Science.gov

Sample records for air puff directed

  1. Analysis of the corneal reflex with air puff: normal controls and patient groups.

    PubMed

    Varolgüneŝ, N; Celebisoy, N; Akyürekli, O; Pehlivan, M; Akyürekli, O

    1999-09-01

    Though there are several reports published about the corneal reflex elicited by different methods, a standardized electrophysiologic study with air puff in man has not been published. The aim of this study is to standardize the corneal reflex elicited by air puff to cornea. The authors studied the corneal reflex with air puff and direct touch by using a standardized method in patients with thalamic hemorrhage (n = 15), hemispheric infarction (n = 9), brainstem infarction (n = 9), multiple sclerosis (n = 12), and Bell's palsy (n = 12) and in normal control subjects (n = 21). The conventional blink reflex (BR) was also studied. The reflex responses were recorded from both orbicularis oculi muscles by air puff and direct touch to cornea in addition to the electrical stimulation of the supraorbital nerve. No statistical difference could be detected between the responses elicited by air puff or direct touch to cornea (P > 0.05). Corneal reflex responses were statistically different from the R2 response of the BR (P < 0.005). Because the responses elicited by direct touch and air puff to cornea are identical, air puff to cornea can be used confidently to study the corneal reflex.

  2. Corneal biomechanical properties from air-puff corneal deformation imaging

    NASA Astrophysics Data System (ADS)

    Marcos, Susana; Kling, Sabine; Bekesi, Nandor; Dorronsoro, Carlos

    2014-02-01

    The combination of air-puff systems with real-time corneal imaging (i.e. Optical Coherence Tomography (OCT), or Scheimpflug) is a promising approach to assess the dynamic biomechanical properties of the corneal tissue in vivo. In this study we present an experimental system which, together with finite element modeling, allows measurements of corneal biomechanical properties from corneal deformation imaging, both ex vivo and in vivo. A spectral OCT instrument combined with an air puff from a non-contact tonometer in a non-collinear configuration was used to image the corneal deformation over full corneal cross-sections, as well as to obtain high speed measurements of the temporal deformation of the corneal apex. Quantitative analysis allows direct extraction of several deformation parameters, such as apex indentation across time, maximal indentation depth, temporal symmetry and peak distance at maximal deformation. The potential of the technique is demonstrated and compared to air-puff imaging with Scheimpflug. Measurements ex vivo were performed on 14 freshly enucleated porcine eyes and five human donor eyes. Measurements in vivo were performed on nine human eyes. Corneal deformation was studied as a function of Intraocular Pressure (IOP, 15-45 mmHg), dehydration, changes in corneal rigidity (produced by UV corneal cross-linking, CXL), and different boundary conditions (sclera, ocular muscles). Geometrical deformation parameters were used as input for inverse finite element simulation to retrieve the corneal dynamic elastic and viscoelastic parameters. Temporal and spatial deformation profiles were very sensitive to the IOP. CXL produced a significant reduction of the cornea indentation (1.41x), and a change in the temporal symmetry of the corneal deformation profile (1.65x), indicating a change in the viscoelastic properties with treatment. Combining air-puff with dynamic imaging and finite element modeling allows characterizing the corneal biomechanics in-vivo.

  3. Stress-free automatic sleep deprivation using air puffs

    PubMed Central

    Gross, Brooks A.; Vanderheyden, William M.; Urpa, Lea M.; Davis, Devon E.; Fitzpatrick, Christopher J.; Prabhu, Kaustubh; Poe, Gina R.

    2015-01-01

    Background Sleep deprivation via gentle handling is time-consuming and personnel-intensive. New Method We present here an automated sleep deprivation system via air puffs. Implanted EMG and EEG electrodes were used to assess sleep/waking states in six male Sprague-Dawley rats. Blood samples were collected from an implanted intravenous catheter every 4 hours during the 12-hour light cycle on baseline, 8 hours of sleep deprivation via air puffs, and 8 hours of sleep deprivation by gentle handling days. Results The automated system was capable of scoring sleep and waking states as accurately as our offline version (~90% for sleep) and with sufficient speed to trigger a feedback response within an acceptable amount of time (1.76 s). Manual state scoring confirmed normal sleep on the baseline day and sleep deprivation on the two manipulation days (68% decrease in non-REM, 63% decrease in REM, and 74% increase in waking). No significant differences in levels of ACTH and corticosterone (stress hormones indicative of HPA axis activity) were found at any time point between baseline sleep and sleep deprivation via air puffs. Comparison with Existing Method There were no significant differences in ACTH or corticosterone concentrations between sleep deprivation by air puffs and gentle handling over the 8-hour period. Conclusions Our system accurately detects sleep and delivers air puffs to acutely deprive rats of sleep with sufficient temporal resolution during the critical 4-5 h post learning sleep-dependent memory consolidation period. The system is stress-free and a viable alternative to existing sleep deprivation techniques. PMID:26014662

  4. Theoretical and numerical analysis of the corneal air puff test

    NASA Astrophysics Data System (ADS)

    Simonini, Irene; Angelillo, Maurizio; Pandolfi, Anna

    2016-08-01

    Ocular analyzers are used in the current clinical practice to estimate, by means of a rapid air jet, the intraocular pressure and other eye's parameters. In this study, we model the biomechanical response of the human cornea to the dynamic test with two approaches. In the first approach, the corneal system undergoing the air puff test is regarded as a harmonic oscillator. In the second approach, we use patient-specific geometries and the finite element method to simulate the dynamic test on surgically treated corneas. In spite of the different levels of approximation, the qualitative response of the two models is very similar, and the most meaningful results of both models are not significantly affected by the inclusion of viscosity of the corneal material in the dynamic analysis. Finite element calculations reproduce the observed snap-through of the corneal shell, including two applanate configurations, and compare well with in vivo images provided by ocular analyzers, suggesting that the mechanical response of the cornea to the air puff test is actually driven only by the elasticity of the stromal tissue. These observations agree with the dynamic characteristics of the test, since the frequency of the air puff impulse is several orders of magnitude larger than the reciprocal of any reasonable relaxation time for the material, downplaying the role of viscosity during the fast snap-through phase.

  5. Air puff-induced 22-kHz calls in F344 rats.

    PubMed

    Inagaki, Hideaki; Sato, Jun

    2016-03-01

    Air puff-induced ultrasonic vocalizations in adult rats, termed "22-kHz calls," have been applied as a useful animal model to develop psychoneurological and psychopharmacological studies focusing on human aversive affective disorders. To date, all previous studies on air puff-induced 22-kHz calls have used outbred rats. Furthermore, newly developed gene targeting technologies, which are essential for further advancement of biomedical experiments using air puff-induced 22-kHz calls, have enabled the production of genetically modified rats using inbred rat strains. Therefore, we considered it necessary to assess air puff-induced 22-kHz calls in inbred rats. In this study, we assessed differences in air puff-induced 22-kHz calls between inbred F344 rats and outbred Wistar rats. Male F344 rats displayed similar total (summed) duration of air puff-induced 22 kHz vocalizations to that of male Wistar rats, however, Wistar rats emitted fewer calls of longer duration, while F344 rats emitted higher number of vocalizations of shorter duration. Additionally, female F344 rats emitted fewer air puff-induced 22-kHz calls than did males, thus confirming the existence of a sex difference that was previously reported for outbred Wistar rats. The results of this study could confirm the reliability of air puff stimulus for induction of a similar amount of emissions of 22-kHz calls in different rat strains, enabling the use of air puff-induced 22-kHz calls in inbred F344 rats and derived genetically modified animals in future studies concerning human aversive affective disorders.

  6. Material Properties from Air Puff Corneal Deformation by Numerical Simulations on Model Corneas

    PubMed Central

    Dorronsoro, Carlos; de la Hoz, Andrés; Marcos, Susana

    2016-01-01

    Objective To validate a new method for reconstructing corneal biomechanical properties from air puff corneal deformation images using hydrogel polymer model corneas and porcine corneas. Methods Air puff deformation imaging was performed on model eyes with artificial corneas made out of three different hydrogel materials with three different thicknesses and on porcine eyes, at constant intraocular pressure of 15 mmHg. The cornea air puff deformation was modeled using finite elements, and hyperelastic material parameters were determined through inverse modeling, minimizing the difference between the simulated and the measured central deformation amplitude and central-peripheral deformation ratio parameters. Uniaxial tensile tests were performed on the model cornea materials as well as on corneal strips, and the results were compared to stress-strain simulations assuming the reconstructed material parameters. Results The measured and simulated spatial and temporal profiles of the air puff deformation tests were in good agreement (< 7% average discrepancy). The simulated stress-strain curves of the studied hydrogel corneal materials fitted well the experimental stress-strain curves from uniaxial extensiometry, particularly in the 0–0.4 range. Equivalent Young´s moduli of the reconstructed material properties from air-puff were 0.31, 0.58 and 0.48 MPa for the three polymer materials respectively which differed < 1% from those obtained from extensiometry. The simulations of the same material but different thickness resulted in similar reconstructed material properties. The air-puff reconstructed average equivalent Young´s modulus of the porcine corneas was 1.3 MPa, within 18% of that obtained from extensiometry. Conclusions Air puff corneal deformation imaging with inverse finite element modeling can retrieve material properties of model hydrogel polymer corneas and real corneas, which are in good correspondence with those obtained from uniaxial extensiometry

  7. Non-contact investigation of the corneal biomechanics with air-puff swept source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Maczynska, Ewa; Karnowski, Karol; Kaluzny, Bartlomiej; Grulkowski, Ireneusz; Wojtkowski, Maciej

    2016-08-01

    In this paper, we use swept source optical coherence tomography combined with air-puff module (air-puff SS-OCT) to investigate the properties of the cornea. During OCT measurement the cornea was stimulated by short, air pulse, and corneal response was recorded. In this preliminary study, the air-puff SS-OCT instrument was applied to measure behavior of the porcine corneas under varied, well-controlled intraocular pressure conditions. Additionally, the biomechanical response of the corneal tissue before, during and after crosslinking procedure (CXL) was assessed. Air-puff swept source OCT is a promising tool to extract information about corneal behavior as well as to monitor and assess the effect of CXL.

  8. Corneal Viscoelastic Properties from Finite-Element Analysis of In Vivo Air-Puff Deformation

    PubMed Central

    Kling, Sabine; Bekesi, Nandor; Dorronsoro, Carlos; Pascual, Daniel; Marcos, Susana

    2014-01-01

    Biomechanical properties are an excellent health marker of biological tissues, however they are challenging to be measured in-vivo. Non-invasive approaches to assess tissue biomechanics have been suggested, but there is a clear need for more accurate techniques for diagnosis, surgical guidance and treatment evaluation. Recently air-puff systems have been developed to study the dynamic tissue response, nevertheless the experimental geometrical observations lack from an analysis that addresses specifically the inherent dynamic properties. In this study a viscoelastic finite element model was built that predicts the experimental corneal deformation response to an air-puff for different conditions. A sensitivity analysis reveals significant contributions to corneal deformation of intraocular pressure and corneal thickness, besides corneal biomechanical properties. The results show the capability of dynamic imaging to reveal inherent biomechanical properties in vivo. Estimates of corneal biomechanical parameters will contribute to the basic understanding of corneal structure, shape and integrity and increase the predictability of corneal surgery. PMID:25121496

  9. Directed percolation describes lifetime and growth of turbulent puffs and slugs

    NASA Astrophysics Data System (ADS)

    Sipos, Maksim; Goldenfeld, Nigel

    2011-09-01

    We show that directed percolation (DP) simulations in a pipe geometry in 3+1 dimensions capture the observed complex phenomenology of the transition to turbulence. At low Reynolds numbers (Re), turbulent puffs form and spontaneously relaminarize. At high Re, turbulent slugs expand uniformly into the laminar regions. In a spatiotemporally intermittent state between these two regimes of Re, puffs split and turbulent regions exhibit laminar patches. DP also captures some of the quantitative features of the transition, with a superexponentially diverging characteristic lifetime below the transition. Above the percolation threshold, active (turbulent) clusters expand into the inactive (laminar) phase with a well-defined velocity whose scaling with control parameter (Reynolds number or percolation probability) is consistent with experimental results. Our results provide strong evidence in favor of a conjecture of Pomeau.

  10. Video-Puff of Air Hits Ball of Water in Space Onboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. In this video clip, Dr. Pettit demonstrates the phenomenon of a puff of air hitting a ball of water that is free floating in space. Watch the video to see why Dr. Pettit remarks 'I'd hate think that our planet would go through these kinds of gyrations if it got whacked by a big asteroid'.

  11. Air-puff associated quantification of non-linear biomechanical properties of the human cornea in vivo.

    PubMed

    Sinha Roy, Abhijit; Kurian, Mathew; Matalia, Himanshu; Shetty, Rohit

    2015-08-01

    With the advent of newer techniques to correct refraction such as flapless laser procedure and collagen crosslinking, in vivo estimation of corneal biomechanical properties has gained importance. In this study, a new 3-D patient specific inverse finite element method of estimating corneal biomechanical properties from air-puff applanation was developed. The highlight of the model was inclusion of patient-specific corneal tomography, fiber dependent hyperelastic model, cross links between collagen lamellae and epithelium layer. A lumped mass, spring and dashpot model was included to model the resistance to motion and deformation of the eye globe caused by air-puff applanation. 10 normal eyes of 10 human subjects were used for the study. 3-D finite element models were constructed and custom routines were scripted for performing the inverse calculations. The model for each eye was perturbed to estimate the effect of measured intraocular pressure on the estimated biomechanical variables. The study demonstrated that the inverse method was effective in quantification of material properties and was sensitive to intraocular pressure alterations. Specifically, in vivo fiber dependent hyperelastic biomechanical properties of human corneas were estimated for the first time.

  12. Dummies versus air puffs: efficient stimulus delivery for low-volatile odors.

    PubMed

    Brandstaetter, Andreas Simon; Rössler, Wolfgang; Kleineidam, Christoph Johannes

    2010-05-01

    Aiming to unravel how animals perceive odors, a variety of neurophysiological techniques are used today. For olfactory stimulation, odors are commonly incorporated into a constant airstream that carries odor molecules to the receptor organ (air-delivered stimulation). Such odor delivery works well for odors of high volatility (naturally effective over long distances) but less or not at all for low-volatile odors (usually only received at short range). We developed a new odor stimulation technique especially suited for low-volatile odors and compared it with conventional air-delivered stimulation using 2 neurophysiological approaches. Odor-loaded dummies were moved into close vicinity of the receptor organs on the antenna of the Florida carpenter ant Camponotus floridanus (dummy-delivered stimulation). Neuronal activity was monitored either at receptor neuron level using electroantennography or in the first olfactory neuropile, the antennal lobes, using calcium imaging. We tested 3 odors of different volatility: C. floridanus' highly volatile alarm pheromone undecane, its low-volatile trail pheromone nerolic acid, and an even less volatile, behaviorally active C23 alkene, cis-9-tricosene. For low-volatile odors, dummy-delivered stimulation was particularly efficient. We conclude that dummy-delivered stimulation is advantageous compared to the commonly used air-delivered stimulation when studying an animal's detection and processing of low-volatile odors.

  13. Heart rate and heart rate variability assessment identifies individual differences in fear response magnitudes to earthquake, free fall, and air puff in mice.

    PubMed

    Liu, Jun; Wei, Wei; Kuang, Hui; Tsien, Joe Z; Zhao, Fang

    2014-01-01

    Fear behaviors and fear memories in rodents have been traditionally assessed by the amount of freezing upon the presentation of conditioned cues or unconditioned stimuli. However, many experiences, such as encountering earthquakes or accidental fall from tree branches, may produce long-lasting fear memories but are behaviorally difficult to measure using freezing parameters. Here, we have examined changes in heartbeat interval dynamics as physiological readout for assessing fearful reactions as mice were subjected to sudden air puff, free-fall drop inside a small elevator, and a laboratory-version earthquake. We showed that these fearful events rapidly increased heart rate (HR) with simultaneous reduction of heart rate variability (HRV). Cardiac changes can be further analyzed in details by measuring three distinct phases: namely, the rapid rising phase in HR, the maximum plateau phase during which HRV is greatly decreased, and the recovery phase during which HR gradually recovers to baseline values. We showed that durations of the maximum plateau phase and HR recovery speed were quite sensitive to habituation over repeated trials. Moreover, we have developed the fear resistance index based on specific cardiac response features. We demonstrated that the fear resistance index remained largely consistent across distinct fearful events in a given animal, thereby enabling us to compare and rank individual mouse's fear responsiveness among the group. Therefore, the fear resistance index described here can represent a useful parameter for measuring personality traits or individual differences in stress-susceptibility in both wild-type mice and post-traumatic stress disorder (PTSD) models.

  14. Aircraft Survivability: Survivability Against Man Portable Air Defense Systems, Summer 2005

    DTIC Science & Technology

    2005-01-01

    air into the air stream ahead of the engine, while holding T2 at near-ambient condi- tions. Hot air was produced using an airflow rig ( Huff and Puff ... Huff and Puff , a trailer-mounted, TF30 turbofan engine, has a butterfly valve that can quickly re-direct the TF30 bypass air to the test article...Variable Exhaust Nozzle (VEN) shown in closed position Figure 6. HIVAS test setup Figure 7. Fan and compressor damage test setup with “ huff and puff

  15. Direct condensation by humid air

    NASA Astrophysics Data System (ADS)

    Schwab, S.; Schiebelsberger, B.

    1980-12-01

    The practicability of direct condensation with humid air (DKFL) for waste heat removal from thermal power plants was investigated with regard to technical, economical and environmental aspects. The adjustment of a uniform trickling-water film was examined. A vertical test tube was erected to study the phenomenon of a trickling-water film. A pilot plant with a vertical tube-bundle was installed to evaluate the main process parameters. The applicability of the cooling system is judged. A theoretical model was derived for the design of a DKFL apparatus. A vertical geometry for the test tube has essential operational and economical advantages in comparison with a horizontal one.

  16. Pulmonary Function in Flight (PuFF) Experiment

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In this International Space Station (ISS) onboard photo, Expedition Six Science Officer Donald R. Pettit works to set up the Pulmonary Function in Flight (PuFF) experiment hardware in the Destiny Laboratory. Expedition Six is the fourth and final crew to perform the PuFF experiment. The PuFF experiment was developed to better understand what effects long term exposure to microgravity may have on the lungs. The focus is on measuring changes in the everness of gas exchange in the lungs, and on detecting changes in respiratory muscle strength. It allows astronauts to measure blood flow through the lungs, the ability of the lung to take up oxygen, and lung volumes. Each PuFF session includes five lung function tests, which involve breathing only cabin air. For each planned extravehicular (EVA) activity, a crew member performs a PuFF test within one week prior to the EVA. Following the EVA, those crew members perform another test to document the effect of exposure of the lungs to the low-pressure environment of the space suits. This experiment utilizes the Gas Analyzer System for Metabolic Analysis Physiology, or GASMAP, located in the Human Research Facility (HRF), along with a variety of other Puff equipment including a manual breathing valve, flow meter, pressure-flow module, pressure and volume calibration syringes, and disposable mouth pieces.

  17. Air breathing direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming

    2002-01-01

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source.

  18. Effects of design parameters and puff topography on heating coil temperature and mainstream aerosols in electronic cigarettes

    NASA Astrophysics Data System (ADS)

    Zhao, Tongke; Shu, Shi; Guo, Qiuju; Zhu, Yifang

    2016-06-01

    Emissions from electronic cigarettes (ECs) may contribute to both indoor and outdoor air pollution and the number of users is increasing rapidly. ECs operate based on the evaporation of e-liquid by a high-temperature heating coil. Both puff topography and design parameters can affect this evaporation process. In this study, both mainstream aerosols and heating coil temperature were measured concurrently to study the effects of design parameters and puff topography. The heating coil temperatures and mainstream aerosols varied over a wide range across different brands and within same brand. The peak heating coil temperature and the count median diameter (CMD) of EC aerosols increased with a longer puff duration and a lower puff flow rate. The particle number concentration was positively associated with the puff duration and puff flow rate. These results provide a better understanding of how EC emissions are affected by design parameters and puff topography and emphasize the urgent need to better regulate EC products.

  19. CHARACTERIZATION OF TRANSIENT PUFF EMISSIONS ...

    EPA Pesticide Factsheets

    Symposium Paper Transient puff emissions were characterized from burning carpet charges that were fed to a pilotscale rotary kiln combustor to assess the potential impact on emissions of using post-consumer carpet as an alternative fuel in cement kilns.

  20. Air breathing direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming; Gottesfeld, Shimshon

    2002-01-01

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source. Water loss from the cell is minimized by making the conductive cathode assembly hydrophobic and the conductive anode assembly hydrophilic.

  1. MESOI: an interactive Lagrangian trajectory puff diffusion model

    SciTech Connect

    Ramsdell, J.V.; Athey, G.F.

    1981-12-01

    MESOI is an interactive Lagrangian trajectory puff diffusion model based on an earlier model by Start and Wendell at the Air Resources Laboratory Field Office at Idaho Falls, Idaho. Puff trajectories are determined using spatially and temporally varying wind fields. Diffusion in the puffs is computed as a function of distance traveled and atmospheric stability. Exposures are computed at nodes of a 31 by 31 grid. There is also provision for interpolation of short term exposures at off-grid locations. This report discusses: the theoretical bases of the model, the numerical approach used in the model, and the sensitivity and accuracy of the model. It contains a description of the computer program and a listing of the code. MESOI is written in FORTRAN. A companion report (Athey, Allwine and Ramsdell, 1981) contains a user's guide to MESOI and documents utility programs that maintain the data files needed by the model.

  2. AUTOMATIC AIR BURST DIRECTION FINDER

    DOEpatents

    Allard, G.A.

    1952-01-31

    This patent application describes an atomic explosion direction indicator comprising a geometric heat-scorchable indicating surface symmetrical about an axis, elevation and azimuth markings on the heat scorchable surface, and an indicating rod at the axis of said surface arranged to cast a shadow hereon, whereby heat from an atomic explosion will scorch a pattern on said surface indicative of the azimuth and elevation of said explosion.

  3. The airway sensory impact of nicotine contributes to the conditioned reinforcing effects of individual puffs from cigarettes⋆

    PubMed Central

    Naqvi, Nasir H.; Bechara, Antoine

    2005-01-01

    Puffs from cigarettes are the fundamental unit of smoking reward. Here, we examined the extent to which reward from puffs can be derived from the airway sensory effect of nicotine, in the absence of a direct central nervous system effect of nicotine. We did this by assessing the self-reported reward obtained from individual puffs from nicotinized, denicotinized and unlit cigarettes within 7 s of inhalation, which is before nicotine had an opportunity to reach the brain. We also assessed the self-reported strength of airway sensations elicited by the puffs. We found that nicotinized puffs were rated as both stronger and more rewarding than denicotinized and unlit puffs. We also found that the extent to which nicotine elicited reward was directly correlated with the extent to which nicotine elicited airway sensations. This indicates that the airway sensory effects of nicotine contribute to the reward from puffs, above and beyond the reward derived from the airway sensory effects of non-nicotine constituents. These findings have implications for the interpretation of studies that use puffs as experimental units to examine nicotine reward. They also have implications for the use of denicotinized and low nicotine cigarettes as aids to smoking cessation. PMID:15996724

  4. Buffer regulation of calcium puff sequences.

    PubMed

    Fraiman, Daniel; Dawson, Silvina Ponce

    2014-02-01

    Puffs are localized Ca(2 +) signals that arise in oocytes in response to inositol 1,4,5-trisphosphate (IP3). They are the result of the liberation of Ca(2 +) from the endoplasmic reticulum through the coordinated opening of IP3 receptor/channels clustered at a functional release site. The presence of buffers that trap Ca(2 +) provides a mechanism that enriches the spatio-temporal dynamics of cytosolic calcium. The expression of different types of buffers along the cell's life provides a tool with which Ca(2 +) signals and their responses can be modulated. In this paper we extend the stochastic model of a cluster of IP3R-Ca(2 +) channels introduced previously to elucidate the effect of buffers on sequences of puffs at the same release site. We obtain analytically the probability laws of the interpuff time and of the number of channels that participate of the puffs. Furthermore, we show that under typical experimental conditions the effect of buffers can be accounted for in terms of a simple inhibiting function. Hence, by exploring different inhibiting functions we are able to study the effect of a variety of buffers on the puff size and interpuff time distributions. We find the somewhat counter-intuitive result that the addition of a fast Ca(2 +) buffer can increase the average number of channels that participate of a puff.

  5. Occurrence of transient puffs in a rotary-kiln incinerator simulator

    SciTech Connect

    Linak, W.P.; Kilgroe, J.D.; McSorley, J.A.; Wendt, J.O.L.; Dunn, J.E.

    1987-01-01

    This article discusses a statistically designed parametric investigation to determine which waste and kiln variables (charge mass, charge surface area, charge composition, and kiln temperature) significantly affect both instantaneous intensity and total magnitude of the puffs leaving a kiln used to incinerate simple prototype plastic wastes, ranging from polyethylene to polyvinychloride. Results show the relative ease with which failure conditions are achieved, even at high excess air values and high kiln temperatures. Transient puffs leaving the kiln contain a number of hazardous compounds. Increasing kiln temperature does not necessarily decrease the puff intensity and may in fact cause an increase. However, the total mass emitted always decreases with increasing temperature. In addition, the mass, surface area, and composition of the charge are all important.

  6. Direct digital control of air washer cooling system

    SciTech Connect

    Elben, T.; Roseblock, R.; Lawler, R.; McCord, J.

    1990-01-01

    The purpose of this project was to make a practical evaluation of using new technology to extend the life of obsolete HVAC mechanical equipment. The specific exercises in this project involved the application of software driven control algorithms to operate and manage open loop air washer cooling systems in the air handling units located in the Municipal Auditorium in Kansas City, Missouri. The specific opportunity evaluated in this project involved eight air handling units at the Municipal Auditorium. The air handling systems utilize outdated air washer cooling systems that provide air conditioning and dehumidification to the areas they serve. We utilized direct digital control to assume total control of the operation of the air handling units. We also found it necessary to upgrade some components of the air handling units in order to allow the new control applications to execute their functions. This report describes the plan used to execute the project and the results. 20 tabs.

  7. Gas puff imaging diagnostic on NSTX-U

    NASA Astrophysics Data System (ADS)

    Zweben, S. J.; Scotti, F.; Stotler, D. L.; Diallo, A.; Mandell, N.; Terry, J. L.; Han, W.

    2016-10-01

    The first results and plans for the gas puff imaging (GPI) diagnostic on NSTX-U will be described. The GPI optical efficiency has been improved by about × 10 using a new fiber bundle and interference filter, and the new optics has a zoom lens which can potentially resolve turbulence below the ion gyroradius scale. Experiments are planned to study high-k edge turbulence, correlations of edge turbulence with the SOL heat flux width, and the trigger mechanism of the L-H transition. A second fast camera is planned to view the GPI gas cloud from across the machine, which can potentially measure the field line pitch by simultaneously viewing individual field-aligned blob filaments in the radial vs. poloidal (GPI) and toroidal vs. poloidal (second camera) directions. An incoming collaboration from MIT will bring a 9 × 10 pixel APD-based detector array from Alcator C-Mod to NSTX-U, initially for faster and more sensitive imaging of the existing GPI gas puff. New results and further diagnostic plans will be described. This work was supported by USDOE Contracts #DE-AC02-09CH11466, DE-SC0014264, and DE-AC52-07NA27344.

  8. He Puff System For Dust Detector Upgrade

    SciTech Connect

    B. Rais, C.H. Skinner A.L. Roquemore

    2010-10-01

    Local detection of surface dust is needed for the safe operation of next-step magnetic fusion devices such as ITER. An electrostatic dust detector, based on a 5 cm x 5 cm grid of interlocking circuit traces biased to 50 V, has been developed to detect dust on remote surfaces and was successfully tested for the first time on the National Spherical Torus Experiment (NSTX). We report on a helium puff system that clears residual dust from this detector and any incident debris or fibers that might cause a permanent short circuit. The entire surface of the detector was cleared of carbon particles by two consecutive helium puffs delivered by three nozzles of 0.45 mm inside diameter. The optimal configuration was found to be with the nozzles at an angle of 30o with respect to the surface of the detector and a helium backing pressure of 6 bar. __________________________________________________

  9. DIRECT AMMONIA-AIR FUEL CELL.

    DTIC Science & Technology

    Experimental runs were conducted on direct ammonia fuel cells . Effects of temperature, composition, as well as run effect and block effect were...cells and to electrode flooding are discussed. Data on performance of complete laboratory direct ammonia-oxygen fuel cells are presented and discussed. (Author)

  10. Huff and puff process for retorting oil shale

    SciTech Connect

    Russum, L. W.

    1984-06-05

    Greater product yield and quality as well as simplified gas recovery can be attained by a huff and puff process for retorting oil shale. The process can be advantageously carried out in in situ retorts under ground as well as in surface retorts above ground. In the process, an active retort of raw oil shale is retorted without prior combustion of oil shale therein with retort off gases, which have been heated in a spent shale retort. In the preferred mode, retort off gases from the active retort and air are alternately injected into the spent retort to cyclically heat the off gases and combust the coked shale. The retort off gases can be deoiled and optionally scrubbed of carbon dioxide and hydrogen sulfide before being heated in the spent retort.

  11. Air Breathing Direct Methanol Fuel Cell

    DOEpatents

    Ren; Xiaoming

    2003-07-22

    A method for activating a membrane electrode assembly for a direct methanol fuel cell is disclosed. The method comprises operating the fuel cell with humidified hydrogen as the fuel followed by running the fuel cell with methanol as the fuel.

  12. Investigation of the Penetration on an Air Jet Directed Perpendicularly to an Air Stream

    NASA Technical Reports Server (NTRS)

    Callaghan, Edmund E; Ruggeri, Robert S

    1948-01-01

    An experimental investigation was conducted to determine the penetration of a circular air Jet directed perpendicularly to an air stream as a function of Jet density, Jet velocity, air-stream density, air-stream velocity, Jet diameter, and distance downstream from the Jet. The penetration was determined for nearly constant values of air-stream density at two tunnel velocities, four Jet diameters, four positions downstream of the Jet, and for a large range of Jet velocities and densities. An equation for the penetration was obtained in terms of the Jet diameter, the distance downstream from the jet, and the ratios of Jet and air-stream velocities and densities.

  13. Plasma puff initiation of high Coulomb transfer switches

    NASA Technical Reports Server (NTRS)

    Venable, D. D.; Choi, E. H.

    1990-01-01

    The plasma-puff triggering mechanism based on a hypocycloidal pinch geometry was investigated to determine the optimal operating conditions for the azimuthally uniform surface flashover which initiates plasma-puff under wide range of fill gas pressure of Ar, He and N2. The optimal fill gas pressure for the azimuthally uniform plasma-puff was about 120 mTorr and 450 Torr for He and N2, and between 120 mTorr and 5 Torr for Ar. The inverse pinch switch was triggered with the plasma-puff and the switching capability under various electrical parameters and working gas pressures of Ar, He and N2 was determined. It was also shown that the azimuthally uniform switching discharges were dependent on the type of fill gas and its fill pressure. A new concept of plasma-focus driven plasma-puff was also discussed in comparison with the hypocycloidal pinch plasma-puff triggering. The main discharge of inverse pinch switch with plasma-focus driven plasma-puff trigger is found to be more azimuthally uniform than that with hypocycloidal pinch plasma-puff trigger in a gas pressure region between 80 mTorr and 1 Torr.

  14. Time-dependent buoyant puff model for explosive sources

    SciTech Connect

    Kansa, E.J.

    1997-10-01

    This paper presents a new model for explosive puff rise histories that is derived from the strong conservative form of the partial differential equations of mass, momenta, and total energy that are integrated over space to yield a coupled system of time dependent nonlinear ordinary differential equations (ODEs). By allowing the dimensions of the puff to evolve laterally and horizontally, the initial rising spherical shaped puff evolves into a rising ellipsoidal shaped mushroom cloud. This model treats the turbulence that is generated by the puff itself and the ambient atmospheric turbulence as separate mechanisms in determining the puff history. The puff rise history was found to depend not only upon the mass and initial temperature of the explosion, but also upon the local stability conditions of the ambient atmosphere through which the puff rises. This model was calibrated by comparison with the Roller Coaster experiments, ranging from unstable to very stable atmospheric conditions; the agreement of the model history curves with these experimental curves was within 10%.

  15. Passive radiative cooling below ambient air temperature under direct sunlight.

    PubMed

    Raman, Aaswath P; Anoma, Marc Abou; Zhu, Linxiao; Rephaeli, Eden; Fan, Shanhui

    2014-11-27

    Cooling is a significant end-use of energy globally and a major driver of peak electricity demand. Air conditioning, for example, accounts for nearly fifteen per cent of the primary energy used by buildings in the United States. A passive cooling strategy that cools without any electricity input could therefore have a significant impact on global energy consumption. To achieve cooling one needs to be able to reach and maintain a temperature below that of the ambient air. At night, passive cooling below ambient air temperature has been demonstrated using a technique known as radiative cooling, in which a device exposed to the sky is used to radiate heat to outer space through a transparency window in the atmosphere between 8 and 13 micrometres. Peak cooling demand, however, occurs during the daytime. Daytime radiative cooling to a temperature below ambient of a surface under direct sunlight has not been achieved because sky access during the day results in heating of the radiative cooler by the Sun. Here, we experimentally demonstrate radiative cooling to nearly 5 degrees Celsius below the ambient air temperature under direct sunlight. Using a thermal photonic approach, we introduce an integrated photonic solar reflector and thermal emitter consisting of seven layers of HfO2 and SiO2 that reflects 97 per cent of incident sunlight while emitting strongly and selectively in the atmospheric transparency window. When exposed to direct sunlight exceeding 850 watts per square metre on a rooftop, the photonic radiative cooler cools to 4.9 degrees Celsius below ambient air temperature, and has a cooling power of 40.1 watts per square metre at ambient air temperature. These results demonstrate that a tailored, photonic approach can fundamentally enable new technological possibilities for energy efficiency. Further, the cold darkness of the Universe can be used as a renewable thermodynamic resource, even during the hottest hours of the day.

  16. Time-dependent buoyant puff model for explosive sources

    SciTech Connect

    Kansa, E.J.

    1997-01-01

    Several models exist to predict the time dependent behavior of bouyant puffs that result from explosions. This paper presents a new model that is derived from the strong conservative form of the conservation partial differential equations that are integrated over space to yield a coupled system of time dependent nonlinear ordinary differential equations. This model permits the cloud to evolve from an intial spherical shape not an ellipsoidal shape. It ignores the Boussinesq approximation, and treats the turbulence that is generated by the puff itself and the ambient atmospheric tubulence as separate mechanisms in determining the puff history. The puff cloud rise history was found to depend no only on the mass and initial temperature of the explosion, but also upon the stability conditions of the ambient atmosphere. This model was calibrated by comparison with the Roller Coaster experiments.

  17. SIMPLODE: An Imploding Gas Puff Plasma Model. I. Neon.

    DTIC Science & Technology

    2014-09-26

    recent experimental results obtained on GAMBLE II. In addition, the influence of the Plasma Erosion Opening Switch on the K-shell yield is...LTE radiation physics model and is ideal for use with the gas puff experiments at NRL on the GAMBLE II facility. Recently the GAMBLE II pulse power...facility has been upgraded to accomodate gas puff loads. This modification enhances GAMBLE II’s versatility by expanding the types of material loads that

  18. Effects of air flow directions on composting process temperature profile

    SciTech Connect

    Kulcu, Recep; Yaldiz, Osman

    2008-07-01

    In this study, chicken manure mixed with carnation wastes was composted by using three different air flow directions: R1-sucking (downward), R2-blowing (upward) and R3-mixed. The aim was to find out the most appropriate air flow direction type for composting to provide more homogenous temperature distribution in the reactors. The efficiency of each aeration method was evaluated by monitoring the evolution of parameters such as temperature, moisture content, CO{sub 2} and O{sub 2} ratio in the material and dry material losses. Aeration of the reactors was managed by radial fans. The results showed that R3 resulted in a more homogenous temperature distribution and high dry material loss throughout the composting process. The most heterogeneous temperature distribution and the lowest dry material loss were obtained in R2.

  19. Air pollution and climate response to aerosol direct radiative ...

    EPA Pesticide Factsheets

    Decadal hemispheric Weather Research and Forecast-Community Multiscale Air Quality simulations from 1990 to 2010 were conducted to examine the meteorology and air quality responses to the aerosol direct radiative effects. The model's performance for the simulation of hourly surface temperature, relative humidity, wind speed, and direction was evaluated through comparison with observations from NOAA's National Climatic Data Center Integrated Surface Data. The inclusion of aerosol direct radiative effects improves the model's ability to reproduce the trend in daytime temperature range which over the past two decades was increasing in eastern China but decreasing in eastern U.S. and Europe. Trends and spatial and diurnal variations of the surface-level gaseous and particle concentrations to the aerosol direct effect were analyzed. The inclusion of aerosol direct radiative effects was found to increase the surface-level concentrations of SO2, NO2, O3, SO42−, NO3−, and particulate matter 2.5 in eastern China, eastern U.S., and Europe by 1.5–2.1%, 1–1.5%, 0.1–0.3%, 1.6–2.3%, 3.5–10.0%, and 2.2–3.2%, respectively, on average over the entire 21 year period. However, greater impacts are noted during polluted days with increases of 7.6–10.6%, 6.2–6.7%, 2.0–3.0%, 7.8–9.5%, 11.1–18.6%, and 7.2–10.1%, respectively. Due to the aerosol direct radiative effects, stabilizing of the atmosphere associated with reduced planetary boundary layer height a

  20. Direct Capture of CO2 from Ambient Air.

    PubMed

    Sanz-Pérez, Eloy S; Murdock, Christopher R; Didas, Stephanie A; Jones, Christopher W

    2016-10-12

    The increase in the global atmospheric CO2 concentration resulting from over a century of combustion of fossil fuels has been associated with significant global climate change. With the global population increase driving continued increases in fossil fuel use, humanity's primary reliance on fossil energy for the next several decades is assured. Traditional modes of carbon capture such as precombustion and postcombustion CO2 capture from large point sources can help slow the rate of increase of the atmospheric CO2 concentration, but only the direct removal of CO2 from the air, or "direct air capture" (DAC), can actually reduce the global atmospheric CO2 concentration. The past decade has seen a steep rise in the use of chemical sorbents that are cycled through sorption and desorption cycles for CO2 removal from ultradilute gases such as air. This Review provides a historical overview of the field of DAC, along with an exhaustive description of the use of chemical sorbents targeted at this application. Solvents and solid sorbents that interact strongly with CO2 are described, including basic solvents, supported amine and ammonium materials, and metal-organic frameworks (MOFs), as the primary classes of chemical sorbents. Hypothetical processes for the deployment of such sorbents are discussed, as well as the limited array of technoeconomic analyses published on DAC. Overall, it is concluded that there are many new materials that could play a role in emerging DAC technologies. However, these materials need to be further investigated and developed with a practical sorbent-air contacting process in mind if society is to make rapid progress in deploying DAC as a means of mitigating climate change.

  1. The ecdysone receptor (ScEcR-A) binds DNA puffs at the start of DNA amplification in Sciara coprophila

    PubMed Central

    Liew, Gerald M.; Foulk, Michael S.

    2014-01-01

    The steroid hormone ecdysone induces DNA amplification and subsequent DNA puff formation in late fourth larval instar salivary gland polytene chromosomes of the fungus fly, Sciara coprophila. Previous in vitro studies on DNA puff II/9A in Sciara demonstrated that the ecdysone receptor (ScEcR-A) efficiently binds an ecdysone response element adjacent to the origin recognition complex binding site within the II/9A amplification origin, implying a role for ScEcR-A in amplification. Here, we extrapolate themolecular details from locus II/9A to the rest of the genome using immunofluorescence with a ScEcR-A-specific antibody. ScEcR-A binds all DNA puff sites just as amplification begins and persists throughout the processes of amplification, transcription, and puffing. Ecdysone injections into pre-amplification stage larvae prematurely induce both DNA amplification and ScEcR-A binding to DNA puff sites. These data are consistent with a direct role for ScEcR-A in DNA amplification. PMID:23737076

  2. Study of gas-puff Z-pinches on COBRA

    SciTech Connect

    Qi, N.; Rosenberg, E. W.; Gourdain, P. A.; Grouchy, P. W. L. de; Kusse, B. R.; Hammer, D. A.; Bell, K. S.; Shelkovenko, T. A.; Potter, W. M.; Atoyan, L.; Cahill, A. D.; Evans, M.; Greenly, J. B.; Hoyt, C. L.; Pikuz, S. A.; Schrafel, P. C.; Kroupp, E.; Fisher, A.; Maron, Y.

    2014-11-15

    Gas-puff Z-pinch experiments were conducted on the 1 MA, 200 ns pulse duration Cornell Beam Research Accelerator (COBRA) pulsed power generator in order to achieve an understanding of the dynamics and instability development in the imploding and stagnating plasma. The triple-nozzle gas-puff valve, pre-ionizer, and load hardware are described. Specific diagnostics for the gas-puff experiments, including a Planar Laser Induced Fluorescence system for measuring the radial neutral density profiles along with a Laser Shearing Interferometer and Laser Wavefront Analyzer for electron density measurements, are also described. The results of a series of experiments using two annular argon (Ar) and/or neon (Ne) gas shells (puff-on-puff) with or without an on- (or near-) axis wire are presented. For all of these experiments, plenum pressures were adjusted to hold the radial mass density profile as similar as possible. Initial implosion stability studies were performed using various combinations of the heavier (Ar) and lighter (Ne) gasses. Implosions with Ne in the outer shell and Ar in the inner were more stable than the opposite arrangement. Current waveforms can be adjusted on COBRA and it was found that the particular shape of the 200 ns current pulse affected on the duration and diameter of the stagnated pinched column and the x-ray yield.

  3. The influence of air duct geometry on air jet direction in aircraft cabin ventilated by mixing ventilation.

    NASA Astrophysics Data System (ADS)

    Fišer, J.; Jícha, M.

    2013-04-01

    The paper deals with instigation of influence of air duct geometry on air jet direction in aircraft cabin ventilated by mixing ventilation. CFD approach was used for investigation and model geometry was based on small aircraft cabin mock-up geometry. Model was also equipped by nine seats and five manikins that represent passengers. The air jet direction was observed for selected ambient environment parameters and several types of air duct geometry and influence of main air duct geometry on jets direction is discussed. The model was created in StarCCM+ ver. 6.04.014 software and polyhedral mesh was used.

  4. Future directions in air quality research: economic issues.

    PubMed

    Adams, Richard M; Horst, Robert L

    2003-06-01

    Our challenge was to address future directions in air quality research that involve economic issues. The paper outlines the role of economics in the evaluation of air pollution impacts on environmental systems and describes existing research. We identify studies that address economic effects in the agricultural sector, in the commercial forest sector, and in unmanaged natural systems. Effects related to ozone exposure are highlighted. The summary of available research is followed by a discussion of research recommendations. Several short-term recommendations are identified that can augment some of the new research being considered by scientists. A more ambitious, long-term research project is outlined for valuing air pollution impacts in unmanaged natural environments. Specifically, the paper describes possible advantages of an 'integrated assessment' framework that more formally brings together the complex relationships that exist in both ecological and economic systems. A final section contains thoughts on the importance of education (i.e., information transfer) in the research process, especially in relation to policy. It is further noted that education should be inclusive of all members of the research team, throughout all stages of the research process.

  5. Quantifying calcium fluxes underlying calcium puffs in Xenopus laevis oocytes

    PubMed Central

    Bruno, Luciana; Solovey, Guillermo; Ventura, Alejandra C.; Dargan, Sheila; Dawson, Silvina Ponce

    2010-01-01

    Summary We determine the calcium fluxes through inositol 1,4,5-trisphosphate receptor/channels underlying calcium puffs of Xenopus laevis oocytes using a simplified version of the algorithm of Ventura et al., 2005 [1]. An analysis of 130 puffs obtained with Fluo-4 indicates that Ca2+ release comes from a region of width ~ 450 nm, that the release duration is peaked around 18ms and that the underlying Ca2+ currents range between 0.12 and 0.95pA. All these parameters are independent of IP3 concentration. We explore what distributions of channels that open during a puff, Np, and what relations between current and number of open channels, I(Np), are compatible with our findings and with the distribution of puff-to-trigger amplitude ratio reported in Rose et al, 2006 [2]. To this end, we use simple “mean field” models in which all channels open and close simultaneously. We find that the variability among clusters plays an important role in shaping the observed puff amplitude distribution and that a model for which I(Np) ~Np for small Np and I(Np)~Np1/α (α>1) for large Np, provides the best agreement. Simulations of more detailed models in which channels open and close stochastically show that this nonlinear behavior can be attributed to the limited time resolution of the observations and to the averaging procedure that is implicit in the mean-field models. These conclusions are also compatible with observations of ~400 puffs obtained using the dye Oregon green. PMID:20097419

  6. Suppressing effect of C a2 + blips on puff amplitudes by inhibiting channels to prevent recovery

    NASA Astrophysics Data System (ADS)

    Chen, Yuan; Qi, Hong; Li, Xiang; Cai, Meichun; Chen, Xingqiang; Liu, Wen; Shuai, Jianwei

    2016-08-01

    As local signals, calcium puffs arise from the concerted opening of a few nearby inositol 1,4,5-trisphospate receptor channels to release C a2 + ions from the endoplasmic reticulum. Although C a2 + puffs have been well studied, little is known about the modulation of cytosolic basal C a2 + concentration ([Ca2 +] Basal) on puff dynamics. In this paper we consider a puff model to study how the statistical properties of puffs are modulated by [Ca2 +] Basal. The puff frequency and lifetime trivially increase with the increasing [Ca2 +] Basal, but an unexpected result is that the puff amplitude and the maximum open-channel number of the puff show decreasing relationship with the increasing [Ca2 +] Basal. The underlying dynamics is related not only to the increasing puff frequency which gives a shorter recovery time, but also to the increasing frequency of blips with only one channel open. We indicate that C a2 + blips cause the channels to be inhibited and prevent their recovery during interpuff intervals, resulting in the suppressing effect on puff amplitudes. With increasing [Ca2 +] Basal, more blips occur to cause more channels to be inhibited, leaving fewer channels available for puff events. This study shows that the blips may play relevant functions in global C a2 + waves through modulating puff dynamics.

  7. Plasma-puff initiation of high Coulomb transfer switches

    NASA Technical Reports Server (NTRS)

    Han, Kwang S.; Venable, Demetrius D.; Lee, Ja H.; Choi, Eun H.; Kim, Y. K.; Kim, J. H.; Nguyen, D. X.

    1993-01-01

    The plasma-puff triggering mechanism based on a hypocycloidal pinch geometry was investigated to determine the optimal operating conditions for an azimuthally uniform surface flashover which initiates plasma-puff under wide ranges of fill gas pressures of Ar, He and N2. The optimal fill gas pressures for the azimuthally uniform plasma-puff were about 120 mTorr less than P(sub opt) less than 450 Torr for He and N2. For Argon 20 mTorr is less than P(sub opt) is less than 5 Torr. The inverse pinch switch was triggered with the plasma-puff and the switching capability under various electrical parameters and working gas pressures of Ar, He and N2 was determined. It was also shown that the azimuthally uniform switching discharges were dependent on the type of fill gas and its fill pressure. A new concept of plasma-focus driven plasma-puff was also discussed in comparison with hypocycloidal pinch plasma-puff triggering. The main discharge of the inverse pinch switch with the plasma-focus driven plasma-puff trigger is found to be more azimuthally uniform than that with the hypocycloidal pinch plasma-puff trigger in a gas pressure region between 80 mTorr and 1 Torr. In order to assess the effects of plasma current density on material erosion of electrodes, emissions from both an inverse-pinch plasma switch (INPIStron) and from a spark gap switch under test were studied with an optical multichannel analyzer (OMA). The color temperature of the argon plasma was approximately 4,000 K which corresponded with the peak continuum emission near 750 nm. There are the strong line emissions of argon in the 650 - 800 nm range and a lack of line emissions of copper and other solid material used in the switch. This indicates that the plasma current density during closing is low and the hot spot or hot filament in the switch is negligible. This result also indicates considerable reduction of line emission with the INPIStron switch over that of a spark-gap switch. However, a strong carbon

  8. Plasma-puff initiation of high Coulomb transfer switches

    NASA Technical Reports Server (NTRS)

    Venable, D. D.; Han, K. S.

    1993-01-01

    The plasma-puff triggering mechanism based on a hypocycloidal pinch geometry was investigated to determine the optimal operating conditions for an azimuthally uniform surface flashover which initiates plasma-puff under wide ranges of fill gas pressures of Ar, He and N2. The optimal fill gas pressures for the azimuthally uniform plasma-puff were about 120 mTorr less than P(opt) less than 450 Torr for He and N2. For Argon 120 mTorr less than P(opt) less than 5 Torr for argon. The inverse pinch switch was triggered with the plasma-puff and the switching capability under various electrical parameters and working gas pressures of Ar, He and N2 was determined. It was also shown that the azimuthally uniform switching discharges were dependent on the type of fill gas and its fill pressure. A new concept of plasma-focus driven plasma-puff was also discussed in comparison with hypocycloidal pinch plasma-puff triggering. The main discharge of the inverse pinch switch with the plasma-focus driven plasma-puff trigger is found to be more azimuthally uniform than that with the hypocycloidal pinch plasma-puff trigger in a gas pressure region between 80 mTorr and 1 Torr. In order to assess the effects of plasma current density on material erosion of electrodes, emissions from both an inverse-pinch plasma switch (INPIStron) and from a spark gap switch under test were studied with an optical multichannel analyzer (OMA). The color temperature of the argon plasma was approximately 4,000 K which corresponded with the peak continuum emission near 750 nm. There are the strong line emissions of argon in the 650 - 800 nm range and a lack of line emissions of copper and other solid material used in the switch. This indicates that the plasma current density during closing is low and the hot spot or hot filament in the switch is negligible. This result also indicates considerable reduction of line emission with the INPIStron switch over that of a spark-gap switch. However, a strong carbon line

  9. Properties of extruded chia-corn meal puffs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigated the properties of extruded corn meal puffs containing chia. Mixtures of corn meal and chia seeds (0-20%) were processed in a laboratory-scale twin-screw extruder at different moisture contents (18-22%) and final heating zone temperatures (120-160 °C). Extrusion processing pro...

  10. New directions: Air pollution challenges for developing megacities like Delhi

    NASA Astrophysics Data System (ADS)

    Kumar, Prashant; Khare, Mukesh; Harrison, Roy M.; Bloss, William J.; Lewis, Alastair C.; Coe, Hugh; Morawska, Lidia

    2015-12-01

    Most major cities around the world experience periods of elevated air pollution levels, which exceed international health-based air quality standards (Kumar et al., 2013). Although it is a global problem, some of the highest air pollution levels are found in rapidly expanding cities in India and China. The sources, emissions, transformations and broad effects of meteorology on air pollution are reasonably well accounted in air quality control strategies in many developed cities; however these key factors remain poorly constrained in the growing cities of countries with emerging economies. We focus here on Delhi, one of the largest global population centres, which faces particular air pollution challenges, now and in the future.

  11. 77 FR 64763 - Airworthiness Directives; Lindstrand Hot Air Balloons Ltd Appliances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-23

    ... Directives; Lindstrand Hot Air Balloons Ltd Appliances AGENCY: Federal Aviation Administration (FAA... adopt a new airworthiness directive (AD) for certain Lindstrand Hot Air Balloons Ltd female ACME... identified in this proposed AD, contact Lindstrand Hot Air Balloons Ltd., Maesbury Road, Oswestry,...

  12. Direct effects of energy-related air pollutants on plant sexual reproduction

    SciTech Connect

    Ragsdale, H.L.; Murdy, W.H.

    1987-12-08

    Our completed research program concentrated on the direct in vivo effects of energy-related air pollutants on plant sexual reproduction. Direct air pollution effects on plant sexual reproduction have been studied for SO{sub 2} and NO{sub 2}, two of the three major air pollutants.

  13. Experimental Results from Plasma Shell on Deuterium Gas-puff Z-pinch on the Current Level of 3 MA

    NASA Astrophysics Data System (ADS)

    Rezac, K.; Klir, D.; Kubes, P.; Kravarik, J.; Shishlov, A.; Labetsky, A.; Kokshenev, V.; Ratakhin, N.; GIT-12 Team

    2013-10-01

    The experiments with a plasma shell on deuterium gas-puff Z-pinch were carried out on the GIT-12 generator at IHCE in Tomsk. We diagnosed Z-pinch shots with deuterium linear mass of about 100 μg/cm. The outer shell of the load was formed by 48 plasma guns positioned on diameter of 350 mm, the diameter of the nozzle producing deuterium inner shell gas-puff was 80 mm. Results obtained from X-ray and neutron diagnostics, especially neutron time-of-flight signals, where 15 MeV neutrons (in radial direction) and 22 MeV neutrons (in axial direction) were registered, are presented. Obtained implosion velocity of the gas-puff had the value of 4 . 5 ×107 cm/s, neutron yield from D(d,n)3He reaction was in order of 1012 neutrons/shot on a current level of about 2.7 MA. The time correlations of the TOF diagnostics with other diagnostics such as electrical characteristics, an MCP frames, and a visible streak camera are also presented. Work supported by MEYS CR research programs No. ME090871, No. LG13029, by GACR grant No. P205/12/0454, grant CRA IAEA No. 17088 and RFBR research project No. 13-08-00479-a.

  14. Impact of Aerosol Direct Effect on East Asian Air Quality During the EAST-AIRE Campaign

    NASA Astrophysics Data System (ADS)

    Wang, J.; Allen, D. J.; Pickering, K. E.; Li, Z.

    2015-12-01

    Three WRF-Chem simulations were conducted for East Asia region during March 2005 East Asian Studies of Tropospheric Aerosols: an International Regional Experiment (EAST-AIRE) Intensive Observation Campaign (IOC) period to investigate the direct effects of aerosols on surface radiation and air quality. WRF-Chem captured the temporal and spatial variations of meteorological fields, trace gases, and aerosol loadings. Surface shortwave radiation changes due to the aerosol direct effect (ADE) were calculated and compared with data from six World Radiation Data Center (WRDC) stations. The comparison indicated that WRF-Chem can simulate the surface short wave radiation moderately well, with temporal correlations between 0.4 and 0.7, and high biases between 9 to 120 W/m2. Domain-wide, WRF-Chem showed a decrease of 22 W/m2 in surface SW radiation due to the aerosol direct effect, consistent with observational studies. The ADE demonstrates diverse influences on air quality in East Asian. For example, the surface concentration of PM2.5 increases in eastern China (~11.1%) due to ADE, but decreases in central China (-7.3%), western China (-8.8%), and Sichuan Basin (-4%). Surface 1-hour maximum ozone is reduced by 2.3%, owing to less radiation reaching the surface due to the ADE. Since PM2.5 pollution raises serious public concern in China, regulations that control the emissions of PM2.5 and its precursors have been implemented. We investigate the impact of reducing two different types of aerosols, sulfate (scattering) and black carbon (absorbing), by cutting 80% of SO2 and black carbon (BC) emissions in two sensitivity simulations. We found that reducing SO2 emissions results in the decline of PM2.5 as much as 16mg/m3 in eastern China, and 20mg/m3 in the Sichuan Basin. Reducing the BC emissions by the same percentage causes the PM2.5 to decrease as much as 40mg/m3 in eastern China, and 25mg/m3 in the Sichuan Basin. The monthly averaged surface 1-hour maximum ozone increases 3

  15. Impact of aerosol direct effect on East Asian air quality during the EAST-AIRE campaign

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Allen, Dale J.; Pickering, Kenneth E.; Li, Zhanqing; He, Hao

    2016-06-01

    WRF-Chem simulations were performed for the March 2005 East Asian Studies of Tropospheric Aerosols: an International Regional Experiment (EAST-AIRE) Intensive Observation Campaign (IOC) to investigate the direct effects of aerosols on surface radiation and air quality. Domain-wide, WRF-Chem showed a decrease of 20 W/m2 in surface shortwave (SW) radiation due to the aerosol direct effect (ADE), consistent with observational studies. The ADE caused 24 h surface PM2.5 (particulate matter with diameter < 2.5 µm) concentrations to increase in eastern China (4.4%), southern China (10%), western China (2.3%), and the Sichuan Basin (9.6%), due to different aerosol compositions in these four regions. Conversely, surface 1 h maximum ozone was reduced by 2.3% domain-wide and up to 12% in eastern China because less radiation reached the surface. We also investigated the impact of reducing SO2 and black carbon (BC) emissions by 80% on aerosol amounts via two sensitivity simulations. Reducing SO2 decreased surface PM2.5 concentrations in the Sichuan Basin and southern China by 5.4% and decreased ozone by up to 6 ppbv in the Sichuan Basin and Southern China. Reducing BC emissions decreased PM2.5 by 3% in eastern China and the Sichuan Basin but increased surface ozone by up to 3.6 ppbv in eastern China and the Sichuan Basin. This study indicates that the benefits of reducing PM2.5 associated with reducing absorbing aerosols may be partially offset by increases in ozone at least for a scenario when NOx and VOC emissions are unchanged.

  16. Probability density function of a puff dispersing from the wall of a turbulent channel

    NASA Astrophysics Data System (ADS)

    Nguyen, Quoc; Papavassiliou, Dimitrios

    2015-11-01

    Study of dispersion of passive contaminants in turbulence has proved to be helpful in understanding fundamental heat and mass transfer phenomena. Many simulation and experimental works have been carried out to locate and track motions of scalar markers in a flow. One method is to combine Direct Numerical Simulation (DNS) and Lagrangian Scalar Tracking (LST) to record locations of markers. While this has proved to be useful, high computational cost remains a concern. In this study, we develop a model that could reproduce results obtained by DNS and LST for turbulent flow. Puffs of markers with different Schmidt numbers were released into a flow field at a frictional Reynolds number of 150. The point of release was at the channel wall, so that both diffusion and convection contribute to the puff dispersion pattern, defining different stages of dispersion. Based on outputs from DNS and LST, we seek the most suitable and feasible probability density function (PDF) that represents distribution of markers in the flow field. The PDF would play a significant role in predicting heat and mass transfer in wall turbulence, and would prove to be helpful where DNS and LST are not always available.

  17. 'Carcinogens in a puff': smoking in Hong Kong movies.

    PubMed

    Ho, Sai-Yin; Wang, Man-Ping; Lai, Hak-Kan; Hedley, Anthony J; Lam, Tai-Hing

    2010-12-01

    Smoking scenes in movies, exploited by the tobacco industry to circumvent advertisement bans, are linked to adolescent smoking. Recently, a Hong Kong romantic comedy Love in a puff put smoking at centre stage, with numerous smoking scenes and words that glamourise smoking. Although WHO has issued guidelines on reducing the exposure of children to smoking in movies, none is adopted in Hong Kong. Comprehensive tobacco control strategies are urgently needed to protect young people in Hong Kong from cigarette promotion in movies.

  18. 78 FR 9785 - Airworthiness Directives; Lindstrand Hot Air Balloons Ltd Appliances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-12

    ...-034-AD; Amendment 39-17345; AD 2013-03-10] RIN 2120-AA64 Airworthiness Directives; Lindstrand Hot Air... Hot Air Balloons Ltd female ACME threaded hose connectors, part numbers HS6139 and HS6144, installed.... For service information identified in this AD, contact Lindstrand Hot Air Balloons Ltd, Maesbury...

  19. 78 FR 18533 - Airworthiness Directives; Lindstrand Hot Air Balloons Ltd Appliances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-27

    ...-034-AD; Amendment 39-17345; AD 2013-03-10] RIN 2120-AA64 Airworthiness Directives; Lindstrand Hot Air... Register. That AD applies to certain Lindstrand Hot Air Balloons Ltd female ACME threaded hose connectors... follows: * * * * * (c) Applicability This AD applies to Lindstrand Hot Air Balloons Ltd female...

  20. 30 CFR 75.341 - Direct-fired intake air heaters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Direct-fired intake air heaters. 75.341 Section... air heaters. (a) If any system used to heat intake air malfunctions, the heaters affected shall switch off automatically. (b) Thermal overload devices shall protect the blower motor from overheating....

  1. Effect of Deuterium Gas Puff On The Edge Plasma In NSTX

    SciTech Connect

    Zweben, S. J.

    2014-02-20

    This paper describes a detailed examination of the effects of a relatively small pulsed deuterium gas puff on the edge plasma and edge turbulence in NSTX. This gas puff caused little or no change in the line-averaged plasma density or total stored energy, or in the edge density and electron temperature up to the time of the peak of the gas puff. The radial profile of the Dα light emission and the edge turbulence within this gas puff did not vary significantly over its rise and fall, implying that these gas puffs did not significantly perturb the local edge plasma or edge turbulence. These measurements are compared with modeling by DEGAS 2, UEDGE, and with simplified estimates for the expected effects of this gas puff.

  2. Air service to small communities, directions for the future. [conference

    NASA Technical Reports Server (NTRS)

    Vittek, J. F., Jr. (Editor)

    1974-01-01

    The seminar on the problems of providing air service to low and medium density points is reported. National transport policies and programs are discussed along with the technology aspects. Recommendations for ATC, CAB, and FAA are included.

  3. Hedonic Predictors of Tobacco Dependence: A Puff Guide to Smoking Cessation

    DTIC Science & Technology

    2015-04-07

    general linear model described in hypothesis 2.1 and added FTND as a continuous independent variable. A significant FTND by Puff Number interaction would...indicate that the association between FTND and liking ratings differed across puff numbers. A significant FTND by Abstinence State interaction ...This conclusion is qualified by the presence of a significant Puff Number by Abstinence State interaction , F (6, 1224) = 3.91, p = .0058. Figure 3

  4. 14 CFR 119.21 - Commercial operators engaged in intrastate common carriage and direct air carriers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... common carriage and direct air carriers. 119.21 Section 119.21 Aeronautics and Space FEDERAL AVIATION... operators engaged in intrastate common carriage and direct air carriers. (a) Each person who conducts airplane operations as a commercial operator engaged in intrastate common carriage of persons or...

  5. Edge turbulence measurements in NSTX by gas puff imaging

    NASA Astrophysics Data System (ADS)

    Maqueda, R. J.; Wurden, G. A.; Zweben, S.; Roquemore, L.; Kugel, H.; Johnson, D.; Kaye, S.; Sabbagh, S.; Maingi, R.

    2001-01-01

    Turbulent filaments in visible light emission corresponding mainly to density fluctuations at the edge have been observed in large aspect ratio tokamaks: TFTR, ASDEX, Alcator C-Mod, and DIII-D. This article reports on similar turbulent structures observed in the National Spherical Torus Experiment (NSTX) using a fast-framing, intensified, digital visible camera. These filaments were previously detected mainly in high recycling regions, such as at limiters or antennas, where the line emission from neutral atoms was modulated by the fluctuations in local plasma density. However, by introducing controlled edge gas puffs, i.e., gas puff imaging, we have increased the brightness and contrast in the fluctuation images and allowed the turbulent structure to be measured independently of the recycling. A set discrete fiber-optically coupled sight-lines also measured the frequency spectra of these light fluctuations with a 200 kHz bandwidth. Initial results in NSTX show that the turbulent filaments are well aligned with the magnetic field which can be up to 45° from the horizontal at the outer midplane of NSTX. The dominant wavelength perpendicular to the magnetic field is ˜7-11 cm, corresponding to a k⊥ ρs of ˜0.3 at an assumed Te=25 eV, and the frequency spectra has a typical broad shape characteristic of edge turbulence extending to about 100 kHz. By imaging a He gas puff along a magnetic field line the characteristic radial scalelength appears to be in the 3-5 cm range.

  6. Direct control of air gap flux in permanent magnet machines

    DOEpatents

    Hsu, John S.

    2000-01-01

    A method and apparatus for field weakening in PM machines uses field weakening coils (35, 44, 45, 71, 72) to produce flux in one or more stators (34, 49, 63, 64), including a flux which counters flux normally produced in air gaps between the stator(s) (34, 49, 63, 64) and the rotor (20, 21, 41, 61) which carries the PM poles. Several modes of operation are introduced depending on the magnitude and polarity of current in the field weakening coils (35, 44, 45, 71, 72). The invention is particularly useful for, but not limited to, the electric vehicle drives and PM generators.

  7. Deuterium gas puff Z-pinch at currents of 2 to 3 mega-ampere

    NASA Astrophysics Data System (ADS)

    Klir, D.; Shishlov, A. V.; Kubes, P.; Rezac, K.; Fursov, F. I.; Kokshenev, V. A.; Kovalchuk, B. M.; Kravarik, J.; Kurmaev, N. E.; Labetsky, A. Yu.; Ratakhin, N. A.

    2012-03-01

    Deuterium gas-puff experiments have been carried out on the GIT-12 generator at the Institute of High Current Electronics in Tomsk. The emphasis was put on the study of plasma dynamics and neutron production in double shell gas puffs. A linear mass density of deuterium (D2) varied between 50 and 85 μg/cm. Somewhat problematic was a spread of the D2 gas at a large diameter in the central anode-cathode region. The generator operated in two regimes, with and without a plasma opening switch (POS). When the POS was used, a current reached a peak of 2.7 MA with a 200 ns rise time. Without the POS, a current rise time approached 1500 ns. The influence of different current rise times on neutron production was researched. Obtained results were important for comparison of fast deuterium Z-pinches with plasma foci. Average DD neutron yields with and without the POS were about 1011. The neutron yield seems to be dependent on a peak voltage at the Z-pinch load. In all shots, the neutron emission started during stagnation. At the beginning of the neutron production, the neutron emission correlated with soft x-rays and a significant fraction of neutrons could be explained by the thermonuclear mechanism. Nevertheless, a peak of the neutron emission occurred 40 ns after a soft x-ray peak. At this very moment, hard x-rays above 1 MeV were detected and a rapid expansion with a velocity of 3×105 m/s was observed. In the case of the POS, 1 MeV widths of radial neutron spectra implied that there are deuterons with the energy above 200 keV moving in the radial direction. On the basis of D2 gas puff experiments in the 0.3-17 MA region, the neutron yield dependence on a current as Y∝I3.0±0.2 was proposed.

  8. Direct Numerical Simulation of Air Layer Drag Reduction over a Backward-facing Step

    NASA Astrophysics Data System (ADS)

    Kim, Dokyun; Moin, Parviz

    2010-11-01

    Direct Numerical Simulation (DNS) of two-phase flow is performed to investigate the air layer drag reduction (ALDR) phenomenon in turbulent flow over a backward-facing step. In their experimental study, Elbing et al. (JFM, 2008) have observed a stable air layer on an entire flat plate if air is injected beyond the critical air-flow rate. In the present study, air is injected at the step on the wall into turbulent water flow for ALDR. The Reynolds and Weber numbers based on the water properties and step height are 22,800 and 560, respectively. An inlet section length before the step is 3h and the post expansion length is 30h, where h is the step height. The total number of grid points is about 271 million for DNS. The level set method is used to track the phase interface and the structured-mesh finite volume solver is used with an efficient algorithm for two-phase DNS. Two cases with different air-flow rates are performed to investigate the mechanism and stability of air layer. For high air-flow rate, the stable air layer is formed on the plate and more than 90% drag reduction is obtained. In the case of low air-flow rate, the air layer breaks up and ALDR is not achieved. The parameters governing the stability of air layer from the numerical simulations is also consistent with the results of stability analysis.

  9. 75 FR 52255 - Airworthiness Directives; Air Tractor, Inc. Models AT-802 and AT-802A Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-25

    ...; AD 2010-17-18] RIN 2120-AA64 Airworthiness Directives; Air Tractor, Inc. Models AT-802 and AT- 802A... to read as follows: 2010-17-18 Air Tractor, Inc.: Amendment 39-16412; Docket No. FAA- 2010-0827...) Ensure that the hopper is empty. (3) Limit airspeed to 135 miles per hour (mph) indicated airspeed...

