The Clean Air Status and Trends Network (CASTNET) is a national air quality monitoring network designed to provide data to assess trends in air quality, atmospheric deposition, and ecological effects due to changes in air pollutant emissions.
QUANTIFYING SUBGRID POLLUTANT VARIABILITY IN EULERIAN AIR QUALITY MODELS
In order to properly assess human risk due to exposure to hazardous air pollutants or air toxics, detailed information is needed on the location and magnitude of ambient air toxic concentrations. Regional scale Eulerian air quality models are typically limited to relatively coar...
Poor Air Quality Expected for New England on May 17-18, 2017
New England state air quality forecasters are predicting air quality that is unhealthy for sensitive groups, due to ground-level ozone, in much of CT, northern RI & portions of central and southeastern MA (excluding the Cape and the Islands) for May 17.
40 CFR 51.930 - Mitigation of Exceptional Events.
Code of Federal Regulations, 2010 CFR
2010-07-01
... applicable ambient air quality standard; (2) Provide for public education concerning actions that individuals... Mitigation of Exceptional Events. (a) A State requesting to exclude air quality data due to exceptional... violations of the national ambient air quality standards. At a minimum, the State must: (1) Provide for...
Air quality mapping using GIS and economic evaluation of health impact for Mumbai City, India.
Kumar, Awkash; Gupta, Indrani; Brandt, Jørgen; Kumar, Rakesh; Dikshit, Anil Kumar; Patil, Rashmi S
2016-05-01
Mumbai, a highly populated city in India, has been selected for air quality mapping and assessment of health impact using monitored air quality data. Air quality monitoring networks in Mumbai are operated by National Environment Engineering Research Institute (NEERI), Maharashtra Pollution Control Board (MPCB), and Brihanmumbai Municipal Corporation (BMC). A monitoring station represents air quality at a particular location, while we need spatial variation for air quality management. Here, air quality monitored data of NEERI and BMC were spatially interpolated using various inbuilt interpolation techniques of ArcGIS. Inverse distance weighting (IDW), Kriging (spherical and Gaussian), and spline techniques have been applied for spatial interpolation for this study. The interpolated results of air pollutants sulfur dioxide (SO2), nitrogen dioxide (NO2) and suspended particulate matter (SPM) were compared with air quality data of MPCB in the same region. Comparison of results showed good agreement for predicted values using IDW and Kriging with observed data. Subsequently, health impact assessment of a ward was carried out based on total population of the ward and air quality monitored data within the ward. Finally, health cost within a ward was estimated on the basis of exposed population. This study helps to estimate the valuation of health damage due to air pollution. Operating more air quality monitoring stations for measurement of air quality is highly resource intensive in terms of time and cost. The appropriate spatial interpolation techniques can be used to estimate concentration where air quality monitoring stations are not available. Further, health impact assessment for the population of the city and estimation of economic cost of health damage due to ambient air quality can help to make rational control strategies for environmental management. The total health cost for Mumbai city for the year 2012, with a population of 12.4 million, was estimated as USD8000 million.
NASA Astrophysics Data System (ADS)
Taylan, Osman
2017-02-01
High ozone concentration is an important cause of air pollution mainly due to its role in the greenhouse gas emission. Ozone is produced by photochemical processes which contain nitrogen oxides and volatile organic compounds in the lower atmospheric level. Therefore, monitoring and controlling the quality of air in the urban environment is very important due to the public health care. However, air quality prediction is a highly complex and non-linear process; usually several attributes have to be considered. Artificial intelligent (AI) techniques can be employed to monitor and evaluate the ozone concentration level. The aim of this study is to develop an Adaptive Neuro-Fuzzy inference approach (ANFIS) to determine the influence of peripheral factors on air quality and pollution which is an arising problem due to ozone level in Jeddah city. The concentration of ozone level was considered as a factor to predict the Air Quality (AQ) under the atmospheric conditions. Using Air Quality Standards of Saudi Arabia, ozone concentration level was modelled by employing certain factors such as; nitrogen oxide (NOx), atmospheric pressure, temperature, and relative humidity. Hence, an ANFIS model was developed to observe the ozone concentration level and the model performance was assessed by testing data obtained from the monitoring stations established by the General Authority of Meteorology and Environment Protection of Kingdom of Saudi Arabia. The outcomes of ANFIS model were re-assessed by fuzzy quality charts using quality specification and control limits based on US-EPA air quality standards. The results of present study show that the ANFIS model is a comprehensive approach for the estimation and assessment of ozone level and is a reliable approach to produce more genuine outcomes.
Panama Canal Expansion Illustrates Need for Multimodal Near-Source Air Quality Assessment
The compelling issue raised is potential major changes in goods movement due to the Panama Canal expansion and considerations for near-source air quality. Near-source air quality may be affected both at near-port areas as well as along the freight transportation corridor.
"Changes in US Regional Air Quality at 2030 Simulated Using RCP 6.0"
Recent improvements in air quality in the United States have been due to significant reductions in emissions of ozone and particulate matter (PM) precursors, and these downward emissions trends are expected to continue in the next few decades. To ensure that planned air quality ...
Impacts of Climate Policy on Regional Air Quality, Health, and Air Quality Regulatory Procedures
NASA Astrophysics Data System (ADS)
Thompson, T. M.; Selin, N. E.
2011-12-01
Both the changing climate, and the policy implemented to address climate change can impact regional air quality. We evaluate the impacts of potential selected climate policies on modeled regional air quality with respect to national pollution standards, human health and the sensitivity of health uncertainty ranges. To assess changes in air quality due to climate policy, we couple output from a regional computable general equilibrium economic model (the US Regional Energy Policy [USREP] model), with a regional air quality model (the Comprehensive Air Quality Model with Extensions [CAMx]). USREP uses economic variables to determine how potential future U.S. climate policy would change emissions of regional pollutants (CO, VOC, NOx, SO2, NH3, black carbon, and organic carbon) from ten emissions-heavy sectors of the economy (electricity, coal, gas, crude oil, refined oil, energy intensive industry, other industry, service, agriculture, and transportation [light duty and heavy duty]). Changes in emissions are then modeled using CAMx to determine the impact on air quality in several cities in the Northeast US. We first calculate the impact of climate policy by using regulatory procedures used to show attainment with National Ambient Air Quality Standards (NAAQS) for ozone and particulate matter. Building on previous work, we compare those results with the calculated results and uncertainties associated with human health impacts due to climate policy. This work addresses a potential disconnect between NAAQS regulatory procedures and the cost/benefit analysis required for and by the Clean Air Act.
Effects of building roof greening on air quality in street canyons
NASA Astrophysics Data System (ADS)
Baik, Jong-Jin; Kwak, Kyung-Hwan; Park, Seung-Bu; Ryu, Young-Hee
2012-12-01
Building roof greening is a successful strategy for improving urban thermal environment. It is of theoretical interest and practical importance to study the effects of building roof greening on urban air quality in a systematic and quantitative way. In this study, we examine the effects of building roof greening on air quality in street canyons using a computational fluid dynamics (CFD) model that includes the thermodynamic energy equation and the transport equation of passive, non-reactive pollutants. For simplicity, building roof greening is represented by specified cooling. Results for a simple building configuration with a street canyon aspect ratio of one show that the cool air produced due to building roof greening flows into the street canyon, giving rise to strengthened street canyon flow. The strengthened street canyon flow enhances pollutant dispersion near the road, which decreases pollutant concentration there. Thus, building roof greening improves air quality near the road. The degree of air quality improvement near the road increases as the cooling intensity increases. In the middle region of the street canyon, the air quality can worsen when the cooling intensity is not too strong. Results for a real urban morphology also show that building roof greening improves air quality near roads. The degree of air quality improvement near roads due to building roof greening depends on the ambient wind direction. These findings provide a theoretical foundation for constructing green roofs for the purpose of improving air quality near roads or at a pedestrian level as well as urban thermal environment. Further studies using a CFD model coupled with a photochemistry model and a surface energy balance model are required to evaluate the effects of building roof greening on air quality in street canyons in a more realistic framework.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-13
... emission controls rather than to changes in meteorology, economic conditions, temporary, or voluntary (not... observed improvement in air quality is due to an economic recession, changes in meteorology, or temporary... improvement is due to the economic downturn, temporary changes in meteorology, or voluntary emission...
Cotton harvesting emission factors based on source sampling
USDA-ARS?s Scientific Manuscript database
Air quality regulation across the U.S. is intensifying due to increasing public concern for environmental protection. Non-attainment status with Federal particulate matter (PM) air quality standards has forced air pollution regulators in some states to focus emission reduction efforts on previously ...
The air quality and health impacts of domestic trans-boundary pollution in various regions of China.
Gu, Y; Yim, S H L
2016-12-01
Air pollution is one of the most pressing environmental problems in China. Literature has reported that outdoor air pollution leads to adverse health problems every year in China. Recent measurement studies found the important regional nature of particulates in China. Trans-boundary air pollution within China has yet to be fully understood. This study aimed to comprehensively understand the processes of domestic trans-boundary air pollution in China and to apportion the impacts of emissions in different regions on air quality and public health. We applied a state-of-the-art air quality model to simulate air quality in China and then adapted a form of integrated concentration-response function for China to estimate the resultant amount of premature mortality due to exposures to PM 2.5 . Our findings show that domestic trans-boundary impacts (TBI), on average, account for 27% of the total PM 2.5 in China. We estimated that outdoor air pollution caused ~870,000 (95% CI: 130,000-1500,000) premature mortalities in China in 2010, of which on average 18% are attributed to TBI. Among all the regions, North China is the largest contributor to TBI due to 41% of the health impacts of its emissions occurring in other regions. Taiwan (TW) is the smallest contributor to TBI occurring in China, contributing 2% of the national TBI, while TBI causes 22% of the premature mortalities due to outdoor air pollution in TW. Our findings pinpoint the significant impacts of TBI on public health in China, indicating the need for cross-region cooperation to mitigate the air quality impacts and the nation's resultant health problems. Copyright © 2016 Elsevier Ltd. All rights reserved.
WSN based indoor air quality monitoring in classrooms
NASA Astrophysics Data System (ADS)
Wang, S. K.; Chew, S. P.; Jusoh, M. T.; Khairunissa, A.; Leong, K. Y.; Azid, A. A.
2017-03-01
Indoor air quality monitoring is essential as the human health is directly affected by indoor air quality. This paper presents the investigations of the impact of undergraduate students' concentration during lecture due to the indoor air quality in classroom. Three environmental parameters such as temperature, relative humidity and concentration of carbon dioxide are measured using wireless sensor network based air quality monitoring system. This simple yet reliable system is incorporated with DHT-11 and MG-811 sensors. Two classrooms were selected to install the monitoring system. The level of indoor air quality were measured and students' concentration was assessed using intelligent test during normal lecturing section. The test showed significant correlation between the collected environmental parameters and the students' level of performances in their study.
Regional air quality models are frequently used for regulatory applications to predict changes in air quality due to changes in emissions or changes in meteorology. Dynamic model evaluation is thus an important step in establishing credibility in the model predicted pollutant re...
Validation of smoke plume rise models using ground based lidar
Cyle E. Wold; Shawn Urbanski; Vladimir Kovalev; Alexander Petkov; Wei Min Hao
2010-01-01
Biomass fires can significantly degrade regional air quality. Plume rise height is one of the critical factors determining the impact of fire emissions on air quality. Plume rise models are used to prescribe the vertical distribution of fire emissions which are critical input for smoke dispersion and air quality models. The poor state of model evaluation is due in...
Impact of Climate Change on Air Quality and Public Health in Urban Areas.
Hassan, Noor Artika; Hashim, Zailina; Hashim, Jamal Hisham
2016-03-01
This review discusses how climate undergo changes and the effect of climate change on air quality as well as public health. It also covers the inter relationship between climate and air quality. The air quality discussed here are in relation to the 5 criteria pollutants; ozone (O3), carbon dioxide (CO2), nitrogen dioxide (NO2), sulfur dioxide (SO2), and particulate matter (PM). Urban air pollution is the main concern due to higher anthropogenic activities in urban areas. The implications on health are also discussed. Mitigating measures are presented with the final conclusion. © 2015 APJPH.
Ding, Dian; Zhu, Yun; Jang, Carey; Lin, Che-Jen; Wang, Shuxiao; Fu, Joshua; Gao, Jian; Deng, Shuang; Xie, Junping; Qiu, Xuezhen
2016-04-01
Guangzhou is the capital and largest city (land area: 7287 km(2)) of Guangdong province in South China. The air quality in Guangzhou typically worsens in November due to unfavorable meteorological conditions for pollutant dispersion. During the Guangzhou Asian Games in November 2010, the Guangzhou government carried out a number of emission control measures that significantly improved the air quality. In this paper, we estimated the acute health outcome changes related to the air quality improvement during the 2010 Guangzhou Asian Games using a next-generation, fully-integrated assessment system for air quality and health benefits. This advanced system generates air quality data by fusing model and monitoring data instead of using monitoring data alone, which provides more reliable results. The air quality estimates retain the spatial distribution of model results while calibrating the value with observations. The results show that the mean PM2.5 concentration in November 2010 decreased by 3.5 μg/m(3) compared to that in 2009 due to the emission control measures. From the analysis, we estimate that the air quality improvement avoided 106 premature deaths, 1869 cases of hospital admission, and 20,026 cases of outpatient visits. The overall cost benefit of the improved air quality is estimated to be 165 million CNY, with the avoided premature death contributing 90% of this figure. The research demonstrates that BenMAP-CE is capable of assessing the health and cost benefits of air pollution control for sound policy making. Copyright © 2015. Published by Elsevier B.V.
Linking Air Quality and Human Health Effects Models: An Application to the Los Angeles Air Basin
Stewart, Devoun R; Saunders, Emily; Perea, Roberto A; Fitzgerald, Rosa; Campbell, David E; Stockwell, William R
2017-01-01
Proposed emission control strategies for reducing ozone and particulate matter are evaluated better when air quality and health effects models are used together. The Community Multiscale Air Quality (CMAQ) model is the US Environmental Protection Agency’s model for determining public policy and forecasting air quality. CMAQ was used to forecast air quality changes due to several emission control strategies that could be implemented between 2008 and 2030 for the South Coast Air Basin that includes Los Angeles. The Environmental Benefits Mapping and Analysis Program—Community Edition (BenMAP-CE) was used to estimate health and economic impacts of the different emission control strategies based on CMAQ simulations. BenMAP-CE is a computer program based on epidemiologic studies that link human health and air quality. This modeling approach is better for determining optimum public policy than approaches that only examine concentration changes. PMID:29162976
Linking Air Quality and Human Health Effects Models: An Application to the Los Angeles Air Basin.
Stewart, Devoun R; Saunders, Emily; Perea, Roberto A; Fitzgerald, Rosa; Campbell, David E; Stockwell, William R
2017-01-01
Proposed emission control strategies for reducing ozone and particulate matter are evaluated better when air quality and health effects models are used together. The Community Multiscale Air Quality (CMAQ) model is the US Environmental Protection Agency's model for determining public policy and forecasting air quality. CMAQ was used to forecast air quality changes due to several emission control strategies that could be implemented between 2008 and 2030 for the South Coast Air Basin that includes Los Angeles. The Environmental Benefits Mapping and Analysis Program-Community Edition (BenMAP-CE) was used to estimate health and economic impacts of the different emission control strategies based on CMAQ simulations. BenMAP-CE is a computer program based on epidemiologic studies that link human health and air quality. This modeling approach is better for determining optimum public policy than approaches that only examine concentration changes.
SELECTED AIR QUALITY TRENDS AND RECENT AIR POLLUTION INVESTIGATIONS IN THE U.S.-MEXICO BORDER REGION
The thirteen journal articles in this issue deal with air quality indicators due, in part, to population growth, cross-border traffic, and economic expansion since ratification of NAFTA; regions covered span from Tijuana, Baja California to Brownsville, Texas. This introductio...
Projecting Changes in Climate & Air Quality for the Southeastern U.S.
Recent improvements in air quality in the United States have been due to significant reductions in emissions of precursors of ozone and particulate matter (PM), and these downward emissions trends are expected to continue in the next few decades. To ensure that planned air quali...
Reduced-form air quality modeling for community-scale ...
Transportation plays an important role in modern society, but its impact on air quality has been shown to have significant adverse effects on public health. Numerous reviews (HEI, CDC, WHO) summarizing findings of hundreds of studies conducted mainly in the last decade, conclude that exposures to traffic emissions near roads are a public health concern. The Community LINE Source Model (C-LINE) is a web-based model designed to inform the community user of local air quality impacts due to roadway vehicles in their region of interest using a simplified modeling approach. Reduced-form air quality modeling is a useful tool for examining what-if scenarios of changes in emissions, such as those due to changes in traffic volume, fleet mix, or vehicle speed. Examining various scenarios of air quality impacts in this way can identify potentially at-risk populations located near roadways, and the effects that a change in traffic activity may have on them. C-LINE computes dispersion of primary mobile source pollutants using meteorological conditions for the region of interest and computes air-quality concentrations corresponding to these selected conditions. C-LINE functionality has been expanded to model emissions from port-related activities (e.g. ships, trucks, cranes, etc.) in a reduced-form modeling system for local-scale near-port air quality analysis. This presentation describes the Community modeling tools C-LINE and C-PORT that are intended to be used by local gove
Large Gain in Air Quality Compared to an Alternative Anthropogenic Emissions Scenario
NASA Technical Reports Server (NTRS)
Daskalakis, Nikos; Tsigaridis, Kostas; Myriokefalitakis, Stelios; Fanourgakis, George S.; Kanakidou, Maria
2016-01-01
During the last 30 years, significant effort has been made to improve air quality through legislation for emissions reduction. Global three-dimensional chemistrytransport simulations of atmospheric composition over the past 3 decades have been performed to estimate what the air quality levels would have been under a scenario of stagnation of anthropogenic emissions per capita as in 1980, accounting for the population increase (BA1980) or using the standard practice of neglecting it (AE1980), and how they compare to the historical changes in air quality levels. The simulations are based on assimilated meteorology to account for the yearto- year observed climate variability and on different scenarios of anthropogenic emissions of pollutants. The ACCMIP historical emissions dataset is used as the starting point. Our sensitivity simulations provide clear indications that air quality legislation and technology developments have limited the rapid increase of air pollutants. The achieved reductions in concentrations of nitrogen oxides, carbon monoxide, black carbon, and sulfate aerosols are found to be significant when comparing to both BA1980 and AE1980 simulations that neglect any measures applied for the protection of the environment. We also show the potentially large tropospheric air quality benefit from the development of cleaner technology used by the growing global population. These 30-year hindcast sensitivity simulations demonstrate that the actual benefit in air quality due to air pollution legislation and technological advances is higher than the gain calculated by a simple comparison against a constant anthropogenic emissions simulation, as is usually done. Our results also indicate that over China and India the beneficial technological advances for the air quality may have been masked by the explosive increase in local population and the disproportional increase in energy demand partially due to the globalization of the economy.
NASA Astrophysics Data System (ADS)
Lee, Y. H.; Shindell, D. T.; Faluvegi, G.; Pinder, R. W.
2015-11-01
We have investigated how future air quality and climate change are influenced by the US air quality regulations that existed or were proposed in 2013 and a hypothetical climate mitigation policy that reduces 2050 CO2 emissions to be 50 % below 2005 emissions. Using NASA GISS ModelE2, we look at the impacts in year 2030 and 2055. The US energy-sector emissions are from the GLIMPSE project (GEOS-Chem LIDORT Integrated with MARKAL for the Purpose of Scenario Exploration), and other US emissions and the rest of the world emissions are based on the RCP4.5 scenario. The US air quality regulations are projected to have a strong beneficial impact on US air quality and public health in the future but result in positive radiative forcing. Surface PM2.5 is reduced by ~ 2 μg m-3 on average over the US, and surface ozone by ~ 8 ppbv. The improved air quality prevents about 91 400 premature deaths in the US, mainly due to the PM2.5 reduction (~ 74 200 lives saved). The air quality regulations reduces the light-reflecting aerosols (i.e., sulfate and organic matter) more than the light-absorbing species (i.e., black carbon and ozone), leading a strong positive radiative forcing (RF) by both aerosols direct and indirect forcing: total RF is ~ 0.04 W m-2 over the globe; ~ 0.8 W m-2 over the US. Under the hypothetical climate policy, future US energy relies less on coal and thus SO2 emissions are noticeably reduced. This provides air quality co-benefits, but it leads to climate dis-benefits over the US. In 2055, the US mean total RF is +0.22 W m-2 due to positive aerosol direct and indirect forcing, while the global mean total RF is -0.06 W m-2 due to the dominant negative CO2 RF (instantaneous RF). To achieve a regional-scale climate benefit via a climate policy, it is critical (1) to have multi-national efforts to reduce GHGs emissions and (2) to target emission reduction of light-absorbing species (e.g., BC and O3) on top of long-lived species. The latter is very desirable as the resulting climate benefit occurs faster and provides co-benefits to air quality and public health.
Comparison of ground based indices (API and AQI) with satellite based aerosol products.
Zheng, Sheng; Cao, Chun-Xiang; Singh, Ramesh P
2014-08-01
Air quality in mega cities is one of the major concerns due to serious health issues and its indirect impact to the climate. Among mega cities, Beijing city is considered as one of the densely populated cities with extremely poor air quality. The meteorological parameters (wind, surface temperature, air temperature and relative humidity) control the dynamics and dispersion of air pollution. China National Environmental Monitoring Centre (CNEMC) started air pollution index (API) as of 2000 to evaluate air quality, but over the years, it was felt that the air quality is not well represented by API. Recently, the Ministry of Environmental Protection (MEP) of the People's Republic of China (PRC) started using a new index "air quality index (AQI)" from January 2013. We have compared API and AQI with three different MODIS (MODIS - Moderate Resolution Imaging SpectroRadiometer, onboard the Terra/Aqua satellites) AOD (aerosol optical depth) products for ten months, January-October, 2013. The correlation between AQI and Aqua Deep Blue AOD was found to be reasonably good as compared with API, mainly due to inclusion of PM2.5 in the calculation of AQI. In addition, for every month, the correlation coefficient between AQI and Aqua Deep Blue AOD was found to be relatively higher in the month of February to May. According to the monthly average distribution of precipitation, temperature, and PM10, the air quality in the months of June-September was better as compared to those in the months of February-May. AQI and Aqua Deep Blue AOD show highly polluted days associated with dust event, representing true air quality of Beijing. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Farkas, C. M.; Moeller, M.; Carlton, A. G.
2013-12-01
Photochemical transport models routinely under predict peak air quality events. This deficiency may be due, in part, to inadequate temporalization of emissions from the electric generating sector. The National Emissions Inventory (NEI) reports emissions from Electric Generating Units (EGUs) by either Continuous Emission Monitors (CEMs) that report hourly values or as an annual total. The Sparse Matrix Operator Kernel Emissions preprocessor (SMOKE), used to prepare emissions data for modeling with the CMAQ air quality model, allocates annual emission totals throughout the year using specific monthly, weekly, and hourly weights according to standard classification code (SCC) and location. This approach represents average diurnal and seasonal patterns of electricity generation but does not capture spikes in emissions due to episodic use as with peaking units or due to extreme weather events. In this project we use a combination of state air quality permits, CEM data, and EPA emission factors to more accurately temporalize emissions of NOx, SO2 and particulate matter (PM) during the extensive heat wave of July and August 2006. Two CMAQ simulations are conducted; the first with the base NEI emissions and the second with improved temporalization, more representative of actual emissions during the heat wave. Predictions from both simulations are evaluated with O3 and PM measurement data from EPA's National Air Monitoring Stations (NAMS) and State and Local Air Monitoring Stations (SLAMS) during the heat wave, for which ambient concentrations of criteria pollutants were often above NAAQS. During periods of increased photochemistry and high pollutant concentrations, it is critical that emissions are most accurately represented in air quality models.
Ports Primer: 7.2 Air Emissions
Near-port communities are often disproportionately impacted by air emissions due to port operations, goods movement operations and other industries that may be co-located with ports. Air emissions at ports also impact regional air quality.
Isopropyl Alcohol Volatile Sensor Development for In-Flight Air Quality
Breathing air quality within commercial airline cabins has come under increased scrutiny due to the identification of volatile organic compounds from...cleaning solvents for breathing lines and life support gear used in the aerospace community , as a target analyte.
Ali, Mahboob; Athar, Makshoof
2008-01-01
Transportation system has contributed significantly to the development of human civilization; on the other hand it has an enormous impact on the ambient air quality in several ways. In this paper the air and noise pollution at selected sites along three sections of National Highway was monitored. Pakistan National Highway Authority has started a Highway Improvement program for rehabilitations and maintenance of National highways to improve the traffic flows, and would ultimately improve the air quality along highways. The ambient air quality and noise level was monitored at nine different locations along these sections of highways to quantify the air pollution. The duration of monitoring at individual location was 72 h. The most of the sampling points were near the urban or village population, schools or hospitals, in order to quantify the air pollution at most affected locations along these roads. A database consisting of information regarding the source of emission, local metrology and air quality may be created to assess the profile of air quality in the area.
Case studies of severe pollution events due to forest fires/dust storms/industrial haze, from the integrated 2001 aerosol dataset, will be presented within the context of air quality and human health.
Towards the Application of Fuzzy Logic for Developing a Novel Indoor Air Quality Index (FIAQI).
Javid, Allahbakhsh; Hamedian, Amir Abbas; Gharibi, Hamed; Sowlat, Mohammad Hossein
2016-02-01
In the past few decades, Indoor Air Pollution (IAP) has become a primary concern to the point. It is increasingly believed to be of equal or greater importance to human health compared to ambient air. However, due to the lack of comprehensive indices for the integrated assessment of indoor air quality (IAQ), we aimed to develop a novel, Fuzzy-Based Indoor Air Quality Index (FIAQI) to bridge the existing gap in this area. We based our index on fuzzy logic, which enables us to overcome the limitations of traditional methods applied to develop environmental quality indices. Fifteen parameters, including the criteria air pollutants, volatile organic compounds, and bioaerosols were included in the FIAQI due mainly to their significant health effects. Weighting factors were assigned to the parameters based on the medical evidence available in the literature on their health effects. The final FIAQI consisted of 108 rules. In order to demonstrate the performance of the index, data were intentionally generated to cover a variety of quality levels. In addition, a sensitivity analysis was conducted to assess the validity of the index. The FIAQI tends to be a comprehensive tool to classify IAQ and produce accurate results. It seems useful and reliable to be considered by authorities to assess IAQ environments.
Liu, Bing-Chun; Binaykia, Arihant; Chang, Pei-Chann; Tiwari, Manoj Kumar; Tsao, Cheng-Chin
2017-01-01
Today, China is facing a very serious issue of Air Pollution due to its dreadful impact on the human health as well as the environment. The urban cities in China are the most affected due to their rapid industrial and economic growth. Therefore, it is of extreme importance to come up with new, better and more reliable forecasting models to accurately predict the air quality. This paper selected Beijing, Tianjin and Shijiazhuang as three cities from the Jingjinji Region for the study to come up with a new model of collaborative forecasting using Support Vector Regression (SVR) for Urban Air Quality Index (AQI) prediction in China. The present study is aimed to improve the forecasting results by minimizing the prediction error of present machine learning algorithms by taking into account multiple city multi-dimensional air quality information and weather conditions as input. The results show that there is a decrease in MAPE in case of multiple city multi-dimensional regression when there is a strong interaction and correlation of the air quality characteristic attributes with AQI. Also, the geographical location is found to play a significant role in Beijing, Tianjin and Shijiazhuang AQI prediction. PMID:28708836
Towards the Application of Fuzzy Logic for Developing a Novel Indoor Air Quality Index (FIAQI)
JAVID, Allahbakhsh; HAMEDIAN, Amir Abbas; GHARIBI, Hamed; SOWLAT, Mohammad Hossein
2016-01-01
Background: In the past few decades, Indoor Air Pollution (IAP) has become a primary concern to the point. It is increasingly believed to be of equal or greater importance to human health compared to ambient air. However, due to the lack of comprehensive indices for the integrated assessment of indoor air quality (IAQ), we aimed to develop a novel, Fuzzy-Based Indoor Air Quality Index (FIAQI) to bridge the existing gap in this area. Methods: We based our index on fuzzy logic, which enables us to overcome the limitations of traditional methods applied to develop environmental quality indices. Fifteen parameters, including the criteria air pollutants, volatile organic compounds, and bioaerosols were included in the FIAQI due mainly to their significant health effects. Weighting factors were assigned to the parameters based on the medical evidence available in the literature on their health effects. The final FIAQI consisted of 108 rules. In order to demonstrate the performance of the index, data were intentionally generated to cover a variety of quality levels. In addition, a sensitivity analysis was conducted to assess the validity of the index. Results: The FIAQI tends to be a comprehensive tool to classify IAQ and produce accurate results. Conclusion: It seems useful and reliable to be considered by authorities to assess IAQ environments. PMID:27114985
Feasibility of CO/sub 2/ monitoring to assess air quality in mines using diesel equipment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel, J.H. Jr.
1987-01-01
The methodology includes: (1) establishing pollutant to CO/sub 2/ ratios for in-service equipment, (2) estimating pollutant concentrations from the ratios and in-mine CO/sub 2/ measurements, and (3) using an air quality index to combine the pollutants into a single number, which indicates the health hazard associated with the pollutants. For the methodology to be valid, the pollutant to CO/sub 2/ ratios must remain constant if engine operating conditions do not significantly change. However, due to the complex dynamics of the fuel injection system, the fuel-air combustion process, and the engine speed-load governing system, the pollutant to CO/sub 2/ ratios maymore » vary during repetitive, but transient engine speed-and-load operation. These transient effects were investigated. In addition, the influence of changing engine conditions due to engine maladjustment, and a practical means to evaluate engine condition were investigated to advance the methodology. The laboratory investigation determined that CO/sub 2/ is an effective indicator of engine exhaust pollutants. It was shown that the exhaust concentrations of carbon monoxide, carbon dioxide, oxides of nitrogen, hydrocarbons, and particulate matter do not significantly vary among repetitive, but transient engine speed-and-load duty cycles typical of in-service equipment. Based on an air quality index and threshold limit values, particulate matter exhibited the greatest adverse effect on air quality. Particulate mass was separated into volatile (organic soluble fraction) and nonvolatile (insoluble carbon fraction) components. Due to particulate concentrations, the engine operating conditions of overfueling and advanced injector timing had greater adverse effects on air quality than the conditions of retarded injector timing, intake air restriction, and Federal certification specifications.« less
Ships, ports and particulate air pollution - an analysis of recent studies
2011-01-01
The duration of use is usually significantly longer for marine vessels than for roadside vehicles. Therefore, these vessels are often powered by relatively old engines which may propagate air pollution. Also, the quality of fuel used for marine vessels is usually not comparable to the quality of fuels used in the automotive sector and therefore, port areas may exhibit a high degree of air pollution. In contrast to the multitude of studies that addressed outdoor air pollution due to road traffic, only little is known about ship-related air pollution. Therefore the present article aims to summarize recent studies that address air pollution, i.e. particulate matter exposure, due to marine vessels. It can be stated that the data in this area of research is still largely limited. Especially, knowledge on the different air pollutions in different sea areas is needed. PMID:22141925
Potential Impacts of Future Climate Change on Regional Air Quality and Public Health over China
NASA Astrophysics Data System (ADS)
Hong, C.; Zhang, Q.; Zhang, Y.; He, K.
2017-12-01
Future climate change would affect public health through changing air quality. Climate extremes and poor weather conditions are likely to occur at a higher frequency in China under a changing climate, but the air pollution-related health impacts due to future climate change remain unclear. Here the potential impacts of future climate change on regional air quality and public health over China is projected using a coupling of climate, air quality and epidemiological models. We present the first assessment of China's future air quality in a changing climate under the Representative Concentration Pathway 4.5 (RCP4.5) scenario using the dynamical downscaling technique. In RCP4.5 scenario, we estimate that climate change from 2006-2010 to 2046-2050 is likely to adversely affect air quality covering more than 86% of population and 55% of land area in China, causing an average increase of 3% in O3 and PM2.5 concentrations, which are found to be associated with the warmer climate and the more stable atmosphere. Our estimate of air pollution-related mortality due to climate change in 2050 is 26,000 people per year in China. Of which, the PM2.5-related mortality is 18,700 people per year, and the O3-related mortality is 7,300 people per year. The climate-induced air pollution and health impacts vary spatially. The climate impacts are even more pronounced on the urban areas where is densely populated and polluted. 90% of the health loss is concentrated in 20% of land areas in China. We use a simple statistical analysis method to quantify the contributions of climate extremes and find more intense climate extremes play an important role in climate-induced air pollution-related health impacts. Our results indicate that global climate change will likely alter the level of pollutant management required to meet future air quality targets as well as the efforts to protect public health in China.
The Air-Carbon-Water Synergies and Trade-Offs in China's Natural Gas Industry
NASA Astrophysics Data System (ADS)
Qin, Yue
China's coal-dominated energy structure is partly responsible for its domestic air pollution, local water stress, and the global climate change. Primarily to tackle the haze issue, China has been actively promoting a nationwide coal to natural gas end-use switch. My dissertation focuses on evaluating the air quality, carbon, and water impacts and their interactions in China's natural gas industry. Chapter 2 assesses the lifecycle climate performance of China's shale gas in comparison to coal based on stage-level energy consumption and methane leakage rates. I find the mean lifecycle carbon footprint of shale gas is about 30-50% lower than that of coal under both 20 year and 100 year global warming potentials (GWP20 and GWP100). However, primarily due to large uncertainties in methane leakage, the lifecycle carbon footprint of shale gas in China could be 15-60% higher than that of coal across sectors under GWP20. Chapter 3 evaluates the air quality, human health, and the climate impacts of China's coal-based synthetic natural gas (SNG) development. Based on earlier 2020 SNG production targets, I conduct an integrated assessment to identify production technologies and end-use applications that will bring as large air quality and health benefits as possible while keeping carbon penalties as small as possible. I find that, due to inefficient and uncontrolled coal combustion in households, allocating currently available SNG to the residential sector proves to be the best SNG allocation option. Chapter 4 compares the air quality, carbon, and water impacts of China's six major gas sources under three end-use substitution scenarios, which are focused on maximizing air pollutant emission reductions, CO 2 emission reductions, and water stress index (WSI)-weighted water consumption reductions, respectively. I find striking national air-carbon/water trade-offs due to SNG, which also significantly increases water demands and carbon emissions in regions already suffering from severe water stress and having the largest per capita carbon footprint. Gas sources other than SNG may bring national air-carbon-water co-benefits. However, end-use deployment can cause enormous variations in air quality, carbon, and water impacts, with notable air-carbon synergies but air-water trade-offs.
NASA Astrophysics Data System (ADS)
Liu, Tao; Cai, Yuanyuan; Feng, Baixiang; Cao, Ganxiang; Lin, Hualiang; Xiao, Jianpeng; Li, Xing; Liu, Sha; Pei, Lei; Fu, Li; Yang, Xinyi; Zhang, Bo; Ma, Wenjun
2018-01-01
The severe air pollution across China in the past several years has made the Chinese government recognize its significant impacts on public health and society, and take enormous efforts to improve the air quality all over the country, especially during the Twelfth Five-Year Plan (12th FYP). However, the overall effectiveness of these air pollution control policies remains unclear. In this study, we selected the 31 municipalities and provincial capital cities in mainland China as study settings. We collected the annual average population size, mortality rates (total mortality and mortality due to cardiovascular diseases, respiratory diseases, total cancer, lung cancer and breast cancer) and concentrations of air pollutants (PM10, PM2.5, SO2 and NO2) in each capital city from 2010 to 2015 from national or local Statistical Yearbooks. The effect sizes of air pollutants on mortality were obtained from previously published meta analyses or cohort studies. We first estimated the annual mortality rates attributed to the changes in air pollutant concentrations for every city in each year. Then, we further estimated the mortality benefits in the scenarios where the air quality had reached the grade II levels of Chinese Ambient Air Quality Standards (CAAQS) and World Health Organization (WHO) guidelines. In most capital cities, we observed dominant decreases in air pollutant concentrations during the 12th FYP, particularly from 2013 to 2015, which has led to significant mortality benefits for the public. A total of 121,658 deaths (0.441‰) have been prevented due to the decrease of PM2.5concentrations from 2013 to 2015 in all included cities. The morality benefits were larger in capital cities located in the key regions (the three main regions and ten city groups) than the other cities. In addition, more mortality benefits could be obtained in the future if the air quality reaches the grade II levels of Chinese Ambient Air Quality Standards (CAAQS) or WHO guidelines. We concluded that substantial mortality benefits achieved during the 12th FYP may be attributed to the improvements in China's air quality, which indicated the significant effectiveness of air pollution control policies.
Modeling prescribed fire impacts on local to regional air quality and potential climate effects
Biomass burning, including wildfires and prescribed burns, are of increasing concern due to the potential impacts on ambient air quality. The direct and indirect radiative forcings associated the particulate matter from biomass burning are also raising questions regarding the pot...
Ports Primer: 7.4 Agency Responsibilities
Near-port communities are often disproportionately impacted by air emissions due to port operations, goods movement operations and other industries that may be co-located with ports. Air emissions at ports also impact regional air quality.
Air quality, health, and climate implications of China’s synthetic natural gas development
Qin, Yue; Wagner, Fabian; Scovronick, Noah; Yang, Junnan; Zhu, Tong; Mauzerall, Denise L.
2017-01-01
Facing severe air pollution and growing dependence on natural gas imports, the Chinese government plans to increase coal-based synthetic natural gas (SNG) production. Although displacement of coal with SNG benefits air quality, it increases CO2 emissions. Due to variations in air pollutant and CO2 emission factors and energy efficiencies across sectors, coal replacement with SNG results in varying degrees of air quality benefits and climate penalties. We estimate air quality, human health, and climate impacts of SNG substitution strategies in 2020. Using all production of SNG in the residential sector results in an annual decrease of ∼32,000 (20,000 to 41,000) outdoor-air-pollution-associated premature deaths, with ranges determined by the low and high estimates of the health risks. If changes in indoor/household air pollution were also included, the decrease would be far larger. SNG deployment in the residential sector results in nearly 10 and 60 times greater reduction in premature mortality than if it is deployed in the industrial or power sectors, respectively. Due to inefficiencies in current household coal use, utilization of SNG in the residential sector results in only 20 to 30% of the carbon penalty compared with using it in the industrial or power sectors. Even if carbon capture and storage is used in SNG production with today’s technology, SNG emits 22 to 40% more CO2 than the same amount of conventional gas. Among the SNG deployment strategies we evaluate, allocating currently planned SNG to households provides the largest air quality and health benefits with the smallest carbon penalties. PMID:28438993
Air quality, health, and climate implications of China's synthetic natural gas development.
Qin, Yue; Wagner, Fabian; Scovronick, Noah; Peng, Wei; Yang, Junnan; Zhu, Tong; Smith, Kirk R; Mauzerall, Denise L
2017-05-09
Facing severe air pollution and growing dependence on natural gas imports, the Chinese government plans to increase coal-based synthetic natural gas (SNG) production. Although displacement of coal with SNG benefits air quality, it increases CO 2 emissions. Due to variations in air pollutant and CO 2 emission factors and energy efficiencies across sectors, coal replacement with SNG results in varying degrees of air quality benefits and climate penalties. We estimate air quality, human health, and climate impacts of SNG substitution strategies in 2020. Using all production of SNG in the residential sector results in an annual decrease of ∼32,000 (20,000 to 41,000) outdoor-air-pollution-associated premature deaths, with ranges determined by the low and high estimates of the health risks. If changes in indoor/household air pollution were also included, the decrease would be far larger. SNG deployment in the residential sector results in nearly 10 and 60 times greater reduction in premature mortality than if it is deployed in the industrial or power sectors, respectively. Due to inefficiencies in current household coal use, utilization of SNG in the residential sector results in only 20 to 30% of the carbon penalty compared with using it in the industrial or power sectors. Even if carbon capture and storage is used in SNG production with today's technology, SNG emits 22 to 40% more CO 2 than the same amount of conventional gas. Among the SNG deployment strategies we evaluate, allocating currently planned SNG to households provides the largest air quality and health benefits with the smallest carbon penalties.
Air quality, health, and climate implications of China's synthetic natural gas development
NASA Astrophysics Data System (ADS)
Qin, Yue; Wagner, Fabian; Scovronick, Noah; Peng, Wei; Yang, Junnan; Zhu, Tong; Smith, Kirk R.; Mauzerall, Denise L.
2017-05-01
Facing severe air pollution and growing dependence on natural gas imports, the Chinese government plans to increase coal-based synthetic natural gas (SNG) production. Although displacement of coal with SNG benefits air quality, it increases CO2 emissions. Due to variations in air pollutant and CO2 emission factors and energy efficiencies across sectors, coal replacement with SNG results in varying degrees of air quality benefits and climate penalties. We estimate air quality, human health, and climate impacts of SNG substitution strategies in 2020. Using all production of SNG in the residential sector results in an annual decrease of ˜32,000 (20,000 to 41,000) outdoor-air-pollution-associated premature deaths, with ranges determined by the low and high estimates of the health risks. If changes in indoor/household air pollution were also included, the decrease would be far larger. SNG deployment in the residential sector results in nearly 10 and 60 times greater reduction in premature mortality than if it is deployed in the industrial or power sectors, respectively. Due to inefficiencies in current household coal use, utilization of SNG in the residential sector results in only 20 to 30% of the carbon penalty compared with using it in the industrial or power sectors. Even if carbon capture and storage is used in SNG production with today’s technology, SNG emits 22 to 40% more CO2 than the same amount of conventional gas. Among the SNG deployment strategies we evaluate, allocating currently planned SNG to households provides the largest air quality and health benefits with the smallest carbon penalties.
NASA Astrophysics Data System (ADS)
Garland, R. M.; Naidoo, M.; Sibiya, B.; Naidoo, S.; Bird, T.; von Gruenewaldt, R.; Liebenberg-Enslin, H.; Nekhwalivhe, M.; Netshandama, J.; Mahlatji, M.
2017-12-01
Ambient air pollution levels are regulated in South Africa; however in many areas pollution concentrations exceed these levels. The South African Air Quality Act also stipulates that government across all levels must have Air Quality Management Plans (AQMP) in place that outline the current state of air quality and emissions, as well as the implementable plan to manage, and where necessary improve, air quality. Historically, dispersion models have been used to support air quality management decisions, including in AQMPs. However, with the focus of air quality management shifting from focusing on industrial point sources to a more integrated and holistic management of all sources, chemical transport models are needed. CAMx was used in the review and development of the City of Johannesburg's AQMP to simulate hot spots of air pollution, as well as to model intervention scenarios. As the pollutants of concern in Johannesburg are ozone and particulate matter, it is critical to use a model that can simulate chemistry. CAMx was run at 1 km with a locally derived emissions inventory for 2014. The sources of pollution in the City are diverse (including, industrial, vehicles, domestic burning, natural), and many sources have large uncertainties in estimating emissions due to lack of necessary data and local emission factors. These uncertainties, together with a lack of measurements to validate the model against, hinder the performance of the model to simulate air quality and thus inform air quality management. However, as air quality worsens in Africa, it is critical for decision makers to have a strong evidence base on the state of air quality and impact of interventions in order to improve air quality effectively. This presentation will highlight the findings from using a chemical transport model for air quality management in the largest city in South Africa, the use and limitations of these for decision-makers, and proposed way forward.
Assessment of the impacts of vehicular pollution on urban air quality.
Ghose, Mrinal K; Paul, R; Banerjee, S K
2004-01-01
Air quality crisis in cities is mainly due to vehicular emissions. Owing to the expanding economic base Indian cities are growing at a faster rate. Transportation systems are increasing everywhere and the improved technology is insufficient to counteract growth. The effect of vehicular emission on urban air quality and human health has been described. A survey has been conducted in an Indian mega city to evaluate the status of air pollution at traffic intersections and the unique problem arising out of vehicular emissions in the study area has been narrated. Approach for the selection of the air monitoring stations, methodology adopted for data collection and the results have been discussed. Vulnerability analysis (VA) has been carried out to identify the zones at what pollution stress. Options for reducing mobile source emission have been discussed and a strategic air quality management plan has been proposed to mitigate the air pollution in the city.
D'Antoni, Donatella; Smith, Louise; Auyeung, Vivian; Weinman, John
2017-09-22
Although evidence shows that poor air quality can harm human health, we have a limited understanding about the behavioural impact of air quality forecasts. Our aim was to understand to what extent air quality warning systems influence protective behaviours in the general public, and to identify the demographic and psychosocial factors associated with adherence and non-adherence to the health advice accompanying these warnings. In August 2016 literature was systematically reviewed to find studies assessing intended or actual adherence to health advice accompanying air quality warning systems, and encouraging people to reduce exposure to air pollution. Predictors of adherence to the health advice and/or self-reported reasons for adherence or non-adherence were also systematically reviewed. Studies were included only if they involved participants who were using or were aware of these warning systems. Studies investigating only protective behaviours due to subjective perception of bad air quality alone were excluded. The results were narratively synthesised and discussed within the COM-B theoretical framework. Twenty-one studies were included in the review: seventeen investigated actual adherence; three investigated intended adherence; one assessed both. Actual adherence to the advice to reduce or reschedule outdoor activities during poor air quality episodes ranged from 9.7% to 57% (Median = 31%), whereas adherence to a wider range of protective behaviours (e.g. avoiding busy roads, taking preventative medication) ranged from 17.7% to 98.1% (Median = 46%). Demographic factors did not consistently predict adherence. However, several psychosocial facilitators of adherence were identified. These include knowledge on where to check air quality indices, beliefs that one's symptoms were due to air pollution, perceived severity of air pollution, and receiving advice from health care professionals. Barriers to adherence included: lack of understanding of the indices, being exposed to health messages that reduced both concern about air pollution and perceived susceptibility, as well as perceived lack of self-efficacy/locus of control, reliance on sensory cues and lack of time. We found frequent suboptimal adherence rates to health advice accompanying air quality alerts. Several psychosocial facilitators and barriers of adherence were identified. To maximise their health effects, health advice needs to target these specific psychosocial factors.
DEVELOPMENT AND APPLICATIONS OF CFD SIMULATIONS SUPPORTING URBAN AIR QUALITY AND HOMELAND SECURITY
Prior to September 11, 2001 developments of Computational Fluid Dynamics (CFD) were begun to support air quality applications. CFD models are emerging as a promising technology for such assessments, in part due to the advancing power of computational hardware and software. CFD si...
There is a need to properly develop the application of Computational Fluid Dynamics (CFD) methods in support of air quality studies involving pollution sources near buildings at industrial sites. CFD models are emerging as a promising technology for such assessments, in part due ...
“Changes in US Regional Air Quality at 2030 Simulated Using RCP 6.0”
Session: Global/Regional Modeling Applications Recent improvements in air quality in the United States have been due to significant reductions in emissions of ozone and particulate matter (PM) precursors, and these downward emissions trends are expected to continue in the next...
USDA-ARS?s Scientific Manuscript database
Agricultural emissions impact air quality on a local and regional basis. Research on the emissions and reduction of greenhouse gases from agriculture has become commonplace due to concerns about climate but other chemical compounds also impact air quality. These include compounds that are photochemi...
Towards an operational high-resolution air quality forecasting system at ECCC
NASA Astrophysics Data System (ADS)
Munoz-Alpizar, Rodrigo; Stroud, Craig; Ren, Shuzhan; Belair, Stephane; Leroyer, Sylvie; Souvanlasy, Vanh; Spacek, Lubos; Pavlovic, Radenko; Davignon, Didier; Moran, Moran
2017-04-01
Urban environments are particularly sensitive to weather, air quality (AQ), and climatic conditions. Despite the efforts made in Canada to reduce pollution in urban areas, AQ continues to be a concern for the population, especially during short-term episodes that could lead to exceedances of daily air quality standards. Furthermore, urban air pollution has long been associated with significant adverse health effects. In Canada, the large percentage of the population living in urban areas ( 81%, according to the Canada's 2011 census) is exposed to elevated air pollution due to local emissions sources. Thus, in order to improve the services offered to the Canadian public, Environment and Climate Change Canada has launched an initiative to develop a high-resolution air quality prediction capacity for urban areas in Canada. This presentation will show observed pollution trends (2010-2016) for Canadian mega-cities along with some preliminary high-resolution air quality modelling results. Short-term and long-term plans for urban AQ forecasting in Canada will also be described.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Bowden, J. H.; Adelman, Z.; Naik, V.; Horowitz, L. W.; Smith, S.; West, J. J.
2014-12-01
Reducing greenhouse gases (GHGs) not only slows climate change, but can also have co-benefits for improved air quality. In this study, we examine the co-benefits of global and regional GHG mitigation on US air quality at fine resolution through dynamical downscaling, using the latest Community Multi-scale Air Quality (CMAQ) model. We will investigate the co-benefits on US air quality due to domestic GHG mitigation alone, and due to mitigation outside of the US. We also quantity the co-benefits resulting from reductions in co-emitted air pollutants versus slowing climate change and its effects on air quality. Projected climate in the 2050s from the IPCC RCP4.5 and RCP8.5 scenarios is dynamically downscaled with the Weather Research and Forecasting model (WRF). Anthropogenic emissions projections from the RCP4.5 scenario and its reference (REF), are directly processed in SMOKE to provide temporally- and spatially-resolved CMAQ emission input files. Chemical boundary conditions (BCs) are obtained from West et al. (2013), who studied the co-benefits of global GHG reductions on global air quality and human health. Our preliminary results show that the global GHG reduction (RCP4.5 relative to REF) reduces the 1hr daily maximum ozone by 3.3 ppbv annually over entire US, as high as 6 ppbv in September. The west coast of California and the Northeast US are the regions that benefit most. By comparing different scenarios, we find that foreign countries' GHGs mitigation has a larger influence on the US ozone decreases (accounting for 77% of the total decrease), compared with 23% from domestic GHG mitigation only, highlighting the importance of methane reductions and the intercontinental transport of air pollutants. The reduction of global co-emitted air pollutants has a more pronounced effect on ozone decreasing, relative to the effect from slowing climate and its effects on air quality. We also plan to report co-benefits for PM2.5 in the US.
