Science.gov

Sample records for air purification

  1. Air/Water Purification

    NASA Technical Reports Server (NTRS)

    1992-01-01

    After 18 years of research into air/water pollution at Stennis Space Center, Dr. B. C. Wolverton formed his own company, Wolverton Environmental Services, Inc., to provide technology and consultation in air and water treatment. Common houseplants are used to absorb potentially harmful materials from bathrooms and kitchens. The plants are fertilized, air is purified, and wastewater is converted to clean water. More than 100 U.S. communities have adopted Wolverton's earlier water hyacinth and artificial marsh applications. Catfish farmers are currently evaluating the artificial marsh technology as a purification system.

  2. Photocatalytic materials and technologies for air purification.

    PubMed

    Ren, Hangjuan; Koshy, Pramod; Chen, Wen-Fan; Qi, Shaohua; Sorrell, Charles Christopher

    2017-03-05

    Since there is increasing concern for the impact of air quality on human health, the present work surveys the materials and technologies for air purification using photocatalytic materials. The coverage includes (1) current photocatalytic materials for the decomposition of chemical contaminants and disinfection of pathogens present in air and (2) photocatalytic air purification systems that are used currently and under development. The present work focuses on five main themes. First, the mechanisms of photodegradation and photodisinfection are explained. Second, system designs for photocatalytic air purification are surveyed. Third, the photocatalytic materials used for air purification and their characteristics are considered, including both conventional and more recently developed photocatalysts. Fourth, the methods used to fabricate these materials are discussed. Fifth, the most significant coverage is devoted to materials design strategies aimed at improving the performance of photocatalysts for air purification. The review concludes with a brief consideration of promising future directions for materials research in photocatalysis.

  3. Breathing air purification; Desiccant vs. refrigerated

    SciTech Connect

    McKay, K.L.; Swanson, A.L. )

    1986-07-01

    Carbon monoxide (CO) is a common contaminant of ambient air - levels as high as 200 ppm are not uncommon in urban, industrial, or high automotive-traffic areas. Carbon monoxide may also be produced by the oxidation of lubricating oil in overheated compressors. Air from an oil-lubricated compressor, even when an aftercooler is used, often contains significant quantities of oil mist and vapor. Even where a breathing air (non-oil-lubricated) compressor is used , oil. levels in the air taken into the compressor can still exceed Grade D standards, especially in industrial environments. Other contaminants (gaseous hydrocarbons, particulate matter, and odors), while not addressed by the Grade D criteria, are also present in harmful or objectionable levels in industrial environments; therefore, they must be taken into account in the design of the air purification systems. This paper discusses two basic types of breathing air purifiers: desiccant and refrigerated purifiers.

  4. Microwave Regenerable Air Purification Device

    NASA Technical Reports Server (NTRS)

    Atwater, James E.; Holtsnider, John T.; Wheeler, Richard R., Jr.

    1996-01-01

    The feasibility of using microwave power to thermally regenerate sorbents loaded with water vapor, CO2, and organic contaminants has been rigorously demonstrated. Sorbents challenged with air containing 0.5% CO2, 300 ppm acetone, 50 ppm trichloroethylene, and saturated with water vapor have been regenerated, singly and in combination. Microwave transmission, reflection, and phase shift has also been determined for a variety of sorbents over the frequency range between 1.3-2.7 GHz. This innovative technology offers the potential for significant energy savings in comparison to current resistive heating methods because energy is absorbed directly by the material to be heated. Conductive, convective and radiative losses are minimized. Extremely rapid heating is also possible, i.e., 1400 C in less than 60 seconds. Microwave powered thermal desorption is directly applicable to the needs of Advance Life Support in general, and of EVA in particular. Additionally, the applicability of two specific commercial applications arising from this technology have been demonstrated: the recovery for re-use of acetone (and similar solvents) from industrial waste streams using a carbon based molecular sieve; and the separation and destruction of trichloroethylene using ZSM-5 synthetic zeolite catalyst, a predominant halocarbon environmental contaminant. Based upon these results, Phase II development is strongly recommended.

  5. 9. Water Purification System and Instrument Air Receiver Tank, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Water Purification System and Instrument Air Receiver Tank, view to the south. The water purification system is visible in the right foreground of the photograph and the instrument air receiver tank is visible in the right background of the photograph. - Washington Water Power Clark Fork River Cabinet Gorge Hydroelectric Development, Powerhouse, North Bank of Clark Fork River at Cabinet Gorge, Cabinet, Bonner County, ID

  6. NASA - Johnson Space Center's New Capabilities for Air Purification

    NASA Technical Reports Server (NTRS)

    Graf, John

    2015-01-01

    NASA has some unique and challenging air purification problems that cannot be adequately met with COTS technology: 1) ammonia removal from air, 2) hydrazine removal from air, 3) CO conversion to CO2 in low temperature, high humidity environments. NASA has sponsored the development of new sorbents and new catalysts. These new sorbents and catalysts work better than COTS technology for our application. If attendees have a need for an effective ammonia sorbent, an effective hydrazine sorbent, or an effective CO conversion catalyst, we should learn to see if NASA sponsored technology development can help.

  7. Regenerable Air Purification System for Gas-Phase Contaminant Control

    NASA Technical Reports Server (NTRS)

    Constantinescu, Ileana C.; Finn, John E.; LeVan, M. Douglas; Lung, Bernadette (Technical Monitor)

    2000-01-01

    Tests of a pre-prototype regenerable air purification system (RAPS) that uses water vapor to displace adsorbed contaminants from an adsorbent column have been performed at NASA Ames Research Center. A unit based on this design can be used for removing trace gas-phase contaminants from spacecraft cabin air or from polluted process streams including incinerator exhaust. During the normal operation mode, contaminants are removed from the air on the column. Regeneration of the column is performed on-line. During regeneration, contaminants are displaced and destroyed inside the closed oxidation loop. In this presentation we discuss initial experimental results for the performance of RAPS in the removal and treatment of several important spacecraft contaminant species from air.

  8. Photodetoxification and purification of water and air

    SciTech Connect

    Anderson, M.; Blake, D.M.

    1996-09-01

    The scope of interest in this section is basic research in photochemistry that can remove barriers to the development of photochemical technologies for the removal of hazardous chemicals from contaminated air or water (photodetoxification). Photochemistry is be broadly interpreted to include direct photochemistry, indirect photochemistry (sensitized and photocatalytic), photochemistry of species adsorbed on inert surfaces, and complementary effects of high energy radiation photons and particles. These may occur in either homogeneous or heterogeneous media. The photon source may span the range from ionizing radiation to the near infrared.

  9. New research on bioregenerative air/water purification systems

    NASA Technical Reports Server (NTRS)

    Johnson, Anne H.; Ellender, R. D.; Watkins, Paul J.

    1991-01-01

    For the past several years, air and water purification systems have been developed and used. This technology is based on the combined activities of plants and microorganisms as they function in a natural environment. More recently, researchers have begun to address the problems associated with indoor air pollution. Various common houseplants are currently being evaluated for their abilities to reduce concentrations of volatile organic compounds (VOCS) such as formaldehyde and benzene. With development of the Space Exploration Initiative, missions will increase in duration, and problems with resupply necessitates implementation of regenerative technology. Aspects of bioregenerative technology have been included in a habitat known as the BioHome. The ultimate goal is to use this technology in conjunction with physicochemical systems for air and water purification within closed systems. This study continued the risk assessment of bioregenerative technology with emphasis on biological hazards. In an effort to evaluate the risk for human infection, analyses were directed at enumeration of fecal streptococci and enteric viruses with the BioHome waste water treatment system.

  10. Regenerable Air Purification System for Gas-Phase Contaminant Control

    NASA Technical Reports Server (NTRS)

    Constantinescu, Ileana C.; Qi, Nan; LeVan, M. Douglas; Finn, Cory K.; Finn, John E.; Luna, Bernadette (Technical Monitor)

    2000-01-01

    A regenerable air purification system (RAPS) that uses water vapor to displace adsorbed contaminants from an. adsorbent column into a closed oxidation loop is under development through cooperative R&D between Vanderbilt University and NASA Ames Research Center. A unit based on this design can be used for removing trace gas-phase contaminants from spacecraft cabin air or from polluted process streams including incinerator exhaust. Recent work has focused on fabrication and operation of a RAPS breadboard at NASA Ames, and on measurement of adsorption isotherm data for several important organic compounds at Vanderbilt. These activities support the use and validation of RAPS modeling software also under development at Vanderbilt, which will in turn be used to construct a prototype system later in the project.

  11. Air Purification in Closed Environments: An Overview of Spacecraft Systems

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.; LeVan, Douglas; Crumbley, Robert (Technical Monitor)

    2002-01-01

    The primary goal for a collective protection system and a spacecraft environmental control and life support system (ECLSS) are strikingly similar. Essentially both function to provide the occupants of a building or vehicle with a safe, habitable environment. The collective protection system shields military and civilian personnel from short-term exposure to external threats presented by toxic agents and industrial chemicals while an ECLSS sustains astronauts for extended periods within the hostile environment of space. Both have air quality control similarities with various aircraft and 'tight' buildings. This paper reviews basic similarities between air purification system requirements for collective protection and an ECLSS that define surprisingly common technological challenges and solutions. Systems developed for air revitalization on board spacecraft are discussed along with some history on their early development as well as a view of future needs. Emphasis is placed upon two systems implemented by the National Aeronautics and Space Administration (NASA) onboard the International Space Station (ISS): the trace contaminant control system (TCCS) and the molecular sieve-based carbon dioxide removal assembly (CDRA). Over its history, the NASA has developed and implemented many life support systems for astronauts. As the duration, complexity, and crew size of manned missions increased from minutes or hours for a single astronaut during Project Mercury to days and ultimately months for crews of 3 or more during the Apollo, Skylab, Shuttle, and ISS programs, these systems have become more sophisticated. Systems aboard spacecraft such as the ISS have been designed to provide long-term environmental control and life support. Challenges facing the NASA's efforts include minimizing mass, volume, and power for such systems, while maximizing their safety, reliability, and performance. This paper will highlight similarities and differences among air purification systems

  12. Air Purification Effect of Positively and Negatively Charged Ions Generated by Discharge Plasma at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Nishikawa, Kazuo; Nojima, Hideo

    2001-08-01

    In this paper, the air purification effect of positively and negatively charged ions generated by discharge plasma at atmospheric pressure is reported. We have developed a novel ion generation device which consists of a cylindrical glass tube and attached inner and outer mesh electrodes. With the application of AC voltage between the electrodes, positively charged ions and negatively charged ions have been generated at atmospheric pressure. The ion densities of 3.0× 104--7.0× 104 counts/cm3 have been obtained with the AC voltage of 1.8-2.3 kV (effective value). We have examined the air purification properties of this device. By the operation of this device, the initial oxygen nitride (NO) density of 10 ppm in 1 m3 (in cigarette smoke) was decreased to 1 ppm after 30 min. The number of suspended germs in air has been significantly reduced by the use of this type of ion generation device.

  13. [Biocatalysis using immobilized cells or enzymes as a method of water and air purification in habitable enclosed environment].

    PubMed

    Lebedeva, T E; Nazarov, N M; Siniak, Iu E

    1991-01-01

    This paper shows that the method of water and air purification using immobilized cells and enzymes can be applied in regenerative life support systems in a habitable enclosed environment. This method is based on selective and adaptive functions of enzymic systems of microorganisms to assimilate organic components of the medium to be eliminated. Advantages of biocatalysis are low energy requirements and mild temperatures of purification leading to practically complete elimination of the substrate. Due to immobilization, cells and enzymes constitute an independent component which can be added to any continuously operating system of purification without generating a specific interface which is crucially important in microgravity. This allows the process of purification to be controllable. The resulting water and air meet biological requirements because they are formed under the influence of living organisms as in natural biogeocenoses. The production of ecologically pure water and air is highly important for long-duration space missions, especially for flights to Mars.

  14. Physico-chemical Modification of the Fibrous Filter Nozzles for Purification Processes of Water and Air

    NASA Astrophysics Data System (ADS)

    Bordunov, S. V.; Galtseva, O. V.; Natalinova, N. M.; Rogachev, A. A.; Zhang, Ruizhi

    2017-01-01

    A set of experiments to study physical and chemical modification of the surface of fibers is conducted to expand the area of their application for purification of water, gas and air (including that in conditions of space). The possibility of modification of filter nozzles in the process of fiber formation by particles of coal of BAU type, copper sulfide and silver chloride is experimentally shown. The fraction of the copper sulfide powder less than 50 microns in size was crushed in a spherical mill; it was deposited on fiber at air temperature of 50° C and powder consumption of 0.5 g/l of air. The resulting material contained 6–18 CuS particles per 1 cm of the fiber length. An effective bactericidal fibrous material can be produced using rather cheap material – CuS and relatively cheap natural compounds of sulphides and oxides of heavy metals.

  15. Soil-based filtration technology for air purification: potentials for environmental and space life support application

    NASA Astrophysics Data System (ADS)

    Nelson, Mark; Bohn, Hinrich

    Soil biofiltration, also known as Soil bed reactor (SBR), technology was originally developed in Germany to take advantage of the diversity in microbial mechanisms to control gases producing malodor in industrial processes. The approach has since gained wider international acceptance and seen numerous improvements, for example, by the use of high-organic compost beds to maximize microbial processes. This paper reviews the basic mechanisms which underlay soil processes involved in air purification, advantages and limitations of the technology and the cur-rent research status of the approach. Soil biofiltration has lower capital and operating/energetic costs than conventional technologies and is well adapted to handle contaminants in moderate concentrations. The systems can be engineered to optimize efficiency though manipulation of temperature, pH, moisture content, soil organic matter and airflow rates. SBR technology was modified for application in the Biosphere 2 project, which demonstrated in preparatory research with a number of closed system testbeds that soil could also support crop plants while also serving as soil filters with air pumps to push air through the soil. This Biosphere 2 research demonstrated in several closed system testbeds that a number of important trace gases could be kept under control and led to the engineering of the entire agricultural soil of Biosphere 2 to serve as a soil filtration unit for the facility. Soil biofiltration, coupled with food crop produc-tion, as a component of bioregenerative space life support systems has the advantages of lower energy use and avoidance of the consumables required for other air purification approaches. Expanding use of soil biofiltration can aid a number of environmental applications, from the mitigation of indoor air pollution, improvement of industrial air emissions and prevention of accidental release of toxic gases.

  16. Air Stripping Designs and Reactive Water Purification Processes for the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Boul, Peter J.; Lange, Kevin; Conger, Bruce; Anderson, Molly

    2010-01-01

    Air stripping designs are considered to reduce the presence of volatile organic compounds in the purified water. Components of the wastewater streams are ranked by Henry's Law Constant and the suitability of air stripping in the purification of wastewater in terms of component removal is evaluated. Distillation processes are modeled in tandem with air stripping to demonstrate the potential effectiveness and utility of these methods in recycling wastewater on the Moon. Scaling factors for distillation and air stripping columns are presented to account for the difference in the lunar gravitation environment. Commercially available distillation and air stripping units which are considered suitable for Exploration Life Support are presented. The advantages to the various designs are summarized with respect to water purity levels, power consumption, and processing rates. An evaluation of reactive distillation and air stripping is presented with regards to the reduction of volatile organic compounds in the contaminated water and air. Among the methods presented, an architecture is presented for the evaluation of the simultaneous oxidation of organics in air and water. These and other designs are presented in light of potential improvements in power consumptions and air and water purities for architectures which include catalytic activity integrated into the water processor. In particular, catalytic oxidation of organics may be useful as a tool to remove contaminants that more traditional distillation and/or air stripping columns may not remove. A review of the current leading edge at the commercial level and at the research frontier in catalytically active materials is presented. Themes and directions from the engineering developments in catalyst design are presented conceptually in light of developments in the nanoscale chemistry of a variety of catalyst materials.

  17. Slip-Effect Functional Air Filter for Efficient Purification of PM2.5

    NASA Astrophysics Data System (ADS)

    Zhao, Xinglei; Wang, Shan; Yin, Xia; Yu, Jianyong; Ding, Bin

    2016-10-01

    Fabrication of air filtration materials (AFM) that allow air to easily flow through while retaining particles is a significant and urgent need due to the harmful airborne particulate matter pollution; however, this is still a challenging research area. Herein, we report novel slip-effect functional nanofibrous membranes with decreased air resistance (reduction rate of 40%) due to the slip flow of air molecules on the periphery of nanofibers. This was achieved through careful control over the diameters of electrospun polyacrylonitrile fibers and aperture size of fiber assembly. Fiber assembly with 86% of fiber diameters between 60–100 nm was found to be most effective for slip flow, as these diameters are close to the mean free path of air molecules (65.3 nm). Significantly, an equilibrium factor τ = df/d2 has been introduced to elucidate the effect of distance of adjacent fibers on the drag force of airflow. Furthermore, the most effective aperture size (>3.5 μm) for slip-effect has been determined. Ultimately, the new material displayed low air resistance of 29.5 Pa, high purification efficiency of 99.09%, good transmittance of 77%, and long service life. The successful fabrication of such materials can facilitate the development of high-performance AFMs for various applications.

  18. Slip-Effect Functional Air Filter for Efficient Purification of PM2.5

    PubMed Central

    Zhao, Xinglei; Wang, Shan; Yin, Xia; Yu, Jianyong; Ding, Bin

    2016-01-01

    Fabrication of air filtration materials (AFM) that allow air to easily flow through while retaining particles is a significant and urgent need due to the harmful airborne particulate matter pollution; however, this is still a challenging research area. Herein, we report novel slip-effect functional nanofibrous membranes with decreased air resistance (reduction rate of 40%) due to the slip flow of air molecules on the periphery of nanofibers. This was achieved through careful control over the diameters of electrospun polyacrylonitrile fibers and aperture size of fiber assembly. Fiber assembly with 86% of fiber diameters between 60–100 nm was found to be most effective for slip flow, as these diameters are close to the mean free path of air molecules (65.3 nm). Significantly, an equilibrium factor τ = df/d2 has been introduced to elucidate the effect of distance of adjacent fibers on the drag force of airflow. Furthermore, the most effective aperture size (>3.5 μm) for slip-effect has been determined. Ultimately, the new material displayed low air resistance of 29.5 Pa, high purification efficiency of 99.09%, good transmittance of 77%, and long service life. The successful fabrication of such materials can facilitate the development of high-performance AFMs for various applications. PMID:27748419

  19. Plasma flame for mass purification of contaminated air with chemical and biological warfare agents

    SciTech Connect

    Uhm, Han S.; Shin, Dong H.; Hong, Yong C.

    2006-09-18

    An elimination of airborne simulated chemical and biological warfare agents was carried out by making use of a plasma flame made of atmospheric plasma and a fuel-burning flame, which can purify the interior air of a large volume in isolated spaces such as buildings, public transportation systems, and military vehicles. The plasma flame generator consists of a microwave plasma torch connected in series to a fuel injector and a reaction chamber. For example, a reaction chamber, with the dimensions of a 22 cm diameter and 30 cm length, purifies an airflow rate of 5000 lpm contaminated with toluene (the simulated chemical agent) and soot from a diesel engine (the simulated aerosol for biological agents). Large volumes of purification by the plasma flame will free mankind from the threat of airborne warfare agents. The plasma flame may also effectively purify air that is contaminated with volatile organic compounds, in addition to eliminating soot from diesel engines as an environmental application.

  20. Plasma flame for mass purification of contaminated air with chemical and biological warfare agents

    NASA Astrophysics Data System (ADS)

    Uhm, Han S.; Shin, Dong H.; Hong, Yong C.

    2006-09-01

    An elimination of airborne simulated chemical and biological warfare agents was carried out by making use of a plasma flame made of atmospheric plasma and a fuel-burning flame, which can purify the interior air of a large volume in isolated spaces such as buildings, public transportation systems, and military vehicles. The plasma flame generator consists of a microwave plasma torch connected in series to a fuel injector and a reaction chamber. For example, a reaction chamber, with the dimensions of a 22cm diameter and 30cm length, purifies an airflow rate of 5000lpm contaminated with toluene (the simulated chemical agent) and soot from a diesel engine (the simulated aerosol for biological agents). Large volumes of purification by the plasma flame will free mankind from the threat of airborne warfare agents. The plasma flame may also effectively purify air that is contaminated with volatile organic compounds, in addition to eliminating soot from diesel engines as an environmental application.

  1. An investigation of an underwater steam plasma discharge as alternative to air plasmas for water purification

    NASA Astrophysics Data System (ADS)

    Gucker, Sarah N.; Foster, John E.; Garcia, Maria C.

    2015-10-01

    An underwater steam plasma discharge, in which water itself is the ionizing media, is investigated as a means to introduce advanced oxidation species into contaminated water for the purpose of water purification. The steam discharge avoids the acidification observed with air discharges and also avoids the need for a feed gas, simplifying the system. Steam discharge operation did not result in a pH changes in the processing of water or simulated wastewater, with the actual pH remaining roughly constant during processing. Simulated wastewater has been shown to continue to decompose significantly after steam treatment, suggesting the presence of long-lived plasma produced radicals. During steam discharge operation, nitrate production is limited, and nitrite production was found to be below the detection threshold of (roughly 0.2 mg L-1). The discharge was operated over a broad range of deposited power levels, ranging from approximately 30 W to 300 W. Hydrogen peroxide production was found to scale with increasing power. Additionally, the hydrogen peroxide production efficiency of the discharge was found to be higher than many of the rates reported in the literature to date.

  2. Low Cost, Efficient Microcavity Plasma Ozone Generation for Water Remediation and Air Purification

    DTIC Science & Technology

    2012-06-01

    this entire test, the reactor was not cooled (intentionally, running at ~50C) and the microchannels were driven with fast, high voltage pulses in an...purification. Arrays of microchannel devices having a cross-sectional dimension of less than a few hundred microns were fabricated to generate... microchannels ~ 2.2 cm in length (Figure 2) but the electrode and dielectric structures yield different results. Figure 3 summarizes the results of

  3. Assessment of internal contamination problems associated with bioregenerative air/water purification systems

    NASA Technical Reports Server (NTRS)

    Johnson, Anne H.; Bounds, B. Keith; Gardner, Warren

    1990-01-01

    The emphasis is to characterize the mechanisms of bioregenerative revitalization of air and water as well as to assess the possible risks associated with such a system in a closed environment. Marsh and aquatic plants are utilized for purposes of wastewater treatment as well as possible desalinization and demineralization. Foliage plants are also being screened for their ability to remove toxic organics from ambient air. Preliminary test results indicate that treated wastewater is typically of potable quality with numbers of pathogens such as Salmonella and Shigella significantly reduced by the artificial marsh system. Microbiological analyses of ambient air indicate the presence of bacilli as well as thermophilic actinomycetes.

  4. A technique of purification process of single-walled carbon nanotubes with air.

    PubMed

    Song, Xin; Fang, Yan

    2007-07-01

    A technique of purifying SWCNTs has been developed by means of oxidizing carbonaceous particles with air using fluidized-bed. Air was introduced into the fluidized-bed by pump with controllable flux. The powders were "boiling" at a temperature of 550 degrees C for 50 min. With this technique, the flux can be controlled simply. The fluidized-bed was applied as the heating apparatus instead of rotated quartz tubes. The air and the powders can be mixed with each other more sufficiently. Characteristics of the raw and purified powder were presented using Raman spectroscopy and transmission electronic microscopy (TEM), revealing that the purified powder is free from carbonaceous particles.

  5. Dry purification of aspirational air in coke-sorting systems with wet slaking of coke

    SciTech Connect

    T.F. Trembach; A.G. Klimenko

    2009-07-15

    Coke transportation after wet slaking is accompanied by the release of dust in the production building and in the surrounding atmosphere. Wet methods are traditionally used to purify very humid air. Giprokoks has developed designs for highly efficient dry dust-removal methods in such conditions.

  6. Artificial intelligence modeling to evaluate field performance of photocatalytic asphalt pavement for ambient air purification.

    PubMed

    Asadi, Somayeh; Hassan, Marwa; Nadiri, Ataallah; Dylla, Heather

    2014-01-01

    In recent years, the application of titanium dioxide (TiO₂) as a photocatalyst in asphalt pavement has received considerable attention for purifying ambient air from traffic-emitted pollutants via photocatalytic processes. In order to control the increasing deterioration of ambient air quality, urgent and proper risk assessment tools are deemed necessary. However, in practice, monitoring all process parameters for various operating conditions is difficult due to the complex and non-linear nature of air pollution-based problems. Therefore, the development of models to predict air pollutant concentrations is very useful because it can provide early warnings to the population and also reduce the number of measuring sites. This study used artificial neural network (ANN) and neuro-fuzzy (NF) models to predict NOx concentration in the air as a function of traffic count (Tr) and climatic conditions including humidity (H), temperature (T), solar radiation (S), and wind speed (W) before and after the application of TiO₂ on the pavement surface. These models are useful for modeling because of their ability to be trained using historical data and because of their capability for modeling highly non-linear relationships. To build these models, data were collected from a field study where an aqueous nano TiO₂ solution was sprayed on a 0.2-mile of asphalt pavement in Baton Rouge, LA. Results of this study showed that the NF model provided a better fitting to NOx measurements than the ANN model in the training, validation, and test steps. Results of a parametric study indicated that traffic level, relative humidity, and solar radiation had the most influence on photocatalytic efficiency.

  7. Photocatalysis for continuous air purification in wastewater treatment plants: from lab to reality.

    PubMed

    Portela, R; Tessinari, R F; Suárez, S; Rasmussen, S B; Hernández-Alonso, M D; Canela, M C; Avila, P; Sánchez, B

    2012-05-01

    The photocatalytic efficiency of TiO(2)-SiMgO(x) plates to oxidize H(2)S was first evaluated in a flat laboratory reactor with 50 mL min(-1) synthetic air containing 100 ppm H(2)S in the presence of humidity. The use of the photocatalyst-adsorbent hybrid material enhanced the photocatalytic activity in terms of pollutant conversion, selectivity, and catalyst lifetime compared to previous H(2)S tests with pure TiO(2) because total H(2)S elimination was maintained for more than 30 operating hours with SO(2) appearing in the outlet as reaction product only after 18 h. Subsequently, the hybrid material was successfully tested in a photoreactor prototype to treat real polluted air in a wastewater treatment plant. For this purpose, a new tubular photocatalytic reactor that may use solar radiation in combination with artificial radiation was designed; the lamp was turned on when solar UV-A irradiance was below 20 W m(-2), which was observed to be the minimum value to ensure 100% conversion. The efficient distribution of the opaque photocatalyst inside the tubular reactor was achieved by using especially designed star-shaped structures. These structures were employed for the arrangement of groups of eight TiO(2)-SiMgO(x) plates in easy-to-handle channelled units obtaining an adequate flow regime without shading. The prototype continuously removed during one month and under real conditions the H(2)S contained in a 1 L min(-1) air current with a variable inlet concentration in the range of tens of ppmv without release of SO(2).

  8. Heterogeneous photocatalytic oxidation of organics for air purification by near UV irradiated titanium dioxide.

    PubMed

    Hager, S; Bauer, R

    1999-03-01

    The photocatalytic degradation of high concentrations of various organic pollutants (acetone, 2-propanol and toluene) in dry and humid air streams was carried out using a specially designed photoreactor based on the UV-TiO2 principle. The influence of several parameters which control the destruction efficiency (flow rate, initial contaminant and water vapour concentration, temperature and light intensity) has been studied. The conversion was maximal at room temperature, low flow rates and low initial contaminant concentrations. The presence of water in the inlet stream strongly affected the performance of the catalyst. The primary oxidation product of 2-propanol was acetone.

  9. Are TiO2 nanotubes worth using in photocatalytic purification of air and water?

    PubMed

    Pichat, Pierre

    2014-09-19

    Titanium dioxide nanotubes (TNT) have mainly been used in dye sensitized solar cells, essentially because of a higher transport rate of electrons from the adsorbed photo-excited dye to the Ti electrode onto which TNT instead of TiO2 nanoparticles (TNP) are attached. The dimension ranges and the two main synthesis methods of TNT are briefly indicated here. Not surprisingly, the particular and regular texture of TNT was also expected to improve the photocatalytic efficacy for pollutant removal in air and water with respect to TNP. In this short review, the validity of this expectation is checked using the regrettably small number of literature comparisons between TNT and commercialized TNP referring to films of similar thickness and layers or slurries containing an equal TiO2 mass. Although the irradiated geometrical area differed for each study, it was identical for each comparison considered here. For the removal of toluene (methylbenzene) or acetaldehyde (ethanal) in air, the average ratio of the efficacy of TNT over that of TiO2 P25 was about 1.5, and for the removal of dyes in water, it was around 1. This lack of major improvement with TNT compared to TNP could partially be due to TNT texture disorders as seems to be suggested by the better average performance of anodic oxidation-prepared TNT. It could also come from the fact that the properties influencing the efficacy are more numerous, their interrelations more complex and their effects more important for pollutant removal than for dye sensitized solar cells and photoelectrocatalysis where the electron transport rate is the crucial parameter.

  10. House-plant placement for indoor air purification and health benefits on asthmatics

    PubMed Central

    Kim, Ho-Hyun; Yang, Ji-Yeon; Lee, Jae-Young; Park, Jung-Won; Kim, Kwang-Jin; Lim, Byung-Seo; Lee, Geon-Woo; Lee, Si-Eun; Shin, Dong-Chun; Lim, Young-Wook

    2014-01-01

    Objectives Some plants were placed in indoor locations frequented by asthmatics in order to evaluate the quality of indoor air and examine the health benefits to asthmatics. Methods The present study classified the participants into two groups: households of continuation and households of withdrawal by a quasi-experimental design. The households of continuation spent the two observation terms with indoor plants, whereas the households of withdrawal passed the former observation terms with indoor plants and went through the latter observation term without any indoor plants. Results The household of continuation showed a continual decrease in the indoor concentrations of volatile organic compounds (VOCs) during the entire observation period, but the household of withdrawal performed an increase in the indoor concentrations of VOCs, except formaldehyde and toluene during the latter observation term after the decrease during the former observation term. Peak expiratory flow rate (PEFR) increased in the households of continuation with the value of 13.9 L/min in the morning and 20.6 L/ min in the evening, but decreased in the households of withdrawal with the value of -24.7 L/min in the morning and -30.2 L/min in the evening in the first experimental season. All of the households exhibited a decrease in the value of PEFR in the second experimental season. Conclusions Limitations to the generalizability of findings regarding the presence of plants indoors can be seen as a more general expression of such a benefit of human-environment relations. PMID:25384387

  11. Visible Light Responsive Catalysts Using Quantum Dot-Modified Ti02 for Air and Water Purification

    NASA Technical Reports Server (NTRS)

    Coutts, Janelle L.; Levine, Lanfang H.; Richards, Jeffrey T.; Hintze, paul; Clausen, Christian

    2012-01-01

    The method of photocatalysis utilizing titanium dioxide, TiO2, as the catalyst has been widely studied for trace contaminant control for both air and water applications because of its low energy consumption and use of a regenerable catalyst. Titanium dioxide requires ultraviolet light for activation due to its band gap energy of 3.2 eV. Traditionally, Hg-vapor fluorescent light sources are used in PCO reactors and are a setback for the technology for space application due to the possibility of Hg contamination. The development of a visible light responsive (VLR) TiO2-based catalyst could lead to the use of solar energy in the visible region (approx.45% of the solar spectrum lies in the visible region; > 400 nm) or highly efficient LEDs (with wavelengths > 400 nm) to make PCO approaches more efficient, economical, and safe. Though VLR catalyst development has been an active area of research for the past two decades, there are few commercially available VLR catalysts; those that are available still have poor activity in the visible region compared to that in the UV region. Thus, this study was aimed at the further development of VLR catalysts by a new method - coupling of quantum dots (QD) of a narrow band gap semiconductor (e.g., CdS, CdSe, PbS, ZnSe, etc.) to the TiO2 by two preparation methods: 1) photodeposition and 2) mechanical alloying using a high-speed ball mill. A library of catalysts was developed and screened for gas and aqueous phase applications, using ethanol and 4-chlorophenol as the target contaminants, respectively. Both target compounds are well studied in photocatalytic systems serve as model contaminants for this research. Synthesized catalysts were compared in terms of preparation method, type of quantum dots, and dosage of quantum dots.

  12. PTR-MS assessment of photocatalytic and sorption-based purification of recirculated cabin air during simulated 7-h flights with high passenger density.

    PubMed

    Wisthaler, Armin; Strøm-Tejsen, Peter; Fang, Lei; Arnaud, Timothy J; Hansel, Armin; Märk, Tilmann D; Wyon, David P

    2007-01-01

    Four different air purification conditions were established in a simulated 3-row 21-seat section of an aircraft cabin: no air purifier; a photocatalytic oxidation unit with an adsorptive prefilter; a second photocatalytic unit with an adsorptive prefilter; and a two-stage sorption-based air filter (gas-phase absorption and adsorption). The air purifiers placed in the cabin air recirculation system were commercial prototypes developed for use in aircraft cabin systems. The four conditions were established in balanced order on 4 successive days of each of 4 successive weeks during simulated 7-h flights with 17 occupants. Proton-transfer reaction mass spectrometry was used to assess organic gas-phase pollutants and the performance of each air purifier. The concentration of most organic pollutants present in aircraft cabin air was efficiently reduced by all three units. The photocatalytic units were found to incompletely oxidize ethanol released by the wet wipes commonly supplied with airline mealsto produce unacceptably high levels of acetaldehyde and formaldehyde.

  13. Experimental investigation of the formaldehyde removal mechanisms in a dynamic botanical filtration system for indoor air purification.

    PubMed

    Wang, Zhiqiang; Pei, Jingjing; Zhang, Jensen S

    2014-09-15

    Botanical filtration has been proved to be effective for indoor gas pollutant removal. To understand the roles of different transport, storage and removal mechanism by a dynamic botanical air filter, a series of experimental investigations were designed and conducted in this paper. Golden Pothos (Epipremnum aureum) plants was selected for test, and its original soil or activated/pebbles root bed was used in different test cases. It was found that flowing air through the root bed with microbes dynamically was essential to obtain meaningful formaldehyde removal efficiency. For static potted plant as normally place in rooms, the clean air delivery rate (CADR), which is often used to quantify the air cleaning ability of portable air cleaners, was only ∼ 5.1m(3)/h per m(2) bed, while when dynamically with air flow through the bed, the CADR increased to ∼ 233 m(3)/h per m(2) bed. The calculated CADR due to microbial activity is ∼ 108 m(3)/h per m(2) bed. Moisture in the root bed also played an important role, both for maintaining a favorable living condition for microbes and for absorbing water-soluble compounds such as formaldehyde. The role of the plant was to introduce and maintain a favorable microbe community which effectively degraded the volatile organic compounds adsorbed or absorbed by the root bed. The presence of the plant increased the removal efficiency by a factor of two based on the results from the bench-scale root bed experiments.

  14. Portable neon purification system

    SciTech Connect

    Richardson, R.A.; Schmitt, R.L.

    1995-08-01

    This paper describes the principle design features of a portable neon purification system and the results of the system performance testing. Neon gas replaces air in the Ring Imaging Cherenkov detector without using vacuum, in experiment E781(SELEX) at Fermilab. The portable neon purification system purifies neon gas by, first purging air with CO{sub 2}, freezing the CO{sub 2}, then cryoadsorbing the remaining contaminants. The freezer removes carbon dioxide from a neon gas mixture down to a maximum concentration of 500 parts-per-million (ppm). The charcoal bed adsorber removes nitrogen from neon gas down to a maximum concentration of 100 ppm. The original RICH vessel was designed to hold vacuum but its photomultiplier tube plates were not.

  15. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  16. Visible-Light Responsive Catalysts Using Quantum Dot-Modified TiO2 for Air and Water Purification

    NASA Technical Reports Server (NTRS)

    Coutts, Janelle L.; Hintze, Paul E.; Clausen, Christian A.; Richards, Jeffrey T.

    2014-01-01

    Photocatalysis, the oxidation or reduction of contaminants by light-activated catalysts, utilizing titanium dioxide (TiO2) as the catalytic substrate has been widely studied for trace contaminant control in both air and water applications. The interest in this process is due primarily to its low energy consumption and capacity for catalyst regeneration. Titanium dioxide requires ultraviolet light for activation due to its relatively large band gap energy of 3.2 eV. Traditionally, Hg-vapor fluorescent light sources are used in PCO reactors; however, the use of mercury precludes the use of this PCO technology in a spaceflight environment due to concerns over crew Hg exposure.

  17. Hamiltonian purification

    SciTech Connect

    Orsucci, Davide; Burgarth, Daniel; Facchi, Paolo; Pascazio, Saverio; Nakazato, Hiromichi; Yuasa, Kazuya; Giovannetti, Vittorio

    2015-12-15

    The problem of Hamiltonian purification introduced by Burgarth et al. [Nat. Commun. 5, 5173 (2014)] is formalized and discussed. Specifically, given a set of non-commuting Hamiltonians (h{sub 1}, …, h{sub m}) operating on a d-dimensional quantum system ℋ{sub d}, the problem consists in identifying a set of commuting Hamiltonians (H{sub 1}, …, H{sub m}) operating on a larger d{sub E}-dimensional system ℋ{sub d{sub E}} which embeds ℋ{sub d} as a proper subspace, such that h{sub j} = PH{sub j}P with P being the projection which allows one to recover ℋ{sub d} from ℋ{sub d{sub E}}. The notions of spanning-set purification and generator purification of an algebra are also introduced and optimal solutions for u(d) are provided.

  18. Visible-Light-Responsive Catalysts Using Quantum Dot-Modified TiO2 for Air and Water Purification

    NASA Technical Reports Server (NTRS)

    Coutts, Janelle L.; Hintze, Paul E.; Clausen, Christian; Richards, Jeffrey Todd

    2014-01-01

    Photocatalysis, the oxidation or reduction of contaminants by light-activated catalysts, utilizing titanium dioxide (TiO2) as the catalytic substrate has been widely studied for trace contaminant control in both air and water applications. The interest in this process is due primarily to its low energy consumption and capacity for catalyst regeneration. Titanium dioxide requires ultraviolet light for activation due to its relatively large band gap energy of 3.2 eV. Traditionally, Hg-vapor fluorescent light sources are used in PCO reactors; however, the use of mercury precludes the use of this PCO technology in a spaceflight environment due to concerns over crew Hg exposure. The development of a visible-light responsive (VLR) TiO2-based catalyst would eliminate the concerns over mercury contamination. Further, VLR development would allow for the use of ambient visible solar radiation or highly efficient LEDs, both of which would make PCO approaches more efficient, flexible, economical, and safe. Though VLR catalyst development has been an active area of research for the past two decades, there are few commercially available VLR catalysts. Those VLR catalysts that are commercially available do not have adequate catalytic activity, in the visible region, to make them competitive with those operating under UV irradiation. This study was initiated to develop more effective VLR catalysts through a novel method in which quantum dots (QD) consisting of narrow band gap semiconductors (e.g., CdS, CdSe, PbS, ZnSe, etc.) are coupled to TiO2 via two preparation methods: 1) photodeposition and 2) mechanical alloying using a high-speed ball mill. A library of catalysts was developed and screened for gas and aqueous phase applications using ethanol and 4-chlorophenol as the target contaminants, respectively. Both target compounds are well studied in photocatalytic systems and served as model contaminants for this research. Synthesized catalysts were compared in terms of

  19. Polonium purification

    SciTech Connect

    Baker, J.D.

    1996-09-01

    Three processes for the purification of {sup 210}Po from irradiated bismuth targets are described. Safety equipment includes shielded hotcells for the initial separation from other activation products, gloveboxes for handling the volatile and highly toxic materials, and provisions for ventilation. All chemical separations must be performed under vacuum or in inerted systems. Two of the processes require large amounts of electricity; the third requires vessels made from exotic materials.

  20. Pool Purification

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Caribbean Clear, Inc. used NASA's silver ion technology as a basis for its automatic pool purifier. System offers alternative approach to conventional purification chemicals. Caribbean Clear's principal markets are swimming pool owners who want to eliminate chlorine and bromine. Purifiers in Caribbean Clear System are same silver ions used in Apollo System to kill bacteria, plus copper ions to kill algae. They produce spa or pool water that exceeds EPA Standards for drinking water.

  1. PURIFICATION PROCESS

    DOEpatents

    Wibbles, H.L.; Miller, E.I.

    1958-01-14

    This patent deals with the separation of uranium from molybdenum compounds, and in particular with their separation from ether solutions containing the molybdenum in the form of acids, such as silicomolybdic and phosphomolybdic acids. After the nitric acid leach of pitchblende, the molybdenum values present in the ore are found in the leach solution in the form of complex acids. The uranium bearing solution may be purified of this molybdenum content by comtacting it with activated charcoal. The purification is improved when the acidity of the solution is low ad agitation is also beneficial. The molybdenum may subsequently be recovered from the charcosl ad the charcoal reused.

  2. Water Purification

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Silver ionization water purification technology was originally developed for Apollo spacecraft. It was later used to cleanse swimming pools and has now been applied to industrial cooling towers and process coolers. Sensible Technologies, Inc. has added two other technologies to the system, which occupies only six square feet. It is manufactured in three capacities, and larger models are custom built on request. The system eliminates scale, corrosion, algae, bacteria and debris, and because of the NASA technology, viruses and waterborne bacteria are also destroyed. Applications include a General Motors cooling tower, amusement parks, ice manufacture and a closed-loop process cooling system.

  3. Thermochemical Analysis for Purification of Polysilicon Melts

    SciTech Connect

    Ho, Pauline: Gee, James M.

    1999-05-01

    Chemical Equilibrium calculations are presented that are relevant to the purification of molten silicon by gas-blowing. The equilibrium distributions of silicon, boron, phosphorus carbon and iron among the solid, liquid and gas phases are reported for a variety of added chemicals, temperatures and total pressures. The identities of the dominant chemical species for each element in each phase are also provided for these conditions. The added gases examined are O(2), air, water, wet air, HCl, Cl(2), Cl(2)/O(2), SiCl(4), NH(3), NH(4)OH, and NH(4)Cl. These calculations suggest possible purification schemes, although kinetic or transport limitations may prove to be significant

  4. Hydrogen gas purification apparatus

    SciTech Connect

    Yanagihara, N.; Gamo, T.; Iwaki, T.; Moriwaki, Y.

    1984-04-24

    A hydrogen gas purification apparatus which includes at least one set of two hydrogen purification containers coupled to each other for heat exchanging therebetween, each of the hydrogen purification containers containing a hydrogen absorbing alloy. The hydrogen gas purification apparatus is so arranged as to cause hydrogen gas to be selectively desorbed from and absorbed into the hydrogen absorbing alloy by the amount of heat produced when the hydrogen gas is selectively absorbed into and desorbed from the hydrogen absorbing alloy.

  5. Purification process for vertically aligned carbon nanofibers

    NASA Technical Reports Server (NTRS)

    Nguyen, Cattien V.; Delziet, Lance; Matthews, Kristopher; Chen, Bin; Meyyappan, M.

    2003-01-01

    Individual, free-standing, vertically aligned multiwall carbon nanotubes or nanofibers are ideal for sensor and electrode applications. Our plasma-enhanced chemical vapor deposition techniques for producing free-standing and vertically aligned carbon nanofibers use catalyst particles at the tip of the fiber. Here we present a simple purification process for the removal of iron catalyst particles at the tip of vertically aligned carbon nanofibers derived by plasma-enhanced chemical vapor deposition. The first step involves thermal oxidation in air, at temperatures of 200-400 degrees C, resulting in the physical swelling of the iron particles from the formation of iron oxide. Subsequently, the complete removal of the iron oxide particles is achieved with diluted acid (12% HCl). The purification process appears to be very efficient at removing all of the iron catalyst particles. Electron microscopy images and Raman spectroscopy data indicate that the purification process does not damage the graphitic structure of the nanotubes.

  6. Air purification equipment combining a filter coated by silver nanoparticles with a nano-TiO2 photocatalyst for use in hospitals

    NASA Astrophysics Data System (ADS)

    Son Le, Thanh; Hien Dao, Trong; Nguyen, Dinh Cuong; Chau Nguyen, Hoai; Balikhin, I. L.

    2015-03-01

    X-ray diffraction, scanning electron microscopy and transmission electron microscopy showed that TiO2 particles synthesized by a sol-gel procedure exhibited uniform size about 16-20 nm. This nanopowder was deposited on a porous quartz tube (D = 74 mm, L = 418 mm, deposit density ˜16.4 mg cm-2) through an intermediate adhesive polymethylmethacrylate layer to manufacture a photocatalytic filter tube. A polypropylene pre-filter was coated with a nanosilver layer (particle size ˜20 nm) prepared by aqueous molecular solution method. An air cleaner of 250 m3 h-1 capacity equipped with this pre-filter, an electrostatic air filter, 4 photocatalytic filter tubes and 4 UV-A lamps (36 W) presented the high degradation ability for certain volatile organic compounds (VOCs), bacteria and fungi. The VOCs degradation performances of the equipment with respect to divers compounds are different: in a 10 m3 box, 91.6% of butanol was removed within 55 min, 80% of acetone within 100 min, 70.1% of diethyl ether within 120 min and only 43% of benzene was oxidized within 150 min. Over 99% of bacteria and fungi were killed after the air passage through the equipment. For application, it was placed in the intensive care room (volume of 125 m3) of E hospital in Hanoi; 69% of bacteria and 63% of fungi were killed within 6 h.

  7. Immobilization of polymeric g-C3N4 on structured ceramic foam for efficient visible light photocatalytic air purification with real indoor illumination.

    PubMed

    Dong, Fan; Wang, Zhenyu; Li, Yuhan; Ho, Wing-Kei; Lee, S C

    2014-09-02

    The immobilization of a photocatalyst on a proper support is pivotal for practical environmental applications. In this work, graphitic carbon nitride (g-C3N4) as a rising visible light photocatalyst was first immobilized on structured Al2O3 ceramic foam by a novel in situ approach. Immobilized g-C3N4 was applied for photocatalytic removal of 600 ppb level NO in air under real indoor illumination of an energy-saving lamp. The photocatalytic activity of immobilized g-C3N4 was gradually improved as the pyrolysis temperature was increased from 450 to 600 °C. The optimized conditions for g-C3N4 immobilization on Al2O3 supports can be achieved at 600 °C for 2 h. The NO removal ratio could reach up to 77.1%, exceeding that of other types of well-known immobilized photocatalysts. Immobilized g-C3N4 was stable in activity and can be used repeatedly without deactivation. The immobilization of g-C3N4 on Al2O3 ceramic foam was found to be firm enough to overwhelm the continuous air flowing, which can be ascribed to the special chemical interaction between g-C3N4 and Al2O3. On the basis of the 5,5'-dimethyl-1-pirroline-N-oxide electron spin resonance (DMPO ESR) spin trapping and reaction intermediate monitoring, the active species produced from g-C3N4 under illumination were confirmed and the reaction mechanism of photocatalytic NO oxidation by g-C3N4 was revealed. The present work could provide new perspectives for promoting large-scale environmental applications of supported photocatalysts.

  8. The Borexino purification system

    NASA Astrophysics Data System (ADS)

    Benziger, Jay

    2014-05-01

    Purification of 278 tons of liquid scintillator and 889 tons of buffer shielding for the Borexino solar neutrino detector is performed with a system of combined distillation, water extraction, gas stripping and filtration. The purification system removed K, U and Th by distillation of the pseudocumene solvent and the PPO fluor. Noble gases, Rn, Kr and Ar were removed by gas stripping. Distillation was also employed to remove optical impurities and reduce the attenuation of scintillation light. The success of the purification system has facilitated the first time real time detection of low energy solar neutrinos.

  9. Effect of chlorine purification on oxidation resistance of some mechanical carbons

    NASA Technical Reports Server (NTRS)

    Wisander, D. W.; Allen, G. P.

    1974-01-01

    Oxidation experiments were conducted with some experimental and commercial mechanical carbons at 650 C in dry air flowing at 28 cc/sec (STP). In general, purification of these carbon-graphites with chlorine at 2800 C improved oxidation resistance. Additional improvements in oxidation resistance were obtained from purification followed by an antioxidant (zinc phosphate) treatment. For the commercial materials, purification alone gave greater oxidation resistance than the antioxidant treatment alone. The reverse, however, was the case for the experimental materials.

  10. Air Pollution, Causes and Cures.

    ERIC Educational Resources Information Center

    Manufacturing Chemists Association, Washington, DC.

    This commentary on sources of air pollution and air purification treatments is accompanied by graphic illustrations. Sources of carbon monoxide, sulfur oxides, nitrogen oxides, and hydrocarbons found in the air are discussed. Methods of removing these pollutants at their source are presented with cut-away diagrams of the facilities and technical…

  11. Succinonitrile Purification Facility

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Succinonitrile (SCN) Purification Facility provides succinonitrile and succinonitrile alloys to several NRA selected investigations for flight and ground research at various levels of purity. The purification process employed includes both distillation and zone refining. Once the appropriate purification process is completed, samples are characterized to determine the liquidus and/or solidus temperature, which is then related to sample purity. The lab has various methods for measuring these temperatures with accuracies in the milliKelvin to tenths of milliKelvin range. The ultra-pure SCN produced in our facility is indistinguishable from the standard material provided by NIST to well within the stated +/- 1.5mK of the NIST triple point cells. In addition to delivering material to various investigations, our current activities include process improvement, characterization of impurities and triple point cell design and development. The purification process is being evaluated for each of the four vendors to determine the efficacy of each purification step. We are also collecting samples of the remainder from distillation and zone refining for analysis of the constituent impurities. The large triple point cells developed will contain SCN with a melting point of 58.0642 C +/- 1.5mK for use as a calibration standard for Standard Platinum Resistance Thermometers (SPRTs).

  12. Ribonucleic acid purification.

    PubMed

    Martins, R; Queiroz, J A; Sousa, F

    2014-08-15

    Research on RNA has led to many important biological discoveries and improvement of therapeutic technologies. From basic to applied research, many procedures employ pure and intact RNA molecules; however their isolation and purification are critical steps because of the easy degradability of RNA, which can impair chemical stability and biological functionality. The current techniques to isolate and purify RNA molecules still have several limitations and the requirement for new methods able to improve RNA quality to meet regulatory demands is growing. In fact, as basic research improves the understanding of biological roles of RNAs, the biopharmaceutical industry starts to focus on them as a biotherapeutic tools. Chromatographic bioseparation is a high selective unit operation and is the major option in the purification of biological compounds, requiring high purity degree. In addition, its application in biopharmaceutical manufacturing is well established. This paper discusses the importance and the progress of RNA isolation and purification, considering RNA applicability both in research and clinical fields. In particular and in view of the high specificity, affinity chromatography has been recently applied to RNA purification processes. Accordingly, recent chromatographic investigations based on biorecognition phenomena occurring between RNA and amino acids are focused. Histidine and arginine have been used as amino acid ligands, and their ability to isolate different RNA species demonstrated a multipurpose applicability in molecular biology analysis and RNA therapeutics preparation, highlighting the potential contribution of these methods to overcome the challenges of RNA purification.

  13. Purification of genuine multipartite entanglement

    SciTech Connect

    Huber, Marcus; Plesch, Martin

    2011-06-15

    In tasks where multipartite entanglement plays a central role, state purification is, due to inevitable noise, a crucial part of the procedure. We consider a scenario exploiting the multipartite entanglement in a straightforward multipartite purification algorithm and compare it to bipartite purification procedures combined with state teleportation. While complete purification requires an infinite amount of input states in both cases, we show that for an imperfect output fidelity the multipartite procedure exhibits a major advantage in terms of input states used.

  14. Application of high energy chemistry methods for purification of water and air (on the basis of the materials of the I International Conference on Advanced Oxidation Technologies for Water and Air Remediation)

    SciTech Connect

    Pikaev, A.K.

    1995-01-01

    The I International Conference on Advanced Oxidation Technologies for Water and Air Remediation was held from June 25-30, 1994, in London (province of Ontario, Canada). Dr. H. Al-Ekabi (Canada) was the chairman of Organizing Committee. Over 350 specialists from Russia, USA, Canada, Japan, Germany, France, Italy, Great Britain, Poland, Switzerland, Holland, People`s Republic of China, Austria, Finland, South Korea, Spain, Hong Kong, Denmark, Taiwan, Belgium, and Iraq took part. During the conference there was also an exhibition, at which several companies demonstrated products which were related to the themes of the conference. About 200 invited and contributed reports and poster communications were presented, evaluated and discussed. There were also three panel discussions about governmental ecological programs, the transfer of oxidation technologies, etc.

  15. Fully automated protein purification

    PubMed Central

    Camper, DeMarco V.; Viola, Ronald E.

    2009-01-01

    Obtaining highly purified proteins is essential to begin investigating their functional and structural properties. The steps that are typically involved in purifying proteins can include an initial capture, intermediate purification, and a final polishing step. Completing these steps can take several days and require frequent attention to ensure success. Our goal was to design automated protocols that will allow the purification of proteins with minimal operator intervention. Separate methods have been produced and tested that automate the sample loading, column washing, sample elution and peak collection steps for ion-exchange, metal affinity, hydrophobic interaction and gel filtration chromatography. These individual methods are designed to be coupled and run sequentially in any order to achieve a flexible and fully automated protein purification protocol. PMID:19595984

  16. Water purification in Borexino

    SciTech Connect

    Giammarchi, M.; Balata, M.; Ioannucci, L.; Nisi, S.; Goretti, A.; Ianni, A.; Miramonti, L.

    2013-08-08

    Astroparticle Physics and Underground experiments searching for rare nuclear events, need high purity materials to act as detectors or detector shielding. Water has the advantage of being cheap, dense and easily available. Most of all, water can be purified to the goal of obatining a high level of radiopurity. Water Purification can be achieved by means of a combination of processes, including filtration, reverse osmosis, deionization and gas stripping. The Water Purification System for the Borexino experiment, will be described together with its main performances.

  17. Functionalized Organosilicate Sorbents for Air Purification

    DTIC Science & Technology

    2013-12-23

    synthesized for reactive capture of targets. ADC-10 focused on incorporation of carbonyls for reactive removal of ammonia . CAR-40 focused on...16 Fig. 12 Ammonia breakthrough for E50 sorbents...23 Fig. 21 Ammonia breakthrough for the Cu DIX materials

  18. Bacterial inclusion body purification.

    PubMed

    Seras-Franzoso, Joaquin; Peternel, Spela; Cano-Garrido, Olivia; Villaverde, Antonio; García-Fruitós, Elena

    2015-01-01

    Purification of bacterial inclusion bodies (IBs) is gaining importance due to the raising of novel applications for this type of submicron particulate protein clusters, with potential uses in the biomedical field among others. Here, we present two optimized methods to purify IBs adapting classical procedures to the material nature as well as the requirements of its final application.