  10. Performance of PEM Liquid-Feed Direct Methanol-Air Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, S. R.

    1995-01-01

    A direct methanol-air fuel cell operating at near atmospheric pressure, low-flow rate air, and at temperatures close to 60oC would tremendously enlarge the scope of potential applications. While earlier studies have reported performance with oxygen, the present study focuses on characterizing the performance of a PEM liquid feed direct methanol-air cell consisting of components developed in house. These cells employ Pt-Ru catalyst in the anode, Pt at the cathode and Nafion 117 as the PEM. The effect of pressure, flow rate of air and temperature on cell performance has been studied. With air, the performance level is as high as 0.437 V at 300 mA/cm2 (90oC, 20 psig, and excess air flow) has been attained. Even more significant is the performance level at 60oC, 1 atm and low flow rates of air (3-5 times stoichiometric), which is 0.4 V at 150 mA/cm2. Individual electrode potentials for the methanol and air electrode have been separated and analyzed. Fuel crossover rates and the impact of fuel crossover on the performance of the air electrode have also been measured. The study identifies issues specific to the methanol-air fuel cell and provides a basis for improvement strategies.

  11. Transdermal Uptake of Diethyl Phthalate and Di(n-butyl) Phthalate Directly from Air: Experimental Verification

    PubMed Central

    Bekö, Gabriel; Koch, Holger M.; Salthammer, Tunga; Schripp, Tobias; Toftum, Jørn; Clausen, Geo

    2015-01-01

    Background Fundamental considerations indicate that, for certain phthalate esters, dermal absorption from air is an uptake pathway that is comparable to or greater than inhalation. Yet this pathway has not been experimentally evaluated and has been largely overlooked when assessing uptake of phthalate esters. Objectives This study investigated transdermal uptake, directly from air, of diethyl phthalate (DEP) and di(n-butyl) phthalate (DnBP) in humans. Methods In a series of experiments, six human participants were exposed for 6 hr in a chamber containing deliberately elevated air concentrations of DEP and DnBP. The participants either wore a hood and breathed air with phthalate concentrations substantially below those in the chamber or did not wear a hood and breathed chamber air. All urinations were collected from initiation of exposure until 54 hr later. Metabolites of DEP and DnBP were measured in these samples and extrapolated to parent phthalate intakes, corrected for background and hood air exposures. Results For DEP, the median dermal uptake directly from air was 4.0 μg/(μg/m3 in air) compared with an inhalation intake of 3.8 μg/(μg/m3 in air). For DnBP, the median dermal uptake from air was 3.1 μg/(μg/m3 in air) compared with an inhalation intake of 3.9 μg/(μg/m3 in air). Conclusions This study shows that dermal uptake directly from air can be a meaningful exposure pathway for DEP and DnBP. For other semivolatile organic compounds (SVOCs) whose molecular weight and lipid/air partition coefficient are in the appropriate range, direct absorption from air is also anticipated to be significant. Citation Weschler CJ, Bekö G, Koch HM, Salthammer T, Schripp T, Toftum J, Clausen G. 2015. Transdermal uptake of diethyl phthalate and di(n-butyl) phthalate directly from air: experimental verification. Environ Health Perspect 123:928–934; http://dx.doi.org/10.1289/ehp.1409151 PMID:25850107

  12. Olive Oil Based Emulsions in Frozen Puff Pastry Production

    NASA Astrophysics Data System (ADS)

    Gabriele, D.; Migliori, M.; Lupi, F. R.; de Cindio, B.

    2008-07-01

    Puff pastry is an interesting food product having different industrial applications. It is obtained by laminating layers of dough and fats, mainly shortenings or margarine, having specific properties which provides required spreading characteristic and able to retain moisture into dough. To obtain these characteristics, pastry shortenings are usually saturated fats, however the current trend in food industry is mainly oriented towards unsatured fats such as olive oil, which are thought to be safer for human health. In the present work, a new product, based on olive oil, was studied as shortening replacer in puff pastry production. To ensure the desired consistency, for the rheological matching between fat and dough, a water-in-oil emulsion was produced based on olive oil, emulsifier and a hydrophilic thickener agent able to increase material structure. Obtained materials were characterized by rheological dynamic tests in linear viscoelastic conditions, aiming to setup process and material consistency, and rheological data were analyzed by using the weak gel model. Results obtained for tested emulsions were compared to theological properties of a commercial margarine, adopted as reference value for texture and stability. Obtained emulsions are characterized by interesting rheological properties strongly dependent on emulsifier characteristics and water phase composition. However a change in process temperature during fat extrusion and dough lamination seems to be necessary to match properly typical dough rheological properties.

  13. Beyond DNA puffs: What can we learn from studying sciarids?

    PubMed

    Simon, Claudio Roberto; Siviero, Fábio; Monesi, Nadia

    2016-07-01

    Members of the Sciaridae family attracted the interest of researchers because of the demonstration that the DNA puff regions, which are formed in the salivary gland polytene chromosomes at the end of the fourth larval instar, constitute sites of developmentally regulated gene amplification. Besides contributing to a deeper understanding of the process of gene amplification, the study of sciarids has also provided important insights on other biological processes such as sex determination, programmed cell death, insect immunity, telomere maintenance, and nucleolar organizing regions (NOR) formation. Open questions in sciarids include among others, early development, the role of noncoding RNAs in gene amplification and the relationship between gene amplification and transcription in DNA puff forming regions. These and other questions can now be pursued with next generation sequencing techniques and experiments using RNAi experiments, since this latter technique has been shown to be feasible in sciarids. These new perspectives in the field of sciarid biology open the opportunity to consolidate sciarid species as important emerging models. genesis 54:361-378, 2016. © 2016 Wiley Periodicals, Inc.

  14. New World Vistas: Air and Space Power for the 21st Century. Directed Energy Volume

    DTIC Science & Technology

    1995-01-01

    Vtl/V V VUMLU VIS IAS AIR AND SPACE POWER FORTHE OIQrr^FMTl IPV DIRECTED ENERGY VOLUME This report is a forecast of a potential future for the Air...vision of directed energy weapons, using high energy lasers (HEL) and high power microwaves (HPM), was first seriously engaged by the military. Within...revolutionary, have been made in types of laser devices, device efficiency, prime power generators, thermal management, beam control, sensor and

  15. Effects of source conditions, vertical diffusivity and spatial resolution of wind data on simulation results based on the tephra-tracking model PUFF: a case study from the Kirishima 2011 eruption

    NASA Astrophysics Data System (ADS)

    Kiyosugi, K.; Koyaguchi, T.

    2012-12-01

    Understanding how pyroclasts disperse from volcanic plumes is a fundamental problem of volcanology to reconstruct eruption conditions from tephra fallout deposits. Tephra dispersion is not only a scientifically interesting but also socially and economically important problem (e.g., the air traffic disruption caused by the 2010 Eyjafjallaokull volcano eruption). PUFF is a tephra-tracking model developed by the University of Alaska for the use of aviation service alert. In this model, position vector of each particle at a time step is calculated with Lagrangian formulation using local wind velocity and terminal gravitational fallout vector at one time step before; diffusivity due to turbulent behavior is simulated by a random walk formulation. We applied this model to the sub-Plinian phase of the Kirishima 2011 eruption to test the effects of simulation parameters on the features of tephra dispersion and fallout deposits in the field. We systematically investigated the effects of two parameters of PUFF model to tephra dispersion: vertical diffusivity and spatial resolution of wind data. Our results show that, as the value of vertical diffusivity increases, the distribution of settled particles on the ground surface becomes a more elongated shape in the wind direction. This effect is more remarkable for finer particles. These results indicate that the simulation results of the diffusion advection models in general depend on the assumed vertical diffusivity and the spatial resolution of wind data as well as on the source condition (e.g., the release levels of particles and grain size distribution). During the 2011 Kirishima eruption, a sub-Plinian eruption plume of 8 km high was observed by weather radars. The plume extended southeastward around the vent (~60 km), and traveled in the higher altitudes eastward (about 900 km from the vent). The simulation results of PUFF reconstructed these qualitative features observed in the satellite images and the deposits near the

  16. Pattern recognition methods and air pollution source identification. [based on wind direction

    NASA Technical Reports Server (NTRS)

    Leibecki, H. F.; King, R. B.

    1978-01-01

    Directional air samplers, used for resolving suspended particulate matter on the basis of time and wind direction were used to assess the feasibility of characterizing and identifying emission source types in urban multisource environments. Filters were evaluated for 16 elements and X-ray fluorescence methods yielded elemental concentrations for direction, day, and the interaction of direction and day. Large numbers of samples are necessary to compensate for large day-to-day variations caused by wind perturbations and/or source changes.

  17. Simulations of Direct Current Glow Discharges in Supersonic Air Flow

    NASA Astrophysics Data System (ADS)

    Mahadevan, Shankar; Raja, Laxminarayan

    2008-10-01

    In recent years, there have been a significant number of computational and experimental studies investigating the application of plasma discharges as actuators for high speed flow control. The relative importance of the actuation mechanisms: volumetric heating and electrostatic forcing can be established by developing self-consistent models of the plasma and bulk supersonic flow. To simulate the plasma discharge in a supersonic air stream, a fluid model of the glow discharge is coupled with a compressible Navier-Stokes solver in a self-consistent manner. Source terms for the momentum and energy equations are calculated from the plasma model and input into the Navier-Stokes solver. In turn, the pressure, gas temperature and velocity fields from the Navier-Stokes solution are fed back into the plasma model. The results include plasma species number density contour maps in the absence and presence of Mach 3 supersonic flow, and the corresponding effect of the glow discharge on gas dynamic properties such as the gas pressure and temperature. We also examine the effect of increasing the discharge voltage on the structure of the discharge and its corresponding effect on the supersonic flow.

  18. Dithionite/air direct ion liquid fuel cell

    NASA Astrophysics Data System (ADS)

    Noack, Jens; Tübke, Jens; Pinkwart, Karsten

    2015-07-01

    The feasibility of an alkaline S2O42-/air-fuel cell was evaluated at room temperature, using a cell with an anion exchange membrane and a platinum oxygen reduction reaction catalyst. The tests performed were open circuit voltage analysis, linear sweep voltammetry, discharge analysis and electrochemical impedance spectroscopy (EIS) with registration of anode half-cell potential. With 0.85 M Na2S2O4 in 2 M KOH, the cell achieved a maximum power density of 2 mW cm-2, and the open circuit cell voltage was about 0.9 V. In a potentiostatic discharging at 0.2 V cell voltage, an energy efficiency of 12.3% was achieved at an energy density of 8.6 Wh L-1. The low power density was mainly due to the low reaction kinetics of dithionite oxidation at graphite electrodes. The low energy efficiency was mainly caused by a low cathode potential, which probably resulted from mixed potential formation and the low anode kinetics.

  19. Effects of a GPI deuterium gas puff on the edge plasma in NSTX

    NASA Astrophysics Data System (ADS)

    Zweben, S. J.; Bell, R. E.; Davis, W. M.; Saye, S. M.; Kubota, S.; Maingi, R.; Munsat, T.; Leblanc, B. P.; Maqueda, R. J.; Sechrest, Y.; Smith, D. R.; Stotler, D. P.; Soukhanovskii, V. A.

    2013-10-01

    Deuterium neutral gas puffs near the outer midplane of NSTX have been routinely used for the gas puff imaging (GPI) diagnostic to measure edge turbulence. These puffs can inject up to 3.5 × 1020 D atoms over 100 msec from a manifold at the outer wall, with a maximum influx of 1022 atoms/sec after 20 msec. The 3D shape and absolute brightness of the D-alpha emission cloud from this puff have previously been modeled using DEGAS 2. The effects of the GPI puff on the edge plasma are now evaluated using Thomson scattering and other edge diagnostics of NSTX. The time evolution of the radial profile of D-alpha emission from the GPI cloud itself can be used to infer local changes in density and/or temperature. These results will be compared with models for the expected density and temperature perturbations, including parallel and perpendicular transport, drifts, rotation, and energy loss from radiation and charge exchange. The edge turbulence seen by GPI does not change significantly vs. time during the GPI puff, and other measurements of edge turbulence will be evaluated across the time of this puff.

  20. Skin conductance responses are elicited by the airway sensory effects of puffs from cigarettes.

    PubMed

    Naqvi, Nasir H; Bechara, Antoine

    2006-07-01

    The airway sensations stimulated by smoking are an important source of hedonic impact (pleasure) for dependent smokers. The learning process by which these sensations become pleasurable is not well understood. The classical conditioning model predicts that airway sensory stimulation will elicit sympathetic arousal that is positively correlated with the hedonic impact that is elicited by airway sensory stimulation. To test this prediction, we measured skin conductance responses (SCRs) and subjective hedonic impact elicited by a series of individual puffs from nicotinized, denicotinized and unlit cigarettes. Nicotinized puffs elicited more subjective hedonic impact than denicotinized and unlit puffs partly as a result of the fact that they provided a greater level of airway sensory stimulation. We found that SCRs were not larger for nicotinized puffs than for denicotinized puffs, but that they were larger for both nicotinized and denicotinized puffs than for unlit puffs. We also found that the average SCR of a subject to denicotinized puffs was positively correlated with the average hedonic impact that a subject obtained from denicotinized puffs. Together, this suggests that SCR magnitude does not reflect within-subject variations in hedonic impact that are due to variations in the level of airway sensory stimulation, but that it does reflect individual differences in the amount of hedonic impact that is derived from a given level of airway sensory stimulation. The results of a post hoc correlation analysis suggest that these individual differences may have been due to variations in the prevailing urge to smoke. The implications of these findings for the classical conditioning model, as well as for other learning models, are discussed.

  1. 76 FR 45655 - Airworthiness Directives; Superior Air Parts and Lycoming Engines (Formerly Textron Lycoming...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-01

    ... Administration 14 CFR Part 39 [Docket No. FAA-2011-0547; Directorate Identifier 2011-NE-13-AD; Amendment 39-16757; AD 2011-15-10] RIN 2120-AA64 Airworthiness Directives; Superior Air Parts and Lycoming Engines...: Final rule; request for comments. SUMMARY: We are adopting a new airworthiness directive (AD)...

  2. Improving the performance of a compression ignition engine by directing flow of inlet air

    NASA Technical Reports Server (NTRS)

    Kemper, Carlton

    1946-01-01

    The object of this report is to present the results of tests performed by the National Advisory Committee for Aeronautics to determine the effect on engine performance of directing the flow of the inlet air to a 5-inch by 7-inch cylinder, solid injection, compression ignition engine, After a few preliminary tests, comparative runs were made at a speed of 1500 r.p.m. with and without directed air flow. It was found that directing the flow of the inlet air toward the fuel injection valve gave steadier engine operation, and an appreciable increase in power, and decreased fuel consumption. The results indicate the possibility of improving the performance of a given type of combustion chamber without changing its shape and with no change in valve timing. They would also seem to prove that directional turbulence, set up before the inlet valve of a four-stroke cycle engine, continues in the engine cylinder throughout the compression stroke.

  3. Research on plasma-puff initiation of high Coulomb transfer switches

    NASA Technical Reports Server (NTRS)

    Venable, Demetrius D.; Han, Kwang S.

    1993-01-01

    The plasma-puff triggering mechanism based on hypocycloidal pinch geometry was investigated to determine the optimal operating conditions for an azimuthally uniform surface flashover which initiates plasma-puff under wide ranges of fill gas pressures of Ar, He and N2. Research is presented and resulting conference papers are attached. These papers include 'Characteristics of Plasma-Puff Trigger for an Inverse-Pinch Plasma Switch'; 'Ultra-High-Power Plasma Switch INPUTS for Pulse Power Systems'; 'Characteristics of Switching Plasma in an Inverse-Pinch Switch'; 'Comparative Study of INPIStron and Spark Gap'; and 'INPIStron Switched Pulsed Power for Dense Plasma Pinches.'

  4. Excitability in a stochastic differential equation model for calcium puffs.

    PubMed

    Rüdiger, S

    2014-06-01

    Calcium dynamics are essential to a multitude of cellular processes. For many cell types, localized discharges of calcium through small clusters of intracellular channels are building blocks for all spatially extended calcium signals. Because of the large noise amplitude, the validity of noise-approximating model equations for this system has been questioned. Here we revisit the master equations for local calcium release, examine the multiple scales of calcium concentrations in the cluster domain, and derive adapted stochastic differential equations. We show by comparison of discrete and continuous trajectories that the Langevin equations can be made consistent with the master equations even for very small channel numbers. In its deterministic limit, the model reveals that excitability, a dynamical phenomenon observed in many natural systems, is at the core of calcium puffs. The model also predicts a bifurcation from transient to sustained release which may link local and global calcium signals in cells.

  5. Developing the Pulsed Fission-Fusion (PuFF) Engine

    NASA Technical Reports Server (NTRS)

    Adams, Robert B.; Cassibry, Jason; Bradley, David; Fabisinski, Leo; Statham, Geoffrey

    2014-01-01

    In September 2013 the NASA Innovative Advanced Concept (NIAC) organization awarded a phase I contract to the PuFF team. Our phase 1 proposal researched a pulsed fission-fusion propulsion system that compressed a target of deuterium (D) and tritium (T) as a mixture in a column, surrounded concentrically by Uranium. The target is surrounded by liquid lithium. A high power current would flow down the liquid lithium and the resulting Lorentz force would compress the column by roughly a factor of 10. The compressed column would reach criticality and a combination of fission and fusion reactions would occur. Our Phase I results, summarized herein, review our estimates of engine and vehicle performance, our work to date to model the fission-fusion reaction, and our initial efforts in experimental analysis.

  6. Ultraviolet germicidal irradiation: future directions for air disinfection and building applications.

    PubMed

    Miller, Shelly L; Linnes, Jacqueline; Luongo, Julia

    2013-01-01

    Ultraviolet germicidal irradiation (UVGI) for air disinfection applications has relied on low-pressure mercury vapor lamps for decades. New design requirements have generated the need for alternatives in some uses. This study describes the current state of UVGI technology and describes future directions for technology development, including the use of lamps produced from nontoxic materials and light-emitting diode lamps. Important applications are discussed such as the use of ultraviolet germicidal lamps in developing countries, in heating, ventilating and air-conditioning systems to improve energy efficiency and indoor air quality, and for whole room disinfection.

  7. Reducing the cost of Ca-based direct air capture of CO2.

    PubMed

    Zeman, Frank

    2014-10-07

    Direct air capture, the chemical removal of CO2 directly from the atmosphere, may play a role in mitigating future climate risk or form the basis of a sustainable transportation infrastructure. The current discussion is centered on the estimated cost of the technology and its link to "overshoot" trajectories, where atmospheric CO2 levels are actively reduced later in the century. The American Physical Society (APS) published a report, later updated, estimating the cost of a one million tonne CO2 per year air capture facility constructed today that highlights several fundamental concepts of chemical air capture. These fundamentals are viewed through the lens of a chemical process that cycles between removing CO2 from the air and releasing the absorbed CO2 in concentrated form. This work builds on the APS report to investigate the effect of modifications to the air capture system based on suggestions in the report and subsequent publications. The work shows that reduced carbon electricity and plastic packing materials (for the contactor) may have significant effects on the overall price, reducing the APS estimate from $610 to $309/tCO2 avoided. Such a reduction does not challenge postcombustion capture from point sources, estimated at $80/tCO2, but does make air capture a feasible alternative for the transportation sector and a potential negative emissions technology. Furthermore, air capture represents atmospheric reductions rather than simply avoided emissions.

  8. Direct effects of energy-related air pollutants on plant sexual reproduction. Final report, February 1, 1979--January 31, 1982

    SciTech Connect

    Ragsdale, H.L.; Murdy, W.H.

    1987-12-08

    Our completed research program concentrated on the direct in vivo effects of energy-related air pollutants on plant sexual reproduction. Direct air pollution effects on plant sexual reproduction have been studied for SO{sub 2} and NO{sub 2}, two of the three major air pollutants.

  9. Modification of plasma flows with gas puff in the scrape-off layer of ADITYA tokamak

    SciTech Connect

    Sangwan, Deepak; Jha, Ratneshwar; Brotankova, Jana; Gopalkrishna, M. V.

    2013-06-15

    The parallel Mach numbers are measured at three locations in the scrape-off layer (SOL) plasma of ADITYA tokamak by using Mach probes. The flow pattern is constructed from these measurements and the modification of flow pattern is observed by introducing a small puff of working gas. In the normal discharge, there is an indication of shell structure in the SOL plasma flows, which is removed during the gas puff. The plasma parameters, particle flux and Reynolds stress are also measured in the normal discharge and in the discharge with gas puff. It is observed that Reynolds stress and Mach number are coupled in the near SOL region and decoupled in the far SOL region. The coupling in the near SOL region gets washed away during the gas puff.

  10. Cigarette filter ventilation is a defective design because of misleading taste, bigger puffs, and blocked vents

    PubMed Central

    Kozlowski, L; O'Connor, R

    2002-01-01

    Data sources: Searched from November 1999 to November 2000 internet databases of industry documents (www.pmdocs.com, www.rjrtdocs.com, www.lorillarddocs.com, www.bw.aalatg.com, www.cdc.gov/tobacco/industrydocs, www.tobaccodocuments.org, www.tobaccopapers.org, www.hlth.gov.bc.ca/Guildford, www.cctc.ca/ncth/Guildford, www.cctc.ca/ncth/Guildford2) for documents related to filter ventilation. Documents found dated from 1955 through 1994. Study selection: Those documents judged to contain the most relevant information or data on filter ventilation related to cigarette taste and compensatory smoking, while also trying to avoid redundancy from various documents deriving from the same underlying data. Data synthesis: Filter ventilation is a crucial design feature creating three main problems for lower tar cigarettes as measured by official smoking machine testing. Firstly, it misleadingly makes cigarettes taste lighter and milder, and, therefore, they appear less dangerous to smokers. Secondly, it promotes compensation mainly by facilitating the taking of larger puffs. Thirdly, for very heavily ventilated cigarettes (that is, > 65% filter air dilution), behavioural blocking of vents with lips or fingers is an additional contributor to compensatory smoking. These three effects are found in industry research as well as published research. Conclusions: Filter ventilation is a dangerous, defective technology that should be abandoned in less hazardous nicotine delivery systems. Health interested groups should test cigarettes in a way that reflects compensatory smoking. Lower tar (vented filter) cigarettes should be actively countermarketed. PMID:11893814

  11. Hypersonic lateral and directional stability characteristics of aeroassist flight experiment configuration in air and CF4

    NASA Technical Reports Server (NTRS)

    Micol, John R.; Wells, William L.

    1993-01-01

    Hypersonic lateral and directional stability characteristics measured on a 60 deg half-angle elliptical cone, which was raked at an angle of 73 deg from the cone centerline and with an ellipsoid nose (ellipticity equal to 2.0 in the symmetry plane), are presented for angles of attack from -10 to 10 deg. The high normal-shock density ratio of a real gas was simulated by tests at a Mach number of 6 in air and CF4 (density ratio equal to 5.25 and 12.0, respectively). Tests were conducted in air at Mach 6 and 10 and in CF4 at Mach 6 to examine the effects of Mach number, Reynolds number, and normal-shock density ratio. Changes in Mach number from 6 to 10 in air or in Reynolds number by a factor of 4 at Mach 6 had a negligible effect on lateral and directional stability characteristics. Variations in normal-shock density ratio had a measurable effect on lateral and directional aerodynamic coefficients, but no significant effect on lateral and directional stability characteristics. Tests in air and CF4 indicated that the configuration was laterally and directionally stable through the test range of angle of attack.

  12. Optimization of Fat-Reduced Puff Pastry Using Response Surface Methodology.

    PubMed

    Silow, Christoph; Zannini, Emanuele; Axel, Claudia; Belz, Markus C E; Arendt, Elke K

    2017-02-22

    Puff pastry is a high-fat bakery product with fat playing a key role, both during the production process and in the final pastry. In this study, response surface methodology (RSM) was successfully used to evaluate puff pastry quality for the development of a fat-reduced version. The technological parameters modified included the level of roll-in fat, the number of fat layers (50-200) and the final thickness (1.0-3.5 mm) of the laminated dough. Quality characteristics of puff pastry were measured using the Texture Analyzer with an attached Extended Craft Knife (ECK) and Multiple Puncture Probe (MPP), the VolScan and the C-Cell imaging system. The number of fat layers and final dough thickness, in combination with the amount of roll-in fat, had a significant impact on the internal and external structural quality parameters. With technological changes alone, a fat-reduced (≥30%) puff pastry was developed. The qualities of fat-reduced puff pastries were comparable to conventional full-fat (33 wt %) products. A sensory acceptance test revealed no significant differences in taste of fatness or 'liking of mouthfeel'. Additionally, the fat-reduced puff pastry resulted in a significant (p < 0.05) positive correlation to 'liking of flavor' and overall acceptance by the assessors.

  13. Characteristics of plasma-puff trigger for a inverse-pinch plasma switch

    NASA Technical Reports Server (NTRS)

    Choi, Eun H.; Venable, Demetrius D.; Han, Kwang S.; Lee, Ja H.

    1993-01-01

    The plasma-puff triggering mechanism based on a hypocycloidal pinch geometry was investigated to determine the optimal operating conditions for the azimuthally uniform surface flashover which initiates plasma-puff under wide ranges of fill gas pressure of Ar, He and N2. The optimal fill-gas pressure range for the azimuthally uniform plasma-puff was about 120 mTorr less than or equal to P(sub op) less than or equal to 450 Torr for He and N2. For Argon 120 mTorr is less than or equal to P(sub op) is less than or equal to 5 Torr. The inverse-pinch switch was triggered with the plasma-puff and the switching capability under various electrical parameters and working gas pressures of Ar, He and N2 was determined. The azimuthally uniform switching discharges were dependent on the type of fill gas and its fill pressure. A new concept of plasma-focus driven plasma-puff will be discussed in comparison with the current hypocycloidal-pinch plasma-puff triggering.

  14. Optimization of Fat-Reduced Puff Pastry Using Response Surface Methodology

    PubMed Central

    Silow, Christoph; Zannini, Emanuele; Axel, Claudia; Belz, Markus C. E.; Arendt, Elke K.

    2017-01-01

    Puff pastry is a high-fat bakery product with fat playing a key role, both during the production process and in the final pastry. In this study, response surface methodology (RSM) was successfully used to evaluate puff pastry quality for the development of a fat-reduced version. The technological parameters modified included the level of roll-in fat, the number of fat layers (50–200) and the final thickness (1.0–3.5 mm) of the laminated dough. Quality characteristics of puff pastry were measured using the Texture Analyzer with an attached Extended Craft Knife (ECK) and Multiple Puncture Probe (MPP), the VolScan and the C-Cell imaging system. The number of fat layers and final dough thickness, in combination with the amount of roll-in fat, had a significant impact on the internal and external structural quality parameters. With technological changes alone, a fat-reduced (≥30%) puff pastry was developed. The qualities of fat-reduced puff pastries were comparable to conventional full-fat (33 wt %) products. A sensory acceptance test revealed no significant differences in taste of fatness or ‘liking of mouthfeel’. Additionally, the fat-reduced puff pastry resulted in a significant (p < 0.05) positive correlation to ‘liking of flavor’ and overall acceptance by the assessors. PMID:28231095

  15. Automation for "Direct-to" Clearances in Air-Traffic Control

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz; McNally, David

    2006-01-01

    A method of automation, and a system of computer hardware and software to implement the method, have been invented to assist en-route air-traffic controllers in the issuance of clearances to fly directly to specified waypoints or navigation fixes along straight paths that deviate from previously filed flight plans. Such clearances, called "direct-to" clearances, have been in use since before the invention of this method and system.

  16. The Coronal-Dimming Footprint of a Streamer-Puff Coronal Mass Ejection: Confirmation of the Magnetic-Arch-Blowout Scenario

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Sterling, Alphonse C.

    2007-01-01

    A streamer puff is a recently identified variety of coronal mass ejection (CME) of narrow to moderate width. It (1) travels our along a streamer, transiently inflating the streamer but leaving it largely intact, and (2) occurs in step with a compact ejective flare in an outer flank of the base of the streamer. These aspects suggest the following magnetic-arch-blowout scenario for the production of these CMEs: the magnetic explosion that produces the flare also produces a plasmoid that explodes up the leg of an outer loop of the arcade base of the streamer, blows out the top of this loop, and becomes the core of the CME. In this paper, we present a streamer-puff CME that produced a coronal-dimming footprint. The coronal dimming, its magnetic setting, and the timing and magnetic setting of a strong compact ejective flare within the dimming footprint nicely confirm the magnetic-arch-blowout scenario. From these observations, together with several published cases of a trans-equatorial CME produced in tandem with an ejective flare or filament eruption that was far offset from directly under the CME, we propose the following. Streamer-puff CMEs are a subclass (one variety) of a broader class of "over-and-out" CMEs that are often much larger than streamer puffs but are similar to them in that they are produced by the blowout of a large quasi-potential magnetic arch by a magnetic explosion that erupts from one foot of the large arch, where it is marked by a filament eruption and/or an ejective flare.

  17. A New High-Resolution Direction Finding Architecture Using Photonics and Neural Network Signal Processing for Miniature Air Vehicle Applications

    DTIC Science & Technology

    2015-09-01

    RESOLUTION DIRECTION FINDING ARCHITECTURE USING PHOTONICS AND NEURAL NETWORK SIGNAL PROCESSING FOR MINIATURE AIR VEHICLE APPLICATIONS by Robert...RESOLUTION DIRECTION FINDING ARCHITECTURE USING PHOTONICS AND NEURAL NETWORK SIGNAL PROCESSING FOR MINIATURE AIR VEHICLE APPLICATIONS 5. FUNDING...unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) This paper investigates the design of an interferometric direction finding receiver

  18. Impact of traffic flows and wind directions on air pollution concentrations in Seoul, Korea

    NASA Astrophysics Data System (ADS)

    Kim, Youngkook; Guldmann, Jean-Michel

    2011-05-01

    Vehicle emissions are responsible for a substantial share of urban air pollution concentrations. Various integrated air quality modeling systems have been developed to analyze the consequences of air pollution caused by traffic flows. However, the quantitative relationship between vehicle-kilometers-traveled (VKT) and pollution concentrations while considering wind direction effects has rarely been explored in the context of land-use regression models (LUR). In this research, VKTs occurring within circular buffers around air pollution monitoring stations are simulated, using a traffic assignment model, and weighted by eight wind directions frequencies. The relationships between monitored pollution concentrations and weighted VKTs are estimated using regression analysis. In general, the wind direction weighted VKT variable increases the explanatory power of the models, particularly for nitrogen dioxide and carbon monoxide. The case of ozone is more complex, due to the effects of solar radiation, which appears to overwhelm the effects of wind direction in the afternoon hours. The statistical significance of the weighted VKT variable is high, which makes the models appropriate for impact analysis of traffic flow growth.

  19. Electric power generating plant having direct coupled steam and compressed air cycles

    DOEpatents

    Drost, Monte K.

    1982-01-01

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  20. Electric power generating plant having direct-coupled steam and compressed-air cycles

    DOEpatents

    Drost, M.K.

    1981-01-07

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  1. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  2. Evaluation of a puff dispersion model in complex terrain

    SciTech Connect

    Thuillier, R.H. )

    1992-03-01

    California's Pacific Gas and Electric Company has many power plant operations situated in complex terrain, prominent examples being the Geysers geothermal plant in Lake and Sonoma Counties, and the Diablo Canyon nuclear plant in San Luis Obispo County. Procedures ranging from plant licensing to emergency response require a dispersion modeling capability in a complex terrain environment. This paper describes the performance evaluation of such a capability, the Pacific Gas and Electric Company Modeling System (PGEMS), a fast response Gaussian puff model with a three-dimensional wind field generator. Performance of the model was evaluated for ground level and short stack elevated release on the basis of a special intensive tracer experiment in the complex coastal terrain surrounding the Diablo Canyon Nuclear Power Plant in San Luis Obispo County, California. The model performed well under a variety of meteorological and release conditions within the test region of 20-kilometer radius surrounding the nuclear plant, and turned in a superior performance in the wake of the nuclear plant, using a new wake correction algorithm for ground level and roof-vent releases a that location.

  3. Cold energy release characteristics of an ice/air direct contact heat exchanger

    SciTech Connect

    Ohira, Akiyoshi; Yanadori, Michio; Iwabuchi, Kunihiko; Kimura, Toshikatsu; Tsubota, Yuji

    1998-12-31

    This paper deals with the cold energy release characteristics of an ice/air direct contact heat exchanger in a refined cold energy conveyance system. Characteristics of the outlet temperature, the humidity, and time history of released heat are examined when the initial height of the ice-cube-packed bed in the heat exchanger is changed. The following are the results obtained in these experiments: (1) Inlet air of 30 C is lowered to about 0 C by passing the air through the heat exchanger, and absolute humidity of the outlet air is reduced to about a quarter of that of the inlet air. (2) There is an optimum height of the ice-cube-packed bed for maximizing the amount of cold energy released. (3) This heat exchange method can supply about twice the amount of cold energy released by an ordinary fin-tube-type heat exchanger even if the air velocity in the heat exchanger is reduced to about 0.38 times that of the fin-tube-type heat exchanger.

  4. Application of amine-tethered solid sorbents for direct CO2 capture from the ambient air.

    PubMed

    Choi, Sunho; Drese, Jeffrey H; Eisenberger, Peter M; Jones, Christopher W

    2011-03-15

    While current carbon capture and sequestration (CCS) technologies for large point sources can help address the impact of CO(2) buildup on global climate change, these technologies can at best slow the rate of increase of the atmospheric CO(2) concentration. In contrast, the direct CO(2) capture from ambient air offers the potential to be a truly carbon negative technology. We propose here that amine-based solid adsorbents have significant promise as key components of a hypothetical air capture process. Specifically, the CO(2) capture characteristics of hyperbranched aminosilica (HAS) materials are evaluated here using CO(2) mixtures that simulate ambient atmospheric concentrations (400 ppm CO(2) = "air capture") as well as more traditional conditions simulating flue gas (10% CO(2)). The air capture experiments demonstrate that the adsorption capacity of HAS adsorbents are only marginally influenced even with a significant dilution of the CO(2) concentration by a factor of 250, while capturing CO(2) reversibly without significant degradation of performance in multicyclic operation. These results suggest that solid amine-based air capture processes have the potential to be an effective approach to extracting CO(2) from the ambient air.

  5. Assessment of air quality in and around a steel industry with direct reduction iron route.

    PubMed

    Jena, Pradip K; Behera, Dillip K; Mishra, C S K; Mohanty, Saswat K

    2011-10-01

    The coal based Direct Reduced Iron (DRI) route for secondary steel production is now a preferred choice in India. Steel making is invariably associated with emission of air pollutants into the environment. Air quality monitoring was carried out in Winter, Summer and Rainy seasons of 2008 in eight monitoring stations in the work zone and five stations in the residential zone of an Integrated Steel Industry located in Orissa state, India. Four air quality parameters i.e. SPM, RSPM, SO2 and NO2 were monitored. Mean SPM and RSPM values were found to be significantly high (p < 0.01) at stations nearer to source in both work zone and residential zone .The highest average SPM and RSPM values in the work zone recorded were 4869 microg/m3 and 1420 microg/m3 and in the residential zone 294 microg/m3 and 198 microg/m3 respectively. No significant difference in the SO2 and NO2 levels was observed between the work and residential zones. In general, the values of air pollutants were highest in Winter followed by Summer and Rainy season. SPM and RSPM values exceeded the National Air Quality Standards (NAAQS) in both the residential and work zones.

  6. Direct high-resolution alpha spectrometry from nuclear fuel particles in an outdoor air sample.

    PubMed

    Pöllänen, R; Siiskonen, T

    2008-01-01

    The potential use of direct high-resolution alpha spectrometry to identify the presence of transactinium elements in air samples is illustrated in the case when alpha-particle-emitting radionuclides are incorporated in nuclear fuel particles. Alpha particle energy spectra are generated through Monte Carlo simulations assuming a nuclide composition similar to RBMK (Chernobyl) nuclear fuel. The major alpha-particle-emitting radionuclides, in terms of activity, are 242Cm, 239Pu and 240Pu. The characteristics of the alpha peaks are determined by fuel particle properties as well as the type of the air filter. It is shown that direct alpha spectrometry can be readily applied to membrane filter samples containing nuclear fuel particles when rapid nuclide identification is of relevance. However, the development of a novel spectrum analysis code is a prerequisite for unfolding complex alpha spectra.

  7. An Air-flow-direction Pickup Suitable for Telemetering Use on Pilotless Aircraft

    NASA Technical Reports Server (NTRS)

    Ikard, Wallace L

    1956-01-01

    A vane-type air-flow-direction pickup is described which is suitable for telemetering angle-of-attack and angle-of-sideslip data from rocket-propelled pilotless aircraft models. Test results which are presented show that the device performs well under high accelerations and is stable throughout a Mach number rage from subsonic to above a Mach number of 2.5.

  8. Analytical modeling of squeeze air film damping of biomimetic MEMS directional microphone

    NASA Astrophysics Data System (ADS)

    Ishfaque, Asif; Kim, Byungki

    2016-08-01

    Squeeze air film damping is introduced in microelectromechanical systems due to the motion of the fluid between two closely spaced oscillating micro-structures. The literature is abundant with different analytical models to address the squeeze air film damping effects, however, there is a lack of work in modeling the practical sensors like directional microphones. Here, we derive an analytical model of squeeze air film damping of first two fundamental vibration modes, namely, rocking and bending modes, of a directional microphone inspired from the fly Ormia ochracea's ear anatomy. A modified Reynolds equation that includes compressibility and rarefaction effects is used in the analysis. Pressure distribution under the vibrating diaphragm is derived by using Green's function. From mathematical modeling of the fly's inspired mechanical model, we infer that bringing the damping ratios of both modes in the critical damping range enhance the directional sensitivity cues. The microphone parameters are varied in derived damping formulas to bring the damping ratios in the vicinity of critical damping, and to show the usefulness of the analytical model in tuning the damping ratios of both modes. The accuracy of analytical damping results are also verified by finite element method (FEM) using ANSYS. The FEM results are in full compliance with the analytical results.

  9. CO/sub 2/ Huff-Puff simulation using a compositional reservoir simulator

    SciTech Connect

    Hsu, H.H.; Brugman, R.J.

    1986-01-01

    Increased field application of the CO/sub 2/ Huff-Puff process has resulted in increased laboratory and numerical simulation activity. This paper focuses on numerical simulation of the CO/sub 2/ Huff-Puff process in a light oil reservoir, using a fully-compositional reservoir simulator. A simulation model is first validated by successfully history-matching production data from two huff-puff cycles. A performance prediction is then conducted for a third cycle. A number of parametric runs are performed to determine oil recovery as affected by: 1. The number of cycles; 2. The timing of injection, soak and back-production operations; and 3. The quantity and composition of the injected solvent.

  10. CO2 Huff-n-Puff Process in a Light Oil Shallow Shelf Carbonate Reservoir

    SciTech Connect

    Boomer, R.J.; Cole, R.; Kovar, M.; Prieditis, J.; Vogt, J.; Wehner, S.

    1999-02-24

    The application cyclic CO2, often referred to as the CO2 Huff-n-Puff process, may find its niche in the maturing waterfloods of the Permian Basin. Coupling the CO2 Huff-n-Puff process to miscible flooding applications could provide the needed revenue to sufficiently mitigate near-term negative cash flow concerns in capital-intensive miscible projects. Texaco Exploration and Production Inc. and the US Department of Energy have teamed up in a attempt to develop the CO2 Huff-n-Puff process in the Grayburg and San Andres formations which are light oil, shallow shelf carbonate reservoirs that exist throughout the Permian Basin. This cost-shared effort is intended to demonstrate the viability of this underutilized technology in a specific class of domestic reservoir.

  11. A sip-and-puff wireless remote control for the Apple iPod.

    PubMed

    Jones, Michael; Grogg, Kevin; Anschutz, John; Fierman, Ruth

    2008-01-01

    This brief technical note describes the authors' efforts to modify an existing wireless remote control for the Apple iPod so it could be operated using sip-and-puff switches by individuals with limited upper extremity dexterity due to cervical level spinal cord injury. The authors were able to successfully interface the wireless controller with sip-and-puff switches so that users could play, pause, and fast forward through a song list on the iPod. Details of the interface are described, and limitations of the current system are discussed.

  12. CO[sub 2] huff n'' puff revives shallow light-oil-depleted reservoirs

    SciTech Connect

    Bardon, C.; Corlay, P.; Longeron, D. ); Miller, B.

    1994-05-01

    Bretagne has experimented successfully with CO[sub 2] huff n'' puff injection since 1985 in the Shoemaker field in Kentucky. Numerical simulations were performed with a compositional model to review and to quantify the influence of all parameters that could be responsible for the production improvement observed in the wells. Laboratory studies were conducted to get relevant physical data, particularly concerning relative permeabilities with three phases present. These data were integrated into the numerical model, giving good agreement with field results, and predicted production performance more accurately. Finally, the optimization of the huff n'' puff process in Shoemaker is presented.

  13. Comparison of Gas Puff Imaging Data in NSTX with the DEGAS 2 Simulation

    SciTech Connect

    Cao, B.; Stotler, D. P.; Zweben, S. J.; Bell, M.; Diallo, A.; Leblanc, B.

    2012-11-08

    Gas-Puff-Imaging (GPI) is a two dimensional diagnostic which measures the edge Dα light emission from a neutral D2 gas puff nears the outer mid-plane of NSTX. DEGAS 2 is a 3-D Monte Carlo code used to model neutral transport and atomic physics in tokamak plasmas. In this paper we compare measurements of the Dα light emission obtained by GPI on NSTX with DEGAS 2 simulations of Dα light emission for specific experiments. Both the simulated spatial distribution and absolute intensity of the Dα light emission agree well with the experimental data obtained between ELMs in H-mode. __________________________________________________

  14. Comparison of Gas Puff Imaging Data in NSTX with the DEGAS 2 Simulation

    SciTech Connect

    Cao, B.; Stotler, D. P.; Zweben, S. J.; Bell, M.; Diallo, A.; Leblanc, B.

    2012-10-27

    Gas-Puff-Imaging (GPI) is a two dimensional diagnostic which measures the edge Dα light emission from a neutral D2 gas puff nears the outer mid-plane of NSTX. DEGAS 2 is a 3-D Monte Carlo code used to model neutral transport and atomic physics in tokamak plasmas. In this paper we compare measurements of the Dα light emission obtained by GPI on NSTX with DEGAS 2 simulations of Dα light emission for specific experiments. Both the simulated spatial distribution and absolute intensity of the Dα light emission agree well with the experimental data obtained between ELMs in H-mode.

  15. Assessment of methanol electro-oxidation for direct methanol-air fuel cells

    SciTech Connect

    Fritts, S.D.; Sen, R.K.

    1988-07-01

    The Office of Energy Storage and Distribution of the US Department of Energy (DOE) supports the development of a methanol-air fuel cell for transportation application. The approach used at Los Alamos National Laboratory converts the methanol fuel to a hydrogen-rich gas in a reformer, then operates the fuel cell on hydrogen and air. The reformer tends to be bulky (raising vehicle packaging problems), has a long startup period, and is not well suited for the transient operation required in a vehicle. Methanol, however, can be oxidized electrochemically in the fuel cell. If this process can be conducted efficiently, a direct methanol-air fuel cell can be used, which does not require a reformer. The objective of this study is to assess the potential of developing a suitable catalyst for the direct electrochemical oxidation of methanol. The primary conclusion of this study is that no acceptable catalysts exist can efficiently oxidize methanol electrochemically and have the desired cost and lifetime for vehicle applications. However, recent progress in understanding the mechanism of methanol oxidation indicates that a predictive base can be developed to search for methanol oxidation catalysts and can be used to methodically develop improved catalysts. Such an approach is strongly recommended. The study also recommends that until further progress in developing high-performance catalysts is achieved, research in cell design and testing is not warranted. 43 refs., 12 figs., 1 tab.

  16. Direct measurements of air-sea CO2 exchange over a coral reef

    NASA Astrophysics Data System (ADS)

    McGowan, Hamish A.; MacKellar, Mellissa C.; Gray, Michael A.

    2016-05-01

    Quantification of CO2 exchange with the atmosphere over coral reefs has relied on microscale measurements of pCO2 gradients across the air-sea interfacial boundary; shipboard measurements of air-sea CO2 exchange over adjacent ocean inferred to represent over reef processes or ecosystem productivity modeling. Here we present by way of case study the first direct measurements of air-sea CO2 exchange over a coral reef made using the eddy covariance method. Research was conducted during the summer monsoon over a lagoonal platform reef in the southern Great Barrier Reef, Australia. Results show the reef flat to be a net source of CO2 to the atmosphere of similar magnitude as coastal lakes, while adjacent shallow and deep lagoons were net sinks as was the surrounding ocean. This heterogeneity in CO2 exchange with the atmosphere confirms need for spatially representative direct measurements of CO2 over coral reefs to accurately quantify their role in atmospheric carbon budgets.

  17. Developmental ecdysteroid titers and DNA puffs in larvae of two sciarid species, Rhynchosciara americana and Rhynchosciara milleri (Diptera: Sciaridae).

    PubMed

    Soares, M A M; Hartfelder, K; Tesserolli de Souza, J M; Stocker, A J

    2015-10-01

    Ecdysteroid titers, developmental landmarks and the presence of prominent amplifying regions (DNA puffs) have been compared during late larval to pupal development in four groups of Rhynchosciara americana larvae and in R. americana and Rhynchosciara milleri. Three prominent DNA puffs (B2, C3 and C8) expand and regress sequentially on the rising phase of the 20-hydroxyecdysone (20E) titer in R. americana as a firm, cellular cocoon is being constructed. A sharp rise in 20E coincides with the regression of these puffs. The shape of the 20E curve is similar in R. milleri, a species that does not construct a massive cocoon, but the behavior of certain DNA puffs and their temporal relationship to the curve differs. Regions corresponding to B2 and C3 can be identified in R. milleri by banding pattern similarity with R. americana chromosomes and, in the case of B2, by hybridization to an R. americana probe. A B2 puff appears in R. milleri as the 20E titer rises but remains small in all gland regions. A puff similar to the R. americana C3 puff occurs in posterior gland cells of R. milleri (C3(Rm)) after the B2 puff, but this site did not hybridize to R. americana C3 probes. C3(Rm) incorporated (3)H-thymidine above background, but showed less post-puff DNA accumulation than C3 of R. americana. R. americana C8 probes hybridized to a more distal region of the R. milleri C chromosome that did not appear to amplify or form a large puff. These differences can be related to developmental differences, in particular differences in cocoon construction between the two species.

  18. Direct Air Capture of CO2 - an Overview of Carbon Engineering's Technology and Pilot Plant Development

    NASA Astrophysics Data System (ADS)

    Holmes, G.; Corless, A.

    2014-12-01

    At Carbon Engineering, we are developing and commercializing technology to scrub CO2 directly from atmospheric air at industrial scale. By providing atmospheric CO2 for use in fuel production, we can enable production of transportation fuels with ultra-low carbon intensities, which command price premiums in the growing set of constrained fuels markets such as California's LCFS. We are a Calgary based startup founded in 2009 with 10 employees, and we are considered a global leader in the direct air capture (DAC) field. We will review CE's DAC technology, based on a wet-scrubbing "air contactor" which absorbs CO2 into aqueous solution, and a chemical looping "regeneration" component, which liberates pure CO2 from this aqueous solution while re-making the original absorption chemical. CE's DAC tecnology exports purified atmospheric CO2, combined with the combustion CO2 from plant energy usage, as the end product. We will also discuss CE's 2014-2015 end-to-end Pilot Demonstration Unit. This is a $7M technology demonstration plant that CE is building with the help of key industrial partners and equipment vendors. Vendor design and engineering requirements have been used to specify the pilot air contactor, pellet reactor, calciner, and slaker modules, as well as auxiliary systems. These modules will be run for several months to obtain the engineering and performance data needed for subsequent commercial plant design, as well as to test the residual integration risks associated with CE's process. By the time of the AGU conference, the pilot is expected to be in late stages of fabrication or early stages of site installation.

  19. Direct calculation of acoustic streaming including the boundary layer phenomena in an ultrasonic air pump

    NASA Astrophysics Data System (ADS)

    Wada, Yuji; Koyama, Daisuke; Nakamura, Kentaro

    2012-05-01

    Direct finite difference fluid simulation of acoustic streaming on the fine-meshed three-dimensiona model by graphics processing unit (GPU)-oriented calculation array is discussed. Airflows due to the acoustic traveling wave are induced when an intense sound field is generated in a gap between a bending transducer and a reflector. Calculation results showed good agreement with the measurements in the pressure distribution. In addition to that, several flow-vortices were observed near the boundary of the reflector and the transducer, which have been often discussed in acoustic tube near the boundary, and have never been observed in the calculation in the ultrasonic air pump of this type.

  20. Comparison of True and Smoothed Puff Profile Replication on Smoking Behavior and Mainstream Smoke Emissions

    PubMed Central

    2015-01-01

    To estimate exposures to smokers from cigarettes, smoking topography is typically measured and programmed into a smoking machine to mimic human smoking, and the resulting smoke emissions are tested for relative levels of harmful constituents. However, using only the summary puff data—with a fixed puff frequency, volume, and duration—may underestimate or overestimate actual exposure to smoke toxins. In this laboratory study, we used a topography-driven smoking machine that faithfully reproduces a human smoking session and individual human topography data (n = 24) collected during previous clinical research to investigate if replicating the true puff profile (TP) versus the mathematically derived smoothed puff profile (SM) resulted in differences in particle size distributions and selected toxic/carcinogenic organic compounds from mainstream smoke emissions. Particle size distributions were measured using an electrical low pressure impactor, the masses of the size-fractionated fine and ultrafine particles were determined gravimetrically, and the collected particulate was analyzed for selected particle-bound, semivolatile compounds. Volatile compounds were measured in real time using a proton transfer reaction-mass spectrometer. By and large, TP levels for the fine and ultrafine particulate masses as well as particle-bound organic compounds were slightly lower than the SM concentrations. The volatile compounds, by contrast, showed no clear trend. Differences in emissions due to the use of the TP and SM profiles are generally not large enough to warrant abandoning the procedures used to generate the simpler smoothed profile in favor of the true profile. PMID:25536227

  1. Development of the gas-puff imaging diagnostic in the TEXTOR tokamak

    SciTech Connect

    Shesterikov, I.; Xu, Y.; Berte, M.; Dumortier, P.; Van Schoor, M.; Vergote, M.; Schweer, B.; Van Oost, G.

    2013-05-15

    Gas puff imaging (GPI) [S. J. Zweben, D. P. Stotler et al., Phys. Plasmas 9, 1981 (2002); R. J. Maqueda, G. A. Wurden et al., Rev. Sci. Instrum. 74, 2020 (2003)] is a powerful diagnostic that permits a two-dimensional measurement of turbulence in the edge region of a fusion plasma and is based on the observation of the local emission of a neutral gas, actively puffed into the periphery of the plasma. The developed in-vessel GPI telescope observes the emission from the puffed gas along local (at the puff) magnetic field lines. The GPI telescope is specially designed to operate in severe TEXTOR conditions and can be treated as a prototype for the GPI systems on next generation machines. Also, the gas puff nozzle is designed to have a lower divergence of the gas flow than previous GPI diagnostics. The resulting images show poloidally and radially propagating structures, which are associated with plasma blobs. We demonstrate that the local gas puff does not disturb plasma properties. Our results indicate also that the neutral gas emission intensity is more sensitive to the electron density than the electron temperature. Here, we present implementation details of the GPI system on TEXTOR and discuss some design and diagnostic issues related to the development of GPI systems in general.

  2. X-ray radiation from puff-on-wire implosion on the COBRA generator

    NASA Astrophysics Data System (ADS)

    Ouart, N.; Engelbrecht, J.; de Grouchy, P.; Qi, N.; Shelkovenko, T.; Pikuz, S.; Kusse, B.; Hammer, D.; Giuliani, J.; Dasgupta, A.; Velikovich, A.; Apruzese, J.; Clark, R.

    2016-10-01

    Substantial progress has been made in developing plasma radiation sources from Z-pinch implosions. University pulsed power machines provide a cost effective platform to study alternative mechanisms of producing x-rays that may provide guidance in search of further improvements on the larger machines. Radiation from puff-on-wire implosions were previously studied. We report recent observations and modeling of puff-on-wire implosions using the 1 MA COBRA generator in the long pulse mode. The gas puff used Ne, Ar, or Kr and the wire material was either Cu or manganin 290 (84% Cu, 12% Mn, 4% Ni). The diagnostics include time-integrated pinhole cameras and an axially resolved spectrometer, multiple filtered PCDs and Si-diodes, and time-gated XUV cameras. X-ray radiation from the gas puff and the K-alpha line from wire material was detected. A 1-D multi-zone non-LTE kinetics code with radiation transport will be used to model the radiation to infer the plasma conditions. Work supported by DOE/NNSA.

  3. Radial and Azimuthal Velocity Profiles in Gas-Puff Z-Pinches

    NASA Astrophysics Data System (ADS)

    Rocco, Sophia; Engelbrecht, Joseph; Banasek, Jacob; de Grouchy, Philip; Qi, Niansheng; Hammer, David

    2016-10-01

    The dynamics of neon, argon, and krypton (either singly or in combination) gas puff z-pinch plasmas are studied on Cornell's 1MA, 100-200ns rise-time COBRA pulsed power generator. The triple-nozzle gas puff valve, consisting of two annular gas puffs and a central jet, allows radial tailoring of the gas puff mass-density profile and the use of 1, 2 or 3 different gases at different pressures. Interferometry supplies information on sheath thickness and electron density, variously filtered PCDs and silicon diodes measure hard and soft x-ray production, and multi frame visible and extreme UV imaging systems allow tracking of the morphology of the plasma. A 527nm, 10J Thomson scattering diagnostic system is used to determine radial and azimuthal velocities. Implosion velocities of 170km/s (Kr) and 300km/s (Ne/Ar) are observed. We are investigating the correlations between instability growth, plasma density profile, velocity partitioning as a function of radius, and radiation production. Research supported by the NNSA Stewardship Sciences Academic Programs under DOE Cooperative Agreement No. DE-NA0001836.

  4. Air pollution and climate response to aerosol direct radiative effects: A modeling study of decadal trends across the northern hemisphere

    EPA Science Inventory

    Decadal hemispheric Weather Research and Forecast-Community Multiscale Air Quality simulations from 1990 to 2010 were conducted to examine the meteorology and air quality responses to the aerosol direct radiative effects. The model's performance for the simulation of hourly surfa...

  5. An Air-flow-direction Pickup Suitable for Telemetering Use on Pilotless Aircraft

    NASA Technical Reports Server (NTRS)

    Ikard, Wallace L

    1954-01-01

    A free-swiveling vane-type pickup for measuring air flow direction in both the angle-of-attack and angle-of-sideslip directions is described. The device, which is intended to telemeter flow direction from pilotless aircraft, has variable-inductance outputs suitable for use in the 100 to 200 kcps subcarrier frequency range of the NACA FM-AM telemetering system. Preliminary test results indicate that it can also be adapted for use with the audio subcarrier frequencies of the Research and Development Board standard FM-FM telemetering system. Test results are presented which indicate that the pickup is aerodynamically stable and has an accuracy, obtained from a bench calibration, of better than 0.3 degrees under conditions including acceleration up to 20g in any direction, Mach numbers from 0.5 to 2.8, and dynamic pressures up to at least 65 psi. Equations and curves which can be used to obtain flow direction at the center of gravity of a maneuvering model are presented.

  6. Passive cathodic water/air management device for micro-direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Peng, Hsien-Chih; Chen, Po-Hon; Chen, Hung-Wen; Chieng, Ching-Chang; Yeh, Tsung-Kuang; Pan, Chin; Tseng, Fan-Gang

    A high efficient passive water/air management device (WAMD) is proposed and successfully demonstrated in this paper. The apparatus consists of cornered micro-channels and air-breathing windows with hydrophobicity arrangement to regulate liquids and gases to flow on their predetermined pathways. A high performance water/air separation with water removal rate of about 5.1 μl s -1 cm -2 is demonstrated. The performance of the proposed WAMD is sufficient to manage a cathode-generated water flux of 0.26 μl s -1 cm -2 in the micro-direct methanol fuel cells (μDMFCs) which are operated at 100 mW cm -2 or 400 mA cm -2. Furthermore, the condensed vapors can also be collected and recirculated with the existing micro-channels which act as a passive water recycling system for μDMFCs. The durability testing shows that the fuel cells equipped with WAMD exhibit improved stability and higher current density.

  7. Direct Numerical Simulation of a Cavity-Stabilized Ethylene/Air Premixed Flame

    NASA Astrophysics Data System (ADS)

    Chen, Jacqueline; Konduri, Aditya; Kolla, Hemanth; Rauch, Andreas; Chelliah, Harsha

    2016-11-01

    Cavity flame holders have been shown to be important for flame stabilization in scramjet combustors. In the present study the stabilization of a lean premixed ethylene/air flame in a rectangular cavity at thermo-chemical conditions relevant to scramjet combustors is simulated using a compressible reacting multi-block direct numerical simulation solver, S3D, incorporating a 22 species ethylene-air reduced chemical model. The fuel is premixed with air to an equivalence ratio of 0.4 and enters the computational domain at Mach numbers between 0.3 and 0.6. An auxiliary inert channel flow simulation is used to provide the turbulent velocity profile at the inlet for the reacting flow simulation. The detailed interaction between intense turbulence, nonequilibrium concentrations of radical species formed in the cavity and mixing with the premixed main stream under density variations due to heat release rate and compressibility effects is quantified. The mechanism for flame stabilization is quantified in terms of relevant non-dimensional parameters, and detailed analysis of the flame and turbulence structure will be presented. We acknowledge the sponsorship of the AFOSR-NSF Joint Effort on Turbulent Combustion Model Assumptions and the DOE Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences.

  8. Stable operation of air-blowing direct methanol fuel cells with high performance

    NASA Astrophysics Data System (ADS)

    Park, Jun-Young; Lee, Jin-Hwa; Kim, Jirae; Han, Sangil; Song, Inseob

    A membrane electrode assembly (MEA) that is a combination of a catalyst-coated membrane (CCM) for the anode and a catalyst-coated substrate (CCS) for the cathode is studied under air-blower conditions for direct methanol fuel cells (DMFCs). Compared with MEAs prepared by only the CCS method, the performance of DMFC MEAs employing the combination method is significantly improved by 30% with less methanol crossover. This feature can be attributed to an enhanced electrode|membrane interface in the anode side and significantly higher catalyst efficiency. Furthermore, DMFC MEAs designed by the combination method retain high power density without any degradation, while the CCM-type cell shows a downward tendency in electrochemical performance under air-blower conditions. This may be due to MEAs with CCM have a much more difficult structure of catalytic active sites in the cathode to eliminate the water produced by electrochemical reaction. In addition, DMFCs produced via combination methods exhibit a lower water crossover flux than CCS alternatives, due to the comparatively dense structure of the CCM anode. Hence, DMFCs with a combination MEA structure demonstrate the feasibility of a small fuel cell system employing the low noise of a fan, instead of a noisy and large capacity air pump, for portable electronic devices.

  9. Creating nanoporosity in silver nanocolumns by direct exposure to radio-frequency air plasma

    NASA Astrophysics Data System (ADS)

    El Mel, Abdel-Aziz; Stephant, Nicolas; Hamon, Jonathan; Thiry, Damien; Chauvin, Adrien; Chettab, Meriem; Gautron, Eric; Konstantinidis, Stephanos; Granier, Agnès; Tessier, Pierre-Yves

    2015-12-01

    Nanoporous materials are of great importance for a broad range of applications including catalysis, optical sensors and water filtration. Although several approaches already exist for the creation of nanoporous materials, the race for the development of versatile methods, more suitable for the nanoelectronics industry, is still ongoing. In this communication we report for the first time on the possibility of generating nanoporosity in silver nanocolumns using a dry approach based on the oxidation of silver by direct exposure to a commercially available radio-frequency air plasma. The silver nanocolumns are created by glancing angle deposition using magnetron sputtering of a silver target in pure argon plasma. We show that upon exposure to the rf air plasma, the nanocolumns transform from solid silver into nanoporous silver oxide. We further show that by tuning the plasma pressure and the exposure duration, the oxidation process can be finely adjusted allowing for precisely controlling the morphology and the nanoporosity of the silver oxide nanocolumns. The generation of porosity within the silver nanocolumns is explained according to a cracking-induced oxidation mechanism based on two repeated events occurring alternately during the oxidation process: (i) oxidation of silver upon exposure to the air plasma and (ii) generation of nanocracks and blisters within the oxide layer due to the high internal stress generated within the material during oxidation.

  10. Creating nanoporosity in silver nanocolumns by direct exposure to radio-frequency air plasma.

    PubMed

    El Mel, Abdel-Aziz; Stephant, Nicolas; Hamon, Jonathan; Thiry, Damien; Chauvin, Adrien; Chettab, Meriem; Gautron, Eric; Konstantinidis, Stephanos; Granier, Agnès; Tessier, Pierre-Yves

    2016-01-07

    Nanoporous materials are of great importance for a broad range of applications including catalysis, optical sensors and water filtration. Although several approaches already exist for the creation of nanoporous materials, the race for the development of versatile methods, more suitable for the nanoelectronics industry, is still ongoing. In this communication we report for the first time on the possibility of generating nanoporosity in silver nanocolumns using a dry approach based on the oxidation of silver by direct exposure to a commercially available radio-frequency air plasma. The silver nanocolumns are created by glancing angle deposition using magnetron sputtering of a silver target in pure argon plasma. We show that upon exposure to the rf air plasma, the nanocolumns transform from solid silver into nanoporous silver oxide. We further show that by tuning the plasma pressure and the exposure duration, the oxidation process can be finely adjusted allowing for precisely controlling the morphology and the nanoporosity of the silver oxide nanocolumns. The generation of porosity within the silver nanocolumns is explained according to a cracking-induced oxidation mechanism based on two repeated events occurring alternately during the oxidation process: (i) oxidation of silver upon exposure to the air plasma and (ii) generation of nanocracks and blisters within the oxide layer due to the high internal stress generated within the material during oxidation.

  11. Event Reconstruction for Atmospheric Releases Employing Urban Puff Model UDM with Stochastic Inversion Methodology

    SciTech Connect

    Neuman, S; Glascoe, L; Kosovic, B; Dyer, K; Hanley, W; Nitao, J; Gordon, R

    2005-11-03

    The rapid identification of contaminant plume sources and their characteristics in urban environments can greatly enhance emergency response efforts. Source identification based on downwind concentration measurements is complicated by the presence of building obstacles that can cause flow diversion and entrainment. While high-resolution computational fluid dynamics (CFD) simulations are available for predicting plume evolution in complex urban geometries, such simulations require large computational effort. We make use of an urban puff model, the Defence Science Technology Laboratory's (Dstl) Urban Dispersion Model (UDM), which employs empirically based puff splitting techniques. UDM enables rapid urban dispersion simulations by combining traditional Gaussian puff modeling with empirically deduced mixing and entrainment approximations. Here we demonstrate the preliminary reconstruction of an atmospheric release event using stochastic sampling algorithms and Bayesian inference together with the rapid UDM urban puff model based on point measurements of concentration. We consider source inversions for both a prototype isolated building and for observations and flow conditions taken during the Joint URBAN 2003 field campaign at Oklahoma City. The Markov Chain Monte Carlo (MCMC) stochastic sampling method is used to determine likely source term parameters and considers both measurement and forward model errors. It should be noted that the stochastic methodology is general and can be used for time-varying release rates and flow conditions as well as nonlinear dispersion problems. The results of inversion indicate the probability of a source being at a particular location with a particular release rate. Uncertainty in observed data, or lack of sufficient data, is inherently reflected in the shape and size of the probability distribution of source term parameters. Although developed and used independently, source inversion with both UDM and a finite-element CFD code can be

  12. Future Directions of Supersonic Combustion Research: Air Force/NASA Workshop on Supersonic Combustion

    NASA Technical Reports Server (NTRS)

    Tishkoff, Julian M.; Drummond, J. Philip; Edwards, Tim; Nejad, Abdollah S.

    1997-01-01

    The Air Force Office of Scientific Research, the Air Force Wright Laboratory Aero Propulsion and Power Directorate, and the NASA Langley Research Center held a joint supersonic combustion workshop on 14-16 May 1996. The intent of this meeting was to: (1) examine the current state-of-the-art in hydrocarbon and/or hydrogen fueled scramjet research; (2) define the future direction and needs of basic research in support of scramjet technology; and (3) when appropriate, help transition basic research findings to solve the needs of developmental engineering programs in the area of supersonic combustion and fuels. A series of topical sessions were planned. Opening presentations were designed to focus and encourage group discussion and scientific exchange. The last half-day of the workshop was set aside for group discussion of the issues that were raised during the meeting for defining future research opportunities and directions. The following text attempts to summarize the discussions that took place at the workshop.

  13. Direct numerical simulation of turbulent non-premixed methane-air flames

    SciTech Connect

    Chen, J.H.; Card, J.M.; Day, M.; Mahalingam, S.

    1995-07-01

    Turbulent non-premixed stoichiometric methane-air flames have been studied using the direct numerical simulation approach. A global one- step mechanism is used to describe the chemical kinetics, and molecular transport is modeled with constant Lewis numbers for individual species. The effect of turbulence on the internal flame structure and extinction characteristics of methane-air flames is evaluated. The flame is wrinkled and in some regions extinguished by the turbulence, while the turbulence is weakened in the vicinity of the flame due to a combination of dilatation and a 25:1 increase in kinematic viscosity across the flame. Reignition followed by partially-premixed burning is observed in the present results. Local curvature effects are found to be important in determining the local stoichiometry of the flame, and hence, the location of the peak reaction rate relative to the stoichiometric surface. The results presented in this study demonstrate the feasibility of incorporating global-step kinetics for the oxidation of methane into direct numerical simulations of homogeneous turbulence to study the flame structure.

  14. Impact of a European directive on ship emissions on air quality in Mediterranean harbours

    NASA Astrophysics Data System (ADS)

    Schembari, Clara; Cavalli, Fabrizia; Cuccia, Eleonora; Hjorth, Jens; Calzolai, Giulia; Pérez, Noemi; Pey, Jorge; Prati, Paolo; Raes, Frank

    2012-12-01

    Ships have been found to be major sources of air pollution in harbours. However, from January 1, 2010, a European Union directive requires that all ships at berth or anchorage in European harbours use fuels with a sulphur content of less than 0.1% by weight while previously, outside of Sulphur Emission Control Areas, up to 4.5% were allowed. The impact of this directive on air quality in some Mediterranean harbours was investigated based on observations made from August to October 2009 and 2010 at a monitoring station placed on a cruise ship, Costa Pacifica, following a fixed weekly route in the Western Mediterranean. The concentrations of SO2 were found to decrease significantly from 2009 to 2010 in three out of the four EU harbours; the average decrease of the daily mean concentrations in the different harbours was 66%. The decrease of SO2 was not statistically significant in the harbour of Barcelona because of large day-to-day variations, however measurements from monitoring stations in the harbour zone of Barcelona as well as downwind of the harbour of Palma de Mallorca confirm a strong decrease in the SO2 concentrations from 2009 to 2010. No decrease was observed in the non-EU harbour of Tunis. Neither NOx nor BC concentrations showed significant changes in any of the harbours.

  15. Direct numerical simulations of turbulent non-premixed methane-air flames modeled with reduced kinetics

    NASA Technical Reports Server (NTRS)

    Card, J. M.; Chen, J. H.; Day, M.; Mahalingam, S.

    1994-01-01

    Turbulent non-premixed stoichiometric methane-air flames modeled with reduced kinetics have been studied using the direct numerical simulation approach. The simulations include realistic chemical kinetics, and the molecular transport is modeled with constant Lewis numbers for individual species. The effect of turbulence on the internal flame structure and extinction characteristics of methane-air flames is evaluated. Consistent with earlier DNS with simple one-step chemistry, the flame is wrinkled and in some regions extinguished by the turbulence, while the turbulence is weakened in the vicinity of the flame due to a combination of dilatation and an increase in kinematic viscosity. Unlike previous results, reignition is observed in the present simulations. Lewis number effects are important in determining the local stoichiometry of the flame. The results presented in this work are preliminary but demonstrate the feasibility of incorporating reduced kinetics for the oxidation of methane with direct numerical simulations of homogeneous turbulence to evaluate the limitations of various levels of reduction in the kinetics and to address the formation of thermal and prompt NO(x).