Vutukuru, Satish; Carreras-Sospedra, Marc; Brouwer, Jacob; Dabdub, Donald
2011-12-01
Distributed power generation-electricity generation that is produced by many small stationary power generators distributed throughout an urban air basin-has the potential to supply a significant portion of electricity in future years. As a result, distributed generation may lead to increased pollutant emissions within an urban air basin, which could adversely affect air quality. However, the use of combined heating and power with distributed generation may reduce the energy consumption for space heating and air conditioning, resulting in a net decrease of pollutant and greenhouse gas emissions. This work used a systematic approach based on land-use geographical information system data to determine the spatial and temporal distribution of distributed generation emissions in the San Joaquin Valley Air Basin of California and simulated the potential air quality impacts using state-of-the-art three-dimensional computer models. The evaluation of the potential market penetration of distributed generation focuses on the year 2023. In general, the air quality impacts of distributed generation were found to be small due to the restrictive 2007 California Air Resources Board air emission standards applied to all distributed generation units and due to the use of combined heating and power. Results suggest that if distributed generation units were allowed to emit at the current Best Available Control Technology standards (which are less restrictive than the 2007 California Air Resources Board standards), air quality impacts of distributed generation could compromise compliance with the federal 8-hr average ozone standard in the region.
Vutukuru, Satish; Carreras-Sospedra, Marc; Brouwer, Jacob; Dabdub, Donald
2011-12-01
Distributed power generation-electricity generation that is produced by many small stationary power generators distributed throughout an urban air basin-has the potential to supply a significant portion of electricity in future years. As a result, distributed generation may lead to increased pollutant emissions within an urban air basin, which could adversely affect air quality. However, the use of combined heating and power with distributed generation may reduce the energy consumption for space heating and air conditioning, resulting in a net decrease of pollutant and greenhouse gas emissions. This work used a systematic approach based on land-use geographical information system data to determine the spatial and temporal distribution of distributed generation emissions in the San Joaquin Valley Air Basin of California and simulated the potential air quality impacts using state-of-the-art three-dimensional computer models. The evaluation of the potential market penetration of distributed generation focuses on the year 2023. In general, the air quality impacts of distributed generation were found to be small due to the restrictive 2007 California Air Resources Board air emission standards applied to all distributed generation units and due to the use of combined heating and power. Results suggest that if distributed generation units were allowed to emit at the current Best Available Control Technology standards (which are less restrictive than the 2007 California Air Resources Board standards), air quality impacts of distributed generation could compromise compliance with the federal 8-hr average ozone standard in the region. [Box: see text].
NASA Astrophysics Data System (ADS)
Dixit, A.; Singh, V. K.
2017-12-01
Recent studies conducted by World Health Organisation (WHO) estimated that 92 % of the total world population are living in places where the air quality level has exceeded the WHO standard limit for air quality. This is due to the change in Land Use Land Cover (LULC) pattern, socio economic drivers and anthropogenic heat emission caused by manmade activity. Thereby, many prevalent human respiratory diseases such as lung cancer, chronic obstructive pulmonary disease and emphysema have increased in recent times. In this study, a quantitative relationship is developed between land use (built-up land, water bodies, and vegetation), socio economic drivers and air quality parameters using logistic based regression model over 7 different cities of India for the winter season of 2012 to 2016. Different LULC, socio economic, industrial emission sources, meteorological condition and air quality level from the monitoring stations are taken to estimate the influence on morbidity of each city. Results of correlation are analyzed between land use variables and monthly concentration of pollutants. These values range from 0.63 to 0.76. Similarly, the correlation value between land use variable with socio economic and morbidity ranges from 0.57 to 0.73. The performance of model is improved from 67 % to 79 % in estimating morbidity for the year 2015 and 2016 due to the better availability of observed data.The study highlights the growing importance of incorporating socio-economic drivers with air quality data for evaluating morbidity rate for each city in comparison to just change in quantitative analysis of air quality.
Shandas, Vivek; Voelkel, Jackson; Rao, Meenakshi; George, Linda
2016-01-01
Reducing exposure to degraded air quality is essential for building healthy cities. Although air quality and population vary at fine spatial scales, current regulatory and public health frameworks assess human exposures using county- or city-scales. We build on a spatial analysis technique, dasymetric mapping, for allocating urban populations that, together with emerging fine-scale measurements of air pollution, addresses three objectives: (1) evaluate the role of spatial scale in estimating exposure; (2) identify urban communities that are disproportionately burdened by poor air quality; and (3) estimate reduction in mobile sources of pollutants due to local tree-planting efforts using nitrogen dioxide. Our results show a maximum value of 197% difference between cadastrally-informed dasymetric system (CIDS) and standard estimations of population exposure to degraded air quality for small spatial extent analyses, and a lack of substantial difference for large spatial extent analyses. These results provide the foundation for improving policies for managing air quality, and targeting mitigation efforts to address challenges of environmental justice. PMID:27527205
NASA Astrophysics Data System (ADS)
Kim, Y. J.; Sunwoo, Y.; Hwang, I.; Song, S.; Sin, J.; Kim, D.
2015-12-01
A very high population and corresponding high number of vehicles in the Seoul Metropolitan Area (SMA) are aggravating the air quality of this region. The Korean government continues to make concerted efforts to improve air quality. One of the major policies that the Ministry of Environment of Korea enforced is "The Special Act for Improvement of Air Quality in SMA" and "The 1st Air Quality Management Plan of SMA". Mobile Source emission controls are an important part of the policy. Thus, it is timely to evaluate the air quality improvement due to the controls. Therefore, we performed a quantitative analysis of the difference in air quality using the Community Multiscale Air Quality (CMAQ) model and December, 2011 was set as the target period to capture the impact of the above control plans. We considered four fuel-type vehicle emission scenarios and compared the air quality improvement differences between them. The scenarios are as follows: no-control, gasoline vehicle control only, diesel vehicle control only, and control of both; utilizing the revised mobile source emissions from the Clean Air Policy Support System (CAPSS), which is the national emission inventory reflecting current policy.In order to improve the accuracy of the modeling data, we developed new temporal allocation coefficients based on traffic volume observation data and spatially reallocated the mobile source emissions using vehicle flow survey data. Furthermore, we calculated the PM10 and PM2.5 emissions of gasoline vehicles which is omitted in CAPSS.The results of the air quality modeling shows that vehicle control plans for both gasoline and diesel lead to a decrease of 0.65ppb~8.75ppb and 0.02㎍/㎥~7.09㎍/㎥ in NO2 and PM10 monthly average concentrations, respectively. The large percentage decreases mainly appear near the center of the metropolis. However, the largest NO2 decrease percentages are found in the northeast region of Gyeonggi-do, which is the province that surrounds the capital of Seoul. Comparing the results between the different scenarios, diesel vehicle control impact dominates relative to the impact of gasoline control. The diesel-only reduction plan shows that NO2 and PM10 improved by 2.93ppb and 3.32㎍/㎥, respectively.
Yasunari, Teppei J; Kim, Kyu-Myong; da Silva, Arlindo M; Hayasaki, Masamitsu; Akiyama, Masayuki; Murao, Naoto
2018-04-25
To identify the unusual climate conditions and their connections to air pollutions in a remote area due to wildfires, we examine three anomalous large-scale wildfires in May 2003, April 2008, and July 2014 over East Eurasia, as well as how products of those wildfires reached an urban city, Sapporo, in the northern part of Japan (Hokkaido), significantly affecting the air quality. NASA's MERRA-2 (the Modern-Era Retrospective analysis for Research and Applications, Version 2) aerosol re-analysis data closely reproduced the PM 2.5 variations in Sapporo for the case of smoke arrival in July 2014. Results show that all three cases featured unusually early snowmelt in East Eurasia, accompanied by warmer and drier surface conditions in the months leading to the fires, inducing long-lasting soil dryness and producing climate and environmental conditions conducive to active wildfires. Due to prevailing anomalous synoptic-scale atmospheric motions, smoke from those fires eventually reached a remote area, Hokkaido, and worsened the air quality in Sapporo. In future studies, continuous monitoring of the timing of Eurasian snowmelt and the air quality from the source regions to remote regions, coupled with the analysis of atmospheric and surface conditions, may be essential in more accurately predicting the effects of wildfires on air quality.
Air quality improvements and health benefits from China’s clean air action since 2013
NASA Astrophysics Data System (ADS)
Zheng, Yixuan; Xue, Tao; Zhang, Qiang; Geng, Guannan; Tong, Dan; Li, Xin; He, Kebin
2017-11-01
Aggressive emission control measures were taken by the Chinese government after the promulgation of the ‘Air Pollution Prevention and Control Action Plan’ in 2013. Here we evaluated the air quality and health benefits associated with this stringent policy during 2013-2015 by using surface PM2.5 concentrations estimated from a three-stage data fusion model and cause-specific integrated exposure-response functions. The population-weighted annual mean PM2.5 concentrations decreased by 21.5% over China during 2013-2015, reducing from 60.5 in 2013 to 47.5 μg m-3 in 2015. Subsequently, the national PM2.5-attributable mortality decreased from 1.22 million (95% CI: 1.05, 1.37) in 2013 to 1.10 million (95% CI: 0.95, 1.25) in 2015, which is a 9.1% reduction. The limited health benefits compared to air quality improvements are mainly due to the supralinear responses of mortality to PM2.5 over the high concentration end of the concentration-response functions. Our study affirms the effectiveness of China’s recent air quality policy; however, due to the nonlinear responses of mortality to PM2.5 variations, current policies should remain in place and more stringent measures should be implemented to protect public health.
Ports Primer: 7.3 Federal Environmental Regulations, Initiatives and Standards
Near-port communities are often disproportionately impacted by air emissions due to port operations, goods movement operations and other industries that may be co-located with ports. Air emissions at ports also impact regional air quality.
NASA Astrophysics Data System (ADS)
Lee, Yunha; Shindell, Drew T.; Faluvegi, Greg; Pinder, Rob W.
2016-04-01
We have investigated how future air quality and climate change are influenced by the US air quality regulations that existed or were proposed in 2013 and a hypothetical climate mitigation policy that aims to reduce 2050 CO2 emissions to be 50 % below 2005 emissions. Using the NASA GISS ModelE2 general circulation model, we look at the impacts for year 2030 and 2055. The US energy-sector emissions are from the GLIMPSE project (GEOS-Chem LIDORT Integrated with MARKAL (MARKet ALlocation) for the Purpose of Scenario Exploration), and other US emissions data sets and the rest of the world emissions data sets are based on the RCP4.5 scenario. The US air quality regulations are projected to have a strong beneficial impact on US air quality and public health in year 2030 and 2055 but result in positive radiative forcing. Under this scenario, no more emission constraints are added after 2020, and the impacts on air quality and climate change are similar between year 2030 and 2055. Surface particulate matter with a diameter smaller than 2.5 µm (PM2.5) is reduced by ˜ 2 µg m-3 on average over the USA, and surface ozone by ˜ 8 ppbv. The improved air quality prevents about 91 400 premature deaths in the USA, mainly due to the PM2.5 reduction (˜ 74 200 lives saved). The air quality regulations reduce the light-reflecting aerosols (i.e., sulfate and organic matter) more than the light-absorbing species (i.e., black carbon and ozone), leading to a strong positive radiative forcing (RF) over the USA by both aerosols' direct and indirect forcing: the total RF is ˜ 0.04 W m-2 over the globe, and ˜ 0.8 W m-2 over the USA. Under the hypothetical climate policy, a future CO2 emissions cut is achieved in part by relying less on coal, and thus SO2 emissions are noticeably reduced. This provides air quality co-benefits, but it could lead to potential climate disbenefits over the USA. In 2055, the US mean total RF is +0.22 W m-2 due to positive aerosol direct and indirect forcing, while the global mean total RF is -0.06 W m-2 due to the dominant negative CO2 RF (instantaneous RF). To achieve a regional-scale climate benefit via a climate policy, it is critical (1) to have multinational efforts to reduce greenhouse gas (GHG) emissions and (2) to simultaneously target emission reduction of light-absorbing species (e.g., BC and O3) on top of long-lived species. The latter is very desirable as the resulting climate benefit occurs faster and provides co-benefits to air quality and public health.
NASA Technical Reports Server (NTRS)
Lee, Y. H.; Faluvegi, Gregory S.
2016-01-01
We have investigated how future air quality and climate change are influenced by the US air quality regulations that existed or were proposed in 2013 and a hypothetical climate mitigation policy that aims to reduce 2050 CO2 emissions to be 50% below 2005 emissions. Using the NASA GISS ModelE2 general circulation model, we look at the impacts for year 2030 and 2055. The US energy-sector emissions are from the GLIMPSE project (GEOS-Chem LIDORT Integrated with MARKAL (MARKet ALlocation) for the Purpose of Scenario Exploration), and other US emissions data sets and the rest of the world emissions data sets are based on the RCP4.5 scenario. The US air quality regulations are projected to have a strong beneficial impact on US air quality and public health in year 2030 and 2055 but result in positive radiative forcing. Under this scenario, no more emission constraints are added after 2020, and the impacts on air quality and climate change are similar between year 2030 and 2055. Surface particulate matter with a diameter smaller than 2.5 micron PM(sub 2:5) is reduced by 2 approximately µg/m(sup -3) on average over the USA, and surface ozone by approximately 8 ppbv. The improved air quality prevents about 91 400 premature deaths in the USA, mainly due to the PM(sub 2:5) reduction approximately (74 200 lives saved). The air quality regulations reduce the light-reflecting aerosols (i.e., sulfate and organic matter) more than the light-absorbing species (i.e., black carbon and ozone), leading to a strong positive radiative forcing (RF) over the USA by both aerosols' direct and indirect forcing: the total RF is approximately 0.04 W m(sup -2) over the globe, and approximately 0.8 W m(sup -2) over the USA. Under the hypothetical climate policy, a future CO2 emissions cut is achieved in part by relying less on coal, and thus SO2 emissions are noticeably reduced. This provides air quality co-benefits, but it could lead to potential climate disbenefits over the USA. In 2055, the US mean total RF is +C02 W m(sup -2) due to positive aerosol direct and indirect forcing, while the global mean total RF is -0.06 W m(sup -2) due to the dominant negative CO2 RF (instantaneous RF). To achieve a regional-scale climate benefit via a climate policy, it is critical (1) to have multinational efforts to reduce greenhouse gas (GHG) emissions and (2) to simultaneously target emission reduction of light-absorbing species (e.g., BC and O3) on top of long-lived species. The latter is very desirable as the resulting climate benefit occurs faster and provides cobenefits to air quality and public health.
The state of ambient air quality in Pakistan--a review.
Colbeck, Ian; Nasir, Zaheer Ahmad; Ali, Zulfiqar
2010-01-01
Pakistan, during the last decade, has seen an extensive escalation in population growth, urbanization, and industrialization, together with a great increase in motorization and energy use. As a result, a substantial rise has taken place in the types and number of emission sources of various air pollutants. However, due to the lack of air quality management capabilities, the country is suffering from deterioration of air quality. Evidence from various governmental organizations and international bodies has indicated that air pollution is a significant risk to the environment, quality of life, and health of the population. The Government has taken positive steps toward air quality management in the form of the Pakistan Clean Air Program and has recently established a small number of continuous monitoring stations. However, ambient air quality standards have not yet been established. This paper reviews the data being available on the criteria air pollutants: particulate matter (PM), sulfur dioxide, ozone, carbon monoxide, nitrogen dioxide, and lead. Air pollution studies in Pakistan published in both scientific journals and by the Government have been reviewed and the reported concentrations of PM, SO(2), O(3), CO, NO(2), and Pb collated. A comparison of the levels of these air pollutants with the World Health Organization air quality guidelines was carried out. Particulate matter was the most serious air pollutant in the country. NO(2) has emerged as the second high-risk pollutant. The reported levels of PM, SO(2), CO, NO(2), and Pb were many times higher than the World Health Organization air quality guidelines. Only O(3) concentrations were below the guidelines. The current state of air quality calls for immediate action to tackle the poor air quality. The establishment of ambient air quality standards, an extension of the continuous monitoring sites, and the development of emission control strategies are essential.
Liu, Xiaojun; Zhu, Hui; Hu, Yongxin; Feng, Sha; Chu, Yuanyuan; Wu, Yanyan; Wang, Chiyu; Zhang, Yuxuan; Yuan, Zhaokang; Lu, Yuanan
2016-01-01
This study assessed the public’s health risk awareness of urban air pollution triggered by three megacities in China, and the data are the responses from a sample size of 3868 megacity inhabitants from Shanghai, Nanchang and Wuhan. Descriptive analyses were used to summarize the respondents’ demographics, perceived health risks from air pollution and sources of health-related knowledge on urban air pollution. Chi-square tests were used to examine if participants’ demographics were associated with participant’s general attitudes towards current air quality and the three perceived highest health risks due to urban air pollution. We found low rate of satisfaction of current urban air quality as well as poor knowledge of air pollution related indicator. Participants’ gender, age and travel experience were found to be associated with the satisfaction of current air quality. The knowledge of air pollution related indicator was significantly affected by respondents’ education, monthly income, health status, and sites of study. As many as 46.23% of the participants expressed their feelings of anxiety when exposed to polluted air, especially females, older adults and those with poor health conditions. Most participants believed that coughs/colds, eye problems and skin allergies were the three highest health risks due to urban air pollution based on public education through television/radio, internet and newspaper/magazine. Further public health education is needed to improve public awareness of air pollution and its effects. PMID:27571088
Liu, Xiaojun; Zhu, Hui; Hu, Yongxin; Feng, Sha; Chu, Yuanyuan; Wu, Yanyan; Wang, Chiyu; Zhang, Yuxuan; Yuan, Zhaokang; Lu, Yuanan
2016-08-25
This study assessed the public's health risk awareness of urban air pollution triggered by three megacities in China, and the data are the responses from a sample size of 3868 megacity inhabitants from Shanghai, Nanchang and Wuhan. Descriptive analyses were used to summarize the respondents' demographics, perceived health risks from air pollution and sources of health-related knowledge on urban air pollution. Chi-square tests were used to examine if participants' demographics were associated with participant's general attitudes towards current air quality and the three perceived highest health risks due to urban air pollution. We found low rate of satisfaction of current urban air quality as well as poor knowledge of air pollution related indicator. Participants' gender, age and travel experience were found to be associated with the satisfaction of current air quality. The knowledge of air pollution related indicator was significantly affected by respondents' education, monthly income, health status, and sites of study. As many as 46.23% of the participants expressed their feelings of anxiety when exposed to polluted air, especially females, older adults and those with poor health conditions. Most participants believed that coughs/colds, eye problems and skin allergies were the three highest health risks due to urban air pollution based on public education through television/radio, internet and newspaper/magazine. Further public health education is needed to improve public awareness of air pollution and its effects.
IMPACTS OF BIOMASS BURNING EMISSIONS ON AIR QUALITY AND PUBLIC HEALTH IN THE UNITED STATES
Wildfire is a natural disaster that claims human life and property. While most attention has been paid to direct life and health threats, mostly to firefighters, this work focuses on the indirect impact of wildfires on the general population due to degraded air quality. Using an ...
USDA-ARS?s Scientific Manuscript database
Wind erosion of soil is a major concern of the agricultural community as it removes the most fertile part of the soil and thus degrades soil productivity. Furthermore, dust emissions due to wind erosion contribute to poor air quality, reduce visibility, and cause perturbations to regional radiation ...
Due to the computational cost of running regional-scale numerical air quality models, reduced form models (RFM) have been proposed as computationally efficient simulation tools for characterizing the pollutant response to many different types of emission reductions. The U.S. Envi...
[The health status of children from industrial towns due ambient air pollution].
Meĭbaliev, M T
2008-01-01
The author's observations suggest that hygienic monitoring in an industrial city should be made in two areas: 1) ambient air quality and 2) human health. Ambient air quality should be monitored in each town in accordance with an individual program, by taking into account the volume and nature of hazardous substances from the stationary stations, as well as weather conditions, the planning system of residential areas, and the layout of an industrial zone. Monitoring of the population's health in the industrial town should be adapted to the forms and conditions of ambient air quality monitoring in order to reveal environmental pollution-induced changes.
Air Quality, Human Health and Climate Implications of China's Synthetic Natural Gas Development
NASA Astrophysics Data System (ADS)
Qin, Y.; Mauzerall, D. L.; Wagner, F.; Smith, K. R.; Peng, W.; Yang, J.; Zhu, T.
2016-12-01
Facing severe air pollution and growing dependence on natural gas imports, the Chinese government is planning an enormous increase in synthetic natural gas (SNG) production. Although displacement of coal with SNG benefits air quality, it increases carbon dioxide (CO2) emissions and thus worsens climate change. Primarily due to variation in air pollutant and CO2 emission factors as well as energy efficiencies across sectors and regions, the replacement of coal with SNG results in varying degrees of air quality and adverse climate impacts. Here we conduct an integrated assessment to estimate the air quality, human health, and adverse climate impacts of various sectoral and regional SNG substitution strategies for coal in China in 2020. We find that using all planned production of SNG in the residential sector results in an annual decrease of approximately 43,000 (22,000 to 63,000) outdoor-air-pollution-associated Chinese premature mortalities, with ranges determined by the low and high estimates of relative risks. If changes in indoor/household air pollution were also included the decrease would be larger. By comparison, this is a 10 and 60 times greater reduction in premature mortalities than obtained when the SNG displaces coal in the industrial or power sectors, respectively. Deploying SNG as a coal replacement in the industrial or power sectors also has a 4-5 times higher carbon penalty than utilization in the residential sector due to inefficiencies in current household coal use. If carbon capture and storage (CCS) is used in SNG production, substituting SNG for coal can provide both air quality and climate co-benefits in all scenarios. However, even with CCS, SNG emits 22-40% (depending on end-use) more CO2 than the same amount of conventional gas. For existing SNG projects, we find displacing coal with SNG in the residential sector provides the largest air quality and health benefits with the smallest carbon penalties of deployment in any sector.
Efficacy of an outdoor air pollution education program in a community at risk for asthma morbidity.
Dorevitch, Samuel; Karandikar, Abhijay; Washington, Gregory F; Walton, Geraldine Penny; Anderson, Renate; Nickels, Leslie
2008-11-01
Asthma management guidelines recommend avoiding exposure to indoor and outdoor air pollutants. A limitation of such recommendations is that they do not provide information about how the public should obtain and act on air quality information. Although the Air Quality Index (AQI) provides simplified outdoor air quality forecasts, communities with high rates of asthma morbidity tend to have low rates of internet access due to factors such as low socioeconomic status. Assessments of knowledge about air quality among low-income minority communities are lacking, as are community-based programs to educate the public about using the AQI. An air quality education program and system for disseminating air quality information were developed to promote pollutant avoidance during the reconstruction of a major highway in a low-income minority community on Chicago's South Side. The program, which centered on workshops run by community asthma educators, was evaluated using a pre-test, post-test, and 1-year follow-up questionnaire. A total of 120 community workshop participants completed at least a portion of the evaluation process. At baseline, knowledge about air quality was limited. Following the workshops, substantial increases were noted in rates of correct answers to questions about health effects of air pollution, the availability of air quality information, and the color code for an AQI category. Approximately 1 year after the workshops were held, few participants could recall elements of the training. Few participants have internet access, and alternative means of distributing air quality information were suggested by study participants. Baseline knowledge of air quality information was limited in the community studied. Air quality education workshops conducted by community educators can increase knowledge about outdoor air quality and its impact on health over the short term. Refresher workshops or other efforts to sustain the knowledge increase may be useful. Given the known short-term and long-term effects of air quality on morbidity and mortality, air quality education efforts should be further developed, evaluated, and promoted for the general public, for people with underlying cardiopulmonary disease, and given the documented health disparities within the general population, for low-income and minority communities.
NASA Astrophysics Data System (ADS)
Keuken, M. P.; Jonkers, S.; Verhagen, H. L. M.; Perez, L.; Trüeb, S.; Okkerse, W.-J.; Liu, J.; Pan, X. C.; Zheng, L.; Wang, H.; Xu, R.; Sabel, C. E.
2014-12-01
Two traffic scenarios to reduce CO2 emissions from road traffic in two European cities (Basel and Rotterdam) and two Chinese cities (Xi'an and Suzhou) were evaluated in terms of their impact on air quality. The two scenarios, one modelling a reduction of private vehicle kilometres driven by 10% on urban streets and the other modelling the introduction of 50% electric-powered private vehicle kilometres on urban streets, were both compared to a scenario following “business-as-usual”: 2020-BAU. The annual average concentrations of NO2, PM2.5, PM10 and elemental carbon (EC) were modelled separately in busy street canyons, near urban motorways and in the remainder of the urban area. It was concluded that traffic-related CO2 emissions in 2020-BAU could be expected to remain at the levels of 2010 in Basel and Rotterdam, while in Xi'an and Suzhou to increase 30-50% due to growth in the traffic volume. Traffic-related CO2 emissions may be reduced by up to 5% and 25%, respectively using the first and second scenarios. Air pollution in the Chinese cities is a factor 3 to 5 higher than in the European cities in 2010 and 2020-BAU. The impact of both CO2 reduction scenarios on air quality in 2020-BAU is limited. In Europe, due to implementation of stringent emission standards in all sectors, air quality is expected to improve at both the urban background and near busy road traffic. In China, the regional background is expected to improve for EC, stabilize for PM2.5 and PM10, and decrease for NO2. The urban background follows this regional trend, while near busy road traffic, air pollution will remain elevated due to the considerable growth in traffic volume. A major constraint for modelling air quality in China is access to the input data required and lack of measurements at ground level for validation.
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Estes, Maurice G., Jr.; Crosson, William L.; Khan, Maudood N.
2006-01-01
The Atlanta Urban Heat Island and Air Quality Project had its genesis in Project ATLANTA (ATlanta Land use Analysis: Temperature and Air quality) that began in 1996. Project ATLANTA examined how high-spatial resolution thermal remote sensing data could be used to derive better measurements of the Urban Heat Island effect over Atlanta. We have explored how these thermal remote sensing, as well as other imaged datasets, can be used to better characterize the urban landscape for improved air quality modeling over the Atlanta area. For the air quality modeling project, the National Land Cover Dataset and the local scale Landpro99 dataset at 30m spatial resolutions have been used to derive land use/land cover characteristics for input into the MM5 mesoscale meteorological model that is one of the foundations for the Community Multiscale Air Quality (CMAQ) model to assess how these data can improve output from CMAQ. Additionally, land use changes to 2030 have been predicted using a Spatial Growth Model (SGM). SGM simulates growth around a region using population, employment and travel demand forecasts. Air quality modeling simulations were conducted using both current and future land cover. Meteorological modeling simulations indicate a 0.5 C increase in daily maximum air temperatures by 2030. Air quality modeling simulations show substantial differences in relative contributions of individual atmospheric pollutant constituents as a result of land cover change. Enhanced boundary layer mixing over the city tends to offset the increase in ozone concentration expected due to higher surface temperatures as a result of urbanization.
Impact of wildfires on the air quality of Mexico City, 1992-1999.
Bravo, A H; Sosa, E R; Sánchez, A P; Jaimes, P M; Saavedra, R M I
2002-01-01
Wildfires in Mexico increased in 1998, compared to information for the last 6 years. The average number of wildfires in the Mexico City Metropolitan Area (MCMA) for this year (1998) were 58% (1916 events) more events than the 1992-1997 (average cases 1217 events). Mexico City affected area corresponds to 1.3% of the national affected area. The purpose of this paper is to evaluate the impact on the particles air quality due to the wildfire emissions at the MCMA and surrounding areas. Using the corresponding US EPA emission factors for wildfires, the tons of particulate matter, nitrogen oxides, carbon monoxide, and total hydrocarbons emitted by this source for the MCMA case were obtained. The calculated emissions during wildfires were correlated with the levels of particles present in the atmosphere. A comparison of the concentration levels of particles, both as PM10 as well as TSP, were made for the years 1992-1998, during wet and dry season, being March, April, and May the critical months due to the presence of wildfires. A good correlation is observed between particulate wildfire emissions and particulate air quality, being stronger for TSP. A clear impact on the particles air quality due to the increase of wildfires in 1998, is observed when this year is compared with 1997, presenting an increment of 200-300% for some monitoring stations.
Study on regional air quality impact from a chemical plant emergency shutdown.
Ge, Sijie; Wang, Sujing; Xu, Qiang; Ho, Thomas
2018-06-01
Emergency shutdowns of chemical plants (ESCP) inevitably generate intensive and huge amounts of VOCs and NO x emissions through flaring that can cause highly localized and transient air pollution events with elevated ozone concentrations. However, quantitative studies of regional ozone impact due to ESCP, in terms of how ESCP would affect and to what extent ESCP could impact, are still lacking. This paper reports a systematic study on regional air quality impact from an olefin plant emergency shutdown due to the sudden failure of its cracked gas compressor (CGC). It demonstrates that emergency shutdown may cause significant ozone increment subject to different factors such as the starting time of emergency shutdown, flare destruction and removal efficiency (DRE) and plant location. In our studied case, the 8-hr ozone increment ranges from 0.4 to 3.3 ppb under different starting time, from 3.3 to 24.8 ppb under different DRE, and from 1.6 to 3.3 ppb under different locations. The results enable us to understand how and to what extent emergency operating activities of the chemical process will affect local air quality, which might be beneficial for decision makings on emergency air-quality response and control in the future. Copyright © 2018 Elsevier Ltd. All rights reserved.
Likelihood of achieving air quality targets under model uncertainties.
Digar, Antara; Cohan, Daniel S; Cox, Dennis D; Kim, Byeong-Uk; Boylan, James W
2011-01-01
Regulatory attainment demonstrations in the United States typically apply a bright-line test to predict whether a control strategy is sufficient to attain an air quality standard. Photochemical models are the best tools available to project future pollutant levels and are a critical part of regulatory attainment demonstrations. However, because photochemical models are uncertain and future meteorology is unknowable, future pollutant levels cannot be predicted perfectly and attainment cannot be guaranteed. This paper introduces a computationally efficient methodology for estimating the likelihood that an emission control strategy will achieve an air quality objective in light of uncertainties in photochemical model input parameters (e.g., uncertain emission and reaction rates, deposition velocities, and boundary conditions). The method incorporates Monte Carlo simulations of a reduced form model representing pollutant-precursor response under parametric uncertainty to probabilistically predict the improvement in air quality due to emission control. The method is applied to recent 8-h ozone attainment modeling for Atlanta, Georgia, to assess the likelihood that additional controls would achieve fixed (well-defined) or flexible (due to meteorological variability and uncertain emission trends) targets of air pollution reduction. The results show that in certain instances ranking of the predicted effectiveness of control strategies may differ between probabilistic and deterministic analyses.
Bonetta, Sa; Bonetta, Si; Mosso, S; Sampò, S; Carraro, E
2010-02-01
The purpose of this study was to evaluate the level and composition of bacteria and fungi in the indoor air of an Italian office building equipped with a heating, ventilation and air conditioning (HVAC) system. Airborne bacteria and fungi were collected in three open-space offices during different seasons. The microbial levels in the outdoor air, supply air diffusers, fan coil air flow and air treatment unit humidification water tank were used to evaluate the influence of the HVAC system on indoor air quality (IAQ). A medium-low level of bacterial contamination (50-500 CFU/m(3)) was found in indoor air. Staphylococcus and Micrococcus were the most commonly found genera, probably due to human presence. A high fungal concentration was measured due to a flood that occurred during the winter. The indoor seasonal distribution of fungal genera was related to the fungal outdoor distribution. Significant seasonal and daily variation in airborne microorganisms was found, underlining a relationship with the frequency of HVAC system switching on/off. The results of this monitoring highlight the role of the HVAC system on IAQ and could be useful to better characterise bacterial and fungal population in the indoor air of office buildings.
Aircraft cabin air quality: an overview [correction of overvier].
Rayman, R B
2001-03-01
In recent years, there have been increasing complaints from cockpit crew, cabin crew, and passengers that the cabin air quality of commercial aircraft is deficient. A myriad of complaints including headache, fatigue, fever, and respiratory difficulties among many others have been registered, particularly by flight attendants on long haul routes. There is also much concern today regarding the transmission of contagious disease inflight, particularly tuberculosis. The unanswered question is whether these complaints are really due to poor cabin air quality or to other factors inherent inflight such as lowered barometric pressure, hypoxia, low humidity, circadian dysynchrony, work/rest cycles, vibration etc. This paper will review some aspects relevant to cabin air quality such as carbon dioxide (CO2), carbon monoxide (CO), ozone (O3), particulates, and microorganisms as well as the cabin ventilation system to discern if there is a possible cause and effect of illness contracted inflight. The paper will conclude with recommendations on how the issue of cabin air quality may be resolved.
NASA Astrophysics Data System (ADS)
Zhou, L.; Baker, K. R.; Napelenok, S. L.; Elleman, R. A.; Urbanski, S. P.
2016-12-01
Biomass burning, including wildfires and prescribed burns, strongly impact the global carbon cycle and are of increasing concern due to the potential impacts on ambient air quality. This modelling study focuses on the evolution of carbonaceous compounds during a prescribed burning experiment and assesses the impacts of burning on local to regional air quality. The Community Multiscale Air Quality (CMAQ) model is used to conduct 4 and 2 km grid resolution simulations of prescribed burning experiments in southeast Washington state and western Idaho state in summer 2013. The ground and airborne measurements from the field experiment are used to evaluate the model performance in capturing surface and aloft impacts from the burning events. Phase partitioning of organic compounds in the plume are studied as it is a crucial step towards understanding the fate of carbonaceous compounds. The sensitivities of ambient concentrations and deposition to emissions are conducted for organic carbon, elemental carbon and ozone to estimate the impacts of fire on air quality.
Murphy, Colin W; Parker, Nathan C
2014-02-18
Air pollution emissions regulation can affect the location, size, and technology choice of potential biofuel production facilities. Difficulty in obtaining air pollutant emission permits and the cost of air pollution control devices have been cited by some fuel producers as barriers to development. This paper expands on the Geospatial Bioenergy Systems Model (GBSM) to evaluate the effect of air pollution control costs on the availability, cost, and distribution of U.S. biofuel production by subjecting potential facility locations within U.S. Clean Air Act nonattainment areas, which exceed thresholds for healthy air quality, to additional costs. This paper compares three scenarios: one with air quality costs included, one without air quality costs, and one in which conversion facilities were prohibited in Clean Air Act nonattainment areas. While air quality regulation may substantially affect local decisions regarding siting or technology choices, their effect on the system as a whole is small. Most biofuel facilities are expected to be sited near to feedstock supplies, which are seldom in nonattainment areas. The average cost per unit of produced energy is less than 1% higher in the scenarios with air quality compliance costs than in scenarios without such costs. When facility construction is prohibited in nonattainment areas, the costs increase by slightly over 1%, due to increases in the distance feedstock is transported to facilities in attainment areas.
Dealing with Variations over Space and Time in Urban Vegetation-Air Quality Assessment
NASA Astrophysics Data System (ADS)
Tan, P. Y.
2017-12-01
Studies on role of urban vegetation ameliorate poor air quality frequently encountered in urban areas should aim to answer a pertinent question: what is the net impact of urban vegetation in improving public health directly or indirectly through removal of air pollutants? Answers to this question need to consider that role of urban vegetation in air quality improvement is not just dependent on physical and physiological processes mediated by plants, it is also highly dependent on atmospheric processes. The roles of these two components thus need to be separated. This uncertainty is further complicated by heterogeneity of air quality over spatial scales and fluctuations in air quality over time. Singapore is used to illustrate these complexities. Between seasons, the main external source of atmospheric pollutants is aerosols from biomass burning in plantations in surrounding SE Asian countries, and air quality is highly dependent on wind directions dictated by monsoon systems. When air quality does deteriorate from transboundary pollution, there are also spatial differences within the city, as air pollutant levels differ in different regions. Rainfall from monsoons and other rain-bearing weather systems over Singapore also dictate the relative amounts of wet and dry deposition and the persistence of particulate matter deposited on vegetation surfaces. For locally generated air pollutants, diurnal fluctuations of anthropogenic activities, such as vehicular emissions between peak and non-peak hours, should also lead to fluctuations over the day. Not only does air quality vary from region to region, air quality within a vertical transect in the urban canopy layer also differs due to urban morphology and urban elements. A pedestrian along a treed street may experience poorer air quality than one living on highrise building, despite proximity to vegetation. There are thus interactions between climate, weather and urban context, which lead to spatial heterogeneity over multiple scales and temporal variations in air quality. They present challenges in field studies seeking to establish causality between urban vegetation, air quality improvement and public health status. Suggestions on approaches and additional questions that need to be asked will be shared during the panel discussion.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-16
... Santa Teresa are located along the border region of New Mexico and are adjacent to El Paso, Texas, and Ciudad Juarez, Mexico, or what is commonly referred to as the Paso del Norte Airshed. New Mexico... due to airshed contributions from Mexico and Texas. Air quality within the Paso del Norte Airshed has...
Air Quality and Health Benefits of China's Recent Stringent Environmental Policy
NASA Astrophysics Data System (ADS)
Zheng, Y.; Xue, T.; Zhang, Q.; Geng, G.; He, K.
2016-12-01
Aggressive emission control measures were taken by China's central and local governments after the promulgation of the "Air Pollution Prevention and Control Action Plan" in 2013. We evaluated the air quality and health benefits of this ever most stringent air pollution control policy during 2013-2015 by utilizing a two-stage data fusion model and newly-developed cause-specific integrated exposure-response functions (IER) developed for the Global Burden of Disease (GBD). The two-stage data fusion model predicts spatiotemporal continuous PM2.5 (particulate matter with aerodynamic diameter less than 2.5 µm) concentrations by integrating satellite-derived aerosol optical depth (AOD) measurements, PM2.5 concentrations from measurement and air quality model, and other ancillary information. During the years of analysis, PM2.5 concentration dropped significantly on national average and over heavily polluted regions as identified by Mann-Kendall analysis. The national PM2.5-attributable mortality decreased by 72.8 (95% CI: 59.4, 85.2) thousand (6%) from 1.23 (95% CI: 1.06, 1.39) million in 2013 to 1.15 (95% CI: 0.98, 1.31) million in 2015 due to considerable reduction (i.e. 18%) of population-weighted PM2.5 from 61.4 to 50.5 µg/m3. Meteorological variations between 2013 and 2015 were estimated to raise the PM2.5 levels by 0.24 µg/m3 and national mortality by 2.1 (95% CI: 1.6, 2.6) thousand through sensitivity tests, which implies the dominant role of anthropogenic impacts on PM2.5 abatement and attributable mortality reduction. Our study affirms the effectiveness of China's recent air quality policy, however, due to the possible supralinear shape of C-R functions, health benefits induced by air quality improvement in these years are limited. We therefore appeal for continuous implementation of current policies and further stringent measures from both air quality improvement and public health protection perspectives.
A Decadal Spatial and Temporal Analysis of PM10 in Istanbul: 1998-2008
NASA Astrophysics Data System (ADS)
Kilic, D.; Baltacibasi, S.; Unal, A.; Kindap, T.
2012-04-01
This study provides valuable new insights into the key contributors to ambient air quality in Istanbul, one of the largest mega-cities in Europe. The study builds on work in Europe that links air quality with national dynamics such as economical, vehicle activity and, meteorology in the long-term. Spatial and temporal analysis was performed on PM10 levels measured at 10 air quality monitoring sta- tions (AQMSs) in Istanbul from 1998 to 2008. The analysis found that ambient air quality levels are linked with winter temperatures as well as economic activity. The mean annual PM10 levels in 2001 are among the three lowest years in the period. This decrease corresponds with daily temperature data and annual number of heating degree days which shows that 2001 was one of the warmest winters in Istanbul. Warmer temperatures led to a decrease in energy demand for heating purposes, as demonstrated by the coal sales data. Low ambient air quality levels in 2001 also correspond to a decrease in gross domestic product and electricity demand due to the national economic crisis in March 2001 which affected industrial activity and as a result industrial and energy production related emissions. The study also found that air quality levels in Istanbul are a threat to human health and the environment. Based on the annual and seasonal PM10 profiles of the stations, 5 of the 6 AQMSs in the European Side of the city had mean PM10 values above the EU limit for PM10 for over 50% of the time. According to the linear regression analysis, there is no significant increase or decrease in the annual PM10 trend in Istanbul, this may be due warm winter and economic crisis in 2001.
The influence of tree stands and a noise barrier on near-roadway air quality
Prediction of air pollution exposure levels of people living near or commuting on roadways is still very problematic due to the highly localized nature of traffic intensity, fleet composition, and extremely complex air flow patterns in urban areas. Both modelling and field studie...
Temporal distribution of air quality related to meteorology and road traffic in Madrid.
Perez-Martinez, Pedro J; Miranda, Regina M
2015-04-01
The impact of climatology--air temperature, precipitation and wind speed--and road traffic--volume, vehicle speed and percentage of heavy-duty vehicles (HDVs)--on air quality in Madrid was studied by estimating the effect for each explanatory variable using generalized linear regression models controlling for monthly variations, days of week and parameter levels. Every 1 m/s increase in wind speed produced a decrease in PM10 concentrations by 10.3% (95% CI 12.6-8.6) for all weekdays and by 12.4% (95% CI 14.9-9.8) for working days (up to the cut-off of 2.4 m/s). Increases of PM10 concentrations due to air temperature (7.2% (95% CI 6.2-8.3)) and traffic volume (3.3% (95% CI 2.9-3.8)) were observed at every 10 °C and 1 million vehicle-km increases for all weekdays; oppositely, slight decreases of PM10 concentrations due to percentage of HDVs (3.2% (95% CI 2.7-3.7)) and vehicle speed (0.7% (95% CI 0.6-0.8)) were observed at every 1% and 1 km/h increases. Stronger effects of climatology on air quality than traffic parameters were found.
Enhanced PM2.5 pollution in China due to aerosol-cloud interactions.
Zhao, Bin; Liou, Kuo-Nan; Gu, Yu; Li, Qinbin; Jiang, Jonathan H; Su, Hui; He, Cenlin; Tseng, Hsien-Liang R; Wang, Shuxiao; Liu, Run; Qi, Ling; Lee, Wei-Liang; Hao, Jiming
2017-06-30
Aerosol-cloud interactions (aerosol indirect effects) play an important role in regional meteorological variations, which could further induce feedback on regional air quality. While the impact of aerosol-cloud interactions on meteorology and climate has been extensively studied, their feedback on air quality remains unclear. Using a fully coupled meteorology-chemistry model, we find that increased aerosol loading due to anthropogenic activities in China substantially increases column cloud droplet number concentration and liquid water path (LWP), which further leads to a reduction in the downward shortwave radiation at surface, surface air temperature and planetary boundary layer (PBL) height. The shallower PBL and accelerated cloud chemistry due to larger LWP in turn enhance the concentrations of particulate matter with diameter less than 2.5 μm (PM 2.5 ) by up to 33.2 μg m -3 (25.1%) and 11.0 μg m -3 (12.5%) in January and July, respectively. Such a positive feedback amplifies the changes in PM 2.5 concentrations, indicating an additional air quality benefit under effective pollution control policies but a penalty for a region with a deterioration in PM 2.5 pollution. Additionally, we show that the cloud processing of aerosols, including wet scavenging and cloud chemistry, could also have substantial effects on PM 2.5 concentrations.
Paradisi, R; Vanella, S; Barzanti, R; Cani, C; Battaglia, C; Seracchioli, R; Venturoli, S
2009-06-01
A number of studies indicated a clear decline in semen quality in the past 30-50 years and there is accumulating evidence that this decline might result from exposure to high levels of air pollution. To examine the impact of environment on male reproductive ability, we undertook for the first time a pilot study on semen quality of infertile men exposed to purification of indoor air. Ten subjects with a history of unexplained male infertility and poor semen quality were exposed for at least 1 year to a cleaning indoor air system (Koala technology). The key feature of this air purifier is the unique innovative multiple filtering system. The treatment of total purification of indoor air showed neither improvements in semen parameters nor variation in reproductive hormones (P = N.S.), but induced an evident increase (P < 0.03 and more) in seminal leucocytic concentrations. Within the limits due to the small sample of subjects recruited, the sole purification of indoor air does not seem enough to improve semen quality, although the increase in leucocytic concentrations could indicate an activation of the role of immunosurveillance in a purified indoor air environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spickett, Jeffery, E-mail: J.Spickett@curtin.edu.au; Faculty of Health Sciences, School of Public Health, Curtin University, Perth, Western Australia; Katscherian, Dianne
The approaches used for setting or reviewing air quality standards vary from country to country. The purpose of this research was to consider the potential to improve decision-making through integration of HIA into the processes to review and set air quality standards used in Australia. To assess the value of HIA in this policy process, its strengths and weaknesses were evaluated aligned with review of international processes for setting air quality standards. Air quality standard setting programmes elsewhere have either used HIA or have amalgamated and incorporated factors normally found within HIA frameworks. They clearly demonstrate the value of amore » formalised HIA process for setting air quality standards in Australia. The following elements should be taken into consideration when using HIA in standard setting. (a) The adequacy of a mainly technical approach in current standard setting procedures to consider social determinants of health. (b) The importance of risk assessment criteria and information within the HIA process. The assessment of risk should consider equity, the distribution of variations in air quality in different locations and the potential impacts on health. (c) The uncertainties in extrapolating evidence from one population to another or to subpopulations, especially the more vulnerable, due to differing environmental factors and population variables. (d) The significance of communication with all potential stakeholders on issues associated with the management of air quality. In Australia there is also an opportunity for HIA to be used in conjunction with the NEPM to develop local air quality standard measures. The outcomes of this research indicated that the use of HIA for air quality standard setting at the national and local levels would prove advantageous. -- Highlights: • Health Impact Assessment framework has been applied to a policy development process. • HIA process was evaluated for application in air quality standard setting. • Advantages of HIA in the air quality standard setting process are demonstrated.« less
Air Quality Cumulative Effects Assessment for U.S. Air Force Bases.
1998-01-29
forecasted activities. Consideration of multimedia effects and transmedia impacts is important, however, in CEA. Any quantification method developed...substantive areas, such as water quality, ecology, planing, archeology , and landscape architecture? 9. Are there public concerns due to the impact risks of...methods developed for CEA should consider multimedia effects and transmedia impacts. Portions of this research can be used, or modified, to address other
Wang, Li; Zhang, Fengying; Pilot, Eva; Yu, Jie; Holdaway, Jennifer; Yang, Linsheng; Li, Yonghua; Wang, Wuyi; Vardoulakis, Sotiris; Krafft, Thomas
2018-01-01
Due to rapid urbanization, industrialization and motorization, a large number of Chinese cities are affected by heavy air pollution. In order to explore progress, remaining challenges, and sustainability of air pollution control in the Beijing-Tianjin-Hebei (BTH) region after 2013, a mixed method analysis was undertaken. The quantitative analysis comprised an overview of air quality management in the BTH region. Semi-structured expert interviews were conducted with 12 stakeholders from various levels of government and research institutions who played substantial roles either in decision-making or in research and advising on air pollution control in the BTH region. The results indicated that with the stringent air pollution control policies, the air quality in BTH meets the targets of the Air Pollution Prevention and Control Action Plan. However, improvements vary across the region and for different pollutants. Although implementation has been decisive and was at least in parts effectively enforced, significant challenges remained with regard to industrial and traffic emission control, and national air quality limits continued to be significantly exceeded and competing development interests remained mainly unsolved. There were also concerns about the sustainability of the current air pollution control measures especially for industries due to the top-down enforcement, and the associated large burden of social cost including unemployment and social inequity resulting industrial restructuring. Better mechanisms for ensuring cross-sectoral coordination and for improved central-local government communication were suggested. Further suggestions were provided to improve the conceptual design and effective implementation of respective air pollution control strategies in BTH. Our study highlights some of the major hurdles that need to be addressed to succeed with a comprehensive air pollution control management for the Chinese mega-urban agglomerations. PMID:29425189
Wang, Li; Zhang, Fengying; Pilot, Eva; Yu, Jie; Nie, Chengjing; Holdaway, Jennifer; Yang, Linsheng; Li, Yonghua; Wang, Wuyi; Vardoulakis, Sotiris; Krafft, Thomas
2018-02-09
Due to rapid urbanization, industrialization and motorization, a large number of Chinese cities are affected by heavy air pollution. In order to explore progress, remaining challenges, and sustainability of air pollution control in the Beijing-Tianjin-Hebei (BTH) region after 2013, a mixed method analysis was undertaken. The quantitative analysis comprised an overview of air quality management in the BTH region. Semi-structured expert interviews were conducted with 12 stakeholders from various levels of government and research institutions who played substantial roles either in decision-making or in research and advising on air pollution control in the BTH region. The results indicated that with the stringent air pollution control policies, the air quality in BTH meets the targets of the Air Pollution Prevention and Control Action Plan. However, improvements vary across the region and for different pollutants. Although implementation has been decisive and was at least in parts effectively enforced, significant challenges remained with regard to industrial and traffic emission control, and national air quality limits continued to be significantly exceeded and competing development interests remained mainly unsolved. There were also concerns about the sustainability of the current air pollution control measures especially for industries due to the top-down enforcement, and the associated large burden of social cost including unemployment and social inequity resulting industrial restructuring. Better mechanisms for ensuring cross-sectoral coordination and for improved central-local government communication were suggested. Further suggestions were provided to improve the conceptual design and effective implementation of respective air pollution control strategies in BTH. Our study highlights some of the major hurdles that need to be addressed to succeed with a comprehensive air pollution control management for the Chinese mega-urban agglomerations.
The Relationship of Land Use and Transportation Planning to Air Quality Management.
ERIC Educational Resources Information Center
Hagevik, George, Ed.