  19. Blood purification for intoxication.

    PubMed

    Nakae, Hajime

    2010-01-01

    Blood purification is administered in cases of acute intoxication when the substance causing the intoxication is to be eliminated or when the substance leads to a case of organ dysfunction, such as in renal or hepatic failure. The causative substances cover a wide range, from medical drugs or agrichemicals to natural poisons (such as poisonous mushrooms). In removing these substances, gastric lavage, activated carbon administration, laxative administration or enema cleaning are the preferred methods, and blood purification is not routinely conducted. However, when the causative substance is unknown or when there are several causative substances, it is not easy to immediately grasp the disposition of the patient and so judge whether or not blood purification should be performed. In such cases, blood purification must be conducted in a timely manner and in accordance with the crisis management principle of 'prepare for the worst'. In general, substances whose molecular weight is within the removal spectrum, having a small distribution volume and a low protein-binding rate, are easier to remove. For substances with high protein-binding rates, albumin dialysis (MARS and Prometheus) is performed in order to remove albumin-binding substances. Since MARS and Prometheus have not been introduced in Japan, plasma diafiltration, employing selective plasma filtration with dialysis, is a practical alternative.

  20. Diesel exhaust-gas purification system

    SciTech Connect

    Doherty, B.J.

    1982-07-01

    The design of a diesel exhaust gas purification system is presented. It will provide 2000 scfm of dry, anerobic gas (essentially nitrogen) for use in air drilling operations where drill pipe corrosion is a problem, such as geothermal applications. The system is operable in the field and may be transported via highways. It will operate at ambient temperatures up to 110/sup 0/F and requires no water - diesel fuel is used to combust excess oxygen and to generate electricity for the system. Gas production costs, including capital amortization, operations, fuel and maintenance (for reasonable utilization) are about $1.50/1000 scf.

  1. Water Purification Systems

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A water purification/recycling system developed by Photo-Catalytics, Inc. (PCI) for NASA is commercially available. The system cleanses and recycles water, using a "photo-catalysis" process in which light or radiant energy sparks a chemical reaction. Chemically stable semiconductor powders are added to organically polluted water. The powder absorbs ultraviolet light, and pollutants are oxidized and converted to carbon dioxide. Potential markets for the system include research and pharmaceutical manufacturing applications, as well as microchip manufacture and wastewater cleansing.

  2. Californium purification and electrodeposition

    DOE PAGES

    Burns, Jonathan D.; Van Cleve, Shelley M.; Smith, Edward Hamilton; ...

    2014-11-30

    The staff at the Radiochemical Engineering Development Center, located at Oak Ridge National Laboratory, produced a 6.3 ± 0.4 GBq (1.7 ± 0.1 Ci) 252Cf source for the Californium Rare Isotope Breeder Upgrade (CARIBU) project at Argonne National Laboratory’s Argonne Tandem Linac Accelerator System. The source was produced by electrodeposition of a 252Cf sample onto a stainless steel substrate, which required material free from excess mass for efficient deposition. The resulting deposition was the largest reported 252Cf electrodeposition source ever produced. Several different chromatographic purification methods were investigated to determine which would be most effective for final purification of themore » feed material used for the CARIBU source. The separation of lanthanides from the Cf was of special concern. Furthermore, the separation, using 145Sm, 153Gd, and 249Cf as tracers, was investigated using BioRad AG 50X8 in α-hydroxyisobutyric acid, Eichrom LN resin in both HNO3 and HCl, and Eichrom TEVA resin in NH4SCN. The TEVA NH4SCN system was found to completely separate 145Sm and 153Gd from 249Cf and was adopted into the purification process used in purifying the 252Cf.« less

  3. Probabilistic theories with purification

    SciTech Connect

    Chiribella, Giulio; D'Ariano, Giacomo Mauro; Perinotti, Paolo

    2010-06-15

    We investigate general probabilistic theories in which every mixed state has a purification, unique up to reversible channels on the purifying system. We show that the purification principle is equivalent to the existence of a reversible realization of every physical process, that is, to the fact that every physical process can be regarded as arising from a reversible interaction of the system with an environment, which is eventually discarded. From the purification principle we also construct an isomorphism between transformations and bipartite states that possesses all structural properties of the Choi-Jamiolkowski isomorphism in quantum theory. Such an isomorphism allows one to prove most of the basic features of quantum theory, like, e.g., existence of pure bipartite states giving perfect correlations in independent experiments, no information without disturbance, no joint discrimination of all pure states, no cloning, teleportation, no programming, no bit commitment, complementarity between correctable channels and deletion channels, characterization of entanglement-breaking channels as measure-and-prepare channels, and others, without resorting to the mathematical framework of Hilbert spaces.

  4. Californium purification and electrodeposition

    SciTech Connect

    Burns, Jonathan D.; Van Cleve, Shelley M.; Smith, Edward Hamilton; Boll, Rose Ann

    2014-11-30

    The staff at the Radiochemical Engineering Development Center, located at Oak Ridge National Laboratory, produced a 6.3 ± 0.4 GBq (1.7 ± 0.1 Ci) 252Cf source for the Californium Rare Isotope Breeder Upgrade (CARIBU) project at Argonne National Laboratory’s Argonne Tandem Linac Accelerator System. The source was produced by electrodeposition of a 252Cf sample onto a stainless steel substrate, which required material free from excess mass for efficient deposition. The resulting deposition was the largest reported 252Cf electrodeposition source ever produced. Several different chromatographic purification methods were investigated to determine which would be most effective for final purification of the feed material used for the CARIBU source. The separation of lanthanides from the Cf was of special concern. Furthermore, the separation, using 145Sm, 153Gd, and 249Cf as tracers, was investigated using BioRad AG 50X8 in α-hydroxyisobutyric acid, Eichrom LN resin in both HNO3 and HCl, and Eichrom TEVA resin in NH4SCN. The TEVA NH4SCN system was found to completely separate 145Sm and 153Gd from 249Cf and was adopted into the purification process used in purifying the 252Cf.

  5. Oxygen Sag and Stream Purification.

    ERIC Educational Resources Information Center

    Neal, Larry; Herwig, Roy

    1978-01-01

    Presents a literature review of water quality related to oxygen sag and stream purification, covering publications of 1976-77. This review includes: (1) self-purification models; (2) oxygen demand; and (3) reaeration and oxygen transfer. A list of 60 references is also presented. (HM)

  6. Process for purification of silicon

    NASA Technical Reports Server (NTRS)

    Rath, H. J.; Sirtl, E.; Pfeiffer, W.

    1981-01-01

    The purification of metallurgically pure silicon having a silicon content of more than 95% by weight is accomplished by leaching with an acidic solution which substantially does not attack silicon. A mechanical treatment leading to continuous particle size reduction of the granulated silicon to be purified is combined with the chemical purification step.

  7. Purification of Clostridium toxoids.

    PubMed

    Buchowicz, I; Hay, M; Schiller, B; Korbecki, M; Sochańska, R

    1977-01-01

    A two-step fractionation procedure was applied for purification and concentration of the individual Clostridium toxoids. The toxoids were precipitated with hydrochloric acid in the presence of sodium sextametaphosphate, then antigenic fractions were separated from inactive contaminants by Sephadex G-75 filtration. Specific activity of the preparations thus obtained, as determined by Mancini radial immunodiffusion, was 150--565 binding units per mg of protein nitrogen for Clostridium perfringens toxoid, 204--352 binding units for Clostridium oedematiens toxoid and 26.6 -- 51.2 binding units for Clostridium septicum toxoid.

  8. Water Purification Product

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Ecomaster, an affiliate of BioServe Space Technologies, this PentaPure technology has been used to purify water for our nation's Space Shuttle missions since 1981. WTC-Ecomaster of Mirneapolis, Minnesota manufactures water purification systems under the brand name PentaPure (TM). BioServe researcher Dr. George Marchin, of Kansas State University, first demonstrated the superiority of this technology and licensed it to WTC. Marchin continues to perform microgravity research in the development of new technologies for the benefit of life on Earth.

  9. URANIUM PURIFICATION PROCESS

    DOEpatents

    Ruhoff, J.R.; Winters, C.E.

    1957-11-12

    A process is described for the purification of uranyl nitrate by an extraction process. A solution is formed consisting of uranyl nitrate, together with the associated impurities arising from the HNO/sub 3/ leaching of the ore, in an organic solvent such as ether. If this were back extracted with water to remove the impurities, large quantities of uranyl nitrate will also be extracted and lost. To prevent this, the impure organic solution is extracted with small amounts of saturated aqueous solutions of uranyl nitrate thereby effectively accomplishing the removal of impurities while not allowing any further extraction of the uranyl nitrate from the organic solvent. After the impurities have been removed, the uranium values are extracted with large quantities of water.

  10. Recovery and purification of ethylene

    DOEpatents

    Reyneke, Rian; Foral, Michael J.; Lee, Guang-Chung; Eng, Wayne W. Y.; Sinclair, Iain; Lodgson, Jeffery S.

    2008-10-21

    A process for the recovery and purification of ethylene and optionally propylene from a stream containing lighter and heavier components that employs an ethylene distributor column and a partially thermally coupled distributed distillation system.

  11. Simple and efficient purification of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Dettlaff-Weglikowska, U.; Roth, S.

    2001-11-01

    Single-walled carbon nanotubes (SWNTs) produced by arc-discharge and laser ablation were purified by selective oxidation in air at 350°C and subsequent HCl treatment at 120°C. Raw soot and purified samples were analyzed with X-ray diffraction, thermogravimetric analysis (TGA), chemical analysis and transmission electron microscopy (TEM). The optimized purification temperature of SWNTs in air, 350°C, has been determined from TGA curves. Repetition of the oxidation and acid treatment, larger than 95 wt.% purity of SWNTs has been obtained.

  12. [Biocenotic dynamics of liquid sewage in the process of its biological purification at aeration stations].

    PubMed

    Kalina, G P; Vinogradova, L A; Gipp, E K

    1975-08-01

    A study was made of biological purification of sewage at the aeration stations on the quantitative composition of the main indicator microbes--of bacteria of the coliform group and of the fecal coliform bacilli, enterococci, Proteus, and also pathogenic enterobacteria. There was found a difference in the behaviour of different species of Proteus, i.e. reduction in the process of purification in the numbers of Pr. mirabilis, and a sharp elevation of Pr. morganii content. There was noted an insignificant amount of Pr. vulgaris both before and after the biological purification. It was found that dynamics of biocenosis was influenced by air temperature at the time of collection of the samples. A possibility of reproduction of coliform bacilli serving as one of the factors of autopurification of sewage during the biological purification was confirmed.

  13. Water Purification Systems

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Clearwater Pool Technologies employs NASA-developed silver/copper ionization to purify turtle and dolphin tanks, cooling towers, spas, water recycling systems, etc. The pool purifier consists of a microcomputer to monitor water conditions, a pair of metallic electrodes, and a rheostat controller. Ions are generated by passing a low voltage current through the electrodes; the silver ions kill the bacteria, and the copper ions kill algae. This technology has found broad application because it offers an alternative to chemical disinfectants. It was originally developed to purify water on Apollo spacecraft. Caribbean Clear has been using NASA's silver ionization technology for water purification for more than a decade. Two new products incorporate advancements of the basic technology. One is the AquaKing, a system designed for areas with no source of acceptable drinking water. Another is the Caribbean Clear Controller, designed for commercial pool and water park applications where sanitizing is combined with feedback control of pH and an oxidizer, chlorine or bromine. The technology was originally developed to purify water on Apollo spacecraft.

  14. Toll-Booth Purification

    NASA Technical Reports Server (NTRS)

    1977-01-01

    NASA's Technology Application Team at Stanford Research Institute searched available information and suggested a transfer of clean-room technology employing the use of the same laminar flow techniques found in environmental control systems of clean rooms used for contamination-free assembly of precision aerospace equipment. That information, from technology originally developed by NASA and the Energy Research & Development Administration was incorporated in the design of a prototype toll booth purifier. The draft-free design includes a "diffusor", which blows clean air out the toll booth doorway, thus retarding the infiltration of contaminated air. The net effect is a decrease in the toll collector's inhalation of exhaust fumes. The Washington Department of Highways installed the prototype system in a toll booth at the Evergreen Point Bridge near Seattle. After a successful two-year test, the department now has equipped all 10 of the bridge's toll booths with the air purifiers.

  15. Rapid purification of recombinant histones.

    PubMed

    Klinker, Henrike; Haas, Caroline; Harrer, Nadine; Becker, Peter B; Mueller-Planitz, Felix

    2014-01-01

    The development of methods to assemble nucleosomes from recombinant histones decades ago has transformed chromatin research. Nevertheless, nucleosome reconstitution remains time consuming to this day, not least because the four individual histones must be purified first. Here, we present a streamlined purification protocol of recombinant histones from bacteria. We termed this method "rapid histone purification" (RHP) as it circumvents isolation of inclusion bodies and thereby cuts out the most time-consuming step of traditional purification protocols. Instead of inclusion body isolation, whole cell extracts are prepared under strongly denaturing conditions that directly solubilize inclusion bodies. By ion exchange chromatography, the histones are purified from the extracts. The protocol has been successfully applied to all four canonical Drosophila and human histones. RHP histones and histones that were purified from isolated inclusion bodies had similar purities. The different purification strategies also did not impact the quality of octamers reconstituted from these histones. We expect that the RHP protocol can be readily applied to the purification of canonical histones from other species as well as the numerous histone variants.

  16. Exhaust purification with on-board ammonia production

    DOEpatents

    Robel, Wade J.; Driscoll, James J.; Coleman, Gerald N.; Knox, Kevin J.

    2009-06-30

    A power source is provided for use with selective catalytic reduction systems for exhaust-gas purification. The power source includes a first cylinder group with a first air-intake passage and a first exhaust passage, and a second cylinder group with a second air-intake passage and a second exhaust passage. The second air-intake passage is fluidly isolated from the first air-intake passage. A fuel-supply device may be configured to supply fuel into the first exhaust passage, and a catalyst may be disposed downstream of the fuel-supply device to convert at least a portion of the exhaust stream in the first exhaust passage into ammonia.

  17. Entanglement purification with double selection

    SciTech Connect

    Fujii, Keisuke; Yamamoto, Katsuji

    2009-10-15

    We investigate an entanglement purification protocol with double-selection process, which works under imperfect local operations. Compared with the usual protocol with single selection, this double-selection method has higher noise thresholds for the local operations and quantum communication channels and achieves higher fidelity of purified states. It also provides a yield comparable to that of the usual protocol with single selection. We discuss on general grounds how some of the errors which are introduced by local operations are left as intrinsically undetectable. The undetectable errors place a general upper bound on the purification fidelity. The double selection is a simple method to remove all the detectable errors in the first order, so that the upper bound on the fidelity is achieved in the low-noise regime. The double selection is further applied to purification of multipartite entanglement such as two-colorable graph states.

  18. Purification of 70S ribosomes.

    PubMed

    Rivera, Maria C; Maguire, Bruce; Lake, James A

    2015-03-02

    Here we describe the further purification of prokaryotic ribosomal particles obtained after the centrifugation of a crude cell lysate through a sucrose cushion. In this final purification step, a fraction containing ribosomes, ribosomal subunits, and polysomes is centrifuged through a 7%-30% (w/w) linear sucrose gradient to isolate tight couple 70S ribosomes, as well as dissociated 30S and 50S subunits. The tight couples fraction, or translationally active ribosome fraction, is composed of intact vacant ribosomes that can be used in cell-free translation systems.

  19. Purification and concentration of alphavirus.

    PubMed

    Lundstrom, Kenneth

    2012-07-01

    The alphaviruses Semliki Forest virus and Sindbis virus have been used frequently as expression vectors in vitro and in vivo. Usually, these systems consist of replication-deficient vectors that require a helper vector for packaging of recombinant particles. Replication-proficient vectors have also been engineered. Alphaviral vectors can be used as nucleic-acid-based vectors (DNA and RNA) or infectious particles. High-titer viral production is achieved in <2 d. The broad host range of alphaviruses facilitates studies in mammalian and nonmammalian cell lines, primary cells in culture, and in vivo. The strong preference for expression in neuronal cells has made alphaviruses particularly useful in neurobiological studies. Unfortunately, their strong cytotoxic effect on host cells, relatively short-term transient expression patterns, and the reasonably high cost of viral production remain drawbacks. However, novel mutant alphaviruses have showed reduced cytotoxicity and prolonged expression. Membrane proteins (which are generally difficult to express at high levels in recombinant systems) have generated high yields and facilitate applications in structural biology. Alphaviruses have also been applied in vaccine development and gene therapy. Generally, purification or concentration of alphaviruses is not necessary. However, for instance, the medium derived from baby hamster kidney cells is toxic to primary neurons in culture. Including a purification step substantially improves the survival of the transduced neurons. Viral concentration and purification may also be advantageous for in vivo studies in animal models and are mandatory for clinical applications. This protocol describes three methods for purification and concentration of alphavirus.

  20. Regenerable Incinerator Exhaust Purification and Trace Contaminant Control System

    NASA Technical Reports Server (NTRS)

    Finn, John E.; Cho, Shelia Y.; LeVan, M. Douglas

    2003-01-01

    In this novel approach to air purification, contaminants removed from a process air stream by a high-capacity adsorbent are displaced periodically by a warm, high-humidity, reverse-flow air stream. Displaced contaminants flow into a closed regeneration loop, in which organic compounds are oxidized catalytically and acid gases are removed by a gas- water contactor (which also serves as the source of the water vapor). These features are expected to result in a design that has few expendables and lower energy consumption than alternative regenerable techniques. The joint project between NASA Ames Research Center and Vanderbilt University has completed its third year. Breadboard development continues at NASA Ames, while Vanderbilt has completed most of its adsorption equilibria development. Vanderbilt has completed its fixed-bed apparatus for investigation of dynamic adsorption and desorption processes for trace organic compounds and water vapor, and is continuing its development of the mathematical model describing the column dynamics.

  1. Purification of Tetrahymena cytoskeletal proteins.

    PubMed

    Honts, Jerry E

    2012-01-01

    Like all eukaryotic cells, Tetrahymena thermophila contains a rich array of cytoskeletal proteins, some familiar and some novel. A detailed analysis of the structure, function, and interactions of these proteins requires procedures for purifying the individual protein components. Procedures for the purification of actin and tubulin from Tetrahymena are reviewed, followed by a description of a procedure that yields proteins from the epiplasmic layer and associated structures, including the tetrins. Finally, the challenges and opportunities for future advances are assessed.

  2. Melting And Purification Of Niobium

    NASA Astrophysics Data System (ADS)

    Moura, Hernane R. Salles; de Moura, Lourenço

    2007-08-01

    The aspects involved in the purification of niobium in Electron Beam Furnaces will be outlined and correlated with practical experience accumulated over 17 years of continuously producing high purity niobium metal and niobium-zirconium ingots at CBMM, meeting the needs for a wide range of uses. This paper also reports some comments regarding raw material requirements, the experience on cold hearth operation melting niobium and the production of large grains niobium ingots by CBMM with some comments of their main characteristics.

  3. Melting And Purification Of Niobium

    SciTech Connect

    Salles Moura, Hernane R.; Moura, Lourenco de

    2007-08-09

    The aspects involved in the purification of niobium in Electron Beam Furnaces will be outlined and correlated with practical experience accumulated over 17 years of continuously producing high purity niobium metal and niobium-zirconium ingots at CBMM, meeting the needs for a wide range of uses. This paper also reports some comments regarding raw material requirements, the experience on cold hearth operation melting niobium and the production of large grains niobium ingots by CBMM with some comments of their main characteristics.

  4. Radon assay and purification techniques

    SciTech Connect

    Simgen, Hardy

    2013-08-08

    Radon is a source of background in many astroparticle physics experiments searching for rare low energy events. In this paper an overview about radon in the field is given including radon detection techniques, radon sources and material screening with respect to radon emanation. Finally, also the problem of long-lived radioactive {sup 222}Rn-daughters and the question of gas purification from radon is addressed.

  5. Water purification using organic salts

    DOEpatents

    Currier, Robert P.

    2004-11-23

    Water purification using organic salts. Feed water is mixed with at least one organic salt at a temperature sufficiently low to form organic salt hydrate crystals and brine. The crystals are separated from the brine, rinsed, and melted to form an aqueous solution of organic salt. Some of the water is removed from the aqueous organic salt solution. The purified water is collected, and the remaining more concentrated aqueous organic salt solution is reused.

  6. SNO+ Scintillator Purification and Assay

    SciTech Connect

    Ford, R.; Vazquez-Jauregui, E.; Chen, M.; Chkvorets, O.; Hallman, D.

    2011-04-27

    We describe the R and D on the scintillator purification and assay methods and technology for the SNO+ neutrino and double-beta decay experiment. The SNO+ experiment is a replacement of the SNO heavy water with liquid scintillator comprised of 2 g/L PPO in linear alkylbenzene (LAB). During filling the LAB will be transported underground by rail car and purified by multi-stage distillation and steam stripping at a flow rate of 19 LPM. While the detector is operational the scintillator can be recirculated at 150 LPM (full detector volume in 4 days) to provide repurification as necessary by either water extraction (for Ra, K, Bi) or by functional metal scavenger columns (for Pb, Ra, Bi, Ac, Th) followed by steam stripping to remove noble gases and oxygen (Rn, O{sub 2}, Kr, Ar). The metal scavenger columns also provide a method for scintillator assay for ex-situ measurement of the U and Th chain radioactivity. We have developed ''natural'' radioactive spikes of Pb and Ra in LAB and use these for purification testing. Lastly, we present the planned operating modes and purification strategies and the plant specifications and design.

  7. Technological assumptions for biogas purification.

    PubMed

    Makareviciene, Violeta; Sendzikiene, Egle

    2015-01-01

    Biogas can be used in the engines of transport vehicles and blended into natural gas networks, but it also requires the removal of carbon dioxide, hydrogen sulphide, and moisture. Biogas purification process flow diagrams have been developed for a process enabling the use of a dolomite suspension, as well as for solutions obtained by the filtration of the suspension, to obtain biogas free of hydrogen sulphide and with a carbon dioxide content that does not exceed 2%. The cost of biogas purification was evaluated on the basis of data on biogas production capacity and biogas production cost obtained from local water treatment facilities. It has been found that, with the use of dolomite suspension, the cost of biogas purification is approximately six times lower than that in the case of using a chemical sorbent such as monoethanolamine. The results showed travelling costs using biogas purified by dolomite suspension are nearly 1.5 time lower than travelling costs using gasoline and slightly lower than travelling costs using mineral diesel fuel.

  8. SNO+ Scintillator Purification and Assay

    NASA Astrophysics Data System (ADS)

    Ford, R.; Chen, M.; Chkvorets, O.; Hallman, D.; Vázquez-Jáuregui, E.

    2011-04-01

    We describe the R&D on the scintillator purification and assay methods and technology for the SNO+ neutrino and double-beta decay experiment. The SNO+ experiment is a replacement of the SNO heavy water with liquid scintillator comprised of 2 g/L PPO in linear alkylbenzene (LAB). During filling the LAB will be transported underground by rail car and purified by multi-stage distillation and steam stripping at a flow rate of 19 LPM. While the detector is operational the scintillator can be recirculated at 150 LPM (full detector volume in 4 days) to provide repurification as necessary by either water extraction (for Ra, K, Bi) or by functional metal scavenger columns (for Pb, Ra, Bi, Ac, Th) followed by steam stripping to remove noble gases and oxygen (Rn, O2, Kr, Ar). The metal scavenger columns also provide a method for scintillator assay for ex-situ measurement of the U and Th chain radioactivity. We have developed "natural" radioactive spikes of Pb and Ra in LAB and use these for purification testing. Lastly, we present the planned operating modes and purification strategies and the plant specifications and design.

  9. Synergistic effect of Brønsted acid and platinum on purification of automobile exhaust gases

    PubMed Central

    Fu, Wei; Li, Xin-Hao; Bao, Hong-Liang; Wang, Kai-Xue; Wei, Xiao; Cai, Yi-Yu; Chen, Jie-Sheng

    2013-01-01

    The catalytic purification of automobile exhaust gases (CO, NOx and hydrocarbons) is one of the most practiced conversion processes used to lower the emissions and to reduce the air pollution. Nevertheless, the good performance of exhaust gas purification catalysts often requires the high consumption of noble metals such as platinum. Here we report that the Brønsted acid sites on the external surface of a microporous silicoaluminophosphate (SAPO) act as a promoter for exhaust gas purification, effectively cutting the loading amount of platinum in the catalyst without sacrifice of performance. It is revealed that in the Pt-loaded SAPO-CHA catalyst, there exists a remarkable synergistic effect between the Brønsted acid sites and the Pt nanoparticles, the former helping to adsorb and activate the hydrocarbon molecules for NO reduction during the catalytic process. The thermal stability of SAPO-CHA also makes the composite catalyst stable and reusable without activity decay. PMID:23907148

  10. Synergistic effect of Brønsted acid and platinum on purification of automobile exhaust gases.

    PubMed

    Fu, Wei; Li, Xin-Hao; Bao, Hong-Liang; Wang, Kai-Xue; Wei, Xiao; Cai, Yi-Yu; Chen, Jie-Sheng

    2013-01-01

    The catalytic purification of automobile exhaust gases (CO, NOx and hydrocarbons) is one of the most practiced conversion processes used to lower the emissions and to reduce the air pollution. Nevertheless, the good performance of exhaust gas purification catalysts often requires the high consumption of noble metals such as platinum. Here we report that the Brønsted acid sites on the external surface of a microporous silicoaluminophosphate (SAPO) act as a promoter for exhaust gas purification, effectively cutting the loading amount of platinum in the catalyst without sacrifice of performance. It is revealed that in the Pt-loaded SAPO-CHA catalyst, there exists a remarkable synergistic effect between the Brønsted acid sites and the Pt nanoparticles, the former helping to adsorb and activate the hydrocarbon molecules for NO reduction during the catalytic process. The thermal stability of SAPO-CHA also makes the composite catalyst stable and reusable without activity decay.

  11. Synergistic effect of Brønsted acid and platinum on purification of automobile exhaust gases

    NASA Astrophysics Data System (ADS)

    Fu, Wei; Li, Xin-Hao; Bao, Hong-Liang; Wang, Kai-Xue; Wei, Xiao; Cai, Yi-Yu; Chen, Jie-Sheng

    2013-08-01

    The catalytic purification of automobile exhaust gases (CO, NOx and hydrocarbons) is one of the most practiced conversion processes used to lower the emissions and to reduce the air pollution. Nevertheless, the good performance of exhaust gas purification catalysts often requires the high consumption of noble metals such as platinum. Here we report that the Brønsted acid sites on the external surface of a microporous silicoaluminophosphate (SAPO) act as a promoter for exhaust gas purification, effectively cutting the loading amount of platinum in the catalyst without sacrifice of performance. It is revealed that in the Pt-loaded SAPO-CHA catalyst, there exists a remarkable synergistic effect between the Brønsted acid sites and the Pt nanoparticles, the former helping to adsorb and activate the hydrocarbon molecules for NO reduction during the catalytic process. The thermal stability of SAPO-CHA also makes the composite catalyst stable and reusable without activity decay.

  12. Argon Collection And Purification For Proliferation Detection

    SciTech Connect

    Achey, R.; Hunter, D.

    2015-10-09

    In order to determine whether a seismic event was a declared/undeclared underground nuclear weapon test, environmental samples must be taken and analyzed for signatures that are unique to a nuclear explosion. These signatures are either particles or gases. Particle samples are routinely taken and analyzed under the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) verification regime as well as by individual countries. Gas samples are analyzed for signature gases, especially radioactive xenon. Underground nuclear tests also produce radioactive argon, but that signature is not well monitored. A radioactive argon signature, along with other signatures, can more conclusively determine whether an event was a nuclear test. This project has developed capabilities for collecting and purifying argon samples for ultra-low-background proportional counting. SRNL has developed a continuous gas enrichment system that produces an output stream containing 97% argon from whole air using adsorbent separation technology (the flow diagram for the system is shown in the figure). The vacuum swing adsorption (VSA) enrichment system is easily scalable to produce ten liters or more of 97% argon within twelve hours. A gas chromatographic separation using a column of modified hydrogen mordenite molecular sieve has been developed that can further purify the sample to better than 99% purity after separation from the helium carrier gas. The combination of these concentration and purification systems has the capability of being used for a field-deployable system for collecting argon samples suitable for ultra-low-background proportional counting for detecting nuclear detonations under the On-Site Inspection program of the CTBTO verification regime. The technology also has applications for the bulk argon separation from air for industrial purposes such as the semi-conductor industry.

  13. Ion exchange purification of scandium

    DOEpatents

    Herchenroeder, Laurie A.; Burkholder, Harvey R.

    1990-10-23

    An improvement in purification of scandium through ion exchange chromatography is disclosed in which the oxidation potential of the eluting solution is altered by the addition of potassium chlorate or ammonium chloride so that removal of contaminants is encouraged. The temperature, pH and concentration of the eluent HEDTA are controlled in order to maintain the scandium in the column while minimizing dilution of the scandium band. Recovery of scandium is improved by pumping dilute scandium over the column prior to stripping the scandium and precipitation. This eliminates the HEDTA ion and other monovalent cations contaminating the scandium band. This method maximizes recovery of scandium while maintaining purity.

  14. Ion exchange purification of scandium

    DOEpatents

    Herchenroeder, L.A.; Burkholder, H.R.

    1990-10-23

    An improvement in purification of scandium through ion exchange chromatography is disclosed in which the oxidation potential of the eluting solution is altered by the addition of potassium chlorate or ammonium chloride so that removal of contaminants is encouraged. The temperature, pH and concentration of the eluent HEDTA are controlled in order to maintain the scandium in the column while minimizing dilution of the scandium band. Recovery of scandium is improved by pumping dilute scandium over the column prior to stripping the scandium and precipitation. This eliminates the HEDTA ion and other monovalent cations contaminating the scandium band. This method maximizes recovery of scandium while maintaining purity. 2 figs.

  15. Purification of noisy quantum measurements

    SciTech Connect

    Dall'Arno, Michele; D'Ariano, Giacomo Mauro; Sacchi, Massimiliano F.

    2010-10-15

    We consider the problem of improving noisy quantum measurements by suitable preprocessing strategies making many noisy detectors equivalent to a single ideal detector. For observables pertaining to finite-dimensional systems (e.g., qubits or spins) we consider preprocessing strategies that are reminiscent of quantum error correction procedures and allow one to perfectly measure an observable on a single quantum system for increasing number of inefficient detectors. For measurements of observables with an unbounded spectrum (e.g., photon number and homodyne and heterodyne detection), the purification of noisy quantum measurements can be achieved by preamplification as suggested by Yuen [Opt. Lett. 12, 789 (1987)].

  16. Testing of chemically treated adsorbent air purifiers

    SciTech Connect

    Kelly, T.J. . Dept. of Atmospheric Science and Applied Technology); Kinkead, D.A. )

    1993-07-01

    New highly sensitive continuous monitors permit testing of air filters at parts-per-billion contaminant concentrations. This article describes testing of air purification filters intended for use in the National Archives 2 building in College Park, Maryland, using a test procedure that simulates the actual conditions of use. This test demonstrates both the effectiveness of the adsorbers at low contaminant levels, and the capability of existing instruments for conducting such tests. ASHRAE TC 2.3 (Gaseous Air Contaminants and Gas Contaminant Removal Equipment) is currently sponsoring research projects (follow-on studies to ASHRAE Project RP-674) aimed at developing a standard that will test and rate the performance of different types of gas phase air purification equipment at low concentrations. The work detailed in this article represents a first of this type of testing and a technical benchmark that may aid in the further development of ASHRAE gas phase performance standards.

  17. Purification of aqueous cellulose ethers

    SciTech Connect

    Bartscherer, K.A.; de Pablo, J.J.; Bonnin, M.C.; Prausnitz, J.M.

    1990-07-01

    Manufacture of cellulose ethers usually involves high amounts of salt by-products. For application of the product, salt must be removed. In this work, we have studied the injection of high-pressure CO{sub 2} into an aqueous polymer-salt solution; we find that upon addition of isopropanol in addition to CO{sub 2}, the solution separates into two phases. One phase is rich in polymer and water, and the other phase contains mostly isopropanol, water and CO{sub 2}. The salt distributes between the two phases, thereby offering interesting possibilities for development of a new purification process for water-soluble polymers. This work presents experimental phase-equilibrium data for hydroxyethyl cellulose and sodium carboxymethyl cellulose with sodium acetate and potassium sulfate, respectively, in the region 40{degree}C and 30 to 80 bar. Based on these data, we suggest a process for the manufacture and purification of water-soluble cellulose ethers. 15 refs., 14 figs., 9 tabs.

  18. Purification & Characterization of Transcription Factors

    PubMed Central

    Nagore, LI; Nadeau, RJ; Guo, Q; Jadhav, YLA; Jarrett, HW; Haskins, WE

    2013-01-01

    Transcription factors (TFs) are essential for the expression of all proteins, including those involved in human health and disease. However, TFs are resistant to proteomic characterization because they are frequently masked by more abundant proteins due to the limited dynamic range of capillary liquid chromatography-tandem mass spectrometry and protein database searching. Purification methods, particularly strategies that exploit the high affinity of TFs for DNA response elements on gene promoters, can enrich TFs prior to proteomic analysis to improve dynamic range and penetrance of the TF proteome. For example, trapping of TF complexes specific for particular response elements has been achieved by recovering the element DNA-protein complex on solid supports. Additional methods for improving dynamic range include two- and three-dimensional gel electrophoresis incorporating electrophoretic mobility shift assays and Southwestern blotting for detection. Here we review methods for TF purification and characterization. We fully expect that future investigations will apply these and other methods to illuminate this important but challenging proteome. PMID:23832591

  19. Semiconductor grade, solar silicon purification project

    NASA Technical Reports Server (NTRS)

    Ingle, W. M.; Rosler, R. R.; Thompson, S. W.; Chaney, R. E.

    1979-01-01

    Experimental apparatus and procedures used in the development of a 3-step SiF2(x) polymer transport purification process are described. Both S.S.M.S. and E.S. analysis demonstrated that major purification had occured and some samples were indistinguishable from semiconductor grade silicon (except possibly for phosphorus). Recent electrical analysis via crystal growth reveals that the product contains compensated phosphorus and boron. The low projected product cost and short energy payback time suggest that the economics of this process will result in a cost less than the goal of $10/Kg(1975 dollars). The process appears to be readily scalable to a major silicon purification facility.

  20. RHELP (Regenerative High Efficiency Low Pressure) Air Purification System

    DTIC Science & Technology

    2009-06-18

    silicon carbide tubes from Vesuvius Ceramics with different porosities: 500 µm and 250 µm pore sizes. Aerosol collection efficiency was low, no...Farrah at the University of Florida, Dr. Tuett Sweeting at Vesuvius Ceramics, and Mr. Bill Cambo at Lydall Inc., without whom this study would not...testing was designed and built to use porous SiC tubes supplied by Vesuvius Ceramics. Figure 17 is the process flow diagram for the bench-scale

  1. Visible Light Responsive Catalyst for Air Water Purification Project

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.

    2014-01-01

    Investigate and develop viable approaches to render the normally UV-activated TIO2 catalyst visible light responsive (VLR) and achieve high and sustaining catalytic activity under the visible region of the solar spectrum.

  2. EVALUATION OF AIR PURIFICATION DEVICES FOR CONTROL OF INDOOR PM

    EPA Science Inventory

    Because people spend most of their time indoors (89%), the indoor environment is a primary determinant of particle exposure. The indoor environment is especially an important determinant for the very young, the very old, and those with underlying cardiopulmonary disease because...

  3. Air Research

    EPA Pesticide Factsheets

    EPA's air research provides the critical science to develop and implement outdoor air regulations under the Clean Air Act and puts new tools and information in the hands of air quality managers and regulators to protect the air we breathe.

  4. Purification of Protochlorophyllide Holochrome 1

    PubMed Central

    Schopfer, Peter; Siegelman, H. W.

    1968-01-01

    Phototransformable protochlorophyllide holochrome was prepared from etiolated bean leaves. The detergent Triton X-100 in the presence of glycerol and tricine-KOH buffer (pH 8) enhanced the extractability, specific activity, and phototransformability of the holochrome. Purification was achieved by polyethylene glycol-6000 precipitation and hydroxyl-apatite, DEAE-cellulose, and agarose chromatography. The presence of Triton X-100 permitted removal of the carotenoid contamination from the holochrome. The 678-nm absorption maximum of newly formed chlorophyllide a holochrome shifts to 672 nm in a temperature-dependent manner. The purified holochrome contains 0.24 g of protein per μmole of protochlorophyllide. Estimation of the molecular weight of the holochrome by gel filtration on agarose revealed the presence of aggregates of approximately 550,000 and 300,000. There are at least 2 chromophores per 550,000 molecular weight. PMID:16656872

  5. Reverse osmosis water purification system

    NASA Technical Reports Server (NTRS)

    Ahlstrom, H. G.; Hames, P. S.; Menninger, F. J.

    1986-01-01

    A reverse osmosis water purification system, which uses a programmable controller (PC) as the control system, was designed and built to maintain the cleanliness and level of water for various systems of a 64-m antenna. The installation operates with other equipment of the antenna at the Goldstone Deep Space Communication Complex. The reverse osmosis system was designed to be fully automatic; with the PC, many complex sequential and timed logic networks were easily implemented and are modified. The PC monitors water levels, pressures, flows, control panel requests, and set points on analog meters; with this information various processes are initiated, monitored, modified, halted, or eliminated as required by the equipment being supplied pure water.

  6. Purification of lysozyme using ultrafiltration.

    PubMed

    Ghosh, R; Cui, Z F

    2000-04-20

    This article examines the separation of lysozyme from chicken egg white by ultrafiltration with 25 kDa and 50 kDa MWCO polysulfone membranes. The effects of pH, system hydrodynamics, feed concentration, and transmembrane pressure on permeate flux, lysozyme transmission, purification factor, and productivity have been discussed. With both types of membranes, higher permeate flux and lysozyme transmission were observed at higher pH. Higher lysozyme purity was generally obtained with the 25 kDa MWCO membrane. Purity of lysozyme decreased when the feed concentration was increased. With the 50 kDa MWCO membrane permeate flux, productivity and the purity of lysozyme were found to increase with increase in transmembrane pressure. The possibility of using a two-step ultrafiltration process for achieving high productivity along with high purity of lysozyme was also investigated.

  7. Liquid membrane purification of biogas

    SciTech Connect

    Majumdar, S.; Guha, A.K.; Lee, Y.T.; Papadopoulos, T.; Khare, S. . Dept. of Chemistry and Chemical Engineering)

    1991-03-01

    Conventional gas purification technologies are highly energy intensive. They are not suitable for economic removal of CO{sub 2} from methane obtained in biogas due to the small scale of gas production. Membrane separation techniques on the other hand are ideally suited for low gas production rate applications due to their modular nature. Although liquid membranes possess a high species permeability and selectivity, they have not been used for industrial applications due to the problems of membrane stability, membrane flooding and poor operational flexibility, etc. A new hollow-fiber-contained liquid membrane (HFCLM) technique has been developed recently. This technique overcomes the shortcomings of the traditional immobilized liquid membrane technology. A new technique uses two sets of hydrophobic, microporous hollow fine fibers, packed tightly in a permeator shell. The inter-fiber space is filled with an aqueous liquid acting as the membrane. The feed gas mixture is separated by selective permeation of a species through the liquid from one fiber set to the other. The second fiber set carries a sweep stream, gas or liquid, or simply the permeated gas stream. The objectives (which were met) of the present investigation were as follows. To study the selective removal of CO{sub 2} from a model biogas mixture containing 40% CO{sub 2} (the rest being N{sub 2} or CH{sub 4}) using a HFCLM permeator under various operating modes that include sweep gas, sweep liquid, vacuum and conventional permeation; to develop a mathematical model for each mode of operation; to build a large-scale purification loop and large-scale permeators for model biogas separation and to show stable performance over a period of one month.

  8. Purification of polymorphic components of complex genomes

    DOEpatents

    Stodolsky, M.

    1988-01-21

    A method for processing related subject and reference macromolecule composed of complementary strand into their respective subject and reference populations of representative fragments and effectuating purification of unique polymorphic subject fragments. 1 fig.

  9. Purification of polymorphic components of complex genomes

    DOEpatents

    Stodolsky, M.

    1991-07-16

    A method is disclosed for processing related subject and reference macromolecule populations composed of complementary strands into their respective subject and reference populations of representative fragments and effectuating purification of unique polymorphic subject fragments. 1 figure.

  10. Purification of basophils from peripheral human blood.

    PubMed

    Falcone, Franco H; Gibbs, Bernhard F

    2014-01-01

    The purification of basophils from peripheral blood has represented a formidable challenge for researchers since they were discovered by Paul Ehrlich in 1879. From the first published attempts in the late 1960s, it took half a century to develop robust protocols able to provide sufficient numbers of pure, functionally unimpaired basophils. The existing protocols for basophil purification exploit those properties of basophils which distinguish them from other cell types such as their localization in blood, density, and the presence or absence of surface markers. Purification techniques have been used in various combinations and variations to achieve a common goal in mind: to obtain a pure population of human basophils in sufficient numbers for downstream studies. The arduous way leading up to the modern protocols is summarized in this historical retrospective. A fast protocol for purification of basophils to near homogeneity is also described.

  11. Purification of polymorphic components of complex genomes

    DOEpatents

    Stodolsky, Marvin

    1991-01-01

    A method is disclosed for processing related subject and reference macromolecule populations composed of complementary strands into their respective subject and reference populations of representative fragments and effectuating purification of unique polymorphic subject fragments.

  12. Improved purification of rat intestinal lactase.

    PubMed

    Nsi-Emvo, E; Launay, J F; Raul, F

    1986-02-01

    A rapid and improved method to obtain purified lactase from rat intestine is described. The purification procedure involved only two chromatographic steps. The degree of purification was far above (500 fold) the values reached with classical methods. Rabbit antisera raised to the purified lactase were characterized using conventional immunological techniques. The specificity of the lactase antibodies was confirmed by the lack of interference on maltase, aminopeptidase and alkaline phosphatase activities measured after papain extraction of the membrane proteins.

  13. Effect of purification pretreatment on the recovery of magnetite from waste ferrous sulfate

    NASA Astrophysics Data System (ADS)

    Yu, Wang; Peng, Ying-lin; Zheng, Ya-jie

    2016-08-01

    The present study was conducted to elucidate the influence of impurities in waste ferrous sulfate on its recovery of magnetite. Ferrous sulfate solution was purified by the addition of NaOH solution to precipitate impurities, and magnetite was recovered from ferrous sulfate solution without and with purification pretreatment. Calcium hydroxide was added to the solution of ferrous sulfate as a precipitator. A mixed product of magnetite and gypsum was subsequently obtained by air oxidation and heating. Wet-milling was performed prior to magnetic separation to recover magnetite from the mixed products. The results show that with the purification pretreatment, the grade of iron in magnetite concentrate increased from 62.05% to 65.58% and the recovery rate of iron decreased from 85.35% to 80.35%. The purification pretreatment reduced the conglutination between magnetite and gypsum, which favors their subsequent magnetic separation. In summary, a higher-grade magnetite with a better crystallinity and a larger particle size of 2.35 μm was obtained with the purification pretreatment.

  14. Purification and characterization of ribulose-5-phosphate kinase from spinach

    SciTech Connect

    Porter, M.A.; Milanez, S.; Stringer, C.D.; Hartman, F.C.

    1986-02-15

    An efficient purification procedure utilizing affinity chromatography is described for spinach ribulose-5-phosphate kinase, a light-regulated chloroplastic enzyme. Gel filtration and polyacrylamide gel electrophoresis of the purified enzyme reveal a dimeric structure of 44,000 Mr subunits. Chemical crosslinking with dimethyl suberimidate confirms the presence of two subunits per molecule of native kinase, which are shown to be identical by partial NH2-terminal sequencing. Based on sulfhydryl titrations and on amino acid analyses, each subunit contains four to five cysteinyl residues. The observed slow loss of activity during spontaneous oxidation in air-saturated buffer correlates with the intramolecular oxidation of two sulfhydryl groups, presumably those involved in thioredoxin-mediated regulation.

  15. Optimization of the electrically heated catalyst for emission purification efficiency

    SciTech Connect

    Jeong, L.; Jang, J.; Yeo, G.; Kim, Y.

    1996-09-01

    It is well known that the EHC (Electrically Heated Catalyst) is very effective for the reduction of cold-start hydrocarbon emissions. To optimize EHC applications for LEV (Low Emission Vehicle) and ULEV (Ultra Low Emission Vehicle) standards, the effects of heating and secondary air injection on the emission purification efficiency in FTP (Federal Test Procedure) were evaluated with three different EHC system configurations. The exhaust manifold location EHC system in which the EHC with a light-off catalyst is installed near the exhaust manifold, yields 0.038g/mile of THC (Total Hydrocarbon emissions) when the test was performed according to the FTP with an engine-aged condition equivalent to 50,000 miles. Therefore, the ULEV standards could be achieved through the system. A new battery system for the EHC and a single battery system for vehicle application were evaluated. Evaluation of the Ni-MH battery for EHC system is included.

  16. Air Pollution

    MedlinePlus

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  17. Screening in humid air plasmas

    NASA Astrophysics Data System (ADS)

    Filippov, Anatoly; Derbenev, Ivan; Dyatko, Nikolay; Kurkin, Sergey

    2016-09-01

    Low temperature air plasmas containing H2O molecules are of high importance for atmospheric phenomena, climate control, biomedical applications, surface processing, and purification of air and water. Humid air plasma created by an external ionization source is a good model of the troposphere where ions are produced by the galactic cosmic rays and decay products of air and soil radioactive elements such as Rn222. The present paper is devoted to study the ionic composition and the screening in an ionized humid air at atmospheric pressure and room temperature. The ionization rate is varied in the range of 101 -1018 cm-3s-1. The humid air with 0 - 1 . 5 % water admixture that corresponds to the relative humidity of 0 - 67 % at the air temperature equal to 20°C is considered. The ionic composition is determined on the analysis of more than a hundred processes. The system of 41 non-steady state particle number balance equations is solved using the 4th order Runge-Kutta method. The screening of dust particle charge in the ionized humid air are studied within the diffusion-drift approach. The screening constants are well approximated by the inverse Debye length and characteristic lengths of recombination and attachment processes. This work was supported by the Russian Science Foundation, Project No. 16-12-10424.

  18. Dialysis membranes for blood purification.

    PubMed

    Sakai, K

    2000-01-01

    All of the artificial membranes in industrial use, such as a reverse-osmosis membrane, dialysis membrane, ultrafiltration membrane, microfiltration membrane and gas separation membrane, also have therapeutic applications. The most commonly used artificial organ is the artificial kidney, a machine that performs treatment known as hemodialysis. This process cleanses the body of a patient with renal failure by dialysis and filtration, simple physicochemical processes. Hemodialysis membranes are used to remove accumulated uremic toxins, excess ions and water from the patient via the dialysate, and to supply (deficit) insufficient ions from the dialysate. Dialysis membranes used clinically in the treatment of patients with renal failure account for by far the largest volume of membranes used worldwide; more than 70 million square meters are used a year. Almost all dialyzers now in use are of the hollow-fiber type. A hollow-fiber dialyzer contains a bundle of approximately 10000 hollow fibers, each with an inner diameter of about 200 microm when wet. The membrane thickness is about 20-45 microm, and the length is 160-250 mm. The walls of the hollow fibers function as the dialysis membrane. Various materials, including cellulose-based materials and synthetic polymers, are used for dialysis membranes. This paper reviews blood purification, hemodialysis and dialysis membranes.

  19. Purification of fallout-contaminated water studied

    SciTech Connect

    Lu Deyuan; Cai, X.; Li, M.; Liu, T.

    1983-04-30

    This article presents data from an experiment conducted in China in which the ability of certain purification materials and drinking water decontaminants were tested with water polluted by fallout from nuclear explosions. It is explained that the explosion of nuclear weapons or the dissemination of radioactive agents in a future war may pollute drinking water and water sources, creating a danger to human health. The experimental data indicate that the ''Drinking Water Decontamination and Purification Agent'' (DDPA) has a higher purification effectiveness than the ''Drinking Water Purification Powder'' (DPP) for falloutcontaminated water and /sup 131/I-contaminated water, while the ''Aqueous /sup 131/I Radioactivity Purifier'' (AIRP) has a higher purification effectiveness than DPP for /sup 131/I-contaminated water. DDPA consists of potassium permanganate, ferrous sulfate, ferric sulfate, disodium phosphate, No. 2 activated charcoal, earth, barium hydroxide, alum, and aluminium hydroxychloride. DPP consists of activated charcoal, bentonite, sodium phosphate, silver sulfate and aluminium hydroxychloride. AIRP consists of potassium permanganate, ferrous sulfate, ferric sulfate, disodium phosphate, No. 2 activated charcoal, earth, and aluminium hydroxychloride. It is concluded that the 13 common materials tested are effective in purifying radioactive water. Includes 2 tables.

  20. The role of a hybrid phytosystem in landscape water purification and herbicides removal.

    PubMed

    Kirumba, George; Ge, Ling; Wei, Dongyang; Xu, Cong; He, Yiliang; Zhang, Bo; Jiang, Cheng; Mao, Feijian

    2015-01-01

    The performance of a hybrid phytosystem in landscape water purification and herbicides removal was investigated. The phytosystem operating in an arboretum is located in the Minhang Campus of Shanghai Jiao Tong University, China. The phytosystem is composed of two purification stages: sedimentation Stage 1 without external air supply; and Stage 2 with an external air supply. Stage 2 is also vegetated with three major kinds of plants, namely Pontederia cordata L., Typha latifolia L. and Cyperus alternifolius L. The system's hydraulic loading rate (HLR) was maintained at 1.632 m/day between December 2013 and November 2014. Sedimentation, filtration and adsorption by filter media, combined microbial processes in the rhizosphere (nitrification-denitrification) and plant uptake of the pollutants were all responsible for water purification in the phytosystem. The biological and physical parameters analyzed were total dissolved nitrogen (TDN), nitrate (NO3-N), nitrite (NO2-N), ammonia (NH3-N), total dissolved phosphorus (TDP), dissolved organic carbon (DOC), turbidity, chlorophyll-a and algal cells number. Highest removal efficiencies for TDN, TDP, turbidity, DOC, chlorophyll-a and algal cells were 56.9%, 73.3%, 92.4%, 29.9%, 94.3% and 91.0%, respectively. When the phytosystem was considered for herbicides removal, removal efficiencies of more than 25% were noted for all the herbicides.

  1. 21 CFR 876.5665 - Water purification system for hemodialysis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Water purification system for hemodialysis. 876... SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5665 Water purification system for hemodialysis. (a) Identification. A water purification system for hemodialysis is...

  2. 21 CFR 876.5665 - Water purification system for hemodialysis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Water purification system for hemodialysis. 876... SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5665 Water purification system for hemodialysis. (a) Identification. A water purification system for hemodialysis is...

  3. 21 CFR 876.5665 - Water purification system for hemodialysis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Water purification system for hemodialysis. 876... SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5665 Water purification system for hemodialysis. (a) Identification. A water purification system for hemodialysis is...

  4. 21 CFR 876.5665 - Water purification system for hemodialysis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Water purification system for hemodialysis. 876... SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5665 Water purification system for hemodialysis. (a) Identification. A water purification system for hemodialysis is...

  5. 21 CFR 876.5665 - Water purification system for hemodialysis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Water purification system for hemodialysis. 876... SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5665 Water purification system for hemodialysis. (a) Identification. A water purification system for hemodialysis is...

  6. CHARACTERIZATION OF OZONE EMISSIONS FROM AIR CLEANERS EQUIPPED WITH OZONE GENERATORS AND SENSOR AND FEEDBACK CONTROL CIRCUITRY

    EPA Science Inventory

    The paper give results of a characterization of ozone emissions from air cleaners equipped with ozone generators and sensor and feedback control circuitry. Ozone emission rates of several consumer appliances, marketed as indoor air treatment or air purification systems, were det...

  7. Purification of glycocalicin from human plasma.

    PubMed

    HadjKacem, Basma; Mkaouar, Héla; Ben Amor, Ikram; Gargouri, Jalel; Gargouri, Ali

    2016-01-01

    Glycocalicin (GC) is a large extracellular proteolytic fragment of glycoprotein Ib, a membrane platelet component playing an essential role in the physiological processes of platelet adhesion and aggregation. GC contains the binding sites for thrombin and von Willebrand factor. GC circulates normally in vivo in significant concentrations and the plasma level of this protein reflects a complex function of factors including platelet count or platelet turnover. It can therefore serve as a good indicator for many diseases like hypoplastic thrombocytopenia and idiopathic thrombocytopenic purpura. For this reason, several purification assays have been previously described. In this work, we describe a novel analytical method for GC purification from human platelets based on preparative HPLC gel filtration followed by immuno-affinity chromatography on NHS activated column conjugated with specific antibody. Pure GC was obtained from tiny amount of starting material. Our protocol of GC purification is simple, fast and provides a pure end product.

  8. Overview of the purification of recombinant proteins.

    PubMed

    Wingfield, Paul T

    2015-04-01

    When the first version of this unit was written in 1995, protein purification of recombinant proteins was based on a variety of standard chromatographic methods and approaches, many of which were described and mentioned throughout Current Protocols in Protein Science. In the interim, there has been a shift toward an almost universal usage of the affinity or fusion tag. This may not be the case for biotechnology manufacture where affinity tags can complicate producing proteins under regulatory conditions. Regardless of the protein expression system, questions are asked as to which and how many affinity tags to use, where to attach them in the protein, and whether to engineer a self-cleavage system or simply leave them on. We will briefly address some of these issues. Also, although this overview focuses on E.coli, protein expression and purification, other commonly used expression systems are mentioned and, apart from cell-breakage methods, protein purification methods and strategies are essentially the same.

  9. Purification of Carbon Nanotubes: Alternative Methods

    NASA Technical Reports Server (NTRS)

    Files, Bradley; Scott, Carl; Gorelik, Olga; Nikolaev, Pasha; Hulse, Lou; Arepalli, Sivaram

    2000-01-01

    Traditional carbon nanotube purification process involves nitric acid refluxing and cross flow filtration using surfactant TritonX. This is believed to result in damage to nanotubes and surfactant residue on nanotube surface. Alternative purification procedures involving solvent extraction, thermal zone refining and nitric acid refiuxing are used in the current study. The effect of duration and type of solvent to dissolve impurities including fullerenes and P ACs (polyaromatic compounds) are monitored by nuclear magnetic reasonance, high performance liquid chromatography, and thermogravimetric analysis. Thermal zone refining yielded sample areas rich in nanotubes as seen by scanning electric microscopy. Refluxing in boiling nitric acid seem to improve the nanotube content. Different procedural steps are needed to purify samples produced by laser process compared to arc process. These alternative methods of nanotube purification will be presented along with results from supporting analytical techniques.