  16. Application of hybrid coagulation microfiltration with air backflushing to direct sewage concentration for organic matter recovery.

    PubMed

    Jin, Zhengyu; Gong, Hui; Wang, Kaijun

    2015-01-01

    The idea of sewage concentration is gradually being accepted as a promising and sustainable way of wastewater resource recovery. In this study, Hybrid coagulation microfiltration (HCM) with air backflushing (AB) was investigated to effectively concentrate organic matter. Compared to direct sewage microfiltration, the addition of coagulation process improved the filtration performance with less fouling trends and better concentration efficiency. The use of AB exhibited even better performance within the same 7-h preliminary concentration period by reducing to one tenth of the resistance and collecting around four times as much organic matter into the product concentrate as in direct sewage microfiltration. During 93-h lab-scale continuous concentration by HCM with AB, a product concentrate with the COD concentration over 15,000 mg/L was achieved and around 70% of total influent organic matter could be recovered. Compared to Direct Membrane Filtration (DMF) with Chemically Enhanced Backwash (CEB), HCM with AB achieved better concentration efficiency with higher concentration extent and concentration velocity along with less organic matter mineralization and the more concentrated product despite with lower organic matter retention. HCM with AB could be a promising effective sewage organic matter concentration for resource recovery under optimization.

  17. LOCATING NEARBY SOURCES OF AIR POLLUTION BY NONPARAMETRIC REGRESSION OF ATMOSPHERIC CONCENTRATIONS ON WIND DIRECTION. (R826238)

    EPA Science Inventory

    The relationship of the concentration of air pollutants to wind direction has been determined by nonparametric regression using a Gaussian kernel. The results are smooth curves with error bars that allow for the accurate determination of the wind direction where the concentrat...

  18. Experimental investigation and modeling of a direct-coupled PV/T air collector

    SciTech Connect

    Shahsavar, A.; Ameri, M.

    2010-11-15

    Photovoltaic/thermal (PV/T) systems refer to the integration of photovoltaic and solar thermal technologies into one single system, in that both useful heat energy and electricity are produced. The impetus of this paper is to model a direct-coupled PV/T air collector which is designed, built, and tested at a geographic location of Kerman, Iran. In this system, a thin aluminum sheet suspended at the middle of air channel is used to increase the heat exchange surface and consequently improve heat extraction from PV panels. This PV/T system is tested in natural convection and forced convection (with two, four and eight fans operating) and its unsteady results are presented in with and without glass cover cases. A theoretical model is developed and validated against experimental data, where good agreement between the measured values and those calculated by the simulation model were achieved. Comparisons are made between electrical performance of the different modes of operation, and it is concluded that there is an optimum number of fans for achieving maximum electrical efficiency. Also, results show that setting glass cover on photovoltaic panels leads to an increase in thermal efficiency and decrease in electrical efficiency of the system. (author)

  19. Direct effects of energy-related air pollutants on plant sexual reproduction. Progress report, February 1, 1981-January 31, 1982

    SciTech Connect

    Ragsdale, H.L.; Murdy, W.H.

    1982-10-07

    Direct effects of SO/sub 2/ and NO/sub 2/ on plant sexual reproduction were studied including essential botanical research into modes of anthesis, pollination, pollen germination and pollen tube growth. Much of the present scientific knowledge of the direct in vivo effects of the major air pollutants, SO/sub 2/ and NO/sub 2/, on plant sexual reproduction is a direct result of studies accomplished under this DOE contract. It is our intention to carry this research forward to include similar assessment of a third major air pollutant, ozone.

  20. Directional gravity wave momentum fluxes in the stratosphere derived from high-resolution AIRS temperature data

    NASA Astrophysics Data System (ADS)

    Ern, M.; Hoffmann, L.; Preusse, P.

    2017-01-01

    In order to reduce uncertainties in modeling the stratospheric circulation, global observations of gravity wave momentum flux (GWMF) vectors are required for comparison with distributions of resolved and parametrized GWMF in global models. For the first time, we derive GWMF vectors globally from data of a nadir-viewing satellite instrument: we apply a 3-D method to an Atmospheric Infrared Sounder (AIRS) temperature data set that was optimized for gravity wave (GW) analysis. For January 2009, the resulting distributions of GW amplitudes and of net GWMF highlight the importance of GWs in the polar vortex and the summertime subtropics. Net GWMF is preferentially directed opposite to the background wind, and, interestingly, it is dominated by large-amplitude GWs of relatively long horizontal wavelength. For convective GW sources, these large horizontal scales are in contradiction with traditional thoughts. However, the observational filter effect needs to be kept in mind when interpreting the results.

  1. Use of MODIS/AIRS Direct Broadcast Data for Short Term Weather Forecasting

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary

    2003-01-01

    Operational weather forecasting relies heavily on real time data and modeling products for forecast preparation and dissemination of significant weather information to the public. The key to this success is access to real time data and integration of the data and products into weather decision support systems. NASA's Short-term Prediction Research and Transition (SPORT) Program has demonstrated this capability with MODIS and AIRS data through several local NWS Forecast Offices. This presentation will describe the use of real time EOS Direct Broadcast (DB) data in local weather forecast operations, highlight the utility of real time data from the EOS DB systems, and provide insight into how EOS DB data can have the most impact on the weather forecast community.

  2. Puff and bite: the relationship between the glucocorticoid stress response and anti-predator performance in checkered puffer (Sphoeroides testudineus).

    PubMed

    Cull, Felicia; O'Connor, Constance M; Suski, Cory D; Shultz, Aaron D; Danylchuk, Andy J; Cooke, Steven J

    2015-04-01

    Individual variation in the endocrine stress response has been linked to survival and performance in a variety of species. Here, we evaluate the relationship between the endocrine stress response and anti-predator behaviors in wild checkered puffers (Sphoeroides testudineus) captured at Eleuthera Island, Bahamas. The checkered puffer has a unique and easily measurable predator avoidance strategy, which is to inflate or 'puff' to deter potential predators. In this study, we measured baseline and stress-induced circulating glucocorticoid levels, as well as bite force, a performance measure that is relevant to both feeding and predator defence, and 'puff' performance. We found that puff performance and bite force were consistent within individuals, but generally decreased following a standardized stressor. Larger puffers were able to generate a higher bite force, and larger puffers were able to maintain a more robust puff performance following a standardized stressor relative to smaller puffers. In terms of the relationship between the glucocorticoid stress response and performance metrics, we found no relationship between post-stress glucocorticoid levels and either puff performance or bite force. However, we did find that baseline glucocorticoid levels predicted the ability of a puffer to maintain a robust puff response following a repeated stressor, and this relationship was more pronounced in larger individuals. Our work provides a novel example of how baseline glucocorticoids can predict a fitness-related anti-predator behavior.

  3. Fundamental Study of Direct Contact Cold Energy Release by Flowing Hot Air through Ice Particles Packed Layer

    NASA Astrophysics Data System (ADS)

    Aoyama, Sigeo; Inaba, Hideo

    This paper has dealt with the direct contact heat exchange characteristics between ice particles (average ice particle diameter : 3.10mm) packed in the rectangular cold energy storage vessel and flowing hot air as a heat transfer medium. The hot air bubbles ascended in the fluidized ice particles layer, and they were cooled down directly by melting ice particles. The temperature efficiency increased as Reynolds number Re increased because the hot air flowing in the layer became active. The dehumidity efficiency increased with an increase in modified Stefan number and Re, since the heat capacity of inlet air and heat transfer coefficient increased. Finally, some empirical correlations for temperature efficiency, dehumidity efficiency and the completion time of cold energy release were derived in terms of various nondimensional parameters.

  4. Radiative properties of argon gas puff z-pinch implosions on COBRA

    NASA Astrophysics Data System (ADS)

    Ouart, N. D.; de Grouchy, P. W. L.; Qi, N.; Giuliani, J. L.; Dasgupta, A.; Shelkovenko, T. A.; Pikuz, S. A.; Hammer, D. A.; Kusse, B. R.; Apruzese, J. P.; Clark, R. W.

    2016-10-01

    Spatially resolved and time-integrated x-ray spectroscopy, combined with modeling of the spectra with detailed radiation kinetics and transport, is a powerful method to study the conditions in a hot moving plasma. K-shell argon spectra were measured from gas puff implosions with different center jet masses on the 1 MA COBRA generator at Cornell University. The outer to inner plenum pressures (1 and 3 psia, respectively) were the same for all shots producing an outer to inner mass ratio of 1:1. This paper uses non-local thermodynamic equilibrium kinetic modeling to infer the ion density, electron temperature, K-shell radiating mass, and K-shell powers from stagnating argon gas puff z-pinch implosion. We find that the implosions with a center jet produced bright spot regions of plasma with higher temperature and density than those without a jet.

  5. Laboratory evaluation of the CO2 huff-n-puff process for heavy oil reservoirs

    SciTech Connect

    Sayegh, S.G.; Maini, B.B.

    1983-01-01

    Laboratory tests were conducted to evaluate a CO2 huff-n-puff well stimulation process in a Lloydminster heavy oil reservoir. Two series of phase behavior measurements were done on the reconstituted oil, each in a pressurization-then-liberation cycle. The first series was performed using CO2 as the carbonating gas. Some oil swelling occurred, and a large viscosity reduction was observed. CO2 was retained preferentially to CH4 during liberation and, consequently reduced viscosities were maintained down to low pressures. The second series was performed using a 1:3 mole ratio CH4:CO2, simulating the use of recycled gas in the huff-n-puff process. The results revealed that CH4 reduces the efficiency of CO2. 12 references.

  6. The CO/sub 2/ huff 'n' puff process in a bottomwater-drive reservoir

    SciTech Connect

    Simpson, M.R.

    1988-06-01

    Two CO/sub 2/ huff 'n' puff projects were conducted in the 4,900-ft (1495-m) Reservoir (BA) Sand Unit (4900' R(BA)SU), Timbalier Bay field, Louisiana. This reservoir is a bottomwater-drive reservoir unit a 26/sup 0/ API (0.9-g/cm/sup 3/) oil gravity and 18% primary oil recovery. Before CO/sub 2/ injection, both project wells were gas lifting more than 1,000 BFPD (160 m/sup 3//d fluid) with 99% water cuts. After CO/sub 2/ injection, the production from each well increased to 200 BOPD (32 m/sup 3//d oil). This paper discusses the CO/sub 2/ huff 'n' puff process, specific reservoir characteristics, and project evaluation.

  7. MESOI Version 2. 0: an interactive mesoscale Lagrangian puff dispersion model with deposition and decay

    SciTech Connect

    Ramsdell, J.V.; Athey, G.F.; Glantz, C.S.

    1983-11-01

    MESOI Version 2.0 is an interactive Lagrangian puff model for estimating the transport, diffusion, deposition and decay of effluents released to the atmosphere. The model is capable of treating simultaneous releases from as many as four release points, which may be elevated or at ground-level. The puffs are advected by a horizontal wind field that is defined in three dimensions. The wind field may be adjusted for expected topographic effects. The concentration distribution within the puffs is initially assumed to be Gaussian in the horizontal and vertical. However, the vertical concentration distribution is modified by assuming reflection at the ground and the top of the atmospheric mixing layer. Material is deposited on the surface using a source depletion, dry deposition model and a washout coefficient model. The model also treats the decay of a primary effluent species and the ingrowth and decay of a single daughter species using a first order decay process. This report is divided into two parts. The first part discusses the theoretical and mathematical bases upon which MESOI Version 2.0 is based. The second part contains the MESOI computer code. The programs were written in the ANSI standard FORTRAN 77 and were developed on a VAX 11/780 computer. 43 references, 14 figures, 13 tables.

  8. Efficient neutron production from a novel configuration of deuterium gas-puff z-pinch.

    PubMed

    Klir, D; Kubes, P; Rezac, K; Cikhardt, J; Kravarik, J; Sila, O; Shishlov, A V; Kovalchuk, B M; Ratakhin, N A; Kokshenev, V A; Labetsky, A Yu; Cherdizov, R K; Fursov, F I; Kurmaev, N E; Dudkin, G N; Nechaev, B A; Padalko, V N; Orcikova, H; Turek, K

    2014-03-07

    A novel configuration of a deuterium z pinch has been used to generate fusion neutrons. Injecting an outer hollow cylindrical plasma shell around an inner deuterium gas puff, neutron yields from DD reactions reached Y(n)=(2.9 ± 0.3) × 10(12) at 700 ns implosion time and 2.7 MA current. Such a neutron yield means a tenfold increase in comparison with previous deuterium gas puff experiments at the same current generator. The increase of beam-target yields was obtained by a larger amount of current assembled on the z-pinch axis, and subsequently by higher induced voltage and higher energies of deuterons. A stack of CR-39 track detectors on the z-pinch axis showed hydrogen ions up to 38 MeV. Maximum neutron energies of 15 and 22 MeV were observed by radial and axial time-of-flight detectors, respectively. The number of DD neutrons per one joule of stored plasma energy approached 5 × 10(7). This implies that deuterium gas puff z pinches belong to the most efficient plasma-based sources of DD neutrons.

  9. An evaluation of CO/sub 2/ huff 'n' puff tests in Texas

    SciTech Connect

    Haskin, H.K.; Alston, R.B.

    1989-02-01

    Field experience in 28 Texas CO/sub 2/ huff 'n' puff projects is presented and discussed. In the absence of mechanical problems, CO/sub 2/ huff 'n' puff can recover oil from 23- to 30/sup 0/API Texas gulf coast Miocene reservoirs. Shorter soak times (10 to 17 days) recovered as much oil, or more, as longer soak times for 2- to 3-cp crudes. Injection of larger volumes of CO/sub 2/ (8 MMscf instead of 4 MMscf) resulted in greater incremental oil recovery of a 33-cp crude. Oil-cut response can guide in the selection of wells to receive multiple cycles of CO/sub 2/. Two simple predictive methods are presented for estimating incremental oil recovery from CO/sub 2/ huff 'n' puff. One is from the literature and the other was developed for the Texas reservoirs, where oil swelling and viscosity reduction are important oil recovery mechanisms. Although predictions from both methods show modest agreement with field production, the method developed specifically for the Texas cases has the advantage of being based only on fluid properties, which are easy to measure or to estimate accurately.

  10. An evaluation of CO/sub 2/ huff 'n' puff field tests in Texas

    SciTech Connect

    Haskin, H.K.; Alston, R.B.

    1986-01-01

    Field experience in 28 Texas CO/sub 2/ huff 'n' puff projects is presented and discussed. These projects were designed and implemented by producing department personnel. In the absence of mechanical problems, CO/sub 2/ huff 'n' puff can recover oil from 23-30/sup 0/API Texas Gulf Coast Miocene Reservoirs. Shorter soak times (10-17 days) recovered as much or more oil as longer soak times for 2.3 cP crudes. Injection of larger volumes of CO/sub 2/ (8 MMSCF (230,000 m/sup 3/) instead of 4 MMSCF (11,000 m/sup 3/)) resulted in greater incremental oil recovery of a 33 cP (0.033 Pa-s) crude. Oil cut response can guide in the selection of wells to receive multiple cycles of CO/sub 2/. Two simple predictive methods are presented for estimating incremental oil recovery from CO/sub 2/ huff 'n' puff. One is from the literature and the other was developed for the Texas reservoirs, where oil swelling and viscosity reduction are important oil recovery mechanisms. Although predictions from both methods show modest agreement with field production, the method developed specifically for Texas cases was slightly better.

  11. Arrival directions of large air showers, low-mu showers and old-age low-mu air showers observed at St. Chacaltaya

    NASA Technical Reports Server (NTRS)

    Kaneko, T.; Hagiwara, K.; Yoshii, H.; Martinic, N.; Siles, L.; Miranda, P.; Kakimoto, F.; Obara, T.; Inoue, N.; Suga, K.

    1985-01-01

    Arrival directions of air showers with primary energies in the range 10 to the 16.5 power eV to 10 to the 18th power eV show the first harmonic in right ascension (RA) with amplitude of 2.7 + or - 1.0% and phase of 13-16h. However, the second harmonic in RA slightly seen for showers in the range 10 to the 18th power eV to 10 to the 19th power eV disappeared by accumulation of observed showers. The distribution of arrival directions of low-mu air showers with primary energies around 10 to the 15th power eV observed at Chacaltaya from 1962 to 1967 is referred to, relating to the above-mentioned first harmonic. Also presented in this paper are arrival directions of old-age low-mu air showers observed at Chacaltaya from 1962 to 1967, for recent interest in gamma-ray air showers.

  12. Tracking through laser-induced clutter for air-to-ground directed energy system

    NASA Astrophysics Data System (ADS)

    Belen'kii, Mikhail; Brinkley, Timothy; Hughes, Kevin; Tannenbaum, Allen

    2003-09-01

    The agility and speed with which directed energy can be retargeted and delivered to the target makes a laser weapon highly desirable in tactical battlefield environments. A directed energy system can effectively damage and possibly destroy relatively soft targets on the ground. In order to accurately point a high-energy beam at the target, the directed energy system must be able to acquire and track targets of interest in highly cluttered environments, under different weather, smoke, and camouflage conditions and in the presence of turbulence and thermal blooming. To meet these requirements, we proposed a concept of a multi spectral tracker, which integrates three sensors: SAR radar, a passive MWIR optical tracker, and a range-gated laser illuminated tracker. In this paper we evaluated the feasibility of the integrated optical tracker and arrived to the following conclusions: a) the contrast enhancement by mapping the original pixel distribution to the desired one enhances the target identification capability, b) a reduction of the divergence of the illuminating beam reduces rms pointing error of a laser tracker, c) a clutter removal algorithm based on active contours is capable of capturing targets in highly cluttered environments, d) the daytime rms pointing error caused by anisoplanatism of the track point to the aim point is comparable to the diffraction-limited beam spot size, f) the peak intensity shift from the optical axis caused by thermal blooming at 5 km range for the air-to-ground engagement scenario is on the order of 8 μrad, and it is 10 μrad at 10 km range, and e) the thermal blooming reduces the peak average power in a 2 cm bucket at 5 km range by a factor of 8, and it reduces the peak average power in the bucket at 10 km range by a factor of 22.

  13. 78 FR 1735 - Airworthiness Directives; Honeywell International Inc. Air Data Pressure Transducers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-09

    ... International Inc. Air Data Pressure Transducers AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... certain Honeywell International Inc. air data pressure transducers as installed on various aircraft. This AD requires various tests or checks of equipment having certain air data pressure transducers,...

  14. CO2 Huff-n-Puff Process in a Light Oil Shallow Shelf Carbonate Reservoir

    SciTech Connect

    John Prieditis; Mark Kovar; Roger Cole; Scott Wehner

    1998-02-02

    The principal objective of the Sundown Slaughter Unit (SSU) CO2 Huff- n- Puff (H- n- P) project is to determine the feasibility and practicality of the technology in a waterflooded shallow shelf carbonate environment. Sundown Slaughter Unit is the second demonstration site associated with this project, following the unsuccessful test at Central Vacuum Unit. The ultimate goal will be to develop guidelines based on commonly available data that other operators in the industry can use to investigate the applicability of the process within other fields. The technology transfer objective of the project is to disseminate the knowledge gained through an innovative plan in support of the Department of Energy's (DOE) objective of increasing domestic oil production and deferring the abandonment of shallow shelf carbonate (SSC) reservoirs. Tasks associated with this objective are carried out in what is a timely effort for near- term goals. The goal of this Sundown Slaughter Unit Project is to demonstrate the CO2 Huff- n- Puff process in a waterflooded, light oil, shallow shelf carbonate reservoir within the Permian Basin. The CO2 Huff- n- Puff process is a proven enhanced oil recovery technology for Louisiana- Texas gulf coast sandstone reservoirs. The reader is referred to three Society of Petroleum Engineer (SPE) papers, No. 15502, No. 16720 & No. 20208 for a review of the theory, mechanics of the process, and several case histories. The process has even been shown to be moderately effective in conjunction with steam on heavy California crude oils. Although the technology is proven in gulf coast sandstones, it continues to be a very underutilized enhanced recovery option for carbonates. The goal of this technology demonstration is to gain an overall understanding of the reservoir qualities that influence CO2 Huff- n- Puff production responses within a heterogeneous reservoir such as the shallow shelf carbonate environment of the Sundown Slaughter Unit. A generalized

  15. Air-kerma strength determination of a new directional {sup 103}Pd source

    SciTech Connect

    Aima, Manik Reed, Joshua L.; DeWerd, Larry A.; Culberson, Wesley S.

    2015-12-15

    Purpose: A new directional {sup 103}Pd planar source array called a CivaSheet™ has been developed by CivaTech Oncology, Inc., for potential use in low-dose-rate (LDR) brachytherapy treatments. The array consists of multiple individual polymer capsules called CivaDots, containing {sup 103}Pd and a gold shield that attenuates the radiation on one side, thus defining a hot and cold side. This novel source requires new methods to establish a source strength metric. The presence of gold material in such close proximity to the active {sup 103}Pd region causes the source spectrum to be significantly different than the energy spectra of seeds normally used in LDR brachytherapy treatments. In this investigation, the authors perform air-kerma strength (S{sub K}) measurements, develop new correction factors for these measurements based on an experimentally verified energy spectrum, and test the robustness of transferring S{sub K} to a well-type ionization chamber. Methods: S{sub K} measurements were performed with the variable-aperture free-air chamber (VAFAC) at the University of Wisconsin Medical Radiation Research Center. Subsequent measurements were then performed in a well-type ionization chamber. To realize the quantity S{sub K} from a directional source with gold material present, new methods and correction factors were considered. Updated correction factors were calculated using the MCNP 6 Monte Carlo code in order to determine S{sub K} with the presence of gold fluorescent energy lines. In addition to S{sub K} measurements, a low-energy high-purity germanium (HPGe) detector was used to experimentally verify the calculated spectrum, a sodium iodide (NaI) scintillating counter was used to verify the azimuthal and polar anisotropy, and a well-type ionization chamber was used to test the feasibility of disseminating S{sub K} values for a directional source within a cylindrically symmetric measurement volume. Results: The UW VAFAC was successfully used to measure the S

  16. Recommended direct simulation Monte Carlo collision model parameters for modeling ionized air transport processes

    SciTech Connect

    Swaminathan-Gopalan, Krishnan; Stephani, Kelly A.

    2016-02-15

    A systematic approach for calibrating the direct simulation Monte Carlo (DSMC) collision model parameters to achieve consistency in the transport processes is presented. The DSMC collision cross section model parameters are calibrated for high temperature atmospheric conditions by matching the collision integrals from DSMC against ab initio based collision integrals that are currently employed in the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) and Data Parallel Line Relaxation (DPLR) high temperature computational fluid dynamics solvers. The DSMC parameter values are computed for the widely used Variable Hard Sphere (VHS) and the Variable Soft Sphere (VSS) models using the collision-specific pairing approach. The recommended best-fit VHS/VSS parameter values are provided over a temperature range of 1000-20 000 K for a thirteen-species ionized air mixture. Use of the VSS model is necessary to achieve consistency in transport processes of ionized gases. The agreement of the VSS model transport properties with the transport properties as determined by the ab initio collision integral fits was found to be within 6% in the entire temperature range, regardless of the composition of the mixture. The recommended model parameter values can be readily applied to any gas mixture involving binary collisional interactions between the chemical species presented for the specified temperature range.

  17. Direct Numerical Simulations of Autoignition in Stratified Dimethyl-ether (DME)/Air Turbulent Mixtures

    SciTech Connect

    Bansal, Gaurav; Mascarenhas, Ajith; Chen, Jacqueline H.

    2014-10-01

    In our paper, two- and three-dimensional direct numerical simulations (DNS) of autoignition phenomena in stratified dimethyl-ether (DME)/air turbulent mixtures are performed. A reduced DME oxidation mechanism, which was obtained using rigorous mathematical reduction and stiffness removal procedure from a detailed DME mechanism with 55 species, is used in the present DNS. The reduced DME mechanism consists of 30 chemical species. This study investigates the fundamental aspects of turbulence-mixing-autoignition interaction occurring in homogeneous charge compression ignition (HCCI) engine environments. A homogeneous isotropic turbulence spectrum is used to initialize the velocity field in the domain. Moreover, the computational configuration corresponds to a constant volume combustion vessel with inert mass source terms added to the governing equations to mimic the pressure rise due to piston motion, as present in practical engines. DME autoignition is found to be a complex three-staged process; each stage corresponds to a distinct chemical kinetic pathway. The distinct role of turbulence and reaction in generating scalar gradients and hence promoting molecular transport processes are investigated. Then, by applying numerical diagnostic techniques, the different heat release modes present in the igniting mixture are identified. In particular, the contribution of homogeneous autoignition, spontaneous ignition front propagation, and premixed deflagration towards the total heat release are quantified.

  18. Direct Numerical Simulations of Autoignition in Stratified Dimethyl-ether (DME)/Air Turbulent Mixtures

    DOE PAGES

    Bansal, Gaurav; Mascarenhas, Ajith; Chen, Jacqueline H.

    2014-10-01

    In our paper, two- and three-dimensional direct numerical simulations (DNS) of autoignition phenomena in stratified dimethyl-ether (DME)/air turbulent mixtures are performed. A reduced DME oxidation mechanism, which was obtained using rigorous mathematical reduction and stiffness removal procedure from a detailed DME mechanism with 55 species, is used in the present DNS. The reduced DME mechanism consists of 30 chemical species. This study investigates the fundamental aspects of turbulence-mixing-autoignition interaction occurring in homogeneous charge compression ignition (HCCI) engine environments. A homogeneous isotropic turbulence spectrum is used to initialize the velocity field in the domain. Moreover, the computational configuration corresponds to amore » constant volume combustion vessel with inert mass source terms added to the governing equations to mimic the pressure rise due to piston motion, as present in practical engines. DME autoignition is found to be a complex three-staged process; each stage corresponds to a distinct chemical kinetic pathway. The distinct role of turbulence and reaction in generating scalar gradients and hence promoting molecular transport processes are investigated. Then, by applying numerical diagnostic techniques, the different heat release modes present in the igniting mixture are identified. In particular, the contribution of homogeneous autoignition, spontaneous ignition front propagation, and premixed deflagration towards the total heat release are quantified.« less

  19. Dynamic Radioactive Source for Evaluating and Demonstrating Time-dependent Performance of Continuous Air Monitors.

    PubMed

    McLean, Thomas D; Moore, Murray E; Justus, Alan L; Hudston, Jonathan A; Barbé, Benoît

    2016-11-01

    Evaluation of continuous air monitors in the presence of a plutonium aerosol is time intensive, expensive, and requires a specialized facility. The Radiation Protection Services Group at Los Alamos National Laboratory has designed a Dynamic Radioactive Source, intended to replace plutonium aerosol challenge testing. The Dynamic Radioactive Source is small enough to be inserted into the sampler filter chamber of a typical continuous air monitor. Time-dependent radioactivity is introduced from electroplated sources for real-time testing of a continuous air monitor where a mechanical wristwatch motor rotates a mask above an alpha-emitting electroplated disk source. The mask is attached to the watch's minute hand, and as it rotates, more of the underlying source is revealed. The measured alpha activity increases with time, simulating the arrival of airborne radioactive particulates at the air sampler inlet. The Dynamic Radioactive Source allows the temporal behavior of puff and chronic release conditions to be mimicked without the need for radioactive aerosols. The new system is configurable to different continuous air monitor designs and provides an in-house testing capability (benchtop compatible). It is a repeatable and reusable system and does not contaminate the tested air monitor. Test benefits include direct user control, realistic (plutonium) aerosol spectra, and iterative development of continuous air monitor alarm algorithms. Data obtained using the Dynamic Radioactive Source has been used to elucidate alarm algorithms and to compare the response time of two commercial continuous air monitors.

  20. Dynamic Radioactive Source for Evaluating and Demonstrating Time-dependent Performance of Continuous Air Monitors

    SciTech Connect

    McLean, Thomas D.; Moore, Murray E.; Justus, Alan L.; Hudston, Jonathan A.; Barbé, Benoît

    2016-01-01

    Evaluation of continuous air monitors in the presence of a plutonium aerosol is time intensive, expensive, and requires a specialized facility. The Radiation Protection Services Group at Los Alamos National Laboratory has designed a Dynamic Radioactive Source, intended to replace plutonium aerosol challenge testing. Furthermore, the Dynamic Radioactive Source is small enough to be inserted into the sampler filter chamber of a typical continuous air monitor. Time-dependent radioactivity is introduced from electroplated sources for real-time testing of a continuous air monitor where a mechanical wristwatch motor rotates a mask above an alpha-emitting electroplated disk source. The mask is attached to the watch’s minute hand, and as it rotates, more of the underlying source is revealed. The alpha activity we measured increases with time, simulating the arrival of airborne radioactive particulates at the air sampler inlet. The Dynamic Radioactive Source allows the temporal behavior of puff and chronic release conditions to be mimicked without the need for radioactive aerosols. The new system is configurable to different continuous air monitor designs and provides an in-house testing capability (benchtop compatible). It is a repeatable and reusable system and does not contaminate the tested air monitor. Test benefits include direct user control, realistic (plutonium) aerosol spectra, and iterative development of continuous air monitor alarm algorithms. We also used data obtained using the Dynamic Radioactive Source to elucidate alarm algorithms and to compare the response time of two commercial continuous air monitors.

  1. Dynamic Radioactive Source for Evaluating and Demonstrating Time-dependent Performance of Continuous Air Monitors

    DOE PAGES

    McLean, Thomas D.; Moore, Murray E.; Justus, Alan L.; ...

    2016-01-01

    Evaluation of continuous air monitors in the presence of a plutonium aerosol is time intensive, expensive, and requires a specialized facility. The Radiation Protection Services Group at Los Alamos National Laboratory has designed a Dynamic Radioactive Source, intended to replace plutonium aerosol challenge testing. Furthermore, the Dynamic Radioactive Source is small enough to be inserted into the sampler filter chamber of a typical continuous air monitor. Time-dependent radioactivity is introduced from electroplated sources for real-time testing of a continuous air monitor where a mechanical wristwatch motor rotates a mask above an alpha-emitting electroplated disk source. The mask is attached tomore » the watch’s minute hand, and as it rotates, more of the underlying source is revealed. The alpha activity we measured increases with time, simulating the arrival of airborne radioactive particulates at the air sampler inlet. The Dynamic Radioactive Source allows the temporal behavior of puff and chronic release conditions to be mimicked without the need for radioactive aerosols. The new system is configurable to different continuous air monitor designs and provides an in-house testing capability (benchtop compatible). It is a repeatable and reusable system and does not contaminate the tested air monitor. Test benefits include direct user control, realistic (plutonium) aerosol spectra, and iterative development of continuous air monitor alarm algorithms. We also used data obtained using the Dynamic Radioactive Source to elucidate alarm algorithms and to compare the response time of two commercial continuous air monitors.« less

  2. Acceleration of Deuterons to Multi-MeV Energies in Deuterium Gas-Puff Z-Pinch

    NASA Astrophysics Data System (ADS)

    Klir, D.; Cikhardt, J.; Cikhardtova, B.; Kravarik, J.; Kubes, P.; Rezac, K.; Sila, O.; Shishlov, A.; Cherdizov, R.; Fursov, F.; Kokshenev, V.; Kovalchuk, B.; Kurmaev, N.; Labetsky, A.; Ratakhin, N.; Krasa, J.; Turek, K.

    2015-11-01

    A novel configuration of a deuterium gas-puff z-pinch has been used to generate a short (approx. 20 ns) pulse of multi-MeV ions and neutrons. Even though ion acceleration in z-pinches has not been researched to such an extent as in laser-based sources, obtained results show that z-pinches can reach values comparable to those of state-of-the-art lasers. On the 3 MA GIT-12 generator, the peak neutron yield was 3.6x1012. When a neutron-producing sample was placed onto the axis below a cathode mesh, the neutron yield was increased up to 1013. The emission time of 20 ns implied the neutron production rate of 5x1020 n/s. Neutron energies reached the maximum value of 33 MeV. The comprehensive set of ion diagnostics provided unique information about ion acceleration mechanism. The ion emission was highly anisotropic. Deuterons were trapped in the radial direction whereas a lot of fast ions escaped the z-pinch along the axis. On the axis, the total number of >1 MeV and >25 MeV deuterons was 1016 and 5x1012, respectively. Utilizing these ions offers a real possibility of various applications including the production of short-lived isotopes or fast neutron radiography. This work was supported by the MSMT grants LH13283, LD14089.

  3. Modulation of Elementary Calcium Release Mediates a Transition from Puffs to Waves in an IP3R Cluster Model

    PubMed Central

    Rückl, Martin; Parker, Ian; Marchant, Jonathan S.; Nagaiah, Chamakuri; Johenning, Friedrich W.; Rüdiger, Sten

    2015-01-01

    The oscillating concentration of intracellular calcium is one of the most important examples for collective dynamics in cell biology. Localized releases of calcium through clusters of inositol 1,4,5-trisphosphate receptor channels constitute elementary signals called calcium puffs. Coupling by diffusing calcium leads to global releases and waves, but the exact mechanism of inter-cluster coupling and triggering of waves is unknown. To elucidate the relation of puffs and waves, we here model a cluster of IP3R channels using a gating scheme with variable non-equilibrium IP3 binding. Hybrid stochastic and deterministic simulations show that puffs are not stereotyped events of constant duration but are sensitive to stimulation strength and residual calcium. For increasing IP3 concentration, the release events become modulated at a timescale of minutes, with repetitive wave-like releases interspersed with several puffs. This modulation is consistent with experimental observations we present, including refractoriness and increase of puff frequency during the inter-wave interval. Our results suggest that waves are established by a random but time-modulated appearance of sustained release events, which have a high potential to trigger and synchronize activity throughout the cell. PMID:25569772

  4. Monitoring Direct Effects of Delta, Atlas, and Titan Launches from Cape Canaveral Air Station

    NASA Technical Reports Server (NTRS)

    Schmalzer, Paul A.; Boyle, Shannon R.; Hall, Patrice; Oddy, Donna M.; Hensley, Melissa A.; Stolen, Eric D.; Duncan, Brean W.

    1998-01-01

    Launches of Delta, Atlas, and Titan rockets from Cape Canaveral Air Station (CCAS) have potential environmental effects that could arise from direct impacts of the launch exhaust (e.g., blast, heat), deposition of exhaust products of the solid rocket motors (hydrogen chloride, aluminum oxide), or other effects such as noise. Here we: 1) review previous reports, environmental assessments, and environmental impact statements for Delta, Atlas, and Titan vehicles and pad areas to clarity the magnitude of potential impacts; 2) summarize observed effects of 15 Delta, 22 Atlas, and 8 Titan launches; and 3) develop a spatial database of the distribution of effects from individual launches and cumulative effects of launches. The review of previous studies indicated that impacts from these launches can occur from the launch exhaust heat, deposition of exhaust products from the solid rocket motors, and noise. The principal effluents from solid rocket motors are hydrogen chloride (HCl), aluminum oxide (Al2O3), water (H2O), hydrogen (H2), carbon monoxide (CO), and carbon dioxide (CO2). The exhaust plume interacts with the launch complex structure and water deluge system to generate a launch cloud. Fall out or rain out of material from this cloud can produce localized effects from acid or particulate deposition. Delta, Atlas, and Titan launch vehicles differ in the number and size of solid rocket boosters and in the amount of deluge water used. All are smaller and use less water than the Space Shuttle. Acid deposition can cause damage to plants and animals exposed to it, acidify surface water and soil, and cause long-term changes to community composition and structure from repeated exposure. The magnitude of these effects depends on the intensity and frequency of acid deposition.

  5. Directive on odour in ambient air: an established system of odour measurement and odour regulation in Germany.

    PubMed

    Both, R

    2001-01-01

    The legal basis for any requirement with respect to ambient air quality is the German Federal Protection Act for Ambient Air. According to article 3 Federal Protection Act all odours caused by plants are defined as an annoyance. The problem is to find out whether an annoyance has to be considered as a significant disturbance. In the Directive on Odour in Ambient Air a complete system is designed, beginning with measurement methods and concluding with ambient air quality requirements. In the following paper the tenor of the Directive on Odour is presented, some main aspects of more than five years of practical experience will be shown and a perspective on some future investigations and developments will be given. As a conclusion it is pointed out that in practice, the Directive on Odours has been successful. Both methods, field measurements with panels and dispersion modelling, are generally qualified for the determination of odour loads. The restriction of odour loads by limit values expressed as odour frequency per year for certain areas has been established in a lot of cases.

  6. First Argon Gas Puff Experiments With 500 ns Implosion Time On Sphinx Driver

    SciTech Connect

    Zucchini, F.; Calamy, H.; Lassalle, F.; Loyen, A.; Maury, P.; Grunenwald, J.; Georges, A.; Morell, A.; Bedoch, J.-P.; Ritter, S.; Combes, P.; Smaniotto, O.; Lample, R.; Coleman, P. L.; Krishnan, M.

    2009-01-21

    Experiments have been performed at the SPHINX driver to study potential of an Argon Gas Puff load designed by AASC. We present here the gas Puff hardware and results of the last shot series.The Argon Gas Puff load used is injected thanks to a 20 cm diameter nozzle. The nozzle has two annuli and a central jet. The pressure and gas type in each of the nozzle plena can be independently adjusted to tailor the initial gaz density distribution. This latter is selected as to obtain an increasing radial density from outer shell towards the pinch axis in order to mitigate the RT instabilities and to increase radiating mass on axis. A flashboard unit produces a high intensity UV source to pre-ionize the Argon gas. Typical dimensions of the load are 200 mm in diameter and 40 mm height. Pressures are adjusted to obtain an implosion time around 550 ns with a peak current of 3.5 MA.With the goal of improving k-shell yield a mass scan of the central jet was performed and implosion time, mainly given by outer and middle plena settings, was kept constant. Tests were also done to reduce the implosion time for two configurations of the central jet. Strong zippering of the radiation production was observed mainly due to the divergence of the central jet over the 40 mm of the load height. Due to that feature k-shell radiation is mainly obtained near cathode. Therefore tests were done to mitigate this effect first by adjusting local pressure of middle and central jet and second by shortening the pinch length.At the end of this series, best shot gave 5 kJ of Ar k-shell yield. PCD detectors showed that k-shell x-ray power was 670 GW with a FWHM of less than 10 ns.

  7. Breeding Super-Earths and Birthing Super-Puffs in Transitional Disks

    NASA Astrophysics Data System (ADS)

    Lee, Eve J.; Chiang, Eugene

    2015-12-01

    The riddle posed by super-Earths (1--4 Earth radii, 2--20 Earth masses) is that they are not Jupiters: their core masses are large enough to trigger runaway gas accretion, yet somehow super-Earths accreted atmospheres that weigh only a few percent of their total mass. We show that this puzzle is solved if super-Earthsformed late, as the last vestiges of their parent gas disks were about to clear. This scenario would seem to present fine-tuning problems, but we show that there are none. Ambient gas densities can span many orders of magnitude, and super-Earths can robustly emerge with percent-by-weight atmospheres after ~0.1--1 Myr. We propose that 1) close-in super-Earths form in situ, because their cores necessarily coagulate in gas-poor environments—gas dynamical friction must be weakened sufficiently to allow constituent protocores to cross orbits and merge; 2) super- Earths acquire their atmospheres from ambient wisps of gas that are supplied from a diffusing outer disk. The formation environment is reminiscent of the largely evacuated but still accreting inner cavities of transitional protoplanetary disks. We also 3) address the inverse problem presented by super-puffs: an uncommon class of short- period planets seemingly too voluminous for their small masses (4--10 Earth radii, 2--6 Earth masses). Super-puffs most easily acquire their thick atmospheres as dust-free, rapidly cooling worlds outside ~1 AU where nebular gas is colder, less dense, and therefore less opaque. Unlike super-Earths which can form in situ, super-puffs probably migrated in to their current orbits; they are expected to form the outer links of mean-motion resonant chains, and to exhibit greater water content.

  8. [Hygienic evaluation of direct heating of the air delivered to the shaft].

    PubMed

    Velichkovskiĭ, B T; Malikov, Iu K; Troitskaia, N A; Belen'kaia, M A; Sergeeva, N V; Shirokova, O V; Kashanskiĭ, S V; Slyshkina, T V; Simonova, O V; Zykova, V A

    2011-01-01

    The paper gives the results of exploring a test pre-heating system for the air (APHS) delivered to the shaft. The system has been first used in the Urals. The supply air is heated by burning natural gas in the air current. The APHS system with a RG air heater (000 "Gas-Engineering") is equipped in addition to the existing heaters to enhance heat supply reliability in northern conditions. The data of the studies show that in all periods of the heating season (interseason, moderate frosts, the coldest month), the concentrations of hazardous substances, such as nitric oxides, nitric dioxide, sulfur dioxide, carbon dioxide, benz(a)pyrene, solid aerosol in the shaft-delivered air, do not exceed those given in the existing regulation provided that the design operating conditions are met. With the maximum gas consumption, the coldest month only was marked by the nitric dioxide content being greater than the standard values, causing the maximum projected natural gas consumption to be lower in the APHS system. The air level of nitric dioxide proved to be a major hygiene indicator while using this air heater.

  9. Air concentrations of organochlorine compounds related to wind direction and compared with biota concentration

    SciTech Connect

    Egebaeck, A.L.; Wideqvist, U.; Asplund, L.; Strandell, M.; Alsberg, T.; Litzen, K.; Eriksson, U.; Haeggberg, L.; Zakrisson, S.; Oisson, M.; Bignert, A.

    1995-12-31

    Persistent organic compounds are long-range transported by air. Air samples were collected at two background meteorological stations, one southern at Gotland in the central Baltic and one northern, close to the polar circle. The collection was a part of the Swedish Dioxin Survey Project. Air sampling was carried out from fall 1990 to spring 1991 using a high-volume sampler. Air trajectories suggesting stable weather conditions decided which samples to be analyzed for e.g. PCBs, polychlorinated naphthalenes (PCN), chloroparaffines, HCHs and Toxaphene. The gas-phase concentrations of the seven PCB congeners 28, 52, 101, 118, 138, 153, 180 were in the low pg/m{sup 3} range, while the concentration of the nonortho PCB 77 was about two orders of magnitude lower. High concentrations were usually correlated with SW winds and low concentrations with N to NW winds. Air masses coming from N to both sampling sites, resulted in nearly equal concentrations of the seven PCB congeners. PCNs were found in the gas phase of all samples at the pg/m{sup 3} level (total PCNs). The relative concentrations of the various contaminants were compared between air and four biological matrices collected in the vicinity of the air sampling locations. Cod, Herring and Herring feeding Guillemot from the Baltic and Pike from the northern sampling site were all collected within the Swedish National Monitoring Program.

  10. Gas-puff liner implosion in the configuration with helical current return rods

    SciTech Connect

    Sorokin, S. A.

    2013-02-15

    Results of experiments with double-shell gas-puff liners carried out on a high-current MIG generator (2 MA, 80 ns) are presented. To stabilize the process of liner implosion and increase the efficiency of energy transfer from the generator to the liner plasma, a current return in the form of a multifilar helix was used. The effect of the configuration of the current return on the parameters of the generated pulses of argon and neon K-shell radiation (with photon energies of 3-5 and 0.9-1.5 keV, respectively) and the neutron yield from a deuterium liner were studied.

  11. Desktop water window microscope using a double-stream gas puff target source

    NASA Astrophysics Data System (ADS)

    Wachulak, Przemyslaw W.; Torrisi, Alfio; Bartnik, Andrzej; Adjei, Daniel; Kostecki, Jerzy; Wegrzynski, Lukasz; Jarocki, Roman; Szczurek, Mirosław; Fiedorowicz, Henryk

    2015-03-01

    A compact, desktop size, microscope, based on nitrogen double-stream gas puff target soft X-ray source, which emits radiation in water window spectral range at the wavelength of λ = 2.88 nm, is demonstrated. The microscope employs ellipsoidal grazing incidence condenser mirror for sample illumination and Fresnel zone plate objective. The microscope is capable of capturing magnified images of objects with 60 nm spatial resolution and exposure time as low as a few seconds. Details about the source and the microscope as well as a few examples of different applications are presented and discussed.

  12. Investigation of Metal Puff Z pinch Based on Multichannel Vacuum Arcs

    NASA Astrophysics Data System (ADS)

    Rousskikh, A. G.; Oreshkin, V. I.; Zhigalin, A. S.; Chaikovsky, S. A.; Baksht, R. B.; Mitrofanov, K. N.

    2015-11-01

    The performance of a metal double puff Z-pinch system has been studied experimentally. In this type of system, the outer and inner cylindrical shells were produced by ten plasma guns. Each gun initiates a vacuum arc operating between aluminum electrodes. The net current of the guns was 80 kA. The arc-produced plasma shells were compressed by using a 450-kA, 450-ns driver, and as a result, a plasma column 0.2 cm in diameter was formed. The power of the Al K-line radiation emitted by the plasma for 7 ns was 800 MW/cm.

  13. C02 Huff-n-Puff Process in a Light Oil Shallow Shelf Carbonate Reservoir

    SciTech Connect

    Mark Kovar; Scott Wehner

    1998-01-31

    The principal objective of this CO2 Huf-n-Puff (H-n-P) project is to determine the feasibility and practicality of the technology in a waterflooded shallow shelf carbonate environment. The results of parametric simulation of the CO2 H-n-P process, coupled with reservoir characterization components are to be used to determine if this process is technically and economically feasible for field implementation. The technology transfer objective of the project is to disseminate the knowledge gained through an innovative plan of increasing oil production and deferring abandonment of shallow shelf carbonate reservoirs.

  14. SRI PUFF 8 Computer Program for One-Dimensional Stress Wave Propagation

    DTIC Science & Technology

    1980-03-01

    33 4.4 Pressure-Volume Relations at Constant Internal Energy for an Aluminum 38 4.5 Sketch of Mie-Griineisen and modified PUFF-Expansion Equation... Aluminum Plate onto a Hot Aluminum Plate at 1.46 x 10 cm/sec 76 6.1 Sample GENRAT Listing of Input Data for a Radiation Problem 78 6.2 Sample GENRAT...Absorption Data for Several Elements (on Tape 2) 113 C.3 Input Deck for Hot Aluminum Impact Calculation 115 C.4 GENRAT Output for Input Deck of

  15. Simulations of gas puff effects on edge density and ICRF coupling in ASDEX upgrade using EMC3-Eirene

    SciTech Connect

    Zhang, W.; Lunt, T.; Bobkov, V.; Coster, D.; Brida, D.; Noterdaeme, J.-M.; Jacquet, P.; Feng, Y.

    2015-12-10

    Simulations were carried out with the 3D plasma transport code EMC3-EIRENE, to study the deuterium gas (D{sub 2}) puff effects on edge density and the coupling of Ion Cyclotron Range of Frequency (ICRF) power in ASDEX Upgrade. Firstly we simulated an inter-ELM phase of an H-mode discharge with a moderate (1.2 × 10{sup 22} electrons/s) lower divertor gas puff. Then we changed the gas source positions to the mid-plane or top of machine while keeping other conditions the same. Cases with different mid-plane or top gas valves are investigated. Our simulations indicate that compared to lower divertor gas puffing, the mid-plane gas puff can enhance the local density in front of the antennas most effectively, while a rather global (toroidally uniform) but significantly smaller enhancement is found for top gas puffing. Our results show quantitative agreement with the experiments.

  16. AIR QUALITY MODELING OF HAZARDOUS POLLUTANTS: CURRENT STATUS AND FUTURE DIRECTIONS

    EPA Science Inventory

    The paper presents a review of current air toxics modeling applications and discusses possible advanced approaches. Many applications require the ability to predict hot spots from industrial sources or large roadways that are needed for community health and Environmental Justice...

  17. BIOAVAILABLE AIR PARTICULATE POLLUTION CONSTITUENTS DIRECTLY ALTER CARDIOVASCULAR FUNCTION EX VIVO

    EPA Science Inventory

    Epidemiological studies have reported associations between particulate air pollution exposure and cardiovascular (CV) effects within susceptible individuals. Particle characteristics and biological mechanisms responsible for these observations are not known. We examined whether s...

  18. Cloning of a gene localized and expressed at the ecdysteroid regulated puff 74EF in salivary glands of Drosophila larvae

    PubMed Central

    Möritz, Th.; Edström, J. E.; Pongs, O.

    1984-01-01

    The puffing cycle of salivary gland chromosomes of Drosophila larvae, which initiates the developmental path to pupariation, is induced by ecdysteroid hormone. Its action leads to prominent puffs at loci 2B5, 74EF and 75B. Fragments of the 74EF puff of the D. melanogaster 3L chromosome were microdissected from salivary gland squashes. EcoRI-digested DNA of these fragments was cloned into λ phage. Clones were screened with puff stage-specific cDNA probes. Thirteen out of 650 clones hybridized preferentially with puff stage 4-specific cDNA. The prominent early puffs at 74EF and 75B are most active between puff stage 4 and 6. Therefore, one of the 13 λ phages was chosen for further analysis. It was used to isolate 24 kb of Drosophila DNA from genomic libraries. The DNA hybridized in situ to locus 74F. The 74F DNA coded for a transcript, which was made in salivary glands, but not in fat body of third instar larvae. It accumulated in KC cells in response to ecdysteroid treatment. The polyadenylated transcript size was ˜2.7 kb as judged by Nothern blot analysis. The transcription start site of the 74F gene has been mapped. Sequences upstream of the transcription site contain several sequence elements common to other eucaryotic genes, including potential Z-DNA forming sequences. Also, there is sequence homology to upstream sequences, which have been involved in the regulation of transcription of the salivary gland glue protein 4 gene. ImagesFig. 1.Fig. 2.Fig. 3.Fig. 4.Fig. 5.Fig. 6. PMID:16453498

  19. Seeing the invisible: Direct visualization of therapeutic radiation beams using air scintillation

    SciTech Connect

    Fahimian, Benjamin; Türkcan, Silvan; Kapp, Daniel S.; Pratx, Guillem; Ceballos, Andrew

    2014-01-15

    Purpose: To assess whether air scintillation produced during standard radiation treatments can be visualized and used to monitor a beam in a nonperturbing manner. Methods: Air scintillation is caused by the excitation of nitrogen gas by ionizing radiation. This weak emission occurs predominantly in the 300–430 nm range. An electron-multiplication charge-coupled device camera, outfitted with an f/0.95 lens, was used to capture air scintillation produced by kilovoltage photon beams and megavoltage electron beams used in radiation therapy. The treatment rooms were prepared to block background light and a short-pass filter was utilized to block light above 440 nm. Results: Air scintillation from an orthovoltage unit (50 kVp, 30 mA) was visualized with a relatively short exposure time (10 s) and showed an inverse falloff (r{sup 2} = 0.89). Electron beams were also imaged. For a fixed exposure time (100 s), air scintillation was proportional to dose rate (r{sup 2} = 0.9998). As energy increased, the divergence of the electron beam decreased and the penumbra improved. By irradiating a transparent phantom, the authors also showed that Cherenkov luminescence did not interfere with the detection of air scintillation. In a final illustration of the capabilities of this new technique, the authors visualized air scintillation produced during a total skin irradiation treatment. Conclusions: Air scintillation can be measured to monitor a radiation beam in an inexpensive and nonperturbing manner. This physical phenomenon could be useful for dosimetry of therapeutic radiation beams or for online detection of gross errors during fractionated treatments.

  20. Integrating C-17 Direct Delivery Airlift into Traditional Air Force Doctrine.

    DTIC Science & Technology

    1998-06-01

    logistics response time, develop seamless logistic systems, and streamline the logistics infrastructure ( Zorich , 1996:2). The Air Force is moving from...and maintenance capability ( Zorich , 1996:2). Lean Logistics strives to produce a system in which logistics information and material flows freely...Air Mobility Warfare Center, March 1997. Zorich , David R. "Lean Logistics: Logistics of Tomorrow Today," A Special Report on Logistics for the 21st

  1. Investigating the effect of adding an on-axis jet to Ar gas puff Z pinches on Z.

    DOE PAGES

    Harvey-Thompson, Adam James; Jennings, Christopher Ashley; Jones, Brent M.; ...

    2016-10-20

    Double-shell Ar gas puff implosions driven by 16.5±0.5 MA on the Z generator at Sandia National Laboratories are very effective emitters of Ar K-shell radiation (photon energy >3 keV), producing yields of 330 ± 9% kJ (B. Jones et al., Phys. Plasmas, 22, 020706, 2015). In addition, previous simulations and experiments have reported dramatic increases in K-shell yields when adding an on-axis jet to double shell gas puffs for some configurations.

  2. Field test of two high-pressure, direct-contact downhole steam generators. Volume I. Air/diesel system

    SciTech Connect

    Marshall, B.W.

    1983-05-01

    As a part of the Project DEEP STEAM to develop technology to more efficiently utilize steam for the recovery of heavy oil from deep reservoirs, a field test of a downhole steam generator (DSG) was performed. The DSG burned No. 2 diesel fuel in air and was a direct-contact, high pressure device which mixed the steam with the combustion products and injected the resulting mixture directly into the oil reservoir. The objectives of the test program included demonstration of long-term operation of a DSG, development of operational methods, assessment of the effects of the steam/combustion gases on the reservoir and comparison of this air/diesel DSG with an adjacent oxygen/diesel direct contact generator. Downhole operation of the air/diesel DSG was started in June 1981 and was terminated in late February 1982. During this period two units were placed downhole with the first operating for about 20 days. It was removed, the support systems were slightly modified, and the second one was operated for 106 days. During this latter interval the generator operated for 70% of the time with surface air compressor problems the primary source of the down time. Thermal contact, as evidenced by a temperature increase in the production well casing gases, and an oil production increase were measured in one of the four wells in the air/diesel pattern. Reservoir scrubbing of carbon monoxide was observed, but no conclusive data on scrubbing of SO/sub x/ and NO/sub x/ were obtained. Corrosion of the DSG combustor walls and some other parts of the downhole package were noted. Metallurgical studies have been completed and recommendations made for other materials that are expected to better withstand the downhole combustion environment. 39 figures, 8 tables.

  3. PlanetVac: Sample Return with a Puff of Gas

    NASA Astrophysics Data System (ADS)

    Zacny, K.; Mueller, R.; Betts, B. H.

    2014-12-01

    PlanetVac is a regolith sample acquisition mission concept that uses compressed gas to blow material from the surface up a pneumatic tube and directly into a sample return container. The PlanetVac sampling device is built into the lander legs to eliminate cost and complexity associated with robotic arms and scoops. The pneumatic system can effectively capture fine and coarse regolith, including small pebbles. It is well suited for landed missions to Mars, asteroids, or the Moon. Because of the low pressures on all those bodies, the technique is extremely efficient. If losses are kept to minimum, 1 gram of compressed gas could efficiently lift 6000 grams of soil. To demonstrate this approach, the PlanetVac lander with four legs and two sampling tubes has been designed, integrated, and tested. Vacuum chamber testing was performed using two well-known planetary regolith simulants: Mars Mojave Simulant (MMS) and lunar regolith simulant JSC-1A. One of the two sampling systems was connected to a mockup of an earth return rocket while the second sampling system was connected to a lander deck mounted instrument (clear box for easy viewing). The tests included a drop from a height of approximately 50 cm onto the bed of regolith, deployment of sampling tubes into the regolith, pneumatic acquisition of sample into an instrument (sample container) and the rocket, and the launch of the rocket. The demonstration has been successful and can be viewed here: https://www.youtube.com/watch?v=DjJXvtQk6no. In most of the tests, 20 grams or more of sample was delivered to the 'instrument' and approximately 5 grams of regolith was delivered into a sampling chamber within the rocket. The gas lifting efficiency was calculated to be approximately 1000:1; that is 1 gram of gas lofted 1000 grams of regolith. Efficiencies in lower gravity environments are expected to be much higher. This successful, simple and lightweight sample capture demonstration paves the way to using such sampling system

  4. Minimum detectable activity concentration in direct alpha spectrometry from outdoor air samples: continuous monitoring versus separate sampling and counting.

    PubMed

    Pöllänen, R; Siiskonen, T

    2006-02-01

    Rapid method for identifying the presence of alpha particle emitting radionuclides in outdoor air is of paramount importance should a nuclear or radiological incident occur. Minimum detectable activity concentrations of U, U, Pu, and Pu in outdoor air are calculated for two direct alpha spectrometry methods: continuous air monitoring is compared with separate sampling and subsequent alpha particle counting in a vacuum chamber. The radon progeny activity concentration typical for outdoor air and the effects for the alpha particle spectra caused by the properties of the filter and the aerosol particles are taken into account using measurements and Monte Carlo simulations. Continuous air monitoring is a faster method for identifying the presence of (trans)uranium elements when their activity concentration is considerably higher than the typical detection limit. Separate sampling and counting in a vacuum chamber is a more sensitive method when concentrations are close to the detection limit and when the duration of the sampling-counting cycle is greater than approximately 2 h. The method may serve as a tool for rapid field measurements.

  5. An ambusher's arsenal: chemical crypsis in the puff adder (Bitis arietans)

    PubMed Central

    Miller, Ashadee Kay; Maritz, Bryan; McKay, Shannon; Glaudas, Xavier; Alexander, Graham J.

    2015-01-01

    Ambush foragers use a hunting strategy that places them at risk of predation by both visual and olfaction-oriented predators. Resulting selective pressures have driven the evolution of impressive visual crypsis in many ambushing species, and may have led to the development of chemical crypsis. However, unlike for visual crypsis, few studies have attempted to demonstrate chemical crypsis. Field observations of puff adders (Bitis arietans) going undetected by several scent-orientated predator and prey species led us to investigate chemical crypsis in this ambushing species. We trained dogs (Canis familiaris) and meerkats (Suricata suricatta) to test whether a canid and a herpestid predator could detect B. arietans using olfaction. We also tested for chemical crypsis in five species of active foraging snakes, predicted to be easily detectable. Dogs and meerkats unambiguously indicated active foraging species, but failed to correctly indicate puff adder, confirming that B. arietans employs chemical crypsis. This is the first demonstration of chemical crypsis anti-predatory behaviour, though the phenomenon may be widespread among ambushers, especially those that experience high mortality rates owing to predation. Our study provides additional evidence for the existence of an ongoing chemically mediated arms race between predator and prey species. PMID:26674950

  6. An ambusher's arsenal: chemical crypsis in the puff adder (Bitis arietans).

    PubMed

    Miller, Ashadee Kay; Maritz, Bryan; McKay, Shannon; Glaudas, Xavier; Alexander, Graham J

    2015-12-22

    Ambush foragers use a hunting strategy that places them at risk of predation by both visual and olfaction-oriented predators. Resulting selective pressures have driven the evolution of impressive visual crypsis in many ambushing species, and may have led to the development of chemical crypsis. However, unlike for visual crypsis, few studies have attempted to demonstrate chemical crypsis. Field observations of puff adders (Bitis arietans) going undetected by several scent-orientated predator and prey species led us to investigate chemical crypsis in this ambushing species. We trained dogs (Canis familiaris) and meerkats (Suricata suricatta) to test whether a canid and a herpestid predator could detect B. arietans using olfaction. We also tested for chemical crypsis in five species of active foraging snakes, predicted to be easily detectable. Dogs and meerkats unambiguously indicated active foraging species, but failed to correctly indicate puff adder, confirming that B. arietans employs chemical crypsis. This is the first demonstration of chemical crypsis anti-predatory behaviour, though the phenomenon may be widespread among ambushers, especially those that experience high mortality rates owing to predation. Our study provides additional evidence for the existence of an ongoing chemically mediated arms race between predator and prey species.

  7. Recent Advances with the AMPX Covariance Processing Capabilities in PUFF-IV

    SciTech Connect

    Wiarda, D. Arbanas, G.; Leal, L.; Dunn, M.E.

    2008-12-15

    The program PUFF-IV is used to process resonance parameter covariance information given in ENDF/B File 32 and point wise covariance matrices given in ENDF/B File 33 into group-averaged covariances matrices on a user-supplied group structure. For large resonance covariance matrices, found for example in {sup 235}U, the execution time of PUFF-IV can be quite long. Recently the code was modified to take advantage of Basic Linear Algebra Subprograms (BLAS) routines for the most time-consuming matrix multiplications. This led to a substantial decrease in execution time. This faster processing capability allowed us to investigate the conversion of File 32 data into File 33 data using a larger number of user-defined groups. While conversion substantially reduces the ENDF/B file size requirements for evaluations with a large number of resonances, a trade-off is made between the number of groups used to represent the resonance parameter covariance as a point wise covariance matrix and the file size. We are also investigating a hybrid version of the conversion, in which the low-energy part of the File 32 resonance parameter covariances matrix is retained and the correlations with higher energies as well as the high energy part are given in File 33.

  8. Recent Advances with the AMPX Covariance Processing Capabilities in PUFF-IV

    SciTech Connect

    Wiarda, Dorothea; Arbanas, Goran; Leal, Luiz C; Dunn, Michael E

    2008-01-01

    The program PUFF-IV is used to process resonance parameter covariance information given in ENDF/B File 32 and point-wise covariance matrices given in ENDF/B File 33 into group-averaged covariances matrices on a user-supplied group structure. For large resonance covariance matrices, found for example in 235U, the execution time of PUFF-IV can be quite long. Recently the code was modified to take advandage of Basic Linear Algebra Subprograms (BLAS) routines for the most time-consuming matrix multiplications. This led to a substantial decrease in execution time. This faster processing capability allowed us to investigate the conversion of File 32 data into File 33 data using a larger number of user-defined groups. While conversion substantially reduces the ENDF/B file size requirements for evaluations with a large number of resonances, a trade-off is made between the number of groups used to represent the resonance parameter covariance as a point-wise covariance matrix and the file size. We are also investigating a hybrid version of the conversion, in which the low-energy part of the File 32 resonance parameter covariances matrix is retained and the correlations with higher energies as well as the high energy part are given in File 33.

  9. Argon gas-puff radius optimiaztion for Saturn operating in the long-pulse mode.

    SciTech Connect

    Apruzese, John P.; Jackson, S. L.; Commisso, Robert J.; Weber, Bruce V.; Mosher, Daniel A.

    2010-06-01

    Argon gas puff experiments using the long pulse mode of Saturn (230-ns rise time) have promise to increase the coupled energy and simplify operations because the voltage is reduced in vacuum and the forward-going energy is higher for the same Marx charge. The issue addressed in this work is to determine if the 12-cm-diameter triple nozzle used in Saturn long-pulse-mode experiments to date provides maximum K-shell yield, or if a different-radius nozzle provides additional radiation. Long-pulse implosions are modeled by starting with measured density distributions from the existing 12-cm-diameter nozzle, and then varying the outer radius in an implosion-energy-conserving self-similar manner to predict the gas-puff diameter that results in the maximum K-shell yield. The snowplow-implosions and multi-zone radiation transport models used in the analysis are benchmarked against detailed measurements from the 12-cm-diameter experiments. These calculations indicate that the maximum K-shell emission is produced with very nearly the existing nozzle radius.

  10. Applicability of solvent based Huff-and-Puff Method to enhance heavy oil recovery

    NASA Astrophysics Data System (ADS)

    Qazvini Firouz, Alireza

    Over and above solvent based processes, specifically, the cyclic solvent injection well known as "Huff-and-Puff', has demonstrated a significant potential to enhance heavy oil recovery. Solvent and CO2 Huff-and-Puff are analogies to cyclic steam stimulation; however, in this method, steam is replaced with CO2, hydrocarbon solvent or mixture of the two. This study attempts to validate the feasibility of the Solvent Based Huff-and-Puff Method with respect to enhancing heavy oil recovery and to investigate the effect of fluid, operation, and reservoir parameters on its' performance. Thus, both experimental and reservoir simulation approaches were applied and, the impact of the aforementioned parameters on the performance of the process was investigated. All experiments were conducted in a Berea core with the dimensions of 30.48 cm by 5.07 cm. The core has a permeability of 1800 md and a porosity of 24% which was mounted in a high pressure, stainless steel core holder. Before conducting each Huff-and-Puff Test, the core was saturated with an oil sample representative of Saskatchewan heavy oil reservoirs and exhibited a viscosity of 952 mPa.s, at a temperature of 28°C. Prior to the tests, a complete phase behavior (PVT) analysis of the oil sample and solvents mixture was conducted using CMG- WinProp(TM) software. Over 12 sets of Huff-and-Puff Experiments, utilizing the pure solvent of carbon dioxide, methane, and mixtures of CO2 and propane, were performed at different operating pressures. A soaking time period of 24 hrs and a cut-off pressure of 276 kPa were considered for all cycles. In addition, all Huff-and-Puff Cycles were continued for each operating pressure until production dropped below one percent of the original oil in place. The production trend and recovery factor for each experiment were determined. The final oil recoveries, at the highest operating pressure of 7239 kPa for pure CO2 and, at 6895 kPa for pure methane, were 71 and 50 % OOIP, respectively

  11. High-Z Pusher Experiments on the Cobra Triple Nozzle Gas-Puff Z-Pinch

    NASA Astrophysics Data System (ADS)

    de Grouchy, Philip; Qi, Niansheng; Kusse, Bruce; Seyler, Charles; Atoyan, Levon; Byvank, Tom; Cahill, Adam; Greenly, John; Hoyt, Cad; Pikuz, Sergei; Shelkovenko, Tania; Hammer, David

    2014-10-01

    For inertial confinement fusion application and as efficient hard x-ray sources, the imploding sheath of a gas-puff z-pinch or thin liner must be accelerated to the highest possible velocity before hydrodynamic instabilities significantly disrupt the implosion symmetry. Much recent work has focused on increasing implosion stability using radially structured mass-density profiles produced by multi-nozzle gas-puff valves. The introduction of a high-Z element such as xenon into the outer gas shells in such experiments can modify radiation output during the implosion phase as well as at stagnation. In these experiments xenon is introduced into the triple-nozzle gas valve fielded on the (1 MA, 200 ns) COBRA z-pinch machine at Cornell University. The xenon is introduced only in the outer shell, only in the inner shell or in both, to investigate the radiative effects on implosion hydrodynamics and x-ray yield. Results are compared to those obtained during pure argon implosions with the same mass-density profile. Sheath thicknesses and stability are recorded using laser interferometry (532 nm) and multi-frame imaging systems. The distribution of flow velocities and of high-Z material across the pinch is investigated using a (5 GW, 527 nm) Thomson scattering probe. Work supported by DOE Grant No. DE-NA0001836.

  12. Flue-gas and direct-air capture of CO2 by porous metal-organic materials

    NASA Astrophysics Data System (ADS)

    Madden, David G.; Scott, Hayley S.; Kumar, Amrit; Chen, Kai-Jie; Sanii, Rana; Bajpai, Alankriti; Lusi, Matteo; Curtin, Teresa; Perry, John J.; Zaworotko, Michael J.

    2017-01-01

    Sequestration of CO2, either from gas mixtures or directly from air (direct air capture), is a technological goal important to large-scale industrial processes such as gas purification and the mitigation of carbon emissions. Previously, we investigated five porous materials, three porous metal-organic materials (MOMs), a benchmark inorganic material, Zeolite 13X and a chemisorbent, TEPA-SBA-15, for their ability to adsorb CO2 directly from air and from simulated flue-gas. In this contribution, a further 10 physisorbent materials that exhibit strong interactions with CO2 have been evaluated by temperature-programmed desorption for their potential utility in carbon capture applications: four hybrid ultramicroporous materials, SIFSIX-3-Cu, DICRO-3-Ni-i, SIFSIX-2-Cu-i and MOOFOUR-1-Ni; five microporous MOMs, DMOF-1, ZIF-8, MIL-101, UiO-66 and UiO-66-NH2; an ultramicroporous MOM, Ni-4-PyC. The performance of these MOMs was found to be negatively impacted by moisture. Overall, we demonstrate that the incorporation of strong electrostatics from inorganic moieties combined with ultramicropores offers improved CO2 capture performance from even moist gas mixtures but not enough to compete with chemisorbents. This article is part of the themed issue 'Coordination polymers and metal-organic frameworks: materials by design'.