Due to a lack of communication between urban, regional, and transportation planning agencies and air pollution control agencies, cooperative efforts in environmental planning have been nearly non-existent. This traditional lack of communication and understanding serves to obscure the fact that air pollution control agencies and planning agencies…
Air quality in Beijing during the 2008 Olympic Games observed by satellites and ground monitors
NASA Astrophysics Data System (ADS)
Zhao, Q.; Liu, Y.; He, K.; Chen, L.; Wang, Z.; Koutrakis, P.; Christiani, D.
2008-12-01
Beijing's severe air pollution has been a major concern for hosting the 29th Olympic Games and Special Olympic Games from August 8 to August 24, 2008. It was generally expected that its air quality in 2008, at least around the period of Olympic Games, would be significantly improved through aggressive government control measures However, it is also expected that the improvement of air quality will not be sustainable due to high economic costs. Thus, the massive temporary improvement of air quality in Beijing metropolitan area induced by direct government intervention will serve as an extremely rare "natural experiment", generating a great contrast in air pollution levels in a short period of time. A ground measurement campaign was conducted to evaluate the variation of airborne particulate matters (PM2.5 and PM10) levels in Beijing from late July to early September of 2008. Satellite aerosol remote sensing data from MISR, MODIS, and OMI during this period were also analyzed to evaluate the spatial distribution of particles in Beijing and surrounding areas. Preliminary analysis indicated that city-wide ground PM10 level in August was 30% lower than that in 2007. During the Olympic Games, PM10 level was nearly 50% lower than the same period in 2007. There are a total of 14 days with daily PM10 concentrations below 50 micrograms per cubic meter, longest since the ground monitoring network was established in 2001. PM2.5 concentrations measured from three research sites showed a similar reduction. Satellite remote sensing data are limited during the Games due to extensive cloud cover. However, existing data in August and September show a substantial regional reduction of aerosol optical depth. In conclusion, the pollution control measures effectively improved the air quality in Beijing and provided insight on how the Chinese government may mitigate air pollution in many of its large cities.
Study of temporal variation in ambient air quality during Diwali festival in India.
Singh, D P; Gadi, Ranu; Mandal, T K; Dixit, C K; Singh, Khem; Saud, T; Singh, Nahar; Gupta, Prabhat K
2010-10-01
The variation in air quality was assessed from the ambient concentrations of various air pollutants [total suspended particle (TSP), particulate matter < or =10 microm (PM(10)), SO(2), and NO(2)] for pre-Diwali, Diwali festival, post-Diwali, and foggy day (October, November, and December), Delhi (India), from 2002 to 2007. The extensive use of fireworks was found to be related to short-term variation in air quality. During the festival, TSP is almost of the same order as compared to the concentration at an industrial site in Delhi in all the years. However, the concentrations of PM(10), SO(2), and NO(2) increased two to six times during the Diwali period when compared to the data reported for an industrial site. Similar trend was observed when the concentrations of pollutants were compared with values obtained for a typical foggy day each year in December. The levels of these pollutants observed during Diwali were found to be higher due to adverse meteorological conditions, i.e., decrease in 24 h average mixing height, temperature, and wind speed. The trend analysis shows that TSP, PM(10), NO(2), and SO(2) concentration increased just before Diwali and reached to a maximum concentration on the day of the festival. The values gradually decreased after the festival. On Diwali day, 24-h values for TSP and PM(10) in all the years from 2002 to 2007 and for NO(2) in 2004 and 2007 were found to be higher than prescribed limits of National Ambient Air Quality Standards and exceptionally high (3.6 times) for PM(10) in 2007. These results indicate that fireworks during the Diwali festival affected the ambient air quality adversely due to emission and accumulation of TSP, PM(10), SO(2), and NO(2).
Mexico City Air Quality Research Initiative; Volume 5, Strategic evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-03-01
Members of the Task HI (Strategic Evaluation) team were responsible for the development of a methodology to evaluate policies designed to alleviate air pollution in Mexico City. This methodology utilizes information from various reports that examined ways to reduce pollutant emissions, results from models that calculate the improvement in air quality due to a reduction in pollutant emissions, and the opinions of experts as to the requirements and trade-offs that are involved in developing a program to address the air pollution problem in Mexico City. The methodology combines these data to produce comparisons between different approaches to improving Mexico City`smore » air quality. These comparisons take into account not only objective factors such as the air quality improvement or cost of the different approaches, but also subjective factors such as public acceptance or political attractiveness of the different approaches. The end result of the process is a ranking of the different approaches and, more importantly, the process provides insights into the implications of implementing a particular approach or policy.« less
A web-based screening tool for near-port air quality assessments
Isakov, Vlad; Barzyk, Timothy M.; Smith, Elizabeth R.; Arunachalam, Saravanan; Naess, Brian; Venkatram, Akula
2018-01-01
The Community model for near-PORT applications (C-PORT) is a screening tool with an intended purpose of calculating differences in annual averaged concentration patterns and relative contributions of various source categories over the spatial domain within about 10 km of the port. C-PORT can inform decision-makers and concerned citizens about local air quality due to mobile source emissions related to commercial port activities. It allows users to visualize and evaluate different planning scenarios, helping them identify the best alternatives for making long-term decisions that protect community health and sustainability. The web-based, easy-to-use interface currently includes data from 21 seaports primarily in the Southeastern U.S., and has a map-based interface based on Google Maps. The tool was developed to visualize and assess changes in air quality due to changes in emissions and/or meteorology in order to analyze development scenarios, and is not intended to support or replace any regulatory models or programs. PMID:29681760
AIRQino, a low-cost air quality mobile platform
NASA Astrophysics Data System (ADS)
Zaldei, Alessandro; Vagnoli, Carolina; Di Lonardo, Sara; Gioli, Beniamino; Gualtieri, Giovanni; Toscano, Piero; Martelli, Francesca; Matese, Alessandro
2015-04-01
Recent air quality regulations (Directive 2008/50/EC) enforce the transition from point-based monitoring networks to new tools that must be capable of mapping and forecasting air quality on the totality of land area, and therefore the totality of citizens. This implies new technologies such as models and additional indicative measurements, are needed in addition to accurate fixed air quality monitoring stations, that until now have been taken as reference by local administrators for the enforcement of various mitigation strategies. However, due to their sporadic spatial distribution, they cannot describe the highly resolved spatial pollutant variations within cities. Integrating additional indicative measurements may provide adequate information on the spatial distribution of the ambient air quality, also allowing for a reduction of the required minimum number of fixed sampling points, whose high cost and complex maintenance still remain a crucial concern for local administrators. New low-cost and small size sensors are becoming available, that could be employed in air quality monitoring including mobile applications. However, accurate assessment of their accuracy and performance both in controlled and real monitoring conditions is crucially needed. Quantifying sensor response is a significant challenge due to the sensitivity to ambient temperature and humidity and the cross-sensitivity to others pollutant species. This study reports the development of an Arduino compatible electronic board (AIRQino) which integrates a series of low-cost metal oxide and NDIR sensors for air quality monitoring, with sensors to measure air temperature, relative humidity, noise, solar radiation and vertical acceleration. A comparative assessment was made for CO2, CO, NO2, CH4, O3, VOCs concentrations, temperature and relative humidity. A controlled climatic chamber study (-80°C / +80°C) was performed to verify temperature and humidity interference using reference gas cylinders and high quality reference sensors. The AIRQino was installed on mobile vectors such as bikes, buses and trams in the cities of Firenze and Siracusa (Italy), that send data real-time to a Web portal. By integrating a microprocessor unit it is capable of directly updating calibration coefficients to provide corrected sensor output as digital string through RS232 serial port. Results from the lab tests and the 'real world' mobile applications are presented and discussed, to assess to what extent this sensor technology might be useful for the development of portable, compact, wireless and cost-effective system for air quality monitoring in urban areas at high spatio-temporal resolution.
Quantitative assessment of human exposures and health effects due to air pollution involve detailed characterization of impacts of air quality on exposure and dose. A key challenge is to integrate these three components on a consistent spatial and temporal basis taking into acco...
NASA Astrophysics Data System (ADS)
Dimitriou, Konstantinos; Kassomenos, Pavlos
2014-10-01
The keystone of this paper was to calculate and interpret indicators reflecting sources and air quality impacts of PM2.5 and PMCOARSE (PM10-PM2.5) in Rome (Italy), focusing on potential exogenous influences. A backward atmospheric trajectory cluster analysis was implemented. The likelihood of daily PM10 exceedances was studied in conjunction with atmospheric patterns, whereas a Potential Source Contribution Function (PSCF) based on air mass residence time was deployed on a grid of a 0.5° × 0.5° resolution. Higher PM2.5 concentrations were associated with short/medium range airflows originated from Balkan Peninsula, whereas potential PMCOARSE sources were localized across the Mediterranean and coastal North Africa, due to dust and sea spray transportation. According to the outcome of a daily Pollution Index (PI), a slightly increased degradation of air quality is induced due to the additional quantity of exogenous PM but nevertheless, average levels of PI in all trajectory clusters belong in the low pollution category. Gaseous and particulate pollutants were also elaborated by a Principal Component Analysis (PCA), which produced 4 components: [Traffic], [photochemical], [residential] and [Secondary Coarse Aerosol], reflecting local sources of air pollution. PM2.5 levels were strongly associated with traffic, whereas PMCOARSE were produced autonomously by secondary sources.
Overall human mortality and morbidity due to exposure to air pollution.
Samek, Lucyna
2016-01-01
Concentrations of particulate matter that contains particles with diameter ≤ 10 mm (PM10) and diameter ≤ 2.5 mm (PM2.5) as well as nitrogen dioxide (NO2) have considerable impact on human mortality, especially in the cases when cardiovascular or respiratory causes are attributed. Additionally, they affect morbidity. An estimation of human mortality and morbidity due to the increased concentrations of PM10, PM2.5 and NO2 between the years 2005-2013 was performed for the city of Kraków, Poland. For this purpose the Air Quality Health Impact Assessment Tool (AirQ) software was successfully applied. The Air Quality Health Impact Assessment Tool was used for the calculation of the total, cardiovascular and respiratory mortality as well as hospital admissions related to cardiovascular and respiratory diseases. Data on concentrations of PM10, PM2.5 and NO2, which was obtained from the website of the Voivodeship Inspectorate for Environmental Protection (WIOS) in Kraków, was used in this study. Total mortality due to exposure to PM10 in 2005 was found to be 41 deaths per 100 000 and dropped to 30 deaths per 100 000 in 2013. Cardiovascular mortality was 2 times lower than the total mortality. However, hospital admissions due to respiratory diseases were more than an order of magnitude higher than the respiratory mortality. The calculated total mortality due to PM2.5 was higher than that due to PM10. Air pollution was determined to have a significant effect on human health. The values obtained by the use of the AirQ software for the city of Kraków imply that exposure to polluted air can result in serious health problems. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
Dreessen, Joel; Sullivan, John; Delgado, Ruben
2016-09-01
Canadian wildfire smoke impacted air quality across the northern Mid-Atlantic (MA) of the United States during June 9-12, 2015. A multiday exceedance of the new 2015 70-ppb National Ambient Air Quality Standard (NAAQS) for ozone (O3) followed, resulting in Maryland being incompliant with the Environmental Protection Agency's (EPA) revised 2015 O3 NAAQS. Surface in situ, balloon-borne, and remote sensing observations monitored the impact of the wildfire smoke at Maryland air quality monitoring sites. At peak smoke concentrations in Maryland, wildfire-attributable volatile organic compounds (VOCs) more than doubled, while non-NOx oxides of nitrogen (NOz) tripled, suggesting long range transport of NOx within the smoke plume. Peak daily average PM2.5 was 32.5 µg m(-3) with large fractions coming from black carbon (BC) and organic carbon (OC), with a synonymous increase in carbon monoxide (CO) concentrations. Measurements indicate that smoke tracers at the surface were spatially and temporally correlated with maximum 8-hr O3 concentrations in the MA, all which peaked on June 11. Despite initial smoke arrival late on June 9, 2015, O3 production was inhibited due to ultraviolet (UV) light attenuation, lower temperatures, and nonoptimal surface layer composition. Comparison of Community Multiscale Air Quality (CMAQ) model surface O3 forecasts to observations suggests 14 ppb additional O3 due to smoke influences in northern Maryland. Despite polluted conditions, observations of a nocturnal low-level jet (NLLJ) and Chesapeake Bay Breeze (BB) were associated with decreases in O3 in this case. While infrequent in the MA, wildfire smoke may be an increasing fractional contribution to high-O3 days, particularly in light of increased wildfire frequency in a changing climate, lower regional emissions, and tighter air quality standards. The presented event demonstrates how a single wildfire event associated with an ozone exceedance of the NAAQS can prevent the Baltimore region from complying with lower ozone standards. This relatively new problem in Maryland is due to regional reductions in NOx emissions that led to record low numbers of ozone NAAQS violations in the last 3 years. This case demonstrates the need for adequate means to quantify and justify ozone impacts from wildfires, which can only be done through the use of observationally based models. The data presented may also improve future air quality forecast models.
NASA Astrophysics Data System (ADS)
Nehr, Sascha; Franzen-Reuter, Isabelle; Kucejko, Catharina
2017-10-01
Man-made activities have caused unexampled changes of our environment during the last two centuries. Due to emissions of a vast number of pollutants the composition of the Earth's atmosphere is continuously changing, and the consequences for humans and for ecosystems are only partly understood at present. Once released to the atmosphere, the emitted substances undergo physical and chemical degradation. Many of the substances detected in ambient air are toxic or carcinogenic and might cause respiratory and cardiovascular diseases. Furthermore, air pollutants are influencing acidification, eutrophication, global warming, and biodiversity. Therefore soil quality, water quality, air quality, ecosystem exposure to pollutant deposition, biodiversity, and climate change are coupled problems (Schlesinger, 1997; Steffen et al., 2005; Ehlers et al., 2006; Rockström et al., 2009).
NASA Astrophysics Data System (ADS)
Masiol, Mauro; Harrison, Roy M.
2014-10-01
Civil aviation is fast-growing (about +5% every year), mainly driven by the developing economies and globalisation. Its impact on the environment is heavily debated, particularly in relation to climate forcing attributed to emissions at cruising altitudes and the noise and the deterioration of air quality at ground-level due to airport operations. This latter environmental issue is of particular interest to the scientific community and policymakers, especially in relation to the breach of limit and target values for many air pollutants, mainly nitrogen oxides and particulate matter, near the busiest airports and the resulting consequences for public health. Despite the increased attention given to aircraft emissions at ground-level and air pollution in the vicinity of airports, many research gaps remain. Sources relevant to air quality include not only engine exhaust and non-exhaust emissions from aircraft, but also emissions from the units providing power to the aircraft on the ground, the traffic due to the airport ground service, maintenance work, heating facilities, fugitive vapours from refuelling operations, kitchens and restaurants for passengers and operators, intermodal transportation systems, and road traffic for transporting people and goods in and out to the airport. Many of these sources have received inadequate attention, despite their high potential for impact on air quality. This review aims to summarise the state-of-the-art research on aircraft and airport emissions and attempts to synthesise the results of studies that have addressed this issue. It also aims to describe the key characteristics of pollution, the impacts upon global and local air quality and to address the future potential of research by highlighting research needs.
Ribeiro, Manuel C; Pinho, P; Branquinho, C; Llop, Esteve; Pereira, Maria J
2016-08-15
In most studies correlating health outcomes with air pollution, personal exposure assignments are based on measurements collected at air-quality monitoring stations not coinciding with health data locations. In such cases, interpolators are needed to predict air quality in unsampled locations and to assign personal exposures. Moreover, a measure of the spatial uncertainty of exposures should be incorporated, especially in urban areas where concentrations vary at short distances due to changes in land use and pollution intensity. These studies are limited by the lack of literature comparing exposure uncertainty derived from distinct spatial interpolators. Here, we addressed these issues with two interpolation methods: regression Kriging (RK) and ordinary Kriging (OK). These methods were used to generate air-quality simulations with a geostatistical algorithm. For each method, the geostatistical uncertainty was drawn from generalized linear model (GLM) analysis. We analyzed the association between air quality and birth weight. Personal health data (n=227) and exposure data were collected in Sines (Portugal) during 2007-2010. Because air-quality monitoring stations in the city do not offer high-spatial-resolution measurements (n=1), we used lichen data as an ecological indicator of air quality (n=83). We found no significant difference in the fit of GLMs with any of the geostatistical methods. With RK, however, the models tended to fit better more often and worse less often. Moreover, the geostatistical uncertainty results showed a marginally higher mean and precision with RK. Combined with lichen data and land-use data of high spatial resolution, RK is a more effective geostatistical method for relating health outcomes with air quality in urban areas. This is particularly important in small cities, which generally do not have expensive air-quality monitoring stations with high spatial resolution. Further, alternative ways of linking human activities with their environment are needed to improve human well-being. Copyright © 2016 Elsevier B.V. All rights reserved.
Particulate Matter Levels in Ambient Air Adjacent to Industrial Area
NASA Astrophysics Data System (ADS)
Mohamed, R. M. S. R.; Nizam, N. M. S.; Al-Gheethi, A. A.; Lajis, A.; Kassim, A. H. M.
2016-07-01
Air quality in the residential areas adjacent to the industrial regions is of great concern due to the association with human health risks. In this work, the concentrations of particulate matter (PM10) in the ambient air of UTHM campus was investigated tostudy the air qualityand their compliance to the Malaysian Ambient Air Quality Guidelines (AAQG). The PM10 samples were taken over 24 hours from the most significant area at UTHM including Stadium, KolejKediamanTunDr. Ismail (KKTDI) and MakmalBahan. The meteorological parameters; temperature, relative humidity, wind speed and wind direction as well as particulate matterwere estimated by using E-Sampler Particulate Matter (PM10) Collector. The highest concentrations of PM10 (55.56 µg/m3) was recorded at MakmalBahan during the working and weekend days. However, these concentrations are less than 150 pg/m3. It can be concluded that although UTHM is surrounded by the industrial area, the air quality in the campus still within the standards limits.
Sozzi, R; Bolignano, A; Ceradini, S; Morelli, M; Petenko, I; Argentini, S
2017-10-15
According to the European Directive 2008/50/CE, the air quality assessment consists in the measurement of the concentration fields, and the evaluation of the mean, number of exceedances, etc. of some chemical species dangerous to human health. The measurements provided by an air quality ground-based monitoring network are the main information source but the availability of these data is often limited by several technical and operational problems. In this paper, the best linear unbiased estimator (BLUE) is proposed to validate the pollutant concentration values and to fill the gaps in the measurement of time series collected by a monitoring network. The BLUE algorithm is tested using the daily mean concentrations of particulate matter having aerodynamic diameter less than 10 μ (PM 10 concentrations) measured by the air quality monitoring sensors operating in the Lazio Region in Italy. The comparison between the estimated and measured data evidences an error comparable with the measurement uncertainty. Due to its simplicity and reliability, the BLUE will be used in the routine quality test procedures of the Lazio air quality monitoring network measurements.
Implementation of a WRF-CMAQ Air Quality Modeling System in Bogotá, Colombia
NASA Astrophysics Data System (ADS)
Nedbor-Gross, R.; Henderson, B. H.; Pachon, J. E.; Davis, J. R.; Baublitz, C. B.; Rincón, A.
2014-12-01
Due to a continuous economic growth Bogotá, Colombia has experienced air pollution issues in recent years. The local environmental authority has implemented several strategies to curb air pollution that have resulted in the decrease of PM10 concentrations since 2010. However, more activities are necessary in order to meet international air quality standards in the city. The University of Florida Air Quality and Climate group is collaborating with the Universidad de La Salle to prioritize regulatory strategies for Bogotá using air pollution simulations. To simulate pollution, we developed a modeling platform that combines the Weather Research and Forecasting Model (WRF), local emissions, and the Community Multi-scale Air Quality model (CMAQ). This platform is the first of its kind to be implemented in the megacity of Bogota, Colombia. The presentation will discuss development and evaluation of the air quality modeling system, highlight initial results characterizing photochemical conditions in Bogotá, and characterize air pollution under proposed regulatory strategies. The WRF model has been configured and applied to Bogotá, which resides in a tropical climate with complex mountainous topography. Developing the configuration included incorporation of local topography and land-use data, a physics sensitivity analysis, review, and systematic evaluation. The threshold, however, was set based on synthesis of model performance under less mountainous conditions. We will evaluate the impact that differences in autocorrelation contribute to the non-ideal performance. Air pollution predictions are currently under way. CMAQ has been configured with WRF meteorology, global boundary conditions from GEOS-Chem, and a locally produced emission inventory. Preliminary results from simulations show promising performance of CMAQ in Bogota. Anticipated results include a systematic performance evaluation of ozone and PM10, characterization of photochemical sensitivity, and air quality predictions under proposed regulatory scenarios.
Effect of aerosol feedback in the Korea Peninsula using WRF-CMAQ two-way coupled model
NASA Astrophysics Data System (ADS)
Yoo, J.; Jeon, W.; Lee, H.; Lee, S.
2017-12-01
Aerosols influence the climate system by scattering and absorption of the solar radiation by altering the cloud radiative properties. For the reason, consideration of aerosol feedback is important numerical weather prediction and air quality models. The purpose of this study was to investigate the effect of aerosol feedback on PM10 simulation in Korean Peninsula using the Weather Research and Forecasting (WRF) and the community multiscale air quality (CMAQ) two-way coupled model. Simulations were conducted with the aerosol feedback (FB) and without (NFB). The results of the simulated solar radiation in the west part of Korea decreased due to the aerosol feedback effect. The feedback effect was significant in the west part of Korea Peninsula, showing high Particulate Matter (PM) estimates due to dense emissions and its long-range transport from China. The decrease of solar radiation lead to planetary boundary layer (PBL) height reduction, thereby dispersion of air pollutants such as PM is suppressed, and resulted in higher PM concentrations. These results indicate that aerosol feedback effects can play an important role in the simulation of meteorology and air quality over Korea Peninsula.
Measurements of PANs during the New England Air Quality Study 2002
NASA Astrophysics Data System (ADS)
Roberts, J. M.; Marchewka, M.; Bertman, S. B.; Sommariva, R.; Warneke, C.; de Gouw, J.; Kuster, W.; Goldan, P.; Williams, E.; Lerner, B. M.; Murphy, P.; Fehsenfeld, F. C.
2007-10-01
Measurements of peroxycarboxylic nitric anhydrides (PANs) were made during the New England Air Quality Study 2002 cruise of the NOAA RV Ronald H Brown. The four compounds observed, PAN, peroxypropionic nitric anhydride (PPN), peroxymethacrylic nitric anhydride (MPAN), and peroxyisobutyric nitric anhydride (PiBN) were compared with results from other continental and Gulf of Maine sites. Systematic changes in PPN/PAN ratio, due to differential thermal decomposition rates, were related quantitatively to air mass aging. At least one early morning period was observed when O3 seemed to have been lost probably due to NO3 and N2O5 chemistry. The highest O3 episode was observed in the combined plume of isoprene sources and anthropogenic volatile organic compounds (VOCs) and NOx sources from the greater Boston area. A simple linear combination model showed that the organic precursors leading to elevated O3 were roughly half from the biogenic and half from anthropogenic VOC regimes. An explicit chemical box model confirmed that the chemistry in the Boston plume is well represented by the simple linear combination model. This degree of biogenic hydrocarbon involvement in the production of photochemical ozone has significant implications for air quality control strategies in this region.
Wang, Keran; Wu, Jinyi; Wang, Rui; Yang, Yingying; Chen, Renjie; Maddock, Jay E; Lu, Yuanan
2015-11-15
Shanghai, along with many major cities in China, faces deterioration of air quality and increases in air pollution-related respiratory diseases (RDs) in children due to rapid industrialization and urbanization. The Contingent Valuation Method (CVM) was used to qualitatively and quantitatively measure the willingness to pay (WTP) for reducing children's RDs through air quality improvement. Between April and May, 2014, 975 face-to-face interviews were collected from parents in a community-based and a hospital-setting in Shanghai. Multiple imputation and the Probit model were used to determine the relationship between the WTP and the related environmental factors, child health factors and the socio-economic status. Most respondents reported being willing to make a financial contribution to improve air quality in both the community (52.6%) and hospital (70.2%) samples. Those in the hospital setting were willing to pay significantly more ¥504 (USD$80.7) compared to the community sample ¥428 ($68.5) as expected. Reasons for those not being willing to pay included lack of disposable income and believing that responsibility of the air quality was a community issue. These did not differ by sample. Annual household income and education were related to WTP. This study indicated that parents in Shanghai would be willing to pay for improved air quality. Children's health can be the incentive for the citizens' participation and support in the air quality improvement, therefore, hospital settings may present unique places to improve education about air quality and enhance advocacy efforts. This study also suggested that future environmental policies be addressed more rigorously for targeted populations. Copyright © 2015 Elsevier B.V. All rights reserved.
Evaluation of regional climate simulations for air quality modelling purposes
NASA Astrophysics Data System (ADS)
Menut, Laurent; Tripathi, Om P.; Colette, Augustin; Vautard, Robert; Flaounas, Emmanouil; Bessagnet, Bertrand
2013-05-01
In order to evaluate the future potential benefits of emission regulation on regional air quality, while taking into account the effects of climate change, off-line air quality projection simulations are driven using weather forcing taken from regional climate models. These regional models are themselves driven by simulations carried out using global climate models (GCM) and economical scenarios. Uncertainties and biases in climate models introduce an additional "climate modeling" source of uncertainty that is to be added to all other types of uncertainties in air quality modeling for policy evaluation. In this article we evaluate the changes in air quality-related weather variables induced by replacing reanalyses-forced by GCM-forced regional climate simulations. As an example we use GCM simulations carried out in the framework of the ERA-interim programme and of the CMIP5 project using the Institut Pierre-Simon Laplace climate model (IPSLcm), driving regional simulations performed in the framework of the EURO-CORDEX programme. In summer, we found compensating deficiencies acting on photochemistry: an overestimation by GCM-driven weather due to a positive bias in short-wave radiation, a negative bias in wind speed, too many stagnant episodes, and a negative temperature bias. In winter, air quality is mostly driven by dispersion, and we could not identify significant differences in either wind or planetary boundary layer height statistics between GCM-driven and reanalyses-driven regional simulations. However, precipitation appears largely overestimated in GCM-driven simulations, which could significantly affect the simulation of aerosol concentrations. The identification of these biases will help interpreting results of future air quality simulations using these data. Despite these, we conclude that the identified differences should not lead to major difficulties in using GCM-driven regional climate simulations for air quality projections.
NASA Astrophysics Data System (ADS)
Levelt, P.; Joiner, J.; Tamminen, J.; Veefkind, P.; Bhartia, P. K.; Court, A. J.; Vlemmix, T.
2017-12-01
Keywords: emission monitoring, air quality, climate, atmospheric composition The Ozone Monitoring Instrument (OMI), launched on board of NASA's EOS-Aura spacecraft on July 15, 2004, provides unique contributions to the monitoring of the ozone layer, air quality and climate from space. With a data record of 13 years, OMI provides the longest NO2 and SO2 record from space, which is essential to understand the changes to emissions globally. The combination of urban scale resolution (13 x 24 km2 in nadir) and daily global coverage proved to be key features for the air quality community. Due to the operational Very Fast Delivery (VFD / direct readout) and Near Real Time (NRT) availability of the data, OMI also plays an important role in the early developments of operational services in the atmospheric chemistry domain. For example, OMI data is currently used operationally for improving air quality forecasts, for inverting high-resolution emission maps, the UV forecast and for volcanic plume warning systems for aviation. An overview of air quality applications, emission inventory inversions and trend analyses based on the OMI data record will be presented. An outlook will be given on the potentials of augmenting this record with the high resolution air quality measurements of TROPOMI (3,5 x 7 km2) and new satellite instrumentation entering the imaging domain, such as the TROPOLITE instrument ( 1 x 1 km2). Potential of imaging type of NO2 measurements in the the climate and air quality domain will be given, most notably on the use of high resolution NO2 measurements for pin-pointing anthropogenic CO2 emissions.
Maximizing sinter plant operating flexibility through emissions trading and air modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schewe, G.J.; Wagner, J.A.; Heron, T.
1998-12-31
This paper provides details on the dispersion modeling analysis performed to demonstrate air quality impacts associated with an emission trading scheme for a sintering operation in Youngstown, Ohio. The emission trade was proposed to allow the sinter plant to expand its current allowable sulfur dioxide (SO2) emissions while being offset with SO{sub 2} emissions from boilers at a nearby shutdown steel mill. While the emission trade itself was feasible and the emissions required for the offset were available (the boiler shutdown and their subsequent SO{sub 2} emission credits were never claimed, banked, or used elsewhere), the second criteria for determiningmore » compliance was a demonstration of minimal air quality impact. The air analysis combined the increased ambient SO{sub 2} concentrations of the relaxed sinter plant emissions with the offsetting air quality of the shutdown boilers to yield the net air quality impacts. To test this net air impact, dispersion modeling was performed treating the sinter plant SO{sub 2} emissions as positive and the shutdown boiler SO{sub 2} emissions as negative. The results of the modeling indicated that the ambient air concentrations due to the proposed emissions increase will be offset by the nearby boiler emissions to levels acceptable under EPA`s offset policy Level 2 significant impact concentrations. Therefore, the dispersion modeling demonstrated that the emission trading scheme would not result in significant air quality impacts and maximum operating flexibility was provided to the sintering facility.« less
Local-Scale Air Quality Modeling in Support of Human Health and Exposure Research (Invited)
NASA Astrophysics Data System (ADS)
Isakov, V.
2010-12-01
Spatially- and temporally-sparse information on air quality is a key concern for air-pollution-related environmental health studies. Monitor networks are sparse in both space and time, are costly to maintain, and are often designed purposely to avoid detecting highly localized sources. Recent studies have shown that more narrowly defining the geographic domain of the study populations and improvements in the measured/estimated ambient concentrations can lead to stronger associations between air pollution and hospital admissions and mortality records. Traditionally, ambient air quality measurements have been used as a primary input to support human health and exposure research. However, there is increasing evidence that the current ambient monitoring network is not capturing sharp gradients in exposure due to the presence of high concentration levels near, for example, major roadways. Many air pollutants exhibit large concentration gradients near large emitters such as major roadways, factories, ports, etc. To overcome these limitations, researchers are now beginning to use air quality models to support air pollution exposure and health studies. There are many advantages to using air quality models over traditional approaches based on existing ambient measurements alone. First, models can provide spatially- and temporally-resolved concentrations as direct input to exposure and health studies and thus better defining the concentration levels for the population in the geographic domain. Air quality models have a long history of use in air pollution regulations, and supported by regulatory agencies and a large user community. Also, models can provide bidirectional linkages between sources of emissions and ambient concentrations, thus allowing exploration of various mitigation strategies to reduce risk to exposure. In order to provide best estimates of air concentrations to support human health and exposure studies, model estimates should consider local-scale features, regional-scale transport, and photochemical transformations. Since these needs are currently not met by a single model, hybrid air quality modeling has recently been developed to combine these capabilities. In this paper, we present the results of two studies where we applied the hybrid modeling approach to provide spatial and temporal details in air quality concentrations to support exposure and health studies: a) an urban-scale air quality accountability study involving near-source exposures to multiple ambient air pollutants, and b) an urban-scale epidemiological study involving human health data based on emergency department visits.
2006-09-29
originating in Los Angeles. The long ridge of ozone in the north east part of Figure 14a is due to polluted air from San Diego area that has undergone...Further north of this small ridge (2 ppbv), we find a decrease in O3 of up to 6ppb (i.e., without DoD emissions, O3 is reduced by 6ppb). This period is...ships on urban air quality. 35 6.0 References Alexis, A., P. Gaffney , C. Garcia, M. Nystrom, and R. Rood (2000), The 1999 California Almanac of
It has been reported that ambient ozone (O3), either alone or in concurrence with acid rain precursors, accounts for up to 90% of U.S. crop losses resulting from exposure to all major air pollutants. Crop damage due to O3 exposure is of particular concern as...
An Investigation of Air Quality Surrounding Lake Merritt in Oakland, California
NASA Astrophysics Data System (ADS)
Ararso, I.; Casino, N.; Chen, B.; Johnson, J.; Koerber, K. W.; Lau, S.; Truisi, V.; Yanez, M.; Yeung, A.; Unigarro, M.; Vue, G.; Garduno, L.; Cuff, K.
2005-12-01
Lake Merritt is a naturally occurring inlet from the San Francisco Bay that was converted into an urban lake near downtown Oakland in 1860. The Lake itself is located within the Lake Merritt Park and Wildlife Refuge, home to over 90 species of migrating waterfowl, as well as a variety of aquatic wildlife. Its close proximity to downtown, several busy roads, and two major highways makes Lake Merritt a popular destination that is easily accessible to Oakland residents, but also puts it at risk for impaired air quality due to automobile exhaust. In an effort to assess air quality near Lake Merritt, we measured percent oxygen and carbon dioxide (CO2) concentrations in ambient air. These two gases can be used to assess air quality because the significant build up of CO2, which primarily results from the incomplete combustion of personal automobile engines, can result in the reduction of oxygen to concentration levels that are hazardous to human and other life. During the Summer of 2005, air samples from over 90 different locations were collected and used to make these measurements. Measurements were made with PASCO data-loggers attached to sensors that use infrared detectors to measure the amount of energy absorbed by carbon dioxide and oxygen molecules. Results were statistically analyzed, mapped, and used to assess the overall quality of air surrounding the Lake. Preliminary analysis of oxygen data indicates that higher concentration levels occur near sections of the Lake that are furthest removed from major roads, as well as in areas that have significant amounts of vegetation. In fact, the highest value recorded in this study was measured in a sample obtained near a grove of trees in a portion of the park that has the most vegetation, and that is furthest removed from major roads. Air quality here is high primarily due to the absence of CO2 build up associated with automobile traffic. The lowest values recorded were measured in samples collected along a stretch of the lakeshore that is very close to one of the busiest streets in the general area. The general trend of carbon dioxide concentration levels was also observed to decrease with distance from major roads and nearby highways. In the future, we plan to investigate possible relationships between oxygen and carbon dioxide concentrations in air surrounding the Lake and dissolved oxygen concentration of its waters. To the best of our knowledge, the air quality surrounding Lake Merritt has not been investigated before. Therefore results obtained during this study provide the foundation upon which future research may be built.
Quantifying the air quality-CO2 tradeoff potential for airports
NASA Astrophysics Data System (ADS)
Ashok, Akshay; Dedoussi, Irene C.; Yim, Steve H. L.; Balakrishnan, Hamsa; Barrett, Steven R. H.
2014-12-01
Aircraft movements on the airport surface are responsible for CO2 emissions that contribute to climate change and other emissions that affect air quality and human health. While the potential for optimizing aircraft surface movements to minimize CO2 emissions has been assessed, the implications of CO2 emissions minimization for air quality have not been quantified. In this paper, we identify conditions in which there is a tradeoff between CO2 emissions and population exposure to O3 and secondary PM2.5 - i.e. where decreasing fuel burn (which is directly proportional to CO2 emissions) results in increased exposure. Fuel burn and emissions are estimated as a function of thrust setting for five common gas turbine engines at 34 US airports. Regional air quality impacts, which are dominated by ozone and secondary PM2.5, are computed as a function of airport location and time using the adjoint of the GEOS-Chem chemistry-transport model. Tradeoffs between CO2 emissions and population exposure to PM2.5 and O3 occur between 2-18% and 5-60% of the year, respectively, depending on airport location, engine type, and thrust setting. The total duration of tradeoff conditions is 5-12 times longer at maximum thrust operations (typical for takeoff) relative to 4% thrust operations (typical for taxiing). Per kilogram of additional fuel burn at constant thrust setting during tradeoff conditions, reductions in population exposure to PM2.5 and O3 are 6-13% and 32-1060% of the annual average (positive) population exposure per kilogram fuel burn, where the ranges encompass the medians over the 34 airports. For fuel burn increases due to thrust increases (i.e. for constant operating time), reductions in both PM2.5 and O3 exposure are 1.5-6.4 times larger in magnitude than those due to increasing fuel burn at constant thrust (i.e. increasing operating time). Airports with relatively high population exposure reduction potentials - which occur due to a combination of high duration and magnitude of tradeoff conditions - are identified. Our results are the first to quantify the extent of the tradeoff between CO2 emissions and air quality impacts at airports. This raises the possibility of reducing the air quality impacts of airports beyond minimizing fuel burn and/or optimizing for minimum net environmental impact.
NASA Astrophysics Data System (ADS)
Millstein, D.; Zhai, P.; Menon, S.
2011-12-01
Over the past decade significant reductions of NOx and SOx emissions from coal burning power plants in the U.S. have been achieved due to regulatory action and substitution of new generation towards natural gas and wind power. Low natural gas prices, ever decreasing solar generation costs, and proposed regulatory changes, such as to the Cross State Air Pollution Rule, promise further long-run coal power plant emission reductions. Reduced power plant emissions have the potential to affect ozone and particulate air quality and influence regional climate through aerosol cloud interactions and visibility effects. Here we investigate, on a national scale, the effects on future (~2030) air quality and regional climate of power plant emission regulations in contrast to and combination with policies designed to aggressively promote solar electricity generation. A sophisticated, economic and engineering based, hourly power generation dispatch model is developed to explore the integration of significant solar generation resources (>10% on an energy basis) at various regions across the county, providing detailed estimates of substitution of solar generation for fossil fuel generation resources. Future air pollutant emissions from all sectors of the economy are scaled based on the U.S. Environmental Protection Agency's National Emission Inventory to account for activity changes based on population and economic projections derived from county level U.S. Census data and the Energy Information Administration's Annual Energy Outlook. Further adjustments are made for technological and regulatory changes applicable within various sectors, for example, emission intensity adjustments to on-road diesel trucking due to exhaust treatment and improved engine design. The future year 2030 is selected for the emissions scenarios to allow for the development of significant solar generation resources. A regional climate and air quality model (Weather Research and Forecasting, WRF model) is used to investigate the effects of the various solar generation scenarios given emissions projections that account for changing regulatory environment, economic and population growth, and technological change. The results will help to quantify the potential air quality benefits of promotion of solar electricity generation in regions containing high penetration of coal-fired power generation. Note current national solar incentives that are based only on solar generation capacity. Further investigation of changes to regional climate due to emission reductions of aerosols and relevant precursors will provide insight into the environmental effects that may occur if solar power generation becomes widespread.
Population exposure to hazardous air quality due to the 2015 fires in Equatorial Asia.
Crippa, P; Castruccio, S; Archer-Nicholls, S; Lebron, G B; Kuwata, M; Thota, A; Sumin, S; Butt, E; Wiedinmyer, C; Spracklen, D V
2016-11-16
Vegetation and peatland fires cause poor air quality and thousands of premature deaths across densely populated regions in Equatorial Asia. Strong El-Niño and positive Indian Ocean Dipole conditions are associated with an increase in the frequency and intensity of wildfires in Indonesia and Borneo, enhancing population exposure to hazardous concentrations of smoke and air pollutants. Here we investigate the impact on air quality and population exposure of wildfires in Equatorial Asia during Fall 2015, which were the largest over the past two decades. We performed high-resolution simulations using the Weather Research and Forecasting model with Chemistry based on a new fire emission product. The model captures the spatio-temporal variability of extreme pollution episodes relative to space- and ground-based observations and allows for identification of pollution sources and transport over Equatorial Asia. We calculate that high particulate matter concentrations from fires during Fall 2015 were responsible for persistent exposure of 69 million people to unhealthy air quality conditions. Short-term exposure to this pollution may have caused 11,880 (6,153-17,270) excess mortalities. Results from this research provide decision-relevant information to policy makers regarding the impact of land use changes and human driven deforestation on fire frequency and population exposure to degraded air quality.
Population exposure to hazardous air quality due to the 2015 fires in Equatorial Asia
Crippa, P.; Castruccio, S.; Archer-Nicholls, S.; Lebron, G. B.; Kuwata, M.; Thota, A.; Sumin, S.; Butt, E.; Wiedinmyer, C.; Spracklen, D. V.
2016-01-01
Vegetation and peatland fires cause poor air quality and thousands of premature deaths across densely populated regions in Equatorial Asia. Strong El-Niño and positive Indian Ocean Dipole conditions are associated with an increase in the frequency and intensity of wildfires in Indonesia and Borneo, enhancing population exposure to hazardous concentrations of smoke and air pollutants. Here we investigate the impact on air quality and population exposure of wildfires in Equatorial Asia during Fall 2015, which were the largest over the past two decades. We performed high-resolution simulations using the Weather Research and Forecasting model with Chemistry based on a new fire emission product. The model captures the spatio-temporal variability of extreme pollution episodes relative to space- and ground-based observations and allows for identification of pollution sources and transport over Equatorial Asia. We calculate that high particulate matter concentrations from fires during Fall 2015 were responsible for persistent exposure of 69 million people to unhealthy air quality conditions. Short-term exposure to this pollution may have caused 11,880 (6,153–17,270) excess mortalities. Results from this research provide decision-relevant information to policy makers regarding the impact of land use changes and human driven deforestation on fire frequency and population exposure to degraded air quality. PMID:27848989
Study of Regional Downscaled Climate and Air Quality in the United States
NASA Astrophysics Data System (ADS)
Gao, Y.; Fu, J. S.; Drake, J.; Lamarque, J.; Lam, Y.; Huang, K.
2011-12-01
Due to the increasing anthropogenic greenhouse gas emissions, the global and regional climate patterns have significantly changed. Climate change has exerted strong impact on ecosystem, air quality and human life. The global model Community Earth System Model (CESM v1.0) was used to predict future climate and chemistry under projected emission scenarios. Two new emission scenarios, Representative Community Pathways (RCP) 4.5 and RCP 8.5, were used in this study for climate and chemistry simulations. The projected global mean temperature will increase 1.2 and 1.7 degree Celcius for the RCP 4.5 and RCP 8.5 scenarios in 2050s, respectively. In order to take advantage of local detailed topography, land use data and conduct local climate impact on air quality, we downscaled CESM outputs to 4 km by 4 km Eastern US domain using Weather Research and Forecasting (WRF) Model and Community Multi-scale Air Quality modeling system (CMAQ). The evaluations between regional model outputs and global model outputs, regional model outputs and observational data were conducted to verify the downscaled methodology. Future climate change and air quality impact were also examined on a 4 km by 4 km high resolution scale.
NASA Astrophysics Data System (ADS)
Englert, Jennifer; Claude, Anja; Kubistin, Dagmar; Tensing, Erasmus; Michl, Katja; Plass-Duelmer, Christian
2017-04-01
Atmospheric chemistry and composition are influenced by volatile organic compounds (VOCs) emitted from natural and anthropogenic sources. Due to their toxicity and their crucial role in ozone and aerosol formation VOCs impact air quality and climate change and high quality observations are demanded. The European Metrology Research Programme (EMRP) project KEY-VOCs has targeted the improvement of VOC measurement capabilities with the focus on VOCs relevant for indoor air as well as for air quality and climate monitoring programmes. One major uncertainty is the influence of surface effects of the measurement devices. By developing a test system the adsorption/desorption effects of certain VOCs can be systematically examined. Different tubing materials e.g. stainless steel and PFA were analysed with the oxygenated VOC methanol and results of these experiments will be presented. In air quality monitoring very low levels of VOCs have to be measured. Purified air or nitrogen is widely used as a zero gas to characterize measurement systems and procedures as well as for instrument calibration. A high quality zero gas is an important contributor to the quality of the measurements and generally achieved by using state-of-the-art purification technologies. The efficiency of several air purifiers was assessed and the results have been analysed.
Air ionization as a control technology for off-gas emissions of volatile organic compounds.
Kim, Ki-Hyun; Szulejko, Jan E; Kumar, Pawan; Kwon, Eilhann E; Adelodun, Adedeji A; Reddy, Police Anil Kumar
2017-06-01
High energy electron-impact ionizers have found applications mainly in industry to reduce off-gas emissions from waste gas streams at low cost and high efficiency because of their ability to oxidize many airborne organic pollutants (e.g., volatile organic compounds (VOCs)) to CO 2 and H 2 O. Applications of air ionizers in indoor air quality management are limited due to poor removal efficiency and production of noxious side products, e.g., ozone (O 3 ). In this paper, we provide a critical evaluation of the pollutant removal performance of air ionizing system through comprehensive review of the literature. In particular, we focus on removal of VOCs and odorants. We also discuss the generation of unwanted air ionization byproducts such as O 3 , NOx, and VOC oxidation intermediates that limit the use of air-ionizers in indoor air quality management. Copyright © 2017. Published by Elsevier Ltd.
Modeling green infrastructure land use changes on future air ...
Green infrastructure can be a cost-effective approach for reducing stormwater runoff and improving water quality as a result, but it could also bring co-benefits for air quality: less impervious surfaces and more vegetation can decrease the urban heat island effect, and also result in more removal of air pollutants via dry deposition with increased vegetative surfaces. Cooler surface temperatures can also decrease ozone formation through the increases of NOx titration; however, cooler surface temperatures also lower the height of the boundary layer resulting in more concentrated pollutants within the same volume of air, especially for primary emitted pollutants (e.g. NOx, CO, primary particulate matter). To better understand how green infrastructure impacts air quality, the interactions between all of these processes must be considered collectively. In this study, we use a comprehensive coupled meteorology-air quality model (WRF-CMAQ) to simulate the influence of planned land use changes that include green infrastructure in Kansas City (KC) on regional meteorology and air quality. Current and future land use data was provided by the Mid-America Regional Council for 2012 and 2040 (projected land use due to population growth, city planning and green infrastructure implementation). These land use datasets were incorporated into the WRF-CMAQ modeling system allowing the modeling system to propagate the changes in vegetation and impervious surface coverage on meteoro
Villa, Tommaso Francesco; Gonzalez, Felipe; Miljievic, Branka; Ristovski, Zoran D.; Morawska, Lidia
2016-01-01
Assessment of air quality has been traditionally conducted by ground based monitoring, and more recently by manned aircrafts and satellites. However, performing fast, comprehensive data collection near pollution sources is not always feasible due to the complexity of sites, moving sources or physical barriers. Small Unmanned Aerial Vehicles (UAVs) equipped with different sensors have been introduced for in-situ air quality monitoring, as they can offer new approaches and research opportunities in air pollution and emission monitoring, as well as for studying atmospheric trends, such as climate change, while ensuring urban and industrial air safety. The aims of this review were to: (1) compile information on the use of UAVs for air quality studies; and (2) assess their benefits and range of applications. An extensive literature review was conducted using three bibliographic databases (Scopus, Web of Knowledge, Google Scholar) and a total of 60 papers was found. This relatively small number of papers implies that the field is still in its early stages of development. We concluded that, while the potential of UAVs for air quality research has been established, several challenges still need to be addressed, including: the flight endurance, payload capacity, sensor dimensions/accuracy, and sensitivity. However, the challenges are not simply technological, in fact, policy and regulations, which differ between countries, represent the greatest challenge to facilitating the wider use of UAVs in atmospheric research. PMID:27420065
Comparison of CMAQ Modeling Study with Discover-AQ 2014 Aircraft Measurements over Colorado
NASA Astrophysics Data System (ADS)
Tang, Y.; Pan, L.; Lee, P.; Tong, D.; Kim, H. C.; Artz, R. S.
2014-12-01
NASA and NCAR jointly led a recent multiple platform-based (space, air and ground) measurement intensive to study air quality and to validate satellite data. The Discover-AQ/FRAPPE field experiment took place along the Colorado Front Range in July and August, 2014. The air quality modeling team of the NOAA Air Resources Laboratory was one of the three teams that provided real-time air quality forecasting for the campaign. The U.S. EPA Community Multi-scale Air Quality (CMAQ) Model was used with emission inventories based on the data set used by the NOAA National Air Quality Forecasting Capacity (NAQFC). By analyzing the forecast results calculated using aircraft measurements, it was found that CO emissions tended to be overestimated, while ethane emissions were underestimated. Biogenic VOCs were also underpredicted. Due to their relatively high altitude, ozone concentrations in Denver and the surrounding areas are affected by both local emissions and transported ozone. The modeled ozone was highly dependent on the meteorological predictions over this region. The complex terrain over the Rocky Mountains also contributed to the model uncertainty. This study discussed the causes of model biases, the forecast performance under different meteorology, and results from using different model grid resolutions. Several data assimilation techniques were further tested to improve the "post-analysis" performance of the modeling system for the period.
Air Quality and Health Impacts of an Aviation Biofuel Supply Chain in the Northwestern United States
NASA Astrophysics Data System (ADS)
Ravi, V.; Lamb, B. K.
2016-12-01
The Northwest Advanced Renewables Alliance (NARA) is a multi-institutional program aimed at the development of a supply chain for aviation biofuel using woody residues from logging operations as a feedstock. In this paper, we present results based on a comprehensive regional air quality modelling framework (AIRPACT) showing the effects of reduced prescribed fires due to harvesting of the woody biomass feedstock and air quality impacts from the biofuel supply chain. We will present results from two different scenarios - (1) a biorefinery scenario with all emissions associated with supply chain (i.e. vehicular, logging-activity, and biorefinery operations) with two biorefineries in eastern and western Washington and (2) a prescribed burn scenario with all and reduced prescribed fire emissions. Prescribed fire activities peak during Oct-Nov in the region, and prescribed fire simulations for this period in 2011 show significant improvement in particulate air quality in western Oregon for the case with reduced fire emissions. Harvesting woody residue and reducing the amount of prescribed fire activity decreased PM2.5 by 10-20 µg/m3 at several locations. Using BenMAP, an air quality benefit mapping tool, we show that a decrease in PM2.5 concentrations due to reduced prescribed and slash burning activity is associated with decrease in several health end points analysed. Decreases in PM2.5 concentrations also help to improve visibility in protected natural environments, such as national parks. For the biofuel supply chain, summertime simulations were completed and initial results indicate only a small increase (≤1 ppbv) in hourly ozone concentration downwind of a large biorefinery near the Puget Sound region. Impacts from a smaller biorefinery located in eastern Washington are much smaller. Impacts from mobile sources for biomass hauling are negligible.
