship between exhaustion of electrodes and the variation of pressure waveforms and shock-wave fields of the ESWL using a newly developed hydrophone.

  17. Development of a Pressure Sensitive Paint System with Correction for Temperature Variation

    NASA Technical Reports Server (NTRS)

    Simmons, Kantis A.

    1995-01-01

    Pressure Sensitive Paint (PSP) is known to provide a global image of pressure over a model surface. However, improvements in its accuracy and reliability are needed. Several factors contribute to the inaccuracy of PSP. One major factor is that luminescence is temperature dependent. To correct the luminescence of the pressure sensing component for changes in temperature, a temperature sensitive luminophore incorporated in the paint allows the user to measure both pressure and temperature simultaneously on the surface of a model. Magnesium Octaethylporphine (MgOEP) was used as a temperature sensing luminophore, with the pressure sensing luminophore, Platinum Octaethylporphine (PtOEP), to correct for temperature variations in model surface pressure measurements.

  18. Air Pressure Responses to Sudden Vocal Tract Pressure Bleeds during Production of Stop Consonants: New Evidence of Aeromechanical Regulation.

    ERIC Educational Resources Information Center

    Zajac, David J.; Weissler, Mark C.

    2004-01-01

    Two studies were conducted to evaluate short-latency vocal tract air pressure responses to sudden pressure bleeds during production of voiceless bilabial stop consonants. It was hypothesized that the occurrence of respiratory reflexes would be indicated by distinct patterns of responses as a function of bleed magnitude. In Study 1, 19 adults…

  19. Respiratory and Laryngeal Responses to an Oral Air Pressure Bleed during Speech

    ERIC Educational Resources Information Center

    Huber, Jessica E.; Stathopoulos, Elaine T.

    2003-01-01

    Researchers have hypothesized that the respiratory and laryngeal speech subsystems would respond to an air pressure bleed, but these responses have not been empirically studied. The present study examined the nature of the responses of the respiratory and laryngeal subsystems to an air pressure bleed in order to provide information relevant to the…

  20. Theme and variations: amphibious air-breathing intertidal fishes.

    PubMed

    Martin, K L

    2014-03-01

    Over 70 species of intertidal fishes from 12 families breathe air while emerging from water. Amphibious intertidal fishes generally have no specialized air-breathing organ but rely on vascularized mucosae and cutaneous surfaces in air to exchange both oxygen and carbon dioxide. They differ from air-breathing freshwater fishes in morphology, physiology, ecology and behaviour. Air breathing and terrestrial activity are present to varying degrees in intertidal fish species, correlated with the tidal height of their habitat. The gradient of amphibious lifestyle includes passive remainers that stay in the intertidal zone as tides ebb, active emergers that deliberately leave water in response to poor aquatic conditions and highly mobile amphibious skipper fishes that may spend more time out of water than in it. Normal terrestrial activity is usually aerobic and metabolic rates in air and water are similar. Anaerobic metabolism may be employed during forced exercise or when exposed to aquatic hypoxia. Adaptations for amphibious life include reductions in gill surface area, increased reliance on the skin for respiration and ion exchange, high affinity of haemoglobin for oxygen and adjustments to ventilation and metabolism while in air. Intertidal fishes remain close to water and do not travel far terrestrially, and are unlikely to migrate or colonize new habitats at present, although in the past this may have happened. Many fish species spawn in the intertidal zone, including some that do not breathe air, as eggs and embryos that develop in the intertidal zone benefit from tidal air emergence. With air breathing, amphibious intertidal fishes survive in a variable habitat with minimal adjustments to existing structures. Closely related species in different microhabitats provide unique opportunities for comparative studies.

  1. Variation of Fracturing Pressures with Depth Near the Valles Caldera

    SciTech Connect

    Dash, Zora; Murphy, Hugh

    1983-12-15

    Hydraulic Fracturing at the Fenton Hill Hot Dry Rock Geothermal site near the Valles Caldera has yielded fracturing pressures from 14 to 81 MPa (2030 to 11,750 psi) at depths ranging from 0.7 to 4.4 km (2250 to 14,400 ft). This data can be fit to a fracture gradient of 19 MPa/km (0.84 psi/ft), except for an anomalous region between 2.6 to 3.2 km where fracturing pressures are about 20 MPa lower than estiamted using the above gradient. This anomaly coincides with a biotite granodiorite intrusive emplaced into a heterogeneous jointed metamorphic complex comprised of gneisses, schists and metavolcanic rocks. Microseismic events detected with sensitive downhole geophones suggest that shear failure is an important process during hydraulic fracturing of such jointed rock. Consequently the usual relation between minimum earth stress and fracture opening pressure, based upon classic tensile failure, cannot be used apriori; fracture opening pressure is instead a complex function of joint orientation and all three components of principal earth stress.

  2. 40 CFR 53.56 - Test for effect of variations in ambient pressure.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (4) Barometer, range 600 mm Hg to 800 mm Hg, certified accurate to 2 mm Hg. Ambient air pressure... meter. (4) The barometer shall be installed in the test chamber such that it will accurately measure the... corresponding ambient (chamber) pressure measured by the barometer specified in paragraph (c)(4) of this...

  3. High pressure flame system for pollution studies with results for methane-air diffusion flames

    NASA Technical Reports Server (NTRS)

    Miller, I. M.; Maahs, H. G.

    1977-01-01

    A high pressure flame system was designed and constructed for studying nitrogen oxide formation in fuel air combustion. Its advantages and limitations were demonstrated by tests with a confined laminar methane air diffusion flame over the pressure range from 1 to 50 atm. The methane issued from a 3.06 mm diameter port concentrically into a stream of air contained within a 20.5 mm diameter chimney. As the combustion pressure is increased, the flame changes in shape from wide and convex to slender and concave, and there is a marked increase in the amount of luminous carbon. The height of the flame changes only moderately with pressure.

  4. Ambient Air Pollution and Increases in Blood Pressure: Role ...

    EPA Pesticide Factsheets

    Particulate matter (PM) is a complex mixture of extremely small particles and liquid droplets made up of a number of components including elemental carbon, organic chemicals, metals, acids (such as nitrates and sulfates), and soil and dust particles. Epidemiological studies consistently show that exposure to PM in urban areas across the globe is associated with increases in short- and long-term cardiovascular mortality and morbidity, most notably for myocardial infarction, heart failure and ischemic stroke.1 The range in strength of these associations is likely related to variation in PM sources and composition across space and time, and attests to the need to understand the contribution of specific sources to ultimately inform regulatory, public health and clinical strategies to reduce risk. Commentary: In 2014 a systematic review and meta-analysis published in this journal reported a positive association between short-term exposure to PM2.5 and blood pressure.2 The paper discussed potential mechanisms including PM-induced activation of pulmonary nociceptive receptors, pulmonary inflammatory responses and release of endothelin-1, and suggested that activation of pulmonary receptors and vagal afferents could lead to shifts in autonomic balance and vasoconstriction. Other effects including oxidative stress and decreased NO availability, as well as systemic inflammation and endothelial dysfunction have also been widely reported in association with PM compo

  5. A falling-pressure method for measuring air permeability of asphalt in laboratory

    NASA Astrophysics Data System (ADS)

    Li, Hailong; Jiao, Jiu Jimmy; Luk, Mario

    2004-01-01

    This paper presents a simple analytical solution for estimating air permeability using the test data obtained by a falling-pressure method in laboratory. The perimeter of the column-shaped sample is fixed in a steel cylinder with the upper sample surface open to the atmosphere. The lower surface of the sample and the cylinder form an air chamber. A water manometer is connected to the air chamber to measure the air pressure inside after the chamber is pressurized. The data of pressure versus time in the air chamber are recorded and analyzed. An approximate analytical solution is derived to describe the pressure-time relationship in the air chamber. The air permeability can be easily estimated using the approximate analytical solution based on the linear least-squares fitting to the recorded pressure-time test data. This method is used to estimate the falling-pressure test data of 15 asphalt samples. The agreement between the test data and the analytical prediction is satisfactory for all the samples. To investigate the error caused by the approximate analytical solution, the air permeabilities are also estimated based on fully numerical solutions. The permeability values obtained from analytical and numerical solutions are very close. The maximum relative error is less than 6% for samples with more than five pressure-time records. A quantitative condition is given under which the analytical solution applies with negligible estimation error. Compared with the common, steady-state method for measuring air permeability, the falling-pressure method has its advantages such as simplicity and economy. The steady-state method has to measure the air flux through the sample, while the falling-pressure method does not.

  6. Pressure Variations in Metamorphic Rocks: Implications for the Interpretation of Petrographic Observations

    NASA Astrophysics Data System (ADS)

    Tajčmanová, Lucie

    2014-05-01

    Metamorphic petrologists and structural geologists, using direct measurements, bring the only direct observational constrains for validating geodynamic models. Therefore, petrological and structural geological observations are essential for the quality and reproducibility of geodynamic reconstructions and models. One of the important assumptions for geodynamic reconstructions arises from the pressure and temperature estimates in the petrology analysis. Pressure is commonly converted to depth through the equation for lithostatic pressure and so the original position of the rock sample within the Earth's interior can be constrained. The current assumption that the studied sample corresponds to uniform pressure may not be correct, and if so, it has serious implications. Increasing evidence from analytical data shows that pressure is not constant even on a grain scale, posing new challenges because, if ignored, it leads to an incorrect use of petrology data in constraining geodynamic models. Well known examples of the preservation of coesite and diamond in a host mineral like garnet show that high pressure inclusions are preserved during decompression. Tajčmanová et al. (2014) has shown that grain-scale pressure variations can develop and that these pressure variations allow compositional zoning in minerals preserved over geological time scales. A new unconventional barometric method based on equilibrium under pressure variations has been developed . Such pressure variations are also connected with differences in fluid pressure in open systems and can be thus observed at all scales. Tajčmanová L., Podladchikov Y., Powell R., Moulas E., Vrijmoed J. and Connolly J. (2014). Grain scale pressure variations and chemical equilibrium in high-grade metamorphic rocks.Journal of Metamorphic Geology, doi:10.1111/jmg.12066 This work was supported by ERC starting grant 335577 to Lucie Tajcmanova

  7. Effect of air pressure differential on vapor flow through sample building walls

    SciTech Connect

    Stewart, W.E. Jr.

    1998-12-31

    Laboratory scale experiments were performed on two small sample composite walls of typical building construction to determine the approximate opposing air pressure difference required to stop or significantly reduce the transmission of water vapor due to a water vapor pressure difference. The experiments used wall section samples between two controlled atmosphere chambers. One chamber was held at a temperature and humidity condition approximating that of a typical summer day, while the other chamber was controlled at a condition typical of indoor conditioned space. Vapor transmission data through the wall samples were obtained over a range of vapor pressure differentials and opposing air pressure differentials. The results show that increasing opposing air pressure differences decrease water vapor transmission, as expected, and relatively small opposing air pressure differentials are required for wall materials of small vapor permeability and large air permeability. The opposing air pressure that stopped or significantly reduced the flow of water vapor through the wall sample was determined experimentally and also compared to air pressures as predicted by an analytical model.

  8. Seasonal variation of air pollution index: Hong Kong case study.

    PubMed

    Wang, Xie-Kang; Lu, Wei-Zhen

    2006-05-01

    Air pollution is an important and popular topic in Hong Kong as concerns have been raised about the health impacts caused by vehicle exhausts in recent years. In Hong Kong, sulphur dioxide SO2, nitrogen dioxide (NO2), nitric oxide (NO), carbon monoxide (CO), and respirable suspended particulates (RSP) are major air pollutants caused by the dominant usage of diesel fuel by goods vehicles and buses. These major pollutants and the related secondary pollutant, e.g., ozone (O3), become and impose harmful impact on human health in Hong Kong area after the northern shifting of major industries to Mainland China. The air pollution index (API), a referential parameter describing air pollution levels, provides information to enhance the public awareness of air pollutions in time series since 1995. In this study, the varying trends of API and the levels of related air pollutants are analyzed based on the database monitored at a selected roadside air quality monitoring station, i.e., Causeway Bay, during 1999-2003. Firstly, the original measured pollutant data and the resultant APIs are analyzed statistically in different time series including daily, monthly, seasonal patterns. It is found that the daily mean APIs in seasonal period can be regarded as stationary time series. Secondly, the auto-regressive moving average (ARMA) method, implemented by Box-Jenkins model, is used to forecast the API time series in different seasonal specifications. The performance evaluations of the adopted models are also carried out and discussed according to Bayesian information criteria (BIC) and root mean square error (RMSE). The results indicate that the ARMA model can provide reliable, satisfactory predictions for the problem interested and is expecting to be an alternative tool for practical assessment and justification.

  9. 29 CFR 1915.172 - Portable air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., 1963. They shall be subjected to a hydrostatic pressure test of one and one-half times the working... quarterly by a competent person. They shall be subjected yearly to a hydrostatic pressure test of one and... 29 Labor 7 2012-07-01 2012-07-01 false Portable air receivers and other unfired pressure...

  10. 29 CFR 1915.172 - Portable air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., 1963. They shall be subjected to a hydrostatic pressure test of one and one-half times the working... quarterly by a competent person. They shall be subjected yearly to a hydrostatic pressure test of one and... 29 Labor 7 2011-07-01 2011-07-01 false Portable air receivers and other unfired pressure...

  11. 29 CFR 1915.172 - Portable air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., 1963. They shall be subjected to a hydrostatic pressure test of one and one-half times the working... quarterly by a competent person. They shall be subjected yearly to a hydrostatic pressure test of one and... 29 Labor 7 2013-07-01 2013-07-01 false Portable air receivers and other unfired pressure...

  12. 29 CFR 1915.172 - Portable air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., 1963. They shall be subjected to a hydrostatic pressure test of one and one-half times the working... quarterly by a competent person. They shall be subjected yearly to a hydrostatic pressure test of one and... 29 Labor 7 2014-07-01 2014-07-01 false Portable air receivers and other unfired pressure...

  13. Insect hygroreceptor responses to continuous changes in humidity and air pressure

    PubMed Central

    Tichy, H.; Kallina, W.

    2011-01-01

    The most favored model of humidity transduction views the cuticular wall of insect hygroreceptive sensilla as a hygromechanical transducer. Hygroscopic swelling or shrinking alters the geometry of the wall, deforming the dendritic membranes of the moist and dry cells. The small size the sensilla and their position surrounded by elevated structures creates technical difficulties to mechanically stimulate them by direct contact. The present study investigated hygroreceptors on the antennae of the cockroach and the stick insect. Accurately controlled, homogeneous mechanical input was delivered by modulating air pressure. Both the moist and dry cells responded not only to changes in air pressure, but also in the opposite direction, as observed during changes in air humidity. The moist-cell’s excitatory response to increasing humidity and increasing air pressure implies that swelling of the hygroscopic cuticle compresses the dendrites, and the dry-cell’s excitatory response to decreasing humidity and decreasing air pressure implies that shrinking of the hygroscopic cuticle expands the dendrites. The moist and dry cells of the stick insect are more sensitive to pressure changes than those of the cockroach, but the responses to air pressure are generally weaker than to humidity. Therefore, the hygroreceptive sensilla differ in their physical properties and constitutions. Furthermore, the mechanical parameters associated with homogeneous changes in air pressure on the sensillum surface can only partially account for the responses of the moist and dry cells of both species to humidity stimulation. PMID:20375249

  14. Air Circulation and Heat Exchange Under Reduced Pressures

    NASA Technical Reports Server (NTRS)

    Rygalov, V.; Wheeler, R.; Dixon, M.; Fowler, P.; Hillhouse, L.

    2010-01-01

    Heat exchange rates decrease non-linearly with reductions in atmospheric pressure. This decrease creates risk of thermal stress (elevated leaf temperatures) for plants under reduced pressures. Forced convection (fans) significantly increases heat exchange rate under almost all pressures except below 10 kPa. Plant cultivation techniques under reduced pressures will require forced convection. The cooling curve technique is a reliable means of assessing the influence of environmental variables like pressure and gravity on gas exchange of plant. These results represent the extremes of gas exchange conditions for simple systems under variable pressures. In reality, dense plant canopies will exhibit responses in between these extremes. More research is needed to understand the dependence of forced convection on atmospheric pressure. The overall thermal balance model should include latent and radiative exchange components.

  15. Air humidity and water pressure effects on the performance of air-cathode microbial fuel cell cathodes

    NASA Astrophysics Data System (ADS)

    Ahn, Yongtae; Zhang, Fang; Logan, Bruce E.

    2014-02-01

    To better understand how air cathode performance is affected by air humidification, microbial fuel cells were operated under different humidity conditions or water pressure conditions. Maximum power density decreased from 1130 ± 30 mW m-2 with dry air to 980 ± 80 mW m-2 with water-saturated air. When the cathode was exposed to higher water pressures by placing the cathode in a horizontal position, with the cathode oriented so it was on the reactor bottom, power was reduced for both with dry (1030 ± 130 mW m-2) and water-saturated (390 ± 190 mW m-2) air. Decreased performance was partly due to water flooding of the catalyst, which would hinder oxygen diffusion to the catalyst. However, drying used cathodes did not improve performance in electrochemical tests. Soaking the cathode in a weak acid solution, but not deionized water, mostly restored performance (960 ± 60 mW m-2), suggesting that there was salt precipitation in the cathode that was enhanced by higher relative humidity or water pressure. These results showed that cathode performance could be adversely affected by both flooding and the subsequent salt precipitation, and therefore control of air humidity and water pressure may need to be considered for long-term MFC operation.

  16. Analysis of Pressure Variations in a Low-Pressure Nickel-Hydrogen Battery- Part 2: Cells with Metal Hydride Storage.

    PubMed

    Purushothaman, B K; Wainright, J S

    2012-05-15

    A sub-atmospheric pressure nickel hydrogen (Ni-H(2)) battery with metal hydride for hydrogen storage is developed for implantable neuroprosthetic devices. Pressure variations during charge and discharge of the cell are analyzed at different states of charge and are found to follow the desorption curve of the pressure composition isotherm (PCI) of the metal hydride. The measured pressure agreed well with the calculated theoretical pressure based on the PCI and is used to predict the state of charge of the battery. Hydrogen equilibration with the metal hydride during charge/discharge cycling is fast when the pressure is in the range from 8 to 13 psia and slower in the range from 6 to 8 psia. The time constant for the slower hydrogen equilibration, 1.37h, is similar to the time constant for oxygen recombination and therefore pressure changes due to different mechanisms are difficult to estimate. The self-discharge rate of the cell with metal hydride is two times lower in comparison to the cell with gaseous hydrogen storage alone and is a result of the lower pressure in the cell when the metal hydride is used.

  17. Variations of the ambient dose equivalent rate in the ground level air.

    PubMed

    Lebedyte, M; Butkus, D; Morkŭnas, G

    2003-01-01

    The ambient dose equivalent rate is caused by ionizing radiation of radionuclides in the atmosphere and on the ground surface as well as by cosmic radiation. Seasonal and diurnal variations of the ambient dose equivalent rate (ADER) in the ground level air are influenced by the concentration of 222Rn daughters. The 222Rn concentration in the ground level atmosphere, in turn, depends on the rate of the 222Rn exhalation from soil and turbulent air mixing. Its diurnal and seasonal variations depend on meteorological conditions. The aim of this study is to estimate the influence of variations of the rate of the 222Rn exhalation from soil and its concentrations in the ground level air on variations of ADER in the ground level air, as well as the dependence of these parameters on meteorological conditions. The 222Rn diffusion coefficient and its exhalation rate in undisturbed loamy soil have been determined. The 222Rn concentration in the soil air and its concentration in the ground level air correlate inversely (correlation coefficient is r = -0.62). The main factors determining the 222Rn exhalation from soil are: the soil temperature (r = 0.64), the difference in temperature of soil and air (r = 0.57), and the precipitation amount (r = 0.50). The intensity of gamma radiation in the ground level air is mostly related to the 222Rn concentration in the air (r = 0.62), while the effect of the exhalation rate from soil is relatively low (r = 0.36). It has been shown that ADER due to 222Rn progeny causes only 7-16% of the total ADER and influences its variation. The comparison of variations of ADER due to 222Rn progeny and the total ADER during several years shows that these parameters correlate positively.

  18. Method and apparatus for monitoring oxygen partial pressure in air masks

    NASA Technical Reports Server (NTRS)

    Kelly, Mark E. (Inventor); Pettit, Donald R. (Inventor)

    2006-01-01

    Method and apparatus are disclosed for monitoring an oxygen partial pressure in an air mask and providing a tactile warning to the user. The oxygen partial pressure in the air mask is detected using an electrochemical sensor, the output signal from which is provided to a comparator. The comparator compares the output signal with a preset reference value or range of values representing acceptable oxygen partial pressures. If the output signal is different than the reference value or outside the range of values, the air mask is vibrated by a vibrating motor to alert the user to a potentially hypoxic condition.

  19. An objective definition of air mass types affecting Athens, Greece; the corresponding atmospheric pressure patterns and air pollution levels.

    PubMed

    Sindosi, O A; Katsoulis, B D; Bartzokas, A

    2003-08-01

    This work aims at defining characteristic air mass types that dominate in the region of Athens, Greece during the cold (November-March) and the warm (May-September) period of the year and also at evaluating the corresponding concentration levels of the main air pollutants. For each air mass type, the mean atmospheric pressure distribution (composite maps) over Europe and the Mediterranean is estimated in order to reveal the association of atmospheric circulation with air pollution levels in Athens. The data basis for this work consists of daily values of thirteen meteorological and six pollutant parameters covering the period 1993-97. The definition of the characteristic air mass types is attempted objectively by using the methods of Factor Analysis and Cluster Analysis. The results show that during the cold period of the year there are six prevailing air mass types (at least 3% of the total number of days) and six infrequent ones. The examination of the corresponding air pollution concentration levels shows that the primary air pollutants appear with increased concentrations when light or southerly winds prevail. This is usually the case when a high pressure system is located over the central Mediterranean or a low pressure system lays over south Italy, respectively. Low levels of the primary pollutants are recorded under northeasterly winds, mainly caused by a high pressure system over Ukraine. During the warm period of the year, the southwestern Asia thermal low and the subtropical anticyclone of the Atlantic Ocean affect Greece. Though these synoptic systems cause almost stagnant conditions, four main air mass types are dominant and ten others, associated with extreme weather, are infrequent. Despite the large amounts of total solar radiation characterizing this period, ozone concentrations remain at low levels in central Athens because of its destruction by nitric oxide.

  20. Velocity and pressure distribution behind bodies in an air current

    NASA Technical Reports Server (NTRS)

    Betz, A

    1924-01-01

    The following experiments on the air flow behind bodies were made for the purpose of assisting in the explanation of the phenomena connected with air resistance. The first two series of experiments dealt with the phenomena behind a cylinder. The third series of experiments was carried out behind a streamlined strut.

  1. Global surface air temperature variations: 1851-1984

    SciTech Connect

    Jones, P.D.; Raper, S.C.B.; Kelly, P.M.

    1986-11-01

    Many attempts have been made to combine station surface air temperature data into an average for the Northern Hemisphere. Fewer attempts have been made for the Southern Hemisphere because of the unavailability of data from the Antarctic mainland before the 1950s and the uncertainty of making a hemispheric estimate based solely on land-based analyses for a hemisphere that is 80% ocean. Past estimates have been based largely on data from the World Weather Records (Smithsonian Institution, 1927, 1935, 1947, and U.S. Weather Bureau, 1959-82) and have been made without considerable effort to detect and correct station inhomogeneities. Better estimates for the Southern Hemisphere are now possible because of the availability of 30 years of climatological data from Antarctica. The mean monthly surface air temperature anomalies presented in this package for the than those previously published because of the incorporation of data previously hidden away in archives and the analysis of station homogeneity before estimation.

  2. Design of experiments based variation mode and effect analysis of a conceptual air launched SLV

    NASA Astrophysics Data System (ADS)

    Rafique, Amer Farhan; Zeeshan, Qasim; Kamran, Ali

    2014-12-01

    Conceptual design stage is where the knowledge about the variation in system is still quite vague and herein we intend to analyze and compare various probable design concepts for Air Launched SLV by the use of basic variation mode and effect analysis. In this paper we present a methodology for the Variation Mode and Effect Analysis using Latin Hypercube Sampling based Design of Experiments for the conceptual Air launched Satellite Launch Vehicle. Variations are induced in the Control Variables based on knowledge and experience. The methodology is used to quantify the effect of Noise Factors on the performance of a conceptual Air Launched SLV. The insertion altitude of the Air Launched SLV is the Key Performance Indicator. Preliminary results of the performance and analysis for the simulated experiments are presented here. The performance of the proposed procedure has been tested and, thus, validated by the Air Launched SLV design problem. The Design of Experiment based Variation mode and effect analysis approach is intended for initial conceptual design purposes, thus, providing an immediate insight to the performance of the system in general and quantification of the sensitivity of the key performance indicator in particular, subject to the variations in noise factors prior to the detailed design phase.

  3. Pulse pressure variation to predict fluid responsiveness in spontaneously breathing patients: tidal vs. forced inspiratory breathing.

    PubMed

    Hong, D M; Lee, J M; Seo, J H; Min, J J; Jeon, Y; Bahk, J H

    2014-07-01

    We evaluated whether pulse pressure variation can predict fluid responsiveness in spontaneously breathing patients. Fifty-nine elective thoracic surgical patients were studied before induction of general anaesthesia. After volume expansion with hydroxyethyl starch 6 ml.kg(-1) , patients were defined as responders by a ≥ 15% increase in the cardiac index. Haemodynamic variables were measured before and after volume expansion and pulse pressure variations were calculated during tidal breathing and during forced inspiratory breathing. Median (IQR [range]) pulse pressure variation during forced inspiratory breathing was significantly higher in responders (n = 29) than in non-responders (n = 30) before volume expansion (18.2 (IQR 14.7-18.2 [9.3-31.3])% vs. 10.1 (IQR 8.3-12.6 [4.8-21.1])%, respectively, p < 0.001). The receiver-operating characteristic curve revealed that pulse pressure variation during forced inspiratory breathing could predict fluid responsiveness (area under the curve 0.910, p < 0.0001). Pulse pressure variation measured during forced inspiratory breathing can be used to guide fluid management in spontaneously breathing patients.

  4. Influence of air pressure on the performance of plasma synthetic jet actuator

    NASA Astrophysics Data System (ADS)

    Li, Yang; Jia, Min; Wu, Yun; Li, Ying-hong; Zong, Hao-hua; Song, Hui-min; Liang, Hua

    2016-09-01

    Plasma synthetic jet actuator (PSJA) has a wide application prospect in the high-speed flow control field for its high jet velocity. In this paper, the influence of the air pressure on the performance of a two-electrode PSJA is investigated by the schlieren method in a large range from 7 kPa to 100 kPa. The energy consumed by the PSJA is roughly the same for all the pressure levels. Traces of the precursor shock wave velocity and the jet front velocity vary a lot for different pressures. The precursor shock wave velocity first decreases gradually and then remains at 345 m/s as the air pressure increases. The peak jet front velocity always appears at the first appearance of a jet, and it decreases gradually with the increase of the air pressure. A maximum precursor shock wave velocity of 520 m/s and a maximum jet front velocity of 440 m/s are observed at the pressure of 7 kPa. The averaged jet velocity in one period ranges from 44 m/s to 54 m/s for all air pressures, and it drops with the rising of the air pressure. High velocities of the precursor shock wave and the jet front indicate that this type of PSJA can still be used to influence the high-speed flow field at 7 kPa. Project supported by the National Natural Science Foundation of China (Grant Nos. 51407197, 51522606, 51336011, 91541120, and 11472306).

  5. Firefighter's compressed air breathing system pressure vessel development program

    NASA Technical Reports Server (NTRS)

    Beck, E. J.

    1974-01-01

    The research to design, fabricate, test, and deliver a pressure vessel for the main component in an improved high-performance firefighter's breathing system is reported. The principal physical and performance characteristics of the vessel which were required are: (1) maximum weight of 9.0 lb; (2) maximum operating pressure of 4500 psig (charge pressure of 4000 psig); (3) minimum contained volume of 280 in. 3; (4) proof pressure of 6750 psig; (5) minimum burst pressure of 9000 psig following operational and service life; and (6) a minimum service life of 15 years. The vessel developed to fulfill the requirements described was completely sucessful, i.e., every category of performence was satisfied. The average weight of the vessel was found to be about 8.3 lb, well below the 9.0 lb specification requirement.

  6. Thermodynamic analysis of helium boil-off experiments with pressure variations

    NASA Astrophysics Data System (ADS)

    Cha, Y. S.; Niemann, R. C.; Hull, J. R.

    A thermodynamic analysis by calorimetric experiments in a system with changing pressure is presented. A general equation is derived for use in calculating the rate of heat loss from measured mass flow rate. The results show that the largest contribution from pressure variation is the sensible heat of liquid helium in a Dewar. A dimensionless parameter that was identified provides an indication of the importance of pressure variation relative to the latent heat of vaporization during an experiment. This dimensionless parameter is a function of system pressure land the thermodynamic properties of helium), rate of change of system pressure, liquid helium inventory in the Dewar and measured mass flow rate. In the special case when the effect of pressure variation is small compared to the latent heat of vaporization, the heat loss rate is the product of the measured mass flow rate and the latent heat of vaporization, multiplied by a correction factor that is a function of the ratio of vapour density to liquid density. This correction factor is significant for helium at pressures near or above 1 atm and should always be included in the calculation.

  7. The rate of pressure rise of gaseous propylene-air explosions in spherical and cylindrical enclosures.

    PubMed

    Razus, Domnina; Movileanua, Codina; Oancea, Dumitru

    2007-01-02

    The maximum rates of pressure rise of propylene-air explosions at various initial pressures and various fuel/oxygen ratios in three closed vessels (a spherical vessel with central ignition and two cylindrical vessels with central or with top ignition) are reported. It was found that in explosions of quiescent mixtures the maximum rates of pressure rise are linear functions on total initial pressure, at constant initial temperature and fuel/oxygen ratio. The slope and intercept of found correlations are greatly influenced by vessel's volume and shape and by the position of the ignition source--factors which determine the amount of heat losses from the burned gas in a closed vessel explosion. Similar data on propylene-air inert mixtures are discussed in comparison with those referring to propylene-air, revealing the influence of nature and amount of inert additive. The deflagration index KG of centrally ignited explosions was also calculated from maximum rates of pressure rise.

  8. Variations of the glacio-marine air mass front in West Greenland through water vapor isotopes

    NASA Astrophysics Data System (ADS)

    Kopec, B. G.; Lauder, A. M.; Posmentier, E. S.; Feng, X.

    2012-12-01

    While the isotopic distribution of precipitation has been widely used for research in hydrology, paleoclimatology, and ecology for decades, intensive isotopic studies of atmospheric water vapor has only recently been made possible by spectral-based technology. New instrumentation based on this technology opens up many opportunities to investigate short-term atmospheric dynamics involving the water cycle and moisture transport. We deployed a Los Gatos Water Vapor Isotope Analyzer (WVIA) at Kangerlussuaq, Greenland from July 21 to August 15, and measured the water vapor concentration and its isotopic ratios continuously at 10s intervals. A Danish Meteorological Institute site is located about 1 km from the site of the deployment, and meteorological data is collected at 30 min intervals. During the observation period, the vapor concentration of the ambient air ranges from 5608.4 to 11189.4 ppm; dD and d18O range from -254.5 to -177.7 ‰ and -34.2 to -23.2 ‰, respectively. The vapor content (dew point) and the isotopic ratios are both strongly controlled by the wind direction. The easterly winds are associated with dry, isotopically depleted air masses formed over the glacier, while westerly winds are associated with moist and isotopically enriched air masses from the marine/fjord surface. This region typically experiences katabatic winds off of the ice sheet to the east. However, during some afternoons, the wind shifts 180 degrees, blowing off the fjord to the west. This wind switch marks the onset of a sea breeze, and significant isotopic enrichment results. Enrichment in deuterium is up to 60 ‰ with a mean of 15‰, and oxygen-18 is enriched by 3‰ on average and up to 8 ‰. Other afternoons have no change in wind, and only small changes in humidity and vapor isotopic ratios. The humidity and isotopic variations suggest the local atmosphere circulation is dominated by relatively high-pressure systems above the cold glaciers and cool sea surface, and diurnal

  9. The upper explosion limit of lower alkanes and alkenes in air at elevated pressures and temperatures.

    PubMed

    Van den Schoor, F; Verplaetsen, F

    2006-01-16

    The upper explosion limit (UEL) of ethane-air, propane-air, n-butane-air, ethylene-air and propylene-air mixtures is determined experimentally at initial pressures up to 30 bar and temperatures up to 250 degrees C. The experiments are performed in a closed spherical vessel with an internal diameter of 200 mm. The mixtures are ignited by fusing a coiled tungsten wire, placed at the centre of the vessel, by electric current. Flame propagation is said to have taken place if there is a pressure rise of at least 1% of the initial pressure after ignition of the mixture. In the pressure-temperature range investigated, a linear dependence of UEL on temperature and a bilinear dependence on pressure are found except in the vicinity of the auto-ignition range. A comparison of the UEL data of the lower alkanes shows that the UEL expressed as equivalence ratio (the actual fuel/air ratio divided by the stoichiometric fuel/air ratio) increases with increasing carbon number in the homologous series of alkanes.

  10. Selective Pressure along a Latitudinal Gradient Affects Subindividual Variation in Plants

    PubMed Central

    Sobral, Mar; Guitián, José; Guitián, Pablo; Larrinaga, Asier R.

    2013-01-01

    Individual plants produce repeated structures such as leaves, flowers or fruits, which, although belonging to the same genotype, are not phenotypically identical. Such subindividual variation reflects the potential of individual genotypes to vary with micro-environmental conditions. Furthermore, variation in organ traits imposes costs to foraging animals such as time, energy and increased predation risk. Therefore, animals that interact with plants may respond to this variation and affect plant fitness. Thus, phenotypic variation within an individual plant could be, in part, an adaptive trait. Here we investigated this idea and we found that subindividual variation of fruit size of Crataegus monogyna, in different populations throughout the latitudinal gradient in Europe, was explained at some extent by the selective pressures exerted by seed-dispersing birds. These findings support the hypothesis that within-individual variation in plants is an adaptive trait selected by interacting animals which may have important implications for plant evolution. PMID:24069297

  11. Explosion bomb measurements of ethanol-air laminar gaseous flame characteristics at pressures up to 1.4 MPa

    SciTech Connect

    Bradley, D.; Lawes, M.; Mansour, M.S.

    2009-07-15

    The principal burning characteristics of a laminar flame comprise the fuel vapour pressure, the laminar burning velocity, ignition delay times, Markstein numbers for strain rate and curvature, the stretch rates for the onset of flame instabilities and of flame extinction for different mixtures. With the exception of ignition delay times, measurements of these are reported and discussed for ethanol-air mixtures. The measurements were in a spherical explosion bomb, with central ignition, in the regime of a developed stable, flame between that of an under or over-driven ignition and that of an unstable flame. Pressures ranged from 0.1 to 1.4 MPa, temperatures from 300 to 393 K, and equivalence ratios were between 0.7 and 1.5. It was important to ensure the relatively large volume of ethanol in rich mixtures at high pressures was fully evaporated. The maximum pressure for the measurements was the highest compatible with the maximum safe working pressure of the bomb. Many of the flames soon became unstable, due to Darrieus-Landau and thermo-diffusive instabilities. This effect increased with pressure and the flame wrinkling arising from the instabilities enhanced the flame speed. Both the critical Peclet number and the, more rational, associated critical Karlovitz stretch factor were evaluated at the onset of the instability. With increasing pressure, the onset of flame instability occurred earlier. The measured values of burning velocity are expressed in terms of their variations with temperature and pressure, and these are compared with those obtained by other researchers. Some comparisons are made with the corresponding properties for iso-octane-air mixtures. (author)

  12. A biometrical genome search in rats reveals the multigenic basis of blood pressure variation.

    PubMed

    Schork, N J; Krieger, J E; Trolliet, M R; Franchini, K G; Koike, G; Krieger, E M; Lander, E S; Dzau, V J; Jacob, H J

    1995-09-01

    A genome-wide search for multiple loci influencing salt-loaded systolic blood pressure (NaSBP) variation among 188 F2 progeny from a cross between the Brown-Norway and spontaneously hypertensive rat strains was pursued in an effort to gain insight into the polygenic basis of blood pressure regulation. The results suggest that loci within five to six genomic regions collectively explain approximately 43% of the total NaSBP variation exhibited among the 188 F2 progeny. Many of these loci are in regions that previous studies have not implicated in blood pressure regulation. Ultimately, however, this study not only sheds light on the multigenic basis of blood pressure but provides further evidence that the identification of the genetic determinants of polygenic traits in mammals is possible with modern biometrical and molecular genetic tools in controlled settings (i.e., breeding paradigm and model organism).

  13. Time Rate of Blood Pressure Variation Is Associated With Endothelial Function in Patients With Metabolic Syndrome.

    PubMed

    Ruan, Yanping; Wei, Wanlin; Yan, Jianhua; Sun, Lixian; Lian, Hui; Zhao, Xiaoyi; Liang, Ruijuan; Xiaole, Liu; Fan, Zhongjie

    2016-01-01

    The time rate of blood pressure (BP) variation indicates the speed of BP fluctuations. Previous studies have demonstrated that the time rate of BP variation was associated with target organ damage. However, the association between time rate of BP variation and endothelial function has not been evaluated.24-hour ambulatory blood pressure monitoring (ABPM) was performed in 61 patients with metabolic syndrome. Time rate of BP variation was calculated from BP recordings of ABPM. Endothelial function was assessed using reactive hyperemia-peripheral arterial tonometry index (RHI) by EndoPat2000. Multiple linear regression models were used to detect the association between time rate of BP variation and RHI.Among all the subjects (n = 61), the multiple linear regression models revealed that the daytime rate of systolic blood pressure (SBP) variation was independently associated with RHI (β = -0.334, P = 0.008). A 0.1 mmHg/minute increase in the daytime rate of SBP variation correlated with a decline of 0.20 in RHI. The same effect was also found in the subjects with eGFR ≥ 60 mL/ (minute*1.73 m(2)). A greater association was found in those who were not taking a statin, β-blocker, ACEI/ARB, or diuretic and those without diabetes compared with those with any antihypertensive medication or with diabetes. Other ambulatory blood pressure parameters and central hemodynamics were not found to be associated with RHI.Our findings have shown that the daytime rate of SBP variation was associated with endothelial function in patients with metabolic syndrome, independent of other BP parameters and central hemodynamics.

  14. 40 CFR 53.56 - Test for effect of variations in ambient pressure.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... over two 6-hour time periods during which reference pressure and flow rate measurements shall be made... quantitative volumetric flow rate of the air stream caused by the sampler to enter the sampler inlet and pass... this test, an alternative certified flow measurement device may be used as long as...

  15. 40 CFR 53.56 - Test for effect of variations in ambient pressure.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... over two 6-hour time periods during which reference pressure and flow rate measurements shall be made... quantitative volumetric flow rate of the air stream caused by the sampler to enter the sampler inlet and pass... this test, an alternative certified flow measurement device may be used as long as...

  16. 40 CFR 53.56 - Test for effect of variations in ambient pressure.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... over two 6-hour time periods during which reference pressure and flow rate measurements shall be made... quantitative volumetric flow rate of the air stream caused by the sampler to enter the sampler inlet and pass... this test, an alternative certified flow measurement device may be used as long as...

  17. 40 CFR 53.56 - Test for effect of variations in ambient pressure.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... over two 6-hour time periods during which reference pressure and flow rate measurements shall be made... quantitative volumetric flow rate of the air stream caused by the sampler to enter the sampler inlet and pass... this test, an alternative certified flow measurement device may be used as long as...

  18. Response of pulmonary veins to increased intracranial pressure and pulmonary air embolization

    SciTech Connect

    Peterson, B.T.; Grauer, S.E.; Hyde, R.W.; Ortiz, C.; Moosavi, H.; Utell, M.J.

    1980-01-01

    To see whether air emboli to the lungs rather than brain compression caused these findings, anesthetized dogs received intravenous air infusions, subdural air infusions, or brain compression from balloons inflated in the subdural space. Subdural air and intravenous air resulted in similar vascular responses. Pulmonary artery pressure (Ppa) increased 160% (P < 0.01) and pulmonary venous pressure transiently rose 13 +- 5 Torr (P < 0.05) without an increase in left atrial pressure or cardiac output (Q). The end-tidal PCP/sub 2/ fell 55% (P < 0.01) and the postmortem weight of the lungs increased 55% (P < 0.05). Brain compression with a subdural balloon instead of air only caused a 20% rise in Ppa and Q without pulmonary edema. Thus, pulmonary air emboli rather than brain compression accounts for the edema and pulmonary hypertension caused by subdural air. Catheters in pulmonary veins and the left atrium showed that air emboli cause transient pulmonary venous hypertension as well as a reproducible form of noncardiogenic pulmonary edema.

  19. Use of systolic pressure variation to predict the cardiovascular response to mini-fluid challenge in anaesthetised dogs.

    PubMed

    Rabozzi, R; Franci, P

    2014-11-01

    Systolic pressure variation (SPV), the maximum variation in systolic pressure values following a single positive pressure breath delivered by controlled mechanical ventilation (CMV), is highly correlated with volaemia in dogs. The aim of this study was to determine an SPV value that would indicate when fluid administration would be beneficial in clinical practice. Twenty-six client-owned dogs were anaesthetised, following which CMV with a peak inspiratory pressure (PIP) of 8 cmH2O was applied. After SPV measurement and recording of heart rate (HR) and blood pressure (BP), 3 mL/kg fluid were administered, then HR and BP were recorded again. Dogs exhibiting a 10% decrease in HR and/or an increase in BP were defined as responders, and their SPV pre-bolus was analysed retrospectively. SPV values > 4 mmHg or >4.5% predicted haemodynamic improvement in dogs with normal cardiovascular function, with a sensitivity of 90% and a specificity of 87%. The area under the curve receiver operating characteristic value for SPV was 0.931 mmHg (95% confidence interval, CI, 0.76-0.99 mmHg) and 0.944% (95% CI 0.78-0.99%). It is proposed that SPV values > 4.5% in dogs with a normal cardiovascular function, anaesthetised with isoflurane in oxygen and air, and on CMV (PIP 8 cmH2O), can be used to predict a cardiovascular response (>10% increase in mean arterial BP and/or >10% decrease in heart rate).

  20. Further experiments on the stability of laminar and turbulent hydrogen-air flames at reduced pressures

    NASA Technical Reports Server (NTRS)

    Fine, Burton

    1957-01-01

    Stability limits for laminar and turbulent hydrogen-air burner flames were measured as a function of pressure, burner diameter, and composition. On the basis of a simple flame model, turbulent flashback involved a smaller effective penetration distance than laminar flashback. No current theoretical treatment predicts the observed pressure and diameter dependence of laminar and turbulent blowoff.

  1. Effect of air-pressure on room temperature hydrogen sensing characteristics of nanocrystalline doped tin oxide MEMS-based sensor.

    PubMed

    Shukla, Satyajit; Ludwig, Lawrence; Cho, Hyoung J; Duarte, Julian; Seal, Sudipta

    2005-11-01

    Nanocrystalline indium oxide (In2O3)-doped tin oxide (SnO2) thin film sensor has been sol-gel dip-coated on a microelectrochemical system (MEMS) device using a sol-gel dip-coating technique. Hydrogen (H2) at ppm-level has been successfully detected at room temperature using the present MEMS-based sensor. The room temperature H2 sensing characteristics (sensitivity, response and recovery time, and recovery rate) of the present MEMS-based sensor has been investigated as a function of air-pressure (50-600 Torr) with and without the ultraviolet (UV) radiation exposure. It has been demonstrated that, the concentration of the surface-adsorbed oxygen-ions (which is related to the sensor-resistance in air), the ppm-level H2, and the oxygen (O2) partial pressure are the three major factors, which determine the variation in the room temperature H2 sensing characteristics of the present MEMS-based sensor as a function of air-pressure.

  2. Ambient temperature and air pressure modulate hormones and behaviour in Greylag geese (Anser anser) and Northern bald ibis (Geronticus eremita).

    PubMed

    Dorn, Sebastian; Wascher, Claudia A F; Möstl, Erich; Kotrschal, Kurt

    2014-10-01

    Ambient temperature and air pressure are relevant stimuli that can elicit hormonal responses in alignment with adjusting individuals' physiology and behaviour. This study investigated possible changes in corticosterone (C) and testosterone (T) and contingencies with behaviour in response to ambient temperature and air pressure, and it evaluated the temporal response dynamics of these hormones in 12 individual Greylag geese (Anser anser) over 26 and 12 individual Northern bald ibis (Geronticus eremita) over 27 days, during late winter. Immunoreactive metabolites of C and T were analysed non-invasively from 626 fecal samples by means of group-specific antibodies and correlated to behaviour and weather factors. In both species, high C levels correlated with low temperatures 24h before sampling, but low C levels correlated with high air pressure 6-12h before sampling. In both species, C levels and behavioural activity were negatively correlated. In addition, temperature had a positive influence on T levels in both species 12-24h before sampling. The fact that weather conditions influenced changes in levels of C, while social interactions did not, is indicative of a general mechanism of graduated physiological adjustment to environmental variations affecting metabolism, stress responses and behaviour.

  3. Antarctic Sea ice variations and seasonal air temperature relationships

    NASA Technical Reports Server (NTRS)

    Weatherly, John W.; Walsh, John E.; Zwally, H. J.

    1991-01-01

    Data through 1987 are used to determine the regional and seasonal dependencies of recent trends of Antarctic temperature and sea ice. Lead-lag relationships involving regional sea ice and air temperature are systematically evaluated, with an eye toward the ice-temperature feedbacks that may influence climatic change. Over the 1958-1087 period the temperature trends are positive in all seasons. For the 15 years (l973-l987) for which ice data are available, the trends are predominantly positive only in winter and summer, and are most strongly positive over the Antarctic Peninsula. The spatially aggregated trend of temperature for this latter period is small but positive, while the corresponding trend of ice coverage is small but negative. Lag correlations between seasonal anomalies of the two variables are generally stronger with ice lagging the summer temperatures and with ice leading the winter temperatures. The implication is that summer temperatures predispose the near-surface waters to above-or below-normal ice coverage in the following fall and winter.

  4. Operation JANGLE. Project 1(9)a. Ground Acceleration, Ground and Air Pressures for Underground Test

    DTIC Science & Technology

    1952-04-01

    Salmon 0, April .1952 -0o So 0 * per telecon w/Betty Fox ( DNA Tech Libr, Chief), the classified references contained herein may remain. 6-Z I- 7...73 693 Earth Pr.essure . 77 6.4 Damage Criteria - Surface Stracture .... 78 6.5 D-miage Criteria - Underground Targets ... 8...ground pressures, and air pressures produced by a buried shallow) nuclear explosive. AU2 of these physical quantities are functions of at least two

  5. An experimental study of geyser-like flows induced by a pressurized air pocket

    NASA Astrophysics Data System (ADS)

    Elayeb, I. S.; Leon, A.; Choi, Y.; Alnahit, A. O.

    2015-12-01

    Previous studies argues that the entrapment of pressurized air pockets within combined sewer systems can produce geyser flows, which is an oscillating jetting of a mixture of gas-liquid flows. To verify that pressurized air pockets can effectively produce geysers, laboratory experiments were conducted. However, past experiments were conducted in relatively small-scale apparatus (i.e. maximum φ2" vertical shaft). This study conducted a set of experiments in a larger apparatus. The experimental setup consists of an upstream head tank, a downstream head tank, a horizontal pipe (46.5ft long, φ6") and a vertical pipe (10ft long, φ6"). The initial condition for the experiments is constant flow discharge through the horizontal pipe. The experiments are initiated by injecting an air pocket with pre-determined volume and pressure at the upstream end of the horizontal pipe. The air pocket propagates through the horizontal pipe until it arrives to the vertical shaft, where it is released producing a geyser-like flow. Three flow rates in the horizontal pipe and three injected air pressures were tested. The variables measured were pressure at two locations in the horizontal pipe and two locations in the vertical pipe. High resolution videos at two regions in the vertical shaft were also recorded. To gain further insights in the physics of air-water interaction, the laboratory experiments were complemented with numerical simulations conducted using a commercial 3D CFD model, previously validated with experiments.

  6. Plain-jet airblast atomization of alternative liquid petroleum fuels under high ambient air pressure conditions

    NASA Astrophysics Data System (ADS)

    Jasuja, A. K.

    1982-04-01

    The effects that air and fuel properties have upon the spray mean drop size characteristics of a plain-jet airblast atomizer of the type employed in the gas turbine engine are investigated. The tests used kerosene, gas oil and a high-viscosity blend of gas oil in residual fuel oil, and covered a wide range of ambient air pressures. Laser light-scattering technique was employed for drop size measurements. It is concluded that the atomizer's measured mean drop size characteristics are only slightly different from those of the pre-filming type, especially when operating on low-viscosity kerosene under higher ambient air pressure. The beneficial effect of increased levels of ambient air pressure on mean drop size is shown to be much reduced in the case of high-viscosity fuels, thus making the attainment of good atomization performance on such fuels difficult. An expression is derived for correlating the obtained mean drop size data.

  7. Air pressure waves from Mount St. Helens eruptions

    NASA Astrophysics Data System (ADS)

    Reed, Jack W.

    1987-10-01

    Infrasonic recordings of the pressure wave from the Mount St. Helens (MSH) eruption on May 18, 1980, together with the weather station barograph records were used to estimate an equivalent explosion airblast yield for this eruption. Pressure wave amplitudes versus distance patterns were found to be comparable with patterns found for a small-scale nuclear explosion, the Krakatoa eruption, and the Tunguska comet impact, indicating that the MSH wave came from an explosion equivalent of about 5 megatons of TNT. The peculiar audibility pattern reported, with the blast being heard only at ranges beyond about 100 km, is explained by consideration of finite-amplitude shock propagation developments.

  8. Seasonal variation in physiological responses to mild cold air in young and older men

    NASA Astrophysics Data System (ADS)

    Inoue, Yoshimitsu; Nakao, Mikio; Ueda, Hiroyuki; Araki, Tsutomu

    1995-09-01

    Eight men aged 60 65 years and six men aged 20 25 years, wearing only swimming trunks, were exposed to an air temperature of 17° C and 45% R.H. in each of the four seasons. The increase in the rate of metabolic heat productionleft( {% Δ dot M} right) for the older group in the cold test was significantly higher in summer and autumn than in winter and spring ( P<0.05), but did not differ in the young group between seasons. Compared to the young group the% Δ dot M was significantly greater for the older group (due to a marked increase in four individuals) in summer and autumn ( P<0.04). At the end of the period of cold exposure, the decrements of rectal temperature ( ΔT re), mean skin temperature (bar T_{sk} ; due to a marked decrease in four individuals) and foot skin temperature ( T foot) were significantly greater for the older group compared to the young group at all times of the year ( P<0.003). Seasonal variations in the two groups were similar, e.g., the ΔTre gradually became smaller from summer to winter ( P<0.05) and then increased slightly in the spring ( P=0.07). T foot for both groups decreased from summer to autumn ( P<0.01) and remained unchanged subsequently. No seasonal variations were observed forbar T_{sk} in either group. The increase in diastolic blood pressure (BPd) during the test was significantly smaller in winter in both groups ( P<0.05). BPd became larger again during spring in the older group ( P<0.01), but remained low in the young group. The BPd was significantly greater for the older group than the young group in winter and spring ( P<0.05). Compared to young men these results suggest that older men may lose the tolerance acquired by earlier cold acclimatization as seen by the BPd responses, and have a somewhat lower thermoregulatory capability in coping with mild cold air in all seasons.

  9. Numerical simulation of high pressure release and dispersion of hydrogen into air with real gas model

    NASA Astrophysics Data System (ADS)

    Khaksarfard, R.; Kameshki, M. R.; Paraschivoiu, M.

    2010-06-01

    Hydrogen is a renewable and clean source of energy, and it is a good replacement for the current fossil fuels. Nevertheless, hydrogen should be stored in high-pressure reservoirs to have sufficient energy. An in-house code is developed to numerically simulate the release of hydrogen from a high-pressure tank into ambient air with more accuracy. Real gas models are used to simulate the flow since high-pressure hydrogen deviates from ideal gas law. Beattie-Bridgeman and Abel Noble equations are applied as real gas equation of state. A transport equation is added to the code to calculate the concentration of the hydrogen-air mixture after release. The uniqueness of the code is to simulate hydrogen in air release with the real gas model. Initial tank pressures of up to 70 MPa are simulated.

  10. Ultra High Pressure Air Properties and CFD Code

    DTIC Science & Technology

    2007-02-28

    than the inconsistencies. To incorporate property consistency in the reconstructed results we use bivariate polynomials of the form 22 23, z(x,.y)= jjq...times faster while the maximum advantage occurs for air where reconstruction is as much as 2500 times faster. The savings achieved by the reconstruction...refined to the deepest level) Table II Column Information in Table I Column Heading Information I Fluid Fluid Type 2 Zone Zone 3 Max Err Maximum error of

  11. Skeletal muscle hemoglobin content measured by near-infrared spectroscopy during oscillatory venous pressure variation

    NASA Astrophysics Data System (ADS)

    Marcu, Laura; Maarek, Jean-Michel I.; Bembi, Atul; Howell, Sandra

    1995-04-01

    Changes in oxidized (HbO), reduced (Hbr), and total hemoglobin (Hbt) contents were monitored by near infrared spectroscopy in human forearm skeletal muscle during oscillatory variations of the effective venous pressure. Laser diode pulses (wavelength, 775, 810, 865, 904; duration, 60 ns) were directed to the muscle by means of an optic fiber bundle and detected with a sensing fiber positioned at 1.5 cm from the emitting bundle. Sinusoidal pressure waves (frequency, 1 and 2 cycles/min; amplitude, 10-15 mm Hg) generated by a piston pump were transmitted to a sphygmomanometer cuff placed on the arm, the mean cuff pressure (Pc) being 20, 40 and 60 mm Hg. Variations of HbO, Hbr and Hbt were computed from the optical signals and processed by Fourier analysis to characterize their amplitude and phase relative to the cuff mean pressure oscillations (Posc). Oscillations of HbO, Hbr, Hbt were observed for all mean cuff pressures, the amplitude of the variations being decreased with increasing Pc. For Pc equals 20 mm Hg, the oscillations of HbO and Hbt were nearly in phase with Posc whereas the oscillation of Hbr were out of phase with HbO and Posc. Increasing Pc resulted in an increase of the phase difference between HbO and Posc, Hbr remaining out of phase with Posc. These trends could be predicted with a lumped model of the forearm vasculature, suggesting that the technique could be used to asses mechanical characteristics of vascular beds.

  12. Rare independent mutations in renal salt handling genes contribute to blood pressure variation

    PubMed Central

    O'Roak, Brian J.; Zhao, Hongyu; Larson, Martin G.; Simon, David B.; Newton-Cheh, Christopher; State, Matthew W.; Levy, Daniel; Lifton, Richard P.

    2013-01-01

    The effects of alleles in many genes are believed to contribute to common complex diseases such as hypertension. Whether risk alleles comprise a small number of common variants or many rare independent mutations at trait loci is largely unknown. We screened members of the Framingham Heart Study (FHS) for variation in three genes -SLC12A3 (NCCT), SLC12A1 (NKCC2) and KCNJ1 (ROMK)- causing rare recessive diseases featuring large reductions in blood pressure. Using comparative genomics, genetics, and biochemistry, we identified subjects with mutations proven or inferred to be functional. These mutations, all heterozygous and rare, produce clinically significant blood pressure reduction and protect from development of hypertension. Our findings implicate many rare alleles that alter renal salt handling in blood pressure variation in the general population, and identify alleles with health benefit that are nonetheless under purifying selection. These findings have implications for the genetic architecture of hypertension and other common complex traits. PMID:18391953

  13. Implications of Dynamic Pressure Transducer Mounting Variations on Measurements in Pyrotechnic Test Apparatus

    NASA Technical Reports Server (NTRS)

    Dibbern, Andreas; Crisafulli, Jeffrey; Hagopia, Michael; McDougle, Stephen H.; Saulsberry, Regor L.