  13. Flue-gas and direct-air capture of CO2 by porous metal-organic materials.

    PubMed

    Madden, David G; Scott, Hayley S; Kumar, Amrit; Chen, Kai-Jie; Sanii, Rana; Bajpai, Alankriti; Lusi, Matteo; Curtin, Teresa; Perry, John J; Zaworotko, Michael J

    2017-01-13

    Sequestration of CO2, either from gas mixtures or directly from air (direct air capture), is a technological goal important to large-scale industrial processes such as gas purification and the mitigation of carbon emissions. Previously, we investigated five porous materials, three porous metal-organic materials (MOMs), a benchmark inorganic material, ZEOLITE 13X: and a chemisorbent, TEPA-SBA-15: , for their ability to adsorb CO2 directly from air and from simulated flue-gas. In this contribution, a further 10 physisorbent materials that exhibit strong interactions with CO2 have been evaluated by temperature-programmed desorption for their potential utility in carbon capture applications: four hybrid ultramicroporous materials, SIFSIX-3-CU: , DICRO-3-NI-I: , SIFSIX-2-CU-I: and MOOFOUR-1-NI: ; five microporous MOMs, DMOF-1: , ZIF-8: , MIL-101: , UIO-66: and UIO-66-NH2: ; an ultramicroporous MOM, NI-4-PYC: The performance of these MOMs was found to be negatively impacted by moisture. Overall, we demonstrate that the incorporation of strong electrostatics from inorganic moieties combined with ultramicropores offers improved CO2 capture performance from even moist gas mixtures but not enough to compete with chemisorbents.This article is part of the themed issue 'Coordination polymers and metal-organic frameworks: materials by design'.

  14. On the behaviour of a stressed cotton canopy in a direct air stream

    NASA Technical Reports Server (NTRS)

    Schutt, J. B.; Newcomb, W. W.

    1986-01-01

    Reflectance variations of a stressed cotton canopy were conducted in the presence of a fan-generated air stream to investigate the effects of air movement and the resulting temperature changes on remotely-sensed data. The initial drop in reflectance after application of the air stream was found to be greatest in the morning because leaf turgor was at a maximum, enabling leaves on the windward side of the canopy to assume surprisingly stable vertical positions. By afternoon, a reduction in leaf turgor was responsible for less stem displacement and consequently a reduction in light-trapping capability. However, reflectance oscillations were greater because the leaves had become sufficiently limp to flutter at the edges and about the petioles exposing both adaxial and abaxial surfaces to the incident light.

  15. Carcinogenicity of ambient air pollution: use of biomarkers, lessons learnt and future directions

    PubMed Central

    Vineis, Paolo

    2015-01-01

    The association between ambient air pollution (AAP) exposure and lung cancer risk has been investigated in prospective studies and the results are generally consistent, indicating that long-term exposure to air pollution can cause lung cancer. Biomarkers can enhance research on the health effects of air pollution by improving exposure assessment, increasing the understanding of mechanisms, and enabling the investigation of individual susceptibility. In this review, we assess DNA adducts as biomarkers of exposure to AAP and early biological effect, and DNA methylation as biomarker of early biological change and discuss critical issues arising from their incorporation in AAP health impact evaluations, such as confounding, individual susceptibilities, timing, intensity and duration of exposure, and investigated tissue. DNA adducts and DNA methylation are treated as paradigms. However, the lessons, learned from their use in the examination of AAP carcinogenicity, can be applied to investigations of other biomarkers involved in AAP carcinogenicity. PMID:25694819

  16. EXTRAN: A computer code for estimating concentrations of toxic substances at control room air intakes

    SciTech Connect

    Ramsdell, J.V.

    1991-03-01

    This report presents the NRC staff with a tool for assessing the potential effects of accidental releases of radioactive materials and toxic substances on habitability of nuclear facility control rooms. The tool is a computer code that estimates concentrations at nuclear facility control room air intakes given information about the release and the environmental conditions. The name of the computer code is EXTRAN. EXTRAN combines procedures for estimating the amount of airborne material, a Gaussian puff dispersion model, and the most recent algorithms for estimating diffusion coefficients in building wakes. It is a modular computer code, written in FORTRAN-77, that runs on personal computers. It uses a math coprocessor, if present, but does not require one. Code output may be directed to a printer or disk files. 25 refs., 8 figs., 4 tabs.

  17. 76 FR 62605 - Airworthiness Directives; Viking Air Limited Model DHC-3 (Otter) Airplanes With Supplemental Type...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-11

    ... Limited Model DHC-3 (Otter) Airplanes With Supplemental Type Certificate (STC) SA 09866SC AGENCY: Federal... DHC-3 (Otter) airplanes equipped with a Honeywell TPE331- 10 or -12JR turboprop engine installed per... for Viking Air Limited Model DHC-3 (Otter) airplanes equipped with a Honeywell TPE331-10 or...

  18. New Directions: Understanding Interactions of Air Quality and Climate Change at Regional Scales

    EPA Science Inventory

    The estimates of the short-lived climate forcers’ (SLCFs) impacts and mitigation effects on the radiation balance have large uncertainty because the current global model set-ups and simulations contain simplified parameterizations and do not completely cover the full range of air...

  19. 75 FR 82219 - Airworthiness Directives; Air Tractor, Inc. Models AT-802 and AT-802A Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-30

    ... following service information from Snow Engineering Co.: Service Letter 80GG, revised December 21, 2005... any personal information you provide. We will also post a report summarizing each substantive verbal... that section, Congress charges the FAA with promoting safe flight of civil aircraft in air commerce...

  20. 75 FR 70106 - Airworthiness Directives; Viking Air Limited (Type Certificate Previously Held by Bombardier, Inc...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-17

    ... fuel tank explosion. Viking Air Limited has revised Chapter 5 of the DHC-7 Maintenance Manual, PSM 1-7... (TR) listed in Chapter 5 of the Viking Dash 7 Series 1/100 Aircraft Maintenance Manual (AMM), PSM 1-7..., 2008, to Chapter 5 of the Viking Dash 7 Series 100 Maintenance Manual PSM 1-7-2. Note 1: This may...

  1. Direct Initiation of Detonation in Unconfined Ethylene-Air Mixtures - Influence of Bag Size,

    DTIC Science & Technology

    1982-12-01

    preparation for...recording the time of ignition (det zero) on magnetic tape as a reference. The desired gas mixture was prepared by continuous flow of regulated quantities...constant velocity within 3% of the theoretical C-J velocity (Vcj) were observed in all ehtylene -air mixtures near stoichiometric composition (6.54%

  2. Sterilisation in the laboratory autoclave using direct air displacement by steam.

    PubMed Central

    Everall, P H; Morris, C A; Yarnell, R

    1978-01-01

    A device using a steam injection funnel is described by means of which air can be driven quickly and surely from an autoclave load. It is simple and inexpensive, necessitates no changes in the working routine of a microbiology laboratory, and does not interfere with the operation of the autoclave in its normal mode. Images Fig. 1 Fig. 3 PMID:344345

  3. Design and implementation of immiscible carbon dioxide displacement projects (CO/sub 2/ huff-puff) in south Louisiana

    SciTech Connect

    Palmer, F.S.; Landry, R.W.; Bou-Mikael, S.

    1986-01-01

    The CO/sub 2/ Huff-Puff (Immiscible Carbon Dioxide Displacement) process is described including reservoir mechanics. The planning, design, and implementation of the projects including the equipment specifically designed and constructed for these projects are discussed. Case histories of selected projects are included. The paper contains field operations detailing the problems encountered and subsequentially corrected.

  4. Hybrid Li-air battery cathodes with sparse carbon nanotube arrays directly grown on carbon fiber papers

    SciTech Connect

    Li, YF; Huang, ZP; Huang, K; Carnahan, D; Xing, YC

    2013-11-01

    Sparsely populated, vertically aligned nitrogen doped carbon nanotube arrays (CNTAs) with dislocated-graphene stacking were grown directly on carbon fiber papers and investigated as hierarchical air cathodes in hybrid Li-air batteries with aqueous catholytes. The CNTAs were made with electrodeposited Ni nanocatalysts, followed by plasma-enhanced chemical vapor deposition. The thus obtained CNTAs can reach a population number density as low as similar to 10(7) per cm(2) on the carbon fibers, achieving an extremely high porosity of over 99% for the active layer in the cathode. The sparse CNTAs not only provide effective pathways for the reacting species, but also show a significantly high catalytic activity, which is found to be comparable to that of a supported Pt electrocatalyst. The high activity of the CNTAs is attributed to the rich graphene edges exposed on the CNT surface and nitrogen doping. Hybrid Li-air batteries with such cathodes have shown a consistent discharging capacity of 710 mA h g(-1) and a specific energy of 2057 W h kg(-1) at 0.5 mA cm(-2). Stable charge-discharge cycling at 0.5 mA cm(-2) showed an average potential difference of 1.35 V, indicative of a relatively small overpotential and high round trip efficiency (71%). Furthermore, the hybrid Li-air battery based on the hierarchical cathode can reach a power density as high as 10.4 mW cm(-2).

  5. Fabrication of a polyvinylidene difluoride fiber with a metal core and its application as directional air flow sensor

    NASA Astrophysics Data System (ADS)

    Bian, Yixiang; Liu, Rongrong; Hui, Shen

    2016-09-01

    We fabricated a sensitive air flow detector that mimic the sensing mechanism found at the tail of some insects. [see Y. Yang, A. Klein, H. Bleckmann and C. Liu, Appl. Phys. Lett. 99(2) (2011); J. J. Heys, T. Gedeon, B. C. Knott and Y. Kim, J. Biomech. 41(5), 977 (2008); J. Tao and X. Yu, Smart Mat. Struct. 21(11) (2012)]. Our bionic airflow sensor uses a polyvinylidene difluoride (PVDF) microfiber with a molybdenum core which we produced with the hot extrusion tensile method. The surface of the fiber is partially coated with conductive silver adhesive that serve as surface electrodes. A third electrode, the metal core is used to polarize polyvinylidene difluoride (PVDF) under the surface electrodes. The cantilever beam structure of the prepared symmetric electrodes of metal core piezoelectric fiber (SMPF) is used as the artificial hair airflow sensor. The surface electrodes are used to measure output voltage. Our theoretical and experimental results show that the SMPF responds fast to air flow changes, the output charge has an exponential correlation with airflow velocity and a cosine relation with the direction of airflow. Our bionic airflow sensor with directional sensing ability can also measure air flow amplitude. [see H. Droogendijk, R. G. P. Sanders and G. J. M. Krijnen, New J. Phys. 15 (2013)]. By using two surface electrodes, our sensing circuit further improves sensitivity.

  6. Inactivation of Staphylococcus aureus and Enterococcus faecalis by a direct-current, cold atmospheric-pressure air plasma microjet☆

    PubMed Central

    Tian, Ye; Sun, Peng; Wu, Haiyan; Bai, Na; Wang, Ruixue; Zhu, Weidong; Zhang, Jue; Liu, Fuxiang

    2010-01-01

    Objective A direct-current, cold atmospheric-pressure air plasma microjet (PMJ) was performed to inactivate Staphylococcus aureus (S. aureus) and Enterococcus faecalis (E. faecalis) in air. The process of sterilization and morphology of bacteria was observed. We wish to know the possible inactivation mechanisms of PMJ and explore a potential application in dental and other temperature sensitive treatment. Methods In this study, we employed a direct current, atmospheric pressure, cold air PMJ to inactivate bacterias. Scanning electron microscopy was employed to evaluate the morphology of S. aureus and showed rupture of cell walls after the plasma treatment and Optical emission spectrum (OES) were used to understand the possible inactivation mechanisms of PMJ. Results The inactivation rates could reach 100% in 5 min. When the distance between the exit nozzle of the PMJ device and Petri dish was extended from 1 cm to 3 cm, effective inactivation was also observed with a similar inactivation curve. Conclusion The inactivation of bacteria is attributed to the abundant reactive oxygen and nitrogen species, as well as ultroviolet radiation in the plasma. Different life spans and defensibilities of these killing agents may hold the key to understanding the different inactivation curves at different treatment distances. PMID:23554639

  7. Intra-puff CO and CO 2 measurements of cigarettes with iron oxide cigarette paper using quantum cascade laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Crawford, Danielle R.; Parrish, Milton E.; Gee, Diane L.; Harward, Charles N.

    2007-05-01

    The objective of this research was to apply Fourier transform infrared spectroscopy (FTIR) and tunable infrared laser differential absorption spectroscopy (TILDAS) for measuring selected gaseous constituents in mainstream (MS) and sidestream (SS) smoke for experimental cigarettes designed to reduce MS CO using iron oxide cigarette papers. These two complimentary analytical techniques are well suited for providing per puff smoke deliveries and intra-puff evolution profiles in cigarette smoke respectively. The quad quantum cascade (QC) laser high resolution infrared spectroscopy system has the necessary temporal and spectral resolution and whole smoke analysis capabilities to provide detailed information for CO and CO 2 as they are being formed in both MS and SS smoke. The QC laser system has an optimal data rate of 20 Hz and a unique puffing system, with a square wave shaped puff, that allows whole smoke to enter an 18 m, 0.3 L multi-pass gas cell in real time (0.1 s cell response time) requiring no syringe or Cambridge filter pad. Another similar multi-pass gas cell with a 36 m pathlength simultaneously monitors the sidestream cigarette smoke. The smoke from experimental cigarettes manufactured with two types of iron oxide papers were compared to the smoke from cigarettes manufactured similarly without iron oxide in the paper using both instrument systems. The delivery per puff determined by the QC laser method agreed with FTIR results. MS CO intra-puff evolution profiles for iron oxide prototype cigarettes demonstrated CO reduction when compared to cigarettes without iron oxide paper. Additionally, both CO and CO 2 intra-puff evolution profiles of the cigarettes with iron oxide paper showed a significant reduction at the initial portion of the 2 s puff not observed in the non-iron oxide prototype cigarettes. This effect also was observed for ammonia and ethylene, suggesting that physical parameters such as paper porosity and burn rate are important. The SS CO and

  8. Instructions for observing air temperature, humidity, and direction and force of wind

    USGS Publications Warehouse

    ,

    1892-01-01

    Description of instruments.-The temperature and humidity of the air are obtained from the simultaneous observation of a pair of mercurial thermometers termed the dry and the wet bulb. The air temperature is given by the dry-bulb thermometer, and the humidity is obtained from the combined readings of both. The wet-bulb thermometer differs from the dry-bulb thermometer only in having its bulb covered with thin muslin, which is wetted in pure water at each observation.The two thermometers are fastened in a light metal 'or wooden frame. To this frame is to be attached a stout cord for the whirling of the thermometers, which is an essential part of every observation.

  9. 75 FR 43092 - Airworthiness Directives; Viking Air Limited (Type Certificate Previously Held by Bombardier, Inc...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-23

    ... explosion. Viking Air Limited has revised Chapter 5 of the DHC-7 Maintenance Manual, PSM 1-7-2, to introduce..., and 5-113, all dated December 15, 2008, to the Viking DHC-7 Dash 7 Maintenance Manual, PSM-1-7-2... of this AD, to Chapter 5 of the Viking DHC-7 Dash 7 Maintenance Manual (MM), PSM 1- 7-2;...

  10. Demand Controlled Economizer Cycles: A Direct Digital Control Scheme for Heating, Ventilating, and Air Conditioning Systems,

    DTIC Science & Technology

    1984-05-01

    includes a heating coil and thermostatic control to maintain the air in this path at an elevated temperature, typically around 80 degrees Farenheit (80 F...1238 Aug 1 1236 1237 52 1074 1126 50 1033 1083 Sep 8 8 5W 862 7T 600 678 75 603 7r Oct 51 400 451 119 204 323 115 207 322 ov 64 123 287 187 71 258

  11. Breeding Super-Earths and Birthing Super-puffs in Transitional Disks

    NASA Astrophysics Data System (ADS)

    Lee, Eve J.; Chiang, Eugene

    2016-02-01

    The riddle posed by super-Earths (1-4R⊕, 2-20M⊕) is that they are not Jupiters: their core masses are large enough to trigger runaway gas accretion, yet somehow super-Earths accreted atmospheres that weigh only a few percent of their total mass. We show that this puzzle is solved if super-Earths formed late, as the last vestiges of their parent gas disks were about to clear. This scenario would seem to present fine-tuning problems, but we show that there are none. Ambient gas densities can span many (in one case up to 9) orders of magnitude, and super-Earths can still robustly emerge after ˜0.1-1 Myr with percent-by-weight atmospheres. Super-Earth cores are naturally bred in gas-poor environments where gas dynamical friction has weakened sufficiently to allow constituent protocores to gravitationally stir one another and merge. So little gas is present at the time of core assembly that cores hardly migrate by disk torques: formation of super-Earths can be in situ. The basic picture—that close-in super-Earths form in a gas-poor (but not gas-empty) inner disk, fed continuously by gas that bleeds inward from a more massive outer disk—recalls the largely evacuated but still accreting inner cavities of transitional protoplanetary disks. We also address the inverse problem presented by super-puffs: an uncommon class of short-period planets seemingly too voluminous for their small masses (4-10R⊕, 2-6M⊕). Super-puffs most easily acquire their thick atmospheres as dust-free, rapidly cooling worlds outside ˜1 AU where nebular gas is colder, less dense, and therefore less opaque. Unlike super-Earths, which can form in situ, super-puffs probably migrated in to their current orbits; they are expected to form the outer links of mean-motion resonant chains, and to exhibit greater water content. We close by confronting observations and itemizing remaining questions.

  12. X-ray results from a modified nozzle and double gas puff z pinch

    SciTech Connect

    Chang, T.; Fisher, A.; Van Drie, A. )

    1991-03-15

    The nozzle and the anode of the UCI (University of California, Irvine) {ital z}-pinch facility were modified to study the influence of the anode-cathode geometrical structure on the stability of the pinch and the x-ray yield of the pinch. The anode was modified from a honey-comb to a hollow cylinder with a 4-cm diameter and a {similar to}3.5-mm wall thickness, placed 2 cm below the cathode. The cavity in the center of the cathode was enlarged from 6-mm diameter to 36 mm. The design of the cathode and the anode showed a marked improvement of the pinch stability over the previous design. Both zirconium and carbon-carbon nozzle were used for the Kr and Ne {ital z} pinches. After a few tens of shots the Zr nozzle was melted at the edge and the pinch degraded, while the carbon-carbon nozzle did not sustain any damage for more than 300 shots. Some shots showed the {ital di}/{ital dt} at the implosion is {similar to}5 times higher than the {ital di}/{ital dt} at the beginning of the discharge, this has never been obtained at UCI before. This ratio of the initial {ital di}/{ital dt} to pinch {ital di}/{ital dt} is a measure of the pinch quality. By serendipity it was found that double gas puff {ital z} pinch increased the hard x-ray ({gt}1 keV) output by about an order of magnitude. The nozzle was then modified to allow double puff operation. A 3.4-mm-diam hole was opened at the center of the nozzle and a plunger was inserted from the top to control the mass of the gas entering the hole. The diagnostics include {ital di}/{ital dt} coil, soft, and hard x-ray diodes. Soft and hard x-ray emission are both enhanced by the double gas puff {ital z} pinch.

  13. BREEDING SUPER-EARTHS AND BIRTHING SUPER-PUFFS IN TRANSITIONAL DISKS

    SciTech Connect

    Lee, Eve J.; Chiang, Eugene E-mail: echiang@astro.berkeley.edu

    2016-02-01

    The riddle posed by super-Earths (1–4R{sub ⊕}, 2–20M{sub ⊕}) is that they are not Jupiters: their core masses are large enough to trigger runaway gas accretion, yet somehow super-Earths accreted atmospheres that weigh only a few percent of their total mass. We show that this puzzle is solved if super-Earths formed late, as the last vestiges of their parent gas disks were about to clear. This scenario would seem to present fine-tuning problems, but we show that there are none. Ambient gas densities can span many (in one case up to 9) orders of magnitude, and super-Earths can still robustly emerge after ∼0.1–1 Myr with percent-by-weight atmospheres. Super-Earth cores are naturally bred in gas-poor environments where gas dynamical friction has weakened sufficiently to allow constituent protocores to gravitationally stir one another and merge. So little gas is present at the time of core assembly that cores hardly migrate by disk torques: formation of super-Earths can be in situ. The basic picture—that close-in super-Earths form in a gas-poor (but not gas-empty) inner disk, fed continuously by gas that bleeds inward from a more massive outer disk—recalls the largely evacuated but still accreting inner cavities of transitional protoplanetary disks. We also address the inverse problem presented by super-puffs: an uncommon class of short-period planets seemingly too voluminous for their small masses (4–10R{sub ⊕}, 2–6M{sub ⊕}). Super-puffs most easily acquire their thick atmospheres as dust-free, rapidly cooling worlds outside ∼1 AU where nebular gas is colder, less dense, and therefore less opaque. Unlike super-Earths, which can form in situ, super-puffs probably migrated in to their current orbits; they are expected to form the outer links of mean-motion resonant chains, and to exhibit greater water content. We close by confronting observations and itemizing remaining questions.

  14. Air-directed attachment of coccoid bacteria to the surface of superhydrophobic lotus-like titanium.

    PubMed

    Truong, V K; Webb, H K; Fadeeva, E; Chichkov, B N; Wu, A H F; Lamb, R; Wang, J Y; Crawford, R J; Ivanova, E P

    2012-01-01

    Superhydrophobic titanium surfaces fabricated by femtosecond laser ablation to mimic the structure of lotus leaves were assessed for their ability to retain coccoid bacteria. Staphylococcus aureus CIP 65.8T, S. aureus ATCC 25923, S. epidermidis ATCC 14990T and Planococcus maritimus KMM 3738 were retained by the surface, to varying degrees. However, each strain was found to preferentially attach to the crevices located between the microscale surface features. The upper regions of the microscale features remained essentially cell-free. It was hypothesised that air entrapped by the topographical features inhibited contact between the cells and the titanium substratum. Synchrotron SAXS revealed that even after immersion for 50 min, nano-sized air bubbles covered 45% of the titanium surface. After 1 h the number of cells of S. aureus CIP 65.8T attached to the lotus-like titanium increased to 1.27×10(5) mm(-2), coinciding with the replacement of trapped air by the incubation medium.

  15. Modeling 3D conjugate heat and mass transfer for turbulent air drying of Chilean papaya in a direct contact dryer

    NASA Astrophysics Data System (ADS)

    Lemus-Mondaca, Roberto A.; Vega-Gálvez, Antonio; Zambra, Carlos E.; Moraga, Nelson O.

    2017-01-01

    A 3D model considering heat and mass transfer for food dehydration inside a direct contact dryer is studied. The k- ɛ model is used to describe turbulent air flow. The samples thermophysical properties as density, specific heat, and thermal conductivity are assumed to vary non-linearly with temperature. FVM, SIMPLE algorithm based on a FORTRAN code are used. Results unsteady velocity, temperature, moisture, kinetic energy and dissipation rate for the air flow are presented, whilst temperature and moisture values for the food also are presented. The validation procedure includes a comparison with experimental and numerical temperature and moisture content results obtained from experimental data, reaching a deviation 7-10 %. In addition, this turbulent k- ɛ model provided a better understanding of the transport phenomenon inside the dryer and sample.

  16. Amplification and expression of a salivary gland DNA puff gene in the prothoracic gland of Bradysia hygida (Diptera: Sciaridae).

    PubMed

    Candido-Silva, Juliana Aparecida; Machado, Maiaro Cabral Rosa; Hartfelder, Klaus Hartmann; de Almeida, Jorge Cury; Paçó-Larson, Maria Luisa; Monesi, Nadia

    2015-03-01

    The DNA puff BhC4-1 gene, located in DNA puff C4 of Bradysiahygida, is amplified and expressed in the salivary gland at the end of the fourth larval instar as a late response to the increase in 20-hydroxyecdysone titer that triggers metamorphosis. Functional studies revealed that the mechanisms that regulate BhC4-1 expression in the salivary gland are conserved in transgenic Drosophila. These studies also led to the identification of a cis-regulatory module that drives developmentally regulated expression of BhC4-1-lacZ in the prothoracic gland cells of the ring gland, a compound organ which in Drosophila results from the fusion of the prothoracic glands, the corpus allatum and the corpus cardiacum. Here we have investigated the occurrence of BhC4-1 expression in B. hygida prothoracic glands. We report the identification of the B. hygida prothoracic gland and demonstrate that it releases ecdysone. Using RT-qPCR, western blots and immunolocalization experiments, we demonstrate that the BhC4-1 mRNA and the BhC4-1 protein are both expressed in the B. hygida prothoracic glands at the same time that DNA puff C4 is formed in the salivary gland. We also show that BhC4-1 is concomitantly amplified 4.8-fold in the prothoracic gland and 23-fold in the salivary gland. Our results reveal the occurrence of stage specific expression of a DNA puff gene in the prothoracic glands of B. hygida, and extend previous studies that have shown that DNA puff genes expression is not restricted to the salivary gland. In addition, the description of stage specific gene amplification in the prothoracic glands of B. hygida constitutes the first demonstration that gene amplification in Diptera might occur concomitantly in two different tissues in the same developmental stage.

  17. Direct electrolytic dissolution of silicate minerals for air CO2 mitigation and carbon-negative H2 production

    PubMed Central

    Rau, Greg H.; Carroll, Susan A.; Bourcier, William L.; Singleton, Michael J.; Smith, Megan M.; Aines, Roger D.

    2013-01-01

    We experimentally demonstrate the direct coupling of silicate mineral dissolution with saline water electrolysis and H2 production to effect significant air CO2 absorption, chemical conversion, and storage in solution. In particular, we observed as much as a 105-fold increase in OH− concentration (pH increase of up to 5.3 units) relative to experimental controls following the electrolysis of 0.25 M Na2SO4 solutions when the anode was encased in powdered silicate mineral, either wollastonite or an ultramafic mineral. After electrolysis, full equilibration of the alkalized solution with air led to a significant pH reduction and as much as a 45-fold increase in dissolved inorganic carbon concentration. This demonstrated significant spontaneous air CO2 capture, chemical conversion, and storage as a bicarbonate, predominantly as NaHCO3. The excess OH− initially formed in these experiments apparently resulted via neutralization of the anolyte acid, H2SO4, by reaction with the base mineral silicate at the anode, producing mineral sulfate and silica. This allowed the NaOH, normally generated at the cathode, to go unneutralized and to accumulate in the bulk electrolyte, ultimately reacting with atmospheric CO2 to form dissolved bicarbonate. Using nongrid or nonpeak renewable electricity, optimized systems at large scale might allow relatively high-capacity, energy-efficient (<300 kJ/mol of CO2 captured), and inexpensive (<$100 per tonne of CO2 mitigated) removal of excess air CO2 with production of carbon-negative H2. Furthermore, when added to the ocean, the produced hydroxide and/or (bi)carbonate could be useful in reducing sea-to-air CO2 emissions and in neutralizing or offsetting the effects of ongoing ocean acidification. PMID:23729814

  18. Direct electrolytic dissolution of silicate minerals for air CO2 mitigation and carbon-negative H2 production.

    PubMed

    Rau, Greg H; Carroll, Susan A; Bourcier, William L; Singleton, Michael J; Smith, Megan M; Aines, Roger D

    2013-06-18

    We experimentally demonstrate the direct coupling of silicate mineral dissolution with saline water electrolysis and H2 production to effect significant air CO2 absorption, chemical conversion, and storage in solution. In particular, we observed as much as a 10(5)-fold increase in OH(-) concentration (pH increase of up to 5.3 units) relative to experimental controls following the electrolysis of 0.25 M Na2SO4 solutions when the anode was encased in powdered silicate mineral, either wollastonite or an ultramafic mineral. After electrolysis, full equilibration of the alkalized solution with air led to a significant pH reduction and as much as a 45-fold increase in dissolved inorganic carbon concentration. This demonstrated significant spontaneous air CO2 capture, chemical conversion, and storage as a bicarbonate, predominantly as NaHCO3. The excess OH(-) initially formed in these experiments apparently resulted via neutralization of the anolyte acid, H2SO4, by reaction with the base mineral silicate at the anode, producing mineral sulfate and silica. This allowed the NaOH, normally generated at the cathode, to go unneutralized and to accumulate in the bulk electrolyte, ultimately reacting with atmospheric CO2 to form dissolved bicarbonate. Using nongrid or nonpeak renewable electricity, optimized systems at large scale might allow relatively high-capacity, energy-efficient (<300 kJ/mol of CO2 captured), and inexpensive (<$100 per tonne of CO2 mitigated) removal of excess air CO2 with production of carbon-negative H2. Furthermore, when added to the ocean, the produced hydroxide and/or (bi)carbonate could be useful in reducing sea-to-air CO2 emissions and in neutralizing or offsetting the effects of ongoing ocean acidification.

  19. Cross-Section Covariance Data Processing with the AMPX Module PUFF-IV

    SciTech Connect

    Wiarda, Dorothea; Leal, Luiz C; Dunn, Michael E

    2011-01-01

    The ENDF community is endeavoring to release an updated version of the ENDF/B-VII library (ENDF/B-VII.1). In the new release several new evaluations containing covariance information have been added, as the community strives to add covariance information for use in programs like the TSUNAMI (Tools for Sensitivity and Uncertainty Analysis Methodology Implementation) sequence of SCALE (Ref 1). The ENDF/B formatted files are processed into libraries to be used in transport calculations using the AMPX code system (Ref 2) or the NJOY code system (Ref 3). Both codes contain modules to process covariance matrices: PUFF-IV for AMPX and ERRORR in the case of NJOY. While the cross section processing capability between the two code systems has been widely compared, the same is not true for the covariance processing. This paper compares the results for the two codes using the pre-release version of ENDF/B-VII.1.

  20. Use of vacuum arc plasma guns for a metal puff Z-pinch system

    SciTech Connect

    Rousskikh, A. G.; Zhigalin, A. S.; Oreshkin, V. I.; Chaikovsky, S. A.; Labetskaya, N. A.; Baksht, R. B.

    2011-09-15

    The performance of a metal puff Z-pinch system has been studied experimentally. In this type of system, the initial cylindrical shell 4 cm in diameter was produced by ten plasma guns. Each gun initiates a vacuum arc operating between magnesium electrodes. The net current of the guns was 80 kA. The arc-produced plasma shell was compressed by using a 450-kA, 450-ns driver, and as a result, a plasma column 0.3 cm in diameter was formed. The electron temperature of the plasma reached 400 eV at an average ion concentration of 1.85 {center_dot} 10{sup 18} cm{sup -3}. The power of the Mg K-line radiation emitted by the plasma for 15-30 ns was 300 MW/cm.

  1. Current distribution measurements inside an electromagnetic plasma gun operated in a gas-puff mode

    NASA Astrophysics Data System (ADS)

    Poehlmann, Flavio R.; Cappelli, Mark A.; Rieker, Gregory B.

    2010-12-01

    Measurements are presented of the time-dependent current distribution inside a coaxial electromagnetic plasma gun. The measurements are carried out using an array of six axially distributed dual-Rogowski coils in a balanced circuit configuration. The radial current distributions indicate that operation in the gas-puff mode, i.e., the mode in which the electrode voltage is applied before injection of the gas, results in a stationary ionization front consistent with the presence of a plasma deflagration. The effects of varying the bank capacitance, transmission line inductance, and applied electrode voltage were studied over the range from 14 to 112 μF, 50 to 200 nH, and 1 to 3 kV, respectively.

  2. Current distribution measurements inside an electromagnetic plasma gun operated in a gas-puff mode.

    PubMed

    Poehlmann, Flavio R; Cappelli, Mark A; Rieker, Gregory B

    2010-12-01

    Measurements are presented of the time-dependent current distribution inside a coaxial electromagnetic plasma gun. The measurements are carried out using an array of six axially distributed dual-Rogowski coils in a balanced circuit configuration. The radial current distributions indicate that operation in the gas-puff mode, i.e., the mode in which the electrode voltage is applied before injection of the gas, results in a stationary ionization front consistent with the presence of a plasma deflagration. The effects of varying the bank capacitance, transmission line inductance, and applied electrode voltage were studied over the range from 14 to 112 μF, 50 to 200 nH, and 1 to 3 kV, respectively.

  3. C02 Huff-n-Puff Process in a Light Oil shallow Shelf Carbonate Reservoir

    SciTech Connect

    Kovar, Mark; Wehner, Scott

    1997-06-30

    The principal objective of this CO2 Huff-n-Puff (H-n-P) project is to determine the feasibility and practicality of the technology in a waterflooded shallow shelf carbonate environment. The results of parametric simulation of the CO2 H-n-P process, coupled with the Central Vacuum Unit (CVU) reservoir characterization components will be used to determine if this process is technically and economically feasible for field implementation. The technology transfer objective of the project is to disseminate the knowledge gained through an innovative plan in support of the Department of Energy's (DOE) objective of increasing domestic oil production and deferring the abandonment of shallow shelf carbonate (SSC) reservoirs. Tasks associated with this objective are carried out in what is considered a timely effort for near-term goals.

  4. Compression enhancement by current stepping in a multicascade liner gas-puff Z-pinch plasma

    NASA Astrophysics Data System (ADS)

    Khattak, N. A. D.; Ahmad, Zahoor; Zakaullah, M.; Murtaza, G.

    2008-04-01

    Plasma dynamics of a liner consisting of two or three annular cascade gas-puffs with entrained axial magnetic field is studied using the modified snow-plow model. The current stepping technique (Les 1984 J. Phys. D: Appl. Phys. 17 733) is employed to enhance compression of the imploding plasma. A small-diameter low-voltage-driven system of imploding plasma is considered in order to work out the possibility of the highest gain, in terms of plasma parameters and radiation yield with a relatively simple and compact system. Our numerical results demonstrate that current stepping enhances the plasma compression, yielding high values of the plasma parameters and compressed magnetic field Bz (in magnitudes), if the switching time for the additional current is properly synchronized.

  5. Current distribution measurements inside an electromagnetic plasma gun operated in a gas-puff mode

    PubMed Central

    Poehlmann, Flavio R.; Cappelli, Mark A.; Rieker, Gregory B.

    2010-01-01

    Measurements are presented of the time-dependent current distribution inside a coaxial electromagnetic plasma gun. The measurements are carried out using an array of six axially distributed dual-Rogowski coils in a balanced circuit configuration. The radial current distributions indicate that operation in the gas-puff mode, i.e., the mode in which the electrode voltage is applied before injection of the gas, results in a stationary ionization front consistent with the presence of a plasma deflagration. The effects of varying the bank capacitance, transmission line inductance, and applied electrode voltage were studied over the range from 14 to 112 μF, 50 to 200 nH, and 1 to 3 kV, respectively. PMID:21267082

  6. Computational modeling of Krypton gas puffs with tailored mass density profiles on Z

    SciTech Connect

    Jennings, C. A.; Ampleford, D. J.; Lamppa, D. C.; Hansen, S. B.; Jones, B.; Harvey-Thompson, A. J.; Jobe, M.; Strizic, T.; Reneker, J.; Rochau, G. A.; Cuneo, M. E.

    2015-05-15

    Large diameter multi-shell gas puffs rapidly imploded by high current (∼20 MA, ∼100 ns) on the Z generator of Sandia National Laboratories are able to produce high-intensity Krypton K-shell emission at ∼13 keV. Efficiently radiating at these high photon energies is a significant challenge which requires the careful design and optimization of the gas distribution. To facilitate this, we hydrodynamically model the gas flow out of the nozzle and then model its implosion using a 3-dimensional resistive, radiative MHD code (GORGON). This approach enables us to iterate between modeling the implosion and gas flow from the nozzle to optimize radiative output from this combined system. Guided by our implosion calculations, we have designed gas profiles that help mitigate disruption from Magneto-Rayleigh–Taylor implosion instabilities, while preserving sufficient kinetic energy to thermalize to the high temperatures required for K-shell emission.

  7. Computational modeling of Krypton gas puffs with tailored mass density profiles on Z

    SciTech Connect

    Jennings, Christopher A.; Ampleford, David J.; Lamppa, Derek C.; Hansen, Stephanie B.; Jones, Brent Manley; Harvey-Thompson, Adam James; Jobe, Marc Ronald Lee; Reneker, Joseph; Rochau, Gregory A.; Cuneo, Michael Edward; Strizic, T.

    2015-05-18

    Large diameter multi-shell gas puffs rapidly imploded by high current (~20 MA, ~100 ns) on the Z generator of Sandia National Laboratories are able to produce high-intensity Krypton K-shell emission at ~13 keV. Efficiently radiating at these high photon energies is a significant challenge which requires the careful design and optimization of the gas distribution. To facilitate this, we hydrodynamically model the gas flow out of the nozzle and then model its implosion using a 3-dimensional resistive, radiative MHD code (GORGON). This approach enables us to iterate between modeling the implosion and gas flow from the nozzle to optimize radiative output from this combined system. Furthermore, guided by our implosion calculations, we have designed gas profiles that help mitigate disruption from Magneto-Rayleigh–Taylor implosion instabilities, while preserving sufficient kinetic energy to thermalize to the high temperatures required for K-shell emission.

  8. Application of bio-huff-`n`-puff technology at Jilin oil field

    SciTech Connect

    Xiu-Yuan Wang; Yan-Fed Xue; Gang Dai; Ling Zhao

    1995-12-31

    An enriched culture 48, capable of adapting to the reservoir conditions and fermenting molasses to produce gas and acid, was used as an inoculum for bio- huff-`n`-puff tests at Fuyu oil area of Jilin oil field. The production well was injected with water containing 4-6% (v/v) molasses and inoculum, and then shut in. After 15-21 days, the well was placed back in operation. A total of 44 wells were treated, of which only two wells showed no effects. The daily oil production of treated wells increased by 33.3-733.3%. Up to the end of 1994, the oil production was increased by 204 tons per well on average. Results obtained from various types of production wells were discussed.

  9. Computational modeling of Krypton gas puffs with tailored mass density profiles on Z

    DOE PAGES

    Jennings, Christopher A.; Ampleford, David J.; Lamppa, Derek C.; ...

    2015-05-18

    Large diameter multi-shell gas puffs rapidly imploded by high current (~20 MA, ~100 ns) on the Z generator of Sandia National Laboratories are able to produce high-intensity Krypton K-shell emission at ~13 keV. Efficiently radiating at these high photon energies is a significant challenge which requires the careful design and optimization of the gas distribution. To facilitate this, we hydrodynamically model the gas flow out of the nozzle and then model its implosion using a 3-dimensional resistive, radiative MHD code (GORGON). This approach enables us to iterate between modeling the implosion and gas flow from the nozzle to optimize radiativemore » output from this combined system. Furthermore, guided by our implosion calculations, we have designed gas profiles that help mitigate disruption from Magneto-Rayleigh–Taylor implosion instabilities, while preserving sufficient kinetic energy to thermalize to the high temperatures required for K-shell emission.« less

  10. Characteristics of a Direct Current-driven plasma jet operated in open air

    SciTech Connect

    Li, Xuechen; Bao, Wenting; Di, Cong; Jia, Pengying

    2013-09-30

    A DC-driven plasma jet has been developed to generate a diffuse plasma plume by blowing argon into the ambient air. The plasma plume, showing a cup shape with a diameter of several centimeters at a higher voltage, is a pulsed discharge despite a DC voltage is applied. The pulse frequency is investigated as a function of the voltage under different gap widths and gas flow rates. Results show that plasma bullets propagate from the hollow needle to the plate electrode by spatially resolved measurement. A supposition about non-electroneutral trail of the streamer is proposed to interpret these experimental phenomena.

  11. Research Update: Direct conversion of amorphous carbon into diamond at ambient pressures and temperatures in air

    SciTech Connect

    Narayan, Jagdish Bhaumik, Anagh

    2015-10-01

    We report on fundamental discovery of conversion of amorphous carbon into diamond by irradiating amorphous carbon films with nanosecond lasers at room-temperature in air at atmospheric pressure. We can create diamond in the form of nanodiamond (size range <100 nm) and microdiamond (>100 nm). Nanosecond laser pulses are used to melt amorphous diamondlike carbon and create a highly undercooled state, from which various forms of diamond can be formed upon cooling. The quenching from the super undercooled state results in nucleation of nanodiamond. It is found that microdiamonds grow out of highly undercooled state of carbon, with nanodiamond acting as seed crystals.

  12. Characteristics of a Direct Current-driven plasma jet operated in open air

    NASA Astrophysics Data System (ADS)

    Li, Xuechen; Di, Cong; Jia, Pengying; Bao, Wenting

    2013-09-01

    A DC-driven plasma jet has been developed to generate a diffuse plasma plume by blowing argon into the ambient air. The plasma plume, showing a cup shape with a diameter of several centimeters at a higher voltage, is a pulsed discharge despite a DC voltage is applied. The pulse frequency is investigated as a function of the voltage under different gap widths and gas flow rates. Results show that plasma bullets propagate from the hollow needle to the plate electrode by spatially resolved measurement. A supposition about non-electroneutral trail of the streamer is proposed to interpret these experimental phenomena.

  13. Processing Neutron Cross Section Covariances using NJOY-99 and PUFF-IV

    SciTech Connect

    Arcilla, R. Kahler, A.C.; Oblozinsky, P.; Herman, M.

    2008-12-15

    With the growing demand for multigroup covariances, the National Nuclear Data Center (NNDC) has been experiencing an upsurge in its covariance data processing activities using the two US codes NJOY-99 (LANL) and PUFF-IV (ORNL). The code NJOY-99 was upgraded by incorporating the new module ERRORJ-2.3, while the NNDC served as the active user and provided feedback. The NNDC has been primarily processing neutron cross section covariances on its 64-bit Linux cluster in support of two DOE programs, the Global Nuclear Energy Partnership (GNEP) and the Nuclear Criticality Safety Program (NCSP). For GNEP, the NNDC used NJOY-99.259 to generate multigroup covariance matrices of {sup 56}Fe, {sup 23}Na, {sup 239}Pu, {sup 235}U and {sup 238}U from the JENDL-3.3 library using the 15-, 33-, and 230-energy group structures. These covariance matrices will be used to test a new collapsing algorithm which will subsequently be employed to calculate uncertainties on integral parameters in different fast neutron-based systems. For NCSP, we used PUFF-IV 1.0.4 to verify the processability of new evaluated covariance data of {sup 55}Mn, {sup 239}Pu, {sup 233}U, {sup 235}U and {sup 238}U generated by a collaboration of ORNL and LANL. For the data end-users at large, the NNDC has made available a Web site which provides a static visualization interface for all materials with covariance data in the four major data libraries: ENDF/B-VI.8 (47 materials), ENDF/B-VII.0 (26 materials), JEFF-3.1 (37 materials) and JENDL-3.3 (20 materials)

  14. Processing Neutron Cross Section Covariances using NJOY-99 and PUFF-IV

    SciTech Connect

    Arcilla,R.; Kahler, A.C.; Oblozinsky, P.; Herman, M.

    2008-06-24

    With the growing demand for multigroup covariances, the National Nuclear Data Center (NNDC) has been experiencing an upsurge in its covariance data processing activities using the two US codes NJOY-99 (LANL) and PUFF-IV (ORNL). The code NJOY-99 was upgraded by incorporating the new module ERRORJ-2.3, while the NNDC served as the active user and provided feedback. The NNDC has been primarily processing neutron cross section covariances on its 64-bit Linux cluster in support of two DOE programs, the Global Nuclear Energy Partnership (GNEP) and the Nuclear Criticality Safety Program (NCSP). For GNEP, the NNDC used NJOY-99.259 to generate multigroup covariance matrices of {sup 56}Fe, {sup 23}Na, {sup 239}Pu, {sup 235}U and {sup 238}U from the JENDL-3.3 library using the 15-, 33-, and 230-energy group structures. These covariance matrices will be used to test a new collapsing algorithm which will subsequently be employed to calculate uncertainties on integral parameters in different fast neutron-based systems. For NCSP, we used PUFF-IV 1.0.4 to verify the processability of new evaluated covariance data of {sup 55}Mn, {sup 239}Pu, {sup 233}U, {sup 235}U and {sup 238}U generated by a collaboration of ORNL and LANL. For the data end-users at large, the NNDC has made available a Web site which provides a static visualization interface for all materials with covariance data in the four major data libraries: ENDF/B-VI.8 (47 materials), ENDF/B-VII.0 (26 materials), JEFF-3.1 (37 materials) and JENDL-3.3 (20 materials).

  15. Phylogeography of the widespread African puff adder (Bitis arietans) reveals multiple Pleistocene refugia in southern Africa.

    PubMed

    Barlow, Axel; Baker, Karis; Hendry, Catriona R; Peppin, Lindsay; Phelps, Tony; Tolley, Krystal A; Wüster, Catharine E; Wüster, Wolfgang

    2013-02-01

    Evidence from numerous Pan-African savannah mammals indicates that open-habitat refugia existed in Africa during the Pleistocene, isolated by expanding tropical forests during warm and humid interglacial periods. However, comparative data from other taxonomic groups are currently lacking. We present a phylogeographic investigation of the African puff adder (Bitis arietans), a snake that occurs in open-habitat formations throughout sub-Saharan Africa. Multiple parapatric mitochondrial clades occur across the current distribution of B. arietans, including a widespread southern African clade that is subdivided into four separate clades. We investigated the historical processes responsible for generating these phylogeographic patterns in southern Africa using species distribution modelling and genetic approaches. Our results show that interior regions of South Africa became largely inhospitable for B. arietans during glacial maxima, whereas coastal and more northerly areas remained habitable. This corresponds well with the locations of refugia inferred from mitochondrial data using a continuous phylogeographic diffusion model. Analysis of data from five anonymous nuclear loci revealed broadly similar patterns to mtDNA. Secondary admixture was detected between previously isolated refugial populations. In some cases, this is limited to individuals occurring near mitochondrial clade contact zones, but in other cases, more extensive admixture is evident. Overall, our study reveals a complex history of refugial isolation and secondary expansion for puff adders and a mosaic of isolated refugia in southern Africa. We also identify key differences between the processes that drove isolation in B. arietans and those hypothesized for sympatric savannah mammals.

  16. Thermal analysis and two-directional air flow thermal management for lithium-ion battery pack

    NASA Astrophysics Data System (ADS)

    Yu, Kuahai; Yang, Xi; Cheng, Yongzhou; Li, Changhao

    2014-12-01

    Thermal management is a routine but crucial strategy to ensure thermal stability and long-term durability of the lithium-ion batteries. An air-flow-integrated thermal management system is designed in the present study to dissipate heat generation and uniformize the distribution of temperature in the lithium-ion batteries. The system contains of two types of air ducts with independent intake channels and fans. One is to cool the batteries through the regular channel, and the other minimizes the heat accumulations in the middle pack of batteries through jet cooling. A three-dimensional anisotropic heat transfer model is developed to describe the thermal behavior of the lithium-ion batteries with the integration of heat generation theory, and validated through both simulations and experiments. Moreover, the simulations and experiments show that the maximum temperature can be decreased to 33.1 °C through the new thermal management system in comparison with 42.3 °C through the traditional ones, and temperature uniformity of the lithium-ion battery packs is enhanced, significantly.

  17. NFLUX PRE: Validation of New Specific Humidity, Surface Air Temperature, and Wind Speed Algorithms for Ascending/Descending Directions and Clear or Cloudy Conditions

    DTIC Science & Technology

    2015-06-18

    Validation of New Specific Humidity, Surface Air Temperature , and Wind Speed Algorithms for Ascending/ Descending Directions and Clear or Cloudy...LIMITATION OF ABSTRACT NFLUX PRE: Validation of New Specific Humidity, Surface Air Temperature , and Wind Speed Algorithms for Ascending/Descending...satellite retrieval algorithms. In addition to data from the Special Sensor Microwave Imager/Sounder (SSMIS) and the Advanced Microwave Sounding

  18. The Development of a Computer-Directed Training Subsystem and Computer Operator Training Material for the Air Force Phase II Base Level System. Final Report.

    ERIC Educational Resources Information Center

    System Development Corp., Santa Monica, CA.

    The design, development, and evaluation of an integrated Computer-Directed Training Subsystem (CDTS) for the Air Force Phase II Base Level System is described in this report. The development and evaluation of a course to train computer operators of the Air Force Phase II Base Level System under CDTS control is also described. Detailed test results…

  19. Numerical modeling on air quality in an urban environment with changes of the aspect ratio and wind direction.

    PubMed

    Yassin, Mohamed F

    2013-06-01

    Due to heavy traffic emissions within an urban environment, air quality during the last decade becomes worse year by year and hazard to public health. In the present work, numerical modeling of flow and dispersion of gaseous emissions from vehicle exhaust in a street canyon were investigated under changes of the aspect ratio and wind direction. The three-dimensional flow and dispersion of gaseous pollutants were modeled using a computational fluid dynamics (CFD) model which was numerically solved using Reynolds-averaged Navier-Stokes (RANS) equations. The diffusion flow field in the atmospheric boundary layer within the street canyon was studied for different aspect ratios (W/H=1/2, 3/4, and 1) and wind directions (θ=90°, 112.5°, 135°, and 157.5°). The numerical models were validated against wind tunnel results to optimize the turbulence model. The numerical results agreed well with the wind tunnel results. The simulation demonstrated that the minimum concentration at the human respiration height within the street canyon was on the windward side for aspect ratios W/H=1/2 and 1 and wind directions θ=112.5°, 135°, and 157.5°. The pollutant concentration level decreases as the wind direction and aspect ratio increase. The wind velocity and turbulence intensity increase as the aspect ratio and wind direction increase.

  20. An application of particle image velocimetry to the direct measurement of laminar burning velocity in homogeneous propane-air mixtures

    SciTech Connect

    Zhou, M.; Garner, C.P.

    1995-12-31

    An experiment is described for the direct measurement of laminar burning velocity within an optically accessed cylindrical combustion chamber. The laminar burning velocity was determined directly as the difference between the flame propagation speed and the unburned gas velocity immediately ahead of the flame front. Particle Image Velocimetry (PIV) has been applied to measure the unburned gas velocity field. The local flame speed and flame front position were determined from a pair of ionization probes in conjunction with the simultaneous PIV measurement. The laminar burning velocity of propane-air mixtures initially at atmospheric condition for different equivalence ratios ranging from 0.7--1.4 are presented. Close agreement with other measurements and predicted results was found.

  1. Cross-directional interlocking of rolls in an air press of a papermaking machine

    DOEpatents

    Beck, David A.; Gorshe, Thomas

    2003-05-13

    An air press for pressing a paper web is composed of a plurality of rolls including at least a first roll and a second roll. The first roll and the second roll are positioned adjacent one another and form a first nip therebetween. Further, the first roll and the second roll each have a roll end, the roll end of the first roll adjoining the roll end of the second roll. A bevel plate is attached to the roll end of the first roll, the bevel plate having at least a first angled plate face. A seal ring is positioned adjacent the roll end of the second roll, the seal ring being juxtaposed to the bevel plate. The seal ring has at least a first angled ring face, and the first angled ring face mates with the first angled plate face.

  2. Synthesis of ammonia directly from air and water at ambient temperature and pressure

    PubMed Central

    Lan, Rong; Irvine, John T. S.; Tao, Shanwen

    2013-01-01

    The N≡N bond (225 kcal mol−1) in dinitrogen is one of the strongest bonds in chemistry therefore artificial synthesis of ammonia under mild conditions is a significant challenge. Based on current knowledge, only bacteria and some plants can synthesise ammonia from air and water at ambient temperature and pressure. Here, for the first time, we report artificial ammonia synthesis bypassing N2 separation and H2 production stages. A maximum ammonia production rate of 1.14 × 10−5 mol m−2 s−1 has been achieved when a voltage of 1.6 V was applied. Potentially this can provide an alternative route for the mass production of the basic chemical ammonia under mild conditions. Considering climate change and the depletion of fossil fuels used for synthesis of ammonia by conventional methods, this is a renewable and sustainable chemical synthesis process for future. PMID:23362454

  3. Synthesis of ammonia directly from air and water at ambient temperature and pressure.

    PubMed

    Lan, Rong; Irvine, John T S; Tao, Shanwen

    2013-01-01

    The N≡N bond (225 kcal mol⁻¹) in dinitrogen is one of the strongest bonds in chemistry therefore artificial synthesis of ammonia under mild conditions is a significant challenge. Based on current knowledge, only bacteria and some plants can synthesise ammonia from air and water at ambient temperature and pressure. Here, for the first time, we report artificial ammonia synthesis bypassing N₂ separation and H₂ production stages. A maximum ammonia production rate of 1.14 × 10⁻⁵ mol m⁻² s⁻¹ has been achieved when a voltage of 1.6 V was applied. Potentially this can provide an alternative route for the mass production of the basic chemical ammonia under mild conditions. Considering climate change and the depletion of fossil fuels used for synthesis of ammonia by conventional methods, this is a renewable and sustainable chemical synthesis process for future.

  4. The Economics of Direct versus Indirect Cost Recovery in Sponsored Research. AIR Annual 1984 Forum Paper.

    ERIC Educational Resources Information Center

    Kutina, Kenneth L.; And Others

    The effect of reduced reimbursements by the federal government for indirect research costs was analyzed for the typical academic medical center. The effects of simply cutting indirect cost reimbursement were contrasted with the impact of securing compensating levels of increased direct project support. To determine if the consequences differed as…

  5. A direct sensitivity approach to predict hourly ozone resulting from compliance with the National Ambient Air Quality Standard.

    PubMed

    Simon, Heather; Baker, Kirk R; Akhtar, Farhan; Napelenok, Sergey L; Possiel, Norm; Wells, Benjamin; Timin, Brian

    2013-03-05

    In setting primary ambient air quality standards, the EPA's responsibility under the law is to establish standards that protect public health. As part of the current review of the ozone National Ambient Air Quality Standard (NAAQS), the US EPA evaluated the health exposure and risks associated with ambient ozone pollution using a statistical approach to adjust recent air quality to simulate just meeting the current standard level, without specifying emission control strategies. One drawback of this purely statistical concentration rollback approach is that it does not take into account spatial and temporal heterogeneity of ozone response to emissions changes. The application of the higher-order decoupled direct method (HDDM) in the community multiscale air quality (CMAQ) model is discussed here to provide an example of a methodology that could incorporate this variability into the risk assessment analyses. Because this approach includes a full representation of the chemical production and physical transport of ozone in the atmosphere, it does not require assumed background concentrations, which have been applied to constrain estimates from past statistical techniques. The CMAQ-HDDM adjustment approach is extended to measured ozone concentrations by determining typical sensitivities at each monitor location and hour of the day based on a linear relationship between first-order sensitivities and hourly ozone values. This approach is demonstrated by modeling ozone responses for monitor locations in Detroit and Charlotte to domain-wide reductions in anthropogenic NOx and VOCs emissions. As seen in previous studies, ozone response calculated using HDDM compared well to brute-force emissions changes up to approximately a 50% reduction in emissions. A new stepwise approach is developed here to apply this method to emissions reductions beyond 50% allowing for the simulation of more stringent reductions in ozone concentrations. Compared to previous rollback methods, this

  6. The study of droplet-laden turbulent air-flow over waved water surface by direct numerical simulation

    NASA Astrophysics Data System (ADS)

    Druzhinin, Oleg A.; Troitskaya, Yuliya I.; Zilitinkevich, Sergej S.

    2016-04-01

    The detailed knowledge of the interaction of wind with surface water waves is necessary for correct parameterization of turbulent exchange at the air-sea interface in prognostic models. At sufficiently strong winds, sea-spray-generated droplets interfere with the wind-waves interaction. The results of field experiments and laboratory measurements (Andreas et al., JGR 2010) show that mass fraction of air-borne spume water droplets increases with the wind speed and their impact on the carrier air-flow may become significant. Phenomenological models of droplet-laden marine atmospheric boundary layer (Kudryavtsev & Makin, Bound.-Layer Met. 2011) predict that droplets significantly increase the wind velocity and suppress the turbulent air stress. The results of direct numerical simulation (DNS) of a turbulent particle-laden Couette flow over a flat surface show that inertial particles may significantly reduce the carrier flow vertical momentum flux (Richter & Sullivan, GRL 2013). The results also show that in the range of droplet sizes typically found near the air-sea interface, particle inertial effects are significant and dominate any particle-induced stratification effects. However, so far there has been no attempt to perform DNS of a droplet-laden air-flow over waved water surface. In this report, we present results of DNS of droplet-laden, turbulent Couette air-flow over waved water surface. The carrier, turbulent Couette-flow configuration in DNS is similar to that used in previous numerical studies (Sullivan et al., JFM 2000, Shen et al., JFM 2010, Druzhinin et al., JGR 2012). Discrete droplets are considered as non-deformable solid spheres and tracked in a Lagrangian framework, and their impact on the carrier flow is modeled with the use of a point-force approximation. The droplets parameters in DNS are matched to the typical known spume-droplets parameters in laboratory and field experiments. The DNS results show that both gravitational settling of droplets and

  7. New Directions: GEIA’s 2020 Vision for Better Air Emissions Information

    SciTech Connect

    Frost, G. J.; Middleton, Paulette; Tarrason, Leonor; Granier, Claire; Guenther, Alex B.; Cardenas, B.; Denier van der Gon, Hugo; Janssens-Maenhout, Greet; Kaiser, Johannes W.; Keating, Terry; Klimont, Z.; Lamarque, Jean-Francois; Liousse, Catherine; Nickovic, S.; Ohara, Toshimasa; Schultz, Martin; Skiba, Ute; Wang, Y.

    2013-12-01

    We are witnessing a crucial change in how we quantify and understand emissions of greenhouse gases and air pollutants, with an increasing demand for science-based transparent emissions information produced by robust community efforts. Today’s scientific capabilities, with near-real-time in-situ and remote sensing observations combined with forward and inverse models and a better understanding of the controlling processes, are contributing to this transformation and providing new approaches to derive, verify, and forecast emissions (Tong et al., 2011; Frost et al., 2012) and to quantify their impacts on the environment (e.g., Bond et al., 2013). At the same time, the needs for emissions information and the demands for their accuracy and consistency have grown. Changing economies, demographics, agricultural practices, and energy sources, along with mandates to evaluate emissions mitigation efforts, demonstrate compliance with legislation, and verify treaties, are leading to new challenges in emissions understanding. To quote NOAA Senior Technical Scientist David Fahey, "We are in the Century of Accountability. Emissions information is critical not only for environmental science and decision-making, but also as an instrument of foreign policy and international diplomacy." Emissions quantification represents a key step in explaining observed variability and trends in atmospheric composition and in attributing these observed changes to their causes. Accurate emissions data are necessary to identify feasible controls that reduce adverse impacts associated with air quality and climate and to track the success of implemented policies. To progress further, the international community must improve the understanding of drivers and contributing factors to emissions, and it must strengthen connections among and within different scientific disciplines that characterize our environment and entities that protect the environment and influence further emissions. The Global

  8. Directions in US Air Force space power energy generation and distribution technology

    NASA Astrophysics Data System (ADS)

    Reinhardt, Kitt; Keener, Dave; Schuller, Mike

    1997-01-01

    Recent trends in the development of high efficiency, light-weight, reliable and cost-effective space power technologies needed to support the development of near-term, next-generation government and commercial satellites will be discussed. Significant advancements in light-weight and reduced volume electrical power system (EPS) components are required to enable the design of future smallsats with power requirements of less than 1000 W to monster-sats having projected power demands ranging from 10-50 kW for civilian and military communications and space based radar needs. For these missions increased emphasis is placed on reducing total satellite mass to enable use of smaller, less costly, and easier to deploy launch vehicles. In support of these requirements a complement of power generation, power management and distribution, and energy storage technologies are under development at the Air Force Phillips Laboratory Space and Missiles Technology Directorate. Specific technologies presented in this paper include high efficiency multijunction solar cells, low-cost thin-film solar cells, ultra light-weight flexible solar arrays, solar electric thermal converters, and high-voltage (70-130 V) and high-efficiency power management and distribution (PMAD) electronics. The projected impact of EPS subsystem performance on existing, near-term, and next-generation 10-50 kW military satellites will be discussed, along with technical issues and status of EPS component development.

  9. Directions in US Air Force space power technology for global virtual presence

    NASA Astrophysics Data System (ADS)

    Keener, David; Reinhardt, Kitt; Mayberry, Clay; Radzykewycz, Dan; Donet, Chuck; Marvin, Dean; Hill, Carole

    1998-01-01

    Recent trends in the development of high efficiency, light-weight, compact, reliable and cost-effective space power technologies needed to support the development of next-generation military and commercial satellites will be discussed. Development of new light-weight and reduced volume electrical power system (EPS) technologies are required to enable the design of future ``smallsats'' with power requirements less than 1500W, to ``monstersats'' having projected power levels ranging from 10-50kW for commercial communication and military space based radar type satellites. In support of these projected requirements a complement of power generation, power management and distribution, and energy storage technologies are under development at the Air Force Research Laboratory's Space Vehicles Directorate. The technologies presented in this paper include high efficiency multijunction solar cells, alkali metal thermal electric converters (AMTEC), high-voltage (70-130V)/high-efficiency/high-density power management and distribution (PMAD) electronics, and high energy density electrochemical and mechanical energy storage systems (sodium sulfur, lithium-ion, and flywheels). Development issues and impacts of individual technologies will be discussed in context with global presence satellite mission requirements.

  10. Characterisation of a smartphone image sensor response to direct solar 305nm irradiation at high air masses.

    PubMed

    Igoe, D P; Amar, A; Parisi, A V; Turner, J

    2017-06-01

    This research reports the first time the sensitivity, properties and response of a smartphone image sensor that has been used to characterise the photobiologically important direct UVB solar irradiances at 305nm in clear sky conditions at high air masses. Solar images taken from Autumn to Spring were analysed using a custom Python script, written to develop and apply an adaptive threshold to mitigate the effects of both noise and hot-pixel aberrations in the images. The images were taken in an unobstructed area, observing from a solar zenith angle as high as 84° (air mass=9.6) to local solar maximum (up to a solar zenith angle of 23°) to fully develop the calibration model in temperatures that varied from 2°C to 24°C. The mean ozone thickness throughout all observations was 281±18 DU (to 2 standard deviations). A Langley Plot was used to confirm that there were constant atmospheric conditions throughout the observations. The quadratic calibration model developed has a strong correlation between the red colour channel from the smartphone with the Microtops measurements of the direct sun 305nm UV, with a coefficient of determination of 0.998 and very low standard errors. Validation of the model verified the robustness of the method and the model, with an average discrepancy of only 5% between smartphone derived and Microtops observed direct solar irradiances at 305nm. The results demonstrate the effectiveness of using the smartphone image sensor as a means to measure photobiologically important solar UVB radiation. The use of ubiquitous portable technologies, such as smartphones and laptop computers to perform data collection and analysis of solar UVB observations is an example of how scientific investigations can be performed by citizen science based individuals and groups, communities and schools.

  11. Investigation into air flow characteristics through inlet valve of directed ports

    SciTech Connect

    Liu, R.; Xiao, F.; Guan, L.; Liu, X.

    1994-09-01

    The velocity and turbulence intensity profiles at exit of intake valve from typical SI engine intake ports (horizontal and sloping directed ports) were measured by hot wire anemometry (HWA) in a steady flow rig. The characteristics of velocity and turbulence intensity distribution under different valve lifts and at distances along valve axis were analysed and compared between above two intake ports. Results showed that velocity and turbulence intensity profiles are strongly dependent on intake port form, valve lift and surrounding geometry. They vary not only around the valve head periphery but also along the valve axis. 9 refs., 14 figs.

  12. Demonstration of a neonlike argon soft-x-ray laser with a picosecond-laser-irradiated gas puff target.

    PubMed

    Fiedorowicz, H; Bartnik, A; Dunn, J; Smith, R F; Hunter, J; Nilsen, J; Osterheld, A L; Shlyaptsev, V N

    2001-09-15

    We demonstrate a neonlike argon-ion x-ray laser, using a short-pulse laser-irradiated gas puff target. The gas puff target was formed by pulsed injection of gas from a high-pressure solenoid valve through a nozzle in the form of a narrow slit and irradiated with a combination of long, 600-ps and short, 6-ps high-power laser pulses with a total of 10 J of energy in a traveling-wave excitation scheme. Lasing was observed on the 3p (1)S(0)?3s (1)P(1) transition at 46.9 nm and the 3d (1)P(1)?3p (1)P(1) transition at 45.1 nm. A gain of 11 cm(-1) was measured on these transitions for targets up to 0.9 cm long.

  13. Design and initial results from a kilojoule level dense plasma focus with hollow anode and cylindrically symmetric gas puff

    NASA Astrophysics Data System (ADS)

    Ellsworth, J. L.; Falabella, S.; Tang, V.; Schmidt, A.; Guethlein, G.; Hawkins, S.; Rusnak, B.

    2014-01-01

    We have designed and built a Dense Plasma Focus (DPF) Z-pinch device using a kJ-level capacitor bank and a hollow anode, and fueled by a cylindrically symmetric gas puff. Using this device, we have measured peak deuteron beam energies of up to 400 keV at 0.8 kJ capacitor bank energy and pinch lengths of ˜6 mm, indicating accelerating fields greater than 50 MV/m. Neutron yields of on the order of 107 per shot were measured during deuterium operation. The cylindrical gas puff system permitted simultaneous operation of DPF with a radiofrequency quadrupole accelerator for beam-into-plasma experiments. This paper describes the machine design, the diagnostic systems, and our first results.

  14. Design and initial results from a kilojoule level Dense Plasma Focus with hollow anode and cylindrically symmetric gas puff.

    PubMed

    Ellsworth, J L; Falabella, S; Tang, V; Schmidt, A; Guethlein, G; Hawkins, S; Rusnak, B

    2014-01-01

    We have designed and built a Dense Plasma Focus (DPF) Z-pinch device using a kJ-level capacitor bank and a hollow anode, and fueled by a cylindrically symmetric gas puff. Using this device, we have measured peak deuteron beam energies of up to 400 keV at 0.8 kJ capacitor bank energy and pinch lengths of ∼6 mm, indicating accelerating fields greater than 50 MV/m. Neutron yields of on the order of 10(7) per shot were measured during deuterium operation. The cylindrical gas puff system permitted simultaneous operation of DPF with a radiofrequency quadrupole accelerator for beam-into-plasma experiments. This paper describes the machine design, the diagnostic systems, and our first results.

  15. On the possibility of neutron generation in an imploding TiD{sub 2} puff Z pinch

    SciTech Connect

    Baksht, Rina B.; Oreshkin, Vladimir I.; Rousskikh, Alexander G.

    2013-08-15

    Simulation of implosion of a TiD{sub 2} puff Z pinch is reported. The Z pinch is supposed to be produced by the plasma flow generated by a vacuum arc, as described by Rousskikh et al.[Phys. Plasmas 18, 092707 (2011)]. To simulate the implosion, a one-dimensional two-temperature radiative magnetohydrodynamics code was used. The simulation has shown that neutrons are generated during the implosion of a TiD{sub 2} puff Z pinch due to thermalization of the pinch plasma stagnated on axis. It has been shown that the necessary condition for neutron generation is that the ion temperature must be substantially higher than the electron temperature. For a pinch current of 1 MA, the predicted yield of 'thermal' neutrons is 2.5 × 10{sup 9} neutrons/shot.

  16. Generation and characterization of plasma channels in gas puff targets using soft X-ray radiography technique

    SciTech Connect

    Wachulak, P. W. Bartnik, A.; Jarocki, R.; Fok, T.; Węgrzyński, Ł.; Kostecki, J.; Szczurek, M.; Jabczyński, J.; Fiedorowicz, H.

    2014-10-15

    We present our recent results of a formation and characterization of plasma channels in elongated krypton and xenon gas puff targets. The study of their formation and temporal expansion was carried out using a combination of a soft X-ray radiography (shadowgraphy) and pinhole camera imaging. Two high-energy short laser pulses were used to produce the channels. When a pumping laser pulse was shaped into a line focus, using cylindrical and spherical lenses, the channels were not produced because much smaller energy density was deposited in the gas puff target. However, when a point focus was obtained, using just a spherical lens, the plasma channels appeared. The channels were up to 9 mm in length, had a quite uniform density profile, and expanded in time with velocities of about 2 cm/μs.

  17. Design and initial results from a kilojoule level dense plasma focus with hollow anode and cylindrically symmetric gas puff

    SciTech Connect

    Ellsworth, J. L. Falabella, S.; Tang, V.; Schmidt, A.; Guethlein, G.; Hawkins, S.; Rusnak, B.