U.S. ozone air quality under changing climate and anthropogenic emissions.
Racherla, Pavan N; Adams, Peter J
2009-02-01
We examined future ozone (O3) air quality in the United States (U.S.) under changing climate and anthropogenic emissions worldwide by performing global climate-chemistry simulations, utilizing various combinations of present (1990s) and future (Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A2 2050s) climates, and present and future (2050s; IPCC SRES A2 and B1) anthropogenic emissions. The A2 climate scenario is employed here because it lies at the upper extreme of projected climate change for the 21st century. To examine the sensitivity of U.S. O3 to regional emissions increases (decreases), the IPCC SRES A2 and B1 scenarios, which have overall higher and lower O3-precursor emissions for the U.S., respectively, have been chosen. We find that climate change, by itself, significantly worsens the severity and frequency of high-O3 events ("episodes") over most locations in the U.S., with relatively small changes in average O3 air quality. These high-O3 increases due to climate change alone will erode moderately the gains made under a U.S. emissions reduction scenario (e.g., B1). The effect of climate change on high- and average-O3 increases with anthropogenic emissions. Insofar as average O3 air quality is concerned, changes in U.S. anthropogenic emissions will play the most important role in attaining (or not) near-term U.S. O3 air quality standards. However, policy makers must plan appropriately for O3 background increases due to projected increases in global CH4 abundance and non-U.S. anthropogenic emissions, as well as potential local enhancements that they could cause. These findings provide strong incentives for more-than-planned emissions reductions at locations that are currently O3-nonattainment.
Vedrenne, Michel; Borge, Rafael; Lumbreras, Julio; Conlan, Beth; Rodríguez, María Encarnación; de Andrés, Juan Manuel; de la Paz, David; Pérez, Javier; Narros, Adolfo
2015-09-15
This paper analyses the effects of policy making for air pollution abatement in Spain between 2000 and 2020 under an integrated assessment approach with the AERIS model for number of pollutants (NOx/NO2, PM10/PM2.5, O3, SO2, NH3 and VOC). The analysis of the effects of air pollution focused on different aspects: compliance with the European limit values of Directive 2008/50/EC for NO2 and PM10 for the Spanish air quality management areas; the evaluation of impacts caused by the deposition of atmospheric sulphur and nitrogen on ecosystems; the exceedance of critical levels of NO2 and SO2 in forest areas; the analysis of O3-induced crop damage for grapes, maize, potato, rice, tobacco, tomato, watermelon and wheat; health impacts caused by human exposure to O3 and PM2.5; and costs on society due to crop losses (O3), disability-related absence of work staff and damage to buildings and public property due to soot-related soiling (PM2.5). In general, air quality policy making has delivered improvements in air quality levels throughout Spain and has mitigated the severity of the impacts on ecosystems, health and vegetation in 2020 as target year. The findings of this work constitute an appropriate diagnosis for identifying improvement potentials for further mitigation for policy makers and stakeholders in Spain. Copyright © 2015 Elsevier B.V. All rights reserved.
Indoor air quality in urban nurseries at Porto city: Particulate matter assessment
NASA Astrophysics Data System (ADS)
Branco, P. T. B. S.; Alvim-Ferraz, M. C. M.; Martins, F. G.; Sousa, S. I. V.
2014-02-01
Indoor air quality in nurseries is an interesting case of study mainly due to children's high vulnerability to exposure to air pollution (with special attention to younger ones), and because nursery is the public environment where young children spend most of their time. Particulate matter (PM) constitutes one of the air pollutants with greater interest. In fact, it can cause acute effects on children's health, as well as may contribute to the prevalence of chronic respiratory diseases like asthma. Thus, the main objectives of this study were: i) to evaluate indoor concentrations of particulate matter (PM1, PM2.5, PM10 and PMTotal) on different indoor microenvironments in urban nurseries of Porto city; and ii) to analyse those concentrations according to guidelines and references for indoor air quality and children's health. Indoor PM measurements were performed in several class and lunch rooms in three nurseries on weekdays and weekends. Outdoor PM10 concentrations were also obtained to determine I/O ratios. PM concentrations were often found high in the studied classrooms, especially for the finer fractions, reaching maxima hourly mean concentrations of 145 μg m-3 for PM1 and 158 μg m-3 PM2.5, being often above the limits recommended by WHO, reaching 80% of exceedances for PM2.5, which is concerning in terms of exposure effects on children's health. Mean I/O ratios were always above 1 and most times above 2 showing that indoor sources (re-suspension phenomena due to children's activities, cleaning and cooking) were clearly the main contributors to indoor PM concentrations when compared with the outdoor influence. Though, poor ventilation to outdoors in classrooms affected indoor air quality by increasing the PM accumulation. So, enhancing air renovation rate and performing cleaning activities after the occupancy period could be good practices to reduce PM indoor air concentrations in nurseries and, consequently, to improve children's health and welfare.
Scenarios over the past 3 decades: air quality impact of European legislation
NASA Astrophysics Data System (ADS)
Crippa, M.; Janssens-Maenhout, G. G. A.; Guizzardi, D.; Schaaf, E.; Muntean, M.; Dentener, F. J.; Sindelarova, K.; Granier, C.
2014-12-01
The impacts of air pollution span from local to global, affecting human health, climate, visibility and ecosystems. Several actions at national, regional and global scale have been adopted to reduce pollutant emission levels. In our work we make use of the EDGAR_ v4.3 emission database to compare today's pollutant levels with ex-post scenarios developed to assess the impact and effectiveness of legislation over the last 3 decades on air quality and climate. Differently from most of literature works addressing future air quality, here we focus on historical global anthropogenic emissions (years 1970-2010) of several gaseous and particulate air pollutants (SO2, NOx, CO, NMVOC, NH3, PM10, PM2.5, BC and OC) and past emission scenarios to demonstrate the role that policy has played in improving air quality. Three scenarios have been developed and compared to today's situation (year 2010), assuming the lack of abatement measures, the complete stagnation of technology (no reduction measures applied and constant emission factors from 1970), and a constant fuel mixture (with a more prominent role for coal in the 1970s). Special focus is dedicated to the power generation sector, manufacturing industry and road transport activities since these were mostly influenced by official regulations in the EU. Global SO2 emissions from transport dropped down by 8.5 times due to the deployment of low S content fuels; NOx and CO emissions are indeed a function of combustion efficiency and therefore decreased with the introduction of new technologies, while NH3 emitted by road transport increased in Europe by 18% due to the introduction of catalyzers. Finally, particulate matter emissions are mainly abated by the installation of End-of-Pipe measures (e.g. filters) especially in the energy and transport sectors.
NASA Astrophysics Data System (ADS)
Hong, J.; Hong, Y.; Song, C. K.; Kim, S. K.; Chang, L. S.; Lim, J.; Ahn, J.; Park, J. H.; Kim, J. Y.; Han, Y. J.; Kim, J.; Park, R.; Lee, G.; Lefer, B. L.; Al-Saadi, J. A.; Crawford, J. H.
2015-12-01
Due to remarkable economic growth over the last two decades, East Asia has become a region experiencing some of the poorest air quality in the world. In addition to local sources of pollution, the Korea peninsula is downwind of the largest emission sources in East Asia, complicating the understanding of air quality over Korea. Thus, knowing the factors controlling changes in air pollution across urban-rural and marine-continental interfaces, in addition to the contributions from local emissions and transboundary transport, is important for building effective management strategies and improving air quality in East Asia. GEMS (Geostationary Environmental Monitoring Spectrometer) is a satellite instrument planned for launch in 2019 by the Republic of Korea. The instrument will observe East Asia and the western Pacific region, providing real-time monitoring of air quality (e.g. O3, NO2, SO2, HCHO, AOD, etc.) and enabling better scientific understanding of the transboundary transport of air pollutants. The KORUS-AQ (the Korea and U.S. Air Quality) field campaign will take place in May - June 2016 and will employ an integrated observing strategy including multiplatform observations (i.e. ground stations, aircraft, ships, and satellites) and chemical transport models. This mission aims to not only strengthen our knowledge of atmospheric chemistry but also provide important data sets for validating GEMS retrieval algorithms. In preparation for KORUS-AQ, a pre-campaign has been successfully conducted in Korea during early summer 2015 with observations from multiple ground sites and a small aircraft. A brief summary of pre-field campaign results will be presented. Moving forward, the GEMS mission and KORUS-AQ study will lead to a new era of air quality monitoring in East Asia. GEMS will also make critical contributions to the global air quality perspective working in concert with geostationary missions launched by the U.S. (TEMPO: Tropospheric Emissions: Monitoring of Pollution) and Europe (Sentinel-4) and low-Earth orbit missions including the European Sentinel-5 Precursor.
Background Air pollution risk assessments often employ effect coefficients from epidemiologic studies to quantify the public health impact of changes in air quality. Partly due to data and methodological limitations, epidemiologic studies have traditionally characterized the heal...
Resolving Local-Scale Emissions for Modeling Air Quality near Roadways
A large body of literature published in recent years suggests increased health risk due to exposure of people to air pollution in close proximity to roadways. As a result, there is a need to more accurately represent the spatial concentration gradients near roadways in order to ...
Jennifer Riddell; Sarah Jovan; Pamela E. Padgett; Ken Sweat
2011-01-01
Southern California's South Coast Air Basin includes the heavily urbanized Los Angeles and Orange counties, the inland urban and suburban areas, and the surrounding mountain ranges. Historically high air pollution makes the region a natural laboratory for investigating human impacts on natural systems. Regional lichen distribution records from the early 1900s...
Jennifer Riddell; S. Jovan; Pamela Padgett; K. Sweat
2011-01-01
Southern California's South Coast Air Basin includes the heavily urbanized Los Angeles and Orange counties, the inland urban and suburban areas, and the surrounding mountain ranges. Historically high air pollution makes the region a natural laboratory for investigating human impacts on natural systems. Regional lichen distribution records from the early 1900s...
Assessing indoor air quality in New York City nail salons.
Pavilonis, Brian; Roelofs, Cora; Blair, Carly
2018-05-01
Nail salons are an important business and employment sector for recent immigrants offering popular services to a diverse range of customers across the United States. However, due to the nature of nail products and services, salon air can be burdened with a mix of low levels of hazardous airborne contaminants. Surveys of nail technicians have commonly found increased work-related symptoms, such as headaches and respiratory irritation, that are consistent with indoor air quality problems. In an effort to improve indoor air quality in nail salons, the state of New York recently promulgated regulations to require increased outdoor air and "source capture" of contaminants. Existing indoor air quality in New York State salons is unknown. In advance of the full implementation of the rules by 2021, we sought to establish reliable and usable baseline indoor air quality metrics to determine the feasibility and effectiveness of the requirement. In this pilot study, we measured total volatile organic compounds (TVOC) and carbon dioxide (CO 2 ) concentrations in 10 nail salons located in New York City to assess temporal and spatial trends. Within salon contaminant variation was generally minimal, indicating a well-mixed room and similar general exposure despite the task being performed. TVOC and CO 2 concentrations were strongly positively correlated (ρ = 0.81; p < 0.01) suggesting that CO 2 measurements could potentially be used to provide an initial determination of acceptable indoor air quality for the purposes of compliance with the standard. An almost tenfold increase in TVOC concentration was observed when the American National Standards Institute/American Society of Heating, Refrigerating and Air-Conditioning Engineers (ANSI/ASHRAE) target CO 2 concentration of 850 ppm was exceeded compared to when this target was met.
Norbäck, D; Nordström, K
2008-08-01
The effects of ventilation in computer classrooms were studied with university students (n = 355) in a blinded study, 31% were women and 3.8% had asthma. Two classrooms had a higher air exchange (4.1-5.2 ac/h); two others had a lower air exchange (2.3-2.6 ac/h). After 1 week, ventilation conditions were shifted. The students reported environmental perceptions during the last hour. Room temperature, RH, CO2, PM10 and ultra-fine particles were measured simultaneously. Mean CO2 was 1185 ppm at lower and 922 ppm at higher air exchange. Mean temperature was 23.2 degrees C at lower and 22.1 degrees C at higher air exchange. After mutual adjustment (temperature, RH, CO2, air exchange), measured temperature was associated with a perception of higher temperature (P < 0.001), lower air movement (P < 0.001), and poorer air quality (P < 0.001). Higher air exchange was associated with a perception of lower temperature (P < 0.001), higher air movement (P = 0.001), and better air quality (P < 0.001). In the longitudinal analysis (n = 83), increased air exchange caused a perception of lower temperature (P = 0.002), higher air movement (P < 0.001), better air quality (P = 0.001), and less odor (P = 0.02). In conclusion, computer classrooms have CO2 levels above 1000 ppm and temperatures above 22 degrees C. Increased ventilation from 7 l/s per person to 10-13 l/s per person can improve thermal comfort and air quality. Computer classrooms are crowded indoor environments with a high thermal load from both students and computer equipment. It is important to control room temperature either by air conditioning, sun shields, or sufficiently high ventilation flow. A high ventilation flow is also crucial to achieving good perceived air quality. Personal ventilation flow should be at least 10 l/s. Possible loss of learning ability due to poor indoor air quality in university buildings deserves more attention.
NASA Astrophysics Data System (ADS)
Holmes, Rachel; Lidster, Richard; Hamilton, Jacqueline; Lee, James; Hopkins, James; Whalley, Lisa; Lewis, Alistair
2014-05-01
The majority of the World's population live in polluted urbanized areas. Poor air quality is shortening life expectancy of people in the UK by an average 7-8 months and costs society around £20 billion per year.[1] Despite this, our understanding of atmospheric processing in urban environments and its effect on air quality is incomplete. Air quality models are used to predict how air quality changes given different concentrations of pollution precursors, such as volatile organic compounds (VOCs). The urban environment of megacities pose a unique challenge for air quality measurements and modelling, due to high population densities, pollution levels and complex infrastructure. For over 60 years the air quality in London has been monitored, however the existing measurements are limited to a small group of compounds. In order to fully understand the chemical and physical processes that occur in London, more intensive and comprehensive measurements should be made. The Clean air for London (ClearfLo) project was conducted to investigate the air quality, in particular the boundary layer pollution, of London. A relatively new technique, comprehensive two dimensional gas chromatography (GC×GC) [2] was combined with a well-established dual channel GC (DC-GC) [3] system to provide a more comprehensive measurement of VOCs. A total of 78 individual VOCs (36 aliphatics, 19 monoaromatics, 21 oxygenated and 2 halogenated) and 10 groups of VOCs (8 aliphatic, 1 monoaromatic and 1 monoterpene) from C1-C13+ were quantified. Seasonal and diurnal profiles of these VOCs have been found which show the influence of emission source and chemical processing. Including these extra VOCs should enhance the prediction capability of air quality models thus informing policy makers on how to potentially improve air quality in megacities. References 1. House of Commons Environmental Audit Committee, Air Quality: A follow-up report, Ninth Report of session 2012-12. 2. Lidster, R.T., J.F. Hamilton, and A.C. Lewis, The application of two total transfer valve modulators for comprehensive two-dimensional gas chromatography of volatile organic compounds. Journal of Separation Science, 2011. 34(7): p. 812-821. 3. Hopkins, J.R., C.E. Jones, and A.C. Lewis, A dual channel gas chromatograph for atmospheric analysis of volatile organic compounds including oxygenated and monoterpene compounds. Journal of Environmental Monitoring, 2011. 13(8): p. 2268-2276.
Air quality concerns of unconventional oil and natural gas production.
Field, R A; Soltis, J; Murphy, S
2014-05-01
Increased use of hydraulic fracturing ("fracking") in unconventional oil and natural gas (O & NG) development from coal, sandstone, and shale deposits in the United States (US) has created environmental concerns over water and air quality impacts. In this perspective we focus on how the production of unconventional O & NG affects air quality. We pay particular attention to shale gas as this type of development has transformed natural gas production in the US and is set to become important in the rest of the world. A variety of potential emission sources can be spread over tens of thousands of acres of a production area and this complicates assessment of local and regional air quality impacts. We outline upstream activities including drilling, completion and production. After contrasting the context for development activities in the US and Europe we explore the use of inventories for determining air emissions. Location and scale of analysis is important, as O & NG production emissions in some US basins account for nearly 100% of the pollution burden, whereas in other basins these activities make up less than 10% of total air emissions. While emission inventories are beneficial to quantifying air emissions from a particular source category, they do have limitations when determining air quality impacts from a large area. Air monitoring is essential, not only to validate inventories, but also to measure impacts. We describe the use of measurements, including ground-based mobile monitoring, network stations, airborne, and satellite platforms for measuring air quality impacts. We identify nitrogen oxides, volatile organic compounds (VOC), ozone, hazardous air pollutants (HAP), and methane as pollutants of concern related to O & NG activities. These pollutants can contribute to air quality concerns and they may be regulated in ambient air, due to human health or climate forcing concerns. Close to well pads, emissions are concentrated and exposure to a wide range of pollutants is possible. Public health protection is improved when emissions are controlled and facilities are located away from where people live. Based on lessons learned in the US we outline an approach for future unconventional O & NG development that includes regulation, assessment and monitoring.
Influence of air quality on the composition of microbial pathogens in fresh rainwater.
Kaushik, Rajni; Balasubramanian, Rajasekhar; de la Cruz, Armah A
2012-04-01
In this study, the microbiological quality of fresh rainwater was assessed from 50 rain events under tropical weather conditions for a year. The levels of four major opportunistic waterborne pathogens, namely, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Aeromonas hydrophila, in rainwater samples were quantified by using a robust and sensitive quantitative PCR (qPCR) method. Of the 50 rainwater samples, 25 were found to be positive for at least one pathogen: 21 for E. coli, 16 for P. aeruginosa, 6 for K. pneumoniae, and 1 for A. hydrophila. In addition to the microbiological assessment of rainwater samples, we also studied the influence of prevailing air quality on the microbial quality of rainwater over the sampling period. A significant change in the diversity and relative abundance of the basic microbial indicator organisms in rainwater was observed during a major regional air pollution episode in Southeast Asia due to biomass-burning emissions.
CityAir app: Mapping air-quality perception using people as sensors
NASA Astrophysics Data System (ADS)
Castell, Nuria; Fredriksen, Mirjam; Cole-Hunter, Thomas; Robinson, Johanna; Keune, Hans; Nieuwenhuijsen, Mark; Bartonova, Alena
2016-04-01
Outdoor air pollution is a major environmental health problem affecting all people in developed and developing countries alike. Ambient (outdoor) air pollution in both cities and rural areas was estimated to cause 3.7 million premature deaths worldwide in 2012. In modern society, people are expending an increasing amount of time in polluted urban environments, thus increasing their exposure and associated health responses. Some cities provide information about air pollution levels to their citizens using air quality monitoring networks. However, due to their high cost and maintenance, the density of the monitoring networks is very low and not capable to capture the high temporal and spatial variability of air pollution. Thus, the citizen lacks a specific answer to the question of "how the air quality is in our surroundings". In the framework of the EU-funded CITI-SENSE project the innovative concept of People as Sensors is being applied to the field of outdoor air pollution. This is being done in eight European cities, including Barcelona, Belgrade, Edinburgh, Haifa, Ljubljana, Oslo, Ostrava and Vienna. People as Sensors defines a measurement model, in which measurements are not only taken by hardware sensors, but in which also humans can contribute with their individual "measurements" such as their subjective perception of air quality and other personal observations. In order to collect the personal observations a mobile app, CityAir, has been developed. CityAir allows citizens to rate the air quality in their surroundings with colour at their current location: green if air quality is very good, yellow if air quality is good, orange if air quality is poor and red if air quality is very poor. The users have also the possibility of indicating the source of pollution (i.e. traffic, industry, wood burning) and writing a comment. The information is on-line and accessible for other app users, thus contributing to create an air-quality map based on citizens' perception. Currently, 400 + Android OS and 180+ iOS smartphone users in 12+ countries have downloaded, installed and used CityAir. The central advantage of the People as Sensors approach is that it can complement costly physical sensor networks. The observations made in smartphones are shared and other persons can consult those to take decisions as for instance choosing a cleaner route to bicycle to work or avoid exercising in certain areas that day. The drawbacks are limited comparability and interpretability, and the inherent uncertainty. CityAir can be seen as a democratic platform for empowering citizens to contribute to environmental governance, facilitating the communication between the citizen and the decision makers. Citizens are encouraged to participate in sharing their perception on the air quality in their city. Citizens become agents of change by uncovering and sharing their perception of air quality in a place that matters to them. We discuss the current challenges: how to involve citizens in the use of the app and how to communicate and visualize the information in a way that is useful for the citizens; point out possible solutions, and pin-point directions for future research.
Evaluating A Priori Ozone Profile Information Used in TEMPO Tropospheric Ozone Retrievals
NASA Technical Reports Server (NTRS)
Johnson, Matthew S.; Sullivan, John T.; Liu, Xiong; Newchurch, Mike; Kuang, Shi; McGee, Thomas J.; Langford, Andrew O'Neil; Senff, Christoph J.; Leblanc, Thierry; Berkoff, Timothy;
2016-01-01
Ozone (O3) is a greenhouse gas and toxic pollutant which plays a major role in air quality. Typically, monitoring of surface air quality and O3 mixing ratios is primarily conducted using in situ measurement networks. This is partially due to high-quality information related to air quality being limited from space-borne platforms due to coarse spatial resolution, limited temporal frequency, and minimal sensitivity to lower tropospheric and surface-level O3. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite is designed to address these limitations of current space-based platforms and to improve our ability to monitor North American air quality. TEMPO will provide hourly data of total column and vertical profiles of O3 with high spatial resolution to be used as a near-real-time air quality product. TEMPO O3 retrievals will apply the Smithsonian Astrophysical Observatory profile algorithm developed based on work from GOME, GOME-2, and OMI. This algorithm uses a priori O3 profile information from a climatological data-base developed from long-term ozone-sonde measurements (tropopause-based (TB) O3 climatology). It has been shown that satellite O3 retrievals are sensitive to a priori O3 profiles and covariance matrices. During this work we investigate the climatological data to be used in TEMPO algorithms (TB O3) and simulated data from the NASA GMAO Goddard Earth Observing System (GEOS-5) Forward Processing (FP) near-real-time (NRT) model products. These two data products will be evaluated with ground-based lidar data from the Tropospheric Ozone Lidar Network (TOLNet) at various locations of the US. This study evaluates the TB climatology, GEOS-5 climatology, and 3-hourly GEOS-5 data compared to lower tropospheric observations to demonstrate the accuracy of a priori information to potentially be used in TEMPO O3 algorithms. Here we present our initial analysis and the theoretical impact on TEMPO retrievals in the lower troposphere.
Evaluating a Priori Ozone Profile Information Used in TEMPO Tropospheric Ozone Retrievals
NASA Technical Reports Server (NTRS)
Johnson, Matthew S.; Sullivan, John; Liu, Xiong; Newchurch, Mike; Kuang, Shi; McGee, Thomas; Langford, Andrew; Senff, Chris; Leblanc, Thierry; Berkoff, Timothy;
2016-01-01
Ozone (O3) is a greenhouse gas and toxic pollutant which plays a major role in air quality. Typically, monitoring of surface air quality and O3 mixing ratios is primarily conducted using in situ measurement networks. This is partially due to high-quality information related to air quality being limited from space-borne platforms due to coarse spatial resolution, limited temporal frequency, and minimal sensitivity to lower tropospheric and surface-level O3. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite is designed to address these limitations of current space-based platforms and to improve our ability to monitor North American air quality. TEMPO will provide hourly data of total column and vertical profiles of O3 with high spatial resolution to be used as a near-real-time air quality product.TEMPO O3 retrievals will apply the Smithsonian Astrophysical Observatory profile algorithm developed based on work from GOME, GOME-2, and OMI. This algorithm uses a priori O3 profile information from a climatological data-base developed from long-term ozone-sonde measurements (tropopause-based (TB) O3 climatology). It has been shown that satellite O3 retrievals are sensitive to a priori O3 profiles and covariance matrices. During this work we investigate the climatological data to be used in TEMPO algorithms (TB O3) and simulated data from the NASA GMAO Goddard Earth Observing System (GEOS-5) Forward Processing (FP) near-real-time (NRT) model products. These two data products will be evaluated with ground-based lidar data from the Tropospheric Ozone Lidar Network (TOLNet) at various locations of the US. This study evaluates the TB climatology, GEOS-5 climatology, and 3-hourly GEOS-5 data compared to lower tropospheric observations to demonstrate the accuracy of a priori information to potentially be used in TEMPO O3 algorithms. Here we present our initial analysis and the theoretical impact on TEMPO retrievals in the lower troposphere.
Evaluating A Priori Ozone Profile Information Used in TEMPO Tropospheric Ozone Retrievals
NASA Astrophysics Data System (ADS)
Johnson, M. S.; Sullivan, J. T.; Liu, X.; Newchurch, M.; Kuang, S.; McGee, T. J.; Langford, A. O.; Senff, C. J.; Leblanc, T.; Berkoff, T.; Gronoff, G.; Chen, G.; Strawbridge, K. B.
2016-12-01
Ozone (O3) is a greenhouse gas and toxic pollutant which plays a major role in air quality. Typically, monitoring of surface air quality and O3 mixing ratios is primarily conducted using in situ measurement networks. This is partially due to high-quality information related to air quality being limited from space-borne platforms due to coarse spatial resolution, limited temporal frequency, and minimal sensitivity to lower tropospheric and surface-level O3. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite is designed to address these limitations of current space-based platforms and to improve our ability to monitor North American air quality. TEMPO will provide hourly data of total column and vertical profiles of O3 with high spatial resolution to be used as a near-real-time air quality product. TEMPO O3 retrievals will apply the Smithsonian Astrophysical Observatory profile algorithm developed based on work from GOME, GOME-2, and OMI. This algorithm uses a priori O3 profile information from a climatological data-base developed from long-term ozone-sonde measurements (tropopause-based (TB) O3 climatology). It has been shown that satellite O3 retrievals are sensitive to a priori O3 profiles and covariance matrices. During this work we investigate the climatological data to be used in TEMPO algorithms (TB O3) and simulated data from the NASA GMAO Goddard Earth Observing System (GEOS-5) Forward Processing (FP) near-real-time (NRT) model products. These two data products will be evaluated with ground-based lidar data from the Tropospheric Ozone Lidar Network (TOLNet) at various locations of the US. This study evaluates the TB climatology, GEOS-5 climatology, and 3-hourly GEOS-5 data compared to lower tropospheric observations to demonstrate the accuracy of a priori information to potentially be used in TEMPO O3 algorithms. Here we present our initial analysis and the theoretical impact on TEMPO retrievals in the lower troposphere.
NASA Astrophysics Data System (ADS)
Tong, Cheuk Hei Marcus; Yim, Steve Hung Lam; Rothenberg, Daniel; Wang, Chien; Lin, Chuan-Yao; Chen, Yongqin David; Lau, Ngar Cheung
2018-05-01
Air pollution is an increasingly concerning problem in many metropolitan areas due to its adverse public health and environmental impacts. Vertical atmospheric conditions have strong effects on vertical mixing of air pollutants, which directly affects surface air quality. The characteristics and magnitude of how vertical atmospheric conditions affect surface air quality, which are critical to future air quality projections, have not yet been fully understood. This study aims to enhance understanding of the annual and seasonal sensitivities of air pollution to both surface and vertical atmospheric conditions. Based on both surface and vertical meteorological characteristics provided by 1994-2003 monthly dynamic downscaling data from the Weather and Research Forecast Model, we develop generalized linear models (GLMs) to study the relationships between surface air pollutants (ozone, respirable suspended particulates, and sulfur dioxide) and atmospheric conditions in the Pearl River Delta (PRD) region. Applying Principal Component Regression (PCR) to address multi-collinearity, we study the contributions of various meteorological variables to pollutants' concentration levels based on the loading and model coefficient of major principal components. Our results show that relatively high pollutant concentration occurs under relatively low mid-level troposphere temperature gradients, low relative humidity, weak southerly wind (or strong northerly wind) and weak westerly wind (or strong easterly wind). Moreover, the correlations vary among pollutant species, seasons, and meteorological variables at various altitudes. In general, pollutant sensitivity to meteorological variables is found to be greater in winter than in other seasons, and the sensitivity of ozone to meteorology differs from that of the other two pollutants. Applying our GLMs to anomalous air pollution episodes, we find that meteorological variables up to mid troposphere (∼700 mb) play an important role in influencing surface air quality, pinpointing the significant and unique associations between meteorological variables at higher altitudes and surface air quality.
THE USE OF AIR QUALITY FORECASTS TO ASSESS IMPACTS OF AIR POLLUTION ON CROPS
Assessing O3 damage to crops is challenging due to the difficulties in determining the reduction in crop yield that results from exposure to surface O3, for which monitors are limited and deployed mostly in non-rural areas. This work explores the potential b...
Towards new-generation soil erosion modeling: Building a unified omnivorous model
USDA-ARS?s Scientific Manuscript database
Soil erosion is a global threat to agricultural production, and results in off-site sediment and nutrient losses that negatively impact water and air quality. Models are mathematical equations used to estimate the amount of soil lost from a land air, due to the erosive forces of water or wind. Early...
Shi, Yuan; Lau, Kevin Ka-Lun; Ng, Edward
2017-08-01
Urban air quality serves as an important function of the quality of urban life. Land use regression (LUR) modelling of air quality is essential for conducting health impacts assessment but more challenging in mountainous high-density urban scenario due to the complexities of the urban environment. In this study, a total of 21 LUR models are developed for seven kinds of air pollutants (gaseous air pollutants CO, NO 2 , NO x , O 3 , SO 2 and particulate air pollutants PM 2.5 , PM 10 ) with reference to three different time periods (summertime, wintertime and annual average of 5-year long-term hourly monitoring data from local air quality monitoring network) in Hong Kong. Under the mountainous high-density urban scenario, we improved the traditional LUR modelling method by incorporating wind availability information into LUR modelling based on surface geomorphometrical analysis. As a result, 269 independent variables were examined to develop the LUR models by using the "ADDRESS" independent variable selection method and stepwise multiple linear regression (MLR). Cross validation has been performed for each resultant model. The results show that wind-related variables are included in most of the resultant models as statistically significant independent variables. Compared with the traditional method, a maximum increase of 20% was achieved in the prediction performance of annual averaged NO 2 concentration level by incorporating wind-related variables into LUR model development. Copyright © 2017 Elsevier Inc. All rights reserved.
Health and cost impact of air pollution from biomass burning over the United States
NASA Astrophysics Data System (ADS)
Eslami, E.; Sadeghi, B.; Choi, Y.
2017-12-01
Effective assessment of health and cost effects of air pollution associated with wildfire events is critical for supporting sustainable management and policy analysis to reduce environmental damages. Since biomass burning events result in higher ozone, PM2.5, and NOx concentration values in urban regions due to long-range transport, preliminary results indicated that wildfire events cause a considerable increase in incident estimates and costs. This study aims to evaluate the health and cost impact of biomass burning events over the continental United States using combined air quality and health impact modeling. To meet this goal, a comprehensive air quality modeling scenarios containing biomass burning emissions were conducted using the Community Multiscale Air Quality (CMAQ) modeling system from 2011 to 2014 with a spatial resolution of 12 km. The modeling period includes fire seasons between April and October over the course of four years. By using modeled pollutants concentrations, the USEPA's GIS-based computer program Environmental Benefits Mapping and Analysis Program-Community Edition (BenMAP-CE) provides an inclusive figure of health and cost impact caused by changing gaseous and particulate air pollution due to fire events. The basis of BenMAP-CE is the use of a damage-function approach to estimate the health impact of an applied change in air quality by comparing a biomass burning scenario (the one that includes wildfire events) with a baseline scenario (without biomass emissions). This approach considers several factors containing population, exposure to the pollutants, adverse health effects of a particular pollutant, and economic costs. Hence, this study made it capable of showing how biomass burning across U.S. influences people's health in different months, seasons, and regions. Besides, the cost impact of the wildfire events during study periods has also been estimated at both national and regional levels. The results of this study demonstrate the BenMAP-CE can be successfully utilized as a proper tool to obtain health and cost impact of biomass burning events.
MEGAPOLI: concept and first results of multi-scale modelling of megacity impacts
NASA Astrophysics Data System (ADS)
Baklanov, A. A.; Lawrence, M.; Pandis, S.
2009-09-01
The European FP7 project MEGAPOLI: ‘Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation' (http://megapoli.info), started in October 2008, brings together 27 leading European research groups from 11 countries, state-of-the-art scientific tools and key players from countries outside Europe to investigate the interactions among megacities, air quality and climate. MEGAPOLI bridges the spatial and temporal scales that connect local emissions, air quality and weather with global atmospheric chemistry and climate. The main MEGAPOLI objectives are: 1. to assess impacts of megacities and large air-pollution hot-spots on local, regional and global air quality, 2. to quantify feedbacks among megacity air quality, local and regional climate, and global climate change, 3. to develop improved integrated tools for prediction of air pollution in megacities. In order to achieve these objectives the following tasks are realizing: • Develop and evaluate integrated methods to improve megacity emission data, • Investigate physical and chemical processes starting from the megacity street level, continuing to the city, regional and global scales, • Assess regional and global air quality impacts of megacity plumes, • Determine the main mechanisms of regional meteorology/climate forcing due to megacity plumes, • Assess global megacity pollutant forcing on climate, • Examine feedback mechanisms including effects of climate change on megacity air quality, • Develop integrated tools for prediction of megacity air quality, • Evaluate these integrated tools and use them in case studies, • Develop a methodology to estimate the impacts of different scenarios of megacity development on human health and climate change, • Propose and assess mitigation options to reduce the impacts of megacity emissions. We follow a pyramid strategy of undertaking detailed measurements in one European major city, Paris, performing detailed analysis for 12 megacities with existing air quality datasets and investigate the effects of all megacities on climate and global atmospheric chemistry. The project focuses on the multi-scale modelling of interacting meteorology and air quality, spanning the range from emissions to air quality, effects on climate, and feedbacks and mitigation potentials. Our hypothesis is that megacities around the world have an impact on air quality not only locally, but also regionally and globally and therefore can also influence the climate of our planet. Some of the links between megacities, air quality and climate are reasonably well-understood. However, a complete quantitative picture of these interactions is clearly missing. Understanding and quantifying these missing links is the focus of MEGAPOLI. The current status and modeling results after the first project year on examples of Paris and other European megacities are discussed.
Voluntary Compliance, Pollution Levels, and Infant Mortality in Mexico.
Foster, Andrew; Gutierrez, Emilio; Kumar, Naresh
2009-05-01
The increasing body of evidence from high income countries linking pollution to health outcomes (Ken Chay and Michael Greenstone 2003; Janet Currie and Matthew Neidell 2004), has raised concerns about the health impact of adverse air quality in developing countries, where, in general, environmental regulation is less stringent and health monitoring and treatment are less accessible. These concerns have, in turn, encouraged consideration of the effectiveness of alternative mechanisms for improving air quality while limiting the adverse impact on economic growth. However, the analysis of both the effects of pollution on health and the effectiveness of pollution abatement policies faces particular empirical challenges in low- and middle-income contexts, given the scarcity of reliable measures of pollution concentrations. The primary source of good quality data on air quality, ground monitoring, tends to be limited to larger metropolitan areas with monitors placed at sentinel sites that may or may not yield a representative picture of population exposure. This paper calls attention to, and makes use of, newly available procedures for extracting measures of air quality from satellite imagery. In particular, satellite-based measures of aerosol optical depth (AOD) are used to obtain estimates of air quality for the whole Mexican territory at a detailed geographic scale, and these estimates are related to measures of participation in a voluntary certification program at the level of the county. The resulting estimates are then combined with estimates of the relationship between participation in the certification program and infant mortality due to respiratory causes to obtain a rough estimate of the relationship between air quality and infant health in Mexico.
Co-benefits of air quality and climate change policies on air quality of the Mediterranean
NASA Astrophysics Data System (ADS)
Pozzoli, Luca; Mert Gokturk, Ozan; Unal, Alper; Kindap, Tayfun; Janssens-Maenhout, Greet
2015-04-01
The Mediterranean basin is one of the regions of the world where significant impacts due to climate changes are predicted to occur in the future. Observations and model simulations are used to provide to the policy makers scientifically based estimates of the necessity to adjust national emission reductions needed to achieve air quality objectives in the context of a changing climate, which is not only driven by GHGs, but also by short lived climate pollutants, such as tropospheric ozone and aerosols. There is an increasing interest and need to design cost-benefit emission reduction strategies, which could improve both regional air quality and global climate change. In this study we used the WRF-CMAQ air quality modelling system to quantify the contribution of anthropogenic emissions to ozone and particulate matter concentrations in Europe and the Eastern Mediterranean and to understand how this contribution could change in different future scenarios. We have investigated four different future scenarios for year 2050 defined during the European Project CIRCE: a "business as usual" scenario (BAU) where no or just actual measures are taken into account; an "air quality" scenario (BAP) which implements the National Emission Ceiling directive 2001/81/EC member states of the European Union (EU-27); a "climate change" scenario (CC) which implements global climate policies decoupled from air pollution policies; and an "integrated air quality and climate policy" scenario (CAP) which explores the co-benefit of global climate and EU-27 air pollution policies. The BAP scenario largely decreases summer ozone concentrations over almost the entire continent, while the CC and CAP scenarios similarly determine lower decreases in summer ozone but extending all over the Mediterranean, the Middle East countries and Russia. Similar patterns are found for winter PM concentrations; BAP scenario improves pollution levels only in the Western EU countries, and the CAP scenario determines the largest PM reductions over the entire continent and the Mediterranean basin.
NASA Astrophysics Data System (ADS)
Tang, U. W.; Wang, Z. S.
2008-10-01
Each city has its unique urban form. The importance of urban form on sustainable development has been recognized in recent years. Traditionally, air quality modelling in a city is in a mesoscale with grid resolution of kilometers, regardless of its urban form. This paper introduces a GIS-based air quality and noise model system developed to study the built environment of highly compact urban forms. Compared with traditional mesoscale air quality model system, the present model system has a higher spatial resolution down to individual buildings along both sides of the street. Applying the developed model system in the Macao Peninsula with highly compact urban forms, the average spatial resolution of input and output data is as high as 174 receptor points per km2. Based on this input/output dataset with a high spatial resolution, this study shows that even the highly compact urban forms can be fragmented into a very small geographic scale of less than 3 km2. This is due to the significant temporal variation of urban development. The variation of urban form in each fragment in turn affects air dispersion, traffic condition, and thus air quality and noise in a measurable scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-09-27
Testimony considered the activities of the National Institute for Occupational Safety and Health (NIOSH) in the area of indoor air quality. Energy conservation concerns in the 1970s forced the construction of buildings with the key element being preventing infiltration of untempered outside air. Many buildings were effectively sealed against air entry. Requests for health-hazard evaluations due to a suspected poor quality of indoor air have increased dramatically in recent years. Indoor-air-quality problems may arise from a variety of sources including human metabolic activity, smoking, structural components of the building and contents, biological contamination, office and mechanical equipment, and outside airmore » pollutants that enter the building. Many times the symptoms and health complaints reported by workers were diverse and not specific enough to readily identify the causative agent. The results from the health hazard evaluations have enabled NIOSH to classify the findings by primary type of problem: contamination from the building materials, 4%; microbial contamination, 5%; other contamination from inside the building, 15%; contamination from outside the building, 10%; inadequate ventilation, 53%; and unknown, 13%. Ergonomic and psychosocial issues often complicated the findings.« less
Changes in O3 and NO2 due to emissions from Fracking in the UK.
NASA Astrophysics Data System (ADS)
Archibald, Alexander; Ordonez, Carlos
2016-04-01
Poor air quality is a problem that affects millions of people around the world. Understanding the driving forces behind air pollution is complicated as the precursor gases which combine to produce air pollutants react in a highly non-linear manner and are subject to a range of atmospheric transport mechanisms compounded by the weather. A great deal of money has been spent on mitigating air pollution and so it's important to assess the impacts that new technologies that emit air pollutant precursors may have on local and regional air pollution. One of the most highly discussed new technologies that could impact air quality is the adoption of wide-scale hydraulic fracturing or "fracking" for natural gas. Indeed in regions of the USA where fracking is commonplace large levels of ozone (O3 - a key air pollutant) have been observed and attributed directly to the fracking process. In this study, a numerical modelling framework was used to assess possible impacts of fracking in the UK where at present no large scale fracking facilities are in operation. A number of emissions scenarios were developed for the principle gas phase air pollution precursors: the oxides of nitrogen (NOx) and volatile organic compounds (VOCs). These emissions scenarios were then used in a state-of-the-art numerical air quality model (the UK Met Office operational air quality forecasting model AQUM) to determine potential impacts related to fracking on UK air quality. Comparison of base model results and observations for the year 2013 of NOx, O3 and VOCs from the UK Automatic Urban and Rural Network (AURN) showed that AQUM has good skill at simulating these gas phase air pollutants (O3 r=0.64, NMGE=0.3; NO2 r=0.62, NMGE=0.51). Analysis of the simulations with fracking emissions demonstrate that there are large changes in 1hr max NO2 (11.6±6.6 ppb) with modest increases in monthly mean NO2, throughout the British Isles (150±100 ppt). These results highlight that stringent measures should be applied to prevent deleterious impacts on air quality from emissions related to fracking in the UK.
NASA Astrophysics Data System (ADS)
Wang, Litao; Jang, Carey; Zhang, Yang; Wang, Kai; Zhang, Qiang; Streets, David; Fu, Joshua; Lei, Yu; Schreifels, Jeremy; He, Kebin; Hao, Jiming; Lam, Yun-Fat; Lin, Jerry; Meskhidze, Nicholas; Voorhees, Scott; Evarts, Dale; Phillips, Sharon
2010-09-01
Following the meteorological evaluation in Part I, this Part II paper presents the statistical evaluation of air quality predictions by the U.S. Environmental Protection Agency (U.S. EPA)'s Community Multi-Scale Air Quality (Models-3/CMAQ) model for the four simulated months in the base year 2005. The surface predictions were evaluated using the Air Pollution Index (API) data published by the China Ministry of Environmental Protection (MEP) for 31 capital cities and daily fine particulate matter (PM 2.5, particles with aerodiameter less than or equal to 2.5 μm) observations of an individual site in Tsinghua University (THU). To overcome the shortage in surface observations, satellite data are used to assess the column predictions including tropospheric nitrogen dioxide (NO 2) column abundance and aerosol optical depth (AOD). The result shows that CMAQ gives reasonably good predictions for the air quality. The air quality improvement that would result from the targeted sulfur dioxide (SO 2) and nitrogen oxides (NO x) emission controls in China were assessed for the objective year 2010. The results show that the emission controls can lead to significant air quality benefits. SO 2 concentrations in highly polluted areas of East China in 2010 are estimated to be decreased by 30-60% compared to the levels in the 2010 Business-As-Usual (BAU) case. The annual PM 2.5 can also decline by 3-15 μg m -3 (4-25%) due to the lower SO 2 and sulfate concentrations. If similar controls are implemented for NO x emissions, NO x concentrations are estimated to decrease by 30-60% as compared with the 2010 BAU scenario. The annual mean PM 2.5 concentrations will also decline by 2-14 μg m -3 (3-12%). In addition, the number of ozone (O 3) non-attainment areas in the northern China is projected to be much lower, with the maximum 1-h average O 3 concentrations in the summer reduced by 8-30 ppb.
Predictive monitoring and diagnosis of periodic air pollution in a subway station.
Kim, YongSu; Kim, MinJung; Lim, JungJin; Kim, Jeong Tai; Yoo, ChangKyoo
2010-11-15
The purpose of this study was to develop a predictive monitoring and diagnosis system for the air pollutants in a subway system using a lifting technique with a multiway principal component analysis (MPCA) which monitors the periodic patterns of the air pollutants and diagnoses the sources of the contamination. The basic purpose of this lifting technique was to capture the multivariate and periodic characteristics of all of the indoor air samples collected during each day. These characteristics could then be used to improve the handling of strong periodic fluctuations in the air quality environment in subway systems and will allow important changes in the indoor air quality to be quickly detected. The predictive monitoring approach was applied to a real indoor air quality dataset collected by telemonitoring systems (TMS) that indicated some periodic variations in the air pollutants and multivariate relationships between the measured variables. Two monitoring models--global and seasonal--were developed to study climate change in Korea. The proposed predictive monitoring method using the lifted model resulted in fewer false alarms and missed faults due to non-stationary behavior than that were experienced with the conventional methods. This method could be used to identify the contributions of various pollution sources. Copyright © 2010 Elsevier B.V. All rights reserved.
CFD modelling of the aerodynamic effect of trees on urban air pollution dispersion.
Amorim, J H; Rodrigues, V; Tavares, R; Valente, J; Borrego, C
2013-09-01
The current work evaluates the impact of urban trees over the dispersion of carbon monoxide (CO) emitted by road traffic, due to the induced modification of the wind flow characteristics. With this purpose, the standard flow equations with a kε closure for turbulence were extended with the capability to account for the aerodynamic effect of trees over the wind field. Two CFD models were used for testing this numerical approach. Air quality simulations were conducted for two periods of 31h in selected areas of Lisbon and Aveiro, in Portugal, for distinct relative wind directions: approximately 45° and nearly parallel to the main avenue, respectively. The statistical evaluation of modelling performance and uncertainty revealed a significant improvement of results with trees, as shown by the reduction of the NMSE from 0.14 to 0.10 in Lisbon, and from 0.14 to 0.04 in Aveiro, which is independent from the CFD model applied. The consideration of the plant canopy allowed to fulfil the data quality objectives for ambient air quality modelling established by the Directive 2008/50/EC, with an important decrease of the maximum deviation between site measurements and CFD results. In the non-aligned wind situation an average 12% increase of the CO concentrations in the domain was observed as a response to the aerodynamic action of trees over the vertical exchange rates of polluted air with the above roof-level atmosphere; while for the aligned configuration an average 16% decrease was registered due to the enhanced ventilation of the street canyon. These results show that urban air quality can be optimised based on knowledge-based planning of green spaces. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Creamean, Jessie M.; Neiman, Paul J.; Coleman, Timothy; Senff, Christoph J.; Kirgis, Guillaume; Alvarez, Raul J.; Yamamoto, Atsushi
2016-09-01
Biomass burning plumes containing aerosols from forest fires can be transported long distances, which can ultimately impact climate and air quality in regions far from the source. Interestingly, these fires can inject aerosols other than smoke into the atmosphere, which very few studies have evidenced. Here, we demonstrate a set of case studies of long-range transport of mineral dust aerosols in addition to smoke from numerous fires (including predominantly forest fires and a few grass/shrub fires) in the Pacific Northwest to Colorado, US. These aerosols were detected in Boulder, Colorado, along the Front Range using beta-ray attenuation and energy-dispersive X-ray fluorescence spectroscopy, and corroborated with satellite-borne lidar observations of smoke and dust. Further, we examined the transport pathways of these aerosols using air mass trajectory analysis and regional- and synoptic-scale meteorological dynamics. Three separate events with poor air quality and increased mass concentrations of metals from biomass burning (S and K) and minerals (Al, Si, Ca, Fe, and Ti) occurred due to the introduction of smoke and dust from regional- and synoptic-scale winds. Cleaner time periods with good air quality and lesser concentrations of biomass burning and mineral metals between the haze events were due to the advection of smoke and dust away from the region. Dust and smoke present in biomass burning haze can have diverse impacts on visibility, health, cloud formation, and surface radiation. Thus, it is important to understand how aerosol populations can be influenced by long-range-transported aerosols, particularly those emitted from large source contributors such as wildfires.
Mortality from asthma and chronic bronchitis associated with changes in sulfur oxides air pollution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imai, M.; Yoshida, K.; Kitabatake, M.
Death certificates issued in Yokkaichi, Japan, during the 21 yr from 1963 until 1983 were surveyed to determine the relationship between changes in air pollution and mortality due to bronchial asthma and chronic bronchitis. The following results were obtained. In response to worsening air pollution, mortality for bronchial asthma and chronic bronchitis began to increase. Mortality due to bronchial asthma decreased immediately in response to improvement of pollution, whereas mortality due to chronic bronchitis decreased to the level in the control area 4 to 5 yr after the concentration of sulfur dioxide (SO/sub 2/) began to satisfy the ambient airmore » quality standard. In the polluted area, mortality due to bronchial asthma in subjects who were 20 yr of age was higher during the period in which higher concentrations of sulfur oxides were prevalent.« less
Syed Abdul Mutalib, Sharifah Norsukhairin; Juahir, Hafizan; Azid, Azman; Mohd Sharif, Sharifah; Latif, Mohd Talib; Aris, Ahmad Zaharin; Zain, Sharifuddin M; Dominick, Doreena
2013-09-01
The objective of this study is to identify spatial and temporal patterns in the air quality at three selected Malaysian air monitoring stations based on an eleven-year database (January 2000-December 2010). Four statistical methods, Discriminant Analysis (DA), Hierarchical Agglomerative Cluster Analysis (HACA), Principal Component Analysis (PCA) and Artificial Neural Networks (ANNs), were selected to analyze the datasets of five air quality parameters, namely: SO2, NO2, O3, CO and particulate matter with a diameter size of below 10 μm (PM10). The three selected air monitoring stations share the characteristic of being located in highly urbanized areas and are surrounded by a number of industries. The DA results show that spatial characterizations allow successful discrimination between the three stations, while HACA shows the temporal pattern from the monthly and yearly factor analysis which correlates with severe haze episodes that have happened in this country at certain periods of time. The PCA results show that the major source of air pollution is mostly due to the combustion of fossil fuel in motor vehicles and industrial activities. The spatial pattern recognition (S-ANN) results show a better prediction performance in discriminating between the regions, with an excellent percentage of correct classification compared to DA. This study presents the necessity and usefulness of environmetric techniques for the interpretation of large datasets aiming to obtain better information about air quality patterns based on spatial and temporal characterizations at the selected air monitoring stations.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-27
... comment due to technical difficulties and cannot contact you for clarification, EPA may not be able to... comments, remember to: Identify the rulemaking by docket number and other identifying information (subject... 2009 and was the subject of a consultation with the Clean Air Scientific Advisory Committee (CASAC) on...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-08
... EPA cannot read your comment due to technical difficulties and cannot contact you for clarification... docket number and other identifying information (subject heading, Federal Register date and page number... October 2007 and was the subject of a consultation with the Clean Air Scientific Advisory Committee (CASAC...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-22
... Retrofit Technology (BART) provision of the Clean Air Act (CAA or Act). EPA proposed the BART FIP to reduce... included in the proposal due to the unique purpose and history of NGS and the numerous stakeholder... Use I. National Technology Transfer and Advancement Act J. Executive Order 12898: Federal Actions To...