    2009-01-01

    Accurate dynamic pressure measurements are often difficult to make within small pyrotechnic devices, and transducer mounting difficulties can cause data anomalies that lead to erroneous conclusions. Delayed initial pressure response followed by data ringing has been observed when using miniaturized pressure transducer mounting adapters required to interface transducers to small test chambers. This delayed pressure response and ringing, combined with a high data acquisition rate, has complicated data analysis. This paper compares the output signal characteristics from different pressure transducer mounting options, where the passage distance from the transducer face to the pyrotechnic chamber is varied in length and diameter. By analyzing the data and understating the associated system dynamics, a more realistic understanding of the actual dynamic pressure variations is achieved. Three pressure transducer mounting configurations (elongated, standard, and face/flush mount) were simultaneously tested using NASA standard initiators in closed volume pressure bombs. This paper also presents results of these pressure transducer mounting configurations as a result of a larger NASA Engineering and Safety Center pyrovalve test project. Results from these tests indicate the improved performance of using face/flush mounted pressure transducers in this application. This type of mounting improved initial pressure measurement response time by approximately 19 s over standard adapter mounting, eliminating most of the lag time; provided a near step-function type initial pressure increase; and greatly reduced data ringing in high data acquisition rate systems. The paper goes on to discuss other issues associated with the firing and instrumentation that are important for the tester to understand.

  14. Downhole steam generator using low pressure fuel and air supply

    DOEpatents

    Fox, Ronald L.

    1983-01-01

    An apparatus for generation of steam in a borehole for penetration into an earth formation wherein a spiral, tubular heat exchanger is used in the combustion chamber to isolate the combustion process from the water being superheated for conversion into steam. The isolation allows combustion of a relatively low pressure oxidant and fuel mixture for generating high enthalpy steam. The fuel is preheated by feedback of combustion gases from the top of the combustion chamber through a fuel preheater chamber. The hot exhaust gases of combustion at the bottom of the combustion chamber, after flowing over the heat exchanger enter an exhaust passage and pipe. The exhaust pipe is mounted inside the water supply line heating the water flowing into the heat exchanger. After being superheated in the heat exchanger, the water is ejected through an expansion nozzle and converts into steam prior to penetration into the earth formation. Pressure responsive doors are provided at a steam outlet downstream of the nozzle and close when the steam pressure is lost due to flameout.

  15. Torricelli and the Ocean of Air: The First Measurement of Barometric Pressure

    PubMed Central

    2013-01-01

    The recognition of barometric pressure was a critical step in the development of environmental physiology. In 1644, Evangelista Torricelli described the first mercury barometer in a remarkable letter that contained the phrase, “We live submerged at the bottom of an ocean of the element air, which by unquestioned experiments is known to have weight.” This extraordinary insight seems to have come right out of the blue. Less than 10 years before, the great Galileo had given an erroneous explanation for the related problem of pumping water from a deep well. Previously, Gasparo Berti had filled a very long lead vertical tube with water and showed that a vacuum formed at the top. However, Torricelli was the first to make a mercury barometer and understand that the mercury was supported by the pressure of the air. Aristotle stated that the air has weight, although this was controversial for some time. Galileo described a method of measuring the weight of the air in detail, but for reasons that are not clear his result was in error by a factor of about two. Torricelli surmised that the pressure of the air might be less on mountains, but the first demonstration of this was by Blaise Pascal. The first air pump was built by Otto von Guericke, and this influenced Robert Boyle to carry out his classical experiments of the physiological effects of reduced barometric pressure. These were turning points in the early history of high-altitude physiology. PMID:23455767

  16. Torricelli and the ocean of air: the first measurement of barometric pressure.

    PubMed

    West, John B

    2013-03-01

    The recognition of barometric pressure was a critical step in the development of environmental physiology. In 1644, Evangelista Torricelli described the first mercury barometer in a remarkable letter that contained the phrase, "We live submerged at the bottom of an ocean of the element air, which by unquestioned experiments is known to have weight." This extraordinary insight seems to have come right out of the blue. Less than 10 years before, the great Galileo had given an erroneous explanation for the related problem of pumping water from a deep well. Previously, Gasparo Berti had filled a very long lead vertical tube with water and showed that a vacuum formed at the top. However, Torricelli was the first to make a mercury barometer and understand that the mercury was supported by the pressure of the air. Aristotle stated that the air has weight, although this was controversial for some time. Galileo described a method of measuring the weight of the air in detail, but for reasons that are not clear his result was in error by a factor of about two. Torricelli surmised that the pressure of the air might be less on mountains, but the first demonstration of this was by Blaise Pascal. The first air pump was built by Otto von Guericke, and this influenced Robert Boyle to carry out his classical experiments of the physiological effects of reduced barometric pressure. These were turning points in the early history of high-altitude physiology.

  17. A change for the better? Measuring improvements in upgraded alternating-pressure air mattresses.

    PubMed

    Rithalia, S V; Heath, G H

    2000-10-01

    This study used measurements of interface pressure over time (the pressure relief index) to investigate improvements made to two alternating-pressure air mattresses. Two older models, the Nimbus 2 (Huntleigh Technology) and Pegasus Airwave (Pegasus Egerton), were compared with two new versions, the Nimbus 3 and Cairwave systems, respectively. Pressure relief was improved in seven out of 12 areas in the Nimbus 3 system, and in four out of 12 areas in the Cairwave. Significant differences in pressure relief index measurements at the heel between the Nimbus 3 and Cairwave products may explain the former's better clinical outcomes in this area, but superior pressure relief index performance at the sacrum did not predict better clinical outcomes. Therefore, different levels of pressure relief may be needed at different body sites. Individual practitioners must decide whether these improvements merit list price increases of 11% and 15%, respectively, and whether other features justify a 20% price difference between the two new systems.

  18. Thermodynamic and Transport Properties of Real Air Plasma in Wide Range of Temperature and Pressure

    NASA Astrophysics Data System (ADS)

    Wang, Chunlin; Wu, Yi; Chen, Zhexin; Yang, Fei; Feng, Ying; Rong, Mingzhe; Zhang, Hantian

    2016-07-01

    Air plasma has been widely applied in industrial manufacture. In this paper, both dry and humid air plasmas' thermodynamic and transport properties are calculated in temperature 300-100000 K and pressure 0.1-100 atm. To build a more precise model of real air plasma, over 70 species are considered for composition. Two different methods, the Gibbs free energy minimization method and the mass action law method, are used to determinate the composition of the air plasma in a different temperature range. For the transport coefficients, the simplified Chapman-Enskog method developed by Devoto has been applied using the most recent collision integrals. It is found that the presence of CO2 has almost no effect on the properties of air plasma. The influence of H2O can be ignored except in low pressure air plasma, in which the saturated vapor pressure is relatively high. The results will serve as credible inputs for computational simulation of air plasma. supported by the National Key Basic Research Program of China (973 Program)(No. 2015CB251002), National Natural Science Foundation of China (Nos. 51521065, 51577145), the Science and Technology Project Funds of the Grid State Corporation (SGTYHT/13-JS-177), the Fundamental Research Funds for the Central Universities, and State Grid Corporation Project (GY71-14-004)

  19. Sociophonetic Variation in the Production and Perception of Obstruent Voicing in Buenos Aires Spanish

    ERIC Educational Resources Information Center

    Rohena-Madrazo, Marcos

    2011-01-01

    This dissertation presents an instrumental study of variation in fricative voicing in Buenos Aires Spanish (BAS), particularly with respect to the devoicing change of the postalveolar fricative: /y/greater than/[function of]/. It proposes a novel way of determining the completion of this change by comparing the percentage voicing of the…

  20. A handheld low temperature atmospheric pressure air plasma gun for nanomaterial synthesis in liquid phase

    SciTech Connect

    Yu, Shuang; Wang, Kaile; Zuo, Shasha; Liu, Jiahui; Zhang, Jue Fang, Jing

    2015-10-15

    A handheld low temperature atmospheric pressure air plasma gun based on a dielectric barrier structure with hollow electrodes was proposed. The portable plasma gun with an embedded mini air pump was driven by a 12 V direct voltage battery. The air plasma jet generated from the gun could be touched without a common shock hazard. Besides working in air, the plasma gun can also work in water. The diagnostic result of optical emission spectroscopy showed the difference in reactive species of air plasma jet between in air and in water. The plasma gun was excited in 20 ml chloroauric acid aqueous solution with a concentration of 1.214 mM. A significant amount of gold nanoparticles were synthesized after 2 min continuous discharge. The plasma gun with these unique features is applicable in plasma medicine, etching, and s-nthesis of nanomaterials.

  1. A handheld low temperature atmospheric pressure air plasma gun for nanomaterial synthesis in liquid phase

    NASA Astrophysics Data System (ADS)

    Yu, Shuang; Wang, Kaile; Zuo, Shasha; Liu, Jiahui; Zhang, Jue; Fang, Jing

    2015-10-01

    A handheld low temperature atmospheric pressure air plasma gun based on a dielectric barrier structure with hollow electrodes was proposed. The portable plasma gun with an embedded mini air pump was driven by a 12 V direct voltage battery. The air plasma jet generated from the gun could be touched without a common shock hazard. Besides working in air, the plasma gun can also work in water. The diagnostic result of optical emission spectroscopy showed the difference in reactive species of air plasma jet between in air and in water. The plasma gun was excited in 20 ml chloroauric acid aqueous solution with a concentration of 1.214 mM. A significant amount of gold nanoparticles were synthesized after 2 min continuous discharge. The plasma gun with these unique features is applicable in plasma medicine, etching, and s-nthesis of nanomaterials.

  2. Temporal Variations of Air Dose Rates in East Fukushima During Japanese Fiscal Years 2012 and 2013.

    PubMed

    Akimoto, Kazuhiro

    2017-01-01

    Temporal variations of ambient air dose rates in eastern Fukushima prefecture during Japanese fiscal years 2012 and 2013 are analyzed. The average overall variation rate of air dose rates in east Fukushima during the examined period is found to be 0.49 (51% down) compared to the theoretically predicted value 0.65 (35% down) based on physical decay of radioactive cesium nuclides. On average, local dose rates declined almost linearly for the relatively short period. Temporal characteristics of air dose rates may be classified into variation rates, peaks, spikes, and oscillations. During the examined period, a typical dose-rate curve formed a long-term peak in summer that lasted one through a few months as well as a long-term spike in winter that lasted likewise. Otherwise, occasional short-term peaks and short-term spikes, in addition to long-term oscillations, were observed. Air dose rates may be effectively modulated at short timescales mainly by precipitation. Moreover, it is likely that winds may oscillate air dose rates due to resuspension of radio-dusts.

  3. Variation in predator species abundance can cause variable selection pressure on warning signaling prey

    PubMed Central

    Valkonen, Janne K; Nokelainen, Ossi; Niskanen, Martti; Kilpimaa, Janne; Björklund, Mats; Mappes, Johanna

    2012-01-01

    Predation pressure is expected to drive visual warning signals to evolve toward conspicuousness. However, coloration of defended species varies tremendously and can at certain instances be considered as more camouflaged rather than conspicuous. Recent theoretical studies suggest that the variation in signal conspicuousness can be caused by variation (within or between species) in predators' willingness to attack defended prey or by the broadness of the predators' signal generalization. If some of the predator species are capable of coping with the secondary defenses of their prey, selection can favor reduced prey signal conspicuousness via reduced detectability or recognition. In this study, we combine data collected during three large-scale field experiments to assess whether variation in avian predator species (red kite, black kite, common buzzard, short-toed eagle, and booted eagle) affects the predation pressure on warningly and non-warningly colored artificial snakes. Predation pressure varied among locations and interestingly, if common buzzards were abundant, there were disadvantages to snakes possessing warning signaling. Our results indicate that predator community can have important consequences on the evolution of warning signals. Predators that ignore the warning signal and defense can be the key for the maintenance of variation in warning signal architecture and maintenance of inconspicuous signaling. PMID:22957197

  4. Responses of Venus Ionosphere and Induced Magnetosphere to Solar Wind Pressure Variations

    NASA Astrophysics Data System (ADS)

    Ma, Yingjuan; Toth, Gabor; Nagy, Andrew F.; Russell, Christopher T.

    2016-04-01

    Often regarded as the Earth's 'sister planet', Venus has similar size and mass as Earth. But it is also remarkably different from Earth in many respects. Even though we have some basic knowledge of the solar wind interaction with Venus based on spacecraft observations, little is known about how the interaction and the resulting plasma escape rates vary in response to solar wind variations due to the lack of coordinated observations of both upstream solar wind conditions and simultaneous plasma properties in the Venus ionosphere. Furthermore, recent observations suggest that plasma escape rates are significantly enhanced during stormy space weather in response to solar wind pressure pulses (Edberg et al., 2011). Thus it is important to understand the plasma interaction under varying solar wind conditions. In this study, we use a sophisticated multi-species MHD model that has been recently developed for Venus (Ma et al., 2013) to characterize the responses of the ionosphere and the induced magnetosphere of Venus to a typical variation of the solar wind: dynamic pressure change. We will examine the response of the ionosphere and the induced magnetosphere to both pressure enhancements and decreases. We will quantify the total plasma escape-rate change in response to such variations and to identify the underlying driver for changes in escape rate. We will also quantify the time scale of the Venus ionosphere and induced magnetosphere in responding to the pressure change of the external solar wind driver.

  5. Measured pressure distributions of large-angle cones in hypersonic flows of tetrafluoromethane, air, and helium

    NASA Technical Reports Server (NTRS)

    Jones, R. A.; Hunt, J. L.

    1973-01-01

    An experimental study of surface pressure distributions on a family of blunt and sharp large angle cones was made in hypersonic flows of helium, air, and tetrafluoromethane. The effective isentropic exponents of these flows were 1.67, 1.40, and 1.12. Thus, the effect of large shock density ratios such as might be encountered during planetary entry because of real-gas effects could be studied by comparing results in tetrafluoromethane with those in air and helium. It was found that shock density ratio had a large effect on both shock shape and pressure distribution. The differences in pressure distribution indicate that for atmospheric flight at high speed where real-gas effects produce large shock density ratios, large-angle cone vehicles can be expected to experience different trim angles of attack, drag coefficient, and lift-drag ratios than those for ground tests in air wind tunnels.

  6. Geographic Variation of Melanisation Patterns in a Hornet Species: Genetic Differences, Climatic Pressures or Aposematic Constraints?

    PubMed Central

    Perrard, Adrien; Arca, Mariangela; Rome, Quentin; Muller, Franck; Tan, Jiangli; Bista, Sanjaya; Nugroho, Hari; Baudoin, Raymond; Baylac, Michel; Silvain, Jean-François; Carpenter, James M.; Villemant, Claire

    2014-01-01

    Coloration of stinging insects is often based on contrasted patterns of light and black pigmentations as a warning signal to predators. However, in many social wasp species, geographic variation drastically modifies this signal through melanic polymorphism potentially driven by different selective pressures. To date, surprisingly little is known about the geographic variation of coloration of social wasps in relation to aposematism and melanism and to genetic and developmental constraints. The main objectives of this study are to improve the description of the colour variation within a social wasp species and to determine which factors are driving this variation. Therefore, we explored the evolutionary history of a polymorphic hornet, Vespa velutina Lepeletier, 1836, using mitochondrial and microsatellite markers, and we analysed its melanic variation using a colour space based on a description of body parts coloration. We found two main lineages within the species and confirmed the previous synonymy of V. auraria Smith, 1852, under V. velutina, differing only by the coloration. We also found that the melanic variation of most body parts was positively correlated, with some segments forming potential colour modules. Finally, we showed that the variation of coloration between populations was not related to their molecular, geographic or climatic differences. Our observations suggest that the coloration patterns of hornets and their geographic variations are determined by genes with an influence of developmental constraints. Our results also highlight that Vespa velutina populations have experienced several convergent evolutions of the coloration, more likely influenced by constraints on aposematism and Müllerian mimicry than by abiotic pressures on melanism. PMID:24740142

  7. Hydraulic Resistance and Liberation of Air in Aviation Kerosene Flow Through Diaphragms at Low Pressure

    NASA Astrophysics Data System (ADS)

    Kitanin, É. L.; Kitanina, E. É.; Zherebtsov, V. A.; Peganova, M. M.; Stepanov, S. G.; Bondarenko, D. A.; Morisson, D.

    2016-09-01

    This paper presents the results of experimental investigations of the liberation of air in gravity flow of aviation fuel through a pipeline with diaphragms. Experiments were carried out in the pressure range 0.2-1.0 bar and temperature range -20 to +20°C. The TC-1 kerosene was preliminarily saturated with air at atmospheric pressure. The liberation of air after the diaphragms with three ratios of the flow area to the cross-sectional area of the pipeline has been investigated. The results of investigations of the two-phase flow in several experimental pipelines containing one or two diaphragms and other local hydraulic resistances have been generalized. The obtained approximation equations permit calculating the hydraulic resistance of the diaphragm in the two-phase flow and the mass gas content of air after the diaphragm in pipelines of complex geometry.

  8. Atmospheric-pressure air microplasma jets in aqueous media for the inactivation of Pseudomonas fluorescens cells

    SciTech Connect

    Zhang, Xianhui; Yang, Si-ze; Liu, Dongping; Song, Ying; Sun, Yue

    2013-05-15

    The hollow fiber-based cold air microplasma jet array running at atmospheric pressure has been designed to inactivate Pseudomonas fluorescens (P. fluorescens) cells in vitro in aqueous media. The influences of electrode configurations, air flow rate, and applied voltage on the discharge characteristics of the single microplasma jet operating in aqueous media are presented, and the bactericidal efficiency of the hollow fibers-based and large-volume microplasma jet array is reported. Optical emission spectroscopy is utilized to identify excited species during the antibacterial testing of plasma in solutions. These well-aligned and rather stable air microplasma jets containing a variety of short-lived species, such as OH and O radicals and charged particles, are in direct contact with aqueous media and are very effective in killing P. fluorescens cells in aqueous media. This design shows its potential application for atmospheric pressure air plasma inactivation of bacteria cells in aqueous media.

  9. Air pressure waves from Mount St. Helens eruptions

    SciTech Connect

    Reed, J.W.

    1980-01-01

    Barograms from a number of National Weather Service stations were assembled for the May 18, 1980, eruption and compared to airblast wave propagations from large explosions. Wave amplitudes at 50 to 300 km distances were about what might be expected from a nuclear explosion of between 1 megaton and 10 megaton yield. Pressure-time signatures could not be resolved for the first compression phase, because of the slow paper recording speed. The 900 s negative phase duration was much too long for comparison with the negative phase of an explosion. Nevertheless, positive and negative amplitudes were about equal, as often observed at long distances from explosions. Calculations have been made for a simple finite amplitude propagation model. These show rough bounds on the source compression rate, to give the observed inaudible waves at least to 54 km distance, yet cause audibly rapid compression at Seattle, near 150 km, and beyond.

  10. Simulation Research of Vaporization and Pressure Variation in a Cryogenic Propellant Tank at the Launch Site

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Liang, Guo-zhu

    2013-12-01

    In order to improve depiction of pressure variation and investigate the interrelation among the physical processes in propellant tanks, a 2D axial symmetry Volume-of-Fluid (VOF) CFD model is established to simulate a large-sized liquid propellant tank when the rocket is preparing for launch with propellant loaded at the launch site. The numerical model is considered with propellant free convection, heat transfer between the tank and the external environment, thermal exchange between propellant and inner tank wall surfaces, gas compressibility, and phase change modeled under the assumption of thermodynamic equilibrium. Vaporization rate of the vented LH2 tank and prediction of pressure change in the tank pressurized with GHe are obtained through simulation. We analysis the distributions of phase, temperature, and velocity vectors to reveal interactions among the propellant's own convection motion, heat transfer and phase change. The results show that the vaporization rate is mainly affected by heat leaks though the tank wall when the tank is vented, but it does not completely accord with the trend of the leakage because of convection motion and temperature nonuniformity of the liquid propellant in the tank. We also find that the main factors on pressure variation in the pressurized tank are the heat transfer on the tank wall surface bonding the ullage and propellant vaporization which has comparatively less influence.

  11. Characterization of the respiratory and heart beat signal from an air pressure-based ballistocardiographic setup.

    PubMed

    Willemen, Tim; Van Deun, Dorien; Verhaert, Vincent; Van Huffel, Sabine; Haex, Bart; Vander Sloten, Jos

    2014-01-01

    Off-body detection of respiratory and cardiac activity presents an enormous opportunity for general health, stress and sleep quality monitoring. The presented setup detects the mechanical activity of both heart and lungs by measuring pressure difference fluctuations between two air volumes underneath the chest area of the subject. The registered signals were characterized over four different sleep postures, three different base air pressures within the air volumes and three different mattress top layer materials. Highest signal strength was detected in prone posture for both the respiratory and heart beat signal. Respiratory signal strength was the lowest in supine posture, while heart beat signal strength was lowest for right lateral. Heart beat cycle variability was highest in prone and lowest in supine posture. Increasing the base air pressure caused a reduction in signal amplitude for both the respiratory and the heart beat signal. A visco-elastic poly-urethane foam top layer had significantly higher respiration amplitude compared to high resilient poly-urethane foam and latex foam. For the heart beat signal, differences between the top layers were small. The authors conclude that, while the influence of the mattress top layer material is small, the base air pressure can be tuned for optimal mechanical transmission from heart and lungs towards the registration setup.

  12. Computer modeling of the sensitivity of a laser water vapor sensor to variations in temperature and air speed

    NASA Technical Reports Server (NTRS)

    Tucker, George F.

    1994-01-01

    Currently, there is disagreement among existing methods of determining atmospheric water vapor concentration at dew-points below -40 C. A major source of error is wall effects which result from the necessity of bringing samples into the instruments. All of these instruments also have response times on the order of seconds. NASA Langley is developing a water vapor sensor which utilizes the absorption of the infrared radiation produced by a diode laser to estimate water vapor concentration. The laser beam is directed through an aircraft window to a retroreflector located on an engine. The reflected beam is detected by an infrared detector located near the laser. To maximize signal to noise, derivative signals are analyzed. By measuring the 2f/DC signal and correcting for ambient temperature, atmospheric pressure and air speed (which results in a Doppler shifting of the laser beam), the water vapor concentration can be retrieved. Since this is an in situ measurement there are no wall effects and measurements can be made at a rate of more than 20 per second. This allows small spatial variations of water vapor to be studied. In order to study the sensitivity of the instrument to variations in temperature and air speed, a computer program which generated the 2f, 3f, 4f, DC and 2f/DC signals of the instrument as a function of temperature, pressure and air speed was written. This model was used to determine the effect of errors in measurement of the temperature and air speed on the measured water vapor concentration. Future studies will quantify the effect of pressure measurement errors, which are expected to be very small. As a result of these studied, a retrieval algorithm has been formulated, and will be applied to data taken during the PEM-West atmospheric science field mission. Spectroscopic studies of the water vapor line used by the instrument will be used to refine this algorithm. To prepare for these studies, several lasers have been studied to determine their

  13. Variation of output with atmospheric pressure and ambient temperature for Therac-20 linear accelerator.

    PubMed

    Sharma, S C; Wilson, D L; Jose, B

    1983-01-01

    The Therac-20 (a linear accelerator manufactured by the Atomic Energy of Canada, Ltd.) employs an unsealed monitor chamber to control the dose output. Daily fluctuations in machine output for both x rays and electron beams were observed to vary with ambient temperature and atmospheric pressure. These variations were not related to any other machine parameters. Variations as large as 3.5% were seen by monitoring 18-MV x-ray output over several months. We recommend that the manufacturers take steps to eliminate the atmospheric dependence of dose rate.

  14. Daily and seasonal variations in radon activity concentration in the soil air.

    PubMed

    Műllerová, Monika; Holý, Karol; Bulko, Martin

    2014-07-01

    Radon activity concentration in the soil air in the area of Faculty of Mathematics, Physics and Informatics (FMPI) in Bratislava, Slovak Republic, has been continuously monitored since 1994. Long-term measurements at a depth of 0.8 m and short-term measurements at a depth of 0.4 m show a high variability in radon activity concentrations in the soil. The analysis of the data confirms that regular daily changes in radon activity concentration in the soil air depend on the daily changes in atmospheric pressure. It was also found that the typical annual courses of the radon activity concentration in the soil air (with summer minima and winter maxima) were disturbed by mild winter and heavy summer precipitation. Influence of precipitation on the increase in the radon activity concentration in the soil air was observed at a depth of 0.4 m and subsequently at a depth of 0.8 m.

  15. Simplified configuration for the combustor of an oil burner using a low pressure, high flow air-atomizing nozzle

    DOEpatents

    Butcher, Thomas A.; Celebi, Yusuf; Fisher, Leonard

    2000-09-15

    The invention relates to clean burning of fuel oil with air. More specifically, to a fuel burning combustion head using a low-pressure, high air flow atomizing nozzle so that there will be a complete combustion of oil resulting in a minimum emission of pollutants. The improved fuel burner uses a low pressure air atomizing nozzle that does not result in the use of additional compressors or the introduction of pressurized gases downstream, nor does it require a complex design. Inventors:

  16. Pressure-loss and flow coefficients inside a chordwise-finned, impingement, convection, and film air-cooled turbine vane

    NASA Technical Reports Server (NTRS)

    Hippensteele, S. A.

    1974-01-01

    Total-pressure-loss coefficients, flow discharge coefficients, and friction factors were determined experimentally for the various area and geometry changes and flow passages within an air-cooled turbine vane. The results are compared with those of others obtained on similar configurations, both actual and large models, of vane passages. The supply and exit air pressures were controlled and varied. The investigation was conducted with essentially ambient-temperature air and without external flow of air over the vane.

  17. GSOD Based Daily Global Mean Surface Temperature and Mean Sea Level Air Pressure (1982-2011)

    SciTech Connect

    Xuan Shi, Dali Wang

    2014-05-05

    This data product contains all the gridded data set at 1/4 degree resolution in ASCII format. Both mean temperature and mean sea level air pressure data are available. It also contains the GSOD data (1982-2011) from NOAA site, contains station number, location, temperature and pressures (sea level and station level). The data package also contains information related to the data processing methods

  18. Investigation of Ozone Yield of Air Fed Ozonizer by High Pressure Homogeneous Dielectric Barrier Discharge

    DTIC Science & Technology

    2013-07-01

    homogeneous dielectric barrier discharge ( DBD ) in dry air by using a simple DBD device. So far, we have tried to apply the homogeneous DBD to an...specific input energy region. In this work, we investigated the effect of gas pressure (from 0.1 MPa to 0.2 MPa) on the ozone yield by homogeneous DBD . The...homogeneous DBD decreased with increasing the gas pressure. 1. Introduction The dielectric barrier discharge ( DBD ) is composed of many filamentary micro

  19. Impacts of rainfall and air temperature variations due to climate change upon hydrological characteristics: a case study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rainfall and air temperature variations resulting from climate change are important driving forces to alter hydrologic processes in watershed ecosystems. This study investigated impacts of past and potential future rainfall and air temperature variations upon water discharge, water outflow (from th...

  20. Resistivity Variation due to CO2 Migration in Different Temperature and Pressure Conditions

    NASA Astrophysics Data System (ADS)

    Nakatsuka, Y.; Onishi, K.; Yamada, Y.; Matsuoka, T.; Xue, Z.

    2007-12-01

    CO2 geological sequestration is one of the effective approaches solving the global warming problem. Captured CO2 is injected to the deep aquifers or depleted oil and gas fields. Injected CO2 migrates thorough the reservoir rock, however, the details behavior of injected CO2 under the ground at super critical phase is not yet fully understood. Migration of injected CO2 will change by the condition of the injected reservoir such as the temperature and pressure. Also density and permeability of the rock may be changed due to temperature or pressure variations. These changes control the migration behavior of injected CO2. In this study, experiments of resistivity measurements were conducted to detect the migration difference of CO2 in different temperature and pressure conditions by using sandstone core samples. Core sample was taken from Berea sandstone and processed to 5cm diameter and 12cm length. For the resistivity measurement, impression electrode was set on the both end and the measurement electrode of ring condition was set on the side of the rock sample. We stetted the core sample in the pressure vessel and recreated the condition of underground reservoir which is high pressure and high temperature. We injected supercritical CO2 in different pressure and temperature for each experiment. Pressure was changed in range of 8 to 11MPa and temperature was changed in range of 35° to 45°. This means that all the experiments were conducted in supercritical phase. From the measured resistivity variation, we verified the migration of CO2 and compared the migration behavior of CO2 in different conditions.

  1. Effects of hydraulic pressure on the performance of single chamber air-cathode microbial fuel cells.

    PubMed

    Cheng, Shaoan; Liu, Weifeng; Guo, Jian; Sun, Dan; Pan, Bin; Ye, Yaoli; Ding, Weijun; Huang, Haobin; Li, Fujian

    2014-06-15

    Scaling up of microbial fuel cells (MFCs) without losing power density requires a thorough understanding of the effect of hydraulic pressure on MFC performance. In this work, the performance of an activated carbon air-cathode MFC was evaluated under different hydraulic pressures. The MFC under 100 mmH2O hydraulic pressure produced a maximum power density of 1260 ± 24 mW m(-2), while the power density decreased by 24.4% and 44.7% as the hydraulic pressure increased to 500 mmH2O and 2000 mmH2O, respectively. Notably, the performance of both the anode and the cathode had decreased under high hydraulic pressures. Electrochemical impedance spectroscopy tests of the cathode indicated that both charge transfer resistance and diffusion transfer resistance increased with the increase in hydraulic pressure. Denaturing gradient gel electrophoresis of PCR-amplified partial 16S rRNA genes demonstrated that the similarity among anodic biofilm communities under different hydraulic pressures was ≥ 90%, and the communities of all MFCs were dominated by Geobacter sp. These results suggested that the reduction in power output of the single chamber air-cathode MFC under high hydraulic pressures can be attributed to water flooding of the cathode and suppression the metabolism of anodic exoelectrogenic bacteria.

  2. Responses of atmospheric electric field and air-earth current to variations of conductivity profiles

    NASA Astrophysics Data System (ADS)

    Makino, M.; Ogawa, T.

    1984-05-01

    A global circuit model is constructed to study responses of air-earth current and electric field to a variation of atmospheric electrical conductivity profile. The model includes the orography and the global distribution of thunderstorm generators. The conductivity varies with latitude and exponentially with altitude. The thunderstorm cloud is assumed to be a current generator with a positive source at the top and a negative one at the bottom. The UT diurnal variations of the global current and the ionospheric potential are evaluated considering the local-time dependence of thunderstorm activity. The global distribution of the electric field and the air-earth current are affected by the orography and latitudinal effects. Assuming a variation of conductivity profile, responses of atmospheric electrical parameters are investigated. The nonuniform decrement of the conductivity with altitude increases both the electric field and the air-earth current. The result suggests a possibility that the increment of the electric field and the air-earth current after a solar flare may be caused by this scheme, due to Forbush decrease.

  3. Variations of energetic electrons associated with solar wind dynamic pressure enhancement in the outer radiation belt

    NASA Astrophysics Data System (ADS)

    Lee, J.; Lee, E.; Kim, K. H.; Lee, D. H.; Lee, J.; Spence, H. E.

    2015-12-01

    Earth's outer radiation belt varies dynamically under the variations of the solar wind. In this study, we investigated the variations of energetic electrons in the outer radiation belt caused by an enhancement of the solar wind dynamic pressure associated with an interplanetary shock using the measurements from the Van Allen Probes (VAP) satellites. The enhanced dynamic pressure lasted for about 24 hours, but magnetic storm was not occurred. The impact of the interplanetary shock on 13 April 2013 produced dipolarization of the magnetic field for a few minutes, which was simultaneously observed by VAP A and B moving in the nightside region. The enhancement of the electron fluxes with E < ~600 keV coincidentally occurred during the dipolarization. Later, drift echoes with energy dispersion and ULF-like modulations were observed. By comparing the measurements from VAP A and B we will discuss spatial and temporal characteristics of the enhancement of the energetic electron fluxes.

  4. Characteristics of short dc glow microdischarges in atmospheric pressure air

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Anatoly

    2013-09-01

    The main reason that high pressure current-carrying plasmas tend to be unstable is various instability (primarily thermal) of the positive column (PC). So a promising approach is to use short (without PC) discharges that have growing voltage-current characteristic (VAC). These discharges are ignited near the minimum of the Paschen breakdown curve Lmin and it usually have a gap pL <10-20 cm Torr when a distinct PC is absent. In this report the most stable microdischarges were burning with a flat cathode and rounded (or thin rod) anode, which located to a distance less than Lmin when the microdischarge ``choose'' their length itself, so that to match the stable work near Lmin by changing their binding on the anode. For simulations we used 2D hybrid model. Simulations predicted the main regions of the dc glow discharges including cathode and anode sheath and plasma of negative glow, Faraday dark space and transition region, in which the electric field is distributed no uniformly and plasma is nonlocal. Gas heating plays an important role in shaping the discharge profiles. Work supported by FZP and SPbSU.

  5. 42 CFR 84.157 - Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... test; Type C supplied-air respirator, pressure-demand class; minimum requirements. (a) The static...) per minute shall not exceed the static pressure in the facepiece by more than 51 mm. (2 inches)...

  6. Effect of pressure on structure and NO sub X formation in CO-air diffusion flames

    NASA Technical Reports Server (NTRS)

    Maahs, H. G.; Miller, I. M.

    1979-01-01

    A study was made of nitric oxide formation in a laminar CO-air diffusion flame over a pressure range from 1 to 50 atm. The carbon monoxide (CO) issued from a 3.06 mm diameter port coaxially into a coflowing stream of air confined within a 20.5 mm diameter chimney. Nitric oxide concentrations from the flame were measured at two carbon monoxide (fuel) flow rates: 73 standard cubic/min and 146 sccm. Comparison of the present data with data in the literature for a methane-air diffusion flame shows that for flames of comparable flame height (8 to 10 mm) and pseudoequivalence ratio (0.162), the molar emission index of a CO-air flame is significantly greater than that of a methane-air flame.

  7. Upstream pressure variations associated with the bow shock and their effects on the magnetosphere

    NASA Technical Reports Server (NTRS)

    Fairfield, D. H.; Baumjohann, W.; Paschmann, G.; Luehr, H.; Sibeck, D. G.

    1990-01-01

    The AMPTE IRM solar wind data are analyzed to determine the relationship between upstream pressure fluctuations and magnetospheric perturbations. It is argued that the upstream pressure variations are not inherent in the solar wind but rather are associated with the bow shock. This conclusion follows from the fact that the upstream field strength and density associated with perturbations are highly correlated with each other, while they tend to be anticorrelated in the undisturbed solar wind, and that the upstream perturbations occur within the foreshock or at its boundary. The results imply a mode of interaction between the solar wind upstream and the magnetosphere whereby density changes produced in the foreshock subsequently convect through the bow shock and impinge on the magnetosphere. Upstream pressure perturbations should create significant effects on the magnetopause and at the foot of nearby field lines that lead to the polar cusp ionosphere.

  8. Assimilation of scatterometer winds into surface pressure fields using a variational method

    NASA Technical Reports Server (NTRS)

    Harlan, J., Jr.; Obrien, J. J.

    1986-01-01

    A variational formulation was used to assimilate Seasat-A scatterometer (SASS) surface wind measurements near and during a severe storm in the North Atlantic into conventional National Meteorological Center sea level pressure fields. An estimate of the relative vorticity at every point on a grid was calculated using each of these two data sets. A solution to a modified geostrophic stream function is found subject to the constraints that (1) the relative vorticities calculated from the data agree as closely as possible with the relative vorticities from the variational solution, and that (2) the average kinetic energy is a minimum. Results are obtained which support the idea that averaged satellite data can be treated as synoptic data. Direct substitution rather than a time-weighted insertion made from SASS winds generally resulted in more accurate pressure analyses. In addition, this relatively simple model provides surface pressure fields which agree extremely well with surface truth and the results of other investigators who required additional sources of input data into more complex models. It will be possible to obtain improved wind field maps from future scatterometer pressure fields in mid-latitudes.

  9. 49 CFR 393.51 - Warning signals, air pressure and vacuum gauges.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 5 2012-10-01 2012-10-01 false Warning signals, air pressure and vacuum gauges... and vacuum gauges. (a) General Rule. Every bus, truck and truck tractor, except as provided in.... (d) Vacuum brakes. A commercial motor vehicle (regardless of the date it was manufactured)...

  10. 49 CFR 393.51 - Warning signals, air pressure and vacuum gauges.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 5 2014-10-01 2014-10-01 false Warning signals, air pressure and vacuum gauges... and vacuum gauges. (a) General Rule. Every bus, truck and truck tractor, except as provided in.... (d) Vacuum brakes. A commercial motor vehicle (regardless of the date it was manufactured)...

  11. The Determination of the Percent of Oxygen in Air Using a Gas Pressure Sensor

    ERIC Educational Resources Information Center

    Gordon, James; Chancey, Katherine

    2005-01-01

    The experiment of determination of the percent of oxygen in air is performed in a general chemistry laboratory in which students compare the results calculated from the pressure measurements obtained with the calculator-based systems to those obtained in a water-measurement method. This experiment allows students to explore a fundamental reaction…

  12. SOIL-AIR PERMEABILITY MEASUREMENT WITH A TRANSIENT PRESSURE BUILDUP METHOD

    EPA Science Inventory

    An analytical solution for transient pressure change in a single venting well was derived from mass conservation of air, Darcy's law of flow in porous media, and the ideal gas law equation of state. Slopes of plots of Pw2 against ln (t+Δt)/Δt similar to Homer's plot were used to ...

  13. Acute Effects of Continuous Positive Air way Pressure on Pulse Pressure in Chronic Heart Failure

    PubMed Central

    Quintão, Mônica; Chermont, Sérgio; Marchese, Luana; Brandão, Lúcia; Bernardez, Sabrina Pereira; Mesquita, Evandro Tinoco; Rocha, Nazareth de Novaes; Nóbrega, Antônio Claudio L.

    2014-01-01

    Background Patients with heart failure (HF) have left ventricular dysfunction and reduced mean arterial pressure (MAP). Increased adrenergic drive causes vasoconstriction and vessel resistance maintaining MAP, while increasing peripheral vascular resistance and conduit vessel stiffness. Increased pulse pressure (PP) reflects a complex interaction of the heart with the arterial and venous systems. Increased PP is an important risk marker in patients with chronic HF (CHF). Non-invasive ventilation (NIV) has been used for acute decompensated HF, to improve congestion and ventilation through both respiratory and hemodynamic effects. However, none of these studies have reported the effect of NIV on PP. Objective The objective of this study was to determine the acute effects of NIV with CPAP on PP in outpatients with CHF. Methods Following a double-blind, randomized, cross-over, and placebo-controlled protocol, twenty three patients with CHF (17 males; 60 ± 11 years; BMI 29 ± 5 kg/cm2, NYHA class II, III) underwent CPAP via nasal mask for 30 min in a recumbent position. Mask pressure was 6 cmH2O, whereas placebo was fixed at 0-1 cmH2O. PP and other non invasive hemodynamics variables were assessed before, during and after placebo and CPAP mode. Results CPAP decreased resting heart rate (Pre: 72 ± 9; vs. Post 5 min: 67 ± 10 bpm; p < 0.01) and MAP (CPAP: 87 ± 11; vs. control 96 ± 11 mmHg; p < 0.05 post 5 min). CPAP decreased PP (CPAP: 47 ± 20 pre to 38 ± 19 mmHg post; vs. control: 42 ± 12 mmHg, pre to 41 ± 18 post p < 0.05 post 5 min). Conclusion NIV with CPAP decreased pulse pressure in patients with stable CHF. Future clinical trials should investigate whether this effect is associated with improved clinical outcome. PMID:24676373

  14. Air Purification Effect of Positively and Negatively Charged Ions Generated by Discharge Plasma at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Nishikawa, Kazuo; Nojima, Hideo

    2001-08-01

    In this paper, the air purification effect of positively and negatively charged ions generated by discharge plasma at atmospheric pressure is reported. We have developed a novel ion generation device which consists of a cylindrical glass tube and attached inner and outer mesh electrodes. With the application of AC voltage between the electrodes, positively charged ions and negatively charged ions have been generated at atmospheric pressure. The ion densities of 3.0× 104--7.0× 104 counts/cm3 have been obtained with the AC voltage of 1.8-2.3 kV (effective value). We have examined the air purification properties of this device. By the operation of this device, the initial oxygen nitride (NO) density of 10 ppm in 1 m3 (in cigarette smoke) was decreased to 1 ppm after 30 min. The number of suspended germs in air has been significantly reduced by the use of this type of ion generation device.

  15. An investigation of air solubility in Jet A fuel at high pressures

    NASA Technical Reports Server (NTRS)

    Faeth, G. M.

    1981-01-01

    Problems concerned with the supercritical injection concept are discussed. Supercritical injection involves dissolving air into a fuel prior to injection. A similar effect is obtained by preheating the fuel so that a portion of the fuel flashes when its pressure is reduced. Flashing improves atomization properties and the presence of air in the primary zone of a spray flame reduces the formation of pollutants. The investigation is divided into three phases: (1) measure the solubility and density properties of fuel/gas mixtures, including Jet A/air, at pressures and correlate these results using theory; (2) investigate the atomization properties of flashing liquids, including fuel/dissolved gas systems. Determine and correlate the effect of inlet properties and injector geometry on mass flow rates, Sauter mean diameter and spray angles; (3) examine the combustion properties of flashing injection in an open burner flame, considering flame shape and soot production.

  16. Layers of air in the water beneath the floating fern Salvinia are exposed to fluctuations in pressure.

    PubMed

    Mayser, Matthias J; Barthlott, Wilhelm

    2014-12-01

    Superhydrophobic, hierarchically structured, technical surfaces (Lotus-effect) are of high scientific and economic interest because of their remarkable properties. Recently, the immense potential of air-retaining superhydrophobic surfaces, for example, for low-friction transport of fluids and drag-reducing coatings of ships has begun to be explored. A major problem of superhydrophobic surfaces mimicking the Lotus-effect is the limited persistence of the air retained, especially under rough conditions of flow. However, there are a variety of floating or diving plant and animal species that possess air-retaining surfaces optimized for durable water-repellency (Salvinia-effect). Especially floating ferns of the genus Salvinia have evolved superhydrophobic surfaces capable of maintaining layers of air for months. Apart from maintaining stability under water, the layer of air has to withstand the stresses of water pressure (up to 2.5 bars). Both of these aspects have an application to create permanent air layers on ships' hulls. We investigated the effect of pressure on air layers in a pressure cell and exposed the air layer to pressures of up to 6 bars. We investigated the suppression of the air layer at increasing pressures as well as its restoration during decreases in pressure. Three of the four examined Salvinia species are capable of maintaining air layers at pressures relevant to the conditions applying to ships' hulls. High volumes of air per surface area are advantageous for retaining at least a partial Cassie-Baxter-state under pressure, which also helps in restoring the air layer after depressurization. Closed-loop structures such as the baskets at the top of the "egg-beater hairs" (see main text) also help return the air layer to its original level at the tip of the hairs by trapping air bubbles.

  17. Subsonic tests of an all-flush-pressure-orifice air data system

    NASA Technical Reports Server (NTRS)

    Larson, T. J.; Siemers, P. M., III

    1981-01-01

    The use of an all-flush-pressure-orifice array as a subsonic air data system was evaluated in flight and wind tunnel tests. Two orifice configurations were investigated. Both used orifices arranged in a cruciform pattern on the airplane nose. One configuration also used orifices on the sides of the fuselage for a source of static pressure. The all-nose-orifice configuration was similar to the shuttle entry air data system (SEADS). The flight data were obtained with a KC-135A airplane. The wind tunnel data were acquired with a 0.035-scale model of the KC-135A airplane. With proper calibration, several orifices on the vertical centerline of the vehicle's nose were found to be satisfactory for the determination of total pressure and angle of attack. Angle of sideslip could be accurately determined from pressure measurements made on the horizontal centerline of the aircraft. Orifice pairs were also found that provided pressure ratio relationships suitable for the determination of Mach number. The accuracy that can be expected for the air data determined with SEADS during subsonic orbiter flight is indicated.

  18. On Static Pressure Fluctuation between Sirocco Fan Blades in a Car Air-Conditioning System

    NASA Astrophysics Data System (ADS)

    Sakai, Yasuhiko; Kato, Takaaki; Moriguchi, Yuu; Sakai, Masaharu; Ito, Kouji; Mitsuishi, Yasushi; Nagata, Kouji; Kubo, Takashi

    In this study, special attention is directed to static pressure fluctuation in a sirocco fan for a car air-conditioning system, because it is expected that there is a close connection between the fluid noise and the pressure fluctuation. The final purpose of this study is to clarify the relationship between the static pressure fluctuation between fan blades and the sound noise emitted to the outside of the fan, and to develop an air-conditioning system with highly low noise level. For this purpose, first of all, a new micro probe for the measurement of static pressure fluctuation has been developed. This new micro probe is composed of an L-type static pressure tube (the outer diameter is 0.5 mm and the inner diameter is 0.34 mm) and a very small pressure transducer. This probe exhibits a flat frequency response until approximately 2,000 Hz, and it is set between the blades of the fan rotating at 1,500 rpm. The measurements of the static pressure fluctuation between the blades have been performed, and the intensity of sound source was quantified from the second derivative of the phase-averaged static pressure fluctuation signals on the basis of Ribner's formula (Ribner 1962). The experiments have been made in two different modes, i.e., the cooling mode (FACE MODE) and the heating mode (FOOT MODE). It is shown that the static pressure increases rapidly as the blade approaches to the nose of the casing. It is also found that the sound source for FACE MODE shows the larger value than that for FOOT MODE as a whole. In particular, the largest intensity of sound source is observed when the blade approaches to the nose. From these results, it is confirmed that the present new static pressure probe is useful to specify the distributions of sound source in a sirocco fan.

  19. Acute changes in pulse pressure in relation to constituents of particulate air pollution in elderly persons

    SciTech Connect

    Jacobs, Lotte; Buczynska, Anna; Walgraeve, Christophe; Delcloo, Andy; Potgieter-Vermaak, Sanja; Van Grieken, Rene; Demeestere, Kristof; Dewulf, Jo; Van Langenhove, Herman; De Backer, Hugo; Nemery, Benoit; Nawrot, Tim S.

    2012-08-15

    An increased pulse pressure (difference between systolic and diastolic blood pressure) suggests aortic stiffening. The objective of this study was to examine the acute effects of both particulate matter (PM) mass and composition on blood pressure, among elderly persons. We carried out a panel study in persons living in elderly homes in Antwerp, Belgium. We recruited 88 non-smoking persons, 70% women with a mean age of 83 years (standard deviation: 5.2). Blood pressure was measured and a blood sample was collected on two time points, which were chosen so that there was an exposure contrast in ambient PM exposure. The elemental content of the collected indoor and outdoor PM{sub 2.5} (particulate matter with an aerodynamic diameter <2.5 {mu}m) mass concentration was measured. Oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) on outdoor PM{sub 10} (particulate matter with an aerodynamic diameter <10 {mu}m) were measured. Each interquartile range increase of 20.8 {mu}g/m Superscript-Three in 24-h mean outdoor PM{sub 2.5} was associated with an increase in pulse pressure of 4.0 mmHg (95% confidence interval: 1.8-6.2), in persons taking antihypertensive medication (n=57), but not in persons not using antihypertensive medication (n=31) (p for interaction: 0.02). Vanadium, iron and nickel contents of PM{sub 2.5} were significantly associated with systolic blood pressure and pulse pressure, among persons on antihypertensive medication. Similar results were found for indoor concentrations. Of the oxy-PAHs, chrysene-5,6-dione and benzo[a]pyrene-3,6-dione were significantly associated with increases in systolic blood pressure and pulse pressure. In elderly, pulse pressure was positively associated with acute increases in outdoor and indoor air pollution, among persons taking antihypertensive medication. These results might form a mechanistic pathway linking air pollution as a trigger of cardiovascular events.

  20. Effect of Air Pressure and Gutter Angle on Flame Stability and DeZubay Number for Methane-Air Combustion

    NASA Astrophysics Data System (ADS)

    Boopathi, S.; Maran, P.

    2017-04-01

    The combustion at high speed reactants requires a flame holding characteristics to sustain the flame in the afterburner. The flame holding characteristics of the combustor is carried out by the bluff-body stabilizers. The range of conditions of parameters influencing the flame stabilization is to be identified and the effects on the flame sustainability have to be investigated. DeZubay used the concept of DeZubay number and flame stability envelope to determine the stabilization and blowout range. In the present work, the effect of air pressure and the angle of apex of the V-gutter on flame stabilization and blowout mechanism have been experimentally investigated for six different apex angles and four different air pressure conditions. The value of DeZubay number at each condition has been calculated and verified with DeZubay stability chart for flame stabilization. The results show that stable flame is obtained for the entire pressure range when the apex angle of the V gutter is in 60° and 90°.

  1. Variations in the WNK1 gene modulates the effect of dietary intake of sodium and potassium on blood pressure determination.

    PubMed

    Osada, Yuko; Miyauchi, Rie; Goda, Toshinao; Kasezawa, Nobuhiko; Horiike, Hiromi; Iida, Mariko; Sasaki, Satoshi; Yamakawa-Kobayashi, Kimiko

    2009-08-01

    WNK lysine-deficient protein kinase 1 (WNK1) is a member of the WNK family of serine/threonine kinases with no lysine (K), and these kinases have been implicated as important modulators of salt homeostasis in the kidney. It is well known that high dietary sodium and low dietary potassium have been implicated in the etiology of increased blood pressure. However, the blood pressure response to dietary sodium and potassium intake varies considerably among individuals. In this study, we have detected that the haplotypes of the WNK1 gene are associated with blood pressure variations in the general Japanese population. In addition, we investigated the interactions between the haplotypes of the WNK1 gene and dietary sodium and potassium intake for determining inter-individual variations in blood pressure. Our data support the hypothesis that part of the variation in blood pressure response to dietary sodium and potassium intake among individuals can be explained by variations in the WNK1 gene.

  2. Soot Formation in Laminar Premixed Ethylene/Air Flames at Atmospheric Pressure. Appendix G

    NASA Technical Reports Server (NTRS)

    Xu, F.; Sunderland, P. B.; Faeth, G. M.; Urban, D. L. (Technical Monitor)

    2001-01-01

    Soot formation was studied within laminar premixed ethylene/air flames (C/O ratios of 0.78-0.98) stabilized on a flat-flame burner operating at atmospheric pressure. Measurements included soot volume fractions by both laser extinction and gravimetric methods, temperatures by multiline emission, soot structure by thermophoretic sampling and transmission electron microscopy, major gas species concentrations by sampling and gas chromatography, concentrations of condensable hydrocarbons by gravimetric sampling. and velocities by laser velocimetry. These data were used to find soot surface growth rates and primary soot particle nucleation rates along the axes of the flames. Present measurements of soot surface growth rates were correlated successfully by predictions based on typical hydrogen-abstraction/carbon-addition (HACA) mechanisms of Frenklach and co-workers and Colket and Hall. These results suavest that reduced soot surface growth rates with increasing residence time seen in the present and other similar flames were mainly caused by reduced rates of surface activation due to reduced H atom concentrations as temperatures decrease as a result of radiative heat losses. Primary soot particle nucleation rates exhibited variations with temperature and acetylene concentrations that were similar to recent observations for diffusion flames; however, nucleation rates in the premixed flames were significantly lower than in, the diffusion flames for reasons that still must be explained. Finally, predictions of yields of major gas species based on mechanisms from both Frenklach and co-workers and Leung and Lindstedt were in good agreement with present measurements and suggest that H atom concentrations (relevant to HACA mechanisms) approximate estimates based on local thermodynamic equilibrium in the present flames.

  3. Spatiotemporally resolved characteristics of a gliding arc discharge in a turbulent air flow at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Zhu, Jiajian; Gao, Jinlong; Ehn, Andreas; Aldén, Marcus; Larsson, Anders; Kusano, Yukihiro; Li, Zhongshan

    2017-01-01

    A gliding arc discharge was generated in a turbulent air flow at atmospheric pressure driven by a 35 kHz alternating current (AC) electric power. The spatiotemporally resolved characteristics of the gliding arc discharge, including glow-type discharges, spark-type discharges, short-cutting events and transitions among the different types of discharges, were investigated using simultaneously optical and electrical diagnostics. The glow-type discharge shows sinusoidal-like voltage and current waveforms with a peak current of hundreds of milliamperes. The frequency of the emission intensity variation of the glow-type discharge is the same as that of the electronic power dissipated in the plasma column. The glow-type discharge can transfer into a spark discharge characterized by a sharp peak current of several amperes and a sudden increase of the brightness in the plasma column. Transitions can also be found to take place from spark-type discharges to glow-type discharges. Short-cutting events were often observed as the intermediate states formed during the spark-glow transition. Three different types of short-cutting events have been observed to generate new current paths between two plasma channel segments, and between two electrodes, as well as between the channel segment and the electrodes, respectively. The short-cut upper part of the plasma column that was found to have no current passing through can be detected several hundreds of microseconds after the short-cutting event. The voltage recovery rate, the period of AC voltage-driving signal, the flow rates and the rated input powers were found to play an important role in affecting the transitions among the different types of discharges.

  4. Sensitive subgroups and normal variation in pulmonary function response to air pollution episodes.

    PubMed Central

    Brunekreef, B; Kinney, P L; Ware, J H; Dockery, D; Speizer, F E; Spengler, J D; Ferris, B G

    1991-01-01

    The Clean Air Act requires that sensitive subgroups of exposed populations be protected from adverse health effects of air pollution exposure. Hence, data suggesting the existence of sensitive subgroups can have an important impact on regulatory decisions. Some investigators have interpreted differences among individuals in observed pulmonary function response to air pollution episodes as evidence that individuals differ in their sensitivity. An alternative explanation is that the differences are due entirely to normal variation in repeated pulmonary function measurements. This paper investigates this question by reanalyzing data from three studies of children exposed to air pollution episodes to determine whether the observed variability in pulmonary function response indicates differences in sensitivity or natural interoccasion variability. One study investigated exposures to total suspended particulates (TSP), the other two investigated exposure to ozone. In all studies, each child's response to air pollution exposures was summarized by regressing that child's set of pulmonary function measurements on the air pollution concentrations on the day or days before measurement. The within-child and between-child variances of these slopes were used to test the hypothesis of variable sensitivity. Regression slopes did not vary significantly among children exposed to episodes of high TSP concentration, but there was evidence of heterogeneity in both studies of ozone exposures. The finding of heterogeneous response to ozone exposure is consistent with the epidemiologic and chamber studies of ozone exposures, but the lack of evidence for heterogeneous response to TSP exposures implies that observed variation in response can be explained by sampling variability rather than the presence of sensitive subgroup. PMID:2050060

  5. PTV analysis of the entrained air into the diesel spray at high-pressure injection

    NASA Astrophysics Data System (ADS)

    Toda, Naoki; Yamashita, Hayato; Mashida, Makoto

    2014-08-01

    In order to clarify the effect of high-pressure injection on soot reduction in terms of the air entrainment into spray, the air flow surrounding the spray and set-off length indicating the distance from the nozzle tip to the flame region in diffusion diesel combustion were investigated using 300MPa injection of a multi-hole injector. The measurement of the air entrainment flow was carried out at non-evaporating condition using consecutive PTV (particle tracking velocimetry) method with a high-speed camera and a high-frequency pulse YAG laser. The set-off length was measured at highpressure and high-temperature using the combustion bomb of constant volume and optical system of shadow graph method. And the amount of air entrainment into spray until reaching set-off length in diffusion combustion was studied as a factor of soot formation.

  6. Time evolution of nanosecond runaway discharges in air and helium at atmospheric pressure

    SciTech Connect

    Yatom, S.; Vekselman, V.; Krasik, Ya. E.