    2014-01-15

    We have designed and built a Dense Plasma Focus (DPF) Z-pinch device using a kJ-level capacitor bank and a hollow anode, and fueled by a cylindrically symmetric gas puff. Using this device, we have measured peak deuteron beam energies of up to 400 keV at 0.8 kJ capacitor bank energy and pinch lengths of ∼6 mm, indicating accelerating fields greater than 50 MV/m. Neutron yields of on the order of 10{sup 7} per shot were measured during deuterium operation. The cylindrical gas puff system permitted simultaneous operation of DPF with a radiofrequency quadrupole accelerator for beam-into-plasma experiments. This paper describes the machine design, the diagnostic systems, and our first results.

  18. Characterization of neutron emission from mega-ampere deuterium gas puff Z-pinch at microsecond implosion times

    NASA Astrophysics Data System (ADS)

    Klir, D.; Shishlov, A. V.; Kokshenev, V. A.; Kubes, P.; Labetsky, A. Yu; Rezac, K.; Cikhardt, J.; Fursov, F. I.; Kovalchuk, B. M.; Kravarik, J.; Kurmaev, N. E.; Ratakhin, N. A.; Sila, O.; Stodulka, J.

    2013-08-01

    Experiments with deuterium (D2) triple shell gas puffs were carried out on the GIT-12 generator at a 3 MA current level and microsecond implosion times. The outer, middle and inner nozzle diameters were 160 mm, 80 mm and 30 mm, respectively. The influence of the mass of deuterium shells on neutron emission times, neutron yields and neutron energy spectra was studied. The injected linear mass of deuterium varied between 50 and 255 µg cm-1. Gas puffs imploded onto the axis before the peak of generator current at 700-1100 ns. Most of the neutrons were emitted during the second neutron pulse after the development of instabilities. Despite higher currents, heavier gas puffs produced lower neutron yields. Optimal mass and a short time delay between the valve opening and the generator triggering were more important than the better coincidence of stagnation with peak current. The peak neutron yield from D(d, n)3He reactions reached 3 × 1011 at 2.8 MA current, 90 µg cm-1 injected linear mass and 37 mm anode-cathode gap. In the case of lower mass shots, a large number of 10 MeV neutrons were produced either by secondary DT reactions or by DD reactions of deuterons with energies above 7 MeV. The average neutron yield ratio Y>10 MeV/Y2.5 MeV reached (6 ± 3) × 10-4. Such a result can be explained by a power law distribution for deuterons as \\rmd N_d/\\rmd E_d\\propto E_d^{-3} . The optimization of a D2 gas puff Z-pinch and similarities to a plasma focus and its drive parameter are described.

  19. A study on synthetic relieving plug agent for steam huff-puff wells in the water-sensitive formation

    SciTech Connect

    Wang Biao; Cheng Yunxin; Jian Yinxue; Hu Zimian

    1995-11-01

    A great quantity of heavy crude oil has been produced by using steam huff-puff method in the Liaohe Oil Field. This kind of crude contains a lot of resin-asphaltene and possesses the property of very high viscosity and specific gravity. The formation is not only very sensitive to water, but also is damaged by drilling muds. Through steam injection, the production rate was still very low and the duration of steam huff-puff was very short because of plugs which were formed by clay swelling and the residual hydrocarbon that was produced by volatilization of light fractions of heavy crude around the wellbore. This paper offers a synthetic relieving plug agent which is a mixed fluid, containing organic mixed solvent, inorganic acid, surfactant and other additives. The synthetic relieving plug agent (ARP-8801 and BJ-30) has been successfully used in 37 wells in Shuguang No. 48 Union, Liaohe Oil Field since April 1989. According to the statistical data obtained from 33 experimental wells, it has been shown that the ARP-8801 and BJ-30 synthetic relieving plug agent has excellent relieving plug ability for the heavy crude wells using steam huff-puff method in water-sensitive formations. The production rate per well was increased on an average from 0--8.6 tons/day (before treatment) to 6.0--26.7 tons/day (after treatment). The duration of steam huff-puff was increased on an average from 121 days (before treatment) to 218 days (after treatment). The oil/steam ratio increased from 0.41 (before treatment) to 1.17 (after treatment). The cumulative incremental oil production has reached 41,704 tons. The application in oil field proved that the method, offered by this paper, is a very nice stimulation treatment for heavy crude wells injecting steam in the water-sensitive formation. The mechanism of relieving plug is also discussed in this paper.

  20. A pulsed wire probe for the measurement of velocity and flow direction in slowly moving air.

    PubMed

    Olson, D E; Parker, K H; Snyder, B

    1984-02-01

    This report describes the theory and operation of a pulsed-probe anemometer designed to measure steady three-dimensional velocity fields typical of pulmonary tracheo-bronchial airflows. Local velocities are determined by measuring the transport time and orientation of a thermal pulse initiated at an upstream wire and sensed at a downstream wire. The transport time is a reproducible function of velocity and the probe wire spacing, as verified by a theoretical model of convective heat transfer. When calibrated the anemometer yields measurements of velocity accurate to +/- 5 percent and resolves flow direction to within 1 deg at airspeeds greater than or equal to 10 cm/s. Spatial resolution is +/- 0.5 mm. Measured flow patterns typical of curved circular pipes are included as examples of its application.

  1. Direct Trace Element Analysis of Liquid Blood Samples by In-Air Ion Beam Analytical Techniques (PIXE-PIGE).

    PubMed

    Huszank, Robert; Csedreki, László; Török, Zsófia

    2017-02-07

    There are various liquid materials whose elemental composition is of interest in various fields of science and technology. In many cases, sample preparation or the extraction can be complicated, or it would destroy the original environment before the analysis (for example, in the case of biological samples). However, multielement direct analysis of liquid samples can be realized by an external PIXE-PIGE measurement system. Particle-induced X-ray and gamma-ray emission spectroscopy (PIXE, PIGE) techniques were applied in external (in-air) microbeam configuration for the trace and main element determination of liquid samples. The direct analysis of standard solutions of several metal salts and human blood samples (whole blood, blood serum, blood plasma, and formed elements) was realized. From the blood samples, Na, P, S, Cl, K, Ca, Fe, Cu, Zn, and Br elemental concentrations were determined. The focused and scanned ion beam creates an opportunity to analyze very small volume samples (∼10 μL). As the sample matrix consists of light elements, the analysis is possible at ppm level. Using this external beam setup, it was found that it is possible to determine elemental composition of small-volume liquid samples routinely, while the liquid samples do not require any preparation processes, and thus, they can be analyzed directly. In the case of lower concentrations, the method is also suitable for the analysis (down to even ∼1 ppm level) but with less accuracy and longer measurement times.

  2. A laboratory and field evaluation of the CO/sub 2/ huff 'n puff process for light oil recovery

    SciTech Connect

    Monger, T.G.; Coma, J.M.

    1986-01-01

    This paper is a laboratory and field investigation of the CO/sub 2/ huff 'n puff process for the enhanced recovery of light crude oil. The results of continuous and cyclic CO/sub 2/ displacements using a 31.2 /sup 0/API (870 kg/m/sup 3/) stock tank oil in watered-out Berea cores are presented. Fourteen single-well cyclic CO/sub 2/ field tests in south Louisianan sands are examined. Laboratory results demonstrate that the CO/sub 2/ huff 'n puff process recovers waterflood residual oil. Incremental oil recovery increased with the amount of CO/sub 2/ injected, and was not benefited by operating at the minimum miscibility pressure (MMP). Maximum ultimate incremental oil recovery required a soak period and additional water influx. Incremental oil recovery continued with a second cycle of CO/sub 2/, but a third cycle showed significant decline. Recovery factors averaging less than 2 Mscf (57 m/sup 3/) of CO/sub 2/ per barrel of incremental oil were achieved in nine out of fourteen field tests. Field results suggest that in the absence of mechanical problems, initial response improved with larger space occupied by CO/sub 2/, thicker perforation interval, and lower CO/sub 2/ reservoir viscosities; while lifetime response improved with lower prior water cut. Field results confirm that the CO/sub 2/ huff 'n puff process recovers waterflood residual oil, and that a second cycle can be successful.

  3. Investigating the effect of adding an on-axis jet to Ar gas puff Z pinches on Z

    NASA Astrophysics Data System (ADS)

    Harvey-Thompson, A. J.; Jennings, C. A.; Jones, B.; Apruzese, J. P.; Ampleford, D. J.; Lamppa, D. C.; Coverdale, C. A.; Cuneo, M. E.; Giuliani, J. L.; Hansen, S. B.; Jones, M. C.; Moore, N. W.; Rochau, G. A.; Thornhill, J. W.

    2016-10-01

    Double-shell Ar gas puff implosions driven by 16.5 ± 0.5 MA on the Z generator at Sandia National Laboratories are very effective emitters of Ar K-shell radiation (photon energy >3 keV), producing yields of 330 ± 9% kJ [B. Jones et al., Phys. Plasmas 22, 020706 (2015)]. Previous simulations and experiments have reported dramatic increases in K-shell yields when adding an on-axis jet to double shell gas puffs for some configurations. We report on a series of experiments on Z testing Ar gas puff configurations with and without an on-axis jet guided by 3D magneto-hydrodynamic (MHD) simulations. Adding an on-axis jet was found to significantly improve the performance of some, but not all, configurations. The maximum observed K-shell yield of 375 ± 9% kJ was produced with a configuration that rapidly imploded onto an on-axis jet. A dramatic difference was observed in the plasma conditions at stagnation when a jet was used, producing a narrower stagnation column in experiments with a higher density but relatively lower electron temperature. The MHD simulations accurately reproduce the experimental measurements. The conversion efficiency for electrical energy delivered to the load to K-shell x-rays is estimated to be ˜12.5% for the best-performing configuration, similar to the best results from experiments at smaller facilities.

  4. Initial magnetic field compression studies using gas-puff Z-pinches and thin liners on COBRA

    NASA Astrophysics Data System (ADS)

    Gourdain, P.-A.; Concepcion, R. J.; Evans, M. T.; Greenly, J. B.; Hammer, D. A.; Hoyt, C. L.; Kroupp, E.; Kusse, B. R.; Maron, Y.; Novick, A. S.; Pikuz, S. A.; Qi, N.; Rondeau, G.; Rosenberg, E.; Schrafel, P. C.; Seyler, C. E.; Shelkovenko, T. C.

    2013-08-01

    This magnetic compression of cylindrical liners filled with DT gas has promise as an efficient way to achieve fusion burn using pulsed-power machines. However, to avoid rapid cooling of the fuel by transfer of heat to the liner an axial magnetic field is required. This field has to be compressed during the implosion since the thermal insulation is more demanding as the compressed DT plasma becomes hotter and its volume smaller. This compression of the magnetic field is driven both by the imploding liner and plasma. To highlight how this magnetic field compression by the plasma and liner evolves we have separately studied Z-pinch implosions generated by gas puff and liner loads. The masses of the gas puff and liner loads were adjusted to match COBRA's current rise times. Our results have shown that Ne gas-puff implosions are well described by a snowplow model where electrical currents are predominately localized to the outer surface of the imploding plasma and the magnetic field is external to the imploding plasma. Liner implosions are dominated by the plasma ablation process on the inside surface of the liner and the electrical currents and magnetic fields are advected into the inner plasma volume; the sharp radial gradient associated with the snowplow process is not present.

  5. Research Update: Direct conversion of h-BN into pure c-BN at ambient temperatures and pressures in air

    SciTech Connect

    Narayan, Jagdish Bhaumik, Anagh

    2016-02-01

    We report a direct conversion of hexagonal boron nitride (h-BN) into pure cubic boron nitride (c-BN) by nanosecond laser melting at ambient temperatures and atmospheric pressure in air. According to the phase diagram, the transformation from h-BN into c-BN can occur only at high temperatures and pressures, as the hBN-cBN-Liquid triple point is at 3500 K/9.5 GPa. Using nanosecond laser melting, we have created super undercooled state and shifted this triple point to as low as 2800 K and atmospheric pressure. The rapid quenching from super undercooled state leads to formation of super undercooled BN (Q-BN). The c-BN phase is nucleated from Q-BN depending upon the time allowed for nucleation and growth.

  6. Direct observation of a resolvable spin separation in the spin Hall effect of light at an air-glass interface

    SciTech Connect

    Ren, Jin-Li; Wang, Bo; Xiao, Yun-Feng; Gong, Qihuang; Li, Yan

    2015-09-14

    We theoretically and experimentally demonstrate that it is possible to directly observe the resolvable spin separation in the spin Hall effect of light at an air-glass interface by choosing optimal parameters. When a P-polarized light with a beam waist of 10 μm is incident around Brewster's angle, the two spin components of the reflected beam can be completely separated by eliminating the influence of the in-plane wavevector spread. This not only obviously reveals the strong impacts of the polarization state, the incident angle, the beam waist, and the in-plane wavevector spread, but also intuitively visualizes the observation of the spin Hall effect of light.

  7. The electrolyte challenge for a direct methanol-air polymer electrolyte fuel cell operating at temperatures up to 200 C

    NASA Technical Reports Server (NTRS)

    Savinell, Robert; Yeager, Ernest; Tryk, Donald; Landau, Uziel; Wainright, Jesse; Gervasio, Dominic; Cahan, Boris; Litt, Morton; Rogers, Charles; Scherson, Daniel

    1993-01-01

    Novel polymer electrolytes are being evaluated for use in a direct methanol-air fuel cell operating at temperatures in excess of 100 C. The evaluation includes tests of thermal stability, ionic conductivity, and vapor transport characteristics. The preliminary results obtained to date indicate that a high temperature polymer electrolyte fuel cell is feasible. For example, Nafion 117 when equilibrated with phosphoric acid has a conductivity of at least 0.4 Omega(exp -1)cm(exp -1) at temperatures up to 200 C in the presence of 400 torr of water vapor and methanol vapor cross over equivalent to 1 mA/cm(exp 2) under a one atmosphere methanol pressure differential at 135 C. Novel polymers are also showing similar encouraging results. The flexibility to modify and optimize the properties by custom synthesis of these novel polymers presents an exciting opportunity to develop an efficient and compact methanol fuel cell.

  8. Meeting 2006, outdoor noise directive (OND) noise levels for a diesel engine driven air compressor: A case study in noise reduction

    NASA Astrophysics Data System (ADS)

    Rowe, David F.

    2005-09-01

    In January 2006, the noise limits for many products in the European Union will drop by 2-3 dBA, as directed by 2000/14/EC ``Noise Emission in the Environment by Equipment Used Outdoors,'' commonly called the ``Outdoor Noise Directive,'' or ``OND.'' Air compressors are among the products addressed by this directive. At Ingersoll-Rand, significant effort has been directed at meeting the challenge of reducing noise on a variety of diesel engine driven air compressor platforms, ranging from 15 to 350 kW diesel engine power ratings. This paper presents a case study of the noise reduction on a 750 cfm (21 m3/min) air compressor operating at 300 psig (21 bar), to meet the 2006 OND noise limit of 100 LwA.

  9. Impact of California's Air Pollution Laws on Black Carbon and their Implications for Direct Radiative Forcing

    NASA Astrophysics Data System (ADS)

    Bahadur, R.; Feng, Y.; Russell, L. M.; Ramanathan, V.

    2010-12-01

    We examine the temporal and the spatial trends in the concentrations of black carbon (BC) - recorded by the IMPROVE monitoring network for the past 20 years - in California. Annual average BC concentrations in California have decreased by about 50% from 0.46 μg m-3 in 1989 to 0.24 μgm-3 in 2008 compared to a corresponding reductions in diesel BC emissions (also about 50%) from a peak of 0.013 Tg Yr-1 in 1990 to 0.006 Tg Yr-1 by 2008. We attribute the observed negative trends to the deployment of diesel particulate filters. Our conclusion that the reduction in diesel emissions is the primary cause of the observed BC reduction is also substantiated by a significant decrease in the ratio of BC to non-BC aerosols. The absorption efficiency of aerosols at visible wavelengths - determined from the observed scattering coefficient and the observed BC - also decreased by about 50% leading to a model-inferred negative direct radiative forcing (a cooling effect) of -1.4 Wm-2 (±60%) over California. Figure 1 (a) Annual means of measured Black Carbon (left axis) and BC fossil fuel emissions (right axis) in California from 1985 to 2008. Error bars correspond to standard deviation between measurements at each station. Dashed lines indicate a linear fit. Aerosol measurements from the IMPROVE network, emission inventories from (1) CARB, (2) [Ito and Penner, 2005] (b) Annual means of BC measured in Southern (South of 35 N), Northern (North of 38 N), and Central California (c) Annual means of measured Sulfate, Nitrate, and OC from IMPROVE network.

  10. A "turn-on" fluorescent sensor for ozone detection in ambient air using protein-directed gold nanoclusters.

    PubMed

    Wu, Di; Qi, Wenjing; Liu, Chun; Zhang, Qing

    2017-04-01

    A "turn-on" fluorescent sensor for ozone using bovine serum albumin-directed gold nanoclusters (BSA-Au NCs) via energy transfer was developed. The spectral overlap of fluorescent spectrum of BSA-Au NCs with absorption spectrum of indigo carmine (IDS) was utilized. Ozone cleaves C = C bond of IDS and suppresses energy transfer from BSA-Au NCs to IDS. Therefore, this proposed fluorescent sensor is a "turn-on" detection motif. It is the first application of fluorescent nanoclusters in sensitively detecting ozone from 0.2 to 12 μM with the limit of detection of 35 nM (the volume of 500 μL, 1.68 ppb). The proposed fluorescent sensor for ozone is more sensitive and faster (within 2 min) than most methods and is with good selectivity for ozone detection against other reactive oxygen species, reactive nitrogen, or metallic ions. Besides, the proposed method is also utlized in ozone detection in ambient air by monitoring 1 h (60 min) in Qijiang district in Chongqing city. The average of concentration of ozone in ambient air ranges from 44.97 to 52.85 μg/m(3). The results are compared with the automatic monitoring data provided by Qijiang Environmental Monitoring Station and the relative deviations range, respectively, from 2.1 to 5.6%, which suggests that it is a promising fluorescent sensor for ozone in ambient air. This study not only develops a new model of energy transfer motif using BSA-Au NCs as donor and IDS as acceptor but also expands the application of BSA-Au NCs in environmental science. Graphical abstract A "turn-on" fluorescent sensor for ozone detection using bovine serum albumin-directed gold nanoclusters (BSA-Au NCs) via energy transfer is developed. It is the first time to utilize spectral overlap of fluorescent spectrum of BSA-Au NCs with absorption spectrum of indigo carmine and to achieve fast, sensitive, and selective ozone detection with a limit of detection of down to 35 nM (the volume of 500 μL, 1.68 ppb).

  11. Shock formation in Ne, Ar, Kr, and Xe on DD gas puff implosions

    NASA Astrophysics Data System (ADS)

    Narkis, J.; Rahman, H. U.; Wessel, F. J.; Ney, P.; Beg, F.

    2016-10-01

    1- and 2-D simulations of a 1-cm radius, gas-puff implosion of Ne, Ar, Kr, and Xe liners onto a DD target are conducted using the discharge parameters for the Univ. Nevada, Reno, Zebra (1 MA, 125 ns) voltage driver and the resistive MHD code MACH2. During the run-in phase, initial†shock heating preheats the DD plasma, with subsequent stable, adiabatic compression heating the target to high energy density. The dynamics of the former in both the liner and target are investigated. It is shown that magnetic field transport to the liner/target interface does not occur prior to the run-in phase in Ne and Ar liners, yet does occur in Kr and Xe liners, and that magnetic field transport to the interface is a requirement for shock initiation, thus demonstrating the necessity for using a high-Z material in the Staged Z-pinch. Shock reflection off the axis and subsequent collision with the interface results in partial transmission into the liner, which manifests as current reversal, and consequently an enhanced Bθ gradient. 2-D simulations show that magneto-Rayleigh-Taylor instability growth decreases with increasing Z, with shock formation providing sufficient isolation to reproduce the current reversal and enhanced Bθ gradient observed in 1-D simulations. Advanced Research Projects Agency - Energy, DE-AR0000569.

  12. R-Z Density Mapping and CFD Simulation of Gas Puff Nozzle Flow

    NASA Astrophysics Data System (ADS)

    McKee, Erik; Valenzuela, Julio; Krasheninnikov, Igor; Frazier, Alister; Covington, Aaron; Beg, Farhat; Darling, Tim; Nevada Terawatt Facility Team; University of San Diego Team

    2015-11-01

    Laser induced fluorescence (LIF) is a technique in which a tracer is added to the gas flow for measurement of its spatial and temporal density profile. The Nd:YAG EKSPLA laser 20mJ/150ps at the fourth harmonic 266nm wavelength is focused down to a <1mm pencil beam to excite the acetone tracer. The use of anr ICCD gating camera is necessary because the 4ns short-lived fluorescence state is an order-of-magnitude dimmer than the 200us long-lived phosphorescence state. Mapping the density profile in time and space requires multiple shots. Once the temporal and spatial density profile is obtained, it can be used and benchmarked for two independent CFD software programs using transient solvers: OpenFOAM and FLUENT. The measurements and simulations serve as the initial conditions for (i) Gas Puff experiments that utilize special nozzle contours to inject the gas load between the electrode gap on pulsed-power machines and (ii) use with future MHD modeling efforts. Support for this work is provided by DOE/NNSA grant DE-NA0002075 and funded by the US Department of Energy, ARPA-E, Control Number 1184-1527.

  13. Diagnostics of deuterium gas-puff z-pinch experiments on the GIT-12 generator

    NASA Astrophysics Data System (ADS)

    Cikhardt, J.; Klir, D.; Rezac, K.; Kubes, P.; Kravarik, J.; Batobolotova, B.; Sila, O.; Turek, K.; Shishlov, A.; Labetsky, A.; Kokshenev, V.; Chedizov, R.; Ratakhin, N.; Varlachev, V.; Garapatsky, A.; Dudkin, G.; Padalko, V.; GIT-12 Team

    2014-10-01

    Z-pinch experiments with a deuterium gas-puff and an outer plasma shell generated by plasma guns were carried out on the GIT-12 generator at the IHCE in Tomsk. Using this novel configuration of the load, the neutron yields from the DD reaction were significantly increased from 2×1011 up to 3×1012 neutrons per shot at the current level of about 3 MA. In addition to recent experiments, the threshold activation detectors were used in order to get the information about the energy spectrum of the generated neutrons. The copper, indium, and lead samples were irradiated by the pulse of the neutrons generated during the experimental shot. The decay radiation of the products from the reactions 63Cu(n,2n)62Cu, 115In(n, γ) 116 mIn and 206Pb (n,3n)204mPb was observed using gamma spectrometer. According to the used neutron ToF scintillation detectors, the energy of neutrons reaches up to 20 MeV. The work was supported by the MSMT of the Czech Republic research Programs No. ME090871, No. LG13029, by the GACR Grant No. P205/12/0454, Grant CRA IAEA No. 17088 and RFBR research Project No. 13-08-00479-a.

  14. Diagnostics of Fast Axial Ions Produced in Deuterium Gas-Puff Z-Pinch

    NASA Astrophysics Data System (ADS)

    Rezac, K.; Klir, D.; Cikhardt, J.; Kubes, P.; Sila, O.; Kravarik, J.; Shishlov, A. V.; Labetsky, A. Yu.; Cherdizov, R. K.; Ratakhin, N. A.; Orcikova, H.; Turek, K.; Dudkin, N.; Padalko, V. N.; GIT-12 Team

    2016-10-01

    An unexpected advantage of some Z-pinch configurations is a possibility of an acceleration of ions to high energies. One of these configurations is a deuterium gas-puff with outer plasma shell, where hydrogen ions with energies up to 40 MeV has been observed during Z-pinch experiments on the GIT-12 generator since 2013. During the recent campaign in 2016, the source of high energetic ions and also parameters of ion pulses have been studied by various in-chamber diagnostics in 24 experimental shots on the current level below 3 MA. Principal aims were (i) to find a spatial distribution of ion sources, (ii) localization of ion sources on the z-axis and (iii) determine the ion energy spectra by an unfold technique. All of these has been done with the help of a new diagnostic setup consists of an ion pinhole camera, an ion 3-pinhole camera, a multi-pinhole camera and a detector of spatial ion beam profile. The ion diagnostics contained stacks with various absorbers, CR-39 track detectors, HD-V2 and EBT-3 radio-chromic films. One more aim, (iv) the study of a difference in production time of axial ion pulses with off-axis pulses, were accomplished by LiF samples and nTOF signals. This work was supported by the projects GACR 16-07036S, MSMT LD14089, CTU. SGS16/223/OHK3/3T/13, IAEA RC17088.

  15. Shock formation in Ne, Ar, Kr, and Xe on deuterium gas puff implosions

    SciTech Connect

    Narkis, J.; Rahman, H. U.; Ney, P.; Desjarlais, M. P.; Wessel, F. J.; Conti, F.; Valenzuela, J. C.; Beg, F. N.

    2016-12-29

    1- and 2-D simulations of 1-cm radius, gas-puff liners of Ne, Ar, Kr, and Xe imploding onto a deuterium target are conducted using the discharge parameters for the Zebra (1 MA, 130 ns) driver using the resistive MHD code MACH2. This is an implementation of the Staged Z-pinch concept, in which the target is driven to high-energy-density first by shock compression launched by a diffused azimuthal magnetic field (J×B force), and then by the adiabatic compression as the liner converges on axis. During the run-in phase, the initial shock heating preheats the deuterium plasma, with a subsequent stable, adiabatic compression heating the target to high energy density. Shock compression of the target coincides with the development of a J×B force at the target/liner interface. Stronger B-field transport and earlier shock compression increases with higher-Z liners, which results in an earlier shock arrival on axis. As a result, delayed shock formation in lower-Z liners yields a relative increase in shock heating, however, the 2-D simulations show an increased target isolation from magneto-Rayleigh-Taylor instability penetration, suggesting that an optimal balance between these two effects is reached in an Ar or Kr liner, rather than with Xe.

  16. Upgrade to the Gas Puff Imaging Diagnostic that Views Alcator C-Mod's Inboard Edge

    NASA Astrophysics Data System (ADS)

    Sierchio, J. M.; Terry, J. L.

    2012-10-01

    We describe an upgrade of Alcator C-Mod's Gas Puff Imaging system which views the inboard plasma edge and SOL along lines-of-sight that are approximately parallel to the local magnetic field. The views are arranged in a 2D (R,Z) array with ˜2.8 cm radial coverage and ˜2.4 cm poloidal coverage. 23 of 54 available views were coupled via fibers to individual interference filters and PIN photodiode detectors. We are in the process of upgrading the system in order to increase the sensitivity of the system by replacing the PIN photodiodes with a 4x8 array of Avalanche Photo-Diodes (APD). Light from 30 views is coupled to the single-chip APD array through a single interference filter. We expect an improvement in signal-to-noise ratio of more than 10x. The frequency response of the system will increase from ˜400 kHz to 1MHz. The dynamic range of the new system is manipulated by changing the high-voltages on the APDs. Test results of the detectors' channel-to-channel cross-talk, frequency response, and gain curves will be presented, along with schematics of the experimental setup. The upgraded system allows for more study of inboard edge fluctuations, including whether the quasi-coherent fluctuations observed in the outboard edge also exist inboard.

  17. Ion Acceleration in Megaampere Deuterium Gas-Puff Z-Pinch

    NASA Astrophysics Data System (ADS)

    Klir, D.,; Cikhardt, J.; Cikhardtova, B.; Kravarik, J.; Kubes, P.; Munzar, V.; Rezac, K.; Sila, O.; Shishlov, A.; Cherdizov, R.; Fursov, F.; Kokshenev, V.; Kovalchuk, B.; Kurmaev, N.; Labetsky, A.; Ratakhin, N.; Dudkin, G.; Padalko, V.; Krasa, J.; Turek, K.

    2016-10-01

    Acceleration of ions to high energies was observed in deuterium z-pinches already at the beginning of the fusion research in the 1950s. Even though the ion acceleration mechanism in z-pinches and dense plasma foci has been studied for decades, it is still a source of controversy which has not been resolved. Recently, the ion emission has been researched at a 3 MA current on the GIT-12 generator (IHCE in Tomsk). When an outer hollow cylindrical plasma shell was injected around an inner deuterium gas puff, a larger amount of current was assembled on the z-pinch axis at stagnation. After the disruptive development of m =0 necks, hydrogen ions were accelerated up to 40 MeV energies. Comprehensive diagnostics of multi-MeV protons and deuterons provided unique information about the ion acceleration in z-pinches. The better knowledge of the ion emission was used to increase the neutron yield above 1013. A large amount of experimental data from various ion diagnostic instruments is also useful for validation of numerical codes and verification of various hypotheses about the ion acceleration mechanism in z-pinches. This work was partially supported by the GACR Grant No. 16-07036S.

  18. Shock formation in Ne, Ar, Kr, and Xe on deuterium gas puff implosions

    DOE PAGES

    Narkis, J.; Rahman, H. U.; Ney, P.; ...

    2016-12-29

    1- and 2-D simulations of 1-cm radius, gas-puff liners of Ne, Ar, Kr, and Xe imploding onto a deuterium target are conducted using the discharge parameters for the Zebra (1 MA, 130 ns) driver using the resistive MHD code MACH2. This is an implementation of the Staged Z-pinch concept, in which the target is driven to high-energy-density first by shock compression launched by a diffused azimuthal magnetic field (J×B force), and then by the adiabatic compression as the liner converges on axis. During the run-in phase, the initial shock heating preheats the deuterium plasma, with a subsequent stable, adiabatic compressionmore » heating the target to high energy density. Shock compression of the target coincides with the development of a J×B force at the target/liner interface. Stronger B-field transport and earlier shock compression increases with higher-Z liners, which results in an earlier shock arrival on axis. As a result, delayed shock formation in lower-Z liners yields a relative increase in shock heating, however, the 2-D simulations show an increased target isolation from magneto-Rayleigh-Taylor instability penetration, suggesting that an optimal balance between these two effects is reached in an Ar or Kr liner, rather than with Xe.« less

  19. Simulations of Ar gas-puff implosions on Z with a Xe dopant

    NASA Astrophysics Data System (ADS)

    Tangri, Varun; Giuliani, J. L.; Velikovich, A. L.; Ouart, N. D.; Dasgupta, A.; Thornhill, J. W.; Apruzese, J. P.; Harvey-Thompson, A. J.; Jones, B.; Jennings, C. A.

    2016-10-01

    A recent experiment on the Z machine at SNL indicated that the presence of a small fraction of Xe (0.8% by number in the center jet) in a Ar gas puff shot had a significant effect on the emitted K-shell radiation. In presence of the Xe dopant, the Ar K-shell yield dramatically reduced from 373 +/-9 to 129 +/-9 kJ. The peak K-shell power was also significantly lower and accompanied by two nearly equal peaks. A second shot without the Xe dopant consisted of a single peak. We present radiation-magnetohydrodynamic simulations of these shots [Z2603 (with Xe) and Z2605 (without Xe)] using the using the Mach2-TCRE code with a tabulated collisional radiative equilibrium model. Detailed numerical simulations exploring the impact of the Xe dopant on the implosion dynamics and the resultant K-shell radiation will be presented. Analysis of a time- and space resolved synthetic K-shell spectra would also be presented. Work supported by the DOE/NNSA. SNL is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's NNSA under contract DE-AC04-94AL85000.

  20. Direct radiative effect of the Russian wildfires and its impact on air temperature and atmospheric dynamics during August 2010

    NASA Astrophysics Data System (ADS)

    Péré, J. C.; Bessagnet, B.; Mallet, M.; Waquet, F.; Chiapello, I.; Minvielle, F.; Pont, V.; Menut, L.

    2014-02-01

    In this study, we investigate the shortwave aerosol direct radiative forcing (ADRF) and its feedback on air temperature and atmospheric dynamics during a major fire event that occurred in Russia during August 2010. The methodology is based on an offline coupling between the CHIMERE chemistry-transport and the Weather Research and Forecasting (WRF) models. First, simulations for the period 5-12 August 2010 have been evaluated by using AERONET (AErosol RObotic NETwork) and satellite measurements of the POLarization and Directionality of the Earth's Reflectance (POLDER) and the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) sensors. During this period, elevated POLDER aerosol optical thickness (AOT) is found over a large part of eastern Europe, with values above 2 (at 550 nm) in the aerosol plume. According to CALIOP observations, particles remain confined to the first five kilometres of the atmospheric layer. Comparisons with satellite measurements show the ability of CHIMERE to reproduce the regional and vertical distribution of aerosols during their transport from the source region. Over Moscow, AERONET measurements indicate an important increase of AOT (340 nm) from 0.7 on 5 August to 2-4 between 6 and 10 August when the aerosol plume was advected over the city. Particles are mainly observed in the fine size mode (radius in the range 0.2-0.4 μm) and are characterized by elevated single-scattering albedo (SSA) (0.95-0.96 between 440 and 1020 nm). Comparisons of simulations with AERONET measurements show that aerosol physical-optical properties (size distribution, AOT, SSA) have been well simulated over Moscow in terms of intensity and/or spectral dependence. Secondly, modelled aerosol optical properties have been used as input in the radiative transfer code of WRF to evaluate their direct radiative impact. Simulations indicate a significant reduction of solar radiation at the ground (up to 80-150 W m-2 in diurnal averages over a large part of eastern

  1. Direct radiative effect of the Russian wildfires and their impact on air temperature and atmospheric dynamics during August 2010

    NASA Astrophysics Data System (ADS)

    Péré, J. C.; Bessagnet, B.; Mallet, M.; Waquet, F.; Chiapello, I.; Minvielle, F.; Pont, V.; Menut, L.

    2013-06-01

    The present study aims at investigating the shortwave aerosol direct radiative forcing (ADRF) and its feedback on air temperature and atmospheric dynamics during a major fire event that occurred in Russia during August 2010. The methodology is based on an off-line coupling between the CHIMERE chemistry-transport and the Weather Research and Forecasting (WRF) models. First, simulations for the period 5-12 August 2010 have been evaluated by using AERONET and satellite measurements of the POLarization and Directionality of the Earth's Reflectance (POLDER) and the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) sensors. During this period, elevated POLDER AOT are found over a large part of Eastern Europe with values above 2 (at 550 nm) in the aerosol plume. According to CALIOP observations, particles remain confined within the first five kilometres of the atmospheric layer. Comparisons with satellite measurements show the ability of CHIMERE to reproduce the regional and vertical distribution of aerosols during their transport from the source region. Over Moscow, AERONET measurements indicate an important increase of AOT (340 nm) from 0.7 on 5 August to 2-4 between 6 and 10 August when the aerosol plume is advected over the city. Particles are mainly observed in the fine size mode (radius in the range 0.2-0.4 μm) and are characterized by elevated SSA (0.95-0.96 between 440 and 1020 nm). Also, comparisons of simulations with AERONET measurements show that aerosol physical-optical properties (size distribution, AOT, SSA) have been well simulated over Moscow in term of intensity and/or spectral dependence. Secondly, modelled aerosol optical properties have been used as input in the radiative transfer code of WRF to evaluate their direct radiative impact. Simulations indicate a significant reduction of solar radiation at the ground (up to 80-150 W m-2 in diurnal-averaged) over a large part of Eastern Europe due to the presence of the aerosol plume. This ADRF

  2. CO2 Huff-n-Puff Process in a Light Oil Shallow Shelf Carbonate Reservoir

    SciTech Connect

    Kovar, Mark; Wehner, Scott

    1998-01-13

    The application of cyclic CO2, often referred to as the CO2 Huff-n-Puff process, may find its niche in the maturing waterfloods of the Permian Basin. Coupling the CO2 Huff-n-Puff process to miscible flooding applications could provide the needed revenue to sufficiently mitigate near-term negative cash flow concerns in the capital-intensive miscible projects. Texaco Exploration & Production Inc. and the U. S. Department of Energy have teamed up in an attempt to develop the CO2 Huff-n-Puff process in the Grayburg and San Andres formations which are light oil, shallow shelf carbonate reservoirs that exist throughout the Permian Basin. This cost-shared effort is intended to demonstrate the viability of this underutilized technology in a specific class of domestic reservoir. A significant amount of oil reserves are located in carbonate reservoirs. Specifically, the carbonates deposited in shallow shelf (SSC) environments make up the largest percentage of known reservoirs within the Permian Basin of North America. Many of these known resources have been under waterflooding operations for decades and are at risk of abandonment if crude oil recoveries cannot be economically enhanced. The selected sites for this demonstration project are the Central Vacuum Unit waterflood in Lea County, New Mexico and the Sundown Slaughter Field in Hockley County, Texas. Miscible CO2 flooding is the process of choice for enhancing recovery of light oils and already accounts for over 12% of the Permian Basin's daily production. There are significant probable reserves associated with future miscible CO2 projects. However, many are marginally economic at current market conditions due to large up-front capital commitments for a peak response, which may be several years in the future. The resulting negative cash-flow is sometimes too much for an operator to absorb. The CO2 Huff-n-Puff process is being investigated as a near

  3. Concomitant adsorption and desorption of organic vapor in dry and humid air streams using microwave and direct electrothermal swing adsorption.

    PubMed

    Hashisho, Zaher; Emamipour, Hamidreza; Rood, Mark J; Hay, K James; Kim, Byung J; Thurston, Deborah

    2008-12-15

    Industrial gas streams can contain highly variable organic vapor concentrations that need to be processed before they are emitted to the atmosphere. Fluctuations in organic vapor concentrations make it more difficult to operate a biofilter when compared to a constant vapor concentration. Hence, there is a need to stabilize the concentration of rapidly fluctuating gas streams for optimum operation of biofilters. This paper describes new concomitant adsorption desorption (CAD) systems used with variable organic vapor concentration gas streams to provide the same gas stream, but at a user-selected constant vapor concentration that can then be more readily processed by a secondary air pollution control device such as a biofilter. The systems adsorb organic vapor from gas streams and simultaneously heat the adsorbent using microwave or direct electrothermal energy to desorb the organic vapor at a user-selected set-point concentration. Both systems depicted a high degree of concentration stabilization with a mean relative deviation between set-point and stabilized concentration of 0.3-0.4%. The direct electrothermal CAD system was also evaluated to treat a humid gas stream (relative humidity = 85%) that contained a variable organic vapor concentration. The high humidity did not interfere with CAD operation as water vapor did not adsorb but penetrated through the adsorbent These results are important because they demonstrate the ability of CAD to effectively dampen concentration fluctuation in gas streams.

  4. Field-testing a new directional passive air sampler for fugitive dust in a complex industrial source environment.

    PubMed

    Ferranti, E J S; Fryer, M; Sweetman, A J; Garcia, M A Solera; Timmis, R J

    2014-01-01

    Quantifying the sources of fugitive dusts on complex industrial sites is essential for regulation and effective dust management. This study applied two recently-patented Directional Passive Air Samplers (DPAS) to measure the fugitive dust contribution from a Metal Recovery Plant (MRP) located on the periphery of a major steelworks site. The DPAS can collect separate samples for winds from different directions (12 × 30° sectors), and the collected dust may be quantified using several different measurement methods. The DPASs were located up and down-prevailing-wind of the MRP processing area to (i) identify and measure the contribution made by the MRP processing operation; (ii) monitor this contribution during the processing of a particularly dusty material; and (iii) detect any changes to this contribution following new dust-control measures. Sampling took place over a 12-month period and the amount of dust was quantified using photographic, magnetic and mass-loading measurement methods. The DPASs are able to effectively resolve the incoming dust signal from the wider steelworks complex, and also different sources of fugitive dust from the MRP processing area. There was no confirmable increase in the dust contribution from the MRP during the processing of a particularly dusty material, but dust levels significantly reduced following the introduction of new dust-control measures. This research was undertaken in a regulatory context, and the results provide a unique evidence-base for current and future operational or regulatory decisions.

  5. Preliminary Results of an Examination of Electronic Cigarette User Puff Topography: The Effect of a Mouthpiece-Based Topography Measurement Device on Plasma Nicotine and Subjective Effects

    PubMed Central

    Spindle, Tory R.; Breland, Alison B.; Karaoghlanian, Nareg V.; Shihadeh, Alan L.

    2015-01-01

    Introduction: Electronic cigarettes (ECIGs) heat a nicotine-containing solution; the resulting aerosol is inhaled by the user. Nicotine delivery may be affected by users’ puffing behavior (puff topography), and little is known about the puff topography of ECIG users. Puff topography can be measured using mouthpiece-based computerized systems. However, the extent to which a mouthpiece influences nicotine delivery and subjective effects in ECIG users is unknown. Methods: Plasma nicotine concentration, heart rate, and subjective effects were measured in 13 experienced ECIG users who used their preferred ECIG and liquid (≥12mg/ml nicotine) during 2 sessions (with or without a mouthpiece). In both sessions, participants completed an ECIG use session in which they were instructed to take 10 puffs with 30-second inter-puff intervals. Puff topography was recorded in the mouthpiece condition. Results: Almost all measures of the effects of ECIG use were independent of topography measurement. Collapsed across session, mean plasma nicotine concentration increased by 16.8ng/ml, and mean heart rate increased by 8.5 bpm (ps < .05). Withdrawal symptoms decreased significantly after ECIG use. Participants reported that the mouthpiece affected awareness and made ECIG use more difficult. Relative to previously reported data for tobacco cigarette smokers using similar topography measurement equipment, ECIG-using participants took larger and longer puffs with lower flow rates. Conclusions: In experienced ECIG users, measuring ECIG topography did not influence ECIG-associated nicotine delivery or most measures of withdrawal suppression. Topography measurement systems will need to account for the low flow rates observed for ECIG users. PMID:25239957

  6. The effect of physiological levels of South African puff adder (Bitis arietans) snake venom on blood cells: an in vitro model

    PubMed Central

    Strydom, Morné A.; Bester, Janette; Mbotwe, Sthembile; Pretorius, Etheresia

    2016-01-01

    A significant burden of illness is caused globally by snakebites particularly by the puff adder, Bitis arietans. Presently there is no reliable and rapid method to confirm envenomation on blood chemistry; although coagulation parameters like prothrombin time, partial thromboplastin time, international normalized ratio and also serum electrolytes are tested. Here, we found that direct in vitro exposure of physiological relevant whole venom levels to human healthy blood (N = 32), caused significant physiological changes to platelet activity using a hematology analyzer, and measuring occlusion time, as well as lyses time, with the global thrombosis test (GTT). Disintegrated platelets were confirmed by scanning electron microscopy (SEM). We also confirmed the pathologic effects on erythrocytes (RBCs) (visible as eryptotic RBCs), by looking at both light microscopy and SEM. Thromboelastography showed that no clot formation in whole blood could be induced after addition of whole venom. We propose further clinical studies to investigate the use of light microscopy smears and hematology analyzer results immediately after envenomation, as a possible first-stage of clinical confirmation of envenomation. PMID:27775063

  7. A note on the correlation between circular and linear variables with an application to wind direction and air temperature data in a Mediterranean climate

    NASA Astrophysics Data System (ADS)

    Lototzis, M.; Papadopoulos, G. K.; Droulia, F.; Tseliou, A.; Tsiros, I. X.

    2017-02-01

    There are several cases where a circular variable is associated with a linear one. A typical example is wind direction that is often associated with linear quantities such as air temperature and air humidity. The analysis of a statistical relationship of this kind can be tested by the use of parametric and non-parametric methods, each of which has its own advantages and drawbacks. This work deals with correlation analysis using both the parametric and the non-parametric procedure on a small set of meteorological data of air temperature and wind direction during a summer period in a Mediterranean climate. Correlations were examined between hourly, daily and maximum-prevailing values, under typical and non-typical meteorological conditions. Both tests indicated a strong correlation between mean hourly wind directions and mean hourly air temperature, whereas mean daily wind direction and mean daily air temperature do not seem to be correlated. In some cases, however, the two procedures were found to give quite dissimilar levels of significance on the rejection or not of the null hypothesis of no correlation. The simple statistical analysis presented in this study, appropriately extended in large sets of meteorological data, may be a useful tool for estimating effects of wind on local climate studies.

  8. Air mass 1.5 global and direct solar simulation and secondary reference cell calibration using a filtered large area pulsed solar simulator

    NASA Technical Reports Server (NTRS)

    Mueller, Robert L.

    1985-01-01

    Spectral mismatch between a solar simulator and a desired spectrum can result in nearly 20 percent measurement error in the output of photovoltaic devices. This occurs when a crystalline silicon cell monitors the intensity of an unfiltered large area pulsed solar simulator (LAPSS) simulating the ASTM air mass 1.5 direct spectrum and the test device is amorphous silicon. The LAPSS spectral irradiance is modified with readily available glass UV filters to closely match either the ASTM air mass 1.5 direct or global spectrum. Measurement error is reduced to about 1 percent when using either filter if the reference cell and test device are the same general type.

  9. Analysis and Optimization of a Lagrangian Volcanic Ash Particle Tracking Model called Puff

    NASA Astrophysics Data System (ADS)

    Peterson, R.; Dean, K.

    2002-12-01

    Volcanic ash tracking models are important for airborne and ground hazard mitigation. Volcanic ash can have devastating effects on aircraft during flight, and ground sedimentation is potentially hazardous in populated areas. Because ash dispersion is controlled primarily by atmospheric winds, analytic solutions are impractical and must be numerically solved. Two distinct modeling techniques, Lagrangian and Eulerian, are currently used for both regional and global tracking models. Recently, the Lagrangian technique has appeared to be more accurate and efficient for tracking volcanic ash plumes, particularly for small eruptions and at early times during the eruption. Modeling ash plume dispersion is complicated by several factors including particle sedimentation and aggregation, and varying wind-field dynamics from the near surface to upper atmosphere. Furthermore, there exists a very limited data set pertaining to past eruptions with which tracking models can be tested and validated. Due primarily to this dearth of data on past eruptions, tracking models have erred on the side of excess when including potentially important factors in describing particle dynamics. The most recent version of Puff includes eleven distinct, adjustable parameters that are intended to describe various processes that effect airborne particle dynamics. The analysis described here was undertaken to better understand the sensitivity of the model to each of the eleven parameters independently. As a result, an improved understanding of how best to parameterize the model has been gained, as well as several methods to optimize performance and the predictive capability has been discovered. Since Puff includes random perturbations in the ash particle trajectories using a Monte Carlo-type technique, large numbers of successive simulations were performed in the analysis, and the averaged overall behavior was analyzed. Model run groups of 100, 500, and 5000 simulations were performed. The eleven

  10. Gas Puff Imaging Studies of Tokamak Edge Physics in the National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Sechrest, Yancey

    In order to be viable, Next-step fusion devices must overcome two pressing problems: they must be able to achieve high levels of confinement while also handling potentially damaging heat loads on material surfaces. The study of plasma edge physics promises solutions to both problems because the plasma edge, being the boundary between confined and unconfined regions, plays a key role in determining the global confinement and the plasma interaction with material surfaces (e.g. edge transport barriers, pedestal evolution, and edge localized modes). However, the steep gradients in density and temperature in the plasma edge that drive strong fluctuations in plasma parameters require measurements of fluctuations with high spatial and temporal resolution. By measuring drift scale (kyrhos < 2) fluctuations for frequencies less than ˜ 200 kHz, Gas Puff Imaging (GPI) meets these requirements while providing two-dimensional coverage at a large number of measurement locations. This dissertation presents GPI studies of transitions from low to high confinement regimes (L-H transitions) and Edge Localized Modes (ELMs). In 2010, a study of L-H transitions with the GPI diagnostic revealed quasi-periodic reductions in the scrape-off-layer turbulence levels during the 30 ms preceding the transition. The two-dimensional flow fields for these "quiet-periods", estimated from the GPI data by a pattern-matching velocimetry technique, exhibit intriguing similarity with the Drift Wave - Zonal Flow paradigm, a leading candidate in explaining L-H transitions. Following this study, a survey of GPI data from RF heated H-mode plasmas near the L-H power threshold identified short-lived, coherent oscillations in edge emission preceding the ELM crash. These observations provide detailed two-dimensional dynamics of the growth, filamentation, and crash of the ELM event, which could improve our understanding through comparison with nonlinear simulation. Cross diagnostic comparisons of GPI and Beam

  11. A Series of Jets that Drove Streamer-Puff CMEs from Giant Active Region of 2014

    NASA Technical Reports Server (NTRS)

    Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.

    2016-01-01

    We investigate characteristics of solar coronal jets that originated from active region NOAA 12192 and produced coronal mass ejections (CMEs). This active region produced many non­-jet major flare eruptions (X and M class) that made no CME. A multitude of jets occurred from the southeast edge of the active region, and in contrast to the major-­flare eruptions in the core, six of these jets resulted in CMEs. Our jet observations are from SDO/AIA EUV channels and from Hinode/XRT, and CME observations are from the SOHO/LASCO C2 coronograph. Each jet-­driven CME was relatively slow-­moving (approx. 200 - 300 km/s) compared to most CMEs; had angular width (20deg - 50deg) comparable to that of the streamer base; and was of the "streamer­-puff" variety, whereby a pre-existing streamer was transiently inflated but not removed (blown out) by the passage of the CME. Much of the chromospheric-­temperature plasma of the jets producing the CMEs escaped from the Sun, whereas relatively more of the chromospheric plasma in the non-CME-producing jets fell back to the solar surface. We also found that the CME-producing jets tended to be faster in speed and longer in duration than the non-CME-­producing jets. We expect that the jets result from eruptions of mini-filaments. We further propose that the CMEs are driven by magnetic twist injected into streamer-­base coronal loops when erupting twisted mini-filament field reconnects with the ambient field at the foot of those loops.

  12. A Series of Jets that Drove Streamer-Puff CMEs from Giant Active Region of 2014

    NASA Technical Reports Server (NTRS)

    Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.

    2016-01-01

    We investigate characteristics of solar coronal jets that originated from active region NOAA 12192 and produced coronal mass ejections (CMEs). This active region produced many non-jet major flare eruptions (X and M class) that made no CME. A multiitude of jets occurred from the southeast edge of the active region, and in contrast to the major-flare eruptions in the core, six of these jets resulted in CMEs. Our jet observations are from multiple SDO/AIA EUV channels, including 304, 171 and 193 Angstrom, and CME observations are taken from SOHO/LASCO C2 coronograph. Each jet-driven CME was relatively slow-moving (approximately 200 - 300 km s(sup-1) compared to most CMEs; had angular width (20deg - 50deg) comparable to that of the streamer base; and was of the "streamer-puff" variety, whereby a preexisting streamer was transiently inflated but not removed (blown out) by the passage of the CME. Much of the chromospheric-temperature plasma of the jets producing the CMEs escaped from the Sun, whereas relatively more of the chromospheric plasma in the non-CME-producing jets fell back to the solar surface. We also found that the CME-producing jets tended to be faster in speed and longer in duration than the non-CME-producing jets. We expect that the jets result from eruptions of mini-filaments. We further propose that the CMEs are driven by magnetic twist injected into streamer-base coronal loops when erupting twisted mini-filament field reconnects with the ambient field at the foot of those loops.

  13. Mediatorless glucose biosensor and direct electron transfer type glucose/air biofuel cell enabled with carbon nanodots.

    PubMed

    Zhao, Mei; Gao, Yue; Sun, Junyong; Gao, Feng

    2015-03-03

    Utilization of carbon nanodots (CNDs), newcomers to the world of carbonaceous nanomaterials, in the electrochemistry realm has rarely been reported so far. In this study, CNDs were used as immobilization supports and electron carriers to promote direct electron transfer (DET) reactions of glucose oxidase (GOx) and bilirubin oxidase (BOD). At the CNDs electrode entrapped with GOx, a high rate constant (k(s)) of 6.28 ± 0.05 s(-1) for fast DET and an apparent Michaelis-Menten constant (K(M)(app)) as low as 0.85 ± 0.03 mM for affinity to glucose were found. By taking advantage of its excellent direct bioelectrocatalytic performances to glucose oxidation, a DET-based biosensor for glucose detection ranging from 0 to 0.64 mM with a high sensitivity of 6.1 μA mM(-1) and a limit of detection (LOD) of 1.07 ± 0.03 μM (S/N = 3) was proposed. Additionally, the promoted DET of BOD immobilized on CNDs was also observed and effectively catalyzed the reduction of oxygen to water at the onset potential of +0.51 V (vs Ag/AgCl). On the basis of the facilitated DET of these two enzymes at CNDs electrodes, a mediator-free DET-type glucose/air enzymatic biofuel cell (BFC), in which CNDs electrodes entrapped with GOx and BOD were employed for oxidizing glucose at the bioanode and reducing oxygen at the biocathode, respectively, was successfully fabricated. The constructed BFC displayed an open-circuit voltage (OCV) as high as 0.93 V and a maximum power density of 40.8 μW cm(-2) at 0.41 V. These important features of CNDs have implied to be promising materials for immobilizing enzymes and efficient platforms for elaborating bioelectrochemical devices such as biosensors and BFCs.

  14. Direct electricity recovery from Canna indica by an air-cathode microbial fuel cell inoculated with rumen microorganisms.

    PubMed

    Zang, Guo-Long; Sheng, Guo-Ping; Tong, Zhong-Hua; Liu, Xian-Wei; Teng, Shao-Xiang; Li, Wen-Wei; Yu, Han-Qing

    2010-04-01

    Aquatic plants are widely used for phytoremediation, and effective disposal methods should be pursued for their utilization and to avoid further environmental pollution problems. This study demonstrated that, using an air-cathode microbial fuel cell (MFC) inoculated with rumen microorganisms, electricity could be directly produced with a maximum power density of 0.405 W/m(3) from Canna indica (canna), a lignocellulosic aquatic plant rich in cellulose, hemicellulose, and lignin, without pretreatment. The mechanisms of the Canna indica degradation in the MFC were elucidated through analyzing the changes of canna structure and intermediates, that is, soluble sugars and volatile fatty acids (VFAs), in the electricity generation process. The results showed that lignin was partially removed and more cellulose became exposed on the sample surface during the electricity generation in the MFC. The electron transfer in this MFC was mainly completed through electron shuttling via self-produced mediators. This work presents an attempt to understand how complex substrates like aquatic plants are decomposed in an MFC during electricity generation. It might, hopefully, provide a promising way to utilize lignocellulosic biomass for energy generation.

  15. Performance evaluation of direct forced-air total solids and Kjeldahl total nitrogen methods: 1990 through 1995.

    PubMed

    Lynch, J M; Barbano, D M; Healy, P A; Fleming, J R

    1997-01-01

    Results from collaborative studies of the performance of the direct forced-air oven-drying method for determination of milk total solids content (AOAC Method 990.20) and the Kjeldahl total nitrogen method for determination of milk total nitrogen content (AOAC Method 991.20) were published in 1989 and 1990, respectively. Method performance was characterized by using the harmonized ISO/IU-PAC/AOAC guidelines for method validation, and the methods now have final action status. During 1990 through 1995, the split sample collaborative study format was used to monitor the performance of these methods as part of a multilaboratory quality assurance program. Seven blind duplicate milk materials were sent from a central laboratory once every 2 months to participating laboratories. Data were analyzed with the same statistical procedures used in the original collaborative studies. Compared with the original collaborative study, the repeatability and reproducibility of the oven-drying method improved over time. For the Kjeldahl total nitrogen method, within-laboratory repeatability improved slightly, whereas between-laboratory reproducibility was similar to but not always as good as in the original study. The results demonstrate that the statistical protocol for collaborative studies can be used effectively as the basis for a multilaboratory quality assurance program and that the method performance achieved in a collaborative study can be maintained and even improved with time.

  16. Characterization of argon direct-current glow discharge with a longitudinal electric field applied at ambient air

    PubMed Central

    Jiang, Weiman; Tang, Jie; Wang, Yishan; Zhao, Wei; Duan, Yixiang

    2014-01-01

    A direct-current-driven plasma jet is developed by applying a longitudinal electric field on the flowing argon at ambient air. This plasma shows a torch shape with its cross-section increased from the anode to the cathode. Comparison with its counterparts indicates that the gas flow plays a key role in variation of the plasma structure and contributes much to enlarging the plasma volume. It is also found that the circular hollow metal base promotes generation of plasma with a high-power volume density in a limited space. The optical emission spectroscopy (OES) diagnosis indicates that the plasma comprises many reactive species, such as OH, O, excited N2, and Ar metastables. Examination of the rotational and vibrational temperature indicates that the plasma is under nonequilibrium condition and the excited species OH(A 2Σ+), O(5P), and N2(C 3Πu) are partly generated by energy transfer from argon metastables. The spatially resolved OES of plasma reveals that the negative glow, Faraday dark space, and positive column are distributed across the gas gap. The absence of the anode glow is attributed to the fact that many electrons in the vicinity of the anode follow ions into the positive column due to the ambipolar diffusion in the flowing gas. PMID:25205176

  17. A detailed postprocess analysis of an argon gas puff Z-pinch plasma using SPEC2D

    NASA Astrophysics Data System (ADS)

    Chong, Y. K.; Kammash, T.; Davis, J.

    1997-05-01

    A postprocess analysis of a single time frame hydrodynamic profile from the PRISM two-dimensional MHD simulation of an argon gas puff Z-pinch plasma experiment on Double-Eagle generator at Physics Internationals, Co. is presented. In addition, spatially resolved emission spectra and filtered (K- and L-shell radiation) x-ray pinhole images, generated using the SPEC2D code, are examined toward the understanding of the emission characteristics of the hot spots and the formation of the Rayleigh-Taylor instability in the plasma.

  18. Assessment of Volatile Organic Compound and Hazardous Air Pollutant Emissions from Oil and Natural Gas Well Pads using Mobile Remote and On-site Direct Measurements

    EPA Science Inventory

    Emissions of volatile organic compounds (VOC) and hazardous air pollutants (HAP) from oil and natural gas production were investigated using direct measurements of component-level emissions on well pads in the Denver-Julesburg (DJ) Basin and remote measurements of production pad-...

  19. Copper(II)-catalyzed direct dioxygenation of alkenes with air and N-hydroxyphthalimide: synthesis of β-keto-N-alkoxyphthalimides.

    PubMed

    Bag, Raghunath; Sar, Dinabandhu; Punniyamurthy, Tharmalingam

    2015-04-17

    Copper(II)-catalyzed direct dioxygenation of alkenes using air and a simple N-hydroxyphthalimide leading to β-keto-N-alkoxyphthalimides has been developed. The reaction system is mild, efficient, and effective at room temperature with broad substrate scope and substantial steric hindrance. The radical-trapping and (18)O-labeling experiments have been demonstrated.

  20. Development of the High-Order Decoupled Direct Method in Three Dimensions for Particulate Matter: Enabling Advanced Sensitivity Analysis in Air Quality Models

    EPA Science Inventory

    The high-order decoupled direct method in three dimensions for particular matter (HDDM-3D/PM) has been implemented in the Community Multiscale Air Quality (CMAQ) model to enable advanced sensitivity analysis. The major effort of this work is to develop high-order DDM sensitivity...

  1. Environmental Assessment: For the Testing and Evaluation of Directed Energy System Using Laser Technology, Edwards Air Force Base

    DTIC Science & Technology

    2006-08-01

    Test Center Edwards Air Force Base, California Final August 2006 Edwards AFB 95th Air Base Wing Report Documentation Page Form ApprovedOMB No. 0704...light amplification by stimulated emission of rad iation (laser) technology at Edwards Air Force Base (AFB), California , and w ithin the R-2508 Complex...Force Flight Test Center, Edwards AFB, California . 2.0 DESCRIPTION OF THE PROPOSED ACTION AND ALTERN A TJVES CONSIDERED The Proposed Action would

  2. Measurement of acrolein and 1,3-butadiene in a single puff of cigarette smoke using lead-salt tunable diode laser infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Thweatt, W. Dave; Harward, Charles N., Sr.; Parrish, Milton E.

    2007-05-01

    Acrolein and 1,3-butadiene in cigarette smoke generally are measured using two separate analytical methods, a carbonyl derivative HPLC method for acrolein and a volatile organic compound (VOC) GC/MS method for 1,3-butadiene. However, a single analytical method having improved sensitivity and real-time per puff measurement will offer more specific information for evaluating experimental carbon filtered cigarettes designed to reduce the smoke deliveries of these constituents. This paper describes an infrared technique using two lead-salt tunable diode lasers (TDLs) operating with liquid nitrogen cooling with emissions at 958.8 cm -1 and 891.0 cm -1 respectively for the simultaneous measurement of acrolein and 1,3-butadiene, respectively, in each puff of mainstream cigarette smoke in real time. The dual TDL system uses a 3.1 l volume, 100 m astigmatic multiple pass absorption gas cell. Quantitation is based on a spectral fit that uses previously determined infrared molecular line parameters generated in our laboratory, including line positions, line strengths and nitrogen-broadened half-widths for these species. Since acrolein and ethylene absorption lines overlap and 1,3-butadiene, ethylene and propylene absorption lines overlap, the per puff deliveries of ethylene and propylene were determined since their overlapping absorption lines must be taken into account by the spectral fit. The acrolein and 1,3-butadiene total cigarette deliveries for the 1R5F Kentucky Reference cigarette were in agreement with the HPLC and GC/MS methods, respectively. The limit of detection (LOD) for 1,3-butadiene and acrolein was 4 ng/puff and 24 ng/puff, respectively, which is more than adequate to determine at which puff they break through the carbon filter. The retention and breakthrough behavior for the two primary smoke constituents depend on the cigarette design and characteristics of the carbon filter being evaluated.

  3. Aerosol Optical Depth over Europe: Evaluation of the CALIOPE air quality modelling system with direct-sun AERONET observations

    NASA Astrophysics Data System (ADS)

    Basart, Sara; Pay, María. Teresa; Pérez, Carlos; Cuevas, Emilio; Jorba, Oriol; Piot, Matthias; María Baldasano, Jose

    2010-05-01

    In the frame of the CALIOPE project (Baldasano et al., 2008), the Barcelona Supercomputing Center (BSC-CNS) currently operates a high-resolution air quality forecasting system based on daily photochemical forecasts in Europe (12km x 12km resolution) with the WRF-ARW/HERMES/CMAQ modelling system (http://www.bsc.es/caliope) and desert dust forecasts over Southern Europe with BSC-DREAM8b (Pérez et al., 2006; http://www.bsc.es/projects/earthscience/DREAM). High resolution simulations and forecasts are possible through their implementation on MareNostrum supercomputer at BSC-CNS. As shown in previous air quality studies (e.g. Rodríguez et al., 2001; Jiménez-Guerrero et al., 2008), the contribution of desert dust on particulate matter levels in Southern Europe is remarkable due to its proximity to African desert dust sources. When considering only anthropogenic emissions (Baldasano et al., 2008) and the current knowledge about aerosol physics and chemistry, chemistry-transport model simulations underestimate the PM10 concentrations by 30-50%. As a first approach, the natural dust contribution from BSC-DREAM8b is on-line added to the anthropogenic aerosol output of CMAQ. The aim of the present work is the quantitative evaluation of the WRF-ARW/HERMES/ CMAQ/BSC-DREAM8b forecast system to simulate the Aerosol Optical Depth (AOD) over Europe. The performance of the modelled AOD has been quantitatively evaluated with discrete and categorical (skill scores) statistics by a comparison to direct-sun AERONET observations for 2004. The contribution of different types of aerosols will be analyzed by means of the O'Neill fine mode AOD products (O'Neill et al., 2001). A previous aerosol characterization of AERONET data was performed (Basart et al., 2009) in order to discriminate the different aerosol source contributions within the study region. The results indicate a remarkable improvement in the discrete and skill-scores evaluation (accuracy, critical success index and

  4. A Direct sensitivity approach to predict hourly ozone resulting from compliance with the National Ambient Air Quality Standard

    EPA Science Inventory

    In setting primary ambient air quality standards, the EPA’s responsibility under the law is to establish standards that protect public health. As part of the current review of the ozone National Ambient Air Quality Standard (NAAQS), the US EPA evaluated the health exposure and ...

  5. CO{sub 2} Huff-n-Puff process in a light oil shallow shelf carbonate reservoir

    SciTech Connect

    1998-06-01

    The application of cyclic CO{sub 2}, often referred to as the CO{sub 2} Huff-n-Puff process, may find its niche in the maturing waterfloods of the Permian Basin. Coupling the CO{sub 2} H-n-P process to miscible flooding applications could provide the needed revenue to sufficiently mitigate near-term negative cash flow concerns in the capital intensive miscible projects. Texaco Exploration and Production Inc. and the US Department of Energy have teamed up in an attempt to develop the CO{sub 2} Huff-n-Puff process in the Grayburg and San Andres formations, a light oil, shallow shelf carbonate reservoir that exists throughout the Permian Basin. This cost-shared effort is intended to demonstrate the viability of this underutilized technology in a specific class of domestic reservoir. The selected site for this demonstration project is the Central Vacuum Unit waterflood in Lea County, New Mexico. The goals of the project are the development of guidelines for cost-effective selection of candidate reservoirs and wells, along with estimating recovery potential. This project has two defined budget periods. The first budget period primarily involves tasks associated with reservoir analysis and characterization, characterizing existing producibility problems, and reservoir simulation of the proposed technology. The final budget period covers the actual field demonstration of the proposed technology. Technology transfer spans the entire course of the project. This report covers the concluding tasks performed under the second budget period.

  6. Effect of Doubly-excited States on Simulation of K- and L-shell Kr Gas Puff on ZR

    NASA Astrophysics Data System (ADS)

    Dasgupta, Arati; Thornhill, Ward; Giuliani, John; Ouart, Nick; Clark, Robert; Jones, Brent; Ampleford, Dave; Harvey-Thompson, Adam; Hansen, Stephanie; Coverdale, Christine

    2014-10-01

    A number of recent shots employing multi-shell gas puffs of Ar and Kr on the Sandia National Laboratories ZR accelerator have demonstrated unprecedented K-shell yields. The KAP TIXTL spectra of Ar gas puff shots with a Kr dopant in the middle shell show Kr L-shell lines near 2 keV. There have been also pure Kr shots on ZR. Krypton spectra from Z pinch implosions provide a wealth of information about the pinch dynamics and ionization history of the plasma. These spectra can be used together with experimental spectroscopic data to analyze the presence and dynamics of the emitting regions, which could dominate the Kr K- and L-shell yields. We will present synthetic K- and L-shell spectra with a detailed radiation transport scheme from the emission regions determined from Kr 1D simulations, employing a non-LTE collisional-radiative ionization kinetics model. We will also investigate the effects of state-specific dielectronic recombination on the populations and spectra of Z pinch Kr plasma. Work supported by DOE/NNSA. Sandia National laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation for the US Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  7. Low-energy ion emission from a xenon gas-puff laser-plasma X-ray source

    NASA Astrophysics Data System (ADS)

    Daido, H.; Yamagami, S.; Suzuki, M.; Azuma, H.; Choi, I. W.; Fiedorowicz, H.

    We have measured low-energy ion emission from a gas-puff laser-plasma X-ray source. The ions may cause the degradation of the condenser mirror of the extreme ultra-violet projection lithography system. A 0.7 J in 8 ns Nd:YAG laser at 1.06 μm was focused onto the xenon gas-puff target with an intensity of 1012 W/cm2. The silicon (111) plates, placed at a distance of 32 mm from the laser-interaction region, were exposed with the xenon ions. The average ion energy was measured to be less than 50 eV with a Faraday-cup detector placed close to the silicon plates. The xenon deposition occurred in the silicon plates with a depth of less than 40 nm. The deposition density was measured with a quadrupole secondary ion mass spectrometer to be 1021 /cm3 after 1500 laser shots. The energy-conversion efficiency from the laser energy into the ions is 0.1%/4 πsr/shot. For the lithography system, if we can remove such ion bombardment completely using novel techniques such as electro-magnetic devices or gas flow curtain techniques, the lifetime of the condenser mirror will be extended significantly.

  8. Personal exposure to volatile organic compounds. I. Direct measurements in breathing-zone air, drinking water, food, and exhaled breath.