Personal Air Pollution Exposure Monitoring using Low Cost Sensors in Chennai City
NASA Astrophysics Data System (ADS)
Reddy Yasa, Pavan; Shiva, Nagendra S. N.
2016-04-01
Air quality in many cities is deteriorating due to rapid urbanization and motorization. In the past, most of the health impacts studies in the urban areas have considered stationary air quality monitoring station data for health impact assessment. Since, there exist a spatial and temporal variation of air quality because of rapid change in land use pattern and complex interaction between emission sources and meteorological conditions, the human exposure assessment using stationary data may not provide realistic information. In such cases low cost sensors monitoring is viable in providing both spatial and temporal variations of air pollutant concentrations. In the present study an attempt has been made to use low cost sensor for monitoring the personal exposure to the two criteria pollutants CO and PM2.5 at 3 different locations of Chennai city. Maximum and minimum concentrations of CO and PM2.5 were found to be 5.4ppm, 0.8ppm and 534.8μg/m3, 1.9μg/m3 respectively. Results showed high concentrations near the intersection and low concentrations in the straight road.
Riojas-Rodríguez, Horacio; Álamo-Hernández, Urinda; Texcalac-Sangrador, José Luis; Romieu, Isabelle
2014-01-01
To conduct a health impact assessment (HIA) to quantify health benefits for several PM and O3 air pollution reduction scenarios in the Mexico City Metropolitan Area (MCMA). Results from this HIA will contribute to the scientific support of the MCMA air quality management plan (PROAIRE) for the period 2011-2020. The HIA methodology consisted of four steps: 1) selection of the air pollution reduction scenarios, 2) identification of the at-risk population and health outcomes for the 2005 baseline scenario, 3) selection of concentration-response functions and 4) estimation of health impacts. Reductions of PM10 levels to 20 μg/m³ and O3 levels to 0.050ppm (98 µg/m³) would prevent 2300 and 400 annual deaths respectively. The greatest health impact was seen in the over-65 age group and in mortality due to cardiopulmonary and cardiovascular disease. Improved air quality in the MCMA could provide significant health benefits through focusing interventions by exposure zones.
Eco-driving: behavioural pattern change in Polish passenger vehicle drivers
NASA Astrophysics Data System (ADS)
Czechowski, Piotr Oskar; Oniszczuk-Jastrząbek, Aneta; Czuba, Tomasz
2018-01-01
In Poland, as in the rest of Europe, air quality depends primarily on emissions from municipal, domestic and road transport sources. The problems of appropriate air quality are especially important within urban areas due to numerous sources of emissions being concentrated in relatively small spaces in both large cities and small/medium-sized towns. Due to the steadily increasing share of urban population in the overall number of population, the issue of providing clean air will over the years become a more significant problem for human health, and therefore a stronger incentive to intensify research. The key challenge faced by a modern society is, therefore, to limit harmful substance emissions in order to minimise the contribution of transport to pollution and health hazards. Increasingly stringent emission standards are being imposed on car manufacturers; on the other hand, scant regard is paid to the issue of drivers, i.e. how they can help reduce emissions and protect their life and health by applying eco-driving rules.
Climate change impacts on human health over Europe through its effect on air quality.
Doherty, Ruth M; Heal, Mathew R; O'Connor, Fiona M
2017-12-05
This review examines the current literature on the effects of future emissions and climate change on particulate matter (PM) and O 3 air quality and on the consequent health impacts, with a focus on Europe. There is considerable literature on the effects of climate change on O 3 but fewer studies on the effects of climate change on PM concentrations. Under the latest Intergovernmental Panel on Climate Change (IPCC) 5th assessment report (AR5) Representative Concentration Pathways (RCPs), background O 3 entering Europe is expected to decrease under most scenarios due to higher water vapour concentrations in a warmer climate. However, under the extreme pathway RCP8.5 higher (more than double) methane (CH 4 ) abundances lead to increases in background O 3 that offset the O 3 decrease due to climate change especially for the 2100 period. Regionally, in polluted areas with high levels of nitrogen oxides (NO x ), elevated surface temperatures and humidities yield increases in surface O 3 - termed the O 3 climate penalty - especially in southern Europe. The O 3 response is larger for metrics that represent the higher end of the O 3 distribution, such as daily maximum O 3 . Future changes in PM concentrations due to climate change are much less certain, although several recent studies also suggest a PM climate penalty due to high temperatures and humidity and reduced precipitation in northern mid-latitude land regions in 2100.A larger number of studies have examined both future climate and emissions changes under the RCP scenarios. Under these pathways the impact of emission changes on air quality out to the 2050s will be larger than that due to climate change, because of large reductions in emissions of O 3 and PM pollutant precursor emissions and the more limited climate change response itself. Climate change will also affect climate extreme events such as heatwaves. Air pollution episodes are associated with stagnation events and sometimes heat waves. Air quality during the 2003 heatwave over Europe has been examined in numerous studies and mechanisms for enhancing O 3 have been identified.There are few studies on health effects associated with climate change impacts alone on air quality, but these report higher O 3 -related health burdens in polluted populated regions and greater PM 2.5 health burdens in these emission regions. Studies that examine the combined impacts of climate change and anthropogenic emissions change under the RCP scenarios report reductions in global and European premature O 3 -respiratory related and PM mortalities arising from the large decreases in precursor emissions. Under RCP 8.5 the large increase in CH 4 leads to global and European excess O 3 -respiratory related mortalities in 2100. For future health effects, besides uncertainty in future O 3 and particularly PM concentrations, there is also uncertainty in risk estimates such as effect modification by temperature on pollutant-response relationships and potential future adaptation that would alter exposure risk.
NASA Astrophysics Data System (ADS)
Duran, P.; Holloway, T.; Brinkman, G.; Denholm, P.; Littlefield, C. M.
2011-12-01
Solar photovoltaics (PV) are an attractive technology because they can be locally deployed and tend to yield high production during periods of peak electric demand. These characteristics can reduce the need for conventional large-scale electricity generation, thereby reducing emissions of criteria air pollutants (CAPs) and improving ambient air quality with regard to such pollutants as nitrogen oxides, sulfur oxides and fine particulates. Such effects depend on the local climate, time-of-day emissions, available solar resources, the structure of the electric grid, and existing electricity production among other factors. This study examines the air quality impacts of distributed PV across the United States Eastern Interconnection. In order to accurately model the air quality impact of distributed PV in space and time, we used the National Renewable Energy Lab's (NREL) Regional Energy Deployment System (ReEDS) model to form three unique PV penetration scenarios in which new PV construction is distributed spatially based upon economic drivers and natural solar resources. Those scenarios are 2006 Eastern Interconnection business as usual, 10% PV penetration, and 20% PV penetration. With the GridView (ABB, Inc) dispatch model, we used historical load data from 2006 to model electricity production and distribution for each of the three scenarios. Solar PV electric output was estimated using historical weather data from 2006. To bridge the gap between dispatch and air quality modeling, we will create emission profiles for electricity generating units (EGUs) in the Eastern Interconnection from historical Continuous Emissions Monitoring System (CEMS) data. Via those emissions profiles, we will create hourly emission data for EGUs in the Eastern Interconnect for each scenario during 2006. Those data will be incorporated in the Community Multi-scale Air Quality (CMAQ) model using the Sparse Matrix Operator Kernel Emissions (SMOKE) model. Initial results indicate that PV penetration significantly reduces conventional peak electricity production and that, due to reduced emissions during periods of extremely active photochemistry, air quality could see benefits.
NASA Astrophysics Data System (ADS)
Lee, H. H.; Iraqui, O.; Gu, Y.; Yim, S. H. L.; Wang, C.
2017-12-01
Severe haze events in Southeast Asia have attracted the attention of governments and the general public in recent years, due to their impact on local economies, air quality and public health. Widespread biomass burning activities are a major source of severe haze events in Southeast Asia. On the other hand, particulate pollutants from human activities other than biomass burning also play an important role in degrading air quality in Southeast Asia. These pollutants can be locally produced or brought in from neighboring regions by long-range transport. A better understanding of the respective contributions of fossil fuel and biomass burning aerosols to air quality degradation becomes an urgent task in forming effective air pollution mitigation policies in Southeast Asia. In this study, to examine and quantify the contributions of fossil fuel and biomass burning aerosols to air quality and visibility degradation over Southeast Asia, we conducted three numerical simulations using the Weather Research and Forecasting (WRF) model coupled with a chemistry component (WRF-Chem). These simulations were driven by different aerosol emissions from: (a) fossil fuel burning only, (b) biomass burning only, and (c) both fossil fuel and biomass burning. By comparing the simulation results, we examined the corresponding impacts of fossil fuel and biomass burning emissions, separately and combined, on the air quality and visibility of the region. The results also showed that the major contributors to low visibility days (LVDs) among 50 ASEAN cities are fossil fuel burning aerosols (59%), while biomass burning aerosols provided an additional 13% of LVDs in Southeast Asia. In addition, the number of premature mortalities among ASEAN cities has increased from 4110 in 2002 to 6540 in 2008, caused primarily by fossil fuel burning aerosols. This study suggests that reductions in both fossil fuel and biomass burning emissions are necessary to improve the air quality in Southeast Asia.
Information needs related to extension service and community outreach.
Bottcher, Robert W
2003-06-01
Air quality affects everyone. Some people are affected by air quality impacts, regulations, and technological developments in several ways. Stakeholders include the medical community, ecologists, government regulators, industries, technology providers, academic professionals, concerned citizens, the news media, and elected officials. Each of these groups may perceive problems and opportunities differently, but all need access to information as it is developed. The diversity and complexity of air quality problems contribute to the challenges faced by extension and outreach professionals who must communicate with stakeholders having diverse backgrounds. Gases, particulates, biological aerosols, pathogens, and odors all require expensive and relatively complex technology to measure and control. Economic constraints affect the ability of regulators and others to measure air quality, and industry and others to control it. To address these challenges, while communicating air quality research results and concepts to stakeholders, three areas of information needs are evident. (1) A basic understanding of the fundamental concepts regarding air pollutants and their measurement and control is needed by all stakeholders; the Extension Specialist, to be effective, must help people move some distance up the learning curve. (2) Each problem or set of problems must be reasonably well defined since comprehensive solution of all problems simultaneously may not be feasible; for instance, the solution of an odor problem associated with animal production may not address atmospheric effects due to ammonia emissions. (3) The integrity of the communication process must be preserved by avoiding prejudice and protectionism; although stakeholders may seek to modify information to enhance their interests, extension and outreach professionals must be willing to present unwelcome information or admit to a lack of information. A solid grounding in fundamental concepts, careful and fair problem definition, and a resolute commitment to integrity and credibility will enable effective communication of air quality information to and among diverse stakeholders.
Monitoring urban air quality using a high-density network of low-cost sensor nodes in Oslo, Norway.
NASA Astrophysics Data System (ADS)
Castell, Nuria; Schneider, Philipp; Vogt, Matthias; Dauge, Franck R.; Lahoz, William; Bartonova, Alena
2017-04-01
Urban air quality represents a major public health burden and is a long-standing concern to citizens. Air pollution is associated with a range of diseases, symptoms and conditions that impair health and quality of life. In Oslo, traffic, especially exhaust from heavy-duty and private diesel vehicles and dust resuspension from studded tyres, together with wood burning in winter, are the main sources of pollution. Norway, as part of the European Economic Area, is obliged to comply with the European air quality regulations and ensure clean air. Despite this, Oslo has exceeded both the NO2 and PM10 thresholds for health protection defined in the Directive 2008/50/EC. The air quality in the Oslo area is continuously monitored in 12 compliance monitoring stations. These stations provide reliable and accurate data but their density is too low to provide a detailed spatial distribution of air quality. The emergence of low-cost nodes enables observations at high spatial resolution, providing the opportunity to enhance existing monitoring systems. However, the data generated by these nodes is significantly less accurate and precise than the data provided by reference equipment. We have conducted an evaluation of low-cost nodes to monitor NO2 and PM10, comparing the data collected with low-cost nodes against CEN (European Standardization Organization) reference analysers. During January and March 2016, a network of 24 nodes was deployed in Oslo. During January, high NO2 levels were observed for several days in a row coinciding with the formation of a thermal inversion. During March, we observed an episode with high PM10 levels due to road dust resuspension. Our results show that there is a major technical challenge associated with current commercial low-cost sensors, regarding the sensor robustness and measurement repeatability. Despite this, low-cost sensor nodes are able to reproduce the NO2 and PM10 variability. The data from the sensors was employed to generate detailed NO2 and PM10 air quality maps using a data fusion technique. This way we were able to offer localized air quality information for the city of Oslo. The outlook for commercial low-cost sensors is promising, and our results show that currently some sensors are already capable of providing coarse information about air quality, indicating if the air quality is good, moderate or if the air is heavily polluted. This type of information could be suitable for applications that aim to raise awareness, or engage the community by monitoring local air quality, as such applications do not require the same accuracy as scientific or regulatory monitoring.
Importance of A Priori Vertical Ozone Profiles for TEMPO Air Quality Retrievals
NASA Astrophysics Data System (ADS)
Johnson, M. S.; Sullivan, J. T.; Liu, X.; Zoogman, P.; Newchurch, M.; Kuang, S.; McGee, T. J.; Leblanc, T.
2017-12-01
Ozone (O3) is a toxic pollutant which plays a major role in air quality. Typically, monitoring of surface air quality and O3 mixing ratios is conducted using in situ measurement networks. This is partially due to high-quality information related to air quality being limited from space-borne platforms due to coarse spatial resolution, limited temporal frequency, and minimal sensitivity to lower tropospheric and surface-level O3. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite is designed to address the limitations of current space-based platforms and to improve our ability to monitor North American air quality. TEMPO will provide hourly data of total column and vertical profiles of O3 with high spatial resolution to be used as a near-real-time air quality product. TEMPO O3 retrievals will apply the Smithsonian Astrophysical Observatory profile algorithm developed based on work from GOME, GOME-2, and OMI. This algorithm is suggested to use a priori O3 profile information from a climatological data-base developed from long-term ozone-sonde measurements (tropopause-based (TB-Clim) O3 climatology). This study evaluates the TB-Clim dataset and model simulated O3 profiles, which could potentially serve as a priori O3 profile information in TEMPO retrievals, from near-real-time data assimilation model products (NASA GMAO's operational GEOS-5 FP model and reanalysis data from MERRA2) and a full chemical transport model (CTM), GEOS-Chem. In this study, vertical profile products are evaluated with surface (0-2 km) and tropospheric (0-10 km) TOLNet observations and the theoretical impact of individual a priori profile sources on the accuracy of TEMPO O3 retrievals in the troposphere and at the surface are presented. Results indicate that while the TB-Clim climatological dataset can replicate seasonally-averaged tropospheric O3 profiles, model-simulated profiles from a full CTM resulted in more accurate tropospheric and surface-level O3 retrievals from TEMPO when compared to hourly and daily-averaged TOLNet observations. Furthermore, it is shown that when large surface O3 mixing ratios are observed, TEMPO retrieval values at the surface are most accurate when applying CTM a priori profile information compared to all other data products.
Air Quality Science and Regulatory Efforts Require Geostationary Satellite Measurements
NASA Technical Reports Server (NTRS)
Pickering, Kenneth E.; Allen, D. J.; Stehr, J. W.
2006-01-01
Air quality scientists and regulatory agencies would benefit from the high spatial and temporal resolution trace gas and aerosol data that could be provided by instruments on a geostationary platform. More detailed time-resolved data from a geostationary platform could be used in tracking regional transport and in evaluating mesoscale air quality model performance in terms of photochemical evolution throughout the day. The diurnal cycle of photochemical pollutants is currently missing from the data provided by the current generation of atmospheric chemistry satellites which provide only one measurement per day. Often peak surface ozone mixing ratios are reached much earlier in the day during major regional pollution episodes than during local episodes due to downward mixing of ozone that had been transported above the boundary layer overnight. The regional air quality models often do not simulate this downward mixing well enough and underestimate surface ozone in regional episodes. Having high time-resolution geostationary data will make it possible to determine the magnitude of this lower-and mid-tropospheric transport that contributes to peak eight-hour average ozone and 24-hour average PM2.5 concentrations. We will show ozone and PM(sub 2.5) episodes from the CMAQ model and suggest ways in which geostationary satellite data would improve air quality forecasting. Current regulatory modeling is typically being performed at 12 km horizontal resolution. State and regional air quality regulators in regions with complex topography and/or land-sea breezes are anxious to move to 4-km or finer resolution simulations. Geostationary data at these or finer resolutions will be useful in evaluating such models.
NASA Technical Reports Server (NTRS)
James, John T.; Limero, Tom; Beck, Steve; Martin, Millie; Covington, Phillip; Boyd, John; Peters, Randy
2003-01-01
Space-faring crews must have safe breathing air throughout their missions to ensure adequate performance and good health. Toxicological assessment of air quality depends on the standards that define acceptable air quality, measurements of pollutant levels during the flight, and reports from the crew on their in-flight perceptions of air quality. Air samples returned from ISS on flights 8A, UF2, 9A, and 11A were analyzed for trace pollutants. On average, the air during this period of operations was safe for human respiration. However, about 3 hours into the regeneration of 2 Metox canisters in the U.S. airlock on 20 February 2002 the crew reported an intolerable odor that caused them to stop the regeneration, take refuge in the Russian segment, and scrub air in the U.S. segment for 30 hours. Analytical data from grab samples taken during the incident showed that the pollutants released were characteristic of nominal air pollutants, but were present in much higher concentrations. The odors reported by the crew were due to relatively high concentrations of n-butanol, and possibly other pollutants in the mixture. Later data taken during regeneration of Metox canisters that had not been subject to long-term flows showed minimal effects on air quality. Long-term trending data suggest that a disruption in atmospheric mixing between the Service Module and the U.S. Laboratory has occurred and that formaldehyde concentrations are gradually increasing in the U.S. Laboratory. Trending data also show that the releases of octafluoropropane (OFP) have subsided.
NASA Astrophysics Data System (ADS)
Zurawski, A. M.
2016-12-01
The objective of this research is to study how emissions from a fossil fuel power plant compare to emissions from a biomass power plant, and how these results can be used to improve current air-quality regulations. Outdoor air quality transcends national and political boundaries. Air pollution monitoring is essential to maintaining quality of life for humans and ecosystems. Due to anthropogenic disturbances (primarily related to burning of fossil fuels), air- quality management has become a priority on a long list of environmental issues. Quantifying and monitoring the largest emitters of greenhouse gases and toxic pollutants is crucial to the creation and enforcement of appropriate environmental protection regulations. Emissions data were collected from January 2010 to January 2016 from sensors installed close to a biomass power plant, and sensors installed close to a fossil fuel and natural gas power plant, in Humboldt County, California. In Humboldt County, where air quality serves as a baseline of air pollution in the United States, data showed that the "green" biomass power plant emitted higher levels of particulate matter compared to the fossil fuel power plant. Additionally, the biomass power plant showed levels of CO2, NOx, and SO2 emissions that suggest its place as a "green" power source should be reconsidered. Our research suggests that regulations need to be reconsidered given the potential for high pollutant emissions from biomass plants.
Effects of future anthropogenic pollution emissions on global air quality
NASA Astrophysics Data System (ADS)
Pozzer, A.; Zimmermann, P.; Doering, U.; van Aardenne, J.; Dentener, F.; Lelieveld, J.
2012-04-01
The atmospheric chemistry general circulation model EMAC is used to estimate the impact of anthropogenic emission changes on global and regional air quality in recent and future years (2005, 2010, 2025 and 2050). The emission scenario assumes that population and economic growth largely determine energy consumption and consequent pollution sources ("business as usual"). By comparing with recent observations, it is shown that the model reproduces the main features of regional air pollution distributions though with some imprecision inherent to the coarse horizontal resolution (around 100 km). To identify possible future hot spots of poor air quality, a multi pollutant index (MPI) has been applied. It appears that East and South Asia and the Arabian Gulf regions represent such hotspots due to very high pollutant concentrations. In East Asia a range of pollutant gases and particulate matter (PM2.5) are projected to reach very high levels from 2005 onward, while in South Asia air pollution, including ozone, will grow rapidly towards the middle of the century. Around the Arabian Gulf, where natural PM2.5 concentrations are already high (desert dust), ozone levels will increase strongly. By extending the MPI definition, we calculated a Per Capita MPI (PCMPI) in which we combined population projections with those of pollution emissions. It thus appears that a rapidly increasing number of people worldwide will experience reduced air quality during the first half of the 21st century. It is projected that air quality for the global average citizen in 2050 will be comparable to the average in East Asia in the year 2005.
Ambient air quality and asthma cases in Niğde, Turkey.
Kara, Ertan; Özdilek, Hasan Göksel; Kara, Emine Erman
2013-06-01
Urban air quality is one of the key factors affecting human health. Turkey has transformed itself into an urban society over the last 30 years. At the same time, air pollution has become a serious impairment to health in many urban areas in the country. This is due to many reasons. In this study, a nonparametric evaluation was conducted of health effects that are triggered by urban air pollution. Niğde, the city which is the administrative centre of Nigde province was chosen of the effects of air pollution since, like many central Turkish cities, it is situated on a valley where atmospheric inversion occurs. In this paper, the relationship between ambient urban air quality, namely PM10 and sulphur dioxide (SO2), and human health, specifically asthma, during the winter season is examined. Air pollution data and asthma cases from 2006 to 2010 are covered in this study. The results of our study indicate that total asthma cases reported in Nigde between 2008 and 2010 were highly dependent on ambient SO2 concentration. More asthma cases were recorded when 30 μg m(-3) or higher SO2 was present in the ambient air than those recorded under cleaner ambient air conditions. Moreover, it was determined that in Nigde in 2010, asthma cases reported in males aged between 45 and 64 were closely correlated with ambient SO2 (α=0.05).
Urban-rural variations in air quality and health impacts in northern India
NASA Astrophysics Data System (ADS)
Karambelas, A. N.; Holloway, T.; Fiore, A. M.; Kinney, P.; DeFries, R. S.; Kiesewetter, G.; Heyes, C.
2017-12-01
Ambient air pollution in India is a severe problem, contributing to negative health impacts and early death. Ground-based monitors often used to quantify health impacts are often located in urban regions, however approximately 70% of India's population resides in rural areas. We use high-resolution concentrations from the regional Community Multi-scale Air Quality (CMAQ) model over densely-populated northern India to estimate air quality and health impacts due to anthropogenic emission sectors separately for urban and rural regions. Modeled concentrations inform relative risk calculations and exposure estimates as performed in the Global Burden of Disease. Anthropogenic emissions from the International Institute for Applied Systems Analysis (IIASA) Greenhouse Gas-Air Pollution Interactions and Synergies (GAINS) model following version 5a of the Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants project gridding structure are updated to reflect urban- and rural-specific activity information for transportation and residential combustion, and industrial and electrical generating unit location and magnitude information. We estimate 314,000 (95% Confidence Interval: 304,000—323,000) and 58,000 (CI: 39,000—70,000) adults (25 years or older) die prematurely each year from PM2.5 and O3 respectively in northern India, with the greatest impacts along the Indo-Gangetic Plain. Using urban and rural population distributions, we estimate that the majority of premature deaths resulting from PM2.5 and O3 are in rural (292,000) as opposed to urban (79,000) regions. These findings indicate the need for designing monitoring networks and ground-based health studies in rural areas of India to more accurately quantify the true health implications of ambient air pollution, in addition to supporting model evaluation. Using this urban-versus-rural emissions framework, we are assessing anthropogenic contributions to regional air quality and health impacts, and examining mitigation strategies to reduce anthropogenic emissions, improve air quality, and reduce PM2.5 and O3 attributable premature death in the near-term.
2004-08-01
land clearing action will be an irreversible commitment of resources. 4.3.2 Water Quality Construction project impacts to storm water quality can...nearby monitored outfalls for the MSGP. High turbidity, suspended solids, and decreased cross section due to deposition can violate storm water quality benchmarks...and result in a Notice of Violation for storm water quality permits. Beside erosive impacts, construction period activities can cause
Wang, Linlin; Thompson, Tammy; McDonald-Buller, Elena C; Allen, David T
2007-04-01
As part of the State Implementation Plan for attaining the National Ambient Air Quality Standard for ozone, the Texas Commission of Environmental Quality has created a Highly Reactive Volatile Organic Compounds (HRVOC) Emissions Cap and Trade Program for industrial point sources in the Houston/Galveston/Brazoria area. This series of papers examines the potential air quality impacts of this new emission trading program through photochemical modeling of potential trading scenarios; this paper examines the air quality impact of allowing facilities to trade chlorine emission reductions for HRVOC allocations on a reactivity weighted basis. The simulations indicate that trading of anthropogenic chlorine emission reductions for HRVOC allowances at a single facility or between facilities, in general, resulted in improvements in air quality. Decreases in peak 1-h averaged and 8-h averaged ozone concentrations associated with trading chlorine emissions for HRVOC allocations on a Maximum Incremental Reactivity (MIR) basis were up to 0.74 ppb (0.63%) and 0.56 ppb (0.61%), respectively. Air quality metrics based on population exposure decreased by up to 3.3% and 4.1% for 1-h and 8-h averaged concentrations. These changes are small compared to the maximum changes in ozone concentrations due to the VOC emissions from these sources (5-10 ppb for 8-h averages; up to 30 ppb for 1-h averages) and the chlorine emissions from the sources (5-10 ppb for maximum concentrations over wide areas and up to 70 ppb in localized areas). The simulations indicate that the inclusion of chlorine emissions in the trading program is likely to be beneficial to air quality and is unlikely to cause localized increases in ozone concentrations ("hot spots").
Mapping Emissions that Contribute to Air Pollution Using Adjoint Sensitivity Analysis
NASA Astrophysics Data System (ADS)
Bastien, L. A. J.; Mcdonald, B. C.; Brown, N. J.; Harley, R.
2014-12-01
The adjoint of the Community Multiscale Air Quality model (CMAQ) is used to map emissions that contribute to air pollution at receptors of interest. Adjoint tools provide an efficient way to calculate the sensitivity of a model response to a large number of model inputs, a task that would require thousands of simulations using a more traditional forward sensitivity approach. Initial applications of this technique, demonstrated here, are to benzene and directly-emitted diesel particulate matter, for which atmospheric reactions are neglected. Emissions of these pollutants are strongly influenced by light-duty gasoline vehicles and heavy-duty diesel trucks, respectively. We study air quality responses in three receptor areas where populations have been identified as especially susceptible to, and adversely affected by air pollution. Population-weighted air basin-wide responses for each pollutant are also evaluated for the entire San Francisco Bay area. High-resolution (1 km horizontal grid) emission inventories have been developed for on-road motor vehicle emission sources, based on observed traffic count data. Emission estimates represent diurnal, day of week, and seasonal variations of on-road vehicle activity, with separate descriptions for gasoline and diesel sources. Emissions that contribute to air pollution at each receptor have been mapped in space and time using the adjoint method. Effects on air quality of both relative (multiplicative) and absolute (additive) perturbations to underlying emission inventories are analyzed. The contributions of local versus upwind sources to air quality in each receptor area are quantified, and weekday/weekend and seasonal variations in the influence of emissions from upwind areas are investigated. The contribution of local sources to the total air pollution burden within the receptor areas increases from about 40% in the summer to about 50% in the winter due to increased atmospheric stagnation. The effectiveness of control strategies based on region-wide exposure metrics is compared with strategies that focus on improving air quality at specific receptors.
Randomized Trial of Interventions to Improve Childhood Asthma in Homes with Wood-burning Stoves.
Noonan, Curtis W; Semmens, Erin O; Smith, Paul; Harrar, Solomon W; Montrose, Luke; Weiler, Emily; McNamara, Marcy; Ward, Tony J
2017-09-13
Household air pollution due to biomass combustion for residential heating adversely affects vulnerable populations. Randomized controlled trials to improve indoor air quality in homes of children with asthma are limited, and no such studies have been conducted in homes using wood for heating. Our aims were to test the hypothesis that household-level interventions, specifically improved-technology wood-burning appliances or air-filtration devices, would improve health measures, in particular Pediatric Asthma Quality of Life Questionnaire (PAQLQ) scores, relative to placebo, among children living with asthma in homes with wood-burning stoves. A three-arm placebo-controlled randomized trial was conducted in homes with wood-burning stoves among children with asthma. Multiple preintervention and postintervention data included PAQLQ (primary outcome), peak expiratory flow (PEF) monitoring, diurnal peak flow variability (dPFV, an indicator of airway hyperreactivity) and indoor particulate matter (PM) PM2.5. Relative to placebo, neither the air filter nor the woodstove intervention showed improvement in quality-of-life measures. Among the secondary outcomes, dPFV showed a 4.1 percentage point decrease in variability [95% confidence interval (CI)=-7.8 to -0.4] for air-filtration use in comparison with placebo. The air-filter intervention showed a 67% (95% CI: 50% to 77%) reduction in indoor PM2.5, but no change was observed with the improved-technology woodstove intervention. Among children with asthma and chronic exposure to woodsmoke, an air-filter intervention that improved indoor air quality did not affect quality-of-life measures. Intent-to-treat analysis did show an improvement in the secondary measure of dPFV. ClincialTrials.gov NCT00807183. https://doi.org/10.1289/EHP849.
Randomized Trial of Interventions to Improve Childhood Asthma in Homes with Wood-burning Stoves
Semmens, Erin O.; Smith, Paul; Harrar, Solomon W.; Montrose, Luke; Weiler, Emily; McNamara, Marcy; Ward, Tony J.
2017-01-01
Background: Household air pollution due to biomass combustion for residential heating adversely affects vulnerable populations. Randomized controlled trials to improve indoor air quality in homes of children with asthma are limited, and no such studies have been conducted in homes using wood for heating. Objectives: Our aims were to test the hypothesis that household-level interventions, specifically improved-technology wood-burning appliances or air-filtration devices, would improve health measures, in particular Pediatric Asthma Quality of Life Questionnaire (PAQLQ) scores, relative to placebo, among children living with asthma in homes with wood-burning stoves. Methods: A three-arm placebo-controlled randomized trial was conducted in homes with wood-burning stoves among children with asthma. Multiple preintervention and postintervention data included PAQLQ (primary outcome), peak expiratory flow (PEF) monitoring, diurnal peak flow variability (dPFV, an indicator of airway hyperreactivity) and indoor particulate matter (PM) PM2.5. Results: Relative to placebo, neither the air filter nor the woodstove intervention showed improvement in quality-of-life measures. Among the secondary outcomes, dPFV showed a 4.1 percentage point decrease in variability [95% confidence interval (CI)=−7.8 to −0.4] for air-filtration use in comparison with placebo. The air-filter intervention showed a 67% (95% CI: 50% to 77%) reduction in indoor PM2.5, but no change was observed with the improved-technology woodstove intervention. Conclusions: Among children with asthma and chronic exposure to woodsmoke, an air-filter intervention that improved indoor air quality did not affect quality-of-life measures. Intent-to-treat analysis did show an improvement in the secondary measure of dPFV. Trial registration: ClincialTrials.gov NCT00807183. https://doi.org/10.1289/EHP849 PMID:28935614
Tong, Zheming; Chen, Yujiao; Malkawi, Ali; Adamkiewicz, Gary; Spengler, John D
2016-01-01
Improper natural ventilation practices may deteriorate indoor air quality when in close proximity to roadways, although the intention is often to reduce energy consumption. In this study, we employed a CFD-based air quality model to quantify the impact of traffic-related air pollution on the indoor air quality of a naturally ventilated building. Our study found that the building envelope restricts dispersion and dilution of particulate matter. The indoor concentration in the baseline condition located 10m away from the roadway is roughly 16-21% greater than that at the edge of the roadway. The indoor flow recirculation creates a well-mixed zone with little variation in fine particle concentration (i.e., 253nm). For ultrafine particles (<100nm), a noticeable decrease in particle concentrations indoors with increasing distance from the road is observed due to Brownian and turbulent diffusion. In addition, the indoor concentration strongly depends on the distance between the roadway and building, particle size, wind condition, and window size and location. A break-even point is observed at D'~2.1 (normalized distance from the roadway by the width of the road). The indoor particle concentration is greater than that at the highway where D'<2.1, and vice versa. For new building planning, the distance from the roadway and the ambient wind condition need to be considered at the early design stage whereas the size and location of the window openings, the interior layout, and the placement of fresh air intakes are important to the indoor air quality of existing buildings adjacent to roadways. Copyright © 2016 Elsevier Ltd. All rights reserved.
Air Quality Procedures for Civilian Airports and Air Force Bases
1982-12-01
s) - phase j (s) 6. aact approach INO a. P Propotion of Vehicles thate ftop. 6. i, rwlash of veh..iclaes -ha -w -per 7 Ni ~Averiq. ow-o o.vecls funn...light winlolowing from land to a large body of water at night due to temperature differences between land and water. I--. Lead This is a heavy metal...8217 . . ... ’•’. , ’ ’. -. . . . .i. .i .i -’’ Sea Breeze A light wind blowing from a large body of water to surrounding land areas during the day due to temperature differences
2010-10-01
Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be...and fugitive dust The noise environment due to construction vehicle operations Biological resources and wetlands due to land and water disturbance...construction vehicle operations ; Biological resources and wetlands due to land and water disturbance; Water quality due to land and water disturbance
NASA Astrophysics Data System (ADS)
Yoshioka, M.; Carslaw, K. S.; Reddington, C.; Mann, G.
2013-12-01
Controlling emissions of aerosols and their precursors to improve air quality will impact the climate through direct and indirect radiative forcing. We have investigated the impacts of changes in a range of aerosol and gas-phase emission fluxes and changes in temperature on air quality and climate change metrics using a global aerosol microphysics and chemistry model, GLOMAP. We investigate how the responses of PM2.5 and cloud condensation nuclei (CCN) are coupled, and how attempts to improve air quality could have inadvertent effects on CCN, clouds and climate. The parameter perturbations considered are a 5°C increase in global temperature, increased or decreased precursor emissions of anthropogenic SO2, NH3, and NOx, and biogenic monoterpenes, and increased or decreased primary emissions of organic and black carbon aerosols from wildfire, fossil fuel, and biofuel. To quantify the interactions, we define a new sensitivity metric in terms of the response of CCN divided by the response of PM in different regions. .Our results show that the coupled chemistry and aerosol processes cause complex responses that will make any co-benefit policy decision problematic. In particular, we show that reducing SO2 emissions effectively reduces surface-level PM2.5 over continental regions in summer when background PM2.5 is high, with a relatively small reduction in marine CCN (and hence indirect radiative cooling over ocean), which is beneficial for near-term climate. Reducing NOx emissions does not improve summertime air quality very effectively but leads to a relatively high reduction of marine CCN. Reducing NH3 emissions has moderate effects on both PM2.5 and CCN. These three species are strongly coupled chemically and microphysically and the effects of changing emissions of one species on mass and size distributions of aerosols are very complex and spatially and temporally variable. For example, reducing SO2 emissions leads to reductions in sulphate and ammonium mass concentrations and an increase in nitrate aerosol mass due to an increase in available NH3 for NOx to form aerosol. However, the rate of new particle formation increases due to a decrease in the condensation on pre-existing particles, so the effect of reduced SO2 on CCN is partly compensated. Controlling primary or precursor emissions of carbonaceous aerosols appears less effective in improving air quality, although it shows strong effects on marine CCN, which would constitute a detrimental effect on climate. Any policy decisions related to particulate matter, air quality and climate need to account for such couplings.
Assesment of longwave radiation effects on air quality modelling in street canyons
NASA Astrophysics Data System (ADS)
Soucasse, L.; Buchan, A.; Pain, C.
2016-12-01
Computational Fluid Dynamics is widely used as a predictive tool to evaluate people's exposure to pollutants in urban street canyons. However, in low-wind conditions, flow and pollutant dispersion in the canyons are driven by thermal effects and may be affected by longwave (infrared) radiation due to the absorption and emission of water vapor contained in the air. These effects are mostly ignored in the literature dedicated to air quality modelling at this scale. This study aims at quantifying the uncertainties due to neglecting thermal radiation in air quality models. The Large-Eddy-Simulation of air flow in a single 2D canyon with a heat source on the ground is considered for Rayleigh and Reynolds numbers in the range of [10e8-10e10] and [5.10e3-5.10e4] respectively. The dispersion of a tracer is monitored once the statistically steady regime is reached. Incoming radiation is computed for a mid-latitude summer atmosphere and canyon surfaces are assumed to be black. Water vapour is the only radiating molecule considered and a global model is used to treat the spectral dependancy of its absorption coefficient. Flow and radiation fields are solved in a coupled way using the finite element solvers Fluidity and Fetch which have the capability of adapting their space and angular resolution according to an estimate of the solution error. Results show significant effects of thermal radiation on flow patterns and tracer dispersion. When radiation is taken into account, the air is heated far from the heat source leading to a stronger natural convection flow. The tracer is then dispersed faster out of the canyon potentially decreasing people's exposure to pollution within the street canyon.
NASA Astrophysics Data System (ADS)
Sharma, Ruchi; Balasubramanian, Rajasekhar
2017-11-01
The 2015 smoke haze episode was one of the most severe and prolonged transboundary air pollution events ever seen in Southeast Asia (SEA), affecting the air quality of several countries within the region including Indonesia, Malaysia and Singapore. The 24 h mean outdoor PM2.5 (particulate matter (PM) with aerodynamic diameter ≤ 2.5 μm) concentrations ranged from 72-157 μg m-3 in Singapore during this episode, exceeding the WHO 24 h mean PM2.5 guidelines (25 μg m-3) several times over. The smoke haze episode not only affected ambient air quality, but also indoor air quality due to the migration of PM of different sizes from the outdoor to the indoor environment. Despite the frequent occurrence of smoke haze episodes over the years, their potential health impacts on indoor building occupants remain largely unknown in SEA due to the lack of systematic investigations and observational data. The current work was carried out in Singapore to assess human exposure to size-resolved PM during the 2015 smoke haze episode, and to evaluate the effectiveness of exposure mitigation measures in smoke-haze-impacted naturally ventilated indoor environments. The potential health risks associated with exposure to PM2.5 were assessed based on the concentrations of redox active particulate-bound trace elements, which are known to be harmful to human health, with and without exposure mitigation. Overall, it was observed that human health exposure to PM2.5 and its carcinogenic chemical components was reduced substantially by 62% (p < 0.05) while using an air cleaner. However, extremely small hazardous particles were only partially removed by the air cleaner and remain a matter of concern for public health.
NASA Astrophysics Data System (ADS)
Kim, E.; Kim, S.; Kim, H. C.; Kim, B. U.; Cho, J. H.; Woo, J. H.
2017-12-01
In this study, we investigated the contributions of major emission source categories located upwind of South Korea to Particulate Matter (PM) in South Korea. In general, air quality in South Korea is affected by anthropogenic air pollutants emitted from foreign countries including China. Some studies reported that foreign emissions contributed 50 % of annual surface PM total mass concentrations in the Seoul Metropolitan Area, South Korea in 2014. Previous studies examined PM contributions of foreign emissions from all sectors considering meteorological variations. However, little studies conducted to assess contributions of specific foreign source categories. Therefore, we attempted to estimate sectoral contributions of foreign emissions from China to South Korea PM using our air quality forecasting system. We used Model Inter-Comparison Study in Asia 2010 for foreign emissions and Clean Air Policy Support System 2010 emission inventories for domestic emissions. To quantify contributions of major emission sectors to South Korea PM, we applied the Community Multi-scale Air Quality system with brute force method by perturbing emissions from industrial, residential, fossil-fuel power plants, transportation, and agriculture sectors in China. We noted that industrial sector was pre-dominant over the region except during cold season for primary PMs when residential emissions drastically increase due to heating demand. This study will benefit ensemble air quality forecasting and refined control strategy design by providing quantitative assessment on seasonal contributions of foreign emissions from major source categories.
A changing climate: impacts on human exposures to O3 using ...
Predicting the impacts of changing climate on human exposure to air pollution requires future scenarios that account for changes in ambient pollutant concentrations, population sizes and distributions, and housing stocks. An integrated methodology to model changes in human exposures due to these impacts was developed by linking climate, air quality, land-use, and human exposure models. This methodology was then applied to characterize changes in predicted human exposures to O3 under multiple future scenarios. Regional climate projections for the U.S. were developed by downscaling global circulation model (GCM) scenarios for three of the Intergovernmental Panel on Climate Change’s (IPCC’s) Representative Concentration Pathways (RCPs) using the Weather Research and Forecasting (WRF) model. The regional climate results were in turn used to generate air quality (concentration) projections using the Community Multiscale Air Quality (CMAQ) model. For each of the climate change scenarios, future U.S. census-tract level population distributions from the Integrated Climate and Land Use Scenarios (ICLUS) model for four future scenarios based on the IPCC’s Special Report on Emissions Scenarios (SRES) storylines were used. These climate, air quality, and population projections were used as inputs to EPA’s Air Pollutants Exposure (APEX) model for 12 U.S. cities. Probability density functions show changes in the population distribution of 8 h maximum daily O3 exposur
Air quality considerations for stormwater green street design.
Shaneyfelt, Kathryn M; Anderson, Andrew R; Kumar, Prashant; Hunt, William F
2017-12-01
Green streets are increasingly being used as a stormwater management strategy to mitigate stormwater runoff at its source while providing other environmental and societal benefits, including connecting pedestrians to the street. Simultaneously, human exposure to particulate matter from urban transportation is of major concern worldwide due to the proximity of pedestrians, drivers, and cyclists to the emission sources. Vegetation used for stormwater treatment can help designers limit the exposure of people to air pollutants. This goal can be achieved through the deliberate placement of green streets, along with strategic planting schemes that maximize pollutant dispersion. This communication presents general design considerations for green streets that combine stormwater management and air quality goals. There is currently limited guidance on designing green streets for air quality considerations; this is the first communication to offer suggestions and advice for the design of green stormwater streets in regards to their effects on air quality. Street characteristics including (1) the width to height ratio of the street to the buildings, (2) the type of trees and their location, and (3) any prevailing winds can have an impact on pollutant concentrations within the street and along sidewalks. Vegetation within stormwater control measures has the ability to reduce particulate matter concentrations; however, it must be carefully selected and placed within the green street to promote the dispersion of air flow. Copyright © 2017 Elsevier Ltd. All rights reserved.
Reduced bleed air extraction for DC-10 cabin air conditioning
NASA Technical Reports Server (NTRS)
Newman, W. H.; Viele, M. R.; Hrach, F. J.
1980-01-01
It is noted that a significant fuel savings can be achieved by reducing bleed air used for cabin air conditioning. Air in the cabin can be recirculated to maintain comfortable ventilation rates but the quality of the air tends to decrease due to entrainment of smoke and odors. Attention is given to a development system designed and fabricated under the NASA Engine Component Improvement Program to define the recirculation limit for the DC-10. It is shown that with the system, a wide range of bleed air reductions and recirculation rates is possible. A goal of 0.8% fuel savings has been achieved which results from a 50% reduction in bleed extraction from the engine.
Air quality and climate impacts due to CNG conversion of motor vehicles in Dhaka, Bangladesh.
Wadud, Zia; Khan, Tanzila
2013-12-17
Dhaka had recently experienced rapid conversion of its motor vehicle fleet to run on compressed natural gas (CNG). This paper quantifies ex-post the air quality and climate benefits of the CNG conversion policy, including monetary valuations, through an impact pathway approach. Around 2045 (1665) avoided premature deaths in greater Dhaka (City Corporation) can be attributed to air quality improvements from the CNG conversion policy in 2010, resulting in a saving of around USD 400 million. Majority of these health benefits resulted from the conversion of high-emitting diesel vehicles. CNG conversion was clearly detrimental from climate change perspective using the changes in CO2 and CH4 only (CH4 emissions increased); however, after considering other global pollutants (especially black carbon), the climate impact was ambiguous. Uncertainty assessment using input distributions and Monte Carlo simulation along with a sensitivity analysis show that large uncertainties remain for climate impacts. For our most likely estimate, there were some climate costs, valued at USD 17.7 million, which is an order of magnitude smaller than the air quality benefits. This indicates that such policies can and should be undertaken on the grounds of improving local air pollution alone and that precautions should be taken to reduce the potentially unintended increases in GHG emissions or other unintended effects.
Wuytack, Tatiana; Verheyen, Kris; Wuyts, Karen; Kardel, Fatemeh; Adriaenssens, Sandy; Samson, Roeland
2010-12-01
In this study, we assess the potential of white willow (Salix alba L.) as bioindicator for monitoring of air quality. Therefore, shoot biomass, specific leaf area, stomatal density, stomatal pore surface, and stomatal resistance were assessed from leaves of stem cuttings. The stem cuttings were introduced in two regions in Belgium with a relatively high and a relatively low level of air pollution, i.e., Antwerp city and Zoersel, respectively. In each of these regions, nine sampling points were selected. At each sampling point, three stem cuttings of white willow were planted in potting soil. Shoot biomass and specific leaf area were not significantly different between Antwerp city and Zoersel. Microclimatic differences between the sampling points may have been more important to plant growth than differences in air quality. However, stomatal pore surface and stomatal resistance of white willow were significantly different between Zoersel and Antwerp city. Stomatal pore surface was 20% lower in Antwerp city due to a significant reduction in both stomatal length (-11%) and stomatal width (-14%). Stomatal resistance at the adaxial leaf surface was 17% higher in Antwerp city because of the reduction in stomatal pore surface. Based on these results, we conclude that stomatal characteristics of white willow are potentially useful indicators for air quality.
Urban local air quality management framework for non-attainment areas in Indian cities.
Gulia, Sunil; Nagendra, S M Shiva; Barnes, Jo; Khare, Mukesh
2018-04-01
Increasing urban air pollution level in Indian cities is one of the major concerns for policy makers due to its impact on public health. The growth in population and increase in associated motorised road transport demand is one of the major causes of increasing air pollution in most urban areas along with other sources e.g., road dust, construction dust, biomass burning etc. The present study documents the development of an urban local air quality management (ULAQM) framework at urban hotspots (non-attainment area) and a pathway for the flow of information from goal setting to policy making. The ULAQM also includes assessment and management of air pollution episodic conditions at these hotspots, which currently available city/regional-scale air quality management plans do not address. The prediction of extreme pollutant concentrations using a hybrid model differentiates the ULAQM from other existing air quality management plans. The developed ULAQM framework has been applied and validated at one of the busiest traffic intersections in Delhi and Chennai cities. Various scenarios have been tested targeting the effective reductions in elevated levels of NO x and PM 2.5 concentrations. The results indicate that a developed ULAQM framework is capable of providing an evidence-based graded action to reduce ambient pollution levels within the specified standard level at pre-identified locations. The ULAQM framework methodology is generalised and therefore can be applied to other non-attainment areas of the country. Copyright © 2017 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Large-scale assemblies of people in a con'ned space can exert signi'cant impacts on the local air chemistry due to human emissions of volatile organics. Variations of air-quality in such small scale can be studied by quantifying 'ngerprint volatile organic compounds (VOCs) such as acetone, toluene, ...
Cardoso-Gustavson, Poliana; Fernandes, Francine Faia; Alves, Edenise Segala; Victorio, Mariana Pereira; Moura, Barbara Baesso; Domingos, Marisa; Rodrigues, Caroline Albuquerque; Ribeiro, Andreza Portella; Nievola, Catarina Carvalho; Figueiredo, Ana Maria G
2017-05-01
Tillandsia usneoides is an aerial epiphytic bromeliad that absorbs water and nutrients directly from the atmosphere by scales covering its surface. We expanded the use of this species as a broader biomonitor based on chemical and structural markers to detect changes in air quality. The usefulness of such comprehensive approach was tested during the construction and opening of a highway (SP-21) in São Paulo State, Brazil. The biomonitoring study was performed from 2009 to 2012, thus comprising the period during construction and after the highway inauguration. Metal accumulation and structural alterations were assessed, in addition to microscopy analyses to understand the metal chelation in plant tissues and to assess the causes of alterations in the number and shape of scale cells. Altogether, our analyses support the use of this species as a wide biomonitor of air quality in urbanized areas.
Cardoso-Gustavson, Poliana; Fernandes, Francine Faia; Alves, Edenise Segala; Victorio, Mariana Pereira; Moura, Barbara Baesso; Domingos, Marisa; Rodrigues, Caroline Albuquerque; Ribeiro, Andreza Portella; Nievola, Catarina Carvalho; Figueiredo, Ana Maria G
2016-01-01
Tillandsia usneoides is an aerial epiphytic bromeliad that absorbs water and nutrients directly from the atmosphere by scales covering its surface. We expanded the use of this species as a broader biomonitor based on chemical and structural markers to detect changes in air quality. The usefulness of such comprehensive approach was tested during the construction and opening of a highway (SP-21) in São Paulo State, Brazil. The biomonitoring study was performed from 2009 to 2012, thus comprising the period during construction and after the highway inauguration. Metal accumulation and structural alterations were assessed, in addition to microscopy analyses to understand the metal chelation in plant tissues and to assess the causes of alterations in the number and shape of scale cells. Altogether, our analyses support the use of this species as a wide biomonitor of air quality in urbanized areas.
NASA Astrophysics Data System (ADS)
Rosenthal, J. E.; Knowlton, K. M.; Kinney, P. L.