    2012-12-15

    Time- and space-resolved fast framing photography was employed to study the discharge initiated by runaway electrons in air and He gas at atmospheric pressure. Whereas in the both cases, the discharge occurs in a nanosecond time scale and its front propagates with a similar velocity along the cathode-anode gap, the later stages of the discharge differ significantly. In air, the main discharge channels develop and remain in the locations with the strongest field enhancement. In He gas, the first, diode 'gap bridging' stage, is similar to that obtained in air; however, the development of the discharge that follows is dictated by an explosive electron emission from micro-protrusions on the edge of the cathode. These results allow us to draw conclusions regarding the different conductivity of the plasma produced in He and air discharges.

  7. A Comparative Study of Sound Speed in Air at Room Temperature between a Pressure Sensor and a Sound Sensor

    ERIC Educational Resources Information Center

    Amrani, D.

    2013-01-01

    This paper deals with the comparison of sound speed measurements in air using two types of sensor that are widely employed in physics and engineering education, namely a pressure sensor and a sound sensor. A computer-based laboratory with pressure and sound sensors was used to carry out measurements of air through a 60 ml syringe. The fast Fourier…

  8. Calibrating airborne measurements of airspeed, pressure and temperature using a Doppler laser air-motion sensor

    NASA Astrophysics Data System (ADS)

    Cooper, W. A.; Spuler, S. M.; Spowart, M.; Lenschow, D. H.; Friesen, R. B.

    2014-09-01

    A new laser air-motion sensor measures the true airspeed with a standard uncertainty of less than 0.1 m s-1 and so reduces uncertainty in the measured component of the relative wind along the longitudinal axis of the aircraft to about the same level. The calculated pressure expected from that airspeed at the inlet of a pitot tube then provides a basis for calibrating the measurements of dynamic and static pressure, reducing standard uncertainty in those measurements to less than 0.3 hPa and the precision applicable to steady flight conditions to about 0.1 hPa. These improved measurements of pressure, combined with high-resolution measurements of geometric altitude from the global positioning system, then indicate (via integrations of the hydrostatic equation during climbs and descents) that the offset and uncertainty in temperature measurement for one research aircraft are +0.3 ± 0.3 °C. For airspeed, pressure and temperature, these are significant reductions in uncertainty vs. those obtained from calibrations using standard techniques. Finally, it is shown that although the initial calibration of the measured static and dynamic pressures requires a measured temperature, once calibrated these measured pressures and the measurement of airspeed from the new laser air-motion sensor provide a measurement of temperature that does not depend on any other temperature sensor.

  9. Microwave air plasmas in capillaries at low pressure II. Experimental investigation

    NASA Astrophysics Data System (ADS)

    Stancu, G. D.; Leroy, O.; Coche, P.; Gadonna, K.; Guerra, V.; Minea, T.; Alves, L. L.

    2016-11-01

    This work presents an experimental study of microwave (2.45 GHz excitation frequency) micro-plasmas, generated in dry air (N2 80%: O2 20%) within a small radius silica capillary (345 µm inner radius) at low pressure (300 Pa) and low powers (80-130 W). Experimental diagnostics are performed using optical emission spectroscopy calibrated in absolute intensity. Axial-resolved measurements (50 µm spatial resolution) of atomic transitions N(3p4S)  →  N(3s4P) O(3p5P)  →  O(3s5S) and molecular transitions N2(C,v‧)  →  N2(B,v″) \\text{N}2+ (B,v‧)  →  \\text{N}2+ (X,v″) allow us to obtain, as a function of the coupled power, the absolute densities of N(3p4S), O(3p5P), N2(C), N2(B) and \\text{N}2+ (B), as well as the gas (rotational) temperature (700-1000 K), the vibrational temperature of N2(C,v) (7000-10 000 K) and the excitation temperatures of N2(C) and N2(B) (11 000 K). The analysis of the H β line-width gives an upper limiting value of 1013 cm-3 for the electron density; its axial variation (4  ×  1011-6  ×  1012 cm-3) being estimated by solving the wave electrodynamics equations for the present geometry, plasma length and electron-neutral collision frequency. The experimental results were compared with the results from a 0D model, presented in companion paper I [1], which couples the system of rate balance equations for the dominant neutral and charged plasma species to the homogeneous two-term electron Boltzmann equation, taking the measured gas temperature and the estimated electron density as input parameters. Good qualitative agreement is found between the measurements and calculations of the local species densities for various powers and axial positions. The dissociation degree of oxygen is found above 10%. Moreover, both the measurements and calculations show evidence of the non-equilibrium behavior of low-temperature plasmas, with vibrational and excitation temperatures at least

  10. Diurnal variation of on-road air pollution in an urban street canyon in Seoul

    NASA Astrophysics Data System (ADS)

    Ho, Woo, Sung; Lee, Seung-Bok; Kim, Kyung Hwan; Bae, Gwi-Nam; Sunwoo, Young; Ma, Young-Il; Han, Dokyoung; Song, Sanghoo

    2014-05-01

    Motor vehicles are a major source of CO, NOx and particulate matters. Especially, in the surroundings of high-raised buildings, so-called an urban street canyon, air pollution levels increase due to limited dispersion of vehicle emissions. In this study, a mobile laboratory was used to measure diurnal variation of on-road concentrations of air pollutants such as NOx, particle-bound polycyclic aromatic hydrocarbons, black carbon and particle number in the urban street canyon on the Teheran road with eight lanes in Seoul, Korea from 5th to 8th November 2013. Each traveling distance was about 3.3km. Traveling vehicle at the middle of the Teheran road was recorded by video camera, and then the car counting by vehicle types. On road measurements conducted for 3~6 hours per day. Hourly average of air pollutant concentration in morning rush hour more than two times higher than those at the daybreak. We will analyze the correlation between air pollution levels and traffic volume by vehicle types. We will discuss about spatial characteristics of on-road air pollution levels in the urban street canyon.

  11. Elevated Plasma Endothelin-1 and Pulmonary Arterial Pressure in Children Exposed to Air Pollution

    PubMed Central

    Calderón-Garcidueñas, Lilian; Vincent, Renaud; Mora-Tiscareño, Antonieta; Franco-Lira, Maricela; Henríquez-Roldán, Carlos; Barragán-Mejía, Gerardo; Garrido-García, Luis; Camacho-Reyes, Laura; Valencia-Salazar, Gildardo; Paredes, Rogelio; Romero, Lina; Osnaya, Hector; Villarreal-Calderón, Rafael; Torres-Jardón, Ricardo; Hazucha, Milan J.; Reed, William

    2007-01-01

    Background Controlled exposures of animals and humans to particulate matter (PM) or ozone air pollution cause an increase in plasma levels of endothelin-1, a potent vasoconstrictor that regulates pulmonary arterial pressure. Objectives The primary objective of this field study was to determine whether Mexico City children, who are chronically exposed to levels of PM and O3 that exceed the United States air quality standards, have elevated plasma endothelin-1 levels and pulmonary arterial pressures. Methods We conducted a study of 81 children, 7.9 ± 1.3 years of age, lifelong residents of either northeast (n = 19) or southwest (n = 40) Mexico City or Polotitlán (n = 22), a control city with PM and O3 levels below the U.S. air quality standards. Clinical histories, physical examinations, and complete blood counts were done. Plasma endothelin-1 concentrations were determined by immunoassay, and pulmonary arterial pressures were measured by Doppler echocardiography. Results Mexico City children had higher plasma endothelin-1 concentrations compared with controls (p < 0.001). Mean pulmonary arterial pressure was elevated in children from both northeast (p < 0.001) and southwest (p < 0.05) Mexico City compared with controls. Endothelin-1 levels in Mexico City children were positively correlated with daily outdoor hours (p = 0.012), and 7-day cumulative levels of PM air pollution < 2.5 μm in aerodynamic diameter (PM2.5) before endothelin-1 measurement (p = 0.03). Conclusions Chronic exposure of children to PM2.5 is associated with increased levels of circulating endothelin-1 and elevated mean pulmonary arterial pressure. PMID:17687455

  12. Bronchomotor response to cold air or helium-oxygen at normal and high ambient pressures.

    PubMed

    Jammes, Y; Burnet, H; Cosson, P; Lucciano, M

    1988-05-01

    Effects of inhalation of cold air or helium-oxygen mixture on lung resistance (RL) were studied in anesthetized and tracheotomized rabbits under normal ambient pressure and in human volunteers under normo- and hyperbaric conditions. In artificially ventilated rabbits, an increase in RL occurred when the tracheal temperature fell to 10 degrees C. This effect was more than double with helium breathing compared to air, despite a lower respiratory heat loss by convection (Hc) with helium. In 3 normal humans, inhalation of cold air (mouth temperature = 8 degrees C) at sea level had no effect on RL value. However, with a helium-nitrogen-oxygen mixture, a weak but significant increase in RL due to cold gas breathing was measured in 1 subject at 2 ATA and in 2 individuals at 3.5 ATA. The density of inhaled gas mixture (air or He-N2-O2) was near the same in the three circumstances (1, 2, and 3.5 ATA) but Hc value increased with helium. At 8 ATA a 30-55% increase in RL occurred in the 3 divers during inhalation of cold gas (Hc was multiplied by 6 compared to air at sea level) and at 25 ATA the cold-induced bronchospasm ranged between 38 and 95% (Hc multiplied by 27). Thus, in rabbits and humans helium breathing enhanced the cold-induced increase in RL at normal or elevated ambient pressure, and this effect was interpreted as resulting from different mechanisms in the two circumstances.

  13. Heat transfer and pressure drop for air flow through enhanced passages. Final report

    SciTech Connect

    Obot, N.T.; Esen, E.B.

    1992-06-01

    An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effect depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.

  14. Heat transfer and pressure drop for air flow through enhanced passages

    SciTech Connect

    Obot, N.T.; Esen, E.B.

    1992-06-01

    An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effect depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.

  15. A controlled variation scheme for convection treatment in pressure-based algorithm

    NASA Technical Reports Server (NTRS)

    Shyy, Wei; Thakur, Siddharth; Tucker, Kevin

    1993-01-01

    Convection effect and source terms are two primary sources of difficulties in computing turbulent reacting flows typically encountered in propulsion devices. The present work intends to elucidate the individual as well as the collective roles of convection and source terms in the fluid flow equations, and to devise appropriate treatments and implementations to improve our current capability of predicting such flows. A controlled variation scheme (CVS) has been under development in the context of a pressure-based algorithm, which has the characteristics of adaptively regulating the amount of numerical diffusivity, relative to central difference scheme, according to the variation in local flow field. Both the basic concepts and a pragmatic assessment will be presented to highlight the status of this work.

  16. Colour variation in cichlid fish: Developmental mechanisms, selective pressures and evolutionary consequences☆

    PubMed Central

    Maan, Martine E.; Sefc, Kristina M.

    2013-01-01

    Cichlid fishes constitute one of the most species-rich families of vertebrates. In addition to complex social behaviour and morphological versatility, they are characterised by extensive diversity in colouration, both within and between species. Here, we review the cellular and molecular mechanisms underlying colour variation in this group and the selective pressures responsible for the observed variation. We specifically address the evidence for the hypothesis that divergence in colouration is associated with the evolution of reproductive isolation between lineages. While we conclude that cichlid colours are excellent models for understanding the role of animal communication in species divergence, we also identify taxonomic and methodological biases in the current research effort. We suggest that the integration of genomic approaches with ecological and behavioural studies, across the entire cichlid family and beyond it, will contribute to the utility of the cichlid model system for understanding the evolution of biological diversity. PMID:23665150

  17. Stochastic Modelling and Estimation for Cyclic Pressure Variations in Spark Ignition Engines

    NASA Astrophysics Data System (ADS)

    Roberts, J. B.; Peyton Jones, J. C.; Landsborough, K. J.

    2001-03-01

    A new method of fitting linearised, parametric stochastic models of cycle-by-cycle variations of pressure, during the combustion region of a spark ignition petrol engine, is described. The technique is based on stochastically fitting the combustion models to the covariance function of the measured pressure fluctuations, obtained by averaging over the entire ensemble of measured cycles. Comparisons, for two specific combustion models, with corresponding results obtained by deterministic fitting on a cycle-by-cycle basis, show that the new method gives a similar degree of fit, but with much improved computational efficiency. It is also demonstrated that the degree of fit to the data can be further improved by modelling the residual error between the data and the combustion models in terms of Chebyshev polynomials: the parameters in these polynomials may be determined by stochastic fitting. The technique has wider applications in the condition monitoring of rotating machinery.

  18. Atmospheric pressure, density, temperature and wind variations between 50 and 200 km

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Woodrum, A.

    1972-01-01

    Data on atmospheric pressure, density, temperature and winds between 50 and 200 km were collected from sources including Meteorological Rocket Network data, ROBIN falling sphere data, grenade release and pitot tube data, meteor winds, chemical release winds, satellite data, and others. These data were analyzed by a daily difference method and results on the distribution statistics, magnitude, and spatial structure of the irregular atmospheric variations are presented. Time structures of the irregular variations were determined by the analysis of residuals from harmonic analysis of time series data. The observed height variations of irregular winds and densities are found to be in accord with a theoretical relation between these two quantities. The latitude variations (at 50 - 60 km height) show an increasing trend with latitude. A possible explanation of the unusually large irregular wind magnitudes of the White Sands MRN data is given in terms of mountain wave generation by the Sierra Nevada range about 1000 km west of White Sands. An analytical method is developed which, based on an analogy of the irregular motion field with axisymmetric turbulence, allows measured or model correlation or structure functions to be used to evaluate the effective frequency spectra of scalar and vector quantities of a spacecraft moving at any speed and at any trajectory elevation angle.

  19. Long-Term Air Pollution Exposure and Blood Pressure in the Sister Study

    PubMed Central

    Chan, Stephanie H.; Van Hee, Victor C.; Bergen, Silas; Szpiro, Adam A.; DeRoo, Lisa A.; London, Stephanie J.; Marshall, Julian D.; Sandler, Dale P.

    2015-01-01

    Background Exposure to air pollution has been consistently associated with cardiovascular morbidity and mortality, but mechanisms remain uncertain. Associations with blood pressure (BP) may help to explain the cardiovascular effects of air pollution. Objective We examined the cross-sectional relationship between long-term (annual average) residential air pollution exposure and BP in the National Institute of Environmental Health Sciences’ Sister Study, a large U.S. cohort study investigating risk factors for breast cancer and other outcomes. Methods This analysis included 43,629 women 35–76 years of age, enrolled 2003–2009, who had a sister with breast cancer. Geographic information systems contributed to satellite-based nitrogen dioxide (NO2) and fine particulate matter (≤ 2.5 μm; PM2.5) predictions at participant residences at study entry. Generalized additive models were used to examine the relationship between pollutants and measured BP at study entry, adjusting for cardiovascular disease risk factors and including thin plate splines for potential spatial confounding. Results A 10-μg/m3 increase in PM2.5 was associated with 1.4-mmHg higher systolic BP (95% CI: 0.6, 2.3; p < 0.001), 1.0-mmHg higher pulse pressure (95% CI: 0.4, 1.7; p = 0.001), 0.8-mmHg higher mean arterial pressure (95% CI: 0.2, 1.4; p = 0.01), and no significant association with diastolic BP. A 10-ppb increase in NO2 was associated with a 0.4-mmHg (95% CI: 0.2, 0.6; p < 0.001) higher pulse pressure. Conclusions Long-term PM2.5 and NO2 exposures were associated with higher blood pressure. On a population scale, such air pollution–related increases in blood pressure could, in part, account for the increases in cardiovascular disease morbidity and mortality seen in prior studies. Citation Chan SH, Van Hee VC, Bergen S, Szpiro AA, DeRoo LA, London SJ, Marshall JD, Kaufman JD, Sandler DP. 2015. Long-term air pollution exposure and blood pressure in the Sister Study. Environ Health

  20. Effect of Different Levels of Pressure Relieving Air-Mattress Firmness on Cough Strength.

    PubMed

    Kamikawa, Norimichi; Taito, Shunsuke; Takahashi, Makoto; Sekikawa, Kiyokazu; Hamada, Hironobu

    2016-01-01

    Cough is an important host-defense mechanism. The elderly and patients who are severely ill cannot cough effectively when lying in the supine position. Furthermore, pressure relieving air-mattresses are recommended for preventing the development of pressure ulcers. In this study, we clarified whether or not the cough peak flow (CPF), an index of cough strength, is affected by different firmness levels of a pressure relieving air-mattress in healthy volunteers in the supine position. Fifty-two healthy young men participated. All the measurements were carried out on each participant in the supine position on a pressure relieving air-mattress. The participants were assessed at two firmness levels, a "hard" and "soft" mode. The CPF, forced vital capacity (FVC), maximal expiratory pressure (PEmax), and maximal inspiratory pressure (PImax) were determined for each mode. The sinking distance of the body into the mattress was measured without any activity and the difference between the sinking distances of the two firmness levels was determined. The CPF, FVC, PEmax, and PImax were determined for each mode. The sinking distance of the body into the mattress was measured and the difference between the sinking distances of the two firmness levels was determined. The CPF, FVC, PEmax and PImax values of the participants coughing on the mattress were significantly lower when the mattress was in "soft" than in "hard" mode. The differences between the sinking distances of the mattress in "soft" and "hard" modes were larger for the anterior superior iliac spine. A harder mattress may lead to increased CPF in healthy young men lying in the supine position, and increased CPF may be important for host defense.

  1. Influence of air pressure on the detailed characteristics of corona current pulse due to positive corona discharge

    NASA Astrophysics Data System (ADS)

    Li, Xuebao; Cui, Xiang; Lu, Tiebing; Li, Dayong; Chen, Bo; Fu, Yuke

    2016-12-01

    Air pressure is one of the main factors affecting the corona discharge and influence of air pressure should be carefully investigated. In order to obtain the influence of air pressure on the detailed characteristics of corona current pulse, such as pulse amplitude, rise time, pulse width, duration time, and pulse repetition frequency, a systematic investigation is carried out though a coaxial conductor-cylinder electrode structure with a corona point on the conductor. The electrodes are put into a pressure chamber for adjusting the air pressure. The results show that pulse amplitude increases with the increase of air pressure, while rise time, pulse width, duration time, and pulse repetition frequency decrease significantly at the same ratio between applied voltage and onset voltage (U/U0). Empirical formulas for the pulse amplitude, rise time, pulse width, and duration time varying with air pressure are first established. On the basis of the development of positive corona discharge, the influence of air pressure on the typical time intervals and experimental results are qualitatively explained.

  2. Calibrating airborne measurements of airspeed, pressure and temperature using a Doppler laser air-motion sensor

    NASA Astrophysics Data System (ADS)

    Cooper, W. A.; Spuler, S. M.; Spowart, M.; Lenschow, D. H.; Friesen, R. B.

    2014-03-01

    A new laser air-motion sensor measures the true airspeed with an uncertainty of less than 0.1 m s-1 (standard error) and so reduces uncertainty in the measured component of the relative wind along the longitudinal axis of the aircraft to about the same level. The calculated pressure expected from that airspeed at the inlet of a pitot tube then provides a basis for calibrating the measurements of dynamic and static pressure, reducing standard-error uncertainty in those measurements to less than 0.3 hPa and the precision applicable to steady flight conditions to about 0.1 hPa. These improved measurements of pressure, combined with high-resolution measurements of geometric altitude from the Global Positioning System, then indicate (via integrations of the hydrostatic equation during climbs and descents) that the offset and uncertainty in temperature measurement for one research aircraft are +0.3 ± 0.3 °C. For airspeed, pressure and temperature these are significant reductions in uncertainty vs. those obtained from calibrations using standard techniques. Finally, it is shown that the new laser air-motion sensor, combined with parametrized fits to correction factors for the measured dynamic and ambient pressure, provides a measurement of temperature that is independent of any other temperature sensor.

  3. Experimental Study on a Standing Wave Thermoacoustic Prime Mover with Air Working Gas at Various Pressures

    NASA Astrophysics Data System (ADS)

    Setiawan, Ikhsan; Achmadin, Wahyu N.; Murti, Prastowo; Nohtomi, Makoto

    2016-04-01

    Thermoacoustic prime mover is an energy conversion device which converts thermal energy into acoustic work (sound wave). The advantages of this machine are that it can work with air as the working gas and does not produce any exhaust gases, so that it is environmentally friendly. This paper describes an experimental study on a standing wave thermoacoustic prime mover with air as the working gas at various pressures from 0.05 MPa to 0.6 MPa. We found that 0.2 MPa is the optimum pressure which gives the lowest onset temperature difference of 355 °C. This pressure value would be more preferable in harnessing low grade heat sources to power the thermoacoustic prime mover. In addition, we find that the lowest onset temperature difference is obtained when rh /δ k ratio is 2.85, where r h is the hydraulic radius of the stack and δ k is the thermal penetration depth of the gas. Moreover, the pressure amplitude of the sound wave is significantly getting larger from 2.0 kPa to 9.0 kPa as the charged pressure increases from 0.05 MPa up to 0.6 MPa.

  4. Methods for quantifying the influences of pressure and temperature variation on metal hydride reaction rates measured under isochoric conditions.

    PubMed

    Voskuilen, Tyler G; Pourpoint, Timothée L

    2013-11-01

    Analysis techniques for determining gas-solid reaction rates from gas sorption measurements obtained under non-constant pressure and temperature conditions often neglect temporal variations in these quantities. Depending on the materials in question, this can lead to significant variations in the measured reaction rates. In this work, we present two new analysis techniques for comparison between various kinetic models and isochoric gas measurement data obtained under varying temperature and pressure conditions in a high pressure Sievert system. We introduce the integral pressure dependence method and the temperature dependence factor as means of correcting for experimental variations, improving model-measurement fidelity, and quantifying the effect that such variations can have on measured reaction rates. We use measurements of hydrogen absorption in LaNi5 and TiCrMn to demonstrate the effect of each of these methods and show that their use can provide quantitative improvements in interpretation of kinetics measurements.

  5. Modelling air pollution for epidemiologic research--part II: predicting temporal variation through land use regression.

    PubMed

    Mölter, A; Lindley, S; de Vocht, F; Simpson, A; Agius, R

    2010-12-01

    Over recent years land use regression (LUR) has become a frequently used method in air pollution exposure studies, as it can model intra-urban variation in pollutant concentrations at a fine spatial scale. However, very few studies have used the LUR methodology to also model the temporal variation in air pollution exposure. The aim of this study is to estimate annual mean NO(2) and PM(10) concentrations from 1996 to 2008 for Greater Manchester using land use regression models. The results from these models will be used in the Manchester Asthma and Allergy Study (MAAS) birth cohort to determine health effects of air pollution exposure. The Greater Manchester LUR model for 2005 was recalibrated using interpolated and adjusted NO(2) and PM(10) concentrations as dependent variables for 1996-2008. In addition, temporally resolved variables were available for traffic intensity and PM(10) emissions. To validate the resulting LUR models, they were applied to the locations of automatic monitoring stations and the estimated concentrations were compared against measured concentrations. The 2005 LUR models were successfully recalibrated, providing individual models for each year from 1996 to 2008. When applied to the monitoring stations the mean prediction error (MPE) for NO(2) concentrations for all stations and years was -0.8μg/m³ and the root mean squared error (RMSE) was 6.7μg/m³. For PM(10) concentrations the MPE was 0.8μg/m³ and the RMSE was 3.4μg/m³. These results indicate that it is possible to model temporal variation in air pollution through LUR with relatively small prediction errors. It is likely that most previous LUR studies did not include temporal variation, because they were based on short term monitoring campaigns and did not have historic pollution data. The advantage of this study is that it uses data from an air dispersion model, which provided concentrations for 2005 and 2010, and therefore allowed extrapolation over a longer time period.

  6. Emission measurements for a lean premixed propane/air system at pressures up to 30 atmospheres

    NASA Technical Reports Server (NTRS)

    Roffe, G.; Venkataramani, K. S.

    1978-01-01

    The emissions of a lean premixed system of propane/air were measured in a flametube apparatus. Tests were conducted at inlet temperatures of 600K and 800K and pressures of 10 atm and 30 atm over a range of equivalence ratios. The data obtained were combined with previous data taken in the same apparatus to correlate nitrogen oxide emissions with operating conditions. Sampling probe design was found to have a pronounced effect on measured CO levels but did not influence measurements. The most effective probe tested was one which combined thermal and pressure quenching of the gas sample.

  7. Investigation of air solubility in jet A fuel at high pressures

    NASA Technical Reports Server (NTRS)

    Rupprecht, S. D.; Faeth, G. M.

    1981-01-01

    The solubility and density properties of saturated mixtures of fuels and gases were measured. The fuels consisted of Jet A and dodecane, the gases were air and nitrogen. The test range included pressures of 1.03 to 10.34 MPa and temperatures of 298 to 373 K. The results were correlated successfully, using the Soave equation of state. Over this test range, dissolved gas concentrations were roughly proportional to pressure and increased slightly with increasing temperature. Mixture density was relatively independent of dissolved gas concentration.

  8. Dynamic analysis of a BLDC motor with mechanical and electromagnetic interaction due to air gap variation

    NASA Astrophysics Data System (ADS)

    Im, Hyungbin; Yoo, Hong Hee; Chung, Jintai

    2011-04-01

    In this study, the dynamic behaviors of a BLDC motor are analyzed, when the motor undergoes mechanical and electromagnetic interaction due to an air gap variation between the stator and rotor. When considering the air gap variation caused by the translational motion of the rotor relative to the stator, the kinetic and potential energies, Rayleigh dissipation function, and the magnetic coenergy are expressed in terms of the rotor displacements and stator currents. With these energies and function, new equations of motion are derived using Lagrange's equation. The equations for the proposed model are nonlinear equations in which the displacements and currents are coupled. The time responses for the displacements and currents are computed for the proposed and previous models. Furthermore, the effects of rotor eccentricity are also investigated. It is found that, when the air gap varies with time, the time responses for the proposed and previous models have small differences in the stator currents, electromagnetic torques, and rotating speeds. However, the time responses have large differences in the rotor displacements. Therefore, this paper claims that the proposed model describes the dynamic behaviors of the motor more accurately than the previous model. It is also shown that rotor eccentricity increases the stator current period and the electromagnetic torque, while it decreases the rotating speed of the rotor.

  9. Contribution of climate and air pollution to variation in coronary heart disease mortality rates in England.

    PubMed

    Scarborough, Peter; Allender, Steven; Rayner, Mike; Goldacre, Michael

    2012-01-01

    There are substantial geographic variations in coronary heart disease (CHD) mortality rates in England that may in part be due to differences in climate and air pollution. An ecological cross-sectional multi-level analysis of male and female CHD mortality rates in all wards in England (1999-2004) was conducted to estimate the relative strength of the association between CHD mortality rates and three aspects of the physical environment--temperature, hours of sunshine and air quality. Models were adjusted for deprivation, an index measuring the healthiness of the lifestyle of populations, and urbanicity. In the fully adjusted model, air quality was not significantly associated with CHD mortality rates, but temperature and sunshine were both significantly negatively associated (p<0.05), suggesting that CHD mortality rates were higher in areas with lower average temperature and hours of sunshine. After adjustment for the unhealthy lifestyle of populations and deprivation, the climate variables explained at least 15% of large scale variation in CHD mortality rates. The results suggest that the climate has a small but significant independent association with CHD mortality rates in England.

  10. Contribution of Climate and Air Pollution to Variation in Coronary Heart Disease Mortality Rates in England

    PubMed Central

    Scarborough, Peter; Allender, Steven; Rayner, Mike; Goldacre, Michael

    2012-01-01

    There are substantial geographic variations in coronary heart disease (CHD) mortality rates in England that may in part be due to differences in climate and air pollution. An ecological cross-sectional multi-level analysis of male and female CHD mortality rates in all wards in England (1999–2004) was conducted to estimate the relative strength of the association between CHD mortality rates and three aspects of the physical environment - temperature, hours of sunshine and air quality. Models were adjusted for deprivation, an index measuring the healthiness of the lifestyle of populations, and urbanicity. In the fully adjusted model, air quality was not significantly associated with CHD mortality rates, but temperature and sunshine were both significantly negatively associated (p<0.05), suggesting that CHD mortality rates were higher in areas with lower average temperature and hours of sunshine. After adjustment for the unhealthy lifestyle of populations and deprivation, the climate variables explained at least 15% of large scale variation in CHD mortality rates. The results suggest that the climate has a small but significant independent association with CHD mortality rates in England. PMID:22427884

  11. Parameters of a supershort avalanche electron beam generated in atmospheric-pressure air

    SciTech Connect

    Tarasenko, V. F.

    2011-05-15

    Conditions under which the number of runaway electrons in atmospheric-pressure air reaches {approx}5 Multiplication-Sign 10{sup 10} are determined. Recommendations for creating runaway electron accelerators are given. Methods for measuring the parameters of a supershort avalanche electron beam and X-ray pulses from gas-filled diodes, as well as the discharge current and gap voltage, are described. A technique for determining the instant of runaway electron generation with respect to the voltage pulse is proposed. It is shown that the reduction in the gap voltage and the decrease in the beam current coincide in time. The mechanism of intense electron beam generation in gas-filled diodes is analyzed. It is confirmed experimentally that, in optimal regimes, the number of electrons generated in atmospheric-pressure air with energies T > eU{sub m}, where U{sub m} is the maximum gap voltage, is relatively small.

  12. Evaluation of analytical methodology for hydrocarbons in high pressure air and nitrogen systems. [evaluation of methodology

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Samples of liquid oxygen, high pressure nitrogen, low pressure nitrogen, and missile grade air were studied to determine the hydrocarbon concentrations. Concentration of the samples was achieved by adsorption on a molecular sieve and activated charcoal. The trapped hydrocarbons were then desorbed and transferred to an analytical column in a gas chromatograph. The sensitivity of the method depends on the volume of gas passed through the adsorbent tubes. The value of the method was verified through recoverability and reproducibility studies. The use of this method enables LOX, GN2, and missile grade air systems to be routinely monitored to determine low level increases in specific hydrocarbon concentration that could lead to potentially hazardous conditions.

  13. Parameters of a supershort avalanche electron beam generated in atmospheric-pressure air

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.

    2011-05-01

    Conditions under which the number of runaway electrons in atmospheric-pressure air reaches ˜5 × 1010 are determined. Recommendations for creating runaway electron accelerators are given. Methods for measuring the parameters of a supershort avalanche electron beam and X-ray pulses from gas-filled diodes, as well as the discharge current and gap voltage, are described. A technique for determining the instant of runaway electron generation with respect to the voltage pulse is proposed. It is shown that the reduction in the gap voltage and the decrease in the beam current coincide in time. The mechanism of intense electron beam generation in gas-filled diodes is analyzed. It is confirmed experimentally that, in optimal regimes, the number of electrons generated in atmospheric-pressure air with energies T > eU m , where U m is the maximum gap voltage, is relatively small.

  14. Passenger comfort on high-speed trains: effect of tunnel noise on the subjective assessment of pressure variations.

    PubMed

    Sanok, Sandra; Mendolia, Franco; Wittkowski, Martin; Rooney, Daniel; Putzke, Matthias; Aeschbach, Daniel

    2015-01-01

    When passing through a tunnel, aerodynamic effects on high-speed trains may impair passenger comfort. These variations in atmospheric pressure are accompanied by transient increases in sound pressure level. To date, it is unclear whether the latter influences the perceived discomfort associated with the variations in atmospheric pressure. In a pressure chamber of the DLR-Institute of Aerospace Medicine, 71 participants (M = 28.3 years ± 8.1 SD) rated randomised pressure changes during two conditions according to a crossover design. The pressure changes were presented together with tunnel noise such that the sound pressure level was transiently elevated by either +6 dB (low noise condition) or +12 dB (high noise condition) above background noise level (65 dB(A)). Data were combined with those of a recent study, in which identical pressure changes were presented without tunnel noise (Schwanitz et al., 2013, 'Pressure Variations on a Train - Where is the Threshold to Railway Passenger Discomfort?' Applied Ergonomics 44 (2): 200-209). Exposure-response relationships for the combined data set comprising all three noise conditions show that pressure discomfort increases with the magnitude and speed of the pressure changes but decreases with increasing tunnel noise. Practitioner Summary: In a pressure chamber, we systematically examined how pressure discomfort, as it may be experienced by railway passengers, is affected by the presence of tunnel noise during pressure changes. It is shown that across three conditions (no noise, low noise (+6 dB), high noise (+12 dB)) pressure discomfort decreases with increasing tunnel noise.

  15. Effect of Mixture Pressure and Equivalence Ratio on Detonation Cell Size for Hydrogen-Air Mixtures

    DTIC Science & Technology

    2015-06-01

    Detonation MAPE Mean Absolute Percent Error PDE Pulsed Detonation Engine RDE Rotating Detonation Engine ZND...1997. DeBarmore, Nick D., Paul King, Fred Schauer, and John Hoke, “Nozzle Guide Vane Integration into Rotating Detonation Engine,” 51st AIAA...initial mixture pressure and equivalence ratio. ^Hydrogen and air, detonation cell size, detonation , cell size, Rotating Detonation Engine, RDE U U U UU 129 Dr. Paul I. King, AFIT/ENY (937) 255-3636 x4628

  16. Travel of the center of pressure of airfoils transversely to the air stream

    NASA Technical Reports Server (NTRS)

    Katzmayr, Richard

    1929-01-01

    The experiments here described were performed for the purpose of obtaining the essential facts concerning the distribution of the air force along the span. We did not follow, however, the time-consuming method of point-to-point measurements of the pressure distribution on the wing surfaces, but determined directly the moment of mean force about an axis passing through the middle of the span parallel to the direction of flight.

  17. Characterization of an atmospheric pressure air plasma source for polymer surface modification

    NASA Astrophysics Data System (ADS)

    Yang, Shujun; Tang, Jiansheng

    2013-10-01

    An atmospheric pressure air plasma source was generated through dielectric barrier discharge (DBD). It was used to modify polyethyleneterephthalate (PET) surfaces with very high throughput. An equivalent circuit model was used to calculate the peak average electron density. The emission spectrum from the plasma was taken and the main peaks in the spectrum were identified. The ozone density in the down plasma region was estimated by Absorption Spectroscopy. NSF and ARC-ODU

  18. Optical refractive index of air: dependence on pressure, temperature and composition.

    PubMed

    Owens, J C

    1967-01-01

    The theoretical background and present status of formulas for the refractive index of air are reviewed. In supplement to Edlén's recently revised formula for relative refractivity, the density dependence of refractive index is reanalyzed. New formulas are presented for both phase and group refractive index which are more useful over a wide range of pressure, temperature, and composition than any presently available. The application of the new formulas to optical distance measuring is briefly discussed.

  19. Temperature and pressure influence on maximum rates of pressure rise during explosions of propane-air mixtures in a spherical vessel.

    PubMed

    Razus, D; Brinzea, V; Mitu, M; Movileanu, C; Oancea, D

    2011-06-15

    The maximum rates of pressure rise during closed vessel explosions of propane-air mixtures are reported, for systems with various initial concentrations, pressures and temperatures ([C(3)H(8)]=2.50-6.20 vol.%, p(0)=0.3-1.3 bar; T(0)=298-423 K). Experiments were performed in a spherical vessel (Φ=10 cm) with central ignition. The deflagration (severity) index K(G), calculated from experimental values of maximum rates of pressure rise is examined against the adiabatic deflagration index, K(G, ad), computed from normal burning velocities and peak explosion pressures. At constant temperature and fuel/oxygen ratio, both the maximum rates of pressure rise and the deflagration indices are linear functions of total initial pressure, as reported for other fuel-air mixtures. At constant initial pressure and composition, the maximum rates of pressure rise and deflagration indices are slightly influenced by the initial temperature; some influence of the initial temperature on maximum rates of pressure rise is observed only for propane-air mixtures far from stoichiometric composition. The differentiated temperature influence on the normal burning velocities and the peak explosion pressures might explain this behaviour.

  20. Development of 72kV High Pressure Air-insulated GIS with Vacuum Circuit Breaker

    NASA Astrophysics Data System (ADS)

    Rokunohe, Toshiaki; Yagihashi, Yoshitaka; Endo, Fumihiro; Aoyagi, Kenji; Saitoh, Hitoshi; Oomori, Takashi

    SF6 gas has excellent dielectric strength and interruption performance. For these reasons, it has been widely used for gas insulated switchgear (GIS). However, use of SF6 gas has become regulated under agreements set at the 1997 COP3. So investigation and development for GIS with a lower amount of SF6 gas are being carried out worldwide. Presently, SF6 gas-free GIS has been commercialized for the 24kV class. Air or N2 gas is used as insulation gas for this GIS. On the other hand, SF6 gas-free GIS has not been commercialized for 72kV class GIS. Dielectric strengths of air and N2 gas are approximately 1/3 that of SF6 gas. So to enhance insulation performance of air and N2, we have investigated a hybrid gas insulation system which has the combined features of providing an insulation coating and suitable insulation gas. We have developed the world's first 72kV SF6 gas-free GIS. This paper deals with key technologies for SF6 gas-free GIS such as the hybrid insulation structure, bellows for the high pressure vacuum circuit breaker, a newly designed disconnector and spacer and prevention of particle levitation. Test results of 72kV high pressure air-insulated GIS with the vacuum circuit breaker are described.

  1. Effects of the air pressure on the wave-packet dynamics of gaseous iodine molecules at room temperature

    NASA Astrophysics Data System (ADS)

    Fan, Rongwei; He, Ping; Chen, Deying; Xia, Yuanqin; Yu, Xin; Wang, Jialing; Jiang, Yugang

    2013-02-01

    Based on ultrafast laser pulses, time-resolved resonance enhancement coherent anti-Stokes Raman scattering (RE-CARS) is applied to investigate wave-packet dynamics in gaseous iodine. The effects of air pressure on the wave-packet dynamics of iodine molecules are studied at pressures ranging from 1.5 Torr to 750 Torr. The RE-CARS signals are recorded in a gas cell filled with a mixture of about 0.3 Torr iodine in air buffer gas at room temperature. The revivals and fractional revival structures in the wave-packet signal are found to gradually disappear with rising air pressure up to 750 Torr, and the decay behaviors of the excited B-state and ground X-state become faster with increasing air pressure, which is due to the collision effects of the molecules and the growing complexity of the spectra at high pressures.

  2. Effects of light intensity and air velocity on air temperature, water vapor pressure, and CO2 concentration inside a plant canopy under an artificial lighting condition.

    PubMed

    Kitaya, Y; Shibuya, T; Kozai, T; Kubota, C

    1998-01-01

    In order to characterize environmental variables inside a plant canopy under artificial lighting in the CELSS, we investigated the effects of light intensity and air velocity on air temperature, water vapor pressure, and CO2 concentration inside a plant canopy. Under a PPF of 500 micromoles m-2 s-1, air temperature was 2-3 degrees C higher, water vapor pressure was 0.6 kPa higher, and CO2 concentration was 25-35 micromoles mol-1 lower at heights ranging from 0 to 30 mm below the canopy than at a height 60 mm above the canopy. Increasing the PPF increased air temperature and water vapor pressure and decreased CO2 concentration inside the canopy. The air temperature was lower and the CO2 concentration was higher inside the canopy at an air velocity of 0.3 m s-1 than at an air velocity of 0.1 m s-1. The environmental variables inside the canopy under a high light intensity were characterized by higher air temperature, higher vapor pressure, and lower CO2 concentration than those outside the canopy.

  3. Advancing a smart air cushion system for preventing pressure ulcers using projection Moiré for large deformation measurements

    NASA Astrophysics Data System (ADS)

    Cheng, Sheng-Lin; Tsai, Tsung-Heng; Lee, Carina Jean-Tien; Hsu, Yu-Hsiang; Lee, Chih-Kung

    2016-03-01

    A pressure ulcer is one of the most important concerns for wheelchair bound patients with spinal cord injuries. A pressure ulcer is a localized injury near the buttocks that bear ischial tuberosity oppression over a long period of time. Due to elevated compression to blood vessels, the surrounding tissues suffer from a lack of oxygen and nutrition. The ulcers eventually lead to skin damage followed by tissue necrosis. The current medical strategy is to minimize the occurrence of pressure ulcers by regularly helping patients change their posture. However, these methods do not always work effectively or well. As a solution to fundamentally prevent pressure ulcers, a smart air cushion system was developed to detect and control pressure actively. The air cushion works by automatically adjusting a patient's sitting posture to effectively relieve the buttock pressure. To analyze the correlation between the dynamic pressure profiles of an air cell with a patient's weight, a projection Moiré system was adopted to measure the deformation of an air cell and its associated stress distribution. Combining a full-field deformation imaging with air pressure measured within an air cell, the patient's weight and the stress distribution can be simultaneously obtained. By integrating a full-field optical metrology with a time varying pressure sensor output coupled with different active air control algorithms for various designs, we can tailor the ratio of the air cells. Our preliminary data suggests that this newly developed smart air cushion has the potential to selectively reduce localized compression on the tissues at the buttocks. Furthermore, it can take a patient's weight which is an additional benefit so that medical personnel can reference it to prescribe the correct drug dosages.

  4. Variation in blood pressure is associated with white matter microstructure but not cognition in African Americans.

    PubMed

    Leritz, Elizabeth C; Salat, David H; Milberg, William P; Williams, Victoria J; Chapman, Caroline E; Grande, Laura J; Rudolph, James L; Schnyer, David M; Barber, Colleen E; Lipsitz, Lewis A; McGlinchey, Regina E

    2010-03-01

    Although hypertension is a major risk factor for cerebrovascular disease (CVD) and is highly prevalent in African Americans, little is known about how blood pressure (BP) affects brain-behavior relationships in this population. In predominantly Caucasian populations, high BP is associated with alterations in frontal-subcortical white matter and in executive functioning aspects of cognition. We investigated associations among BP, brain structure, and neuropsychological functioning in 52 middle-older-age African Americans without diagnosed history of CVD. All participants underwent diffusion tensor imaging for examination of white matter integrity, indexed by fractional anisotropy (FA). Three regions of interest were derived in the anterior (genu) and posterior (splenium) corpus callosum and across the whole brain. A brief neuropsychological battery was administered from which composite scores of executive function and memory were derived. Blood pressure was characterized by mean arterial blood pressure (MABP). When controlling for age, higher MABP was associated with lower FA in the genu, and there was a trend for this same relationship with regard to whole-brain FA. When the sample was broken into groups on the basis of treatment for BP regulation (medicated vs. nonmedicated), MABP was related to genu and whole-brain FA only in the nonmedicated group. Neither MABP nor FA was significantly related to either neuropsychological composite score regardless of medication use. These data provide important evidence that variation in BP may contribute to significant alterations in specific neural regions of white matter in nonmedicated individuals without symptoms of overt CVD.

  5. Pattern recognition techniques for visualizing the biotropic waveform of air temperature and pressure

    NASA Astrophysics Data System (ADS)

    Ozheredov, V. A.

    2012-12-01

    It is known that long periods of adverse weather have a negative effect on the human cardiovascular system. A number of studies have set a lower limit of around 5 days for the duration of these periods. However, the specific features of the negative dynamics of the main weather characteristics—air temperature and atmospheric pressure—remained open. To address this problem, the present paper proposes a conjunctive method of the theory of pattern recognition. It is shown that this method approaches a globally optimal (in the sense of recognition errors) Neumann critical region and can be used to solve various problems in heliobiology. To illustrate the efficiency of this method, we show that some quickly relaxing short sequences of temperature and pressure time series (the so-called temperature waves and waves of atmospheric pressure changes) increase the risk of cardiovascular diseases and can lead to serious organic lesions (particularly myocardial infarction). It is established that the temperature waves and waves of atmospheric pressure changes increase the average morbidity rate of myocardial infarction by 90% and 110%, respectively. Atmospheric pressure turned out to be a more biotropic factor than air temperature.

  6. Predictive dynamic model of a small pressure swing adsorption air separation unit

    SciTech Connect

    Teague, K.G. Jr.; Edgar, T.F.

    1999-10-01

    A predictive dynamic model of a small pressure swing adsorption (PSA) air separation process was developed for the purposes of evaluation, optimization, and control of oxygen generation systems on board military aircraft. A mathematical model of the adsorption beds was formulated by application of fundamental mass- and energy-transport modeling techniques. These equations were discretized using the Galerkin finite element technique. The resulting ODE systems were coupled with ODEs describing the rate of change of pressure in each bed and models of the feed and exhaust valves and purge orifice. The model was developed so that it is possible to predict the dynamic response of product oxygen composition and feed air consumption to step changes in feed pressure, product flow rate, and cycle time. A laboratory PSA unit similar in size to an on-board oxygen generation system (OBOGS) was constructed to validate the model. The laboratory unit was constructed so that step changes could be implemented and the responses observed for comparison with the model. All parameters in the model were estimated from literature sources with the exception of the feed/exhaust valve and purge orifice discharge coefficients. Excellent dynamic predictions of bed pressure, cycle-averaged feed flow rate, and cycle-averaged bed temperature vs time in response to step changes in all three input variables compared to the two-bed PSA data were achieved without additional parameter estimation from two-bed data.

  7. New data for aerosols generated by releases of pressurized powders and solutions in static air

    SciTech Connect

    Ballinger, M.Y.; Sutter, S.L.; Hodgson, W.H.

    1987-05-01

    Safety assessments and environmental impact statements for nuclear fuel cycle facilities require an estimate of potential airborne releases. Aerosols generated by accidents are being investigated by Pacific Northwest Laboratory to develop radioactive source-term estimation methods. Experiments measuring the mass airborne and particle size distribution of aerosols produced by pressurized releases were run. Carbon dioxide was used to pressurize uranine solutions to 50, 250, and 500 psig before release. The mass airborne from these experiments was higher than for comparable air-pressurized systems, but not as great as expected based on the amount of gas dissolved in the liquid and the volume of liquid ejected from the release equipment. Flashing sprays of uranine at 60, 125, and 240 psig produced a much larger source term than all other pressurized releases performed under this program. Low-pressure releases of depleted uranium dioxide at 9, 17.5, and 24.5 psig provided data in the energy region between 3-m spills and 50-psig pressurized releases.

  8. Short-term variation in near-highway air pollutant gradients on a winter morning.

    PubMed

    Durant, J L; Ash, C A; Wood, E C; Herndon, S C; Jayne, J T; Knighton, W B; Canagaratna, M R; Trull, J B; Brugge, D; Zamore, W; Kolb, C E

    2010-01-01

    Quantification of exposure to traffic-related air pollutants near highways is hampered by incomplete knowledge of the scales of temporal variation of pollutant gradients. The goal of this study was to characterize short-term temporal variation of vehicular pollutant gradients within 200-400 m of a major highway (>150 000 vehicles/d). Monitoring was done near Interstate 93 in Somerville (Massachusetts) from 06:00 to 11:00 on 16 January 2008 using a mobile monitoring platform equipped with instruments that measured ultrafine and fine particles (6-1000 nm, particle number concentration (PNC)); particle-phase (>30 nm) [Formula: see text], [Formula: see text], and organic compounds; volatile organic compounds (VOCs); and CO(2), NO, NO(2), and O(3). We observed rapid changes in pollutant gradients due to variations in highway traffic flow rate, wind speed, and surface boundary layer height. Before sunrise and peak traffic flow rates, downwind concentrations of particles, CO(2), NO, and NO(2) were highest within 100-250 m of the highway. After sunrise pollutant levels declined sharply (e.g., PNC and NO were more than halved) and the gradients became less pronounced as wind speed increased and the surface boundary layer rose allowing mixing with cleaner air aloft. The levels of aromatic VOCs and [Formula: see text], [Formula: see text] and organic aerosols were generally low throughout the morning, and their spatial and temporal variations were less pronounced compared to PNC and NO. O(3) levels increased throughout the morning due to mixing with O(3)-enriched air aloft and were generally lowest near the highway reflecting reaction with NO. There was little if any evolution in the size distribution of 6-225 nm particles with distance from the highway. These results suggest that to improve the accuracy of exposure estimates to near-highway pollutants, short-term (e.g., hourly) temporal variations in pollutant gradients must be measured to reflect changes in traffic patterns

  9. Short-term variation in near-highway air pollutant gradients on a winter morning

    PubMed Central

    Durant, J. L.; Ash, C. A.; Wood, E. C.; Herndon, S. C.; Jayne, J. T.; Knighton, W. B.; Canagaratna, M. R.; Trull, J. B.; Brugge, D.; Zamore, W.; Kolb, C. E.

    2011-01-01

    Quantification of exposure to traffic-related air pollutants near highways is hampered by incomplete knowledge of the scales of temporal variation of pollutant gradients. The goal of this study was to characterize short-term temporal variation of vehicular pollutant gradients within 200–400 m of a major highway (>150 000 vehicles/d). Monitoring was done near Interstate 93 in Somerville (Massachusetts) from 06:00 to 11:00 on 16 January 2008 using a mobile monitoring platform equipped with instruments that measured ultrafine and fine particles (6–1000 nm, particle number concentration (PNC)); particle-phase (>30 nm) NO3−, SO42−, and organic compounds; volatile organic compounds (VOCs); and CO2, NO, NO2, and O3. We observed rapid changes in pollutant gradients due to variations in highway traffic flow rate, wind speed, and surface boundary layer height. Before sunrise and peak traffic flow rates, downwind concentrations of particles, CO2, NO, and NO2 were highest within 100–250 m of the highway. After sunrise pollutant levels declined sharply (e.g., PNC and NO were more than halved) and the gradients became less pronounced as wind speed increased and the surface boundary layer rose allowing mixing with cleaner air aloft. The levels of aromatic VOCs and NO3−, SO42− and organic aerosols were generally low throughout the morning, and their spatial and temporal variations were less pronounced compared to PNC and NO. O3 levels increased throughout the morning due to mixing with O3-enriched air aloft and were generally lowest near the highway reflecting reaction with NO. There was little if any evolution in the size distribution of 6–225 nm particles with distance from the highway. These results suggest that to improve the accuracy of exposure estimates to near-highway pollutants, short-term (e.g., hourly) temporal variations in pollutant gradients must be measured to reflect changes in traffic patterns and local meteorology. PMID:22427751

  10. [Studies on the performance of the dental air turbine handpieces. (Part 1). Air pressure and bur length to be influenced over the rotational performance of the air bearing type handpieces (author's transl)].

    PubMed

    Miyairi, H; Muramatsu, A

    1979-07-01

    Air turbine handpieces are used as the dental cutting instruments for the clinical use and many appliances. But, there are no studies on the performance of air turbine handpieces. So, this paper shows the rotational performance of air turbine handpieces which are influenced over the supplying air pressure and cutting bur length. Experimentally used air turbine handpieces is air bearing type and it's set up air pressure to be supplied is 3.5 kg/cm2. So, in this experiments, the range of air pressure is 1.8 approximately 3.5 kg/cm2, which is established five stages. And the bur length of the rotational parts is 5 approximately 9 mm with five steps. As the results, the rotational performance of air handpieces are influenced over these factors of the air pressure and the bur length. And air pressure to be supplied are influenced to be not only over the rotational speed but the load for the putting a stop to the revolutions.

  11. Effect of air gap variation on the performance of single stator single rotor axial flux permanent magnet generator

    NASA Astrophysics Data System (ADS)

    Kasim, Muhammad; Irasari, Pudji; Hikmawan, M. Fathul; Widiyanto, Puji; Wirtayasa, Ketut

    2017-02-01

    The axial flux permanent magnet generator (AFPMG) has been widely used especially for electricity generation. The effect of the air gap variation on the characteristic and performances of single rotor - single stator AFPMG has been described in this paper. Effect of air gap length on the magnetic flux distribution, starting torque and MMF has been investigated. The two dimensional finite element magnetic method has been deployed to model and simulated the characteristics of the machine which is based on the Maxwell equation. The analysis has been done for two different air gap lengths which were 2 mm and 4 mm using 2D FEMM 4.2 software at no load condition. The increasing of air gap length reduces the air-gap flux density. For air gap 2 mm, the maximum value of the flux density was 1.04 T while 0.73 T occured for air gap 4 mm.. Based on the experiment result, the increasing air gap also reduced the starting torque of the machine with 39.2 Nm for air gap 2 mm and this value decreased into 34.2 Nm when the air gap increased to 4 mm. Meanwhile, the MMF that was generated by AFPMG decreased around 22% at 50 Hz due to the reduction of magnetic flux induced on stator windings. Overall, the research result showed that the variation of air gap has significant effect on the machine characteristics.

  12. Decay of femtosecond laser-induced plasma filaments in air, nitrogen, and argon for atmospheric and subatmospheric pressures

    NASA Astrophysics Data System (ADS)

    Aleksandrov, N. L.; Bodrov, S. B.; Tsarev, M. V.; Murzanev, A. A.; Sergeev, Yu. A.; Malkov, Yu. A.; Stepanov, A. N.

    2016-07-01

    The temporal evolution of a plasma channel at the trail of a self-guided femtosecond laser pulse was studied experimentally and theoretically in air, nitrogen (with an admixture of ˜3% O2), and argon in a wide range of gas pressures (from 2 to 760 Torr). Measurements by means of transverse optical interferometry and pulsed terahertz scattering techniques showed that plasma density in air and nitrogen at atmospheric pressure reduces by an order of magnitude within 3-4 ns and that the decay rate decreases with decreasing pressure. The argon plasma did not decay within several nanoseconds for pressures of 50-760 Torr. We extended our theoretical model previously applied for atmospheric pressure air plasma to explain the plasma decay in the gases under study and to show that allowance for plasma channel expansion affects plasma decay at low pressures.

  13. Analysis of an Aircraft Honeycomb Sandwich Panel with Circular Face Sheet/Core Disbond Subjected to Ground-Air Pressurization

    NASA Technical Reports Server (NTRS)

    Rinker, Martin; Krueger, Ronald; Ratcliffe, James

    2013-01-01

    The ground-air pressurization of lightweight honeycomb sandwich structures caused by alternating pressure differences between the enclosed air within the honeycomb core and the ambient environment is a well-known and controllable loading condition of aerospace structures. However, initial face sheet/core disbonds intensify the face sheet peeling effect of the internal pressure load significantly and can decrease the reliability of the sandwich structure drastically. Within this paper, a numerical parameter study was carried out to investigate the criticality of initial disbonds in honeycomb sandwich structures under ground-air pressurization. A fracture mechanics approach was used to evaluate the loading at the disbond front. In this case, the strain energy release rate was computed via the Virtual Crack Closure Technique. Special attention was paid to the pressure-deformation coupling which can decrease the pressure load within the disbonded sandwich section significantly when the structure is highly deformed.

  14. Impacts of Global Climate Variations and Changes on U.S. Air Quality

    NASA Astrophysics Data System (ADS)

    Liang, X.; Zhu, J.; Lei, H.; Wuebbles, D. J.

    2011-12-01

    This study will demonstrate how global climate variations and changes affect U.S. air quality: First, the Bermuda high plays a critical role on regional climate and air quality variations over the U.S. Observational data reveal that, in summer, a more westward extension of the high enhances the Great Plains low-level jet (LLJ) along its west flank. The enhanced transport of cleaner marine air from the Gulf of Mexico reduces ozone along the LLJ path across the Great Plains to the Midwest. In contrast, larger transport of more polluted air from the Midwest to New England and more frequent air stagnation under the control of the high over the Southeast increase ozone along most of the eastern coastal States. This Bermuda high-induced ozone oscillation between the central U.S. and eastern coastal States exhibits strong decadal variations that must be considered in the dynamic management of the U.S. air quality. Second, long-range transport of pollutants under changing climate has important consequences on U.S. air quality projections. The actual outcome, however, strongly depends on the model ability to resolve the key physical and chemical processes. Here we illustrate how an improved physical dust aerosol model (PDAM) leads to substantially different projections of future U.S. PM 2.5 concentrations from existing studies. The incorporation of PDAM remarkably improves the CAM-Chem's ability in simulating the present aerosol distribution. Without PDAM, CAM-Chem projects that future PM2.5 will decrease over most of the U.S. due to emissions reduction for both A1B and A1FI scenarios; the changes are essentially the same between the two scenarios, with largest decreases of 8-15 μg m-3 over the Midwest-Northeast. This is similar to the general conclusion in the published literature. On the other hand, with PDAM, the A1B result remains almost the same, but the A1FI outcome shows large increases of 3-15 μg m-3 over the central U.S. In the southern part, these increases

  15. Spatial variations in the associations of term birth weight with ambient air pollution in Georgia, USA.

    PubMed

    Tu, Jun; Tu, Wei; Tedders, Stuart H

    2016-01-01

    Birth weight is an important indicator of overall infant health and a strong predictor of infant morbidity and mortality, and low birth weight (LBW) is a leading cause of infant mortality in the United States. Numerous studies have examined the associations of birth weight with ambient air pollution, but the results were inconsistent. In this study, a spatial statistical technique, geographically weighted regression (GWR) is applied to explore the spatial variations in the associations of birth weight with concentrations of ozone (O3) and fine particulate matter (PM2.5) in the State of Georgia, USA adjusted for gestational age, parity, and six other socioeconomic, behavioral, and land use factors. The results show considerable spatial variations in the associations of birth weight with both pollutants. Significant positive, non-significant, and significant negative relationships between birth weight and concentrations of each air pollutant are all found in different parts of the study area, and the different types of the relationships are affected by the socioeconomic and urban characteristics of the communities where the births are located. The significant negative relationships between birth weight and O3 indicate that O3 is a significant risk factor of LBW and these associations are primarily located in less-urbanized communities. On the other hand, PM2.5 is a significant risk factor of LBW in the more-urbanized communities with higher family income and education attainment. These findings suggest that environmental and health policies should be adjusted to address the different effects of air pollutants on birth outcomes across different types of communities to more effectively and efficiently improve birth outcomes.