    PubMed

    Wallace, L A; Pellizzari, E; Hartwell, T; Rosenzweig, M; Erickson, M; Sparacino, C; Zelon, H

    1984-10-01

    A pilot study to test methods of estimating personal exposures to toxic substances and corresponding body burdens was carried out between July and December 1980. Individual exposures to about a dozen volatile organic compounds in air and drinking water were measured for nine volunteers in Bayonne and Elizabeth, New Jersey, and for three volunteers in Research Triangle Park, North Carolina during three 3-day visits over the 6-month period. Breath samples were also collected from all subjects on each visit. Composite food samples were collected in each locality. Sampling and analytical methods for air, water, food, and breath were evaluated and found generally capable of detecting concentrations as low as 1 microgram/m3 in air and breath, and 1 ng/g in water and food. About 230 personal air samples, 170 drinking water samples, 66 breath samples, and 4 food samples (16 composites) were analyzed for the target chemicals. Ten compounds were present in air and eight were transmitted mainly through that medium. The two target trihalomethanes (chloroform and bromodichloromethane) were predominantly transmitted through water and beverages. Food appeared to be a minor route of exposure, except possibly for trichloroethylene in margarine. Seven compounds were present in more than half of the breath samples. Diurnal and seasonal variations were noted in air and water concentrations of some compounds, with summer levels generally higher. For some chemicals, weekday air exposures were significantly higher than weekend exposures. Some, but not all, of the potentially occupationally exposed individuals had significantly higher workplace exposures to several chemicals. Distributions of air exposures were closer to log normal than normal for most chemicals. Several chemicals were highly correlated with each other in personal air samples, indicating possible common sources of exposure.

  9. Implications of RCP emissions on future PM2.5 air quality and direct radiative forcing over China

    NASA Astrophysics Data System (ADS)

    Li, Ke; Liao, Hong; Zhu, Jia; Moch, Jonathan M.

    2016-11-01

    Severe PM2.5 air pollution in China and the First Grand National Standard (FGNS), implemented in 2016 (annual PM2.5 concentration target of less than 35 µg m-3), necessitate urgent reduction strategies. This study applied the nested-grid version of the Goddard Earth Observing System (GEOS) chemical transport model (GEOS-Chem) to quantify 2000-2050 changes in PM2.5 air quality and related direct radiative forcing (DRF) in China, based on future emission changes under the representative concentration pathway (RCP) scenarios of RCP2.6, RCP4.5, RCP6.0, and RCP8.5. In the near term (2000-2030), a projected maximum increase in PM2.5 concentrations of 10-15 µg m-3 is found over east China under RCP6.0 and RCP8.5 and less than 5 µg m-3 under RCP2.6 and RCP4.5. In the long term (2000-2050), PM2.5 pollution clearly improves, and the largest decrease in PM2.5 concentrations of 15-30 µg m-3 is over east China under all RCPs except RCP6.0. Focusing particularly on highly polluted regions, we find that Beijing-Tianjin-Hebei (BTH) wintertime PM2.5 concentrations meeting the FGNS occur after 2040 under RCP2.6, RCP4.5, and RCP8.5, and summertime PM2.5 concentrations reach this goal by 2030 under RCP2.6 and RCP4.5. In Sichuan Basin (SCB), wintertime PM2.5 concentrations below the FGNS occur only in 2050 under RCP2.6 and RCP4.5, although future summertime PM2.5 will be well controlled. The difficulty in controlling future PM2.5 concentrations relates to unmitigated high levels of nitrate, although NOx and SO2 emissions show substantial reductions during 2020-2040. The changes in aerosol concentrations lead to positive aerosol DRF over east China (20°-45°N, 100°-125°E) by 1.22, 1.88, and 0.66 W m-2 in 2050 relative to 2000 under RCP2.6, RCP4.5, and RCP8.5, respectively. When considering both health and climate effects of PM2.5 over China, for example, PM2.5 concentrations averaged over east China under RCP4.5 (RCP2.6) decrease by 54% (43%) in 2050 relative to 2000, but at the

  10. Center for Corporate Climate Leadership: Direct Fugitive Emissions from Refrigeration, Air Conditioning, Fire Suppression, and Industrial Gases

    EPA Pesticide Factsheets

    This guidance document focuses on several fugitive emissions sources that are common for organizations in many sectors: refrigeration and air conditioningsystems, fire suppression systems, and the purchase and release of industrial gases.

  11. Personal exposure to volatile organic compounds. I. Direct measurements in breathing-zone air, drinking water, food, and exhaled breath

    SciTech Connect

    Wallace, L.A.; Pellizzari, E.; Hartwell, T.; Rosenzweig, M.; Erickson, M.; Sparacino, C.; Zelon, H.

    1984-10-01

    A pilot study to test methods of estimating personal exposures to toxic substances and corresponding body burdens was carried out between July and December 1980. Individual exposures to about a dozen volatile organic compounds in air and drinking water were measured for volunteers in New Jersey and North Carolina. Breath samples were also collected from all subjects. About 230 personal air samples, 170 drinking water samples, 66 breath samples, and 4 food samples (16 composites) were analyzed for the target chemicals. Ten compounds were present in air and eight were transmitted mainly through that medium. Chloroform and bromodichloromethane were predominantly transmitted through water and beverages. Food appeared to be a miner route of exposure, except possibly for trichloroethylene in margarine. Seven compounds were present in more than half of the breath samples. Diurnal and seasonal variations were noted in air and water concentrations of some compounds. Some, but not all, of the potentially occupationally exposed individuals had significantly higher workplace exposures to several chemicals. Distributions of air exposures were closer to log normal than normal for most chemicals. Several chemicals were highly correlated with each other in personal air samples, indicating possible common sources of exposures. Compounds detected included benzene, chlorinated aromatic hydrocarbons, chlorinated aliphatic hydrocarbons, halogens and vinyl chloride.

  12. Comparison of direct numerical simulation of lean premixed methane-air flames with strained laminar flame calculations.

    SciTech Connect

    Chen, Jacqueline H.; Hawkes, Evatt R.

    2004-08-01

    Direct numerical simulation (DNS) with complex chemistry was used to study statistics of displacement and consumption speeds in turbulent lean premixed methane-air flames. The main focus of the study is an evaluation of the extent to which a turbulent flame in the thin reaction zones regime can be described by an ensemble of strained laminar flames. Conditional averages with respect to strain for displacement and consumption speeds are presented over a wide range of strain typically encountered in a turbulent flame, compared with previous studies that either made local pointwise comparisons or conditioned the data on small strain and curvature. The conditional averages for positive strains are compared with calculated data from two different canonical strained laminar configurations to determine which is the optimal representation of a laminar flame structure embedded in a turbulent flame: the reactant-to-product (R-to-P) configuration or the symmetric twin flame configuration. Displacement speed statistics are compared for the progress-variable isosurface of maximum reaction rate and an isosurface toward the fresh gases, which are relevant for both modeling and interpretation of experiment results. Displacement speeds in the inner reaction layer are found to agree very well with the laminar R-to-P calculations over a wide range of strain for higher Damkhler number conditions, well beyond the regime in which agreement was expected. For lower Damkhler numbers, a reduced response to strain is observed, consistent with previous studies and theoretical expectations. Compared with the inner layer, broader and shifted probability density functions (PDFs) of displacement speed were observed in the fresh gases, and the agreement with the R-to-P calculations deteriorated. Consumption speeds show a poorer agreement with strained laminar calculations, which is attributed to multidimensional effects and a more attenuated unsteady response to strain fluctuations; however, they

  13. Comparison of direct numerical simulation of lean premixed methane-air flames with strained laminar flame calculations

    SciTech Connect

    Hawkes, Evatt R.; Chen, Jacqueline H.

    2006-01-01

    Direct numerical simulation (DNS) with complex chemistry was used to study statistics of displacement and consumption speeds in turbulent lean premixed methane-air flames. The main focus of the study is an evaluation of the extent to which a turbulent flame in the thin reaction zones regime can be described by an ensemble of strained laminar flames. Conditional averages with respect to strain for displacement and consumption speeds are presented over a wide range of strain typically encountered in a turbulent flame, compared with previous studies that either made local pointwise comparisons or conditioned the data on small strain and curvature. The conditional averages for positive strains are compared with calculated data from two different canonical strained laminar configurations to determine which is the optimal representation of a laminar flame structure embedded in a turbulent flame: the reactant-to-product (R-to-P) configuration or the symmetric twin flame configuration. Displacement speed statistics are compared for the progress-variable isosurface of maximum reaction rate and an isosurface toward the fresh gases, which are relevant for both modeling and interpretation of experiment results. Displacement speeds in the inner reaction layer are found to agree very well with the laminar R-to-P calculations over a wide range of strain for higher Damkohler number conditions, well beyond the regime in which agreement was expected. For lower Damkohler numbers, a reduced response to strain is observed, consistent with previous studies and theoretical expectations. Compared with the inner layer, broader and shifted probability density functions (PDFs) of displacement speed were observed in the fresh gases, and the agreement with the R-to-P calculations deteriorated. Consumption speeds show a poorer agreement with strained laminar calculations, which is attributed to multidimensional effects and a more attenuated unsteady response to strain fluctuations; however

  14. Exposure information in environmental health research: Current opportunities and future directions for particulate matter, ozone, and toxic air pollutants

    SciTech Connect

    McKone, Thomas E.; Ryan, P. Barry; Ozkaynak, Haluk

    2007-02-01

    Understanding and quantifying outdoor and indoor sources of human exposure are essential but often not adequately addressed in health-effects studies for air pollution. Air pollution epidemiology, risk assessment, health tracking and accountability assessments are examples of health-effects studies that require but often lack adequate exposure information. Recent advances in exposure modeling along with better information on time-activity and exposure factors data provide us with unique opportunities to improve the assignment of exposures for both future and ongoing studies linking air pollution to health impacts. In September 2006, scientists from the US Environmental Protection Agency (EPA) and the Centers for Disease Control and Prevention (CDC) along with scientists from the academic community and state health departments convened a symposium on air pollution exposure and health in order to identify, evaluate, and improve current approaches for linking air pollution exposures to disease. This manuscript presents the key issues, challenges and recommendations identified by the exposure working group, who used cases studies of particulate matter, ozone, and toxic air pollutant exposure to evaluate health-effects for air pollution. One of the over-arching lessons of this workshop is that obtaining better exposure information for these different health-effects studies requires both goal-setting for what is needed and mapping out the transition pathway from current capabilities to meeting these goals. Meeting our long-term goals requires definition of incremental steps that provide useful information for the interim and move us toward our long-term goals. Another over-arching theme among the three different pollutants and the different health study approaches is the need for integration among alternate exposure assessment approaches. For example, different groups may advocate exposure indicators, biomonitoring, mapping methods (GIS), modeling, environmental media

  15. Exposure information in environmental health research: current opportunities and future directions for particulate matter, ozone, and toxic air pollutants.

    PubMed

    McKone, Thomas E; Ryan, P Barry; Ozkaynak, Halûk

    2009-01-01

    Understanding and quantifying outdoor and indoor sources of human exposure are essential but often not adequately addressed in health effect studies for air pollution. Air pollution epidemiology, risk assessment, health tracking, and accountability assessments are examples of health effect studies that require but often lack adequate exposure information. Recent advances in exposure modeling along with better information on time-activity and exposure factor data provide us with unique opportunities to improve the assignment of exposures for both future and ongoing studies linking air pollution to health impacts. In September 2006, scientists from the US Environmental Protection Agency and the Centers for Disease Control and Prevention along with scientists from the academic community and state health departments convened a symposium on air pollution exposure and health to identify, evaluate, and improve current approaches for linking air pollution exposures to disease. This manuscript presents the key issues, challenges, and recommendations identified by the exposure working group, who used case studies of particulate matter, ozone, and toxic air-pollutant exposure to evaluate health effects for air pollution. One of the overarching lessons of this workshop is that obtaining better exposure information for these different health effect studies requires both goal setting for what is needed and mapping out the transition pathway from current capabilities for meeting these goals. Meeting our long-term goals requires definition of incremental steps that provide useful information for the interim and move us toward our long-term goals. Another overarching theme among the three different pollutants and the different health study approaches is the need for integration among alternate exposure-assessment approaches. For example, different groups may advocate exposure indicators, biomonitoring, mapping methods (GIS), modeling, environmental media monitoring, and/or personal

  16. Simulation of effects of direction and air flow speed on temperature distribution in the room covered by various roof materials

    NASA Astrophysics Data System (ADS)

    Sukanto, H.; Budiana, E. P.; Putra, B. H. H.

    2016-03-01

    The objective of this research is to get a comparison of the distribution of the room temperature by using three materials, namely plastic-rubber composite, clay, and asbestos. The simulation used Ansys Fluent to get the temperature distribution. There were two conditions in this simulations, first the air passing beside the room and second the air passing in front of the room. Each condition will be varied with the air speed of 1 m/s, 2 m/s, 3 m/s, 4 m/s, 5 m/s for each material used. There are three heat transfers in this simulation, namely radiation, convection, and conduction. Based on the ANSI/ ASHRAE Standard 55-2004, the results of the simulation showed that the best temperature distribution was the roof of plastic-rubber composites.

  17. A fast rise-rate, adjustable-mass-bit gas puff valve for energetic pulsed plasma experiments

    SciTech Connect

    Loebner, Keith T. K. Underwood, Thomas C.; Cappelli, Mark A.

    2015-06-15

    A fast rise-rate, variable mass-bit gas puff valve based on the diamagnetic repulsion principle was designed, built, and experimentally characterized. The ability to hold the pressure rise-rate nearly constant while varying the total overall mass bit was achieved via a movable mechanical restrictor that is accessible while the valve is assembled and pressurized. The rise-rates and mass-bits were measured via piezoelectric pressure transducers for plenum pressures between 10 and 40 psig and restrictor positions of 0.02-1.33 cm from the bottom of the linear restrictor travel. The mass-bits were found to vary linearly with the restrictor position at a given plenum pressure, while rise-rates varied linearly with plenum pressure but exhibited low variation over the range of possible restrictor positions. The ability to change the operating regime of a pulsed coaxial plasma deflagration accelerator by means of altering the valve parameters is demonstrated.

  18. Heat transfer and pressure drop measurements in an air/molten salt direct-contact heat exchanger

    SciTech Connect

    Bohn, M.S.

    1988-11-01

    This paper presents a comparison of experimental data with a recently published model of heat exchange in irrigated packed beds. Heat transfer and pressure drop were measured in a 150 mm (ID) column with a 610-mm bed of metal Pall rings. Molten nitrate salt and preheated air were the working fluids with a salt inlet temperature of approximately 440{degree}C and air inlet temperatures of approximately 230{degree}C. A comparison between the experimental data and the heat transfer model is made on the basis of heat transfer from the salt. For the range of air and salt flow rates tested, 0.3 to 1.2 kg/m{sup 2} s air flow and 6 to 18 kg/m{sup 2} s salt flow, the data agree with the model within 22% standard deviation. In addition, a model for the column pressure drop was validated, agreeing with the experimental data within 18% standard deviation over the range of column pressure drop from 40 to 1250 Pa/m. 25 refs., 7 figs., 2 tabs.

  19. Air quality and ventilation fan control based on aerosol measurement in the bi-directional undersea Bømlafjord tunnel.

    PubMed

    Indrehus, Oddny; Aralt, Tor Tybring

    2005-04-01

    Aerosol, NO and CO concentration, temperature, air humidity, air flow and number of running ventilation fans were measured by continuous analysers every minute for a whole week for six different one-week periods spread over ten months in 2001 and 2002 at measuring stations in the 7860 m long tunnel. The ventilation control system was mainly based on aerosol measurements taken by optical scatter sensors. The ventilation turned out to be satisfactory according to Norwegian air quality standards for road tunnels; however, there was some uncertainty concerning the NO2 levels. The air humidity and temperature inside the tunnel were highly influenced by the outside metrological conditions. Statistical models for NO concentration were developed and tested; correlations between predicted and measured NO were 0.81 for a partial least squares regression (PLS1) model based on CO and aerosol, and 0.77 for a linear regression model based only on aerosol. Hence, the ventilation control system should not solely be based on aerosol measurements. Since NO2 is the hazardous polluter, modelling NO2 concentration rather than NO should be preferred in any further optimising of the ventilation control.

  20. Exposure Information in Environmental Health Research: Current Opportunities and Future Directions for Particulate Matter, Ozone, and Toxic Air Pollutants

    EPA Science Inventory

    In September 2006, scientists from the US Environmental Protection Agency (EPA) and the Centers for Disease Control and Prevention (CDC) along with scientists from the academic community and state health departments convened a symposium on air pollution exposure and health in ord...

  1. CLOUDS, AEROSOLS, RADIATION AND THE AIR-SEA INTERFACE OF THE SOUTHERN OCEAN: ESTABLISHING DIRECTIONS FOR FUTURE RESEARCH

    SciTech Connect

    Wood, Robert; Bretherton, Chris; McFarquhar, Greg; Protat, Alain; Quinn, Patricia; Siems, Steven; Jakob, Christian; Alexander, Simon; Weller, Bob

    2014-09-29

    A workshop sponsored by the Department of Energy was convened at the University of Washington to discuss the state of knowledge of clouds, aerosols and air-sea interaction over the Southern Ocean and to identify strategies for reducing uncertainties in their representation in global and regional models. The Southern Ocean plays a critical role in the global climate system and is a unique pristine environment, yet other than from satellite, there have been sparse observations of clouds, aerosols, radiation and the air-sea interface in this region. Consequently, much is unknown about atmospheric and oceanographic processes and their linkage in this region. Approximately 60 scientists, including graduate students, postdoctoral fellows and senior researchers working in atmospheric and oceanic sciences at U.S. and foreign universities and government laboratories, attended the Southern Ocean Workshop. It began with a day of scientific talks, partly in plenary and partly in two parallel sessions, discussing the current state of the science for clouds, aerosols and air-sea interaction in the Southern Ocean. After the talks, attendees broke into two working groups; one focused on clouds and meteorology, and one focused on aerosols and their interactions with clouds. This was followed by more plenary discussion to synthesize the two working group discussions and to consider possible plans for organized activities to study clouds, aerosols and the air-sea interface in the Southern Ocean. The agenda and talk slides, including short summaries of the highlights of the parallel session talks developed by the session chars, are available at http://www.atmos.washington.edu/socrates/presentations/SouthernOceanPresentations/.

  2. Transformation of a Water Slug in Free Fall Under the Conditions of Exposure to an Air Flow Orthogonal to the Direction of the Slug Motion

    NASA Astrophysics Data System (ADS)

    Volkov, R. S.; Zabelin, M. V.; Kuznetsov, G. V.; Strizhak, P. A.

    2016-07-01

    An experimental study has been made of the influence of an orthogonal (side) air flow propagating with a velocity to 5 m/s on the phases of transformation of a water slug with an initial volume of 0.05-0.5 liter in free fall from a height of 3 m. Use was made of Phantom V411 and Phantom Miro M310 high-speed video cameras and a Tema Automotive software system with the function of continuous tracking. The laws of retardation of the phases of transformation of the water slug from the instant of formation to that of formation of a droplet cloud under the action of the air flow orthogonal to the direction of the slug motion, and also of the deceleration, removal, and destruction of the droplets and fragments of water separating from the slug surface, have been established.

  3. Energy Efficient Removal of Volatile Organic Compounds (VOCs) and Organic Hazardous Air Pollutants (o-HAPs) from Industrial Waste Streams by Direct Electron Oxidation

    SciTech Connect

    Testoni, A. L.

    2011-10-19

    This research program investigated and quantified the capability of direct electron beam destruction of volatile organic compounds and organic hazardous air pollutants in model industrial waste streams and calculated the energy savings that would be realized by the widespread adoption of the technology over traditional pollution control methods. Specifically, this research determined the quantity of electron beam dose required to remove 19 of the most important non-halogenated air pollutants from waste streams and constructed a technical and economic model for the implementation of the technology in key industries including petroleum refining, organic & solvent chemical production, food & beverage production, and forest & paper products manufacturing. Energy savings of 75 - 90% and green house gas reductions of 66 - 95% were calculated for the target market segments.

  4. Studies on the mixing of liquid jets and pre-atomized sprays in confined swirling air flows for lean direct injection combustion

    NASA Astrophysics Data System (ADS)

    Huh, Jun-Young

    A lean direct injection (LDI) combustion concept was introduced recently to obtain both low NOsbx emissions and high performance for advanced aircraft gas turbine engines. It was reported that pollutant emissions, especially NOsbx, in a lean combustion mode depend significantly on the degree of mixing (mixedness) of supplied air and liquid fuel droplets. From a viewpoint of environmental protection, therefore, uniform mixing of fuel and air in a very short period of time, i.e., well-stirred mixing, is crucially important in the LDI combustion mode. In the present study, as the first stage toward understanding the combustion phenomena in a lean direct injection (LDI) mode, the hydrodynamic behavior of liquid jets and pre-atomized sprays in confined swirling air flows is investigated. Laser-based flow visualization and image analysis techniques are applied to analyze the instantaneous motion of the mixing process of the jets and pre-atomized sprays. Statistical analysis system (SAS) software is utilized to analyze the experimental data, and correlate experimental parameters. Statistical parameters, such as centrality, degree of spread, and total area ratio of particles, are defined in this study, and used to quantify the mixedness (degree of mixing) of liquid particles in confined geometry. Two empirical equations are obtained to predict jet intact lengths and spray angles, respectively, in confined swirling air flows. It is found that initial jet characteristics, such as intact length and spray angle, determine the mixing of the liquid particles resulting from the jet. It is verified that image analysis is feasible in quantitative determination of the mixedness of liquid particles. Even though substantial improvements in liquid fuel injector systems are required before they can be considered adequate for LDI combustion at high pressure and high temperature, the results and ideas obtained from the present study will help engineers find better mixing methods for LDI

  5. Detection of the cytotoxicity of water-insoluble fraction of cigarette smoke by direct exposure to cultured cells at an air-liquid interface.

    PubMed

    Nara, Hidenori; Fukano, Yasuo; Nishino, Tomoki; Aufderheide, Michaela

    2013-07-01

    For the biological evaluation of cigarette smoke in vitro, the particulate phase (PP) and the gas vapor phase (GVP) of mainstream smoke have usually been collected individually and exposed to biological material such as cultured cells. Using this traditional method, the GVP is collected by bubbling in an aqueous solution such as phosphate-buffered saline (PBS). In such a way the water-insoluble GVP fraction is excluded from the GVP, meaning that the toxic potential of the water-insoluble GVP fraction has hardly been investigated so far. In our experiments we used a direct exposure method to expose cells at the air-liquid interface (ALI) to the water-insoluble GVP fraction for demonstrating its toxicological/biological activity. In order to isolate the water-insoluble GVP fraction from mainstream smoke, the GVP was passed through 6 impingers connected in series with PBS. After direct exposure of Chinese hamster ovary cells (CHO-K1) with the water-insoluble GVP fraction in the CULTEX(®) system its cytotoxicity was assayed by using the neutral red uptake assay. The water-insoluble GVP fraction was proven to be less cytotoxic than the water-soluble GVP fraction, but showed a significant effect in a dose-dependent manner. The results of this study showed that the direct exposure of cultivated cells at the air-liquid interface offers the possibility to analyze the biological and toxicological activities of all fractions of cigarette smoke including the water-insoluble GVP fraction.

  6. Demonstration of a directional sonic prism in two dimensions using an air-acoustic leaky wave antenna

    SciTech Connect

    Naify, Christina J. Rohde, Charles A.; Calvo, David C.; Orris, Gregory J.; Guild, Matthew D.

    2015-09-28

    Analysis and experimental demonstration of a two-dimensional acoustic leaky wave antenna is presented for use in air. The antenna is comprised of a two-dimensional waveguide patterned with radiating acoustic shunts. When excited using a single acoustic source within the waveguide, the antenna acts as a sonic prism that exhibits frequency steering. This design allows for control of acoustic steering angle using only a single source transducer and a patterned aperture. Aperture design was determined using transmission line analysis and finite element methods. The designed antenna was fabricated and the steering angle measured. The performance of the measured aperture was within 9% of predicted angle magnitudes over all examined frequencies.

  7. Ozone generation by negative direct current corona discharges in dry air fed coaxial wire-cylinder reactors

    NASA Astrophysics Data System (ADS)

    Yehia, Ashraf; Mizuno, Akira

    2013-05-01

    An analytical study was made in this paper for calculating the ozone generation by negative dc corona discharges. The corona discharges were formed in a coaxial wire-cylinder reactor. The reactor was fed by dry air flowing with constant rates at atmospheric pressure and room temperature, and stressed by a negative dc voltage. The current-voltage characteristics of the negative dc corona discharges formed inside the reactor were measured in parallel with concentration of the generated ozone under different operating conditions. An empirical equation was derived from the experimental results for calculating the ozone concentration generated inside the reactor. The results, that have been recalculated by using the derived equation, have agreed with the experimental results over the whole range of the investigated parameters, except in the saturation range for the ozone concentration. Therefore, the derived equation represents a suitable criterion for expecting the ozone concentration generated by negative dc corona discharges in dry air fed coaxial wire-cylinder reactors under any operating conditions in range of the investigated parameters.

  8. Ozone generation by negative direct current corona discharges in dry air fed coaxial wire-cylinder reactors

    SciTech Connect

    Yehia, Ashraf; Mizuno, Akira

    2013-05-14

    An analytical study was made in this paper for calculating the ozone generation by negative dc corona discharges. The corona discharges were formed in a coaxial wire-cylinder reactor. The reactor was fed by dry air flowing with constant rates at atmospheric pressure and room temperature, and stressed by a negative dc voltage. The current-voltage characteristics of the negative dc corona discharges formed inside the reactor were measured in parallel with concentration of the generated ozone under different operating conditions. An empirical equation was derived from the experimental results for calculating the ozone concentration generated inside the reactor. The results, that have been recalculated by using the derived equation, have agreed with the experimental results over the whole range of the investigated parameters, except in the saturation range for the ozone concentration. Therefore, the derived equation represents a suitable criterion for expecting the ozone concentration generated by negative dc corona discharges in dry air fed coaxial wire-cylinder reactors under any operating conditions in range of the investigated parameters.

  9. Recent advancements in the "water-window" microscopy with laser-plasma SXR source based on a double stream gas-puff target

    NASA Astrophysics Data System (ADS)

    Wachulak, P. W.

    2016-09-01

    An overview of our recent developments, regarding "water-window" soft X-ray (SXR) microscopy based on a laser-plasma double stream gas puff target sources is presented. The work, presented herein, describes two approaches to SXR microscopy. The first one is a low spatial resolution, achromatic SXR microscopy, employing Wolter type-I objective. The second one is a nanometer spatial resolution SXR microscopy, with the use of a Fresnel zone plate objective, for imaging various objects with quasimonochromatic light, emitted from a double stream gas puff target based short wavelength source. The developments regarding both systems are presented, as well as the possible applications, for which the SXR microscope was already employed. Such compact, table-top size, laboratory type microscopy setups may be employed in the near future for complementary-like studies to other, often used, microscopy techniques.

  10. Fundamental Study of a Single Point Lean Direct Injector. Part I: Effect of Air Swirler Angle and Injector Tip Location on Spray Characteristics

    NASA Technical Reports Server (NTRS)

    Tedder, Sarah A.; Hicks, Yolanda R.; Tacina, Kathleen M.; Anderson, Robert C.

    2014-01-01

    Lean direct injection (LDI) is a combustion concept to reduce oxides of nitrogen (NOx) for next generation aircraft gas turbine engines. These newer engines have cycles that increase fuel efficiency through increased operating pressures, which increase combustor inlet temperatures. NOx formation rates increase with higher temperatures; the LDI strategy avoids high temperature by staying fuel lean and away from stoichiometric burning. Thus, LDI relies on rapid and uniform fuel/air mixing. To understand this mixing process, a series of fundamental experiments are underway in the Combustion and Dynamics Facility at NASA Glenn Research Center. This first set of experiments examines cold flow (non-combusting) mixing using air and water. Using laser diagnostics, the effects of air swirler angle and injector tip location on the spray distribution, recirculation zone, and droplet size distribution are examined. Of the three swirler angles examined, 60 deg is determined to have the most even spray distribution. The injector tip location primarily shifts the flow without changing the structure, unless the flow includes a recirculation zone. When a recirculation zone is present, minimum axial velocity decreases as the injector tip moves downstream towards the venturi exit; also the droplets become more uniform in size and angular distribution.

  11. Fundamental Study of a Single Point Lean Direct Injector. Part I: Effect of Air Swirler Angle and Injector Tip Location on Spray Characteristics

    NASA Technical Reports Server (NTRS)

    Tedder, Sarah A.; Hicks, Yolanda R.; Tacina, Kathleen M.; Anderson, Robert C.

    2015-01-01

    Lean direct injection (LDI) is a combustion concept to reduce oxides of nitrogen (NOx) for next generation aircraft gas turbine engines. These newer engines have cycles that increase fuel efficiency through increased operating pressures, which increase combustor inlet temperatures. NOx formation rates increase with higher temperatures; the LDI strategy avoids high temperature by staying fuel lean and away from stoichiometric burning. Thus, LDI relies on rapid and uniform fuel/air mixing. To understand this mixing process, a series of fundamental experiments are underway in the Combustion and Dynamics Facility at NASA Glenn Research Center. This first set of experiments examines cold flow (non-combusting) mixing using air and water. Using laser diagnostics, the effects of air swirler angle and injector tip location on the spray distribution, recirculation zone, and droplet size distribution are examined. Of the three swirler angles examined, 60 degrees is determined to have the most even spray distribution. The injector tip location primarily shifts the flow without changing the structure, unless the flow includes a recirculation zone. When a recirculation zone is present, minimum axial velocity decreases as the injector tip moves downstream towards the venturi exit; also the droplets become more uniform in size and angular distribution.

  12. Direct measurements of sample heating by a laser-induced air plasma in pre-ablation spark dual-pulse laser-induced breakdown spectroscopy (LIBS).

    PubMed

    Register, Janna; Scaffidi, Jonathan; Angel, S Michael

    2012-08-01

    Direct measurements of temperature changes were made using small thermocouples (TC), placed near a laser-induced air plasma. Temperature changes up to ~500 °C were observed. From the measured temperature changes, estimates were made of the amount of heat absorbed per unit area. This allowed calculations to be made of the surface temperature, as a function of time, of a sample heated by the air plasma that is generated during orthogonal pre-ablation spark dual-pulse (DP) LIBS measurements. In separate experiments, single-pulse (SP) LIBS emission and sample ablation rate measurements were performed on nickel at sample temperatures ranging from room temperature to the maximum surface temperature that was calculated using the TC measurement results (500 °C). A small, but real sample temperature-dependent increase in both SP LIBS emission and the rate of sample ablation was found for nickel samples heated up to 500 °C. Comparison of DP LIBS emission enhancement values for bulk nickel samples at room temperature versus the enhanced SP LIBS emission and sample ablation rates observed as a function of increasing sample temperature suggests that sample heating by the laser-induced air plasma plays only a minor role in DP LIBS emission enhancement.

  13. Aerosol Direct Radiative Forcing in the Southern Appalachian Mountains: Initial Results from the Appalachian Atmospheric Interdisciplinary Research (AppalAIR) Facility

    NASA Astrophysics Data System (ADS)

    Taubman, B.; Sherman, J.; Sheridan, P. J.; Perry, L. B.; Neufeld, H.; Emanuel, R. E.; Tashakkori, R.; Bowman, D.; Long, C.

    2009-12-01

    AppalAIR (Appalachian Atmospheric Interdisciplinary Research, http://appalair.appstate.edu/) is a new interdisciplinary, atmospheric research facility located on the campus of Appalachian State University (1076 m; 36.2° N, 81.7° W) in the southern Appalachian Mountains. The facility was designed to investigate air pollution formation and transport, the relationships among biogenic and anthropogenic inputs to a changing climate, and the effects of these factors on regional ecosystems. AppalAIR is a collaborating member of the NOAA Earth System Research Laboratory Global Monitoring Division (NOAA/ESRL GMD) Collaborative Global Aerosol Network (http://www.esrl.noaa.gov/gmd/aero/net/app/index.html). Measurements are made from a 34 m tower and include aerosol light scattering (3-λ nephelometer) and absorption (3-λ PSAP, 7-λ aethalometer, 6-λ UV aethalometer), particle number concentration (CPC), and aerosol chemistry, size, and morphology using SPME/GC-MS and SEM analyses on 24 h filter samples. Initial results indicate alternating periods of small, highly absorptive (ssa < 0.90) fractal agglomerates and large, highly scattering (ssa > 0.95) spherical particles that are strongly dependent upon the highly variably meteorological patterns that have occurred over the summertime (JJA) in the southeastern U.S. By quantifying the aerosol direct radiative forcing during discrete meteorological patterns as defined by statistical cluster analysis as well as from specific aerosol chemical sources, we are able to extrapolate the results beyond the immediate region.

  14. CO sub 2 Huff 'n' Puff recovery feasibility as function of the effect of CO sub 2 on mineral stability in a Dakota Sandstone Reservoir, central Wyoming

    SciTech Connect

    Smith, L.K.; MacGowan, D.B.; Surdam, R.C. )

    1990-05-01

    The high pressures required for CO{sub 2} injection in Huff n' Puff treatment have the potential to destabilize carbonate minerals in the formation. Scaling problems caused by precipitating cements may occur after production resumes. However, the presence of sufficient organic acid anion buffers may stabilize carbonate minerals at high P{sub CO2} causing them to precipitate from the formation waters and block pore throats, Modeling these conditions for individual reservoirs is important in the design of the Huff n' Puff treatment in order to avoid formation damage or production-line clogging. Based on the authors modeling, they predict that in the Huff n' Puff treatment on this Dakota sandstone reservoir, scale buildup in the production line will not be a significant problem. The CO{sub 2} injection Pressures expected (1,100-2,000 psi) are sufficiently high to keep carbonates in solution. No formation damage is expected because there is little carbonate cement in this Dakota sandstone reservoir to dissolve and reprecipitate in the pore throats after pressures decline. Also, organic acid anions are in sufficiently low concentration (3.56 meq/L) that they cannot buffer the pH; thus carbonates will not precipitate with increased {Sigma}CO{sub 2}, especially since calcium concentrations are also low (26 ppm). These predictions will be tested when this Huff n' Puff treatment is initiated. Test results will provide refined input data (especially pressure data) for modeling future treatments. The predictions and test results presented will then be used to improve the predictive capability of the modeling process.

  15. Simulations of Ar gas-puff Z-pinch radiation sources with double shells and central jets on the Z generator

    SciTech Connect

    Tangri, V.; Harvey-Thompson, Adam James; Giuliani, J. L.; Thornhill, J. W.; Velikovich, A. L.; Apruzese, J. P.; Quart, N. D.; DasGupta, A.; Jones, Brent M.; Jennings, Christopher Ashley

    2016-10-19

    Radiation-magnetohydrodynamic simulations using the non-LTE Mach2-TCRE code in (r,z) geometry are performed for two pairs of recent Ar gas-puff Z-pinch experiments on the refurbished Z generator with an 8 cm diameter nozzle. One pair of shots had an outer-to-inner shell mass ratio of 1:1.6 and a second pair had a ratio of 1:1.

  16. Simulations of Ar gas-puff Z-pinch radiation sources with double shells and central jets on the Z generator

    DOE PAGES

    Tangri, V.; Harvey-Thompson, Adam James; Giuliani, J. L.; ...

    Radiation-magnetohydrodynamic simulations using the non-LTE Mach2-TCRE code in (r,z) geometry are performed for two pairs of recent Ar gas-puff Z-pinch experiments on the refurbished Z generator with an 8 cm diameter nozzle. One pair of shots had an outer-to-inner shell mass ratio of 1:1.6 and a second pair had a ratio of 1:1.

  17. Demonstration of Air-Power-Assist Engine Technology for Clean Combustion and Direct Energy Recovery in Heavy Duty Application

    SciTech Connect

    Hyungsuk Kang; Chun Tai

    2010-05-01

    The first phase of the project consists of four months of applied research, starting from September 1, 2005 and was completed by December 31, 2005. During this time, the project team heavily relied on highly detailed numerical modeling techniques to evaluate the feasibility of the APA technology. Specifically, (i) A GT-Power{sup TM}engine simulation model was constructed to predict engine efficiency at various operating conditions. Efficiency was defined based on the second-law thermodynamic availability. (ii) The engine efficiency map generated by the engine simulation was then fed into a simplified vehicle model, which was constructed in the Matlab/Simulink environment, to predict fuel consumption of a refuse truck on a simple collection cycle. (iii) Design and analysis work supporting the concept of retrofitting an existing Sturman Industries Hydraulic Valve Actuation (HVA) system with the modifications that are required to run the HVA system with Air Power Assist functionality. A Matlab/Simulink model was used to calculate the dynamic response of the HVA system. Computer aided design (CAD) was done in Solidworks for mechanical design and hydraulic layout. At the end of Phase I, 11% fuel economy improvement was predicted. During Phase II, the engine simulation group completed the engine mapping work. The air handling group made substantial progress in identifying suppliers and conducting 3D modelling design. Sturman Industries completed design modification of the HVA system, which was reviewed and accepted by Volvo Powertrain. In Phase II, the possibility of 15% fuel economy improvement was shown with new EGR cooler design by reducing EGR cooler outlet temperature with APA engine technology from Air Handling Group. In addition, Vehicle Simulation with APA technology estimated 4 -21% fuel economy improvement over a wide range of driving cycles. During Phase III, the engine experimental setup was initiated at VPTNA, Hagerstown, MD. Air Handling system and HVA

  18. Magnetic field-directed self-assembly of FePt-based nanoparticles at the liquid-air interface

    NASA Astrophysics Data System (ADS)

    Chokprasombat, K.; Sirisathitkul, Y.; Sirisathitkul, C.

    2016-10-01

    The self-assembly of nanoparticles is a prominent strategy for fabricating nanomaterials and nanodevices. Herein, FePt-based nanoparticles are self-assembled at a diethylene glycol-air interface, under an applied in-plane static magnetic field. The effect of the field on the self-assembly is apparent at a field strength of 60 mT, whereby nanoparticles arranged into randomly oriented nanoparticle chains. Increasing the field strength to 90-120 mT resulted in the nanoparticle chains becoming increasingly disintegrated, and large islands form at the expense of the uniform nanoparticle monolayer. The pattern arising from self-assembly is described based on the drag force and ligand-ligand interactions, which compete with van der Waals forces and magnetic dipole interactions induced by the applied magnetic field.

  19. Direct dynamic synthesis of nanodispersed phases of titanium oxides upon sputtering of electrodischarge titanium plasma into an air atmosphere

    NASA Astrophysics Data System (ADS)

    Sivkov, A. A.; Gerasimov, D. Yu.; Nikitin, D. S.

    2017-01-01

    Experimental investigations of the possibility of directly synthesizing nanodispersed crystalline phases of titanium dioxides with rutile and anatase structures in a hypervelocity jet of electroerosion plasma generated by a coaxial magnetoplasma accelerator with titanium electrodes are presented. A powder product containing nanosized polymorphic phases of titanium dioxide with a spherical shape of particles has been manufactured.

  20. USE OF BIOASSAY-DIRECTED CHEMICAL ANALYSIS FOR IDENTIFYING MUTAGENIC COMPOUNDS IN URBAN AIR AND COMBUSTION EMISSIONS

    EPA Science Inventory

    Bioassay-directed chemical analysis fractionation has been used for 30 years to identify mutagenic classes of compounds in complex mixtures. Most studies have used the Salmonella (Ames) mutagenicity assay, and we have recently applied this methodology to two standard reference sa...

  1. Model-measurement comparison of ammonia bi-directional air-surface exchange fluxes over agricultural fields

    EPA Science Inventory

    Modeling of the bi-directional fluxes (BDFs) of ammonia (NH3) over fertilized soybean and corn canopies was evaluated for three intensive sampling periods: the first, during the summer of 2002 in Warsaw, North Carolina (NC), USA; and the second and third during the summer of 2007...

  2. Combining physical and numerical simulation to investigate the CO sub 2 huff n' puff process for enhanced light-oil recovery

    SciTech Connect

    Thomas, J.

    1990-01-01

    Cyclic CO{sub 2} injection, more commonly referred to as the CO{sub 2} huff n' puff process, is an enhanced oil recovery method which targets remaining oil. Initially used for heavy oil recovery, it has been applied recently to the enhanced recovery of light oil with promising results. The CO{sub 2} huff 'n' puff process is physically simulated in laboratory experiments using Berea sandstone consolidated cores with live and dead oil systems. Corefloods provide extensive and systematic data at controlled conditions allowing selected process parameters to be investigated. This research used corefloods to examine the effect of an initial gas saturation and an impure CO{sub 2} source on the process. However, physical restraints such as time taken to perfrom experiments, and the fixed physical properties of the core, preclude corefloods under a wider range of conditions. Coreflood data can be used for tuning a compositional reservoir simulator. A well calibrated numerical model can in turn be used to predict the results of the CO{sub 2} huff n' puff process for diverse reservoir and operating conditons difficult to duplicate in the laboratory. This approach is used to calibrate a commercially available composition model. The calibrated model is then used to predict the effects of soak duration, remaining oil saturation, CO{sub 2} slug size and CO{sub 2} injection rate on ultimate recovery.

  3. Comparison of the MACCS2 atmospheric transport model with Lagrangian puff models as applied to deterministic and probabilistic safety analysis.

    PubMed

    Till, John E; Rood, Arthur S; Garzon, Caroline D; Lagdon, Richard H

    2014-09-01

    The suitability of a new facility in terms of potential impacts from routine and accidental releases is typically evaluated using conservative models and assumptions to assure dose standards are not exceeded. However, overly conservative dose estimates that exceed target doses can result in unnecessary and costly facility design changes. This paper examines one such case involving the U.S. Department of Energy's pretreatment facility of the Waste Treatment and Immobilization Plant (WTP). The MELCOR Accident Consequence Code System Version 2 (MACCS2) was run using conservative parameter values in prescribed guidance to demonstrate that the dose from a postulated airborne release would not exceed the guideline dose of 0.25 Sv. External review of default model parameters identified the deposition velocity of 1.0 cm s as being non-conservative. The deposition velocity calculated using resistance models was in the range of 0.1 to 0.3 cm s-1. A value of 0.1 cm s-1 would result in the dose guideline being exceeded. To test the overall conservatism of the MACCS2 transport model, the 95th percentile hourly average dispersion factor based on one year of meteorological data was compared to dispersion factors generated from two state-of-the-art Lagrangian puff models. The 95th percentile dispersion factor from MACCS2 was a factor of 3 to 6 higher compared to those of the Lagrangian puff models at a distance of 9.3 km and a deposition velocity of 0.1 cm s-1. Thus, the inherent conservatism in MACCS2 more than compensated for the high deposition velocity used in the assessment. Applications of models like MACCS2 with a conservative set of parameters are essentially screening calculations, and failure to meet dose criteria should not trigger facility design changes but prompt a more in-depth analysis using probabilistic methods with a defined margin of safety in the target dose. A sample application of the probabilistic approach is provided.

  4. A Life Cycle Assessment Case Study of Coal-Fired Electricity Generation with Humidity Swing Direct Air Capture of CO2 versus MEA-Based Postcombustion Capture.

    PubMed

    van der Giesen, Coen; Meinrenken, Christoph J; Kleijn, René; Sprecher, Benjamin; Lackner, Klaus S; Kramer, Gert Jan

    2017-01-17

    Most carbon capture and storage (CCS) envisions capturing CO2 from flue gas. Direct air capture (DAC) of CO2 has hitherto been deemed unviable because of the higher energy associated with capture at low atmospheric concentrations. We present a Life Cycle Assessment of coal-fired electricity generation that compares monoethanolamine (MEA)-based postcombustion capture (PCC) of CO2 with distributed, humidity-swing-based direct air capture (HS-DAC). Given suitable temperature, humidity, wind, and water availability, HS-DAC can be largely passive. Comparing energy requirements of HS-DAC and MEA-PCC, we find that the parasitic load of HS-DAC is less than twice that of MEA-PCC (60-72 kJ/mol versus 33-46 kJ/mol, respectively). We also compare other environmental impacts as a function of net greenhouse gas (GHG) mitigation: To achieve the same 73% mitigation as MEA-PCC, HS-DAC would increase nine other environmental impacts by on average 38%, whereas MEA-PCC would increase them by 31%. Powering distributed HS-DAC with photovoltaics (instead of coal) while including recapture of all background GHG, reduces this increase to 18%, hypothetically enabling coal-based electricity with net-zero life-cycle GHG. We conclude that, in suitable geographies, HS-DAC can complement MEA-PCC to enable CO2 capture independent of time and location of emissions and recapture background GHG from fossil-based electricity beyond flue stack emissions.

  5. Synthesis of free-standing carbon nanohybrid by directly growing carbon nanotubes on air-sprayed graphene oxide paper and its application in supercapacitor

    SciTech Connect

    Wei, Li; Jiang, Wenchao; Yuan, Yang; Goh, Kunli; Yu, Dingshan; Wang, Liang; Chen, Yuan

    2015-04-15

    We report the synthesis of a free-standing two dimensional carbon nanotube (CNT)-reduced graphene oxide (rGO) hybrid by directly growing CNTs on air-sprayed GO paper. As a result of the good integration between CNTs and thermally reduced GO film during chemical vapor deposition, excellent electrical conductivity (2.6×10{sup 4} S/m), mechanical flexibility (electrical resistance only increases 1.1% after bent to 90° for 500 times) and a relatively large surface area (335.3 m{sup 2}/g) are achieved. Two-electrode supercapacitor assembled using the CNT–rGO hybrids in ionic liquid electrolyte (1-ethyl-3-methylimidazolium tetrafluoroborate) shows excellent stability upon 500 bending cycles with the gravimetric energy density measuring 23.7 Wh/kg and a power density of 2.0 kW/kg. Furthermore, it shows an impedance phase angle of −64.4° at a frequency of 120 Hz, suggesting good potentials for 120 Hz alternating current line filtering applications. - Graphical abstract: Flexible and highly conductive carbon nanotube-reduced graphene oxide nanohybrid. - Highlights: • Direct growth of carbon nanotubes by chemical vapor deposition on air-sprayed graphene oxide paper. • Two-dimensional carbon nanohybrid with excellent conductivity and mechanical flexibility. • Supercapacitor with excellent performance stability upon mechanical deformation for flexible electronics applications. • Supercapacitor with high impedance phase angle for 120 Hz alternating current line filtering applications.

  6. In Vitro Exposures in Diesel Exhaust Atmospheres: Resuspension of PM from Filters Verses Direct Deposition of PM from Air

    PubMed Central

    Lichtveld, Kim M.; Ebersviller, Seth M.; Sexton, Kenneth G.; Vizuete, William; Jaspers, Ilona; Jeffries, Harvey E.

    2012-01-01

    One of the most widely used in vitro particulate matter (PM) exposures methods is the collection of PM on filters, followed by resuspension in a liquid medium, with subsequent addition onto a cell culture. To avoid disruption of equilibria between gases and PM, we have developed a direct in vitro sampling and exposure method (DSEM) capable of PM-only exposures. We hypothesize that the separation of phases and post-treatment of filter-collected PM significantly modifies the toxicity of the PM compared to direct deposition, resulting in a distorted view of the potential PM health effects. Controlled test environments were created in a chamber that combined diesel exhaust with an urban-like mixture. The complex mixture was analyzed using both the DSEM and concurrently-collected filter samples. The DSEM showed that PM from test atmospheres produced significant inflammatory response, while the resuspension exposures at the same exposure concentration did not. Increasing the concentration of resuspended PM sixteen times was required to yield measurable IL-8 expression. Chemical analysis of the resuspended PM indicated a total absence of carbonyl compounds compared to the test atmosphere during the direct-exposures. Therefore, collection and resuspension of PM into liquid modifies its toxicity and likely leads to underestimating toxicity. PMID:22834915

  7. Fast and reversible direct CO2 capture from air onto all-polymer nanofibrillated cellulose-polyethylenimine foams.

    PubMed

    Sehaqui, Houssine; Gálvez, María Elena; Becatinni, Viola; cheng Ng, Yi; Steinfeld, Aldo; Zimmermann, Tanja; Tingaut, Philippe

    2015-03-03

    Fully polymeric and biobased CO2 sorbents composed of oxidized nanofibrillated cellulose (NFC) and a high molar mass polyethylenimine (PEI) have been prepared via a freeze-drying process. This resulted in NFC/PEI foams displaying a sheet structure with porosity above 97% and specific surface area in the range 2.7-8.3 m(2)·g(-1). Systematic studies on the impact of both PEI content and relative humidity on the CO2 capture capacity of the amine functionalized sorbents have been conducted under atmospheric conditions (moist air with ∼400 ppm of CO2). At 80% RH and an optimum PEI content of 44 wt %, a CO2 capacity of 2.22 mmol·g(-1), a stability over five cycles, and an exceptionally low adsorption half time of 10.6 min were achieved. In the 20-80% RH range studied, the increase in relative humidity increased CO2 capacity of NFC/PEI foams at the expense of a high H2O uptake in the range 3.8-28 mmol·g(-1).

  8. Prediction of dosage-based parameters from the puff dispersion of airborne materials in urban environments using the CFD-RANS methodology

    NASA Astrophysics Data System (ADS)

    Efthimiou, G. C.; Andronopoulos, S.; Bartzis, J. G.

    2017-02-01

    One of the key issues of recent research on the dispersion inside complex urban environments is the ability to predict dosage-based parameters from the puff release of an airborne material from a point source in the atmospheric boundary layer inside the built-up area. The present work addresses the question of whether the computational fluid dynamics (CFD)-Reynolds-averaged Navier-Stokes (RANS) methodology can be used to predict ensemble-average dosage-based parameters that are related with the puff dispersion. RANS simulations with the ADREA-HF code were, therefore, performed, where a single puff was released in each case. The present method is validated against the data sets from two wind-tunnel experiments. In each experiment, more than 200 puffs were released from which ensemble-averaged dosage-based parameters were calculated and compared to the model's predictions. The performance of the model was evaluated using scatter plots and three validation metrics: fractional bias, normalized mean square error, and factor of two. The model presented a better performance for the temporal parameters (i.e., ensemble-average times of puff arrival, peak, leaving, duration, ascent, and descent) than for the ensemble-average dosage and peak concentration. The majority of the obtained values of validation metrics were inside established acceptance limits. Based on the obtained model performance indices, the CFD-RANS methodology as implemented in the code ADREA-HF is able to predict the ensemble-average temporal quantities related to transient emissions of airborne material in urban areas within the range of the model performance acceptance criteria established in the literature. The CFD-RANS methodology as implemented in the code ADREA-HF is also able to predict the ensemble-average dosage, but the dosage results should be treated with some caution; as in one case, the observed ensemble-average dosage was under-estimated slightly more than the acceptance criteria. Ensemble

  9. System for time-discretized vacuum ultraviolet spectroscopy of spark breakdown in air.

    PubMed

    Ryberg, D; Fierro, A; Dickens, J; Neuber, A

    2014-10-01

    A system for time-discretized spectroscopic measurements of the vacuum ultraviolet (VUV) emission from spark discharges in the 60-160 nm range has been developed for the study of early plasma-forming phenomena. The system induces a spark discharge in an environment close to atmospheric conditions created using a high speed puff value, but is otherwise kept at high vacuum to allow for the propagation of VUV light. Using a vertical slit placed 1.5 mm from the discharge the emission from a small cross section of the discharge is allowed to pass into the selection chamber consisting of a spherical grating, with 1200 grooves/mm, and an exit slit set to 100 μm. Following the exit slit is a photomultiplier tube with a sodium salicylate scintillator that is used for the time discretized measurement of the VUV signal with a temporal resolution limit of 10 ns. Results from discharges studied in dry air, Nitrogen, SF6, and Argon indicate the emission of light with wavelengths shorter than 120 nm where the photon energy begins to approach the regime of direct photoionization.

  10. System for time-discretized vacuum ultraviolet spectroscopy of spark breakdown in air

    SciTech Connect

    Ryberg, D.; Fierro, A.; Dickens, J.; Neuber, A.

    2014-10-15

    A system for time-discretized spectroscopic measurements of the vacuum ultraviolet (VUV) emission from spark discharges in the 60-160 nm range has been developed for the study of early plasma-forming phenomena. The system induces a spark discharge in an environment close to atmospheric conditions created using a high speed puff value, but is otherwise kept at high vacuum to allow for the propagation of VUV light. Using a vertical slit placed 1.5 mm from the discharge the emission from a small cross section of the discharge is allowed to pass into the selection chamber consisting of a spherical grating, with 1200 grooves/mm, and an exit slit set to 100 μm. Following the exit slit is a photomultiplier tube with a sodium salicylate scintillator that is used for the time discretized measurement of the VUV signal with a temporal resolution limit of 10 ns. Results from discharges studied in dry air, Nitrogen, SF{sub 6}, and Argon indicate the emission of light with wavelengths shorter than 120 nm where the photon energy begins to approach the regime of direct photoionization.

  11. Neutron Activation Diagnostics in Deuterium Gas-Puff Experiments on the 3 MA GIT-12 Z-Pinch

    NASA Astrophysics Data System (ADS)

    Cikhardt, J.; Klir, D.; Rezac, K.; Cikhardtova, B.; Kravarik, J.; Kubes, P.; Sila, O.; Shishlov, A. V.; Cherdizov, R. K.; Fursov, F. I.; Kokshenev, V. A.; Kurmaev, N. E.; Labetsky, A. Yu; Ratakhin, N. A.; Dudkin, G. N.; Garapatsky, A. A.; Padalko, V. N.; Varlachev, V. A.; Turek, K.

    2016-10-01

    The experiments with a deuterium z-pinch on the GIT-12 generator at IHCE in Tomsk were performed in the frame of the Czech-Russian agreement. A set of neutron diagnostics included scintillation time-of-flight detectors, bubble detectors, and several kinds of threshold nuclear activation detectors in the order to obtain information about the yield, anisotropy, and spectrum of the neutrons produced by a deuterium gas-puff. The average neutron yield in these experiments was of the order of 1012 neutrons per a single shot. The energy spectrum of the produced neutrons was evaluated using neutron time-of-flight detectors and a set of neutron activation detectors. Because the deuterons in the pinch achieve multi-MeV energies, non-DD neutrons are produced by nuclear reactions of deuterons with a stainless steel vacuum chamber and aluminum components of diagnostics inside the chamber. An estimated number of the non-DD was of the order of 1011. GACR (Grant No. 16-07036S), CME (Grant Nos. LD14089, LG13029, and LH13283), MESRF (Grant No. RFMEFI59114X0001), IAEA (Grant No. RC17088), CTU (Grant No. SGS 16/223/OHK3/3T/13).

  12. Neutron production in deuterium gas-puff z-pinch with outer plasma shell at current of 3 MA

    NASA Astrophysics Data System (ADS)

    Cikhardt, J.; Klir, D.; Rezac, K.; Cikhardtova, B.; Kravarik, J.; Kubes, P.; Sila, O.; Shishlov, A. V.; Cherdizov, R. K.; Frusov, F. I.; Kokshenev, V. A.; Kurmaev, N. E.; Labetsky, A. Yu.; Ratakhin, N. A.; Dudkin, G. N.; Garapatsky, A. A.; Padalko, V. N.; Varlachev, V. A.; Turek, K.; Krasa, J.

    2015-11-01

    Z-pinch experiments at the current of about 3 MA were carried out on the GIT-12 generator. The outer plasma shell of deuterium gas-puff was generated by the system of 48 plasma guns. This configuration exhibits a high efficiency of the production of DD fusion neutrons with the yield of above 1012 neutrons produced in a single shot with the duration of about 20 ns. The maximum energy of the neutrons produced in this pulse exceeded 30 MeV. The neutron radiation was measured using scintillation TOF detectors, CR-39 nuclear track detectors, bubble detectors BD-PND and BDS-10000 and by several types of nuclear activation detectors. These diagnostic tools were used to measure the anisotropy of neutron fluence and neutron energy spectra. It allows us to estimate the total number of DD neutrons, the contribution of other nuclear reactions, the amount of scattered neutrons, and other parameters of neutron production. This work was supported by the MSMT grants LH13283, LD14089.

  13. Design and optimization of a gas-puff nozzle for staged Z-pinch experiments using computational fluid dynamics simulations

    NASA Astrophysics Data System (ADS)

    Valenzuela, J. C.; Krasheninnikov, I.; Beg, F. N.; Wessel, F.; Rahman, H.; Ney, P.; Presura, R.; McKee, E.; Darling, T.; Covington, A.

    2015-11-01

    Previous experimental work on staged Z-pinches demonstrated that gas liners can efficiently couple energy and implode uniformly a target-plasma. A 1.5 MA, 1 μs current driver was used to implode a magnetized, Kr liner onto a D + target, producing 1010 neutrons per shot and providing clear evidence of enhanced pinch stability. Time-of-flight data suggest that primary and secondary neutrons were produced. MHD simulations show that in Zebra, a 1.5MA and 100ns rise-time current driver, high fusion gain can be attained when the optimum liner and plasma target conditions are used. In this work we present the design and optimization of a liner-on-target nozzle to be fielded in Zebra and demonstrate high fusion gain at 1 MA current level. The nozzle is composed of an annular high atomic number gas-puff and an on-axis plasma gun that will deliver the ionized deuterium target. The nozzle optimization was carried out using the computational fluid dynamics (CFD) code fluent and the MHD code Mach2. The CFD simulation produces density and temperature profiles, as a function of the nozzle shapes and gas conditions, which are then used in Mach2 to find the optimum plasma liner implosion-pinch conditions. Funded by the US Department of Energy, ARPA-E, Control Number 1184-1527.

  14. Deuterium Gas-Puff Z-pinch as a Source of Fast Ions Producing Intensive Pulse of Neutrons

    NASA Astrophysics Data System (ADS)

    Rezac, K.; Cikhardt, J.; Cikhardtova, B.; Klir, D.; Kravarik, J.; Kubes, P.; Sila, O.; Shishlov, A.; Cherdizov, R.; Fursov, F.; Kokshenev, V.; Kovalchuk, B.; Kurmaev, N.; Labetsky, A.; Ratakhin, N.; Turek, K.

    2015-11-01

    A deuterium gas-puff with outer plasma shell has been examined on GIT-12 generator (on the current level of 3 MA) since 2013. Such a configuration caused more stable implosion at final stage of z-pinch. The consequence of this was a production of intensive pulses of fast ions. During last 4 campaigns in 2013-2015, fast ions were examined by several in-chamber diagnostics such as: stack detector (ion energy), pinhole camera (location of ion source), multi-pinhole camera (asymmetry and anisotropy of ion emission), and ion beam detector (dynamics of ion pulses). A CR-39 track detectors and also GAFCHROMIC HD-V2 films from these diagnostics will be presented. On the basis of obtained results, the solid sample for increasing of neutron yield up to 1e13 could be placed below the cathode mesh. Except of neutron yield, other properties such as: neutron energies (up to 33 MeV), neutron emission time (about 20 ns), and emission anisotropy of neutrons were measured. Such a short and intensive neutron pulse provides various applications. This work was supported by the MSMT project LH13283.

  15. Neutron Diagnostics of a Deuterium Gas-Puff Z-pinch on the Level of 3 MA

    NASA Astrophysics Data System (ADS)

    Rezac, Karel; Klir, Daniel; Kubes, Pavel; Kravarik, Jozef; Shishlov, Alexander; Labetsky, Aleksey; Ratakhin, Nicolai; GIT-12 Team

    2011-10-01

    The diagnostics of a deuterium gas-puff Z-pinch (outer shell with diam. of 100 or 80 mm, inner annular with diam. of 30 mm or solid-fill shell with diam. of 20 mm with linear mass varied in each shell in the range of 25 - 40 μg/cm) is presented. The experiments were carried out on the GIT-12 generator at IHCE in Tomsk (2.5 MJ bank energy, load current of 2.8 MA with the rise time of 250 ns) during the April-May campaign in 2011. Results from the neutron time-of-flight diagnostics including the determination of the neutron production time and reconstructed radial energy spectra are shown. Several methods which provided measurement of the total neutron yield indicated the number of neutrons in order of 1011 per one shot. The time correlations with other diagnostics such as electrical characteristics, soft X-rays, hard X-rays and a visible streak camera are also presented. Work supported by MEYS research programs No. LA08024, No. ME09087, No. LC528, by GACR grants No. 202-08-H057 and grant CRA IAEA No. 14817.

  16. Déshumidification de l'air d'une serre par contact direct à courants croisés avec une solution hygroscopique organique

    NASA Astrophysics Data System (ADS)

    Chraibi, A.; Jaffrin, A.; Makhlouf, S.; Bentounes, N.

    1995-07-01

    Greenhouse air can be dehumidified by direct contact with a desicant fluid on a trickle exchanger. The water vapour extraction rate depends on the hygroscopicity of the fluid and on the exchanger efficiency. An organic fluid, the triethylene glycol (TEG) at 90% concentration, has been tested. Cross corrugated cellulosic pads, of the type used in cooling, irrigated with TEG, were placed in a wind channel to dehumidify air at various speeds and temperatures. A semi-analytical model, based on energy and mass conservation, correctly reproduces the water vapor extraction rate and the enthalpy change of both fluids. It is shown that TEG trickling through a ventilated pad of 1 m^2 area and 0.1 m thickness can be used to extract 3 to 5 kg of water vapor per hour in greenhouse climate control applications. Several pads arranged in series can be used to decrease more efficiently the absolute humidity of the air, for other applications like food drying or industrial compressed air. Une technique de déshumidification de l'air des serres consiste à le soumettre au contact d'une solution hygroscopique au sein d'un échangeur ruisselant. Le taux d'extraction de vapeur d'eau dépend à la fois du pouvoir hygroscopique de la solution et de l'efficacité de l'échangeur. Une solution hygroscopique organique, le triéthylène glycol à 90% de concentration, a été expérimentée. Un échangeur ruisselant constitué de parois de cellulose ondulées à corrugations croisées, du type “cooling pad” pour serres agricoles, a été testé pour déshumidifier de l'air dans une soufflerie expérimentale. Un modèle semi-analytique, basé sur les équations de conservation de l'énergie et de masse, permet de rendre compte des échanges et de déduire les paramètres de sortie des deux fluides en contact, à partir des caractéristiques d'entrée. Cette étude permet de chiffrer à environ 3 à 5kg/h la capacité de déshumidification d'un panneau d'un mètre carré et de 10cm d

  17. Macaque Pontine Omnipause Neurons Play No Direct Role in the Generation of Eye Blinks

    PubMed Central

    Schultz, K. P.; Williams, C. R.

    2010-01-01

    We recorded the activity of pontine omnipause neurons (OPNs) in two macaques during saccadic eye movements and blinks. As previously reported, we found that OPNs fire tonically during fixation and pause about 15 ms before a saccadic eye movement. In contrast, for blinks elicited by air puffs, the OPNs paused <2 ms before the onset of the blink. Thus the burst in the agonist orbicularis oculi motoneurons (OOMNs) and the pause in the antagonist levator palpabrae superioris motoneurons (LPSMNs) necessarily precede the OPN pause. For spontaneous blinks there was no correlation between blink and pause onsets. In addition, the OPN pause continued for 40–60 ms after the time of the maximum downward closing of the eyelids, which occurs around the end of the OOMN burst of firing. LPSMN activity is not responsible for terminating the OPN pause because OPN resumption was very rapid, whereas the resumption of LPSMN firing during the reopening phase is gradual. OPN pause onset does not directly control blink onset, nor does pause offset control or encode the transition between the end of the OOMN firing and the resumption of the LPSMNs. The onset of the blink-related eye transients preceded both blink and OPN pause onsets. Therefore they initiated while the saccadic short-lead burst neurons were still fully inhibited by the OPNs and cannot be saccadic in origin. The abrupt dynamic change of the vertical eye transients from an oscillatory behavior to a single time constant exponential drift predicted the resumption of the OPNs. PMID:20164389

  18. 3-D agricultural air quality modeling: Impacts of NH3/H2S gas-phase reactions and bi-directional exchange of NH3

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Zhang, Yang

    2014-12-01

    Accurately simulating the transport and fate of reduced nitrogen (NHx = ammonia (NH3) + ammonium (NH4+))- and sulfur-containing compounds emitted from agricultural activities represents a major challenge in agricultural air quality modeling. In this study, the Community Multiscale Air Quality (CMAQ) modeling system is further developed and improved by implementing 22 ammonia (NH3)/hydrogen sulfide (H2S) related gas-phase reactions and adjusting a few key parameters (e.g., emission potential) for bi-directional exchange of NH3 fluxes. Several simulations are conducted over the eastern U.S. domain at a 12-km horizontal resolution for January and July 2002 to examine the impacts of those improved treatments on air quality. The 5th generation mesoscale model (MM5) and CMAQ predict an overall satisfactory and consistent performance with previous modeling studies, especially for 2-m temperature, 2-m relative humidity, ozone (O3), and fine particulate matter (PM2.5). High model biases exist for precipitation in July and also dry/wet depositions. The updated model treatments contribute to O3, NHx, and PM2.5 by up to 0.4 ppb, 1.0 μg m-3, and 1.0 μg m-3 in January, respectively, and reduce O3 by up to 0.8 ppb and contribute to NHx and PM2.5 by up to 1.2 and 1.1 μg m-3 in July, respectively. The spatial distributions of O3 in both months and sulfur dioxide (SO2) in January are mainly affected by inline dry deposition velocity calculation. The spatial distributions of SO2 and sulfate (SO42-) in July are affected by both inline dry deposition velocity and NH3/H2S reactions. The variation trends of NH3, NHx, ammonium nitrate (NH4NO3), PM2.5 and total nitrogen (TN) are predominated by bi-directional exchange of NH3 fluxes. Uncertainties of NH3 emission potentials and empirical constants used in the bi-directional exchange scheme may significantly affect the concentrations of NHx and PM2.5, indicating that a more accurate and explicit treatment for those parameters should be

  19. Study on Flow Phenomenon inside a Nozzle in Ship Propulsion Equipment Directly Driven by High Pressure Air

    NASA Astrophysics Data System (ADS)

    Tajiri, Shinsuke; Tsutahara, Michihisa; Ogawa, Kazuhiko; Sakamoto, Masahiko; Tajima, Masakazu; Azuma, Keisuke

    An experimental study was conducted by performing pressure measurements and flow visualization to investigate unsteady flows inside a two-dimensional semi-open-type nozzle in a ship propulsion equipment directly driven by high-pressure gas. We found that the ejected gas phase and water-flow phase are separated clearly, and the interface between these phases behaves like waves. It was clarified by flow visualization with a high-speed motion camera and a circulating water channel that these interfacial waves change their shapes according to the water-flow velocity. The interfacial wavelength increases as a result of increasing water-flow velocity, and the mechanism that produces thrust on the nozzle wall changes. The thrust and flow patterns for intermittent gas ejection according to water-flow velocity were also clarified.

  20. The study of the effect of the surface wave on turbulent stably-stratified boundary layer air-flow by direct numerical simulation

    NASA Astrophysics Data System (ADS)

    Druzhinin, Oleg; Troitskaya, Yliya; Zilitinkevich, Sergej

    2015-04-01

    Detailed knowledge of the interaction of surface water waves with the wind flow is of primary importance for correct parameterization of turbulent momentum and heat fluxes which define the energy and momentum transfer between the atmosphere and hydrosphere. The objective of the present study is to investigate the properties of the stably stratified turbulent boundary-layer (BL) air-flow over waved water surface by direct numerical simulation (DNS) at a bulk Reynolds number varying from 15000 to 80000 and the surface-wave slope up to ka = 0.2. The DNS results show that the BL-flow remains in the statistically stationary, turbulent regime if the Reynolds number (ReL) based on the Obukhov length scale and friction velocity is sufficiently large (ReL > 100). In this case, mean velocity and temperature vertical profiles are well predicted by log-linear asymptotic solutions following from the Monin-Obukhov similarity theory provided the velocity and temperature roughness parameters, z0U and z0T, are appropriately prescribed. Both z0U and z0T increase for larger surface-wave slope. DNS results also show that turbulent momentum and heat fluxes and turbulent velocity and temperature fluctuations are increased for larger wave slope (ka) whereas the mean velocity and temperature derivatives remain practically the same for different ka. Thus, we conclude that the source of turbulence enhancement in BL-flow are perturbations induced by the surface wave, and not the shear instability of the bulk flow. On the other hand, if stratification is sufficiently strong, and the surface-wave slope is sufficiently small, the BL-flow over waved surface relaminarizes in the bulk of the domain. However, if the surface-wave slope exceeds a threshold value, the velocity and temperature fluctuations remain finite in the vicinity of the critical-layer level, where the surface-wave phase velocity coincides with the mean flow velocity. We call this new stably-stratified BL-flow regime observed in

  1. The Clean Air Game.

    ERIC Educational Resources Information Center

    Avalone-King, Deborah

    2000-01-01

    Introduces the Clean Air game which teaches about air quality and its vital importance for life. Introduces students to air pollutants, health of people and environment, and possible actions individuals can take to prevent air pollution. Includes directions for the game. (YDS)

  2. CO{sub 2} Huff-n-Puff process in a light oil shallow shelf carbonate reservoir. 1994 Annual report

    SciTech Connect

    Wehner, S.C.