  10. Soft-Bake Purification of SWCNTs Produced by Pulsed Laser Vaporization

    NASA Technical Reports Server (NTRS)

    Yowell, Leonard; Nikolaev, Pavel; Gorelik, Olga; Allada, Rama Kumar; Sosa, Edward; Arepalli, Sivaram

    2013-01-01

    The "soft-bake" method is a simple and reliable initial purification step first proposed by researchers at Rice University for single-walled carbon nanotubes (SWCNT) produced by high-pressure carbon mon oxide disproportionation (HiPco). Soft-baking consists of annealing as-produced (raw) SWCNT, at low temperatures in humid air, in order to degrade the heavy graphitic shells that surround metal particle impurities. Once these shells are cracked open by the expansion and slow oxidation of the metal particles, the metal impurities can be digested through treatment with hydrochloric acid. The soft-baking of SWCNT produced by pulsed-laser vaporization (PLV) is not straightforward, because the larger average SWCNT diameters (.1.4 nm) and heavier graphitic shells surrounding metal particles call for increased temperatures during soft-bake. A part of the technology development focused on optimizing the temperature so that effective cracking of the graphitic shells is balanced with maintaining a reasonable yield, which was a critical aspect of this study. Once the ideal temperature was determined, a number of samples of raw SWCNT were purified using the soft-bake method. An important benefit to this process is the reduced time and effort required for soft-bake versus the standard purification route for SWCNT. The total time spent purifying samples by soft-bake is one week per batch, which equates to a factor of three reduction in the time required for purification as compared to the standard acid purification method. Reduction of the number of steps also appears to be an important factor in improving reproducibility of yield and purity of SWCNT, as small deviations are likely to get amplified over the course of a complicated multi-step purification process.

  11. Catalytic partial oxidation coupled with membrane purification to improve resource and energy efficiency in syngas production.

    PubMed

    Iaquaniello, G; Salladini, A; Palo, E; Centi, G

    2015-02-01

    Catalytic partial oxidation coupled with membrane purification is a new process scheme to improve resource and energy efficiency in a well-established and large scale-process like syngas production. Experimentation in a semi industrial-scale unit (20 Nm(3)  h(-1) production) shows that a novel syngas production scheme based on a pre-reforming stage followed by a membrane for hydrogen separation, a catalytic partial oxidation step, and a further step of syngas purification by membrane allows the oxygen-to-carbon ratio to be decreased while maintaining levels of feed conversion. For a total feed conversion of 40 %, for example, the integrated novel architecture reduces oxygen consumption by over 50 %, with thus a corresponding improvement in resource efficiency and an improved energy efficiency and economics, these factors largely depending on the air separation stage used to produce pure oxygen.

  12. Chemical looping integration with a carbon dioxide gas purification unit

    DOEpatents

    Andrus, Jr., Herbert E.; Jukkola, Glen D.; Thibeault, Paul R.; Liljedahl, Gregory N.

    2017-01-24

    A chemical looping system that contains an oxidizer and a reducer is in fluid communication with a gas purification unit. The gas purification unit has at least one compressor, at least one dryer; and at least one distillation purification system; where the gas purification unit is operative to separate carbon dioxide from other contaminants present in the flue gas stream; and where the gas purification unit is operative to recycle the contaminants to the chemical looping system in the form of a vent gas that provides lift for reactants in the reducer.

  13. Comparison of Purification Solutions With Different Osmolality for Porcine Islet Purification

    PubMed Central

    Miyagi-Shiohira, Chika; Kobayashi, Naoya; Saitoh, Issei; Watanabe, Masami; Noguchi, Yasufumi; Matsushita, Masayuki; Noguchi, Hirofumi

    2017-01-01

    The osmolality of the purification solution is one of the most critical variables in human islet purification during islet isolation. We previously reported the effectiveness of a combined continuous density/osmolality gradient for the supplemental purification of human islets. We herein applied a combined continuous density/osmolality gradient for regular purification. The islets were purified with a continuous density gradient without osmolality preparation [continuous density/normal osmolality (CD/NO)] or continuous density/osmolality solution with osmolality preparation by 10× Hank’s balanced salt solution (HBSS) [continuous density/continuous osmolality (CD/CO)]. The osmolality of the low-density solution was 400 mOsm/kg in both groups and that of the high-density solution was 410 mOsm/kg in the CD/NO group and 500 mOsm/kg in the CD/CO group. Unexpectedly, we noted no significant differences between the two solutions in terms of the islet yield, rate of viability and purity, score, stimulation index, or the attainability and suitability of posttransplantation normoglycemia. Despite reports that the endocrine and exocrine tissues of pancreata have distinct osmotic sensitivities and that high-osmolality solutions result in greater purification efficiency, the isolation and transplant outcomes did not markedly differ between the two purification solutions with different osmolalities in this study. PMID:28174675

  14. Air Revitalization System Enables Excursions to the Stratosphere

    NASA Technical Reports Server (NTRS)

    2015-01-01

    Paragon Space Development Corporation, based in Tucson, Arizona has had a long history of collaboration with NASA, including developing a modular air purification system under the Commercial Crew Development Program, designed to support the commercial space sector. Using that device and other NASA technology, startup company World View is now gearing up to take customers on helium balloon rides to the stratosphere.

  15. Purification of matrix metalloproteinases by column chromatography.

    PubMed

    Imai, Kazushi; Okada, Yasunori

    2008-01-01

    Matrix metalloproteinases (MMPs) are zinc endopeptidases composed of 23 members in humans, which belong to a subfamily of the metzincin superfamily. They play important roles in many pathophysiological events including development, organogenesis, angiogenesis, tissue remodeling and destruction, and cancer cell proliferation and progression by degradation of extracellular matrix (ECM) and non-ECM proteins and interaction with various molecules. Here, we present standard protocols for purification of native proMMPs (proMMP-1, -2, -3, -7, -9 and -10) and recombinant MT1-MMP (MMP-14) using conventional column chromatography. Purification steps comprise the initial common step [diethylaminoethyl (DEAE)-cellulose, Green A Dyematrex gel and gelatin-Sepharose columns], the second step for removal of nontarget proMMPs by immunoaffinity columns (anti-MMP-1 and/or anti-MMP-3 IgG-Sepharose columns) and the final step for further purification (IgG-Sepharose, DEAE-cellulose, Zn2+-chelate-Sepharose and/or gel filtration columns). Purified proMMPs and MMP are functionally active and suitable for biochemical analyses. The basic protocol for the purification from culture media takes approximately 7-10 d.

  16. Expression and Purification of Sperm Whale Myoglobin

    ERIC Educational Resources Information Center

    Miller, Stephen; Indivero, Virginia; Burkhard, Caroline

    2010-01-01

    We present a multiweek laboratory exercise that exposes students to the fundamental techniques of bacterial expression and protein purification through the preparation of sperm whale myoglobin. Myoglobin, a robust oxygen-binding protein, contains a single heme that gives the protein a reddish color, making it an ideal subject for the teaching…

  17. PREPARATION AND PURIFICATION OF SILICON CARBIDE.

    DTIC Science & Technology

    the materials were divided into two parts. Part I covers problems of silicon carbide preparation and the growing of silicon carbide single crystals...and thin films for semiconductor devices. Part II treats problems of purity, including the purification and chemical analysis of silicon carbide and of starting materials for silicon carbide preparation.

  18. Purification of tantalum by plasma arc melting

    DOEpatents

    Dunn, Paul S.; Korzekwa, Deniece R.

    1999-01-01

    Purification of tantalum by plasma arc melting. The level of oxygen and carbon impurities in tantalum was reduced by plasma arc melting the tantalum using a flowing plasma gas generated from a gas mixture of helium and hydrogen. The flowing plasma gases of the present invention were found to be superior to other known flowing plasma gases used for this purpose.

  19. Rapid purification of fluorescent enzymes by ultrafiltration

    NASA Technical Reports Server (NTRS)

    Benjaminson, M. A.; Satyanarayana, T.

    1983-01-01

    In order to expedite the preparation of fluorescently tagged enzymes for histo/cytochemistry, a previously developed method employing gel column purification was compared with a more rapid modern technique using the Millipore Immersible CX-ultrafilter. Microscopic evaluation of the resulting conjugates showed comparable products. Much time and effort is saved using the new technique.

  20. Rapid purification of fluorescent enzymes by ultrafiltration

    NASA Technical Reports Server (NTRS)

    Benjaminson, M. A.; Satyanarayana, T.

    1983-01-01

    In order to expedite the preparation of fluorescently tagged enzymes for histo-cyctochemistry, a previously developed method employing gel column purification was compared with a more rapid modern technique using the Millipore Immersible CX-ultrafilter. Microscopic evaluation of the resulting conjugates showed comparable products. Much time and effort is saved using the new technique.

  1. Magneto-capillary valve for integrated purification and enrichment of nucleic acids and proteins.

    PubMed

    den Dulk, Remco C; Schmidt, Kristiane A; Sabatté, Gwénola; Liébana, Susana; Prins, Menno W J

    2013-01-07

    We describe the magneto-capillary valve (MCV) technology, a flexible approach for integrated biological sample preparation within the concept of stationary microfluidics. Rather than moving liquids in a microfluidic device, discrete units of liquid are present at fixed positions in the device and magnetic particles are actuated between the fluids. The MCV concept is characterized by the use of two planar surfaces at a capillary mutual distance, with specific features to confine the fluids by capillary forces, and the use of a gas or a phase-change material separating the stationary aqueous liquids. We have studied the physics of magneto-capillary valving by quantifying the magnetic force as a function of time and position, which reveals the balance of magnetic, capillary and frictional forces in the system. By purification experiments with a fluorescent tracer we have measured the amount of co-transported liquid, which is a key parameter for efficient purification. To demonstrate the versatility of the technology, several MCV device architectures were tested in a series of biological assays, showing the purification and enrichment of nucleic acids and proteins. Target recovery comparable to non-miniaturized commercial kits was observed for the extraction of DNA from human cells in buffer, using a device architecture with patterned air valves. Experiments using an enrichment module and patterned air valves demonstrate a 40-fold effective enrichment of DNA in buffer. DNA was also successfully purified from blood plasma using paraffin phase-change valves. Finally, the enrichment of a protein biomarker (prostate-specific antigen) using geometrical air valves resulted in a 7-fold increase of detection signal. The MCV technology is versatile, offers extensive freedom for the design of fully integrated systems, and is expected to be manufacturable in a cost-effective way. We conclude that the MCV technology can become an important enabling technology for point

  2. Purification of Logic-Qubit Entanglement

    PubMed Central

    Zhou, Lan; Sheng, Yu-Bo

    2016-01-01

    Recently, the logic-qubit entanglement shows its potential application in future quantum communication and quantum network. However, the entanglement will suffer from the noise and decoherence. In this paper, we will investigate the first entanglement purification protocol for logic-qubit entanglement. We show that both the bit-flip error and phase-flip error in logic-qubit entanglement can be well purified. Moreover, the bit-flip error in physical-qubit entanglement can be completely corrected. The phase-flip in physical-qubit entanglement error equals to the bit-flip error in logic-qubit entanglement, which can also be purified. This entanglement purification protocol may provide some potential applications in future quantum communication and quantum network. PMID:27377165

  3. Purification of nanoparticles by hollow fiber diafiltration

    NASA Astrophysics Data System (ADS)

    Veeken, J.

    2012-09-01

    Hollow Fiber Diafiltration (Hollow Fiber Tangential Flow Filtration) is an efficient and rapid alternative to traditional methods of nanoparticle purification such as ultracentrifugation, stirred cell filtration, dialysis or chromatography. Hollow Fiber Diafiltration can be used to purify a wide range of nanoparticles including liposomes, colloids, magnetic particles and nanotubes. Hollow Fiber Diafiltration is a membrane based method where pore size determines the retention or transmission of solution components. It is a flow process where the sample is gently circulated through a tubular membrane. With controlled replacement of the permeate or (dialysate), pure nanoparticles can be attained. Hollow Fiber Diafiltration can be directly scaled up from R&D volumes to production. By adding more membrane fibers and maintaining the operating parameters, large volumes can be processed in the same time with the same pressure, and flow dynamics as bench-scale volumes. Keywords: hollow fiber, Diafiltration, filtration, purification, tangential flow filtration.

  4. Purification of metal-organic framework materials

    SciTech Connect

    Farha, Omar K.; Hupp, Joseph T.

    2012-12-04

    A method of purification of a solid mixture of a metal-organic framework (MOF) material and an unwanted second material by disposing the solid mixture in a liquid separation medium having a density that lies between those of the wanted MOF material and the unwanted material, whereby the solid mixture separates by density differences into a fraction of wanted MOF material and another fraction of unwanted material.

  5. Semiconductor grade, solar silicon purification project

    NASA Technical Reports Server (NTRS)

    Ingle, W. M.; Thompson, S.; Rosler, D.; Jackson, J.

    1977-01-01

    The conversion of metallurgical grade silicon into semiconductor grade silicon by way of a three step SiF2 polymer transport purification process was investigated. Developments in the following areas were also examined: (1) spectroscopic analysis and characterization of (SiF2) sub x polymer and Si sub x F sub y homologue conversion; (2) demonstration runs on the near continuous apparatus; (3) economic analysis; and (4) elemental analysis.

  6. Purification of metal-organic framework materials

    DOEpatents

    Farha, Omar K.; Hupp, Joseph T.

    2015-06-30

    A method of purification of a solid mixture of a metal-organic framework (MOF) material and an unwanted second material by disposing the solid mixture in a liquid separation medium having a density that lies between those of the wanted MOF material and the unwanted material, whereby the solid mixture separates by density differences into a fraction of wanted MOF material and another fraction of unwanted material.

  7. APPARATUS FOR THE PURIFICATION OF CALCIUM

    DOEpatents

    Burnett, R.L.

    1953-08-25

    The present patent claims and describes an apparatus adapted to carry out a new process for the purification of calcium containing an alkali metal as impurity. The process consists of distilling the impure caldium in the presence of an inert gas and at a reduced pressure, condensing substantially pure calcium on a condensing surface of iron or a ferrous alloy and condensing the alkali metal on a separate surface, the two condensing surfaces being maintained at suitable temperatures by separate cooling means.

  8. Strategies for the purification of membrane proteins.

    PubMed

    Smith, Sinead Marian

    2011-01-01

    Although membrane proteins account for 20-30% of the coding regions of all sequenced genomes and play crucial roles in many fundamental cell processes, there are relatively few membranes proteins with known 3D structure. This is likely due to technical challenges associated with membrane protein extraction, solubilisation, and purification. Membrane proteins are classified based on the level of interaction with membrane lipid bilayers, with peripheral membrane proteins associating non-covalently with the membrane, and integral membrane proteins associating more strongly by means of hydrophobic interactions. Generally speaking, peripheral membrane proteins can be purified by milder techniques than integral membrane proteins, whose extraction requires phospholipid bilayer disruption by detergents. Here, important criteria for strategies of membrane protein purification are addressed, with a focus on the initial stages of membrane protein solublilisation, where problems are most frequently encountered. Protocols are outlined for the successful extraction of peripheral membrane proteins, solubilisation of integral membrane proteins, and detergent removal which is important not only for retaining native protein stability and biological functions, but also for the efficiency of later purification techniques.

  9. Overview of the Purification of Recombinant Proteins

    PubMed Central

    Wingfield, Paul T.

    2015-01-01

    When the first version of this unit was written in 1995 protein purification of recombinant proteins was based on a variety of standard chromatographic methods and approaches many of which were described and mentioned in this unit and elsewhere in the book. In the interim there has been a shift towards an almost universal usage of the affinity or fusion tag. This may not be the case for biotechnology manufacture where affinity tags can complicate producing proteins under regulatory conditions. Regardless of the protein expression system, questions are asked as to which and how many affinity tags to use, where to attach them in the protein and whether to engineer a self cleavage system or simply leave them on. We will briefly address some of these issues. Also although this overview focuses on E.coli, protein expression and purification from the other commonly used expression systems are mentioned and apart from cell breakage methods, the protein purification methods and strategies are essentially the same. PMID:25829302

  10. Microscale purification of antigen-specific antibodies.

    PubMed

    Brown, Eric P; Normandin, Erica; Osei-Owusu, Nana Yaw; Mahan, Alison E; Chan, Ying N; Lai, Jennifer I; Vaccari, Monica; Rao, Mangala; Franchini, Genoveffa; Alter, Galit; Ackerman, Margaret E

    2015-10-01

    Glycosylation of the Fc domain is an important driver of antibody effector function. While assessment of antibody glycoform compositions observed across total plasma IgG has identified differences associated with a variety of clinical conditions, in many cases it is the glycosylation state of only antibodies against a specific antigen or set of antigens that may be of interest, for example, in defining the potential effector function of antibodies produced during disease or after vaccination. Historically, glycoprofiling such antigen-specific antibodies in clinical samples has been challenging due to their low prevalence, the high sample requirement for most methods of glycan determination, and the lack of high-throughput purification methods. New methods of glycoprofiling with lower sample requirements and higher throughput have motivated the development of microscale and automatable methods for purification of antigen-specific antibodies from polyclonal sources such as clinical serum samples. In this work, we present a robot-compatible 96-well plate-based method for purification of antigen-specific antibodies, suitable for such population level glycosylation screening. We demonstrate the utility of this method across multiple antibody sources, using both purified plasma IgG and plasma, and across multiple different antigen types, with enrichment factors greater than 1000-fold observed. Using an on-column IdeS protease treatment, we further describe staged release of Fc and Fab domains, allowing for glycoprofiling of each domain.

  11. Solvent-extraction purification of neptunium

    SciTech Connect

    Kyser, E.A.; Hudlow, S.L.

    2008-07-01

    The Savannah River Site (SRS) has recovered {sup 237}Np from reactor fuel that is currently being processed into NpO{sub 2} for future production of {sup 238}Pu. Several purification flowsheets have been utilized. An oxidizing solvent-extraction (SX) flowsheet was used to remove Fe, sulfate ion, and Th while simultaneously {sup 237}Np, {sup 238}Pu, u, and nonradioactive Ce(IV) was extracted into the tributyl phosphate (TBP) based organic solvent. A reducing SX flowsheet (second pass) removed the Ce and Pu and recovered both Np and U. The oxidizing flowsheet was necessary for solutions that contained excessive amounts of sulfate ion. Anion exchange was used to perform final purification of Np from Pu, U, and various non-actinide impurities. The Np(IV) in the purified solution was then oxalate-precipitated and calcined to an oxide for shipment to other facilities for storage and future target fabrication. Performance details of the SX purification and process difficulties are discussed. (authors)

  12. Ethanol precipitation for purification of recombinant antibodies.

    PubMed

    Tscheliessnig, Anne; Satzer, Peter; Hammerschmidt, Nikolaus; Schulz, Henk; Helk, Bernhard; Jungbauer, Alois

    2014-10-20

    Currently, the golden standard for the purification of recombinant humanized antibodies (rhAbs) from CHO cell culture is protein A chromatography. However, due to increasing rhAbs titers alternative methods have come into focus. A new strategy for purification of recombinant human antibodies from CHO cell culture supernatant based on cold ethanol precipitation (CEP) and CaCl2 precipitation has been developed. This method is based on the cold ethanol precipitation, the process used for purification of antibodies and other components from blood plasma. We proof the applicability of the developed process for four different antibodies resulting in similar yield and purity as a protein A chromatography based process. This process can be further improved using an anion-exchange chromatography in flowthrough mode e.g. a monolith as last step so that residual host cell protein is reduced to a minimum. Beside the ethanol based process, our data also suggest that ethanol could be replaced with methanol or isopropanol. The process is suited for continuous operation.

  13. Rotating Reverse-Osmosis for Water Purification

    NASA Technical Reports Server (NTRS)

    Lueptow, RIchard M.

    2004-01-01

    A new design for a water-filtering device combines rotating filtration with reverse osmosis to create a rotating reverse- osmosis system. Rotating filtration has been used for separating plasma from whole blood, while reverse osmosis has been used in purification of water and in some chemical processes. Reverse- osmosis membranes are vulnerable to concentration polarization a type of fouling in which the chemicals meant not to pass through the reverse-osmosis membranes accumulate very near the surfaces of the membranes. The combination of rotating filtration and reverse osmosis is intended to prevent concentration polarization and thereby increase the desired flux of filtered water while decreasing the likelihood of passage of undesired chemical species through the filter. Devices based on this concept could be useful in a variety of commercial applications, including purification and desalination of drinking water, purification of pharmaceutical process water, treatment of household and industrial wastewater, and treatment of industrial process water. A rotating filter consists of a cylindrical porous microfilter rotating within a stationary concentric cylindrical outer shell (see figure). The aqueous suspension enters one end of the annulus between the inner and outer cylinders. Filtrate passes through the rotating cylindrical microfilter and is removed via a hollow shaft. The concentrated suspension is removed at the end of the annulus opposite the end where the suspension entered.

  14. Microscale purification of antigen-specific antibodies

    PubMed Central

    Brown, Eric P.; Normandin, Erica; Osei-Owusu, Nana Yaw; Mahan, Alison E.; Chan, Ying N.; Lai, Jennifer I.; Vaccari, Monica; Rao, Mangala; Franchini, Genoveffa; Alter, Galit; Ackerman, Margaret E.

    2015-01-01

    Glycosylation of the Fc domain is an important driver of antibody effector function. While assessment of antibody glycoform compositions observed across total plasma IgG has identified differences associated with a variety of clinical conditions, in many cases it is the glycosylation state of only antibodies against a specific antigen or set of antigens that may be of interest, for example, in defining the potential effector function of antibodies produced during disease or after vaccination. Historically, glycoprofiling such antigen-specific antibodies in clinical samples has been challenging due to their low prevalence, the high sample requirement for most methods of glycan determination, and the lack of high-throughput purification methods. New methods of glycoprofiling with lower sample requirements and higher throughput have motivated the development of microscale and automatable methods for purification of antigen-specific antibodies from polyclonal sources such as clinical serum samples. In this work, we present a robot-compatible 96-well plate-based method for purification of antigen-specific antibodies, suitable for such population level glycosylation screening. We demonstrate the utility of this method across multiple antibody sources, using both purified plasma IgG and plasma, and across multiple different antigen types, with enrichment factors greater than 1000-fold observed. Using an on-column IdeS protease treatment, we further describe staged release of Fc and Fab domains, allowing for glycoprofiling of each domain. PMID:26078040

  15. Large scale purification of RNA nanoparticles by preparative ultracentrifugation.

    PubMed

    Jasinski, Daniel L; Schwartz, Chad T; Haque, Farzin; Guo, Peixuan

    2015-01-01

    Purification of large quantities of supramolecular RNA complexes is of paramount importance due to the large quantities of RNA needed and the purity requirements for in vitro and in vivo assays. Purification is generally carried out by liquid chromatography (HPLC), polyacrylamide gel electrophoresis (PAGE), or agarose gel electrophoresis (AGE). Here, we describe an efficient method for the large-scale purification of RNA prepared by in vitro transcription using T7 RNA polymerase by cesium chloride (CsCl) equilibrium density gradient ultracentrifugation and the large-scale purification of RNA nanoparticles by sucrose gradient rate-zonal ultracentrifugation or cushioned sucrose gradient rate-zonal ultracentrifugation.

  16. Air stripping. January 1980-February 1992 (Citations from the NTIS Data Base). Rept. for Jan 80-Feb 92

    SciTech Connect

    Not Available

    1992-02-01

    The bibliography contains citations concerning the application of air stripping techniques to water treatment, including groundwater decontamination and wastewater purification. The advantages and disadvantages of air stripping over other water treatment processes are discussed. Cleanup of the organic emissions generated by air stripping is also considered. The primary applications of air stripping are in groundwater and soil cleanup. (Contains 58 citations with title list and subject index.)

  17. Negative air ion effects on human performance and physiological condition.

    PubMed

    Buckalew, L W; Rizzuto, A P

    1984-08-01

    Beneficial effects of exposure to negative air ions have been suggested, to include improved performance, mood, attention, and physiological condition. Existing support is clouded by methodological problems of control and standardization in treatment and equipment. This study investigated effects of negative ions produced by a commercially marketed air purification device on grip magnitude, coding, motor dexterity, reaction time, tracking, pulse, blood pressure, and temperature. Two groups of 12 males were exposed to 6 continuous h of either negative or "normal" ion environments under a double blind condition. Repeated measures (0,3,6 h) on each variable were obtained. MANOVA applied to change scores revealed no differences between groups, and 0 vs. 3 and 0 vs. 6-h group differences showed no significant alteration in any measure. Negative ions generated by an air purification device were concluded to produce no general or specific alteration of cognitive or psychomotor performance or physiological condition.

  18. [Optimization of the indoor air conditioning in the places of excessive radon release].

    PubMed

    Malykhin, V M

    1994-01-01

    The experimental modelling covered ventilation and air purification as well as air pollution with radon and such derivatives as polonium-218b, lead-214 and bismuth-214. The modelling was designed for industrial conditions with higher radon release in technologic conversion at enterprises processing uranium. The investigators obtained some information to optimize air processing and to lower the workers exposure to radon and its derivatives.

  19. Air Pollution.

    ERIC Educational Resources Information Center

    Gilpin, Alan

    A summary of one of our most pressing environmental problems, air pollution, is offered in this book by the Director of Air Pollution Control for the Queensland (Australia) State Government. Discussion of the subject is not restricted to Queensland or Australian problems and policies, however, but includes analysis of air pollution the world over.…

  20. Air Pollution

    MedlinePlus

    ... of Climate Change on Children's Health: Session Two: Air Quality Impacts MODERATOR: Susan Anenberg, EPA Meredith McCormack, Johns ... University • Effects of Climate Change on Children’s Health: Air Quality Impacts Frederica Perera, Columbia University • Air quality Impacts ...

  1. An Adaptable Investigative Graduate Laboratory Course for Teaching Protein Purification

    ERIC Educational Resources Information Center

    Carroll, Christopher W.; Keller, Lani C.

    2014-01-01

    This adaptable graduate laboratory course on protein purification offers students the opportunity to explore a wide range of techniques while allowing the instructor the freedom to incorporate their own personal research interests. The course design involves two sequential purification schemes performed in a single semester. The first part…

  2. A scintillator purification system for the Borexino solar neutrino detector

    NASA Astrophysics Data System (ADS)

    Benziger, J.; Cadonati, L.; Calaprice, F.; Chen, M.; Corsi, A.; Dalnoki-Veress, F.; Fernholz, R.; Ford, R.; Galbiati, C.; Goretti, A.; Harding, E.; Ianni, Aldo; Ianni, Andrea; Kidner, S.; Leung, M.; Loeser, F.; McCarty, K.; McKinsey, D.; Nelson, A.; Pocar, A.; Salvo, C.; Schimizzi, D.; Shutt, T.; Sonnenschein, A.

    2008-03-01

    Purification of the 278 tons of liquid scintillator and 889 tons of buffer shielding for the Borexino solar neutrino detector is performed with a system that combines distillation, water extraction, gas stripping, and filtration. This paper describes the principles of operation, design, and construction of that purification system, and reviews the requirements and methods to achieve system cleanliness and leak-tightness.

  3. Air Cleaning Technologies

    PubMed Central

    2005-01-01

    to remove airborne pathogens from room air depends on several factors, including the airflow rate through the unit’s filter and the airflow patterns in the room. Tested under a variety of conditions, in-room air cleaners, including portable or ceiling mounted units with either a HEPA or a non-HEPA filter, portable units with UVGI lights only, or ceiling mounted units with combined HEPA filtration and UVGI lights, have been estimated to be between 30% and 90%, 99% and 12% and 80% effective, respectively. However, and although their effectiveness is variable, the United States Centers for Disease Control and Prevention has acknowledged in-room air cleaners as alternative technology for increasing room ventilation when this cannot be achieved by the building’s HVAC system with preference given to fixed recirculating systems over portable ones. Importantly, the use of an in-room air cleaner does not preclude either the need for health care workers and visitors to use personal protective equipment (N95 mask or equivalent) when entering AII rooms or health care facilities from meeting current regulatory requirements for airflow rates (ventilation rates) in buildings and airflow differentials for effective negative-pressure rooms. The Plasmacluster ion technology, developed in 2000, is an air purification technology. Its manufacturer, Sharp Electronics Corporation, says that it can disable airborne microorganisms through the generation of both positive and negative ions. (1) The functional unit is the hydroxyl, which is a molecule comprised of one oxygen molecule and one hydrogen atom. Plasmacluster ion air purifier uses a multilayer filter system composed of a prefilter, a carbon filter, an antibacterial filter, and a HEPA filter, combined with an ion generator to purify the air. The ion generator uses an alternating plasma discharge to split water molecules into positively and negatively charged ions. When these ions are emitted into the air, they are surrounded by

  4. Biotechnology Protein Expression and Purification Facility

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The purpose of the Project Scientist Core Facility is to provide purified proteins, both recombinant and natural, to the Biotechnology Science Team Project Scientists and the NRA-Structural Biology Test Investigators. Having a core facility for this purpose obviates the need for each scientist to develop the necessary expertise and equipment for molecular biology, protein expression, and protein purification. Because of this, they are able to focus their energies as well as their funding on the crystallization and structure determination of their target proteins.

  5. Purification of Nanoparticles by Size and Shape

    NASA Astrophysics Data System (ADS)

    Robertson, James D.; Rizzello, Loris; Avila-Olias, Milagros; Gaitzsch, Jens; Contini, Claudia; Magoń, Monika S.; Renshaw, Stephen A.; Battaglia, Giuseppe

    2016-06-01

    Producing monodisperse nanoparticles is essential to ensure consistency in biological experiments and to enable a smooth translation into the clinic. Purification of samples into discrete sizes and shapes may not only improve sample quality, but also provide us with the tools to understand which physical properties of nanoparticles are beneficial for a drug delivery vector. In this study, using polymersomes as a model system, we explore four techniques for purifying pre-formed nanoparticles into discrete fractions based on their size, shape or density. We show that these techniques can successfully separate polymersomes into monodisperse fractions.

  6. [Purification of {sup 67}Cu]. Progress report

    SciTech Connect

    DeNardo, S.J.

    1994-09-01

    This report documents progress made in several areas of research and describes results which have not yet been published. These areas include: Purification of {sup 67}Cu; Macrocyclic chelates for targeted therapy; Studies of biologic activation associated with molecular receptor increase and tumor response in ChL6/L6 protocol patients; Lym-1 single chain genetically engineered molecules; Analysis of molecular genetic coded messages to enhance tumor response; Human dosimetry and therapeutic human use radiopharmaceuticals; studies in phantoms; Quantitative SPECT; Preclinical studies; and Clinical studies.

  7. Production and partial purification of Salmonella enterotoxin.

    PubMed Central

    Sedlock, D M; Koupal, L R; Deibel, R H

    1978-01-01

    By using a strain of Salmonella typhimurium, we detected the presence of an enterotoxin, as determined by the rabbit ileal loop assay, in various complex and defined media. The enterotoxin was concentrated by ultrafiltration of culture supernatant fluids and eluted in and adjacent to the void volume of a Sephadex G-100 column. This suggested that the enterotoxic factor was of a relatively high molecular weight, and additional evidence indicated it was heterogeneous in size. Further chromatography, using a diethylaminoethyl-cellulose anion exchanger, facilitated at least a 50-fold purification of the Salmonella enterotoxin. PMID:352941

  8. Biopharmaceuticals from microorganisms: from production to purification.

    PubMed

    Jozala, Angela Faustino; Geraldes, Danilo Costa; Tundisi, Louise Lacalendola; Feitosa, Valker de Araújo; Breyer, Carlos Alexandre; Cardoso, Samuel Leite; Mazzola, Priscila Gava; Oliveira-Nascimento, Laura de; Rangel-Yagui, Carlota de Oliveira; Magalhães, Pérola de Oliveira; Oliveira, Marcos Antonio de; Pessoa, Adalberto

    2016-12-01

    The use of biopharmaceuticals dates from the 19th century and within 5-10 years, up to 50% of all drugs in development will be biopharmaceuticals. In the 1980s, the biopharmaceutical industry experienced a significant growth in the production and approval of recombinant proteins such as interferons (IFN α, β, and γ) and growth hormones. The production of biopharmaceuticals, known as bioprocess, involves a wide range of techniques. In this review, we discuss the technology involved in the bioprocess and describe the available strategies and main advances in microbial fermentation and purification process to obtain biopharmaceuticals.

  9. Block Copolymer Membranes for Biofuel Purification

    NASA Astrophysics Data System (ADS)

    Evren Ozcam, Ali; Balsara, Nitash

    2012-02-01

    Purification of biofuels such as ethanol is a matter of considerable concern as they are produced in complex multicomponent fermentation broths. Our objective is to design pervaporation membranes for concentrating ethanol from dilute aqueous mixtures. Polystyrene-b-polydimethylsiloxane-b-polystyrene block copolymers were synthesized by anionic polymerization. The polydimethylsiloxane domains provide ethanol-transporting pathways, while the polystyrene domains provide structural integrity for the membrane. The morphology of the membranes is governed by the composition of the block copolymer while the size of the domains is governed by the molecular weight of the block copolymer. Pervaporation data as a function of these two parameters will be presented.

  10. Purification of Nanoparticles by Size and Shape

    PubMed Central

    Robertson, James D.; Rizzello, Loris; Avila-Olias, Milagros; Gaitzsch, Jens; Contini, Claudia; Magoń, Monika S.; Renshaw, Stephen A.; Battaglia, Giuseppe

    2016-01-01

    Producing monodisperse nanoparticles is essential to ensure consistency in biological experiments and to enable a smooth translation into the clinic. Purification of samples into discrete sizes and shapes may not only improve sample quality, but also provide us with the tools to understand which physical properties of nanoparticles are beneficial for a drug delivery vector. In this study, using polymersomes as a model system, we explore four techniques for purifying pre-formed nanoparticles into discrete fractions based on their size, shape or density. We show that these techniques can successfully separate polymersomes into monodisperse fractions. PMID:27271538

  11. Hormone purification by isoelectric focusing in space

    NASA Technical Reports Server (NTRS)

    Bier, M.

    1982-01-01

    The performance of a ground-prototype of an apparatus for recycling isoelectric focusing was evaluated in an effort to provide technology for large scale purification of peptide hormones, proteins, and other biologicals. Special emphasis was given to the effects of gravity on the function of the apparatus and to the determination of potential advantages deriveable from its use in a microgravity environment. A theoretical model of isoelectric focusing sing chemically defined buffer systems for the establishment of the pH gradients was developed. The model was transformed to a form suitable for computer simulations and was used extensively for the design of experimental buffers.

  12. Purification of the enzyme NADPH: protochlorophyllide oxidoreductase.

    PubMed

    Beer, N S; Griffiths, W T

    1981-04-01

    A procedure for the purification of the enzyme NADPH:protochlorophyllide oxidoreductase is described. This involves fractionation of sonicated oat etioplast membranes by discontinuous-sucrose-density-gradient centrifugation, which gives membranes in which the enzyme is present at a high specific activity. The enzyme is solubilized from the membranes with Triton X-100, followed by gel filtration of the extract; enzyme activity is eluted in fractions corresponding to a mol.wt of approx. 35000. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of the enzyme-containing fractions from gel filtration shows two peptides, of mol.wts. approx. 35000 and 37000.

  13. [Isolation and purification of virus damaging sunflower].

    PubMed

    Zakusilo, A O; Didenko, L F; Kniazieva, N A; Boĭko, A L

    1994-01-01

    A procedure has been developed for purifying intact virus's isolate particles evoking yellow spot mosaic disease in sunflower. Purification of pathogen in 0.1 M sodium phosphate buffer, pH 8.0 containing 0.05 M Na3SO3 and 0.2% 2-mercaptoethanol is used. After first clarification extract was exposed to two cycles of high-speed centrifugation and fractionated in linear 10-40% (wt vol-1) sucrose density gradient. Virus was recovered from appropriate fractions after dialysis against 0.01 M Na2SO3.

  14. An Innovative Reactor Technology to Improve Indoor Air Quality

    SciTech Connect

    Rempel, Jane

    2013-03-30

    As residential buildings achieve tighter envelopes in order to minimize energy used for space heating and cooling, accumulation of indoor air pollutants such as volatile organic compounds (VOCs), becomes a major concern causing poor air quality and increased health risks. Current VOC removal methods include sorbents, ultraviolet photocatalytic oxidation (UVPCO), and increased ventilation, but these methods do not capture or destroy all VOCs or are prohibitively expensive to implement. TIAX's objective in this program was to develop a new VOC removal technology for residential buildings. This novel air purification technology is based on an innovative reactor and light source design along with UVPCO properties of the chosen catalyst to purify indoor air and enhance indoor air quality (IAQ). During the program we designed, fabricated and tested a prototype air purifier to demonstrate its feasibility and effectiveness. We also measured kinetics of VOC destruction on photocatalysts, providing deep insight into reactor design.

  15. Online Oxide Contamination Measurement and Purification Demonstration

    NASA Technical Reports Server (NTRS)

    Bradley, D. E.; Godfroy, T. J.; Webster, K. L.; Garber, A. E.; Polzin, K. A.; Childers, D. J.

    2011-01-01

    Liquid metal sodium-potassium (NaK) has advantageous thermodynamic properties indicating its use as a fission reactor coolant for a surface (lunar, martian) power system. A major area of concern for fission reactor cooling systems is system corrosion due to oxygen contaminants at the high operating temperatures experienced. A small-scale, approximately 4-L capacity, simulated fission reactor cooling system employing NaK as a coolant was fabricated and tested with the goal of demonstrating a noninvasive oxygen detection and purification system. In order to generate prototypical conditions in the simulated cooling system, several system components were designed, fabricated, and tested. These major components were a fully-sealed, magnetically-coupled mechanical NaK pump, a graphite element heated reservoir, a plugging indicator system, and a cold trap. All system components were successfully demonstrated at a maximum system flow rate of approximately 150 cc/s at temperatures up to 550 C. Coolant purification was accomplished using a cold trap before and after plugging operations which showed a relative reduction in oxygen content.

  16. Native Purification and Analysis of Long RNAs

    PubMed Central

    Chillón, Isabel; Marcia, Marco; Legiewicz, Michal; Liu, Fei; Somarowthu, Srinivas; Pyle, Anna Marie

    2015-01-01

    The purification and analysis of long noncoding RNAs (lncRNAs) in vitro is a challenge, particularly if one wants to preserve elements of functional structure. Here, we describe a method for purifying lncRNAs that preserves the cotranscriptionally derived structure. The protocol avoids the misfolding that can occur during denaturation–renaturation protocols, thus facilitating the folding of long RNAs to a native-like state. This method is simple and does not require addition of tags to the RNA or the use of affinity columns. LncRNAs purified using this type of native purification protocol are amenable to biochemical and biophysical analysis. Here, we describe how to study lncRNA global compaction in the presence of divalent ions at equilibrium using sedimentation velocity analytical ultracentrifugation and analytical size-exclusion chromatography as well as how to use these uniform RNA species to determine robust lncRNA secondary structure maps by chemical probing techniques like selective 2′-hydroxyl acylation analyzed by primer extension and dimethyl sulfate probing. PMID:26068736

  17. Air Policing

    DTIC Science & Technology

    2009-05-01

    Iraq. To provide a background for understanding why Britain commenced the policy of air policing, this paper begins with a review of contemporary...7 Omissi, Air Power, XV. 8 policing actions or the pushing home of advantages gained by the air.” Within the context of this paper , the...control operations, and therefore within the context of this paper , the term coercive airpower refers to the threat of harming a population or the threat

  18. Polyether sulfone/hydroxyapatite mixed matrix membranes for protein purification

    NASA Astrophysics Data System (ADS)

    Sun, Junfen; Wu, Lishun

    2014-07-01

    This work proposes a novel approach for protein purification from solution using mixed matrix membranes (MMMs) comprising of hydroxyapatite (HAP) inside polyether sulfone (PES) matrix. The influence of HAP particle loading on membrane morphology is studied. The MMMs are further characterized concerning permeability and adsorption capacity. The MMMs show purification of protein via both diffusion as well as adsorption, and show the potential of using MMMs for improvements in protein purification techniques. The bovine serum albumin (BSA) was used as a model protein. The properties and structures of MMMs prepared by immersion phase separation process were characterized by pure water flux, BSA adsorption and scanning electron microscopy (SEM).

  19. Method for the purification of noble gases, nitrogen and hydrogen

    DOEpatents

    Baker, J.D.; Meikrantz, D.H.; Tuggle, D.G.

    1997-09-23

    A method and apparatus are disclosed for the purification and collection of hydrogen isotopes in a flowing inert gaseous mixture containing impurities, wherein metal alloy getters having the capability of sorbing non-hydrogen impurities such as oxygen, carbon dioxide, carbon monoxide, methane, ammonia, nitrogen and water vapor are utilized to purify the gaseous mixture of impurities. After purification hydrogen isotopes may be more efficiently collected. A plurality of parallel process lines utilizing metal getter alloys can be used to provide for the continuous purification and collection of the hydrogen isotopes. 15 figs.

  20. Method for the purification of noble gases, nitrogen and hydrogen

    DOEpatents

    Baker, John D.; Meikrantz, David H.; Tuggle, Dale G.

    1997-01-01

    A method and apparatus for the purification and collection of hydrogen isotopes in a flowing inert gaseous mixture containing impurities, wherein metal alloy getters having the capability of sorbing non-hydrogen impurities such as oxygen, carbon dioxide, carbon monoxide, methane, ammonia, nitrogen and water vapor are utilized to purify the gaseous mixture of impurities. After purification hydrogen isotopes may be more efficiently collected. A plurality of parallel process lines utilizing metal getter alloys can be used to provide for the continuous purification and collection of the hydrogen isotopes.

  1. Nylon wool purification alters the activation of T cells.

    PubMed

    Wohler, Jillian E; Barnum, Scott R

    2009-02-01

    Purification of lymphocytes, particularly T cells, is commonly performed using nylon wool. This enrichment method selectively retains B cells and some myeloid cells allowing a significantly more pure T cell population to flow through a nylon wool column. T cells purified in this fashion are assumed to be unaltered and functionally naïve, however some studies have suggested aberrant in vitro T cell responses after nylon wool treatment. We found that nylon wool purification significantly altered T cell proliferation, expression of activation markers and production of cytokines. Our results suggest that nylon wool treatment modifies T cell activation responses and that caution should be used when choosing this purification method.

  2. Air transport

    NASA Technical Reports Server (NTRS)

    Page, F Handley

    1924-01-01

    I purpose (sic) in this paper to deal with the development in air transport which has taken place since civil aviation between England and the Continent first started at the end of August 1919. A great deal of attention has been paid in the press to air services of the future, to the detriment of the consideration of results obtained up to the present.

  3. Air Pollution.

    ERIC Educational Resources Information Center

    Fox, Donald L.

    1989-01-01

    Materials related to air pollution are reviewed for the period January 1987, to October 1988. The topics are pollution monitoring, air pollution, and environmental chemistry. The organization consists of two major analytical divisions: (1) gaseous methods; and (2) aerosol and particulate methods. (MVL)

  4. Air Pollution.

    EPA Science Inventory

    Air quality is affected by many types of pollutants that are emitted from various sources, including stationary and mobile. These sources release both criteria and hazardous air pollutants, which cause health effects, ecological harm, and material damage. They are generally categ...

  5. Purification of a single-photon nonlinearity

    NASA Astrophysics Data System (ADS)

    Snijders, H.; Frey, J. A.; Norman, J.; Bakker, M. P.; Langman, E. C.; Gossard, A.; Bowers, J. E.; van Exter, M. P.; Bouwmeester, D.; Löffler, W.

    2016-08-01

    Single photon nonlinearities based on a semiconductor quantum dot in an optical microcavity are a promising candidate for integrated optical quantum information processing nodes. In practice, however, the finite quantum dot lifetime and cavity-quantum dot coupling lead to reduced fidelity. Here we show that, with a nearly polarization degenerate microcavity in the weak coupling regime, polarization pre- and postselection can be used to restore high fidelity. The two orthogonally polarized transmission amplitudes interfere at the output polarizer; for special polarization angles, which depend only on the device cooperativity, this enables cancellation of light that did not interact with the quantum dot. With this, we can transform incident coherent light into a stream of strongly correlated photons with a second-order correlation value up to 40, larger than previous experimental results, even in the strong-coupling regime. This purification technique might also be useful to improve the fidelity of quantum dot based logic gates.

  6. Purification of biomaterials by phase partitioning

    NASA Technical Reports Server (NTRS)

    Harris, J. M.

    1984-01-01

    A technique which is particularly suited to microgravity environments and which is potentially more powerful than electrophoresis is phase partitioning. Phase partitioning is purification by partitioning between the two immiscible aqueous layers formed by solution of the polymers poly(ethylene glycol) and dextran in water. This technique proved to be very useful for separations in one-g but is limited for cells because the cells are more dense than the phase solutions thus tend to sediment to the bottom of the container before reaching equilibrium with the preferred phase. There are three phases to work in this area: synthesis of new polymers for affinity phase partitioning; development of automated apparatus for ground-based separations; and design of apparatus for performing simple phase partitioning space experiments, including examination of mechanisms for separating phases in the absence of gravity.

  7. Helium recovery and purification at CHMFL

    NASA Astrophysics Data System (ADS)

    Li, J.; Meng, Q.; Ouyang, Z.; Shi, L.; Ai, X.; Chen, X.

    2017-02-01

    Currently, rising demand and declining reserves of helium have led to dramatic increases in the helium price. The High Magnetic Field Laboratory of Chinese Academy of Sciences (CHMFL) has made efforts since its foundation to increase the percentage of helium recovered. The piping network connects all the helium experimental facilities to the recovery system, and even exhaust ports of pressure relief valves and vacuum pumps are also connected. In each year, about 30,000 cubic meters helium gas is recovered. The recovery gas is purified, liquefied and supplied to the users again. This paper will provide details about the helium recovery and purification system at CHMFL, including system flowchart, components, problems and solutions.

  8. Nanocellulose-Based Materials for Water Purification.

    PubMed

    Voisin, Hugo; Bergström, Lennart; Liu, Peng; Mathew, Aji P

    2017-03-05

    Nanocellulose is a renewable material that combines a high surface area with high strength, chemical inertness, and versatile surface chemistry. In this review, we will briefly describe how nanocellulose is produced, and present-in particular, how nanocellulose and its surface modified versions affects the adsorption behavior of important water pollutants, e.g., heavy metal species, dyes, microbes, and organic molecules. The processing of nanocellulose-based membranes and filters for water purification will be described in detail, and the uptake capacity, selectivity, and removal efficiency will also be discussed. The processing and performance of nanocellulose-based membranes, which combine a high removal efficiency with anti-fouling properties, will be highlighted.

  9. Systems, compositions, and methods for fluid purification

    SciTech Connect

    Ho, W.S. Winston; Verweij, Hendrik; Shqau, Krenar; Ramasubranian, Kartik

    2015-12-22

    Disclosed herein are membranes comprising a substrate, a support layer, and a selective layer. In some embodiments the membrane may further comprise a permeable layer. Methods of forming membranes are also disclosed comprising forming a support layer on a substrate, removing adsorbed species from the support layer, preparing a solution containing inorganic materials of a selective layer, contacting the support layer with the solution, drying the membrane, and exposing the membrane to rapid thermal processing. Also disclosed are methods of fluid purification comprising providing a membrane having a feed side and a permeable side, passing a fluid mixture across the feed side of the membrane, providing a driving force for transmembrane permeation, removing from the permeate side a permeate stream enriched in a purified fluid, and withdrawing from the feed side a fluid that is depleted in a purified fluid.

  10. Hydrogen Purification Using Natural Zeolite Membranes

    NASA Technical Reports Server (NTRS)

    DelValle, William

    2003-01-01

    The School of Science at Universidad del Turabo (UT) have a long-lasting investigation plan to study the hydrogen cleaning and purification technologies. We proposed a research project for the synthesis, phase analysis and porosity characterization of zeolite based ceramic perm-selective membranes for hydrogen cleaning to support NASA's commitment to achieving a broad-based research capability focusing on aerospace-related issues. The present study will focus on technology transfer by utilizing inorganic membranes for production of ultra-clean hydrogen for application in combustion. We tested three different natural zeolite membranes (different particle size at different temperatures and time of exposure). Our results show that the membranes exposured at 900 C for 1Hr has the most higher permeation capacity, indicated that our zeolite membranes has the capacity to permeate hydrogen.

  11. Purification of large liquid scintillators for Borexino

    SciTech Connect

    Benziger, J.B.; Calaprice, F.P.; Vogelaar, R.B.

    1993-10-01

    Distillation extraction and crystallization have been used on scintillator mixtures for solar neutrino physics to remove cosmo- genically produced impurities ({sup 7}Be) and naturally occurring impurities ({sup 238}U, {sup 232}Th, and {sup 40}K), and to improve the optical transmission. Distillation was effective at removing {sup 7}Be and other impurities from aromatic solvents (p-xylene and pseudocumene) used as scintillator solvents. Distillation also provided the greatest improvement in the optical clarity of the solvents. Commercially available fluors (PPO and PMP) have high levels of potassium, far in excess of those tolerable for Borexino. Extraction techniques have been found to be effective at removing radioactive impurities, particularly potassium, from the fluors. An overall strategy for on-line purification of the scintillator for Borexino will be presented.

  12. (Hyper)thermophilic enzymes: production and purification.

    PubMed

    Falcicchio, Pierpaolo; Levisson, Mark; Kengen, Servé W M; Koutsopoulos, Sotirios

    2014-01-01

    The discovery of thermophilic and hyperthermophilic microorganisms, thriving at environmental temperatures near or above 100 °C, has revolutionized our ideas about the upper temperature limit at which life can exist. The characterization of (hyper)thermostable proteins has broadened our understanding and presented new opportunities for solving one of the most challenging problems in biophysics: how is structural stability and biological function maintained at high temperatures where "normal" proteins undergo dramatic structural changes? In our laboratory we have purified and studied many thermostable and hyperthermostable proteins in an attempt to determine the molecular basis of heat stability. Here, we present methods to express such proteins and enzymes in E. coli and provide a general protocol for overproduction and purification. The ability to produce enzymes that retain their stability and activity at elevated temperatures creates exciting opportunities for a wide range of biocatalytic applications.

  13. Nanocellulose-Based Materials for Water Purification

    PubMed Central

    Voisin, Hugo; Bergström, Lennart; Liu, Peng; Mathew, Aji P.

    2017-01-01

    Nanocellulose is a renewable material that combines a high surface area with high strength, chemical inertness, and versatile surface chemistry. In this review, we will briefly describe how nanocellulose is produced, and present—in particular, how nanocellulose and its surface modified versions affects the adsorption behavior of important water pollutants, e.g., heavy metal species, dyes, microbes, and organic molecules. The processing of nanocellulose-based membranes and filters for water purification will be described in detail, and the uptake capacity, selectivity, and removal efficiency will also be discussed. The processing and performance of nanocellulose-based membranes, which combine a high removal efficiency with anti-fouling properties, will be highlighted. PMID:28336891

  14. Purification and characterization of the Oligosaccharyl transferase

    SciTech Connect

    Kapoor, T.M.

    1990-11-01

    Oligosaccharyl transferase was characterized to be a glycoprotein with at least one saccharide unit that had a D-manno or D- glucopyranose configuration with unmodified hydroxy groups at C-3, C-4 and C-6, using a Concanavalin A affinity column. This afforded a 100 fold increase in the transferase purity in the solubilized microsomal sample and also removed over 90% of the microsomal proteins (the cytosolic ones being removed before solubilization). The detergent, N,N-Dimethyldodecylamine N-oxide (LDAO) was used for solubilization and it yielded a system compatible with the assay and the purification steps. An efficient method for detergent extraction without dilution of sample or protein precipitation was also developed.

  15. Purification and Properties of Neurospora crassa Laccase

    PubMed Central

    Froehner, Stanley C.; Eriksson, Karl-Erik

    1974-01-01

    Extracellular Neurospora laccase (p-diphenol:oxygen oxidoreductase; EC 1.10.3.2) has been purified to apparent homogeneity by classical purification techniques. The enzyme, which consists of mainly one form, has a molecular weight of 64,800 and contains 11% carbohydrate. The ultraviolet, visible, and electron paramagnetic resonance spectra indicate that both type I and type II copper are present, as described for the Polyporus versicolor enzyme. With the exception of phloroglucinol, only para- and ortho-diphenols serve as effective substrates for the enzyme. Like the extracellular form, intracellular laccase is a glycoprotein as shown by its ability to bind to Concanavalin A Sepharose. Other studies, including gel filtration and ion-exchange chromatography, revealed no differences between the intracellular and extracellular enzymes, suggesting that intracellular laccase is destined for excretion by the cell. Images PMID:4278681

  16. Overview of Albumin and Its Purification Methods

    PubMed Central

    Raoufinia, Ramin; Mota, Ali; Keyhanvar, Neda; Safari, Fatemeh; Shamekhi, Sara; Abdolalizadeh, Jalal

    2016-01-01

    As the most frequent plasma protein, albumin constitutes more than 50% of the serum proteins in healthy individuals. It has a key role in oncotic pressure maintenance and it is known as a versatile protein carrier for transportation of various endogenous and exogenous ligands. Reduced amounts of albumin in the body will lead to different kinds of diseases such as hypovolemia and hypoproteinemia. It also has various indications in shocks, burns, cardiopulmonary bypass, acute liver failure and etc. Further applications in research consist of cell culture supplement, drug delivery carrier and protein/drug stabilizer. So, the demand for albumin increased annually worldwide. Due to different applications of albumin, many efforts have been accomplished to achieve albumin during a long period of time. In this review, an overview of serum albumin and different purification methods are summarized. PMID:28101456

  17. C1 inhibitor: quantification and purification.

    PubMed

    Varga, Lilian; Dobó, József

    2014-01-01

    C1 inhibitor is a multipotent serpin capable of inhibiting the classical and the lectin pathways of complement, the fibrinolytic system, and contact/kinin system of coagulation. Deficiency of C1 inhibitor manifest as hereditary angioedema (HAE), an autosomal dominant hereditary disease. Measuring the C1 inhibitor level is of vital importance for the diagnosis of HAE and also for monitoring patients receiving C1 inhibitor for therapy. Determination of the antigenic C1 inhibitor level by the radial immunodiffusion (RID) technique is described in detail in this chapter. The presented purification method of plasma C1 inhibitor is primarily based on its high carbohydrate content and its affinity to the lectin jacalin.

  18. Blood purification in toxicology: nephrology's ugly duckling.

    PubMed

    Ghannoum, Marc; Nolin, Thomas D; Lavergne, Valery; Hoffman, Robert S

    2011-05-01

    Contrary to popular opinion, application of extracorporeal therapies for poisonings predates their use for ESRD. Despite this observation, the science of blood purification in toxicology remains desperately stagnant today. In fact, much of our current knowledge is derived from George Schreiner's 1958 review. Original publications are almost exclusively composed of case reports and case series, from which good inference is impossible. Until randomized controlled trials become available, the medical community would be well served by a group mandated to systematically review available literature, extract relevant information, provide recommendations based on current evidence, and propose research initiatives. The EXtracorporeal TReatments In Poisoning workgroup, formed by several international experts in different medical fields and represented by over 20 societies, now has this mission.

  19. Purification of RNA from milk whey.

    PubMed

    Izumi, Hirohisa; Kosaka, Nobuyoshi; Shimizu, Takashi; Sekine, Kazunori; Ochiya, Takahiro; Takase, Mitsunori

    2013-01-01

    MicroRNAs (miRNAs) are small regulatory RNA molecules that modulate specific target mRNAs and play very important roles in physiological processes. They were recently detected in body fluids such as blood, urine, saliva, and milk. These body fluid miRNAs have been studied thoroughly as potential diagnostic biomarkers. However, there have been few studies of milk miRNAs, and their roles are not clearly understood. Milk is the only nutritional source for newborn infants, and bovine milk is used widely as a dairy product. Thus, it is important to study milk miRNAs. In general, body fluid RNA concentrations are extremely low and of diverse existence types. In this chapter, we compare two silica membrane column-based RNA purification kits, and also compare RNA obtained directly from whey with that isolated from whey-derived exosomes.