  16. Modeling the dynamics of pressure propagation and diameter variation in tree sapwood.

    PubMed

    Perämäki, Martti; Vesala, Timo; Nikinmaa, Eero

    2005-09-01

    A non-steady-state model of water tension propagation in tree stems was developed. The model is based on the cohesion theory and the assumption that fluctuating water tension driven by transpiration together with the elasticity of wood cause variations in the diameter of a tree stem. The change in xylem diameter can be linked to water tension in accordance with Hooke's law. The model was tested against field measurements of the diurnal change in xylem diameter at different heights in a 180-year-old Scots pine tree at Hyytiälä, southern Finland. Model predictions agreed well with measurements. The effect of tree dimensions on pressure propagation was examined with the model. The model outcomes were also consistent with results of several field measurements presented in the literature.

  17. Micrometeorite Impact Effects on Comets and Asteroids: Peak Pressure versus Spectral Variation

    NASA Astrophysics Data System (ADS)

    Jensen, Elizabeth; Lederer, S. M.; Strojia, C.; Smith, D. C.; Wooden, D. H.; Lindsay, S. S.; Keller, L. P.; Cintala, M. J.; Zolensky, M. E.

    2013-10-01

    At the Experimental Impact Laboratory at NASA Johnson Space Center, we have investigated the surface properties of asteroids caused by collisions in the mid-infrared (2.5 to 16 microns) by impacting forsterite and enstatite across a range of velocities (as predicted by the Nice Model) and at varying temperatures. The crystal structure in these minerals can be deformed by the shock wave from the impact as well as sheared into smaller particle sizes. Our current focus is on the differing effects between 2.3 and 2.6 km/sec, as well as the differences between a cold sample at -20C and a room temperature sample at 25C. We find that the spectral variation and crystal deformation varies non-linearly with the peak theoretical shock pressure. Funding was provided by the NASA PG&G grant 09-PGG09-0115, NSF grant AST-1010012, and a Cottrell College Scholarship through the Research Corporation.

  18. The impact of mass flow and masking on the pressure drop of air filter in heavy-duty diesel engine

    NASA Astrophysics Data System (ADS)

    Hoseeinzadeh, Sepideh; Gorji-Bandpy, Mofid

    2012-04-01

    This paper presents a computational fluid dynamics (CFD) calculation approach to predict and evaluate the impact of the mass-flow inlet on the pressure drop of turbocharger`s air filtfer in heavy-duty diesel engine. The numerical computations were carried out using a commercial CFD program whereas the inlet area of the air filter consisted of several holes connected to a channel. After entering through the channel, the air passes among the holes and enters the air filter. The effect of masking holes and hydraulic diameter is studied and investigated on pressure drop. The results indicate that pressure drop increase with decreasing of hydraulic diameter and masking of the holes has considerable affect on the pressure drop.

  19. Observations of the 18.6-year cycle of air pressure and a theoretical model to explain certain aspects of this signal

    NASA Astrophysics Data System (ADS)

    O'Brien, D. P.; Currie, R. G.

    1993-07-01

    Evidence from barometric data in Japan, USSR, southern Europe, southern Africa, and South America shows that air pressure variations with period near 18.6-years can attain amplitudes as high as 0.9 mb, and are identified as induced by the luni-solar constituent tide M n (M for moon and n for nodal). Luni-solar waveforms commonly exhibit modulation effects due to the superposition of a longer period component with 180° changes in phase. Thus, the waveform amplitudes can be highly nonstationary. Pressure gradients at this period over subcontinental distances show that the amplitudes imply nonequilibrium conditions. A theoretical coupling mechanism between E-W and N-S wind systems and the Coriolis force is envoked to explain the sub-continental extent and the, sometimes abrupt, amplitude changes of the pressure systems over small distances.

  20. Variations of karst underground air temperature induced by various factors (Cave of Županova jama, Central Slovenia)

    NASA Astrophysics Data System (ADS)

    Ravbar, Natasa; Kosutnik, Jure

    2014-04-01

    On the basis of air temperature ( T) monitoring, basic statistical and time series analysis was employed to evaluate thermal states of cave atmosphere variations. Long-term, seasonal and event comparative analysis as well as spectral and cross-correlation analysis was conducted. The results show the relative stability of air T in the isolated part of the cave, whereas variable air T was observed in the parts close to entrances and the surface. The distinctive seasonality in this part of the cave demonstrates that air convection is a driving force for the heat exchange between the cave and the surrounding environment. External air T and heat conducted through the rock walls are also an important factor influencing the cave climate, while heat released by the ice deposit and by water infiltrating through the cave ceiling has a negligible effect. Occasional irregular variations in daily patterns are caused by human impact.

  1. Design of a two dimensional planer pressurized air labyrinth seal test rig

    NASA Astrophysics Data System (ADS)

    Konicki, Joseph S.

    1993-12-01

    A two-dimensional planer labyrinth seal test rig was designed to operate with air supplied at 45 psig and temperatures up to 150 F. The rig operates with a manually specified test section pressure up to 30 psig yielding Mach numbers to 0.9 and gap Reynolds numbers to 100,000. The air flow rate through the seal will be controlled by setting inlet pressure and adjusting an outlet control valve. The test section measurements are 18 inches wide by 1.5 inches depth by 6 inches in length and provides for 10:1 large scale geometry seals to be used to facilitate measurements. Design maximum seal gap size is 0.15 inches. The test section has a glass viewing port to allow flow field measurement by non-intrusive means such as Laser Doppler Velocimeter (LDV) with seals containing up to 5 sealing knives. Measurements of pressure, temperature and flow fields can also be simultaneously measured by probes inserted in the seal itself, or mounted on the removable/replaceable top plate. Inlet flow is conditioned through the use of a dump diffuser incorporating screens, honeycombs, expansion and contraction portions. The inlet flow to the test section can be modified from uniform to various non-uniform conditions by employing profile generators such as screens and winglets. A detailed mechanical design has been conducted including stress analysis and seal flow rate predictions.

  2. Air emission into a water shear layer through porous media. Part 2: Cavitation induced pressure attenuation

    SciTech Connect

    Myer, E.C.; Marboe, R.C.

    1994-12-31

    Cavitation near the casing of a hydroturbine can lead to damage through both cavitation erosion and mechanical vibration of the casing and the associated piping. Cavitation erosion results from the collapse of cavitation bubbles on or near a surface such as the casing wall. Mechanical vibrations transmitted to the casing directly through the collapse of bubbles on the casing wall indirectly through a coupling of the acoustic pressure pulse due to a nearby collapse on the turbine blade. Air emission along the casing can reduce the intensity of the tip vortex and the gap cavitation through ventilation of the cavity. Reduction in the machinery vibration is obtained by reduction of the intensity of cavitation bubble collapse and attenuation and scattering of the radiated acoustic pressure. This requires a bubble layer which may be introduced in the vicinity of the turbine blade tips. This layer remains for some distance downstream of the blades and is effective for attenuation of tip vortex induced noise and blade surface cavitation noise. For the purpose of characterizing this bubble layer within a water pipe, the authors spanned a pipe with a two dimensional hydrofoil and emitted air through porous media (20 and 100 micron porosity sintered stainless steel) into the shear flow over the hydrofoil. This paper is limited to an investigation of the attenuation of acoustic pressure propagating to the casing rather than the reduction in acoustic source level due to collapse cushioning effects.

  3. Heat transfer and pressure distributions on hemisphere-cylinders in methane-air combustion products at Mach 7

    NASA Technical Reports Server (NTRS)

    Weinstein, I.

    1973-01-01

    Heat-transfer and pressure distributions were measured over the surfaces of three hemisphere-cylinder models tested at a nominal Mach number of 7 in the Langley 8-foot high-temperature structures tunnel which uses methane-air products of combustion as a test medium. The results showed that the heat-transfer and pressure distributions over the surface of the models were in good agreement with experimental data obtained in air and also with theoretical predictions.

  4. A biometrical genome-scan in rats reveals the multigenic basis of blood pressure variation

    SciTech Connect

    Schork, N.J.; Trolliet, M.R.; Koike, G.

    1994-09-01

    Well-designed breeding programs involving model organisms and modern DNA marker technologies have the potential to reveal loci whose evolutionary homologs influence human traits. Researchers investigating particular human traits can exploit this fact by studying the genetic basis of those traits in model organisms in an effort to gain insight into which genes might be influencing the trait in humans. This strategy is especially useful for researchers studying human quantitative traits (QTs), since the genetic architecture of human QTs is complex enough to preclude easy characterization with limited extant human gene mapping tools. We performed a genome-wide search for loci influencing salt-loaded systolic blood pressure (NaSBP) in 188 F2 rats produced from a Brown-Norway x Spontaneously Hypertensive rat cross. From genotype information available at 184 marker loci dispersed throughout the rat genome, we were able to determine 6 loci that collectively explain some 43% of the total NaSBP variation exhibited by our F2 progeny. Our results not only shed light on potential candidate loci for human BP variation, but also suggest that the genetic basis of classically-defined polygenic traits of higher organisms may yield to modern biometrical analyses in controlled settings.

  5. The physics of pressure variation in microchannels within corotating or static discs

    NASA Astrophysics Data System (ADS)

    Guha, Abhijit; Sengupta, Sayantan

    2016-10-01

    We formulate a comprehensive analysis for the radial pressure variation in flow through microchannels within corotating (or static) discs, which is important for its fundamental value and application potential in macrofluidic and microfluidic devices. The uniqueness and utility of the present approach emanate from our ability to describe the physics completely in terms of non-dimensional numbers and to determine quantitatively the separate roles of inertia, centrifugal force, Coriolis force, and viscous effects in the overall radial pressure difference (Δpio). It is established here that the aspect ratio (ratio of inter-disc spacing and disc radius) plays only a secondary role as an independent parameter, its major role being contained within a newly identified dynamic similarity number (Ds). For radial inflow, it is shown that the magnitude of Δpio decreases monotonically as the tangential speed ratio (γ) increases but exhibits a minima when Ds is varied. For radial outflow, it is shown that Δpio increases monotonically as the flow coefficient (ϕ) decreases but evinces a maxima when Ds is varied. It is further shown that for the radial inflow case, the minima in the magnitude of Δpio exist even when the rotational speed of the discs is reduced to zero (static discs). The demonstrated existence of these extrema (i.e., minima for radial inflow and maxima for radial outflow) creates the scope for device optimization.

  6. North Atlantic meridional overturning circulation variations from GRACE ocean bottom pressure anomalie

    NASA Astrophysics Data System (ADS)

    Landerer, F. W.; Wiese, D. N.; Bentel, K.; Boening, C.; Watkins, M. M.

    2015-12-01

    The important role of the North-Atlantic Meridonal Overturning Circulation (AMOC) for regional as well as global climate is well recognized. Concerns about potential future AMOC changes imply the need for a continuous, large-scale observation capability to detect any such changes on interannual to decadal time scales. Here, we present the first measurements of lower North-Atlantic-Deep-Water (LNADW) monthly transport changes using only space-based time-variable gravity observations from Gravity Recovery and Climate Experiment (GRACE) satellites, continuously covering the time period from 2003 until now. Improved monthly gravity field retrievals allow the detection of North Atlantic interannual bottom pressure anomalies and yield LNADW transport estimates that are in good agreement with those from the ocean in-situ RAPID-MOCA array at 26.5N. Concurrent with the observed AMOC transport anomalies from late-2009 through early-2010, GRACE measured ocean bottom pressures changes in the 3000-5000 m deep western North Atlantic of -20 mm-H2O, implying a southward volume transport anomaly in that layer of approximately -5.5 Sv. Our results highlight the efficacy of space-gravimetry to observe and detect meridional ocean transport variations that can potentially be retrieved over all latitude ranges in the Atlantic.

  7. North Atlantic meridional overturning circulation variations from GRACE ocean bottom pressure anomalies

    NASA Astrophysics Data System (ADS)

    Landerer, Felix W.; Wiese, David N.; Bentel, Katrin; Boening, Carmen; Watkins, Michael M.

    2015-10-01

    Concerns about North Atlantic Meridional Overturning Circulation (NAMOC) changes imply the need for a continuous, large-scale observation capability to detect changes on interannual to decadal time scales. Here we present the first measurements of Lower North Atlantic Deep Water (LNADW) transport changes using only time-variable gravity observations from Gravity Recovery and Climate Experiment (GRACE) satellites from 2003 until now. Improved monthly gravity field retrievals allow the detection of North Atlantic interannual bottom pressure anomalies and LNADW transport estimates that are in good agreement with those from the Rapid Climate Change-Meridional Overturning Circulation and Heatflux Array (RAPID/MOCHA). Concurrent with the observed AMOC transport anomalies from late 2009 through early 2010, GRACE measured ocean bottom pressures changes in the 3000-5000 m deep western North Atlantic on the order of 20 mm-H2O (200 Pa), implying a southward volume transport anomaly in that layer of approximately -5.5 sverdrup. Our results highlight the efficacy of space gravimetry for observing AMOC variations to evaluate latitudinal coherency and long-term variability.

  8. Metal-air cells comprising collapsible foam members and means for minimizing internal pressure buildup

    NASA Technical Reports Server (NTRS)

    Woodruff, Glenn (Inventor); Putt, Ronald A. (Inventor)

    1994-01-01

    This invention provides a prismatic zinc-air cell including, in general, a prismatic container having therein an air cathode, a separator and a zinc anode. The container has one or more oxygen access openings, and the air cathode is disposed in the container in gaseous communication with the oxygen access openings so as to allow access of oxygen to the cathode. The separator has a first side in electrolytic communication with the air cathode and a second side in electrolytic communication with the zinc anode. The separator isolates the cathode and the zinc anode from direct electrical contact and allows passage of electrolyte therebetween. An expansion chamber adjacent to the zinc anode is provided which accommodates expansion of the zinc anode during discharge of the cell. A suitable collapsible foam member generally occupies the expansion space, providing sufficient resistance tending to oppose movement of the zinc anode away from the separator while collapsing upon expansion of the zinc anode during discharge of the cell. One or more vent openings disposed in the container are in gaseous communication with the expansion space, functioning to satisfactorily minimize the pressure buildup within the container by venting gasses expelled as the foam collapses during cell discharge.

  9. Antimicrobial nanoparticle-coated electrostatic air filter with high filtration efficiency and low pressure drop.

    PubMed

    Sim, Kyoung Mi; Park, Hyun-Seol; Bae, Gwi-Nam; Jung, Jae Hee

    2015-11-15

    In this study, we demonstrated an antimicrobial nanoparticle-coated electrostatic (ES) air filter. Antimicrobial natural-product Sophora flavescens nanoparticles were produced using an aerosol process, and were continuously deposited onto the surface of air filter media. For the electrostatic activation of the filter medium, a corona discharge electrification system was used before and after antimicrobial treatment of the filter. In the antimicrobial treatment process, the deposition efficiency of S. flavescens nanoparticles on the ES filter was ~12% higher than that on the pristine (Non-ES) filter. In the evaluation of filtration performance using test particles (a nanosized KCl aerosol and submicron-sized Staphylococcus epidermidis bioaerosol), the ES filter showed better filtration efficiency than the Non-ES filter. However, antimicrobial treatment with S. flavescens nanoparticles affected the filtration efficiency of the filter differently depending on the size of the test particles. While the filtration efficiency of the KCl nanoparticles was reduced on the ES filter after the antimicrobial treatment, the filtration efficiency was improved after the recharging process. In summary, we prepared an antimicrobial ES air filter with >99% antimicrobial activity, ~92.5% filtration efficiency (for a 300-nm KCl aerosol), and a ~0.8 mmAq pressure drop (at 13 cm/s). This study provides valuable information for the development of a hybrid air purification system that can serve various functions and be used in an indoor environment.

  10. A study of the glow discharge characteristics of contact electrodes at atmospheric pressure in air

    SciTech Connect

    Liu, Wenzheng Sun, Guangliang Li, Chuanhui; Zhang, Rongrong

    2014-04-15

    Electric field distributions and discharge properties of rod-rod contact electrodes were studied under the condition of DBD for the steady generation of atmospheric pressure glow discharge plasma (APGD) in air. We found that under the effect of the initial electrons generated in a nanometer-scale gap, the rod-rod cross-contact electrodes yielded APGD plasma in air. Regarding the rod-rod cross-contact electrodes, increasing the working voltage expanded the strong electric field area of the gas gap so that both discharge area and discharge power increased, and the increase in the number of contact points kept the initial discharge voltage unchanged and caused an increase in the plasma discharge area and discharge power. A mesh-like structure of cross-contact electrodes was designed and used to generate more APGD plasma, suggesting high applicability.

  11. Simulation of a runaway electron avalanche developing in an atmospheric pressure air discharge

    SciTech Connect

    Oreshkin, E. V.; Barengolts, S. A.; Chaikovsky, S. A.; Oreshkin, V. I.

    2015-12-15

    To gain a better understanding of the operation of atmospheric pressure air discharges, the formation of a runaway electron beam at an individual emission site on the cathode has been numerically simulated. The model provides a description of the dynamics of the fast electrons emitted into an air gap from the surface of the emission zone by solving numerically two-dimensional equations for the electrons. It is supposed that the electric field at the surface of the emission zone is enhanced, providing conditions for continuous acceleration of the emitted electrons. It is shown that the formation of a runaway electron beam in a highly overvolted discharge is largely associated with avalanche-type processes and that the number of electrons in the avalanche reaches 50% of the total number of runaway electrons.

  12. JT8D revised high-pressure turbine cooling and other outer air seal program

    NASA Technical Reports Server (NTRS)

    Gaffin, W. O.

    1979-01-01

    The JT8D high pressure turbine was revised to reduce leakage between the blade tip shrouds and the outer air seal, and engine testing was performed to determine the effect on performance. The addition of a second knife-edge on the blade tip shroud, the extension of the honeycomb seal land to cover the added knife-edge and an existing spoiler on the shroud, and a material substitution in the seal support ring to improve thermal growth characteristics are included. A relocation of the blade cooling air discharge to insure adequate cooling flow is required. Significant specific fuel consumption and exhaust gas temperature improvements were demonstrated with the revised turbine in sea level and simulated altitude engine tests. Inspection of the revised seal hardware after these tests showed no unusual wear or degradation.

  13. BOREAS AFM-5 Level-2 Upper Air Network Standard Pressure Level Data

    NASA Technical Reports Server (NTRS)

    Barr, Alan; Hrynkiw, Charmaine; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The BOREAS AFM-5 team collected and processed data from the numerous radiosonde flights during the project. The goals of the AFM-05 team were to provide large-scale definition of the atmosphere by supplementing the existing AES aerological network, both temporally and spatially. This data set includes basic upper-air parameters interpolated at 0.5 kiloPascal increments of atmospheric pressure from data collected from the network of upper-air stations during the 1993, 1994, and 1996 field campaigns over the entire study region. The data are contained in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  14. Simulation of a runaway electron avalanche developing in an atmospheric pressure air discharge

    NASA Astrophysics Data System (ADS)

    Oreshkin, E. V.; Barengolts, S. A.; Chaikovsky, S. A.; Oreshkin, V. I.

    2015-12-01

    To gain a better understanding of the operation of atmospheric pressure air discharges, the formation of a runaway electron beam at an individual emission site on the cathode has been numerically simulated. The model provides a description of the dynamics of the fast electrons emitted into an air gap from the surface of the emission zone by solving numerically two-dimensional equations for the electrons. It is supposed that the electric field at the surface of the emission zone is enhanced, providing conditions for continuous acceleration of the emitted electrons. It is shown that the formation of a runaway electron beam in a highly overvolted discharge is largely associated with avalanche-type processes and that the number of electrons in the avalanche reaches 50% of the total number of runaway electrons.

  15. Focused excimer laser initiated, radio frequency sustained high pressure air plasmas

    SciTech Connect

    Giar, Ryan; Scharer, John

    2011-11-15

    Measurements and analysis of air breakdown processes and plasma production by focusing 193 nm, 300 mJ, 15 MW high power laser radiation inside a 6 cm diameter helical radio frequency (RF) coil are presented. Quantum resonant multi-photon ionization (REMPI) and collisional cascade laser ionization processes are exploited that have been shown to produce high-density (n{sub e} {approx} 7 x 10{sup 16}/cm{sup 3}) cylindrical seed plasmas at 760 Torr. Air breakdown in lower pressures (from 7-22 Torr), where REMPI is the dominant laser ionization process, is investigated using an UV 18 cm focal length lens, resulting in a laser flux of 5.5 GW/cm{sup 2} at the focal spot. The focused laser power absorption and associated shock wave produce seed plasmas for sustainment by the RF (5 kW incident power, 1.5 s) pulse. Measurements of the helical RF antenna load impedance in the inductive and capacitive coupling regimes are obtained by measuring the loaded antenna reflection coefficient. A 105 GHz interferometer is used to measure the plasma electron density and collision frequency. Spectroscopic measurements of the plasma and comparison with the SPECAIR code are made to determine translational, rotational, and vibrational neutral temperatures and the associated neutral gas temperature. From this and the associated measurement of the gas pressure the electron temperature is obtained. Experiments show that the laser-formed seed plasma allows RF sustainment at higher initial air pressures (up to 22 Torr) than that obtained via RF-only initiation (<18 Torr) by means of a 0.3 J UV laser pulse.

  16. Sterilization effect of atmospheric pressure non-thermal air plasma on dental instruments

    PubMed Central

    Sung, Su-Jin; Huh, Jung-Bo; Yun, Mi-Jung; Chang, Brian Myung W.; Jeong, Chang-Mo

    2013-01-01

    PURPOSE Autoclaves and UV sterilizers have been commonly used to prevent cross-infections between dental patients and dental instruments or materials contaminated by saliva and blood. To develop a dental sterilizer which can sterilize most materials, such as metals, rubbers, and plastics, the sterilization effect of an atmospheric pressure non-thermal air plasma device was evaluated. MATERIALS AND METHODS After inoculating E. coli and B. subtilis the diamond burs and polyvinyl siloxane materials were sterilized by exposing them to the plasma for different lengths of time (30, 60, 90, 120, 180 and, 240 seconds). The diamond burs and polyvinyl siloxane materials were immersed in PBS solutions, cultured on agar plates and quantified by counting the colony forming units. The data were analyzed using one-way ANOVA and significance was assessed by the LSD post hoc test (α=0.05). RESULTS The device was effective in killing E. coli contained in the plasma device compared with the UV sterilizer. The atmospheric pressure non-thermal air plasma device contributed greatly to the sterilization of diamond burs and polyvinyl siloxane materials inoculated with E. coli and B. subtilis. Diamond burs and polyvinyl siloxane materials inoculated with E. coli was effective after 60 and 90 seconds. The diamond burs and polyvinyl siloxane materials inoculated with B. subtilis was effective after 120 and 180 seconds. CONCLUSION The atmospheric pressure non-thermal air plasma device was effective in killing both E. coli and B. subtilis, and was more effective in killing E. coli than the UV sterilizer. PMID:23508991

  17. Integrated LTCC Pressure/Flow/Temperature Multisensor for Compressed Air Diagnostics†

    PubMed Central

    Fournier, Yannick; Maeder, Thomas; Boutinard-Rouelle, Grégoire; Barras, Aurélie; Craquelin, Nicolas; Ryser, Peter

    2010-01-01

    We present a multisensor designed for industrial compressed air diagnostics and combining the measurement of pressure, flow, and temperature, integrated with the corresponding signal conditioning electronics in a single low-temperature co-fired ceramic (LTCC) package. The developed sensor may be soldered onto an integrated electro-fluidic platform by using standard surface mount device (SMD) technology, e.g., as a standard electronic component would be on a printed circuit board, obviating the need for both wires and tubes and thus paving the road towards low-cost integrated electro-fluidic systems. Several performance aspects of this device are presented and discussed, together with electronics design issues. PMID:22163518

  18. Energy distribution of runaway electrons generated by a nanosecond discharge in atmospheric-pressure air

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Kostyrya, I. D.; Lomaev, M. I.; Petin, V. K.; Rybka, D. V.; Shlyakhtun, S. V.

    2008-12-01

    The spectra of an ultrashort avalanche electron beam generated by a nanosecond discharge in atmospheric-pressure air were investigated. The temporal characteristics of the beam current pulses, gap voltage, and discharge current in a gas diode were measured with a time resolution of ˜0.1 ns. A simple technique was developed for recovering electron spectra from the curves of beam attenuation by aluminum foils. The effect of the cathode design, electrode gap length, and generator parameters on the electron spectra were studied using seven setups. It is shown that generation of electrons with anomalously high energies requires the use of cathodes with increased curvature radius.

  19. Research Update: Direct conversion of amorphous carbon into diamond at ambient pressures and temperatures in air

    SciTech Connect

    Narayan, Jagdish Bhaumik, Anagh

    2015-10-01

    We report on fundamental discovery of conversion of amorphous carbon into diamond by irradiating amorphous carbon films with nanosecond lasers at room-temperature in air at atmospheric pressure. We can create diamond in the form of nanodiamond (size range <100 nm) and microdiamond (>100 nm). Nanosecond laser pulses are used to melt amorphous diamondlike carbon and create a highly undercooled state, from which various forms of diamond can be formed upon cooling. The quenching from the super undercooled state results in nucleation of nanodiamond. It is found that microdiamonds grow out of highly undercooled state of carbon, with nanodiamond acting as seed crystals.

  20. Integrated LTCC pressure/flow/temperature multisensor for compressed air diagnostics.

    PubMed

    Fournier, Yannick; Maeder, Thomas; Boutinard-Rouelle, Grégoire; Barras, Aurélie; Craquelin, Nicolas; Ryser, Peter

    2010-01-01

    We present a multisensor designed for industrial compressed air diagnostics and combining the measurement of pressure, flow, and temperature, integrated with the corresponding signal conditioning electronics in a single low-temperature co-fired ceramic (LTCC) package. The developed sensor may be soldered onto an integrated electro-fluidic platform by using standard surface mount device (SMD) technology, e.g., as a standard electronic component would be on a printed circuit board, obviating the need for both wires and tubes and thus paving the road towards low-cost integrated electro-fluidic systems. Several performance aspects of this device are presented and discussed, together with electronics design issues.

  1. Finite element modelling of high air pressure forming processes for polymer sheets

    NASA Astrophysics Data System (ADS)

    Jiang, W.-G.; Warby, M. K.; Whiteman, J. R.; Abbott, S.; Shorter, W.; Warwick, P.; Wright, T.; Munro, A.; Munro, B.

    In this paper we describe the mathematical modelling and computational simulation of the high air pressure (HAP) thermoforming process which is used in the creation of thin walled polymeric structures. This involves, using data from material tests, an elastic-plastic constitutive equation valid for large deformations and a constrained deformation in which there is frictional contact between the polymeric sheet and a constraining surface (the mould surface). Despite a number of simplifying assumptions and some uncertainities in the mathematical model the finite element computations presented predict quite well the actual shape and thickness distribution which are found on sample products.

  2. Energy distribution of runaway electrons generated by a nanosecond discharge in atmospheric-pressure air

    SciTech Connect

    Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Kostyrya, I. D.; Lomaev, M. I.; Petin, V. K.; Rybka, D. V.; Shlyakhtun, S. V.

    2008-12-15

    The spectra of an ultrashort avalanche electron beam generated by a nanosecond discharge in atmospheric-pressure air were investigated. The temporal characteristics of the beam current pulses, gap voltage, and discharge current in a gas diode were measured with a time resolution of {approx}0.1 ns. A simple technique was developed for recovering electron spectra from the curves of beam attenuation by aluminum foils. The effect of the cathode design, electrode gap length, and generator parameters on the electron spectra were studied using seven setups. It is shown that generation of electrons with anomalously high energies requires the use of cathodes with increased curvature radius.

  3. Spectrum of the Runaway Electron Beam Generated During a Nanosecond Discharge in Air at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.

    2016-04-01

    The spectrum of supershort avalanche runaway electron beam generated in air at atmospheric pressure is experimentally investigated using a time-of-flight spectrometer and attenuation curves. It is shown that the maximum of the electron energy distribution for the main (second) group of electrons is less than the energy eUm, where Um is the maximal voltage across the gap, and the difference between these energies depends on the design of the cathode and the interelectrode gap in a gas diode. It is confirmed that there are three groups of electrons with different energies in the runaway electron beam spectrum.

  4. Temporal and spatial structure of a runaway electron beam in air at atmospheric pressure

    SciTech Connect

    Levko, D.; Krasik, Ya. E.; Tarasenko, V. F.; Rybka, D. V.; Burachenko, A. G.

    2013-05-21

    The time- and spatial structure of a runaway electron beam generated in air at atmospheric pressure by a high-voltage pulse with a rise time of {approx}300 ps is studied experimentally and numerically. It is obtained that the duration of the runaway electron current is a few tens of picoseconds, and it can consist of two or many peaks. It is shown that the many-peak temporal structure of the beam is caused by the non-simultaneous appearance of several emission centers on the cathode edge.

  5. Effects of ear-canal pressurization on middle-ear bone- and air-conduction responses

    PubMed Central

    Homma, Kenji; Shimizu, Yoshitaka; Kim, Namkeun; Du, Yu; Puria, Sunil

    2014-01-01

    In extremely loud noise environments, it is important to not only protect one’s hearing against noise transmitted through the air-conduction (AC) pathway, but also through the bone-conduction (BC) pathways. Much of the energy transmitted through the BC pathways is concentrated in the mid-frequency range around 1.5–2 kHz, which is likely due to the structural resonance of the middle ear. One potential approach for mitigating this mid-frequency BC noise transmission is to introduce a positive or negative static pressure in the ear canal, which is known to reduce BC as well as AC hearing sensitivity. In the present study, middle-ear ossicular velocities at the umbo and stapes were measured using human cadaver temporal bones in response to both BC and AC excitations, while static air pressures of ±400 mm H2O were applied in the ear canal. For the maximum negative pressure of −400 mm H2O, mean BC stapes-velocity reductions of about 5–8 dB were observed in the frequency range from 0.8 to 2.5 kHz, with a peak reduction of 8.6(± 4.7) dB at 1.6 kHz. Finite-element analysis indicates that the peak BC-response reduction tends to be in the mid-frequency range because the middle-ear BC resonance, which is typically around 1.5–2 kHz, is suppressed by the pressure-induced stiffening of the middle-ear structure. The measured data also show that the BC responses are reduced more for negative static pressures than for positive static pressures. This may be attributable to a difference in the distribution of the stiffening among the middle-ear components depending on the polarity of the static pressure. The characteristics of the BC-response reductions are found to be largely consistent with the available psychoacoustic data, and are therefore indicative of the relative importance of the middle-ear mechanism in BC hearing. PMID:19944139

  6. Effect of Fuel-Air Ratio, Inlet Temperature, and Exhaust Pressure on Detonation

    NASA Technical Reports Server (NTRS)

    Taylor, E S; Leary, W A; Diver, J R

    1940-01-01

    An accurate determination of the end-gas condition was attempted by applying a refined method of analysis to experimental results. The results are compared with those obtained in Technical Report no. 655. The experimental technique employed afforded excellent control over the engine variables and unusual cyclic reproducibility. This, in conjunction with the new analysis, made possible the determination of the state of the end-gas at any instant to a fair degree of precision. Results showed that for any given maximum pressure the maximum permissible end-gas temperature increased as the fuel-air ratio was increased. The tendency to detonate was slightly reduced by an increase in residual gas content resulting from an increase in exhaust backpressure with inlet pressure constant.

  7. Low pressure premixed CH4/air flames with forced periodic mixture fraction oscillations: experimental approach

    NASA Astrophysics Data System (ADS)

    Ax, H.; Kutne, P.; Meier, W.; König, K.; Maas, U.; Class, A.; Aigner, M.

    2009-03-01

    An experimental setup for the generation and investigation of periodic equivalence ratio oscillations in laminar premixed flames is presented. A special low-pressure burner was developed which generates stable flames in a wide pressure range down to 20 mbar and provides the possibility of rapid mixture fraction variations. The technical realization of the mixture fraction variations and the characteristics of the burner are described. 1D laser Raman scattering was applied to determine the temperature and concentration profiles of the major species through the flame front in correlation to the phase-angle of the periodic oscillation. OH* chemiluminescence was detected to qualitatively analyze the response of the flame to mixture fraction variations by changing shape and position. Exemplary results from a flame at p=69 mbar, forced at a frequency of 10 Hz, are shown and discussed. The experiments are part of a cooperative research project including the development of kinetic models and numerical simulation tools with the aim of a better understanding and prediction of periodic combustion instabilities in gas turbines. The focus of the current paper lies on the presentation of the experimental realization and the measuring techniques.

  8. Radiation pressure and air drag effects on the orbit of the balloon satellite 1963 30D

    NASA Technical Reports Server (NTRS)

    Slowey, J. W.

    1974-01-01

    Computed orbits of the balloon satellite 1963 30D are given every 2 days over an interval of 456 days near the beginning of the satellite's lifetime and an interval of 824 days near the end of its lifetime. The effects of radiation pressure on the satellite are examined in some detail. It is found that the variations in all the elements can be represented by use of a single parameter to specify the effect of diffuse reflection from the satellite's surface, and that this parameter remains constant, or nearly so, during the entire 7-year lifetime. Success in obtaining a consistent representation of the radiation-pressure effects is ascribed to the inclusion of the effects of terrestrial radiation pressure, using a model for the earth's albedo that includes seasonal and latitudinal variations. Anomalous effects in the orbital acceleration, as well as in the other elements, are represented quite well by including a small force at right angle to the solar direction and by allowing this to rotate about the solar direction. This implies that the satellite is aspherical, that it is rotating, and that the axis of rotation precesses.

  9. Remote Sensing Global Surface Air Pressure Using Differential Absorption BArometric Radar (DiBAR)

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Harrah, Steven; Lawrence, Wes; Hu, Yongxiang; Min, Qilong

    2016-01-01

    Tropical storms and severe weathers are listed as one of core events that need improved observations and predictions in World Meteorological Organization and NASA Decadal Survey (DS) documents and have major impacts on public safety and national security. This effort tries to observe surface air pressure, especially over open seas, from space using a Differential-absorption BArometric Radar (DiBAR) operating at the 50-55 gigahertz O2 absorption band. Air pressure is among the most important variables that affect atmospheric dynamics, and currently can only be measured by limited in-situ observations over oceans. Analyses show that with the proposed space radar the errors in instantaneous (averaged) pressure estimates can be as low as approximately 4 millibars (approximately 1 millibar under all weather conditions). With these sea level pressure measurements, the forecasts of severe weathers such as hurricanes will be significantly improved. Since the development of the DiBAR concept about a decade ago, NASA Langley DiBAR research team has made substantial progress in advancing the concept. The feasibility assessment clearly shows the potential of sea surface barometry using existing radar technologies. The team has developed a DiBAR system design, fabricated a Prototype-DiBAR (P-DiBAR) for proof-of-concept, conducted lab, ground and airborne P-DiBAR tests. The flight test results are consistent with the instrumentation goals. Observational system simulation experiments for space DiBAR performance based on the existing DiBAR technology and capability show substantial improvements in tropical storm predictions, not only for the hurricane track and position but also for the hurricane intensity. DiBAR measurements will lead us to an unprecedented level of the prediction and knowledge on global extreme weather and climate conditions.

  10. High fidelity radiative heat transfer models for high-pressure laminar hydrogen-air diffusion flames

    NASA Astrophysics Data System (ADS)

    Cai, Jian; Lei, Shenghui; Dasgupta, Adhiraj; Modest, Michael F.; Haworth, Daniel C.

    2014-11-01

    Radiative heat transfer is studied numerically for high-pressure laminar H2-air jet diffusion flames, with pressure ranging from 1 to 30 bar. Water vapour is assumed to be the only radiatively participating species. Two different radiation models are employed, the first being the full spectrum k-distribution model together with conventional Radiative Transfer Equation (RTE) solvers. Narrowband k-distributions of water vapour are calculated and databased from the HITEMP 2010 database, which claims to retain accuracy up to 4000 K. The full-spectrum k-distributions are assembled from their narrowband counterparts to yield high accuracy with little additional computational cost. The RTE is solved using various spherical harmonics methods, such as P1, simplified P3 (SP3) and simplified P5 (SP5). The resulting partial differential equations as well as other transport equations in the laminar diffusion flames are discretized with the finite-volume method in OpenFOAM®. The second radiation model is a Photon Monte Carlo (PMC) method coupled with a line-by-line spectral model. The PMC absorption coefficient database is derived from the same spectroscopy database as the k-distribution methods. A time blending scheme is used to reduce PMC calculations at each time step. Differential diffusion effects, which are important in laminar hydrogen flames, are also included in the scalar transport equations. It was found that the optically thin approximation overpredicts radiative heat loss at elevated pressures. Peak flame temperature is less affected by radiation because of faster chemical reactions at high pressures. Significant cooling effects are observed at downstream locations. As pressure increases, the performance of RTE models starts to deviate due to increased optical thickness. SPN models perform only marginally better than P1 because P1 is adequate except at very high pressure.

  11. Laser-based measurements of OH in high pressure CH4/air flames

    NASA Technical Reports Server (NTRS)

    Battles, B. E.; Hanson, R. K.

    1991-01-01

    Narrow-linewidth laser absorption measurements are reported from which mole fraction and temperature of OH are determined in high-pressure (1-10 atm), lean CH4/air flames. These measurements were made in a new high pressure combustion facility which incorporates a traversable flat flame burner, providing spatially and temporally uniform combustion gases at pressures up to 10 am. A commercially avialable CW ring dye laser was used with an intracavity doubling crystal to provide near-UV single mode output at approximately 306 nm. The UV beam was rapidly scanned over 120 GHz (0.1 sec scan duration) to resolve the absorption lineshape of the A-X (0,0) R1(7)/R1(11) doublet of the OH radical. From the doublet's absorption lineshape, the temperature was determined; and from peak absorption, Beer's Law was employed to find the mole fraction of OH. These data were obtained as a function of height above the flame at various pressures.

  12. The lunar semidiurnal air pressure tide in in-situ data and ECMWF reanalyses

    NASA Astrophysics Data System (ADS)

    Schindelegger, Michael; Dobslaw, Henryk

    2016-04-01

    A gridded empirical model of the lunar semidiurnal air pressure tide L2 is deduced through multiquadric interpolation of more than 2000 globally distributed tidal estimates from land barometers and moored buoys. The resulting climatology serves as an independent standard to validate the barometric L2 oscillations that are present in ECMWF's (European Centre for Medium-Range Weather Forecasts) global atmospheric reanalyses despite the omission of gravitational forcing mechanisms in the involved forecast routines. Inconsistencies between numerical and empirical L2 solutions are found to be small even though the reanalysis models typically underestimate equatorial peak pressures by 10-20% and produce slightly deficient tidal phases in latitudes south of 30°N. Through using a time-invariant reference surface over both land and water and assimilating marine pressure data without accounting for vertical sensor movements due to the M2 ocean tide, ECMWF-based tidal solutions are also prone to strong local artifacts. Additionally, the dependency of the lunar tidal oscillation in atmospheric analysis systems on the meteorological input data is demonstrated based on a recent ECMWF twentieth-century reanalysis (ERA-20C) which draws its all of its observational constraints from in-situ registrations of pressure and surface winds. The L2 signature prior to 1950 is particularly indicative of distinct observing system changes, such as the paucity of marine data during both World Wars or the opening of the Panama Canal in 1914 and the associated adjustment of commercial shipping routes.

  13. Hydromechanical Rock Mass Fatigue in Deep-Seated Landslides Accompanying Seasonal Variations in Pore Pressures

    NASA Astrophysics Data System (ADS)

    Preisig, Giona; Eberhardt, Erik; Smithyman, Megan; Preh, Alexander; Bonzanigo, Luca

    2016-06-01

    The episodic movement of deep-seated landslides is often governed by the presence of high pore pressures and reduced effective stresses along active shear surfaces. Pore pressures are subject to cyclic fluctuation under seasonal variations of groundwater recharge, resulting in an intermittent movement characterized by acceleration-deceleration phases. However, it is not always clear why certain acceleration phases reach alarming levels without a clear trigger (i.e., in the absence of an exceptional pore pressure event). This paper presents a conceptual framework linking hydromechanical cycling, progressive failure and fatigue to investigate and explain the episodic behavior of deep-seated landslides using the Campo Vallemaggia landslide in Switzerland as a case study. A combination of monitoring data and advanced numerical modeling is used. The principal processes forcing the slope into a critical disequilibrium state are analyzed as a function of rock mass damage and fatigue. Modeling results suggest that during periods of slope acceleration, the rock slope experiences localized fatigue and gradual weakening through slip along pre-existing natural fractures and yield of critically stressed intact rock bridges. At certain intervals, pockets of critically weakened rock may produce a period of enhanced slope movement in response to a small pore pressure increase similar to those routinely experienced each year. Accordingly, the distribution and connectivity of pre-existing permeable planes of weakness play a central role. These structures are often related to the rock mass's tectonic history or initiate (and dilate) in response to stress changes that disturb the entire slope, such as glacial unloading or seismic loading via large earthquakes. The latter is discussed in detail in a companion paper to this (Gischig et al., Rock Mech Rock Eng, 2015). The results and framework presented further demonstrate that episodic movement and progressive failure of deep

  14. Flight Investigation of the Cooling Characteristics of a Two-Row Radial Engine Installation. 2 - Cooling-Air Pressure Recovery and Pressure Distribution

    DTIC Science & Technology

    1946-07-01

    I 1 n ^ £ Ä ̂ N i - 1 \\ ̂ =J r i > 0 • W Air flo 8 7 1 »H pN ;> ^ fefe * r^ IS & ̂ s I 6 y ^r 5 y. < 1 ** >—< £r... fefe |^S? 2 4 6 8 10 12 14 10 18 Cylinder, front row (a) Cyl inder-head pressure». Air flow j^bb£=L£W —ik

  15. Extreme Air Pollution Conditions Adversely Affect Blood Pressure and Insulin Resistance: The Air Pollution and Cardiometabolic Disease Study.

    PubMed

    Brook, Robert D; Sun, Zhichao; Brook, Jeffrey R; Zhao, Xiaoyi; Ruan, Yanping; Yan, Jianhua; Mukherjee, Bhramar; Rao, Xiaoquan; Duan, Fengkui; Sun, Lixian; Liang, Ruijuan; Lian, Hui; Zhang, Shuyang; Fang, Quan; Gu, Dongfeng; Sun, Qinghua; Fan, Zhongjie; Rajagopalan, Sanjay

    2016-01-01

    Mounting evidence supports that fine particulate matter adversely affects cardiometabolic diseases particularly in susceptible individuals; however, health effects induced by the extreme concentrations within megacities in Asia are not well described. We enrolled 65 nonsmoking adults with metabolic syndrome and insulin resistance in the Beijing metropolitan area into a panel study of 4 repeated visits across 4 seasons since 2012. Daily ambient fine particulate matter and personal black carbon levels ranged from 9.0 to 552.5 µg/m(3) and 0.2 to 24.5 µg/m(3), respectively, with extreme levels observed during January 2013. Cumulative fine particulate matter exposure windows across the prior 1 to 7 days were significantly associated with systolic blood pressure elevations ranging from 2.0 (95% confidence interval, 0.3-3.7) to 2.7 (0.6-4.8) mm Hg per SD increase (67.2 µg/m(3)), whereas cumulative black carbon exposure during the previous 2 to 5 days were significantly associated with ranges in elevations in diastolic blood pressure from 1.3 (0.0-2.5) to 1.7 (0.3-3.2) mm Hg per SD increase (3.6 µg/m(3)). Both black carbon and fine particulate matter were significantly associated with worsening insulin resistance (0.18 [0.01-0.36] and 0.22 [0.04-0.39] unit increase per SD increase of personal-level black carbon and 0.18 [0.02-0.34] and 0.22 [0.08-0.36] unit increase per SD increase of ambient fine particulate matter on lag days 4 and 5). These results provide important global public health warnings that air pollution may pose a risk to cardiometabolic health even at the extremely high concentrations faced by billions of people in the developing world today.

  16. Seasonal variations in mutagenic activity of air pollutants at an industrial district of Silesia.

    PubMed

    Motykiewicz, G; Szeliga, J; Cimander, B; Choraźy, M

    1989-06-01

    Organic material from airborne particulate pollutants collected over a 7-month period at a highly industrialized region in Silesia (Poland) was tested for mutagenicity using the Ames test. Sequential elution solvent chromatography (SESC) was used for the separation of crude benzene extracts. Five out of 8 fractions showed mutagenic activity with differential direct and indirect responses. The mutagenicity of each active fraction was tested during the whole sampling period (from August to February 1984/1985) and seasonal variations were observed. All of the fractions, except fraction 3, showed only quantitative distinctions in mutagenic potential, expressed as a number of revertants per m3 of air. Over a period of 7 months, a steady increase of activity of fractions 2 and 4 was observed but the type of mutagenic response, indirect and direct respectively, remained unchanged in the summer and winter months. Fraction 3 (the most abundant component, probably containing polar derivatives of PAHs and heterocyclics) differed quantitatively and qualitatively between summer and winter time. From August to December samples showed enhanced mutagenic potency upon addition of rat liver microsomal enzymes, whereas in January a 4-5-fold increase in direct response was noted. This significant increase in direct mutagenic activity was accompanied by a considerable decrease in mean air temperature and resulted most probably from the intensive use of coal for domestic heating.

  17. Levels and seasonal variations of organochlorine pesticides in urban and rural background air of southern Ghana.

    PubMed

    Adu-Kumi, Sam; Kareš, Radovan; Literák, Jaromír; Borůvková, Jana; Yeboah, Philip O; Carboo, Derick; Akoto, Osei; Darko, Godfred; Osae, Shiloh; Klánová, Jana

    2012-07-01

    Urban, suburban and rural background air samples were collected in southern Ghana in 2008 employing polyurethane foam disc passive air samplers (PAS). PAS were analysed for organochlorine pesticides (OCPs), namely hexachlorocyclohexanes (α-, β-, γ- and δ-hexachlorocyclohexane), dichlorodiphenyltrichloroethane including metabolites (o,p'- and p,p'-DDT, DDE and DDD), hexachlorobenzene, pentachlorobenzene, aldrin, dieldrin, endrins (endrin, endrin aldehyde and endrin ketone), isodrin, heptachlors (heptachlor, heptachlor epoxide A and heptachlor epoxide B), chlordanes (α-, β-chlordane, oxychlordane and trans-nonachlor), endosulfans (α- and β-endosulfan and endosulfan sulphate), methoxychlor and mirex using a gas chromatograph coupled to a mass spectrometer. The levels of OCPs ranged for the individual pesticides from below limit of quantification to 750 pg m(-3) (for α-endosulfan), and current agricultural application seemed to be the main primary source of most abundant pesticides. Re-volatilization of previously used pesticides from contaminated soils could not be ruled out either as potential secondary source of contamination, especially in warm and dry seasons and periods of intensive agricultural activities. Higher atmospheric concentrations were observed in November and December during the dry season compared to lower concentrations observed in June, July and August when the country experiences heavy rains. The highest seasonal variation was observed for currently used pesticides as α-endosulfan. A p,p'-DDT/p,p'-DDE ratio suggested recent inputs of fresh technical DDT.

  18. Recent variations of sea ice and air temperature in high latitudes

    SciTech Connect

    Chapman, W.L.; Walsh, J.E. )

    1993-01-01

    Feedbacks resulting from the retreat of sea ice and snow contribute to the polar amplification of the greenhouse warming projected by global climate models. A gridded sea-ice database, for which the record length is now approaching four decades for the Arctic and two decades for the Antarctic, is summarized here. The sea-ice fluctuations derived from the data set are characterized by (1) temporal scales of several seasons to several years and (2) spatial scales of 30[degrees]-180[degrees] of longitude. The ice data are examined in conjunction with air temperature data for evidence of recent climate change in the polar regions. The arctic sea-ice variations over the past several decades are compatible with the corresponding air temperatures, which show a distinct warming that is strongest over northern land areas during the winter and spring. The temperature trends over the sub arctic seas are smaller and even negative in the southern Greenland region. Statistically significant decreases of the summer extent of arctic ice are apparent in the sea-ice data, and new summer minima have been achieved three times in the past 15 years. There is no significant trend of ice extent in the Arctic during winter or in the Antarctic during any season. The seasonal and geographical changes of sea-ice coverage are consistent with the more recent greenhouse experiments performed with coupled atmosphere-ocean models.

  19. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  20. Two-Dimensional Electron Density Measurement of Positive Streamer Discharge in Atmospheric-Pressure Air

    NASA Astrophysics Data System (ADS)

    Inada, Yuki; Ono, Ryo; Kumada, Akiko; Hidaka, Kunihiko; Maeyama, Mitsuaki

    2016-09-01

    The electron density of streamer discharges propagating in atmospheric-pressure air is crucially important for systematic understanding of the production mechanisms of reactive species utilized in wide ranging applications such as medical treatment, plasma-assisted ignition and combustion, ozone production and environmental pollutant processing. However, electron density measurement during the propagation of the atmospheric-pressure streamers is extremely difficult by using the conventional localized type measurement systems due to the streamer initiation jitters and the irreproducibility in the discharge paths. In order to overcome the difficulties, single-shot two-dimensional electron density measurement was conducted by using a Shack-Hartmann type laser wavefront sensor. The Shack-Hartmann sensor with a temporal resolution of 2 ns was applied to pulsed positive streamer discharges generated in an air gap between pin-to-plate electrodes. The electron density a few ns after the streamer initiation was 7*1021m-3 and uniformly distributed along the streamer channel. The electron density and its distribution profile were compared with a previous study simulating similar streamers, demonstrating good agreement. This work was supported in part by JKA and its promotion funds from KEIRIN RACE. The authors like to thank Mr. Kazuaki Ogura and Mr. Kaiho Aono of The University of Tokyo for their support during this work.

  1. Optical emission spectroscopy of nanosecond repetitively pulsed microplasmas generated in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Orriere, Thomas; Moreau, Eric; Benard, Nicolas; Pai, David

    2015-09-01

    Nanosecond repetitively pulsed (NRP) microplasmas are generated in room temperature air at atmospheric pressure, in order to investigate the enhanced control of discharge properties via the combined effects of spatial confinement and nanosecond repetitive pulsing. Discharges were generated using high-voltage pulses of 15-ns duration applied to a tungsten pin-to-pin reactor, with inter-electrode gap distances (d) from 2 mm down to 0.2 mm. Optical emission spectroscopy and electrical characterization performed on the discharge indicate that heat transfer and plasma chemistry are influenced by the microplasma geometry. Ultrafast gas heating is observed upon deducing the rotational temperature of N2 from the measured emission spectrum of the N2 (C -->B) (0, 2) and (1, 3) transition bands, but use of the microplasma geometry (d = 0.2 mm) results in lower gas temperatures than in larger discharge gaps (d = 2 mm), including at high pulse repetition frequency (30 kHz) where substantial steady-state gas heating can occur. The measured Stark broadening of the Hα transition is significantly greater than for previously studied NRP discharges in air at atmospheric pressure, indicating that the maximum electron number density may be correspondingly much greater, up to 1018 cm-3. Furthermore, for NRP microplasmas, the intensities of emission from excited atomic ions (O+ and N+) are much higher than those of excited neutral atoms (O and N), in contrast to NRP discharges generated in larger discharge gaps.

  2. Emission spectroscopy of an atmospheric pressure plasma jet operated with air at low frequency

    NASA Astrophysics Data System (ADS)

    Giuliani, L.; Gallego, J. L.; Minotti, F.; Kelly, H.; Grondona, D.

    2015-03-01

    Low-temperature, high-pressure plasma jets have an extensive use in plasma biology and plasma medicine, such as pathogen deactivation, wound disinfection, stopping of bleeding without damage of healthy tissue, acceleration of wound healing, control of bio-film proliferation, etc. In this work, a spectroscopic characterization of a typical plasma jet, operated in air at atmospheric pressure, is reported. Within the spectrum of wavelengths from 200 to 450 nm all remarkable emissions of N2 were monitored. Spectra of the N2 2nd positive system (C3Πu-B3Πg) emitted in air are the most convenient for plasma diagnostics, since they enable to determine electronic Te, rotational Tr and vibrational Tv temperatures by fitting the experimental spectra with the simulated ones. We used SPECAIR software for spectral simulation and obtained the best fit with all these temperatures about 3500K. The conclusion that all temperatures are equal, and its relatively high value, is consistent with the results of a previous work, where it was found that the experimentally determined electrical characteristic was consistent with the model of a thermal arc discharge, together with a highly collisional cathode sheet.

  3. Possible origins of time variability in Jupiter's outer magnetosphere. I - Variations in solar wind dynamic pressure. II - Variations in solar wind magnetic field

    NASA Technical Reports Server (NTRS)

    Coroniti, F. V.; Kennel, C. F.

    1977-01-01

    Attention is given to the effect of changes in the dynamic pressure of the solar wind on the structure of a centrifugally driven planetary wind from Jupiter. It is suggested that dynamic pressure variations can induce a transition between a super-Alfvenic wind and a sub-Alfvenic wind breeze on Jupiter's dayside. This could possibly account for the observed large-scale changes in the structure of Jupiter's outer magnetosphere. An attempt is then made to conceptually merge planetary wind models of Jupiter's outer magnetosphere with reconnection models of Jupiter's outer magnetosphere.

  4. Pressure and temperature variation of octahedral Na and tetrahedral Al in amphiboles in metamafic rocks

    NASA Astrophysics Data System (ADS)

    Jenkins, D. M.; Lei, J.