    1995-05-01

    It is anticipated that this project will show that the application of the CO{sub 2} Huff-n-Puff process in shallow shelf carbonates can be economically implemented to recover appreciable volumes of light oil. The goals of the project are the development of guidelines for cost-effective selection of candidate reservoirs and wells, along with estimating recovery potential. The selected site for the demonstration project is the Central Vacuum Unit waterflood in Lea County, New Mexico. Work is nearing completion on the reservoir characterization components of the project. The near-term emphasis is to, (1) provide an accurate distribution of original oil-in-place on a waterflood pattern entity level, (2) evaluate past recovery efficiencies, (3) perform parametric simulations, and (4) forecast performance for a site specific field demonstration of the proposed technology. Macro zonation now exists throughout the study area and cross-sections are available. The Oil-Water Contact has been defined. Laboratory capillary pressure data was used to define the initial water saturations within the pay horizon. The reservoir`s porosity distribution has been enhanced with the assistance of geostatistical software. Three-Dimensional kriging created the spatial distributions of porosity at interwell locations. Artificial intelligence software was utilized to relate core permeability to core porosity, which in turn was applied to the 3-D geostatistical porosity gridding. An Equation-of-State has been developed and refined for upcoming compositional simulation exercises. Options for local grid-refinement in the model are under consideration. These tasks will be completed by mid-1995, prior to initiating the field demonstrations in the second budget period.

  3. Clinical evaluation of an air-capsule technique for the direct measurement of intra-abdominal pressure after elective abdominal surgery

    PubMed Central

    Otto, Jens; Kaemmer, Daniel; Biermann, Andreas; Jansen, Marc; Dembinski, Rolf; Schumpelick, Volker; Schachtrupp, Alexander

    2008-01-01

    Background The gold standard for assessment of intraabdominal pressure (IAP) is via intravesicular pressure measurement (IVP). This accepted technique has some inherent problems, e.g. indirectness. Aim of this clinical study was to assess direct IAP measurement using an air-capsule method (ACM) regarding complications risks and agreement with IVP in patients undergoing abdominal surgery. Methods A prospective cohort study was performed in 30 patients undergoing elective colonic, hepatic, pancreatic and esophageal resection. For ACM a Probe 3 (Spiegelberg®, Germany) was placed on the greater omentum. It was passed through the abdominal wall paralleling routine drainages. To compare ACM with IVP t-testing was performed and mean difference as well as limits of agreement were calculated. Results ACM did not lead to complications particularly with regard to organ lesion or surgical site infection. Mean insertion time of ACM was 4.4 days (min-max: 1–5 days). 168 pairwise measurements were made. Mean ACM value was 7.9 ± 2.7 mmHg while mean IVP was 8.4 ± 3.0 mmHg (n.s). Mean difference was 0.4 mmHg ± 2.2 mmHg. Limits of agreement were -4.1 mmHg to 5.1 mmHg. Conclusion Using ACM, direct IAP measurement is feasible and uncomplicated. Associated with relatively low pressure ranges (<17 mmHg), results are comparable to bladder pressure measurement. PMID:18925973

  4. Primary zone air proportioner

    DOEpatents

    Cleary, Edward N. G.

    1982-10-12

    An air proportioner is provided for a liquid hydrocarbon fueled gas turbine of the type which is convertible to oil gas fuel and to coal gas fuel. The turbine includes a shell for enclosing the turbine, an air duct for venting air in said shell to a gasifier, and a fuel injector for injecting gasified fuel into the turbine. The air proportioner comprises a second air duct for venting air from the air duct for mixing with fuel from the gasifier. The air can be directly injected into the gas combustion basket along with the fuel from the injector or premixed with fuel from the gasifier prior to injection by the fuel injector.

  5. Scanning Lidar Measurements of the Full-Scale RDD Field Trial Puff Plumes.

    PubMed

    Cao, Xiaoying; Roy, Gilles

    2016-05-01

    A vertically scanning lidar (light/radar) was used to measure the time evolution of clouds generated by a small explosive device. Vertical sweeps were performed at a downwind distance of 105 m from the detonation. The measured quantity obtained from the lidar was the light extinction coefficient. This quantity is directly proportional to the aerosol concentration. The background aerosol value was set to 0.0001 m (-1) (assuming a visibility of 40 km), and assuming the scattering properties of the explosively generated cloud is the same as the background aerosol, the authors found that the instantaneous maximal local concentration of aerosol in the cloud did not exceed 500 times the background aerosol value, and the instantaneous concentration was typically less than five times the background aerosol value. In the two trials that were done, the volumes of the clouds were reasonably close at 2,700 m(3) and 4,000 m(3), respectively.

  6. Water-window microscopy using compact, laser-plasma source based on Ar/He double stream gas-puff target

    NASA Astrophysics Data System (ADS)

    Wachulak, Przemyslaw W.; Skorupka, Marcin; Bartnik, Andrzej; Kostecki, Jerzy; Jarocki, Roman; Szczurek, Mirosław; Wegrzynski, Lukasz; Fok, Tomasz; Fiedorowicz, Henryk

    2013-05-01

    Photon-based (bosonic-type) imaging at short wavelength vs. electron, or recently neutron, imaging has additional advantages due to different interaction of photons with matter and thus high resolution photon-based imaging is still of high interest to the scientific community. In this work we try to combine the advantages of employing compact, laboratory type laser-plasma short wavelength source, based on Ar/He gas puff target, emitting incoherent radiation, with the "water-window" spectral range. This unique combination is highly suitable for biological imaging, and allows developing a small size microscopy setup, which might be used in various fields of science and technology. Thus, in this paper we report on recent advances in "water-window" desk-top microscopy setup employing a laser-plasma SXR source based on a double stream gas puff target and Wolter type-I objective. The system allows capturing magnified images of the objects with ~1 μm spatial resolution up to ~40 μm thickness and single SXR pulse exposure time as low as 3 ns. For the SXR microscope Ar plasma was produced by focusing of the pumping laser pulses, from Nd:YAG laser (Eksma), by a lens onto a gas puff target. EUV radiation from the plasma was collected and focused by an ellipsoidal, axi-symmetrical nickel coated condenser mirror, developed by Rigaku, Inc. The condenser is a broad-band optic, capable of efficiently reflecting radiation from the EUV range down to SXR region with energy cut-off of ~800 eV. To spectrally narrow the emission from argon plasma a free-standing titanium filter (Lebow) was used. Spectrally filtered radiation illuminates the sample. Then the sample was imaged onto a SXR sensitive back-illuminated, CCD camera (Andor) by a Wolter type-I reflective objective. A characterization and optimization of both the source and the microscope setups are presented and discussed.

  7. Magnetic Rayleigh-Taylor instability mitigation in large-diameter gas puff Z-pinch implosions

    SciTech Connect

    Qi, N.; Sze, H.; Failor, B. H.; Banister, J.; Levine, J. S.; Riordan, J. C.; Steen, P.; Sincerny, P.; Lojewski, D.

    2008-02-15

    Recently, a new approach for efficiently generating K-shell x-rays in large-diameter, long-implosion time, structured argon gas Z-pinches has been demonstrated based on a 'pusher-stabilizer-radiator' model. In this paper, direct observations of the Rayleigh-Taylor instability mitigation of a 12-cm diameter, 200-ns implosion time argon Z-pinch using a laser shearing interferometer (LSI) and a laser wavefront analyzer (LWA) are presented. Using a zero-dimensional snowplow model, the imploding plasma trajectories are calculated with the driver current waveforms and the initial mass distributions measured using the planar laser induced fluorescence method. From the LSI and LWA images, the plasma density and trajectory during the implosion are measured. The measured trajectory agrees with the snowplow calculations. The suppression of hydromagnetic instabilities in the ''pusher-stabilizer-radiator'' structured loads, leading to a high-compression ratio, high-yield Z-pinch, is discussed. For comparison, the LSI and LWA images of an alternative load (without stabilizer) show the evolution of a highly unstable Z-pinch.

  8. Direct measurement of divertor exhaust neo enrichment in DIII-D

    SciTech Connect

    Schaffer, M.J.; Wade, M.R.; Maingi, R.; Monier-Garbet, P.; West, W.P.; Whyte, D.G.; Wood, R.D.; Mahdavi, M.A.

    1996-06-01

    We report first direct measurements of divertor exhaust gas impurity enrichment, {eta}{sub exh}=(exhaust impurity concentration){divided_by}(core impurity concentration), for both unpumped and D{sub 2} puff-with-divertor-pump conditions. The experiment was performed with neutral beam heated, ELMing H-mode, single-null diverted deuterium plasmas with matched core and exhaust parameters in the DIII-D tokamak. Neon gas impurity was puffed into the divertor. Neon density was measured in the exhaust by a specially modified Penning gauge and in the core by absolute charge exchange recombination spectroscopy. Neon particle accounting indicates that much of the puffed neon entered a temporary unmeasured reservoir, inferred to be the graphite divertor target, which makes direct measurements necessary to calculate divertor enrichments. D{sub 2} puff into the SOL (scrape-off layer) with pumping increased {eta}{sub exh} threefold over either unpumped conditions or D{sub 2} puff directly into the divertor with pumping. These results show that SOL flow plays an important role in divertor exhaust impurity enrichment.

  9. Application of Kolomogorov-Zurbenko Filter and the decoupled direct 3D method for the dynamic evaluation of a regional air quality model

    EPA Science Inventory

    Regional air quality models are being used in a policy-setting to estimate the response of air pollutant concentrations to changes in emissions and meteorology. Dynamic evaluation entails examination of a retrospective case(s) to assess whether an air quality model has properly p...

  10. One- and two-dimensional modeling of argon K-shell emission from gas-puff Z-pinch plasmas

    NASA Astrophysics Data System (ADS)

    Thornhill, J. W.; Chong, Y. K.; Apruzese, J. P.; Davis, J.; Clark, R. W.; Giuliani, J. L.; Terry, R. E.; Velikovich, A. L.; Commisso, R. J.; Whitney, K. G.; Frese, M. H.; Frese, S. D.; Levine, J. S.; Qi, N.; Sze, H.; Failor, B. H.; Banister, J. W.; Coleman, P. L.; Coverdale, C. A.; Jones, B.; Deeney, C.

    2007-06-01

    In this paper, a theoretical model is described and demonstrated that serves as a useful tool for understanding K-shell radiating Z-pinch plasma behavior. Such understanding requires a self-consistent solution to the complete nonlocal thermodynamic equilibrium kinetics and radiation transport in order to realistically model opacity effects and the high-temperature state of the plasma. For this purpose, we have incorporated into the MACH2 two-dimensional magnetohydrodynamic (MHD) code [R. E. Peterkin et al., J. Comput. Phys. 140, 148 (1998)] an equation of state, called the tabular collisional radiative equilibrium (TCRE) model [J. W. Thornhill et al., Phys. Plasmas 8, 3480 (2001)], that provides reasonable approximations to the plasma's opacity state. MACH2 with TCRE is applied toward analyzing the multidimensional implosion behavior that occurred in Decade Quad (DQ) [D. Price et al., Proceedings of the 12th IEEE Pulsed Power Conference, Monterey, CA, edited by C. Stallings and H. Kirbie (IEEE, New York, 1999), p. 489] argon gas puff experiments that employed a 12cm diameter nozzle with and without a central gas jet on axis. Typical peak drive currents and implosion times in these experiments were ˜6MA and ˜230ns. By using Planar Laser Induced Fluorescence measured initial density profiles as input to the calculations, the effect these profiles have on the ability of the pinch to efficiently produce K-shell emission can be analyzed with this combined radiation-MHD model. The calculated results are in agreement with the experimental result that the DQ central-jet configuration is superior to the no-central-jet experiment in terms of producing more K-shell emission. These theoretical results support the contention that the improved operation of the central-jet nozzle is due to the better suppression of instabilities and the higher-density K-shell radiating conditions that the central-jet configuration promotes. When we applied the model toward projecting argon K

  11. Air temperature, wind speed, and wind direction in the National Petroleum Reserve—Alaska and the Arctic National Wildlife Refuge, 1998–2011

    USGS Publications Warehouse

    Urban, Frank E.; Clow, Gary D.

    2013-01-01

    This report provides air temperature, wind speed, and wind direction data collected on Federal lands in Arctic Alaska over the period August 1998 to July 2011 by the U.S. Department of the Interior's climate monitoring array, part of the Global Terrestrial Network for Permafrost. In addition to presenting data, this report also describes monitoring, data collection, and quality control methodology. This array of 16 monitoring stations spans 68.5°N to 70.5°N and 142.5°W to 161°W, an area of roughly 150,000 square kilometers. Climate summaries are presented along with provisional quality-controlled data. Data collection is ongoing and includes several additional climate variables to be released in subsequent reports, including ground temperature and soil moisture, snow depth, rainfall, up- and downwelling shortwave radiation, and atmospheric pressure. These data were collected by the U.S. Geological Survey in close collaboration with the Bureau of Land Management and the U.S. Fish and Wildlife Service.

  12. Direct measurements of HONO and NO2 by tunable infrared differential absorption spectroscopy; Results from two field campaigns sampling aircraft exhaust and ambient urban air

    NASA Astrophysics Data System (ADS)

    Lee, B. H.; Santoni, G.; Herndon, S. C.; Wood, E. C.; Miake-Lye, R. C.; Munger, J. W.; Wofsy, S. C.; Zahniser, M. S.; McManus, J. B.; Nelson, D. D.

    2009-12-01

    Nitrous acid (HONO) is an important source of hydroxyl radicals (OH), the main oxidizing agent in the atmosphere. However, gaseous HONO has historically proven difficult to measure accurately and to date there is no standard technique. We describe a new instrument capable of high-frequency measurements of HONO and nitrogen dioxide (NO2) mixing ratios by tunable infrared differential absorption spectrometry. Mid-infrared light from two continuous-wave mode quantum cascade lasers traverse a 210 m path through a multi-pass astigmatic cell at reduced pressures for the direct detection of HONO (1660 cm-1) and NO2 (1604 cm-1). We achieve an absorbance precision less than 3×10-6 Hz-1 in one second, which translates to detection limits (S/N=3) of 300 and 30 ppt for HONO and NO2, respectively, in one second. Both lasers and the detector are thermoelectrically cooled, facilitating long-term unattended measurements. We also report preliminary results from two field campaigns; the Alternative Aviation Fuels Experiment (AAFEX) and the Study of Houston Air Radical Precursors (SHARP). At AAFEX, HONO emission ratios relative to CO2 and NOy observed in commercial aircraft exhaust are larger than in most other combustion sources and likely to play a significant role in regional HOx chemistry. Preliminary analysis from the SHARP campaign shows good agreement in HONO and NO2 levels between various measurement techniques.

  13. Synthesis of free-standing carbon nanohybrid by directly growing carbon nanotubes on air-sprayed graphene oxide paper and its application in supercapacitor

    NASA Astrophysics Data System (ADS)

    Wei, Li; Jiang, Wenchao; Yuan, Yang; Goh, Kunli; Yu, Dingshan; Wang, Liang; Chen, Yuan

    2015-04-01

    We report the synthesis of a free-standing two dimensional carbon nanotube (CNT)-reduced graphene oxide (rGO) hybrid by directly growing CNTs on air-sprayed GO paper. As a result of the good integration between CNTs and thermally reduced GO film during chemical vapor deposition, excellent electrical conductivity (2.6×104 S/m), mechanical flexibility (electrical resistance only increases 1.1% after bent to 90° for 500 times) and a relatively large surface area (335.3 m2/g) are achieved. Two-electrode supercapacitor assembled using the CNT-rGO hybrids in ionic liquid electrolyte (1-ethyl-3-methylimidazolium tetrafluoroborate) shows excellent stability upon 500 bending cycles with the gravimetric energy density measuring 23.7 Wh/kg and a power density of 2.0 kW/kg. Furthermore, it shows an impedance phase angle of -64.4° at a frequency of 120 Hz, suggesting good potentials for 120 Hz alternating current line filtering applications.

  14. Multicolor, time-gated, soft x-ray pinhole imaging of wire array and gas puff Z pinches on the Z and Saturn pulsed power generators.

    PubMed

    Jones, B; Coverdale, C A; Nielsen, D S; Jones, M C; Deeney, C; Serrano, J D; Nielsen-Weber, L B; Meyer, C J; Apruzese, J P; Clark, R W; Coleman, P L

    2008-10-01

    A multicolor, time-gated, soft x-ray pinhole imaging instrument is fielded as part of the core diagnostic set on the 25 MA Z machine [M. E. Savage et al., in Proceedings of the Pulsed Power Plasma Sciences Conference (IEEE, New York, 2007), p. 979] for studying intense wire array and gas puff Z-pinch soft x-ray sources. Pinhole images are reflected from a planar multilayer mirror, passing 277 eV photons with <10 eV bandwidth. An adjacent pinhole camera uses filtration alone to view 1-10 keV photons simultaneously. Overlaying these data provides composite images that contain both spectral as well as spatial information, allowing for the study of radiation production in dense Z-pinch plasmas. Cu wire arrays at 20 MA on Z show the implosion of a colder cloud of material onto a hot dense core where K-shell photons are excited. A 528 eV imaging configuration has been developed on the 8 MA Saturn generator [R. B. Spielman et al., and A. I. P. Conf, Proc. 195, 3 (1989)] for imaging a bright Li-like Ar L-shell line. Ar gas puff Z pinches show an intense K-shell emission from a zippering stagnation front with L-shell emission dominating as the plasma cools.

  15. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode

    NASA Astrophysics Data System (ADS)

    Rieker, G. B.; Poehlmann, F. R.; Cappelli, M. A.

    2013-07-01

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spectrometer was designed and calibrated using the Geant4 toolkit, accounting for the effects on the ion trajectories of spatial non-uniformities in the spectrometer magnetic and electric fields. Results for hydrogen gas puffs indicate the existence of a class of accelerated protons with energies well above the coaxial discharge potential (up to 24 keV). The Thomson analyzer confirms the presence of impurities of copper and iron, also of relatively high energies, which are likely erosion or sputter products from plasma-electrode interactions.

  16. CO2 Huff-n-Puff process in a light oil shallow shelf carbonate reservoir. Annual report, January 1, 1995--December 31, 1995

    SciTech Connect

    Wehner, S.C.; Boomer, R.J.; Cole, R.; Preiditus, J.; Vogt, J.

    1996-09-01

    The application of cyclic CO{sub 2}, often referred to as the CO{sub 2} Huff-n-Puff process, may find its niche in the maturing waterfloods of the Permian Basin. Coupling the CO{sub 2} H-n-P process to miscible flooding applications could provide the needed revenue to sufficiently mitigate near-term negative cash flow concerns in the capital intensive miscible projects. Texaco Exploration & Production Inc. and the U.S. Department of Energy have teamed up in an attempt to develop the CO{sub 2} Huff-n-Puff process in the Grayburg/San Andres formation; a light oil, shallow shelf carbonate reservoir within the Permian Basin. This cost-shared effort is intended to demonstrate the viability of this underutilized technology in a specific class of domestic reservoir. A significant amount of oil reserves are located in carbonate reservoirs. Specifically, the carbonates deposited in shallow shelf (SSC) environments make up the largest percentage of known reservoirs within the Permian Basin of North America. Many of these known resources have been under waterflooding operations for decades and are at risk of abandonment if crude oil recoveries cannot be economically enhanced. The selected site for this demonstration project is the Central Vacuum Unit waterflood in Lea County, New Mexico.

  17. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode.

    PubMed

    Rieker, G B; Poehlmann, F R; Cappelli, M A

    2013-07-01

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spectrometer was designed and calibrated using the Geant4 toolkit, accounting for the effects on the ion trajectories of spatial non-uniformities in the spectrometer magnetic and electric fields. Results for hydrogen gas puffs indicate the existence of a class of accelerated protons with energies well above the coaxial discharge potential (up to 24 keV). The Thomson analyzer confirms the presence of impurities of copper and iron, also of relatively high energies, which are likely erosion or sputter products from plasma-electrode interactions.

  18. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode

    SciTech Connect

    Rieker, G. B.; Poehlmann, F. R.; Cappelli, M. A.

    2013-07-15

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spectrometer was designed and calibrated using the Geant4 toolkit, accounting for the effects on the ion trajectories of spatial non-uniformities in the spectrometer magnetic and electric fields. Results for hydrogen gas puffs indicate the existence of a class of accelerated protons with energies well above the coaxial discharge potential (up to 24 keV). The Thomson analyzer confirms the presence of impurities of copper and iron, also of relatively high energies, which are likely erosion or sputter products from plasma-electrode interactions.

  19. Genetic analysis of the Drosophila 63F early puff. Characterization of mutations in E63-1 and maggie, a putative Tom22.

    PubMed Central

    Vaskova, M; Bentley, A M; Marshall, S; Reid, P; Thummel, C S; Andres, A J

    2000-01-01

    The 63F early puff in the larval salivary gland polytene chromosomes contains the divergently transcribed E63-1 and E63-2 ecdysone-inducible genes. E63-1 encodes a member of the EF-hand family of Ca(2+)-binding proteins, while E63-2 has no apparent open reading frame. To understand the functions of the E63 genes, we have determined the temporal and spatial patterns of E63-1 protein expression, as well as undertaken a genetic analysis of the 63F puff. We show that E63-1 is expressed in many embryonic and larval tissues, but the third-instar larval salivary gland is the only tissue where increases in protein levels correlate with increases in ecdysone titer. Furthermore, the subcellular distribution of E63-1 protein changes dynamically in the salivary glands at the onset of metamorphosis. E63-1 and E63-2 null mutations, however, have no effect on development or fertility. We have characterized 40 kb of the 63F region, defined as the interval between Ubi-p and E63-2, and have identified three lethal complementation groups that correspond to the dSc-2, ida, and mge genes. We show that mge mutations lead to first-instar larval lethality and that Mge protein is similar to the Tom22 mitochondrial import proteins of fungi, suggesting that it has a role in mitochondrial function. PMID:10978288

  20. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode

    PubMed Central

    Rieker, G. B.; Poehlmann, F. R.; Cappelli, M. A.

    2013-01-01

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spectrometer was designed and calibrated using the Geant4 toolkit, accounting for the effects on the ion trajectories of spatial non-uniformities in the spectrometer magnetic and electric fields. Results for hydrogen gas puffs indicate the existence of a class of accelerated protons with energies well above the coaxial discharge potential (up to 24 keV). The Thomson analyzer confirms the presence of impurities of copper and iron, also of relatively high energies, which are likely erosion or sputter products from plasma-electrode interactions. PMID:23983449

  1. A proficiency testing scheme for aromatic hydrocarbons in air by the manual thermal desorption-GC method: a comparison of laboratory performance with the uncertainty requirements of the European Union Ambient Air Directive.

    PubMed

    Stacey, P R; Wright, M D

    2001-08-01

    The Workplace Analysis Scheme for Proficiency (WASP) is a proficiency testing scheme for the analysis of occupational hygiene and environmental air samples and is operated in the UK by the Health and Safety Laboratory. Since 1997, WASP has offered samples of benzene, toluene and m-xylene, at environmental levels on Tenax, and has about 35 laboratories participating, mostly from industry, local government and consultancy organisations in the UK. The results reported cover the first 10 rounds of the environmental analytes (1997-1999) and demonstrate the important role of proficiency testing in assessing the quality of laboratory performance. Estimates are obtained for within-laboratory precision and the total variability at each analyte level. The estimates of within-laboratory precision suggest that laboratories have more difficulty analysing toluene and m-xylene than benzene. Linear relationships for the reproducibility relative standard deviation (RSDT) with loading level are evident for the analytes at occupational levels. At environmental levels, the relationship between loading level and reproducibility is much less well defined. The standard deviation for the proficiency testing assessment for all three analytes at the environmental level is 14%, as derived from the benzene data. Expanded uncertainty estimates (k = 1.96), for the analysis of samples since the scheme started, are obtained from the average total variance, and are 27% for benzene, 39% for toluene and 36% for m-xylene. Although the linear trend of performance against round number was not significant at the 95% level of confidence (p = 0.23 for benzene, p = 0.3 for toluene and p = 0.32 for m-xylene), there was a general improvement in RSDT from 26-34% to about 8-13% 10 rounds later. Currently, for a laboratory to meet one of the data quality objectives in the Ambient Air Directive (indicative measurement of benzene, expanded uncertainty +/- 30% or less), it would have to achieve a level of

  2. Subsurface evaluation of the west parking lot and landfill 3 areas of Air Force Plant 4, Fort Worth, Texas, using two-dimensional direct-current resistivity profiling

    USGS Publications Warehouse

    Braun, Christopher L.; Jones, Sonya A.

    2002-01-01

    During September 1999, the U.S. Geological Survey made 10 two-dimensional direct-current resistivity profile surveys in the west parking lot and landfill 3 areas of Air Force Plant 4, Fort Worth, Texas, to identify subsurface areas of anomalously high or low resistivity that could indicate potential contamination, contaminant pathways, or anthropogenic structures. Six of the 10 surveys (transects) were in the west parking lot. Each of the inverted sections of these transects had anomalously high resistivities in the terrace alluvium/fill (the surficial subsurface layer) that probably were caused by highly resistive fill material. In addition, each of these transects had anomalously low resistivities in the Walnut Formation (a bedrock layer immediately beneath the alluvium/fill) that could have been caused by saturation of fractures within the Walnut Formation. A high-resistivity anomaly in the central part of the study area probably is associated with pea gravel fill used in construction of a French drain. Another high resistivity anomaly in the west parking lot, slightly southeast of the French drain, could be caused by dense nonaqueous-phase liquid in the Walnut Formation. The inverted sections of the four transects in the landfill 3 area tended to have slightly higher resistivities in both the alluvium/fill and the Walnut Formation than the transects in the west parking lot. The higher resistivities in the alluvium/fill could have been caused by drier conditions in grassy areas relative to conditions in the west parking lot. Higher resistivities in parts of the Walnut Formation also could be a function of drier conditions or variations in the lithology of the Walnut Formation. In addition to the 10 vertical sections, four horizontal sections at 2-meteraltitude intervals show generally increasing resistivity with decreasing altitude that most likely results from the increased influence of the Walnut Formation, which has a higher resistivity than the terrace

  3. Successful production of piglets derived from expanded blastocysts vitrified using a micro volume air cooling method without direct exposure to liquid nitrogen.

    PubMed

    Misumi, Koji; Hirayama, Yuri; Egawa, Sachiko; Yamashita, Shoko; Hoshi, Hiroyoshi; Imai, Kei

    2013-12-17

    This study was conducted to clarify the feasibility of newly developed vitrification techniques for porcine embryos using the micro volume air cooling (MVAC) method without direct contact with liquid nitrogen (LN₂). Expanded blastocysts were vitrified in a solution containing 6 M ethylene glycol, 0.6 M trehalose and 2% (wt/vol) polyethylene glycol in 10% HEPES-buffered PZM-5. The blastocysts were collected from gilts and vitrified using the new device (MVAC) or a Cryotop (CT). Blastocysts were stored in LN₂ for at least 1 month. After warming, cryoprotective agents were removed using a single step. Survival of the embryos was assessed by in vitro culture (Experiment 1) and by embryo transfer to recipients (Experiment 2). In Experiment 1, the embryos vitrified by the MVAC or CT and fresh embryos without vitrification (Control) were used. The survival rates of embryos in the MVAC, CT and Control groups were 88.9% (32/36), 91.7% (33/36) and 100% (34/34), respectively, after 48 h culture, and the hatching rates of embryos after 48 h incubation were 69.4% (25/36), 63.9% (23/36) and 94.1% (32/34), respectively. In Experiment 2, 64 vitrified embryos were transferred to 5 recipient gilts, and 8 healthy piglets were produced from 3 recipients in the MVAC group. Similarly, 66 vitrified embryos were transferred to 5 recipient gilts, and 9 healthy piglets were produced from 2 recipients in the CT group. These results indicated that porcine expanded blastocysts can be cryopreserved using the MVAC method without potential pathogen contamination from LN₂.

  4. Successful Production of Piglets Derived from Expanded Blastocysts Vitrified Using a Micro Volume Air Cooling Method without Direct Exposure to Liquid Nitrogen

    PubMed Central

    MISUMI, Koji; HIRAYAMA, Yuri; EGAWA, Sachiko; YAMASHITA, Shoko; HOSHI, Hiroyoshi; IMAI, Kei

    2013-01-01

    Abstract This study was conducted to clarify the feasibility of newly developed vitrification techniques for porcine embryos using the micro volume air cooling (MVAC) method without direct contact with liquid nitrogen (LN2). Expanded blastocysts were vitrified in a solution containing 6 M ethylene glycol, 0.6 M trehalose and 2% (wt/vol) polyethylene glycol in 10% HEPES-buffered PZM-5. The blastocysts were collected from gilts and vitrified using the new device (MVAC) or a Cryotop (CT). Blastocysts were stored in LN2 for at least 1 month. After warming, cryoprotective agents were removed using a single step. Survival of the embryos was assessed by in vitro culture (Experiment 1) and by embryo transfer to recipients (Experiment 2). In Experiment 1, the embryos vitrified by the MVAC or CT and fresh embryos without vitrification (Control) were used. The survival rates of embryos in the MVAC, CT and Control groups were 88.9% (32/36), 91.7% (33/36) and 100% (34/34), respectively, after 48 h culture, and the hatching rates of embryos after 48 h incubation were 69.4% (25/36), 63.9% (23/36) and 94.1% (32/34), respectively. In Experiment 2, 64 vitrified embryos were transferred to 5 recipient gilts, and 8 healthy piglets were produced from 3 recipients in the MVAC group. Similarly, 66 vitrified embryos were transferred to 5 recipient gilts, and 9 healthy piglets were produced from 2 recipients in the CT group. These results indicated that porcine expanded blastocysts can be cryopreserved using the MVAC method without potential pathogen contamination from LN2. PMID:23955236

  5. Analytical results from ground-water sampling using a direct-push technique at the Dover National Test Site, Dover Air Force Base, Delaware, June-July 2001

    USGS Publications Warehouse

    Guertal, William R.; Stewart, Marie; Barbaro, Jeffrey R.; McHale, Timthoy J.

    2004-01-01

    A joint study by the Dover National Test Site and the U.S. Geological Survey was conducted from June 27 through July 18, 2001 to determine the spatial distribution of the gasoline oxygenate additive methyl tert-butyl ether and selected water-quality constituents in the surficial aquifer underlying the Dover National Test Site at Dover Air Force Base, Delaware. The study was conducted to support a planned enhanced bio-remediation demonstration and to assist the Dover National Test Site in identifying possible locations for future methyl tert-butyl ether remediation demonstrations. This report presents the analytical results from ground-water samples collected during the direct-push ground-water sampling study. A direct-push drill rig was used to quickly collect 115 ground-water samples over a large area at varying depths. The ground-water samples and associated quality-control samples were analyzed for volatile organic compounds and methyl tert-butyl ether by the Dover National Test Site analytical laboratory. Volatile organic compounds were above the method reporting limits in 59 of the 115 ground-water samples. The concentrations ranged from below detection limits to maximum values of 12.4 micrograms per liter of cis-1,2-dichloroethene, 1.14 micrograms per liter of trichloroethene, 2.65 micrograms per liter of tetrachloroethene, 1,070 micrograms per liter of methyl tert-butyl ether, 4.36 micrograms per liter of benzene, and 1.8 micrograms per liter of toluene. Vinyl chloride, ethylbenzene, p,m-xylene, and o-xylene were not detected in any of the samples collected during this investigation. Methyl tert-butyl ether was detected in 47 of the 115 ground-water samples. The highest methyl tert-butyl ether concentrations were found in the surficial aquifer from -4.6 to 6.4 feet mean sea level, however, methyl tert-butyl ether was detected as deep as -9.5 feet mean sea level. Increased methane concentrations and decreased dissolved oxygen concentrations were found in

  6. Air Sensor Guidebook

    EPA Science Inventory

    This Air Sensor Guidebook has been developed by the U.S. EPA to assist those interested in potentially using lower cost air quality sensor technologies for air quality measurements. Its development was in direct response to a request for such a document following a recent scienti...

  7. OTM 33 Geospatial Measurement of Air Pollution, Remote Emissions Quantification (GMAP-REQ) and OTM33A Geospatial Measurement of Air Pollution-Remote Emissions Quantification-Direct Assessment (GMAP-REQ-DA)

    EPA Science Inventory

    Background: Next generation air measurement (NGAM) technologies are enabling new regulatory and compliance approaches that will help EPA better understand and meet emerging challenges associated with fugitive and area source emissions from industrial and oil and gas sectors. In...

  8. Performance evaluation of AERMOD, CALPUFF, and legacy air dispersion models using the Winter Validation Tracer Study dataset

    NASA Astrophysics Data System (ADS)

    Rood, Arthur S.

    2014-06-01

    The performance of the steady-state air dispersion models AERMOD and Industrial Source Complex 2 (ISC2), and Lagrangian puff models CALPUFF and RATCHET were evaluated using the Winter Validation Tracer Study dataset. The Winter Validation Tracer Study was performed in February 1991 at the former Rocky Flats Environmental Technology Site near Denver, Colorado. Twelve, 11-h tests were conducted where a conservative tracer was released and measured hourly at 140 samplers in concentric rings 8 km and 16 km from the release point. Performance objectives were unpaired maximum one- and nine-hour average concentration, location of plume maximum, plume impact area, arc-integrated concentration, unpaired nine-hour average concentration, and paired ensemble means. Performance objectives were aimed at addressing regulatory compliance, and dose reconstruction assessment questions. The objective of regulatory compliance is not to underestimate maximum concentrations whereas for dose reconstruction, the objective is an unbiased estimate of concentration in space and time. Performance measures included the fractional bias, normalized mean square error, geometric mean, geometric mean variance, correlation coefficient, and fraction of observations within a factor of two. The Lagrangian puff models tended to exhibit the smallest variance, highest correlation, and highest number of predictions within a factor of two compared to the steady-state models at both the 8-km and 16-km distance. Maximum one- and nine-hour average concentrations were less likely to be under-predicted by the steady-state models compared to the Lagrangian puff models. The characteristic of the steady-state models not to under-predict maximum concentrations make them well suited for regulatory compliance demonstration, whereas the Lagrangian puff models are better suited for dose reconstruction and long range transport.

  9. K-shell and extreme ultraviolet spectroscopic signatures of structured Ar puff Z-pinch loads with high K-shell x-ray yield

    NASA Astrophysics Data System (ADS)

    Failor, B. H.; Sze, H. M.; Banister, J. W.; Levine, J. S.; Qi, N.; Apruzese, J. P.; Lojewski, D. Y.

    2007-02-01

    Structured 12-cm-diam Ar gas-puff loads have recently produced Z-pinch implosions with reduced Rayleigh-Taylor instability growth and increased ≈3mm, consistent with the observed load inductance change and an imploded-mass consisting of a ≈1.5-mm-diam, hot, ⩾20% of load mass) increases the rise and fall times of the XUV emission to ⩾40ns, consistent with a more adiabatic compression and heating of the load. Axial measurements show that, despite differences in the XUV and K-shell emission time histories, the K-shell x-ray yield is insensitive to axial variations in load mass.

  10. A comparison of planar, laser-induced fluorescence, and high-sensitivity interferometry techniques for gas-puff nozzle density measurements

    SciTech Connect

    Jackson, S. L.; Weber, B. V.; Mosher, D.; Phipps, D. G.; Stephanakis, S. J.; Commisso, R. J.; Qi, N.; Failor, B. H.; Coleman, P. L.

    2008-10-15

    The distribution of argon gas injected by a 12-cm-diameter triple-shell nozzle was characterized using both planar, laser-induced fluorescence (PLIF) and high-sensitivity interferometry. PLIF is used to measure the density distribution at a given time by detecting fluorescence from an acetone tracer added to the gas. Interferometry involves making time-dependent, line-integrated gas density measurements at a series of chordal locations that are then Abel inverted to obtain the gas density distribution. Measurements were made on nominally identical nozzles later used for gas-puff Z-pinch experiments on the Saturn pulsed-power generator. Significant differences in the mass distributions obtained by the two techniques are presented and discussed, along with the strengths and weaknesses of each method.

  11. Effect of resistivity profile on current decay time of initial phase of current quench in neon-gas-puff inducing disruptions of JT-60U

    SciTech Connect

    Kawakami, S.; Ohno, N.; Shibata, Y.; Isayama, A.; Kawano, Y.; Watanabe, K. Y.; Takizuka, T.; Okamoto, M.

    2013-11-15

    According to an early work [Y. Shibata et al., Nucl. Fusion 50, 025015 (2010)] on the behavior of the plasma current decay in the JT-60U disruptive discharges caused by the radiative collapse with a massive neon-gas-puff, the increase of the internal inductance mainly determined the current decay time of plasma current during the initial phase of current quench. To investigate what determines the increase of the internal inductance, we focus attention on the relationship between the electron temperature (or the resistivity) profile and the time evolution of the current density profile and carry out numerical calculations. As a result, we find the reason of the increase of the internal inductance: The current density profile at the start of the current quench is broader than an expected current density profile in the steady state, which is determined by the temperature (or resistivity) profile. The current density profile evolves into peaked one and the internal inductance is increasing.

  12. CO{sub 2} Huff-n-Puff process in a light oil shallow shelf carbonate reservoir. Topical report No. 1

    SciTech Connect

    Cole, R.; Prieditis, J.; Vogt, J.; Wehner, S.

    1995-10-01

    The principle objective of the Central Vacuum Unit (CVU) CO{sub 2} Huff-n-Puff (H-n-P) project is to determine the feasibility and practicality of the technology in a waterflooded shallow shelf carbonate environment. The results of parametric simulation of the CO{sub 2} H-n-P process coupled with the CVU reservoir characterization components will determine if this process is technically and economic for field implementation. The ultimate goal will be to develop guidelines based on commonly available data that other operators in the industry can use to investigate the applicability of the process within other field. The technology transfer objective of the project is to disseminate the knowledge gained through an innovative plan in support of the Department of Energy`s objective to increasing domestic oil production and deferring the abandonment of shallow shelf carbonate reservoirs. Accomplishments to date are described in this report.

  13. CO{sub 2} HUFF-n-PUFF process in a light oil shallow shelf carbonate reservoir. Quarterly technical progress report, [January 1, 1995--March 31, 1995

    SciTech Connect

    Cole, R.; Prieditis, J.; Vogt, J.; Wehner, S.

    1995-04-21

    The principal objective of the Central Vacuum Unit (CVU) CO{sub 2} Huff-n-Puff (H-n-P) project is to determine the feasibility and practicality of the technology in a waterflooded shallow shelf carbonate environment. The results of parametric simulation of the CO{sub 2} H-n-P process, coupled with the CVU reservoir characterization components will determine if this process is technically and economically feasible for field implementation. The technology transfer objective of the project is to disseminate the knowledge gained through an innovative plan in support of the Department of Energy`s (DOE) objective of increasing domestic oil production and deferring the abandonment of shallow shelf carbonate (SSC) reservoirs. Technical progress is reported for geostatitical realizations; paramatric simulation; waterflood review; and reservoir characterization.

  14. CO[sub]2 huff-n-puff process in a light oil shallow shelf carbonate reservoir, quarterly technical progress report, January--March, 1997

    SciTech Connect

    Wehner, S.C., Kovar, M., Casteel, J.

    1997-03-31

    The principal objective of the Central Vacuum Unit (CVU) C0{sub 2} Huff-n-Puff (H-n-P) project is to determine the feasibility and practicality of the technology in a waterflooded shallow shelf carbonate environment. The results of parametric simulation of the C0{sub 2} H-n-P process, coupled with the CVU reservoir characterization components will be used to determine if this process is technically and economically feasible for field implementation. The technology transfer objective of the project is to disseminate the knowledge gained through an innovative plan in support of the Department of Energy`s (DOE) objective of increasing domestic oil production and detecting the abandonment of shallow shelf carbonate (SSC) reservoirs. Tasks associated with this objective are carried out in what is considered a timely effort for near-term goals.

  15. CO{sub 2} Huff-n-Puff process in a light oil shallow shelf carbonate reservoir. Second quarterly technical progress report, [April 1995--June 1995

    SciTech Connect

    Cole, R.; Prieditis, J.; Vogt, J.; Wehner, S.

    1995-07-11

    The principal objective of the Central Vacuum Unit (CVU) CO{sub 2} Huff-n-Puff (H-n-P) project is to determine the feasibility and practicality of the technology in a waterflooded shallow shelf carbonate environment. The results of parametric simulation of the CO{sub 2} H-n-P process, coupled with the CVU reservoir characterization components will determine if this process is technically and economically feasible for field implementation. The technology transfer objective of the project is to disseminate the knowledge gained through an innovative plan in support of the Department of Energy`s (DOE) objective of increasing domestic oil production and deferring the abandonment of shallow shelf carbonate (SSC) reservoirs. Tasks associated with this objective are carried out in what is considered a timely effort for near-term goals. Technical progress is summarized for; geostatistical realizations; site-specific simulation;waterflood review; and reservoir characterization.

  16. CO{sub 2} Huff-n-Puff process in a light oil shallow shelf carbonate reservoir. Quarterly technical progress report, July--September, 1995

    SciTech Connect

    Cole, R.; Prieditis, J.; Vogt, J. Wehner, S.

    1995-10-15

    The principal objective of the Central Vacuum Unit (CVU) CO{sub 2} Huff-n-Puff (H-n-P) project is to determine the feasibility and practicality of the technology in a waterflooded shallow shelf carbonate environment. The results of parametric simulation of the CO{sub 2} H-n-P process, coupled with the CVU reservoir characterization components will determine if this process is technically and economically feasible for field implementation. The technology transfer objective of the project is to disseminate the knowledge gained through an innovative plan in support of the Department of Energy`s (DOE) objective of increasing domestic oil production and deferring the abandonment of shallow shelf carbonate (SSC) reservoirs. Tasks associated with this objective are carried out in what is considered a timely effort for near-term goals.

  17. CO{sub 2} Hugg-n-Puff process in a light oil shallow shelf carbonate reservoir. Quarterly technical progress report, 2nd quarter 1996

    SciTech Connect

    1996-07-25

    The principal objective of the Central Vacuum Unit (CVU) CO{sub 2} Huff-n-Puff (H-n-P) project is to determine the feasibility and practicality of the technology in a waterflooded shallow shelf carbonate environment. The results of parametric simulation of the CO{sub 2} H-n-P process, coupled with the CVU reservoir characterization components will determine if this process is technically and economically feasible for field implementation. The technology transfer objective of the project is to disseminate the knowledge gained through an innovative plan in support of the Department of Energy`s (DOE) objective of increasing domestic oil production and deferring the abandonment of shallow shelf carbonate (SSC) reservoirs. Tasks associated with this objective are carried out in what is considered a timely effort for near-term goals.

  18. CO{sub 2} huff-n-puff process in a light oil shallow carbonate reservoir. Annual report, January 1, 1996--December 31, 1996

    SciTech Connect

    Prieditis, J.; Wehner, S.

    1998-01-01

    The application of cyclic CO{sub 2}, often referred to as the CO{sub 2} Huff-n-Puff process, may find its niche in the maturing waterfloods of the Permian Basin. Coupling the CO{sub 2} H-n-P process to miscible flooding applications could provide the needed revenue to sufficiently mitigate near-term negative cash flow concerns in the capital intensive miscible projects. Texaco Exploration & Production Inc. and the U.S. Department of Energy have teamed up in an attempt to develop the CO{sub 2} Huff-n-Puff process in the Grayburg and San Andres formations; a light oil, shallow shelf carbonate reservoir that exists throughout the Permian Basin. A significant amount of oil reserves are located in carbonate reservoirs. Specifically, the carbonates deposited in shallow shelf (SSC) environments make up the largest percentage of known reservoirs within the Permian Basin of North America. Many of these known resources have been under waterflooding operations for decades and are at risk of abandonment if crude oil recoveries cannot be economically enhanced. The selected site for this demonstration project is the Central Vacuum Unit waterflood in Lea County, New Mexico. Miscible CO{sub 2} flooding is the process of choice for enhancing recovery of light oils and already accounts for over 12% of the Permian Basin`s daily production. There are significant probable reserves associated with future miscible CO{sub 2} projects. However, many are marginally economic at current market conditions due to large up-front capital commitments for a peak response which may be several years in the future. The resulting negative cash-flow is sometimes too much for an operator to absorb. The CO{sub 2} H-n-P process is being investigated as a near-term option to mitigate the negative cash-flow situation--allowing acceleration of inventoried miscible CO{sub 2} projects when coupled together.

  19. Attenuating Mutations in Coxsackievirus B3 Map to a Conformational Epitope That Comprises the Puff Region of VP2 and the Knob of VP3

    PubMed Central

    Stadnick, E.; Dan, M.; Sadeghi, A.; Chantler, J. K.

    2004-01-01

    Ten antibody escape mutants of coxsackievirus B3 (CVB3) were used to identify nucleotide substitutions that determine viral virulence for the heart and pancreas. The P1 region, encoding the structural genes of each mutant, was sequenced to identify mutations associated with the lack of neutralization. Eight mutants were found to have a lysine-to arginine mutation in the puff region of VP2, while two had a glutamate-to-glycine substitution in the knob of VP3. Two mutants, EM1 and EM10, representing each of these mutations, were further analyzed, initially by determining their entire sequence. In addition to the mutations in P1, EM1 was found to have two mutations in the 3D polymerase, while EM10 had a mutation in stem-loop II of the 5′ nontranslated region (5′NTR). The pathogenesis of the mutants relative to that of CVB3 strain RK [CVB3(RK)] then was examined in A/J mice. Both mutants were found to be less cardiotropic than the parental strain, with a 40-fold (EM1) or a 100- to 1,000-fold (EM10) reduction in viral titers in the heart relative to the titers of CVB3(RK). The mutations in VP2, VP3, and the 5′NTR were introduced independently into the RK infectious clone, and the phenotypes of the progeny viruses were determined. The results substantiated that the VP2 and VP3 mutations reduced cardiovirulence, while the 5′NTR mutation in EM10 was associated with a more virulent phenotype when expressed on its own. Stereographic imaging of the two mutations in the capsomer showed that they lie in close proximity on either side of a narrow cleft between the puff and the knob, forming a conformational epitope that is part of the putative binding site for coreceptor DAF. PMID:15564506

  20. Simulations of Ar gas-puff Z-pinch radiation sources with double shells and central jets on the Z generator

    NASA Astrophysics Data System (ADS)

    Tangri, V.; Harvey-Thompson, A. J.; Giuliani, J. L.; Thornhill, J. W.; Velikovich, A. L.; Apruzese, J. P.; Ouart, N. D.; Dasgupta, A.; Jones, B.; Jennings, C. A.

    2016-10-01

    Radiation-magnetohydrodynamic simulations using the non-local thermodynamic equilibrium Mach2-Tabular Collisional-Radiative Equilibrium code in (r, z) geometry are performed for two pairs of recent Ar gas-puff Z-pinch experiments on the refurbished Z generator with an 8 cm diameter nozzle. One pair of shots had an outer-to-inner shell mass ratio of 1:1.6 and a second pair had a ratio of 1:1. In each pair, one of the shots had a central jet. The experimental trends in the Ar K-shell yield and power are reproduced in the calculations. However, the K-shell yield and power are significantly lower than the other three shots for the case of a double-shell puff of 1:1 mass ratio and no central jet configuration. Further simulations of a hypothetical experiment with the same relative density profile of this configuration, but higher total mass, show that the coupled energy from the generator and the K-shell yield can be increased to levels achieved in the other three configurations, but not the K-shell power. Based on various measures of effective plasma radius, the compression in the 1:1 mass ratio and no central jet case is found to be less because the plasma inside the magnetic piston is hotter and of lower density. Because of the reduced density, and the reduced radiation cooling (which is proportional to the square of the density), the core plasma is hotter. Consequently, for the 1:1 outer-to-inner shell mass ratio, the load mass controls the yield and the center jet controls the power.

  1. Air Research

    EPA Pesticide Factsheets

    EPA's air research provides the critical science to develop and implement outdoor air regulations under the Clean Air Act and puts new tools and information in the hands of air quality managers and regulators to protect the air we breathe.

  2. Influence of staged-air on airflow, combustion characteristics and NO(x) emissions of a down-fired pulverized-coal 300 MW(e) utility boiler with direct flow split burners.

    PubMed

    Li, Zhengqi; Kuang, Min; Zhang, Jia; Han, Yunfeng; Zhu, Qunyi; Yang, Lianjie; Kong, Weiguang

    2010-02-01

    Cold airflow experiments were conducted to investigate the aerodynamic field in a small-scale furnace of a down-fired pulverized-coal 300 MW(e) utility boiler arranged with direct flow split burners enriched by cyclones. By increasing the staged-air ratio, a deflected flow field appeared in the lower furnace; larger staged-air ratios produced larger deflections. Industrial-sized experiments on a full-scale boiler were also performed at different staged-air damper openings with measurements taken of gas temperatures in the burner region and near the right-side wall, wall heat fluxes, and gas components (O(2), CO, and NO(x)) in the near-wall region. Combustion was unstable at staged-air damper openings below 30%. For openings of 30% and 40%, late ignition of the pulverized coal developed and large differences arose in gas temperatures and heat fluxes between the regions near the front and rear walls. In conjunction, carbon content in the fly ash was high and boiler efficiency was low with high NO(x) emission above 1200 mg/m(3) (at 6% O(2) dry). For fully open dampers, differences in gas temperatures and heat fluxes, carbon in fly ash and NO(x) emission decreased yielding an increase in boiler efficiency. The optimal setting is fully open staged-air dampers.

  3. Novel Air Stimulation MR-Device for Intraoral Quantitative Sensory Cold Testing.

    PubMed

    Brönnimann, Ben; Meier, Michael L; Hou, Mei-Yin; Parkinson, Charles; Ettlin, Dominik A

    2016-01-01

    The advent of neuroimaging in dental research provides exciting opportunities for relating excitation of trigeminal neurons to human somatosensory perceptions. Cold air sensitivity is one of the most frequent causes of dental discomfort or pain. Up to date, devices capable of delivering controlled cold air in an MR-environment are unavailable for quantitative sensory testing. This study therefore aimed at constructing and evaluating a novel MR-compatible, computer-controlled cold air stimulation apparatus (CASA) that produces graded air puffs. CASA consisted of a multi-injector air jet delivery system (AJS), a cold exchanger, a cooling agent, and a stimulus application construction. Its feasibility was tested by performing an fMRI stimulation experiment on a single subject experiencing dentine cold sensitivity. The novel device delivered repetitive, stable air stimuli ranging from room temperature (24.5°C ± 2°C) to -35°C, at flow rates between 5 and 17 liters per minute (l/min). These cold air puffs evoked perceptions similar to natural stimuli. Single-subject fMRI-analysis yielded brain activations typically associated with acute pain processing including thalamus, insular and cingulate cortices, somatosensory, cerebellar, and frontal brain regions. Thus, the novel CASA allowed for controlled, repetitive quantitative sensory testing by using air stimuli at graded temperatures (room temperature down to -35°C) while simultaneously recording brain responses. No MR-compatible stimulation device currently exists that is capable of providing non-contact natural-like stimuli at a wide temperature range to tissues in spatially restricted areas such as the mouth. The physical characteristics of this novel device thus holds promise for advancing the field of trigeminal and spinal somatosensory research, namely with respect to comparing therapeutic interventions for dentine hypersensitivity.

  4. Novel Air Stimulation MR-Device for Intraoral Quantitative Sensory Cold Testing

    PubMed Central

    Brönnimann, Ben; Meier, Michael L.; Hou, Mei-Yin; Parkinson, Charles; Ettlin, Dominik A.

    2016-01-01

    The advent of neuroimaging in dental research provides exciting opportunities for relating excitation of trigeminal neurons to human somatosensory perceptions. Cold air sensitivity is one of the most frequent causes of dental discomfort or pain. Up to date, devices capable of delivering controlled cold air in an MR-environment are unavailable for quantitative sensory testing. This study therefore aimed at constructing and evaluating a novel MR-compatible, computer-controlled cold air stimulation apparatus (CASA) that produces graded air puffs. CASA consisted of a multi-injector air jet delivery system (AJS), a cold exchanger, a cooling agent, and a stimulus application construction. Its feasibility was tested by performing an fMRI stimulation experiment on a single subject experiencing dentine cold sensitivity. The novel device delivered repetitive, stable air stimuli ranging from room temperature (24.5°C ± 2°C) to −35°C, at flow rates between 5 and 17 liters per minute (l/min). These cold air puffs evoked perceptions similar to natural stimuli. Single-subject fMRI-analysis yielded brain activations typically associated with acute pain processing including thalamus, insular and cingulate cortices, somatosensory, cerebellar, and frontal brain regions. Thus, the novel CASA allowed for controlled, repetitive quantitative sensory testing by using air stimuli at graded temperatures (room temperature down to −35°C) while simultaneously recording brain responses. No MR-compatible stimulation device currently exists that is capable of providing non-contact natural-like stimuli at a wide temperature range to tissues in spatially restricted areas such as the mouth. The physical characteristics of this novel device thus holds promise for advancing the field of trigeminal and spinal somatosensory research, namely with respect to comparing therapeutic interventions for dentine hypersensitivity. PMID:27445771

  5. [Prophylactic medicine--a foreground direction of medical support of the air staff of aviation of the Armed Forces of Russian Federation].

    PubMed

    Khomenko, M N; Klepikov, A N; Zubkov, A D; Bagaudinov, K G; Churilov, Iu K

    2008-06-01

    The first prophylaxis of chronic not-infection diseases obtains more and more value. Level of these diseases among air staff is rather high and has a tendency of increasing. It's bounded up with defects in the system of the first medical unit, insufficient conducting of ecological and sanitarium-hygiene screening and taking steps on decreasing of the influence of noxious agent on the human organism, improvement of working conditions of air specialists, decreasing of the value of psychoemotional stress and other factors. An important factor during the conducting the first and the second prophylaxis is an early detection of changes in health by the air staff and technical-engineer staff, diagnostics of diseases on early stages, when they conduct without any symptoms, forehanded rehabilitation and treatment.

  6. Laser surface texturing of 316L stainless steel in air and water: A method for increasing hydrophilicity via direct creation of microstructures

    NASA Astrophysics Data System (ADS)

    Razi, Sepehr; Madanipour, Khosro; Mollabashi, Mahmoud

    2016-06-01

    Laser processing of materials in water contact is sometimes employed for improving the machining, cutting or welding quality. Here, we demonstrate surface patterning of stainless steel grade 316L by nano-second laser processing in air and water. Suitable adjustments of laser parameters offer a variety of surface patterns on the treated targets. Furthermore alterations of different surface features such as surface chemistry and wettability are investigated in various processing circumstances. More than surface morphology, remarkable differences are observed in the surface oxygen content and wettability of the samples treated in air and water at the same laser processing conditions. Mechanisms of the changes are discussed extensively.

  7. Development of an Agricultural Fertilizer Modeling System for Bi-Directional Ammonia Fluxes in the Community Multiscale Air Quality (CMAQ) Model

    EPA Science Inventory

    Atmospheric ammonia (NH3) plays an important role in fine-mode aerosol formation. Accurate estimates of ammonia from both human and natural emissions can reduce uncertainties in air quality modeling. The majority of ammonia anthropogenic emissions come from the agricul...

  8. A double-blind crossover study comparing the safety and efficacy of three weeks of Flu/Sal 250/50 bid plus albuterol 180 ug prn q4 hours to Flu/Sal 250/50 bid plus albuterol/Ipratropium bromide 2 puffs prn q4 hours in patients with chronic obstructive pulmonary disease.

    PubMed

    Balkissoon, Ron; Make, Barry

    2008-08-01

    The Federal Drug Administration (FDA) approved the use of Fluticasone 250 microg/Salmeterol 50 microg 1 puff bid for maintenance therapy in patients with COPD associated with chronic bronchitis. Short-acting beta agonists (SABA) have been the recommended rescue medication; however, previous studies have shown that combination short-acting Albuterol (alb) /Ipratropium bromide (IB) has superior bronchodilator properties to albuterol alone in patients with COPD. The safety and efficacy of Albuterol compared to Albuterol/Ipratropium bromide as rescue medications for COPD patients on maintenance combination therapy of ICS/LABA has not been evaluated. Double-blind randomized crossover trial with COPD subjects receiving Fluticasone/ Salmeterol 500 microg/50 microg (Flu/Sal) 1 puff twice daily and 2 puffs of Albuterol Sulfate (90 microg micrograms per inhalation) or 2 puffs of Albuterol (90 microg/puff and Ipratropium Bromide 18 microg/puff. Either Albuterol Sulfate (90 micrograms/puff) or Alb (90 micrograms/puff)/IB used prn for 3 weeks before crossing over to the other rescue formulation. This is a non-inferiority study where safety and efficacy outcomes were serially assessed, including adverse events, Baseline (BDI)/Transition Dyspnea Index (TDI), St. George Respiratory Questionnaire (SGRQ), SF36, diary cards, 24-hour cardiac monitoring, potassium and glucose levels and other adverse events. Twenty subjects completed the study. The mean age was 62.5 (+/- 14.5); 12 were males. The mean baseline FEV(1) (range) was 1.12 L (0.56-1.67) or 40.6 (21-65)% predicted. There were no statistically significant differences between either rescue inhaler formulation with regard to measures neither of lung function or dyspnea nor in terms of safety parameters of cardiac monitoring, glucose and potassium levels and other adverse events. SABA and combination SABA/Ipratropium bromide are equally safe and efficacious as rescue inhalers for patients on combination Fluticasone 500 microg

  9. Cytogenetic analysis of the 2B1-2-2B9-10 region of the X chromosome of Drosophila melanogaster. V. Changes in the pattern of polypeptide synthesis in salivary glands caused by mutations located in the 2B5 puff

    SciTech Connect

    Dubrovskii, E.B.; Zhimulev, I.F.

    1986-02-01

    The authors have investigated the role of the 2B5 puff in the synthesis of ecdysone-inducible proteins. They showed that in mutants for the overlapping complementation complex (occ) located in the 2B5 puff the synthesis of these proteins is impaired: in mutants 1t336 and 1t366 to a lesser extent and in mutant t143 to a greater extent. Similarly to the deletion of the 2B5 puff, mutation t435 completely blocks the synthesis of ecdysone-inducible proteins. An increase in the dose of the 2B5 puff leads to an increase in the level of synthesis of two ecdysone-inducible polypeptides, for which evidence is available that they are encoded in the region of another ecdysone puff. The results obtained, together with the findings that the tissues of larvae mutant for the occ locus are not sensitive to the action of 20-hydroxy ecdysone and that the normal course of development of ecdysone-dependent puffing is impaired in the chromosomes of salivary glands of these mutants, suggest the presence of a key regulatory role of the 2B5 puff in metamorphosis.

  10. Assessment of SRS ambient air monitoring network

    SciTech Connect

    Abbott, K.; Jannik, T.

    2016-08-03

    Three methodologies have been used to assess the effectiveness of the existing ambient air monitoring system in place at the Savannah River Site in Aiken, SC. Effectiveness was measured using two metrics that have been utilized in previous quantification of air-monitoring network performance; frequency of detection (a measurement of how frequently a minimum number of samplers within the network detect an event), and network intensity (a measurement of how consistent each sampler within the network is at detecting events). In addition to determining the effectiveness of the current system, the objective of performing this assessment was to determine what, if any, changes could make the system more effective. Methodologies included 1) the Waite method of determining sampler distribution, 2) the CAP88- PC annual dose model, and 3) a puff/plume transport model used to predict air concentrations at sampler locations. Data collected from air samplers at SRS in 2015 compared with predicted data resulting from the methodologies determined that the frequency of detection for the current system is 79.2% with sampler efficiencies ranging from 5% to 45%, and a mean network intensity of 21.5%. One of the air monitoring stations had an efficiency of less than 10%, and detected releases during just one sampling period of the entire year, adding little to the overall network intensity. By moving or removing this sampler, the mean network intensity increased to about 23%. Further work in increasing the network intensity and simulating accident scenarios to further test the ambient air system at SRS is planned

  11. Air Pollution

    MedlinePlus

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  12. Bibliography of the Radio Frequency Radiation Branch, Directed Energy Bioeffects Division, Human Effectiveness Directorate, Air Force Research Laboratory: 1997-2003

    DTIC Science & Technology

    2004-02-01

    frequency electromagnetic fields: Cancer, mutagenesis, and genotoxicity . Bioelectromagnetics Suppl. 6, S74-S100, 2003. D’Andrea, J. A., Chou, C. K...1997-2003. Air Force Research Laboratory, abstracts, bibliography, electromagnetic fields, electromagnetics , microwaves, non-ionizing radiation...J. M. Ziriax, L. R. Johnson, and P. A. Mason. Inter-species extrapolation of skin heating resulting from millimeter wave irradiation: Modeling and

  13. Draft air deflecting device

    SciTech Connect

    Riley, J.E.

    1982-05-18

    A draft air deflecting device is mountable proximate to a window contained in a firebox and serves as a conduit which directs draft air across the inner surface of the window prior to its supporting combustion of the fuel in the firebox. In this respect , the draft air deflecting device is formed as a box which communicates with draft air holes located in the firebox and which includes a forwardly extending lip serving to define a nozzle for both increasing the velocity and directing the incoming draft air across the firebox window. The incoming draft air is thus utilized to cool and to prevent soot, creosote and other particulates from accumulating on the window.

  14. AIR RADIOACTIVITY MONITOR

    DOEpatents

    Bradshaw, R.L.; Thomas, J.W.

    1961-04-11

    The monitor is designed to minimize undesirable background buildup. It consists of an elongated column containing peripheral electrodes in a central portion of the column, and conduits directing an axial flow of radioactively contaminated air through the center of the column and pure air through the annular portion of the column about the electrodes. (AEC)

  15. Development and performance assessment of a luminex xMAP® direct hybridization assay for the detection and identification of indoor air fungal contamination

    PubMed Central

    Libert, Xavier; Packeu, Ann; Bureau, Fabrice; Roosens, Nancy H.

    2017-01-01

    Considered as a public health problem, indoor fungal contamination is generally monitored using classical protocols based on culturing. However, this culture dependency could influence the representativeness of the fungal population detected in an analyzed sample as this includes the dead and uncultivable fraction. Moreover, culture-based protocols are often time-consuming. In this context, molecular tools are a powerful alternative, especially those allowing multiplexing. In this study a Luminex xMAP® assay was developed for the simultaneous detection of 10 fungal species which are most frequently in indoor air and that may cause health problems. This xMAP® assay was found to be sensitive, i.e. its limit of detection is ranging between 0.05 and 0.01 ng of gDNA. The assay was subsequently tested with environmental air samples which were also analyzed with a classical protocol. All the species identified with the classical method were also detected with the xMAP® assay, however in a shorter time frame. These results demonstrate that the Luminex xMAP® fungal assay developed in this study could contribute to the improvement of public health and specifically to the indoor fungal contamination treatment. PMID:28278219

  16. Simple and direct method for detecting phosphorus in air at normal pressure and temperature using a combination of LIBS and LIFS techniques

    NASA Astrophysics Data System (ADS)

    Al-Jeffery, Mohammad O.; Kondou, H.; Belenkevitch, Alexander; Azzeer, Abdallah M.

    2002-05-01

    The Environmental Protection Agency (EAP) designated phosphorus as hazardous material; it is flammable and poisonous. Phosphorus attacks the respiratory system, liver, kidneys, jaw, teeth, blood, eyes, and skin. Phosphorus is an element that has a high detection limit when using laser-induced breakdown spectroscopy (LIBS) techniques. In order to improve on detection limits, laser-induced fluorescence spectroscopy (LIFS) has been proposed, as an extension to LIBS. The ultimate goal of this work is to use the combined LIBS & LIFS techniques to detect the presence of phosphorus in air and to measure its level. In order to provide 'proof-of-concept' results, the sample used for our experiment was prepared using the 'igniting' strip of a safety match box. The spectrally and temporally resolved detection of the specific atomic emission revealed analytical information about the elemental composition of the sample. A tunable Ti: sapphire laser, at the resonance wavelength of 253.4 nm, was then used to probe the plume by exciting the phosphorus element and we measured the fluorescence from the atoms at 213.62 nm and 214.91 nm. The whole experiment was carried out in a few minutes. We have thus demonstrated for the first time, to our knowledge, the use of LIBS and LIFS in air quality monitoring and in particular for phosphorus detection.

  17. Direct correlation and strong reduction of native point defects and microwave dielectric loss in air-annealed (Ba,Sr)TiO{sub 3}

    SciTech Connect

    Zeng, Z. Q.; Podpirka, A.; Kirchoefer, S. W.; Asel, T. J.; Brillson, L. J.

    2015-05-04

    We report on the native defect and microwave properties of 1 μm thick Ba{sub 0.50}Sr{sub 0.50}TiO{sub 3} (BST) films grown on MgO (100) substrates by molecular beam epitaxy (MBE). Depth-resolved cathodoluminescence spectroscopy (DRCLS) showed high densities of native point defects in as-deposited BST films, causing strong subgap emission between 2.0 eV and 3.0 eV due to mixed cation V{sub C} and oxygen Vo vacancies. Post growth air anneals reduce these defects with 2.2, 2.65, and 3.0 eV V{sub O} and 2.4 eV V{sub C} intensities decreasing with increasing anneal temperature and by nearly two orders of magnitude after 950 °C annealing. These low-defect annealed BST films exhibited high quality microwave properties, including room temperature interdigitated capacitor tunability of 13% under an electric bias of 40 V and tan δ of 0.002 at 10 GHz and 40 V bias. The results provide a feasible route to grow high quality BST films by MBE through post-air annealing guided by DRCLS.

  18. A compact "water-window" microscope with 60-nm spatial resolution based on a double stream gas-puff target and Fresnel zone plate optics

    NASA Astrophysics Data System (ADS)

    Wachulak, Przemyslaw; Torrisi, Alfio; Nawaz, Muhammad F.; Adjei, Daniel; Bartnik, Andrzej; Kostecki, Jerzy; Wegrzynski, Łukasz; Vondrová, Šárka; Turňová, Jana; Fok, Tomasz; Jančarek, Alexandr; Fiedorowicz, Henryk

    2015-05-01

    Radiation with shorter illumination wavelength allows for extension of the diffraction limit towards nanometer scale, which is a straightforward way to significantly improve a spatial resolution in photon based microscopes. Soft X-ray (SXR) radiation, from the so called "water window" spectral range, λ=2.3-4.4 nm, which is particularly suitable for biological imaging due to natural optical contrast, providing much better spatial resolution than one obtained with visible light microscopes. The high contrast is obtained because of selective absorption of radiation by carbon and water, being constituents of the biological samples. We present a desk-top system, capable of resolving 60 nm features in few seconds exposure time. We exploit the advantages of a compact, laser-plasma SXR source, based on a double stream nitrogen gas puff target, developed at the Institute of Optoelectronics, Military University of Technology. The source, emitting quasi-monochromatic, incoherent radiation, in the "water widow" spectral range at λ = 2.88 nm, is coupled with ellipsoidal, grazing incidence condenser and Fresnel zone plate objective. The construction of the microscope with some recent images of test and real samples will be presented and discussed.

  19. Diagnosis of high-intensity pulsed heavy ion beam generated by a novel magnetically insulated diode with gas puff plasma gun.

    PubMed

    Ito, H; Miyake, H; Masugata, K

    2008-10-01

    Intense pulsed heavy ion beam is expected to be applied to materials processing including surface modification and ion implantation. For those applications, it is very important to generate high-purity ion beams with various ion species. For this purpose, we have developed a new type of a magnetically insulated ion diode with an active ion source of a gas puff plasma gun. When the ion diode was operated at a diode voltage of about 190 kV, a diode current of about 15 kA, and a pulse duration of about 100 ns, the ion beam with an ion current density of 54 A/cm(2) was obtained at 50 mm downstream from the anode. By evaluating the ion species and the energy spectrum of the ion beam via a Thomson parabola spectrometer, it was confirmed that the ion beam consists of nitrogen ions (N(+) and N(2+)) of energy of 100-400 keV and the proton impurities of energy of 90-200 keV. The purity of the beam was evaluated to be 94%. The high-purity pulsed nitrogen ion beam was successfully obtained by the developed ion diode system.