  20. Purification of a single-photon nonlinearity

    PubMed Central

    Snijders, H.; Frey, J. A.; Norman, J.; Bakker, M. P.; Langman, E. C.; Gossard, A.; Bowers, J. E.; van Exter, M. P.; Bouwmeester, D.; Löffler, W.

    2016-01-01

    Single photon nonlinearities based on a semiconductor quantum dot in an optical microcavity are a promising candidate for integrated optical quantum information processing nodes. In practice, however, the finite quantum dot lifetime and cavity-quantum dot coupling lead to reduced fidelity. Here we show that, with a nearly polarization degenerate microcavity in the weak coupling regime, polarization pre- and postselection can be used to restore high fidelity. The two orthogonally polarized transmission amplitudes interfere at the output polarizer; for special polarization angles, which depend only on the device cooperativity, this enables cancellation of light that did not interact with the quantum dot. With this, we can transform incident coherent light into a stream of strongly correlated photons with a second-order correlation value up to 40, larger than previous experimental results, even in the strong-coupling regime. This purification technique might also be useful to improve the fidelity of quantum dot based logic gates. PMID:27573361

  1. Biomimetic affinity ligands for protein purification.

    PubMed

    Sousa, Isabel T; Taipa, M Angela

    2014-01-01

    The development of sophisticated molecular modeling software and new bioinformatic tools, as well as the emergence of data banks containing detailed information about a huge number of proteins, enabled the de novo intelligent design of synthetic affinity ligands. Such synthetic compounds can be tailored to mimic natural biological recognition motifs or to interact with key surface-exposed residues on target proteins and are designated as "biomimetic ligands." A well-established methodology for generating biomimetic or synthetic affinity ligands integrates rational design with combinatorial solid-phase synthesis and screening, using the triazine scaffold and analogues of amino acids side chains to create molecular diversity.Triazine-based synthetic ligands are nontoxic, low-cost, highly stable compounds that can replace advantageously natural biological ligands in the purification of proteins by affinity-based methodologies.

  2. Staphylococcal micrococcins. II. Isolation, purification and identification.

    PubMed

    Breiter, J; Metz, H; Grigo, J

    1975-08-01

    Seven strains belonging to the Micrococcaceae family and excreting substances with antibiotic activity, were grown in submerged cultures on technical scale for isolation, purification and identification of biologically active compounds. Two basic substances were isolated and classified to the micrococcin antibiotics family. The naturally occurring mixture of micrococcin M1 and M3 was called micrococcin M. This antibiotic has the formula C48H50O11N12S6 and a molecular weight of about 1160, melting point 221--224 degrees C, and optical rotation [a]20/D = + 66.6. Other antibiotically active substances produced by seven investigated strains were identified as micrococcin M or as separate compounds. Comparison with previously described micrococcin and micrococcin P has been made.

  3. Concentration and purification of plutonium or thorium

    DOEpatents

    Hayden, John A.; Plock, Carl E.

    1976-01-01

    In this invention a first solution obtained from such as a plutonium/thorium purification process or the like, containing plutonium (Pu) and/or thorium (Th) in such as a low nitric acid (HNO.sub.3) concentration may have the Pu and/or Th separated and concentrated by passing an electrical current from a first solution having disposed therein an anode to a second solution having disposed therein a cathode and separated from the first solution by a cation permeable membrane, the Pu or Th cation permeating the cation membrane and forming an anionic complex within the second solution, and electrical current passage affecting the complex formed to permeate an anion membrane separating the second solution from an adjoining third solution containing disposed therein an anode, thereby effecting separation and concentration of the Pu and/or Th in the third solution.

  4. Silver nanocluster catalytic microreactors for water purification

    NASA Astrophysics Data System (ADS)

    Da Silva, B.; Habibi, M.; Ognier, S.; Schelcher, G.; Mostafavi-Amjad, J.; Khalesifard, H. R. M.; Tatoulian, M.; Bonn, D.

    2016-07-01

    A new method for the elaboration of a novel type of catalytic microsystem with a high specific area catalyst is developed. A silver nanocluster catalytic microreactor was elaborated by doping a soda-lime glass with a silver salt. By applying a high power laser beam to the glass, silver nanoclusters are obtained at one of the surfaces which were characterized by BET measurements and AFM. A microfluidic chip was obtained by sealing the silver coated glass with a NOA 81 microchannel. The catalytic activity of the silver nanoclusters was then tested for the efficiency of water purification by using catalytic ozonation to oxidize an organic pollutant. The silver nanoclusters were found to be very stable in the microreactor and efficiently oxidized the pollutant, in spite of the very short residence times in the microchannel. This opens the way to study catalytic reactions in microchannels without the need of introducing the catalyst as a powder or manufacturing complex packed bed microreactors.

  5. Protein purification using PDZ affinity chromatography.

    PubMed

    Walkup, Ward G; Kennedy, Mary B

    2015-04-01

    PDZ domains function in nature as protein-binding domains within scaffold and membrane-associated proteins. They comprise approximately 90 residues and undergo specific, high-affinity interactions with complementary C-terminal peptide sequences, other PDZ domains, and/or phospholipids. We have previously shown that the specific, strong interactions of PDZ domains with their ligands make them well suited for use in affinity chromatography. This unit provides protocols for the PDZ affinity chromatography procedure that are applicable for the purification of proteins that contain PDZ domains or PDZ domain-binding ligands, either naturally or introduced by genetic engineering. We detail the preparation of affinity resins composed of PDZ domains or PDZ domain peptide ligands coupled to solid supports. These resins can be used to purify proteins containing endogenous or genetically introduced PDZ domains or ligands, eluting the proteins with free PDZ domain peptide ligands.

  6. Submersible purification system for radioactive water

    DOEpatents

    Abbott, Michael L.; Lewis, Donald R.

    1989-01-01

    A portable, submersible water purification system for use in a pool of water containing radioactive contamination includes a prefilter for filtering particulates from the water. A resin bed is then provided for removal of remaining dissolved, particulate, organic, and colloidal impurities from the prefiltered water. A sterilizer then sterilizes the water. The prefilter and resin bed are suitably contained and are submerged in the pool. The sterilizer is water tight and located at the surface of the pool. The water is circulated from the pool through the prefilter, resin bed, and sterilizer by suitable pump or the like. In the preferred embodiment, the resin bed is contained within a tank which stands on the bottom of the pool and to which a base mounting the prefilter and pump is attached. An inlet for the pump is provided adjacent the bottom of the pool, while the sterilizer and outlet for the system is located adjacent the top of the pool.

  7. A RAPID DNA EXTRACTION METHOD FOR PCR IDENTIFICATION OF FUNGAL INDOOR AIR CONTAMINANTS

    EPA Science Inventory

    Following air sampling, fungal DNA needs to be extracted and purified to a state suitable for laboratory use. Our laboratory has developed a simple method of extraction and purification of fungal DNA appropriate for enzymatic manipulation and polymerase chain reaction (PCR) appli...

  8. PURIFICATION OF IRIDIUM BY ELECTRON BEAM MELTING

    SciTech Connect

    Ohriner, Evan Keith

    2008-01-01

    The purification of iridium metal by electron beam melting has been characterized for 48 impurity elements. Chemical analysis was performed by glow discharge mass spectrographic (GDMS) analysis for all elements except carbon, which was analyzed by combustion. The average levels of individual elemental impurities in the starting powder varied from 37 g/g to 0.02 g/g. The impurity elements Li, Na, Mg, P, S, Cl, K, Ca, Mn, Co, Ni, Cu, Zn, As, Pd, Ag, Cd, Sn, Sb, Te, Ba, Ce, Tl, Pb, and Bi were not detectable following the purification. No significant change in concentration of the elements Ti, V, Zr, Nb, Mo, and Re was found. The elements B, C, Al, Si, Cr, Fe, Ru, Rh, and Pt were partially removed by vaporization during electron beam melting. Langmuir's equation for ideal vaporization into a vacuum was used to calculate for each impurity element the expected ratio of impurity content after melting to that before melting. Equilibrium vapor pressures were calculated using Henry's law, with activity coefficients obtained from published data for the elements Fe, Ti, and Pt. Activity coefficients were estimated from enthalpy data for Al, Si, V, Cr, Mn, Co, Ni, Zr, Nb, Mo, and Hf and an ideal solution model was used for the remaining elements. The melt temperature was determined from measured iridium weight loss. Excellent agreement was found between measured and calculated impurity ratios for all impurity elements. The results are consistent with some localized heating of the melt pool due to rastering of the electron beam, with an average vaporization temperature of 3100 K as compared to a temperature of 2965 K calculated for uniform heating of the melt pool. The results are also consistent with ideal mixing in the melt pool.

  9. Enzymatic processes for the purification of trehalose.

    PubMed

    Wu, Tsung-Ta; Lin, Sung-Chyr; Shaw, Je-Fu

    2013-01-01

    A dual-enzyme process aiming at facilitating the purification of trehalose from maltose is reported in this study. Enzymatic conversion of maltose to trehalose usually leads to the presence of significant amount of glucose, by-product of the reaction, and unreacted maltose. To facilitate the separation of trehalose from glucose and unreacted maltose, sequential conversion of maltose to glucose and glucose to gluconic acid under the catalysis of glucoamylase and glucose oxidase, respectively, is studied. This study focuses on the hydrolysis of maltose with immobilized glucoamylase on Eupergit® C and CM Sepharose. CM Sepharose exhibited a higher protein adsorption capacity, 49.35 ± 1.43 mg/g, and was thus selected as carrier for the immobilization of glucoamylase. The optimal reaction temperature and reaction pH of the immobilized glucoamylase for maltose hydrolysis were identified as 40°C and 4.0, respectively. Under such conditions, the unreacted maltose in the product stream of trehalose synthase-catalyzed reaction was completely converted to glucose within 35 min, without detectable trehalose degradation. The conversion of maltose to glucose could be maintained at 0.92 even after 80 cycles in repeated-batch operations. It was also demonstrated that glucose thus generated could be readily oxidized into gluconic acid, which can be easily separated from trehalose. We thus believe the proposed process of maltose hydrolysis with immobilized glucoamylase, in conjunction with trehalose synthase-catalyzed isomerization and glucose oxidase-catalyzed oxidation, is promising for the production and purification of trehalose on industrial scales.

  10. Rapid magnetic catch-and-release purification by hydrophobic interactions.

    PubMed

    Iijima, Motoyuki; Mikami, Yuzuru; Yoshioka, Tomohiko; Kim, Shokaku; Kamiya, Hidehiro; Chiba, Kazuhiro

    2009-09-15

    A reversible, conventional, and rapid purification method of hydrophobically tagged products using hydrophobic magnetic nanoparticles was developed. The reversible purification system entails simply controlling the polarity of solvents. First, for the catching procedure, poor solvents were added into a well-dispersed system of magnetic nanoparticles and tagged products. Once the poor solvents were added to the system, the products were recrystallized among the nanoparticles and the aggregation of magnetic nanoparticles occurred due to hydrophobic interactions. These aggregates with the products contained within them were able to be collected rapidly by magnets. Then, the releasing procedure can be easily performed by redispersing the collected aggregates into good solvents. The availability of this purification protocol was confirmed by using a hydrophobically tagged fluorescent model product. Furthermore, this rapid purification method was successfully applied to a peptide elongation reaction system which enabled the synthesis of peptides such as Leu-Enkephalin in high purity, in high yield, and in a short time.

  11. Renaissance of protein crystallization and precipitation in biopharmaceuticals purification.

    PubMed

    Dos Santos, Raquel; Carvalho, Ana Luísa; Roque, A Cecília A

    The current chromatographic approaches used in protein purification are not keeping pace with the increasing biopharmaceutical market demand. With the upstream improvements, the bottleneck shifted towards the downstream process. New approaches rely in Anything But Chromatography methodologies and revisiting former techniques with a bioprocess perspective. Protein crystallization and precipitation methods are already implemented in the downstream process of diverse therapeutic biological macromolecules, overcoming the current chromatographic bottlenecks. Promising work is being developed in order to implement crystallization and precipitation in the purification pipeline of high value therapeutic molecules. This review focuses in the role of these two methodologies in current industrial purification processes, and highlights their potential implementation in the purification pipeline of high value therapeutic molecules, overcoming chromatographic holdups.

  12. 6. Vacuum purification room and upper level offices Bureau ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Vacuum purification room and upper level offices - Bureau of Mines Boulder City Experimental Station, Titanium Research Building, Date Street north of U.S. Highway 93, Boulder City, Clark County, NV

  13. Economic Methods of Ginger Protease'sextraction and Purification

    NASA Astrophysics Data System (ADS)

    Qiao, Yuanyuan; Tong, Junfeng; Wei, Siqing; Du, Xinyong; Tang, Xiaozhen

    This article reports the ginger protease extraction and purification methods from fresh ginger rhizome. As to ginger protease extraction, we adapt the steps of organic solvent dissolving, ammonium sulfate depositing and freeze-drying, and this method can attain crude enzyme powder 0.6% weight of fresh ginger rhizome. The purification part in this study includes two steps: cellulose ion exchange (DEAE-52) and SP-Sephadex 50 chromatography, which can purify crude ginger protease through ion and molecular weight differences respectively.

  14. Production, purification, and capsid stability of rhinovirus C types.

    PubMed

    Griggs, Theodor F; Bochkov, Yury A; Nakagome, Kazuyuki; Palmenberg, Ann C; Gern, James E

    2015-06-01

    The rhinovirus C (RV-C) were discovered in 2006 and these agents are an important cause of respiratory morbidity. Little is known about their biology. RV-C15 (C15) can be produced by transfection of recombinant viral RNA into cells and subsequent purification over a 30% sucrose cushion, even though yields and infectivity of other RV-C genotypes with this protocol are low. The goal of this study was to determine whether poor RV-C yields were due to capsid instability, and moreover, to develop a robust protocol suitable for the purification of many RV-C types. Capsid stability assays indicated that virions of RV-C41 (refractory to purification) have similar tolerance for osmotic and temperature stress as RV-A16 (purified readily), although C41 is more sensitive to low pH. Modification to the purification protocol by removing detergent increased the yield of RV-C. Addition of nonfat dry milk to the sucrose cushion increased the virus yield but sacrificed purity of the viral suspension. Analysis of virus distribution following centrifugation indicated that the majority of detectable viral RNA (vRNA) was found in pellets refractory to resuspension. Reduction of the centrifugal force with commiserate increase in spin-time improved the recovery of RV-C for both C41 and C2. Transfection of primary lung fibroblasts (WisL cells) followed by the modified purification protocol further improved yields of infectious C41 and C2. Described herein is a higher yield purification protocol suitable for RV-C types refractory to the standard purification procedure. The findings suggest that aggregation-adhesion problems rather than capsid instability influence RV-C yield during purification.

  15. Purification of human platelet-derived growth factor

    SciTech Connect

    Raines, E.W.; Ross, R.

    1985-01-01

    The paper describes a method for purification of human platelet-derived growth factor (PDGF) from outdated platelet-rich plasma (PRP) using commonly available laboratory reagents and yielding a mitogen purified 800,000-fold over the starting material. (/sup 3/H)thymidine incorporation into DNA of cultured cells responsive to PDGF represents the most readily available method to follow its purification and define the biological activity of a purified preparation. Other assays to quantitate PDGF include radioreceptor assay and radioimmunoassay.

  16. New data on electron-beam purification of wastewater

    NASA Astrophysics Data System (ADS)

    Pikaev, A. K.

    2002-11-01

    Recent environmental applications of radiation technology, developed in the author's laboratory, are presented in this paper. They are electron-beam and coagulation purification of molasses distillery slops from distillery-produced ethyl alcohol by fermentation of plant materials, electron-beam purification of wastewater from carboxylic acids (for example, formic acid) and removal of petroleum products (diesel fuel, motor oil and residual fuel oil) from water by γ-irradiation.

  17. Purification and Characterization of Methyl Phthalyl Ethyl Glycolate (MPEG)

    DTIC Science & Technology

    2014-11-21

    plasticizer, HES 5808 propellant, purification, 1H NMR, 13C NMR, IR, UV- Vis, bp, HRMS, GC, GC-MS, EA, KF, flash column chromatography , dimethylformamide...We report the purification of methyl phthalyl ethyl glycolate (MPEG) by flash column chromatography (ca. grams), allowing us to establish an...analysis Et3N Triethylamine Et2O Diethyl ether IR Infrared spectroscopy GC Capillary gas chromatography GC-MS Capillary gas chromatography mass

  18. Purification and immobilization of Aspergillus niger. beta. -xylosidase

    SciTech Connect

    Oguntimein, G.B.; Reilly, P.J.

    1980-01-01

    ..beta..-Xylosidase from a commercial Aspergillus niger preparation was purified by differential ammonium sulfate precipitation and either gel permeation or cation exchange chromatography, giving 16-fold purification in 32% yield for the first technique or 27-fold purification in 19% yield for the second. Enzyme prepared by this method was immobilized to 10 different carriers, but only when it was bound to alumina with TiCl/sub 4/ and to alkylamine porous silica with glutaraldehyde were substantial efficiencies and stabilities achieved.

  19. (67)Ga and (68)Ga purification studies: preliminary results.

    PubMed

    Costa, R F; Barboza, M F; Osso, J A

    2013-01-01

    The positron emission tomography technique is very useful for diagnosis of several diseases. (68)Ga is a positron emitter with half-life of 67.7 min. As it is available from (68)Ge/(68)Ga generator systems, it is not necessary to have a nearby cyclotron. However, the eluate from commercial generators contains high levels of metallic impurities, which compete with (68)Ga in biomolecular labeling. Thus, a subsequent purification step is needed after generator elution. Here we present the results of two different methods developed for handmade purification of (68)Ga and (67)Ga for subsequent radiolabeling of biomolecules. Two purification methods were employed. The first one uses a cation exchange resin, and (68)Ga is eluted with a solution of acetone/acid. The second method of purification is performed by column chromatography solvent extraction, with (68)Ga recovery in deionized water. The best result was achieved with cationic resin AG50W-X8 (>400 mesh). However, the resin is not commercially available. The extraction chromatography column based on absorption of diisopropyl ether in XAD-16 is the most promising purification method. Although the levels of (68)Ga recovery and purification were smaller with the cationic resin method, its advantage is the (68)Ga recovery in deionized water.

  20. Monogamy, polygamy, and other properties of entanglement of purification

    NASA Astrophysics Data System (ADS)

    Bagchi, Shrobona; Pati, Arun Kumar

    2015-04-01

    For bipartite pure and mixed quantum states, in addition to the quantum mutual information, there is another measure of total correlation, namely, the entanglement of purification. We study the monogamy, polygamy, and additivity properties of the entanglement of purification for pure and mixed states. In this paper, we show that, in contrast to the quantum mutual information which is strictly monogamous for any tripartite pure states, the entanglement of purification is polygamous for the same. This shows that there can be genuinely two types of total correlation across any bipartite cross in a pure tripartite state. Furthermore, we find the lower bound and actual values of the entanglement of purification for different classes of tripartite and higher-dimensional bipartite mixed states. Thereafter, we show that if entanglement of purification is not additive on tensor product states, it is actually subadditive. Using these results, we identify some states which are additive on tensor products for entanglement of purification. The implications of these findings on the quantum advantage of dense coding are briefly discussed, whereby we show that for tripartite pure states, it is strictly monogamous and if it is nonadditive, then it is superadditive on tensor product states.

  1. Purification of cerium, neodymium and gadolinium for low background experiments

    NASA Astrophysics Data System (ADS)

    Boiko, R. S.; Barabash, A. S.; Belli, P.; Bernabei, R.; Cappella, F.; Cerulli, R.; Danevich, F. A.; Incicchitti, A.; Laubenstein, M.; Mokina, V. M.; Nisi, S.; Poda, D. V.; Polischuk, O. G.; Tretyak, V. I.

    2014-01-01

    Cerium, neodymium and gadolinium contain double beta active isotopes. The most interesting are 150Nd and 160Gd (promising for 0ν2β search), 136Ce (2β+ candidate with one of the highest Q2β). The main problem of compounds containing lanthanide elements is their high radioactive contamination by uranium, radium, actinium and thorium. The new generation 2β experiments require development of methods for a deep purification of lanthanides from the radioactive elements. A combination of physical and chemical methods was applied to purify cerium, neodymium and gadolinium. Liquid-liquid extraction technique was used to remove traces of Th and U from neodymium, gadolinium and for purification of cerium from Th, U, Ra and K. Co-precipitation and recrystallization methods were utilized for further reduction of the impurities. The radioactive contamination of the samples before and after the purification was tested by using ultra-low-background HPGe gamma spectrometry. As a result of the purification procedure the radioactive contamination of gadolinium oxide (a similar purification efficiency was reached also with cerium and neodymium oxides) was decreased from 0.12 Bq/kg to 0.007 Bq/kg in 228Th, from 0.04 Bq/kg to <0.006 Bq/kg in 226Ra, and from 0.9 Bq/kg to 0.04 Bq/kg in 40K. The purification methods are much less efficient for chemically very similar radioactive elements like actinium, lanthanum and lutetium.

  2. A new look at xylanases: an overview of purification strategies.

    PubMed

    Sá-Pereira, Paula; Paveia, Helena; Costa-Ferreira, Maria; Aires-Barros, Maria

    2003-07-01

    Interest in xylanases from different sources has increased markedly in the past decade, in part because of the application of these enzymes in the pulp and paper industry. Purity and purification costs are becoming important issues in modern biotechnology as the industry matures and competitive products reach the marketplace. Thus, new paths for successful and efficient xylanase recovery have to be followed. This article reviews the isolation and purification methods used for the recovery of microbial xylanases. Origins and applications of xylanases are described, highlighting the special features of this class of enzymes, such as the carbohydrate-binding domains (CBDs) and their importance in the development of affinity methodologies to increase and facilitate xylanase purification. Implications of recombinant DNA technology for the isolation and purification of xylanases are evaluated. Several purification procedures are analyzed, taking into consideration the sequence of the methods used in each and the number of times each method is used. New directions to improve xylanase separation and purification from fermentation media are described.

  3. Air Apparent.

    ERIC Educational Resources Information Center

    Harbster, David A.

    1988-01-01

    Explains the principle upon which a barometer operates. Describes how to construct two barometric devices for use in the classroom that show air's changing pressure. Cites some conditions for predicting weather. (RT)

  4. Air Abrasion

    MedlinePlus

    ... information you need from the Academy of General Dentistry Sunday, April 9, 2017 About | Contact InfoBites Quick ... general dentist, who has been trained in restorative dentistry techniques, will perform any procedures that use air- ...

  5. Strategies for automated sample preparation, nucleic acid purification, and concentration of low-target-number nucleic acids in environmental and food processing samples

    NASA Astrophysics Data System (ADS)

    Bruckner-Lea, Cynthia J.; Holman, David A.; Schuck, Beatrice L.; Brockman, Fred J.; Chandler, Darrell P.

    1999-01-01

    The purpose of this work is to develop a rapid, automated system for nucleic acid purification and concentration from environmental and food processing samples. Our current approach involves off-line filtration and cell lysis (ballistic disintegration) functions in appropriate buffers followed by automated nucleic acid capture and purification on renewable affinity matrix microcolumns. Physical cell lysis and renewable affinity microcolumns eliminate the need for toxic organic solvents, enzyme digestions or other time- consuming sample manipulations. Within the renewable affinity microcolumn, we have examined nucleic acid capture and purification efficiency with various microbead matrices (glass, polymer, paramagnetic), surface derivitization (sequence-specific capture oligonucleotides or peptide nucleic acids), and DNA target size and concentration under variable solution conditions and temperatures. Results will be presented comparing automated system performance relative to benchtop procedures for both clean (pure DNA from a laboratory culture) and environmental (soil extract) samples, including results which demonstrate 8 minute purification and elution of low-copy nucleic acid targets from a crude soil extract in a form suitable for PCR or microarray-based detectors. Future research will involve the development of improved affinity reagents and complete system integration, including upstream cell concentration and cell lysis functions and downstream, gene-based detectors. Results of this research will ultimately lead to improved processes and instrumentation for on-line, automated monitors for pathogenic micro-organisms in food, water, air, and soil samples.

  6. Case studies on the physical-chemical parameters' variation during three different purification approaches destined to treat wastewaters from food industry.

    PubMed

    Ghimpusan, Marieta; Nechifor, Gheorghe; Nechifor, Aurelia-Cristina; Dima, Stefan-Ovidiu; Passeri, Piero

    2016-07-26

    The paper presents a set of three interconnected case studies on the depuration of food processing wastewaters by using aeration & ozonation and two types of hollow-fiber membrane bioreactor (MBR) approaches. A secondary and more extensive objective derived from the first one is to draw a clearer, broader frame on the variation of physical-chemical parameters during the purification of wastewaters from food industry through different operating modes with the aim of improving the management of water purification process. Chemical oxygen demand (COD), pH, mixed liquor suspended solids (MLSS), total nitrogen, specific nitrogen (NH4(+), NO2(-), NO3(-)) total phosphorous, and total surfactants were the measured parameters, and their influence was discussed in order to establish the best operating mode to achieve the purification performances. The integrated air-ozone aeration process applied in the second operating mode lead to a COD decrease by up to 90%, compared to only 75% obtained in a conventional biological activated sludge process. The combined purification process of MBR and ozonation produced an additional COD decrease of 10-15%, and made the Total Surfactants values to comply to the specific legislation.

  7. Hazardous Air Pollutants

    MedlinePlus

    ... Air Toxics Website Rules and Implementation Related Information Air Quality Data and Tools Clean Air Act Criteria Air ... Resources Visibility and Haze Voluntary Programs for Improving Air Quality Contact Us to ask a question, provide feedback, ...

  8. Air surveillance

    SciTech Connect

    Patton, G.W.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the air surveillance and monitoring programs currently in operation at that Hanford Site. Atmospheric releases of pollutants from Hanford to the surrounding region are a potential source of human exposure. For that reason, both radioactive and nonradioactive materials in air are monitored at a number of locations. The influence of Hanford emissions on local radionuclide concentrations was evaluated by comparing concentrations measured at distant locations within the region to concentrations measured at the Site perimeter. This section discusses sample collection, analytical methods, and the results of the Hanford air surveillance program. A complete listing of all analytical results summarized in this section is reported separately by Bisping (1995).

  9. PLUTONIUM PURIFICATION PROCESS EMPLOYING THORIUM PYROPHOSPHATE CARRIER

    DOEpatents

    King, E.L.

    1959-04-28

    The separation and purification of plutonium from the radioactive elements of lower atomic weight is described. The process of this invention comprises forming a 0.5 to 2 M aqueous acidffc solution containing plutonium fons in the tetravalent state and elements with which it is normally contaminated in neutron irradiated uranium, treating the solution with a double thorium compound and a soluble pyrophosphate compound (Na/sub 4/P/sub 2/O/sub 7/) whereby a carrier precipitate of thorium A method is presented of reducing neptunium and - trite is advantageous since it destroys any hydrazine f so that they can be removed from solutions in which they are contained is described. In the carrier precipitation process for the separation of plutonium from uranium and fission products including zirconium and columbium, the precipitated blsmuth phosphate carries some zirconium, columbium, and uranium impurities. According to the invention such impurities can be complexed and removed by dissolving the contaminated carrier precipitate in 10M nitric acid, followed by addition of fluosilicic acid to about 1M, diluting the solution to about 1M in nitric acid, and then adding phosphoric acid to re-precipitate bismuth phosphate carrying plutonium.

  10. Neurotrophic factor - Characterization and partial purification

    NASA Technical Reports Server (NTRS)

    Popiela, H.; Ellis, S.

    1981-01-01

    Recent evidence suggests that neurotrophic activity is required for the normal proliferation and development of muscle cells. The present paper reports a study of the purification and characterization of a neurotrophic factor (NTF) from adult chicken ischiatic-peroneal nerves using two independent quantitative in vitro assay systems. The assays were performed by the measurement of the incorporation of tritiated thymidine or the sizes of single-cell clones by chick muscle cells grown in culture. The greatest amount of neutrotrophic activity is found to be extracted at a pH of 8; aqueous suspensions of the activity are stable to long-term storage at room temperature. The specific activity of the substance is doubled upon precipitation with ammonium sulfate or after gel filtration, and increase 4 to 5 fold after salt gradient elution from DEAE cellulose columns. The active fraction obtained after gel filtration and rechromatography on DEAE cellulose exhibits a 7 to 10-fold increase in specific activity. Electrophoresis of the most highly purified material yields a greatly concentrated band at around 80,000 daltons. Although NTF is purified almost 10-fold as indicated by the increase in specific activity, the maximum activity of the partially purified material is greatly reduced, possibly due to a requirement for a cofactor for the expression of maximum activity.

  11. RNA synthesis and purification for structural studies.

    PubMed

    Ahmed, Yasar Luqman; Ficner, Ralf

    2014-01-01

    RNAs play pivotal roles in the cell, ranging from catalysis (e.g., RNase P), acting as adaptor molecule (tRNA) to regulation (e.g., riboswitches). Precise understanding of its three-dimensional structures has given unprecedented insight into the molecular basis for all of these processes. Nevertheless, structural studies on RNA are still limited by the very special nature of this polymer. The most common methods for the determination of 3D RNA structures are NMR and X-ray crystallography. Both methods have their own set of requirements and give different amounts of information about the target RNA. For structural studies, the major bottleneck is usually obtaining large amounts of highly pure and homogeneously folded RNA. Especially for X-ray crystallography it can be necessary to screen a large number of variants to obtain well-ordered single crystals. In this mini-review we give an overview about strategies for the design, in vitro production, and purification of RNA for structural studies.

  12. Biologically Inspired Purification and Dispersion of SWCNTs

    NASA Technical Reports Server (NTRS)

    Feeback, Daniel L.; Clarke, Mark S.; Nikolaev, Pavel

    2009-01-01

    A biologically inspired method has been developed for (1) separating single-wall carbon nanotubes (SWCNTs) from other materials (principally, amorphous carbon and metal catalysts) in raw production batches and (2) dispersing the SWCNTs as individual particles (in contradistinction to ropes and bundles) in suspension, as required for a number of applications. Prior methods of purification and dispersal of SWCNTs involve, variously, harsh physical processes (e.g., sonication) or harsh chemical processes (e.g., acid reflux). These processes do not completely remove the undesired materials and do not disperse bundles and ropes into individual suspended SWCNTs. Moreover, these processes cut long SWCNTs into shorter pieces, yielding typical nanotube lengths between 150 and 250 nm. In contrast, the present method does not involve harsh physical or chemical processes. The method involves the use of biologically derived dispersal agents (BDDAs) in an aqueous solution that is mechanically homogenized (but not sonicated) and centrifuged. The dense solid material remaining after centrifugation is resuspended by vortexing in distilled water, yielding an aqueous suspension of individual, separated SWCNTs having lengths from about 10 to about 15 microns.

  13. TMI-2 purification demineralizer resin study

    SciTech Connect

    Thompson, J D; Osterhoudt, T R

    1984-05-01

    Study of the Makeup and Purification System demineralizers at TMI-2 has established that fuel quantities in the vessels are low, precluding criticality, that the high radioactive cesium concentration on the demineralizer resins can be chemically removed, and that the demineralizer resins can probably be removed from the vessels by sluicing through existing plant piping. Radiation measurements from outside the demineralizers establishing that there is between 1.5 and 5.1 (probably 3.3) lb of fuel in the A vessel and less than that amount in the B vessel. Dose rates up to 2780 R per hour were measured on contact with the A demineralizer. Remote visual observation of the A demineralizer showed a crystalline crust overlaying amber-colored resins. The cesium activity in solid resin samples ranged from 220 to 16,900 ..mu..Ci/g. Based on this information, researchers concluded that the resins cannot be removed through the normal pathway in their present condition. Studies do show that the resins will withstand chemical processing designed to rinse and elute cesium from the resins. The process developed should work on the TMI-2 resins.

  14. Membrane Purification Cell for Aluminum Recycling

    SciTech Connect

    David DeYoung; James Wiswall; Cong Wang

    2011-11-29

    Recycling mixed aluminum scrap usually requires adding primary aluminum to the scrap stream as a diluent to reduce the concentration of non-aluminum constituents used in aluminum alloys. Since primary aluminum production requires approximately 10 times more energy than melting scrap, the bulk of the energy and carbon dioxide emissions for recycling are associated with using primary aluminum as a diluent. Eliminating the need for using primary aluminum as a diluent would dramatically reduce energy requirements, decrease carbon dioxide emissions, and increase scrap utilization in recycling. Electrorefining can be used to extract pure aluminum from mixed scrap. Some example applications include producing primary grade aluminum from specific scrap streams such as consumer packaging and mixed alloy saw chips, and recycling multi-alloy products such as brazing sheet. Electrorefining can also be used to extract valuable alloying elements such as Li from Al-Li mixed scrap. This project was aimed at developing an electrorefining process for purifying aluminum to reduce energy consumption and emissions by 75% compared to conventional technology. An electrolytic molten aluminum purification process, utilizing a horizontal membrane cell anode, was designed, constructed, operated and validated. The electrorefining technology could also be used to produce ultra-high purity aluminum for advanced materials applications. The technical objectives for this project were to: - Validate the membrane cell concept with a lab-scale electrorefining cell; - Determine if previously identified voltage increase issue for chloride electrolytes holds for a fluoride-based electrolyte system; - Assess the probability that voltage change issues can be solved; and - Conduct a market and economic analysis to assess commercial feasibility. The process was tested using three different binary alloy compositions (Al-2.0 wt.% Cu, Al-4.7 wt.% Si, Al-0.6 wt.% Fe) and a brazing sheet scrap composition (Al-2

  15. Myxoma virus: propagation, purification, quantification, and storage.

    PubMed

    Smallwood, Sherin E; Rahman, Masmudur M; Smith, Dorothy W; McFadden, Grant

    2010-05-01

    Myxoma virus (MYXV) is a member of the Poxviridae family and prototype for the genus Leporipoxvirus. It is pathogenic only for European rabbits, in which it causes the lethal disease myxomatosis, and two North American species, in which it causes a less severe disease. MYXV replicates exclusively in the cytoplasm of the host cell. Although not infectious in humans, its genome encodes proteins that can interfere with or modulate host defense mechanisms; it is able to productively infect a number of human cancer cell lines, but not normal human cells, and has also been shown to increase survival time in mouse models of human glioma. These characteristics suggest that MYXV could be a viable therapeutic agent, e.g., in anti-inflammatory or anti-immune therapy, or as an oncolytic agent. MYXV is also an excellent model for poxvirus biology, pathogenesis, and host tropism studies. It is easily propagated in a number of cell lines, including adherent cells and suspension cultures, and minimal purification is required to provide a stock for in vivo and in vitro studies.

  16. Production, purification and properties of microbial phytases.

    PubMed

    Pandey, A; Szakacs, G; Soccol, C R; Rodriguez-Leon, J A; Soccol, V T

    2001-05-01

    Phytases (myo-inositol hexakisphosphate phosphohydrolase, EC 3.1.3.8) catalyse the release of phosphate from phytate (mycoinositol hexakiphosphate). Several cereal grains, legumes and oilseeds, etc., store phosphorus as phytate. Environmental pollution due to the high-phosphate manure, resulting in the accumulation of P at various locations has raised serious concerns. Phytases appear of significant value in effectively controlling P pollution. They can be produced from a host of sources including plants, animals and micro-organisms. Microbial sources, however, are promising for their commercial exploitations. Strains of Aspergillus sp., chiefly A. ficuum and A. niger have most commonly been employed for industrial purposes. Phytases are considered as a monomeric protein, generally possessing a molecular weight between 40 and 100 kDa. They show broad substrate specificity and have generally pH and temperature optima around 4.5-6.0 and 45-60 degrees C. The crystal structure of phytase has been determined at 2.5 A resolution. Immobilization of phytase has been found to enhance its thermostability. This article reviews recent trends on the production, purification and properties of microbial phytases.

  17. Isolation and Purification of Biotechnological Products

    NASA Astrophysics Data System (ADS)

    Hubbuch, Jürgen; Kula, Maria-Regina

    2007-05-01

    The production of modern pharma proteins is one of the most rapid growing fields in biotechnology. The overall development and production is a complex task ranging from strain development and cultivation to the purification and formulation of the drug. Downstream processing, however, still accounts for the major part of production costs. This is mainly due to the high demands on purity and thus safety of the final product and results in processes with a sequence of typically more than 10 unit operations. Consequently, even if each process step would operate at near optimal yield, a very significant amount of product would be lost. The majority of unit operations applied in downstream processing have a long history in the field of chemical and process engineering; nevertheless, mathematical descriptions of the respective processes and the economical large-scale production of modern pharmaceutical products are hampered by the complexity of the biological feedstock, especially the high molecular weight and limited stability of proteins. In order to develop new operational steps as well as a successful overall process, it is thus a necessary prerequisite to develop a deeper understanding of the thermodynamics and physics behind the applied processes as well as the implications for the product.

  18. Purification of rabbit and human serum paraoxonase.

    PubMed

    Furlong, C E; Richter, R J; Chapline, C; Crabb, J W

    1991-10-22

    Rabbit serum paraoxonase/arylesterase has been purified to homogeneity by Cibacron Blue-agarose chromatography, gel filtration, DEAE-Trisacryl M chromatography, and preparative SDS gel electrophoresis. Renaturation (Copeland et al., 1982) and activity staining of the enzyme resolved by SDS gel electrophoresis allowed for identification and purification of paraoxonase. Two bands of active enzyme were purified by this procedure (35,000 and 38,000). Enzyme electroeluted from the preparative gels was reanalyzed by analytical SDS gel electrophoresis, and two higher molecular weight bands (43,000 and 48,000) were observed in addition to the original bands. This suggested that repeat electrophoresis resulted in an unfolding or other modification and slower migration of some of the purified protein. The lower mobility bands stained weakly for paraoxonase activity in preparative gels. Bands of each molecular weight species were electroblotted onto PVDF membranes and sequenced. The gas-phase sequence analysis showed that both the active bands and apparent molecular weight bands had identical amino-terminal sequences. Amino acid analysis of the four electrophoretic components from PVDF membranes also indicated compositional similarity. The amino-terminal sequences are typical of the leader sequences of secreted proteins. Human serum paraoxonase was purified by a similar procedure, and ten residues of the amino terminus were sequenced by gas-phase procedures. One amino acid difference between the first ten residues of human and rabbit was observed.

  19. Separation and Purification of Bacteria from Soil

    PubMed Central

    Bakken, Lars R.

    1985-01-01

    Bacteria were released and separated from soil by a simple blending-centrifugation procedure. The percent yield of bacterial cells (microscopic counts) in the supernatants varied over a wide range depending on the soil type. The superantants contained large amounts of noncellular organic material and clay particles. Further purification of the bacterial cells was obtained by centrifugation in density gradients, whereby the clay particles and part of the organic materials sedimented. A large proportion of the bacteria also sedimented through the density gradient, showing that they had a buoyant density above 1.2 g/ml. Attachment to clay minerals and humic material may account for this apparently high buoyant density. The percent yield of cells was negatively correlated with the clay content of the soils, whereas the purity was positively correlated with it. The cell size distribution and the relative frequency of colony-forming cells were similar in the soil homogenate, the supernatants after blending-centrifugation, and the purified bacterial fraction. In purified bacterial fraction from a clay loam, the microscopically measured biomass could account for 20 to 25% of the total C and 30 to 40% of the total N as cellular C and N. The amount of cellular C and N may be higher, however, owing to an underestimation of the cell diameter during fluorescence. A part of the contamination could be ascribed to extracellular structures as well as partly decayed cells, which were not revealed by fluorescence microscopy. PMID:16346816

  20. Mouse Polyomavirus: Propagation, Purification, Quantification, and Storage.

    PubMed

    Horníková, Lenka; Žíla, Vojtěch; Španielová, Hana; Forstová, Jitka

    2015-08-03

    Mouse polyomavirus (MPyV) is a member of the Polyomaviridae family, which comprises non-enveloped tumorigenic viruses infecting various vertebrates including humans and causing different pathogenic responses in the infected organisms. Despite the variations in host tropism and pathogenicity, the structure of the virions of these viruses is similar. The capsid, with icosahedral symmetry (ø, 45 nm, T = 7d), is composed of a shell of 72 capsomeres of structural proteins, arranged around the nucleocore containing approximately 5-kbp-long circular dsDNA in complex with cellular histones. MPyV has been one of the most studied polyomaviruses and serves as a model virus for studies of the mechanisms of cell transformation and virus trafficking, and for use in nanotechnology. It can be propagated in primary mouse cells (e.g., in whole mouse embryo cells) or in mouse epithelial or fibroblast cell lines. In this unit, propagation, purification, quantification, and storage of MPyV virions are presented.

  1. Proanthocyanidin A2 purification and levels found in American cranberry (Vaccinium macrocarpon Ait.) products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, five common proanthocyanidin purification techniques were evaluated prior to phloroglucinolysis, followed by HPLC analysis. An optimized purification method was then used to identify and quantify the proanthocyanidins (extension and terminal units of epigallocatechin, catechin, epicat...

  2. The Purification of a Blood Group A Glycoprotein: An Affinity Chromatography Experiment.

    ERIC Educational Resources Information Center

    Estelrich, J.; Pouplana, R.

    1988-01-01

    Describes a purification process through affinity chromatography necessary to obtain specific blood group glycoproteins from erythrocytic membranes. Discusses the preparation of erythrocytic membranes, extraction of glycoprotein from membranes, affinity chromatography purification, determination of glycoproteins, and results. (CW)

  3. High-throughput purification of single compounds and libraries.

    PubMed

    Schaffrath, Mathias; von Roedern, Erich; Hamley, Peter; Stilz, Hans Ulrich

    2005-01-01

    The need for increasing productivity in medicinal chemistry and associated improvements in automated synthesis technologies for compound library production during the past few years have resulted in a major challenge for compound purification technology and its organization. To meet this challenge, we have recently set up three full-service chromatography units with the aid of in-house engineers, different HPLC suppliers, and several companies specializing in custom laboratory automation technologies. Our goal was to combine high-throughput purification with the high attention to detail which would be afforded by a dedicated purification service. The resulting final purification laboratory can purify up to 1000 compounds/week in amounts ranging from 5 to 300 mg, whereas the two service intermediate purification units take 100 samples per week from 0.3 to 100 g. The technologies consist of normal-phase and reversed-phase chromatography, robotic fraction pooling and reformatting, a bottling system, an automated external solvent supply and removal system, and a customized, high-capacity freeze-dryer. All work processes are linked by an electronic sample registration and tracking system.

  4. /Air Atmospheres

    NASA Astrophysics Data System (ADS)

    Emami, Samar; Sohn, Hong Yong; Kim, Hang Goo

    2014-08-01

    Molten magnesium oxidizes rapidly when exposed to air causing melt loss and handling difficulties. The use of certain additive gases such as SF6, SO2, and CO2 to form a protective MgO layer over a magnesium melt has been proposed. The oxidation behavior of molten magnesium in air containing various concentrations of SF6 was investigated. Measurements of the kinetics of the oxide layer growth at various SF6 concentrations in air and temperatures were made. Experiments were performed using a thermogravimetric analysis unit in the temperature range of 943 K to 1043 K (670 °C to 770 °C). Results showed that a thin, coherent, and protective MgF2 layer was formed under SF6/Air mixtures, with a thickness ranging from 300 nm to 3 μm depending on SF6 concentration, temperature, and exposure time. Rate parameters were calculated and a model for the process was developed. The morphology and composition of the surface films were studied using scanning electron microscope and energy-dispersive spectroscope.

  5. Air Pollution.

    ERIC Educational Resources Information Center

    Scorer, Richard S.

    The purpose of this book is to describe the basic mechanisms whereby pollution is transported and diffused in the atmosphere. It is designed to give practitioners an understanding of basic mechanics and physics so they may have a correct basis on which to formulate their decisions related to practical air pollution control problems. Since many…

  6. Multiple-copy distillation and purification of phase-diffused squeezed states

    SciTech Connect

    Marek, Petr; Fiurasek, Jaromir; Hage, Boris; Franzen, Alexander; DiGugliemo, James; Schnabel, Roman

    2007-11-15

    We provide a detailed theoretical analysis of multiple-copy purification and distillation protocols for phase-diffused squeezed states of light. The standard iterative distillation protocol is generalized to a collective purification of an arbitrary number of N copies. We also derive a semianalytical expression for the asymptotic limit of the iterative distillation and purification protocol and discuss its properties.

  7. 21 CFR 884.6170 - Assisted reproduction water and water purification systems.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Assisted reproduction water and water purification... Devices § 884.6170 Assisted reproduction water and water purification systems. (a) Identification. Assisted reproduction water purification systems are devices specifically intended to generate high...

  8. 21 CFR 884.6170 - Assisted reproduction water and water purification systems.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Assisted reproduction water and water purification... Devices § 884.6170 Assisted reproduction water and water purification systems. (a) Identification. Assisted reproduction water purification systems are devices specifically intended to generate high...

  9. 21 CFR 884.6170 - Assisted reproduction water and water purification systems.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Assisted reproduction water and water purification... Devices § 884.6170 Assisted reproduction water and water purification systems. (a) Identification. Assisted reproduction water purification systems are devices specifically intended to generate high...

  10. 21 CFR 884.6170 - Assisted reproduction water and water purification systems.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Assisted reproduction water and water purification... Devices § 884.6170 Assisted reproduction water and water purification systems. (a) Identification. Assisted reproduction water purification systems are devices specifically intended to generate high...

  11. 21 CFR 884.6170 - Assisted reproduction water and water purification systems.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Assisted reproduction water and water purification... Devices § 884.6170 Assisted reproduction water and water purification systems. (a) Identification. Assisted reproduction water purification systems are devices specifically intended to generate high...

  12. Bromelain: an overview of industrial application and purification strategies.

    PubMed

    Arshad, Zatul Iffah Mohd; Amid, Azura; Yusof, Faridah; Jaswir, Irwandi; Ahmad, Kausar; Loke, Show Pau

    2014-09-01

    This review highlights the use of bromelain in various applications with up-to-date literature on the purification of bromelain from pineapple fruit and waste such as peel, core, crown, and leaves. Bromelain, a cysteine protease, has been exploited commercially in many applications in the food, beverage, tenderization, cosmetic, pharmaceutical, and textile industries. Researchers worldwide have been directing their interest to purification strategies by applying conventional and modern approaches, such as manipulating the pH, affinity, hydrophobicity, and temperature conditions in accord with the unique properties of bromelain. The amount of downstream processing will depend on its intended application in industries. The breakthrough of recombinant DNA technology has facilitated the large-scale production and purification of recombinant bromelain for novel applications in the future.

  13. Preparative Purification of Liriodendrin from Sargentodoxa cuneata by Macroporous Resin.

    PubMed

    Li, Di-Hua; Wang, Yan; Lv, Yuan-Shan; Liu, Jun-Hong; Yang, Lei; Zhang, Shu-Kun; Zhuo, Yu-Zhen

    2015-01-01

    The preparative purification of liriodendrin from Sargentodoxa cuneata using macroporous resin combined with crystallization process was evaluated. The properties of adsorption/desorption of liriodendrin on eight macroporous resins were investigated systematically. X-5 resin was selected as the most suitable medium for liriodendrin purification. The adsorption of liriodendrin on X-5 resin fitted well with the pseudo-second-order kinetic model and Langmuir isotherm model. Dynamic adsorption/desorption tests were performed using a glass column packed with X-5 resin to optimize the separation process of liriodendrin. After one treatment with X-5 resin, the content of liriodendrin in the product was increased 48.73-fold, from 0.85% to 41.42%, with a recovery yield of 88.9%. 97.48% liriodendrin was obtained by further crystallization and determined by HPLC. The purified product possessed strong antioxidant activity. In conclusion, purification of liriodendrin might expend its further pharmacological researches and further applications in pharmacy.

  14. The Status of KamLAND After Purification

    NASA Astrophysics Data System (ADS)

    Grant, Christopher

    2010-02-01

    KamLAND is a 1-kton liquid scintillation detector located in the Kamioka underground laboratory, in Japan. KamLAND has provided a precision measurement of δm^221 using reactor anti-neutrinos, and yielded first observational evidence of geologically produced anti-neutrinos. Since April of 2007, the collaboration has been working on the purification of the detector with the goal of observing 862 keV, ^7Be solar neutrinos. Two purification campaigns have concluded, with a total of 5.4 ktons of scintillator circulated through a distillation and nitrogen purge system. The results of purification and the overall background reduction factors will be presented, along with an update of the ^7Be solar neutrino analysis. )

  15. Detection of protein-protein interactions using tandem affinity purification.

    PubMed

    Goodfellow, Ian; Bailey, Dalan

    2014-01-01

    Tandem affinity purification (TAP) is an invaluable technique for identifying interaction partners for an affinity tagged bait protein. The approach relies on the fusion of dual tags to the bait before separate rounds of affinity purification and precipitation. Frequently two specific elution steps are also performed to increase the specificity of the overall technique. In the method detailed here, the two tags used are protein G and a short streptavidin binding peptide; however, many variations can be employed. In our example the tags are separated by a cleavable tobacco etch virus protease target sequence, allowing for specific elution after the first round of affinity purification. Proteins isolated after the final elution step in this process are concentrated before being identified by mass spectrometry. The use of dual affinity tags and specific elution in this technique dramatically increases both the specificity and stringency of the pull-downs, ensuring a low level of background nonspecific interactions.

  16. Effect of additives on the purification of urease

    NASA Astrophysics Data System (ADS)

    Yu, X.; Wang, J.; Ulrich, J.

    2015-12-01

    The effect of additives on the purification of proteins was investigated. The target protein studied here is the enzyme urease. Studies on the purification of urease from jack bean meal were carried out. 32% (v/v) acetone was utilized to extract urease from the jack bean meal. Further purification by crystallization with the addition of 2-mercaptoethanol and EDTA disodium salt dehydrate was carried out. It was found out that the presence of additives can affect the selectivity of the crystallization. Increases in both purity and yield of the urease after crystallization were observed in the presence of additives, which were proven using both SDS-PAGE and activity. Urease crystals with a yield of 69.9% and a purity of 85.1% were obtained in one crystallization step in the presence of additives. Furthermore, the effect of additives on the thermodynamics and kinetics of urease crystallization was studied.

  17. Nylon Wool Purification Alters the Activation of T Cells

    PubMed Central

    Wohler, Jillian E.; Barnum, Scott R.

    2009-01-01

    Purification of lymphocytes, particularly T cells, is commonly performed using nylon wool. This enrichment method selectively retains B cells and some myeloid cells allowing a significantly more pure T cell population to flow through a nylon wool column. T cells purified in this fashion are assumed to be unaltered and functionally naïve, however some studies have suggested aberrant in vitro T cell responses after nylon wool treatment. We found that nylon wool purification significantly altered T cell proliferation, expression of activation markers and production of cytokines. Our results suggest that nylon wool treatment modifies T cell activation responses and that caution should be used when choosing this purification method. PMID:18952296

  18. STUDIES ON THE PURIFICATION OF BACTERIOPHAGE.

    PubMed

    Kalmanson, G; Bronfenbrenner, J

    1939-11-20

    A simple method of concentrating and purifying bacteriophage has been described. The procedure consisted essentially in collecting the active agent on a reinforced collodion membrane of a porosity that would just retain all the active agent and permit extraneous material to pass through. Advantage was taken of the fact that B. coli will proliferate and regenerate bacteriophage in a completely diffusible synthetic medium with ammonia as the only source of nitrogen, which permitted the purification of the bacteriophage by copious washing. The material thus obtained was concentrated by suction and after thorough washing possessed all the activity of the original filtrate. It was labile, losing its activity in a few days on standing, and was quickly and completely inactivated upon drying. This material contained approximately 15 per cent of nitrogen and with 2 or 3 mg. samples of inactive dry residue it was possible to obtain positive protein color tests. The concentrated and purified bacteriophage has about 10(-14) mg. of nitrogen, or 6 x 10(-17) gm. of protein per unit of lytic activity. Assuming that each unit of activity represents a molecule, the calculated maximum average molecular weight would be approximately 36,000,000, and on the assumption of a spherical shape of particles and a density of 1.3, the calculated radius would be about 22 millimicra. By measurement of the diffusion rate, the average radius of particle of the fraction of the purified bacteriophage which diffuses most readily through a porous plate was found to be of the order of magnitude of 9 millimicra, or of a calculated molecular weight of 2,250,000. Furthermore, when this purified bacteriophage was fractionated by forcing it through a thin collodion membrane, which permits the passage of only the smaller particles, it was possible to demonstrate in the ultrafiltrate active particles of about 2 millimicra in radius, and of a calculated molecular weight of 25,000. It was of interest to apply

  19. Carbohydrate-mediated purification of petrochemicals.

    PubMed

    Holcroft, James M; Hartlieb, Karel J; Moghadam, Peyman Z; Bell, Jon G; Barin, Gokhan; Ferris, Daniel P; Bloch, Eric D; Algaradah, Mohammed M; Nassar, Majed S; Botros, Youssry Y; Thomas, K Mark; Long, Jeffrey R; Snurr, Randall Q; Stoddart, J Fraser

    2015-05-06

    Metal-organic frameworks (MOFs) are known to facilitate energy-efficient separations of important industrial chemical feedstocks. Here, we report how a class of green MOFs-namely CD-MOFs-exhibits high shape selectivity toward aromatic hydrocarbons. CD-MOFs, which consist of an extended porous network of γ-cyclodextrins (γ-CDs) and alkali metal cations, can separate a wide range of benzenoid compounds as a result of their relative orientation and packing within the transverse channels formed from linking (γ-CD)6 body-centered cuboids in three dimensions. Adsorption isotherms and liquid-phase chromatographic measurements indicate a retention order of ortho- > meta- > para-xylene. The persistence of this regioselectivity is also observed during the liquid-phase chromatography of the ethyltoluene and cymene regioisomers. In addition, molecular shape-sorting within CD-MOFs facilitates the separation of the industrially relevant BTEX (benzene, toluene, ethylbenzene, and xylene isomers) mixture. The high resolution and large separation factors exhibited by CD-MOFs for benzene and these alkylaromatics provide an efficient, reliable, and green alternative to current isolation protocols. Furthermore, the isolation of the regioisomers of (i) ethyltoluene and (ii) cymene, together with the purification of (iii) cumene from its major impurities (benzene, n-propylbenzene, and diisopropylbenzene) highlight the specificity of the shape selectivity exhibited by CD-MOFs. Grand canonical Monte Carlo simulations and single component static vapor adsorption isotherms and kinetics reveal the origin of the shape selectivity and provide insight into the capability of CD-MOFs to serve as versatile separation platforms derived from renewable sources.