    2013-12-01

    The sodium content in the M4 site of amphibole (BNa) was calibrated by Brown (1977, J Petrol, 18, 53-72) in a study that continues to be highly cited to this day. This study, based on empirical observations of amphibole compositional changes in the presence of the buffering assemblage plagioclase, chlorite, epidote, iron oxide, and water, demonstrated a systematic variation in the BNa and tetrahedral Al (TAl) content with pressure. Recent experimental work in this lab aimed at defining the extent of miscibility along the tremolite-glaucophane and hornblende-glaucophane joins in the Na2O-CaO-MgO-Al2O3-SiO2-H2O system has provided some additional information on the cation mixing along these joins. These joins also serve as the chemically-simplified framework of the BNa versus TAl correlation reported by Brown (1977). There are now sufficient, though still a bare minimum, of experimentally-confirmed mixing data for sodium-rich amphiboles to test this correlation and for quantifying the pressure-temperature (P-T) dependence of amphibole compositions in metamafic rocks relevant to subduction zones. From experimental results obtained over the range of 500-800°C, 1.5-2.0 GPa, and using a variety of amphibole synthesis and re-equilibration methods, the following set of asymmetric formalism (ASF) macroscopic interaction and mixing parameters have been derived that can be used with THERMOCALC dataset 55: Wtrgl = 70 kJ, Wglts = Wtrts =20 kJ, α(tr) = 1.0, α(ts) = 1.2, and α(gl) = 0.52. Using a fixed MORB bulk composition, the composition of amphiboles within the P-T stability field of the buffering assemblage were calculated for the above chemical system with FeO added (i.e., NCFMASH) over the range of 0.2 - 2.0 GPa and 400 - 700°C. The following main observations can be made. First, the empirical amphibole compositions at low TAl and high BNa contents are well modeled by the miscibility gap in the amphibole ternary sub-system tremolite

  5. CO2 Exsolution from CO2 Saturated Water: Core-Scale Experiments and Focus on Impacts of Pressure Variations.

    PubMed

    Xu, Ruina; Li, Rong; Ma, Jin; Jiang, Peixue

    2015-12-15

    For CO2 sequestration and utilization in the shallow reservoirs, reservoir pressure changes are due to the injection rate changing, a leakage event, and brine withdrawal for reservoir pressure balance. The amounts of exsolved CO2 which are influenced by the pressure reduction and the subsequent secondary imbibition process have a significant effect on the stability and capacity of CO2 sequestration and utilization. In this study, exsolution behavior of the CO2 has been studied experimentally using a core flooding system in combination with NMR/MRI equipment. Three series of pressure variation profiles, including depletion followed by imbibitions without or with repressurization and repetitive depletion and repressurization/imbibition cycles, were designed to investigate the exsolution responses for these complex pressure variation profiles. We found that the exsolved CO2 phase preferentially occupies the larger pores and exhibits a uniform spatial distribution. The mobility of CO2 is low during the imbibition process, and the residual trapping ratio is extraordinarily high. During the cyclic pressure variation process, the first cycle has the largest contribution to the amount of exsolved CO2. The low CO2 mobility implies a certain degree of self-sealing during a possible reservoir depletion.

  6. Effects of equivalence ratio variation on lean, stratified methane-air laminar counterflow flames

    NASA Astrophysics Data System (ADS)

    Richardson, E. S.; Granet, V. E.; Eyssartier, A.; Chen, J. H.

    2010-11-01

    The effects of equivalence ratio variations on flame structure and propagation have been studied computationally. Equivalence ratio stratification is a key technology for advanced low emission combustors. Laminar counterflow simulations of lean methane-air combustion have been presented which show the effect of strain variations on flames stabilized in an equivalence ratio gradient, and the response of flames propagating into a mixture with a time-varying equivalence ratio. 'Back supported' lean flames, whose products are closer to stoichiometry than their reactants, display increased propagation velocities and reduced thickness compared with flames where the reactants are richer than the products. The radical concentrations in the vicinity of the flame are modified by the effect of an equivalence ratio gradient on the temperature profile and thermal dissociation. Analysis of steady flames stabilized in an equivalence ratio gradient demonstrates that the radical flux through the flame, and the modified radical concentrations in the reaction zone, contribute to the modified propagation speed and thickness of stratified flames. The modified concentrations of radical species in stratified flames mean that, in general, the reaction rate is not accurately parametrized by progress variable and equivalence ratio alone. A definition of stratified flame propagation based upon the displacement speed of a mixture fraction dependent progress variable was seen to be suitable for stratified combustion. The response times of the reaction, diffusion, and cross-dissipation components which contribute to this displacement speed have been used to explain flame response to stratification and unsteady fluid dynamic strain.

  7. Characterization of indoor aerosol temporal variations for the real-time management of indoor air quality

    NASA Astrophysics Data System (ADS)

    Ciuzas, Darius; Prasauskas, Tadas; Krugly, Edvinas; Sidaraviciute, Ruta; Jurelionis, Andrius; Seduikyte, Lina; Kauneliene, Violeta; Wierzbicka, Aneta; Martuzevicius, Dainius

    2015-10-01

    The study presents the characterization of dynamic patterns of indoor particulate matter (PM) during various pollution episodes for real-time IAQ management. The variation of PM concentrations was assessed for 20 indoor activities, including cooking related sources, other thermal sources, personal care and household products. The pollution episodes were modelled in full-scale test chamber representing a standard usual living room with the forced ventilation of 0.5 h-1. In most of the pollution episodes, the maximum concentration of particles in exhaust air was reached within a few minutes. The most rapid increase in particle concentration was during thermal source episodes such as candle, cigarette, incense stick burning and cooking related sources, while the slowest decay of concentrations was associated with sources, emitting ultrafine particle precursors, such as furniture polisher spraying, floor wet mopping with detergent etc. Placement of the particle sensors in the ventilation exhaust vs. in the centre of the ceiling yielded comparable results for both measured maximum concentrations and temporal variations, indicating that both locations were suitable for the placement of sensors for the management of IAQ. The obtained data provides information that may be utilized considering measurements of aerosol particles as indicators for the real-time management of IAQ.

  8. Use of MODIS Cloud Top Pressure to Improve Assimilation Yields of AIRS Radiances in GSI

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Srikishen, Jayanthi

    2014-01-01

    Radiances from hyperspectral sounders such as the Atmospheric Infrared Sounder (AIRS) are routinely assimilated both globally and regionally in operational numerical weather prediction (NWP) systems using the Gridpoint Statistical Interpolation (GSI) data assimilation system. However, only thinned, cloud-free radiances from a 281-channel subset are used, so the overall percentage of these observations that are assimilated is somewhere on the order of 5%. Cloud checks are performed within GSI to determine which channels peak above cloud top; inaccuracies may lead to less assimilated radiances or introduction of biases from cloud-contaminated radiances.Relatively large footprint from AIRS may not optimally represent small-scale cloud features that might be better resolved by higher-resolution imagers like the Moderate Resolution Imaging Spectroradiometer (MODIS). Objective of this project is to "swap" the MODIS-derived cloud top pressure (CTP) for that designated by the AIRS-only quality control within GSI to test the hypothesis that better representation of cloud features will result in higher assimilated radiance yields and improved forecasts.

  9. Effect of non-thermal air atmospheric pressure plasma jet treatment on gingival wound healing

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Hwan; Choi, Eun-Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2016-02-01

    Non-thermal atmospheric pressure plasmas have been applied in the biomedical field for the improvement of various cellular activities. In dentistry, the healing of gingival soft tissue plays an important role in health and aesthetic outcomes. While the biomedical application of plasma has been thoroughly studied in dentistry, a detailed investigation of plasma-mediated human gingival fibroblast (HGF) migration for wound healing and its underlying biological mechanism is still pending. Therefore, the aim of this study is to apply a non-thermal air atmospheric pressure plasma jet (NTAAPPJ) to HGF to measure the migration and to reveal the underlying biological mechanisms involved in the migration. After the characterization of NTAAPPJ by optical emission spectroscopy, the adherent HGF was treated with NTAAPPJ or air with a different flow rate. Cell viability, lipid peroxidation, migration, intracellular reactive oxygen species (ROS), and the expression of migration-related genes (EGFR, PAK1, and MAPK3) were investigated. The level of statistical significance was set at 0.05. NTAAPPJ and air treatment with a flow rate of 250-1000 standard cubic centimetres per minute (sccm) for up to 30 s did not induce significant decreases in cell viability or membrane damage. A significant increase in the migration of mitomycin C-treated HGF was observed after 30 s of NTAAPPJ treatment compared to 30 s air-only treatment, which was induced by high levels of intracellular reactive oxygen species (ROS). An increase in migration-related gene expression and EGFR activation was observed following NTAAPPJ treatment in an air flow rate-dependent manner. This is the first report that NTAAPPJ treatment induces an increase in HGF migration without changing cell viability or causing membrane damage. HGF migration was related to an increase in intracellular ROS, changes in the expression of three of the migration-related genes (EGFR, PAK1, and MAPK1), and EGFR activation. Therefore

  10. Road, rail, and air transportation noise in residential and workplace neighborhoods and blood pressure (RECORD Study)

    PubMed Central

    Méline, Julie; Van Hulst, Andraea; Thomas, Frederique; Chaix, Basile

    2015-01-01

    Associations between road traffic noise and hypertension have been repeatedly documented, whereas associations with rail or total road, rail, and air (RRA) traffic noise have rarely been investigated. Moreover, most studies of noise in the environment have only taken into account the residential neighborhood. Finally, few studies have taken into account individual/neighborhood confounders in the relationship between noise and hypertension. We performed adjusted multilevel regression analyses using data from the 7,290 participants of the RECORD Study to investigate the associations of outdoor road, rail, air, and RRA traffic noise estimated at the place of residence, at the workplace, and in the neighborhoods around the residence and workplace with systolic blood pressure (SBP), diastolic blood pressure (DBP), and hypertension. Associations were documented between higher outdoor RRA and road traffic noise estimated at the workplace and a higher SBP [+1.36 mm of mercury, 95% confidence interval (CI): +0.12, +2.60 for 65-80 dB(A) vs 30-45 dB(A)] and DBP [+1.07 (95% CI: +0.28, +1.86)], after adjustment for individual/neighborhood confounders. These associations remained after adjustment for risk factors of hypertension. Associations were documented neither with rail traffic noise nor for hypertension. Associations between transportation noise at the workplace and blood pressure (BP) may be attributable to the higher levels of road traffic noise at the workplace than at the residence. To better understand why only noise estimated at the workplace was associated with BP, our future work will combine Global Positioning System (GPS) tracking, assessment of noise levels with sensors, and ambulatory monitoring of BP. PMID:26356373

  11. Road, rail, and air transportation noise in residential and workplace neighborhoods and blood pressure (RECORD Study).

    PubMed

    Méline, Julie; Van Hulst, Andraea; Thomas, Frederique; Chaix, Basile

    2015-01-01

    Associations between road traffic noise and hypertension have been repeatedly documented, whereas associations with rail or total road, rail, and air (RRA) traffic noise have rarely been investigated. Moreover, most studies of noise in the environment have only taken into account the residential neighborhood. Finally, few studies have taken into account individual/neighborhood confounders in the relationship between noise and hypertension. We performed adjusted multilevel regression analyses using data from the 7,290 participants of the RECORD Study to investigate the associations of outdoor road, rail, air, and RRA traffic noise estimated at the place of residence, at the workplace, and in the neighborhoods around the residence and workplace with systolic blood pressure (SBP), diastolic blood pressure (DBP), and hypertension. Associations were documented between higher outdoor RRA and road traffic noise estimated at the workplace and a higher SBP [+1.36 mm of mercury, 95% confidence interval (CI): +0.12, +2.60 for 65-80 dB(A) vs 30-45 dB(A)] and DBP [+1.07 (95% CI: +0.28, +1.86)], after adjustment for individual/neighborhood confounders. These associations remained after adjustment for risk factors of hypertension. Associations were documented neither with rail traffic noise nor for hypertension. Associations between transportation noise at the workplace and blood pressure (BP) may be attributable to the higher levels of road traffic noise at the workplace than at the residence. To better understand why only noise estimated at the workplace was associated with BP, our future work will combine Global Positioning System (GPS) tracking, assessment of noise levels with sensors, and ambulatory monitoring of BP.

  12. Pressure variation assisted fiber extraction and development of high performance natural fiber composites and nanocomposites

    NASA Astrophysics Data System (ADS)

    Markevicius, Gediminas

    It is believed, that due to the large surface areas provided by the nano scale materials, various composite properties could be enhanced when such particles are incorporated into a polymer matrix. There is also a trend of utilizing natural resources or reusing and recycling materials that are already available for the fabrication of the new composite materials. Cellulose is the most abundant natural polymer on the planet, and therefore it is not surprising to be of interest for composite fabrication. Basic structures of cellulose, comprised of long polysaccharide chains, are the building blocks of cellulose nano fibers. Nano fibers are further bound into micro fibrils and macro fibers. Theoretically pure cellulose nano fibers have tremendous strengths, and therefore are some of the most sought after nano particles. The fiber extraction however is a complex task. The ultrasound, which creates pressure variation in the medium, was employed to extract nano-size cellulose particles from microcrystalline cellulose (MCC). The length and the intensity of the cavitations were evaluated. Electron microscopy studies revealed that cellulose nanoparticles were successfully obtained from the MCC after ultrasound treatment of just 30 minutes. Structure of the fractionated cellulose was also analyzed with the help of X-ray diffraction, and its thermal properties were evaluated with the help of differential scanning calorimetry (DSC). Ultrasound treatment performed on the wheat straw, kenaf, and miscanthus particles altered fiber structure as a result of the cavitation. The micro fibers were generated from these materials after they were subjected to NaOH treatment followed by the ultrasound processing. The potential of larger than nano-sized natural fibers to be used for composite fabrication was also explored. The agricultural byproducts, such as wheat or rice straw, as well as other fast growing crops as miscanthus or kenaf, are comprised of three basic polymers. Just like in

  13. Ice flow dynamics forced by water pressure variations in subglacial granular beds

    NASA Astrophysics Data System (ADS)

    Damsgaard, Anders; Egholm, David L.; Beem, Lucas H.; Tulaczyk, Slawek; Larsen, Nicolaj K.; Piotrowski, Jan A.; Siegfried, Matthew R.

    2016-12-01

    Glaciers and ice streams can move by deforming underlying water-saturated sediments, and the nonlinear mechanics of these materials are often invoked as the main reason for initiation, persistence, and shutdown of fast-flowing ice streams. Existing models have failed to fully explain the internal mechanical processes driving transitions from stability to slip. We performed computational experiments that show how rearrangements of load-bearing force chains within the granular sediments drive the mechanical transitions. Cyclic variations in pore water pressure give rise to rate-dependent creeping motion at stress levels below the point of failure, while disruption of the force chain network induces fast rate-independent flow above it. This finding contrasts previous descriptions of subglacial sediment mechanics, which either assume rate dependence regardless of mechanical state or unconditional stability before the sediment yield point. Our new micromechanical computational approach is capable of reproducing important transitions between these two end-member models and can explain multimodal velocity patterns observed in glaciers, landslides, and slow-moving tremor zones.

  14. Microwave air plasmas in capillaries at low pressure I. Self-consistent modeling

    NASA Astrophysics Data System (ADS)

    Coche, P.; Guerra, V.; Alves, L. L.

    2016-06-01

    This work presents the self-consistent modeling of micro-plasmas generated in dry air using microwaves (2.45 GHz excitation frequency), within capillaries (<1 mm inner radius) at low pressure (300 Pa). The model couples the system of rate balance equations for the most relevant neutral and charged species of the plasma to the homogeneous electron Boltzmann equation. The maintenance electric field is self-consistently calculated adopting a transport theory for low to intermediate pressures, taking into account the presence of O- ions in addition to several positive ions, the dominant species being O{}2+ , NO+ and O+ . The low-pressure small-radius conditions considered yield very-intense reduced electric fields (˜600-1500 Td), coherent with species losses controlled by transport and wall recombination, and kinetic mechanisms strongly dependent on electron-impact collisions. The charged-particle transport losses are strongly influenced by the presence of the negative ion, despite its low-density (˜10% of the electron density). For electron densities in the range (1-≤ft. 4\\right)× {{10}12} cm-3, the system exhibits high dissociation degrees for O2 (˜20-70%, depending on the working conditions, in contrast with the  ˜0.1% dissociation obtained for N2), a high concentration of O2(a) (˜1014 cm-3) and NO(X) (5× {{10}14} cm-3) and low ozone production (<{{10}-3}% ).

  15. Atmospheric pressure resistive barrier air plasma jet induced bacterial inactivation in aqueous environment

    NASA Astrophysics Data System (ADS)

    Thiyagarajan, Magesh; Sarani, Abdollah; Gonzales, Xavier

    2013-03-01

    An atmospheric pressure resistive barrier air plasma jet is designed to inactivate bacteria in aqueous media in direct and indirect exposure modes of treatment. The resistive barrier plasma jet is designed to operate at both dc and standard 50-60 Hz low frequency ac power input and the ambient air at 50% humidity level was used as the operating gas. The voltage-current characteristics of the plasma jet were analyzed and the operating frequency of the discharge was measured to be 20 kHz and the plasma power was measured to be 26 W. The plasma jet rotational temperatures (Trot) are obtained from the optical emission spectra, from the N2C-B(2+) transitions by matching the experimental spectrum results with the Spectra Air (SPECAIR) simulation spectra. The reactive oxygen and nitrogen species were measured using optical emission spectroscopy and gas analyzers, for direct and indirect treatment modes. The nitric oxides (NO) were observed to be the predominant long lived reactive nitrogen species produced by the plasma. Three different bacteria including Staphylococcus aureus (Gram-positive), Escherichia coli (Gram-negative), and Neisseria meningitidis (Gram-negative) were suspended in an aqueous media and treated by the resistive barrier air plasma jet in direct and indirect exposure modes. The results show that a near complete bacterial inactivation was achieved within 120 s for both direct and indirect plasma treatment of S. aureus and E. coli bacteria. Conversely, a partial inactivation of N. meningitidis was observed by 120 s direct plasma exposure and insignificant inactivation was observed for the indirect plasma exposure treatment. Plasma induced shifts in N. meningitidis gene expression was analyzed using pilC gene expression as a representative gene and the results showed a reduction in the expression of the pilC gene compared to untreated samples suggesting that the observed protection against NO may be regulated by other genes.

  16. Temporal variation of traffic on highways and the development of accurate temporal allocation factors for air pollution analyses

    PubMed Central

    Batterman, Stuart; Cook, Richard; Justin, Thomas

    2015-01-01

    Traffic activity encompasses the number, mix, speed and acceleration of vehicles on roadways. The temporal pattern and variation of traffic activity reflects vehicle use, congestion and safety issues, and it represents a major influence on emissions and concentrations of traffic-related air pollutants. Accurate characterization of vehicle flows is critical in analyzing and modeling urban and local-scale pollutants, especially in near-road environments and traffic corridors. This study describes methods to improve the characterization of temporal variation of traffic activity. Annual, monthly, daily and hourly temporal allocation factors (TAFs), which describe the expected temporal variation in traffic activity, were developed using four years of hourly traffic activity data recorded at 14 continuous counting stations across the Detroit, Michigan, U.S. region. Five sites also provided vehicle classification. TAF-based models provide a simple means to apportion annual average estimates of traffic volume to hourly estimates. The analysis shows the need to separate TAFs for total and commercial vehicles, and weekdays, Saturdays, Sundays and observed holidays. Using either site-specific or urban-wide TAFs, nearly all of the variation in historical traffic activity at the street scale could be explained; unexplained variation was attributed to adverse weather, traffic accidents and construction. The methods and results presented in this paper can improve air quality dispersion modeling of mobile sources, and can be used to evaluate and model temporal variation in ambient air quality monitoring data and exposure estimates. PMID:25844042

  17. Temporal variation of traffic on highways and the development of accurate temporal allocation factors for air pollution analyses.

    PubMed

    Batterman, Stuart; Cook, Richard; Justin, Thomas

    2015-04-01

    Traffic activity encompasses the number, mix, speed and acceleration of vehicles on roadways. The temporal pattern and variation of traffic activity reflects vehicle use, congestion and safety issues, and it represents a major influence on emissions and concentrations of traffic-related air pollutants. Accurate characterization of vehicle flows is critical in analyzing and modeling urban and local-scale pollutants, especially in near-road environments and traffic corridors. This study describes methods to improve the characterization of temporal variation of traffic activity. Annual, monthly, daily and hourly temporal allocation factors (TAFs), which describe the expected temporal variation in traffic activity, were developed using four years of hourly traffic activity data recorded at 14 continuous counting stations across the Detroit, Michigan, U.S. region. Five sites also provided vehicle classification. TAF-based models provide a simple means to apportion annual average estimates of traffic volume to hourly estimates. The analysis shows the need to separate TAFs for total and commercial vehicles, and weekdays, Saturdays, Sundays and observed holidays. Using either site-specific or urban-wide TAFs, nearly all of the variation in historical traffic activity at the street scale could be explained; unexplained variation was attributed to adverse weather, traffic accidents and construction. The methods and results presented in this paper can improve air quality dispersion modeling of mobile sources, and can be used to evaluate and model temporal variation in ambient air quality monitoring data and exposure estimates.

  18. Temporal variation of traffic on highways and the development of accurate temporal allocation factors for air pollution analyses

    NASA Astrophysics Data System (ADS)

    Batterman, Stuart; Cook, Richard; Justin, Thomas

    2015-04-01

    Traffic activity encompasses the number, mix, speed and acceleration of vehicles on roadways. The temporal pattern and variation of traffic activity reflects vehicle use, congestion and safety issues, and it represents a major influence on emissions and concentrations of traffic-related air pollutants. Accurate characterization of vehicle flows is critical in analyzing and modeling urban and local-scale pollutants, especially in near-road environments and traffic corridors. This study describes methods to improve the characterization of temporal variation of traffic activity. Annual, monthly, daily and hourly temporal allocation factors (TAFs), which describe the expected temporal variation in traffic activity, were developed using four years of hourly traffic activity data recorded at 14 continuous counting stations across the Detroit, Michigan, U.S. region. Five sites also provided vehicle classification. TAF-based models provide a simple means to apportion annual average estimates of traffic volume to hourly estimates. The analysis shows the need to separate TAFs for total and commercial vehicles, and weekdays, Saturdays, Sundays and observed holidays. Using either site-specific or urban-wide TAFs, nearly all of the variation in historical traffic activity at the street scale could be explained; unexplained variation was attributed to adverse weather, traffic accidents and construction. The methods and results presented in this paper can improve air quality dispersion modeling of mobile sources, and can be used to evaluate and model temporal variation in ambient air quality monitoring data and exposure estimates.

  19. Seasonal Variations of the Earth's Gravitational Field: An Analysis of Atmospheric Pressure, Ocean Tidal, and Surface Water Excitation

    NASA Technical Reports Server (NTRS)

    Dong, D,; Gross, R.S.; Dickey, J.

    1996-01-01

    Monthly mean gravitational field parameters (denoted here as C(sub even)) that represent linear combinations of the primarily even degree zonal spherical harmonic coefficients of the Earth's gravitational field have been recovered using LAGEOS I data and are compared with those derived from gridded global surface pressure data of the National meteorological center (NMC) spanning 1983-1992. The effect of equilibrium ocean tides and surface water variations are also considered. Atmospheric pressure and surface water fluctuations are shown to be the dominant cause of observed annual C(sub even) variations. Closure with observations is seen at the 1sigma level when atmospheric pressure, ocean tide and surface water effects are include. Equilibrium ocean tides are shown to be the main source of excitation at the semiannual period with closure at the 1sigma level seen when both atmospheric pressure and ocean tide effects are included. The inverted barometer (IB) case is shown to give the best agreement with the observation series. The potential of the observed C(sub even) variations for monitoring mass variations in the polar regions of the Earth and the effect of the land-ocean mask in the IB calculation are discussed.

  20. Seasonal variation in blood pressure and its relationship with outdoor temperature in 10 diverse regions of China: the China Kadoorie Biobank

    PubMed Central

    LEWINGTON, Sarah; LI, LiMing; SHERLIKER, Paul; GUO, Yu; MILLWOOD, Iona; BIAN, Zheng; WHITLOCK, Gary; YANG, Ling; COLLINS, Rory; CHEN, Junshi; WU, Xianping; WANG, Shaojie; HU, Yihe; JIANG, Li; YANG, Liqiu; LACEY, Ben; PETO, Richard; CHEN, Zhengming

    2015-01-01

    Objectives Mean blood pressure varies moderately with outdoor air temperature in many Western populations. Substantial uncertainty exists, however, about the strength of the relationship in other populations, and the relevance to it of age, adiposity, medical treatment, climate and housing conditions. Methods To investigate the relationship of blood pressure with season and outdoor temperature, we analysed cross-sectional data from the China Kadoorie Biobank study of 506 673 adults aged 30-79 recruited from ten diverse urban and rural regions in China. Analyses related mean blood pressure – overall and in various subgroups – to mean local outdoor temperature. Results The mean difference in systolic blood pressure (SBP) between summer (June-August) and winter (December-February) was 10 mmHg overall, and was more extreme, on average, in rural than in urban areas (12 vs. 8 mmHg; p for interaction<0.0001). Above 5°C, SBP was strongly inversely associated with outdoor temperature in all ten areas studied, with 5.7 (SE 0.04) mmHg higher SBP per 10°C lower outdoor temperature. The association was stronger in older people and in those with lower body mass index. At lower temperatures there was no evidence of an association among participants who reported having home central heating. Conclusions Blood pressure was strongly inversely associated with outdoor temperature in Chinese adults across a range of climatic conditions, although access to home central heating appeared to remove much of the association during the winter months. Seasonal variation in blood pressure should be considered in the clinical management of hypertension. PMID:22688260

  1. Modeling the chemical kinetics of high-pressure glow discharges in mixtures of helium with real air

    NASA Astrophysics Data System (ADS)

    Stalder, K. R.; Vidmar, R. J.; Nersisyan, G.; Graham, W. G.

    2006-05-01

    Atmospheric and near-atmospheric pressure glow discharges generated in both pure helium and helium-air mixtures have been studied using a plasma chemistry code originally developed for simulations of electron-beam-produced air plasmas. Comparisons are made with experimental data obtained from high-pressure glow discharges in helium-air mixtures developed by applying sinusoidal voltage wave forms between two parallel planar metallic electrodes covered by glass plates, with frequencies ranging from 10 to 50 kHz and electric field strengths up to 5 kV/cm. The code simulates the plasma chemistry following periodic pulsations of ionization in prescribed E/N environments. Many of the rate constants depend on gas temperature, electron temperature, and E/N. In helium plasmas with small amounts (~850 ppm) of air added, rapid conversion of atomic helium ions to molecular helium ions dominate the positive ion kinetics and these species are strongly modulated while the radical species are not. The charged and neutral species concentrations at atmospheric pressure with air impurity levels up to 10 000 ppm are predicted. The negative ion densities are very small but increase as the air impurity level is raised, which indicates that in helium-based systems operated in open air the concentration of negative ions would be significant. If water vapor at typical humidity levels is present as one of the impurities, hydrated cluster ions eventually comprise a significant fraction of the charged species.

  2. Use of nose cap and fuselage pressure orifices for determination of air data for space shuttle orbiter below supersonic speeds

    NASA Technical Reports Server (NTRS)

    Larson, T. J.; Siemers, P. M., III

    1980-01-01

    Wind tunnel pressure measurements were acquired from orifices on a 0.1 scale forebody model of the space shuttle orbiter that were arranged in a preliminary configuration of the shuttle entry air data system (SEADS). Pressures from those and auxiliary orifices were evaluated for their ability to provide air data at subsonic and transonic speeds. The orifices were on the vehicle's nose cap and on the sides of the forebody forward of the cabin. The investigation covered a Mach number range of 0.25 to 1.40 and an angle of attack range from 4 deg. to 18 deg. An air data system consisting of nose cap and forebody fuselage orifices constitutes a complete and accurate air data system at subsonic and transonic speeds. For Mach numbers less than 0.80 orifices confined to the nose cap can be used as a complete and accurate air data system. Air data systems that use only flush pressure orifices can be used to determine basic air data on other aircraft at subsonic and transonic speeds.

  3. Cold-air annular-cascade investigation of aerodynamic performance of core-engine-cooled turbine vanes. 2: Pressure surface trailing edge ejection and split trailing edge ejection

    NASA Technical Reports Server (NTRS)

    Mclallin, K. L.; Goldman, L. J.

    1976-01-01

    The aerodynamic performance of two trailing edge ejection cooling configurations of a core-engine stator vane were experimentally determined in an ambient inlet-air full-annular cascade where three-dimensional effects could be obtained. The tests were conducted at the design mean-radius ideal aftermixed critical velocity ratio of 0.778. Overall vane aftermixed thermodynamic and primary efficiencies were obtained over a range of coolant flows to about 10 percent of the primary flow at a primary to coolant total temperature ratio of 1.0. The radial variation in efficiency and the circumferential and radial variations in vane-exit total pressure were determined. Comparisons are made with the solid (uncooled) vane.

  4. High-Reynolds-number turbulent-boundary-layer wall pressure fluctuations with skin-friction reduction by air injection.

    PubMed

    Winkel, Eric S; Elbing, Brian R; Ceccio, Steven L; Perlin, Marc; Dowling, David R

    2008-05-01

    The hydrodynamic pressure fluctuations that occur on the solid surface beneath a turbulent boundary layer are a common source of flow noise. This paper reports multipoint surface pressure fluctuation measurements in water beneath a high-Reynolds-number turbulent boundary layer with wall injection of air to reduce skin-friction drag. The experiments were conducted in the U.S. Navy's Large Cavitation Channel on a 12.9-m-long, 3.05-m-wide hydrodynamically smooth flat plate at freestream speeds up to 20 ms and downstream-distance-based Reynolds numbers exceeding 200 x 10(6). Air was injected from one of two spanwise slots through flush-mounted porous stainless steel frits (approximately 40 microm mean pore diameter) at volume flow rates from 17.8 to 142.5 l/s per meter span. The two injectors were located 1.32 and 9.78 m from the model's leading edge and spanned the center 87% of the test model. Surface pressure measurements were made with 16 flush-mounted transducers in an "L-shaped" array located 10.7 m from the plate's leading edge. When compared to no-injection conditions, the observed wall-pressure variance was reduced by as much as 87% with air injection. In addition, air injection altered the inferred convection speed of pressure fluctuation sources and the streamwise coherence of pressure fluctuations.

  5. A global ground truth view of the lunar air pressure tide L2

    NASA Astrophysics Data System (ADS)

    Schindelegger, Michael; Dobslaw, Henryk

    2016-01-01

    A comprehensive model of the lunar air pressure tide L2 is developed on the basis of 2315 ground truth estimates from land barometers and moored buoys. Regional-scale features of the tide and its seasonal modulations are well resolved by the in situ scatter and gridded to a 2° mesh through multiquadric interpolation. The resulting climatologies serve as an independent standard to validate the lunar semidiurnal tidal signal that is present in ERA-Interim reanalysis products despite the absence of L2-related gravitational forcing mechanisms in the prescribed model physics. Inconsistencies between the reanalysis solution of the barometric lunar tide and its empirical account are generally small, yet when averaged over the period 1979-2010, ERA-Interim underestimates the 100 μbar open ocean tidal amplitude in the Tropics by up to 20 μbar and produces times of peak pressure that are too early by 10 lunar minutes. Large-amplitude features of the reanalysis tide off the coast of Alaska, the eastern U.S., and Great Britain are evidently spurious, introduced to the analysis system by assimilating marine pressure data at an invariant reference surface instead of properly accounting for vertical sensor movements associated with the M2 ocean tide. Additionally, a credible L2 signal is documented for the ERA-20C pilot reanalysis of the twentieth century. The fact that this model rests upon input data from mere surface observations provides an unambiguous indication that the lunar tidal oscillation in atmospheric analysis systems is closely tied to the assimilation of conventional pressure measurements from stations and marine objects.

  6. Variation.

    ERIC Educational Resources Information Center

    Hamilton City Board of Education (Ontario).

    Suggestions for studying the topic of variation of individuals and objects (balls) to help develop elementary school students' measurement, comparison, classification, evaluation, and data collection and recording skills are made. General suggestions of variables that can be investigated are made for the study of human variation. Twelve specific…

  7. Variations of electric field and electric resistivity of air caused by dust motion

    NASA Astrophysics Data System (ADS)

    Seran, E.; Godefroy, M.; Renno, N.; Elliott, H.

    2013-08-01

    report results of a field campaign conducted in the Nevada desert with a suite of electric field instruments consisting of a field mill (FM) and a short dipole antenna (SDA). Furthermore, we show that a combination of the measurements of these two instruments allows the estimation of the electric resistivity of air, an important quantity that is extremely difficult to measure near the Earth's surface. The electric resistivity of air is found to vary between 1.5 · 1013 and 6 · 1013 Ω m and to correlate with changes in electric field. Vertical DC electric fields with amplitudes up to 6 kV m-1 were observed to correspond to clouds of dust blowing through the measurement site. Enhanced DC and AC electric fields are measured during periods when horizontal wind speed exceeds 7 m s-1, or around twice the background value. We suggest that low-frequency emissions, below ~200 Hz, are generated by the motion of electrically charged particles in the vicinity of the SDA electrode and propose a simple model to reproduce the observed spectra. According to this model, the spectral response is controlled by three parameters, (i) the speed of the charged particles, (ii) the charge concentration, and (iii) the minimum distance between the particle and the electrode. In order to explain the electric fields measured with the FM sensors at different heights, we developed a multilayer model that relates the electric field to the charge distribution. For example, a nonlinear variation of the electric field observed by the FM sensors below 50 cm is simulated by a near-surface layer of tens of centimeters that is filled with electrically charged particles that carry a predominantly negative charge in the vicinity of the soil. The charge concentration inside this layer is estimated to vary between 1012 and 5 · 1013 electrons m-3.

  8. Association between long-term air pollution and increased blood pressure and hypertension in China.

    PubMed

    Dong, Guang-Hui; Qian, Zhengmin Min; Xaverius, Pamela K; Trevathan, Edwin; Maalouf, Salwa; Parker, Jamaal; Yang, Laiji; Liu, Miao-Miao; Wang, Da; Ren, Wan-Hui; Ma, Wenjun; Wang, Jing; Zelicoff, Alan; Fu, Qiang; Simckes, Maayan

    2013-03-01

    Several studies have investigated the short-term effects of ambient air pollutants in the development of high blood pressure and hypertension. However, little information exists regarding the health effects of long-term exposure. To investigate the association between residential long-term exposure to air pollution and blood pressure and hypertension, we studied 24 845 Chinese adults in 11 districts of 3 northeastern cities from 2009 to 2010. Three-year average concentration of particles with an aerodynamic diameter ≤10 µm (PM(10)), sulfur dioxide (SO(2)), nitrogen dioxides (NO(2)), and ozone (O(3)) were calculated from monitoring stations in the 11 districts. We used generalized additive models and 2-level logistic regressions models to examine the health effects. The results showed that the odds ratio for hypertension increased by 1.12 (95% confidence interval [CI], 1.08-1.16) per 19 μg/m(3) increase in PM(10), 1.11 (95% CI, 1.04-1.18) per 20 μg/m(3) increase in SO(2), and 1.13 (95% CI, 1.06-1.20) per 22 μg/m(3) increase in O(3). The estimated increases in mean systolic and diastolic blood pressure were 0.87 mm Hg (95% CI, 0.48-1.27) and 0.32 mm Hg (95% CI, 0.08-0.56) per 19 μg/m(3) interquartile increase in PM(10), 0.80 mm Hg (95% CI, 0.46-1.14) and 0.31 mm Hg (95% CI, 0.10-0.51) per 20 μg/m(3) interquartile increase in SO(2), and 0.73 mm Hg (95% CI, 0.35-1.11) and 0.37 mm Hg (95% CI, 0.14-0.61) per 22 μg/m(3) interquartile increase in O(3). These associations were only statistically significant in men. In conclusion, long-term exposure to PM(10), SO(2), and O(3) was associated with increased arterial blood pressure and hypertension in the study population.

  9. Laser-induced cooling of a Yb:YAG crystal in air at atmospheric pressure.

    PubMed

    Soares de Lima Filho, Elton; Nemova, Galina; Loranger, Sébastien; Kashyap, Raman

    2013-10-21

    We report for the first time the experimental demonstration of optical cooling of a bulk crystal at atmospheric pressure. The use of a fiber Bragg grating (FBG) sensor to measure laser-induced cooling in real time is also demonstrated for the first time. A temperature drop of 8.8 K from the chamber temperature was observed in a Yb:YAG crystal in air when pumped with 4.2 W at 1029 nm. A background absorption of 2.9 × 10⁻⁴ cm⁻¹ was estimated with a pump wavelength at 1550 nm. Simulations predict further cooling if the pump power is optimized for the sample's dimensions.

  10. Solvent Selection for Pressurized Liquid Extraction of Polymeric Sorbents Used in Air Sampling

    PubMed Central

    Primbs, Toby; Genualdi, Susan; Simonich, Staci

    2014-01-01

    Pressurized liquid extraction (PLE) was evaluated as a method for extracting semivolatile organic compounds (SOCs) from air sampling media; including quartz fiber filter (QFF), polyurethane foam (PUF), and a polystyrene divinyl benzene copolymer (XAD-2). Hansen solubility parameter plots were used to aid in the PLE solvent selection in order to reduce both co-extraction of polyurethane and save time in evaluating solvent compatibility during the initial steps of method development. A PLE solvent composition of 75:25% hexane:acetone was chosen for PUF. The XAD-2 copolymer was not solubilized under the PLE conditions used. The average percent PLE recoveries (and percent relative standard deviations) of 63 SOCs, including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and organochlorine, amide, triazine, thiocarbamate, and phosphorothioate pesticides, were 76.7 (6.2), 79.3 (8.1), and 93.4 (2.9) % for the QFF, PUF, and XAD-2, respectively. PMID:18220448

  11. Atmospheric pressure discharge plasma decomposition for gaseous air contaminants -- Trichlorotrifluoroethane and trichloroethylene

    SciTech Connect

    Oda, Tetsuji; Yamashita, Ryuichi; Takahashi, Tadashi; Masuda, Senichi

    1996-03-01

    The decomposition performance of gaseous environmental destructive contaminants in air by using atmospheric pressure discharged plasma including the surface discharge induced plasma chemical processing (SPCP) was examined. The main contaminants tested were chlorofluorocarbon (CFC-113) and trichloroethylene, typically. The discharge exciting frequency range studied was wide--50 Hz to 50 kHz. Results showed the low frequency discharge requires high voltage to inject high electric power in the gas and to decompose the contaminants. A Gas Chromatograph Mass Spectrometer was used to analyze discharge products of dense CFC-113 or trichloroethylene. Among the detected products were HCl, CClFO, and CHCl{sub 3}. Two different electrode configurations; the silent discharge (coaxial) electrode and the coil-electrode were also tested and compared to each other as a gas reactor.

  12. A simple atmospheric pressure room-temperature air plasma needle device for biomedical applications

    NASA Astrophysics Data System (ADS)

    Lu, X.; Xiong, Z.; Zhao, F.; Xian, Y.; Xiong, Q.; Gong, W.; Zou, C.; Jiang, Z.; Pan, Y.

    2009-11-01

    Rather than using noble gas, room air is used as the working gas for an atmospheric pressure room-temperature plasma. The plasma is driven by submicrosecond pulsed directed current voltages. Several current spikes appear periodically for each voltage pulse. The first current spike has a peak value of more than 1.5 A with a pulse width of about 10 ns. Emission spectra show that besides excited OH, O, N2(C-B), and N2+(B-X) emission, excited NO, N2(B-A), H, and even N emission are also observed in the plasma, which indicates that the plasma may be more reactive than that generated by other plasma jet devices. Utilizing the room-temperature plasma, preliminary inactivation experiments show that Enterococcus faecalis can be killed with a treatment time of only several seconds.

  13. Experimental modeling of air blowing into a turbulent boundary layer using an external pressure flow

    NASA Astrophysics Data System (ADS)

    Kornilov, V. I.; Boiko, A. V.

    2016-10-01

    We have experimentally investigated the characteristics of an incompressible turbulent boundary layer on a plane plate upon the passive blowing of air through a fine-perforated surface and flushing it by supplying an external pressure flow through a wind tunnel using an intake device equipped with an attachment for draining the boundary layer on the inactive side of the plate. A stable decrease in the local values of the surface coefficient of friction, which reaches 80% at the end of the perforated region, has been detected over the length of the plate. The possibility of controlling surface friction by changing the velocity of the external flow and selecting the meshes and filters at the inlet to the flow passage has been demonstrated.

  14. Soft X-ray radiation due to a nanosecond diffuse discharge in atmospheric-pressure air

    NASA Astrophysics Data System (ADS)

    Kostyrya, I. D.; Tarasenko, V. F.

    2010-02-01

    A source of soft X-rays with an effective photon energy of 9 keV and a subnanosecond pulse width is built around a gas diode filled with atmospheric-pressure air and a UAEB-150 generator. A collector placed behind a grounded mesh electrode detects an electron beam and a pulse with positive polarity, the latter being due to an electric field surrounding the mesh. It is shown that the intensity of soft X-rays from the gas-diode-based source depends on the material of a massive potential anode; namely, it grows with an increase in the atomic number of the cathode material. In the case of a tantalum anode, X-ray photons with an effective energy of 9 and 17 keV contribute to the exposure dose.

  15. Subnanosecond pulsed X-ray source based on nanosecond discharge in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Kostyrya, I. D.; Tarasenko, V. F.

    2009-06-01

    We have studied the characteristics of an X-ray source based on a gas diode filled with air at atmospheric pressure. Driven by a SLEP-150 pulser with a maximum voltage amplitude of ˜140 kV, a pulse full width at half maximum (FWHM) of ˜1 ns, and a leading front width of ˜0.3 ns, a soft X-ray source produces subnanosecond pulses with an FWHM not exceeding 600 ps and an exposure dose of ˜3 mR per pulse. It is shown that the main contribution to the measured exposure dose is due to X-ray quanta with an effective energy of ˜7.5 keV.

  16. Synthesis of ammonia directly from air and water at ambient temperature and pressure

    PubMed Central

    Lan, Rong; Irvine, John T. S.; Tao, Shanwen

    2013-01-01

    The N≡N bond (225 kcal mol−1) in dinitrogen is one of the strongest bonds in chemistry therefore artificial synthesis of ammonia under mild conditions is a significant challenge. Based on current knowledge, only bacteria and some plants can synthesise ammonia from air and water at ambient temperature and pressure. Here, for the first time, we report artificial ammonia synthesis bypassing N2 separation and H2 production stages. A maximum ammonia production rate of 1.14 × 10−5 mol m−2 s−1 has been achieved when a voltage of 1.6 V was applied. Potentially this can provide an alternative route for the mass production of the basic chemical ammonia under mild conditions. Considering climate change and the depletion of fossil fuels used for synthesis of ammonia by conventional methods, this is a renewable and sustainable chemical synthesis process for future. PMID:23362454

  17. Synthesis of ammonia directly from air and water at ambient temperature and pressure.

    PubMed

    Lan, Rong; Irvine, John T S; Tao, Shanwen

    2013-01-01

    The N≡N bond (225 kcal mol⁻¹) in dinitrogen is one of the strongest bonds in chemistry therefore artificial synthesis of ammonia under mild conditions is a significant challenge. Based on current knowledge, only bacteria and some plants can synthesise ammonia from air and water at ambient temperature and pressure. Here, for the first time, we report artificial ammonia synthesis bypassing N₂ separation and H₂ production stages. A maximum ammonia production rate of 1.14 × 10⁻⁵ mol m⁻² s⁻¹ has been achieved when a voltage of 1.6 V was applied. Potentially this can provide an alternative route for the mass production of the basic chemical ammonia under mild conditions. Considering climate change and the depletion of fossil fuels used for synthesis of ammonia by conventional methods, this is a renewable and sustainable chemical synthesis process for future.

  18. Cell immobilization on polymer by air atmospheric pressure plasma jet treatment

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Hwan; Kwon, Jae-Sung; Om, Ji-yeon; Kim, Yong-Hee; Choi, Eun-Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2014-08-01

    The study of cell immobilization on delicate polymer by an air atmospheric pressure plasma jet (AAPPJ) is required for its medical application. The aim of this study was to evaluate whether AAPPJ treatment induce cell immobilization effect on delicate polymers without significant change of surface roughness by AAPPJ treatment. After surface roughness, dynamic contact angle, and chemical characteristics were investigated, the immobilization effect was evaluated with the mouse fibroblast L929 cell line. Surface roughness change was not observed (P > 0.05) in either delicate dental wax or polystyrene plate (PSP) as advancing and receding contact angles significantly decreased (P < 0.05), thanks to decreased hydrocarbon and formation of oxygen-related functional groups in treated PSP. Adherent L929 cells with elongated morphology were found in treated PSP along with the formation of immobilization markers vinculin and actin cytoskeleton. Increased PTK2 gene expression upregulated these markers on treated PSP.

  19. The meteorological data of William Hutchinson and a Liverpool air pressure time series spanning 1768-1999

    NASA Astrophysics Data System (ADS)

    Woodworth, Philip L.

    2006-10-01

    This paper discusses some of the meteorological measurements made at Liverpool by Captain William Hutchinson in the second half of the eighteenth century. It gives an overview of the various data sets, most of which are now in computer-accessible form, and provides assessments of their quality, the aim being to gain an overall impression of how good an observer Hutchinson was. His air pressure data have been studied in detail, through comparisons with information from other UK stations, and via investigation of the sea-level response to air pressure changes as observed in his tidal measurements. A first attempt has been made to construct a Liverpool air pressure time series spanning 1768-1999, by means of the combination of Hutchinson's data with later information from the Liverpool docks and Bidston Observatory.

  20. Satellite-based Estimates of Ambient Air Pollution and Global Variations in Childhood Asthma Prevalence

    NASA Technical Reports Server (NTRS)

    Anderson, H. Ross; Butland, Barbara K.; Donkelaar, Aaron Matthew Van; Brauer, Michael; Strachan, David P.; Clayton, Tadd; van Dingenen, Rita; Amann, Marcus; Brunekreef, Bert; Cohen, Aaron; Dentener, Frank; Lai, Christopher; Lamsal, Lok N.; Martin, Randall V.

    2012-01-01

    Background: The effect of ambient air pollution on global variations and trends in asthma prevalence is unclear. Objectives: Our goal was to investigate community-level associations between asthma prevalence data from the International Study of Asthma and Allergies in Childhood (ISAAC) and satellite-based estimates of particulate matter with aerodynamic diameter < 2.5 microm (PM2.5) and nitrogen dioxide (NO2), and modelled estimates of ozone. Methods: We assigned satellite-based estimates of PM2.5 and NO2 at a spatial resolution of 0.1deg × 0.1deg and modeled estimates of ozone at a resolution of 1deg × 1deg to 183 ISAAC centers. We used center-level prevalence of severe asthma as the outcome and multilevel models to adjust for gross national income (GNI) and center- and country-level sex, climate, and population density. We examined associations (adjusting for GNI) between air pollution and asthma prevalence over time in centers with data from ISAAC Phase One (mid-1900s) and Phase Three (2001-2003). Results: For the 13- to 14-year age group (128 centers in 28 countries), the estimated average within-country change in center-level asthma prevalence per 100 children per 10% increase in center-level PM2.5 and NO2 was -0.043 [95% confidence interval (CI): -0.139, 0.053] and 0.017 (95% CI: -0.030, 0.064) respectively. For ozone the estimated change in prevalence per parts per billion by volume was -0.116 (95% CI: -0.234, 0.001). Equivalent results for the 6- to 7-year age group (83 centers in 20 countries), though slightly different, were not significantly positive. For the 13- to 14-year age group, change in center-level asthma prevalence over time per 100 children per 10% increase in PM2.5 from Phase One to Phase Three was -0.139 (95% CI: -0.347, 0.068). The corresponding association with ozone (per ppbV) was -0.171 (95% CI: -0.275, -0.067). Conclusion: In contrast to reports from within-community studies of individuals exposed to traffic pollution, we did not find

  1. Helium:oxygen versus air:oxygen noninvasive positive-pressure ventilation in patients exposed to sulfur mustard.

    PubMed

    Ghanei, Mostafa; Rajaeinejad, Mohsen; Motiei-Langroudi, Rouzbeh; Alaeddini, Farshid; Aslani, Jafar

    2011-01-01

    Exposure to sulfur mustard (SM) causes a variety of respiratory symptoms, such as chronic bronchitis and constrictive bronchiolitis. This study assessed the effectiveness of noninvasive positive-pressure ventilation, adjunct with 79:21 helium:oxygen instead of 79:21 air:oxygen, in 24 patients with a previous exposure to SM presenting with acute respiratory failure. Both air:oxygen and helium:oxygen significantly decreased systolic blood pressure, diastolic blood pressure, mean arterial pressure, pulse rate, respiratory rate, dyspnea, and increased oxygen saturation (P values: .007, .029, .002, <.001, <.001, <.001, and .002 for air:oxygen, respectively, and <.001, .020, .001, <.001, <.001, <.001, and .002, for helium:oxygen, respectively). Moreover, helium:oxygen more potently improved systolic pressure, mean arterial pressure, pulse rate, respiratory rate, and dyspnea (P values: .012, .048, <.001, <.001, and .012, respectively). The results of our study support the benefit of using helium:oxygen adjunct with noninvasive positive-pressure ventilation in patients exposed to SM with acute respiratory decompensation.

  2. Respiratory effects of warm and dry air at increased ambient pressure.

    PubMed

    Thorsen, E; Rønnestad, I; Segadal, K; Hope, A

    1992-03-01

    We have measured in 7 divers forced vital capacity (FVC), forced expired volume in 1 s (FEV1), and forced midexpiratory flow rate (FEF25-75%) before and after exposure to dry or humid breathing gas of 35.3 degrees-36.8 degrees C (air) when diving to pressures of 117-600 kPa. The response was compared with the subjects' reactivity to pharmacologic bronchoprovocation with methacholine. Baseline FEV1 and FEF25-75% decreased in accordance with increasing gas density. Relative to baseline, there was a significant reduction after the dives in FEV1 of 4.0 +/- 6.1% (P less than 0.05) and in FEF25-75% of 8.6 +/- 9.7% (P less than 0.01) with exposure to dry breathing gas. By analysis of variance the reduction in the lung function variables below baseline were related to the breathing gas characteristic (dry/humid) (P less than 0.01), bronchial hyperreactivity (P less than 0.02), and ambient pressure (P less than 0.02) independently of each other. There was no significant change in FVC after the exposures. Humid breathing gas was considered more comfortable than dry breathing gas, and the upper comfort limit for breathing gas temperature was higher with humid breathing gas. Convective respiratory heat loss was negligible in these experiments, indicating that dry gas itself had a significant bronchoconstrictive effect. Bronchial hyperreactivity may cause increased risk of development of bronchial obstruction and air trapping during diving.

  3. Soot Surface Oxidation in Laminar Hydrocarbon/Air Diffusion Flames at Atmospheric Pressure. Appendix I

    NASA Technical Reports Server (NTRS)

    Xu, F.; El-Leathy, A. M.; Kim, C. H.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2003-01-01

    Soot surface oxidation was studied experimentally in laminar hydrocarbon/air diffusion flames at atmospheric pressure. Measurements were carried out along the axes of round fuel jets burning in coflowing dry air considering acetylene-nitrogen, ethylene, propyiene-nitrogen, propane and acetylene-benzene-nitrogen in the fuel stream. Measurements were limited to the initial stages of soot oxidation (carbon consumption less than 70%) where soot oxidation occurs at the surface of primary soot particles. The following properties were measured as a function of distance above the burner exit: soot concentrations by deconvoluted laser extinction, soot temperatures by deconvoluted multiline emission, soot structure by thermophoretic sampling and analysis using Transmission Electron Microscopy (TEM), concentrations of major stable gas species (N2, H2O, H2, O2, CO, CO2, CH4, C2H2, C2H6, C3H6, C3H8, and C6H6) by sampling and gas chromatography, concentrations of some radical species (H, OH, O) by deconvoluted Li/LiOH atomic absorption and flow velocities by laser velocimetry. For present test conditions, it was found that soot surface oxidation rates were not affected by fuel type, that direct rates of soot surface oxidation by O2 estimated from Nagle and Strickland-Constable (1962) were small compared to observed soot surface oxidation rates because soot surface oxidation was completed near the flame sheet where O2 concentrations were less than 3% by volume, and that soot surface oxidation rates were described by the OH soot surface oxidation mechanism with a collision efficiency of 0.14 and an uncertainty (95% confidence) of +/- 0.04 when allowing for direct soot surface oxidation by O2, which is in reasonably good agreement with earlier observations of soot surface oxidation rates in both premixed and diffusion flames at atmospheric pressure.

  4. An air-pressure-free elastomeric valve for integrated nucleic acid analysis by capillary electrophoresis

    NASA Astrophysics Data System (ADS)

    Jung, Wooseok; Barrett, Matthew; Brooks, Carla; Rivera, Andrew; Birdsell, Dawn N.; Wagner, David M.; Zenhausern, Frederic

    2015-12-01

    We present a new elastomeric valve for integrated nucleic acid analysis by capillary electrophoresis. The valve functions include metering to capture a designated volume of biological sample into a polymerase chain reaction (PCR) chamber, sealing to preserve the sample during PCR cycling, and transfer of the PCR-products and on-chip formamide post-processing for the analysis of DNA fragments by capillary gel electrophoresis. This new valve differs from prior art polydimethylsiloxane (PDMS) valves in that the valve is not actuated externally by air-pressure or vacuum so that it simplifies a DNA analysis system by eliminating the need for an air-pressure or vacuum source, and off-cartridge solenoid valves, control circuit boards and software. Instead, the new valve is actuated by a thermal cycling peltier assembly integrated within the hardware instrument that tightly comes in contact with a microfluidic cartridge for thermal activation during PCR, so that it spontaneously closes the valve without an additional actuator system. The valve has bumps in the designated locations so that it has a self-alignment that does not require precise alignment of a valve actuator. Moreover, the thickness of the new valve is around 600 μm with an additional bump height of 400 μm so that it is easy to handle and very feasible to fabricate by injection molding compared to other PDMS valves whose thicknesses are around 30-100 μm. The new valve provided over 95% of metering performance in filling the fixed volume of the PCR chamber, preserved over 97% of the sample volume during PCR, and showed very comparable capillary electrophoresis peak heights to the benchtop assay tube controls with very consistent transfer volume of the PCR-product and on-chip formamide. The new valve can perform a core function for integrated nucleic acid analysis by capillary electrophoresis.

  5. Variations in Surface Air Temperature Observations in the Arctic, 1979-97.

    NASA Astrophysics Data System (ADS)

    Rigor, Ignatius G.; Colony, Roger L.; Martin, Seelye

    2000-03-01

    The statistics of surface air temperature observations obtained from buoys, manned drifting stations, and meteorological land stations in the Arctic during 1979-97 are analyzed. Although the basic statistics agree with what has been published in various climatologies, the seasonal correlation length scales between the observations are shorter than the annual correlation length scales, especially during summer when the inhomogeneity between the ice-covered ocean and the land is most apparent. During autumn, winter, and spring, the monthly mean correlation length scales are approximately constant at about 1000 km; during summer, the length scales are much shorter, that is, as low as 300 km. These revised scales are particularly important in the optimal interpolation of data on surface air temperature (SAT) and are used in the analysis of an improved SAT dataset called International Arctic Buoy Programme/Polar Exchange at the Sea Surface (IABP/POLES). Compared to observations from land stations and the Russian North Pole drift stations, the IABP/POLES dataset has higher correlations and lower rms errors than previous SAT fields and provides better temperature estimates, especially during summer in the marginal ice zones. In addition, the revised correlation length scales allow data taken at interior land stations to be included in the optimal interpretation analysis without introducing land biases to grid points over the ocean. The new analysis provides 12-h fields of air temperatures on a 100-km rectangular grid for all land and ocean areas of the Arctic region for the years 1979-97.The IABP/POLES dataset is then used to study spatial and temporal variations in SAT. This dataset shows that on average melt begins in the marginal seas by the first week of June and advances rapidly over the Arctic Ocean, reaching the pole by 19 June, 2 weeks later. Freeze begins at the pole on 16 August, and the freeze isotherm advances more slowly than the melt isotherm. Freeze returns

  6. Implementation of pressurized air injection system in a Kaplan prototype for the reduction of vibration caused by tip vortex cavitation

    NASA Astrophysics Data System (ADS)

    Rivetti, A.; Angulo, M.; Lucino, C.; Hene, M.; Capezio, O.; Liscia, S.

    2016-11-01

    Blade tip cavitation is a well-known phenomenon that affects the performance of large-diameter Kaplan turbines and induces structural vibration. Injection of pressurized air has been found to yield promising results in reducing those damaging effects. In this work, the results of an experimental test of air injection on a 9.5-m-diameter Kaplan turbine are reported. Experiments were performed for several load conditions and for two different net heads. Accelerations, pressure pulsation and noise emission were monitored for every tested condition. Results show that, at the expense of a maximum efficiency drop of 0.2%, air injection induces a decrease on the level of vibration from 57% up to 84%, depending on the load condition. Such decrease is seen to be proportional to the air flow rate, in the range from 0.06 to 0.8‰ (respect to the discharge at the best efficiency point).