2002-12-01
There is an imminent need to downscale the global climate models used by international consortiums like the IPCC (Intergovernmental Panel on Climate Change) to predict the future regional impacts of climate change. To meet this need, a "place-based" climate model that makes specific regional projections about future environmental conditions local inhabitants could face is being created by the Mailman School of Public Health at Columbia University, in collaboration with other researchers and universities, for New York City and the 31 surrounding counties. This presentation describes the design and initial results of this modeling study, aimed at simulating the effects of global climate change and regional land use change on climate and air quality over the northeastern United States in order to project the associated public health impacts in the region. Heat waves and elevated concentrations of ozone and fine particles are significant current public health stressors in the New York metropolitan area. The New York Climate and Health Project is linking human dimension and natural sciences models to assess the potential for future public health impacts from heat stress and air quality, and yield improved tools for assessing climate change impacts. The model will be applied to the NY metropolitan east coast region. The following questions will be addressed: 1. What changes in the frequency and severity of extreme heat events are likely to occur over the next 80 years due to a range of possible scenarios of land use and land cover (LU/LC) and climate change in the region? 2. How might the frequency and severity of episodic concentrations of ozone (O3) and airborne particulate matter smaller than 2.5 æm in diameter (PM2.5) change over the next 80 years due to a range of possible scenarios of land use and climate change in the metropolitan region? 3. What is the range of possible human health impacts of these changes in the region? 4. How might projected future human exposures and responses to heat stress and air quality differ as a function of socio-economic status and race/ethnicity across the region? The model systems used for this study are the Goddard Institute for Space Studies (GISS) Global Atmosphere-Ocean Model; the Regional Atmospheric Modeling System (RAMS) and PennState/NCAR MM5 mesoscale meteorological models; the SLEUTH land use model; the Sparse Matrix Operator Kernel Emissions Modeling System (SMOKE); the Community Multiscale Air Quality (CMAQ) and Comprehensive Air Quality Model with Extensions (CAMx) models for simulating regional air quality; and exposure-risk coefficients for assessing population health impacts based on exposure to extreme heat, fine particulates (PM2.5) and ozone. Two different IPCC global emission scenarios and two different regional land use growth scenarios are considered in the simulations, spanning a range of possible futures. In addition to base simulations for selected time periods in the decade 1990 - 2000, the integrated model is used to simulate future scenarios in the 2020s, 2050s, and 2080s. Predictions from both the meteorological models and the air quality models are compared against available observations for the simulations in the 1990s to establish baseline model performance. A series of sensitivity tests will address whether changes in meteorology due to global climate change, changes in regional land use, or changes in emissions have the largest impact on predicted ozone and particulate matter concentrations.
Chen, Li; Shi, Mengshuang; Li, Suhuan; Gao, Shuang; Zhang, Hui; Sun, Yanling; Mao, Jian; Bai, Zhipeng; Wang, Zhongliang; Zhou, Jiang
2017-07-01
In 2013, China issued "Air Pollution Prevention and Control Action Plan (Action Plan)" to improve air quality. To assess the benefits of this program in Beijing-Tianjin-Hebei (BTH) region, where the density of population and emissions vary greatly, we simulated the air quality benefit based on BenMAP to satisfy the Action Plan. In this study, we estimate PM 2.5 concentration using Voronoi spatial interpolation method on a grid with a spatial resolution of 1×1km 2 . Combined with the exposure-response function between PM 2.5 concentration and health endpoints, health effects of PM 2.5 exposure are analyzed. The economic loss is assessed by using the willingness to pay (WTP) method and human capital (HC) method. When the PM 2.5 concentration falls by 25% in BTH and reached 60μg/m 3 in Beijing, the avoiding deaths will be in the range of 3175 to 14051 based on different functions each year. Of the estimated mortality attributable to all causes, 3117 annual deaths were due to lung cancer, 1924 - 6318 annual deaths were due to cardiovascular, and 343 - 1697 annual deaths were due to respiratory. Based on WTP, the estimated monetary values for the avoided cases of all cause mortality, cardiovascular mortality, respiratory mortality and lung cancer ranged from 1110 to 29632, 673 to 13325, 120 to 3579, 1091 to 6574 million yuan, respectively. Based on HC, the corresponding values for the avoided cases of these four mortalities were 267 to 1178, 161 to 529, 29 to 143 and 261 million yuan, respectively. Copyright © 2016. Published by Elsevier B.V.
Air quality impacts of distributed energy resources implemented in the northeastern United States.
Carreras-Sospedra, Marc; Dabdub, Donald; Brouwer, Jacob; Knipping, Eladio; Kumar, Naresh; Darrow, Ken; Hampson, Anne; Hedman, Bruce
2008-07-01
Emissions from the potential installation of distributed energy resources (DER) in the place of current utility-scale power generators have been introduced into an emissions inventory of the northeastern United States. A methodology for predicting future market penetration of DER that considers economics and emission factors was used to estimate the most likely implementation of DER. The methodology results in spatially and temporally resolved emission profiles of criteria pollutants that are subsequently introduced into a detailed atmospheric chemistry and transport model of the region. The DER technology determined by the methodology includes 62% reciprocating engines, 34% gas turbines, and 4% fuel cells and other emerging technologies. The introduction of DER leads to retirement of 2625 MW of existing power plants for which emissions are removed from the inventory. The air quality model predicts maximum differences in air pollutant concentrations that are located downwind from the central power plants that were removed from the domain. Maximum decreases in hourly peak ozone concentrations due to DER use are 10 ppb and are located over the state of New Jersey. Maximum decreases in 24-hr average fine particulate matter (PM2.5) concentrations reach 3 microg/m3 and are located off the coast of New Jersey and New York. The main contribution to decreased PM2.5 is the reduction of sulfate levels due to significant reductions in direct emissions of sulfur oxides (SO(x)) from the DER compared with the central power plants removed. The scenario presented here represents an accelerated DER penetration case with aggressive emission reductions due to removal of highly emitting power plants. Such scenario provides an upper bound for air quality benefits of DER implementation scenarios.
Monitoring and assessment of water quality of Tasik Cempaka, Bangi
NASA Astrophysics Data System (ADS)
Sabri, Nurul Ain Syahirah Mohamad; Abdullah, Md Pauzi; Mat, Sohif
2014-09-01
A study was carried out to determine the status of water quality of Tasik Cempaka which is a part of Sg. Air Itam, located near the Bangi industrial area. The study was carried out for eight months from May and to December 2013. Eight sampling stations were selected from upstream to downstream of Sg. Air Itam which represent the entire body of the lake water. There are 8 parameters measured and Water Quality Indices (WQI) was calculated and classified according to the National Water Quality Standard (NWQS). The physical and chemical parameters were temperature, pH, conductivity, dissolve oxygen (DO), total suspended solid (TSS), ammoniacal nitrogen (AN), chemical oxygen demand (COD) and biochemical oxygen demand (BOD). Among parameters that are affected by pollution is AN, COD and BOD. Classification by WQI shows that the average for all sampling was 54 (dry) and 52 (wet). Both are of class III according to National Water Quality Standard (NWQS) indicating slightly polluted. This is mainly due to drainage from Bangi Golf Resort and Bangi-Putrajaya Hotel. Other factors are activities around Sg. Air Itam such as municipal activities, settlements and manufacturing industries.
Nuvolone, Daniela; Barchielli, Alessandro; Forastiere, Francesco
2009-01-01
to provide an overview of the mobility policies implemented by local administrations participating in the EpiAir Project in recent years (2001-2007). data on the resident population, housing density, and composition and evolution of vehicular fleet were collected from Istat and ACI databases. A questionnaire on the general urban circumstances and on mobility policies that have direct and indirect effects on air quality was submitted to local administrations. analyses on the ACI data show that, even if there is an environmental improvement in the emissions standards of vehicular fleet, number of cars per inhabitants is higher than the European mean and a general increase in the number of vehicles has been observed, mainly of diesel-fueled vehicles. All cities, with the exception of Cagliari and Milan, completed the questionnaire. Data varied greatly in quality and quantity due to collaboration differences of the various municipalities. For each of the policy categories, many "good practices" are reported: from vehicular transport restrictions to improvements in public transport; from the promotion of pedestrian and bicycle mobility to new forms of vehicles' use and/or ownership (car-sharing, car-pooling). overall, transportation policies are not very favourable towards sustainable mobility, both due to the elevated number of vehicles per inhabitants and to different barriers encountered in policies' implementation, such as the lack of an integrated approach in addressing mobility issues, the inaccurate and confusing rules in interventions' application and primarily, the lack of efficient control measures. As a result, the beneficial effects of local transportation regulations on urban air quality may be still very limited.
NASA Astrophysics Data System (ADS)
Aouizerats, B.; van der Werf, G.; Balasubramanian, R.; Betha, R.
2014-12-01
Smoke from biomass and peat burning has a notable impact on ambient air quality and climate in the Southeast Asia (SEA) region. We modeled the largest fire-induced haze episode in the past decade (2006) that originated in Indonesia using WRF-Chem. Our study addressed 3 research questions: (1) Can the WRF-Chem model reproduce observations of both aerosol and CO concentrations in this complex region? (2) What is the evolution in the chemical composition of the aerosol fire plume during its atmospheric transport? and (3) What is the relative contribution of these fires to air quality in the urbanized area of the city-state of Singapore? To test model performance, we used three independent datasets for comparison (PM10 in Singapore, CO measurements in Sumatra, and AOD column observations from 4 satellite-based sensors). We found reasonable agreement of the model runs with ground-based measurements of both CO and PM10. However, the comparison with AOD was less favorable and indicated the model underestimated AOD. In the past, modeling studies using only AOD as a constraint have often boosted fire emissions to get a better agreement with observations. In our case, this approach would seriously deteriorate the difference with ground-based observations. Finally, our results show that about 21% of the total mass loading of ambient PM10 during the July-October study period in Singapore was due to the influence of biomass and peat burning in Sumatra, with an increased contribution during high burning periods. The composition of this biomass burning plume was largely dominated by primary organic carbon. In total, our model results indicated that during 35 days aerosol concentrations in Singapore were above the threshold of 50 μg m-3 day-1 (WHO threshold). During 17 days this deterioration was due to Indonesian fires, based on the difference between the simulations with and without fires. Local air pollution in combination with recirculation of air masses was probably the main cause of the lack of good air quality during the other 18 days. This finding is mostly due to the relatively fine scale of our model set-up; coarser resolution models would have likely attributed the increased aerosol loads to burning in Borneo from which plumes were advected close to Singapore, but did not contribute to local pollution according to our model.
Changes in U.S. Regional-Scale Air Quality at 2030 Simulated Using RCP 6.0
NASA Astrophysics Data System (ADS)
Nolte, C. G.; Otte, T.; Pinder, R. W.; Faluvegi, G.; Shindell, D. T.
2012-12-01
Recent improvements in air quality in the United States have been due to significant reductions in emissions of ozone and particulate matter (PM) precursors, and these downward emissions trends are expected to continue in the next few decades. To ensure that planned air quality regulations are robust under a range of possible future climates and to consider possible policy actions to mitigate climate change, it is important to characterize and understand the effects of climate change on air quality. Recent work by several research groups using global and regional models has demonstrated that there is a "climate penalty," in which climate change leads to increases in surface ozone levels in polluted continental regions. One approach to simulating future air quality at the regional scale is via dynamical downscaling, in which fields from a global climate model are used as input for a regional climate model, and these regional climate data are subsequently used for chemical transport modeling. However, recent studies using this approach have encountered problems with the downscaled regional climate fields, including unrealistic surface temperatures and misrepresentation of synoptic pressure patterns such as the Bermuda High. We developed a downscaling methodology and showed that it now reasonably simulates regional climate by evaluating it against historical data. In this work, regional climate simulations created by downscaling the NASA/GISS Model E2 global climate model are used as input for the Community Multiscale Air Quality (CMAQ) model. CMAQ simulations over the continental United States are conducted for two 11-year time slices, one representing current climate (1995-2005) and one following Representative Concentration Pathway 6.0 from 2025-2035. Anthropogenic emissions of ozone and PM precursors are held constant at year 2006 levels for both the current and future periods. In our presentation, we will examine the changes in ozone and PM concentrations, with particular focus on exceedances of the current U.S. air quality standards, and attempt to relate the changes in air quality to the projected changes in regional climate.
The Benefits of Internalizing Air Quality and Greenhouse Gas Externalities in the US Energy System
NASA Astrophysics Data System (ADS)
Brown, Kristen E.
The emission of pollutants from energy use has effects on both local air quality and the global climate, but the price of energy does not reflect these externalities. This study aims to analyze the effect that internalizing these externalities in the cost of energy would have on the US energy system, emissions, and human health. In this study, we model different policy scenarios in which fees are added to emissions related to generation and use of energy. The fees are based on values of damages estimated in the literature and are applied to upstream and combustion emissions related to electricity generation, industrial energy use, transportation energy use, residential energy use, and commercial energy use. The energy sources and emissions are modeled through 2055 in five-year time steps. The emissions in 2045 are incorporated into a continental-scale atmospheric chemistry and transport model, CMAQ, to determine the change in air quality due to different emissions reduction scenarios. A benefit analysis tool, BenMAP, is used with the air quality results to determine the monetary benefit of emissions reductions related to the improved air quality. We apply fees to emissions associated with health impacts, climate change, and a combination of both. We find that the fees we consider lead to reductions in targeted emissions as well as co-reducing non-targeted emissions. For fees on the electric sector alone, health impacting pollutant (HIP) emissions reductions are achieved mainly through control devices while Greenhouse Gas (GHG) fees are addressed through changes in generation technologies. When sector specific fees are added, reductions come mainly from the industrial and electricity generation sectors, and are achieved through a mix of energy efficiency, increased use of renewables, and control devices. Air quality is improved in almost all areas of the country with fees, including when only GHG fees are applied. Air quality tends to improve more in regions with larger emissions reductions, especially for PM2.5.
Impacts of Energy Sector Emissions on PM2.5 Air Quality in Northern India
NASA Astrophysics Data System (ADS)
Karambelas, A. N.; Kiesewetter, G.; Heyes, C.; Holloway, T.
2015-12-01
India experiences high concentrations of fine particulate matter (PM2.5), and several Indian cities currently rank among the world's most polluted cities. With ongoing urbanization and a growing economy, emissions from different energy sectors remain major contributors to air pollution in India. Emission sectors impact ambient air quality differently due to spatial distribution (typical urban vs. typical rural sources) as well as source height characteristics (low-level vs. high stack sources). This study aims to assess the impacts of emissions from three distinct energy sectors—transportation, domestic, and electricity—on ambient PM2.5 in northern India using an advanced air quality analysis framework based on the U.S. EPA Community Multi-Scale Air Quality (CMAQ) model. Present air quality conditions are simulated using 2010 emissions from the Greenhouse Gas-Air Pollution Interaction and Synergies (GAINS) model. Modeled PM2.5 concentrations are compared with satellite observations of aerosol optical depth (AOD) from the Moderate Imaging Spectroradiometer (MODIS) for 2010. Energy sector emissions impacts on future (2030) PM2.5 are evaluated with three sensitivity simulations, assuming maximum feasible reduction technologies for either transportation, domestic, or electricity sectors. These simulations are compared with a business as usual 2030 simulation to assess relative sectoral impacts spatially and temporally. CMAQ is modeled at 12km by 12km and include biogenic emissions from the Community Land Model coupled with the Model of Emissions of Gases and Aerosols in Nature (CLM-MEGAN), biomass burning emissions from the Global Fires Emissions Database (GFED), and ERA-Interim meteorology generated with the Weather Research and Forecasting (WRF) model for 2010 to quantify the impact of modified anthropogenic emissions on ambient PM2.5 concentrations. Energy sector emissions analysis supports decision-making to improve future air quality and public health in India.
Impacts of flare emissions from an ethylene plant shutdown to regional air quality
NASA Astrophysics Data System (ADS)
Wang, Ziyuan; Wang, Sujing; Xu, Qiang; Ho, Thomas
2016-08-01
Critical operations of chemical process industry (CPI) plants such as ethylene plant shutdowns could emit a huge amount of VOCs and NOx, which may result in localized and transient ozone pollution events. In this paper, a general methodology for studying dynamic ozone impacts associated with flare emissions from ethylene plant shutdowns has been developed. This multi-scale simulation study integrates process knowledge of plant shutdown emissions in terms of flow rate and speciation together with regional air-quality modeling to quantitatively investigate the sensitivity of ground-level ozone change due to an ethylene plant shutdown. The study shows the maximum hourly ozone increments can vary significantly by different plant locations and temporal factors including background ozone data and solar radiation intensity. It helps provide a cost-effective air-quality control strategy for industries by choosing the optimal starting time of plant shutdown operations in terms of minimizing the induced ozone impact (reduced from 34.1 ppb to 1.2 ppb in the performed case studies). This study provides valuable technical supports for both CPI and environmental policy makers on cost-effective air-quality controls in the future.
Short-term degradation of air quality during major firework events in Delhi, India
NASA Astrophysics Data System (ADS)
Shivani; Gadi, Ranu; Saxena, Mohit; Sharma, Sudhir Kumar; Mandal, Tuhin Kumar
2018-04-01
The effect of firework events on air quality was assessed from ambient fine particulate matter (PM2.5) collected during the Diwali period in two consecutive years, i.e., November 2015 and October 2016. The extensive firework activities led to the short-term degradation of air quality during the Diwali days. PM2.5 samples were chemically characterised for elements, water-soluble ionic species, organic carbon (OC) and elemental carbon (EC). Ba, K, Sr, S, Mg and Na showed significant increases in concentration on Diwali days compared to pre-Diwali days which revealed their association with firecrackers. Concentration of SO4 2-, NO3 -, Cl-, K+ and NH4 + ions contributed to the increases in PM2.5 concentration on Diwali days. Higher OC/EC ratios indicated the formation of secondary organic carbon during the Diwali period. This study concludes that the high PM2.5 level during Diwali 2016 was a result of contribution from fireworks on the Diwali night, trans-regional movement of pollutants due to crop residue burning, low wind speed (0.15 m s-1), and high humidity. It was observed that short-term exposure to Diwali is plausible to generate 1.3% increase in non-carcinogenic hazard index due to elements Al and Ba during Diwali 2016, whereas no significant variation was observed for the carcinogenic risk due to Pb. However, in 2015, the increase in non-carcinogenic hazard index was appreciably lower as compared to 2016.
Mobile Air Quality Studies (MAQS)-an international project.
Groneberg, David A; Scutaru, Cristian; Lauks, Mathias; Takemura, Masaya; Fischer, Tanja C; Kölzow, Silvana; van Mark, Anke; Uibel, Stefanie; Wagner, Ulrich; Vitzthum, Karin; Beck, Fabian; Mache, Stefanie; Kreiter, Carolin; Kusma, Bianca; Friedebold, Annika; Zell, Hanna; Gerber, Alexander; Bock, Johanna; Al-Mutawakl, Khaled; Donat, Johannes; Geier, Maria Victoria; Pilzner, Carolin; Welker, Pia; Joachim, Ricarda; Bias, Harald; Götting, Michael; Sakr, Mohannad; Addicks, Johann P; Börger, Julia-Annik; Jensen, Anna-Maria; Grajewski, Sonja; Shami, Awfa; Neye, Niko; Kröger, Stefan; Hoffmann, Sarah; Kloss, Lisa; Mayer, Sebastian; Puk, Clemens; Henkel, Ulrich; Rospino, Robert; Schilling, Ute; Krieger, Evelyn; Westphal, Gesa; Meyer-Falcke, Andreas; Hupperts, Hagen; de Roux, Andrés; Tropp, Salome; Weiland, Marco; Mühlbach, Janette; Steinberg, Johannes; Szerwinski, Anne; Falahkohan, Sepiede; Sudik, Claudia; Bircks, Anna; Noga, Oliver; Dickgreber, Nicolas; Dinh, Q Thai; Golpon, Heiko; Kloft, Beatrix; Groneberg, Rafael Neill B; Witt, Christian; Wicker, Sabine; Zhang, Li; Springer, Jochen; Kütting, Birgitta; Mingomataj, Ervin C; Fischer, Axel; Schöffel, Norman; Unger, Volker; Quarcoo, David
2010-04-09
Due to an increasing awareness of the potential hazardousness of air pollutants, new laws, rules and guidelines have recently been implemented globally. In this respect, numerous studies have addressed traffic-related exposure to particulate matter using stationary technology so far. By contrast, only few studies used the advanced technology of mobile exposure analysis. The Mobile Air Quality Study (MAQS) addresses the issue of air pollutant exposure by combining advanced high-granularity spatial-temporal analysis with vehicle-mounted, person-mounted and roadside sensors. The MAQS-platform will be used by international collaborators in order 1) to assess air pollutant exposure in relation to road structure, 2) to assess air pollutant exposure in relation to traffic density, 3) to assess air pollutant exposure in relation to weather conditions, 4) to compare exposure within vehicles between front and back seat (children) positions, and 5) to evaluate "traffic zone"-exposure in relation to non-"traffic zone"-exposure.Primarily, the MAQS-platform will focus on particulate matter. With the establishment of advanced mobile analysis tools, it is planed to extend the analysis to other pollutants including NO2, SO2, nanoparticles and ozone.
NASA Astrophysics Data System (ADS)
Silva, R.; West, J.; Anenberg, S.; Lamarque, J.; Shindell, D. T.; Bergmann, D. J.; Berntsen, T.; Cameron-Smith, P. J.; Collins, B.; Ghan, S. J.; Josse, B.; Nagashima, T.; Naik, V.; Plummer, D.; Rodriguez, J. M.; Szopa, S.; Zeng, G.
2012-12-01
Climate change can adversely affect air quality, through changes in meteorology, atmospheric chemistry, and emissions. Future changes in air pollutant emissions will also profoundly influence air quality. These changes in air quality can affect human health, as exposure to ground-level ozone and fine particulate matter (PM2.5) has been associated with premature human mortality. Here we will quantify the global mortality impacts of past and future climate change, considering the effects of climate change on air quality isolated from emission changes. The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) has simulated the past and future surface concentrations of ozone and PM2.5 from each of several GCMs, for emissions from 1850 ("preindustrial") to 2000 ("present-day"), and for the IPCC AR5 Representative Concentration Pathways (RCPs) scenarios to 2100. We will use ozone and PM2.5 concentrations from simulations from five or more global models of atmospheric dynamics and chemistry, for a base year (present-day), pre-industrial conditions, and future scenarios, considering changes in climate and emissions. We will assess the mortality impacts of past climate change by using one simulation ensemble with present emissions and climate and one with present emissions but 1850 climate. We will similarly quantify the potential impacts of future climate change under the four RCP scenarios in 2030, 2050 and 2100. All model outputs will be regridded to the same resolution to estimate multi-model medians and range in each grid cell. Resulting premature deaths will be calculated using these medians along with epidemiologically-derived concentration-response functions, and present-day or future projections of population and baseline mortality rates, considering aging and transitioning disease rates over time. The spatial distributions of current and future global premature mortalities due to ozone and PM2.5 outdoor air pollution will be presented separately. These results will strengthen our understanding of the impacts of climate change today, and in future years considering different plausible scenarios.
Chen, Sheng-Po; Wang, Chieh-Heng; Lin, Wen-Dian; Tong, Yu-Huei; Chen, Yu-Chun; Chiu, Ching-Jui; Chiang, Hung-Chi; Fan, Chen-Lun; Wang, Jia-Lin; Chang, Julius S
2018-05-01
The present study combines high-resolution measurements at various distances from a world-class gigantic petrochemical complex with model simulations to test a method to assess industrial emissions and their effect on local air quality. Due to the complexity in wind conditions which were highly seasonal, the dominant wind flow patterns in the coastal region of interest were classified into three types, namely northeast monsoonal (NEM) flows, southwest monsoonal (SEM) flows and local circulation (LC) based on six years of monitoring data. Sulfur dioxide (SO 2 ) was chosen as an indicative pollutant for prominent industrial emissions. A high-density monitoring network of 12 air-quality stations distributed within a 20-km radius surrounding the petrochemical complex provided hourly measurements of SO 2 and wind parameters. The SO 2 emissions from major industrial sources registered by the monitoring network were then used to validate model simulations and to illustrate the transport of the SO 2 plumes under the three typical wind patterns. It was found that the coupling of observations and modeling was able to successfully explain the transport of the industrial plumes. Although the petrochemical complex was seemingly the only major source to affect local air quality, multiple prominent sources from afar also played a significant role in local air quality. As a result, we found that a more complete and balanced assessment of the local air quality can be achieved only after taking into account the wind characteristics and emission factors of a much larger spatial scale than the initial (20 km by 20 km) study domain. Copyright © 2018 Elsevier Ltd. All rights reserved.
Thunis, P; Degraeuwe, B; Pisoni, E; Meleux, F; Clappier, A
2017-01-01
Regional and local authorities have the obligation to design air quality plans and assess their impacts when concentration levels exceed the limit values. Because these limit values cover both short- (day) and long-term (year) effects, air quality plans also follow these two formats. In this work, we propose a methodology to analyze modeled air quality forecast results, looking at emission reduction for different sectors (residential, transport, agriculture, etc.) with the aim of supporting policy makers in assessing the impact of short-term action plans. Regarding PM 10 , results highlight the diversity of responses across European cities, in terms of magnitude and type that raises the necessity of designing area-specific air quality plans. Action plans extended from 1 to 3 days (i.e., emissions reductions applied for 24 and 72 h, respectively) point to the added value of trans-city coordinated actions. The largest benefits are seen in central Europe (Vienna, Prague) while major cities (e.g., Paris) already solve a large part of the problem on their own. Eastern Europe would particularly benefit from plans based on emission reduction in the residential sectors; while in northern cities, agriculture seems to be the key sector on which to focus attention. Transport is playing a key role in most cities whereas the impact of industry is limited to a few cities in south-eastern Europe. For NO 2 , short-term action plans focusing on traffic emission reductions are efficient in all cities. This is due to the local character of this type of pollution. It is important, however, to stress that these results remain dependent on the selected months available for this study.
Global mortality attributable to aircraft cruise emissions.
Barrett, Steven R H; Britter, Rex E; Waitz, Ian A
2010-10-01
Aircraft emissions impact human health though degradation of air quality. The majority of previous analyses of air quality impacts from aviation have considered only landing and takeoff emissions. We show that aircraft cruise emissions impact human health over a hemispheric scale and provide the first estimate of premature mortalities attributable to aircraft emissions globally. We estimate ∼8000 premature mortalities per year are attributable to aircraft cruise emissions. This represents ∼80% of the total impact of aviation (where the total includes the effects of landing and takeoff emissions), and ∼1% of air quality-related premature mortalities from all sources. However, we note that the impact of landing and takeoff emissions is likely to be under-resolved. Secondary H(2)SO(4)-HNO(3)-NH(3) aerosols are found to dominate mortality impacts. Due to the altitude and region of the atmosphere at which aircraft emissions are deposited, the extent of transboundary air pollution is particularly strong. For example, we describe how strong zonal westerly winds aloft, the mean meridional circulation around 30-60°N, interaction of aircraft-attributable aerosol precursors with background ammonia, and high population densities in combination give rise to an estimated ∼3500 premature mortalities per year in China and India combined, despite their relatively small current share of aircraft emissions. Subsidence of aviation-attributable aerosol and aerosol precursors occurs predominantly around the dry subtropical ridge, which results in reduced wet removal of aviation-attributable aerosol. It is also found that aircraft NO(x) emissions serve to increase oxidation of nonaviation SO(2), thereby further increasing the air quality impacts of aviation. We recommend that cruise emissions be explicitly considered in the development of policies, technologies and operational procedures designed to mitigate the air quality impacts of air transportation.
NASA Astrophysics Data System (ADS)
Shen, Jialei; Gao, Zhi; Ding, Wowo; Yu, Ying
2017-09-01
Street canyons are vulnerable to air pollution mainly caused by vehicle emissions, which are therefore closely related to pedestrians' health. Previous studies have showed that air quality in street canyons is associated with street morphology, though the majority of them have focused on idealized street models. This paper attempts to investigate the relationship of street morphology to air quality for 6 irregular real-world cases selected from America, Europe, and China, i.e. Manhattan, Paris, Barcelona, Berlin, London and Nanjing. Each street is analyzed as a set of slices to propose a couple of morphology indices for quantitatively assessing the actual street morphology. Pollutant transport rate of mean flows and turbulent diffusion, net escape velocity and age of air are obtained from computational fluid dynamics (CFD) simulations to assess the ventilations and pollutant dispersion within street canyons with a parallel approaching wind. The results show that the street morphology characteristics, including the street width, lateral openings and intersections, are closely related to the air flows in street canyons. The air quality improves with a decreasing aspect ratio of central street owing to a larger vertical exchange through the street roof, which suggests an open central street is of better air quality. The lateral openings and intersections of streets have important effects on the air flows in street canyons, and the effects are particularly pronounced when the street widths are similar. The street continuity ratio indicates street continuity. It relates to the openings and the symmetry of a street and impacts on the air flows and pollutant dispersion through the lateral openings of the central street. The street spatial closure ratio is determined by the street continuity ratio and the aspect ratio of the central street. When the aspect ratio of central street is not excessively high, higher values of street continuity ratio and spatial closure ratio can lead to a stronger channel flow in street canyons and improve the air quality. The octagon intersections are favorable for air flowing through the lateral openings and improve the channel flows. The oblique intersections can also greatly improve the street ventilations, mainly due to the enhanced air flows through the lateral openings and the increased turbulent diffusion through the street roofs.
Dimitriou, Konstantinos; Kassomenos, Pavlos
2017-01-01
This paper analyzed air quality in six cities in Southern Germany (Ulm, Augsburg, Konstanz, Freiburg, Stuttgart and Munich), in conjunction with the prevailing synoptic conditions. Air quality was estimated through the calculation of a daily Air Stress Index (ASI) constituted by five independent components, each one expressing the contribution of one of the five main pollutants (PM 10 , O 3 , SO 2 , NO 2 and CO) to the total air stress. As it was deduced from ASI components, PM 10 from combustion sources and photochemically produced tropospheric O 3 are the most hazardous pollutants at the studied sites, throughout cold and warm periods respectively, yet PM 10 contribute substantially to the overall air stress during both seasons. The influence of anticyclonic high pressure systems, leading to atmospheric stagnation, was associated with increased ASI values, mainly due to the entrapment of PM 10 . Moderate air stress was generally estimated in all cities however a cleaner atmosphere was detected principally in Freiburg when North Europe was dominated by low pressure systems. Daily events of notably escalated ASI values were further analyzed with backward air mass trajectories. Throughout cold period, ASI episodes were commonly related to eastern airflows carrying exogenous PM 10 originated from eastern continental Europe. During warm period, ASI episodes were connected to the arrival of regionally circulated air parcels reflecting lack of dispersion and accumulation of pollutants in accordance with the synoptic analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
Miniaturized Monitors for Assessment of Exposure to Air Pollutants: A Review.
Borghi, Francesca; Spinazzè, Andrea; Rovelli, Sabrina; Campagnolo, Davide; Del Buono, Luca; Cattaneo, Andrea; Cavallo, Domenico M
2017-08-12
Air quality has a huge impact on different aspects of life quality, and for this reason, air quality monitoring is required by national and international regulations. Technical and procedural limitations of traditional fixed-site stations for monitoring or sampling of air pollutants are also well-known. Recently, a different type of miniaturized monitors has been developed. These monitors, due to their characteristics (e.g., low cost, small size, high portability) are becoming increasingly important for individual exposure assessment, especially since this kind of instrument can provide measurements at high spatial and temporal resolution, which is a notable advantage when approaching assessment of exposure to environmental contaminants. The aim of this study is indeed to provide information regarding current knowledge regarding the use of miniaturized air pollutant sensors. A systematic review was performed to identify original articles: a literature search was carried out using an appropriate query for the search of papers across three different databases, and the papers were selected using inclusion/exclusion criteria. The reviewed articles showed that miniaturized sensors are particularly versatile and could be applied in studies with different experimental designs, helping to provide a significant enhancement to exposure assessment, even though studies regarding their performance are still sparse.
NASA Astrophysics Data System (ADS)
Chew, B.; Salinas Cortijo, S. V.; Liew, S.
2009-12-01
Transboundary smoke haze due to biomass burning is a major environmental problem in Southeast Asia which has not only affected air quality in the source region, but also in the surrounding countries. Air quality monitoring stations and meteorological stations can provide valuable information on the concentrations of criteria pollutants such as sulphur dioxide, nitrogen oxide, carbon monoxide, ozone and particulate mass (PM10) as well as health advisory to the general public during the haze episodes. Characteristics of aerosol particles in the smoke haze such as the aerosol optical thickness (AOT), aerosol size distribution and Angstrom exponent are also measured or retrieved by sun-tracking photometers, such as those deployed in the world-wide AErosol RObotic NETwork (AERONET). However, due to the limited spatial coverage by the air quality monitoring stations and AERONET sites, it is difficult to study and monitor the spatial and temporal variability of the smoke haze during a biomass burning episode, especially in areas without ground-based instrumentation. As such, we combine the standard in-situ measurements of PM10 by air quality monitoring stations with the remote sensing imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board NASA's Terra and Aqua satellites. The columnar AOT is first derived from the MODIS images for regions where PM10 measurements are available. Empirical correlations between AOT and PM10 measurements are then established for 50 sites in both Malaysia and Singapore during the smoke haze episode in 2006. When available, vertical feature information from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) is used to examine the validity of the correlations. Aloft transport of aerosols, which can weaken the correlations between AOT and PM10 measurements, is also identified by CALIPSO and taken into consideration for the analysis. With this integrated approach, we hope to enhance and complement current capabilities in monitoring air quality during the haze episodes in Southeast Asia. This study was completed as a preliminary analysis of the biomass burning situation in Southeast Asia under the Seven SouthEast Asian Studies (7 SEAS) Mission. Through collaborations with scientific partners in Taiwan and various Southeast Asian countries such as Indonesia, Malaysia, Philippines, Singapore, Thailand and Vietnam, 7 SEAS is jointly initiated by NASA’s Radiation Science, Tropospheric Chemistry, Air Quality and Oceanography programmes as well as the Office of Naval Research (ONR), the Office of Naval Research - Global (ONRG) and the US State Department in an effort to investigate the complex interactions between aerosols (anthropogenic or natural) and meteorological systems, especially with clouds, and their impacts on air quality in the region. 7 SEAS is a multi-disciplinary regional science programme which operates with the integrative support of in-situ measurements, remote sensing and scientific modeling.
Health effects of home energy efficiency interventions in England: a modelling study
Milner, James; Chalabi, Zaid; Das, Payel; Jones, Benjamin; Shrubsole, Clive; Davies, Mike; Wilkinson, Paul
2015-01-01
Objective To assess potential public health impacts of changes to indoor air quality and temperature due to energy efficiency retrofits in English dwellings to meet 2030 carbon reduction targets. Design Health impact modelling study. Setting England. Participants English household population. Intervention Three retrofit scenarios were modelled: (1) fabric and ventilation retrofits installed assuming building regulations are met; (2) as with scenario (1) but with additional ventilation for homes at risk of poor ventilation; (3) as with scenario (1) but with no additional ventilation to illustrate the potential risk of weak regulations and non-compliance. Main outcome Primary outcomes were changes in quality adjusted life years (QALYs) over 50 years from cardiorespiratory diseases, lung cancer, asthma and common mental disorders due to changes in indoor air pollutants, including secondhand tobacco smoke, PM2.5 from indoor and outdoor sources, radon, mould, and indoor winter temperatures. Results The modelling study estimates showed that scenario (1) resulted in positive effects on net mortality and morbidity of 2241 (95% credible intervals (CI) 2085 to 2397) QALYs per 10 000 persons over 50 years follow-up due to improved temperatures and reduced exposure to indoor pollutants, despite an increase in exposure to outdoor-generated particulate matter with a diameter of 2.5 μm or less (PM2.5). Scenario (2) resulted in a negative impact of −728 (95% CI −864 to −592) QALYs per 10 000 persons over 50 years due to an overall increase in indoor pollutant exposures. Scenario (3) resulted in −539 (95% CI −678 to -399) QALYs per 10 000 persons over 50 years follow-up due to an increase in indoor exposures despite the targeting of pollutants. Conclusions If properly implemented alongside ventilation, energy efficiency retrofits in housing can improve health by reducing exposure to cold and air pollutants. Maximising the health benefits requires careful understanding of the balance of changes in pollutant exposures, highlighting the importance of ventilation to mitigate the risk of poor indoor air quality. PMID:25916488
NASA Astrophysics Data System (ADS)
Lee, Soon Hwan; Kim, Ji Sun; Lee, Kang Yeol; Shon, Keon Tae
2017-04-01
Air quality due to increasing Particulate Matter(PM) in Korea in Asia is getting worse. At present, the PM forecast is announced based on the PM concentration predicted from the air quality prediction numerical model. However, forecast accuracy is not as high as expected due to various uncertainties for PM physical and chemical characteristics. The purpose of this study was to develop a numerical-statistically ensemble models to improve the accuracy of prediction of PM10 concentration. Numerical models used in this study are the three dimensional atmospheric model Weather Research and Forecasting(WRF) and the community multiscale air quality model (CMAQ). The target areas for the PM forecast are Seoul, Busan, Daegu, and Daejeon metropolitan areas in Korea. The data used in the model development are PM concentration and CMAQ predictions and the data period is 3 months (March 1 - May 31, 2014). The dynamic-statistical technics for reducing the systematic error of the CMAQ predictions was applied to the dynamic linear model(DLM) based on the Baysian Kalman filter technic. As a result of applying the metrics generated from the dynamic linear model to the forecasting of PM concentrations accuracy was improved. Especially, at the high PM concentration where the damage is relatively large, excellent improvement results are shown.
Impact of operating wood-burning fireplace ovens on indoor air quality.
Salthammer, Tunga; Schripp, Tobias; Wientzek, Sebastian; Wensing, Michael
2014-05-01
The use of combustion heat sources like wood-burning fireplaces has regained popularity in the past years due to increasing energy costs. While the outdoor emissions from wood ovens are strictly regulated in Germany, the indoor release of combustion products is rarely considered. Seven wood burning fireplaces were tested in private homes between November 2012 and March 2013. The indoor air quality was monitored before, during and after operation. The following parameters were measured: ultra-fine particles (5.6-560 nm), fine particles (0.3-20 μm), PM2.5, NOx, CO, CO2, formaldehyde, acetaldehyde, volatile organic compounds (VOCs) and benzo[a]pyrene (BaP). Most ovens were significant sources of particulate matter. In some cases, an increase of benzene and BaP concentrations was observed in the indoor air. The results illustrate that wood-burning fireplaces are potential sources of indoor air contaminants, especially ultra-fine particles. Under the aspect of lowering indoor air exchange rates and increasing the use of fuels with a net zero-carbon footprint, indoor combustion sources are an important topic for the future. With regards to consumer safety, product development and inspection should consider indoor air quality in addition to the present fire protection requirements. Copyright © 2013 Elsevier Ltd. All rights reserved.
Mainka, Anna; Zajusz-Zubek, Elwira
2015-07-08
Indoor air quality (IAQ) in preschools is an important public health challenge. Particular attention should be paid to younger children, because they are more vulnerable to air pollution than higher grade children and because they spend more time indoors. Among air pollutants, particulate matter (PM) is of the greatest interest mainly due to its acute and chronic effects on children's health. In addition, carbon dioxide (CO2) levels indicate ventilation conditions. In this paper, we present the concentrations of PM (PM1, PM2.5, PM10 and total-TSP) and CO2 monitored in four naturally ventilated nursery schools located in the area of Gliwice, Poland. The nursery schools were selected to characterize areas with different degrees of urbanization and traffic densities during the winter season. The results indicate the problem of elevated concentrations of PM inside the examined classrooms, as well as that of high levels of CO2 exceeding 1000 ppm in relation to outdoor air. The characteristics of IAQ were significantly different, both in terms of classroom occupation (younger or older children) and of localization (urban or rural). To evaluate the children's exposure to poor IAQ, indicators based on air quality guidelines were proposed to rank classrooms according to their hazard on the health of children.
Mainka, Anna; Zajusz-Zubek, Elwira
2015-01-01
Indoor air quality (IAQ) in preschools is an important public health challenge. Particular attention should be paid to younger children, because they are more vulnerable to air pollution than higher grade children and because they spend more time indoors. Among air pollutants, particulate matter (PM) is of the greatest interest mainly due to its acute and chronic effects on children’s health. In addition, carbon dioxide (CO2) levels indicate ventilation conditions. In this paper, we present the concentrations of PM (PM1, PM2.5, PM10 and total—TSP) and CO2 monitored in four naturally ventilated nursery schools located in the area of Gliwice, Poland. The nursery schools were selected to characterize areas with different degrees of urbanization and traffic densities during the winter season. The results indicate the problem of elevated concentrations of PM inside the examined classrooms, as well as that of high levels of CO2 exceeding 1000 ppm in relation to outdoor air. The characteristics of IAQ were significantly different, both in terms of classroom occupation (younger or older children) and of localization (urban or rural). To evaluate the children’s exposure to poor IAQ, indicators based on air quality guidelines were proposed to rank classrooms according to their hazard on the health of children. PMID:26184249
Competing Air Quality and Water Conservation Co-benefits from Power Sector Decarbonization
NASA Astrophysics Data System (ADS)
Peng, W.; Wagner, F.; Mauzerall, D. L.; Ramana, M. V.; Zhai, H.; Small, M.; Zhang, X.; Dalin, C.
2016-12-01
Decarbonizing the power sector can reduce fossil-based generation and associated air pollution and water use. However, power sector configurations that prioritize air quality benefits can be different from those that maximize water conservation benefits. Despite extensive work to optimize the generation mix under an air pollution or water constraint, little research has examined electricity transmission networks and the choice of which fossil fuel units to displace in order to achieve both environmental objectives simultaneously. When air pollution and water stress occur in different regions, the optimal transmission and displacement decisions still depend on priorities placed on air quality and water conservation benefits even if low-carbon generation planning is fixed. Here we use China as a test case, and develop a new optimization framework to study transmission and displacement decisions and the resulting air quality and water use impacts for six power sector decarbonization scenarios in 2030 ( 50% of national generation is low carbon). We fix low-carbon generation in each scenario (e.g. type, location, quantity) and vary technology choices and deployment patterns across scenarios. The objective is to minimize the total physical costs (transmission costs and coal power generation costs) and the estimated environmental costs. Environmental costs are estimated by multiplying effective air pollutant emissions (EMeff, emissions weighted by population density) and effective water use (Weff, water use weighted by a local water stress index) by their unit economic values, Vem and Vw. We are hence able to examine the effect of varying policy priorities by imposing different combinations of Vem and Vw. In all six scenarios, we find that increasing the priority on air quality co-benefits (higher Vem) reduces air pollution impacts (lower EMeff) at the expense of lower water conservation (higher Weff); and vice versa. Such results can largely be explained by differences in optimal transmission decisions due to different locations of air pollution and water stress in China (severe in the east and north respectively). To achieve both co-benefits simultaneously, it is therefore critical to coordinate policies that reduce air pollution (pollution tax) and water use (water pricing) with power sector planning.
Air pollution in Latin America: Bottom-up Vehicular Emissions Inventory and Atmospheric Modeling
NASA Astrophysics Data System (ADS)
Ibarra Espinosa, S.; Vela, A. V.; Calderon, M. G.; Carlos, G.; Ynoue, R.
2016-12-01
Air pollution is a global environmental and health problem. Population of Latin America are facing air quality risks due to high level of air pollution. According to World Health Organization (WHO; 2016), several Latin American cities have high level of pollution. Emissions inventories are a key tool for air quality, however they normally present lack of quality and adequate documentation in developing countries. This work aims to develop air quality assessments in Latin American countries by 1) develop a high resolution emissions inventory of vehicles, and 2) simulate air pollutant concentrations. The bottom-up vehicular emissions inventory used was obtained with the REMI model (Ibarra et al., 2016) which allows to interpolate traffic over road network of Open Street Map to estimate vehicular emissions 24-h, each day of the week. REMI considers several parameters, among them the average age of fleet which was associated with gross domestic product (GDP) per capita. The estimated pollutants are CO, NOx, HC, PM2.5, NO, NO2, CO2, N2O, COV, NH3 and Fuel Consumption. The emissions inventory was performed at the biggest cities, including every capital of Latin America's countries. Initial results shows that the cities with most CO emissions are Buenos Aires 162800 (t/year), São Paulo 152061 (t/year), Campinas 151567 (t/year) and Brasilia 144332 (t/year). The results per capita shows that the city with most CO emissions per capita is Campinas, with 130 (kgCO/hab/year), showed in figure 1. This study also cover high resolution air quality simulations with WRF-Chem main cities in Latin America. Results will be assessed comparing: fuel estimates with local fuel sales, traffic count interpolation with available traffic data set at each city, and comparison between air pollutant simulations with air monitoring observation data. Ibarra, S., R. Ynoue, and S. Mhartain. 2016: "High Resolution Vehicular Emissions Inventory for the Megacity of São Paulo." Manuscript submitted to Journal of Atmospheric Environment. (1-15) WHO. 2016: WHO Global Urban Ambient Air Pollution Database (update 2016). http://www.who.int/phe/health_topics/outdoorair/databases/cities/en/
Air pollution: a tale of two countries.
Haryanto, Budi; Franklin, Peter
2011-01-01
The fast growing economies and continued urbanization in Asian countries have increased the demand for mobility and energy in the region, resulting in high levels of air pollution in cities from mobile and stationary sources. In contrast, low level of urbanization in Australia produces low level of urban air pollution. The World Health Organization estimates that about 500,000 premature deaths per year are caused by air pollution, leaving the urban poor particularly vulnerable since they live in air pollution hotspots, have low respiratory resistance due to bad nutrition, and lack access to quality health care. Identifying the differences and similarities of air pollution levels and its impacts, between Indonesia and Australia, will provide best lesson learned to tackle air pollution problems for Pacific Basin Rim countries.
Wen, Tzai-Hung; Jiang, Joe-Air; Sun, Chih-Hong; Juang, Jehn-Yih; Lin, Tzu-Shiang
2013-01-01
Air pollution has become a severe environmental problem due to urbanization and heavy traffic. Monitoring street-level air quality is an important issue, but most official monitoring stations are installed to monitor large-scale air quality conditions, and their limited spatial resolution cannot reflect the detailed variations in air quality that may be induced by traffic jams. By deploying wireless sensors on crossroads and main roads, this study established a pilot framework for a wireless sensor network (WSN)-based real-time monitoring system to understand street-level spatial-temporal changes of carbon monoxide (CO) in urban settings. The system consists of two major components. The first component is the deployment of wireless sensors. We deployed 44 sensor nodes, 40 transmitter nodes and four gateway nodes in this study. Each sensor node includes a signal processing module, a CO sensor and a wireless communication module. In order to capture realistic human exposure to traffic pollutants, all sensors were deployed at a height of 1.5 m on lampposts and traffic signs. The study area covers a total length of 1.5 km of Keelung Road in Taipei City. The other component is a map-based monitoring platform for sensor data visualization and manipulation in time and space. Using intensive real-time street-level monitoring framework, we compared the spatial-temporal patterns of air pollution in different time periods. Our results capture four CO concentration peaks throughout the day at the location, which was located along an arterial and nearby traffic sign. The hourly average could reach 5.3 ppm from 5:00 pm to 7:00 pm due to the traffic congestion. The proposed WSN-based framework captures detailed ground information and potential risk of human exposure to traffic-related air pollution. It also provides street-level insights into real-time monitoring for further early warning of air pollution and urban environmental management. PMID:24287859
Wen, Tzai-Hung; Jiang, Joe-Air; Sun, Chih-Hong; Juang, Jehn-Yih; Lin, Tzu-Shiang
2013-11-27
Air pollution has become a severe environmental problem due to urbanization and heavy traffic. Monitoring street-level air quality is an important issue, but most official monitoring stations are installed to monitor large-scale air quality conditions, and their limited spatial resolution cannot reflect the detailed variations in air quality that may be induced by traffic jams. By deploying wireless sensors on crossroads and main roads, this study established a pilot framework for a wireless sensor network (WSN)-based real-time monitoring system to understand street-level spatial-temporal changes of carbon monoxide (CO) in urban settings. The system consists of two major components. The first component is the deployment of wireless sensors. We deployed 44 sensor nodes, 40 transmitter nodes and four gateway nodes in this study. Each sensor node includes a signal processing module, a CO sensor and a wireless communication module. In order to capture realistic human exposure to traffic pollutants, all sensors were deployed at a height of 1.5 m on lampposts and traffic signs. The study area covers a total length of 1.5 km of Keelung Road in Taipei City. The other component is a map-based monitoring platform for sensor data visualization and manipulation in time and space. Using intensive real-time street-level monitoring framework, we compared the spatial-temporal patterns of air pollution in different time periods. Our results capture four CO concentration peaks throughout the day at the location, which was located along an arterial and nearby traffic sign. The hourly average could reach 5.3 ppm from 5:00 pm to 7:00 pm due to the traffic congestion. The proposed WSN-based framework captures detailed ground information and potential risk of human exposure to traffic-related air pollution. It also provides street-level insights into real-time monitoring for further early warning of air pollution and urban environmental management.