  20. Carbon Nanotube Membranes for Water Purification

    NASA Astrophysics Data System (ADS)

    Bakajin, Olgica

    2009-03-01

    Carbon nanotubes are an excellent platform for the fundamental studies of transport through channels commensurate with molecular size. Water transport through carbon nanotubes is also believed to be similar to transport in biological channels such as aquaporins. I will discuss the transport of gas, water and ions through microfabricated membranes with sub-2 nanometer aligned carbon nanotubes as ideal atomically-smooth pores. The measured gas flow through carbon nanotubes exceeded predictions of the Knudsen diffusion model by more than an order of magnitude. The measured water flow exceeded values calculated from continuum hydrodynamics models by more than three orders of magnitude and is comparable to flow rates extrapolated from molecular dynamics simulations and measured for aquaporins. More recent reverse osmosis experiments reveal ion rejection by our membranes. Based on our experimental findings, the current understanding of the fundamentals of water and gas transport and of ion rejection will be discussed. The potential application space that exploits these unique nanofluidic phenomena will be explored. The extremely high permeabilities of these membranes, combined with their small pore size will enable energy efficient filtration and eventually decrease the cost of water purification.[4pt] In collaboration with Francesco Fornasiero, Biosciences and Biotechnology Division, PLS, LLNL, Livermore, CA 94550; Sangil Kim, NSF Center for Biophotonics Science & Technology, University of California at Davis, Sacramento CA 95817; Jung Bin In, Mechanical Engineering Department, UC Berkeley, Berkeley CA 94720; Hyung Gyu Park, Jason K Holt, and Michael Stadermann, Biosciences and Biotechnology Division, PLS, LLNL; Costas P. Grigoropoulos, Mechanical Engineering Department, UC Berkeley; Aleksandr Noy, Biosciences and Biotechnology Division, PLS, LLNL and School of Natural Sciences, University of California at Merced.

  1. Multispecies Purification of Testicular Germ Cells.

    PubMed

    Lima, Ana C; Jung, Min; Rusch, Jannette; Usmani, Abul; Lopes, Alexandra; Conrad, Donald F

    2016-08-24

    Advanced methods of cellular purification are required to apply genome technology to the study of spermatogenesis. One approach, based on flow cytometry of murine testicular cells stained with Hoechst-33342 (Ho-FACS), has been extensively optimized and currently allows the isolation of 9 germ cell types. This staining technique is straightforward to implement, highly effective at purifying specific germ cell types and yields sufficient cell numbers for high throughput studies. Ho-FACS is a technique that does not require species-specific markers, but whose applicability to other species is largely unexplored. We hypothesized that, due to the similar cell physiology of spermatogenesis across mammals, Ho-FACS could be used to produce highly purified subpopulations of germ cells in mammals other than mouse. To test this hypothesis, we applied Ho-FACS to 4 mammalian species that are widely used in testis research - Rattus norvegicus, Cavia porcellus, Canis familiaris and Sus scrofa domesticus We successfully isolated 4 germ cell populations from these species with average purity of 79% for spermatocytes, and 90% for spermatids and 66% for spermatogonia. Additionally, we compare the performance of mechanical and chemical dissociation for each species, and propose an optimized gating strategy to better discriminate round and elongating spermatids in the mouse, which can potentially be applied to other species. Our work indicates that spermatogenesis may be uniquely accessible among mammalian developmental systems, as a single set of reagents may be sufficient to isolate germ cell populations from many different mammalian species, opening new avenues in the fields of development and male reproductive biology.

  2. Chromatography purification of canine adenoviral vectors.

    PubMed

    Segura, María Mercedes; Puig, Meritxell; Monfar, Mercè; Chillón, Miguel

    2012-06-01

    Canine adenovirus vectors (CAV2) are currently being evaluated for gene therapy, oncolytic virotherapy, and as vectors for recombinant vaccines. Despite the need for increasing volumes of purified CAV2 preparations for preclinical and clinical testing, their purification still relies on the use of conventional, scale-limited CsCl ultracentrifugation techniques. A complete downstream processing strategy for CAV2 vectors based on membrane filtration and chromatography is reported here. Microfiltration and ultra/diafiltration are selected for clarification and concentration of crude viral stocks containing both intracellular and extracellular CAV2 particles. A DNase digestion step is introduced between ultrafiltration and diafiltration operations. At these early stages, concentration of vector stocks with good recovery of viral particles (above 80%) and removal of a substantial amount of protein and nucleic acid contaminants is achieved. The ability of various chromatography techniques to isolate CAV2 particles was evaluated. Hydrophobic interaction chromatography using a Fractogel propyl tentacle resin was selected as a first chromatography step, because it allows removal of the bulk of contaminating proteins with high CAV2 yields (88%). An anion-exchange chromatography step using monolithic supports is further introduced to remove the remaining contaminants with good recovery of CAV2 particles (58-69%). The main CAV2 viral structural components are visualized in purified preparations by electrophoresis analyses. Purified vector stocks contained intact icosahedral viral particles, low contamination with empty viral capsids (10%), and an acceptable total-to-infectious particle ratio (below 30). The downstream processing strategy that was developed allows preparation of large volumes of high-quality CAV2 stocks.

  3. High-throughput Protein Purification and Quality Assessment for Crystallization

    PubMed Central

    Kim, Youngchang; Babnigg, Gyorgy; Jedrzejczak, Robert; Eschenfeldt, William H.; Li, Hui; Maltseva, Natalia; Hatzos-Skintges, Catherine; Gu, Minyi; Makowska-Grzyska, Magdalena; Wu, Ruiying; An, Hao; Chhor, Gekleng; Joachimiak, Andrzej

    2012-01-01

    The ultimate goal of structural biology is to understand the structural basis of proteins in cellular processes. In structural biology, the most critical issue is the availability of high-quality samples. “Structural biology-grade” proteins must be generated in the quantity and quality suitable for structure determination using X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. The purification procedures must reproducibly yield homogeneous proteins or their derivatives containing marker atom(s) in milligram quantities. The choice of protein purification and handling procedures plays a critical role in obtaining high-quality protein samples. With structural genomics emphasizing a genome-based approach in understanding protein structure and function, a number of unique structures covering most of the protein folding space have been determined and new technologies with high efficiency have been developed. At the Midwest Center for Structural Genomics (MCSG), we have developed semi-automated protocols for high-throughput parallel protein expression and purification. A protein, expressed as a fusion with a cleavable affinity tag, is purified in two consecutive immobilized metal affinity chromatography (IMAC) steps: (i) the first step is an IMAC coupled with buffer-exchange, or size exclusion chromatography (IMAC-I), followed by the cleavage of the affinity tag using the highly specific Tobacco Etch Virus (TEV) protease; [1] the second step is IMAC and buffer exchange (IMAC-II) to remove the cleaved tag and tagged TEV protease. These protocols have been implemented on multidimensional chromatography workstations and, as we have shown, many proteins can be successfully produced in large-scale. All methods and protocols used for purification, some developed by MCSG, others adopted and integrated into the MCSG purification pipeline and more recently the Center for Structural Genomics of Infectious Diseases (CSGID) purification pipeline, are

  4. Recovery and purification process development for monoclonal antibody production

    PubMed Central

    Ma, Junfen; Winter, Charles; Bayer, Robert

    2010-01-01

    Hundreds of therapeutic monoclonal antibodies (mAbs) are currently in development, and many companies have multiple antibodies in their pipelines. Current methodology used in recovery processes for these molecules are reviewed here. Basic unit operations such as harvest, Protein A affinity chromatography and additional polishing steps are surveyed. Alternative processes such as flocculation, precipitation and membrane chromatography are discussed. We also cover platform approaches to purification methods development, use of high throughput screening methods, and offer a view on future developments in purification methodology as applied to mAbs. PMID:20647768

  5. Isolation and purification of antigenic components of Cryptococcus.

    PubMed

    Wozniak, Karen L; Levitz, Stuart M

    2009-01-01

    The encapsulated fungal pathogens Cryptococcus neoformans and Cryptococcus gattii are significant agents of life-threatening infections, particularly in persons with suppressed cell-mediated immunity. This chapter provides detailed methodology for the purification of two of the major antigen fractions of C. neoformans: glucuronoxylomannan (GXM) and mannoprotein (MP). GXM is the primary component of the polysaccharide capsule, which is the major cryptococcal virulence factor. In contrast, MPs have been identified as key antigens that stimulate T-cell responses. Purification of GXM and MP should assist investigators studying the antigenic, biochemical, and virulence properties of Cryptococcus species.

  6. Expression and purification of recombinant nattokinase in Spodoptera frugiperda cells.

    PubMed

    Li, Xiaoxiang; Wang, Xiaoli; Xiong, Shaoling; Zhang, Jing; Cai, Litao; Yang, Yanyan

    2007-10-01

    A recombinant baculovirus, rv-egfp-NK, containing a reporter gene encoding the enhanced green fluorescent protein (EGFP), was used to express nattokinase (NK), a fibrinolytic enzyme, in Spodoptera frugiperda (SF-9) cells. The recombinant protein also included a histidine tag for purification using Ni(2+) resins. The recombinant NK, approximately 30 kDa, retained fibrinolytic activity (60 U/ml). The integration of the EGFP expression cassette in the Bac-to-Bac system is thus an effective method for the expression and purification of recombinant NK protein in Spodoptera frugiperda insect cells.

  7. Solid support resins and affinity purification mass spectrometry.

    PubMed

    Havis, Spencer; Moree, Wilna J; Mali, Sujina; Bark, Steven J

    2017-02-28

    Co-affinity purification-mass spectrometry (CoAP-MS) is a primary technology for elucidating the protein-protein interactions that form the basis of all biological processes. A critical component of CoAP-MS is the affinity purification (AP) of the bait protein, usually by immobilization of an antibody to a solid-phase resin. This Minireview discusses common resins, reagents, tagging methods, and their consideration for successful AP of tagged proteins. We discuss our experiences with different solid supports, their impact in AP experiments, and propose areas where chemistry can advance this important technology.

  8. Determination of metal ions in biological purification of waste waters

    SciTech Connect

    Tikhomirova, L.N.; Spiridonova, N.N.; Mandzhgaladze, I.D.

    1994-12-01

    Chromium, nickel, copper, zinc, and manganese were determined in active sludge extracted for utilization from sewage purification works in biological purification of waste waters. The measurements were carried out by the atomic absorption method and with Merck colorimetric kits for rapid determination of metal ions. The results obtained by the rapid colorimetric method agree fairly well with those obtained by the atomic absorption method, which makes it possible to recommend rapid colorimetric methods for routine analysis of biological objects for the content of ions of heavy metals.

  9. Plant lipases: partial purification of Carica papaya lipase.

    PubMed

    Rivera, Ivanna; Mateos-Díaz, Juan Carlos; Sandoval, Georgina

    2012-01-01

    Lipases from plants have very interesting features for application in different fields. This chapter provides an overview on some of the most important aspects of plant lipases, such as sources, applications, physiological functions, and specificities. Lipases from laticifers and particularly Carica papaya lipase (CPL) have emerged as a versatile autoimmobilized biocatalyst. However, to get a better understanding of CPL biocatalytic properties, the isolation and purification of individual C. papaya lipolytic enzymes become necessary. In this chapter, a practical protocol for partial purification of the latex-associated lipolytic activity from C. papaya is given.

  10. Sandia Sodium Purification Loop (SNAPL) description and operations manual

    SciTech Connect

    Acton, R.U.; Weatherbee, R.L.; Smith, L.A.; Mastin, F.L.; Nowotny, K.E.

    1985-08-01

    Sandia's Sodium Purification Loop was constructed to purify sodium for fast reactor safety experiments. An oxide impurity of less than 10 parts per million is required by these in-pile experiments. Commercial, reactor grade sodium is purchased in 180 kg drums. The sodium is melted and transferred into the unit. The unit is of a loop design and purification is accomplished by ''cold trapping.'' Sodium purified in this loop has been chemically analysed at one part per million oxygen by weight. 5 refs., 22 figs., 7 tabs.

  11. Flue Gas Purification Utilizing SOx/NOx Reactions During Compression of CO{sub 2} Derived from Oxyfuel Combustion

    SciTech Connect

    Fogash, Kevin

    2010-09-30

    The United States wishes to decrease foreign energy dependence by utilizing the country’s significant coal reserves, while stemming the effects of global warming from greenhouse gases. In response to these needs, Air Products has developed a patented process for the compression and purification of the CO{sub 2} stream from oxyfuel combustion of pulverized coal. The purpose of this project was the development and performance of a comprehensive experimental and engineering evaluation to determine the feasibility of purifying CO{sub 2} derived from the flue gas generated in a tangentially fired coal combustion unit operated in the oxy-combustion mode. Following the design and construction of a 15 bar reactor system, Air Products conducted two test campaigns using the slip stream from the tangentially fired oxy-coal combustion unit. During the first test campaign, Air Products evaluated the reactor performance based on both the liquid and gaseous reactor effluents. The data obtained from the test run has enabled Air Products to determine the reaction and mass transfer rates, as well as the effectiveness of the reactor system. During the second test campaign, Air Products evaluated reactor performance based on effluents for different reactor pressures, as well as water recycle rates. Analysis of the reaction equations indicates that both pressure and water flow rate affect the process reaction rates, as well as the overall reactor performance.

  12. Air pollution.

    PubMed

    Le, Nhu D; Sun, Li; Zidek, James V

    2010-01-01

    Toxic air pollutants are continuously released into the air supply. Various pollutants come from chemical facilities and small businesses, such as automobile service stations and dry cleaning establishments. Others, such as nitrogen oxides, carbon monoxide and other volatile organic chemicals, arise primarily from the incomplete combustion of fossil fuels (coal and petroleum) and are emitted from sources that include car exhausts, home heating and industrial power plants. Pollutants in the atmosphere also result from photochemical transformations; for example, ozone is formed when molecular oxygen or nitrogen interacts with ultraviolet radiation. An association between air pollution exposure and lung cancer has been observed in several studies. The evidence for other cancers is far less conclusive. Estimates of the population attributable risk of cancer has varied substantially over the last 40 years, reflecting the limitations of studies; these include insufficient information on confounders, difficulties in characterizing associations due to a likely lengthy latency interval, and exposure misclassification. Although earlier estimates were less than one percent, recent cohort studies that have taken into account some confounding factors, such as smoking and education amongst others, suggest that approximately 3.6% of lung cancer in the European Union could be due to air pollution exposure, particularly to sulphate and fine particulates. A separate cohort study estimated 5-7% of lung cancers in European never smokers and ex-smokers could be due to air pollution exposure. Therefore, while cigarette smoking remains the predominant risk factor, the proportion of lung cancers attributable to air pollution may be higher than previously thought. Overall, major weaknesses in all air-pollution-and-cancer studies to date have been inadequate characterization of long-term air pollution exposure and imprecise or no measurements of covariates. It has only been in the last

  13. Cardiopulmonary Benefits of Reducing Indoor Particles of Outdoor Origin: a Randomized Double-Blind Crossover Trial of Air Purifiers

    PubMed Central

    Chen, Renjie; Zhao, Ang; Chen, Honglei; Zhao, Zhuohui; Cai, Jing; Wang, Cuicui; Yang, Changyuan; Li, Huichu; Xu, Xiaohui; Ha, Sandie; Li, Tiantian; Kan, Haidong

    2017-01-01

    Background Indoor exposure to fine particulate matter (PM2.5) from outdoor sources is a major health concern, especially in highly polluted developing countries, such as China. Few studies have evaluated the effectiveness of indoor air purification on the improvement of cardiopulmonary health in these areas. Objectives To evaluate whether a short-term indoor air purifier intervention improves cardiopulmonary health. Methods We conducted a randomized double-blind crossover trial among 35 healthy college students in Shanghai, China in 2014. These students lived in dormitories that were randomized into 2 groups and alternated the use of true or sham air purifiers for 48 h with a 2-week washout interval. We measured 14 circulating biomarkers of inflammation, coagulation and vasoconstriction, lung function, blood pressure (BP), and fractional exhaled nitric oxide (FeNO). We applied linear mixed-effect models to evaluate the effect of the intervention on health outcome variables. Results On average, air purification resulted in a 57% reduction in PM2.5 concentration from 96.2 to 41.3 μg/m3 within hours of operation. Air purification was significantly associated with decreases in geometric means of several circulating inflammatory and thrombogenic biomarkers, including 17.5% in monocyte chemoattractant protein-1, 68.1% in interleukin-1β, 32.8% in myeloperoxidase and 64.9% in soluble CD40 ligand. Further, systolic BP, diastolic BP, and FeNO were significantly decreased by 2.7%, 4.8%, and 17.0% in geometric mean, respectively. The impacts on lung function and vasoconstriction biomarkers were beneficial, but not statistically significant. Conclusion This intervention study demonstrated clear cardiopulmonary benefits of indoor air purification among young, healthy adults in a Chinese city with severe ambient particulate air pollution. (Intervention Study on the Health Impact of Air Filters in Chinese Adults; NCT02239744) PMID:26022815

  14. Effects of Humidity Swings on Adsorption Columns for Air Revitalization: Modeling and Experiments

    NASA Technical Reports Server (NTRS)

    LeVan, M. Douglas; Finn, John E.

    1997-01-01

    Air purification systems are necessary to provide clean air in the closed environments aboard spacecraft. Trace contaminants are removed using adsorption. One major factor concerning the removal of trace contaminants is relative humidity. Water can reduce adsorption capacity and, due to constant fluctuations, its presence is difficult to incorporate into adsorption column designs. The purpose of the research was to allow for better design techniques in trace contaminant adsorption systems, especially for feeds with water present. Experiments and mathematical modeling research on effects of humidity swings on adsorption columns for air revitalization were carried out.

  15. Air Quality System (AQS)

    EPA Pesticide Factsheets

    The Air Quality System (AQS) database contains measurements of air pollutant concentrations from throughout the United States and its territories. The measurements include both criteria air pollutants and hazardous air pollutants.

  16. Characterization of anaerobic sulfite reduction by Salmonella typhimurium and purification of the anaerobically induced sulfite reductase

    SciTech Connect

    Hallenbeck, P.C. ); Clark, M.A.; Barrett, E.L. )

    1989-06-01

    Mutants of Salmonella typhimurium that lack the biosynthetic sulfite reductase (cysI and cysJ mutants) retain the ability to reduce sulfite for growth under anaerobic conditions. Here we report studies of sulfite reduction by a cysI mutant of S. typhimurium and purification of the associated anaerobic sulfite reductase. Sulfite reduction for anaerobic growth did not require a reducing atmosphere but was prevented by an argon atmosphere contaminated with air (<0.33%). It was also prevented by the presence of 0.1 mM nitrate. Anaerobic growth in liquid minimal medium, but not on agar, was found to require additions of trace amounts (10{sup {minus}7} M) of cysteine. Spontaneous mutants that grew under the argon contaminated with air also lost the requirement for 10{sup {minus}7}M cysteine for anaerobic growth in liquid. A role for sulfite reduction in anaerobic energy generation was contraindicated by the findings that sulfite reduction did not improve cell yields, and anaerobic sulfite reductase activity was greatest during the stationary phase of growth. Sulfite reductase was purified from the cytoplasmic fraction of the anaerobically grown cysI mutant and was purified 190-fold. The most effective donor in crude extracts was NADH. NADHP and methyl viologen were, respectively, 40 and 30% as effective as NADH. Oxygen reversibly inhibited the enzyme. The anaerobic sulfite reductase showed some resemblance to the biosynthetic sulfite reductase, but apparently it has a unique, as yet unidentified function.

  17. Fast and efficient protein purification using membrane adsorber systems.

    PubMed

    Suck, Kirstin; Walter, Johanna; Menzel, Frauke; Tappe, Alexander; Kasper, Cornelia; Naumann, Claudia; Zeidler, Robert; Scheper, Thomas

    2006-02-10

    The purification of proteins from complex cell culture samples is an essential step in proteomic research. Traditional chromatographic methods often require several steps resulting in time consuming and costly procedures. In contrast, protein purification via membrane adsorbers offers the advantage of fast and gentle but still effective isolation. In this work, we present a new method for purification of proteins from crude cell extracts via membrane adsorber based devices. This isolation procedure utilises the membranes favourable pore structure allowing high flow rates without causing high back pressure. Therefore, shear stress to fragile structures is avoided. In addition, mass transfer takes place through convection rather than diffusion, thus allowing very rapid separation processes. Based on this membrane adsorber technology the separation of two model proteins, human serum albumin (HSA) and immungluboline G (IgG) is shown. The isolation of human growth hormone (hGH) from chinese hamster ovary (CHO) cell culture supernatant was performed using a cation exchange membrane. The isolation of the enzyme penicillin acylase from the crude Escherichia coli supernatant was achieved using an anion exchange spin column within one step at a considerable purity. In summary, the membrane adsorber devices have proven to be suitable tools for the purification of proteins from different complex cell culture samples.

  18. Optimiziing the laboratory monitoring of biological wastewater-purification systems

    SciTech Connect

    S.V. Gerasimov

    2009-05-15

    Optimization of the laboratory monitoring of biochemical wastewater-treatment systems at coke plants is considered, for the example of OAO Koks. By adopting a methodological approach to determine the necessary data from chemical analysis, it is possible to reduce the time, labor, and materials required for monitoring, without impairing the purification process or compromising the plant's environmental policies.

  19. 2D nanostructures for water purification: graphene and beyond.

    PubMed

    Dervin, Saoirse; Dionysiou, Dionysios D; Pillai, Suresh C

    2016-08-18

    Owing to their atomically thin structure, large surface area and mechanical strength, 2D nanoporous materials are considered to be suitable alternatives for existing desalination and water purification membrane materials. Recent progress in the development of nanoporous graphene based materials has generated enormous potential for water purification technologies. Progress in the development of nanoporous graphene and graphene oxide (GO) membranes, the mechanism of graphene molecular sieve action, structural design, hydrophilic nature, mechanical strength and antifouling properties and the principal challenges associated with nanopore generation are discussed in detail. Subsequently, the recent applications and performance of newly developed 2D materials such as 2D boron nitride (BN) nanosheets, graphyne, molybdenum disulfide (MoS2), tungsten chalcogenides (WS2) and titanium carbide (Ti3C2Tx) are highlighted. In addition, the challenges affecting 2D nanostructures for water purification are highlighted and their applications in the water purification industry are discussed. Though only a few 2D materials have been explored so far for water treatment applications, this emerging field of research is set to attract a great deal of attention in the near future.

  20. Use of naturally growing aquatic plants for wastewater purification.

    PubMed

    Zimmels, Y; Kirzhner, F; Roitman, S

    2004-01-01

    This paper examines potential uses of naturally growing aquatic plants for wastewater purification. These plants enhance the removal of pollutants by consuming part of them in the form of plant nutrients. This applies to urban and agricultural wastewater, in particular, where treatment units of different sizes can be applied at the pollution source. The effectiveness of wastewater purification by different plants was tested on laboratory and pilot scales. The growth rate of the plants was related to the wastewater content in the water. Batch and semicontinuous experiments verified that the plants are capable of decreasing all tested indicators for water quality to levels that permit the use of the purified water for irrigation. This applies to biochemical oxygen demand (BOD), chemical oxygen demand, total suspended solids. pH, and turbidity. In specific cases, the turbidity reached the level of drinking water. Comparison of BOD concentrations with typical levels in water treatment facilities across the country indicates the effectiveness of water purification with plants. A major effect of treatment with plants was elimination of the disturbing smell from the wastewater. It is shown that mixtures of wastewater and polluted water from the Kishon River are amenable in varying degrees to treatment by the plants. The higher the wastewater content in the mixture, the more effective the treatment by the plants. In this context, a scheme for rehabilitation and restoration of the Kishon River is presented and technical and economical aspects of the purification technology are considered.

  1. Purification of cytochrome c oxidase by lysine-affinity chromatography.

    PubMed

    Felsch, J; Kotake, S; Copeland, R A

    1992-02-01

    A method for the purification of cytochrome c oxidase that is based on the affinity of this enzyme for polycations such as poly-L-lysine is described. When detergent extracts of bovine cardiac mitochondria were applied to either a poly-L-lysine-agarose or a lysine-Sepharose column at low ionic strength, cytochrome c oxidase was found to adhere tightly, whereas the bulk of the proteins were eluted by washing with the same buffer. The cytochrome c oxidase was eluted by application of a linear potassium chloride gradient to the columns. The resulting enzyme was identical to that obtained by more traditional purification methods in terms of its subunit composition, optical and resonance Raman spectra, and cytochrome c oxidizing activity. When detergent extracts of spheroplasts from Paracoccus denitrificans were applied to these columns, the cytochrome c oxidase from this organism was also found to adhere tightly. Thus this purification method appears applicable to both prokaryotic and eukaryotic forms of the enzyme. The advantages of this new purification method are that it is less labor intensive than the traditional procedure and less expensive than methods based on cytochrome c-affinity chromatography.

  2. Electrophoretic cell separation using microspheres. [purification of lymphocytes

    NASA Technical Reports Server (NTRS)

    Smolka, A.; Sachs, G.

    1980-01-01

    Methods of cell separation based on the electrokinetic properties of the cell membrane offer a degree of discrimination among cell populations which is not available with methods based on cell size or density alone. Studies aimed at extending red cell separations using microspheres to purification of lymphocytes.

  3. Extraction, Purification, and Spectroscopic Characterization of a Mixture of Capsaicinoids

    ERIC Educational Resources Information Center

    Wagner, Carl E.; Cahill, Thomas M.; Marshall, Pamela A.

    2011-01-01

    This laboratory experiment provides a safe and effective way to instruct undergraduate organic chemistry students about natural-product extraction, purification, and NMR spectroscopic characterization. On the first day, students extract dried habanero peppers with toluene, perform a pipet silica gel column to separate carotenoids from…

  4. Ligand-modified metal clusters for gas separation and purification

    DOEpatents

    Okrut, Alexander; Ouyang, Xiaoying; Runnebaum, Ron; Gates, Bruce C.; Katz, Alexander

    2017-02-21

    Provided is an organic ligand-bound metal surface that selects one gaseous species over another. The species can be closely sized molecular species having less than 1 Angstrom difference in kinetic diameter. In one embodiment, the species comprise carbon monoxide and ethylene. Such organic ligand-bound metal surfaces can be successfully used in gas phase separations or purifications, sensing, and in catalysis.

  5. An improved purification procedure for Leishmania RNA virus (LRV)

    PubMed Central

    de Souza, Marcos Michel; Manzine, Livia Regina; da Silva, Marcos Vinicius G.; Bettini, Jefferson; Portugal, Rodrigo Vilares; Cruz, Angela Kaysel; Arruda, Eurico; Thiemann, Otavio Henrique

    2014-01-01

    Leishmania RNA Virus (LRV, Totiviridae) infect Leishmania cells and subvert mice immune response, probably promoting parasite persistence, suggesting significant roles for LRV in host-parasite interaction. Here we describe a new LRV1-4 purification protocol, enabling capsid visualization by negatively stained electron microscopy representing a significant contribution to future LRV investigations. PMID:25242960

  6. An improved purification procedure for Leishmania RNA virus (LRV).

    PubMed

    de Souza, Marcos Michel; Manzine, Livia Regina; da Silva, Marcos Vinicius G; Bettini, Jefferson; Portugal, Rodrigo Vilares; Cruz, Angela Kaysel; Arruda, Eurico; Thiemann, Otavio Henrique

    2014-01-01

    Leishmania RNA Virus (LRV, Totiviridae) infect Leishmania cells and subvert mice immune response, probably promoting parasite persistence, suggesting significant roles for LRV in host-parasite interaction. Here we describe a new LRV1-4 purification protocol, enabling capsid visualization by negatively stained electron microscopy representing a significant contribution to future LRV investigations.

  7. Purification of lanthanides for double beta decay experiments

    NASA Astrophysics Data System (ADS)

    Polischuk, O. G.; Barabash, A. S.; Belli, P.; Bernabei, R.; Boiko, R. S.; Cappella, F.; Cerulli, R.; Danevich, F. A.; Incicchitti, A.; Laubenstein, M.; Mokina, V. M.; Nisi, S.; Poda, D. V.; Tretyak, V. I.

    2013-08-01

    There are several potentially double beta active isotopes among the lanthanide elements. However, even high purity grade lanthanide compounds contain 238U, 226Ra and 232,228Th typically on the level of ˜ (0.1 - 1) Bq/kg. The liquid-liquid extraction technique was used to remove traces of U, Ra and Th from CeO2, Nd2O3 and Gd2O3. The radioactive contamination of the samples before and after the purification was tested by using ultra-low-background HPGe γ spectrometry at the underground Gran Sasso National Laboratories of the INFN (Italy). After the purification the radioactive contamination of gadolinium oxide by Ra and Th was decreased at least one order of magnitude. The efficiency of the approach to purify cerium oxide from Ra was on same level, while the radioactive contamination of neodymium sample before and after the purification is below the sensitivity of analytical methods. The purification method is much less efficient for chemically very similar radioactive elements like lanthanum, lutetium and actinium. R&D of the methods to remove the pollutions with improved efficiency is in progress.

  8. Purification of lanthanides for double beta decay experiments

    SciTech Connect

    Polischuk, O. G.; Barabash, A. S.; Belli, P.; Bernabei, R.; Boiko, R. S.; Danevich, F. A.; Mokina, V. M.; Poda, D. V.; Tretyak, V. I.; Cappella, F.; Incicchitti, A.; Cerulli, R.; Laubenstein, M.; Nisi, S.

    2013-08-08

    There are several potentially double beta active isotopes among the lanthanide elements. However, even high purity grade lanthanide compounds contain {sup 238}U, {sup 226}Ra and {sup 232,228}Th typically on the level of ∼ (0.1 - 1) Bq/kg. The liquid-liquid extraction technique was used to remove traces of U, Ra and Th from CeO{sub 2}, Nd{sub 2}O{sub 3} and Gd{sub 2}O{sub 3}. The radioactive contamination of the samples before and after the purification was tested by using ultra-low-background HPGe γ spectrometry at the underground Gran Sasso National Laboratories of the INFN (Italy). After the purification the radioactive contamination of gadolinium oxide by Ra and Th was decreased at least one order of magnitude. The efficiency of the approach to purify cerium oxide from Ra was on same level, while the radioactive contamination of neodymium sample before and after the purification is below the sensitivity of analytical methods. The purification method is much less efficient for chemically very similar radioactive elements like lanthanum, lutetium and actinium. R and D of the methods to remove the pollutions with improved efficiency is in progress.

  9. The Partial Purification and Characterization of Lactate Dehydrogenase.

    ERIC Educational Resources Information Center

    Wolf, Edward C.

    1988-01-01

    Offers several advantages over other possibilities as the enzyme of choice for a student's first exposure to a purification scheme. Uses equipment and materials normally found in biochemistry laboratories. Incorporates several important biochemical techniques including spectrophotometry, chromatography, centrifugation, and electrophoresis. (MVL)

  10. Experimental studies on islets isolation, purification and function in rats.

    PubMed

    Pang, Xinlu; Xue, Wujun; Feng, Xinshun; Tian, Xiaohui; Teng, Yan; Ding, Xiaoming; Pan, Xiaoming; Guo, Qi; He, Xiaoli

    2015-01-01

    To develop a simple and effective method of islet isolation and purification in rats. Collagenase P was injected into pancreatic duct followed by incubation in water bath to digest the pancreas and isolate islet, then discontinuous gravity gradient purification was used to purify the islet. The purified islets were identified by dithizone staining. The viability of islets was assessed by fluorescence staining of acridine orange (AO) and propidium iodide (PI). The function of purified islets was determined by glucose-stimulated insulin release test and transplantation of rat with streptozocin-induced diabetes. 738±193 islets were recovered after purification. The average purity was 77±13%, the viability of islets was more than 95%. When inspected by glucose stimulation, the secreted insulin concentration was 24.31±5.47 mIU/L when stimulated by low concentration glucose and 37.62±4.29 mIU/L by high concentration glucose. There was significant difference between the two phases (P<0.05). The blood sugar concentration recovered to normal level after two days in the animals with islet transplantation. In conclusion, islets can be procured with good function and shape by using the method of injecting collagenase into pancreatic duct followed by incubation in water bath and purification using discontinuous gravity gradient.

  11. Methods in elastic tissue biology: elastin isolation and purification.

    PubMed

    Mecham, Robert P

    2008-05-01

    Elastin provides recoil to tissues subjected to repeated stretch, such as blood vessels and the lung. It is encoded by a single gene in mammals and is secreted as a 60-70 kDa monomer called tropoelastin. The functional form of the protein is that of a large, highly crosslinked polymer that organizes as sheets or fibers in the extracellular matrix. Purification of mature, crosslinked elastin is problematic because its insolubility precludes its isolation using standard wet-chemistry techniques. Instead, relatively harsh experimental approaches designed to remove non-elastin 'contaminates' are employed to generate an insoluble product that has the amino acid composition expected of elastin. Although soluble, tropoelastin also presents problems for isolation and purification. The protein's extreme stickiness and susceptibility to proteolysis requires careful attention during purification and in tropoelastin-based assays. This article describes the most common approaches for purification of insoluble elastin and tropoelastin. It also addresses key aspects of studying tropoelastin production in cultured cells, where elastin expression is highly dependent upon cell type, culture conditions, and passage number.

  12. Techniques for analysis and purification in high-throughput chemistry.

    PubMed

    Hughes, I; Hunter, D

    2001-06-01

    The success of combinatorial chemistry, and the increased emphasis on single well-characterised compounds of high purity, has had a significant impact on analytical and purification technologies. The requirement for ever-increasing throughput has led to the automation and parallelisation of these techniques. Advances have also been made in developing faster methods to augment throughput further.

  13. Purification of gibberellin sub 53 -oxidase from spinach

    SciTech Connect

    Wilson, T.M.; Zeevaart, J.A.D. )

    1989-04-01

    Spinach is a long-day rosette plants, in which stem growth is mediated by gibberellins. It has been shown that two enzymatic steps, GA{sub 53}-oxidase and GA{sub 19}-oxidase, are controlled by light. To develop an understanding into this light regulation, purification of GA{sub 53}-oxidase has been undertaken. The original assay relied on the HPLC separation of the product and substrate, but was considered too slow for the development of a purification scheme. A TLC system was developed which in conjunction with improvements to the assay conditions was sensitive and gave rapid results. The partial purification of the GA{sub 53}-oxidase is achieved by a high speed centrifugation, 40-55% ammonium sulfate precipitation, an hydroxyapatite column, Sephadex G-100 column and an anion exchange FPLC column, Mono Q HR10/10, yielding 1000-fold purification and 15% recovery. Monoclonal antibodies to the protein will be raised and used to further characterize the enzyme.

  14. Purification the surface of detail from biological contaminations

    NASA Astrophysics Data System (ADS)

    Gabdrakhmanov, Az T.; Israphilov, I. H.; Galiakbarov, A. T.; Gabdrakhmanov, Al T.

    2017-01-01

    More than 70% of biodegradation occur due to the corrosion processes. A biological corrosion causes the greatest damage to the oil and gas-production industry, the Navy and pipelines, constructions of water supply, means of communication. This paper proposes an effective method of purification various surfaces from biological contaminations by using of cold plasma.

  15. Turnkey Helium Purification and Liquefaction Plant for DARWIN, Australia

    NASA Astrophysics Data System (ADS)

    Lindemann, U.; Boeck, S.; Blum, L.; Kurtcuoglu, K.

    2010-04-01

    The Linde Group, through its Australian subsidiary BOC Limited, has signed an agreement with Darwin LNG Pty Ltd for the supply of feed-gas to Linde's new helium refining and liquefaction facility in Darwin, Australia. Linde Kryotechnik AG, located in Switzerland, has carried out the engineering and fabrication of the equipment for the turn key helium plant. The raw feed gas flow of 20'730 Nm3/h contains up to of 3 mol% helium. The purification process of the feed gas consists of partial condensation of nitrogen in two stages, cryogenic adsorption and finally catalytic oxidation of hydrogen followed by a dryer system. Downstream of the purification the refined helium is liquefied using a modified Bryton process and stored in a 30'000 gal LHe tank. For further distribution and export of the liquid helium there are two stations available for filling of truck trailers and containers. The liquid nitrogen, required for refrigeration capacity to the nitrogen removal stages in the purification process as well as for the pre-cooling of the pure helium in the liquefaction process, is generated on site during the feed gas purification process. The optimized process provides low power consumption, maximum helium recovery and a minimum helium loss.

  16. Purification and characterization of xylooligosaccharides (XOS) from Miscanthus x giganteus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our previous investigation showed that xylooligosaccharides (XOS) could be produced effectively from Miscanthus x giganteus (MxG). Using autohydrolysis, an XOS yield of to 13.5% (w/w) of initial biomass and xylan yield of 69.2% (w/w) was observed. In this study, we investigated the purification of X...

  17. Purification of boron nitride nanotubes via polymer wrapping

    SciTech Connect

    Choi, Jin-Hyuk; Kim, Jaewoo; Seo, Duckbong; Seo, Young-Soo

    2013-03-15

    Highlights: ► Surface modification of boron nitride nanotubes using polymeric materials. ► Surface-modified BNNT was purified with a simple dilution-centrifugation step. ► Surface-modified BNNT can be directly used for polymer composite fabrication ► Degree of purification was analyzed by Raman spectroscopy. - Abstract: Boron nitride nanotubes (BNNT) synthesized by a ball milling-annealing were surface-modified using three different types of polymeric materials. Those materials were chosen depending on future applications especially in polymer nanocomposite fabrications. We found that the surface-modified BNNT can be purified with a simple dilution-centrifugation step, which would be suitable for large-scale purification. Degree of purification was monitored by means of the center peak position and FWHM of E{sub 2g} mode of BNNT in Raman spectra. As the purification of BNNT develops, the peak position was up-shifted while FWHM of the peak was narrowed.

  18. Purification of KamLAND-Zen liquid scintillator

    SciTech Connect

    Ikeda, Haruo

    2013-08-08

    KamLAND-Zen is neutrino-less double-beta decay search experiment using enriched 300 kg of {sup 136}Xe dissolved in pure liquid scintillator. This report is purification work of liquid scintillator for KamLAND-Zen experiment before installation in the inner-balloon and background rejection processes after installation.

  19. Synthesis, purification, and acyl migration kinetics of 2-Monoricinoleoylglycerol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    2-Monoricinoleoylglycerol (2-MRG) was synthesized by the conventional enzymatic ethanolysis of castor oil. Due to the fatty acid C12-OH group, conventional liquid-liquid extraction methods developed for less polar, non-hydroxylated 2-monoacylglycerols (2-MAG) proved inadequate for 2-MRG purification...

  20. Use and application of hydrophobic interaction chromatography for protein purification.

    PubMed

    McCue, Justin T

    2014-01-01

    The objective of this section is to provide the reader with guidelines and background on the use and experimental application of Hydrophobic Interaction chromatography (HIC) for the purification of proteins. The section will give step by step instructions on how to use HIC in the laboratory to purify proteins. General guidelines and relevant background information is also provided.

  1. Automated high-throughput protein purification using an ÄKTApurifier and a CETAC autosampler.

    PubMed

    Yoo, Daniel; Provchy, Justin; Park, Cynthia; Schulz, Craig; Walker, Kenneth

    2014-05-30

    As the pace of drug discovery accelerates there is an increased focus on screening larger numbers of protein therapeutic candidates to identify those that are functionally superior and to assess manufacturability earlier in the process. Although there have been advances toward high throughput (HT) cloning and expression, protein purification is still an area where improvements can be made to conventional techniques. Current methodologies for purification often involve a tradeoff between HT automation or capacity and quality. We present an ÄKTA combined with an autosampler, the ÄKTA-AS, which has the capability of purifying up to 240 samples in two chromatographic dimensions without the need for user intervention. The ÄKTA-AS has been shown to be reliable with sample volumes between 0.5 mL and 100 mL, and the innovative use of a uniquely configured loading valve ensures reliability by efficiently removing air from the system as well as preventing sample cross contamination. Incorporation of a sample pump flush minimizes sample loss and enables recoveries ranging from the low tens of micrograms to milligram quantities of protein. In addition, when used in an affinity capture-buffer exchange format the final samples are formulated in a buffer compatible with most assays without requirement of additional downstream processing. The system is designed to capture samples in 96-well microplate format allowing for seamless integration of downstream HT analytic processes such as microfluidic or HPLC analysis. Most notably, there is minimal operator intervention to operate this system, thereby increasing efficiency, sample consistency and reducing the risk of human error.

  2. Air cell

    NASA Astrophysics Data System (ADS)

    Okamura, Okiyoshi; Wakasa, Masayuki; Tamanoi, Yoshihito

    1991-04-01

    The present invention relates to an air cell. This air cell provides a compact light-weight power source for model aircraft permitting them to fly for an extended period so that they may be used for such practical purposes as crop dusting, surveying, and photographing. The cell is comprised of a current collector so disposed between a magnesium, zinc, or aluminum alloy cathode and a petroleum graphite anode that it is in contact with the anode. The anode is formed by adding polytetrafluoroethylene dispersion liquid in a mixture of active carbon and graphite powder, pouring the mixture into a mold and heating it to form the anode. It is fabricated by a plurality of anode sections and is formed with at least one hole so that it can provide a cell which is compact in size and light in weight yet is capable of generating a high output. The anode, the cathode, and a separator are wetted by an electrolytic liquid. The electrolyte is continuously supplied through the life of the cell.

  3. Distillation and Air Stripping Designs for the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Boul, Peter J.; Lange, Kevin E.; Conger, Bruce; Anderson, Molly

    2009-01-01

    Air stripping and distillation are two different gravity-based methods, which may be applied to the purification of wastewater on the lunar base. These gravity-based solutions to water processing are robust physical separation techniques, which may be advantageous to many other techniques for their simplicity in design and operation. The two techniques can be used in conjunction with each other to obtain high purity water. The components and feed compositions for modeling waste water streams are presented in conjunction with the Aspen property system for traditional stage distillation models and air stripping models. While the individual components for each of the waste streams will vary naturally within certain bounds, an analog model for waste water processing is suggested based on typical concentration ranges for these components. Target purity levels for the for recycled water are determined for each individual component based on NASA s required maximum contaminant levels for potable water Distillation processes are modeled separately and in tandem with air stripping to demonstrate the potential effectiveness and utility of these methods in recycling wastewater on the Moon. Optimum parameters such as reflux ratio, feed stage location, and processing rates are determined with respect to the power consumption of the process. Multistage distillation is evaluated for components in wastewater to determine the minimum number of stages necessary for each of 65 components in humidity condensate and urine wastewater mixed streams. Components of the wastewater streams are ranked by Henry s Law Constant and the suitability of air stripping in the purification of wastewater in terms of component removal is evaluated. Scaling factors for distillation and air stripping columns are presented to account for the difference in the lunar gravitation environment. Commercially available distillation and air stripping units which are considered suitable for Exploration Life Support

  4. Air and the origin of the experimental plant physiology.

    PubMed

    Pennazio, Sergio

    2005-01-01

    It is well known that oxygen and carbon dioxide are two chemicals which enter the plant metabolism as nutrients. The bases of this nowadays obvious statement were placed in the 18th century by means of the works of ingenious naturalists such as Robert Boyle, Stephen Hales, Joseph Priestley, Jam Ingenhousz, Lazzaro Spallanzani and Theodore De Saussure. Till the end of the 17th century, the atmospheric air was considered as an ineffable spirit, the function of which was of physical nature. Boyle was the first naturalist to admit the possibility that respiration were an exchange of vapours occurring in the blood. Stephen Hales realised that air could be fixed by plants under the influence of solar light. Priestley showed that plants could regenerate the bad air making it breathable. Ingenhousz demonstrated that the green parts of plants performed the complete purification of air only under the influence of the light. Spallanzani discovered that plants respire and guessed that the good air (oxygen) originated from the fixed air (carbon dioxide). Finally, Theodore De Saussure showed that plants were able to adsorb carbon dioxide and to release oxygen in a proportional air. All these discoveries benefited of the results coming from investigations of scholars of the so-called "pneumatic chemistry" (Boyle himself, George Ernst Stahl, Joseph Black, Priestley himself, and many more others. But among all the eminent scientists above mentioned stands out the genius of Antoine Laurent Lavoisier, who revolutionised the chemistry of the 18th century ferrying it towards the modern chemistry.

  5. A synthetic zero air standard

    NASA Astrophysics Data System (ADS)

    Pearce, Ruth

    2016-04-01

    A Synthetic Zero Air Standard R. E. Hill-Pearce, K. V. Resner, D. R. Worton, P. J. Brewer The National Physical Laboratory Teddington, Middlesex TW11 0LW UK We present work towards providing traceability for measurements of high impact greenhouse gases identified by the World Meteorological Organisation (WMO) as critical for global monitoring. Standards for these components are required with challengingly low uncertainties to improve the quality assurance and control processes used for the global networks to better assess climate trends. Currently the WMO compatibility goals require reference standards with uncertainties of < 100 nmolmol-1 for CO2 (northern hemisphere) and < 2 nmolmol-1 for CH4 and CO. High purity zero gas is required for both the balance gas in the preparation of reference standards and for baseline calibrations of instrumentation. Quantification of the amount fraction of the target components in the zero gas is a significant contributor to the uncertainty and is challenging due to limited availability of reference standard at the amount fraction of the measurand and limited analytical techniques with sufficient detection limits. A novel dilutor was used to blend NPL Primary Reference Gas Mixtures containing CO2, CH4 and CO at atmospheric amount fractions with a zero gas under test. Several mixtures were generated with nominal dilution ratios ranging from 2000:1 to 350:1. The baseline of two cavity ring down spectrometers was calibrated using the zero gas under test after purification by oxidative removal of CO and hydrocarbons to < 1 nmolmol-1 (SAES PS15-GC50) followed by the removal of CO2 and water vapour to < 100 pmolmol-1 (SAES MC190). Using the standard addition method.[1] we have quantified the amount fraction of CO, CO2, and CH4 in scrubbed whole air (Scott Marrin) and NPL synthetic zero air. This is the first synthetic zero air standard with a matrix of N2, O2 and Ar closely matching ambient composition with gravimetrically assigned

  6. Evaluation of strategies to control Fab light chain dimer during mammalian expression and purification: A universal one-step process for purification of correctly assembled Fab.

    PubMed

    Spooner, Jennifer; Keen, Jenny; Nayyar, Kalpana; Birkett, Neil; Bond, Nicholas; Bannister, David; Tigue, Natalie; Higazi, Daniel; Kemp, Benjamin; Vaughan, Tristan; Kippen, Alistair; Buchanan, Andrew

    2015-07-01

    Fabs are an important class of antibody fragment as both research reagents and therapeutic agents. There are a plethora of methods described for their recombinant expression and purification. However, these do not address the issue of excessive light chain production that forms light chain dimers nor do they describe a universal purification strategy. Light chain dimer impurities and the absence of a universal Fab purification strategy present persistent challenges for biotechnology applications using Fabs, particularly around the need for bespoke purification strategies. This study describes methods to address light chain dimer formation during Fab expression and identifies a novel CH 1 affinity resin as a simple and efficient one-step purification for correctly assembled Fab.

  7. Metal-Air Batteries

    SciTech Connect

    Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

    2011-08-01

    Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

  8. Nano-Scale Metal Oxide Particles as Materials for Air Purification

    DTIC Science & Technology

    1994-02-22

    carried out. Methods for preparing the nanoscale particles, including core/shell overlayer particles, have been worked out. Surface characterization...since these heteroatoms are notorious for catalyst poisoning. Solid reagents that might serve as effective destructive adsorbents must have high capacity...to basic and applied science. Further understanding of their Avadlab1i1ty Codem vRiI1 and/ar Dgst Specle. |~1 1 I] Pagr 3 synthesis , properties, and

  9. EVALUATION OF THE POLYAD FB AIR PURIFICATION AND SOLVENT RECOVERY PROCESS FOR STYRENE REMOVAL

    EPA Science Inventory

    The report gives results of a study evaluating the Polyad fluidized-bed (FB) process for controlling styrene emissions at a representative fiberglass shower stall and bath tub manufacturing plan*t. he process was evaluated using a transport able unit supplied by Weatherly, Inc., ...

  10. Chemical Protection Testing of Sorbent-Based Air Purification Components (APCs)

    DTIC Science & Technology

    2016-06-24

    using a GC equipped with a FID or nitrogen -phosphorus detector (NPD). Arsine may be detected using a GC equipped with a TCD, FTIR, or hydride detector...Environmental Policy Act (NEPA), the Department of Defense (DOD) requires that an environmental impact assessment for the life cycle be prepared and that...of all chemicals for flammability and explosive hazards. Reactive chemicals, such as arsine, phosphine, nitrogen dioxide, phosgene, chlorine

  11. The Blood Compatibilities of Blood Purification Membranes and Other Materials Developed in Japan

    PubMed Central

    Abe, Takaya; Kato, Karen; Fujioka, Tomoaki; Akizawa, Tadao

    2011-01-01

    The biocompatibilities in blood purification therapy are defined as “a concept to stipulate safety of blood purification therapy by an index based on interaction in the body arising from blood purification therapy itself.” The biocompatibilities are associated with not only materials to be used but also many factors such as sterilization method and eluted substance. It is often evaluated based on impacts on cellular pathways and on humoral pathways. Since the biocompatibilities of blood purification therapy in particular hemodialysis are not just a prognostic factor for dialysis patients but a contributory factor for long-term complications, it should be considered with adequate attention. It is important that blood purification therapy should be performed by consistently evaluating not only risks associated with these biocompatibilities but also the other advantages obtained from treatments. In this paper, the biocompatibilities of membrane and adsorption material based on Japanese original which are used for blood purification therapy are described. PMID:21969830

  12. Joint Doctrine and Joint Tactics, Techniques, and Procedures for Air Mobility Opearations

    DTIC Science & Technology

    2007-11-02

    135 boom type aircraft refueling an F-15E. I-13 General Overview receptacle. Boom refueling allows for the rapid transfer of fuel under high pressure ...had spread to epidemic levels from consumption of contaminated water. A C-5 loaded with a reverse osmosis water purification unit (ROWPU) would help...fixed-wing aircraft. Movement of patients requires special air traffic control considerations to comply with patient-driven altitude and pressurization

  13. Air and Water System (AWS) Design and Technology Selection for the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Jones, Harry; Kliss, Mark

    2005-01-01

    This paper considers technology selection for the crew air and water recycling systems to be used in long duration human space exploration. The specific objectives are to identify the most probable air and water technologies for the vision for space exploration and to identify the alternate technologies that might be developed. The approach is to conduct a preliminary first cut systems engineering analysis, beginning with the Air and Water System (AWS) requirements and the system mass balance, and then define the functional architecture, review the International Space Station (ISS) technologies, and discuss alternate technologies. The life support requirements for air and water are well known. The results of the mass flow and mass balance analysis help define the system architectural concept. The AWS includes five subsystems: Oxygen Supply, Condensate Purification, Urine Purification, Hygiene Water Purification, and Clothes Wash Purification. AWS technologies have been evaluated in the life support design for ISS node 3, and in earlier space station design studies, in proposals for the upgrade or evolution of the space station, and in studies of potential lunar or Mars missions. The leading candidate technologies for the vision for space exploration are those planned for Node 3 of the ISS. The ISS life support was designed to utilize Space Station Freedom (SSF) hardware to the maximum extent possible. The SSF final technology selection process, criteria, and results are discussed. Would it be cost-effective for the vision for space exploration to develop alternate technology? This paper will examine this and other questions associated with AWS design and technology selection.

  14. Expression, Solubilization, and Purification of Bacterial Membrane Proteins.

    PubMed

    Jeffery, Constance J

    2016-02-02

    Bacterial integral membrane proteins play many important roles, including sensing changes in the environment, transporting molecules into and out of the cell, and in the case of commensal or pathogenic bacteria, interacting with the host organism. Working with membrane proteins in the lab can be more challenging than working with soluble proteins because of difficulties in their recombinant expression and purification. This protocol describes a standard method to express, solubilize, and purify bacterial integral membrane proteins. The recombinant protein of interest with a 6His affinity tag is expressed in E. coli. After harvesting the cultures and isolating cellular membranes, mild detergents are used to solubilize the membrane proteins. Protein-detergent complexes are then purified using IMAC column chromatography. Support protocols are included to help select a detergent for protein solubilization and for use of gel filtration chromatography for further purification.

  15. Magnetically ultraresponsive nanoscavengers for next-generation water purification systems.

    PubMed

    Zhang, Mingliang; Xie, Xing; Tang, Mary; Criddle, Craig S; Cui, Yi; Wang, Shan X

    2013-01-01

    The development of sustainable, robust and energy efficient water purification technology is still challenging. Although use of nanoparticles is promising, methods are needed for their efficient recovery post treatment. Here we address this issue by fabrication of magnetically ultraresponsive 'nanoscavengers', nanoparticles containing synthetic antiferromagnetic core layers and functional capping layers. When dispersed in water, the nanoscavengers efficiently interact with contaminants to remove them from the water. They are then quickly collected (<5 min) with a permanent magnet, owing to their magnetically ultraresponsive core layers. Specifically, we demonstrate fabrication and deployment of Ag-capped nanoscavengers for disinfection followed by application of an external magnetic field for separation. We also develop and validate a collision-based model for pathogen inactivation, and propose a cyclical water purification scheme in which nanoscavengers are recovered and recycled for contaminant removal.

  16. Liquid xenon purification, de-radonation (and de-kryptonation)

    SciTech Connect

    Pocar, Andrea

    2015-08-17

    Liquid xenon detectors are at the forefront of rare event physics, including searches for neutrino-less double beta decay and WIMP dark matter. The xenon for these experiments needs to be purified from chemical impurities such as electronegative atoms and molecules, which absorb ionization electrons, and VUV (178 nm) scintillation light-absorbing chemical species. In addition, superb purification from radioactive impurities is required. Particularly challenging are radioactive noble isotopes ({sup 85}Kr,{sup 39,42}Ar,{sup 220,222}Rn). Radon is a particularly universal problem, due to the extended decay sequence of its daughters and its ubiquitous presence in detector materials. Purification and de-radonation of liquid xenon are addressed with particular focus on the experience gained with the EXO-200 neutrino-less double beta decay detector.