  7. THE RELATIONSHIP BETWEEN CIRCADIAN BLOOD PRESSURE VARIATION AND AGE ANALYSED FROM 7-DAY MONITORING

    PubMed Central

    SIEGELOVÁ, J.; DUŠEK, J.; FIŠER, B.; HOMOLKA, P.; VANK, P.; MAŠEK, M.; HAVELKOVÁ, A.; CORNÉLISSEN, G.; HALBERG, F.

    2009-01-01

    The relationship between age and circadian blood pressure (BP) variation was the aim of the present study. One hundred and eighty-seven subjects (130 males, 57 females), 20-77 years old, were recruited for seven-day BP monitoring. Colin medical instruments (Komaki, Japan) were used for ambulatory BP monitoring (oscillation method, 30-minute interval between measurements). A sinusoidal curve was fitted (minimum square method) and the mean value and amplitude of the curve (double amplitude corresponds to the night-day difference) were evaluated on every day of monitoring. The average 7-day values of the mean (M) and of double amplitude (2A) for systolic BP (SBP), diastolic BP (DBP), and heart rate (HR) were determined in each subject. The mean values of M (±SD) for the whole group were: SBP- 127±8, DBP - 79±6 mmHg, HR - 70±6 bpm; of 2A: SBP - 21±7, DBP - 15±5 mmHg, HR - 15±6 bpm. A linear relationship between M of SBP and age (r=0.341, p< 0.001) and DBP and age (r=0.384, p<0.001) was found (difference between 20 and 77 years: SBP - 16, DBP - 12 mmHg). 2A of SBP and DBP was increasing with age up to 35 years, then the curve remained relatively flat up to 55 years (maximum at 45 years), and then it decreased again (difference between 45 and 77 years: SBP - 13mmHg, DBP - 12 mmHg). Heart rate M and 2A were age-independent. The mean values of SBP and DBP were increasing with age up to 75 years, but the night-day difference of SBP and DBP reached its maximum value at 45 years and then decreased. PMID:19436777

  8. Effects of diurnal variation and anesthetic agents on intraocular pressure in Syrian hamsters (Mesocricetus auratus).

    PubMed

    Rajaei, Seyed Mehdi; Mood, Maneli Ansari; Paryani, Mohammad Reza; Williams, David L

    2017-01-01

    OBJECTIVE To determine effects of diurnal variation and anesthetic agents on intraocular pressure (IOP) in Syrian hamsters (Mesocricetus auratus). ANIMALS 90 healthy adult Syrian hamsters (45 males and 45 females). PROCEDURES IOP was measured with a rebound tonometer. In phase 1, IOP was measured in all hamsters 3 times during a 24-hour period (7 am, 3 pm, and 11 pm). In phase 2, hamsters were assigned to 5 groups (18 animals [9 males and 9 females]/group). Each group received an anesthetic agent or combination of anesthetic agents (ketamine hydrochloride, xylazine hydrochloride, diazepam, ketamine-diazepam [KD], or ketamine-xylazine [KX] groups) administered via the IP route. The IOP was measured before (time 0 [baseline]) and 10, 30, 60, 90, 120, and 150 minutes after administration of drugs. RESULTS Mean ± SD IOP values were 2.58 ± 0.87 mm Hg, 4.46 ± 1.58 mm Hg, and 5.96 ± 1.23 mm Hg at 7 am, 3 pm, and 11 pm, respectively. Mean baseline IOP was 6.25 ± 0.28 mm Hg, 6.12 ± 0.23 mm Hg, 5.75 ± 0.64 mm Hg, 5.12 ± 1.40 mm Hg, and 4.50 ± 1.30 mm Hg for the ketamine, xylazine, diazepam, KD, and KX groups, respectively. A significant decrease in IOP, compared with baseline IOP, was detected in only the KX group at 30, 60, and 90 minutes after drug administration. CONCLUSIONS AND CLINICAL RELEVANCE Maximum IOP in Syrian hamsters was detected at night. The ketamine-xylazine anesthetic combination significantly decreased IOP in Syrian hamsters.

  9. Elimination of diazinon insecticide from cucumber surface by atmospheric pressure air-dielectric barrier discharge plasma.

    PubMed

    Dorraki, Naghme; Mahdavi, Vahideh; Ghomi, Hamid; Ghasempour, Alireza

    2016-12-06

    The food industry is in a constant search for new technologies to improve the commercial sterilization process of agricultural commodities. Plasma treatment may offer a novel and efficient method for pesticide removal from agricultural product surfaces. To study the proposed technique of plasma food treatment, the degradation behavior of diazinon insecticide by air-dielectric barrier discharge (DBD) plasma was investigated. The authors studied the effect of different plasma powers and treatment times on pesticide concentration in liquid form and coated on the surface of cucumbers, where the diazinon residue was analyzed with mass spectroscopy gas chromatography. Our results suggest that atmospheric pressure air-DBD plasma is potentially effective for the degradation of diazinon insecticide, and mainly depends on related operating parameters, including plasma treatment time, discharge power, and pesticide concentrations. Based on the interaction between reactive oxygen species and electrons in the plasma with the diazinon molecule, two degradation pathway of diazinon during plasma treatment are proposed. It was also found that produced organophosphate pesticides are harmless and less hazardous compounds than diazinon.

  10. Use of MODIS Cloud Top Pressure to Improve Assimilation Yields of AIRS Radiances in GSI

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Srikishen, Jayanthi

    2014-01-01

    Improvements to global and regional numerical weather prediction have been demonstrated through assimilation of data from NASA's Atmospheric Infrared Sounder (AIRS). Current operational data assimilation systems use AIRS radiances, but impact on regional forecasts has been much smaller than for global forecasts. Previously, it has been shown that cloud top designation associated with quality control procedures within the Gridpoint Statistical Interpolation (GSI) system used operationally by a number of Joint Center for Satellite Data Assimilation (JCSDA) partners may not provide the best representation of cloud top pressure (CTP). Because this designated CTP determines which channels are cloud-free and, thus, available for assimilation, ensuring the most accurate representation of this value is imperative to obtaining the greatest impact from satellite radiances. This paper examines the assimilation of hyperspectral sounder data used in operational numerical weather prediction by comparing analysis increments and numerical forecasts generated using operational techniques with a research technique that swaps CTP from the Moderate-resolution Imaging Spectroradiometer (MODIS) for the value of CTP calculated from the radiances within GSI.

  11. Discharge modes of a DC operated atmospheric pressure air plasma jet

    NASA Astrophysics Data System (ADS)

    Kolb, Juergen; Pei, Xuekai; Kredl, Jana; Lu, Xinpei

    2016-09-01

    By flowing air or nitrogen through a microhollow cathode discharge geometry an afterglow plasma jet can be generated at atmospheric pressure in air. The plasma jet has been successfully used for the inactivation of bacteria and yeast. The responsible reaction chemistry is based on the production of high concentrations of nitric oxide. Production yields depend in particular on gas flow rate and energy dissipated in the plasma. The same parameters also determine different modes of operation for the jet. A true DC operation is achieved for low to moderate gas flow rate of about 1 slm and discharge currents on the order of 10 mA. When increasing the gas flow rate to 10 slm the operation is changing to a self-pulsing mode with characteristics similar to the ones observed for a transient spark. By increasing the current a DC operation can be achieved again also at higher gas flow rates. The parameter regimes for different modes of operation can be described by the reduced electric field E/N.

  12. Afterglow chemistry of atmospheric-pressure helium-oxygen plasmas with humid air impurity

    NASA Astrophysics Data System (ADS)

    Murakami, Tomoyuki; Niemi, Kari; Gans, Timo; O'Connell, Deborah; Graham, William G.

    2014-04-01

    The formation of reactive species in the afterglow of a radio-frequency-driven atmospheric-pressure plasma in a fixed helium-oxygen feed gas mixture (He+0.5%O2) with humid air impurity (a few hundred ppm) is investigated by means of an extensive global plasma chemical kinetics model. As an original objective, we explore the effects of humid air impurity on the biologically relevant reactive species in an oxygen-dependent system. After a few milliseconds in the afterglow environment, the densities of atomic oxygen (O) decreases from 1015 to 1013 cm-3 and singlet delta molecular oxygen (O2(1D)) of the order of 1015 cm-3 decreases by a factor of two, while the ozone (O3) density increases from 1014 to 1015 cm-3. Electrons and oxygen ionic species, initially of the order of 1011 cm-3, recombine much faster on the time scale of some microseconds. The formation of atomic hydrogen (H), hydroxyl radical (OH), hydroperoxyl (HO2), hydrogen peroxide (H2O2), nitric oxide (NO) and nitric acid (HNO3) resulting from the humid air impurity as well as the influence on the afterglow chemistry is clarified with particular emphasis on the formation of dominant reactive oxygen species (ROS). The model suggests that the reactive species predominantly formed in the afterglow are major ROS O2(1D) and O3 (of the order of 1015 cm-3) and rather minor hydrogen- and nitrogen-based reactive species OH, H2O2, HNO3 and NO2/NO3, of which densities are comparable to the O-atom density (of the order of 1013 cm-3). Furthermore, the model quantitatively reproduces the experimental results of independent O and O3 density measurements.

  13. Effects of moderate strength cold air exposure on blood pressure and biochemical indicators among cardiovascular and cerebrovascular patients.

    PubMed

    Zhang, Xiakun; Zhang, Shuyu; Wang, Chunling; Wang, Baojian; Guo, Pinwen

    2014-02-27

    The effects of cold air on cardiovascular and cerebrovascular diseases were investigated in an experimental study examining blood pressure and biochemical indicators. Zhangye, a city in Gansu Province, China, was selected as the experimental site. Health screening and blood tests were conducted, and finally, 30 cardiovascular disease patients and 40 healthy subjects were recruited. The experiment was performed during a cold event during 27-28 April 2013. Blood pressure, catecholamine, angiotensin II (ANG-II), cardiac troponin I (cTnI), muscle myoglobin (Mb) and endothefin-1 (ET-1) levels of the subjects were evaluated 1 day before, during the 2nd day of the cold exposure and 1 day after the cold air exposure. Our results suggest that cold air exposure increases blood pressure in cardiovascular disease patients and healthy subjects via the sympathetic nervous system (SNS) that is activated first and which augments ANG-II levels accelerating the release of the norepinephrine and stimulates the renin-angiotensin system (RAS). The combined effect of these factors leads to a rise in blood pressure. In addition, cold air exposure can cause significant metabolism and secretion of Mb, cTnI and ET-1 in subjects; taking the patient group as an example, ET-1 was 202.7 ng/L during the cold air exposure, increased 58 ng/L compared with before the cold air exposure, Mb and cTnI levels remained relatively high (2,219.5 ng/L and 613.2 ng/L, increased 642.1 ng/L and 306.5 ng/L compared with before the cold air exposure, respectively) 1-day after the cold exposure. This showed that cold air can cause damage to patients' heart cells, and the damage cannot be rapidly repaired. Some of the responses related to the biochemical markers indicated that cold exposure increased cardiovascular strain and possible myocardial injury.

  14. Effect of airstream velocity on mean drop diameters of water sprays produced by pressure and air atomizing nozzles

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1977-01-01

    A scanning radiometer was used to determine the effect of airstream velocity on the mean drop diameter of water sprays produced by pressure atomizing and air atomizing fuel nozzles used in previous combustion studies. Increasing airstream velocity from 23 to 53.4 meters per second reduced the Sauter mean diameter by approximately 50 percent with both types of fuel nozzles. The use of a sonic cup attached to the tip of an air assist nozzle reduced the Sauter mean diameter by approximately 40 percent. Test conditions included airstream velocities of 23 to 53.4 meters per second at 293 K and atmospheric pressure.

  15. Etching of polymers, proteins and bacterial spores by atmospheric pressure DBD plasma in air

    NASA Astrophysics Data System (ADS)

    Kuzminova, A.; Kretková, T.; Kylián, O.; Hanuš, J.; Khalakhan, I.; Prukner, V.; Doležalová, E.; Šimek, M.; Biederman, H.

    2017-04-01

    Many studies proved that non-equilibrium discharges generated at atmospheric pressure are highly effective for the bio-decontamination of surfaces of various materials. One of the key processes that leads to a desired result is plasma etching and thus the evaluation of etching rates of organic materials is of high importance. However, the comparison of reported results is rather difficult if impossible as different authors use diverse sources of atmospheric plasma that are operated at significantly different operational parameters. Therefore, we report here on the systematic study of the etching of nine different common polymers that mimic the different structures of more complicated biological systems, bovine serum albumin (BSA) selected as the model protein and spores of Bacillus subtilis taken as a representative of highly resistant micro-organisms. The treatment of these materials was performed by means of atmospheric pressure dielectric barrier discharge (DBD) sustained in open air at constant conditions. All tested polymers, BSA and spores, were readily etched by DBD plasma. However, the measured etching rates were found to be dependent on the chemical structure of treated materials, namely on the presence of oxygen in the structure of polymers.

  16. Diffuse plasma treatment of polyamide 66 fabric in atmospheric pressure air

    NASA Astrophysics Data System (ADS)

    Li, Lee; Peng, Ming-yang; Teng, Yun; Gao, Guozhen

    2016-01-01

    The polyamide 66 (PA66) fabrics are hard to be colored or glued in industrial production due to the poor hydrophily. Diffuse plasma is a kind of non-thermal plasma generated at atmospheric pressure in air. This paper proposes that large-scale diffuse plasma generated between wire electrodes can be employed for improving the hydrophily of PA66 fabrics. A repetitive nanosecond-pulse diffuse-discharge reactor using a cylindrical wire electrode configuration is presented, which can generate large-scale non-thermal plasmas steadily at atmospheric pressure without any barrier dielectric. Then the reactor is used to treat PA66 fabrics in different discharge conditions. The hydrophilicity property of modified PA66 is measured by wicking test method. The modified PA66 is also analyzed by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) to prove the surface changes in physical microstructure and chemical functional groups, respectively. What's more, the effects of treatment time and treatment frequency on surface modification are investigated and discussed.

  17. Interaction of Atmospheric-Pressure Air Microplasmas with Amino Acids as Fundamental Processes in Aqueous Solution.

    PubMed

    Zhou, Renwu; Zhou, Rusen; Zhuang, Jinxing; Zong, Zichao; Zhang, Xianhui; Liu, Dongping; Bazaka, Kateryna; Ostrikov, Kostya

    2016-01-01

    Plasma medicine is a relatively new field that investigates potential applications of cold atmospheric-pressure plasmas in bioengineering, such as for bacterial inactivation and degradation of organic molecules in water. In order to enunciate mechanisms of bacterial inactivation at molecular or atomic levels, we investigated the interaction of atmospheric-pressure air microplasmas with amino acids in aqueous solution by using high-resolution mass spectrometry (HRMS). Results show that the oxidation effect of plasma-induced species on the side chains of the amino acids can be categorized into four types, namely hydroxylation, nitration, dehydrogenation and dimerization. In addition, relative activities of amino acids resulting from plasma treatment come in descending order as follows: sulfur-containing carbon-chain amino acids > aromatic amino acids > five-membered ring amino acids > basic carbon-chain amino acids. Since amino acids are building blocks of proteins vital to the growth and reproduction of bacteria, these results provide an insight into the mechanism of bacterial inactivation by plasma.

  18. The effects of air pressure on spontaneous otoacoustic emissions of lizards.

    PubMed

    van Dijk, Pim; Manley, Geoffrey A

    2013-06-01

    Small changes of air pressure outside the eardrum of five lizard species led to changes in frequency, level, and peak width of spontaneous otoacoustic emissions (SOAE). In contrast to humans, these changes generally occurred at very small pressures (<20 mbar). As in humans, SOAE amplitudes were generally reduced. Changes of SOAE frequency were both positive and negative, while in humans, they are mostly positive. In addition, in lizards, these effects often showed obvious hysteresis and non-repeatability. The correlation between peak width and height was negative in two species (comparable to humans) and positive in one species. In two other species, no correlation was found. Consequently, a simple oscillator model that explained the negative correlation in humans could not be generally applied to lizards. This presumably reflects the fact that in lizards, the spontaneous otoacoustic emission of sound from the ear consists of a combination of stable oscillations (as in humans), unstable narrow-band oscillations, and broad-band emissions, evident as "plateaus" in emission spectra.

  19. Interaction of Atmospheric-Pressure Air Microplasmas with Amino Acids as Fundamental Processes in Aqueous Solution

    PubMed Central

    Zhou, Renwu; Zhou, Rusen; Zhuang, Jinxing; Zong, Zichao; Zhang, Xianhui; Liu, Dongping; Bazaka, Kateryna; Ostrikov, Kostya

    2016-01-01

    Plasma medicine is a relatively new field that investigates potential applications of cold atmospheric-pressure plasmas in bioengineering, such as for bacterial inactivation and degradation of organic molecules in water. In order to enunciate mechanisms of bacterial inactivation at molecular or atomic levels, we investigated the interaction of atmospheric-pressure air microplasmas with amino acids in aqueous solution by using high-resolution mass spectrometry (HRMS). Results show that the oxidation effect of plasma-induced species on the side chains of the amino acids can be categorized into four types, namely hydroxylation, nitration, dehydrogenation and dimerization. In addition, relative activities of amino acids resulting from plasma treatment come in descending order as follows: sulfur-containing carbon-chain amino acids > aromatic amino acids > five-membered ring amino acids > basic carbon-chain amino acids. Since amino acids are building blocks of proteins vital to the growth and reproduction of bacteria, these results provide an insight into the mechanism of bacterial inactivation by plasma. PMID:27183129

  20. Pilot Study of the Effects of Simulated Turbine Passage Pressure on Juvenile Chinook Salmon Acclimated with Access to Air at Absolute Pressures Greater than Atmospheric

    SciTech Connect

    Carlson, Thomas J.; Abernethy, Cary S.

    2005-04-28

    The impacts of pressure on juvenile salmon who pass through the turbines of hydroelectric dams while migrating downstream on the Columbia and Snake rivers has not been well understood, especially as these impacts relate to injury to the fish's swim bladder. The laboratory studies described here were conducted by Pacific Northwest National Laboratory for the US Army Corps of Engineers Portland District at PNNL's fisheries research laboratories in 2004 to investigate the impacts of simulated turbine passage pressure on fish permitted to achieve neutral buoyancy at pressures corresponding to depths at which they are typically observed during downstream migration. Two sizes of juvenile Chinook salmon were tested, 80-100mm and 125-145mm total length. Test fish were acclimated for 22 to 24 hours in hyperbaric chambers at pressures simulating depths of 15, 30, or 60 ft, with access to a large air bubble. High rates of deflated swim bladders and mortality were observed. Our results while in conclusive show that juvenile salmon are capable of drawing additional air into their swimbladder to compensate for the excess mass of implanted telemetry devices. However they may pay a price in terms of increased susceptibility to injury, predation, and death for this additional air.

  1. Dual-pump CARS of Air in a Heated Pressure Vessel up to 55 Bar and 1300 K

    NASA Technical Reports Server (NTRS)

    Cantu, Luca; Gallo, Emanuela; Cutler, Andrew D.; Danehy, Paul M.

    2014-01-01

    Dual-pump Coherent anti-Stokes Raman scattering (CARS) measurements have been performed in a heated pressure vessel at NASA Langley Research Center. Each measurement, consisting of 500 single shot spectra, was recorded at a fixed location in dry air at various pressures and temperatures, in a range of 0.03-55×10(exp 5) Pa and 300-1373 K, where the temperature was varied using an electric heater. The maximum output power of the electric heater limited the combinations of pressures and temperatures that could be obtained. Charts of CARS signal versus temperature (at constant pressure) and signal versus pressure (at constant temperature) are presented and fit with an empirical model to validate the range of capability of the dual-pump CARS technique; averaged spectra at different conditions of pressure and temperature are also shown.

  2. Do sudden air temperature and pressure changes affect cardiovascular morbidity and mortality?

    NASA Astrophysics Data System (ADS)

    Plavcová, E.; Davídkovová, H.; Kyselý, J.

    2012-04-01

    Previous studies have shown that sudden changes in weather (usually represented by air temperature and/or pressure) are associated with increases in daily mortality. Little is understood about physiological mechanisms responsible for the impacts of weather changes on mortality, and whether similar patterns appear for morbidity as well. Relatively little is known also about differences in the magnitude of the mortality response in provincial regions and in cities, where the impacts may be exacerbated by air pollution effects and/or heat island. The present study examines the effects of sudden air temperature and pressure changes on morbidity (represented by hospital admissions) and mortality due to cardiovascular diseases in the population of the Czech Republic (approx. 10 million inhabitants) and separately in the city of Prague (1.2 million inhabitants). The events are selected from data covering 1994-2009 using the methodology introduced by Plavcová and Kyselý (2010), and they are compared with the datasets on hospital admissions and daily mortality (both standardized to account for long-term changes and the seasonal and weekly cycles). Relative deviations of morbidity/mortality from the baseline were averaged over the selected events for days D-2 (2 days before a change) up to D+7 (7 days after), and their statistical significance was tested by means of the Monte Carlo method. The study aims at (i) identifying those weather changes associated with increased cardiovascular morbidity/mortality, separately in summer and winter, (ii) comparing the effects of weather changes on morbidity and mortality, (iii) identifying whether urban population of Prague is more/less vulnerable in comparison to the population of the whole Czech Republic, (iv) comparing the effects for different cardiovascular diseases (ischaemic heart diseases, ICD-10 codes I20-I25; cerebrovascular diseases, I60-I69; hypertension, I10; atherosclerosis, I70) and individual population groups (by age

  3. Pulsed positive discharges in air at moderate pressures near a dielectric rod

    NASA Astrophysics Data System (ADS)

    Dubinova, A.; Trienekens, D.; Ebert, U.; Nijdam, S.; Christen, T.

    2016-10-01

    We study pulsed positive discharges in air in a cylindrically symmetric setup with an electrode needle close (about 1 mm) above the top of a dielectric cylindrical rod of 4 mm in diameter mounted at its bottom on a grounded plate electrode. We present ICCD (intensified charge-coupled device) pictures and evaluations of experiments as well as simulations with a fluid discharge model; the simulations use cylindrical symmetry. In the experiments, there is an initial inception cloud phase, where the cylindrical symmetry is maintained, and later a streamer phase, where it is broken spontaneously. At 75-150 mbar, discharges with cylindrical symmetry are not attracted to the dielectric rod, but move away from it. The dielectric rod plays the sole role of an obstacle that shades (in the context of photoionization) a cone-shaped part of the inception cloud; the cone size is determined by the geometry of the setup. The material properties of the dielectric rod, such as its dielectric permittivity and the efficiency of the photon induced secondary electron emission do not have a noticeable effect. This is due to the abundance of photoionization in air, which supplies a positive discharge with free electrons and allows it to propagate along the electric field lines. Using some simple field calculations, we show that field enhancement due to dielectric polarization does not play a significant role in our geometry as long as the discharge maintains its cylindrical symmetry. The field component towards the rod is insufficiently enhanced to cause the discharge to move towards the rod. Any additional electrons produced by the dielectric surface do not influence this discharge morphology. This interpretation is supported by both experiments and simulations. At higher pressures (400-600 mbar) or for larger gaps between the needle and the dielectric rod, the inception cloud reaches its maximal radius within the gap between needle and rod and destabilizes there. In those cases

  4. Positive and negative gas-phase ion chemistry of chlorofluorocarbons in air at atmospheric pressure.

    PubMed

    Bosa, Elisabetta; Paradisi, Cristina; Scorrano, Gianfranco

    2003-01-01

    This paper presents a report on the ionization/dissociation of some representative chlorofluorocarbons (CFCs) induced by corona discharges in air at atmospheric pressure. Both positive and negative ions formed from Freons 1,1,1-trichlorotrifluoroethane (CFC 113a), 1,1,2-trichlorotrifluoroethane (CFC 113), and 1,1,1,2-tetrachlorodifluoroethane (CFC 112a) were analyzed using an atmospheric pressure chemical ionization mass spectrometry (APCI-MS) instrument. Energy-resolved mass spectra were obtained by modulating the kinetic energy of the ions via adjustment of the sampling cone potential (V(cone)). Positive ion spectra of the CFCs (M) at low V(cone) show no signals due to either M(+)* or MH(+) but only those due to species [M - Cl](+) and CX(3)(+) (X = Cl, F), likely formed via C-Cl and C-C bond cleavages following ionization via charge exchange. Charge localization in the products of C-C bond cleavage in M(+)* is driven by the stability of the neutral fragment. At low V(cone) the hydrates [M - Cl](+)(H(2)O) are also observed. In the case of 1,1,2,-trichlorotrifluoroethane, [M - F](+) species also form as a result of ion-molecule reactions. As V(cone) is increased collision-induced dissociation of [M - Cl](+) and [M - F](+), i.e., the perhalogenated cations C(2)X(5)(+) (X = Cl, F), takes place via carbene elimination. In some cases such elimination is preceded or accompanied by rearrangements involving transfer of halogen from one carbon to the other. Evidence is also presented for the occurrence of a condensation reaction of C(2)Cl(3)F(2)(+) with water to form a C(2)Cl(2)F(2)HO(+) species via elimination of HCl. Negative ion spectra are dominated by Cl(-) and its ion-neutral complexes with M and with water. Additional components of the plasma include ion-neutral complexes O(3)(-)(M), the molecular anion M(-) (observed only with 1,1,2-trichlorotrifluoroethane), and an interesting species corresponding to [M - Cl + O](-). The origin and structure of these [M - Cl + O

  5. Calculating osmotic pressure of glucose solutions according to ASOG model and measuring it with air humidity osmometry.

    PubMed

    Wei, Guocui; Zhan, Tingting; Zhan, Xiancheng; Yu, Lan; Wang, Xiaolan; Tan, Xiaoying; Li, Chengrong

    2016-09-01

    The osmotic pressure of glucose solution at a wide concentration range was calculated using ASOG model and experimentally determined by our newly reported air humidity osmometry. The measurements from air humidity osmometry were compared with the well-established freezing point osmometry and ASOG model calculations at low concentrations and with only ASOG model calculations at high concentrations where no standard experimental method could serve as a reference for comparison. Results indicate that air humidity osmometry measurements are comparable to ASOG model calculations at a wide concentration range, while at low concentrations freezing point osmometry measurements provide better comparability with ASOG model calculations.

  6. Tumor-dependent kinetics of partial pressure of oxygen fluctuations during air and oxygen breathing.

    PubMed

    Cárdenas-Navia, L Isabel; Yu, Daohai; Braun, Rod D; Brizel, David M; Secomb, Timothy W; Dewhirst, Mark W

    2004-09-01

    The primary purpose of this study was to examine the kinetics of partial pressure of oxygen (pO2) fluctuations in fibrosarcoma (FSA) and 9L tumors under air and O2 breathing conditions. The overall hypothesis was that key factors relating to oxygen tension fluctuations would vary between the two tumor types and as a function of the oxygen content of the breathing gas. To assist in the interpretation of the temporal data, spatial pO2 distributions were measured in 10 FSA and 8 9L tumors transplanted into the subcutis of the hind leg of Nembutal-anesthetized (50 mg/kg) Fischer 344 rats. Recessed-tip oxygen microelectrodes were inserted into the tumor, and linear pO2 measurements were recorded in 50-microm steps along a 3-mm path, and blood pressure was simultaneously measured via femoral arterial access. Additionally, pO2 was measured at a single location for 90 to 120 minutes in FSA (n=11) or 9L tumors (n=12). Rats were switched from air to 100% O2 breathing after 45 minutes. Temporal pO2 records were evaluated for their potential radiobiological significance by assessing the number of times they crossed a 10-mm-Hg threshold. In addition, the data were subjected to Fourier analysis for air and O2 breathing. FSA and 9L tumors had spatial median pO2 measurements of 4 and 1 mm Hg, respectively. 9L had more low pO2 measurements < or =2.5 mm Hg than did FSA, whereas between 2.5 and 10 mm Hg this pattern was reversed. Pimonidazole staining patterns in FSA and 9L tumors supported these results. Temporal pO2 instability was observed in all experiments during air and O2 breathing. Threshold analyses indicated that the 10 mm Hg threshold was crossed 2 to 5 times per hour, independent of tumor type. However, the magnitude of 9L pO2 fluctuations was approximately eight times greater than FSA fluctuations, as assessed with Fourier transform analysis (Wilcoxon, P < 0.005). O2 breathing significantly increased median pO2 in FSA from 3 to 8 mm Hg (P < 0.005) and caused a

  7. Blood Pressure Variation Throughout Pregnancy According to Early Gestational BMI: A Brazilian Cohort.

    PubMed

    Rebelo, Fernanda; Farias, Dayana Rodrigues; Mendes, Roberta Hack; Schlüssel, Michael Maia; Kac, Gilberto

    2015-02-13

    Background: The maternal cardiovascular system undergoes progressive adaptations throughout pregnancy, causing blood pressure fluctuations. However, no consensus has been established on its normal variation in uncomplicated pregnancies. Objective: To describe the variation in systolic blood pressure (SBP) and diastolic blood pressure (DBP) levels during pregnancy according to early pregnancy body mass index (BMI). Methods: SBP and DBP were measured during the first, second and third trimesters and at 30-45 days postpartum in a prospective cohort of 189 women aged 20-40 years. BMI (kg/m2) was measured up to the 13th gestational week and classified as normal-weight (<25.0) or excessive weight (≥25.0). Longitudinal linear mixed-effects models were used for statistical analysis. Results: A decrease in SBP and DBP was observed from the first to the second trimester (βSBP=-0.394; 95%CI: -0.600- -0.188 and βDBP=-0.617; 95%CI: -0.780- -0.454), as was an increase in SBP and DBP up to 30-45 postpartum days (βSBP=0.010; 95%CI: 0.006-0.014 and βDBP=0.015; 95%CI: 0.012-0.018). Women with excessive weight at early pregnancy showed higher mean SBP in all gestational trimesters, and higher mean DBP in the first and third trimesters. Excessive early pregnancy BMI was positively associated with prospective changes in SBP (βSBP=7.055; 95%CI: 4.499-9.610) and in DBP (βDBP=3.201; 95%CI: 1.136-5.266). Conclusion: SBP and DBP decreased from the first to the second trimester and then increased up to the postpartum period. Women with excessive early pregnancy BMI had higher SBP and DBP than their normal-weight counterparts throughout pregnancy, but not in the postpartum period.Fundamento: O sistema cardiovascular materno sofre adaptações progressivas durante a gestação, acarretando flutuações da pressão arterial. Entretanto, não há consenso sobre a variação pressórica normal na gravidez saudável. Objetivo: Descrever a variação da pressão arterial sistólica (PAS) e

  8. Investigation of temperature and barometric pressure variation effects on radon concentration in the Sopronbánfalva Geodynamic Observatory, Hungary.

    PubMed

    Mentes, Gyula; Eper-Pápai, Ildikó

    2015-11-01

    Radon concentration variation has been monitored since 2009 in the artificial gallery of the Sopronbánfalva Geodynamic Observatory, Hungary. In the observatory, the radon concentration is extremely high, 100-600 kBq m(-3) in summer and some kBq m(-3) in winter. The relationships between radon concentration, temperature and barometric pressure were separately investigated in the summer and winter months by Fast Fourier Transform, Principal Component Analysis, Multivariable Regression and Partial Least Square analyses in different frequency bands. It was revealed that the long-period radon concentration variation is mainly governed by the temperature (20 kBq m(-1) °C(-1)) both in summer and winter. The regression coefficients between long-period radon concentration and barometric pressure are -1.5 kBq m(-3) hPa(-1) in the summer and 5 kBq m(-3) hPa(-1) in the winter months. In the 0.072-0.48 cpd (cycles per day) frequency band the effect of the temperature is about -1 kBq m(-3) °C(-1) and that of the barometric pressure is -5 kBq m(-3) hPa(-1) in summer and -0.5 kBq m(-3) hPa(-1) in winter. In the high frequency range (>0.48 cpd) all regression coefficients are one order of magnitude smaller than in the range of 0.072-0.48 cpd. Fast Fourier Transform of the radon concentration, temperature and barometric pressure time series revealed S1, K1, P1, S2, K2, M2 tidal constituents in the data and weak O1 components in the radon concentration and barometric pressure series. A detailed tidal analysis, however, showed that the radon tidal components are not directly driven by the gravitational force but rather by solar radiation and barometric tide. Principal Component Analysis of the raw data was performed to investigate the yearly, summer and winter variability of the radon concentration, temperature and barometric pressure. In the summer and winter periods the variability does not change. The higher variability of the radon concentration compared to the variability of

  9. Performance of a hydrogen burner to simulate air entering scramjet combustors. [simulation of total temperature, total pressure, and volume fraction of oxygen of air at flight conditions

    NASA Technical Reports Server (NTRS)

    Russin, W. R.

    1974-01-01

    Tests were conducted to determine the performance of a hydrogen burner used to produce a test gas that simulates air entering a scramjet combustor at various flight conditions. The test gas simulates air in that it duplicates the total temperature, total pressure, and the volume fraction of oxygen of air at flight conditions. The main objective of the tests was to determine the performance of the burner as a function of the effective exhaust port area. The conclusions were: (1) pressure oscillations of the chugging type were reduced in amplitude to plus or minus 2 percent of the mean pressure level by proper sizing of hydrogen, oxygen, and air injector flow areas; (2) combustion efficiency remained essentially constant as the exhaust port area was increased by a factor of 3.4; (3) the mean total temperature determined from integrating the exit radial gas property profiles was within plus or minus 5 percent of the theoretical bulk total temperature; (4) the measured exit total temperature profile had a local peak temperature more than 30 percent greater than the theoretical bulk total temperature; and (5) measured heat transfer to the burner liner was 75 percent of that predicted by theory based on a flat radial temperature profile.

  10. The association of annual air pollution exposure with blood pressure among patients with sleep-disordered breathing.

    PubMed

    Liu, Wen-Te; Lee, Kang-Yun; Lee, Hsin-Chien; Chuang, Hsiao-Chi; Wu, Dean; Juang, Jer-Nan; Chuang, Kai-Jen

    2016-02-01

    While sleep-disordered breathing (SDB), high blood pressure (BP) and air pollution exposure have separately been associated with increased risk of cardiopulmonary mortality, the association linking air pollution exposure to BP among patients with sleep-disordered breathing is still unclear. We collected 3762 participants' data from the Taipei Medical University Hospital's Sleep Center and air pollution data from the Taiwan Environmental Protection Administration. Associations of 1-year mean criteria air pollutants [particulate matter with aerodynamic diameters ≤10 μm (PM10), particulate matter with aerodynamic diameters ≤2.5 μm (PM2.5), nitrogen dioxide (NO2) and ozone (O3)] with systolic BP (SBP) and diastolic BP (DBP) were investigated by generalized additive models. After controlling for age, sex, body mass index (BMI), temperature and relative humidity, we observed that increases in air pollution levels were associated with decreased SBP and increased DBP. We also found that patients with apnea-hypopnea index (AHI) ≥30 showed a stronger BP response to increased levels of air pollution exposure than those with AHI<30. Stronger effects of air pollution exposure on BP were found in overweight participants than in participants with normal BMI. We concluded that annual exposure to air pollution was associated with change of BP among patients with sleep-disordered breathing. The association between annual air pollution exposure and BP could be modified by AHI and BMI.

  11. Effects of autogenic training and antihypertensive agents on circadian and circaseptan variation of blood pressure.

    PubMed

    Watanabe, Yoshihiko; Cornélissen, Germaine; Watanabe, Misako; Watanabe, Fumihiko; Otsuka, Kuniaki; Ohkawa, Shi-ichiro; Kikuchi, Takenori; Halberg, Franz

    2003-10-01

    Even when the daily blood pressure mean is acceptable, too large a circadian amplitude of blood pressure largely increases cardiovascular disease risk. Autogenic training (N = 11), a non-pharmacologic intervention capable of lowering an excessive blood pressure variability, may be well-suited for MESOR-normotensive patients diagnosed with circadian-hyper-amplitude-tension (CHAT). Not all anti-hypertensive drugs affect blood pressure variability. Accordingly, long-acting carteolol (N = 11) and/or atenolol (N = 8) may be preferred to captopril retard (N = 13), nilvadipine (N = 8), or amlodipine (N = 7) for midline-estimating statistic of rhythm (MESOR)-hypertensive patients with CHAT. Prospective outcome studies are needed to assess whether the relative merits of these treatments are in keeping with their effects on blood pressure and blood pressure variability.

  12. Impact of Surface Air Temperature and Snow Cover Depth on the Upper Soil Temperature Variations in Russia

    NASA Astrophysics Data System (ADS)

    Sherstyukov, A. B.; Sherstyukov, B. G.; Groisman, P. Y.

    2007-12-01

    A study of the impact of climate changes during for the last four decades on soil temperatures at depths up to 3.2 meters has been conducted for the territory of Russia. For the 1965-2004 period, we compiled and analyzed data from all Russian meteorological stations with long-term soil temperature observations at depths 80, 160 and 320 cm. Traditionally, these stations also observe a complete set of standard meteorological variables (that include surface air temperature and extensive monitoring of snow cover characteristics). This allowed us to investigate the impact of surface air temperatures and snow depth variations on soil temperatures in the upper soil layer, to quantify it using statistical analyses of multi-dimensional 40-year-long time series at 164 locations throughout the country, and assess the representativeness of the obtained results. Three-dimensional spatial distributions of regression and correlation coefficients were mapped for warm and cold seasons separately as well as for the entire year, and thereafter analyzed. In the permafrost zone we found special features in these fields that distinctively separate the permafrost zone from the remaining territory. In this zone, soil temperatures are practically uncorrelated with surface air temperatures and variations of the snow depth controls soil temperature variations (with R2 up to 0.5) Quantitative estimates of the contribution of mid-annual air temperature and snow cover depth in the long-term changes of mid-annual soil temperatures across the Russia territory were received. We found that the prevailing influence on soil temperature variations in the European part was surface air temperatures and in the Asian part of Russia was snow cover depth. Furthermore, increase of the winter snow depth in the permafrost zone (by preserving the heat accumulated in the warm season) promotes annual soil temperature increase and therefore may foster the further permafrost degradation associated with ongoing

  13. [Variation characteristics and influencing factors of air pollution index in China].

    PubMed

    Li, Xiao-Fei; Zhang, Ming-Jun; Wang, Sheng-Jie; Zhao, Ai-Fang; Ma, Qian

    2012-06-01

    Based on the daily air pollution index (API), primary pollutant, air quality level and status of 42 cities in China during 2001-2010, the characteristics of air quality were analyzed. The results showed that the atmosphere was significantly influenced by consumption of coal. The primary pollutant was PM10, and the air quality status was excellent (0 < API < 50), good (50 < API <100) and slightly polluted (100 < API < 150) in the majority. The air pollution status varied seasonally, which was the most serious in winter, and slightest in summer. The air quality was better and better in the observed period generally; The spatial distribution of urban air environment displayed a worsening trend from the south to the north and from the coasts to the inland; The local emission and natural dust transmission from the Northwest China was the main sources of urban air pollution; The air pollutants were impacted by the meteorological elements, and the air pollution index correlated linearly with precipitation, wind speed and temperature inversion; The distribution of weather conditions, which was affected by the terrain, also could influence the air quality; In addition, the human activities had both positive and negative functions on the urban air quality.

  14. Quantifying the impact of land cover composition on intra-urban air temperature variations at a mid-latitude city.

    PubMed

    Yan, Hai; Fan, Shuxin; Guo, Chenxiao; Hu, Jie; Dong, Li

    2014-01-01

    The effects of land cover on urban-rural and intra-urban temperature differences have been extensively documented. However, few studies have quantitatively related air temperature to land cover composition at a local scale which may be useful to guide landscape planning and design. In this study, the quantitative relationships between air temperature and land cover composition at a neighborhood scale in Beijing were investigated through a field measurement campaign and statistical analysis. The results showed that the air temperature had a significant positive correlation with the coverage of man-made surfaces, but the degree of correlation varied among different times and seasons. The different land cover types had different effects on air temperature, and also had very different spatial extent dependence: with increasing buffer zone size (from 20 to 300 m in radius), the correlation coefficient of different land cover types varied differently, and their relative impacts also varied among different times and seasons. At noon in summer, ∼ 37% of the variations in temperature were explained by the percentage tree cover, while ∼ 87% of the variations in temperature were explained by the percentage of building area and the percentage tree cover on summer night. The results emphasize the key role of tree cover in attenuating urban air temperature during daytime and nighttime in summer, further highlighting that increasing vegetation cover could be one effective way to ameliorate the urban thermal environment.

  15. Survey and bibliography on attainment of laminar flow control in air using pressure gradient and suction, volume 1

    NASA Technical Reports Server (NTRS)

    Bushnell, D. M.; Tuttle, M. H.

    1979-01-01

    A survey was conducted and a bibliography compiled on attainment of laminar flow in air through the use of favorable pressure gradient and suction. This report contains the survey, summaries of data for both ground and flight experiments, and abstracts of referenced reports. Much early information is also included which may be of some immediate use as background material for LFC applications.

  16. The Effect of Conceptual Change Approach to Eliminate 9th Grade High School Students' Misconceptions about Air Pressure

    ERIC Educational Resources Information Center

    Akbas, Yavuz; Gencturk, Ebru

    2011-01-01

    The aim of this study was to determine the effectiveness of teaching based on conceptual change overcome misconceptions of 9th grade high school students about the subject of air pressure. The sampling of the study was formed with two classes of 9th grade students from a general high school in the city-center of Trabzon. A quasi-experimental…

  17. Peak Sound Pressure Levels and Associated Auditory Risk from an H[subscript 2]-Air "Egg-Splosion"

    ERIC Educational Resources Information Center

    Dolhun, John J.

    2016-01-01

    The noise level from exploding chemical demonstrations and the effect they could have on audiences, especially young children, needs attention. Auditory risk from H[subscript 2]- O2 balloon explosions have been studied, but no studies have been done on H[subscript 2]-air "eggsplosions." The peak sound pressure level (SPL) was measured…

  18. Diurnal variation of NOx and ozone exchange between a street canyon and the overlying air

    NASA Astrophysics Data System (ADS)

    Kwak, Kyung-Hwan; Baik, Jong-Jin

    2014-04-01

    The diurnal variation of NOx and O3 exchange between a street canyon and the overlying air in two dimensions is investigated to understand reactive pollutant removal and entrainment across the roof level of the street canyon. The computational fluid dynamics (CFD) model used in this study is a Reynolds-averaged Navier-Stokes equations (RANS) model and includes the urban surface and radiation processes and the comprehensive chemical processes. The CFD model is used for the one-day simulation in which the easterly ambient wind blows perpendicular to the north-south oriented street canyon with a canyon aspect ratio of 1. In the morning when the surface temperature of the downwind building wall is higher than that of the upwind building wall, two counter-rotating vortices appear in the street canyon (flow regime II). In the afternoon when the surface temperature of the upwind building wall is higher than that of the downwind building wall, an intensified primary vortex appears in the street canyon (flow regime I). The NOx and O3 exchange is generally active in the region close to the building wall with the higher temperature regardless of flow regime. The NOx and O3 exchange by turbulent flow is dominant in flow regime II, whereas the NOx and O3 exchange by mean flow becomes comparable to that by turbulent flow in a certain period of flow regime I. The NOx and O3 exchange velocities are similar to each other in the early morning, whereas these are significantly different from each other around noon and in the afternoon. This behavior indicates that the exchange velocity is dependent on flow regime. In addition, the diurnal variability of O3 exchange velocity is found to be dependent on photochemistry rather than dry deposition in the street canyon. This study suggests that photochemistry as well as flow in a street canyon is needed to be taken into account when exchange velocities for reactive pollutants are estimated.

  19. Pressure driven currents near magnetic islands in 3D MHD equilibria: Effects of pressure variation within flux surfaces and of symmetry

    NASA Astrophysics Data System (ADS)

    Reiman, Allan H.

    2016-07-01

    In toroidal, magnetically confined plasmas, the heat and particle transport is strongly anisotropic, with transport along the field lines sufficiently strong relative to cross-field transport that the equilibrium pressure can generally be regarded as constant on the flux surfaces in much of the plasma. The regions near small magnetic islands, and those near the X-lines of larger islands, are exceptions, having a significant variation of the pressure within the flux surfaces. It is shown here that the variation of the equilibrium pressure within the flux surfaces in those regions has significant consequences for the pressure driven currents. It is further shown that the consequences are strongly affected by the symmetry of the magnetic field if the field is invariant under combined reflection in the poloidal and toroidal angles. (This symmetry property is called "stellarator symmetry.") In non-stellarator-symmetric equilibria, the pressure-driven currents have logarithmic singularities at the X-lines. In stellarator-symmetric MHD equilibria, the singular components of the pressure-driven currents vanish. These equilibria are to be contrasted with equilibria having B ṡ∇p =0 , where the singular components of the pressure-driven currents vanish regardless of the symmetry. They are also to be contrasted with 3D MHD equilibrium solutions that are constrained to have simply nested flux surfaces, where the pressure-driven current goes like 1 /x near rational surfaces, where x is the distance from the rational surface, except in the case of quasi-symmetric flux surfaces. For the purpose of calculating the pressure-driven currents near magnetic islands, we work with a closed subset of the MHD equilibrium equations that involves only perpendicular force balance, and is decoupled from parallel force balance. It is not correct to use the parallel component of the conventional MHD force balance equation, B ṡ∇p =0 , near magnetic islands. Small but nonzero values of B

  20. The influence of thermal inertia on Mars' seasonal pressure variation and the effect of the weather component

    NASA Technical Reports Server (NTRS)

    Wood, S. E.; Paige, D. A.

    1993-01-01

    Using a Leighton-Murray type diurnal and seasonal Mars thermal model, we found that it is possible to reproduce the seasonal variation in daily-averaged pressures (approximately 680-890 Pa) measured by Viking Lander 1 (VL1), during years without global dust storms, with a standard deviation of less than 5 Pa. In this simple model, surface CO2, frost condensation, and sublimation rates at each latitude are determined by the net effects of radiation, latent heat, and heat conduction in subsurface soil layers. An inherent assumption of our model is that the seasonal pressure variation is due entirely to the exchange of mass between the atmosphere and polar caps. However, the results of recent Mars GCM modeling have made it clear that there is a significant dynamical contribution to the seasonal pressure variation. This 'weather' component is primarily due to large-scale changes in atmospheric circulation, and its magnitude depends somewhat on the dust content of the atmosphere. The overall form of the theoretical weather component at the location of VL1, as calculated by the AMES GCM, remains the same over the typical range of Mars dust opacities.

  1. Soot Oxidation in Hydrocarbon/Air Diffusion Flames at Atmospheric Pressure. Appendix K

    NASA Technical Reports Server (NTRS)

    Xu, F.; El-Leathy, A. M.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    Soot oxidation was studied experimentally in laminar hydrocarbon/air diffusion flames at atmospheric pressure. Measurements were carried out along the axes of round jets burning in coflowing air considering acetylene, ethylene, propylene and propane as fuels. Measurements were limited to the initial stages of soot oxidation (carbon consumption less than 70%) where soot oxidation mainly occurs at the surface of primary soot particles. The following properties were measured as a function of distance above the burner exit: soot concentrations by deconvoluted laser extinction, soot temperatures by deconvoluted multiline emission, soot structure by thermophoretic sampling and analysis using Transmission Electron Microscopy (TEM), concentrations of stable major gas species (N2, H2O, H2, O2, CO, CO2, CH4, C2H2,C2H4, C2H6, C3H6, and C3H8) by sampling and gas chromatography, concentrations of some radical species (H, OH, O) by the deconvoluted Li/LiOH atomic absorption technique and flow velocities by laser velocimetry. It was found that soot surface oxidation rates are not particularly affected by fuel type for laminar diffusion flames and are described reasonably well by the OH surface oxidation mechanism with a collision efficiency of 0.10, (standard deviation of 0.07) with no significant effect of fuel type in this behavior; these findings are in good agreement with the classical laminar premixed flame measurements of Neoh et al. Finally, direct rates of surface oxidation by O2 were small compared to OH oxidation for present conditions, based on estimated O2 oxidation rates due to Nagle and Strickland-Constable (1962), because soot oxidation was completed near the flame sheet where O2 concentrations were less than 1.2% by volume.

  2. Soot Oxidation in Laminar Hydrocarbon/Air Diffusion Flames at Atmospheric Pressure. Appendix D

    NASA Technical Reports Server (NTRS)

    Xu, F.; El-Leathy, A. M.; Faeth, G. M.

    2000-01-01

    Soot oxidation was studied experimentally in laminar hydrocarbon/air diffusion flames at atmospheric pressure. Measurements were carried out along the axes of round jets burning in coflowing air considering acetylene, ethylene, proplyene and propane as fuels. Measurements were limited to the initial stages of soot oxidation (carbon consumption less than 70%) where soot oxidation mainly occurs at the surface of primary soot particles. The following properties were measured as a function of distance above the burner exit: soot concentrations by deconvoluted laser extinction, soot temperatures by deconvoluted multiline emission, soot structure by thermophoretic sampling and analysis using Transmission Electron Microscopy (TEM), concentrations of stable major gas species (N2, H2O, H2, 02, CO, CO2, CH4, C2H2, C2H4, C2H6, C3H6, and C3H8) by sampling and gas chromatography, concentrations of some radical species (H, OH, O) by the deconvoluted Li/LiOH atomic absorption technique and flow velocities by laser velocimetry. It was found that soot surface oxidation rates are not particularly affected by fuel type for laminar diffusion flames and are described reasonably well by the OH surface oxidation mechanism with a collision efficiency of 0.10, (standard deviation of 0.07) with no significant effect of fuel type in this behavior; these findings are in good agreement with the classical laminar premixed flame measurements of Neoh et al. Finally, direct rates of surface oxidation by O2 were small compared to OH oxidation for present conditions, based on estimated O2 oxidation rates due to Nagle and Strickland-Constable, because soot oxidation was completed near the flame sheet where O2 concentrations were less than 1.2% by volume.

  3. Effects of pressure variations on electronic-resonance-enhanced coherent anti-Stokes Raman scattering of nitric oxide

    NASA Astrophysics Data System (ADS)

    Kulatilaka, Waruna D.; Chai, Ning; Naik, Sameer V.; Roy, Sukesh; Laurendeau, Normand M.; Lucht, Robert P.; Kuehner, Joel P.; Gord, James R.

    2007-06-01

    The effects of pressure variations on the electronic-resonance-enhanced coherent anti-Stokes Raman scattering (ERE-CARS) signal of nitric oxide (NO) were studied at pressures ranging from 0.1 to 8 bar. ERE-CARS signals were recorded in a gas cell filled with a mixture of 300 ppm NO in N 2 buffer gas at room temperature. The ERE-CARS signal was found to increase with rising pressure up to 2 bar and to remain nearly constant thereafter. The spectra recorded at different cell pressures were modeled using a modified version of the Sandia CARSFT code. Laser-saturation effects were accounted for by systematically varying the theoretical ultraviolet probe-laser linewidth. Excellent agreement was obtained between theory and experiment for the pressure-scaling behavior of the ERE-CARS signal of NO. This finding, along with a negligible influence of electronic quenching on the ERE-CARS signal, provides strong incentive for the application of ERE-CARS to measurements of NO concentrations in high-pressure combustion environments.

  4. Association between blood pressure changes during self-paced outdoor walking and air temperature.

    PubMed

    Otsuki, Takeshi; Ishii, Nanako

    2017-03-01

    Exaggerated elevation of systolic blood pressure (SBP) during exercise is a risk factor for future cardiovascular disease. Although there are differences between the outdoor exercise and exercise tests in the laboratory setting, there is little information regarding SBP changes during practical outdoor exercise. We investigated SBP changes during self-paced outdoor walking and the relationship to air temperature. Subjects (n = 109, 47-83 years) walked outdoors at their own pace wearing a blood pressure monitor on their wrist. SBP increased during walking compared to rest, but was higher at the 1 km mark than both the 2 and 3 km marks (rest, 124 ± 14 mmHg; 1 km, 140 ± 16 mmHg; 2 km, 136 ± 18 mmHg; 3 km, 135 ± 18 mmHg). SBP at rest, air temperature, body mass index (BMI) and walking intensity during the first 1 km were identified as predictors of SBP at the 1 km mark in the stepwise regression analysis, independent of other confounders (R(2)  = 0·606). SBP at the 1 km mark was higher in the lower temperature group (11·6-14·3°C, 145 ± 14 mmHg) than in the intermediate (15·1-16·7°C, 140 ± 18 mmHg) and higher (17·0-19·6°C, 136 ± 16 mmHg) temperature groups, independent of SBP at rest, BMI and walking intensity. These results suggest that increases in SBP are higher on lower temperature days and are greater at 1 km than at 2 and 3 km. It is therefore recommended that measures are taken against the cold on lower temperature days to attenuate the SBP response during onset of walking.

  5. Therapeutic Consequences of Variation in Intraarterial Pressure Measurements After Iliac Angioplasty

    SciTech Connect

    Tetteroo, Eric; Haaring, Cees; Engelen, Andries D. van; Graaf, Yolanda van der; Mali, Willem P.T.M.

    1997-11-15

    Purpose: To assess the accuracy of intraarterial measurement of transstenotic pressure gradients for the detection of hemodynamically suboptimal iliac angioplasty. Methods: In 14 patients, referred for diagnostic angiography, mean pressure gradients in the aorta and iliac artery were obtained twice, using a double-sensor pressure catheter. Additional iliac measurements were performed during pharmacologically induced flow augmentation. Repeatability was assessed by calculation of the mean difference plus standard deviation (MD {+-} SD) and repeatability coefficient (2 x SD). These results were extrapolated to 137 iliac angioplasty procedures with secondary stenting where there was a residual pressure gradient > 10 mmHg. Results: MD {+-} SD for repeated measurements at rest and during flow augmentation were 0 {+-} 2 mmHg and 1 {+-} 3 mmHg, respectively. Repeatability coefficients were 3 and 6 mmHg. Mean pressure gradients after hemodynamically insufficient angioplasty were 8 {+-} 7 mmHg at rest and 17 {+-} 5 mmHg following vasodilatation. Inaccurate pressure recordings may have led to inappropriate stent placement in less than 2.5%, and inappropriate denial of stent placement in less than 5% of the lesions. Conclusion: Variability of intraarterial pressure measurements has little consequence in the detection of hemodynamically significant stenosis after angioplasty.

  6. Effect of ambient pressure variation on closed loop gas system for India based Neutrino Observatory (INO)

    NASA Astrophysics Data System (ADS)

    Satyanarayana, B.; Majumder, G.; Mondal, N. K.; Kalmani, S. D.; Shinde, R. R.; Joshi, A.

    2014-10-01

    Pilot unit of a closed loop gas mixing and distribution system for the INO project was designed and is being operated with 1.8meters × 1.9meters RPCs for about two years. A number of studies on controlling the flow and optimisation of the gas mixture through the RPC stack were carried out during this period. The gas system essentially measures and attempts to maintain absolute pressure inside the RPC gas volume. During typical Mumbai monsoon seasons, the barometric pressure changes rather rapidly, due to which the gas system fails to maintain the set differential pressure between the ambience and the RPC gas volume. As the safety bubblers on the RPC gas input lines are set to work on fixed pressure differentials, the ambient pressure changes lead to either venting out and thus wasting gas through safety bubblers or over pressuring the RPCs gas volume and thus degrading its performance. The above problem also leads to gas mixture contamination through minute leaks in gas gap. The problem stated above was solved by including the ambient barometric pressure as an input parameter in the closed loop. Using this, it is now possible to maintain any set differential pressure between the ambience and RPC gas volumes between 0 to 20mm of water column, thus always ensuring a positive pressure inside the RPC gas volume with respect to the ambience. This has resulted in improved performance of the gas system by maintaining the constant gas flow and reducing the gas toping up frequency. In this paper, we will highlight the design features and improvements of the closed loop gas system. We will present some of the performance studies and considerations for scaling up the system to be used with the engineering module and then followed by Iron Calorimeter detector (ICAL), which is designed to deploy about 30,000 RPCs of 1.8meters × 1.9 meters in area.

  7. Influence of leaf-to-air vapour pressure deficit (VPD) on the biochemistry and physiology of photosynthesis in Prosopis juliflora.