Severe Air Pollution in New Delhi View by NASA MISR
2016-11-16
New Delhi, India's capital city, is currently suffering though a period of particularly poor air quality. In early November 2016, monitors at various locations in the area posted air quality index measurements as high as the 900s (the most severe ranking, "hazardous," is any air quality index measurement over 300). Thousands of schools have been closed, and a survey by the Associate Chambers of Commerce and Industry of India reports that 10 percent of the city's workers called in sick due to air-pollution-related health issues. According to several published news reports, the extreme air pollution may be due to a combination of nearby agricultural burning after harvest, urban construction and solid-waste burning, as well as remnants of firecracker smoke and additional car emissions after the celebration of Diwali, the Hindu festival of lights, on October 30. The Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard NASA's Terra satellite passed over the region on Saturday, Nov. 5, 2016, at around 11:05 a.m. local time. At left is an image acquired from MISR's vertical viewing camera. The Himalayas stretch across the northern portion of the image. This towering mountain range tends to concentrate pollution in the region immediately to the south, including New Delhi, by preventing pollutants from blowing northwards. New Delhi, whose location is indicated on the image, is under a patch of especially thick haze. At 6:00 a.m. local time on that date, the U.S. Mission India NowCast Air Quality Index for New Delhi was reported at 751, more than twice the threshold for hazardous air quality. At right, a map of aerosol optical depth is superimposed on the image. Optical depth is a quantitative measure of the abundance of aerosols (tiny particles in the atmosphere). Optical depths for the area around New Delhi have not been calculated because the haze is so thick that the algorithm has classified the area as a cloud. In the region immediately surrounding the thick haze, optical depths approach 1.0. An optical depth of 1.0 means that only about 37 percent of direct sunlight reaches the surface due to interactions with particles in the atmosphere. These data were acquired during Terra orbit 89805. Other MISR data are available through the NASA Langley Research Center; for more information, go to https://eosweb.larc.nasa.gov/project/misr/misr_table. MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, California, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed by NASA's Goddard Space Flight Center, Greenbelt, Maryland. The MISR data were obtained from the NASA Langley Research Center Atmospheric Science Data Center, Hampton, Virginia. JPL is a division of the California Institute of Technology in Pasadena. http://photojournal.jpl.nasa.gov/catalog/PIA21100
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bloomquist, R.G.
District heating and cooling (DHC) can provide multiple opportunities to reduce air emissions associated with space conditioning and electricity generation, which contribute 30% to 50% of all such emissions. When DHC is combined with cogeneration (CHP), maximum reductions in sulfur oxides (SO{sub x}), nitrogen oxides (NO{sub x}), carbon dioxide (CO{sub 2}), particulates, and ozone-depleting chlorofluorocarbon (CFC) refrigerants can most effectively be achieved. Although significant improvements in air quality have been documented in Europe and Scandinavia due to DHC and CHP implementation, accurately predicting such improvements has been difficult. Without acceptable quantification methods, regulatory bodies are reluctant to grant air emissionsmore » credits, and local community leaders are unwilling to invest in DHC and CHP as preferred methods of providing energy or strategies for air quality improvement. The recent development and release of a number of computer models designed specifically to provide quantification of air emissions that can result from DHC and CHP implementation should help provide local, state, and national policymakers with information vital to increasing support and investment in DHC development.« less
The effect of natural ventilation strategy on indoor air quality in schools.
Stabile, Luca; Dell'Isola, Marco; Russi, Aldo; Massimo, Angelamaria; Buonanno, Giorgio
2017-10-01
In order to reduce children's exposure to pollutants in classrooms a proper ventilation strategy need to be adopted. Such strategy is even more important in naturally ventilated schools where the air exchange rate is only based on the manual airing of classrooms. The present work aimed to evaluate the effect of the manual airing strategy on indoor air quality in Italian classrooms. For this aim, schools located in the Central Italy were investigated. Indoor air quality was studied in terms of CO 2 , particle number and PM concentrations and compared to corresponding outdoor levels. In particular two experimental analyses were performed: i) a comparison between heating and non heating season in different schools; ii) an evaluation of the effect of scheduled airing periods on the dilution of indoor-generated pollutants and the penetration of outdoor-generated ones. In particular, different airing procedures, i.e. different window opening periods (5 to 20min per hour) were imposed and controlled through contacts installed on classroom windows and doors. Results revealed that the airing strategy differently affect the several pollutants detected in indoors depending on their size, origin and dynamics. Longer airing periods may result in reduced indoor CO 2 concentrations and, similarly, other gaseous indoor-generated pollutants. Simultaneously, higher ultrafine particle (and other vehicular-related pollutants) levels in indoors were measured due to infiltration from outdoors. Finally, a negligible effect of the manual airing on PM levels in classroom was detected. Therefore, a simultaneous reduction in concentration levels for all the pollutant metrics in classrooms cannot be obtained just relying upon air permeability of the building envelope and manual airing of the classrooms. Copyright © 2017 Elsevier B.V. All rights reserved.
Kuo, Nae-Wen; Chiang, Hsin-Chen; Chiang, Che-Ming
2008-12-01
Indoor air quality (IAQ) has begun to surface as an important issue that affects the comfort and health of people; however, there is little research concerned about the IAQ monitoring of hotels up to now. Hotels are designed to provide comfortable spaces for guests. However, most complaints related to uncomfortable thermal environment and inadequate indoor air quality appear. In addition, microbial pollution can affect the health of tourists such as the Legionnaire's disease and SARS problems. This study is aimed to establish the comprehensive IAQ audit approach for hotel buildings with portable equipment, and one five-star international hotel in Taiwan was selected to exam this integrated approach. Finally, four major problems are identified after the comprehensive IAQ audit. They are: (1) low room temperature (21.8 degrees C), (2) insufficient air exchange rate (<1.5 h(-1)), (3) formaldehyde contamination (>0.02 ppm), and (4) the microbial pollution (total bacteria: 2,624-3,799 CFU/m(3)). The high level of formaldehyde may be due to the emission from the detergent and cleaning agents used for housekeeping.
Empowerment in practice - insights from CITI-SENSE project in Ljubljana
NASA Astrophysics Data System (ADS)
Robinson, Johanna; Kocman, David; Smolnikar, Miha; Mohorčič, Miha; Horvat, Milena
2014-05-01
We present specifics of the citizen empowerment and crowd sourced citizen science conducted in Ljubljana, Slovenia, as one of the case study cities within the ongoing EU-project CITI-SENSE. CITI-SENSE addresses urban air quality and rests on three pillars: technological platforms for distributed monitoring; novel information and communication technologies; and citizen participation. In the project, empowerment initiatives are conducted, enabling citizens to participate in various aspects of urban air quality, both outdoor and indoor at schools affecting everyday life of societal groups. Each participating country runs its own citizen empowerment campaign adapting to local circumstances. In addition to Ljubljana, local campaigns have been initiated in Barcelona, Belgrade, Edinburgh, Haifa, Ljubljana, Oslo, Ostrava, Vienna and in Vitoria. Poor air quality has been recognized as an important factor affecting the quality of life, especially in urban environments. In Ljubljana specifically, the main air pollution sources are traffic-related emissions, individual house heating devices including increased use of coal and biomass in recent years, and to a limit extent industrial point sources and waste disposal sites. Air quality can be occasionally very poor due to specific climatic conditions owing partially to its location in a basin and on the marshes, resulting in a very complex circulation of air masses, temperature inversions and formation of urban heat island. By recognizing this, we established the main stakeholders in the city who are responsible for monitoring the quality of air in Ljubljana. Based on full stakeholder analysis we consider co-operation with local governmental- and non-governmental institutions with already established means of communications with citizens, as a tool for empowerment. Since we spend over 90% of our time indoors, the indoor air quality is of great importance. It is why the CITI-SENSE project empowerment initiatives also cover this aspect. In Ljubljana we have identified and are involving three schools; differing by location, house type and age of students. The project also gives children a unique approach to learning about air quality issues - by being involved. To evaluate the success of empowerment initiatives after a pilot phase, key performance indicators (KPI) were defined that will enable performance improvement for the full implementation phase of the project. Acknowledgements: CITI-SENSE is a Collaborative Project partly funded by the EU FP7-ENV-2012 under grant agreement no 308524. www.citi-sense.eu.
A Tale of Two Cities - HSI-DOAS Measurements of Air Quality
NASA Astrophysics Data System (ADS)
Graves, Rosemarie; Leigh, Roland; Anand, Jasdeep; McNally, Michael; Lawrence, James; Monks, Paul
2013-04-01
Differential Optical Absorption Spectroscopy is now commonly used as an air quality measuring system; primarily through the measurements of nitrogen dioxide (NO2) both as a ground-based and satellite technique. CityScan is a Hemispherical Scanning Imaging Differential Optical Absorption Spectrometer (HSI-DOAS) which has been optimised to measure concentrations of nitrogen dioxide. CityScan has a 95˚ field of view (FOV) between the zenith and 5˚ below the horizon. Across this FOV there are 128 resolved elements which are measured concurrently, the spectrometer is rotated azimuthally 1˚ per second providing full hemispherical coverage every 6 minutes. CityScan measures concentrations of nitrogen dioxide over specific lines of sight and due to the extensive field of view of the instrument this produces measurements which are representative over city-wide scales. Nitrogen dioxide is an important air pollutant which is produced in all combustion processes and can reduce lung function; especially in sensitised individuals. These instruments aim to bridge the gap in spatial scales between point source measurements of air quality and satellite measurements of air quality offering additional information on emissions, transport and the chemistry of nitrogen dioxide. More information regarding the CityScan technique can be found at http://www.leos.le.ac.uk/aq/index.html. CityScan has been deployed in both London and Bologna, Italy during 2012. The London deployment took place as part of the large NERC funded ClearfLo project in January and July/August. CityScan was deployed in Bologna in June as part of the large EU project PEGASOS. Analysis of both of these campaigns of data will be used to give unprecedented levels of spatial information to air quality measurements whilst also showing the difference in air quality between a relatively isolated mega city and a smaller city situated in a very polluted region; in this case the Po Valley. Results from multiple CityScan instruments will be used in conjunction with data from ground based in-situ monitor networks to evaluate the ability of in-situ monitors to effectively assess the air quality in an urban environment. Trend analysis will also be shown to demonstrate any changes in the air quality in London during the time of the Olympic Games in comparison with a normal summer.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-24
.... How did EPA address missing data? V. Proposed Action VI. What is the effect of this action? VII.... ** Indicates incomplete data due to monitor shut down. IV. How did EPA address missing data? Appendix N of 40... in Milwaukee, where there are missing or incomplete data due to monitor shutdown or other factors...
[Air pollution biomonitoring with plants and fungi: concepts and uses].
Cuny, D
2012-07-01
Air pollution remains a major environmental concern of the French. Since about 30 years, due to evolution and diversification of sources, pollution became more and more complex, constituting a true "cocktail". Today, it is very important to know environmental and health effects of this cocktail. In this context air biomonitoring using plants and fungi can bring a lot of information. Biomonitoring includes four concepts: the use of biomarkers, bioindication biointegration and bioaccumulation. These four concepts are articulated according to the levels of biological organization, what links up biosurveillance on fundamental plan with ecotoxicology. It is a complementary approach of the physicochemical techniques of air pollution measurements. The main objectives of biomonitoring studies are the monitoring of the space and temporal distribution of pollutants effect; the monitoring of local sources; participation in the health risks assessment; the information of people and the help to decision in public policies. Biomonitoring of air quality is a method, which made its proof in numerous domains of application and brings fundamental information on the impacts of the quality of air. Recent evolution of low concerning biggest industries allows us to envisage the increase of air quality biomonitoring with plants and fungi applications in the field of the valuation of environmental and health risks. The recent normalization (French and European) of different methods will also allow the development of uses. Copyright © 2012. Published by Elsevier Masson SAS.
Thompson, Vicki S.; Lacey, Jeffrey A.; Hartley, Damon; ...
2016-04-22
Biomass such as agricultural residues, energy crops and yard waste has significant potential to be used as renewable feedstocks for production of fuels, chemicals and energy. However, in a given location, biomass availability, cost and quality can vary markedly. Strategies to manage these traits must be identified and implemented so that consistent low-cost and high-quality feedstocks can be delivered to biorefineries year round. In this study, we examine air classification as a method to mitigate high ash concentrations in corn stover, switchgrass, and grass clippings. Formulation techniques were then used to produce blends that met ash quality and biomass quantitymore » specifications at the lowest possible cost for biopower and biochemical conversion applications. It was found that air classification can separate the biomass into light fractions which contain concentrated amounts of elemental ash components introduced through soil contamination such as sodium, alumina, silica, iron and titania; and heavy fractions that are depleted in these components and have relatively lower total ash content. Light fractions of corn stover and grass clippings were found to be suitable for combustion applications since they had less propensity to slag than the whole biomass material. The remaining heavy fractions of corn stover or grass clippings could then be blended with switchgrass to produce blends that met the 5% total ash specifications suggested for biochemical conversions. However, ternary blends of the three feedstocks were not possible due to the high ash content of grass clippings. Lastly, it was determined that air classification by itself was not suitable to prepare these feedstocks for pyrolysis due to high ash content.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, Vicki S.; Lacey, Jeffrey A.; Hartley, Damon
Biomass such as agricultural residues, energy crops and yard waste has significant potential to be used as renewable feedstocks for production of fuels, chemicals and energy. However, in a given location, biomass availability, cost and quality can vary markedly. Strategies to manage these traits must be identified and implemented so that consistent low-cost and high-quality feedstocks can be delivered to biorefineries year round. In this study, we examine air classification as a method to mitigate high ash concentrations in corn stover, switchgrass, and grass clippings. Formulation techniques were then used to produce blends that met ash quality and biomass quantitymore » specifications at the lowest possible cost for biopower and biochemical conversion applications. It was found that air classification can separate the biomass into light fractions which contain concentrated amounts of elemental ash components introduced through soil contamination such as sodium, alumina, silica, iron and titania; and heavy fractions that are depleted in these components and have relatively lower total ash content. Light fractions of corn stover and grass clippings were found to be suitable for combustion applications since they had less propensity to slag than the whole biomass material. The remaining heavy fractions of corn stover or grass clippings could then be blended with switchgrass to produce blends that met the 5% total ash specifications suggested for biochemical conversions. However, ternary blends of the three feedstocks were not possible due to the high ash content of grass clippings. Lastly, it was determined that air classification by itself was not suitable to prepare these feedstocks for pyrolysis due to high ash content.« less
Importance of a Priori Vertical Ozone Profiles for TEMPO Air Quality Retrievals
NASA Technical Reports Server (NTRS)
Johnson, Matthew S.; Sullivan, John; Liu, Xiong; Zoogman, Peter; Newchurch, Mike; Kuang, Shi; McGee, Thomas; Leblanc, Thierry
2017-01-01
Ozone (O3) is a toxic pollutant which plays a major role in air quality. Typically, monitoring of surface air quality and O3 mixing ratios is conducted using in situ measurement networks. This is partially due to high-quality information related to air quality being limited from space-borne platforms due to coarse spatial resolution, limited temporal frequency, and minimal sensitivity to lower tropospheric and surface-level O3. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite is designed to address the limitations of current space-based platforms and to improve our ability to monitor North American air quality. TEMPO will provide hourly data of total column and vertical profiles of O3 with high spatial resolution to be used as a near-real-time air quality product. TEMPO O3 retrievals will apply the Smithsonian Astrophysical Observatory profile algorithm developed based on work from GOME (Global Ozone Monitoring Experiment), GOME-2, and OMI (Ozone Monitoring Instrument). This algorithm is suggested to use a priori O3 profile information from a climatological data-base developed from long-term ozone-sonde measurements (tropopause-based (TB-Clim) O3 climatology). This study evaluates the TB-Clim dataset and model simulated O3 profiles, which could potentially serve as a priori O3 profile information in TEMPO retrievals, from near-real-time data assimilation model products (NASA GMAO's (Global Modeling and Assimilation Office) operational GEOS-5 (Goddard Earth Observing System, Version 5) FP (Forecast Products) model and reanalysis data from MERRA2 (Modern-Era Retrospective analysis for Research and Applications, Version 2)) and a full chemical transport model (CTM), GEOS-Chem. In this study, vertical profile products are evaluated with surface (0-2 kilometers) and tropospheric (0-10 kilometers) TOLNet (Tropospheric Ozone Lidar Network) observations and the theoretical impact of individual a priori profile sources on the accuracy of TEMPO O3 retrievals in the troposphere and at the surface are presented. Results indicate that while the TB-Clim climatological dataset can replicate seasonally-averaged tropospheric O3 profiles, model-simulated profiles from a full CTM resulted in more accurate tropospheric and surface-level O3 retrievals from TEMPO when compared to hourly and daily-averaged TOLNet observations. Furthermore, it is shown that when large surface O3 mixing ratios are observed, TEMPO retrieval values at the surface are most accurate when applying CTM a priori profile information compared to all other data products.
Air-Quality and Climate Coupling in High Resolution for Urban Heat Island Study
NASA Astrophysics Data System (ADS)
Halenka, T.; Huszar, P.; Belda, M.
2012-04-01
Recent studies show considerable effect of atmospheric chemistry and aerosols on climate on regional and local scale. For the purpose of qualifying and quantifying the magnitude of climate forcing due to atmospheric chemistry/aerosols on regional scale and climate change effects on air-quality the regional climate model RegCM and chemistry/aerosol model CAMx was coupled. Climate change impacts on air-quality have been studied in high resolution of 10km with interactive two-way coupling of the effects of air-quality on climate. The experiments with the couple were performed for EC FP7 project MEGAPOLI assessing the impact of the megacities and industrialized areas on climate. New experiments in high resolution are prepared andsimulated for Urban Heat Island studies within the OP Central Europe Project UHI. Meteorological fields generated by RCM drive CAMx transport, chemistry and a dry/wet deposition. A preprocessor utility was developed for transforming RegCM provided fields to CAMx input fields and format. There is critical issue of the emission inventories available for 10km resolution including the urban hot-spots, TNO emissions are adopted for the experiments. Sensitivity tests switching on/off urban areas emissions are analysed as well. The results for year 2005 are presented and discussed, interactive coupling is compared to study the potential of possible impact of urban air-pollution to the urban area climate.
Khan, Fasihullah; Ajmal, Hafiz Muhammad Salman; Huda, Noor Ul; Kim, Ji Hyun; Kim, Sam-Dong
2018-01-01
In this study, the ambient condition for the as-coated seed layer (SL) annealing at 350 °C is varied from air or nitrogen to vacuum to examine the evolution of structural and optical properties of ZnO nanorods (NRs). The NR crystals of high surface density (~240 rods/μm2) and aspect ratio (~20.3) show greatly enhanced (002) degree of orientation and crystalline quality, when grown on the SLs annealed in vacuum, compared to those annealed in air or nitrogen ambient. This is due to the vacuum-annealed SL crystals of a highly preferred orientation toward (002) and large grain sizes. X-ray photoelectron spectroscopy also reveals that the highest O/Zn atomic ratio of 0.89 is obtained in the case of vacuum-annealed SL crystals, which is due to the effective desorption of hydroxyl groups and other contaminants adsorbed on the surface formed during aqueous solution-based growth process. Near band edge emission (ultra violet range of 360–400 nm) of the vacuum-annealed SLs is also enhanced by 44% and 33% as compared to those annealed in air and nitrogen ambient, respectively, in photoluminescence with significant suppression of visible light emission associated with deep level transition. Due to this improvement of SL optical crystalline quality, the NR crystals grown on the vacuum-annealed SLs produce ~3 times higher ultra violet emission intensity than the other samples. In summary, it is shown that the ZnO NRs preferentially grow along the wurtzite c-axis direction, thereby producing the high crystalline quality of nanostructures when they grow on the vacuum-annealed SLs of high crystalline quality with minimized impurities and excellent preferred orientation. The ZnO nanostructures of high crystalline quality achieved in this study can be utilized for a wide range of potential device applications such as laser diodes, light-emitting diodes, piezoelectric transducers and generators, gas sensors, and ultraviolet detectors. PMID:29373523
Cardiovascular, respiratory, and total mortality attributed to PM2.5 in Mashhad, Iran.
Bonyadi, Ziaeddin; Ehrampoush, Mohammad Hasan; Ghaneian, Mohammad Taghi; Mokhtari, Mehdi; Sadeghi, Abbas
2016-10-01
Poor air quality is one of the most important environmental problems in many large cities of the world, which can cause a wide range of acute and chronic health effects, including partial physiological disorders and cardiac death due to respiratory and cardiovascular diseases. According to the latest edition of the national standard for air quality, maximum contamination level is 15 μg/m(3) per year and 35 μg/m(3) per day. The aim of this study was to evaluate cardiovascular, respiratory, and total mortality attributed to PM2.5 in the city of Mashhad during 2013. To this end, the Air Q model was used to assess health impacts of PM2.5 and human exposure to it. In this model, the attributable proportion of health outcome, annual number of excess cases of mortality for all causes, and cardiovascular and respiratory diseases were estimated. The results showed that the number of excess cases of mortality for all causes and cardiovascular and respiratory diseases attributable to PM2.5 was 32, 263, and 332 μg/m(3), respectively. Moreover, the annual average of PM2.5 in Mashhad was obtained to be 37.85 μg/m(3). This study demonstrated that a high percentage of mortality resulting from this pollutant could be due to the high average concentration of PM2.5 in the city during 2013. In this case, using the particle control methods, such as optimal use of fuel, management of air quality in urban areas, technical inspection of vehicles, faster development of public transport, and use of industrial technology can be effective in reducing air pollution in cities and turning existing situations into preferred ones.
Validation of WRF-Chem air quality simulations in the Netherlands at high resolution
NASA Astrophysics Data System (ADS)
Hilboll, A.; Lowe, D.; Kuenen, J. J. P.; Denier Van Der Gon, H.; Vrekoussis, M.
2017-12-01
Air pollution is the single most important environmental hazard for publichealth, and especially nitrogen dioxide (NO2) plays a key role in air qualityresearch. With the aim of improving the quality and reproducibility ofmeasurements of NO2 vertical distribution from MAX-DOAS instruments, theCINDI-2 campaign was held in Cabauw (NL) in September 2016.The measurement site was rural, but surrounded by several major pollutioncenters. Due to this spatial heterogeneity of emissions, as well as themeteorological conditions, high spatial and temporal variability in NO2 mixingratios were observed.Air quality models used in the analysis of the measured data must have highspatial resolution in order to resolve this fine spatial structure. Thisremains a challenge even today, mostly due to the uncertainties and largespatial heterogeneity of emission data, and the need to parameterize small-scaleprocesses.In this study, we use the state-of-the-art version 3.9 of the Weather Researchand Forecasting Model with Chemistry (WRF-Chem) to simulate air pollutantconcentrations over the Netherlands, to facilitate the analysis of the CINDI-2NO2 measurements. The model setup contains three nested domains withhorizontal resolutions of 15, 3, and 1 km. Anthropogenic emissions are takenfrom the TNO-MACC III inventory and, where available, from the Dutch PollutantRelease and Transfer Register (Emissieregistratie), at a spatial resolution of 7and 1 km, respectively. We use the Common Reactive Intermediates gas-phasechemical mechanism (CRIv2-R5) with the MOSAIC aerosol module.The high spatial resolution of model and emissions will allow us to resolve thestrong spatial gradients in the NO2 concentrations measured during theCINDI-2 campaign, allowing for an unprecedented level of detail in theanalysis of individual pollution sources.
NASA Astrophysics Data System (ADS)
Yu, Haofei
Increasing vehicle dependence in the United States has resulted in substantial emissions of traffic-related air pollutants that contribute to the deterioration of urban air quality. Exposure to urban air pollutants trigger a number of public health concerns, including the potential of inequality of exposures and health effects among population subgroups. To better understand the impact of traffic-related pollutants on air quality, exposure, and exposure inequality, modeling methods that can appropriately characterize the spatiotemporally resolved concentration distributions of traffic-related pollutants need to be improved. These modeling methods can then be used to investigate the impacts of urban design and transportation management choices on air quality, pollution exposures, and related inequality. This work will address these needs with three objectives: 1) to improve modeling methods for investigating interactions between city and transportation design choices and air pollution exposures, 2) to characterize current exposures and the social distribution of exposures to traffic-related air pollutants for the case study area of Hillsborough County, Florida, and 3) to determine expected impacts of urban design and transportation management choices on air quality, air pollution exposures, and exposure inequality. To achieve these objectives, the impacts of a small-scale transportation management project, specifically the '95 Express' high occupancy toll lane project, on pollutant emissions and nearby air quality was investigated. Next, a modeling method capable of characterizing spatiotemporally resolved pollutant emissions, concentrations, and exposures was developed and applied to estimate the impact of traffic-related pollutants on exposure and exposure inequalities among several population subgroups in Hillsborough County, Florida. Finally, using these results as baseline, the impacts of sprawl and compact urban forms, as well as vehicle fleet electrification, on air quality, pollution exposure, and exposure inequality were explored. Major findings include slightly higher pollutant emissions, with the exception of hydrocarbons, due to the managed lane project. Results also show that ambient concentration contributions from on-road mobile sources are disproportionate to their emissions. Additionally, processes not captured by the CALPUFF model, such as atmospheric formation, contribute substantially to ambient concentration levels of the secondary pollutants such as acetaldehyde and formaldehyde. Exposure inequalities for NOx, 1,3-butadiene, and benzene air pollution were found for black, Hispanic, and low income (annual household income less than $20,000) subgroups at both short-term and long-term temporal scales, which is consistent with previous findings. Exposure disparities among the subgroups are complex, and sometimes reversed for acetaldehyde and formaldehyde, due primarily to their distinct concentration distributions. Compact urban form was found to result in lower average NOx and benzene concentrations, but higher exposure for all pollutants except for NOx when compared to sprawl urban form. Evidence suggests that exposure inequalities differ between sprawl and compact urban forms, and also differ by pollutants, but are generally consistent at both short and long-term temporal scales. In addition, vehicle fleet electrification was found to result in generally lower average pollutant concentrations and exposures, except for NOx. However, the elimination of on-road mobile source emissions does not substantially reduce exposure inequality. Results and findings from this work can be applied to assist transportation infrastructure and urban planning. In addition, method developed here can be applied elsewhere for better characterization of air pollution concentrations, exposure and related inequalities.
Comparison of the Intensity of Ventilation at Windows Exchange in the Room - Case Study
NASA Astrophysics Data System (ADS)
Kapalo, Peter; Voznyak, Orest
2017-06-01
Doing the replacement of old wooden windows in a new plastic windows, in the old buildings, we get the great reducing of the building heat loss. Simpler maintenance and attendance of window is the next advantage. New windows are characterized by better tightness. The aim of the article is determination due to the performed experimental measurements, how much more are reduce the uncontrolled ventilation that is caused of the infiltration windows. In the article there is presented the experimental measurement of indoor air quality in the room in two phases. In the first phase there is the room installed by 55 year old wood window. In the second phase there is the same room installed by new plastic window. Due to the experimental measurement of indoor air quality it is calculated intensity of ventilation - infiltration. These results of ventilation intensity are reciprocally compared.
NASA Astrophysics Data System (ADS)
Ghaemi, Z.; Farnaghi, M.; Alimohammadi, A.
2015-12-01
The critical impact of air pollution on human health and environment in one hand and the complexity of pollutant concentration behavior in the other hand lead the scientists to look for advance techniques for monitoring and predicting the urban air quality. Additionally, recent developments in data measurement techniques have led to collection of various types of data about air quality. Such data is extremely voluminous and to be useful it must be processed at high velocity. Due to the complexity of big data analysis especially for dynamic applications, online forecasting of pollutant concentration trends within a reasonable processing time is still an open problem. The purpose of this paper is to present an online forecasting approach based on Support Vector Machine (SVM) to predict the air quality one day in advance. In order to overcome the computational requirements for large-scale data analysis, distributed computing based on the Hadoop platform has been employed to leverage the processing power of multiple processing units. The MapReduce programming model is adopted for massive parallel processing in this study. Based on the online algorithm and Hadoop framework, an online forecasting system is designed to predict the air pollution of Tehran for the next 24 hours. The results have been assessed on the basis of Processing Time and Efficiency. Quite accurate predictions of air pollutant indicator levels within an acceptable processing time prove that the presented approach is very suitable to tackle large scale air pollution prediction problems.
Lee, Jong-Tae; Son, Ji-Young; Cho, Yong-Sung
2007-08-01
The objective of this study is to see whether there were any health benefits of mitigated air pollution concentration due to reduced traffic flow during a citywide intervention for the 2002 Summer Asian Games. Relative risks of hospitalization for childhood asthma during the post-Asian Game period compared with the baseline period were estimated using a time-series analysis of the generalized additive Poisson model. Fourteen consecutive days of traffic volume control in Busan during the Games reduced all regulated air pollutant levels by 1-25%. The estimated relative risk of hospitalization during the post-Games period over the baseline period was 0.73 (95% confidence interval [CI] = 0.49, 1.11). We observed that this reduced air pollution was unique in 2002 when the traffic volume reduction program was applied during the Games period. This empirical data provides epidemiologic evidence of the health benefits resulting from environmental interventions to reduce ambient air pollution.
Kumar, V; Chandra, B P; Sinha, V
2018-01-12
Biomass fires impact global atmospheric chemistry. The reactive compounds emitted and formed due to biomass fires drive ozone and organic aerosol formation, affecting both air quality and climate. Direct hydroxyl (OH) Reactivity measurements quantify total gaseous reactive pollutant loadings and comparison with measured compounds yields the fraction of unmeasured compounds. Here, we quantified the magnitude and composition of total OH reactivity in the north-west Indo-Gangetic Plain. More than 120% increase occurred in total OH reactivity (28 s -1 to 64 s -1 ) and from no missing OH reactivity in the normal summertime air, the missing OH reactivity fraction increased to ~40 % in the post-harvest summertime period influenced by large scale biomass fires highlighting presence of unmeasured compounds. Increased missing OH reactivity between the two summertime periods was associated with increased concentrations of compounds with strong photochemical source such as acetaldehyde, acetone, hydroxyacetone, nitromethane, amides, isocyanic acid and primary emissions of acetonitrile and aromatic compounds. Currently even the most detailed state-of-the art atmospheric chemistry models exclude formamide, acetamide, nitromethane and isocyanic acid and their highly reactive precursor alkylamines (e.g. methylamine, ethylamine, dimethylamine, trimethylamine). For improved understanding of atmospheric chemistry-air quality-climate feedbacks in biomass-fire impacted atmospheric environments, future studies should include these compounds.
Integrative health risk assessment of air pollution in the northwest of Spain.
García-Santiago, Xela; Gallego-Fernández, Nuria; Muniategui-Lorenzo, Soledad; Piñeiro-Iglesias, María; López-Mahía, Purificación; Franco-Uría, Amaya
2017-02-01
Levels, origins and potential risks due to different air pollutants (ozone, SO 2 and particle-borne metals) in NW Spain were investigated in eight locations affected by different emission sources. All monitored locations suffered the influence of traffic and industrial emissions, being this influence more important in urban locations. Although average values of the estimated hazard index (HI) due to particle-borne metals showed values lower than one, maximum values of this parameter exceeded this safety limit in urban locations. In general, Ni and As were identified as those metals most contributing to the HI. Furthermore, the presence of industrial emission episodes produced a significant increase in the magnitude of the HI in two of the seven urban areas. Therefore, the frequency and intensity of these episodes should be further investigated. Finally, levels of airborne and particle-borne pollutants were integrated with the aim of providing a comprehensive assessment of health risk. According to an established indexing system, air quality can be classified from good to moderate, being the southern urban locations (the most densely populated and industrialised ones) presenting the worst values. However, either the high or the low influence of acute and chronic-effect pollutants on air quality depends on the location.
Yang, Ying; Weathers, Pamela
2015-01-01
Ettlia oleoabundans, a freshwater unicellular green microalga, was grown under different light qualities ± carbon dioxide-enriched air to determine the combined effects on growth and lipid production of this oleaginous species. Keeping total light intensity constant, when a portion of the cool white was replaced by red, volumetric lipid yield increased 2.8-fold mainly due to the greater yield of oleic acid, a desirable biodiesel precursor. Only 30 min of red light treatment was sufficient to increase lipid yield and quality to the same level as cultures provided red light for >14 days, indicating the potential role of red light in stimulating lipid production of this species. Carbon dioxide enrichment via air sparging enhanced exponential growth, carbon conversion efficiency, and nutrient consumption. Together, these results showed that light quality plays an important role in microalgal lipid production. Adjustment in light quality and gas delivery efficiency with carbon dioxide enrichment improved lipid yield and quality in this and possibly other oleaginous algal species.
Daily and peak 1 h indoor air pollution and driving factors in a rural Chinese village.
Fischer, Susan L; Koshland, Catherine P
2007-05-01
We investigate wintertime indoor air quality and personal exposures to carbon monoxide (CO) in a rural village in Jilin province, where relatively homogeneous climatic and sociocultural factors facilitate investigation of household structural, fuel-related, and behavioral determinants of air pollution as well as relationships between different measures of air quality. Our time-resolved wintertime measurements of carbon monoxide and respirable particles (RSP) enable exploration of peak pollution periods in a village in Jilin Province, China, characterized by household use of both coal and biomass, as well as several "improved" (gas or electric) fuels. Our data indicate a 6-fold increase in peak 1 h PM (1.9 mg/m3) concentrations relative to 24 h mean PM (0.31 mg/m3). Peak 1 h CO concentrations (20.5 ppm) routinely approached and often (27%) exceeded the World Health Organization's 1 h guideline of 26 ppm, although the vast majority (95%) of kitchens were within China's residential indoor air quality guideline for CO on a 24 h basis. Choice of heating fuel and household smoking status were significant predictors of indoor air quality. Whether solid or "improved" (gas or electric) fuel was used for cooking had an even stronger effect, but in the opposite direction from expected, on both peak and daily average measures of air pollution. Peak pollution period concentrations of CO and PM were strongly correlated to daily concentrations of CO and RSP, respectively. Our results suggestthat due to the primary role of heating as a determinant of wintertime indoor air quality in northern Chinese villages, health-oriented interventions limited to provision of improved cooking fuel are insufficient. Our results illustrate that peak pollution periods may routinely exceed exposure regulations and evacuation limits, although this and previous studies document typical 24 h CO concentrations in rural Chinese kitchens to be within guidelines. Within a given village and for a given pollutant, daily pollutant concentrations may be strong predictors of peak pollution period concentrations.
Peng, Ying; Zhou, Fengwu; Cui, Jian; Du, Ke; Leng, Qiangmei; Yang, Fumo; Chan, Andy; Zhao, Hongting
2017-07-01
The Three Gorges Dam's construction and industrial transfer have resulted in a new air pollution pattern with the potential to threaten the reservoir eco-environment. To assess the impact of socioeconomic factors on the pattern of air quality vairation and economical risks, concentrations of SO 2 , NO 2 , and PM 10 , industry genres, and meteorological conditions were selected in the Three Gorges Reservoir of Chongqing (TGRC) during 2006-2015. Results showed that air quality had improved to some extent, but atmospheric NO 2 showed an increased trend during 2011-2015. Spatially, higher atmospheric NO 2 extended to the surrounding area. The primary industry, especially for agriculture, had shown to be responsible for the remarkable increase of atmospheric NO 2 (p < 0.01) due to the direct burning of agricultural straws and the emission of livestock breeding. The improvement of regional industrial structure and industrialization benefited air pollutant reductions, but construction industries had inhibited the improvement of regional air quality. In the tertiary industry, the cargo industry at ports had significantly decreased atmospheric NO 2 as a result of eliminating the obsoleted small ships. Contrarily, the highway transportation had brought more air pollutants. The relative humidity was shown to be the main meteorological factor, which had an extremely remarkable relation with atmospheric SO 2 (p < 0.01) and a significant correlation with atmospheric NO 2 (p < 0.05), respectively. In the future, the development of agriculture and livestock breeding would make regional air quality improvement difficult, and atmospheric SO 2 , NO 2 , and PM 10 deposition would aggravate regional soil and water acidification and reactivate heavy metal in soil and sediment, further to pose a high level of ecological risk in the TGRC and other countries with reservoirs in the world.
Source apportionment of hydrocarbons measured in the Eagle Ford shale
NASA Astrophysics Data System (ADS)
Roest, G. S.; Schade, G. W.
2016-12-01
The rapid development of unconventional oil and gas in the US has led to hydrocarbon emissions that are yet to be accurately quantified. Emissions from the Eagle Ford Shale in southern Texas, one of the most productive shale plays in the U.S., have received little attention due to a sparse air quality monitoring network, thereby limiting studies of air quality within the region. We use hourly atmospheric hydrocarbon and meteorological data from three locations in the Eagle Ford Shale to assess their sources. Data are available from the Texas commission of environmental quality (TCEQ) air quality monitors in Floresville, a small town southeast of San Antonio and just north of the shale area; and Karnes city, a midsize rural city in the center of the shale. Our own measurements were carried out at a private ranch in rural Dimmit County in southern Texas from April to November of 2015. Air quality monitor data from the TCEQ were selected for the same time period. Non-negative matrix factorization in R (package NMF) was used to determine likely sources and their contributions above background. While the TCEQ monitor data consisted mostly of hydrocarbons, our own data include both CO, CO2, O3, and NOx. We find that rural Dimmit County hydrocarbons are dominated by oil and gas development sources, while central shale hydrocarbons at the TCEQ monitoring sites have a mix of sources including car traffic. However, oil and gas sources also dominate hydrocarbons at Floresville and Karnes City. Toxic benzene is nearly exclusively due to oil and gas development sources, including flaring, which NMF identifies as a major hydrocarbon source in Karnes City. Other major sources include emissions of light weight alkanes (C2-C5) from raw natural gas emissions and a larger set of alkanes (C2-C10) from oil sources, including liquid storage tanks.
NASA Astrophysics Data System (ADS)
Marrapu, Pallavi
Deteriorating air quality is one of the major problems faced worldwide and in particular in Asia. The world's most polluted megacities are located in Asia highlighting the urgent need for efforts to improve the air quality. New Delhi (India), one of the world's most polluted cities, was the host of the Common Wealth Games during the period of 4-14 October 2010. This high profile event provided a good opportunity to accelerate efforts to improve air quality. Computational advances now allow air quality forecast models to fully couple the meteorology with chemical constituents within a unified modeling system that allows two-way interactions. The WRF-Chem model is used to simulate air quality in New Delhi. The thesis focuses on evaluating air quality and meteorology feedbacks. Four nested domains ranging from South Asia, Northern India, NCR Delhi and Delhi city at 45km, 15km, 5km and 1.67km resolution for a period of 20 day (26th Sep--15th Oct, 2010) are used in the study. The predicted mean surface concentrations of various pollutants show similar spatial distributions with peak values in the middle of the domain reflecting the traffic and population patterns in the city. Along with these activities, construction dust and industrial emissions contribute to high levels of criteria pollutants. The study evaluates the WRF-Chem capabilities using a new emission inventory developed over Delhi at a fine resolution of 1.67km and evaluating the results with observational data from 11 monitoring sties placed at various Game venues. The contribution of emission sectors including transportation, power, industry, and domestic to pollutant concentrations at targeted regions are studied and the results show that transportation and domestic sector are the major contributors to the pollution levels in Delhi, followed by industry. Apart from these sectors, emissions outside of Delhi contribute 20-50% to surface concentrations depending on the species. This indicates that pollution control efforts should take a regional perspective. Air quality projections in Delhi for 2030 are investigated. The Greenhouse Gas and Air Pollution I nteractions and Synergies (GAINS) model is used to generate a 2030 future emission scenario for Delhi using projections of air quality control measures and energy demands. Net reductions in CO concentrations by 50%, and increases of 140% and 40% in BC and NOx concentrations, respectively, are predicted. The net changes in concentration are associated with increases in transport and industry sectors. The domestic sector still has a significant contribution to air pollutant levels. The air quality levels show a profound effect under this scenario on the environment and human health. The increase in pollution from 2010 to 2030 is predicted to cause an increase in surface temperature by ˜0.65K. These increasing pollution levels also show effects on the radiative forcing. The high aerosols loading i.e. BC, PM2.5 and PM10 levels show strong influence on the short and longwave fluxes causing strong surface dimming and strong atmosphere heating due to BC. These results indicate transport and domestic sectors should be targeted for air quality and climate mitigations.
Post, Ellen S.; Grambsch, Anne; Weaver, Chris; Morefield, Philip; Leung, Lai-Yung; Nolte, Christopher G.; Adams, Peter; Liang, Xin-Zhong; Zhu, Jin-Hong; Mahoney, Hardee
2012-01-01
Background: Future climate change may cause air quality degradation via climate-induced changes in meteorology, atmospheric chemistry, and emissions into the air. Few studies have explicitly modeled the potential relationships between climate change, air quality, and human health, and fewer still have investigated the sensitivity of estimates to the underlying modeling choices. Objectives: Our goal was to assess the sensitivity of estimated ozone-related human health impacts of climate change to key modeling choices. Methods: Our analysis included seven modeling systems in which a climate change model is linked to an air quality model, five population projections, and multiple concentration–response functions. Using the U.S. Environmental Protection Agency’s (EPA’s) Environmental Benefits Mapping and Analysis Program (BenMAP), we estimated future ozone (O3)-related health effects in the United States attributable to simulated climate change between the years 2000 and approximately 2050, given each combination of modeling choices. Health effects and concentration–response functions were chosen to match those used in the U.S. EPA’s 2008 Regulatory Impact Analysis of the National Ambient Air Quality Standards for O3. Results: Different combinations of methodological choices produced a range of estimates of national O3-related mortality from roughly 600 deaths avoided as a result of climate change to 2,500 deaths attributable to climate change (although the large majority produced increases in mortality). The choice of the climate change and the air quality model reflected the greatest source of uncertainty, with the other modeling choices having lesser but still substantial effects. Conclusions: Our results highlight the need to use an ensemble approach, instead of relying on any one set of modeling choices, to assess the potential risks associated with O3-related human health effects resulting from climate change. PMID:22796531
2005-06-01
impacts to storm water quality can range from minor to severe. For this project, impacts are anticipated to be moderate ifBMPs are adequately applied...monitored outfalls. High turbidity, suspended solids, and decreased cross section due to deposition may violate storm water quality benchmarks and...result in a Notice of Violation (NOV) for storm water quality permits. Besides erosive impacts, construction period activities can cause much more
Local Air Quality Conditions and Forecasts
... Monitor Location Archived Maps by Region Canada Air Quality Air Quality on Google Earth Links A-Z About AirNow AirNow International Air Quality Action Days / Alerts AirCompare Air Quality Index (AQI) ...
Potential impact of climate change on air pollution-related human health effects.
Tagaris, Efthimios; Liao, Kuo-Jen; Delucia, Anthony J; Deck, Leland; Amar, Praveen; Russell, Armistead G
2009-07-01
The potential health impact of ambient ozone and PM2.5 concentrations modulated by climate change over the United States is investigated using combined atmospheric and health modeling. Regional air quality modeling for 2001 and 2050 was conducted using CMAQ Modeling System with meteorology from the GISS Global Climate Model, downscaled regionally using MM5,keeping boundary conditions of air pollutants, emission sources, population, activity levels, and pollution controls constant. BenMap was employed to estimate the air pollution health outcomes at the county, state, and national level for 2050 caused by the effect of meteorology on future ozone and PM2.5 concentrations. The changes in calculated annual mean PM2.5 concentrations show a relatively modest change with positive and negative responses (increasing PM2.5 levels across the northeastern U.S.) although average ozone levels slightly decrease across the northern sections of the U.S., and increase across the southern tier. Results suggest that climate change driven air quality-related health effects will be adversely affected in more then 2/3 of the continental U.S. Changes in health effects induced by PM2.5 dominate compared to those caused by ozone. PM2.5-induced premature mortality is about 15 times higher then that due to ozone. Nationally the analysis suggests approximately 4000 additional annual premature deaths due to climate change impacts on PM2.5 vs 300 due to climate change-induced ozone changes. However, the impacts vary spatially. Increased premature mortality due to elevated ozone concentrations will be offset by lower mortality from reductions in PM2.5 in 11 states. Uncertainties related to different emissions projections used to simulate future climate, and the uncertainties forecasting the meteorology, are large although there are potentially important unaddressed uncertainties (e.g., downscaling, speciation, interaction, exposure, and concentration-response function of the human health studies).
Multi-criteria analysis for PM10 planning
NASA Astrophysics Data System (ADS)
Pisoni, Enrico; Carnevale, Claudio; Volta, Marialuisa
To implement sound air quality policies, Regulatory Agencies require tools to evaluate outcomes and costs associated to different emission reduction strategies. These tools are even more useful when considering atmospheric PM10 concentrations due to the complex nonlinear processes that affect production and accumulation of the secondary fraction of this pollutant. The approaches presented in the literature (Integrated Assessment Modeling) are mainly cost-benefit and cost-effective analysis. In this work, the formulation of a multi-objective problem to control particulate matter is proposed. The methodology defines: (a) the control objectives (the air quality indicator and the emission reduction cost functions); (b) the decision variables (precursor emission reductions); (c) the problem constraints (maximum feasible technology reductions). The cause-effect relations between air quality indicators and decision variables are identified tuning nonlinear source-receptor models. The multi-objective problem solution provides to the decision maker a set of not-dominated scenarios representing the efficient trade-off between the air quality benefit and the internal costs (emission reduction technology costs). The methodology has been implemented for Northern Italy, often affected by high long-term exposure to PM10. The source-receptor models used in the multi-objective analysis are identified processing long-term simulations of GAMES multiphase modeling system, performed in the framework of CAFE-Citydelta project.
Air Quality Impacts of Electrifying Vehicles and Equipment Across the United States.
Nopmongcol, Uarporn; Grant, John; Knipping, Eladio; Alexander, Mark; Schurhoff, Rob; Young, David; Jung, Jaegun; Shah, Tejas; Yarwood, Greg
2017-03-07
U.S.-wide air quality impacts of electrifying vehicles and off-road equipment are estimated for 2030 using 3-D photochemical air quality model and detailed emissions inventories. Electrification reduces tailpipe emissions and emissions from petroleum refining, transport, and storage, but increases electricity demand. The Electrification Case assumes approximately 17% of light duty and 8% of heavy duty vehicle miles traveled and from 17% to 79% of various off-road equipment types considered good candidates for electrification is powered by electricity. The Electrification Case raises electricity demand by 5% over the 2030 Base Case but nitrogen oxide (NO x ) emissions decrease by 209 thousand tons (3%) overall. Emissions of other criteria pollutants also decrease. Air quality benefits of electrification are modest, mostly less than 1 ppb for ozone and 0.5 μg m -3 for fine particulate matter (PM 2.5 ), but widespread. The largest reductions for ozone and PM occur in urban areas due to lower mobile source emissions. Electrifying off-road equipment yields more benefits than electrifying on-road vehicles. Reduced crude oil imports and associated marine vessel emissions cause additional benefits in port cities. Changes in other gas and PM emissions, as well as impacts on acid and nutrient deposition, are discussed.
NASA Astrophysics Data System (ADS)
Liu, Z.; Yim, Steve H. L.; Wang, C.; Lau, N. C.
2018-05-01
Literature has reported the remarkable aerosol impact on low-level cloud by direct radiative forcing (DRF). Impacts on middle-upper troposphere cloud are not yet fully understood, even though this knowledge is important for regions with a large spatial heterogeneity of emissions and aerosol concentration. We assess the aerosol DRF and its cloud response in June (with strong convection) in Pearl River Delta region for 2008-2012 at cloud-resolving scale using an air quality-climate coupled model. Aerosols suppress deep convection by increasing atmospheric stability leading to less evaporation from the ground. The relative humidity is reduced in middle-upper troposphere due to induced reduction in both evaporation from the ground and upward motion. The cloud reduction offsets 20% of the aerosol DRF. The weaker vertical mixing further increases surface aerosol concentration by up to 2.90 μg/m3. These findings indicate the aerosol DRF impact on deep convection and in turn regional air quality.
Re-introducing fire at the urban/wild-land interface: planning for success
Steven R. Miller; Dale Wade
2003-01-01
The application of fire in the southern United States continues to increase in complexity due to urban sprawl, air quality issues and regulatory constraints. Many sites suffer from unnaturally high fuel accumulations due to decades of fire exclusion. The loss of habitat to urbanization and successional changes resulting from the absence of fire increases the importance...
NASA Astrophysics Data System (ADS)
Kultys, Beata
2018-01-01
Indoor air quality is important because people spend most of their time in closed rooms. If volatile organic compounds (VOCs) are present at elevated concentrations, they may cause a deterioration in human well-being or health. The identification of indoor emission sources is carried out by comparison indoor and outdoor air composition. The aim of the study was to determinate the concentration of VOCs in indoor air, where there was a risk of elevated levels due to the kind of work type carried out or the users complained about the symptoms of a sick building followed by an appropriate interpretation of the results to determine whether the source of the emission in the tested room occurs. The air from residential, office and laboratory was tested in this study. The identification of emission sources was based on comparison of indoor and outdoor VOCs concentration and their correlation coefficients. The concentration of VOCs in all the rooms were higher or at a similar level to that of the air sampled at the same time outside the building. Human activity, in particular repair works and experiments with organic solvents, has the greatest impact on deterioration of air quality.
NASA Astrophysics Data System (ADS)
Sahu, S.; Beig, G.; Schultz, M.; Parkhi, N.; Stein, O.
2012-04-01
The mega city of Delhi is the second largest urban agglomeration in India with 16.7 mio. inhabitants. Delhi has the highest per capita power consumption of electricity in India and the demand has risen by more than 50% during the last decade. Emissions from commercial, power, domestic and industrial sectors have strongly increased causing more and more environmental problems due to air pollution and its adverse impacts on human health. Particulate matter (PM) of size less than 2.5-micron (PM2.5) and 10 micron (PM10) have emerged as primary pollutants of concern due to their adverse impact on human health. As part of the System of Air quality Forecasting and Research (SAFAR) project developed for air quality forecasting during the Commonwealth Games (CWG) - 2010, a high resolution Emission Inventory (EI) of PM10 and PM2.5 has been developed for the metropolitan city Delhi for the year 2010. The comprehensive inventory involves detailed activity data and has been developed for a domain of 70km×65km with a 1.67km×1.67km resolution covering Delhi and its surrounding region (i.e. National Capital Region (NCR)). In creating this inventory, Geographical Information System (GIS) based techniques were used for the first time in India. The major sectors considered are, transport, thermal power plants, industries, residential and commercial cooking along with windblown road dust which is found to play a major role for the megacity environment. Extensive surveys were conducted among the Delhi slum dwellers (Jhuggi) in order to obtain more robust estimates for the activity data related to domestic cooking and heating. Total emissions of PM10 and PM2.5 including wind blown dust over the study area are found to be 236 Gg/yr and 94 Gg/yr respectively. About half of the PM10 emissions stem from windblown road dust. The new emission inventory has been used for regional air quality forecasts in the Delhi region during the Commonwealth games (SAFAR project), and they will soon be tested in simulations of the global atmospheric composition in the framework of the European MACC project which provided the chemical boundary conditions to the regional air quality forecasts in 2010.