  17. Preparative Purification of Recombinant Proteins: Current Status and Future Trends

    PubMed Central

    Saraswat, Mayank; Ravidá, Alessandra; Holthofer, Harry

    2013-01-01

    Advances in fermentation technologies have resulted in the production of increased yields of proteins of economic, biopharmaceutical, and medicinal importance. Consequently, there is an absolute requirement for the development of rapid, cost-effective methodologies which facilitate the purification of such products in the absence of contaminants, such as superfluous proteins and endotoxins. Here, we provide a comprehensive overview of a selection of key purification methodologies currently being applied in both academic and industrial settings and discuss how innovative and effective protocols such as aqueous two-phase partitioning, membrane chromatography, and high-performance tangential flow filtration may be applied independently of or in conjunction with more traditional protocols for downstream processing applications. PMID:24455685

  18. Purification of microsomal signal peptidase as a complex.

    PubMed Central

    Evans, E A; Gilmore, R; Blobel, G

    1986-01-01

    We report here the purification to near homogeneity of signal peptidase from canine pancreatic microsomes. Purification was monitored using an improved post-translational assay. A 42-fold enrichment over starting membranes was achieved by selective solubilization in nonionic detergent/high-salt buffer followed by gradient sievorptive anion and cation exchange chromatography, hydroxylapatite chromatography, gel filtration, and sucrose gradient velocity sedimentation. When examined by NaDodSO4/PAGE, the purified enzyme consisted of a complex of six polypeptides with apparent molecular masses of 25, 23, 22, 21, 18, and 12 kDa. The 22- and 23-kDa subunits were shown to be glycoproteins based on their sensitivity to endoglycosidase H and their ability to bind concanavalin A. We suggest that only one subunit of this complex carries out signal peptide cleavage. The structural association of the other subunits in stoichiometric amounts may reflect their requirement in chain translocation across the microsomal membrane. Images PMID:3511473

  19. Treatment of hyperbilirubinemia with blood purification in China

    PubMed Central

    Duan, Zhi-Jun; Li, Lei-Lei; Ju, Jia; Gao, Zhi-Hong; He, Gao-Hong

    2006-01-01

    The incidence of hyperbilirubinemia is high clinically, which is difficult to cure by medication, surgery or interventional therapies. Non-bioartificial liver is the main alternative in the blood purification for hyperbilirubinemia, which includes plasma exchange, hemoperfusion, hemodialysis, molecular adsorbent recycling system and so on. The research results and clinical experiences in China show that these methods are effective in lowering high levels of bilirubin with fewer side effects. The hyperbilirubinemias of different causes, with different complications or accompanying different diseases can be treated by different methods. Bioartificial liver, hybrid artificial liver support system and adsorbent membrane material have also been studied and their development in reducing hyperbilirubinemias has been achieved. This article gives a brief overview on the actuality and research improvement in blood purification for hyperbilirubinemia in China. PMID:17167835

  20. A scintillator purification plant and fluid handling system for SNO+

    NASA Astrophysics Data System (ADS)

    Ford, Richard J.

    2015-08-01

    A large capacity purification plant and fluid handling system has been constructed for the SNO+ neutrino and double-beta decay experiment, located 6800 feet underground at SNOLAB, Canada. SNO+ is a refurbishment of the SNO detector to fill the acrylic vessel with liquid scintillator based on Linear Alkylbenzene (LAB) and 2 g/L PPO, and also has a phase to load natural tellurium into the scintillator for a double-beta decay experiment with 130Te. The plant includes processes multi-stage dual-stream distillation, column water extraction, steam stripping, and functionalized silica gel adsorption columns. The plant also includes systems for preparing the scintillator with PPO and metal-loading the scintillator for double-beta decay exposure. We review the basis of design, the purification principles, specifications for the plant, and the construction and installations. The construction and commissioning status is updated.

  1. Recent Methods for Purification and Structure Determination of Oligonucleotides

    PubMed Central

    Zhang, Qiulong; Lv, Huanhuan; Wang, Lili; Chen, Man; Li, Fangfei; Liang, Chao; Yu, Yuanyuan; Jiang, Feng; Lu, Aiping; Zhang, Ge

    2016-01-01

    Aptamers are single-stranded DNA or RNA oligonucleotides that can interact with target molecules through specific three-dimensional structures. The excellent features, such as high specificity and affinity for target proteins, small size, chemical stability, low immunogenicity, facile chemical synthesis, versatility in structural design and engineering, and accessible for site-specific modifications with functional moieties, make aptamers attractive molecules in the fields of clinical diagnostics and biopharmaceutical therapeutics. However, difficulties in purification and structural identification of aptamers remain a major impediment to their broad clinical application. In this mini-review, we present the recently attractive developments regarding the purification and identification of aptamers. We also discuss the advantages, limitations, and prospects for the major methods applied in purifying and identifying aptamers, which could facilitate the application of aptamers. PMID:27999357

  2. An alternate high yielding purification method for Clitoria ternatea lectin.

    PubMed

    Naeem, Aabgeena; Ahmad, Ejaz; Khan, Rizwan Hasan

    2007-10-01

    In our previous publication we had reported the purification and characterization of Clitoria ternatea agglutinin from its seeds on fetuin CL agarose affinity column, designated CTA [A. Naeem, S. Haque, R.H. Khan. Protein J., 2007]. Since CTA binds beta-d-galactosides, this lectin can be used as valuable tool for glycobiology studies in biomedical and cancer research. So an attempt was made for a high yielding alternative purification method employing the use of asialofetuin CL agarose column for the above-mentioned lectin, designated CTL. The fetuin affinity purified agglutinin was found similar to asialofetuin affinity purified lectin in SDS pattern, HPLC and N-terminal sequence. The content of lectin was found to be 30mg/30g dry weight of pulse. The yield was 2.8% as compared to 0.3% obtained on fetuin column. The number of tryptophan and tyrosine estimated was four and six per subunit.

  3. A scintillator purification plant and fluid handling system for SNO+

    SciTech Connect

    Ford, Richard J.

    2015-08-17

    A large capacity purification plant and fluid handling system has been constructed for the SNO+ neutrino and double-beta decay experiment, located 6800 feet underground at SNOLAB, Canada. SNO+ is a refurbishment of the SNO detector to fill the acrylic vessel with liquid scintillator based on Linear Alkylbenzene (LAB) and 2 g/L PPO, and also has a phase to load natural tellurium into the scintillator for a double-beta decay experiment with {sup 130}Te. The plant includes processes multi-stage dual-stream distillation, column water extraction, steam stripping, and functionalized silica gel adsorption columns. The plant also includes systems for preparing the scintillator with PPO and metal-loading the scintillator for double-beta decay exposure. We review the basis of design, the purification principles, specifications for the plant, and the construction and installations. The construction and commissioning status is updated.

  4. Magnetically ultraresponsive nanoscavengers for next-generation water purification systems

    PubMed Central

    Zhang, Mingliang; Xie, Xing; Tang, Mary; Criddle, Craig S.; Cui, Yi; Wang, Shan X.

    2014-01-01

    The development of sustainable, robust and energy efficient water purification technology is still challenging. Although use of nanoparticles is promising, methods are needed for their efficient recovery post treatment. Here we address this issue by fabrication of magnetically ultraresponsive ‘nanoscavengers’, nanoparticles containing synthetic antiferromagnetic core layers and functional capping layers. When dispersed in water, the nanoscavengers efficiently interact with contaminants to remove them from the water. They are then quickly collected (<5 min) with a permanent magnet, owing to their magnetically ultraresponsive core layers. Specifically, we demonstrate fabrication and deployment of Ag-capped nanoscavengers for disinfection followed by application of an external magnetic field for separation. We also develop and validate a collision-based model for pathogen inactivation, and propose a cyclical water purification scheme in which nanoscavengers are recovered and recycled for contaminant removal. PMID:23673651

  5. Quantum resources for purification and cooling: fundamental limits and opportunities

    PubMed Central

    Ticozzi, Francesco; Viola, Lorenza

    2014-01-01

    Preparing a quantum system in a pure state is ultimately limited by the nature of the system's evolution in the presence of its environment and by the initial state of the environment itself. We show that, when the system and environment are initially uncorrelated and arbitrary joint unitary dynamics is allowed, the system may be purified up to a certain (possibly arbitrarily small) threshold if and only if its environment, either natural or engineered, contains a “virtual subsystem” which has the same dimension and is in a state with the desired purity. Beside providing a unified understanding of quantum purification dynamics in terms of a “generalized swap process,” our results shed light on the significance of a no-go theorem for exact ground-state cooling, as well as on the quantum resources needed for achieving an intended purification task. PMID:24898845

  6. Production and purification of the multifunctional enzyme horseradish peroxidase

    PubMed Central

    Spadiut, Oliver; Herwig, Christoph

    2014-01-01

    The oxidoreductase horseradish peroxidase (HRP) is used in numerous industrial and medical applications. In this review, we briefly describe this well-studied enzyme and focus on its promising use in targeted cancer treatment. In combination with a plant hormone, HRP can be used in specific enzyme–prodrug therapies. Despite this outstanding application, HRP has not found its way as a biopharmaceutical into targeted cancer therapy yet. The reasons therefore lie in the present low-yield production and cumbersome purification of this enzyme from its natural source. However, surface glycosylation renders the recombinant production of HRP difficult. Here, we compare different production hosts for HRP and summarize currently used production and purification strategies for this enzyme. We further present our own strategy of glycoengineering this powerful enzyme to allow recombinant high-yield production in Pichia pastoris and subsequent simple downstream processing. PMID:24683473

  7. Exhaust gas purification system for lean burn engine

    DOEpatents

    Haines, Leland Milburn

    2002-02-19

    An exhaust gas purification system for a lean burn engine includes a thermal mass unit and a NO.sub.x conversion catalyst unit downstream of the thermal mass unit. The NO.sub.x conversion catalyst unit includes at least one catalyst section. Each catalyst section includes a catalytic layer for converting NO.sub.x coupled to a heat exchanger. The heat exchanger portion of the catalyst section acts to maintain the catalytic layer substantially at a desired temperature and cools the exhaust gas flowing from the catalytic layer into the next catalytic section in the series. In a further aspect of the invention, the exhaust gas purification system includes a dual length exhaust pipe upstream of the NO.sub.x conversion catalyst unit. The dual length exhaust pipe includes a second heat exchanger which functions to maintain the temperature of the exhaust gas flowing into the thermal mass downstream near a desired average temperature.

  8. Dynamical entanglement purification using chains of atoms and optical cavities

    SciTech Connect

    Gonta, Denis; Loock, Peter van

    2011-10-15

    In the framework of cavity QED, we propose a practical scheme to purify dynamically a bipartite entangled state using short chains of atoms coupled to high-finesse optical cavities. In contrast to conventional entanglement purification protocols, we avoid controlled-not gates, thus reducing complicated pulse sequences and superfluous qubit operations. Our interaction scheme works in a deterministic way and, together with entanglement distribution and swapping, opens a route toward efficient quantum repeaters for long-distance quantum communication.

  9. Purification Techniques for Three-Dimensional DNA Nanostructures.

    PubMed

    Meyer, Travis A

    2017-01-01

    Separation of self-assembled three-dimensional nanostructures from excess staple strands, misfolded structures, or unattached functional elements is critical for downstream applications. Numerous purification techniques exist, with varying yields, purities, and hetero-element compatibilities. In this chapter, we focus on three such techniques-agarose gel electrophoresis, ultrafiltration, and polymeric bead pull-down-which together satisfy requirements for a range of applications.

  10. Aqueous Chloride Operations Overview: Plutonium and Americium Purification/Recovery

    SciTech Connect

    Gardner, Kyle Shelton; Kimball, David Bryan; Skidmore, Bradley Evan

    2016-09-28

    These are a set of slides intended for an information session as part of recruiting activities at Brigham Young University. It gives an overview of aqueous chloride operations, specifically on plutonium and americium purification/recovery. This presentation details the steps taken perform these processes, from plutonium size reduction, dissolution, solvent extraction, oxalate precipitation, to calcination. For americium recovery, it details the CLEAR (chloride extraction and actinide recovery) Line, oxalate precipitation and calcination.

  11. Purification of Sewage Contaminated by Oil Products Using Mesoporous Coal

    NASA Astrophysics Data System (ADS)

    Gvazava, Elene; Maisuradze, Nino; Samkharadze, Irma

    2016-10-01

    The sorption properties of mesoporous coals (pore size of ∼⃒ 4 nm, the specific surface area of 25 to 150 m2/g) of Georgian hard coal deposit have been studied and the efficacy of their usage for the treatment of sewage water polluted by oil products has been established. Purification rate depends on coal mass loaded in filter, grain size, initial concentration of oil products, the water acidity, etc.

  12. Reverse osmosis membrane of high urea rejection properties. [water purification

    NASA Technical Reports Server (NTRS)

    Johnson, C. C.; Wydeven, T. J. (Inventor)

    1980-01-01

    Polymeric membranes suitable for use in reverse osmosis water purification because of their high urea and salt rejection properties are prepared by generating a plasma of an unsaturated hydrocarbon monomer and nitrogen gas from an electrical source. A polymeric membrane is formed by depositing a polymer of the unsaturated monomer from the plasma onto a substrate, so that nitrogen from the nitrogen gas is incorporated within the polymer in a chemically combined form.

  13. Highly efficient and easy protease-mediated protein purification.

    PubMed

    Last, Daniel; Müller, Janett; Dawood, Ayad W H; Moldenhauer, Eva J; Pavlidis, Ioannis V; Bornscheuer, Uwe T

    2016-02-01

    As both research on and application of proteins are rarely focused on the resistance towards nonspecific proteases, this property remained widely unnoticed, in particular in terms of protein purification and related fields. In the present study, diverse aspects of protease-mediated protein purification (PMPP) were explored on the basis of the complementary proteases trypsin and proteinase K as well as the model proteins green fluorescent protein (GFP) from Aequorea victoria, lipase A from Candida antarctica (CAL-A), a transaminase from Aspergillus fumigatus (AspFum), quorum quenching lactonase AiiA from Bacillus sp., and an alanine dehydrogenase from Thermus thermophilus (AlaDH). While GFP and AiiA were already known to be protease resistant, the thermostable enzymes CAL-A, AspFum, and AlaDH were selected due to the documented correlation between thermostability and protease resistance. As proof of principle for PMPP, recombinant GFP remained unaffected whereas most Escherichia coli (E. coli) host proteins were degraded by trypsin. PMPP was highly advantageous compared to the widely used heat-mediated purification of commercial CAL-A. The resistance of AspFum towards trypsin was improved by rational protein design introducing point mutation R20Q. Trypsin also served as economical and efficient substitute for site-specific endopeptidases for the removal of a His-tag fused to AiiA. Moreover, proteolysis of host enzymes with interfering properties led to a strongly improved sensitivity and accuracy of the NADH assay in E. coli cell lysate for AlaDH activity measurements. Thus, PMPP is an attractive alternative to common protein purification methods and facilitates also enzyme characterization in cell lysate.

  14. Two-Step Vapor/Liquid/Solid Purification

    NASA Technical Reports Server (NTRS)

    Holland, L. R.

    1986-01-01

    Vertical distillation system combines in single operation advantages of multiple zone refining with those of distillation. Developed specifically to load Bridgman-Stockbarger (vertical-solidification) growth ampoules with ultrapure tellurium and cadmium, system, with suitable modifications, serves as material refiner. In first phase of purification process, ampoule heated to drive off absorbed volatiles. Second phase, evaporator heated to drive off volatiles in charge. Third phase, slowly descending heater causes distillation from evaporator to growing crystal in ampoule.

  15. Ecological aspects of the extreme purification of water

    NASA Astrophysics Data System (ADS)

    Shaposhnik, Vladimir A.; Mazo, A. A.; Frölich, P.

    1991-11-01

    The influence on the eco-system of the products of the large-scale technology for the preparation of ultra-pure water required for the electronic and radiotechnical industries is examined. The distillation, ion-exchange, and membrane methods are subjected to a comparative analysis. It is shown that the membrane method for the extreme purification of water is ecologically the most desirable. The methods for the elimination of nitrates from drinking water are examined. The bibliography includes 41 references.

  16. Superhydrophobic coated apparatus for liquid purification by evaporative condensation

    DOEpatents

    Simpson, John T; McNeany, Steve R; Dinsmore, Thomas V; Hunter, Scott R; Ivanov, Ilia N

    2014-03-11

    Disclosed are examples of apparatuses for evaporative purification of a contaminated liquid. In each example, there is a first vessel for storing the contaminated fluid. The first vessel includes a surface coated with a layer of superhydrophobic material and the surface is at least partially in contact with the contaminated liquid. The contaminants do not adhere to the surface as the purified liquid evaporates, thus simplifying maintenance of the apparatus.

  17. Advective hydrogel membrane chromatography for monoclonal antibody purification in bioprocessing.

    PubMed

    Hou, Ying; Brower, Mark; Pollard, David; Kanani, Dharmesh; Jacquemart, Renaud; Kachuik, Bradley; Stout, James

    2015-01-01

    Protein A chromatography is widely employed for the capture and purification of monoclonal antibodies (mAbs). Because of the high cost of protein A resins, there is a significant economic driving force to seek new downstream processing strategies. Membrane chromatography has emerged as a promising alternative to conventional resin based column chromatography. However, to date, the application has been limited to mostly ion exchange flow through (FT) mode. Recently, significant advances in Natrix hydrogel membrane has resulted in increased dynamic binding capacities for proteins, which makes membrane chromatography much more attractive for bind/elute operations. The dominantly advective mass transport property of the hydrogel membrane has also enabled Natrix membrane to be run at faster volumetric flow rates with high dynamic binding capacities. In this work, the potential of using Natrix weak cation exchange membrane as a mAb capture step is assessed. A series of cycle studies was also performed in the pilot scale device (> 30 cycles) with good reproducibility in terms of yield and product purities, suggesting potential for improved manufacturing flexibility and productivity. In addition, anion exchange (AEX) hydrogel membranes were also evaluated with multiple mAb programs in FT mode. Significantly higher binding capacity for impurities (support mAb loads up to 10Kg/L) and 40X faster processing speed were observed compared with traditional AEX column chromatography. A proposed protein A free mAb purification process platform could meet the demand of a downstream purification process with high purity, yield, and throughput.

  18. Doping reversed-phase media for improved peptide purification.

    PubMed

    Khalaf, Rushd; Forrer, Nicola; Buffolino, Gianluca; Gétaz, David; Bernardi, Susanna; Butté, Alessandro; Morbidelli, Massimo

    2015-06-05

    The purification of therapeutic peptides is most often performed using one or more reversed phase chromatography steps. This ensures high purities while keeping the costs of purification under control. In this paper, a doped reversed phase chromatographic material is tested and compared to traditional reversed phase materials. The doping consists of adding limited amounts of ion exchange ligands to the surface of the material to achieve orthogonal separation and increase the non-hydrophobic interactions with the surface. These ionic groups can either be attractive (opposite charge), or repulsive (same charge) to the peptide. The benefit of this new doped reversed phase material is shown through increases in selectivity in diluted conditions and yield and productivity in overloaded (i.e. industrial) conditions. It is the conjectured that all performance characteristics should increase using repulsive doping groups, whereas these characteristics should decrease when using attractive doping groups. This conjecture is shown to be true through several examples, including purifications of industrially relevant peptide crudes, in industrially relevant conditions. Moreover, the effect of ionic strength and organic modifier concentration was explored and shown to be in line with the expected behavior.

  19. Preparative Purification of Liriodendrin from Sargentodoxa cuneata by Macroporous Resin

    PubMed Central

    Li, Di-Hua; Wang, Yan; Lv, Yuan-Shan; Liu, Jun-Hong; Yang, Lei; Zhang, Shu-Kun; Zhuo, Yu-Zhen

    2015-01-01

    The preparative purification of liriodendrin from Sargentodoxa cuneata using macroporous resin combined with crystallization process was evaluated. The properties of adsorption/desorption of liriodendrin on eight macroporous resins were investigated systematically. X-5 resin was selected as the most suitable medium for liriodendrin purification. The adsorption of liriodendrin on X-5 resin fitted well with the pseudo-second-order kinetic model and Langmuir isotherm model. Dynamic adsorption/desorption tests were performed using a glass column packed with X-5 resin to optimize the separation process of liriodendrin. After one treatment with X-5 resin, the content of liriodendrin in the product was increased 48.73-fold, from 0.85% to 41.42%, with a recovery yield of 88.9%. 97.48% liriodendrin was obtained by further crystallization and determined by HPLC. The purified product possessed strong antioxidant activity. In conclusion, purification of liriodendrin might expend its further pharmacological researches and further applications in pharmacy. PMID:26236742

  20. Novel High-throughput Approach for Purification of Infectious Virions

    PubMed Central

    James, Kevin T.; Cooney, Brad; Agopsowicz, Kate; Trevors, Mary Ann; Mohamed, Adil; Stoltz, Don; Hitt, Mary; Shmulevitz, Maya

    2016-01-01

    Viruses are extensively studied as pathogens and exploited as molecular tools and therapeutic agents. Existing methods to purify viruses such as gradient ultracentrifugation or chromatography have limitations, for example demand for technical expertise or specialized equipment, high time consumption, and restricted capacity. Our laboratory explores mutations in oncolytic reovirus that could improve oncolytic activity, and makes routine use of numerous virus variants, genome reassortants, and reverse engineered mutants. Our research pace was limited by the lack of high-throughput virus purification methods that efficiently remove confounding cellular contaminants such as cytokines and proteases. To overcome this shortcoming, we evaluated a commercially available resin (Capto Core 700) that captures molecules smaller than 700 kDa. Capto. Core 700 chromatography produced virion purity and infectivity indistinguishable from CsCl density gradient ultracentrifugation as determined by electron microscopy, gel electrophoresis analysis and plaque titration. Capto Core 700 resin was then effectively adapted to a rapid in-slurry pull-out approach for high-throughput purification of reovirus and adenovirus. The in-slurry purification approach offered substantially increased virus purity over crude cell lysates, media, or high-spin preparations and would be especially useful for high-throughput virus screening applications where density gradient ultracentrifugation is not feasible. PMID:27827454

  1. Simple method for purification of enterotoxigenic E. coli fimbriae

    PubMed Central

    Curtis, Brittany; Grassel, Christen; Laufer, Rachel; Sears, Khandra; Pasetti, Marcela F.; Barry, Eileen M.; Simon, Raphael

    2016-01-01

    Enterotoxigenic E. coli (ETEC) are endemic pathogens in the developing world. They frequently cause illness in travelers, and are among the most prevalent causes of diarrheal disease in children. Pathogenic ETEC strains employ fimbriae as adhesion factors to bind the luminal surface of the intestinal epithelium and establish infection. Accordingly, there is marked interest in immunoprophylactic strategies targeting fimbriae to protect against ETEC infections. Multiple strategies have been reported for purification of ETEC fimbriae, however none is ideal. Purification has typically involved the use of highly virulent wild-type strains. We report here a simple and improved method to purify ETEC fimbriae, which was applied to obtain two different Class 5 fimbriae types of clinical relevance (CFA/I and CS4) expressed recombinantly in E. coli production strains. Following removal from cells by shearing, fimbriae proteins were purified by orthogonal purification steps employing ultracentrifugation, precipitation, and ion-exchange membrane chromatography. Purified fimbriae demonstrated the anticipated size and morphology by electron microscopy analysis, contained negligible levels of residual host cell proteins, nucleic acid, and endotoxin, and were recognized by convalescent human anti-sera. PMID:26581778

  2. Matching relations for optimal entanglement concentration and purification

    PubMed Central

    Kong, Fan-Zhen; Xia, Hui-Zhi; Yang, Ming; Yang, Qing; Cao, Zhuo-Liang

    2016-01-01

    The bilateral controlled NOT (CNOT) operation plays a key role in standard entanglement purification process, but the CNOT operation may not be the optimal joint operation in the sense that the output entanglement is maximized. In this paper, the CNOT operations in both the Schmidt-projection based entanglement concentration and the entanglement purification schemes are replaced with a general joint unitary operation, and the optimal matching relations between the entangling power of the joint unitary operation and the non-maximal entangled channel are found for optimizing the entanglement in- crement or the output entanglement. The result is somewhat counter-intuitive for entanglement concentration. The output entanglement is maximized when the entangling power of the joint unitary operation and the quantum channel satisfy certain relation. There exist a variety of joint operations with non-maximal entangling power that can induce a maximal output entanglement, which will greatly broaden the set of the potential joint operations in entanglement concentration. In addition, the entanglement increment in purification process is maximized only by the joint unitary operations (including CNOT) with maximal entangling power. PMID:27189800

  3. Review of Membranes for Helium Separation and Purification.

    PubMed

    Scholes, Colin A; Ghosh, Ujjal K

    2017-02-17

    Membrane gas separation has potential for the recovery and purification of helium, because the majority of membranes have selectivity for helium. This review reports on the current state of the research and patent literature for membranes undertaking helium separation. This includes direct recovery from natural gas, as an ancillary stage in natural gas processing, as well as niche applications where helium recycling has potential. A review of the available polymeric and inorganic membranes for helium separation is provided. Commercial gas separation membranes in comparable gas industries are discussed in terms of their potential in helium separation. Also presented are the various membrane process designs patented for the recovery and purification of helium from various sources, as these demonstrate that it is viable to separate helium through currently available polymeric membranes. This review places a particular focus on those processes where membranes are combined in series with another separation technology, commonly pressure swing adsorption. These combined processes have the most potential for membranes to produce a high purity helium product. The review demonstrates that membrane gas separation is technically feasible for helium recovery and purification, though membranes are currently only applied in niche applications focused on reusing helium rather than separation from natural sources.

  4. Review of Membranes for Helium Separation and Purification

    PubMed Central

    Scholes, Colin A.; Ghosh, Ujjal K.

    2017-01-01

    Membrane gas separation has potential for the recovery and purification of helium, because the majority of membranes have selectivity for helium. This review reports on the current state of the research and patent literature for membranes undertaking helium separation. This includes direct recovery from natural gas, as an ancillary stage in natural gas processing, as well as niche applications where helium recycling has potential. A review of the available polymeric and inorganic membranes for helium separation is provided. Commercial gas separation membranes in comparable gas industries are discussed in terms of their potential in helium separation. Also presented are the various membrane process designs patented for the recovery and purification of helium from various sources, as these demonstrate that it is viable to separate helium through currently available polymeric membranes. This review places a particular focus on those processes where membranes are combined in series with another separation technology, commonly pressure swing adsorption. These combined processes have the most potential for membranes to produce a high purity helium product. The review demonstrates that membrane gas separation is technically feasible for helium recovery and purification, though membranes are currently only applied in niche applications focused on reusing helium rather than separation from natural sources. PMID:28218644

  5. Development of EV71 virus-like particle purification processes.

    PubMed

    Lin, Shih-Yeh; Chiu, Hsin-Yi; Chiang, Bor-Luen; Hu, Yu-Chen

    2015-11-04

    Enterovirus 71 (EV71) causes the outbreaks of hand-foot-and-mouth disease and results in deaths of hundreds of young children. EV71 virus-like particles (VLPs) are empty capsids consisting of viral structural proteins and can elicit potent immune responses, thus holding promise as an EV71 vaccine candidate. However, an efficient, scalable production and purification scheme is missing. For mass production of EV71 VLPs, this study aimed to develop a production and chromatography-based purification process. We first demonstrated the successful EV71 VLPs production in the stirred-tank bioreactor in which High Five™ cells were infected with a recombinant baculovirus co-expressing EV71 structural polyprotein P1 and protease 3CD. The culture supernatant containing the VLPs was subjected to tangential flow filtration (TFF) for concentration/diafiltration, which enabled the removal of >80% of proteins while recovering >80% of VLPs. The concentrated VLPs were next subjected to hydroxyapatite chromatography (HAC) in which the VLPs were mainly found in the flow through. After another TFF concentration/diafiltration, the VLPs were purified by size-exclusion chromatography (SEC) and concentrated/diafiltered by a final TFF. The integrated process yielded an overall VLPs recovery of ≈ 36% and a purity of ≈ 83%, which was better or comparable to the recovery and purity for the purification of live EV71 virus particles. This process thus may move the EV71 VLPs vaccine one step closer to the clinical applications.

  6. New membranes for extracorporeal blood purification in septic conditions.

    PubMed

    Bello, G; Di Muzio, F; Maviglia, R; Antonelli, M

    2012-11-01

    Severe sepsis and septic shock are still the leading cause of mortality and morbidity in the intensive care unit. The inflammatory response to infection is associated with an impressive, systemic release of pro- and anti-inflammatory mediators, which results in generalized endothelial damage, multiple organ failure and altered cellular immunological responsiveness. Over the last years, the substantial advances in the understanding of sepsis have led to the development of a large number of new approaches and technologies in the management of septic patients. Extracorporeal blood purification techniques using various membrane materials have been proposed to modulate multiple inflammatory mediators, and seem to be a potential adjuvant in the treatment of sepsis. However, the use of extracorporeal blood purification techniques during sepsis still remains controversial, thus precluding any definitive recommendations on the benefit of these methods. More data are needed to better recognize septic patients who are most likely to benefit from blood purification treatments, and clarify the optimal timing, duration, and number of applications of these techniques in the daily clinical practice.

  7. Purification and Characterization of Bovine Serum Albumin Using Chromatographic Method

    PubMed Central

    Balkani, Sanaz; Shamekhi, Sara; Raoufinia, Ramin; Parvan, Reza; Abdolalizadeh, Jalal

    2016-01-01

    Purpose: Albumin is an abundant protein of blood and has many biopharmaceutical applications. The aim of this study was to purify bovine serum albumin (BSA) using produced rabbit anti-BSA antibody. Methods: The polyclonal antibody was produced against the BSA in rabbits. Then, the pure BSA was injected to three white New Zealand rabbits. ELISA test was done to evaluate antibody production. After antibody purification,the purified antibody was attached to CNBr-activated sepharose and finally it was used for purification of albumin from bovine serum. Western blotting analysis was used for functional assessment of immunoaffinity purified BSA. Results: The titer of anti-bovine albumin determined by ELISA was obtained 1: 256000. The SDS-PAGE showed up to 98% purity of isolated BSA and western blotting confirmed the BSA functionality. Purified bovine serum albumin by affinity chromatography showed a single band with molecular weight of 66 KDa. Conclusion: Affinity chromatography using produced rabbit anti-BSA antibody would be an economical and safe method for purification of BSA. PMID:28101473

  8. Purification for the XENONnT dark matter experiment

    NASA Astrophysics Data System (ADS)

    Brown, Ethan; Xenon Collaboration

    2017-01-01

    The XENON1T experiment uses 3.5 tons of liquid xenon in a cryogenic detector to search for dark matter. Its upgrade, XENONnT, will similarly house 7.5 tons of liquid xenon. Operation of these large detectors requires continual purification of the xenon in an external purifier, and the need for less than part per billion level oxygen in the xenon, coupled with the large quantity of xenon to be purified, places high demands on the rate of flow through this purification system. Building on the success of the XENON10 and XENON100 experiments, XENON1T circulates gaseous xenon through heated getters at a rate of up to 100 SLPM, pushing commercial pumps to their limits moving this large quantity of gas without interruption for several years. Two upgrades are considered for XENONnT. A custom high-capacity magnetic piston pump based on the one developed for the EXO200 experiment has been scaled up to support the high demands of this much larger experiment. Additionally, a liquid phase circulation and purification system that purifies the cryogenic liquid directly is being developed, which takes advantage of the much smaller volumetric flow demands of liquid relative to gas. The implementation of both upgrades will be presented. Supported by the National Science Foundation.

  9. Solid-Phase Purification of Synthetic DNA Sequences.

    PubMed

    Grajkowski, Andrzej; Cieslak, Jacek; Beaucage, Serge L

    2016-08-05

    Although high-throughput methods for solid-phase synthesis of DNA sequences are currently available for synthetic biology applications and technologies for large-scale production of nucleic acid-based drugs have been exploited for various therapeutic indications, little has been done to develop high-throughput procedures for the purification of synthetic nucleic acid sequences. An efficient process for purification of phosphorothioate and native DNA sequences is described herein. This process consists of functionalizing commercial aminopropylated silica gel with aminooxyalkyl functions to enable capture of DNA sequences carrying a 5'-siloxyl ether linker with a "keto" function through an oximation reaction. Deoxyribonucleoside phosphoramidites functionalized with the 5'-siloxyl ether linker were prepared in yields of 75-83% and incorporated last into the solid-phase assembly of DNA sequences. Capture of nucleobase- and phosphate-deprotected DNA sequences released from the synthesis support is demonstrated to proceed near quantitatively. After shorter than full-length DNA sequences were washed from the capture support, the purified DNA sequences were released from this support upon treatment with tetra-n-butylammonium fluoride in dry DMSO. The purity of released DNA sequences exceeds 98%. The scalability and high-throughput features of the purification process are demonstrated without sacrificing purity of the DNA sequences.

  10. Recent advances in production, purification and applications of phycobiliproteins.

    PubMed

    Sonani, Ravi Raghav; Rastogi, Rajesh Prasad; Patel, Rutvij; Madamwar, Datta

    2016-02-26

    An obligatory sunlight requirement for photosynthesis has exposed cyanobacteria to different quantity and quality of light. Cyanobacteria can exhibit efficient photosynthesis over broad region (450 to 650 nm) of solar spectrum with the help of brilliantly coloured pigment proteins called phycobiliproteins (PBPs). Besides light-harvesting, PBPs are found to involve in several life sustaining phenomena including photoprotection in cyanobacteria. The unique spectral features (like strong absorbance and fluorescence), proteineous nature and, some imperative properties like hepato-protective, anti-oxidants, anti-inflammatory and anti-aging activity of PBPs enable their use in food, cosmetics, pharmaceutical and biomedical industries. PBPs have been also noted to show beneficial effect in therapeutics of some disease like Alzheimer and cancer. Such large range of applications increases the demand of PBPs in commodity market. Therefore, the large-scale and coast effective production of PBPs is the real need of time. To fulfil this need, many researchers have been working to find the potential producer of PBPs for the production and purification of PBPs. Results of these efforts have caused the inventions of some novel techniques like mixotrophic and heterotrophic strategies for production and aqueous two phase separation for purification purpose. Overall, the present review summarises the recent findings and identifies gaps in the field of production, purification and applications of this biological and economically important proteins.

  11. Purification of baculovirus vectors using heparin affinity chromatography

    PubMed Central

    Nasimuzzaman, Md; Lynn, Danielle; van der Loo, Johannes CM; Malik, Punam

    2016-01-01

    Baculoviruses are commonly used for recombinant protein and vaccine production. Baculoviruses are nonpathogenic to vertebrates, have a large packaging capacity, display broad host and cell type tropism, infect both dividing and nondividing cells, and do not elicit strong immune or allergic responses in vivo. Hence, their use as gene delivery vehicles has become increasingly popular in recent years. Moreover, baculovirus vectors carrying mammalian regulatory elements can efficiently transduce and express transgenes in mammalian cells. Based on the finding that heparan sulfate, which is structurally similar to heparin, is an attachment receptor for baculovirus, we developed a novel scalable baculovirus purification method using heparin-affinity chromatography. Baculovirus supernatants were loaded onto a POROS heparin column, washed to remove unbound materials, and eluted with 1.5 mol/l NaCl, which yielded a recovery of purified baculovirus of 85%. After ultracentrifugation, baculovirus titers increased from 200- to 700-fold with overall yields of 26–29%. We further show that baculovirus particles were infectious, normal in morphology and size, despite high-salt elution and shear forces used during purification and concentration. Our chromatography-based purification method is scalable and, together with ultracentrifugation and/or tangential flow filtration, will be suitable for large-scale manufacturing of baculovirus stocks for protein and vaccine production and in gene therapy applications. PMID:27933303

  12. Simple method for purification of enterotoxigenic Escherichia coli fimbriae.

    PubMed

    Curtis, Brittany; Grassel, Christen; Laufer, Rachel S; Sears, Khandra T; Pasetti, Marcela F; Barry, Eileen M; Simon, Raphael

    2016-03-01

    Enterotoxigenic Escherichia coli (ETEC) are endemic pathogens in the developing world. They frequently cause illness in travelers, and are among the most prevalent causes of diarrheal disease in children. Pathogenic ETEC strains employ fimbriae as adhesion factors to bind the luminal surface of the intestinal epithelium and establish infection. Accordingly, there is marked interest in immunoprophylactic strategies targeting fimbriae to protect against ETEC infections. Multiple strategies have been reported for purification of ETEC fimbriae, however none is ideal. Purification has typically involved the use of highly virulent wild-type strains. We report here a simple and improved method to purify ETEC fimbriae, which was applied to obtain two different Class 5 fimbriae types of clinical relevance (CFA/I and CS4) expressed recombinantly in E. coli production strains. Following removal from cells by shearing, fimbriae proteins were purified by orthogonal purification steps employing ultracentrifugation, precipitation, and ion-exchange membrane chromatography. Purified fimbriae demonstrated the anticipated size and morphology by electron microscopy analysis, contained negligible levels of residual host cell proteins, nucleic acid, and endotoxin, and were recognized by convalescent human anti-sera.

  13. Purification of metallurgical-grade silicon in fractional melting process

    NASA Astrophysics Data System (ADS)

    Lee, Woosoon; Yoon, Wooyoung; Park, Choonghwan

    2009-12-01

    The fractional melting process involves heating an alloy within its liquid-solid region, while simultaneously ejecting liquid from the solid-liquid mixture (the cake). The extent of purification obtained is comparable to that obtained in multi-pass zone refining. A new fractional melting process, in which the centrifugal force is used for separating the liquid from the cake, was developed and applied to the purification of metallurgical grade Si (MG-Si). The major impurities in MG-Si such as Fe, Ti, Al, and Cu can significantly degrade the efficiency of solar cells. So it is important to remove these metal elements from MG-Si to obtain high-quality silicon. Since these elements have low segregation coefficients in silicon, high purification is possible through the fractional melting process. By applying the fractional melting method, a mean refining ratio of 93% with a wetness of 0.038 was achieved during the refining of 2N-Si. A further increase in the refining ratio can be realized by either controlling the processing parameters or reducing the solid fraction.

  14. The modified swirl sedimentation tanks for water purification.

    PubMed

    Ochowiak, Marek; Matuszak, Magdalena; Włodarczak, Sylwia; Ancukiewicz, Małgorzata; Krupińska, Andżelika

    2017-03-15

    This paper discusses design, evaluation, and application for the use of swirl/vortex technologies as liquid purification system. A study was performed using modified swirl sedimentation tanks. The vortex separators (OW, OWK, OWR and OWKR) have been studied under laboratory conditions at liquid flow rate from 2.8⋅10(-5) to 5.1⋅10(-4) [m(3)/s]. The pressure drop and the efficiency of purification of liquid stream were analyzed. The suspended particles of different diameters were successfully removed from liquid with the application of swirl chambers of proposed constructions. It was found that damming of liquid in the tank increases alongside liquid stream at the inlet and depends on the tank construction. The efficiency of the sedimentation tanks increases alongside the diameters of solid particles and decrease in the liquid flow rate. The best construction proved to be the OWR sedimentation tank due to smallest liquid damming, even at high flow rates, and the highest efficiency of the purification liquid stream for solid particles of the smallest diameter. The proposed solution is an alternative to the classical constructions of sedimentation tanks.

  15. Protein purification and crystallization artifacts: The tale usually not told.

    PubMed

    Niedzialkowska, Ewa; Gasiorowska, Olga; Handing, Katarzyna B; Majorek, Karolina A; Porebski, Przemyslaw J; Shabalin, Ivan G; Zasadzinska, Ewelina; Cymborowski, Marcin; Minor, Wladek

    2016-03-01

    The misidentification of a protein sample, or contamination of a sample with the wrong protein, may be a potential reason for the non-reproducibility of experiments. This problem may occur in the process of heterologous overexpression and purification of recombinant proteins, as well as purification of proteins from natural sources. If the contaminated or misidentified sample is used for crystallization, in many cases the problem may not be detected until structures are determined. In the case of functional studies, the problem may not be detected for years. Here several procedures that can be successfully used for the identification of crystallized protein contaminants, including: (i) a lattice parameter search against known structures, (ii) sequence or fold identification from partially built models, and (iii) molecular replacement with common contaminants as search templates have been presented. A list of common contaminant structures to be used as alternative search models was provided. These methods were used to identify four cases of purification and crystallization artifacts. This report provides troubleshooting pointers for researchers facing difficulties in phasing or model building.

  16. Recent advances in production, purification and applications of phycobiliproteins

    PubMed Central

    Sonani, Ravi Raghav; Rastogi, Rajesh Prasad; Patel, Rutvij; Madamwar, Datta

    2016-01-01

    An obligatory sunlight requirement for photosynthesis has exposed cyanobacteria to different quantity and quality of light. Cyanobacteria can exhibit efficient photosynthesis over broad region (450 to 650 nm) of solar spectrum with the help of brilliantly coloured pigment proteins called phycobiliproteins (PBPs). Besides light-harvesting, PBPs are found to involve in several life sustaining phenomena including photoprotection in cyanobacteria. The unique spectral features (like strong absorbance and fluorescence), proteineous nature and, some imperative properties like hepato-protective, anti-oxidants, anti-inflammatory and anti-aging activity of PBPs enable their use in food, cosmetics, pharmaceutical and biomedical industries. PBPs have been also noted to show beneficial effect in therapeutics of some disease like Alzheimer and cancer. Such large range of applications increases the demand of PBPs in commodity market. Therefore, the large-scale and coast effective production of PBPs is the real need of time. To fulfil this need, many researchers have been working to find the potential producer of PBPs for the production and purification of PBPs. Results of these efforts have caused the inventions of some novel techniques like mixotrophic and heterotrophic strategies for production and aqueous two phase separation for purification purpose. Overall, the present review summarises the recent findings and identifies gaps in the field of production, purification and applications of this biological and economically important proteins. PMID:26981199

  17. Purification and crystallization of oxygen-evolving photosystem II core complex from thermophilic cyanobacteria.

    PubMed

    Shen, Jian-Ren; Kawakami, Keisuke; Koike, Hiroyuki

    2011-01-01

    This chapter describes the purification and crystallization of oxygen-evolving photosystem II core dimer complex from a thermophilic cyanobacterium Thermosynechococcus vulcanus. Procedures used for purification of photosystem II from the cyanobacterium involves cultivation of cells, isolation of thylakoid membranes, purification of crude and pure photosystem II core complexes by detergent solubilization, followed by differential centrifugation and column chromatography. The purified core dimer particles were successfully used for crystallization, and the methods and conditions used for crystallization are presented. These purification and crystallization procedures can be applied for another thermophilic cyanobacterium T. elongatus.

  18. Bovine lactoferrin purification from whey using Yellow HE-4R as the chromatographic affinity ligand.

    PubMed

    Baieli, María Fernanda; Urtasun, Nicolás; Miranda, María Victoria; Cascone, Osvaldo; Wolman, Federico Javier

    2014-03-01

    The worldwide production of whey increases by around 186 million tons each year and it is generally considered as a waste, even when several whey proteins have important economic relevance. For its valorization, inexpensive ligands and integrated chromatography methods need to be developed for specific and low-cost protein purification. Here, we describe a novel affinity process with the dye Yellow HE-4R immobilized on Sepharose for bovine lactoferrin purification. This approach based on a low-cost ligand showed an efficient performance for the recovery and purification of bovine lactoferrin directly from whey, with a yield of 71% and a purification factor of 61.

  19. Resonant purification of mixed states for closed and open quantum systems

    SciTech Connect

    Romano, Raffaele

    2007-02-15

    Pure states are fundamental for the implementation of quantum technologies, and several methods for the purification of the state of a quantum system S have been developed in the past years. In this work we describe a mechanism leading to purification of mixed states, based on the interaction of S with an auxiliary system P. Considering two-level systems and assuming a particular interaction between them, we study how the dynamical parameters of the system P affect the purification of S. By using analytical and numerical tools, we show that the purification process exhibits a resonant behavior in both the cases of system isolated from the external environment or not.

  20. Interview with Dr Robin Rothrock: the RNA purification market. 26 July 2005.

    PubMed

    Alger, Lynsey

    2005-09-01

    Dr Robin Rothrock, Director of Market Research at Bioinformatics LLC, talked to Lynsey Alger about the RNA purification market. The process of RNA purification is one of growing importance, not only among basic researchers, but increasingly among those involved in clinical research, particularly as purified RNA represents the base material for a vast number of innovative and widely used techniques, such as real-time and reverse transcriptase polymerase chain reaction and DNA microarrays. This interview examines the current and future status of the RNA purification market, with a focus on the different types of purification approaches available to researchers as well as the key companies involved in their production.

  1. An effective purification method using large bottles for human pancreatic islet isolation.

    PubMed

    Shimoda, Masayuki; Itoh, Takeshi; Iwahashi, Shuichi; Takita, Morihito; Sugimoto, Koji; Kanak, Mazhar A; Chujo, Daisuke; Naziruddin, Bashoo; Levy, Marlon F; Grayburn, Paul A; Matsumoto, Shinichi

    2012-01-01

    The purification process is one of the most difficult procedures in pancreatic islet isolation. It was demonstrated that the standard purification method using a COBE 2991 cell processor with Ficoll density gradient solution harmed islets mechanically by high shear force. We reported that purification using large bottles with a lower viscosity gradient solution could improve the efficacy of porcine islet purification. In this study, we examined whether the new bottle purification method could improve the purification of human islets. Nine human pancreata from brain-dead donors were used. After pancreas digestion, the digested tissue was divided into three groups. Each group was purified by continuous density gradient using ET-Kyoto and iodixanol gradient solution with either the standard COBE method (COBE group) or the top loading (top group) or bottom loading (bottom group) bottle purification methods. Islet yield, purity, recovery rate after purification, and in vitro and in vivo viability were compared. Islet yield per pancreas weight (IE/g) and the recovery rate in the top group were significantly higher than in the COBE and bottom groups. Furthermore, the average size of purified islets in the top group was significantly larger than in the COBE group, which indicated that the bottle method could reduce the shear force to the islets. In vivo viability was also significantly higher in the top group compared with the COBE group. In conclusion, the top-loading bottle method could improve the quality and quantity of human islets after purification.

  2. Indoor Air Quality

    MedlinePlus

    ... can protect yourself and your family. Learn more Air Quality at Work Workers should breathe easy while on the job, but worksites with poor air quality put employees at risk. Healthy air is essential ...

  3. Air Sensor Toolbox

    EPA Pesticide Factsheets

    Air Sensor Toolbox provides information to citizen scientists, researchers and developers interested in learning more about new lower-cost compact air sensor technologies and tools for measuring air quality.

  4. HEPA air filter (image)

    MedlinePlus

    ... pet dander and other irritating allergens from the air. Along with other methods to reduce allergens, such ... controlling the amount of allergens circulating in the air. HEPA filters can be found in most air ...

  5. Needed: Clean Air.

    ERIC Educational Resources Information Center

    Schneider, Gerald

    1979-01-01

    Provides information on air pollution for young readers. Discusses damage to substances and sickness from air pollution, air quality, and what to do in a pollution alert. Includes questions with answers, illustrations, and activities for the learner. (MA)

  6. High efficiency air cycle air conditioning system

    SciTech Connect

    Rannenberg, G. C.

    1985-11-19

    An air cycle air conditioning system is provided with regenerative heat exchangers upstream and downstream of an expansion turbine. A closedloop liquid circulatory system serially connects the two regenerative heat exchangers for regeneration without the bulk associated with air-to-air heat exchange. The liquid circulatory system may also provide heat transport to a remote sink heat exchanger and from a remote load as well as heat exchange within the sink heat exchanger and load for enhanced compactness and efficiency.

  7. Water Purification by Using Microplasma Treatment

    NASA Astrophysics Data System (ADS)

    Shimizu, K.; Masamura, N.; Blajan, M.

    2013-06-01

    Dielectric barrier discharge microplasma generated at the surface of water is proposed as a solution for water treatment. It is an economical and an ecological technology for water treatment due to its generation at atmospheric pressure and low discharge voltage. Microplasma electrodes were placed at small distance above the water thus active species and radicals were flown by the gas towards the water surface and furthermore reacted with the target to be decomposed. Indigo carmine was chosen as the target to be decomposed by the effect of active species and radicals generated between the electrodes. Air, oxygen, nitrogen and argon were used as discharge gases. Measurement of absorbance showed the decomposition of indigo carmine by microplasma treatment. Active species and radicals of oxygen origin so called ROS (reactive oxidative species) were considered to be the main factor in indigo carmine decomposition. The decomposition rate increased with the increase of the treatment time as shown by the spectrophotometer analysis. Discharge voltage also influenced the decomposition process.

  8. Air Pollution Monitoring | Air Quality Planning & Standards ...

    EPA Pesticide Factsheets

    2016-06-08

    The basic mission of the Office of Air Quality Planning and Standards is to preserve and improve the quality of our nation's air. To accomplish this, OAQPS must be able to evaluate the status of the atmosphere as compared to clean air standards and historical information.

  9. Primary zone air proportioner

    DOEpatents

    Cleary, Edward N. G.

    1982-10-12

    An air proportioner is provided for a liquid hydrocarbon fueled gas turbine of the type which is convertible to oil gas fuel and to coal gas fuel. The turbine includes a shell for enclosing the turbine, an air duct for venting air in said shell to a gasifier, and a fuel injector for injecting gasified fuel into the turbine. The air proportioner comprises a second air duct for venting air from the air duct for mixing with fuel from the gasifier. The air can be directly injected into the gas combustion basket along with the fuel from the injector or premixed with fuel from the gasifier prior to injection by the fuel injector.

  10. Proceedings of the USAF/NATO Conference on Maintenance of Air Base Operations in a Chemical Warfare Environment Held in Williamsburg, Virginia on August - September 1987

    DTIC Science & Technology

    1987-09-01

    Protection Shelter is the only fielded system that provides collective protection against chemical and boilogical (CB) agents at the battalion and...by the U.S. Army in developing improved air filtration technology for protection against the effects of Nuclear, Biological and Chemical (NBC) agents...involves NBC protection against particulates, vapors, gases, aerosol liquids, and thickened liquids. CURRENT AIR PURIFICATION CAPABILITY The present

  11. Water treatment: Air stripping. December 1981-July 1989 (Citations from the Selected Water Resources Abstracts data base). Report for December 1981-July 1989

    SciTech Connect

    Not Available

    1989-10-01

    This bibliography contains citations concerning the application of air stripping techniques to water treatment, including ground-water decontamination and waste-water purification. The advantages and disadvantages of air stripping over other water-treatment processes are discussed. Cleanup of the organic emissions generated by air stripping is also considered. The primary applications of air stripping are in ground-water and soil cleanup. Other water treatment processes are discussed in separate bibliographies. (Contains 74 citations fully indexed and including a title list.)

  12. The Clean Air Game.

    ERIC Educational Resources Information Center

    Avalone-King, Deborah

    2000-01-01

    Introduces the Clean Air game which teaches about air quality and its vital importance for life. Introduces students to air pollutants, health of people and environment, and possible actions individuals can take to prevent air pollution. Includes directions for the game. (YDS)

  13. REACH. Air Conditioning Units.

    ERIC Educational Resources Information Center

    Garrison, Joe; And Others

    As a part of the REACH (Refrigeration, Electro-Mechanical, Air-Conditioning, Heating) electromechanical cluster, this student manual contains individualized instructional units in the area of air conditioning. The instructional units focus on air conditioning fundamentals, window air conditioning, system and installation, troubleshooting and…

  14. Healthy Air Outdoors

    MedlinePlus

    ... families and can even shorten their lives. Outdoor Air Pollution and Health Outdoor air pollution continues to threaten the lives and health of ... sources such as fires and dust contribute to air pollution. Learn more Fighting for Healthy Air The American ...

  15. Synthesis of medronic acid monoesters and their purification by high-performance countercurrent chromatography or by hydroxyapatite

    PubMed Central

    Vepsäläinen, Jouko; Turhanen, Petri A

    2016-01-01

    Summary We achieved the synthesis of important medronic acid monoalkyl esters via the dealkylation of mixed trimethyl monoalkyl esters of medronic acid. Two methods were developed for the purification of medronic acid monoesters: 1) small scale (10–20 mg) purification by using hydroxyapatite and 2) large scale (tested up to 140 mg) purification by high-performance countercurrent chromatography (HPCCC). PMID:27829921

  16. 24 CFR 203.52 - Acceptance of individual residential water purification equipment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... residential water purification equipment. 203.52 Section 203.52 Housing and Urban Development Regulations... water purification equipment. If a property otherwise eligible for insurance under this part does not have access to a continuing supply of safe and potable water without the use of a water...

  17. Purification, crystallization and preliminary X-ray analysis of struthiocalcin 1 from ostrich (Struthio camelus) eggshell

    SciTech Connect

    Reyes-Grajeda, Juan Pablo; Marín-García, Liliana; Stojanoff, Vivian; Moreno, Abel

    2007-11-01

    The purification, crystallization and preliminary X-ray diffraction data of the protein struthiocalcin 1 isolated from ostrich eggshell are reported. The purification, crystallization and preliminary X-ray analysis of struthiocalcin 1 (SCA-1), a protein obtained from the intramineral part of ostrich (Struthio camelus) eggshell, is reported.

  18. 24 CFR 203.52 - Acceptance of individual residential water purification equipment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... residential water purification equipment. 203.52 Section 203.52 Housing and Urban Development Regulations... water purification equipment. If a property otherwise eligible for insurance under this part does not have access to a continuing supply of safe and potable water without the use of a water...

  19. 24 CFR 203.52 - Acceptance of individual residential water purification equipment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... residential water purification equipment. 203.52 Section 203.52 Housing and Urban Development Regulations... water purification equipment. If a property otherwise eligible for insurance under this part does not have access to a continuing supply of safe and potable water without the use of a water...

  20. 24 CFR 203.52 - Acceptance of individual residential water purification equipment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... residential water purification equipment. 203.52 Section 203.52 Housing and Urban Development Regulations... water purification equipment. If a property otherwise eligible for insurance under this part does not have access to a continuing supply of safe and potable water without the use of a water...

  1. Item Purification in Differential Item Functioning Using Generalized Linear Mixed Models

    ERIC Educational Resources Information Center

    Liu, Qian

    2011-01-01

    For this dissertation, four item purification procedures were implemented onto the generalized linear mixed model for differential item functioning (DIF) analysis, and the performance of these item purification procedures was investigated through a series of simulations. Among the four procedures, forward and generalized linear mixed model (GLMM)…

  2. Improvement of the Quality of Water Purification from Hydrocarbons Using the Fibers from Recycled Thermoplastics

    NASA Astrophysics Data System (ADS)

    Galtseva, O. V.; Bordunov, S. V.; Natalinova, N. M.; Mazikov, S. V.

    2016-06-01

    Adsorption properties of the polymer fibers are studied. It is shown that polypropylene fiber can be successfully applied for oil spill response for filtration purification of water from hydrocarbons. Polypropylene fibers from waste polymers have higher characteristics of adsorption capacity and degree of purification of water than commercially available fiber sipron.

  3. Using an FPLC to Promote Active Learning of the Principles of Protein Structure and Purification

    ERIC Educational Resources Information Center

    Robinson, Rebekah L.; Neely, Amy E.; Mojadedi, Wais; Threatt, Katie N.; Davis, Nicole Y.; Weiland, Mitch H.

    2017-01-01

    The concepts of protein purification are often taught in undergraduate biology and biochemistry lectures and reinforced during laboratory exercises; however, very few reported activities allow students to directly gain experience using modern protein purification instruments, such as Fast Protein Liquid Chromatography (FPLC). This laboratory…

  4. Purification of a Recombinant Glutathione Transferase from the Causative Agent of Hydatidosis, "Echinococcus granulosus"

    ERIC Educational Resources Information Center

    Fleitas, Andrea L.; Randall, Lía M.; Möller, Matías N.; Denicola, Ana

    2016-01-01

    This practical class activity was designed to introduce students to recombinant protein expression and purification. The principal goal is to shed light on basic aspects concerning recombinant protein production, in particular protein expression, chromatography methods for protein purification, and enzyme activity as a tool to evaluate purity and…

  5. A Versatile and Inexpensive Enzyme Purification Experiment for Undergraduate Biochemistry Labs.

    ERIC Educational Resources Information Center

    Farrell, Shawn O.; Choo, Darryl

    1989-01-01

    Develops an experiment that could be done in two- to three-hour blocks and does not rely on cold room procedures for most of the purification. Describes the materials, methods, and results of the purification of bovine heart lactate dehydrogenase using ammonium sulfate fractionation, dialysis, and separation using affinity chromatography and…

  6. Item Purification Does Not Always Improve DIF Detection: A Counterexample with Angoff's Delta Plot

    ERIC Educational Resources Information Center

    Magis, David; Facon, Bruno

    2013-01-01

    Item purification is an iterative process that is often advocated as improving the identification of items affected by differential item functioning (DIF). With test-score-based DIF detection methods, item purification iteratively removes the items currently flagged as DIF from the test scores to get purified sets of items, unaffected by DIF. The…

  7. The MIMIC Method with Scale Purification for Detecting Differential Item Functioning

    ERIC Educational Resources Information Center

    Wang, Wen-Chung; Shih, Ching-Lin; Yang, Chih-Chien

    2009-01-01

    This study implements a scale purification procedure onto the standard MIMIC method for differential item functioning (DIF) detection and assesses its performance through a series of simulations. It is found that the MIMIC method with scale purification (denoted as M-SP) outperforms the standard MIMIC method (denoted as M-ST) in controlling…

  8. Iterative Purification and Effect Size Use with Logistic Regression for Differential Item Functioning Detection

    ERIC Educational Resources Information Center

    French, Brian F.; Maller, Susan J.