    PubMed

    Shirke, Pramod A; Pathre, Uday V

    2004-09-01

    The effect of leaf-to-air vapour pressure deficit (VPD) was studied in well-watered, potted, 1-2-year-old plants of the leguminous tree P. juliflora grown outside in northern India. The long-term responses to VPD were analysed from diurnal and seasonal variations in gas exchange parameters measured in two cohorts of leaves produced in February and July, respectively. In general, inhibitory effects of high VPD were visible only when the VPD level exceeded a threshold of >3 kPa. There was a substantial decline in net photosynthesis rate and stomatal conductance at high VPD >4 kPa and transpiration showed a decrease in steady-state rate or feedforward response to VPD. The feedforward responses were visible in all seasons, although the plants were exposed to a wide range of VPD during the year and leaf relative water content was constant. The maximum quantum efficiency of PSII measured predawn was constant (around 0.8) in all seasons except summer. Short-term experiments showed that, although gas exchange was severely affected by high VPD in the leaves of both cohorts, the plant maintained a constant, water use efficiency in different seasons. High VPD also caused reductions in Rubisco activity, affecting carboxylation efficiency, and reductions in sucrose and starch content due to a decrease in the activity of sucrose-phosphate synthase. However, the relative quantum yield of PSII and electron transport rates measured at 1500 micromol m(-2) s(-1) were unaffected by increasing VPD, indicating the presence of a large alternative sink possibly, photorespiration. The overall results showed that P. juliflora can withstand high VPD by reducing metabolic activity and by effective adjustments in the partitioning of electron flow between assimilation and non-assimilation processes, which, in turn, imposed a strong limitation on the potential carbon gain.

  8. The relationship of air temperature variations over the northern hemisphere during the secular and 11-year solar cycles

    NASA Technical Reports Server (NTRS)

    Ryzhakov, L. Y.; Tomskaya, A. S.

    1978-01-01

    A comparison was made of air temperature anomaly maps for the months of January and July against a background of high and low secular solar activity, with and without regard for the 11 year cycle. By comparing temperature variations during the 11 year and secular cycles, it is found that the 11 year cycle influences thermal conditions more strongly than the secular cycle, and that temperature differences between extreme phases of the solar cycles are greater in January than in July.

  9. Seasonal Variations of Indoor Microbial Exposures and Their Relation to Temperature, Relative Humidity, and Air Exchange Rate

    PubMed Central

    Bekö, Gabriel; Timm, Michael; Gustavsen, Sine; Hansen, Erik Wind

    2012-01-01

    Indoor microbial exposure has been related to adverse pulmonary health effects. Exposure assessment is not standardized, and various factors may affect the measured exposure. The aim of this study was to investigate the seasonal variation of selected microbial exposures and their associations with temperature, relative humidity, and air exchange rates in Danish homes. Airborne inhalable dust was sampled in five Danish homes throughout the four seasons of 1 year (indoors, n = 127; outdoors, n = 37). Measurements included culturable fungi and bacteria, endotoxin, N-acetyl-beta-d-glucosaminidase, total inflammatory potential, particles (0.75 to 15 μm), temperature, relative humidity, and air exchange rates. Significant seasonal variation was found for all indoor microbial exposures, excluding endotoxin. Indoor fungi peaked in summer (median, 235 CFU/m3) and were lowest in winter (median, 26 CFU/m3). Indoor bacteria peaked in spring (median, 2,165 CFU/m3) and were lowest in summer (median, 240 CFU/m3). Concentrations of fungi were predominately higher outdoors than indoors, whereas bacteria, endotoxin, and inhalable dust concentrations were highest indoors. Bacteria and endotoxin correlated with the mass of inhalable dust and number of particles. Temperature and air exchange rates were positively associated with fungi and N-acetyl-beta-d-glucosaminidase and negatively with bacteria and the total inflammatory potential. Although temperature, relative humidity, and air exchange rates were significantly associated with several indoor microbial exposures, they could not fully explain the observed seasonal variations when tested in a mixed statistical model. In conclusion, the season significantly affects indoor microbial exposures, which are influenced by temperature, relative humidity, and air exchange rates. PMID:23001651

  10. Seasonal variation of air temperature at the Mendel Station, James Ross Island in the period of 2006-2009

    NASA Astrophysics Data System (ADS)

    Laska, Kamil; Prošek, Pavel; Budík, Ladislav

    2010-05-01

    Key words: air temperature, seasonal variation, James Ross Island, Antarctic Peninsula Recently, significant role of the atmospheric and oceanic circulation variation on positive trend of near surface air temperature along the Antarctic Peninsula has been reported by many authors. However, small number of the permanent meteorological stations located on the Peninsula coast embarrasses a detail analysis. It comprises analysis of spatiotemporal variability of climatic conditions and validation of regional atmospheric climate models. However, geographical location of the Czech Johann Gregor Mendel Station (hereafter Mendel Station) newly established on the northern ice-free part of the James Ross Island provides an opportunity to fill the gap. There are recorded important meteorological characteristics which allow to evaluate specific climatic regime of the region and their impact on the ice-shelf disintegration and glacier retreat. Mendel Station (63°48'S, 57°53'W) is located on marine terrace at the altitude of 7 m. In 2006, a monitoring network of several automatic weather stations was installed at different altitudes ranging from the seashore level up to mesas and tops of glaciers (514 m a.s.l.). In this contribution, a seasonal variation of near surface air temperature at the Mendel Station in the period of 2006-2009 is presented. Annual mean air temperature was -7.2 °C. Seasonal mean temperature ranged from +1.4 °C (December-February) to -17.7 °C (June-August). Frequently, the highest temperature occurred in the second half of January. It reached maximum of +8.1 °C. Sudden changes of atmospheric circulation pattern during winter caused a large interdiurnal variability of air temperature with the amplitude of 30 °C.

  11. Seasonal variations of indoor microbial exposures and their relation to temperature, relative humidity, and air exchange rate.

    PubMed

    Frankel, Mika; Bekö, Gabriel; Timm, Michael; Gustavsen, Sine; Hansen, Erik Wind; Madsen, Anne Mette

    2012-12-01

    Indoor microbial exposure has been related to adverse pulmonary health effects. Exposure assessment is not standardized, and various factors may affect the measured exposure. The aim of this study was to investigate the seasonal variation of selected microbial exposures and their associations with temperature, relative humidity, and air exchange rates in Danish homes. Airborne inhalable dust was sampled in five Danish homes throughout the four seasons of 1 year (indoors, n = 127; outdoors, n = 37). Measurements included culturable fungi and bacteria, endotoxin, N-acetyl-beta-d-glucosaminidase, total inflammatory potential, particles (0.75 to 15 μm), temperature, relative humidity, and air exchange rates. Significant seasonal variation was found for all indoor microbial exposures, excluding endotoxin. Indoor fungi peaked in summer (median, 235 CFU/m(3)) and were lowest in winter (median, 26 CFU/m(3)). Indoor bacteria peaked in spring (median, 2,165 CFU/m(3)) and were lowest in summer (median, 240 CFU/m(3)). Concentrations of fungi were predominately higher outdoors than indoors, whereas bacteria, endotoxin, and inhalable dust concentrations were highest indoors. Bacteria and endotoxin correlated with the mass of inhalable dust and number of particles. Temperature and air exchange rates were positively associated with fungi and N-acetyl-beta-d-glucosaminidase and negatively with bacteria and the total inflammatory potential. Although temperature, relative humidity, and air exchange rates were significantly associated with several indoor microbial exposures, they could not fully explain the observed seasonal variations when tested in a mixed statistical model. In conclusion, the season significantly affects indoor microbial exposures, which are influenced by temperature, relative humidity, and air exchange rates.

  12. Probe measurements of electron energy spectrum in Helium/air micro-plasma at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Demidov, V. I.; Adams, S. F.; Miles, J. A.; Koepke, M. E.; Kurlyandskaya, I. P.; Hensley, A. L.; Tolson, B. A.

    2016-09-01

    It is experimentally demonstrated that a wall probe may be a useful instrument for interpretation of electron energy spectrum in a micro-plasma with a nonlocal electron distribution function at atmospheric pressure. Two micro-plasma devices were fabricated with three layers of molybdenum metal foils with thickness of 0.1 mm separated by two sheets of mica insulation with thickness of 0.11 mm. In one device a hole with the diameter of 0.2 mm formed a cylindrical discharge cavity that passed through the entire five layers. In the second device the hole has the diameter of 0.065 mm. In both devices the inner molybdenum layer formed a wall probe, while the outer layers of molybdenum served as the hollow cathode and anode. The discharge was open into air with flow of helium gas. It is found that the wall probe I-V trace is sensitive to the presence of helium metastable atoms. The first derivative of the probe current with respect to the probe potential shows peaks revealing fast electrons at specific energies arising due to plasma chemical reactions. The devices may be applicable for developing analytical sensors for extreme environments, including high radiation and vibration levels and high temperatures. This work was performed while VID held a NRC Research Associateship Award at AFRL.

  13. Characterization Of Nano-Second Laser Induced Plasmas From Al Target In Air At Atmospheric Pressure

    SciTech Connect

    Hegazy, H.; Abdel-Rahim, F. M.; Nossair, A. M. A.; Allam, S. H.; El-Sherbini, Th. M.

    2008-09-23

    In the present work we study the effect of the laser beam energy on the properties of the plasma generated by focusing an intense laser beam on Al solid target in air at atmospheric pressure. Plasma is generated using a Nd:YAG pulsed laser at 1064 nm wavelength, 6 ns pulse duration with a maximum pulse energy of 750mJ. The emission spectrum is collected using an Echelle spectrometer equipped with ICCD camera Andor type. The measurements were performed at several delay times between 0 to 9 {mu}s. Measurements of temperature and electron density of the produced plasmas at different laser energies and at different delay times are described using different emission spectral lines. Based on LTE assumption, excitation temperature is determined from the Boltzmann plot using O I spectral lines at 777.34, 794.93, and 848.65 nm and the electron density is determined from Stark width of Al II at 281.6 and 466.3 nm. The determined density is compared with the density determined from H{sub {alpha}} spectral line.

  14. Functionalization of graphene by atmospheric pressure plasma jet in air or H2O2 environments

    NASA Astrophysics Data System (ADS)

    Huang, Weixin; Ptasinska, Sylwia

    2016-03-01

    The functionalization of graphene, which deforms its band structure, can result in a metal-semiconductor transition. In this work, we report a facile strategy to oxidize single-layer graphene using an atmospheric pressure plasma jet (APPJ) that generates a variety of reactive plasma species at close to ambient temperature. We systematically characterized the oxygen content and chemical structure of the graphene films after plasma treatment under different oxidative conditions (ambient air atmosphere or hydrogen peroxide solution) by X-ray Photoelectron Spectroscopy (XPS). Plasma-treated graphene films containing more than 40% oxygen were obtained in both oxidative environments. Interestingly, prolonged irradiation led to the reduction of graphene oxides. N-doping of graphene also occurred during the APPJ treatment in H2O2 solution; the nitrogen content of the doped graphene was dependent on the duration of irradiation and reached up to 8.1% within 40 min. Moreover, the H2O2 solution served as a buffer layer that prevented damage to the graphene during plasma irradiation. Four-point probe measurement revealed an increase in sheet resistance of the plasma-treated graphene, indicating the transition of the material property from semi-metallic to semiconducting.

  15. Nanosecond Repetitively Pulsed Discharges in Air at Atmospheric Pressure -- Experiment and Theory of Regime Transitions

    NASA Astrophysics Data System (ADS)

    Pai, David; Lacoste, Deanna; Laux, Christophe

    2009-10-01

    In atmospheric pressure air preheated from 300 to 1000 K, the Nanosecond Repetitively Pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and inter-electrode gap distance) of each discharge regime. Notably, there is a minimum gap distance for the existence of the glow regime that increases with decreasing gas temperature. A theory is developed to describe the Corona-to-Glow (C-G) and Glow-to-Spark (G-S) transitions for NRP discharges. The C-G transition is shown to depend on the Avalanche-to-Streamer Transition (AST) as well as the electric field strength in the positive column. The G-S transition is due to the thermal ionization instability. The minimum gap distance for the existence of the glow regime can be understood by considering that the applied voltage of the AST must be lower than that of the thermal ionization instability. This is a previously unknown criterion for generating glow discharges, as it does not correspond to the Paschen minimum or to the Meek-Raether criterion.

  16. Surface Decontamination of Chemical Agent Surrogates Using an Atmospheric Pressure Air Flow Plasma Jet

    NASA Astrophysics Data System (ADS)

    Li, Zhanguo; Li, Ying; Cao, Peng; Zhao, Hongjie

    2013-07-01

    An atmospheric pressure dielectric barrier discharge (DBD) plasma jet generator using air flow as the feedstock gas was applied to decontaminate the chemical agent surrogates on the surface of aluminum, stainless steel or iron plate painted with alkyd or PVC. The experimental results of material decontamination show that the residual chemical agent on the material is lower than the permissible value of the National Military Standard of China. In order to test the corrosion effect of the plasma jet on different material surfaces in the decontamination process, corrosion tests for the materials of polymethyl methacrylate, neoprene, polyvinyl chloride (PVC), polyethylene (PE), phenolic resin, iron plate painted with alkyd, stainless steel, aluminum, etc. were carried out, and relevant parameters were examined, including etiolation index, chromatism, loss of gloss, corrosion form, etc. The results show that the plasma jet is slightly corrosive for part of the materials, but their performances are not affected. A portable calculator, computer display, mainboard, circuit board of radiogram, and a hygrometer could work normally after being treated by the plasma jet.

  17. HIGH-PRESSURE AIR INJECTION: APPLICATION IN A FRACTURED AND KARSTED DOLOMITE RESERVOIR

    SciTech Connect

    Robert Loucks; Steve Ruppel; Julia Gale; Jon Holder; Jon Olsen; Deanna Combs; Dhiraj Dembla; Leonel Gomez

    2003-12-10

    The Bureau of Economic Geology and Goldrus Producing Company have assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The characterization phase of the project is utilizing geoscientists and petroleum engineers from the Bureau of Economic Geology and the Department of Petroleum Engineering (both at The University of Texas at Austin) to define the controls on fluid flow in the reservoir as a basis for developing a reservoir model. This model will be used to define a field deployment plan that Goldrus, a small independent oil company, will implement by drilling both vertical and horizontal wells during the demonstration phase of the project. Additional reservoir data are being gathered during the demonstration phase to improve the accuracy of the reservoir model. The results of the demonstration will being closely monitored to provide a basis for improving the design of the HPAI field deployment plan. The results of the reservoir characterization field demonstration and monitoring program will be documented and widely disseminated to facilitate adoption of this technology by oil operators in the Permian Basin and elsewhere in the U.S.

  18. An experimental and kinetic modeling study of the autoignition of {alpha}-methylnaphthalene/air and {alpha}-methylnaphthalene/n-decane/air mixtures at elevated pressures

    SciTech Connect

    Wang, Haowei; Warner, Steven J.; Oehlschlaeger, Matthew A.; Bounaceur, Roda; Biet, Joffrey; Glaude, Pierre-Alexandre; Battin-Leclerc, Frederique

    2010-10-15

    The autoignition of {alpha}-methylnaphthalene (AMN), the bicyclic aromatic reference compound for the cetane number (CN), and AMN/n-decane blends, potential diesel surrogate mixtures, was studied at elevated pressures for fuel/air mixtures in a heated high-pressure shock tube. Additionally, a comprehensive kinetic mechanism was developed to describe the oxidation of AMN and AMN/n-decane blends. Ignition delay times were measured in reflected shock experiments for {phi} = 0.5, 1.0, and 1.5 AMN/air mixtures (CN = 0) for 1032-1445 K and 8-45 bar and for {phi} = 1.0 30%-molar AMN/70%-molar n-decane/air (CN = 58) and 70%-molar AMN/30%-molar n-decane/air mixtures (CN = 28) for 848-1349 K and 14-62 bar. Kinetic simulations, based on the comprehensive AMN/n-decane mechanism, are in good agreement with measured ignition times, illustrating the emerging capability of comprehensive mechanisms for describing high molecular weight transportation fuels. Sensitivity and reaction flux analysis indicate the importance of reactions involving resonance stabilized phenylbenzyl radicals, the formation of which by H-atom abstractions with OH radicals has an important inhibiting effect on ignition. (author)

  19. Sediment budget variation at watershed scale due to anthropogenic pressures, and its relationship to coastal erosion

    NASA Astrophysics Data System (ADS)

    Aiello, Antonello; Adamo, Maria; Canora, Filomena

    2014-05-01

    The transfer of sediments from hydrographic basins towards the coast is a significant pathway of material transfer on Earth. In sedimentary environment, the main portion of sediment that enters the coastal areas is derived originally from erosion in the coastal watersheds. Extensive anthropogenic pressures carried out within coastal basins have long shown negative impacts on littoral environments. In fluvial systems, sediments trapped behind dams and in-stream gravel mining cause the reduction in sediment supply to the coast. Along the Jonian littoral of the Basilicata Region (southern Italy), natural coastal processes have been severely disrupted since the second half of the 20th century as a result of riverbed sand and gravel mining and dam construction, when economic advantages were measured in terms of the development of infrastructure, water storage, and hydropower production for the agricultural, industrial and socio-economic development of the area. Particularly, the large numbers of dams and impoundments that have been built in the hydrographic basins have led a signi?cant reduction on river sediment loads. As a result, the Jonian littoral is experiencing a catalysed erosion phenomenon. In order to increase understanding of the morpho-dynamics of the Jonian littoral environment and more fully appreciate the amount of coastal erosion, an evaluation of the sediment budget change due to dam construction within the hydrographic basins of the Basilicata Region needs to be explored. Since quantitative data on decadal trends in river sediment supply before and after dam construction are lacking, as well as updated dam silting values, river basin assessment of the spatial patterns and estimated amount of sediment erosion and deposition are important in evaluating changes in the sediment budget. As coastal areas are being affected by an increasing number of population and socio-economic activities, the amount of sediment deficit at the littoral can permit to

  20. Variation of antioxidative activity and growth enhancement of Brassicaceae induced by low-pressure oxygen plasma

    NASA Astrophysics Data System (ADS)

    Ono, Reoto; Hayashi, Nobuya

    2015-06-01

    The mechanism of growth enhancement induced by active oxygen species generated in an oxygen plasma is investigated. The plant growth enhancement induced by the active oxygen species would relate to an antioxidative activity, which is one of the biological responses. The amount of generated active oxygen species is varied by the oxygen gas pressure in a low-pressure RF glow discharge plasma. The antioxidative activity of sprouts of Brassicaceae induced by the oxygen plasma is maximized at pressures between 30 and 40 Pa, whereas the antioxidative activity becomes small at around 60 and 80 Pa. The pressure dependence of the antioxidative activity of sprout stems is opposite to that of the stem length of the sprouts. The growth enhancement would be induced by the increase in the concentration of active oxygen species in plants owing to the decrease in the amount of antioxidative substances.

  1. Investigation of pressure variations over stepped spillways using smooth particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Husain, Sarhang M.; Muhammed, Jowhar R.; Karunarathna, Harshinie U.; Reeve, Dominic E.

    2014-04-01

    In this paper the smoothed particle hydrodynamics, (SPH), technique is used to investigate the pressure distribution on steps located in the non-aerated flow region of a stepped spillway for different discharges typical of skimming flow conditions. The open source code 2D SPHysics has been employed after being validated against the laboratory model studies of flow over broad crested weirs and flow over stepped spillways. The numerical results, in terms of the water surface and velocity profiles at different sections, are in good agreement with the corresponding experimental results. The code is then applied to determine the pressure distribution on the vertical and horizontal step faces. Also, the aspects of the pressure pattern are described and the positions/magnitudes of the maximum and minimum pressure values are presented.

  2. Model test on underground coal gasification (UCG) with low-pressure fire seepage push-through. Part I: Test conditions and air fire seepage

    SciTech Connect

    Yang, L.H.

    2008-07-01

    The technology of a pushing-through gallery with oxygen-enriched fire-seepage combustion was studied during shaft-free UCG in this article, and the main experiment parameters were probed. The test results were analyzed in depth. The patterns of variation and development were pointed out for the fire source moving speed, temperature field, leakage rate, the expanding diameter for the gasification gallery, and blasting pressure. Test results showed that, with the increase in the wind-blasting volume, the moving velocity for the fire source speeded up, and the average temperature for the gallery continuously rose. Under the condition of oxygen-enriched air blasting, when O{sub 2} contents stood at 90%, the moving speed for the fire source was 4-5 times that of air blasting. In the push-through process, the average leakage rate for the blasting was 82.23%, with the average discharge volume of 3.43 m{sup 3}/h and average gallery diameter of 7.87 cm. With the proceeding of firepower seepage, the extent of dropping for the leakage rate increased rapidly, and the drop rate for the blasting pressure gradually heightened.

  3. 42 CFR 84.163 - Man test for gases and vapors; Type C supplied-air respirators, demand and pressure-demand...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... respirators, demand and pressure-demand classes; test requirements. 84.163 Section 84.163 Public Health PUBLIC... RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.163 Man test for gases and vapors; Type C supplied-air respirators, demand and pressure-demand classes;...

  4. 42 CFR 84.163 - Man test for gases and vapors; Type C supplied-air respirators, demand and pressure-demand...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... respirators, demand and pressure-demand classes; test requirements. 84.163 Section 84.163 Public Health PUBLIC... RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.163 Man test for gases and vapors; Type C supplied-air respirators, demand and pressure-demand classes;...

  5. 42 CFR 84.163 - Man test for gases and vapors; Type C supplied-air respirators, demand and pressure-demand...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... respirators, demand and pressure-demand classes; test requirements. 84.163 Section 84.163 Public Health PUBLIC... RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.163 Man test for gases and vapors; Type C supplied-air respirators, demand and pressure-demand classes;...

  6. 42 CFR 84.163 - Man test for gases and vapors; Type C supplied-air respirators, demand and pressure-demand...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... respirators, demand and pressure-demand classes; test requirements. 84.163 Section 84.163 Public Health PUBLIC... RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.163 Man test for gases and vapors; Type C supplied-air respirators, demand and pressure-demand classes;...

  7. 42 CFR 84.163 - Man test for gases and vapors; Type C supplied-air respirators, demand and pressure-demand...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... respirators, demand and pressure-demand classes; test requirements. 84.163 Section 84.163 Public Health PUBLIC... RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.163 Man test for gases and vapors; Type C supplied-air respirators, demand and pressure-demand classes;...

  8. Visually evoked blood flow responses and interaction with dynamic cerebral autoregulation: correction for blood pressure variation.

    PubMed

    Gommer, Erik D; Bogaarts, Guy; Martens, Esther G H J; Mess, Werner H; Reulen, Jos P H

    2014-05-01

    Visually evoked flow responses recorded using transcranial Doppler ultrasonography are often quantified using a dynamic model of neurovascular coupling. The evoked flow response is seen as the model's response to a visual step input stimulus. However, the continuously active process of dynamic cerebral autoregulation (dCA) compensating cerebral blood flow for blood pressure fluctuations may induce changes of cerebral blood flow velocity (CBFV) as well. The effect of blood pressure variability on the flow response is evaluated by separately modeling the dCA-induced effects of beat-to-beat measured blood pressure related CBFV changes. Parameters of 71 subjects are estimated using an existing, well-known second order dynamic neurovascular coupling model proposed by Rosengarten et al., and a new model extending the existing model with a CBFV contributing component as the output of a dCA model driven by blood pressure as input. Both models were evaluated for mean and systolic CBFV responses. The model-to-data fit errors of mean and systolic blood pressure for the new model were significantly lower compared to the existing model: mean: 0.8%±0.6 vs. 2.4%±2.8, p<0.001; systolic: 1.5%±1.2 vs. 2.2%±2.6, p<0.001. The confidence bounds of all estimated neurovascular coupling model parameters were significantly (p<0.005) narrowed for the new model. In conclusion, blood pressure correction of visual evoked flow responses by including cerebral autoregulation in model fitting of averaged responses results in significantly lower fit errors and by that in more reliable model parameter estimation. Blood pressure correction is more effective when mean instead of systolic CBFV responses are used. Measurement and quantification of neurovascular coupling should include beat-to-beat blood pressure measurement.

  9. Auto-ignition of lubricating oil working at high pressures in a compressor for an air conditioner.

    PubMed

    Kim, Chul Jin; Choi, Hyo Hyun; Sohn, Chae Hoon

    2011-01-15

    Auto-ignition of lubricating oil working in a compressor for an air conditioner is studied experimentally. The adopted lubricating oil is an unknown mixture with multi-components and known to have flash point temperature of 170 °C. First, its auto-ignition temperature is measured 365 °C at atmospheric pressure. The lubricating oil works under high-pressure condition up to 30 atm and it is heated and cooled down repeatedly. Accordingly, auto-ignition temperatures or flammable limits of lubricating oil are required at high pressures with respect to fire safety. Because there is not a standard test method for the purpose, a new ignition-test method is proposed in this study and thereby, auto-ignition temperatures are measured over the pressure range below 30 atm. The measured temperatures range from 215 °C to 255 °C and they strongly depend on pressure of gas mixture consisting of oil vapor, nitrogen, and oxygen. They are close to flash point temperature and the lubricating oil can be hazardous when it works for high-pressure operating condition and abundant air flows into a compressor.

  10. [Factors influencing physiologic pressure variations of the lower esophageal sphincter in healthy probands].

    PubMed

    Bilic, A; Vuckovic, B; Pilas, V; Bakula, B; Hrgovic, Z; Kesselman-Evans, Z; Radosevic, J

    1990-01-01

    Manometric characteristics of lower esophageal sphincter (LES) in 59 healthy persons have been investigated. The aim of the investigation was to find out possible physiological changes of LES pressures considering posture, part of the day, maximal inspiration and expiration, empty or partially full stomach and abdominal compression. It has been proved that the minimal value of lower esophageal sphincter pressure in all the investigated patients was 1.77 kPA (13.3 mm Hg) while the maximal one was 4.53 kPa (34.0 mm Hg). The absolute difference between the lowest and the highest measured lower esophageal sphincter pressure was 1.43 kPa (10.77 mm Hg). The mean value of all pressures was 2.99 kPa (22.4 mm Hg). It seems that the posture during pressure measuring is irrelevant. The pressure does not vary more significantly considering neither the time of the day nor any exertion of the examinee.

  11. Gender differences in associations of diurnal blood pressure variation, awake physical activity, and sleep quality with negative affect: the work site blood pressure study.

    PubMed

    Kario, K; Schwartz, J E; Davidson, K W; Pickering, T G

    2001-11-01

    This study reports on the associations among depression, anxiety, awake physical activity, sleep quality (assessed by nocturnal physical activity), and diurnal blood pressure (BP) variation in a nonpsychiatric sample (The Work Site Blood Pressure Study). We conducted ambulatory BP (ABP) monitoring and actigraphy in 231 working men and women. Depression and anxiety were measured by the Brief Symptom Inventory. There were gender-specific associations between depression or anxiety and ABP parameters. In men, depression was associated positively with the sleep/awake systolic BP (SBP) ratio (r=0.24, P=0.006). After controlling for age, body mass index, and awake and sleep activity, depression remained significantly associated with the sleep/awake SBP ratio (r=0.25, P=0.005) and was also significantly related to sleep SBP (r=0.21, P=0.02). Anxiety, which was related to depression (r=0.73, P<0.0001), had a similar but slightly weaker pattern of associations with ABP and activity. These associations were not found in women, but there were associations of anxiety with awake SBP (r=0.24, P=0.01) and pulse rate (r=0.27, P=0.006). In conclusion, depression is associated with disrupted diurnal BP variation independent of ambulatory physical activity in working men, whereas anxiety is associated with awake SBP and pulse rate in women.

  12. [Diurnal variations of greenhouse gas fluxes at the water-air interface of aquaculture ponds in the Min River estuary].

    PubMed

    Yang, Ping; Tong, Chuan; He, Qing-Hua; Huang, Jia-Fang

    2012-12-01

    Wetland reclamation and aquaculture is one of the main disturbance types in coastal wetlands. Diurnal variations of CO2, CH4 and N2O fluxes at the water-air interface were determined using a floating chambers + gas chromatography method in a shrimp pond, and a mixed culture pond of fish and shrimp in October in the Shanyutan Wetland of the Min River estuary, southeast China. Meanwhile, the meteorological indicators in ground surface and physical, chemical and biological indicators of surface water were also measured. CO2, CH4 and N2O fluxes at the water-air interface all demonstrated distinct diurnal variations. Both shrimp pond and mixed culture pond of fish and shrimp functioned as a sink of CO2 [the diurnal averaged CO2 fluxes were -48.79 and -105.25 mg x (m2 x h)(-1), respectively], and a source of CH4 [the diurnal averaged CH4 fluxes were 1.00 and 5.74 mg x (m2 x h)(-1), respectively]; the diurnal averaged CO2 and CH4 fluxes at the water-air interface of the mixed culture of fish and shrimp pond were higher than that of the shrimp pond. Greenhouse gas fluxes at the water-air interface from the aquaculture ponds were influenced by many factors. Multiple stepwise regression analysis showed that the concentration of Chlorophyll was the major factor affecting the CO2 fluxes, and the concentrations of SO4(2-) and PO4(3-) were the major factors affecting the CH4 fluxes at the water-air interface of the shrimp pond; whereas water temperature and Chlorophyll were the major factors affecting the CO2 fluxes, and dissolved oxygen, PO4(3-) and pH were the major factors affecting the CH4 fluxes at the water-air interface of the mixed culture pond of fish and shrimp.

  13. Effect of substrate roughness and working pressure on photocatalyst of N-doped TiOx films prepared by reactive sputtering with air

    NASA Astrophysics Data System (ADS)

    Lee, Seon-Hong; Yamasue, Eiji; Okumura, Hideyuki; Ishihara, Keiichi N.

    2015-01-01

    N-doped TiOx films on the glass substrate were prepared by radio-frequency (RF) magnetron reactive sputtering of Ti target in a mixed gas of argon and dry air. The effect of substrate roughness and working pressure on the physical properties and the photocatalytic properties of the N-doped TiOx films was investigated. The surface roughness of glass substrate has little influence on the film properties such as produced phases, lattice parameters, introduced nitrogen contents, and atomic bonding configurations, but significant influence on the surface roughness of film resulting in the variation of the photocatalytic ability. The working pressure has little influence on the produced phases and the atomic bonding configurations, but significant influence on the atomic concentration of the N-doped TiOx film, resulting in the large variation of optical, structural, and photocatalytic properties. It is suggested that the high photocatalysis of N-doped TiOx film requires a certain range of the N doping concentration which shows the interstitial complex N doping states in TiO2.

  14. Predicting Indian Summer Monsoon onset through variations of surface air temperature and relative humidity

    NASA Astrophysics Data System (ADS)

    Stolbova, Veronika; Surovyatkina, Elena; Kurths, Jurgen

    2015-04-01

    Indian Summer Monsoon (ISM) rainfall has an enormous effect on Indian agriculture, economy, and, as a consequence, life and prosperity of more than one billion people. Variability of the monsoonal rainfall and its onset have a huge influence on food production, agricultural planning and GDP of the country, which on 22% is determined by agriculture. Consequently, successful forecasting of the ISM onset is a big challenge and large efforts are being put into it. Here, we propose a novel approach for predictability of the ISM onset, based on critical transition theory. The ISM onset is defined as an abrupt transition from sporadious rainfall to spatially organized and temporally sustained rainfall. Taking this into account, we consider the ISM onset as is a critical transition from pre-monsoon to monsoon, which take place in time and also in space. It allows us to suggest that before the onset of ISM on the Indian subcontinent should be areas of critical behavior where indicators of the critical transitions can be detected through an analysis of observational data. First, we identify areas with such critical behavior. Second, we use detected areas as reference points for observation locations for the ISM onset prediction. Third, we derive a precursor for the ISM onset based on the analysis of surface air temperature and relative humidity variations in these reference points. Finally, we demonstrate the performance of this precursor on two observational data sets. The proposed approach allows to determine ISM onset in advance in 67% of all considered years. Our proposed approach is less effective during the anomalous years, which are associated with weak/strong monsoons, e.g. El-Nino, La-Nina or positive Indian Ocean Dipole events. The ISM onset is predicted for 23 out of 27 normal monsoon years (85%) during the past 6 decades. In the anomalous years, we show that time series analysis in both areas during the pre-monsoon period reveals indicators whether the

  15. Heat transfer and pressure drop measurements in an air/molten salt direct-contact heat exchanger

    SciTech Connect

    Bohn, M.S.

    1988-11-01

    This paper presents a comparison of experimental data with a recently published model of heat exchange in irrigated packed beds. Heat transfer and pressure drop were measured in a 150 mm (ID) column with a 610-mm bed of metal Pall rings. Molten nitrate salt and preheated air were the working fluids with a salt inlet temperature of approximately 440{degree}C and air inlet temperatures of approximately 230{degree}C. A comparison between the experimental data and the heat transfer model is made on the basis of heat transfer from the salt. For the range of air and salt flow rates tested, 0.3 to 1.2 kg/m{sup 2} s air flow and 6 to 18 kg/m{sup 2} s salt flow, the data agree with the model within 22% standard deviation. In addition, a model for the column pressure drop was validated, agreeing with the experimental data within 18% standard deviation over the range of column pressure drop from 40 to 1250 Pa/m. 25 refs., 7 figs., 2 tabs.

  16. Circadian variations of catecholamines and blood pressure in patients with pseudohypoparathyroidism and hypertension.

    PubMed

    Brickman, A S; Stern, N; Sowers, J R

    1990-01-01

    The relationship between 24-h recumbent blood pressure levels and secretory patterns of catecholamines was investigated in 4 patients with pseudohypoparathyroidism (PsHP) and hypertension and in 9 patients with essential hypertension. A clear circadian rhythm of blood pressure and catecholamines was documented in both groups with lowest levels of blood pressures and catecholamines occurring during sleep. During the 24-h period of recumbency mean arterial blood pressure (MAP) was correlated (r = 0.63, p less than or equal to 0.01) with plasma norepinephrine (N) in the patients with essential hypertension, but this correlation was weaker in patients with PsHP (r = 0.38, p less than or equal to 0.05). MAP was more closely related to plasma epinephrine (E) (r = 0.62, p less than or equal to 0.01) than to plasma NE in patients with PsHP. Plasma NE and E levels were considerably lower in patients with PsHP than in patients with essential hypertension throughout the 24-h recumbent period. The sleep-related decline in blood pressure and NE was less than in patients with essential hypertension. These results suggest that while the sympathetic nervous system may have a role in hour-to-hour maintenance of blood pressure in patients with PsHP and hypertension, it does not appear to be responsible for the elevated arterial pressure in these patients. Factors other than those investigated, such as obesity, alterations in sodium homeostasis of refractoriness of the vascular smooth muscle to the vasodilatory effect of PTH may be involved in the pathogenesis of hypertension in PsHP.

  17. The variable immunological self: genetic variation and nongenetic noise in Aire-regulated transcription.

    PubMed

    Venanzi, Emily S; Melamed, Rachel; Mathis, Diane; Benoist, Christophe

    2008-10-14

    The Aire transcription factor plays an important role in immunological self-tolerance by mediating the ectopic expression of peripheral self-antigens by thymic medullary epithelial cells (MECs), and the deletion of thymocytes that recognize them. In Aire-deficient humans or mice, central tolerance is incomplete and multiorgan autoimmune disease results. We examined the variability of Aire's effects on ectopic transcription among individual mice of three different inbred strains. Aire's function was, overall, quite similar in the three backgrounds, although generally stronger in C57BL/6 than in BALB/c or NOD mice, and a minority of Aire-regulated genes did show clear differences. Gene expression profiling of wild-type MECs from single mice, or from the two thymic lobes of the same mouse, revealed significantly greater variability in Aire-controlled ectopic gene expression than in Aire-independent transcripts. This "noisy" ectopic expression did not result from parental or early developmental imprinting, but from programming occurring after the formation of the thymic anlage, resulting from epigenetic effects or from the stochastic nature of Aire activity. Together, genetic and nongenetic variability in ectopic expression of peripheral antigens in the thymus make for differences in the portion of self determinants presented for tolerance induction. This variable self may be beneficial in preventing uniform holes in the T-cell repertoire in individuals of a species, but at the cost of variable susceptibility to autoimmunity.

  18. Personal black carbon exposure influences ambulatory blood pressure: air pollution and cardiometabolic disease (AIRCMD-China) study.

    PubMed

    Zhao, Xiaoyi; Sun, Zhichao; Ruan, Yanping; Yan, Jianhua; Mukherjee, Bhramar; Yang, Fumo; Duan, Fengkui; Sun, Lixian; Liang, Ruijuan; Lian, Hui; Zhang, Shuyang; Fang, Quan; Gu, Dongfeng; Brook, Jeffrey R; Sun, Qinghua; Brook, Robert D; Rajagopalan, Sanjay; Fan, Zhongjie

    2014-04-01

    Few prospective studies have assessed the blood pressure effect of extremely high air pollution encountered in Asia's megacities. The objective of this study was to evaluate the association between combustion-related air pollution with ambulatory blood pressure and autonomic function. During February to July 2012, personal black carbon was determined for 5 consecutive days using microaethalometers in patients with metabolic syndrome in Beijing, China. Simultaneous ambient fine particulate matter concentration was obtained from the Beijing Municipal Environmental Monitoring Center and the US Embassy. Twenty-four-hour ambulatory blood pressure and heart rate variability were measured from day 4. Arterial stiffness and endothelial function were obtained at the end of day 5. For statistical analysis, we used generalized additive mixed models for repeated outcomes and generalized linear models for single/summary outcomes. Mean (SD) of personal black carbon and fine particulate matter during 24 hours was 4.66 (2.89) and 64.2 (36.9) μg/m(3). Exposure to high levels of black carbon in the preceding hours was associated significantly with adverse cardiovascular responses. A unit increase in personal black carbon during the previous 10 hours was associated with an increase in systolic blood pressure of 0.53 mm Hg and diastolic blood pressure of 0.37 mm Hg (95% confidence interval, 0.17-0.89 and 0.10-0.65 mm Hg, respectively), a percentage change in low frequency to high frequency ratio of 5.11 and mean interbeat interval of -0.06 (95% confidence interval, 0.62-9.60 and -0.11 to -0.01, respectively). These findings highlight the public health effect of air pollution and the importance of reducing air pollution.

  19. Studies on the tempo of bubble formation in recently cavitated vessels: a model to predict the pressure of air bubbles.

    PubMed

    Wang, Yujie; Pan, Ruihua; Tyree, Melvin T

    2015-06-01

    A cavitation event in a vessel replaces water with a mixture of water vapor and air. A quantitative theory is presented to argue that the tempo of filling of vessels with air has two phases: a fast process that extracts air from stem tissue adjacent to the cavitated vessels (less than 10 s) and a slow phase that extracts air from the atmosphere outside the stem (more than 10 h). A model was designed to estimate how water tension (T) near recently cavitated vessels causes bubbles in embolized vessels to expand or contract as T increases or decreases, respectively. The model also predicts that the hydraulic conductivity of a stem will increase as bubbles collapse. The pressure of air bubbles trapped in vessels of a stem can be predicted from the model based on fitting curves of hydraulic conductivity versus T. The model was validated using data from six stem segments each of Acer mono and the clonal hybrid Populus 84 K (Populus alba × Populus glandulosa). The model was fitted to results with root mean square error less than 3%. The model provided new insight into the study of embolism formation in stem tissue and helped quantify the bubble pressure immediately after the fast process referred to above.

  20. Response of a catalytic reaction to periodic variation of the CO pressure: increased CO2 production and dynamic phase transition.

    PubMed

    Machado, Erik; Buendía, Gloria M; Rikvold, Per Arne; Ziff, Robert M

    2005-01-01

    We present a kinetic Monte Carlo study of the dynamical response of a Ziff-Gulari-Barshad model for CO oxidation with CO desorption to periodic variation of the CO pressure. We use a square-wave periodic pressure variation with parameters that can be tuned to enhance the catalytic activity. We produce evidence that, below a critical value of the desorption rate, the driven system undergoes a dynamic phase transition between a CO2 productive phase and a nonproductive one at a critical value of the period and waveform of the pressure oscillation. At the dynamic phase transition the period-averaged CO2 production rate is significantly increased and can be used as a dynamic order parameter. We perform a finite-size scaling analysis that indicates the existence of power-law singularities for the order parameter and its fluctuations, yielding estimated critical exponent ratios beta/nu approximately 0.12 and gamma/nu approximately 1.77. These exponent ratios, together with theoretical symmetry arguments and numerical data for the fourth-order cumulant associated with the transition, give reasonable support for the hypothesis that the observed nonequilibrium dynamic phase transition is in the same universality class as the two-dimensional equilibrium Ising model.

  1. Variation with Mach Number of Static and Total Pressures Through Various Screens

    NASA Technical Reports Server (NTRS)

    Adler, Alfred A

    1946-01-01

    Tests were conducted in the Langley 24-inch highspeed tunnel to ascertain the static-pressure and total-pressure losses through screens ranging in mesh from 3 to 12 wires per inch and in wire diameter from 0.023 to 0.041 inch. Data were obtained from a Mach number of approximately 0.20 up to the maximum (choking) Mach number obtainable for each screen. The results of this investigation indicate that the pressure losses increase with increasing Mach number until the choking Mach number, which can be computed, is reached. Since choking imposes a restriction on the mass rate of flow and maximum losses are incurred at this condition, great care must be taken in selecting the screen mesh and wire dimmeter for an installation so that the choking Mach number is

  2. Within-Tunnel Variations in Pressure Data for Three Transonic Wind Tunnels

    NASA Technical Reports Server (NTRS)

    DeLoach, Richard

    2014-01-01

    This paper compares the results of pressure measurements made on the same test article with the same test matrix in three transonic wind tunnels. A comparison is presented of the unexplained variance associated with polar replicates acquired in each tunnel. The impact of a significance component of systematic (not random) unexplained variance is reviewed, and the results of analyses of variance are presented to assess the degree of significant systematic error in these representative wind tunnel tests. Total uncertainty estimates are reported for 140 samples of pressure data, quantifying the effects of within-polar random errors and between-polar systematic bias errors.

  3. Influence of complex impact of the picosecond electron beam and volume discharge in atmospheric-pressure air on the electronic properties of MCT epitaxial films surface

    NASA Astrophysics Data System (ADS)

    Grigoryev, Denis V.; Novikov, Vadim A.; Bezrodnyy, Dmitriy A.; Tarasenko, Viktor F.; Shulepov, Michail A.; Dvoretskii, Sergei A.

    2015-12-01

    In the present report we studied the distribution of surface potential of the HgCdTe epitaxial films grown by molecular beam epitaxy after the impact of picosecond electron beam and volume discharge in atmospheric-pressure air. The surface potential distribution was studied by the Kelvin Force Probe Microscopy. The experimental data obtained for the variation of the contact potential difference (ΔCPD) between the V-defect and the main matrix of the epitaxial film. The investigation of the origin epitaxial films show that variation of the spatial distribution of surface potential in the V-defect region can be related to the variation of the material composition. The experimental data obtained for the irradiated samples show that the mean value of ΔCPD for the original surface differs from the one for the irradiated surface for 55 eV. At the same time the mean value of ΔCPD changes its sign indicating that the original surface of the epitaxial HgCdTe film predominantly contains the grains with increased cadmium content while after the irradiation the grains possess an increased content of mercury. Therefore, during the irradiation process a decrease of the mercury content in the near-surface region of the semiconductor takes place resulting in the alteration of the electrophysical properties in the films near-surface region.

  4. Variations in dust contributions to air quality impairment in a temperate grassland of Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Zhang, Baolin; Guan, Chunzhu; Zhao, Junling; Li, Jiannan

    2017-01-01

    Dust associated visibility impairment is the most noticeable air pollution phenomena, has important implications regarding air quality in developing cities. We integrated the commonly reported visibility with remote sensing, found that dust emission tended to decrease over Xilingol grassland. The temporal coherency between dust event and visibility reduction demonstrated dust was an important factor responsible for air quality impairment, but the differences in seasonal patterns and long-term trends among stations manifested some drops in visibility couldn’t be solely attributed to dust activity. It is urgent to conclude the causes of visibility reduction in developing cities susceptible to dust impact in recent years.

  5. Influence of daily variations in baseline ozone on urban air quality in the United States Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Wigder, Nicole L.; Jaffe, Daniel A.; Herron-Thorpe, Farren L.; Vaughan, Joseph K.

    2013-04-01

    We examine the influence of daily variations in baseline ozone (O3) on urban air quality in the U.S. Pacific Northwest (PNW) during 2004 to 2010 through two analyses: (1) transport of free tropospheric (FT) O3 from Mount Bachelor Observatory (MBO) to Boise, Idaho; and (2) transport of marine boundary layer (MBL) O3 from Cheeka Peak (CP) to Enumclaw, Washington. Both Boise and Enumclaw experience days with maximum daily 8 hour averages of O3 (MDA8) exceeding U.S. standards. Backward trajectory cluster analyses identify days when FT and MBL O3 strongly influence MDA8 in Boise and Enumclaw. On these days, MBO and CP O3 observations explain 40% and 69% of the variations in Boise and Enumclaw MDA8, respectively. Bivariate regressions for Boise/MBO and Enumclaw/CP have slopes of 0.52 ± 0.16 and 1.04 ± 0.08, respectively, representing the differing interplay of O3 dilution, production, and loss during FT to boundary layer transport (Boise/MBO) and fast boundary layer transport (Enumclaw/CP). AIRPACT-3/CMAQ (Air Indicator Report for Public Access and Community Tracking version 3/Community Multi-scale Air Quality model) high-resolution air-quality simulation results demonstrate how transport of O3 from the FT above MBO contributes to elevated O3 at Boise. Average MDA8 O3 in Boise is higher than in Enumclaw due to site elevation and greater entrainment of FT air masses, a finding likely applicable to other PNW sites. Days with high baseline influence at Boise and Enumclaw have lower average MDA8 O3 than other days; however, some of these days would still exceed the U.S. standard if it is substantially tightened in 2013, highlighting the increasing importance of FT O3 influence on urban MDA8.

  6. Positive Selection Pressure Drives Variation on the Surface-Exposed Variable Proteins of the Pathogenic Neisseria

    PubMed Central

    Hill, Stuart

    2016-01-01

    Pathogenic species of Neisseria utilize variable outer membrane proteins to facilitate infection and proliferation within the human host. However, the mechanisms behind the evolution of these variable alleles remain largely unknown due to analysis of previously limited datasets. In this study, we have expanded upon the previous analyses to substantially increase the number of analyzed sequences by including multiple diverse strains, from various geographic locations, to determine whether positive selective pressure is exerted on the evolution of these variable genes. Although Neisseria are naturally competent, this analysis indicates that only intrastrain horizontal gene transfer among the pathogenic Neisseria principally account for these genes exhibiting linkage equilibrium which drives the polymorphisms evidenced within these alleles. As the majority of polymorphisms occur across species, the divergence of these variable genes is dependent upon the species and is independent of geographical location, disease severity, or serogroup. Tests of neutrality were able to detect strong selection pressures acting upon both the opa and pil gene families, and were able to locate the majority of these sites within the exposed variable regions of the encoded proteins. Evidence of positive selection acting upon the hypervariable domains of Opa contradicts previous beliefs and provides evidence for selection of receptor binding. As the pathogenic Neisseria reside exclusively within the human host, the strong selection pressures acting upon both the opa and pil gene families provide support for host immune system pressure driving sequence polymorphisms within these variable genes. PMID:27532335

  7. Positive Selection Pressure Drives Variation on the Surface-Exposed Variable Proteins of the Pathogenic Neisseria.

    PubMed

    Wachter, Jenny; Hill, Stuart

    2016-01-01

    Pathogenic species of Neisseria utilize variable outer membrane proteins to facilitate infection and proliferation within the human host. However, the mechanisms behind the evolution of these variable alleles remain largely unknown due to analysis of previously limited datasets. In this study, we have expanded upon the previous analyses to substantially increase the number of analyzed sequences by including multiple diverse strains, from various geographic locations, to determine whether positive selective pressure is exerted on the evolution of these variable genes. Although Neisseria are naturally competent, this analysis indicates that only intrastrain horizontal gene transfer among the pathogenic Neisseria principally account for these genes exhibiting linkage equilibrium which drives the polymorphisms evidenced within these alleles. As the majority of polymorphisms occur across species, the divergence of these variable genes is dependent upon the species and is independent of geographical location, disease severity, or serogroup. Tests of neutrality were able to detect strong selection pressures acting upon both the opa and pil gene families, and were able to locate the majority of these sites within the exposed variable regions of the encoded proteins. Evidence of positive selection acting upon the hypervariable domains of Opa contradicts previous beliefs and provides evidence for selection of receptor binding. As the pathogenic Neisseria reside exclusively within the human host, the strong selection pressures acting upon both the opa and pil gene families provide support for host immune system pressure driving sequence polymorphisms within these variable genes.

  8. Atmospheric pressure He-air plasma jet: Breakdown process and propagation phenomenon

    SciTech Connect

    Begum, Asma; Laroussi, Mounir; Pervez, Mohammad Rasel

    2013-06-15

    In this paper He-discharge (plasma jet/bullet) in atmospheric pressure air and its progression phenomenon has been studied experimentally using ICCD camera, optical emission spectroscopy (OES) and calibrated dielectric probe measurements. The repetitive nanosecond pulse has applied to a plasma pencil to generate discharge in the helium gas channel. The discharge propagation speed was measured from the ICCD images. The axial electric field distribution in the plasma jet is inferred from the optical emission spectroscopic data and from the probe measurement. The correlation between the jet velocities, jet length with the pulse duration is established. It shows that the plasma jet is not isolated from the input voltage along its propagation path. The discharge propagation speed, the electron density and the local and average electric field distribution along the plasma jet axis predicted from the experimental results are in good agreement with the data predicted by numerical simulation of the streamer propagation presented in different literatures. The ionization phenomenon of the discharge predicts the key ionization parameters, such as speed, peak electric field in the front, and electron density. The maximum local electric field measured by OES is 95 kV/cm at 1.3 cm of the jet axis, and average EF measured by probe is 24 kV/cm at the same place of the jet. The average and local electron density estimated are in the order of 10{sup 11} cm{sup -3} and it reaches to the maximum of 10{sup 12} cm{sup -3}.

  9. Soot Formation in Laminar Acetylene/Air Diffusion Flames at Atmospheric Pressure. Appendix H

    NASA Technical Reports Server (NTRS)

    Xu, F.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    The flame structure and soot-formation (soot nucleation and growth) properties of axisymmetric laminar coflowing jet diffusion flames were studied experimentally. Test conditions involved acetylene-nitrogen jets burning in coflowing air at atmospheric pressure. Measurements were limited to the axes of the flames and included soot concentrations, soot temperatures, soot structure, major gas species concentrations, radical species (H, OH, and O) concentrations, and gas velocities. The results show that as distance increases along the axes of the flames, detectable soot formation begins when significant H concentrations are present, and ends when acetylene concentrations become small. Species potentially associated with soot oxidation-O2, CO2, H2O, O, and OH-are present throughout the soot-formation region so that soot formation and oxidation proceed at the same time. Strong rates of soot growth compared to soot nucleation early in the soot-formation process, combined with increased rates of soot nucleation and oxidation as soot formation proceeds, causes primary soot particle diameters to reach a maximum relatively early in the soot-formation process. Aggregation of primary soot particles proceeds, however, until the final stages of soot oxidation. Present measurements of soot growth (corrected for soot oxidation) in laminar diffusion flames were consistent with earlier measurements of soot growth in laminar premixed flames and exhibited encouraging agreement with existing hydrogen-abstraction/carbon-addition (HACA) soot growth mechanisms in the literature that were developed based on measurements within laminar premixed flames. Measured primary soot particle nucleation rates in the present laminar diffusion flames also were consistent with corresponding rates measured in laminar premixed flames and yielded a crude correlation in terms of acetylene and H concentrations and the temperature.

  10. Soot Formation in Laminar Acetylene/Air Diffusion Flames at Atmospheric Pressure. Appendix J

    NASA Technical Reports Server (NTRS)

    Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    The flame structure and soot-formation (soot nucleation and growth) properties of axisymmetric laminar coflowing jet diffusion flames were studied experimentally. Test conditions involved acetylene-nitrogen jets burning in coflowing air at atmospheric pressure. Measurements were limited to the axes of the flames and included soot concentrations, soot temperatures, soot structure, major gas species concentrations, radical species (H, OH, and O) concentrations, and gas velocities. The results show that as distance increases along the axes of the flames, detectable soot formation begins when significant H concentrations are present, and ends when acetylene concentrations become small. Species potentially associated with soot oxidation--O2, CO2, H2O, O, and OH-are present throughout the soot-formation region so that soot formation and oxidation proceed at the same time. Strong rates of soot growth compared to soot nucleation early in the soot-formation process, combined with increased rates of soot nucleation and oxidation as soot formation proceeds, causes primary soot particle diameters to reach a maximum relatively early in the soot-formation process. Aggregation of primary soot particles proceeds, however, until the final stages of soot oxidation. Present measurements of soot growth (corrected for soot oxidation) in laminar diffusion flames were consistent with earlier measurements of soot growth in laminar premixed flames and exhibited encouraging agreement with existing hydrogen-abstraction/carbon-addition (HACA) soot growth mechanisms in the literature that were developed based on measurements within laminar premixed flames. Measured primary soot particle nucleation rates in the present laminar diffusion flames also were consistent with corresponding rates measured in laminar premixed flames and yielded a crude correlation in terms of acetylene and H concentrations and the temperature.

  11. Soot Formation in Laminar Acetylene/Air Diffusion Flames at Atmospheric Pressure. Appendix C

    NASA Technical Reports Server (NTRS)

    Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2000-01-01

    The flame structure and soot-formation (soot nucleation and growth) properties of axisymmetric laminar coflowing jet diffusion flames were studied experimentally. Test conditions involved acetylene-nitrogen jets burning in coflowing air at atmospheric pressure. Measurements were limited to the axes of the flames and included soot concentrations, soot temperatures, soot structure, major gas species concentrations, radical species (H, OH, and O) concentrations, and gas velocities. The results show that as distance increases along the axes of the flames, detectable soot formation begins when significant H concentrations are present, and ends when acetylene concentrations become small. Species potentially associated with soot oxidation-O2, CO2, H2O, O, and OH-are present throughout the soot-formation region so that soot formation and oxidation proceed at the same time. Strong rates of soot growth compared to soot nucleation early in the soot-formation process, combined with increased rates of soot nucleation and oxidation as soot formation proceeds, causes primary soot particle diameters to reach a maximum relatively early in the soot-formation process. Aggregation of primary soot particles proceeds, however, until the final stages of soot oxidation. Present measurements of soot growth (corrected for soot oxidation) in laminar diffusion flames were consistent with earlier measurements of soot growth in laminar premixed flames and exhibited encouraging agreement with existing hydrogen-abstraction/carbon-addition (HACA) soot growth mechanisms in the literature that were developed based on measurements within laminar premixed flames. Measured primary soot particle nucleation rates in the present laminar diffusion flames also were consistent with corresponding rates measured in laminar premixed flames and yielded a crude correlation in terms of acetylene and H concentrations and the temperature.

  12. Inhibitory effect of silver nanoparticles mediated by atmospheric pressure air cold plasma jet against dermatophyte fungi.

    PubMed

    Ouf, Salama A; El-Adly, Amira A; Mohamed, Abdel-Aleam H

    2015-10-01

    In an in vitro study with five clinical isolates of dermatophytes, the MIC(50) and MIC(100) values of silver nanoparticles (AgNPs) ranged from 5 to 16 and from 15 to 32 μg ml(- 1), respectively. The combined treatment of AgNPs with atmospheric pressure-air cold plasma (APACP) induced a drop in the MIC(50) and MIC100 values of AgNPs reaching 3-11 and 12-23 μg ml(- 1), respectively, according to the examined species. Epidermophyton floccosum was the most sensitive fungus to AgNPs, while Trichophyton rubrum was the most tolerant. AgNPs induced significant reduction in keratinase activity and an increase in the mycelium permeability that was greater when applied combined with plasma treatment. Scanning electron microscopy showed electroporation of the cell walls and the accumulation of AgNPs on the cell wall and inside the cells, particularly when AgNPs were combined with APACP treatment. An in vivo experiment with dermatophyte-inoculated guinea pigs indicated that the application of AgNPs combined with APACP was more efficacious in healing and suppressing disease symptoms of skin as compared with the application of AgNPs alone. The recovery from the infection reached 91.7 % in the case of Microsporum canis-inoculated guinea pigs treated with 13 μg ml(- 1) AgNPs combined with APACP treatment delivered for 2  min. The emission spectra indicated that the efficacy of APACP was mainly due to generation of NO radicals and excited nitrogen molecules. These reactive species interact and block the activity of the fungal spores in vitro and in the skin lesions of the guinea pigs. The results achieved are promising compared with fluconazole as reference antifungal drug.