  20. High energy axial ion beam generated by deuterium gas-puff Z-pinch at the current level of 3 MA

    NASA Astrophysics Data System (ADS)

    Rezac, K.; Klir, D.; Kubes, P.; Cikhardt, J.; Batobolotova, B.; Kravarik, J.; Orcikova, H.; Turek, K.; Shishlov, A.; Labetsky, A.; Kokshenev, V.; Ratakhin, N.; GIT-12 Team

    2014-10-01

    The contribution presents results from Z-pinch experiments with a plasma shell on deuterium gas-puff (with deuterium linear mass of about 100 μg/cm) carried out on the GIT-12 generator at IHCE in Tomsk at the current level slightly below 3 MA. The first purpose of experiments was to study the influence of different parameters on the production of neutrons. Neutron yield up to 5 ×1012 neutrons/shot was measured in the shot with LiF catcher. The second purpose was the examination of high-energy ions generated on the Z-pinch axis using RCF and CR-39. Very interesting results were provided by ion pinhole camera, where the influence of magnetic field on the ion beam could be studied. One of the conclusions is that the ions with energy below 10 MeV were significantly deflected by magnetic field. Work supported by MEYS CR research Programs No. ME090871, No. LG13029, by GACR Grant No. P205/12/0454, Grant CRA IAEA No. 17088 and RFBR Grant No. 13-08-00479-a.

  1. CO{sub 2} Huff-n-Puff process in a light oil shallow shelf carbonate reservoir. Quarterly technical progress report, 3rd quarter, 1994

    SciTech Connect

    Wehner, S.; Smith, V.; Cole, R.; Brugman, B.; Vogt, J.

    1994-10-18

    The principal objective of the Central Vacuum Unit (CVU) CO{sub 2} Huff-n-Puff (H-n-P) project is to determine the feasibility and practicality of the technology in a waterflooded shallow shelf carbonate environment. The results of parametric simulation of the CO{sub 2} H-n-P process, coupled with the CVU reservoir characterization components will determine if this process is technically and economically feasible for field implementation. The technology transfer objective of the project is to disseminate the knowledge gained through an innovative plan in support of the Department of Energy`s (DOE) objective of increasing domestic oil production and deferring the abandonment of shallow shelf carbonate (SSC) reservoirs. Texaco Exploration and Production Inc`s. (TEPI) long-term plans are to implement a full-scale miscible CO{sub 2} project in the CVU. However, the current market precludes acceleration of such a capital intensive project. The DOE partnership provides some relief to the associated R and D risks, allowing TEPI to evaluate a proven Gulf-coast sandstone technology in a waterflooded carbonate environment. Technical progress is described on the following studies: Porosity and permeability relationships; Initial water saturation and oil-water contact; Geostatistical realization; and Parametric simulation.

  2. CO{sub 2} Huff-n-Puff process in a light oil shallow shelf carbonate reservoir. Quarterly technical progress report, Fourth quarter 1995

    SciTech Connect

    Wehner, S.; Prieditis, J.

    1996-02-05

    The principle objective of the Central Vacuum Unit (CVU) CO{sub 2} Huff-n-Puff (H-n-P) project is to determine the feasibility and practicality of the technology in a waterflooded shallow shelf carbonate environment. The results of parametric simulation of the CO{sub 2} H-n-P process, coupled with the CVU reservoir characterization components will determine if this process is technically and economically feasible for field implementation. The technology transfer objective of the project is to disseminate the knowledge gained through an innovative plan in support of the Department of Energy`s objective of increasing domestic oil production and deferring the abandonment of shallow shelf carbonate (SSC) reservoirs. Texaco Exploration and Production Inc`s. (TEPI) mid-term plans are to implement a full-scale miscible CO{sub 2} project in the CVU. TEPI has concluded all of the Tasks associated with the First Budget Period. The DOE approved the TEPI continuation application. Budget Period No. 2 is now in progress. Initial injection of CO{sub 2} began in November, and after a short shut-in period for the soak, the well was returned to production in late December, 1995.

  3. Manufacturing Technology Support (MATES). Task Order 0021: Air Force Technology and Industrial Base Research and Analysis, Subtask Order 06: Direct Digital Manufacturing

    DTIC Science & Technology

    2011-08-01

    inspection and scanning the part for internal defects. Through the online survey MLPC asked participants to provided feedback on the diagnostic tools...industry, which included additive, subtractive, and hybrid manufacturing. The review also included reverse engineering, part information data...most promise on direct part fabrication but also requires additional development in materials qualification, machine to machine consistency, inline

  4. Air pollution.

    PubMed

    Le, Nhu D; Sun, Li; Zidek, James V

    2010-01-01

    Toxic air pollutants are continuously released into the air supply. Various pollutants come from chemical facilities and small businesses, such as automobile service stations and dry cleaning establishments. Others, such as nitrogen oxides, carbon monoxide and other volatile organic chemicals, arise primarily from the incomplete combustion of fossil fuels (coal and petroleum) and are emitted from sources that include car exhausts, home heating and industrial power plants. Pollutants in the atmosphere also result from photochemical transformations; for example, ozone is formed when molecular oxygen or nitrogen interacts with ultraviolet radiation. An association between air pollution exposure and lung cancer has been observed in several studies. The evidence for other cancers is far less conclusive. Estimates of the population attributable risk of cancer has varied substantially over the last 40 years, reflecting the limitations of studies; these include insufficient information on confounders, difficulties in characterizing associations due to a likely lengthy latency interval, and exposure misclassification. Although earlier estimates were less than one percent, recent cohort studies that have taken into account some confounding factors, such as smoking and education amongst others, suggest that approximately 3.6% of lung cancer in the European Union could be due to air pollution exposure, particularly to sulphate and fine particulates. A separate cohort study estimated 5-7% of lung cancers in European never smokers and ex-smokers could be due to air pollution exposure. Therefore, while cigarette smoking remains the predominant risk factor, the proportion of lung cancers attributable to air pollution may be higher than previously thought. Overall, major weaknesses in all air-pollution-and-cancer studies to date have been inadequate characterization of long-term air pollution exposure and imprecise or no measurements of covariates. It has only been in the last

  5. Improved high volume air sampler

    NASA Technical Reports Server (NTRS)

    King, R. B.

    1974-01-01

    Sampler permits size separations of particles by directing sampled air through cross-sectional area sufficiently large that air velocity is reduced to point where particles or larger size will settle out. Sampler conducts air downward and through slots around periphery of unit into relatively open interior of house.

  6. Air Modeling - Observational Meteorological Data

    EPA Pesticide Factsheets

    Observed meteorological data for use in air quality modeling consist of physical parameters that are measured directly by instrumentation, and include temperature, dew point, wind direction, wind speed, cloud cover, cloud layer(s), ceiling height,

  7. Radial lean direct injection burner

    DOEpatents

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  8. High-resolution time and spatial imaging of tobacco and its pyrolysis products during a cigarette puff by microprobe sampling photoionisation mass spectrometry.

    PubMed

    Hertz-Schünemann, R; Ehlert, S; Streibel, T; Liu, C; McAdam, K; Baker, R R; Zimmermann, R

    2015-03-01

    The time- and space-resolved chemical signatures of gases and vapours formed in solid-state combustion processes are difficult to examine using recent analytical techniques. A machine-smoked cigarette represents a very reproducible model system for dynamic solid-state combustion. By using a special sampling system (microprobe unit) that extracts the formed gases from inside of the burning cigarette, which is coupled to a photoionisation mass spectrometer, it was possible to study the evolution of organic gases during a 2-s cigarette puff. The concentrations of various pyrolysis and combustion products such as 1,3-butadiene, toluene, acetaldehyde and phenol were monitored on-line at different sampling points within cigarettes. A near-microscopic-scale spatial resolution and a 200-ms time resolution were achieved. Finally, the recorded information was combined to generate time-resolved concentration maps, showing the formation and destruction zones of the investigated compounds in the burning cigarette. The combustion zone at the tip of cigarette, where e.g. 1,3-butadiene is predominately formed, was clearly separable from the pyrolysis zones. Depending on the stability of the precursor (e.g. lignin or cellulose), the position of pyrolytic formation varies. In conclusion, it was demonstrated that soft photoionisation mass spectrometry in conjunction with a microprobe sampling device can be used for time- and space-resolved analysis of combustion and pyrolysis reactions. In addition to studies on the model cigarette, further model systems may be studied with this approach. This may include further studies on the combustion of biomass or coal chunks, on heterogeneously catalysed reactions or on spray, dust and gas combustion processes.

  9. CO{sub 2} Huff-n-Puff process in a light oil shallow shelf carbonate reservoir. Quarterly technical progress report, October--December 1996

    SciTech Connect

    Wehner, S.; Prieditis, J.

    1996-12-31

    The principal objective of the Central Vacuum Unit (CVU) CO{sub 2} Huff-n-Puff (H-n-P) project is to determine the feasibility and practicality of the technology in a waterflooded shallow shelf carbonate environment. The results of parametric simulation of the CO{sub 2} H-n-P process, coupled with the CVU reservoir characterization components will be used to determine if this process is technically and economically feasible for field implementation. The technology transfer objective of the project is to disseminate the knowledge gained through an innovative plan in support of the Department of energy`s (DOE) objective of increasing domestic oil production and deferring the abandonment of shallow shelf carbonate reservoirs. Texaco Exploration and Production Inc`s. (TEPI) mid-term plans are to implement a full-scale miscible CO{sub 2} project in the CVU. TEPI concluded all of the tasks associated with the First Budget Period by October, 1995. The DOE approved the TEPI continuation application. Budget Period No. 2 is in progress. Initial injection of CO{sub 2} began in November, and after a short shut-in period for the soak, the well was returned to production in late December, 1995. This report, covers TEPI`s efforts at history matching the results of the field demonstration. Costs and economics of the work are presented. The majority of effort during the fourth quarter has revolved around the selection of a new project site and refinement of the demonstration design and well selection.

  10. Mapping air quality zones for coastal urban centers.

    PubMed

    Freeman, Brian; Gharabaghi, Bahram; Thé, Jesse; Munshed, Mohammad; Faisal, Shah; Abdullah, Meshal; Al Aseed, Athari

    2017-05-01

    This study presents a new method that incorporates modern air dispersion models allowing local terrain and land-sea breeze effects to be considered along with political and natural boundaries for more accurate mapping of air quality zones (AQZs) for coastal urban centers. This method uses local coastal wind patterns and key urban air pollution sources in each zone to more accurately calculate air pollutant concentration statistics. The new approach distributes virtual air pollution sources within each small grid cell of an area of interest and analyzes a puff dispersion model for a full year's worth of 1-hr prognostic weather data. The difference of wind patterns in coastal and inland areas creates significantly different skewness (S) and kurtosis (K) statistics for the annually averaged pollutant concentrations at ground level receptor points for each grid cell. Plotting the S-K data highlights grouping of sources predominantly impacted by coastal winds versus inland winds. The application of the new method is demonstrated through a case study for the nation of Kuwait by developing new AQZs to support local air management programs. The zone boundaries established by the S-K method were validated by comparing MM5 and WRF prognostic meteorological weather data used in the air dispersion modeling, a support vector machine classifier was trained to compare results with the graphical classification method, and final zones were compared with data collected from Earth observation satellites to confirm locations of high-exposure-risk areas. The resulting AQZs are more accurate and support efficient management strategies for air quality compliance targets effected by local coastal microclimates.

  11. Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 1, Methodology

    SciTech Connect

    Not Available

    1993-11-01

    The Energy Policy and Conservation Act (P.L. 94-163), as amended, establishes energy conservation standards for 12 of the 13 types of consumer products specifically covered by the Act. The legislation requires the Department of Energy (DOE) to consider new or amended standards for these and other types of products at specified times. DOE is currently considering amending standards for seven types of products: water heaters, direct heating equipment, mobile home furnaces, pool heaters, room air conditioners, kitchen ranges and ovens (including microwave ovens), and fluorescent light ballasts and is considering establishing standards for television sets. This Technical Support Document presents the methodology, data, and results from the analysis of the energy and economic impacts of the proposed standards. This volume presents a general description of the analytic approach, including the structure of the major models.

  12. Module bay with directed flow

    DOEpatents

    Torczynski, John R.

    2001-02-27

    A module bay requires less cleanroom airflow. A shaped gas inlet passage can allow cleanroom air into the module bay with flow velocity preferentially directed toward contaminant rich portions of a processing module in the module bay. Preferential gas flow direction can more efficiently purge contaminants from appropriate portions of the module bay, allowing a reduced cleanroom air flow rate for contaminant removal. A shelf extending from an air inlet slit in one wall of a module bay can direct air flowing therethrough toward contaminant-rich portions of the module bay, such as a junction between a lid and base of a processing module.

  13. Use of radiation sources with mercury isotopes for real-time highly sensitive and selective benzene determination in air and natural gas by differential absorption spectrometry with the direct Zeeman effect.

    PubMed

    Revalde, Gita; Sholupov, Sergey; Ganeev, Alexander; Pogarev, Sergey; Ryzhov, Vladimir; Skudra, Atis

    2015-08-05

    A new analytical portable system is proposed for the direct determination of benzene vapor in the ambient air and natural gas, using differential absorption spectrometry with the direct Zeeman effect and innovative radiation sources: capillary mercury lamps with different isotopic compositions ((196)Hg, (198)Hg, (202)Hg, (204)Hg, and natural isotopic mixture). Resonance emission of mercury at a wavelength of 254 nm is used as probing radiation. The differential cross section of benzene absorption in dependence on wavelength is determined by scanning of magnetic field. It is found that the sensitivity of benzene detection is enhanced three times using lamp with the mercury isotope (204)Hg in comparison with lamp, filled with the natural isotopic mixture. It is experimentally demonstrated that, when benzene content is measured at the Occupational Exposure Limit (3.2 mg/m(3) for benzene) level, the interference from SO2, NO2, O3, H2S and toluene can be neglected if concentration of these gases does not exceed corresponding Occupational Exposure Limits. To exclude the mercury effect, filters that absorb mercury and let benzene pass in the gas duct are proposed. Basing on the results of our study, a portable spectrometer is designed with a multipath cell of 960 cm total path length and detection limit 0.5 mg/m(3) at 1 s averaging and 0.1 mg/m(3) at 30 s averaging. The applications of the designed spectrometer to measuring the benzene concentration in the atmospheric air from a moving vehicle and in natural gas are exemplified.

  14. Olefin metathesis in air

    PubMed Central

    Piola, Lorenzo; Nahra, Fady

    2015-01-01

    Summary Since the discovery and now widespread use of olefin metathesis, the evolution of metathesis catalysts towards air stability has become an area of significant interest. In this fascinating area of study, beginning with early systems making use of high oxidation state early transition metal centers that required strict exclusion of water and air, advances have been made to render catalysts more stable and yet more functional group tolerant. This review summarizes the major developments concerning catalytic systems directed towards water and air tolerance. PMID:26664625

  15. Do Advance Directives Direct?

    PubMed

    Shapiro, Susan P

    2015-06-01

    Resolution of long-standing debates about the role and impact of advance directives - living wills and powers of attorney for health care - has been hampered by a dearth of appropriate data, in particular data that compare the process and outcomes of end-of-life decision making on behalf of patients with and without advance directives. Drawing on a large ethnographic study of patients in two intensive care units in a large urban teaching hospital, this article compares aspects of the medical decision-making process and outcomes by advance-directive status. Controlling for demographic characteristics and severity of illness, the study finds few significant differences between patients without advance directives and those who claim to have them. Surprisingly, these few differences hold only for those whose directives are in their hospital chart. There are no significant differences between those with no directive and those claiming to have a copy at home or elsewhere. The article considers the implications if directives seemingly must be in hand to show even modest effects. Do advance directives direct? The intensive care unit data provide far more support for the growing body of literature that casts doubt on their impact than studies that promote the use of them.

  16. Air Pollution.

    ERIC Educational Resources Information Center

    Gilpin, Alan

    A summary of one of our most pressing environmental problems, air pollution, is offered in this book by the Director of Air Pollution Control for the Queensland (Australia) State Government. Discussion of the subject is not restricted to Queensland or Australian problems and policies, however, but includes analysis of air pollution the world over.…

  17. Air Pollution

    MedlinePlus

    ... of Climate Change on Children's Health: Session Two: Air Quality Impacts MODERATOR: Susan Anenberg, EPA Meredith McCormack, Johns ... University • Effects of Climate Change on Children’s Health: Air Quality Impacts Frederica Perera, Columbia University • Air quality Impacts ...

  18. High-Compression-Ratio; Atkinson-Cycle Engine Using Low-Pressure Direct Injection and Pneumatic-Electronic Valve Actuation Enabled by Ionization Current and Foward-Backward Mass Air Flow Sensor Feedback

    SciTech Connect

    Harold Schock; Farhad Jaberi; Ahmed Naguib; Guoming Zhu; David Hung

    2007-12-31

    This report describes the work completed over a two and one half year effort sponsored by the US Department of Energy. The goal was to demonstrate the technology needed to produce a highly efficient engine enabled by several technologies which were to be developed in the course of the work. The technologies included: (1) A low-pressure direct injection system; (2) A mass air flow sensor which would measure the net airflow into the engine on a per cycle basis; (3) A feedback control system enabled by measuring ionization current signals from the spark plug gap; and (4) An infinitely variable cam actuation system based on a pneumatic-hydraulic valve actuation These developments were supplemented by the use of advanced large eddy simulations as well as evaluations of fuel air mixing using the KIVA and WAVE models. The simulations were accompanied by experimental verification when possible. In this effort a solid base has been established for continued development of the advanced engine concepts originally proposed. Due to problems with the valve actuation system a complete demonstration of the engine concept originally proposed was not possible. Some of the highlights that were accomplished during this effort are: (1) A forward-backward mass air flow sensor has been developed and a patent application for the device has been submitted. We are optimistic that this technology will have a particular application in variable valve timing direct injection systems for IC engines. (2) The biggest effort on this project has involved the development of the pneumatic-hydraulic valve actuation system. This system was originally purchased from Cargine, a Swedish supplier and is in the development stage. To date we have not been able to use the actuators to control the exhaust valves, although the actuators have been successfully employed to control the intake valves. The reason for this is the additional complication associated with variable back pressure on the exhaust valves when

  19. Quantitative planar laser-induced fluorescence imaging of multi-component fuel/air mixing in a firing gasoline-direct-injection engine: Effects of residual exhaust gas on quantitative PLIF

    SciTech Connect

    Williams, Ben; Ewart, Paul; Wang, Xiaowei; Stone, Richard; Ma, Hongrui; Walmsley, Harold; Cracknell, Roger; Stevens, Robert; Richardson, David; Fu, Huiyu; Wallace, Stan

    2010-10-15

    A study of in-cylinder fuel-air mixing distributions in a firing gasoline-direct-injection engine is reported using planar laser-induced fluorescence (PLIF) imaging. A multi-component fuel synthesised from three pairs of components chosen to simulate light, medium and heavy fractions was seeded with one of three tracers, each chosen to co-evaporate with and thus follow one of the fractions, in order to account for differential volatility of such components in typical gasoline fuels. In order to make quantitative measurements of fuel-air ratio from PLIF images, initial calibration was by recording PLIF images of homogeneous fuel-air mixtures under similar conditions of in-cylinder temperature and pressure using a re-circulation loop and a motored engine. This calibration method was found to be affected by two significant factors. Firstly, calibration was affected by variation of signal collection efficiency arising from build-up of absorbing deposits on the windows during firing cycles, which are not present under motored conditions. Secondly, the effects of residual exhaust gas present in the firing engine were not accounted for using a calibration loop with a motored engine. In order to account for these factors a novel method of PLIF calibration is presented whereby 'bookend' calibration measurements for each tracer separately are performed under firing conditions, utilising injection into a large upstream heated plenum to promote the formation of homogeneous in-cylinder mixtures. These calibration datasets contain sufficient information to not only characterise the quantum efficiency of each tracer during a typical engine cycle, but also monitor imaging efficiency, and, importantly, account for the impact of exhaust gas residuals (EGR). By use of this method EGR is identified as a significant factor in quantitative PLIF for fuel mixing diagnostics in firing engines. The effects of cyclic variation in fuel concentration on burn rate are analysed for different

  20. 14 CFR 25.1091 - Air induction.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... operating surfaces from being directed into the engine or auxiliary power unit air inlet ducts in hazardous quantities, and the air inlet ducts must be located or protected so as to minimize the ingestion of...

  1. Variation of polycyclic aromatic hydrocarbons in atmospheric PM2.5 during winter haze period around 2014 Chinese Spring Festival at Nanjing: Insights of source changes, air mass direction and firework particle injection.

    PubMed

    Kong, Shaofei; Li, Xuxu; Li, Li; Yin, Yan; Chen, Kui; Yuan, Liang; Zhang, Yingjie; Shan, Yunpeng; Ji, Yaqin

    2015-07-01

    Daily PM2.5 samples were collected at a suburban site of Nanjing around 2014 Chinese Spring Festival (SF) and analyzed for 18 kinds of polycyclic aromatic hydrocarbons (PAHs) by GC-MS. Comparison of PAH concentrations during different periods, with different air mass origins and under different pollution situations was done. Sources were analyzed by diagnostics ratios and principal component analysis (PCA). The threat of PAHs was assessed by BaP equivalent concentrations (BaPeq) and incremental lifetime cancer risk (ILCR). The averaged PAHs for pre-SF, SF and after SF periods were 50.6, 17.2 and 29 ng m(-3), indicating the variations of PAH sources, with reduced traffic, industrial and construction activities during SF and gradually re-starting of them after-SF. According to PAH mass concentrations, their relative abundance to particles, ratio of PAHs (3-ring+4-ring)/PAHs(5-ring+6-ring), mass concentrations of combustion-derived and carcinogenic PAHs, fireworks burning is an important source for PAHs during SF. The ILCR values for Chinese New Year day were 0.68 and 3.3 per 100,000 exposed children and adults. It suggested the necessity of controlling fireworks burning during Chinese SF period which was always companied with serious regional haze pollution. PAH concentrations exhibited decreasing trend when air masses coming from the following directions as North China Plain (63.9 ng m(-3))>Central China (53.0 ng m(-3))>Shandong Peninsula (46.6 ng m(-3))>Northwest China (18.8 ng m(-3))>Sea (15.8 ng m(-3)). For different pollution situations, they decreased as haze (44.5 ng m(-3))>fog-haze (28.4 ng m(-3))>clear (12.2 ng m(-3))>fog day (9.2 ng m(-3)). Coal combustion, traffic emission, industrial processes and petroleum (only for non-SF holiday periodss) were the main sources of PM2.5 associated PAHs. Fireworks burning contributed 14.0% of PAHs during SF period. Directly measurement of PAHs from fireworks burning is urgently needed for source apportionment studies in

  2. Impact assessment of PM10 cement plants emissions on urban air quality using the SCIPUFF dispersion model.

    PubMed

    Leone, Vincenzo; Cervone, Guido; Iovino, Pasquale

    2016-09-01

    The Second-order Closure Integrated Puff (SCIPUFF) model was used to study the impact on urban air quality caused by two cement plants emissions located near the city of Caserta, Italy, during the entire year of 2015. The simulated and observed PM10 concentrations were compared using three monitoring stations located in urban and sub-urban area of Caserta city. Both simulated and observed concentrations are shown to be highest in winter, lower in autumn and spring and lowest in summer. Model results generally follow the pattern of the observed concentrations but have a systematic under-prediction of the concentration values. Measures of the bias, NMSE and RMSE indicate a good correlation between observed and estimated values. The SCIPUFF model data analysis suggest that the cement plants are major sources for the measured PM10 values and are responsible for the deterioration of the urban air quality in the city of Caserta.

  3. DIRECT AMMONIA-AIR FUEL CELL.

    DTIC Science & Technology

    fuel cell was investigated. This cell is based on the use of a non-aqueous fused hydroxide electrolyte matrix, and operates in the intermediate temperature range of 180-300 C. Studies have been carried out to determine the nature of the ratecontrolling step in the kinetics of the anodic oxidation of ammonia. A new type of Ni/NiOOH reference electrode was developed for the measurement of single electrode potentials in experimental galvanic fuel cells employing this type of matrix electrolyte. In addition to various exploratory studies, two statistical analysis

  4. A Concept for Directing Combat Air Operations

    DTIC Science & Technology

    2014-08-01

    within its inventory to meet this new requirement. However, by borrowing from the U.S. Army, a force of O-1 aircraft was assembled at Bien Hoa in July...1967, when an off-the-shelf commercial aircraft, the O-2, began service. Five years after the activation of the Bien Hoa O-1 squadron, and roughly a

  5. A plume-in-grid approach to characterize air quality impacts of aircraft emissions at the Hartsfield-Jackson Atlanta International Airport

    NASA Astrophysics Data System (ADS)

    Rissman, J.; Arunachalam, S.; Woody, M.; West, J. J.; BenDor, T.; Binkowski, F. S.

    2013-01-01

    This study examined the impacts of aircraft emissions during the landing and takeoff cycle on PM2.5 concentrations during the months of June 2002 and July 2002 at the Hartsfield-Jackson Atlanta International Airport. Primary and secondary pollutants were modeled using the Advanced Modeling System for Transport, Emissions, Reactions, and Deposition of Atmospheric Matter (AMSTERDAM). AMSTERDAM is a modified version of the Community Multiscale Air Quality (CMAQ) model that incorporates a plume-in-grid process to simulate emissions sources of interest at a finer scale than can be achieved using CMAQ's model grid. Three fundamental issues were investigated: the effects of aircraft on PM2.5 concentrations throughout northern Georgia, the differences resulting from use of AMSTERDAM's plume-in-grid process rather than a traditional CMAQ simulation, and the concentrations observed in aircraft plumes at sub-grid scales. Comparison of model results with an air quality monitor located in the vicinity of the airport found that normalized mean bias ranges from -77.5% to 6.2% and normalized mean error ranges from 40.4% to 77.5%, varying by species. Aircraft influence average PM2.5 concentrations by up to 0.232 μg m-3 near the airport and by 0.001-0.007 μg m-3 throughout the Atlanta metro area. The plume-in-grid process increases concentrations of secondary PM pollutants by 0.005-0.020 μg m-3 (compared to the traditional grid-based treatment) but reduces the concentration of non-reactive primary PM pollutants by up to 0.010 μg m-3, with changes concentrated near the airport. Examination of sub-grid scale results indicates that puffs within 20 km of the airport often have average PM2.5 concentrations one order of magnitude higher than aircraft contribution to the grid cells containing those puffs, and within 1-4 km of emitters, puffs may have PM2.5 concentrations 3 orders of magnitude greater than the aircraft contribution to their grid cells. 21% of all aircraft-related puffs

  6. A plume-in-grid approach to characterize air quality impacts of aircraft emissions at the Hartsfield-Jackson Atlanta International Airport

    NASA Astrophysics Data System (ADS)

    Rissman, J.; Arunachalam, S.; Woody, M.; West, J. J.; BenDor, T.; Binkowski, F. S.

    2013-09-01

    This study examined the impacts of aircraft emissions during the landing and takeoff cycle on PM2.5 concentrations during the months of June and July 2002 at the Hartsfield-Jackson Atlanta International Airport. Primary and secondary pollutants were modeled using the Advanced Modeling System for Transport, Emissions, Reactions, and Deposition of Atmospheric Matter (AMSTERDAM). AMSTERDAM is a modified version of the Community Multiscale Air Quality (CMAQ) model that incorporates a plume-in-grid process to simulate emissions sources of interest at a finer scale than can be achieved using CMAQ's model grid. Three fundamental issues were investigated: the effects of aircraft on PM2.5 concentrations throughout northern Georgia, the differences resulting from use of AMSTERDAM's plume-in-grid process rather than a traditional CMAQ simulation, and the concentrations observed in aircraft plumes at subgrid scales. Comparison of model results with an air quality monitor located in the vicinity of the airport found that normalized mean bias ranges from -77.5% to 6.2% and normalized mean error ranges from 40.4% to 77.5%, varying by species. Aircraft influence average PM2.5 concentrations by up to 0.232 μg m-3 near the airport and by 0.001-0.007 μg m-3 throughout the Atlanta metro area. The plume-in-grid process increases concentrations of secondary PM pollutants by 0.005-0.020 μg m-3 (compared to the traditional grid-based treatment) but reduces the concentration of non-reactive primary PM pollutants by up to 0.010 μg m-3, with changes concentrated near the airport. Examination of subgrid-scale results indicates that median aircraft contribution to grid cells is higher than median puff concentration in the airport's grid cell and outside of a 20 km × 20 km square area centered on the airport, while in a 12 km × 12 km square ring centered on the airport, puffs have median concentrations over an order of magnitude higher than aircraft contribution to the grid cells. Maximum

  7. 77 FR 12482 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Lead Ambient Air Quality...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-01

    ... AGENCY 40 CFR Part 52 Approval and Promulgation of Air Quality Implementation Plans; Indiana; Lead Ambient Air Quality Standards AGENCY: Environmental Protection Agency (EPA). ACTION: Direct final rule... Clean Air Act (CAA). This submittal incorporates the National Ambient Air Quality Standards (NAAQS)...

  8. 75 FR 18061 - Approval and Promulgation of Air Quality Implementation Plans; Texas; Control of Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-09

    ... Air Pollution From Motor Vehicles AGENCY: Environmental Protection Agency (EPA). ACTION: Direct final... amend 30 TAC Chapter 114, Control of Air Pollution from Motor Vehicles. These revisions consist of the... to develop air pollution regulations and control strategies to ensure that air quality meets...

  9. Air Policing

    DTIC Science & Technology

    2009-05-01

    Iraq. To provide a background for understanding why Britain commenced the policy of air policing, this paper begins with a review of contemporary...7 Omissi, Air Power, XV. 8 policing actions or the pushing home of advantages gained by the air.” Within the context of this paper , the...control operations, and therefore within the context of this paper , the term coercive airpower refers to the threat of harming a population or the threat

  10. Understanding Our Environment: Air.

    ERIC Educational Resources Information Center

    DiSpezio, Michael

    Part of the Understanding Our Environment project that is designed to engage students in investigating specific environmental problems through concrete activities and direct experience, this unit uses the contemporary dilemma of acid rain as a vehicle for teaching weather and the characteristics of air and atmosphere. The project involves a…

  11. Fuel cell stack with passive air supply

    DOEpatents

    Ren, Xiaoming; Gottesfeld, Shimshon

    2006-01-17

    A fuel cell stack has a plurality of polymer electrolyte fuel cells (PEFCs) where each PEFC includes a rectangular membrane electrode assembly (MEA) having a fuel flow field along a first axis and an air flow field along a second axis perpendicular to the first axis, where the fuel flow field is long relative to the air flow field. A cathode air flow field in each PEFC has air flow channels for air flow parallel to the second axis and that directly open to atmospheric air for air diffusion within the channels into contact with the MEA.

  12. Incorporation of air into a snack food reduces energy intake

    PubMed Central

    Osterholt, Kathrin M.; Roe, Liane S.

    2007-01-01

    This study investigated how the air content of a familiar snack food affected energy intake and whether varying the method of serving the snack modified intake. We tested two versions of an extruded snack (cheese puffs) that were equal in energy density (5.7 kcal/g), but differed in energy per volume (less-aerated snack: 1.00 kcal/ml; more- aerated snack: 0.45 kcal/ml). In a within-subjects design, 16 women and 12 men consumed the snacks ad libitum in the laboratory during four afternoon sessions. A standard volume (1250 ml) of each snack was served once in a bowl and once in an opaque bag. Results showed that intake of the two snacks differed significantly by energy (p=0.0003) and volume (p<0.0001); subjects consumed 21% less weight and energy (70±17 kcal) of the more-aerated snack than the less-aerated snack, although they consumed a 73% greater volume of the more-aerated snack (239±24 ml). These findings suggest that subjects responded to both the weight and volume of the snack. Despite differences in intake, hunger and fullness ratings did not differ across conditions. The serving method did not significantly affect intake. Results from this study indicate that incorporating air into food provides a strategy to reduce energy intake from energy-dense snacks. PMID:17188782

  13. 14 CFR 212.7 - Direct sales.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Direct sales. 212.7 Section 212.7... REGULATIONS CHARTER RULES FOR U.S. AND FOREIGN DIRECT AIR CARRIERS § 212.7 Direct sales. (a) Certificated and foreign air carriers may sell or offer for sale, and operate, as principal, Public Charter flights...

  14. Air transport

    NASA Technical Reports Server (NTRS)

    Page, F Handley

    1924-01-01

    I purpose (sic) in this paper to deal with the development in air transport which has taken place since civil aviation between England and the Continent first started at the end of August 1919. A great deal of attention has been paid in the press to air services of the future, to the detriment of the consideration of results obtained up to the present.

  15. Air Pollution.

    ERIC Educational Resources Information Center

    Fox, Donald L.

    1989-01-01

    Materials related to air pollution are reviewed for the period January 1987, to October 1988. The topics are pollution monitoring, air pollution, and environmental chemistry. The organization consists of two major analytical divisions: (1) gaseous methods; and (2) aerosol and particulate methods. (MVL)

  16. Air Pollution.

    EPA Science Inventory

    Air quality is affected by many types of pollutants that are emitted from various sources, including stationary and mobile. These sources release both criteria and hazardous air pollutants, which cause health effects, ecological harm, and material damage. They are generally categ...

  17. Direct Multizone System.

    ERIC Educational Resources Information Center

    Lennox Industries, Inc., Marshalltown, IA.

    Describes Lennox indoor direct multizone equipment and controls. The following areas are covered--(1) unit features, (2) controls and operations, (3) approvals, (4) air patterns, (5) typical applications, (6) specifications and ratings, (7) dimensioned drawings of a typical unit, (8) mixing boxes, (9) blower data, (10) water valve selection and…

  18. Investigation, by single photon ionisation (SPI)-time-of-flight mass spectrometry (TOFMS), of the effect of different cigarette-lighting devices on the chemical composition of the first cigarette puff.

    PubMed

    Adam, Thomas; Baker, Richard R; Zimmermann, Ralf

    2007-01-01

    Soft single-photon ionisation (SPI)-time-of-flight mass spectrometry (TOFMS) has been used to investigate the effect of different cigarette-lighting devices on the chemical composition of the mainstream smoke from the first cigarette puff. Lighting devices examined were a Borgwaldt electric lighter, a propane/butane gas lighter, a match, a candle, and the burning zone of another cigarette. To eliminate the effects of the different masses of tobacco burnt by use of the different lighting methods a normalisation procedure was performed which enabled investigation of changes in the chemical patterns of the resulting smoke. When another cigarette was used as the lighting device, elevated levels of ammonia and other nitrogen-containing substances were observed. These are high in the sidestream smoke of the cigarette used for lighting and would be drawn into the mainstream smoke of the cigarette being lit. In contrast, smoke from the cigarette lit by the electric lighter contained slightly higher normalised amounts of isoprene. Lighting the cigarette by use of a candle resulted in larger amounts of substances, e.g. benzene, which most probably originated from thermal decomposition of wax. The composition of the first puff of smoke obtained by use of the three lighting methods with open flames (gas lighter, match, and candle) was usually similar whereas the composition of the smoke produced by use of the electric lighter and the cigarette as the lighter were more unique. The chemical patterns generated by the different lighting devices could, however, be separated by principal-component analyses. Two additional test series were also studied. In the first the cigarette was lit with an electric lighter, then extinguished, the ash was cut off, and the cigarette was re-lit. In the second the cigarette was heated in an oven to 80 degrees C for 5 min before being lit. These treatments did not result in changes in the chemical composition compared with cigarettes lit in the

  19. 77 FR 72432 - Application of Boutique Air, Inc. for Commuter Air Carrier Authority

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-05

    ... Department of Transportation is directing all interested persons to show cause why it should not issue an order finding Boutique Air, Inc., fit, willing, and able, and awarding it commuter air carrier...

  20. Space Derived Air Monitor

    NASA Technical Reports Server (NTRS)

    1983-01-01

    COPAMS, Commonwealth of Pennsylvania Air Monitoring System, derives from technology involved in building unmanned spacecraft. The Nimbus spacecraft carried experimental sensors to measure temperature, pressure, ozone, and water vapor, and instruments for studying solar radiation and telemetry. The process which relayed these findings to Earth formed the basis for COPAMS. The COPAMS system consists of data acquisition units which measure and record pollution level, and sense wind speed and direction, etc. The findings are relayed to a central station where the information is computerized. The system is automatic and supplemented by PAQSS, PA Air Quality Surveillance System.

  1. Chapter 22: Compressed Air Evaluation Protocol

    SciTech Connect

    Benton, N.

    2014-11-01

    Compressed-air systems are used widely throughout industry for many operations, including pneumatic tools, packaging and automation equipment, conveyors, and other industrial process operations. Compressed-air systems are defined as a group of subsystems composed of air compressors, air treatment equipment, controls, piping, pneumatic tools, pneumatically powered machinery, and process applications using compressed air. A compressed-air system has three primary functional subsystems: supply, distribution, and demand. Air compressors are the primary energy consumers in a compressed-air system and are the primary focus of this protocol. The two compressed-air energy efficiency measures specifically addressed in this protocol are: high-efficiency/variable speed drive (VSD) compressor replacing modulating compressor; compressed-air leak survey and repairs. This protocol provides direction on how to reliably verify savings from these two measures using a consistent approach for each.

  2. Air Cleaning Technologies

    PubMed Central

    2005-01-01

    , and personal protection methods. Engineering methods that are usually carried out by the building’s heating, ventilation, and air conditioning (HVAC) system function to prevent the spread of airborne infectious pathogens by diluting (dilution ventilation) and removing (exhaust ventilation) contaminated air from a room, controlling the direction of airflow and the air flow patterns in a building. However, general wear and tear over time may compromise the HVAC system’s effectiveness to maintain adequate indoor air quality. Likewise, economic issues may curtail the completion of necessary renovations to increase its effectiveness. Therefore, when exposure to airborne infectious pathogens is a risk, the use of an in-room air cleaner to reduce the concentration of airborne pathogens and prevent the spread of airborne infectious diseases has been proposed as an alternative to renovating a HVAC system. Airborne transmission is the spread of infectious pathogens over large distances through the air. Infectious pathogens, which may include fungi, bacteria, and viruses, vary in size and can be dispersed into the air in drops of moisture after coughing or sneezing. Small drops of moisture carrying infectious pathogens are called droplet nuclei. Droplet nuclei are about 1 to 5μm in diameter. This small size in part allows them to remain suspended in the air for several hours and be carried by air currents over considerable distances. Large drops of moisture carrying infectious pathogens are called droplets. Droplets being larger than droplet nuclei, travel shorter distances (about 1 metre) before rapidly falling out of the air to the ground. Because droplet nuclei remain airborne for longer periods than do droplets, they are more amenable to engineering infection control methods than are droplets. Droplet nuclei are responsible for the airborne transmission of infectious diseases such as tuberculosis, chicken pox (varicella), measles (rubeola), and dessiminated herpes

  3. Air Guide for Sheet-Metal Grinder

    NASA Technical Reports Server (NTRS)

    Heermann, T.

    1984-01-01

    Tool attachment reduces heat distortion of sheet. Air-guide attachment directs air from grinder motor to grinding wheel and metal sheet being ground. Cooling air reduces thermal distortion of workpiece due to localized frictional heating. Particularly useful when grinding sheet metal.

  4. Air Apparent.

    ERIC Educational Resources Information Center

    Harbster, David A.

    1988-01-01

    Explains the principle upon which a barometer operates. Describes how to construct two barometric devices for use in the classroom that show air's changing pressure. Cites some conditions for predicting weather. (RT)

  5. Air Abrasion

    MedlinePlus

    ... information you need from the Academy of General Dentistry Sunday, April 9, 2017 About | Contact InfoBites Quick ... general dentist, who has been trained in restorative dentistry techniques, will perform any procedures that use air- ...

  6. Avian maternal response to chick distress

    PubMed Central

    Edgar, J. L.; Lowe, J. C.; Paul, E. S.; Nicol, C. J.

    2011-01-01

    The extent to which an animal is affected by the pain or distress of a conspecific will depend on its capacity for empathy. Empathy most probably evolved to facilitate parental care, so the current study assessed whether birds responded to an aversive stimulus directed at their chicks. Domestic hens were exposed to two replicates of the following conditions in a counterbalanced order: control (C; hen and chicks undisturbed), air puff to chicks (APC; air puff directed at chicks at 30 s intervals), air puff to hen (APH; air puff directed at hen at 30 s intervals) and control with noise (CN; noise of air puff at 30 s intervals). During each test, the hens' behaviour and physiology were measured throughout a 10 min pre-treatment and a 10 min treatment period. Hens responded to APH and APC treatments with increased alertness, decreased preening behaviour and a reduction in eye temperature. No such changes occurred during any control period. Increased heart rate and maternal vocalization occurred exclusively during the APC treatment, even though chicks produced few distress vocalizations. The pronounced and specific reaction observed indicates that adult female birds possess at least one of the essential underpinning attributes of empathy. PMID:21389025

  7. Nitrogen fluorescence in air for observing extensive air showers

    NASA Astrophysics Data System (ADS)

    Keilhauer, B.; Bohacova, M.; Fraga, M.; Matthews, J.; Sakaki, N.; Tameda, Y.; Tsunesada, Y.; Ulrich, A.

    2013-06-01

    Extensive air showers initiate the fluorescence emissions from nitrogen molecules in air. The UV-light is emitted isotropically and can be used for observing the longitudinal development of extensive air showers in the atmosphere over tenth of kilometers. This measurement technique is well-established since it is exploited for many decades by several cosmic ray experiments. However, a fundamental aspect of the air shower analyses is the description of the fluorescence emission in dependence on varying atmospheric conditions. Different fluorescence yields affect directly the energy scaling of air shower reconstruction. In order to explore the various details of the nitrogen fluorescence emission in air, a few experimental groups have been performing dedicated measurements over the last decade. Most of the measurements are now finished. These experimental groups have been discussing their techniques and results in a series of Air Fluorescence Workshops commenced in 2002. At the 8th Air Fluorescence Workshop 2011, it was suggested to develop a common way of describing the nitrogen fluorescence for application to air shower observations. Here, first analyses for a common treatment of the major dependences of the emission procedure are presented. Aspects like the contributions at different wavelengths, the dependence on pressure as it is decreasing with increasing altitude in the atmosphere, the temperature dependence, in particular that of the collisional cross sections between molecules involved, and the collisional de-excitation by water vapor are discussed.

  8. Hazardous Air Pollutants

    MedlinePlus

    ... Air Toxics Website Rules and Implementation Related Information Air Quality Data and Tools Clean Air Act Criteria Air ... Resources Visibility and Haze Voluntary Programs for Improving Air Quality Contact Us to ask a question, provide feedback, ...

  9. Air surveillance

    SciTech Connect

    Patton, G.W.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the air surveillance and monitoring programs currently in operation at that Hanford Site. Atmospheric releases of pollutants from Hanford to the surrounding region are a potential source of human exposure. For that reason, both radioactive and nonradioactive materials in air are monitored at a number of locations. The influence of Hanford emissions on local radionuclide concentrations was evaluated by comparing concentrations measured at distant locations within the region to concentrations measured at the Site perimeter. This section discusses sample collection, analytical methods, and the results of the Hanford air surveillance program. A complete listing of all analytical results summarized in this section is reported separately by Bisping (1995).

  10. /Air Atmospheres

    NASA Astrophysics Data System (ADS)

    Emami, Samar; Sohn, Hong Yong; Kim, Hang Goo

    2014-08-01

    Molten magnesium oxidizes rapidly when exposed to air causing melt loss and handling difficulties. The use of certain additive gases such as SF6, SO2, and CO2 to form a protective MgO layer over a magnesium melt has been proposed. The oxidation behavior of molten magnesium in air containing various concentrations of SF6 was investigated. Measurements of the kinetics of the oxide layer growth at various SF6 concentrations in air and temperatures were made. Experiments were performed using a thermogravimetric analysis unit in the temperature range of 943 K to 1043 K (670 °C to 770 °C). Results showed that a thin, coherent, and protective MgF2 layer was formed under SF6/Air mixtures, with a thickness ranging from 300 nm to 3 μm depending on SF6 concentration, temperature, and exposure time. Rate parameters were calculated and a model for the process was developed. The morphology and composition of the surface films were studied using scanning electron microscope and energy-dispersive spectroscope.

  11. Air Pollution.

    ERIC Educational Resources Information Center

    Scorer, Richard S.

    The purpose of this book is to describe the basic mechanisms whereby pollution is transported and diffused in the atmosphere. It is designed to give practitioners an understanding of basic mechanics and physics so they may have a correct basis on which to formulate their decisions related to practical air pollution control problems. Since many…

  12. 78 FR 23492 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Particulate Matter Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-19

    ... AGENCY 40 CFR Part 52 Approval and Promulgation of Air Quality Implementation Plans; Indiana; Particulate Matter Air Quality Standards AGENCY: Environmental Protection Agency (EPA). ACTION: Direct final rule... Ambient Air Quality Standards (NAAQS) promulgated by EPA in 2006, and removes the annual coarse...

  13. 75 FR 65572 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-26

    ... AGENCY 40 CFR Part 52 Approval and Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality Standards AGENCY: Environmental Protection Agency (EPA). ACTION: Direct final rule... of Ohio's Ambient Air Quality Standards (AAQS) into Ohio's State Implementation Plan (SIP) under...

  14. Air Force Posture Statement 2002

    DTIC Science & Technology

    2002-01-01

    Ahmedabad, India. In April, a C–17 airlifted 10 cheetahs from Africa to America as part of a gift to the United States from the people of Namibia...the-sky” upgrades to include broadband data and direct broadcast service. As funds become available, remaining VIPSAM aircraft will be evaluated for...sustain air and space capabilities. In FY02, operations and maintenance (O&M) sustainment funding precluded fully maintaining Air Force facilities and

  15. Low-threshold bidirectional air lasing.

    PubMed

    Laurain, Alexandre; Scheller, Maik; Polynkin, Pavel

    2014-12-19

    Air lasing refers to the remote optical pumping of the constituents of ambient air that results in a directional laserlike emission from the pumped region. Intense current investigations of this concept are motivated by the potential applications in remote atmospheric sensing. Different approaches to air lasing are being investigated, but, so far, only the approach based on dissociation and resonant two-photon pumping of air molecules by deep-UV laser pulses has produced measurable lasing energies in real air and in the backward direction, which is of the most relevance for applications. However, the emission had a high pumping threshold, in hundreds of GW/cm^{2}. We demonstrate that the threshold can be virtually eliminated through predissociation of air molecules with an additional nanosecond laser. We use a single tunable pump laser system to generate backward-propagating lasing in both oxygen and nitrogen in air, with energies of up to 1  μJ per pulse.

  16. Inertial impaction air sampling device

    SciTech Connect

    Dewhurst, K.H.

    1987-12-10

    An inertial impactor to be used in an air sampling device for collection of respirable size particles in ambient air which may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry. 3 figs.

  17. Inertial impaction air sampling device

    SciTech Connect

    Dewhurst, K.H.

    1990-05-22

    An inertial impactor is designed which is to be used in an air sampling device for collection of respirable size particles in ambient air. The device may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry. 3 figs.

  18. Inertial impaction air sampling device

    DOEpatents

    Dewhurst, Katharine H.

    1990-01-01

    An inertial impactor to be used in an air sampling device for collection of respirable size particles in ambient air which may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry.

  19. Small Break Air Ingress Experiment

    SciTech Connect

    Chang Oh; Eung Soo Kim

    2011-09-01

    The small break air-ingress experiment, described in this report, is designed to investigate air-ingress phenomena postulated to occur in pipes in a very high temperature gas-cooled reactor (VHTRs). During this experiment, air-ingress rates were measured for various flow and break conditions through small holes drilled into a pipe of the experimental apparatus. The holes were drilled at right angles to the pipe wall such that a direction vector drawn from the pipe centerline to the center of each hole was at right angles with respect to the pipe centerline. Thus the orientation of each hole was obtained by measuring the included angle between the direction vector of each hole with respect to a reference line anchored on the pipe centerline and pointing in the direction of the gravitational force. Using this reference system, the influence of several important parameters on the air ingress flow rate were measured including break orientation, break size, and flow velocity . The approach used to study the influence of these parameters on air ingress is based on measuring the changes in oxygen concentrations at various locations in the helium flow circulation system as a function of time using oxygen sensors (or detectors) to estimate the air-ingress rates through the holes. The test-section is constructed of a stainless steel pipe which had small holes drilled at the desired locations.

  20. Electronic cigarettes and indoor air quality: a simple approach to modeling potential bystander exposures to nicotine.

    PubMed

    Colard, Stéphane; O'Connell, Grant; Verron, Thomas; Cahours, Xavier; Pritchard, John D

    2014-12-24

    There has been rapid growth in the use of electronic cigarettes ("vaping") in Europe, North America and elsewhere. With such increased prevalence, there is currently a debate on whether the aerosol exhaled following the use of e-cigarettes has implications for the quality of air breathed by bystanders. Conducting chemical analysis of the indoor environment can be costly and resource intensive, limiting the number of studies which can be conducted. However, this can be modelled reasonably accurately based on empirical emissions data and using some basic assumptions. Here, we present a simplified model, based on physical principles, which considers aerosol propagation, dilution and extraction to determine the potential contribution of a single puff from an e-cigarette to indoor air. From this, it was then possible to simulate the cumulative effect of vaping over time. The model was applied to a virtual, but plausible, scenario considering an e-cigarette user and a non-user working in the same office space. The model was also used to reproduce published experimental studies and showed good agreement with the published values of indoor air nicotine concentration. With some additional refinements, such an approach may be a cost-effective and rapid way of assessing the potential exposure of bystanders to exhaled e-cigarette aerosol constituents.

  1. Heme oxygenase-1 gene expression in human alveolar epithelial cells (A549) following exposure to whole cigarette smoke on a direct in vitro exposure system.

    PubMed

    Fukano, Yasuo; Yoshimura, Hiroyuki; Yoshida, Takemi

    2006-07-01

    Many in vitro studies have employed cigarette smoke condensates or soluble smoke components to investigate the biological effects of cigarette smoke. However, neither of these methods evaluates the biological effects of fresh whole cigarette smoke. It is most desirable to conduct in vitro biological studies under conditions which accommodate the dynamic physicochemical character of fresh cigarette smoke. Previously we reported the development of a whole smoke exposure system to assess the biological effects of mainstream cigarette smoke. The exposure system design was based on a combination of the sedimentation procedure and the CULTEX cultivation technique, which includes a systemized air/liquid interface methodology and exposes the cells to fresh smoke at every puff. The aim of this study was to adopt the other biological endpoint to our whole smoke exposure system. We focused on heme oxygenase (HO)-1 mRNA gene expression, an enzyme which has recently been shown to be highly responsible for oxidative stress. In the present study, a dose-response relationship between the HO-1 mRNA expression based on the reverse transcription real-time PCR method and total exposure to cigarette smoke was observed. When a Cambridge filter pad was placed between the cigarette and exposure module, to ensure the cells were only exposed to the gas/vapor phase, the latter, as well as the whole smoke, induced HO-1 mRNA dose dependently. For the next step, acetate plain and charcoal filters with the same pressure drop were prepared to assess the potential ability of charcoal filters with regard to the vapor phase performance. The results revealed reduced HO-1 mRNA gene expression when a charcoal filter was used. Direct whole smoke exposure is a significant approach and may reflect the conditions of exposure essentially resulting from direct contact between cells and a dynamic mixture of gaseous and particulate constituents. We were able to adopt a gene expression assay for oxidative

  2. Connaissances, attitudes et pratiques de la population de l'aire de santé SAMBWA en rapport avec le traitement de l'onchocercose à l'ivermectine sous directives communautaires

    PubMed Central

    Philippe, Cilundika Mulenga; Bienvenu, Yogolelo Asani; Francoise, Malonga Kaj; Eric, Mukomena Sompwe; Abdon, Mukalay wa Mukalay; Luboya, Oscar Numbi

    2014-01-01

    Introduction L'onchocercose constitue un problème majeur de santé publique et l'on a noté environ 13 millions de personnes affectées et 26 millions exposées au cours de l'année 2012 en RDC. L'objectif de notre étude est fournir les données sur le niveau de connaissance, d'attitudes et des pratiques de la communauté huit ans après le lancement de la distribution de l'ivermectine sous directives communautaires. Méthodes Il s'agit d'une étude descriptive transversale dans la communauté de l'aire de santé SAMBWA de la zone de santé de KAFUBU. La population cible de l’étude est toute personne de la communauté âgée de 15 à 65 ans. Les paramètres étudiés sont: âge, niveau d'instruction, connaissance de la maladie en langue locale et des signes, attitudes devant les personnes atteintes, perception de la maladie, utilisation des pratiques traditionnelles, association entre le niveau d'instruction et la connaissance de savoir si l'on peut suivre un traitement. Résultats La moyenne d’âge des répondants était de 38±14 ans et 67,54% des enquêtés étaient de niveau primaire. L’étude a montré que 99,53% des répondants connaissaient le terme onchocercose en langue locale (UBUMFUKU) et un niveau moyen de connaissance en ce qui concerne les lésions de la peau (66,9%) était noté. 1,9% des répondants craignaient les personnes atteintes et 42,2% des répondants percevaient l'onchocercose comme une maladie. Une proportion de 55% qui prenaient les plantes comme médicament. Il y avait association significative entre le niveau d'instruction et la connaissance de suivre un traitement contre l'onchocercose (p: 0,008). Conclusion Ces résultats interpellent en ce qui concerne la sensibilisation de la communauté sur l'onchocercose. Les stratégies de lutte contre l'onchocercose devraient prendre en compte ces différentes insuffisances de la communauté pour améliorer le traitement des masses par l'ivermectine tant au niveau du ménage que des

  3. Reconstructing the atmospheric concentration and emissions of CF4, C2F6 and C3F8 prior to direct atmospheric measurements, using air from polar firn and ice

    NASA Astrophysics Data System (ADS)

    Trudinger, Cathy; Etheridge, David; Sturges, William; Vollmer, Martin; Miller, Benjamin; Worton, David; Rigby, Matt; Krummel, Paul; Martinerie, Patricia; Witrant, Emmanuel; Rayner, Peter; Battle, Mark; Blunier, Thomas; Fraser, Paul; Laube, Johannes; Mani, Frances; Mühle, Jens; O'Doherty, Simon; Schwander, Jakob; Steele, Paul

    2015-04-01

    Perfluorocarbons are very potent and long-lived greenhouse gases in the atmosphere, released predominantly during aluminium production, electronic chip manufacture and refrigeration. Mühle et al. (2010) presented records of the concentration and inferred emissions of CF4 (PFC-14), C2F6 (PFC-116) and C3F8 (PFC-218) from the 1970s up to 2008, using measurements from the Cape Grim Air Archive and a suite of tanks with old Northern Hemisphere air, and the AGAGE in situ network. Mühle et al. (2010) also estimated pre-industrial concentrations of these compounds from a small number of polar firn and ice core samples. Here we present measurements of air from polar firn at four sites (DSSW20K, EDML, NEEM and South Pole) and from air bubbles trapped in ice at two sites (DE08 and DE08-2), along with recent atmospheric measurements to give a continuous record of concentration from preindustrial levels up to the present. We estimate global emissions (with uncertainties) consistent with the concentration records. The uncertainty analysis takes into account uncertainties in characterisation of the age of air in firn and ice by the use of two different (independently-calibrated) firn models (the CSIRO and LGGE-GIPSA firn models). References Mühle, J., A.L. Ganesan, B.R. Miller, P.K. Salameh, C.M. Harth, B.R. Greally, M. Rigby, L.W. Porter, L. P. Steele, C.M. Trudinger, P.B. Krummel, S. O'Doherty, P.J. Fraser, P.G. Simmonds, R.G. Prinn, and R.F. Weiss, Perfluorocarbons in the global atmosphere: tetrafluoromethane, hexafluoroethane, and octafluoropropane, Atmos. Chem. Phys., 10, 5145-5164, doi:10.5194/acp-10-5145-2010, 2010.

  4. Air pollution and allergic disease.

    PubMed

    Kim, Haejin; Bernstein, Jonathan A

    2009-03-01

    Over the past several decades, there has been increased awareness of the health effects of air pollution and much debate regarding the role of global warming. The prevalence of asthma and allergic disease has risen in industrialized countries, and most epidemiologic studies focus on possible causalities between air pollution and these conditions. This review examines salient articles and summarizes findings important to the interaction between allergies and air pollution, specifically volatile organic compounds, global warming, particulate pollutants, atopic risk, indoor air pollution, and prenatal exposure. Further work is necessary to determine whether patients predisposed to developing allergic disease may be more susceptible to the health effects of air pollutants due to the direct interaction between IgE-mediated disease and air pollutants. Until we have more definitive answers, patient education about the importance of good indoor air quality in the home and workplace is essential. Health care providers and the general community should also support public policy designed to improve outdoor air quality by developing programs that provide incentives for industry to comply with controlling pollution emissions.

  5. A direct method for e-cigarette aerosol sample collection.

    PubMed

    Olmedo, Pablo; Navas-Acien, Ana; Hess, Catherine; Jarmul, Stephanie; Rule, Ana

    2016-08-01

    E-cigarette use is increasing in populations around the world. Recent evidence has shown that the aerosol produced by e-cigarettes can contain a variety of toxicants. Published studies characterizing toxicants in e-cigarette aerosol have relied on filters, impingers or sorbent tubes, which are methods that require diluting or extracting the sample in a solution during collection. We have developed a collection system that directly condenses e-cigarette aerosol samples for chemical and toxicological analyses. The collection system consists of several cut pipette tips connected with short pieces of tubing. The pipette tip-based collection system can be connected to a peristaltic pump, a vacuum pump, or directly to an e-cigarette user for the e-cigarette aerosol to flow through the system. The pipette tip-based system condenses the aerosol produced by the e-cigarette and collects a liquid sample that is ready for analysis without the need of intermediate extraction solutions. We tested a total of 20 e-cigarettes from 5 different brands commercially available in Maryland. The pipette tip-based collection system condensed between 0.23 and 0.53mL of post-vaped e-liquid after 150 puffs. The proposed method is highly adaptable, can be used during field work and in experimental settings, and allows collecting aerosol samples from a wide variety of e-cigarette devices, yielding a condensate of the likely exact substance that is being delivered to the lungs.

  6. 14 CFR 23.1091 - Air induction system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... directed into the engine or auxiliary power unit air intake ducts in hazardous quantities. The air intake ducts must be located or protected so as to minimize the hazard of ingestion of foreign matter...

  7. Air Quality System (AQS)

    EPA Pesticide Factsheets

    The Air Quality System (AQS) database contains measurements of air pollutant concentrations from throughout the United States and its territories. The measurements include both criteria air pollutants and hazardous air pollutants.

  8. Air-Coupled Vibrometry

    NASA Astrophysics Data System (ADS)

    Döring, D.; Solodov, I.; Busse, G.

    Sound and ultrasound in air are the products of a multitude of different processes and thus can be favorable or undesirable phenomena. Development of experimental tools for non-invasive measurements and imaging of airborne sound fields is of importance for linear and nonlinear nondestructive material testing as well as noise control in industrial or civil engineering applications. One possible solution is based on acousto-optic interaction, like light diffraction imaging. The diffraction approach usually requires a sophisticated setup with fine optical alignment barely applicable in industrial environment. This paper focuses on the application of the robust experimental tool of scanning laser vibrometry, which utilizes commercial off-the-shelf equipment. The imaging technique of air-coupled vibrometry (ACV) is based on the modulation of the optical path length by the acoustic pressure of the sound wave. The theoretical considerations focus on the analysis of acousto-optical phase modulation. The sensitivity of the ACV in detecting vibration velocity was estimated as ~1 mm/s. The ACV applications to imaging of linear airborne fields are demonstrated for leaky wave propagation and measurements of ultrasonic air-coupled transducers. For higher-intensity ultrasound, the classical nonlinear effect of the second harmonic generation was measured in air. Another nonlinear application includes a direct observation of the nonlinear air-coupled emission (NACE) from the damaged areas in solid materials. The source of the NACE is shown to be strongly localized around the damage and proposed as a nonlinear "tag" to discern and image the defects.

  9. 75 FR 56889 - Revisions to the California State Implementation Plan, San Diego County Air Pollution Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-17

    ...: EPA is taking direct final action to approve revisions to the San Diego County Air Pollution Control... Environmental protection, Air pollution control, Incorporation by reference, Intergovernmental relations.... * * * * * (c) * * * (379) * * * (i) * * * (B) San Diego County Air Pollution Control District. (1) Rule...

  10. Zero Carryover Liquid-Desiccant Air Conditioner for Solar Applications: Preprint

    SciTech Connect

    Lowenstein, A.; Slayzak, S.; Kozubal, E.

    2006-07-01

    A novel liquid-desiccant air conditioner that dries and cools building supply air will transform the use of direct-contact liquid-desiccant systems in HVAC applications, improving comfort, air quality, and providing energy-efficient humidity control.

  11. 10-Year Study Links Faster Progression of Atherosclerosis to Air Pollution

    EPA Pesticide Factsheets

    The Multi-Ethnic Study of Atherosclerosis Air Pollution Study (MESA Air) was the first U.S. research study to measure directly how long-term exposure to air pollution contributes to the development of heart disease.

  12. Psychological reactions to air pollution

    SciTech Connect

    Evans, G.W.; Colome, S.D.; Shearer, D.F.

    1988-02-01

    Interviews with a large representative sample of Los Angeles residents reveal that these citizens are somewhat aware and concerned about air pollution, but not knowledgeable about its causes. Direct behaviors to reduce causes of pollution or one's exposure to it are rare. A moderate percentage of people seek out information about air pollution or complain about it. Fewer follow state health advisories by reducing automobile driving or restricting activity during air pollution episodes. Preliminary modeling of citizen compliance with air pollution health advisories suggest that personal beliefs about negative health effects are a important predictor of compliance. Finally, modest but significant relationships are noted between ambient photochemical oxidants and anxiety symptoms. The latter finding controls for age, socioeconomic status, and temperature.

  13. Manual on indoor air quality

    SciTech Connect

    Diamond, R.C.; Grimsrud, D.T.

    1983-12-01

    This reference manual was prepared to assist electric utilities in helping homeowners, builders, and new home buyers to understand a broad range of issues related to indoor air quality. The manual is directed to technically knowledgeable persons employed by utility companies - the customer service or marketing representative, applications engineer, or technician - who may not have specific expertise in indoor air quality issues. In addition to providing monitoring and control techniques, the manual summarizes the link between pollutant concentrations, air exchange, and energy conservation and describes the characteristics and health effects of selected pollutants. Where technical information is too lengthy or complex for inclusion in this volume, reference sources are given. Information for this manual was gathered from technical studies, manufacturers' information, and other materials from professional societies, institutes, and associations. The aim has been to provide objective technical and descriptive information that can be used by utility personnel to make informed decisions about indoor air quality issues.

  14. Air cell

    NASA Astrophysics Data System (ADS)

    Okamura, Okiyoshi; Wakasa, Masayuki; Tamanoi, Yoshihito

    1991-04-01

    The present invention relates to an air cell. This air cell provides a compact light-weight power source for model aircraft permitting them to fly for an extended period so that they may be used for such practical purposes as crop dusting, surveying, and photographing. The cell is comprised of a current collector so disposed between a magnesium, zinc, or aluminum alloy cathode and a petroleum graphite anode that it is in contact with the anode. The anode is formed by adding polytetrafluoroethylene dispersion liquid in a mixture of active carbon and graphite powder, pouring the mixture into a mold and heating it to form the anode. It is fabricated by a plurality of anode sections and is formed with at least one hole so that it can provide a cell which is compact in size and light in weight yet is capable of generating a high output. The anode, the cathode, and a separator are wetted by an electrolytic liquid. The electrolyte is continuously supplied through the life of the cell.

  15. Air turbo-ramjet engine

    SciTech Connect

    Kepler, C.E.

    1991-12-24

    This patent describes a jet engine capable of being used to power an aircraft throughout a range of speeds from subsonic to high supersonic. It comprises means for bounding an internal passage centered on an axis and including, in succession as considered in the direction of axial flow of incoming air into and through the passage, a fixed-area air inlet section, a diverging passage section, a mixing section, a combustion section, and an outlet section; fan means situated in the air inlet section and including a rotor mounted in the bounding means for rotation about the axis and including a plurality of circumferentially spaced rotor blade members; means for selectively rotating the rotor about the axis with attendant impelling action of the rotor blade members on the air flowing therebetween; and means for selectively discharging air from a region of the passage situated between the air inlet section and the diverging passage section to the exterior of the bounding means, both at subsonic and supersonic speeds of the aircraft, when the amount of incoming air passing through the fixed-area inlet section exceeds that required in the combustion section.

  16. Directing 101.

    ERIC Educational Resources Information Center

    Pintoff, Ernest

    Providing an introduction to anyone considering directing as a field of study or career, this book takes a broad look at the process of directing and encourages students and professionals alike to look outside of the movie industry for inspiration. Chapters in the book discuss selecting and acquiring material; budgeting and financing; casting and…

  17. 32 CFR 644.27 - Authority to issue Real Estate Directives.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., Directorate of Engineering and Services, HQ, USAF. Major Air Commands and Air Force Regional Civil Engineers... Engineers will assign numbers to Real Estate Directives issued by Air Force Regional Civil Engineers....

  18. The controller, aviation medicine and air safety.

    PubMed

    Watkin, B L

    1983-03-01

    Aviation medicine has researched many important facts on pilots, but little on direct relationships between controllers, aviation medicine and air safety. The unsuspecting flying public accepts a 'blind faith' in aircraft and pilots, unaware that aircraft are controlled within 'suspect' ATC systems. The deceptive simplicity of controlling air traffic in apparently limitless skies belies the complexity of man-machine ATC systems operated in ever-crowded airspace, sometimes with antiquated equipment and indifferent communications. The indivisible operational controller/pilot team strives to meet similar ICAO medical standards and operate within the limitations of non-standardised recorded air traffic. Despite controllers' intensive stress at air disasters and 'almost' air disasters, air traffic must continually be controlled for air safety; but, countless human lives (and insurance dollars) saved are possibly camouflaged within the smoke screen of ATC. In New Zealand aviation, the Accident Compensation Corporation is statutorily responsible for air-safety, but accident investigators need controllers' expertise. Has a climate of complacency evolved towards air safety such that New Zealand's Erebus and other air disasters could have been avoided? Controllers are that crucial link in aviation with personal medical fitness vital to the air safety of the unsuspecting flying public. Controllers' dedicated aim for complete air safety in ATC shall benefit from greater understanding within aviation medicine and in-depth medical research.

  19. Alpha-environmental continuous air monitor inlet

    DOEpatents

    Rodgers, John C.

    2003-01-01

    A wind deceleration and protective shroud that provides representative samples of ambient aerosols to an environmental continuous air monitor (ECAM) has a cylindrical enclosure mounted to an input on the continuous air monitor, the cylindrical enclosure having shrouded nozzles located radially about its periphery. Ambient air flows, often along with rainwater flows into the nozzles in a sampling flow generated by a pump in the continuous air monitor. The sampling flow of air creates a cyclonic flow in the enclosure that flows up through the cylindrical enclosure until the flow of air reaches the top of the cylindrical enclosure and then is directed downward to the continuous air monitor. A sloped platform located inside the cylindrical enclosure supports the nozzles and causes any moisture entering through the nozzle to drain out through the nozzles.

  20. The index of microbial air contamination.

    PubMed

    Pasquarella, C; Pitzurra, O; Savino, A

    2000-12-01

    The standard index of microbial air contamination (IMA) for the measurement of microbial air contamination in environments at risk is described. The method quantifies the microbial flow directly related to the contamination of surfaces coming from microbes that reach critical points by falling on to them. The index of microbial air contamination is based on the count of the microbial fallout on to Petri dishes left open to the air according to the 1/1/1 scheme (for 1h, 1m from the floor, at least 1m away from walls or any obstacle). Classes of contamination and maximum acceptable levels have been established. The index of microbial air contamination has been tested in many different places: in hospitals, in food industries, in art galleries, aboard the MIR space station and also in the open air. It has proved to be a reliable and useful tool for monitoring the microbial surface contamination settling from the air in any environment.