    2007-01-01

    Two unresolved implementation issues with logistic regression (LR) for differential item functioning (DIF) detection include ability purification and effect size use. Purification is suggested to control inaccuracies in DIF detection as a result of DIF items in the ability estimate. Additionally, effect size use may be beneficial in controlling…

  9. The Protein Maker: an automated system for high-throughput parallel purification

    PubMed Central

    Smith, Eric R.; Begley, Darren W.; Anderson, Vanessa; Raymond, Amy C.; Haffner, Taryn E.; Robinson, John I.; Edwards, Thomas E.; Duncan, Natalie; Gerdts, Cory J.; Mixon, Mark B.; Nollert, Peter; Staker, Bart L.; Stewart, Lance J.

    2011-01-01

    The Protein Maker is an automated purification system developed by Emerald BioSystems for high-throughput parallel purification of proteins and antibodies. This instrument allows multiple load, wash and elution buffers to be used in parallel along independent lines for up to 24 individual samples. To demonstrate its utility, its use in the purification of five recombinant PB2 C-terminal domains from various subtypes of the influenza A virus is described. Three of these constructs crystallized and one diffracted X-rays to sufficient resolution for structure determination and deposition in the Protein Data Bank. Methods for screening lysis buffers for a cytochrome P450 from a pathogenic fungus prior to upscaling expression and purification are also described. The Protein Maker has become a valuable asset within the Seattle Structural Genomics Center for Infectious Disease (SSGCID) and hence is a potentially valuable tool for a variety of high-throughput protein-purification applications. PMID:21904043

  10. Experimental Optimal Single Qubit Purification in an NMR Quantum Information Processor

    PubMed Central

    Hou, Shi-Yao; Sheng, Yu-Bo; Feng, Guan-Ru; Long, Gui-Lu

    2014-01-01

    High quality single qubits are the building blocks in quantum information processing. But they are vulnerable to environmental noise. To overcome noise, purification techniques, which generate qubits with higher purities from qubits with lower purities, have been proposed. Purifications have attracted much interest and been widely studied. However, the full experimental demonstration of an optimal single qubit purification protocol proposed by Cirac, Ekert and Macchiavello [Phys. Rev. Lett. 82, 4344 (1999), the CEM protocol] more than one and half decades ago, still remains an experimental challenge, as it requires more complicated networks and a higher level of precision controls. In this work, we design an experiment scheme that realizes the CEM protocol with explicit symmetrization of the wave functions. The purification scheme was successfully implemented in a nuclear magnetic resonance quantum information processor. The experiment fully demonstrated the purification protocol, and showed that it is an effective way of protecting qubits against errors and decoherence. PMID:25358758

  11. Magnetic purification of curcumin from Curcuma longa rhizome by novel naked maghemite nanoparticles.

    PubMed

    Magro, Massimiliano; Campos, Rene; Baratella, Davide; Ferreira, Maria Izabela; Bonaiuto, Emanuela; Corraducci, Vittorino; Uliana, Maíra Rodrigues; Lima, Giuseppina Pace Pereira; Santagata, Silvia; Sambo, Paolo; Vianello, Fabio

    2015-01-28

    Naked maghemite nanoparticles, namely, surface active maghemite nanoparticles (SAMNs), characterized by a diameter of about 10 nm, possessing peculiar colloidal stability, surface chemistry, and superparamagnetism, present fundamental requisites for the development of effective magnetic purification processes for biomolecules in complex matrices. Polyphenolic molecules presenting functionalities with different proclivities toward iron chelation were studied as probes for testing SAMN suitability for magnetic purification. Thus, the binding efficiency and reversibility on SAMNs of phenolic compounds of interest in the pharmaceutical and food industries, namely, catechin, tyrosine, hydroxytyrosine, ferulic acid, coumaric acid, rosmarinic acid, naringenin, curcumin, and cyanidin-3-glucoside, were evaluated. Curcumin emerged as an elective compound, suitable for magnetic purification by SAMNs from complex matrices. A combination of curcumin, demethoxycurcumin, and bis-demethoxycurcumin was recovered by a single magnetic purification step from extracts of Curcuma longa rhizomes, with a purity >98% and a purification yield of 45%, curcumin being >80% of the total purified curcuminoids.

  12. The purification and properties of ferritin from human serum.

    PubMed Central

    Worwood, M; Dawkins, S; Wagstaff, M; Jacobs, A

    1976-01-01

    1. Ferritin has been isolated from the serum of four patients with iron overload by using two methods. 2. In method A, the serum was adjusted to pH 4.8 and heated to 70 degrees C. After removal of denatured protein, ferritin was concentrated and further purified by ion-exchange chromatography and gel filtration. In most cases, only a partial purification was achieved. 3. In method B, ferritin was extracted from the serum with a column of immuno-adsorbent [anti-(human ferritin)] and released from the column with 3M-KSCN. Further purification was achieved by anion-exchange chromatography followed by the removal of remaining contaminating serum proteins by means of a second immunoadsorbent. Purifications of up to 31 000-fold were achieved, and the homogeneity of the final preparations was demonstrated by polyacrylamide-gel electrophoresis. 4. Serum ferritin purified by either method has the same elution volume as human spleen ferritin on gel filtration on Sephadex G-200. Serum ferritin has a relatively low iron content and iron/protein ratios of 0.023 and 0.067 (mug of Fe/mug of protein) were found in two pure preparations. On anion-exchange chromatography serum ferritin has a low affinity for the column when compared with various tissue ferritins. Isoelectric focusing has demonstrated the presence of a high proportion of isoferritins of relatively high pI. 5. Possible mechanisms for the release of ferritin into the circulation are briefly discussed. Images PLATE 2 PLATE 1 PMID:962866

  13. Fermentation, fractionation and purification of streptokinase by chemical reduction method

    PubMed Central

    Karimi, Z; Babashamsi, M; Asgarani, E; Niakan, M; Salimi, A

    2011-01-01

    Background and Objectives Streptokinase is used clinically as an intravenous thrombolytic agent for the treatment of acute myocardial infarction and is commonly prepared from cultures of Streptococcus equisimilis strain H46A. The objective of the present study was the production of streptokinase from strain H46A and purification by chemical reduction method. Materials and Methods The rate of streptokinase production evaluated under the effect of changes on some fermentation factors. Moreover, due to the specific structure of streptokinase, a chemical reduction method employed for the purification of streptokinase from the fermentation broth. The H46A strain of group C streptococcus, was grown in a fermentor. The proper pH adjusted with NaOH under glucose feeding in an optimum temperature. The supernatant of the fermentation product was sterilized by filtration and concentrated by ultrafiltration. The pH of the concentrate was adjusted, cooled, and precipitated by methanol. Protein solution was reduced with dithiothreitol (DTT). Impurities settled down by aldrithiol-2 and the biological activity of supernatant containing streptokinase was determined. Results In the fed –batch culture, the rate of streptokinase production increased over two times as compared with the batch culture and the impurities were effectively separated from streptokinase by reduction method. Conclusion Improvements in SK production are due to a decrease in lag phase period and increase in the growth rate of logarithmic phase. The methods of purification often result in unacceptable losses of streptokinase, but the chemical reduction method give high yield of streptokinase and is easy to perform it. PMID:22347582

  14. Tall fescue seed extraction and partial purification of ergot alkaloids

    NASA Astrophysics Data System (ADS)

    Bush, Lowell

    2014-12-01

    Many substances in the tall fescue/endophyte association (Schedonorus arundinaceus/Epichloë coenophiala) have biological activity. Of these compounds only the ergot alkaloids are known to have significant mammalian toxicity and the predominant ergot alkaloids are ergovaline and ergovalinine. Because synthetically produced ergovaline is difficult to obtain, we developed a seed extraction and partial purification protocol for ergovaline/ergovalinine that provided a biologically active product. Tall fescue seed was ground and packed into several different sized columns for liquid extraction. Smaller particle size and increased extraction time increased efficiency of extraction. Our largest column was a 114 × 52 × 61 cm (W×L×D) stainless steel tub. Approximately 150 kg of seed could be extracted in this tub. The extraction was done with 80% ethanol. When the solvent front migrated to bottom of the column, flow was stopped and seed was allowed to steep for at least 48 h. Light was excluded from the solvent from the beginning of this step to the end of the purification process. Following elution, ethanol was removed from the eluate by evaporation at room temperature. Resulting syrup was freeze-dried. About 80% recovery of alkaloids was achieved with 18-fold increase in concentration of ergovaline. Initial purification of the dried product was accomplished by extracting with hexane/water (6:1, v/v) and the hexane fraction was discarded. The aqueous fraction was extracted with chloroform, the aqueous layer discarded, after which the chloroform was removed with a resulting 20-fold increase of ergovaline. About 65% of the ergovaline was recovered from the chloroform residue for an overall recovery of 50%. The resultant partially purified ergovaline had biological activities in in vivo and in vitro bovine bioassays that approximate that of synthetic ergovaline.

  15. Development of an Immunoaffinity Method for Purification of Streptokinase

    PubMed Central

    Karimi, Zohreh; Babashamsi, Mohammad; Asgarani, Ezat; Salimi, Ali

    2012-01-01

    Background Streptokinase is a potent activator of plasminogen to plasmin, the enzyme that can solubilize the fibrin network in blood clots. Streptokinase is currently used in clinical medicine as a thrombolytic agent. It is naturally secreted by β-hemolytic streptococci. Methods To reach an efficient method of purification, an immunoaffinity chromatography method was developed that could purify the streptokinase in a single step with high yield. At the first stage, a CNBr-Activated sepharose 4B-Lysine column was made to purify the human blood plasminogen. The purified plasminogen was utilized to construct a column that could purify the streptokinase. The rabbit was immunized with the purified streptokinase and the anti-streptokinase (IgG) purified on another streptokinase substituted sepharose-4B column. The immunoaffinity column was developed by coupling the purified anti-Streptokinase (IgG) to sepharose 6MB–Protein A. The Escherichia coli (E.coli) BL21 (DE3) pLysS strain was transformed by the recombinant construct (cloned streptokinase gene in pGEX-4T-2 vector) and gene expression was induced by IPTG. The expressed protein was purified by immunoaffinity chromatography in a single step. Results The immunoaffinity column could purify the recombinant fusion GST-SK to homogeneity. The purity of streptokinase was confirmed by SDS-PAGE as a single band of about 71 kD and its biological activity determined in a specific streptokinase assay. The yield of the purification was about 94%. Conclusion This method of streptokinase purification is superior to the previous conventional methods. PMID:23408770

  16. Novel Hydrogen Purification Device Integrated with PEM Fuel Cells

    SciTech Connect

    Joseph Schwartz; Hankwon Lim; Raymond Drnevich

    2010-12-31

    A prototype device containing twelve membrane tubes was designed, built, and demonstrated. The device produced almost 300 scfh of purified hydrogen at 200 psig feed pressure. The extent of purification met the program target of selectively removing enough impurities to enable industrial-grade hydrogen to meet purity specifications for PEM fuel cells. An extrusion process was developed to produce substrate tubes. Membranes met several test objectives, including completing 20 thermal cycles, exceeding 250 hours of operating life, and demonstrating a flux of 965 scfh/ft2 at 200 psid and 400 C.

  17. Purification of radiolabeled RNA products using denaturing gel electrophoresis

    PubMed Central

    Adachi, Hironori; Yu, Yi-Tao

    2014-01-01

    This unit discusses a basic method for purification of radiolabeled RNAs using denaturing polyacrylamide gel electrophoresis. The method consists of a number of experimental procedures, including total RNA preparation from yeast cells, isolation of a specific RNA from total yeast RNA, RNA 3' terminal labeling using nucleotide (5’[32P]pCp) addition (via ligation), denaturing (8 M urea) polyacrylamide gel electrophoresis, and RNA extraction from the gel slice. Key points for achieving good electrophoretic separation of RNA are also discussed. PMID:24510465

  18. The potential of nanofibers and nanobiocides in water purification.

    PubMed

    Botes, Marelize; Cloete, Thomas Eugene

    2010-01-01

    Electrospun nanofibers and nanobiocides show potential in the improvement of water filtration membranes. Biofouling of membranes caused by the bacterial load in water reduces the quality of drinking water and has become a major problem. Several studies showed inhibition of these bacteria after exposure to nanofibers with functionalized surfaces. Nanobiocides such as metal nanoparticles and engineered nanomaterials are successfully incorporated into nanofibers showing high antimicrobial activity and stability in water. Research on the applications of nanofibers and nanobiocides in water purification, the fabrication thereof and recently published patents are reviewed in this article.

  19. Bacterial expression of human kynurenine 3-monooxygenase: solubility, activity, purification.

    PubMed

    Wilson, K; Mole, D J; Binnie, M; Homer, N Z M; Zheng, X; Yard, B A; Iredale, J P; Auer, M; Webster, S P

    2014-03-01

    Kynurenine 3-monooxygenase (KMO) is an enzyme central to the kynurenine pathway of tryptophan metabolism. KMO has been implicated as a therapeutic target in several disease states, including Huntington's disease. Recombinant human KMO protein production is challenging due to the presence of transmembrane domains, which localise KMO to the outer mitochondrial membrane and render KMO insoluble in many in vitro expression systems. Efficient bacterial expression of human KMO would accelerate drug development of KMO inhibitors but until now this has not been achieved. Here we report the first successful bacterial (Escherichia coli) expression of active FLAG™-tagged human KMO enzyme expressed in the soluble fraction and progress towards its purification.

  20. Semiconductor Grade, Solar Silicon Purification Project. [photovoltaic solar energy conversion

    NASA Technical Reports Server (NTRS)

    Ingle, W. M.; Rosler, R. S.; Thompson, S. W.; Chaney, R. E.

    1979-01-01

    A low cost by-product, SiF4, is reacted with mg silicon to form SiF2 gas which is polymerized. The (SiF2)x polymer is heated forming volatile SixFy homologues which disproportionate on a silicon particle bed forming silicon and SiF4. The silicon analysis procedure relied heavily on mass spectroscopic and emission spectroscopic analysis. These analyses demonstrated that major purification had occured and some samples were indistinguishable from semiconductor grade silicon (except possibly for phosphorus). However, electrical analysis via crystal growth reveal that the product contains compensated phosphorus and boron.

  1. Purification of Virus-Like Particles (VLPs) from Plants.

    PubMed

    van Zyl, Albertha R; Hitzeroth, Inga I

    2016-01-01

    Viral coat proteins expressed in plants often form virus-like particles (VLPs) which are good vaccine candidates as they are safe and highly immunogenic and can be easily purified. The VLPs can be purified by rate-zonal density centrifugation which is based on the size of the VLP or they can be purified by isopycnic centrifugation which is a fast and simple method and results in isolation of VLPs with the same density. Details on how to apply both rate-zonal and isopycnic centrifugation for VLP purification from plants are provided in this chapter.

  2. Purification of xanthine dehydrogenase and sulfite oxidase from chicken liver.

    PubMed

    Ratnam, K; Brody, M S; Hille, R

    1996-05-01

    Xanthine dehydrogenase and sulfite oxidase from chicken liver are oxomolybdenum enzymes which catalyze the oxidation of xanthine to uric acid and sulfite to sulfate, respectively. Independent purification protocols have been previously described for both enzymes. Here we describe a procedure by which xanthine dehydrogenase and sulfite oxidase are purified simultaneously from the same batch of fresh chicken liver. Also, unlike the protocols described earlier, this procedure avoids the use of acetone extraction as well as a heat step, thus minimizing damage to the molybdenum centers of the enzymes.

  3. Exploiting interfacial water properties for desalination and purification applications.

    SciTech Connect

    Xu, Hongwu; Varma, Sameer; Nyman, May Devan; Alam, Todd Michael; Thuermer, Konrad; Holland, Gregory P.; Leung, Kevin; Liu, Nanguo; Xomeritakis, George K.; Frankamp, Benjamin L.; Siepmann, J. Ilja; Cygan, Randall Timothy; Hartl, Monika A.; Travesset, Alex; Anderson, Joshua A.; Huber, Dale L.; Kissel, David J.; Bunker, Bruce Conrad; Lorenz, Christian Douglas; Major, Ryan C.; McGrath, Matthew J.; Farrow, Darcie; Cecchi, Joseph L.; van Swol, Frank B.; Singh, Seema; Rempe, Susan B.; Brinker, C. Jeffrey; Clawson, Jacalyn S.; Feibelman, Peter Julian; Houston, Jack E.; Crozier, Paul Stewart; Criscenti, Louise Jacqueline; Chen, Zhu; Zhu, Xiaoyang; Dunphy, Darren Robert; Orendorff, Christopher J.; Pless, Jason D.; Daemen, Luke L.; Gerung, Henry; Ockwig, Nathan W.; Nenoff, Tina Maria; Jiang, Ying-Bing; Stevens, Mark Jackson

    2008-09-01

    A molecular-scale interpretation of interfacial processes is often downplayed in the analysis of traditional water treatment methods. However, such an approach is critical for the development of enhanced performance in traditional desalination and water treatments. Water confined between surfaces, within channels, or in pores is ubiquitous in technology and nature. Its physical and chemical properties in such environments are unpredictably different from bulk water. As a result, advances in water desalination and purification methods may be accomplished through an improved analysis of water behavior in these challenging environments using state-of-the-art microscopy, spectroscopy, experimental, and computational methods.

  4. Purification of LPS Binding Substances in Inflammatory Serum

    DTIC Science & Technology

    1990-07-31

    I believe we have made considerable progress. NA. Purification of LPS binding substances in inflammatory serum ’ We radiolabeled E . Coli 018, E . Coli ...0113, E . Coli 0111:B4 and, S. typhimurium by growing the organisms in tritated broth and extracting the 3H-LPS by the hot phenol method as described...HPLC system which will speed up the work. B. Binding of 3H-LPS to substances in polyclonal serum to E . Coli J5 Although not written into the initial

  5. Purification of aqueous plutonium chloride solutions via precipitation and washing.

    SciTech Connect

    Stroud, M. A.; Salazar, R. R.; Abney, Kent David; Bluhm, E. A.; Danis, J. A.

    2003-01-01

    Pyrochemical operations at Los Alamos Plutonium Facility (TA-55) use high temperature melt s of calcium chloride for the reduction of plutonium oxide to plutonium metal and hi gh temperature combined melts of sodium chloride and potassium chloride mixtures for the electrorefining purification of plutonium metal . The remaining plutonium and americium are recovered from thes e salts by dissolution in concentrated hydrochloric acid followed by either solvent extraction or io n exchange for isolation and ultimately converted to oxide after precipitation with oxalic acid . Figur e 1 illustrates the current aqueous chloride flow sheet used for plutonium processing at TA-55 .

  6. Isolation and purification of proteasomes from primary cells.

    PubMed

    Steers, Nicholas J; Peachman, Kristina K; Alving, Carl R; Rao, Mangala

    2014-11-03

    Proteasomes play an important role in cell homeostasis and in orchestrating the immune response by systematically degrading foreign proteins and misfolded or damaged host cell proteins. We describe a protocol to purify functionally active proteasomes from human CD4(+) T cells and dendritic cells derived from peripheral blood mononuclear cells. The purification is a three-step process involving ion-exchange chromatography, ammonium sulfate precipitation, and sucrose density gradient ultracentrifugation. This method can be easily adapted to purify proteasomes from cell lines or from organs. Methods to characterize and visualize the purified proteasomes are also described.

  7. Purification of N-Acetylgalactosaminidase by Isoelectric Focusing.

    DTIC Science & Technology

    1980-09-20

    red cells. 6 Gel Filtration Placental homogenate was also subjected to gel filtration on a 0.9 x 60 cm column of Sephacryl S 300 (Fig. 5) Fig. 5. Gel ...RESEARCH Contract N-00014-78-C-0767 A ( Gel Task No. NR 207-143 "l- Annual Report No. 2-/ September 20, 1980 PURIFICATION OF N-ACETYLGALACTOSAMINIDASE...focused in a 5.4. T polyacrylamide gel which had been cross linked with 3% N, N’ - methylene-bis- acrylamide. PEHA E, an ampholyte synthesized in our

  8. Isokinetic air sampler

    DOEpatents

    Sehmel, George A.

    1979-01-01

    An isokinetic air sampler includes a filter, a holder for the filter, an air pump for drawing air through the filter at a fixed, predetermined rate, an inlet assembly for the sampler having an inlet opening therein of a size such that isokinetic air sampling is obtained at a particular wind speed, a closure for the inlet opening and means for simultaneously opening the closure and turning on the air pump when the wind speed is such that isokinetic air sampling is obtained. A system incorporating a plurality of such samplers provided with air pumps set to draw air through the filter at the same fixed, predetermined rate and having different inlet opening sizes for use at different wind speeds is included within the ambit of the present invention as is a method of sampling air to measure airborne concentrations of particulate pollutants as a function of wind speed.

  9. Purification of an Inducible DNase from a Thermophilic Fungus

    PubMed Central

    Landry, Kyle S.; Vu, Andrea; Levin, Robert E.

    2014-01-01

    The ability to induce an extracellular DNase from a novel thermophilic fungus was studied and the DNAse purified using both traditional and innovative purification techniques. The isolate produced sterile hyphae under all attempted growing conditions, with an average diameter of 2 μm and was found to have an optimal temperature of 45 °C and a maximum of 65 °C. Sequencing of the internal transcribed region resulted in a 91% match with Chaetomium sp., suggesting a new species, but further clarification on this point is needed. The optimal temperature for DNase production was found to be 55 °C and was induced by the presence of DNA and/or deoxyribose. Static growth of the organism resulted in significantly higher DNase production than agitated growth. The DNase was purified 145-fold using a novel affinity membrane purification system with 25% of the initial enzyme activity remaining. Electrophoresis of the purified enzyme resulted in a single protein band, indicating DNase homogeneity. PMID:24447923

  10. Purification of a membrane protein with conjugated engineered micelles.

    PubMed

    Patchornik, Guy; Danino, Dganit; Kesselman, Ellina; Wachtel, Ellen; Friedman, Noga; Sheves, Mordechai

    2013-07-17

    A novel method for purifying membrane proteins is presented. The approach makes use of engineered micelles composed of a nonionic detergent, β-octylglucoside, and a hydrophobic metal chelator, bathophenanthroline. Via the chelators, the micelles are specifically conjugated, i.e., tethered, in the presence of Fe(2+) ions, thereby forming micellar aggregates which provide the environment for separation of lipid-soluble membrane proteins from water-soluble proteins. The micellar aggregates (here imaged by cryo-transmission electron microscopy) successfully purify the light driven proton pump, bacteriorhodopsin (bR), from E. coli lysate. Purification takes place within 15 min and can be performed both at room temperature and at 4 °C. More than 94% of the water-soluble macromolecules in the lysate are excluded, with recovery yields of the membrane protein ranging between 74% and 85%. Since this approach does not require precipitants, high concentrations of detergent to induce micellar aggregates, high temperature, or changes in pH, it is suggested that it may be applied to the purification of a wide variety of membrane proteins.

  11. Heterologous expression and purification of membrane-bound pyrophosphatases.

    PubMed

    Kellosalo, J; Kajander, T; Palmgren, M G; Lopéz-Marqués, R L; Goldman, A

    2011-09-01

    Membrane-bound pyrophosphatases (M-PPases) are enzymes that couple the hydrolysis of inorganic pyrophosphate to pumping of protons or sodium ions. In plants and bacteria they are important for relieving stress caused by low energy levels during anoxia, drought, nutrient deficiency, cold and low light intensity. While they are completely absent in mammalians, they are key players in the survival of disease-causing protozoans making these proteins attractive pharmacological targets. In this work, we aimed at the purification of M-PPases in amounts suitable for crystallization as a first step to obtain structural information for drug design. We have tested the expression of eight integral membrane pyrophosphatases in Saccharomyces cerevisiae, six from bacterial and archaeal sources and two from protozoa. Two proteins originating from hyperthermophilic organisms were purified in dimeric and monodisperse active states. To generate M-PPases with an increased hydrophilic surface area, which potentially should facilitate formation of crystal contacts, phage T4 lysozyme was inserted into different extramembraneous loops of one of these M-PPases. Two of these fusion proteins were active and expressed at levels that would allow their purification for crystallization purposes.

  12. Expression and purification of integral membrane metallopeptidase HtpX.

    PubMed

    Arolas, Joan L; García-Castellanos, Raquel; Goulas, Theodoros; Akiyama, Yoshinori; Gomis-Rüth, F Xavier

    2014-07-01

    Little is known about the catalytic mechanism of integral membrane (IM) peptidases. HtpX is an IM metallopeptidase that plays a central role in protein quality control by preventing the accumulation of misfolded proteins in the membrane. Here we report the recombinant overexpression and purification of a catalytically ablated form of HtpX from Escherichia coli. Several E. coli strains, expression vectors, detergents, and purification strategies were tested to achieve maximum yields of pure and well-folded protein. HtpX was successfully overexpressed in E. coli BL21(DE3) cells using a pET-derived vector attaching a C-terminal His8-tag, extracted from the membranes using octyl-β-d-glucoside, and purified to homogeneity in the presence of this detergent in three consecutive steps: cobalt-affinity, anion-exchange, and size-exclusion chromatography. The production of HtpX in milligram amounts paves the way for structural studies, which will be essential to understand the catalytic mechanism of this IM peptidase and related family members.

  13. Purification of human monoclonal antibodies and their fragments.

    PubMed

    Müller-Späth, Thomas; Morbidelli, Massimo

    2014-01-01

    This chapter summarizes the most common chromatographic mAb and mAb fragment purification methods, starting by elucidating the relevant properties of the compounds and introducing the various chromatography modes that are available and useful for this application. A focus is put on the capture step affinity and ion exchange chromatography. Aspects of scalability play an important role in judging the suitability of the methods. The chapter introduces also analytical chromatographic methods that can be utilized for quantification and purity control of the product. In the case of mAbs, for most purposes the purity obtained using an affinity capture step is sufficient. Polishing steps are required if material of particularly high purity needs to be generated. For mAb fragments, affinity chromatography is not yet fully established, and the capture step potentially may not provide material of high purity. Therefore, the available polishing techniques are touched upon briefly. In the case of mAb isoform and bispecific antibody purification, countercurrent chromatography techniques have been proven to be very useful and a part of this chapter has been dedicated to them, paying tribute to the rising interest in these antibody formats in research and industry.

  14. Expression and affinity purification of recombinant proteins from plants

    NASA Technical Reports Server (NTRS)

    Desai, Urvee A.; Sur, Gargi; Daunert, Sylvia; Babbitt, Ruth; Li, Qingshun

    2002-01-01

    With recent advances in plant biotechnology, transgenic plants have been targeted as an inexpensive means for the mass production of proteins for biopharmaceutical and industrial uses. However, the current plant purification techniques lack a generally applicable, economic, large-scale strategy. In this study, we demonstrate the purification of a model protein, beta-glucuronidase (GUS), by employing the protein calmodulin (CaM) as an affinity tag. In the proposed system, CaM is fused to GUS. In the presence of calcium, the calmodulin fusion protein binds specifically to a phenothiazine-modified surface of an affinity column. When calcium is removed with a complexing agent, e.g., EDTA, calmodulin undergoes a conformational change allowing the dissociation of the calmodulin-phenothiazine complex and, therefore, permitting the elution of the GUS-CaM fusion protein. The advantages of this approach are the fast, efficient, and economical isolation of the target protein under mild elution conditions, thus preserving the activity of the target protein. Two types of transformation methods were used in this study, namely, the Agrobacterium-mediated system and the viral-vector-mediated transformation system. Copyright 2002 Elsevier Science (USA).

  15. Purification of metal electroplating waste waters using zeolites.

    PubMed

    Alvarez-Ayuso, E; García-Sánchez, A; Querol, X

    2003-12-01

    The sorption behaviour of natural (clinoptilolite) and synthetic (NaP1) zeolites has been studied with respect to Cr(III), Ni(II), Zn(II), Cu(II) and Cd(II) in order to consider its application to purify metal finishing waste waters. The batch method has been employed using metal concentrations in solution ranged from 10 to 200 mg/l and solid/liquid ratios ranged from 2.5 to 10 g/l. The Langmuir model was found to describe well all sorption processes, allowing to establish metal sorption sequences from which the main retention mechanism involved for each metal has been inferred. Synthetic zeolite exhibited about 10 times greater sorption capacities (b(Cr)=0.838 mmol/g, b(Ni)=0.342 mmol/g, b(Zn)=0.499 mmol/g, b(Cu)=0.795 mmol/g, b(Cd)=0.452 mmol/g) than natural zeolite (b(Cr)=0.079 mmol/g, b(Ni)=0.034 mmol/g, b(Zn)=0.053 mmol/g, b(Cu)=0.093 mmol/g, b(Cd)=0.041 mmol/g), appearing, therefore, as most suitable to perform metal waste water purification processes. This mineral showed the same high sorption capacity values when used in the purification of metal electroplating waste waters.

  16. Kinetic approach for the purification of nucleotides with magnetic separation.

    PubMed

    Tural, Servet; Tural, Bilsen; Ece, Mehmet Şakir; Yetkin, Evren; Özkan, Necati

    2014-11-01

    The isolation of β-nicotinamide adenine dinucleotide is of great importance since it is widely used in different scientific and technologic fields such as biofuel cells, sensor technology, and hydrogen production. In order to isolate β-nicotinamide adenine dinucleotide, first 3-aminophenyboronic acid functionalized magnetic nanoparticles were prepared to serve as a magnetic solid support and subsequently they were used for reversible adsorption/desorption of β-nicotinamide adenine dinucleotide in a batch fashion. The loading capacity of the 3-aminophenyboronic acid functionalized nanoparticles for β-nicotinamide adenine dinucleotide adsorption was 13.0 μmol/g. Adsorption kinetic and isotherm studies showed that the adsorption process followed a pseudo-second-order kinetic model and the experimental data can be represented using Langmuir isotherm model. The 3-aminophenyboronic acid functionalized magnetic nanoparticles were proposed as an alternative support for the β-nicotinamide adenine dinucleotide purification. The results elucidated the significance of magnetic separation as a fast, relatively simple, and low-cost technique. Furthermore, the magnetic supports can be reused at least five times for purification processes.

  17. The purification mechanism of wastewater by underwater discharge

    NASA Astrophysics Data System (ADS)

    Kim, Kangil; Ma, Suk Hwal; Huh, Jin Young; Hong, Yong Cheol; National Fusion Research Institute Team; Chonbuk National University Team; Kwangwoon University Team; NPAC Team

    2016-09-01

    There is a continuing need for development of effective, cheap and environmentally friendly processes for purification of wastewater. In this regard, the plasmas can be a promising candidate for next-generation method to purify the wastewater. It is well known that the plasmas generate many reactive species and thus they are predominant for degradation of organic pollutants from water. In order to generate plasma in wastewater, the capillary electrodes are used with ac power supply. After plasma treatment, the coagulants are added to purify the wastewater. The efficiency of coagulation is significantly improved by plasma treatment of wastewater. These results may come from the reactions among radicals of plasma-treated water, electron reduction and oxidation of ions in waste water, and coagulant. In order to verify the hypothesis, we measured characteristics changes of water by underwater discharge. In this study, we propose the purification mechanism of wastewater by underwater discharge. We expect that the underwater discharge can be applied to purify wastewater in near future.

  18. Expression, purification and crystallization of a lyssavirus matrix (M) protein

    SciTech Connect

    Assenberg, René; Delmas, Olivier; Graham, Stephen C.; Verma, Anil; Berrow, Nick; Stuart, David I.; Owens, Raymond J.; Bourhy, Hervé; Grimes, Jonathan M.

    2008-04-01

    The expression, purification and crystallization of the full-length matrix protein from three lyssaviruses is described. The matrix (M) proteins of lyssaviruses (family Rhabdoviridae) are crucial to viral morphogenesis as well as in modulating replication and transcription of the viral genome. To date, no high-resolution structural information has been obtained for full-length rhabdovirus M. Here, the cloning, expression and purification of the matrix proteins from three lyssaviruses, Lagos bat virus (LAG), Mokola virus and Thailand dog virus, are described. Crystals have been obtained for the full-length M protein from Lagos bat virus (LAG M). Successful crystallization depended on a number of factors, in particular the addition of an N-terminal SUMO fusion tag to increase protein solubility. Diffraction data have been recorded from crystals of native and selenomethionine-labelled LAG M to 2.75 and 3.0 Å resolution, respectively. Preliminary analysis indicates that these crystals belong to space group P6{sub 1}22 or P6{sub 5}22, with unit-cell parameters a = b = 56.9–57.2, c = 187.9–188.6 Å, consistent with the presence of one molecule per asymmetric unit, and structure determination is currently in progress.

  19. Affinity purification of copper chelating peptides from chickpea protein hydrolysates.

    PubMed

    Megías, Cristina; Pedroche, Justo; Yust, Maria M; Girón-Calle, Julio; Alaiz, Manuel; Millan, Francisco; Vioque, Javier

    2007-05-16

    Chickpea protein hydrolysates obtained with alcalase and flavourzyme were used for purification of copper chelating peptides by affinity chromatography using copper immobilized on solid supports. The chelating activity of purified peptides was indirectly measured by the inhibition of beta-carotene oxidation in the presence of copper. Two protein hydrolysates, obtained after 10 and 100 min of hydrolysis, were the most inhibitory of beta-carotene oxidation. Purified copper chelating peptides from these protein hydrolysates contained 19.7 and 35.1% histidine, respectively, in comparison to 2.7 and 2.6% in the protein hydrolysates. Chelating peptides from hydrolysate obtained after 10 min of hydrolysis were the most antioxidative being 8.3 times more antioxidative than the hydrolysate, while chelating peptides purified from protein hydrolysate obtained after 100 min were 3.1 times more antioxidative than its hydrolysate. However, the histidine content was higher in peptides derived from the 100 min hydrolysate (19.7 against 35.1% in 10 min hydrolysate), indicating that this amino acid is not the only factor involved in the antioxidative activity, and other factors such as peptide size or amino acid sequence are also determinant. This manuscript shows that affinity chromatography is a useful procedure for purification of copper chelating peptides. This method can be extended to other metals of interest in nutrition, such as calcium, iron, or zinc. Purified chelating peptides, in addition to their antioxidative properties, may also be useful in food mineral fortification for increasing the bioavailability of these metals.

  20. Purification and properties of African swine fever virus.

    PubMed Central

    Carrascosa, A L; del Val, M; Santarén, J F; Viñuela, E

    1985-01-01

    We describe a method for African swine fever (ASF) virus purification based on equilibrium centrifugation in Percoll density gradients of extracellular virions produced in infected VERO cells that yielded about 15 +/- 9% recovery of the starting infectious virus particles. The purified virus preparations were essentially free of a host membrane fraction (vesicles) that could not be separated from the virus by previously described purification methods. The purified virus sedimented as a single component in sucrose velocity gradients with a sedimentation coefficient of 3,500 +/- 300S, showed a DNA-protein ratio of 0.18 +/- 0.02 and a specific infectivity of 2.7 X 10(7) PFU/micrograms of protein, and remained fully infectious after storage at -70 degrees C for at least 7 months. The relative molecular weights of the 34 polypeptides detected in purified virus particles ranged from 10,000 to 150,000. Some of these proteins were probably cellular components that might account for the reactivity of purified virus with antiserum against VERO cells. Images PMID:3989907

  1. Improved procedure for separation and purification of Arthronema africanum phycobiliproteins.

    PubMed

    Minkova, Kaledona; Tchorbadjieva, Magdalena; Tchernov, Aleksey; Stojanova, Margarita; Gigova, Liliana; Busheva, Mira

    2007-04-01

    A rapid, inexpensive and reliable procedure for separation and purification of C-phycocyanin (C-PC) and allophycocyanin (APC) from Arthronema africanum based on a previously described rivanol-sulfate method for C-PC purification was developed. Exclusion of NaCl from the extraction buffer resulted in complete separation of APC and C-PC, two-fold reduction of rivanol treatments, and a higher yield and purity of C-PC. Pure C-PC (A(620)/A(280) of 4.52) and APC (A(652)/A(280) of 2.41) were obtained. The estimated molecular masses of the alpha and beta subunits were 17 and 19 kDsmall a, Cyrillic for capital ES, Cyrillic-phycocyanin and 16 and 18 kDsmall a, Cyrillic for APC, respectively. The overall C-PC recovery of 55% (w/w) from its content (100 mg) in the crude extract was 10-20% higher than so far reported. The procedure appears promising for scaling up and broader applications.

  2. Methods for assessing feline immunodeficiency virus infection, infectivity and purification.

    PubMed

    Ammersbach, Melanie; Bienzle, Dorothee

    2011-10-15

    Infection of cats with the feline immunodeficiency virus (FIV) recapitulates many aspects of infection of humans with HIV, including highly activated but ineffectual immune responses. Infected hosts remain seropositive for life, and detection of antibodies is the mainstay of diagnosis. However, to quantify virus for research or prognosis, viral proteins, nucleic acids or enzymes, are typically measured by ELISA, PCR or activity, respectively. While such assays are in wide use, they do not distinguish whole, infectious viral particles from defective or disrupted viruses. Titers of infectious viral particles may be estimated from tissue culture infectious doses or by enumerating cell-associated viral proteins, viral transcriptional activity or formation of syncytia. To analyze the viral proteome and the incorporation of host components into viral envelopes, pure lentiviral preparations are required. Methods for purifying lentiviruses include ultracentrifugation to separate particles by size, mass and/or density; chromatography to separate particles by charge, affinity or size; and additional removal of extraviral proteins and exosomes through subtilisin digestion or immunoaffinity. This article reviews advantages and disadvantages of different approaches to purification of lentiviruses with special reference to suitability for FIV, and highlights effects of purification on immune responses and immune assays.

  3. Cryogenic distillation facility for isotopic purification of protium and deuterium

    NASA Astrophysics Data System (ADS)

    Alekseev, I.; Arkhipov, Ev.; Bondarenko, S.; Fedorchenko, O.; Ganzha, V.; Ivshin, K.; Kammel, P.; Kravtsov, P.; Petitjean, C.; Trofimov, V.; Vasilyev, A.; Vasyanina, T.; Vorobyov, A.; Vznuzdaev, M.

    2015-12-01

    Isotopic purification of the protium and deuterium is an important requirement of many physics experiments. A cryogenic facility for high-efficiency separation of hydrogen isotopes with a cryogenic distillation column as the main element is described. The instrument is portable, so that it can be used at the experimental site. It was designed and built at the Petersburg Nuclear Physics Institute, Gatchina, Russia. Fundamental operating parameters have been measured including a liquid holdup in the column packing, the pressure drops across the column and the purity of the product at different operating modes. A mathematical model describes expected profiles of hydrogen isotope concentration along the distillation column. An analysis of ortho-parahydrogen isomeric composition by gas chromatography was used for evaluation of the column performance during the tuning operations. The protium content during deuterium purification (≤100 ppb) was measured using gas chromatography with accumulation of the protium in the distillation column. A high precision isotopic measurement at the Institute of Particle Physics, ETH-Zurich, Switzerland, provided an upper bound of the deuterium content in protium (≤6 ppb), which exceeds all commercially available products.

  4. Purification of mammalian DNA repair protein XRCC1

    SciTech Connect

    Chen, I.

    1995-11-01

    Malfunctioning DNA repair systems lead to cancer mutations, and cell death. XRCC1 (X-ray Repair Cross Complementing) is a human DNA repair gene that has been found to fully correct the x-ray repair defect in Chinese hamster ovary (CHO) cell mutant EM9. The corresponding protein (XRCC1) encoded by this gene has been linked to a DNA repair pathway known as base excision repair, and affects the activity of DNA ligase III. Previously, an XRCC1 cDNA minigene (consisting of the uninterrupted coding sequence for XRCC1 protein followed by a decahistidine tag) was constructed and cloned into vector pET-16b for the purpose of: (1) overproduction of XRCC1 in both prokaryotic and eukaryotic cells; and (2) to facilitate rapid purification of XRCC1 from these systems. A vector is basically a DNA carrier that allows recombinant protein to be cloned and overexpressed in host cells. In this study, XRCC1 protein was overexpressed in E. coli and purified by immobilized metal affinity chromatography. Currently, the XRCC1 minigene is being inserted into a new vector [pET-26b(+)] in hopes to increase overexpression and improve purification. Once purified XRCC1 can be crystallized for structural studies, or studied in vitro for its biological function.

  5. Purification of triolein for use in semipermeable membrane devices (SPMDs)

    USGS Publications Warehouse

    Lebo, J.A.; Almeida, F.V.; Cranor, W.L.; Petty, J.D.; Huckins, J.N.; Rastall, A.; Alvarez, D.A.; Mogensen, B.B.; Johnson, B.T.

    2004-01-01

    Analyses of triolein-containing semipermeable membrane devices (SPMDs) have sometimes been impeded by interferences caused by impurities endemic to triolein that codialyze with the analytes. Oleic acid and methyl oleate have been the most troublesome of these impurities because of their relatively high concentrations in triolein and because significant residues of both can persist even after size exclusion chromatographic (SEC) fractionation. These residues have also been blamed for false-positive signals during bioindicator testing of SPMD dialysates. To prevent these problems, a simple, cost-effective procedure was developed for purifying triolein destined for use in SPMDs: the bulk triolein is repeatedly (6x) partitioned against methanol. Tests of the procedure show that 14C-oleic acid is completely removed from the triolein. After SEC fractionation, dialysates of standard-size SPMDs made with the purified triolein contain less than 5 ??g of methyl oleate as compared to sometimes more than 500 ??g for dialysates (also after SEC) of SPMDs made with unpurified triolein. Gas chromatographic analyses with flame ionization and electron capture detection show that the purification treatment also greatly reduces the number and size of peaks caused by unidentified contaminants in the triolein. Microtox basic assay of dialysates of SPMDs shows that those made with the purified triolein have lower acute toxicities than dialysates of SPMDs made with unpurified triolein. Yeast estrogen screen (YES) testing of SPMDs fabricated with unpurified and purified triolein demonstrates that the purification process removes all background estrogenic activity. Published by Elsevier Ltd.

  6. Purification and characterization of amine oxidase from pea seedlings.

    PubMed

    Vianello, F; Malek-Mirzayans, A; Di Paolo, M L; Stevanato, R; Rigo, A

    1999-03-01

    A novel, simple, and rapid procedure for the purification of pea seedling amine oxidase is reported. The crude enzyme, obtained by ammonium sulfate fractionation, was purified in two steps: the first one by anion-exchange chromatography and the second one by affinity chromatography. The first chromatography step was carried out on a diethylaminoethyl-cellulose column. By lowering the amount of protein loaded on the column and the buffer concentration it was possible to obtain an enzyme pure at 95% (sp act 1.2 microkat/mg). To achieve a higher degree of purification various affinity resins were prepared and tested. The resins were obtained by covalent immobilization of polyamines on Sepharose according to three different procedures. The best results were obtained with 6-aminohexyl-Sepharose 2B, prepared using CNBr as coupling agent, and eluting the enzyme by a solution containing 1, 4-diaminocyclohexane. This last compound was found to be a relatively strong competitive inhibitor of the oxidative deamination of cadaverine catalyzed by pea seedling amine oxidase (Ki = 32 microM). According to this procedure an electrophoretically homogeneous enzyme, characterized by a specific activity of 1.63 microkat/mg, was obtained.

  7. Cryogenic distillation facility for isotopic purification of protium and deuterium

    SciTech Connect

    Alekseev, I.; Arkhipov, Ev.; Bondarenko, S.; Fedorchenko, O.; Ganzha, V.; Ivshin, K.; Kravtsov, P. Trofimov, V.; Vasilyev, A.; Vasyanina, T.; Vorobyov, A.; Vznuzdaev, M.; Kammel, P.; Petitjean, C.

    2015-12-15

    Isotopic purification of the protium and deuterium is an important requirement of many physics experiments. A cryogenic facility for high-efficiency separation of hydrogen isotopes with a cryogenic distillation column as the main element is described. The instrument is portable, so that it can be used at the experimental site. It was designed and built at the Petersburg Nuclear Physics Institute, Gatchina, Russia. Fundamental operating parameters have been measured including a liquid holdup in the column packing, the pressure drops across the column and the purity of the product at different operating modes. A mathematical model describes expected profiles of hydrogen isotope concentration along the distillation column. An analysis of ortho-parahydrogen isomeric composition by gas chromatography was used for evaluation of the column performance during the tuning operations. The protium content during deuterium purification (≤100 ppb) was measured using gas chromatography with accumulation of the protium in the distillation column. A high precision isotopic measurement at the Institute of Particle Physics, ETH-Zurich, Switzerland, provided an upper bound of the deuterium content in protium (≤6 ppb), which exceeds all commercially available products.

  8. Multimodal charge-induction chromatography for antibody purification.

    PubMed

    Tong, Hong-Fei; Lin, Dong-Qiang; Chu, Wen-Ning; Zhang, Qi-Lei; Gao, Dong; Wang, Rong-Zhu; Yao, Shan-Jing

    2016-01-15

    Hydrophobic charge-induction chromatography (HCIC) has advantages of high capacity, salt-tolerance and convenient pH-controlled elution. However, the binding specificity might be improved with multimodal molecular interactions. New ligand W-ABI that combining tryptophan and 5-amino-benzimidazole was designed with the concept of mutimodal charge-induction chromatography (MCIC). The indole and benzimidazole groups of the ligand could provide orientated mutimodal binding to target IgG under neutral pH, while the imidazole groups could induce the electrostatic repulsion forces for efficient elution under acidic pH. W-ABI ligand was coupled successfully onto agarose gel, and IgG adsorption behaviors were investigated. High affinity to IgG was found with the saturated adsorption capacity of 70.4 mg/ml at pH 7, and the flow rate of mobile phase showed little impact on the dynamic binding capacity. In addition, efficient elution could be achieved at mild acidic pH with high recovery. Two separation cases (IgG separation from albumin containing feedstock and monoclonal antibody purification from cell culture supernatant) were verified with high purity and recovery. In general, MCIC with the specially-designed ligand is an expanding of HCIC with improved adsorption selectivity, which would be a potential alternative to Protein A-based capture for the cost-effective purification of antibodies.

  9. Cloning, purification and crystallization of Thermus thermophilus proline dehydrogenase

    SciTech Connect

    White, Tommi A.; Tanner, John J.

    2005-08-01

    Cloning, purification and crystallization of T. thermophilus proline dehydrogenase is reported. The detergent n-octyl β-d-glucopyranoside was used to reduce polydispersity, which enabled crystallization. Nature recycles l-proline by converting it to l-glutamate. This four-electron oxidation process is catalyzed by the two enzymes: proline dehydrogenase (PRODH) and Δ{sup 1}-pyrroline-5-carboxylate dehydrogenase. This note reports the cloning, purification and crystallization of Thermus thermophilus PRODH, which is the prototype of a newly discovered superfamily of bacterial monofunctional PRODHs. The results presented here include production of a monodisperse protein solution through use of the detergent n-octyl β-d-glucopyranoside and the growth of native crystals that diffracted to 2.3 Å resolution at Advanced Light Source beamline 4.2.2. The space group is P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 82.2, b = 89.6, c = 94.3 Å. The asymmetric unit is predicted to contain two protein molecules and 46% solvent. Molecular-replacement trials using a fragment of the PRODH domain of the multifunctional Escherichia coli PutA protein as the search model (24% amino-acid sequence identity) did not produce a satisfactory solution. Therefore, the structure of T. thermophilus PRODH will be determined by multiwavelength anomalous dispersion phasing using a selenomethionyl derivative.

  10. Cryogenic distillation facility for isotopic purification of protium and deuterium.

    PubMed

    Alekseev, I; Arkhipov, Ev; Bondarenko, S; Fedorchenko, O; Ganzha, V; Ivshin, K; Kammel, P; Kravtsov, P; Petitjean, C; Trofimov, V; Vasilyev, A; Vasyanina, T; Vorobyov, A; Vznuzdaev, M

    2015-12-01

    Isotopic purification of the protium and deuterium is an important requirement of many physics experiments. A cryogenic facility for high-efficiency separation of hydrogen isotopes with a cryogenic distillation column as the main element is described. The instrument is portable, so that it can be used at the experimental site. It was designed and built at the Petersburg Nuclear Physics Institute, Gatchina, Russia. Fundamental operating parameters have been measured including a liquid holdup in the column packing, the pressure drops across the column and the purity of the product at different operating modes. A mathematical model describes expected profiles of hydrogen isotope concentration along the distillation column. An analysis of ortho-parahydrogen isomeric composition by gas chromatography was used for evaluation of the column performance during the tuning operations. The protium content during deuterium purification (≤100 ppb) was measured using gas chromatography with accumulation of the protium in the distillation column. A high precision isotopic measurement at the Institute of Particle Physics, ETH-Zurich, Switzerland, provided an upper bound of the deuterium content in protium (≤6 ppb), which exceeds all commercially available products.

  11. Self-purification ability of a resurgence stream.

    PubMed

    Vagnetti, Roberta; Miana, Paola; Fabris, Mario; Pavoni, Bruno

    2003-09-01

    The self-purification ability of a resurgence stream has been investigated by taking samples along the course of a channeled tract made up of a first part in beaten soil (3.3 km) and a second in concrete (7.2 km). The study has been conducted by statistically processing pre-existent data, acquired monthly by analyzing waters at the beginning and at the end of the whole canal for 6 years, from 1995 to 2000 (historic data), and by performing specific experiments (recent data) to evaluate differently the self-purification capacity of the beaten soil section and that in concrete. A significant abatement of concentrations has been observed from historic data for ammonium, phosphates, turbidity, heavy metals and bacteria. From the recent data, all these parameters seem to decrease in the beaten soil tract. Whereas significant further decreases in the concrete tract were observed only for ammonium, phosphates and bacteria. For other parameters, e.g. pH, dissolved oxygen, chlorides, fluorides, sodium, and sulfates, a significant increase was observed from the historic data.

  12. Purification of Transcripts and Metabolites from Drosophila Heads

    PubMed Central

    Jensen, Kurt; Sanchez-Garcia, Jonatan; Williams, Caroline; Khare, Swati; Mathur, Krishanu; Graze, Rita M.; Hahn, Daniel A.; McIntyre, Lauren M.; Rincon-Limas, Diego E.; Fernandez-Funez, Pedro

    2013-01-01

    For the last decade, we have tried to understand the molecular and cellular mechanisms of neuronal degeneration using Drosophila as a model organism. Although fruit flies provide obvious experimental advantages, research on neurodegenerative diseases has mostly relied on traditional techniques, including genetic interaction, histology, immunofluorescence, and protein biochemistry. These techniques are effective for mechanistic, hypothesis-driven studies, which lead to a detailed understanding of the role of single genes in well-defined biological problems. However, neurodegenerative diseases are highly complex and affect multiple cellular organelles and processes over time. The advent of new technologies and the omics age provides a unique opportunity to understand the global cellular perturbations underlying complex diseases. Flexible model organisms such as Drosophila are ideal for adapting these new technologies because of their strong annotation and high tractability. One challenge with these small animals, though, is the purification of enough informational molecules (DNA, mRNA, protein, metabolites) from highly relevant tissues such as fly brains. Other challenges consist of collecting large numbers of flies for experimental replicates (critical for statistical robustness) and developing consistent procedures for the purification of high-quality biological material. Here, we describe the procedures for collecting thousands of fly heads and the extraction of transcripts and metabolites to understand how global changes in gene expression and metabolism contribute to neurodegenerative diseases. These procedures are easily scalable and can be applied to the study of proteomic and epigenomic contributions to disease. PMID:23524378

  13. Improved purification and PCR amplification of DNA from environmental samples.

    PubMed

    Arbeli, Ziv; Fuentes, Cilia L

    2007-07-01

    Purification and PCR amplification procedures for DNA extracted from environmental samples (soil, compost, and river sediment) were improved by introducing three modifications: precipitation of DNA with 5% polyethylene glycol 8000 (PEG) and 0.6 M NaCl; filtration with a Sepharose 4B-polyvinylpolypyrrolidone (PVPP) spin column; and addition of skim milk (0.3% w/v) to the PCR reaction solution. Humic substances' concentration after precipitation with 5% PEG was 2.57-, 5.3-, and 78.9-fold lower than precipitation with 7.5% PEG, 10% PEG, and isopropanol, respectively. After PEG precipitation, Sepharose, PVPP and the combined (Sepharose-PVPP) column removed 92.3%, 89.5%, and 98%, respectively, of the remaining humic materials. Each of the above-mentioned modifications improved PCR amplification of the 16S rRNA gene. DNA extracted by the proposed protocol is cleaner than DNA extracted by a commercial kit. Nevertheless, the improvement of DNA purification did not improve the detection limit of atrazine degradation gene atzA.

  14. Electrochemical alkaline Fe(VI) water purification and remediation.

    PubMed

    Licht, Stuart; Yu, Xingwen

    2005-10-15

    Fe(VI) is an unusual and strongly oxidizing form of iron, which provides a potentially less hazardous water-purifying agent than chlorine. A novel on-line electrochemical Fe(VI) water purification methodology is introduced. Fe(VI) addition had been a barrier to its effective use in water remediation, because solid Fe(VI) salts require complex (costly) syntheses steps and solutions of Fe(VI) decompose. Online electrochemical Fe(VI) water purification avoids these limitations, in which Fe(VI) is directly prepared in solution from an iron anode as the FeO42- ion, and is added to the contaminant stream. Added FeO42- decomposes, by oxidizing a wide range of water contaminants including sulfides (demonstrated in this study) and other sulfur-containing compounds, cyanides (demonstrated in this study), arsenic (demonstrated in this study), ammonia and other nitrogen-containing compounds (previously demonstrated), a wide range of organics (phenol demonstrated in this study), algae, and viruses (each previously demonstrated).

  15. Purification and characterization of a thylakoid protein kinase

    SciTech Connect

    Coughlan, S.J.; Hind, G.