  13. Thermal and hydrodynamic effects of nanosecond discharges in atmospheric pressure air

    NASA Astrophysics Data System (ADS)

    Xu, D. A.; Shneider, M. N.; Lacoste, D. A.; Laux, C. O.

    2014-06-01

    We present quantitative schlieren measurements and numerical analyses of the thermal and hydrodynamic effects of a nanosecond repetitively pulsed (NRP) discharge in atmospheric pressure air at 300 and 1000 K. The plasma is created by voltage pulses at an amplitude of 10 kV and a duration of 10 ns, applied at a frequency of 1-10 kHz between two pin electrodes separated by 2 or 4 mm. The electrical energy of each pulse is of the order of 1 mJ. We recorded single-shot schlieren images starting from 50 ns to 3 µs after the discharge. The time-resolved images show the shock-wave propagation and the expansion of the heated gas channel. Gas density profiles simulated in 1D cylindrical coordinates have been used to reconstruct numerical schlieren images for comparison with experimental ones. We propose an original method to determine the initial gas temperature and the fraction of energy transferred into ultrafast gas heating, using a comparison of the contrast profiles obtained from experimental and numerical schlieren images. This method is found to be much more sensitive to these parameters than the direct comparison of measured and predicted shock-wave and heated channel radii. The results show that a significant fraction of the electric energy is converted into gas heating within a few tens of ns. The values range from about 25% at a reduced electric field of 164 Td to about 75% at 270 Td, with a strong dependance on the initial gas temperature. These experiments support the fast heating processes via dissociative quenching of N2(B3 Πg, C3 Πu) by molecular oxygen.

  14. Air pressure effects on sea level changes during the twentieth century

    NASA Astrophysics Data System (ADS)

    Piecuch, Christopher G.; Thompson, Philip R.; Donohue, Kathleen A.

    2016-10-01

    Interpretation of tide gauge data in terms sea level (η) and ocean dynamics requires estimates of air pressure (pa) to determine the ocean's isostatic response—the inverted barometer effect (ηib). Three gridded pa products (HadSLP2, NOAA-20CRv2, and ERA-20C) are used alongside meteorological station pa and tide gauge η records to evaluate the contribution of ηib to η changes over the twentieth century. Agreement between gridded products is better during more recent periods and over regions with good historical data coverage, whereas it is worse for earlier time periods or in ocean areas with poor observational data coverage. Comparison against station data reveals the presence of systematic errors in the gridded products, for example, such that uncertainties estimated through differencing the gridded products underestimate the true errors by roughly 40% on interannual and decadal time scales. Notwithstanding such correlated errors, gridded products are still useful for interpretation of tide gauge data. Removing gridded estimates of ηib from η records reduces spatial variance in centennial trends across tide gauges by 10-30%, formal errors in centennial trends from individual gauges by ˜5%, and the temporal variance in detrended records by 10-15% on average (depending on choice of gridded product). Results here advocate for making the ηib correction to tide gauge records in studies of ocean circulation and global η over long, multidecadal, and centennial time scales using an ensemble mean taken across several gridded ηib products.

  15. Liquid Steel at Low Pressure: Experimental Investigation of a Downward Water Air Flow

    NASA Astrophysics Data System (ADS)

    Thumfart, Maria

    2016-07-01

    In the continuous casting of steel controlling the steel flow rate to the mould is critical because a well-defined flow field at the mould level is essential for a good quality of the cast product. The stopper rod is a commonly used device to control this flow rate. Agglomeration of solid material near the stopper rod can lead to a reduced cross section and thus to a decreased casting speed or even total blockage (“clogging”). The mechanisms causing clogging are still not fully understood. Single phase considerations of the flow in the region of the stopper rod result in a low or even negative pressure at the smallest cross section. This can cause degassing of dissolved gases from the melt, evaporation of alloys and entrainment of air through the porous refractory material. It can be shown that the degassing process in liquid steel is taking place mainly at the stopper rod tip and its surrounding. The steel flow around the stopper rod tip is highly turbulent. In addition refractory material has a low wettability to liquid steel. So the first step to understand the flow situation and transport phenomena which occur near the stopper is to understand the behaviour of this two phase (steel, gas) flow. To simulate the flow situation near the stopper rod tip, water experiments are conducted using a convergent divergent nozzle with three different wall materials and three different contact angles respectively. These experiments show the high impact of the wettability of the wall material on the actual flow structure at a constant gas flow rate.

  16. Air Pressure, Humidity and Stroke Occurrence: A Systematic Review and Meta-Analysis

    PubMed Central

    Cao, Yongjun; Wang, Xia; Zheng, Danni; Robinson, Thompson; Hong, Daqing; Richtering, Sarah; Leong, Tzen Hugh; Salam, Abdul; Anderson, Craig; Hackett, Maree L.

    2016-01-01

    Background/Aims: An influence of climate upon stroke risk is biologically plausible and supported by epidemiological evidence. We aimed to determine whether air pressure (AP) and humidity are associated with hospital stroke admission. Methods: We searched MEDLINE, Embase, PsycINFO, CINAHL, Web of Science, and GEOBASE, from inception to 16 October 2015 to identify relevant population-based observational studies. Where possible, data were pooled for meta-analysis with odds ratios (OR) and corresponding 95% confidence intervals (CI) by means of the random-effect method. Results: We included 11 studies with a total of 314,385 patients. The effect of AP was varied across studies for ischemic stroke (IS) and subarachnoid haemorrhage (SAH). Pooled ORs (95%CI) associated with 1 hPa increase in AP for the risk of IS, intracerebral hemorrhage (ICH) and SAH were 1.00 (0.99–1.01), 1.01 (0.99–1.02) and 1.02 (0.97–1.07) respectively. The pooled ORs (95%CI) associated with 1 percent increase in humidity for the risk of IS and ICH were 1.00 (1.00–1.01) and 1.00 (0.99–1.01) respectively. Conclusion: This review shows that there is no evidence of a relationship between AP or humidity and the occurrence of hospital admission for stroke. Further research is needed to clarify the extent and nature of any relationship between AP, humidity and stroke in different geographical areas. PMID:27399733

  17. Analysis of copper surface features obtained using TEA CO2 laser at reduced air pressure

    NASA Astrophysics Data System (ADS)

    Momcilovic, M.; Trtica, M.; Ciganovic, J.; Savovic, J.; Stasic, J.; Kuzmanovic, M.

    2013-04-01

    Interaction of a transversely excited atmospheric (TEA) CO2 laser with rough copper surface, at reduced air pressure, was studied. Optical pulse duration of the laser employed was ∼2 μs, with the initial spike FWHM of ∼100 ns. Laser energy density of ∼32 J/cm2 (intensity ∼108 W/cm2) was above the plasma ignition threshold. Morphological features of the copper can be summarized as follows: (i) superficial damages, which take crater-shaped form at a higher number of accumulated laser pulses, (ii) development of melt pools with visible bubbles inside the damage region, (iii) formation of solid droplets at near periphery, and (iv) presence of “halo” effect at the irradiated surface. The laser induced surface changes were influenced by the target plasma formation. The formation of plasma influenced the laser-target interaction in two opposite ways: trough absorption of laser energy by the plasma, i.e. trough the effect of plasma shielding, and trough energy transfer from the plasma to the sample. Optical emission spectra were compared for laser induced plasma originated by a single and by cumulative laser pulses. It was found that plasma dimensions and emission intensities have a strong correlation with the number of accumulated laser pulses. Enhancement of both atomic and ionic copper lines was registered when laser induced plasma originated from a single pulse. Chemical analysis of the surface showed a tendency of copper content increase and oxygen content reduction when going from non-irradiated region to the central irradiated region. In the central damage zone, nearly pure copper was present which can be advantageous for some applications due to considerably lower contamination.

  18. An Investigation into the Gravity Current Aspects of a Cold Air Outbreak Using Variational Analysis Techniques

    DTIC Science & Technology

    1988-01-01

    temperatures dropped 30 degrees in a matter of hours in central Florida with dramatic drops in dewpoint as well. A method is developed using variational ... calculus to decompose observed gridded radiosonde data from this period into component fields. Three variational filters are used iteratively to extract

  19. Variation in heat and pressure resistance of verotoxigenic and nontoxigenic Escherichia coli.

    PubMed

    Liu, Yang; Gill, Alex; McMullen, Lynn; Gänzle, Michael G

    2015-01-01

    This study evaluated the heat and pressure resistance of 112 strains of Escherichia coli, including 102 strains of verotoxigenic E. coli (VTEC) representing 23 serotypes and four phylogenetic groups. In an initial screening, the heat and pressure resistance of 100 strains, including 94 VTEC strains, were tested in phosphate-buffered saline (PBS). Treatment at 60°C for 5 min reduced cell counts by 2.0 to 5.5 log CFU/ml; treatment at 600 MPa for 3 min at 25°C reduced the cell counts by 1.1 to 5.5 log CFU/ml. Heat or pressure resistance did not correlate to the phylogenetic group or the serotype. A smaller group of E. coli strains was evaluated for heat and pressure resistance in Luria-Bertani (LB) broth. Generally, the levels of heat resistance of E. coli strains in LB and PBS were similar; however, the levels of pressure resistance observed for treatments in LB broth or PBS were variable. The cell counts of pressure-resistant strains of VTEC were reduced by less than 1.5 log CFU/ml after treatment at 600 MPa for 3 min. E. coli strains were also treated with 600 MPa for 3 min in ground beef or inoculated into beef patties and grilled to 63 or 71°C. The cell counts of the VTEC E. coli O26:H11 strain 05-6544 were reduced by 2 log CFU/g by pressure treatment in ground beef. The cell counts of the heat-resistant E. coli strain AW1.7 were reduced by 1.4 and 3.4 log CFU/g in beef patties grilled to internal temperatures of 63 and 71°C, respectively. The cell counts of E. coli 05-6544 were reduced by less than 3 and 6 log CFU/g in beef patties grilled to internal temperatures of 63 and 71°C, respectively. To study whether the composition of the beef patties influenced heat resistance, E. coli strains AW1.7, AW1.7 Δ pHR1, MG1655, and LMM1030 were mixed into beef patties containing 15 or 35% fat and 0 or 2% NaCl, and the patties were grilled to an internal temperature of 63°C. The highest heat resistance of E. coli was observed in patties containing 15% fat and 2% NaCl.

  20. Seasonal variation in self-measured home blood pressure among patients on antihypertensive medications: HOMED-BP study.

    PubMed

    Hanazawa, Tomohiro; Asayama, Kei; Watabe, Daisuke; Hosaka, Miki; Satoh, Michihiro; Yasui, Daisaku; Obara, Taku; Inoue, Ryusuke; Metoki, Hirohito; Kikuya, Masahiro; Imai, Yutaka; Ohkubo, Takayoshi

    2017-03-01

    Seasonal variation of blood pressure (BP) has been reported in small populations or by BP levels captured at only a few points in a year, for example, summer and winter. We aimed to investigate the multiyear seasonal variation in self-measured home BP among hypertensive patients receiving antihypertensive medications. We selected 1649 eligible patients receiving antihypertensive drug treatment, and weekly averaged home BPs were analyzed throughout the follow-up period. Systolic and diastolic home BPs were fitted with the cosine function: 'Variation+Other Effects+Intercept', in which the 'Variation' was expressed by a cosine curve with three parameters representing: (1) maximum-minimum difference of home BP in one cycle of the cosine curve; (2) time required for one cycle of the cosine curve for home BP variation; and (3) time at which home BP reached the maximum point. Maximum-minimum differences in home BP were 6.7/2.9 mm Hg, and the highest home BPs were observed in mid-to-late January. In the multivariable-adjusted model, a large maximum-minimum difference in home BP was associated with lower body mass index and older age, and larger differences were observed in men compared with women. Summer-winter difference in home BP was essentially similar every year, though it was marginally reduced by 0.14/0.04 mm Hg per year, under long-term antihypertensive treatment. Records of daily home BP measurements enable us to capture long-term factors such as seasonal variation. Home BP should therefore be carefully monitored, particularly in patients with increased BP in winter, to mitigate cardiovascular risk.

  1. Time variations of 222Rn concentration and air exchange rates in a Hungarian cave.

    PubMed

    Nagy, Hedvig Éva; Szabó, Zsuzsanna; Jordán, Gyozo; Szabó, Csaba; Horváth, Akos; Kiss, Attila

    2012-09-01

    A long-term radon concentration monitoring was carried out in the Pál-völgy cave, Budapest, Hungary, for 1.5 years. Our major goal was to determine the time dependence of the radon concentration in the cave to characterise the air exchange and define the most important environmental parameters that influence the radon concentration inside the cave. The radon concentration in the cave air was measured continuously by an AlphaGuard radon monitor, and meteorological parameters outside the cave were collected simultaneously. The air's radon concentration in the cave varied between 104 and 7776 Bq m(-3), the annual average value was 1884±85 Bq m(-3). The summer to winter radon concentration ratio was as high as 21.8. The outside air temperature showed the strongest correlation with the radon concentration in the cave, the correlation coefficient (R) was 0.76.

  2. Spatial variation patterns of subtidal seaweed assemblages along a subtropical oceanic archipelago: Thermal gradient vs herbivore pressure

    NASA Astrophysics Data System (ADS)

    Sangil, Carlos; Sansón, Marta; Afonso-Carrillo, Julio

    2011-10-01

    The structure and composition of subtidal rocky seaweed assemblages were studied at 69 sites on the Canary Islands (northeastern Atlantic). This group of islands are situated at the southern boundary of the warm temperate region and adjacent to the cold waters from the northwest African coastal upwelling, which creates a difference of almost 2 °C in surface seawater temperature from the eastern to the western islands. This thermal variation allows an examination of the transition between the warm temperate and the tropical regions along this longitudinal gradient together with the hypothesised Fucales-dominated assemblages towards the eastern islands in contrast to the Dictyotales-dominated assemblages towards the western ones. Environmental and biological parameters were considered in order to investigate which were the main factors explaining spatial variation along the gradient in a multi-scaled approach. Although seventy-nine macroalgae were identified, 87.63% of the total mean cover was due to six taxa ( Lobophora variegata, nongeniculate corallines, Canistrocarpus cervicornis, Jania adhaerens, Cystoseira abies-marina and Pseudolithoderma adriaticum). At a large scale, sea urchin density explained the highest variation in seaweed assemblages (26.94%), and its pattern of distribution across the islands. The expected pattern of distribution according to the upwelling distance only occurred in restricted areas of the Canarian Archipelago in absence of herbivore pressure and habitat degradation. Spatial variations within islands (medium scale) were mainly related to wave exposure, while at a small scale these were mostly due to the degree of sedimentation.

  3. Sea Level and Ocean Bottom Pressure Variations From Altimetry, Mercator Model and GRACE Mission in the Argentine Basin

    NASA Astrophysics Data System (ADS)

    Garcia-Garcia, D.; Boy, J.; Chao, B. F.

    2008-12-01

    Sea Level Variations (SLV) in the Argentine basin, as already observed from space altimetry missions, show one of the most prominent variances in the oceans. Here we study two major signals in the Argentine basin, the annual and submonthly SLV signals, based on altimetry, various hydrographic data, and the time-variable gravity data from the GRACE mission. We demonstrate that the annual variation is mainly driven by density variations of the water column, that is the steric-SLV. In contrast, the submonthly SLV in the form of the so- called Argentine gyre, a barotropic counterclockwise gyre with a period around 25 days, is mainly mass- induced, that is, mostly produced by mass variations in the region [Fu et al. 2000]. The Argentine gyre signal is well reproduced by the MERCATOR ocean circulation (and bottom pressure) model, unlike the annual signal. We show that now the aliased form (into monthly sampling) is also captured in the GRACE time- variable gravity data after applying appropriated filters; further study awaits higher temporal-resolution GRACE data.

  4. A one-dimensional numerical model for predicting pressure and velocity oscillations of a compressed air-pocket in a vertical shaft

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Leon, A.; Apte, S.

    2015-12-01

    The presence of pressurized air pockets in combined sewer systems is argued to produce geyser flows, which is an oscillating jetting of a mixture of gas-liquid flows through vertical shafts. A 1D numerical model is developed for predicting pressure and velocity oscillations of a compressed air-pocket in a vertical shaft which in turn attempts to simulate geyser like flows. The vertical shaft is closed at the bottom and open to ambient pressure at the top. Initially, the lower section of the vertical shaft is filled with compressed air and the upper section with water. The interaction between the pressurized air pocket and the water column in the vertical shaft exhibits an oscillatory motion of the water column that decays over time. The model accounts for steady and unsteady friction to estimate the energy dissipation. The model also includes the falling flow of water around the external perimeter of the pressurized air pocket by assuming that any expansion in the pressurized air pocket would result in the falling volume of water. The acceleration of air-water interface is predicted through a force balance between the pressurized air pocket and the water column combined with the Method of Characteristics that resolves pressure and velocity within the water column. The expansion and compression of the pressurized air pocket is assumed to follow either isothermal process or adiabatic process. Results for both assumptions; isothermal and adiabatic processes, are presented. The performance of the developed 1D numerical model is compared with that of a commercial 3D CFD model. Overall, a good agreement between both models is obtained for pressure and velocity oscillations. The paper will also present a sensitivity analysis of the 3D CFD model.

  5. Applying Chemical Potential and Partial Pressure Concepts to Understand the Spontaneous Mixing of Helium and Air in a Helium-Inflated Balloon

    ERIC Educational Resources Information Center

    Jee-Yon Lee; Hee-Soo Yoo; Jong Sook Park; Kwang-Jin Hwang; Jin Seog Kim

    2005-01-01

    The spontaneous mixing of helium and air in a helium-inflated balloon is described in an experiment in which the partial pressure of the gases in the balloon are determined from the mole factions and the total pressure measured in the balloon. The results described provide a model for teaching concepts of partial pressure, chemical potential, and…

  6. Analysis of surface air temperature variations and local urbanization effects on central Yunnan Plateau, SW China

    NASA Astrophysics Data System (ADS)

    He, Yunling; Wu, Zhijie; Liu, Xuelian; Deng, Fuying

    2016-10-01

    With the surface air temperature (SAT) data at 37 stations on Central Yunnan Plateau (CYP) for 1961-2010 and the Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) nighttime light data, the temporal-spatial patterns of the SAT trends are detected using Sen's Nonparametric Estimator of Slope approach and MK test, and the impact of urbanization on surface warming is analyzed by comparing the differences between the air temperature change trends of urban stations and their corresponding rural stations. Results indicated that annual mean air temperature showed a significant warming trend, which is equivalent to a rate of 0.17 °C/decade during the past 50 years. Seasonal mean air temperature presents a rising trend, and the trend was more significant in winter (0.31 °C/decade) than in other seasons. Annual/seasonal mean air temperature tends to increase in most areas, and higher warming trend appeared in urban areas, notably in Kunming city. The regional mean air temperature series was significantly impacted by urban warming, and the urbanization-induced warming contributed to approximately 32.3-62.9 % of the total regional warming during the past 50 years. Meantime, the urbanization-induced warming trend in winter and spring was more significant than that in summer and autumn. Since 1985, the urban heat island (UHI) intensity has gradually increased. And the urban temperatures always rise faster than rural temperatures on the CYP.

  7. TEMPORAL VARIATIONS OF X-RAY SOLAR FLARE LOOPS: LENGTH, CORPULENCE, POSITION, TEMPERATURE, PLASMA PRESSURE, AND SPECTRA

    SciTech Connect

    Jeffrey, Natasha L. S.; Kontar, Eduard P.

    2013-04-01

    The spatial and spectral properties of three solar flare coronal X-ray loops are studied before, during, and after the peak X-ray emission. Using observations from the Ramaty High Energy Solar Spectroscopic Imager (RHESSI), we deduce the temporal changes in emitting X-ray length, corpulence, volume, position, number density, and thermal pressure. We observe a decrease in the loop length, width, and volume before the X-ray peak, and an increasing number density and thermal pressure. After the X-ray peak, volume increases and loop corpulence grows due to increasing width. The volume variations are more pronounced than the position variations, often known as magnetic field line contraction. We believe this is the first dedicated study examining the temporal evolution of X-ray loop lengths and widths. Collectively, the observations also show for the first time three temporal phases given by peaks in temperature, X-ray emission, and thermal pressure, with the minimum volume coinciding with the X-ray peak. Although the volume of the flaring plasma decreases before the peak in X-ray emission, the relationship between temperature and volume does not support simple compressive heating in a collapsing magnetic trap model. Within a low {beta} plasma, shrinking loop widths perpendicular to the guiding field can be explained by squeezing the magnetic field threading the region. Plasma heating leads to chromospheric evaporation and growing number density. This produces increasing thermal pressure and decreasing loop lengths as electrons interact at shorter distances and we believe after the X-ray peak, the increasing loop corpulence.

  8. Is gold solubility subject to pressure variations in ascending arc magmas?

    NASA Astrophysics Data System (ADS)

    Jégo, Sébastien; Nakamura, Michihiko; Kimura, Jun-Ichi; Iizuka, Yoshiyuki; Chang, Qing; Zellmer, Georg F.

    2016-09-01

    Magmas play a key role in the genesis of epithermal and porphyry ore deposits, notably by providing the bulk of ore metals to the hydrothermal fluid phase. It has been long shown that the formation of major deposits requires a multi-stage process, including the concentration of metals in silicate melts at depth and their transfer into the exsolved ore fluid in more superficial environments. Both aspects have been intensively studied for most of noble metals in subsurface conditions, whereas the effect of pressure on the concentration (i.e., solubility) of those metals in magmas ascending from the sublithospheric mantle to the shallow arc crust has been quite neglected. Here, we present new experimental data aiming to constrain the processes of gold (Au) dissolution in subduction-linked magmas along a range of depth. We have conducted hydrous melting experiments on two dacitic/adakitic magmas at 0.9 and 1.4 GPa and ∼1000 °C in an end-loaded piston cylinder apparatus, under fO2 conditions close to NNO as measured by solid Co-Pd-O sensors. Experimental charges were carried out in pure Au containers, the latter serving as the source of gold, in presence of variable amounts of H2O and, for half of the charges, with elemental sulfur (S) so as to reach sulfide saturation. Au concentrations in melt quenched to glass were determined by LA-ICPMS. When compared to previous data obtained at lower pressures and variable redox conditions, our results show that in both S-free and sulfide-saturated systems pressure has no direct, detectable effect on melt Au solubility. Nevertheless, pressure has a strong, negative effect on sulfur solubility. Since gold dissolution is closely related to the behavior of sulfur in reducing and moderately oxidizing conditions, pressure has therefore a significant but indirect effect on Au solubility. The present study confirms that Au dissolution is mainly controlled by fO2 in S-free melts and by a complex interplay of fO2 and melt S2

  9. Long-term ambient air pollution exposure and risk of high blood pressure among citizens in Nis, Serbia.

    PubMed

    Stanković, Aleksandra; Nikolić, Maja

    2016-01-01

    Epidemiological studies suggest that long-term exposure to air pollution increases the risk for high blood pressure (BP). The aim of our study is to evaluate any effects in BP in citizens exposed to long-term ambient air pollution. The subjects are 1136 citizens, aged 18-70 years, living for more than 5 years in the same home in the areas with a different level of air pollution. The air concentrations of black smoke and sulfur dioxide were determined in the period from 2001 to 2011. We measured systolic and diastolic BP and heart rate. Multivariate methods were used in the analysis. Alcohol consumption had the greatest influence on the incidence of hypertension as a risk factor (RR: 3.461; 95% CI: 1.72-6.93) and age had the least (RR: 1.23; 95% CI: 1.183-1.92). Exposure to air pollution increases risk for developing hypertension 2.5 times (95% CI: 1.46-4.49). Physical activity has proved to be statistically significant protective factor for the development of hypertension. Long-term exposure to low levels of main air pollutants is significantly associated with elevated risk of hypertension.

  10. Study of nanosecond discharges in different H2 air mixtures at atmospheric pressure for plasma-assisted applications

    NASA Astrophysics Data System (ADS)

    Bourdon, Anne; Kobayashi, Sumire; Bonaventura, Zdenek; Tholin, Fabien; Popov, Nikolay

    2016-09-01

    This paper presents 2D simulations of nanosecond pulsed discharges between two point electrodes in different H2/air mixtures and in air at atmospheric pressure. A fluid model is coupled with detailed kinetic schemes for air and different H2/air mixtures to simulate the discharge dynamics. First, as the positive and negative ionization waves propagate in the interelectrode gap, it has been observed that in H2/air mixtures with equivalence ratios between 0.3 and 2, major positive ions produced by the nanosecond discharge are N2+,O2+and HN2+.The discharge dynamics is shown to vary only slightly for equivalence ratios of the H2/air mixture between 0.3 and 2. Then, as the discharge transits to a nanosecond spark discharge, we have studied the different chemical reactions that lead to fast gas heating and to the production of radicals, as O,H and OH. Both thermal and chemical effects of the nanosecond spark discharge are of interest for plasma assisted combustion applications. This work has been supported by the project DRACO (Grant No. ANR-13-IS09-0004) and the french russian LIA Kappa.

  11. Spatial and temporal variations of six criteria air pollutants in 31 provincial capital cities in China during 2013-2014.

    PubMed

    Wang, Yungang; Ying, Qi; Hu, Jianlin; Zhang, Hongliang

    2014-12-01

    Long-term air pollution data with high temporal and spatial resolutions are needed to support the research of physical and chemical processes that affect the air quality, and the corresponding health risks. However, such datasets were not available in China until recently. For the first time, this study examines the spatial and temporal variations of PM2.5, PM10, CO, SO2, NO2, and 8 h O3 in 31 capital cities in China between March 2013 and February 2014 using hourly data released by the Ministry of Environmental Protection (MEP) of China. The annual mean concentrations of PM2.5 and PM10 exceeded the Chinese Ambient Air Quality Standards (CAAQS), Grade I standards (15 and 40 μg/m(3) for PM2.5 and PM10, respectively) for all cities, and only Haikou, Fuzhou and Lasa met the CAAQS Grade II standards (35 and 70 μg/m(3) for PM2.5 and PM10, respectively). Observed PM2.5, PM10, CO and SO2 concentrations were higher in cities located in the North region than those in the West and the South-East regions. The number of non-attainment days was highest in the winter, but high pollution days were also frequently observed in the South-East region during the fall and in the West region during the spring. PM2.5 was the largest contributor to the air pollution in China based on the number of non-attainment days, followed by PM10, and O3. Strong correlation was found between different pollutants except for O3. These results suggest great impacts of coal combustion and biomass burning in the winter, long range transport of windblown dust in the spring, and secondary aerosol formation throughout the year. Current air pollution in China is caused by multiple pollutants, with great variations among different regions and different seasons. Future studies should focus on improving the understanding of the associations between air quality and meteorological conditions, variations of emissions in different regions, and transport and transformation of pollutants in both intra- and inter

  12. Extractive probe/TDLAS measurements of acetylene in atmospheric-pressure fuel-rich premixed methane/air flames

    SciTech Connect

    Gersen, S.; Mokhov, A.V.; Levinsky, H.B.

    2005-11-01

    The profiles of C{sub 2}H{sub 2} mole fractions were measured in flat atmospheric-pressure rich-premixed methane/air flames using microprobe gas sampling followed by tunable diode laser absorption spectroscopy (TDLAS), and compared the results with predictions of one-dimensional flame calculations. Acetylene concentrations are also determined by spontaneous Raman scattering to quantify possible uncertainties due to chemical reactions on the probe surface or acceleration of the combustion products into the probe.

  13. Excreted corticosterone metabolites co-vary with ambient temperature and air pressure in male Greylag geese (Anser anser).

    PubMed

    Frigerio, Didone; Dittami, John; Möstl, Erich; Kotrschal, Kurt

    2004-05-15

    In many species, seasonal activities such as reproduction or migration need to be fine-tuned with weather conditions. Air pressure and temperature changes are the best parameters for such conditions. Adapting to climatic changes invariably involves physiological and behavioral reactions associated with the adrenals. In the present study, we investigated the effects of ambient temperature and air pressure on excreted immuno-reactive metabolites of corticosterone (BM) and androgens (AM). Focal individuals were 14 paired male greylag geese (Anser anser) from a semi-tame, unrestrained flock. BM and AM were measured in individual fecal samples over 25 days in November and December. Two different ACTH-validated assays were used for the assessment of BM: the first one cross-reacting with 11beta,21-diol-20-one structures ("old assay") and the second one with 5beta,3alpha,11beta-diol structures ("new assay"). With the "new assay," BM correlated negatively with the minimum ambient temperature of the night before, which may reflect corticosterone involvement in thermoregulation. BM also correlated positively with the minimum air pressure of the previous afternoon, which supports the value of air pressure for predicting weather conditions. Together, these reactions suggest a role of the adrenals in responding behaviorally and physiologically to changes in weather. Preliminary analysis indicated a higher sensitivity to the excreted glucocorticosteroid metabolites in the "new assay." As expected for outside the mating season, no relationships were found between excreted AM and the weather parameters considered. The gradual changes in BM excretion in parallel with weather conditions may be part of the fine-tuning of physiology and behavior by environmental clues.

  14. Experimental study of the effect of drag reducing agent on pressure drop and thermal efficiency of an air cooler

    NASA Astrophysics Data System (ADS)

    Peyghambarzadeh, S. M.; Hashemabadi, S. H.; Saffarian, H.; Shekari, F.

    2016-01-01

    Effect of polymeric drag reduction agents (DRAs) on pressure drop and heat transfer was studied. Aqueous solutions of carboxy methyl cellulose were used inside an air-finned heat exchanger. Despite the previous studies which indicated the importance of drag reduction just in turbulent flow, results of this study in laminar flow indicated that the addition of DRA increases drag reduction, and decreases the overall heat transfer coefficient.

  15. Influence of the voltage polarity on the properties of a nanosecond surface barrier discharge in atmospheric-pressure air

    SciTech Connect

    Nudnova, M. M.; Aleksandrov, N. L.; Starikovskii, A. Yu.

    2010-01-15

    The properties of a surface barrier discharge in atmospheric-pressure air at different polarities of applied voltage were studied experimentally. The influence of the voltage polarity on the spatial structure of the discharge and the electric field in the discharge plasma was determined by means of spectroscopic measurements. It is found that the energy deposited in the discharge does not depend on the voltage polarity and that discharges of positive polarity are more homogenous and the electric fields in them are higher.

  16. Optimal frequency selection of multi-channel O2-band different absorption barometric radar for air pressure measurements

    NASA Astrophysics Data System (ADS)

    Lin, Bing; Min, Qilong

    2017-02-01

    Through theoretical analysis, optimal selection of frequencies for O2 differential absorption radar systems on air pressure field measurements is achieved. The required differential absorption optical depth between a radar frequency pair is 0.5. With this required value and other considerations on water vapor absorption and the contamination of radio wave transmission, frequency pairs of present considered radar system are obtained. Significant impacts on general design of differential absorption remote sensing systems are expected from current results.

  17. Nanosecond discharge in air at atmospheric pressure as an x-ray source with high pulse repetition rates

    NASA Astrophysics Data System (ADS)

    Tarasenko, Victor F.

    2006-02-01

    The properties of x-ray radiation and runaway electrons produced using a nanosecond volume discharge are examined. X-ray radiation at a pulse repetition rate of 3kHz was obtained time in a gas diode filled with air at atmospheric pressure. The current pulse width (FWHM) for runaway electrons generated in the gas diode was ˜100ps. A prepulse was observed on an oscilloscope trace of the main runaway electron beam current.

  18. Nanosecond discharge in air at atmospheric pressure as an x-ray source with high pulse repetition rates

    SciTech Connect

    Tarasenko, Victor F.

    2006-02-20

    The properties of x-ray radiation and runaway electrons produced using a nanosecond volume discharge are examined. X-ray radiation at a pulse repetition rate of 3 kHz was obtained time in a gas diode filled with air at atmospheric pressure. The current pulse width (FWHM) for runaway electrons generated in the gas diode was {approx}100 ps. A prepulse was observed on an oscilloscope trace of the main runaway electron beam current.

  19. Fluctuations in syringe-pump infusions: association with blood pressure variations in infants.

    PubMed

    Capes, D F; Dunster, K R; Sunderland, V B; McMillan, D; Colditz, P B; McDonald, C

    1995-08-01

    Flow continuity of two brands of syringe pumps and four brands of syringes was studied as a possible cause of hemodynamic fluctuations observed in neonates. Cyclical fluctuations were observed in the blood pressure of 14 neonates receiving dopamine infusions by syringe pump at flow rates from 0.2 to 1 mL/hr. Atom 235 and IVAC 770 pumps and various sizes of Terumo, Becton Dickinson, Omnifix, and IVAC syringes were evaluated. Flow continuity was assessed by using a gravimetric technique. The force needed to initiate and maintain syringe plunger motion was also measured. Noncontinuous flow was encountered most commonly with Terumo syringes, which delivered boluses at regular intervals at flow rates up to 5 mL/hr. The interval was dependent on flow rate and was similar to the time between the blood pressure fluctuations observed clinically. The syringe plunger force exhibited regular fluctuations indicative of the plunger sticking, and simultaneous measurement of flow established a direct temporal relationship with boluses. The other syringes tested did not exhibit such fluctuations. No differences were found between the two syringe pumps. Syringe plunger sticking, resulting in intermittent boluses and potential blood pressure fluctuations, may occur at low flow rates and with certain syringe brands. This appeared to be the cause of hemodynamic fluctuations in neonates receiving dopamine infusions.

  20. Ultra-high temperature stability Joule-Thomson cooler with capability to accomodate pressure variations

    NASA Technical Reports Server (NTRS)

    Bard, Steven (Inventor); Wu, Jiunn-Jeng (Inventor); Trimble, Curtis A. (Inventor)

    1992-01-01

    A Joule-Thomson cryogenic refrigeration system capable of achieving high temperature stabilities in the presence of varying temperature, atmospheric pressure, and heat load is provided. The Joule-Thomson cryogenic refrigeration system includes a demand flow Joule-Thomson expansion valve disposed in a cryostat of the refrigeration system. The expansion valve has an adjustable orifice that controls the flow of compressed gas therethrough and induces cooling and partial liquefaction of the gas. A recuperative heat exchanger is disposed in the cryostat and coupled to the expansion valve. A thermostatically self-regulating mechanism is disposed in the cryostat and coupled to the J-T expansion valve. The thermostatically self-regulating mechanism automatically adjusts the cross sectional area of the adjustable valve orifice in response to environmental temperature changes and changes in power dissipated at a cold head. A temperature sensing and adjusting mechanism is coupled to a cold head for adjusting the temperature of the cold head in response to the change in heat flow in the cold head. The temperature sensing and adjusting mechanism comprises a temperature sensitive diode, a wound wire heater, and an electrical feedback control circuit coupling the diode to the heater. An absolute pressure relief valve is interposed between the output of the cryostat and an exhaust port for maintaining a constant exhaust temperature in the refrigerating system, independent of the changes in atmospheric pressure.

  1. Impact of Wall Shear Stress and Pressure Variation on the Stability of Atherosclerotic Plaque

    NASA Astrophysics Data System (ADS)

    Taviani, V.; Li, Z. Y.; Sutcliffe, M.; Gillard, J.

    Rupture of vulnerable atheromatous plaque in the carotid and coronary arteries often leads to stroke and heart attack respectively. The mechanism of blood flow and plaque rupture in stenotic arteries is still not fully understood. A three dimensional rigid wall model was solved under steady and unsteady conditions assuming a time-varying inlet velocity profile to investigate the relative importance of axial forces and pressure drops in arteries with asymmetric stenosis. Flow-structure interactions were investigated for the same geometry and the results were compared with those retrieved with the corresponding one dimensional models. The Navier-Stokes equations were used as the governing equations for the fluid. The tube wall was assumed linearly elastic, homogeneous isotropic. The analysis showed that wall shear stress is small (less than 3.5%) with respect to pressure drop throughout the cycle even for severe stenosis. On the contrary, the three dimensional behavior of velocity, pressure and wall shear stress is in general very different from that predicted by one dimensional models. This suggests that the primary source of mistakes in one dimensional studies comes from neglecting the three dimensional geometry of the plaque. Neglecting axial forces only involves minor errors.

  2. Understanding Depth Variation of Deep Seismicity from in situ Measurements of Mineral Strengths at High Pressures

    SciTech Connect

    Chen, J.

    2010-01-01

    Strengths of major minerals of Earth's mantle have been measured using in situ synchrotron X-ray diffraction at high pressures. Analysis of the diffraction peak widths is used to derive the yield strengths. Systematic analysis of the experimental result for olivine, wadsleyite, ringwoodite and perovskite indicates that minerals in the upper mantle, the transition zone and the lower mantle have very distinct strength character. Increasing temperature weakens the upper mantle mineral, olivine, significantly. At high temperature and high pressure, the transition zone minerals, wadsleyite and ringwoodite, have higher strengths than the upper mantle mineral. Among all the minerals studied, the lower mantle mineral, perovskite, has the highest strength. While both the upper mantle and the transition zone minerals show a notable strength drop, the strength of the lower mantle mineral shows just an increase of relaxation rate (no strength drop) when the temperature is increased stepwise by 200 K. The strength characteristics of these major mantle minerals at high pressures and temperatures indicate that yield strength may play a crucial role in defining the profile of deep earthquake occurrence with depth.

  3. Pressurized liquid extraction of diesel and air particulate standard reference materials: effect of extraction temperature and pressure.

    PubMed

    Schantz, Michele M; McGaw, Elizabeth; Wise, Stephen A

    2012-10-02

    Four particulate matter Standard Reference Materials (SRMs) available from the National Institute of Standards and Technology (NIST) were used to evaluate the effect of solvent, number of static cycles and static times, pressure, and temperature when using pressurized liquid extraction (PLE) for the extraction of polycyclic aromatic hydrocarbons (PAHs) and nitrated-PAHs. The four materials used in the study were SRM 1648a Urban Particulate Matter, SRM 1649b Urban Dust, SRM 1650b Diesel Particulate Matter, and SRM 2975 Diesel Particulate Matter (Industrial Forklift). The results from the study indicate that the choice of solvent, dichloromethane compared to toluene and toluene/methanol mixtures, had little effect on the extraction efficiency. With three to five extraction cycles, increasing the extraction time for each cycle from 5 to 30 min had no significant effect on the extraction efficiency. The differences in extraction efficiency were not significant (with over 95% of the differences being <10%) when the pressure was increased from 13.8 to 20.7 MPa. The largest increase in extraction efficiency occurred for selected PAHs when the temperature of extraction was increased from 100 to 200 °C. At 200 °C naphthalene, biphenyl, fluorene, dibenzothiophene, and anthracene show substantially higher mass fractions (>30%) than when extracted at 100 °C in all the SRMs studied. For SRM 2975, large increases (>100%) are also observed for some other PAHs including benz[a]anthracene, benzo[k]fluoranthene, benzo[e]pyrene, benzo[a]pyrene, benzo[ghi]perylene, and benzo[b]chrysene when extracted at the higher temperatures; however, similar trends were not observed for the other diesel particulate sample, SRM 1650b. The results are discussed in relation to the use of the SRMs for evaluating analytical methods.

  4. An effective indicator of continental scale cold air outbreaks in northern winter: the intensity variation of the meridional mass circulation

    NASA Astrophysics Data System (ADS)

    Ren, R.; Yu, Y.; Cai, M.

    2015-12-01

    This study reports that the intensity variation of the meridional mass circulation can be an effective leading indicator of cold air outbreaks (CAOs) over midlatitudes in northern winter. It is found that continental-scale coldness by cold air outbreaks (CAOs) tend to preferentially occur within a week after stronger mass circulation events defined as the peak time when the net mass transport across 60°N in the upper warm or the lower cold air branch exceeds ~88×109 kg s-1. During weaker mass circulation events when the net mass transport across 60°N is below ~71.6×109 kg s-1, most areas of the mid-latitudes are generally in mild condition except the northern part of Western Europe. Composite pattern of circulation anomalies during stronger mass circulation events greatly resemble that of the winter-mean, with the two main routes of anomalous cold air outbreaks being along the climatological routes of polar cold air, namely, via East Asia and North America. The Siberian High shifts westward during stronger mass circulation events, opening up a third route of cold air outbreaks through Eastern Europe. The relationship of CAOs with Arctic Oscillation (AO) is less robust because temporal changes of AO are resulted from a small imbalance between the poleward and equatorward branches of the mass circulation. Only when the poleward branch leads the equatorward branch (44% of all cases), CAOs tend to take place within a week after a negative phase of AO. The daily ERA-Interim reanalysis data set for the 32 winters in 1979-2011 were used in this study.

  5. A Pilot Study to Understand the Variation in Indoor Air Quality in Different Economic Zones of Delhi University

    NASA Astrophysics Data System (ADS)

    Garg, Abhinav; Ghosh, Chirashree

    Today, one of the most grave environmental health problems being faced by the urban population is the poor air quality one breathes in. To testify the above statement, the recent survey report, World health statistics (WHO, 2012) reflects the fact that childhood mortality ratio from acute respiratory infection is one of the top leading causes of death in developing countries like India. Urban areas have a complex social stratification which ultimately results in forming different urban economic zones. This research attempts to understand the Indoor Air Quality (IAQ) by taking into consideration different lifestyle of occupants inhabiting these economic zones. The Study tries to evaluate the outdoor and indoor air quality by understanding the variation of selected pollutants (SPM, SOx, NOx) for the duration of four months - from October, 2012-January, 2013. For this, three economic zones (EZ) of Delhi University’s North Campus, were selected - Urban Slum (EZ I), Clerical (EZ II) and Faculty residence (EZ III). The statistical study indicates that Urban Slum (EZ I) was the most polluted site reporting maximum concentration of outdoor pollutants, whereas no significant difference in pollution load was observed in EZ II and EZ III. Further, the indoor air quality was evaluated by quantifying the indoor and outdoor pollution concentration ratios that shows EZ III have most inferior indoor air quality, followed by EZ I and EZ II. Moreover, it was also observed that ratio (phenomenon of infiltration) was dominant at the EZ II but was low for the EZ I and EZ III. With the evidence of high Indoor air pollution, the risk of pulmonary diseases and respiratory infections also increases, calling for an urgent requisite for making reforms to improve IAQ. Key words: Urban Area, Slum, IAQ, SOx, NOx, SPM

  6. Temporal trends and spatial variation characteristics of primary air pollutants emissions from coal-fired industrial boilers in Beijing, China.

    PubMed

    Xue, Yifeng; Tian, Hezhong; Yan, Jing; Zhou, Zhen; Wang, Junling; Nie, Lei; Pan, Tao; Zhou, Junrui; Hua, Shenbing; Wang, Yong; Wu, Xiaoqing

    2016-06-01

    Coal-fired combustion is recognized as a significant anthropogenic source of atmospheric compounds in Beijing, causing heavy air pollution events and associated deterioration in visibility. Obtaining an accurate understanding of the temporal trends and spatial variation characteristics of emissions from coal-fired industrial combustion is essential for predicting air quality changes and evaluating the effectiveness of current control measures. In this study, an integrated emission inventory of primary air pollutants emitted from coal-fired industrial boilers in Beijing is developed for the period of 2007-2013 using a technology-based approach. Future emission trends are projected through 2030 based on current energy-related and emission control policies. Our analysis shows that there is a general downward trend in primary air pollutants emissions because of the implementation of stricter local emission standards and the promotion by the Beijing municipal government of converting from coal-fired industrial boilers to gas-fired boilers. However, the ratio of coal consumed by industrial boilers to total coal consumption has been increasing, raising concerns about the further improvement of air quality in Beijing. Our estimates indicate that the total emissions of PM10, PM2.5, SO2, NOx, CO and VOCs from coal-fired industrial boilers in Beijing in 2013 are approximately 19,242 t, 13,345 t, 26,615 t, 22,965 t, 63,779 t and 1406 t, respectively. Under the current environmental policies and relevant energy savings and emission control plans, it may be possible to reduce NOx and other air pollutant emissions by 94% and 90% by 2030, respectively, if advanced flue gas purification technologies are implemented and coal is replaced with natural gas in the majority of existing boilers.

  7. Exercise-induced albuminuria vs circadian variations in blood pressure in type 1 diabetes

    PubMed Central

    Tadida Meli, Isabelle Hota; Tankeu, Aurel T; Dehayem, Mesmin Y; Chelo, David; Noubiap, Jean Jacques N; Sobngwi, Eugene

    2017-01-01

    AIM To investigated the relationship between exercise-induced ambulatory blood pressure measurement (ABPM) abnormalities in type 1 diabetes mellitus (T1DM) adolescents. METHODS We conducted a case-control at the National Obesity Center of the Yaoundé Central Hospital, Cameroon. We compared 24 h ABPM and urinary albumin-to-creatinine ratio (ACR) at rest and after a standardized treadmill exercise between 20 Cameroonian T1DM patients and 20 matched controls. T1DM adolescents were aged 12-18 years, with diabetes for at least one year, without proteinuria, with normal office blood pressure (BP) and renal function according to the general reference population. Non-diabetic controls were adolescents of general population matched for sex, age and BMI. RESULTS Mean duration of diabetes was 4.2 ± 2.8 years. The mean 24 h systolic blood pressure (SBP) and diastolic blood pressure (DBP) were respectively 116 ± 9 mmHg in the diabetic group vs 111 ± 8 mmHg in the non-diabetic (P = 0.06), and 69 ± 7 mm Hg vs 66 ± 5 mm Hg (P = 0.19). There was no difference in the diurnal pattern of BP in diabetes patients and non-diabetic controls (SBP: 118 ± 10 mmHg vs 114 ± 10 mmHg, P = 0.11; DBP: 71 ± 7 mmHg vs 68 ± 6 mmHg, P = 0.22). Nighttime BP was higher in the diabetic group with respect to SBP (112 ± 11 mmHg vs 106 ± 7 mmHg, P = 0.06) and to the mean arterial pressure (MAP) (89 ± 9 mmHg vs 81 ± 6 mmHg, P = 0.06). ACR at rest was similar in both groups (5.5 mg/g vs 5.5 mg/g, P = 0.74), but significantly higher in diabetes patients after exercise (10.5 mg/g vs 5.5 mg/g, P = 0.03). SBP was higher in patients having exercise-induced albuminuria (116 ± 10 mmHg vs 108 ± 10 mmHg, P = 0.09). CONCLUSION Exercise-induced albuminuria could be useful for early diagnosis of kidney damage in adolescents with T1DM. PMID:28265345

  8. Surface treatment of polypropylene (PP) film by 50 Hz dielectric barrier discharge produced in air and argon/air mixture at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Joshi, Ujjwal Man; Subedi, Deepak Prasad

    2015-07-01

    Thin films of polypropylene (PP) are treated for improving hydrophilicity using non-thermal plasma generated by 50 Hz line frequency dielectric barrier discharge produced in air and argon/air mixture at atmospheric pressure. PP samples before and after the treatments are studied using contact angle measurements, surface free energy calculations and scanning electron microscopy (SEM). Distilled water (H2O), glycerol (C3H8O3) and diiodomethane (CH2I2) are used as test liquids. The contact angle measurements between test liquids and PP samples are used to determine total surface free energy using sessile drop technique. PP films show a remarkable increase in surface free energy after plasma treatment. SEM analysis of the plasma-treated PP films shows that plasma treatment introduces greater roughness on the surface leading to the increased surface free energy. Furthermore, it is found that introducing a small quantity of argon can enhance the surface treatment remarkably.

  9. Influence of population density and temporal variations in emissions on the air duality benefits of NOx emission trading.

    PubMed

    Nobel, Carolyn E; McDonald-Buller, Elena C; Kimura, Yosuke; Lumbley, Katherine E; Allen, David T

    2002-08-15

    Ozone formation is a complex function of local hydrocarbon and nitrogen oxide emissions. Therefore, trading of NOx emissions among geographically distributed facilities can lead to more or less ozone formation than across-the-board reductions. Monte Carlo simulations of trading scenarios involving 51 large NOx point sources in eastern Texas were used in a previous study by the authors to assess the effects of trading on air quality benefits, as measured by changes in ozone concentrations. The results indicated that 12% of trading scenarios would lead to greater than a 25% variation from conventional across-the-board reductions when air quality benefits are based only on changes in ozone concentration. The current study found that when benefits are based on a metric related to population exposure to ozone, two-thirds of the trading scenarios lead to changes in air quality benefits of approximately 25%. Variability in air quality benefits is not as strongly dependent on the temporal distribution of NOx emissions.

  10. Modeled Seasonal Variations of Firn Density Induced by Steady State Surface Air Temperature Cycle

    NASA Technical Reports Server (NTRS)

    Jun, Li; Zwally, H. Jay; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Seasonal variations of firn density in ice-sheet firn layers have been attributed to variations in deposition processes or other processes within the upper firn. A recent high-resolution (mm scale) density profile, measured along a 181 m core from Antarctica, showed small-scale density variations with a clear seasonal cycle that apparently was not-related to seasonal variations in deposition or known near-surface processes (Gerland and others 1999). A recent model of surface elevation changes (Zwally and Li, submitted) produced a seasonal variation in firn densification, and explained the seasonal surface elevation changes observed by satellite radar altimeters. In this study, we apply our 1-D time-dependent numerical model of firn densification that includes a temperature-dependent formulation of firn densification based on laboratory measurements of grain growth. The model is driven by a steady-state seasonal surface temperature and a constant accumulation rate appropriate for the measured Antarctic ice core. The modeled seasonal variations in firn density show that the layers of snow deposited during spring to mid-summer with the highest temperature history compress to the highest density, and the layers deposited during later summer to autumn with the lowest temperature history compress to the lowest density. The initial amplitude of the seasonal difference of about 0.13 reduces to about 0.09 in five years and asymptotically to 0.92 at depth, which is consistent with the core measurements.

  11. Suppression of Air Refractive Index Variations in High-Resolution Interferometry

    PubMed Central

    Lazar, Josef; Číp, Ondřej; Čížek, Martin; Hrabina, Jan; Buchta, Zdeněk

    2011-01-01

    The influence of the refractive index of air has proven to be a major problem on the road to improvement of the uncertainty in interferometric displacement measurements. We propose an approach with two counter-measuring interferometers acting as a combination of tracking refractometer and a displacement interferometer referencing the wavelength of the laser source to a mechanical standard made of a material with ultra-low thermal expansion. This technique combines length measurement within a specified range with measurement of the refractive index fluctuations in one axis. Errors caused by different position of the interferometer laser beam and air sensors are thus eliminated. The method has been experimentally tested in comparison with the indirect measurement of the refractive index of air in a thermal controlled environment. Over a 1 K temperature range an agreement on the level of 5 × 10−8 has been achieved. PMID:22164036

  12. Are conformational changes, induced by osmotic pressure variations, the underlying mechanism of controlling the adhesive activity of mussel adhesive proteins?

    PubMed

    van der Leeden, Mieke C

    2005-11-22

    The mussel adhesive protein Mefp-1, under physiological conditions, presumably has a self-avoiding random walk conformation with helix-like or turned deca-peptide segments. Such a conformation may coil up under osmotic pressure induced by surrounding macromolecules. As a consequence, the orientation of the 3,4-dihydroxy-phenylalanine groups (dopa), essential for the adhesive strength as well as the cohesive strength in Mefp-1, will be altered. Changing the concentration of the protein itself or of different-type surrounding macromolecules may therefore be a tool to control the protein's adhesive activity. The effect of osmotic pressure on the conformation and dopa reactivity of Mefp-1 is studied by the addition of (poly)ethylene oxide (PEO) as a model macromolecule (Mw = 100 kD). From UV-spectroscopy measurements, it can be concluded that dopa reactivity in Mefp-1 changes with increasing PEO concentration. Fitting of the measured absorbance intensity data of the oxidation product dopaquinone versus time with a kinetic model points to the decreased accessibility of dopa groups in the Mefp-1 structure, a faster oxidation, and diminished cross linking under the influence of increasing PEO concentration up to 2.4 g/L, corresponding to an osmotic pressure of approximately 73 Pa. At higher PEO concentrations, the accessibility of the dopa groups for oxidation as well as cross-link formation decreases until about 20% of the dopa groups are oxidized at a PEO concentration of 3.8 g/L, corresponding to an osmotic pressure of approximately 113 Pa. FTIR measurements on the basis of amide I shifts qualitatively point to a transition to a more continuously turned structure of Mefp-1 in the presence of PEO. Therefore, it seems that conformational changes caused by variations of osmotic pressure determine the extent of steric hindrance of the dopa groups and hence the adhesive reactivity of Mefp-1.

  13. Geographic variation in host-specificity and parasitoid pressure of an herbivore (geometridae) associated with the tropical genus piper (piperaceae).

    PubMed

    Connahs, Heidi; Rodríguez-Castañeda, Genoveva; Walters, Toni; Walla, Thomas; Dyer, Lee

    2009-01-01

    The extraordinary diversity of tropical herbivores may be linked to hostplant specialization driven in part by variation in pressure from natural enemies. We quantified levels of host-specificity and parasitoid attack for the specialist herbivore, Eois (Geometridae). The goals of this research were to examine: 1) whether Eois are specialized on the genus Piper (Piperaceae) and if hostplant specialization varies geographically; 2) whether Eois are equally vulnerable to parasitoid attack across different geographic regions and by the same parasitoid families; and 3) whether parasitism levels vary with precipitation and elevation. Based on over 15,000 rearings, we found Eois caterpillars feeding exclusively on Piper. However, we did not detect geographic differences in host-specificity; each Eois species fed on an average of two Piper species. Parasitism levels of Eois varied significantly with climate and topography; Eois were most vulnerable to parasitoid attack in moist versus dry and wet forests and at low versus high elevations. The diversity of parasitoid families reared from Eois was greater in Ecuador and Costa Rica than in Panama, where parasitoids were primarily in the family Braconidae. The quantitative evidence for host-specificity provides support for the hypothesis that Eois are specialized on Piper. Our results also reveal that Eois are exposed to a mosaic of potential selective pressures due to variation in parasitoid attack over a large spatial scale.

  14. Earth's air pressure 2.7 billion years ago constrained to less than half of modern levels

    NASA Astrophysics Data System (ADS)

    Som, Sanjoy M.; Buick, Roger; Hagadorn, James W.; Blake, Tim S.; Perreault, John M.; Harnmeijer, Jelte P.; Catling, David C.

    2016-06-01

    How the Earth stayed warm several billion years ago when the Sun was considerably fainter is the long-standing problem of the `faint young Sun paradox'. Because of negligible O2 and only moderate CO2 levels in the Archaean atmosphere, methane has been invoked as an auxiliary greenhouse gas. Alternatively, pressure broadening in a thicker atmosphere with a N2 partial pressure around 1.6-2.4 bar could have enhanced the greenhouse effect. But fossilized raindrop imprints indicate that air pressure 2.7 billion years ago (Gyr) was below twice modern levels and probably below 1.1 bar, precluding such pressure enhancement. This result is supported by nitrogen and argon isotope studies of fluid inclusions in 3.0-3.5 Gyr rocks. Here, we calculate absolute Archaean barometric pressure using the size distribution of gas bubbles in basaltic lava flows that solidified at sea level ~2.7 Gyr in the Pilbara Craton, Australia. Our data indicate a surprisingly low surface atmospheric pressure of Patm = 0.23 +/- 0.23 (2σ) bar, and combined with previous studies suggests ~0.5 bar as an upper limit to late Archaean Patm. The result implies that the thin atmosphere was rich in auxiliary greenhouse gases and that Patm fluctuated over geologic time to a previously unrecognized extent.