    1986-01-01

    Control of state transitions in the thylakoid by reversible phosphorylation of the light-harvesting chlorophyll a/b protein complex of photosystem II (LHC-II) is modulated by a kinase. The kinase catalyzing this phosphorylation is associated with the thylakoid membrane, and is regulated by the redox state of the plastoquinone pool. The isolation and partial purification from spinach thylakoids of two protein kinases (CPK1, CPK2) of apparent molecular masses 25 kDa and 38 kDa has been reported. Neither enzyme utilizes isolated LHC-II as a substrate. The partial purification of a third protein kinase (LHCK) which can utilize both lysine-rich histones (IIIs and Vs) and isolated LHC-II as substrate has now been purified to homogeneity and characterized by SDS-polyacrylamide gel electrophoresis as a 64 kDa peptide. From a comparison of the two isolation procedures we have concluded that CPK1 is indeed a protein kinase, but has a lower specific activity than that of LHCK. 8 refs., 4 figs.

  16. Spiral-wound permeators for purifications and recovery

    SciTech Connect

    Schell, W.J.; Houston, C.D.

    1982-10-01

    Describes how cellulose acetate membrane systems, with their great selectivity and high permeation rates for gas separations, enable a modular system to process a wide range of feed flow rates. Up to 6 membrane elements are connected in series in a single, 22-ft (6.7-m) long pipe or tube. A rubber U-cup attached to the element serves to seal the element with the inner diameter of the pressure tube, thereby forcing the feed gas to flow through the element. Pressure tubes usually contain 6 elements each and are mounted in racks on a skid. Unlike hollow-fiber type systems, elements may be replaced in the field on an individual basis by operating personnel, thus enabling users to take advantage of improved membrane elements. Separex Corp. also developed a hydrogen recovery system which utilizes 4 in. (102-mm) diameter spiralwound elements to recover hydrogen from the off-gas of a UOP ''Butamer'' process in a LPG processing complex. Concludes that this process can be used in natural gas purification and dehydration, production of high-purity CO/sub 2/ for enhanced oil recovery, and purification and recovery of hydrogen in a variety of chemical and refinery applications.

  17. Aggregating tags for column-free protein purification.

    PubMed

    Lin, Zhanglin; Zhao, Qing; Xing, Lei; Zhou, Bihong; Wang, Xu

    2015-12-01

    Protein purification remains a central need for biotechnology. In recent years, a class of aggregating tags has emerged, which offers a quick, cost-effective and column-free alternative for producing recombinant proteins (and also peptides) with yield and purity comparable to that of the popular His-tag. These column-free tags induce the formation of aggregates (during or after expression) when fused to a target protein or peptide, and upon separation from soluble impurities, the target protein or peptide is subsequently released via a cleavage site. In this review, we categorize these tags as follows: (i) tags that induce inactive protein aggregates in vivo; (ii) tags that induce active protein aggregates in vivo; and (iii) tags that induce soluble expression in vivo, but aggregates in vitro. The respective advantages and disadvantages of these tags are discussed, and compared to the three conventional tags (His-tag, maltose-binding protein [MBP] tag, and intein-mediated purification with a chitin-binding tag [IMPACT-CN]). While this new class of aggregating tags is promising, more systematic tests are required to further the use. It is conceivable, however, that the combination of these tags and the more traditional columns may significantly reduce the costs for resins and columns, particularly for the industrial scale.

  18. Protein purification by aminosquarylium cyanine dye-affinity chromatography.

    PubMed

    Silva, M S; Graça, V C; Reis, L V; Santos, P F; Almeida, P; Queiroz, J A; Sousa, F

    2013-12-01

    The most selective purification method for proteins and other biomolecules is affinity chromatography. This method is based on the unique biological-based specificity of the biomolecule-ligand interaction and commonly uses biological ligands. However, these ligands may present some drawbacks, mainly because of their cost and lability. Dye-affinity chromatography overcomes the limitations of biological ligands and is widely used owing to the low cost of synthetic dyes and to their resistance to biological and chemical degradation. In this work, immobilized aminosquarylium cyanine dyes are used in order to exploit affinity interactions with standard proteins such as lysozyme, α-chymotrypsin and trypsin. These studies evaluate the affinity interactions occurring between the immobilized ligand and the different proteins, as a reflection of the sum of several molecular interactions, namely ionic, hydrophobic and van der Waals, spread throughout the structure, in a defined spatial manner. The results show the possibility of using an aminosquarylium cyanine dye bearing a N-hexyl pendant chain, with a ligand density of 1.8 × 10(-2) mmol of dye/g of chromatographic support, to isolate lysozyme, α-chymotrypsin and trypsin from a mixture. The application of a decreasing ammonium sulfate gradient resulted in the recovery of lysozyme in the flowthrough. On the other hand, α-chymotrypsin and trypsin were retained, involving different interactions with the ligand. In conclusion, this study demonstrates the potential applicability of ligands such as aminosquarylium cyanine dyes for the separation and purification of proteins by affinity chromatography.

  19. Gas purification in the dense phase at the CATS terminal

    SciTech Connect

    Openshaw, P.J.; Carnell, P.J.H.; Rhodes, E.F.

    1999-07-01

    The purification and transportation of natural gas at very high pressures can help to minimize the capital cost of pipelines and processing equipment. However, complex mixtures of hydrocarbons undergo unusual phase changes, such as retrograde condensation, as the temperature and pressure are altered. The Central Area Transmission System (CATS) is a joint venture of Amoci, BG, Amerada Hess, Phillips, Agip and Fina operated by Amoco on behalf of the owners. The design of the CATS terminal has provided an interesting processing challenge. The terminal receives a total of 1.6 Bscf/d of rich gas from a number of offshore fields. All are relatively sweet but the small amounts of H{sub 2}S and Hg are removed. Fixed bed technology was selected as the most economic purification process, while minimizing hydrocarbon loss and operator involvement. Conventionally, the raw gas would be split into the different hydrocarbon fractions and each would be processed separately. This would require the installation of a large number of reactors. A more elegant solution is to treat the gas on arrival at the terminal in the dense phase. This option raised questions around whether a fixed bed would be prone to fouling, could the pressure drop be kept low enough to avoid phase separation and would inadvertent wetting by condensation cause problems. Details are given of the test work carried out to prove the viability of using fixed bed technology for dense phase gas processing, the eventual design adopted and the performance over the first year of service.

  20. Kilogram-scale purification of americium by ion exchange

    SciTech Connect

    Wheelwright, E.J.

    1980-05-01

    Sequential anion and cation exchange processes have been used for the final purification of /sup 241/Am recovered during the reprocessing of aged plutonium metallurgical scrap. Plutonium was removed by absorption on Dowex 1, X-3.5 (30 to 50 mesh) anion exchange resin from 6.5 to 7.5 M HNO/sub 3/ feed solution. Following a water dilution to 0.75 to 1.0 M HNO/sub 3/, americium was absorbed on Dowex 50W, X-8 (50 to 100 mesh) cation exchange resin. Final purification was accomplished by elution of the absorbed band down 3 to 4 successive beds of the same resin, preloaded with Zn/sup 2+/, with an NH/sub 4/OH buffered chelating agent. The recovery of mixed /sup 241/Am-/sup 243/Am from power reactor reprocessing waste has been demonstrated. Solvent extraction was used to recover a HNO/sub 3/ solution of mixed lanthanides and actinides from waste generated by the reprocessing of 13.5 tons of Shippingport Power Reactor blanket fuel. Sequential cation exchange band-displacement processes were then used to separate americium and curium from the lanthanides and then to separate approx. 60 g of /sup 244/Cm from 1000 g of mixed /sup 241/Am-/sup 243/Am.

  1. Capillary Ion Concentration Polarization for Power-Free Salt Purification

    NASA Astrophysics Data System (ADS)

    Park, Sungmin; Jung, Yeonsu; Cho, Inhee; Kim, Ho-Young; Kim, Sung Jae

    2014-11-01

    In this presentation, we experimentally and theoretically demonstrated the capillary based ion concentration polarization for power-free salt purification system. Traditional ion concentration polarization phenomenon has been studied for a decade for both fundamental nanoscale fluid dynamics and novel engineering applications such as desalination, preconcentration and energy harvesting devices. While the conventional system utilizes an external power source, the system based on capillary ion concentration polarization is capable of perm-selective ion transportation only by capillarity so that the same ion depletion zone can be formed without any external power sources. An ion concentration profile near the nanostructure was tracked using fluorescent probes and analyzed by solving the modified Nernst-Planck equation. As a result, the concentration in the vicinity of the nanostructure was at least 10 times lower than that of bulk electrolyte and thus, the liquid absorbed into the nanostructure had the low concentration. This mechanism can be used for the power free salt purification system which would be significantly useful in underdeveloped and remote area. This work was supported by Samsung Research Funding Center of Samsung Electronics under Project Number SRFC-MA1301-02.

  2. Affinity approaches in RNAi-based therapeutics purification.

    PubMed

    Pereira, Patrícia; Queiroz, João A; Figueiras, Ana; Sousa, Fani

    2016-05-15

    The recent investigation on RNA interference (RNAi) related mechanisms and applications led to an increased awareness of the importance of RNA in biology. Nowadays, RNAi-based technology has emerged as a potentially powerful tool for silencing gene expression, being exploited to develop new therapeutics for treating a vast number of human disease conditions, as it is expected that this technology can be translated onto clinical applications in a near future. This approach makes use of a large number of small (namely short interfering RNAs, microRNAs and PIWI-interacting RNAs) and long non-coding RNAs (ncRNAs), which are likely to have a crucial role as the next generation therapeutics. The commercial and biomedical interest in these RNAi-based therapy applications have fostered the need to develop innovative procedures to easily and efficiently purify RNA, aiming to obtain the final product with high purity degree, good quality and biological activity. Recently, affinity chromatography has been applied to ncRNAs purification, in view of the high specificity. Therefore, this article intends to review the biogenesis pathways of regulatory ncRNAs and also to discuss the most significant and recent developments as well as applications of affinity chromatography in the challenging task of purifying ncRNAs. In addition, the importance of affinity chromatography in ncRNAs purification is addressed and prospects for what is forthcoming are presented.

  3. Travel of pollution, and purification en route, in sandy soils

    PubMed Central

    Baars, J. K.

    1957-01-01

    The travel of pollution in sandy soils, and the extent to which purification takes place en route, are discussed, with special reference to the possible contamination of ground water—a problem which is of particular importance in the Netherlands, where the water-supply for many of the large towns is drawn from the water underneath the dunes. Specifically, two types of soil pollution are considered: (a) severe pollution of the surface layers with matter concentrated in a small volume of water (e.g., faecal matter from pit privies at camping-sites); and (b) moderate pollution of the surface layers with matter contained in large quantities of water (e.g., organic matter and bacteria in river water used for the artificial recharge of ground water). It is shown that in both these types of pollution the self-purification is sufficient to prevent contamination of the ground water, provided that the soil is very fine and—in the case of the first type—dry and well aerated, and provided that the ground-water level is not too high or the rate of infiltration too great. PMID:13472428

  4. Inert Gas Enhanced Laser-Assisted Purification of Platinum Electron-Beam-Induced Deposits.

    PubMed

    Stanford, Michael G; Lewis, Brett B; Noh, Joo Hyon; Fowlkes, Jason D; Rack, Philip D

    2015-09-09

    Electron-beam-induced deposition patterns, with composition of PtC5, were purified using a pulsed laser-induced purification reaction to erode the amorphous carbon matrix and form pure platinum deposits. Enhanced mobility of residual H2O molecules via a localized injection of inert Ar-H2 (4%) is attributed to be the reactive gas species for purification of the deposits. Surface purification of deposits was realized at laser exposure times as low as 0.1 s. The ex situ purification reaction in the deposit interior was shown to be rate-limited by reactive gas diffusion into the deposit, and deposit contraction associated with the purification process caused some loss of shape retention. To circumvent the intrinsic flaws of the ex situ anneal process, in situ deposition and purification techniques were explored that resemble a direct write atomic layer deposition (ALD) process. First, we explored a laser-assisted electron-beam-induced deposition (LAEBID) process augmented with reactive gas that resulted in a 75% carbon reduction compared to standard EBID. A sequential deposition plus purification process was also developed and resulted in deposition of pure platinum deposits with high fidelity and shape retention.

  5. Hofmeister series salts enhance purification of plasmid DNA by non-ionic detergents.

    PubMed

    Lezin, George; Kuehn, Michael R; Brunelli, Luca

    2011-08-01

    Ion-exchange chromatography is the standard technique used for plasmid DNA purification, an essential molecular biology procedure. Non-ionic detergents (NIDs) have been used for plasmid DNA purification, but it is unclear whether Hofmeister series salts (HSS) change the solubility and phase separation properties of specific NIDs, enhancing plasmid DNA purification. After scaling-up NID-mediated plasmid DNA isolation, we established that NIDs in HSS solutions minimize plasmid DNA contamination with protein. In addition, large-scale NID/HSS solutions eliminated lipopolysaccharides (LPS) contamination of plasmid DNA more effectively than Qiagen ion-exchange columns. Large-scale NID isolation/NID purification generated increased yields of high-quality DNA compared to alkali isolation/column purification. This work characterizes how HSS enhance NID-mediated plasmid DNA purification, and demonstrates that NID phase transition is not necessary for LPS removal from plasmid DNA. Specific NIDs such as IGEPAL CA-520 can be utilized for rapid, inexpensive, and efficient laboratory-based large-scale plasmid DNA purification, outperforming Qiagen-based column procedures.

  6. Inert gas enhanced laser-assisted purification of platinum electron-beam-induced deposits

    SciTech Connect

    Stanford, Michael G.; Lewis, Brett B.; Noh, Joo Hyon; Fowlkes, Jason Davidson; Rack, Philip D.

    2015-06-30

    Electron-beam-induced deposition patterns, with composition of PtC5, were purified using a pulsed laser-induced purification reaction to erode the amorphous carbon matrix and form pure platinum deposits. Enhanced mobility of residual H2O molecules via a localized injection of inert Ar–H2 (4%) is attributed to be the reactive gas species for purification of the deposits. Surface purification of deposits was realized at laser exposure times as low as 0.1 s. The ex situ purification reaction in the deposit interior was shown to be rate-limited by reactive gas diffusion into the deposit, and deposit contraction associated with the purification process caused some loss of shape retention. To circumvent the intrinsic flaws of the ex situ anneal process, in situ deposition and purification techniques were explored that resemble a direct write atomic layer deposition (ALD) process. First, we explored a laser-assisted electron-beam-induced deposition (LAEBID) process augmented with reactive gas that resulted in a 75% carbon reduction compared to standard EBID. Lastly, a sequential deposition plus purification process was also developed and resulted in deposition of pure platinum deposits with high fidelity and shape retention.

  7. Hofmeister series salts enhance purification of plasmid DNA by non-ionic detergents

    PubMed Central

    Lezin, George; Kuehn, Michael R.; Brunelli, Luca

    2011-01-01

    Ion-exchange chromatography is the standard technique used for plasmid DNA purification, an essential molecular biology procedure. Non-ionic detergents (NIDs) have been used for plasmid DNA purification, but it is unclear whether Hofmeister series salts (HSS) change the solubility and phase separation properties of specific NIDs, enhancing plasmid DNA purification. After scaling-up NID-mediated plasmid DNA isolation, we established that NIDs in HSS solutions minimize plasmid DNA contamination with protein. In addition, large-scale NID/HSS solutions eliminated LPS contamination of plasmid DNA more effectively than Qiagen ion-exchange columns. Large-scale NID isolation/NID purification generated increased yields of high quality DNA compared to alkali isolation/column purification. This work characterizes how HSS enhance NID-mediated plasmid DNA purification, and demonstrates that NID phase transition is not necessary for LPS removal from plasmid DNA. Specific NIDs such as IGEPAL CA-520 can be utilized for rapid, inexpensive and efficient laboratory-based large-scale plasmid DNA purification, outperforming Qiagen-based column procedures. PMID:21351074

  8. Inert gas enhanced laser-assisted purification of platinum electron-beam-induced deposits

    DOE PAGES

    Stanford, Michael G.; Lewis, Brett B.; Noh, Joo Hyon; ...

    2015-06-30

    Electron-beam-induced deposition patterns, with composition of PtC5, were purified using a pulsed laser-induced purification reaction to erode the amorphous carbon matrix and form pure platinum deposits. Enhanced mobility of residual H2O molecules via a localized injection of inert Ar–H2 (4%) is attributed to be the reactive gas species for purification of the deposits. Surface purification of deposits was realized at laser exposure times as low as 0.1 s. The ex situ purification reaction in the deposit interior was shown to be rate-limited by reactive gas diffusion into the deposit, and deposit contraction associated with the purification process caused some lossmore » of shape retention. To circumvent the intrinsic flaws of the ex situ anneal process, in situ deposition and purification techniques were explored that resemble a direct write atomic layer deposition (ALD) process. First, we explored a laser-assisted electron-beam-induced deposition (LAEBID) process augmented with reactive gas that resulted in a 75% carbon reduction compared to standard EBID. Lastly, a sequential deposition plus purification process was also developed and resulted in deposition of pure platinum deposits with high fidelity and shape retention.« less

  9. Tetanus toxoid purification: chromatographic procedures as an alternative to ammonium-sulphate precipitation.

    PubMed

    Stojićević, Ivana; Dimitrijević, Ljiljana; Dovezenski, Nebojša; Živković, Irena; Petrušić, Vladimir; Marinković, Emilija; Inić-Kanada, Aleksandra; Stojanović, Marijana

    2011-08-01

    Given an existing demand to establish a process of tetanus vaccine production in a way that allows its complete validation and standardization, this paper focuses on tetanus toxoid purification step. More precisely, we were looking at a possibility to replace the widely used ammonium-sulphate precipitation by a chromatographic method. Based on the tetanus toxin's biochemical characteristics, we have decided to examine the possibility of tetanus toxoid purification by hydrophobic chromatography, and by chromatographic techniques based on interaction with immobilized metal ions, i.e. chelating chromatography and immobilized metal affinity chromatography. We used samples obtained from differently fragmented crude tetanus toxins by formaldehyde treatment (assigned as TTd-A and TTd-B) as starting material for tetanus toxoid purification. Obtained results imply that purification of tetanus toxoid by hydrophobic chromatography represents a good alternative to ammonium-sulphate precipitation. Tetanus toxoid preparations obtained by hydrophobic chromatography were similar to those obtained by ammonium-sulphate precipitation in respect to yield, purity and immunogenicity. In addition, their immunogenicity was similar to standard tetanus toxoid preparation (NIBSC, Potters Bar, UK). Furthermore, the characteristics of crude tetanus toxin preparations had the lowest impact on the final purification product when hydrophobic chromatography was the applied method of tetanus toxoid purification. On the other hand, purifications of tetanus toxoid by chelating chromatography or immobilized metal affinity chromatography generally resulted in a very low yield due to not satisfactory tetanus toxoid binding to the column, and immunogenicity of the obtained tetanus toxoid-containing preparations was poor.

  10. Indoor Air Pollution

    MedlinePlus

    ... is known as sick building syndrome. Usually indoor air quality problems only cause discomfort. Most people feel better ... and getting rid of pollutants can improve the quality of your indoor air. Environmental Protection Agency

  11. Lead (Pb) Air Pollution

    MedlinePlus

    ... and 2014. In 2008, EPA significantly strengthened the air quality standards for lead to provide health protection for ... time? Setting and Reviewing Standards What are lead air quality standards? How are they developed and reviewed? What ...

  12. Transforming air quality management

    SciTech Connect

    Janet McCabe

    2005-04-01

    Earlier this year, the Clean Air Act Advisory Committee submitted to EPA 38 recommendations intended to improve air quality management in the United States. This article summarizes the evaluation process leading up to the Committee's recommendations. 3 refs., 2 figs.

  13. National Air Toxics Assessment

    EPA Pesticide Factsheets

    NATA is an ongoing comprehensive evaluation of air toxics in the U.S. As a screening tool, it helps air agencies prioritize pollutants, emission sources and locations of interest for further study to gain a better understanding of risks.

  14. Airing It Out.

    ERIC Educational Resources Information Center

    Fitzemeyer, Ted

    2000-01-01

    Discusses how proper maintenance can help schools eliminate sources contributing to poor air quality. Maintaining heating and air conditioning units, investigating bacterial breeding grounds, fixing leaking boilers, and adhering to ventilation codes and standards are discussed. (GR)

  15. Air Quality Analysis

    EPA Pesticide Factsheets

    This site provides information for air quality data analysts inside and outside EPA. Much of the information is in the form of documented analyses that support the review of the national air qualiyt standards.

  16. Controlling Indoor Air Pollution.

    ERIC Educational Resources Information Center

    Nero, Anthony V, Jr.

    1988-01-01

    Discusses the health risks posed by indoor air pollutants, such as airborne combustion products, toxic chemicals, and radioactivity. Questions as to how indoor air might be regulated. Calls for new approaches to environmental protection. (TW)

  17. Air Data - Concentration Map

    EPA Pesticide Factsheets

    Make a map of daily concentrations over several days. The daily air quality can be displayed in terms of the Air Quality Index or in concentration ranges for certain PM species like organic carbon, nitrates, and sulfates.

  18. Heparin-binding peptide as a novel affinity tag for purification of recombinant proteins.

    PubMed

    Morris, Jacqueline; Jayanthi, Srinivas; Langston, Rebekah; Daily, Anna; Kight, Alicia; McNabb, David S; Henry, Ralph; Kumar, Thallapuranam Krishnaswamy Suresh

    2016-10-01

    Purification of recombinant proteins constitutes a significant part of the downstream processing in biopharmaceutical industries. Major costs involved in the production of bio-therapeutics mainly depend on the number of purification steps used during the downstream process. Affinity chromatography is a widely used method for the purification of recombinant proteins expressed in different expression host platforms. Recombinant protein purification is achieved by fusing appropriate affinity tags to either N- or C- terminus of the target recombinant proteins. Currently available protein/peptide affinity tags have proved quite useful in the purification of recombinant proteins. However, these affinity tags suffer from specific limitations in their use under different conditions of purification. In this study, we have designed a novel 34-amino acid heparin-binding affinity tag (HB-tag) for the purification of recombinant proteins expressed in Escherichia coli (E. coli) cells. HB-tag fused recombinant proteins were overexpressed in E. coli in high yields. A one-step heparin-Sepharose-based affinity chromatography protocol was developed to purify HB-fused recombinant proteins to homogeneity using a simple sodium chloride step gradient elution. The HB-tag has also been shown to facilitate the purification of target recombinant proteins from their 8 M urea denatured state(s). The HB-tag has been demonstrated to be successfully released from the fusion protein by an appropriate protease treatment to obtain the recombinant target protein(s) in high yields. Results of the two-dimensional NMR spectroscopy experiments indicate that the purified recombinant target protein(s) exist in the native conformation. Polyclonal antibodies raised against the HB-peptide sequence, exhibited high binding specificity and sensitivity to the HB-fused recombinant proteins (∼10 ng) in different crude cell extracts obtained from diverse expression hosts. In our opinion, the HB-tag provides a

  19. Cleanable Air Filter Transferring Moisture and Effectively Capturing PM2.5.

    PubMed

    Zhao, Xinglei; Li, Yuyao; Hua, Ting; Jiang, Pan; Yin, Xia; Yu, Jianyong; Ding, Bin

    2017-03-01

    The lethal danger of particulate matter (PM) pollution on health leads to the development of challenging individual protection materials that should ideally exhibit a high PM2.5 purification efficiency, low air resistance, an important moisture-vapor transmission rate (MVTR), and an easy-to-clean property. Herein, a cleanable air filter able to rapidly transfer moisture and efficiently capture PM2.5 is designed by electrospinning superhydrophilic polyacrylonitrile/silicon-dioxide fibers as the adsorption-desorption vector for moisture-vapor, and hydrophobic polyvinylidene fluoride fibers as the repellent components to avoid the formation of capillary water under high humidity. The desorption rate of water molecules increases from 10 to 18 mg min(-1) , while the diameters of polyacrylonitrile fibers reduce from 1.02 to 0.14 µm. Significantly, by introducing the hydroxyl on the surface of polyacrylonitrile nanofibers, rapid adsorption-desorption of the water molecules is observed. Moreover, by constructing a hydrophobic to super-hydrophilic gradient structure, the MVTR increases from 10 346 to 14 066 g m(-2) d(-1) . Interestingly, the prepared fibrous membranes is easy to clean. More importantly, benefiting from enhanced slip effect, the resultant fibrous membranes presented a low air resistance of 86 Pa. A field test in Shanghai shows that the air filter maintains stable PM2.5 purification efficiency of 99.99% at high MVTR during haze event.

  20. Into Thin Air.

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2001-01-01

    Shows how schools are working to avoid the types of equipment, supplies, and maintenance practices that harm indoor air quality. Simple steps to maintaining a cleaner indoor air environment are highlighted as are steps to reducing the problem air quality and the occurrence of asthma. (GR)

  1. Indoor Air Quality Manual.

    ERIC Educational Resources Information Center

    Baldwin Union Free School District, NY.

    This manual identifies ways to improve a school's indoor air quality (IAQ) and discusses practical actions that can be carried out by school staff in managing air quality. The manual includes discussions of the many sources contributing to school indoor air pollution and the preventive planning for each including renovation and repair work,…

  2. Air Sensor Guidebook

    EPA Science Inventory

    This Air Sensor Guidebook has been developed by the U.S. EPA to assist those interested in potentially using lower cost air quality sensor technologies for air quality measurements. Its development was in direct response to a request for such a document following a recent scienti...

  3. Modelling Hot Air Balloons.

    ERIC Educational Resources Information Center

    Brimicombe, M. W.

    1991-01-01

    A macroscopic way of modeling hot air balloons using a Newtonian approach is presented. Misleading examples using a car tire and the concept of hot air rising are discussed. Pressure gradient changes in the atmosphere are used to explain how hot air balloons work. (KR)

  4. Air Pollution Training Programs.

    ERIC Educational Resources Information Center

    Public Health Service (DHEW), Rockville, MD.

    This catalog lists the universities, both supported and not supported by the Division of Air Pollution, which offer graduate programs in the field of air pollution. The catalog briefly describes the programs and their entrance requirements, the requirements, qualifications and terms of special fellowships offered by the Division of Air Pollution.…

  5. Clean Air Act Text

    EPA Pesticide Factsheets

    The Clean Air Act is the law that defines EPA's responsibilities for protecting and improving the nation's air quality and the stratospheric ozone layer. The last major change in the law, the Clean Air Act Amendments of 1990, enacted in 1990 by Congress.

  6. Use of Escherichia coli for the production and purification of membrane proteins.

    PubMed

    Postis, Vincent G L; Rawlings, Andrea E; Lesiuk, Amelia; Baldwin, Stephen A

    2013-01-01

    Individual types of ion channels and other membrane proteins are typically expressed only at low levels in their native membranes, rendering their isolation by conventional purification techniques difficult. The heterologous over-expression of such proteins is therefore usually a prerequisite for their purification in amounts suitable for structural and for many functional investigations. The most straightforward expression host, suitable for prokaryote membrane proteins and some proteins from eukaryotes, is the bacterium Escherichia coli. Here we describe the use of this expression system for production of functionally active polytopic membrane proteins and methods for their purification by affinity chromatography in amounts up to tens of milligrams.

  7. Application of RNase in the purification of RNA-binding proteins

    PubMed Central

    Kang, Jonghoon; Lee, Myung Soog; Gorenstein, David G.

    2007-01-01

    Basic findings It was found that RNA-binding proteins can be contaminated with host RNA during purification. The contamination of purified RNA-binding protein with RNA was identified by gel electrophoresis and EtBr staining. Our data suggest that applications of appropriate enzymes (DNase or RNase) in the early stage of purification may remove the contaminating nucleic acids. Significance The concept introduced in this research can easily be extended to the purification of other RNA- or DNA-binding proteins by applying RNase or DNase directly to the cell extracts. PMID:17400170

  8. [Assessment of schemes for sewage purification from petroleum products, by using various flotation methods].

    PubMed

    Zabuga, G A; Filippova, T M; Sivkov, A A

    2010-01-01

    Petroleum products are the most common pollutants in petroleum refinery wastewater and are freed from the latter by flotation that is one of the most frequently applied physicochemical methods. The existing petroleum refinery OAO "Angara Petroleum Company" scheme for sewage purification from petroleum products, by using pressure flotation and proposed as a competitive purification scheme by applying electrical and impeller flotations underwent a comparative ecologoeconomic analysis. The use of electrical flotation instead of pressure flotation and that of an impeller flotation-electrical flotation system instead of a mechanical purification-pressure flotation one can considerably lower the concentration of petroleum products at the wastewater outlet into the Angara river.

  9. Recombinant expression and purification of "virus-like" bacterial encapsulin protein cages.

    PubMed

    Rurup, W Frederik; Cornelissen, Jeroen J L M; Koay, Melissa S T

    2015-01-01

    Ultracentrifugation, particularly the use of sucrose or cesium chloride density gradients, is a highly reliable and efficient technique for the purification of virus-like particles and protein cages. Since virus-like particles and protein cages have a unique size compared to cellular macromolecules and organelles, the rate of migration can be used as a tool for purification. Here we describe a detailed protocol for the purification of recently discovered virus-like assemblies called bacterial encapsulins from Thermotoga maritima and Brevibacterium linens.

  10. Air Conditioning Does Reduce Air Pollution Indoors

    ERIC Educational Resources Information Center

    Healy, Bud

    1970-01-01

    Report of the winter meeting of the American Society of Heating, Refrigerating and Air-Conditioning Engineers. Subjects covered are--(1) title subject, (2) predictions for the human habitat in 1994, (3) fans, and (4) fire safety in buildings. (JW)

  11. Air Parity: Re-Discovering Contested Air Operations

    DTIC Science & Technology

    2016-06-01

    AIR PARITY: RE-DISCOVERING CONTESTED AIR OPERATIONS BY CHRISTOPHER LAZIDIS A THESIS PRESENTED TO THE FACULTY OF...THE SCHOOL OF ADVANCED AIR AND SPACE STUDIES FOR COMPLETION OF GRADUATION REQUIREMENTS SCHOOL OF ADVANCED AIR AND SPACE STUDIES AIR ...UNIVERSITY MAXWELL AIR FORCE BASE, ALABAMA JUNE 2016 DISTRIBUTION A. Approved for public release: distribution unlimited ii APPROVAL The

  12. Air Conditioner/Dehumidifier

    NASA Technical Reports Server (NTRS)

    1986-01-01

    An ordinary air conditioner in a very humid environment must overcool the room air, then reheat it. Mr. Dinh, a former STAC associate, devised a heat pipe based humidifier under a NASA Contract. The system used heat pipes to precool the air; the air conditioner's cooling coil removes heat and humidity, then the heat pipes restore the overcooled air to a comfortable temperature. The heat pipes use no energy, and typical savings are from 15-20%. The Dinh Company also manufactures a "Z" coil, a retrofit cooling coil which may be installed on an existing heater/air conditioner. It will also provide free hot water. The company has also developed a photovoltaic air conditioner and solar powered water pump.

  13. Health Effects of Air Pollution

    MedlinePlus

    ... Health effects of air pollution Health effects of air pollution Breathing air that is not clean can hurt ... important to know about the health effects that air pollution can have on you and others. Once you ...

  14. Stability, purification, and applications of bromelain: A review.

    PubMed

    de Lencastre Novaes, Letícia Celia; Jozala, Angela Faustino; Lopes, André Moreni; de Carvalho Santos-Ebinuma, Valéria; Mazzola, Priscila Gava; Pessoa Junior, Adalberto

    2016-01-01

    Bromelain is a cysteine protease found in pineapple tissue. Because of its anti-inflammatory and anti-cancer activities, as well as its ability to induce apoptotic cell death, bromelain has proved useful in several therapeutic areas. The market for this protease is growing, and several studies exploring various properties of this molecule have been reported. This review aims to compile this data, and summarize the main findings on bromelain in the literature to date. The physicochemical properties and stability of bromelain under different conditions are discussed. Several studies on the purification of bromelain from crude extracts using a wide range of techniques such as liquid-liquid extractions by aqueous two-phase system, ultrafiltration, precipitation, and chromatography, have been reported. Finally, the various applications of bromelain are presented. This review therefore covers the main properties of bromelain, aiming to provide an up-to-date compilation of the data reported on this enzyme.

  15. ALTERNATIVE MATERIALS TO PD MEMBRANES FOR HYDROGEN PURIFICATION

    SciTech Connect

    Adams, T; Paul Korinko, P

    2007-11-13

    Development of advanced hydrogen separation membranes in support of hydrogen production processes such as coal gasification and as front end gas purifiers for fuel cell based system is paramount to the successful implementation of a national hydrogen economy. Current generation metallic hydrogen separation membranes are based on Pd-alloys. Although the technology has proven successful, at issue is the high cost of palladium. Evaluation of non-noble metal based dense metallic separation membranes is currently receiving national and international attention. The focal point of the reported work was to evaluate two different classes of materials for potential replacement of conventional Pd-alloy purification/diffuser membranes. Crystalline V-Ni-Ti and Amorphous Fe- and Co-based metallic glass alloys have been evaluated using both electrochemical and gaseous hydrogen permeation testing techniques..

  16. DEVELOPMENT OF A NON-NOBLE METAL HYDROGEN PURIFICATION SYSTEM

    SciTech Connect

    Korinko, P; Kyle Brinkman, K; Thad Adams, T; George Rawls, G

    2008-11-25

    Development of advanced hydrogen separation membranes in support of hydrogen production processes such as coal gasification and as front end gas purifiers for fuel cell based system is paramount to the successful implementation of a national hydrogen economy. Current generation metallic hydrogen separation membranes are based on Pd-alloys. Although the technology has proven successful, at issue is the high cost of palladium. Evaluation of non-noble metal based dense metallic separation membranes is currently receiving national and international attention. The focus of the reported work was to develop a scaled reactor with a VNi-Ti alloy membrane to replace a production Pd-alloy tube-type purification/diffuser system.

  17. Circulation and Purification in the LUX-ZEPLIN System Test

    NASA Astrophysics Data System (ADS)

    Alsum, Shaun; Lz Collaboration

    2016-03-01

    LZ is a dark-matter direct detection experiment whose detector is a two-phase TPC using approximately seven tons of active xenon as its scintillator. The xenon must have few electronegative impurities to ensure sufficient electron transport through the drift region. The LZ purification system is being prototyped in the LZ system test, a test platform located at SLAC using about 100kg of Xenon, which consists of gas circulation through a SAES getter. We utilize a dual-phase and a gas-phase heat exchanger to reduce needed cooling power. To achieve this circulation we employ an all metal seal triple diaphragm pump, also prototyped in the System Test. This talk will present early results from the system test as well as some baseline LZ designs. The LUX-ZEPLIN dark matter direct detection experiment.

  18. Functionalizing Microporous Membranes for Protein Purification and Protein Digestion.

    PubMed

    Dong, Jinlan; Bruening, Merlin L

    2015-01-01

    This review examines advances in the functionalization of microporous membranes for protein purification and the development of protease-containing membranes for controlled protein digestion prior to mass spectrometry analysis. Recent studies confirm that membranes are superior to bead-based columns for rapid protein capture, presumably because convective mass transport in membrane pores rapidly brings proteins to binding sites. Modification of porous membranes with functional polymeric films or TiO₂ nanoparticles yields materials that selectively capture species ranging from phosphopeptides to His-tagged proteins, and protein-binding capacities often exceed those of commercial beads. Thin membranes also provide a convenient framework for creating enzyme-containing reactors that afford control over residence times. With millisecond residence times, reactors with immobilized proteases limit protein digestion to increase sequence coverage in mass spectrometry analysis and facilitate elucidation of protein structures. This review emphasizes the advantages of membrane-based techniques and concludes with some challenges for their practical application.

  19. Phase separation in the isolation and purification of membrane proteins.

    PubMed

    Arnold, Thomas; Linke, Dirk

    2007-10-01

    Phase separation is a simple, efficient, and cheap method to purify and concentrate detergent-solubilized membrane proteins. In spite of this, phase separation is not widely used or even known among membrane protein scientists, and ready-to-use protocols are available for only relatively few detergent/membrane protein combinations. Here, we summarize the physical and chemical parameters that influence the phase separation behavior of detergents commonly used for membrane protein studies. Examples for the successful purification of membrane proteins using this method with different classes of detergents are provided. As the choice of the detergent is critical in many downstream applications (e.g., membrane protein crystallization or functional assays), we discuss how new phase separation protocols can be developed for a given detergent buffer system.

  20. Functionalizing Microporous Membranes for Protein Purification and Protein Digestion

    NASA Astrophysics Data System (ADS)

    Dong, Jinlan; Bruening, Merlin L.

    2015-07-01

    This review examines advances in the functionalization of microporous membranes for protein purification and the development of protease-containing membranes for controlled protein digestion prior to mass spectrometry analysis. Recent studies confirm that membranes are superior to bead-based columns for rapid protein capture, presumably because convective mass transport in membrane pores rapidly brings proteins to binding sites. Modification of porous membranes with functional polymeric films or TiO2 nanoparticles yields materials that selectively capture species ranging from phosphopeptides to His-tagged proteins, and protein-binding capacities often exceed those of commercial beads. Thin membranes also provide a convenient framework for creating enzyme-containing reactors that afford control over residence times. With millisecond residence times, reactors with immobilized proteases limit protein digestion to increase sequence coverage in mass spectrometry analysis and facilitate elucidation of protein structures. This review emphasizes the advantages of membrane-based techniques and concludes with some challenges for their practical application.

  1. Model-based design of peptide chromatographic purification processes.

    PubMed

    Gétaz, David; Stroehlein, Guido; Butté, Alessandro; Morbidelli, Massimo

    2013-04-05

    In this work we present a general procedure for the model-based optimization of a polypeptide crude mixture purification process through its application to a case of industrial relevance. This is done to show how much modeling can be beneficial to optimize complex chromatographic processes in the industrial environment. The target peptide elution profile was modeled with a two sites adsorption equilibrium isotherm exhibiting two inflection points. The variation of the isotherm parameters with the modifier concentration was accounted for. The adsorption isotherm parameters of the target peptide were obtained by the inverse method. The elution of the impurities was approximated by lumping them into pseudo-impurities and by regressing their adsorption isotherm parameters directly as a function of the corresponding parameters of the target peptide. After model calibration and validation by comparison with suitable experimental data, Pareto optimizations of the process were carried out so as to select the optimal batch process.

  2. Purification and characterisation of antigenic gliadins in coeliac disease.

    PubMed

    Sjöström, H; Friis, S U; Norén, O; Anthonsen, D

    1992-05-15

    Two gliadins, known to be especially antigenic in coeliac disease, were purified to homogeneity by a series of ion-exchange chromatography steps. Their N-terminal amino acid sequences showed minor differences but clearly classified them as gamma-type gliadins. The purified gliadins were further characterised with respect to amino acid composition, molecular mass and E1(1%)cm at 276 nm. Based on these properties it is suggested that one of them is identical to a gamma-type gliadin, earlier characterised by its nucleotide sequence, whereas the other has not previously been described. The purification procedure may form the basis for the development of a more differentiated analysis of circulating antibodies for diagnosis and makes clinical testing of the toxicity of defined gliadin peptides feasible.

  3. Affinity Monolith-Integrated Microchips for Protein Purification and Concentration.

    PubMed

    Gao, Changlu; Sun, Xiuhua; Wang, Huaixin; Qiao, Wei; Hu, Bo

    2016-01-01

    Affinity chromatography is a valuable method to purify and concentrate minute amount of proteins. Monoliths with epoxy groups for affinity immobilization were prepared by direct in-situ photopolymerization of glycidyl methacrylate and ethylene glycol dimethacrylate in porogenic solvents consisting of 1-dodecanol and cyclohexanol. By integrating affinity monoliths onto a microfluidic system, targeted biomolecules can be captured and retained on affinity column, while other biomolecules having no specific interactions toward the immobilized ligands flow through the microchannel. Therefore, proteins which remain on the affinity column are purified and concentrated, and then eluted by appropriate solutions and finally, separated by microchip capillary electrophoresis. This integrated microfluidic device has been applied to the purification and separation of specific proteins (FITC-labeled human serum albumin and IgG) in a mixture.

  4. Tandem affinity purification vectors for use in gram positive bacteria.

    PubMed

    Yang, Xiao; Doherty, Geoff P; Lewis, Peter J

    2008-01-01

    Tandem affinity purification has become a valuable tool for the isolation of protein complexes. Here we describe the construction and use of a series of plasmid vectors for Gram positive bacteria. The vectors utilize the SPA tag as well as variants containing a 3C rather than the TEV protease site as 3C protease has been shown to work efficiently at the low temperatures (4 degrees C) used to isolate protein complexes. In addition, a further vector incorporates a GST moiety in place of the 3xFLAG of the SPA tag which provides an additional tagging option for situations where SPA binding may be inefficient. The vectors are all compatible with previously constructed fluorescent protein fusion vectors enabling construction of a suite of affinity and fluorescently tagged genes using a single PCR product.

  5. Antibiotics from Pseudomonas reptilivora II. Isolation, Purification, and Properties1

    PubMed Central

    Del Rio, Luís A.; Gorgé, J. López; Olivares, J.; Mayor, F.

    1972-01-01

    Under well-established culture conditions, Pseudomonas reptilivora produced several antibiotics that have been purified by solvent extraction, chromatography in Sephadex G-25, electrophoresis, and paper chromatography in different solvent systems. Activity has been monitored at the different steps of isolation and purification by measurement of the inhibition of the growth of Staphylococcus aureus by the cylinder-plate method, as well as by bioautography of chromatograms and electropherograms. Three antibiotics have been isolated and named A, B1, and B2. The B1 and B2 activities were studied in greater detail than A. The B1 substance was crystallized, and its chemical properties were found to coincide with those of YC 73 or fluopsin C described by Egawa et al. and Itoh et al., respectively. Images PMID:4790558

  6. Purification and biological effects of Araucaria angustifolia (Araucariaceae) seed lectin

    SciTech Connect

    Santi-Gadelha, Tatiane; Almeida Gadelha, Carlos Alberto de; Aragao, Karoline Saboia; Gomes, Raphaela Cardoso; Freitas Pires, Alana de; Toyama, Marcos Hikari; Oliveira Toyama, Daniela de; Nunes de Alencar, Nylane Maria; Criddle, David Neil; Assreuy, Ana Maria Sampaio . E-mail: assreuy@uece.br; Cavada, Benildo Sousa . E-mail: bscavada@ufc.br

    2006-12-01

    This paper describes the purification and characterization of a new N-acetyl-D-glucosamine-specific lectin from Araucaria angustifolia (AaL) seeds (Araucariaceae) and its anti-inflammatory and antibacterial activities. AaL was purified using a combination of affinity chromatography on a chitin column and ion exchange chromatography on Sephacel-DEAE. The pure protein has 8.0 kDa (SDS-PAGE) and specifically agglutinates rabbit erythrocytes, effect that was independent of the presence of divalent cations and was inhibited after incubation with glucose and N-acetyl-D-glucosamine. AaL showed antibacterial activity against Gram-negative and Gram-positive strains, shown by scanning electron microscopy. AaL, intravenously injected into rats, showed anti-inflammatory effect, via carbohydrate site interaction, in the models of paw edema and peritonitis. This lectin can be used as a tool for studying bacterial infections and inflammatory processes.

  7. Magnetite decorated activated carbon composites for water purification

    NASA Astrophysics Data System (ADS)

    Barala, Sunil Kumar; Arora, Manju; Saini, Parveen

    2013-06-01

    Activated carbon decorated with magnetite (ACMG) nanoparticles composites have been prepared by facile method via impregnation of AC with stable dispersion of superparamagnetic MG nanoparticles followed by drying. These composites exhibit both magnetic and porosity behavior which can be easily optimized by controlling the weight ratio of two phases. The structural, magnetic, thermal and morphological properties of these as synthesized ACMG samples were characterized by powder XRD, FTIR, VSM and SEM techniques. The ACMG powder has been used for water purification having methylene blue (MB) dye as an impurity. The nanoporosity of these composites allow rapid adsorption of MB and their magnetic behavior helps in single step separation of MB adsorbed ACMG particles by the application of external magnetic field.

  8. Methods of purification of CTL-derived exosomes.

    PubMed

    Montecalvo, Angela; Larregina, Adriana T; Morelli, Adrian E

    2014-01-01

    Exosomes are membrane nanovesicles (approximately <120 nm in size) released by most, if not all, living cells and in particular by leukocytes. They originate within the endocytic compartment by invagination of the endosome membrane. Therefore, they have a different biogenesis and molecular composition than microvesicles (>0.2 μm) shed from the plasma membrane. Although the functions of exosomes in vivo are beginning to be elucidated, increasing evidence suggests that exosomes constitute a mechanism of cell-to-cell communication, transferring antigens, proteins, mRNAs, and noncoding RNAs among cells. Interestingly, effector T cells including cytotoxic T lymphocytes (CTLs) release death-inducing molecules of the TNF superfamily through exosomes contained in their cytotoxic granules. The present chapter provides basic protocols for purification of exosomes secreted by CTLs.

  9. Studies on the purification of rat liver uridine diphosphate glucuronyltransferase.

    PubMed Central

    Burchell, B

    1977-01-01

    1. A stable, more highly purified, preparation of UDP-glucuronyltransferase was obtained than previously reported. 2. Enzyme activity towards o-aminophenyl and p-nitrophenyl was increased 43- and 46-fold respectively. 3. The final preparation contains only three staining polypeptide bands visible after sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. 4. The only known major accompanying protein appears to be epoxide hydratase. 5. The purified enzyme activity towards o-aminophenol can still be activated 3 fold by diethylnitrosamine. 6. On evidence from purification, o-aminophenol and p-nitrophenol appear to be glucuronidated by the same enzyme protein. The possible recognition of the UDP-glucuronyltransferase enzyme is discussed. Images PLATE 1 PMID:403910

  10. Rapid purification of cytochrome c oxidase from Paracoccus denitrificans.

    PubMed

    Steffens, G C; Pascual, E; Buse, G

    1990-11-23

    Two methods are described for the purification of cytochrome c oxidase from Triton X-100 extracts of the periplasma membrane of Paracoccus denitrificans. The first is a large-scale procedure for the preparation of 100-250 nmol of cytochrome c oxidase (10-20 mg) in 1 week. The second is a rapid procedure for isolating up to 25 nmol in 2-3 days. Owing to the high yields given by fast protein liquid chromatography (FPLC) on Mono Q columns, the overall yield is about 20%, whereas the yield in many other previously published procedures does not exceed 10%. The use of FPLC on Mono Q also offers a considerable saving of time.

  11. Purification and two-dimensional crystallization of bacterial cytochrome oxidases.

    PubMed

    Warne, A; Wang, D N; Saraste, M

    1995-12-01

    A novel strategy which employes chromatography on an immobilized metal ion has been developed for the purification of bacterial cytochrome c and quinol oxidases. Many bacterial oxidase complexes appear to have a natural affinity to bind to the chelated copper ion. A combination of three different chromatographic principles (anion exchange, metal-affinity and gel filtration) makes an effective tool chest for the preparation of homogeneous and protein-chemically pure bacterial oxidases. These preparations have been used for two-dimensional crystallization. Until now, crystals have been obtained using the Paracococcus denitrificans and Rhodobacter sphaeroides cytochrome aa3 and the Escherichia coli cytochrome bo. The crystals diffract to approximately 2.5 nm in negative stain and have potential for further structural studies.

  12. Purification and partial characterization of myosin II from rat testis.

    PubMed

    Dias, Decivaldo dos Santos; Coelho, Milton Vieira

    2007-10-01

    The intent, in this work, was to isolate rat testis myosin II. Testis 40,000 x g x 40' supernatant was frozen at -20 degrees C for 48 h and, after it was thawed and centrifuged. The precipitate, after washed twice, was enriched in three polypeptides bands: p205, p43 and one that migrated together with the front of the gel. These polypeptides were solubilized in pH 10.8 at 27 degrees C and separated in Sephacryl S-400 column. Three low weight polypeptides co-eluted together with p205. The p205 was marked with anti-myosin II, possess actin-stimulated Mg-ATPase activity and co-sedimented with F-actin in the absence, but not in the presence, of ATP. In the present study, we have been developing a method for purification of myosin II from rat testis.

  13. Characterization and purification of glycosaminoglycans from crude biological samples.

    PubMed

    Davies, N P; Roubin, R H; Whitelock, J M

    2008-01-23

    Chondroitin sulfate (CS) is a glycosaminoglycan derived from cartilage and commonly used to treat osteoarthritis, psoriasis, and other conditions. The dimethylmethylene blue (DMMB) assay has been used often to measure glycosaminoglycan levels in relatively pure samples. In this study, we verified the accuracy of the DMMB assay in measuring CS levels in unpurified extract from bovine trachea and shark cartilage, despite potential interference from salts, proteins, and DNA. We found that the glycosaminoglycan signal obtained was due to CS and not to other glycosaminoglycan species. This was confirmed using fluorophore-assisted carbohydrate electrophoresis, which also revealed that the majority of the CS was monosulfated at the C4 or C6 position. Finally, we used anion-exchange chromatography to purify the bovine extract and obtained complete recovery of the glycosaminoglycans, with no contaminating protein. The results of this study should be very useful for future purification and analysis of this common supplement.

  14. Extraction and Purification of Phlorotannins from Brown Algae.

    PubMed

    Gall, Erwan Ar; Lelchat, Florian; Hupel, Mélanie; Jégou, Camille; Stiger-Pouvreau, Valérie

    2015-01-01

    The interest in the physiological roles and bioactivities of plant phenols has increased over the past decades. In seaweeds, many investigations have dealt with phenolic compounds of Phaeophyceae (phlorotannins), even though little is known so far about the ecophysiological variations of their pool or their biosynthetic pathways. We describe here a simple procedure based on the use of water-organic solvent mixtures for the extraction of phlorotannins. Crude extracts are semi-purified and fractionated by separating methods based on both the polarity and the molecular size of compounds. Phenols are then quantified by the Folin-Ciocalteu method and their radical-scavenging activity is characterized using the DPPH test. All along the purification process of phenolic compounds, the efficiency of separation is assessed by (1)H-NMR.

  15. Error filtration and entanglement purification for quantum communication

    SciTech Connect

    Gisin, N.; Linden, N.; Massar, S.; Popescu, S.

    2005-07-15

    The key realization that led to the emergence of the new field of quantum information processing is that quantum mechanics, the theory that describes microscopic particles, allows the processing of information in fundamentally new ways. But just as in classical information processing, errors occur in quantum information processing, and these have to be corrected. A fundamental breakthrough was the realization that quantum error correction is in fact possible. However, most work so far has not been concerned with technological feasibility, but rather with proving that quantum error correction is possible in principle. Here we describe a method for filtering out errors and entanglement purification which is particularly suitable for quantum communication. Our method is conceptually new, and, crucially, it is easy to implement in a wide variety of physical systems with present-day technology and should therefore be of wide applicability.

  16. Purification and Characterization of Pea Chloroplastic Phosphoriboisomerase 12

    PubMed Central

    Skrukrud, Cynthia L.; Gordon, Ilana M.; Dorwin, Sally; Yuan, Xiao-Hua; Johansson, Göte; Anderson, Louise E.

    1991-01-01

    Pea (Pisum sativum L.) chloroplastic phosphoriboisomerase (EC 5.3.1.6) can be purified to apparent homogeneity in less than 2 days time with a 53% yield. Important steps in the purification include heat treatment and pseudoaffinity chromatography on Red H-3BN Sepharose. The purified isomerase has a subunit molecular mass of 26.4 kD. The N-terminal sequence has been determined through 34 residues. pH optima are 7.8 (ribose-5-phosphate) and 7.7 (ribulose-5-phosphate); Km values are 0.9 millimolar (ribose-5-phosphate) and 0.6 millimolar (ribulose-5-phosphate). The enzyme is inhibited by erythrose-4-phosphate, sedoheptulosebisphosphate, glyceraldehyde-3-phosphate, and 3-phosphoglycerate at concentrations close to those found in photosynthesizing chloroplasts. Countercurrent phase partitioning experiments indicate that the pea chloroplastic phosphoriboisomerase interacts physically with phosphoribulokinase. ImagesFigure 1 PMID:16668459

  17. Purification and characterization of purine nucleoside phosphorylase from Proteus vulgaris.

    PubMed Central

    Surette, M; Gill, T; MacLean, S

    1990-01-01

    Purine nucleoside phosphorylase was isolated and purified from cell extracts of Proteus vulgaris recovered from spoiling cod fish (Gadus morhua). The molecular weight and isoelectric point of the enzyme were 120,000 +/- 2,000 and pH 6.8. The Michaelis constant for inosine as substrate was 3.9 x 10(-5). Guanosine also served as a substrate (Km = 2.9 x 10(-5). However, the enzyme was incapable of phosphorylizing adenosine. Adenosine proved to be useful as a competitive inhibitor and was used as a ligand for affinity chromatography of purine nucleoside phosphorylase following initial purification steps of gel filtration and ion-exchange chromatography. PMID:2111121

  18. Distillation and purification of symmetric entangled Gaussian states

    SciTech Connect

    Fiurasek, Jaromir

    2010-10-15

    We propose an entanglement distillation and purification scheme for symmetric two-mode entangled Gaussian states that allows to asymptotically extract a pure entangled Gaussian state from any input entangled symmetric Gaussian state. The proposed scheme is a modified and extended version of the entanglement distillation protocol originally developed by Browne et al. [Phys. Rev. A 67, 062320 (2003)]. A key feature of the present protocol is that it utilizes a two-copy degaussification procedure that involves a Mach-Zehnder interferometer with single-mode non-Gaussian filters inserted in its two arms. The required non-Gaussian filtering operations can be implemented by coherently combining two sequences of single-photon addition and subtraction operations.

  19. FUNDAMENTAL INVESTIGATION ON CONSTRUCTED WETLAND DESIGN FOR WASTE WATER PURIFICATION

    NASA Astrophysics Data System (ADS)

    Ishikawa, Tadaharu; Gao, Shuang

    In designing a constructed wetland for water purification, a homogeneous vegetation bed is often adopted in order to prevent short circuit which reduces the efficiency of SS trapping. However, vegetation naturally becomes inhomogeneous under the action of water flow, causing unexpected short circuit. This paper discusses a possibility to design a channel for a "stable short circuit", which distributes SS to vegetation zones by large horizontal eddies between the channel and vegetation zones. A series of numerical experiments show that even one slightly bended channel can distribute a high ratio of SS supplied through the channel to vegetation zones with the aid of horizontal eddies. This fact suggests that hydraulic design of artificial short circuit can be an alternative strategy for design of constructed wetlands.

  20. Purification of mumps virus particles of high viability.

    PubMed

    Chen, Huosheng; Ngo, Laurie; Petrovskaya, Svetlana; Gao, Yamei; Laassri, Majid; Rubin, Steven

    2016-07-01

    Mumps is a highly infectious viral disease of humans with a wide array of clinical manifestations ranging from painful swelling of the salivary glands to meningitis and encephalitis. Despite the clinical importance of mumps virus, most of what is known of its biological properties comes from studies using supernatants from virus infected cell cultures, which contain substantial levels of host cell derived debris and biologically active substances such as cytokines, transcription factors and secreted virus proteins. These contaminants complicate interpretation of studies of virus replication, virus-host interactions and in vivo virulence. Here we describe a protocol for concentration of the virus from cell culture supernatants followed by gradient purification, resulting in attainment of high titer live virus of high purity.