Air quality in Delhi during the Commonwealth Games
NASA Astrophysics Data System (ADS)
Marrapu, P.; Cheng, Y.; Beig, G.; Sahu, S.; Srinivas, R.; Carmichael, G. R.
2014-10-01
Air quality during the Commonwealth Games (CWG, held in Delhi in October 2010) is analyzed using a new air quality forecasting system established for the games. The CWG stimulated enhanced efforts to monitor and model air quality in the region. The air quality of Delhi during the CWG had high levels of particles with mean values of PM2.5 and PM10 at the venues of 111 and 238 μg m-3, respectively. Black carbon (BC) accounted for ~ 10% of the PM2.5 mass. It is shown that BC, PM2.5 and PM10 concentrations are well predicted, but with positive biases of ~ 25%. The diurnal variations are also well captured, with both the observations and the modeled values showing nighttime maxima and daytime minima. A new emissions inventory, developed as part of this air quality forecasting initiative, is evaluated by comparing the observed and predicted species-species correlations (i.e., BC : CO; BC : PM2.5; PM2.5 : PM10). Assuming that the observations at these sites are representative and that all the model errors are associated with the emissions, then the modeled concentrations and slopes can be made consistent by scaling the emissions by 0.6 for NOx, 2 for CO, and 0.7 for BC, PM2.5, and PM10. The emission estimates for particles are remarkably good considering the uncertainty in the estimates due to the diverse spread of activities and technologies that take place in Delhi and the rapid rates of change. The contribution of various emission sectors including transportation, power, domestic and industry to surface concentrations are also estimated. Transport, domestic and industrial sectors all make significant contributions to PM levels in Delhi, and the sectoral contributions vary spatially within the city. Ozone levels in Delhi are elevated, with hourly values sometimes exceeding 100 ppb. The continued growth of the transport sector is expected to make ozone pollution a more pressing air pollution problem in Delhi. The sector analysis provides useful inputs into the design of strategies to reduce air pollution levels in Delhi. The contribution for sources outside of Delhi on Delhi air quality range from ~ 25% for BC and PM to ~ 60% for day time ozone. The significant contributions from non-Delhi sources indicates that in Delhi (as has been show elsewhere) these strategies will also need a more regional perspective.
NASA Astrophysics Data System (ADS)
Levelt, P.; Veefkind, J. P.; Kleipool, Q.; Eskes, H.; A, R. V. D.; Mijling, B.; Tamminen, J.; Joiner, J.; Bhartia, P. K.
2015-12-01
In the last three decades the capabilities of measuring the atmospheric composition from space did grow tremendously with ESA's ENVISAT and NASA's Eos-Aura satellite programmes. The potential to operationally monitor the atmospheric composition, like the meteorological community is doing for the physical parameters, is now within reach. At the same time, the importance for society of operational environmental monitoring, related to the ozone layer, air quality and climate change, became apparent. The Ozone Monitoring Instrument (OMI), launched on board of NASA's EOS-Aura spacecraft in on July 15, 2004, provides unique contributions to air quality monitoring from Space. The combination of urban scale resolution (13 x 24 km2 in nadir) and daily global coverage proved to be key features for the air quality community. The OMI data is currently used for improving the air quality forecasts, for inverting high-resolution emission maps, for UV forecast and for volcanic plume warning systems for aviation. Due to its 11 year continuous operation OMI now provides the longest NO2 record from space, which is essential to understand the changes in emissions globally. In 2016 Tropospheric Monitoring Instrument (TROPOMI), will be launched on board ESA's Sentinel 5 Precursor satellite. TROPOMI will have a spatial resolution of 7x7 km2 in nadir; a more than 6 times improvement over OMI. The high spatial resolution serves two goals: (1) emissions sources can be detected with even better accuracy and (2) the number of cloud-free ground pixels will increase substantially. TROPOMI also adds additional spectral bands that allow for better cloud corrections, as well as the retrieval of carbon monoxide and methane. TROPOMI will be an important satellite mission for the Copernicus atmosphere service. TROPOMI will play a key role in the Air Quality Constellation, being the polar instruments that can link the 3 GEO UVN instruments, Sentinel 4, TEMPO and GEMS. Thus, TROPOMI can serve as a travelling standard that allows intercomparison of the calibration of the geostationary instruments. An overview of air quality applications, emission inversions and trend analyses will be presented, based on the 11 years of OMI data. An outlook will be presented on the potentials of TROPOMI, including its role in the Air Quality Constellation.
Air pollution effects due to deregulation of the electric industry
NASA Astrophysics Data System (ADS)
Davoodi, Khojasteh Riaz
The Energy Policy Act of 1992 introduced the concept of open-access into the electric utility industry which allows privately-owned utilities to transmit power produced by non-utility generators and independent power producers (IPPs). In April 1996, the Federal Energy Regulatory Commission (FERC) laid down the final rules (Orders No. 888 & No. 889), which required utilities to open their transmission lines to any power producer and charge them no more than what they pay for the use of their own lines. These rules set the stage for the retail sale of electricity to industrial, commercial and residential utility customers; non-utility generators (Nugs); and power marketers. These statutory, regulatory and administrative changes create for the electric utility industry two different forces that contradict each other. The first is the concept of competition among utility companies; this places a greater emphasis on electric power generation cost control and affects generation/fuel mix selection and demand side management (DSM) activities. The second force, which is converse to the first, is that utilities are major contributors to the air pollution burden in the United States and environmental concerns are forcing them to reduce emissions of air pollutants by using more environmentally friendly fuels and implementing energy saving programs. This study evaluates the impact of deregulation within the investor owned electric utilities and how this deregulation effects air quality by investigating the trend in demand side management programs and generation/fuel mix. A survey was conducted of investor owned utilities and independent power producers. The results of the survey were analyzed by analysis of variance and regression analysis to determine the impact to Air Pollution. An air Quality Impact model was also developed in this study. This model consists of six modules: (1) demand side management and (2) consumption of coal, (3) gas, (4) renewable, (5) oil and (6) nuclear sources until the year 2005. Each module was analyzed separately and the result from each module was transferred into the Air Quality Impact model. The model assesses the changes in electricity generation within each module due to deregulation and these changes can then be correlated to the emission of air pollutants in the United States.
High-Q, in-plane modes of nanomechanical resonators operated in air
NASA Astrophysics Data System (ADS)
Waggoner, Philip S.; Tan, Christine P.; Bellan, Leon; Craighead, Harold G.
2009-05-01
Nanomechanical resonators have traditionally been limited to use in vacuum due to low quality factors that come as a result of viscous damping effects in air or liquid. We have fabricated arrays of 90 nm thick trampoline-shaped resonators, studied their resonant frequency spectrum as a function of pressure, and found that some high frequency modes exhibit quality factors over 2000 at atmospheric pressure. We have excited the in-plane resonances of these devices, verified their identities both experimentally and with finite element modeling, and demonstrated their advantageous characteristics for ambient sensing. Even after deposition of a relatively thick polymer layer, the in-plane resonant modes still boast quality factors on the order of 2000. These results show promise for the use of nanomechanical resonant sensors in real-time atmospheric sensing applications.
Description of Latvian Metal Production and Processing Enterprises' Air Emissions
NASA Astrophysics Data System (ADS)
Pubule, Jelena; Zahare, Dace; Blumberga, Dagnija
2010-01-01
The metal production and processing sector in Latvia has acquired a stable position in the national economy. Smelting of ferrous and nonferrous metals, production of metalware, galvanisation, etc. are developed in Latvia. The metal production and processing sector has an impact on air quality due to polluting substances which are released in the air from metal treatment processes. Therefore it is necessary to determine the total volume of emissions produced by the metal production and processing sector in Latvia. This article deals with the air polluting emissions of the Latvian metal production and processing industry, and sets the optimum sector emission volumes using the emissions benchmark methodology.
Predictive model for CO2 generation and decay in building envelopes
NASA Astrophysics Data System (ADS)
Aglan, Heshmat A.
2003-01-01
Understanding carbon dioxide generation and decay patterns in buildings with high occupancy levels is useful to identify their indoor air quality, air change rates, percent fresh air makeup, occupancy pattern, and how a variable air volume system to off-set undesirable CO2 level can be modulated. A mathematical model governing the generation and decay of CO2 in building envelopes with forced ventilation due to high occupancy is developed. The model has been verified experimentally in a newly constructed energy efficient healthy house. It was shown that the model accurately predicts the CO2 concentration at any time during the generation and decay processes.
Air protection strategy in Poland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blaszczyk, B.
Air quality is one of the basic factors determining the environmental quality and influencing the life conditions of people. There is a shortage of proper quality air in many regions of Poland. In consequence, and due to unhindered transport, air pollution is the direct cause of losses in the national economy (reduction of crops, losses in forestry, corrosion of buildings and constructions, worsening of people`s health). Poland is believed to be one of the most contaminated European countries. The reason for this, primarily, is the pollution concomitant with energy-generating fuel combustion; in our case it means the use of solidmore » fuels: hard coal and lignite. This monocultural economy of energy generation is accompanied by low efficiency of energy use (high rates of energy loss from buildings, heat transmission pipelines, energy-consuming industrial processes). This inefficiency results in the unnecessary production of energy and pollution. Among other reasons, this results from the fact that in the past Poland did not sign any international agreements concerning the reduction of the emission of pollution. The activities aimes at air protection in Poland are conducted based on the Environmental Formation and Protection Act in effect since 1980 (with many further amendments) and the The Ecological Policy of the state (1991). The goals of the Polish air pollution reduction program for the period 1994-2000 are presented.« less
NASA Astrophysics Data System (ADS)
Juang, J. Y.; Sun, C. H.; Jiang, J. A.; Wen, T. H.
2017-12-01
The urban heat island effect (UHI) caused by the regional-to-global environmental changes, dramatic urbanization, and shifting in land-use compositions has becoming an important environmental issue in recent years. In the past century, the coverage of urban area in Taipei Basin has dramatically increasing by ten folds. The strengthen of UHI effect significantly enhances the frequency of warm-night effect, and strongly influences the thermal environment of the residents in the Greater Taipei Metropolitan. In addition, the urban expansions due to dramatic increasing in urban populations and traffic loading significantly impacts the air quality and causes health issue in Taipei. In this study, the main objective is to quantify and characterize the temporal and spatial distributions of thermal environmental and air quality in the Greater Taipei Metropolitan Area by using monitoring data from Central Weather Bureau, Environmental Protection Administration. In addition, in this study, we conduct the analysis on the distribution of physiological equivalent temperature in the micro scale in the metropolitan area by using the observation data and quantitative simulation to investigate how the thermal environment is influenced under different conditions. Furthermore, we establish a real-time mobile monitoring system by using wireless sensor network to investigate the correlation between the thermal environment, air quality and other environmental factors, and propose to develop the early warning system for heat stress and air quality in the metropolitan area. The results from this study can be integrated into the management and planning system, and provide sufficient and important background information for the development of smart city in the metropolitan area in the future.
NASA Astrophysics Data System (ADS)
Lee, Hsiang-He; Iraqui, Oussama; Gu, Yefu; Hung-Lam Yim, Steve; Chulakadabba, Apisada; Yiu-Ming Tonks, Adam; Yang, Zhengyu; Wang, Chien
2018-05-01
Severe haze events in Southeast Asia caused by particulate pollution have become more intense and frequent in recent years. Widespread biomass burning occurrences and particulate pollutants from human activities other than biomass burning play important roles in degrading air quality in Southeast Asia. In this study, numerical simulations have been conducted using the Weather Research and Forecasting (WRF) model coupled with a chemistry component (WRF-Chem) to quantitatively examine the contributions of aerosols emitted from fire (i.e., biomass burning) versus non-fire (including fossil fuel combustion, and road dust, etc.) sources to the degradation of air quality and visibility over Southeast Asia. These simulations cover a time period from 2002 to 2008 and are driven by emissions from (a) fossil fuel burning only, (b) biomass burning only, and (c) both fossil fuel and biomass burning. The model results reveal that 39 % of observed low-visibility days (LVDs) can be explained by either fossil fuel burning or biomass burning emissions alone, a further 20 % by fossil fuel burning alone, a further 8 % by biomass burning alone, and a further 5 % by a combination of fossil fuel burning and biomass burning. Analysis of an 24 h PM2.5 air quality index (AQI) indicates that the case with coexisting fire and non-fire PM2.5 can substantially increase the chance of AQI being in the moderate or unhealthy pollution level from 23 to 34 %. The premature mortality in major Southeast Asian cities due to degradation of air quality by particulate pollutants is estimated to increase from ˜ 4110 per year in 2002 to ˜ 6540 per year in 2008. In addition, we demonstrate the importance of certain missing non-fire anthropogenic aerosol sources including anthropogenic fugitive and industrial dusts in causing urban air quality degradation. An experiment of using machine learning algorithms to forecast the occurrence of haze events in Singapore is also explored in this study. All of these results suggest that besides minimizing biomass burning activities, an effective air pollution mitigation policy for Southeast Asia needs to consider controlling emissions from non-fire anthropogenic sources.
Air quality and human health impacts of grasslands and shrublands in the United States
NASA Astrophysics Data System (ADS)
Gopalakrishnan, Varsha; Hirabayashi, Satoshi; Ziv, Guy; Bakshi, Bhavik R.
2018-06-01
Vegetation including canopy, grasslands, and shrublands can directly sequester pollutants onto the plant surface, resulting in an improvement in air quality. Until now, several studies have estimated the pollution removal capacity of canopy cover at the level of a county, but no such work exists for grasslands and shrublands. This work quantifies the air pollution removal capacity of grasslands and shrublands at the county-level in the United States and estimates the human health benefits associated with pollution removal using the i-Tree Eco model. Sequestration of pollutants is estimated based on the Leaf Area Index (LAI) obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) derived dataset estimates of LAI and the percentage land cover obtained from the National Land Cover Database (NLCD) for the year 2010. Calculation of pollution removal capacity using local environmental data indicates that grasslands and shrublands remove a total of 6.42 million tonnes of air pollutants in the United States and the associated monetary benefits total 268 million. Human health impacts and associated monetary value due to pollution removal was observed to be significantly high in urban areas indicating that grasslands and shrublands are equally critical as canopy in improving air quality and human health in urban regions.
Characteristics of selected elements of the air quality management system in urban areas in Poland
NASA Astrophysics Data System (ADS)
Sówka, Izabela; Kobus, Dominik; Chlebowska Styś, Anna; Zathey, Maciej
2017-11-01
Most of Europeans living in cities are exposed to concentrations of air pollutants in excess of the thresholds given in the WHO guidelines and EU legislation. Due to this fact, for the urban air quality systems, the mechanisms of proper information and warning of the inhabitants as well as legal, economic and spatial planning instruments should be improved. The analysis of Polish air quality management system and its' selected components (exemplary measures, information-spreading methods, spatial planning instruments) in four selected Polish cities (Wroclaw, Warsaw, Poznan and Cracow) indicated the need to develop effective solutions, among others, in terms of: emission requirements for combustion of fuels of power of up to 1 MW; admission of high emission fuels on the market; legal and coordination issues at the level of implementation of the area development policy and coordination of activities covering issues within the scope of the structure of planning documents including mainly: ambient air protection programs, spatial developments plans in communes and voivodeships, low emission economy plans, plans of sustainable development of public transport, plans of providing heat, electric power and gas fuels to communes, acts of regional parliaments, introducing limitations based on the Environmental Protection Act and strategies of voivodeship.
Sá, Juliana P; Branco, Pedro T B S; Alvim-Ferraz, Maria C M; Martins, Fernando G; Sousa, Sofia I V
2017-05-31
Indoor air pollution mitigation measures are highly important due to the associated health impacts, especially on children, a risk group that spends significant time indoors. Thus, the main goal of the work here reported was the evaluation of mitigation measures implemented in nursery and primary schools to improve air quality. Continuous measurements of CO₂, CO, NO₂, O₃, CH₂O, total volatile organic compounds (VOC), PM₁, PM 2.5 , PM 10 , Total Suspended Particles (TSP) and radon, as well as temperature and relative humidity were performed in two campaigns, before and after the implementation of low-cost mitigation measures. Evaluation of those mitigation measures was performed through the comparison of the concentrations measured in both campaigns. Exceedances to the values set by the national legislation and World Health Organization (WHO) were found for PM 2.5 , PM 10 , CO₂ and CH₂O during both indoor air quality campaigns. Temperature and relative humidity values were also above the ranges recommended by American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE). In general, pollutant concentrations measured after the implementation of low-cost mitigation measures were significantly lower, mainly for CO₂. However, mitigation measures were not always sufficient to decrease the pollutants' concentrations till values considered safe to protect human health.
Mortality tradeoff between air quality and skin cancer from changes in stratospheric ozone
NASA Astrophysics Data System (ADS)
Eastham, Sebastian D.; Keith, David W.; Barrett, Steven R. H.
2018-03-01
Skin cancer mortality resulting from stratospheric ozone depletion has been widely studied. Similarly, there is a deep body of literature on surface ozone and its health impacts, with modeling and observational studies demonstrating that surface ozone concentrations can be increased when stratospheric air mixes to the Earth’s surface. We offer the first quantitative estimate of the trade-off between these two effects, comparing surface air quality benefits and UV-related harms from stratospheric ozone depletion. Applying an idealized ozone loss term in the stratosphere of a chemistry-transport model for modern-day conditions, we find that each Dobson unit of stratospheric ozone depletion results in a net decrease in the global annual mortality rate of ~40 premature deaths per billion population (d/bn/DU). The impacts are spatially heterogeneous in sign and magnitude, composed of a reduction in premature mortality rate due to ozone exposure of ~80 d/bn/DU concentrated in Southeast Asia, and an increase in skin cancer mortality rate of ~40 d/bn/DU, mostly in Western Europe. This is the first study to quantify air quality benefits of stratospheric ozone depletion, and the first to find that marginal decreases in stratospheric ozone around modern-day values could result in a net reduction in global mortality due to competing health impact pathways. This result, which is subject to significant methodological uncertainty, highlights the need to understand the health and environmental trade-offs involved in policy decisions regarding anthropogenic influences on ozone chemistry over the 21st century.
NASA Astrophysics Data System (ADS)
Newchurch, M.; Al-Saadi, J. A.; Alvarez, R. J.; Burris, J.; Cantrell, W.; Chen, G.; De Young, R.; Hardesty, R.; Hoff, R. M.; Kaye, J. A.; kuang, S.; Langford, A. O.; LeBlanc, T.; McDermid, I. S.; McGee, T. J.; Pierce, R.; Senff, C. J.; Sullivan, J. T.; Szykman, J.; Tonnesen, G.; Wang, L.
2012-12-01
An interagency research initiative for ground-based ozone and aerosol lidar profiling recently funded by NASA has important applications to air-quality studies in addition to the goal of serving the GEO-CAPE and other air-quality missions. Ozone is a key trace-gas species, a greenhouse gas, and an important pollutant in the troposphere. High spatial and temporal variability of ozone affected by various physical and photochemical processes motivates the high spatio-temporal lidar profiling of tropospheric ozone for improving the simulation and forecasting capability of the photochemical/air-quality models, especially in the boundary layer where the resolution and precision of satellite retrievals are fundamentally limited. It is well known that there are large discrepancies between the surface and upper-air ozone due to titration, surface deposition, diurnal processes, free-tropospheric transport, and other processes. Near-ground ozone profiling has been technically challenging for lidars due to some engineering difficulties, such as near-range saturation, field-of-view overlap, and signal processing issues. This initiative provides an opportunity for us to solve those engineering issues and redesign the lidars aimed at long-term, routine ozone/aerosol observations from the near surface to the top of the troposphere at multiple stations (i.e., NASA/GSFC, NASA/LaRC, NASA/JPL, NOAA/ESRL, UAHuntsville) for addressing the needs of NASA, NOAA, EPA and State/local AQ agencies. We will present the details of the science investigations, current status of the instrumentation development, data access/protocol, and the future goals of this lidar network. Ozone lidar/RAQMS comparison of laminar structures.
1984-02-15
Directory ... ....... 42 19. Sample Interval Monitor Graph ................. 46 vi vii LIST OF FIGURES P age I. Example of DATA PROFILE Plot...Final Report, AFGL-TR-81-0130, ADA1? 7879 . PART I. RAW DATA TAPE PROCESSING PROCEDURES. 1.1 EXPERIMENT SAMPLING SEQUENCES Due to the changing...Data Quality 79 QQQQ Packed Eltro Data Quality 80 QQQQQQQQ Packed Luxmeter Data Quality 8i QQOQ Packed Night Path Data Quality P? QQQQQQQ Packed Vis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kent Simmons, J.A.; Knap, A.H.
1991-04-01
The computer model Industrial Source Complex Short Term (ISCST) was used to study the stack emissions from a refuse incinerator proposed for the inland of Bermuda. The model predicts that the highest ground level pollutant concentrations will occur near Prospect, 800 m to 1,000 m due south of the stack. The authors installed a portable laboratory and instruments at Prospect to begin making air quality baseline measurements. By comparing the model's estimates of the incinerator contribution to the background levels measured at the site they predicted that stack emissions would not cause an increase in TSP or SO{sub 2}. Themore » incinerator will be a significant source of HCI to Bermuda air with ambient levels approaching air quality guidelines.« less
Impact of emission control on regional air quality in the Pearl Delta River region, southern China
NASA Astrophysics Data System (ADS)
Wang, N.; Xuejiao, D.
2017-12-01
The Pearl River Delta (PRD) in China has been suffering from air quality issues and the government has implemented a series of strategies in controlling emissions. In an attempt to provide scientific support for improving air quality, the paper investigates the concerning past-to-present air quality data and assesses air quality resulting from emission control. Statistical data revealed that energy consumption doubled from 2004 to 20014 and vehicle usage increased significantly from 2006 to 2014. Due to the effect of control efforts, primary emission of SO2, NOx and PM2.5 decreased resulting in ambient concentrations of SO2, NO2 and PM10 decreased by 66%, 20% and 24%, respectively. However, O3 increased 19% because of the increase of VOC emission. A chemical transport model, the Community Multi-scale Air Quality, was employed to evaluate the responses of nitrate, ammonium, SOA, PM2.5 and O3 to changes in NOx, VOC and NH3 emissions. Three scenarios, a baseline scenario, a CAP scenario (control strength followed as past tendency), and a REF scenario (strict control referred to latest policy and plans), were conducted to investigate the responses and mechanisms. NOx controlling scenarios showed that NOx, nitrate and PM2.5 reduced by 1.8%, 0.7% and 0.2% under CAP and reduced by 7.2%, 1.8% and 0.3% under REF, respectively. The results indicated that reducing NOx emission caused the increase of atmospheric oxidizability, which might result in a compensation of PM2.5 due to the increase of nitrate or sulfate. NH3 controlling scenarios showed that nitrate was sensitive to NH3 emission in PRD, with nitrate decreased by 0 - 10.6% and 0 - 48% under CAP and REF, respectively. Since controlling NH3 emissions not only reduced ammonium but also significantly reduced nitrate, the implement of NH3 controlling strategy was highly suggested. The VOC scenarios revealed that though SOA was not the major component of PM2.5, controlling VOC emission might take effect in southwestern PRD where photochemical pollution usually occurred. Last but not least, the responses of O3 indicated that the PRD was generally VOC-sensitive, while the regime turned to NOx-sensitive in the afternoon, therefore controlling VOC emission could reduce the overall O3 and controlling NOx emission in the afternoon could reduce peak O3.
Cleary, Erika; Asher, Mary; Olawoyin, Richard; Zhang, Kuangyuan
2017-11-01
Ambient air pollution is a public health issue which could potentially exacerbate pre-existing respiratory conditions and contribute to increases in asthma incidence. This study aims to address gaps in understanding how IAQ is impacted by outdoor air quality, which was done by sampling for indoor gaseous and particulate pollutants in residence and facilities near the sources of pollution. The study areas were selected due to non-attainment status with air quality standards, as well as demographic and socioeconomic status of those residing in these areas. Samples are obtained from five locations around the study areas. The sampling procedure involves active sampling methodologies for particulate matter (PM) and gases. Average volatile organic compounds (VOC) levels of 2.71 ppm were measured at a location, while the average particulate matter (PM) concentrations in three study locations were; 15,979 pt/cc, 9533 pt/cc, 5267 pt/cc respectively, which exceeded clean background environment level of 500-2000 pt/cc. All locations had average CO concentrations above 0.3 ppm, which is potentially associated with elevated asthma symptoms. Results demonstrated that facilities in the study area have increased levels of indoor air pollutants that potentially increase asthma and respiratory issues. The study concludes that particulate and gaseous pollutant levels in the study areas are a concerning human health issue. The study outcomes have significant implications for air quality exposure modeling and potential exposure mitigation strategies, which are expected to facilitate the implementation of public policies for improved human health conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chervenkov, Hristo
2013-12-01
An appropriate method for evaluating the air quality of a certain area is to contrast the actual air pollution levels to the critical ones, prescribed in the legislative standards. The application of numerical simulation models for assessing the real air quality status is allowed by the legislation of the European Community (EC). This approach is preferable, especially when the area of interest is relatively big and/or the network of measurement stations is sparse, and the available observational data are scarce, respectively. Such method is very efficient for similar assessment studies due to continuous spatio-temporal coverage of the obtained results. In the study the values of the concentration of the harmful substances sulphur dioxide, (SO2), nitrogen dioxide (NO2), particulate matter - coarse (PM10) and fine (PM2.5) fraction, ozone (O3), carbon monoxide (CO) and ammonia (NH3) in the surface layer obtained from modelling simulations with resolution 10 km on hourly bases are taken to calculate the necessary statistical quantities which are used for comparison with the corresponding critical levels, prescribed in the EC directives. For part of them (PM2.5, CO and NH3) this is done for first time with such resolution. The computational grid covers Bulgaria entirely and some surrounding territories and the calculations are made for every year in the period 1991-2000. The averaged over the whole time slice results can be treated as representative for the air quality situation of the last decade of the former century.
Li, Haowen; Wang, Baomin; Fang, Xingqin; Zhu, Wei; Fan, Qi; Liao, Zhiheng; Liu, Jian; Zhang, Asi; Fan, Shaojia
2018-03-01
Atmospheric boundary layer (ABL) has a significant impact on the spatial and temporal distribution of air pollutants. In order to gain a better understanding of how ABL affects the variation of air pollutants, atmospheric boundary layer observations were performed at Sanshui in the Pearl River Delta (PRD) region over southern China during the winter of 2013. Two types of typical ABL status that could lead to air pollution were analyzed comparatively: weak vertical diffusion ability type (WVDAT) and weak horizontal transportation ability type (WHTAT). Results show that (1) WVDAT was featured by moderate wind speed, consistent wind direction, and thick inversion layer at 600~1000 m above ground level (AGL), and air pollutants were restricted in the low altitudes due to the stable atmospheric structure; (2) WHTAT was characterized by calm wind, varied wind direction, and shallow intense ground inversion layer, and air pollutants accumulated in locally because of strong recirculation in the low ABL; (3) recirculation factor (RF) and stable energy (SE) were proved to be good indicators for horizontal transportation ability and vertical diffusion ability of the atmosphere, respectively. Combined utilization of RF and SE can be very helpful in the evaluation of air pollution potential of the ABL. Air quality data from ground and meteorological data collected from radio sounding in Sanshui in the Pearl River Delta showed that local air quality was poor when wind reversal was pronounced or temperature stratification state was stable. The combination of horizontal and vertical transportation ability of the local atmosphere should be taken into consideration when evaluating local environmental bearing capacity for air pollution.
AIR QUALITY OVER THE EASTERN UNITED STATES
Atmospheric concentrations of ozone and fine particulate matter continue to exceed their standards in many parts of the eastern United States. However, the peak concentration levels and number of ozone exceedances have decreased substantially in recent years due, in part, to the...
Developing an Interactive Machine-Learning-based Approach for Sidewalk Digitalization
DOT National Transportation Integrated Search
2018-01-01
In urban areas, many socio-economic concerns have been raised regarding fatal collisions, traffic congestion, and deteriorated air quality due to increased travel and logistic demands as well as the existing on-road transportation systems. As one of ...
Health effects of indoor odorants.
Cone, J E; Shusterman, D
1991-01-01
People assess the quality of the air indoors primarily on the basis of its odors and on their perception of associated health risk. The major current contributors to indoor odorants are human occupant odors (body odor), environmental tobacco smoke, volatile building materials, bio-odorants (particularly mold and animal-derived materials), air fresheners, deodorants, and perfumes. These are most often present as complex mixtures, making measurement of the total odorant problem difficult. There is no current method of measuring human body odor, other than by human panel studies of expert judges of air quality. Human body odors have been quantitated in terms of the "olf" which is the amount of air pollution produced by the average person. Another quantitative unit of odorants is the "decipol," which is the perceived level of pollution produced by the average human ventilated by 10 L/sec of unpolluted air or its equivalent level of dissatisfaction from nonhuman air pollutants. The standard regulatory approach, focusing on individual constituents or chemicals, is not likely to be successful in adequately controlling odorants in indoor air. Besides the current approach of setting minimum ventilation standards to prevent health effects due to indoor air pollution, a standard based on the olf or decipol unit might be more efficacious as well as simpler to measure. PMID:1821378
Assessing uncertain human exposure to ambient air pollution using environmental models in the Web
NASA Astrophysics Data System (ADS)
Gerharz, L. E.; Pebesma, E.; Denby, B.
2012-04-01
Ambient air quality can have significant impact on human health by causing respiratory and cardio-vascular diseases. Thereby, the pollutant concentration a person is exposed to can differ considerably between individuals depending on their daily routine and movement patterns. Using a straight forward approach this exposure can be estimated by integration of individual space-time paths and spatio-temporally resolved ambient air quality data. To allow a realistic exposure assessment, it is furthermore important to consider uncertainties due to input and model errors. In this work, we present a generic, web-based approach for estimating individual exposure by integration of uncertain position and air quality information implemented as a web service. Following the Model Web initiative envisioning an infrastructure for deploying, executing and chaining environmental models as services, existing models and data sources for e.g. air quality, can be used to assess exposure. Therefore, the service needs to deal with different formats, resolutions and uncertainty representations provided by model or data services. Potential mismatch can be accounted for by transformation of uncertainties and (dis-)aggregation of data under consideration of changes in the uncertainties using components developed in the UncertWeb project. In UncertWeb, the Model Web vision is extended to an Uncertainty-enabled Model Web, where services can process and communicate uncertainties in the data and models. The propagation of uncertainty to the exposure results is quantified using Monte Carlo simulation by combining different realisations of positions and ambient concentrations. Two case studies were used to evaluate the developed exposure assessment service. In a first study, GPS tracks with a positional uncertainty of a few meters, collected in the urban area of Münster, Germany were used to assess exposure to PM10 (particulate matter smaller 10 µm). Air quality data was provided by an uncertainty-enabled air quality model system which provided realisations of concentrations per hour on a 250 m x 250 m resolved grid over Münster. The second case study uses modelled human trajectories in Rotterdam, The Netherlands. The trajectories were provided as realisations in 15 min resolution per 4 digit postal code from an activity model. Air quality estimates were provided for different pollutants as ensembles by a coupled meteorology and air quality model system on a 1 km x 1 km grid with hourly resolution. Both case studies show the successful application of the service to different resolutions and uncertainty representations.
Lonati, Giovanni; Cernuschi, Stefano; Sidi, Shelina
2010-12-01
This work is intended to assess the impact on local air quality due to atmospheric emissions from port area activities for a new port in project in the Mediterranean Sea. The sources of air pollutants in the harbour area are auxiliary engines used by ships at berth during loading/offloading operations. A fleet activity-based methodology is first applied to evaluate annual pollutant emissions (NO(X), SO(X), PM, CO and VOC) based on vessel traffic data, ships tonnage and in-port hotelling time for loading/offloading operations. The 3-dimensional Calpuff transport and dispersion model is then applied for the subsequent assessment of the ground level spatial distribution of atmospheric pollutants for both long-term and short-term averaging times. Compliance with current air quality standards in the port area is finally evaluated and indications for port operation are provided. Some methodological aspects of the impact assessment procedure, namely those concerning the steps of emission scenario definitions and model simulations set-up at the project stage, are specifically addressed, suggesting a pragmatic approach for similar evaluations for small new ports in project. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Soret, A.; Guevara, M.; Baldasano, J. M.
2014-12-01
This work analyses the potential air quality improvements resulting from three fleet electrification scenarios (∼13, 26 and 40%) by replacing conventional vehicles with Electric Battery Vehicles (EBVs), Plug-in Hybrid Electric Vehicles (PHEVs) and Hybrid Electric Vehicles (HEVs). This study has been performed for the cities of Barcelona and Madrid (Spain), where road transport is the primary emission source. In these urban areas, several air quality problems are present, mainly related to NO2 and particulate matter. The WRF-ARW/HERMESv2/CMAQ model system has been applied at high spatial (1 × 1 km2) and temporal (1 h) resolution. The results show that fleet electrification offers a potential for emission abatement, especially related to NOx and CO. Regarding the more ambitious scenario (∼40% fleet electrification), reductions of 11% and 17% of the total NOx emissions are observed in Barcelona and Madrid respectively. These emissions reductions involve air quality improvements in NO2 maximum hourly values up to 16%: reductions up to 30 and 35 μg m-3 in Barcelona and Madrid, respectively. Furthermore, an additional scenario has been defined considering electric generation emissions associated with EBVs and PHEVs charging from a combined-cycle power plant. These charging emissions would produce slight NO2 increases in the downwind areas of <3 μg m-3. Thus, fleet electrification would improve urban air quality even when considering emissions associated with charging electric vehicles. However, two further points should be considered. First, fleet electrification cannot be considered a unique solution, and other management strategies may be defined. This is especially important with respect to particulate matter emissions, which are not significantly reduced by fleet electrification (<5%) due to the high weight of non-exhaust emissions. Second, a significant introduction of electric vehicles (26-40%) involving all vehicle categories is required to improve urban air quality.
Uncertainty in exposure to air pollution
NASA Astrophysics Data System (ADS)
Pebesma, Edzer; Helle, Kristina; Christoph, Stasch; Rasouli, Soora; Timmermans, Harry; Walker, Sam-Erik; Denby, Bruce
2013-04-01
To assess exposure to air pollution for a person or for a group of people, one needs to know where the person or group is as a function of time, and what the air pollution is at these times and locations. In this study we used the Albatross activity-based model to assess the whereabouts of people and the uncertainties in this, and a probabilistic air quality system based on TAPM/EPISODE to assess air quality probabilistically. The outcomes of the two models were combined to assess exposure to air pollution, and the errors in it. We used the area around Rotterdam (Netherlands) as a case study. As the outcomes of both models come as Monte Carlo realizations, it was relatively easy to cancel one of the sources of uncertainty (movement of persons, air pollution) in order to identify their respective contributions, and also to compare evaluations for individuals with averages for a population of persons. As the output is probabilistic, and in addition spatially and temporally varying, the visual analysis of the complete results poses some challenges. This case study was one of the test cases in the UncertWeb project, which has built concepts and tools to realize the uncertainty-enabled model web. Some of the tools and protocols will be shown and evaluated in this presentation. For the uncertainty of exposure, the uncertainty of air quality was more important than the uncertainty of peoples locations. This difference was stronger for PM10 than for NO2. The workflow was implemented as generic Web services in UncertWeb that also allow for other inputs than the simulated activity schedules and air quality with other resolution. However, due to this flexibility, the Web services require standardized formats and the overlay algorithm is not optimized for the specific use case resulting in a data and processing overhead. Hence, we implemented the full analysis in parallel in R, for this specific case as the model web solution had difficulties with massive data.
Description and evaluation of the Community Multiscale Air ...
The Community Multiscale Air Quality (CMAQ) model is a comprehensive multipollutant air quality modeling system developed and maintained by the US Environmental Protection Agency's (EPA) Office of Research and Development (ORD). Recently, version 5.1 of the CMAQ model (v5.1) was released to the public, incorporating a large number of science updates and extended capabilities over the previous release version of the model (v5.0.2). These updates include the following: improvements in the meteorological calculations in both CMAQ and the Weather Research and Forecast (WRF) model used to provide meteorological fields to CMAQ, updates to the gas and aerosol chemistry, revisions to the calculations of clouds and photolysis, and improvements to the dry and wet deposition in the model. Sensitivity simulations isolating several of the major updates to the modeling system show that changes to the meteorological calculations result in enhanced afternoon and early evening mixing in the model, periods when the model historically underestimates mixing. This enhanced mixing results in higher ozone (O3) mixing ratios on average due to reduced NO titration, and lower fine particulate matter (PM2. 5) concentrations due to greater dilution of primary pollutants (e.g., elemental and organic carbon). Updates to the clouds and photolysis calculations greatly improve consistency between the WRF and CMAQ models and result in generally higher O3 mixing ratios, primarily due to reduced
LaSVM-based big data learning system for dynamic prediction of air pollution in Tehran.
Ghaemi, Z; Alimohammadi, A; Farnaghi, M
2018-04-20
Due to critical impacts of air pollution, prediction and monitoring of air quality in urban areas are important tasks. However, because of the dynamic nature and high spatio-temporal variability, prediction of the air pollutant concentrations is a complex spatio-temporal problem. Distribution of pollutant concentration is influenced by various factors such as the historical pollution data and weather conditions. Conventional methods such as the support vector machine (SVM) or artificial neural networks (ANN) show some deficiencies when huge amount of streaming data have to be analyzed for urban air pollution prediction. In order to overcome the limitations of the conventional methods and improve the performance of urban air pollution prediction in Tehran, a spatio-temporal system is designed using a LaSVM-based online algorithm. Pollutant concentration and meteorological data along with geographical parameters are continually fed to the developed online forecasting system. Performance of the system is evaluated by comparing the prediction results of the Air Quality Index (AQI) with those of a traditional SVM algorithm. Results show an outstanding increase of speed by the online algorithm while preserving the accuracy of the SVM classifier. Comparison of the hourly predictions for next coming 24 h, with those of the measured pollution data in Tehran pollution monitoring stations shows an overall accuracy of 0.71, root mean square error of 0.54 and coefficient of determination of 0.81. These results are indicators of the practical usefulness of the online algorithm for real-time spatial and temporal prediction of the urban air quality.
Kumoro, Andri Cahyo; Sasongko, Setia Budi; Utari, Febiani Dwi
2018-01-01
The utilisation of roselle (Hibiscus sabdariffa L.) calyx as a source of anthocyanins has been explored through intensive investigations. Due to its perishable property, the transformation of roselle calyces into dried extract without reducing their quality is highly challenging. The aim of this work was to study the effect of air temperatures and relative humidity on the kinetics and product quality during drying of roselle extract foamed with ovalbumin and glycerol monostearate (GMS). The results showed that foam mat drying increased the drying rate significantly and retained the antioxidant activity and colour of roselle calyces extract. Shorter drying time was achieved when higher air temperature and/or lower relative humidity was used. Foam mat drying produced dried brilliant red roselle calyces extract with better antioxidant activity and colour qualities when compared with nonfoam mat drying. The results showed the potential for retaining the roselle calyces extract quality under suggested drying conditions. PMID:29755991
Djaeni, Mohamad; Kumoro, Andri Cahyo; Sasongko, Setia Budi; Utari, Febiani Dwi
2018-01-01
The utilisation of roselle ( Hibiscus sabdariffa L.) calyx as a source of anthocyanins has been explored through intensive investigations. Due to its perishable property, the transformation of roselle calyces into dried extract without reducing their quality is highly challenging. The aim of this work was to study the effect of air temperatures and relative humidity on the kinetics and product quality during drying of roselle extract foamed with ovalbumin and glycerol monostearate (GMS). The results showed that foam mat drying increased the drying rate significantly and retained the antioxidant activity and colour of roselle calyces extract. Shorter drying time was achieved when higher air temperature and/or lower relative humidity was used. Foam mat drying produced dried brilliant red roselle calyces extract with better antioxidant activity and colour qualities when compared with nonfoam mat drying. The results showed the potential for retaining the roselle calyces extract quality under suggested drying conditions.
Nature of air pollution, emission sources, and management in the Indian cities
NASA Astrophysics Data System (ADS)
Guttikunda, Sarath K.; Goel, Rahul; Pant, Pallavi
2014-10-01
The global burden of disease study estimated 695,000 premature deaths in 2010 due to continued exposure to outdoor particulate matter and ozone pollution for India. By 2030, the expected growth in many of the sectors (industries, residential, transportation, power generation, and construction) will result in an increase in pollution related health impacts for most cities. The available information on urban air pollution, their sources, and the potential of various interventions to control pollution, should help us propose a cleaner path to 2030. In this paper, we present an overview of the emission sources and control options for better air quality in Indian cities, with a particular focus on interventions like urban public transportation facilities; travel demand management; emission regulations for power plants; clean technology for brick kilns; management of road dust; and waste management to control open waste burning. Also included is a broader discussion on key institutional measures, like public awareness and scientific studies, necessary for building an effective air quality management plan in Indian cities.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-22
... that could be due to industry or marine traffic or due to atmospheric transport of emissions from other....13 0.82 St. John Point Sources--generators 1.05 0.60 St. Thomas--all sources (inc. WAPA) 0.62 0.38 St... ** St. John On-road Vehicle Tailpipe Emissions...... 0.12 0.11 St. John Residential Hot Water Heating 0...
Environmental public health dimensions of shale and tight gas development.
Shonkoff, Seth B C; Hays, Jake; Finkel, Madelon L
2014-08-01
The United States has experienced a boom in natural gas production due to recent technological innovations that have enabled this resource to be produced from shale formations. We reviewed the body of evidence related to exposure pathways in order to evaluate the potential environmental public health impacts of shale gas development. We highlight what is currently known and identify data gaps and research limitations by addressing matters of toxicity, exposure pathways, air quality, and water quality. There is evidence of potential environmental public health risks associated with shale gas development. Several studies suggest that shale gas development contributes to ambient air concentrations of pollutants known to be associated with increased risk of morbidity and mortality. Similarly, an increasing body of studies suggest that water contamination risks exist through a variety of environmental pathways, most notably during wastewater transport and disposal, and via poor zonal isolation of gases and fluids due to structural integrity impairment of cement in gas wells. Despite a growing body of evidence, data gaps persist. Most important, there is a need for more epidemiological studies to assess associations between risk factors, such as air and water pollution, and health outcomes among populations living in close proximity to shale gas operations.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-25
...] Approval of Air Quality Implementation Plans; California; El Dorado County Air Quality Management District... California for the El Dorado County Air Quality Management District (EDAQMD) portion of the California SIP... 24, 1987 Federal Register, May 25, 1988, U.S. EPA, Air Quality Management Division, Office of Air...
The Simulations of Wildland Fire Smoke PM25 in the NWS Air Quality Forecasting Systems
NASA Astrophysics Data System (ADS)
Huang, H. C.; Pan, L.; McQueen, J.; Lee, P.; ONeill, S. M.; Ruminski, M.; Shafran, P.; Huang, J.; Stajner, I.; Upadhayay, S.; Larkin, N. K.
2017-12-01
The increase of wildland fire intensity and frequency in the United States (U.S.) has led to property loss, human fatality, and poor air quality due to elevated particulate matters and surface ozone concentrations. The NOAA/National Weather Service (NWS) built the National Air Quality Forecast Capability (NAQFC) based on the U.S. Environmental Protection Agency (EPA) Community Multi-scale Air Quality (CMAQ) Modeling System driven by the NCEP North American Mesoscale Forecast System meteorology to provide ozone and fine particulate matter (PM2.5) forecast guidance publicly. State and local forecasters use the NWS air quality forecast guidance to issue air quality alerts in their area. The NAQFC PM2.5 predictions include emissions from anthropogenic and biogenic sources, as well as natural sources such as dust storms and wildland fires. The wildland fire emission inputs to the NAQFC is derived from the NOAA National Environmental Satellite, Data, and Information Service Hazard Mapping System fire and smoke detection product and the emission module of the U.S. Forest Service (USFS) BlueSky Smoke Modeling Framework. Wildland fires are unpredictable and can be ignited by natural causes such as lightning or be human-caused. It is extremely difficult to predict future occurrences and behavior of wildland fires, as is the available bio-fuel to be burned for real-time air quality predictions. Assumptions of future day's wildland fire behavior often have to be made from older observed wildland fire information. The comparisons between the NAQFC modeled PM2.5 and the EPA AirNow surface observation show that large errors in PM2.5 prediction can occur if fire smoke emissions are sometimes placed at the wrong location and/or time. A configuration of NAQFC CMAQ-system to re-run previous 24 hours, during which wildland fires were observed from satellites has been included recently. This study focuses on the effort performed to minimize the error in NAQFC PM2.5 predictions resulting from incorporating fire smoke emissions into the NAQFC from a recently updated newer version of USFS BlueSky system. This study will show how new approaches has improved the PM2.5 predictions at both nearby and downstream areas from fire sources. Furthermore, Environment and Climate Change Canada (ECCC) fire emissions data are being tested.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-26
... the California State Implementation Plan, Northern Sierra Air Quality Management District, Sacramento Metropolitan Air Quality Management District, and South Coast Air Quality Management District AGENCY... the Northern Sierra Air Quality Management District (NSAQMD), Sacramento Metropolitan Air Quality...
NASA Technical Reports Server (NTRS)
Diamante, J. M.; Englar, T. S., Jr.; Jazwinski, A. H.
1977-01-01
Estimation theory, which originated in guidance and control research, is applied to the analysis of air quality measurements and atmospheric dispersion models to provide reliable area-wide air quality estimates. A method for low dimensional modeling (in terms of the estimation state vector) of the instantaneous and time-average pollutant distributions is discussed. In particular, the fluctuating plume model of Gifford (1959) is extended to provide an expression for the instantaneous concentration due to an elevated point source. Individual models are also developed for all parameters in the instantaneous and the time-average plume equations, including the stochastic properties of the instantaneous fluctuating plume.
Indoor air quality at the Correr Museum, Venice, Italy.
Camuffo, D; Brimblecombe, P; Van Grieken, R; Busse, H J; Sturaro, G; Valentino, A; Bernardi, A; Blades, N; Shooter, D; De Bock, L; Gysels, K; Wieser, M; Kim, O
1999-09-15
Two multidisciplinary field surveys, one in winter and the other in summer have monitored the indoor microclimate, air pollution, deposition and origin of the suspended particulate matter and microorganisms of the Correr Museum, Venice. In addition, this study was focused to identify the problems caused by the heating and air conditioning system (HAC) and the effects due to the presence of carpets. Heating and air conditioning systems (HACs), when chiefly designed for human welfare, are not suitable for conservation and can cause dangerous temperature and humidity fluctuations. Improvements at the Correr Museum have been achieved with the assistance of environmental monitoring. The carpet has a negative influence as it retains particles and bacteria which are resuspended each time people walk on it. The indoor/outdoor pollutants ratio is greater in the summertime, when doors and windows are more frequently open to allow for better ventilation, illustrating that this ratio is mainly governed by the free exchange of the air masses. The chemical composition, size and origin of the suspended particulate matter have been identified, as well as the bacteria potentially dangerous to the paintings. Some general suggestions for improving indoor air quality are reported in the conclusions.
The effect of future outdoor air pollution on human health and the contribution of climate change
NASA Astrophysics Data System (ADS)
Silva, R.; West, J. J.; Lamarque, J.; Shindell, D.; Collins, W.; Dalsoren, S. B.; Faluvegi, G. S.; Folberth, G.; Horowitz, L. W.; Nagashima, T.; Naik, V.; Rumbold, S.; Skeie, R.; Sudo, K.; Takemura, T.; Bergmann, D. J.; Cameron-Smith, P. J.; Cionni, I.; Doherty, R. M.; Eyring, V.; Josse, B.; MacKenzie, I. A.; Plummer, D.; Righi, M.; Stevenson, D. S.; Strode, S. A.; Szopa, S.; Zeng, G.
2013-12-01
At present, exposure to outdoor air pollution from ozone and fine particulate matter (PM2.5) causes over 2 million deaths per year, due to respiratory and cardiovascular diseases and lung cancer. Future ambient concentrations of ozone and PM2.5 will be affected by both air pollutant emissions and climate change. Here we estimate the potential impact of future outdoor air pollution on premature human mortality, and isolate the contribution of future climate change due to its effect on air quality. We use modeled present-day (2000) and future global ozone and PM2.5 concentrations from simulations with an ensemble of chemistry-climate models from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Future air pollution was modeled for global greenhouse gas and air pollutant emissions in the four IPCC AR5 Representative Concentration Pathway (RCP) scenarios, for 2030, 2050 and 2100. All model outputs are regridded to a common 0.5°x0.5° horizontal resolution. Future premature mortality is estimated for each RCP scenario and year based on changes in concentrations of ozone and PM2.5 relative to 2000. Using a health impact function, changes in concentrations for each RCP scenario are combined with future population and cause-specific baseline mortality rates as projected by a single independent scenario in which the global incidence of cardiopulmonary diseases is expected to increase. The effect of climate change is isolated by considering the difference between air pollutant concentrations from simulations with 2000 emissions and a future year climate and simulations with 2000 emissions and climate. Uncertainties in the results reflect the uncertainty in the concentration-response function and that associated with variability among models. Few previous studies have quantified the effects of future climate change on global human health via changes in air quality, and this is the first such study to use an ensemble of global models.
Impact of Atmospheric Infrared Sounder (AIRS) Thermodynamic Profiles on Regional Weather Forecasting
NASA Technical Reports Server (NTRS)
Chou, Shih-Hung; Zavodsky, Bradley T.; Jedlovee, Gary J.
2010-01-01
In data sparse regions, remotely-sensed observations can be used to improve analyses and lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles with accuracy comparable to that of radiosondes. The purpose of this paper is to describe a procedure to assimilate AIRS thermodynamic profile data into a regional configuration of the Advanced Research Weather Research and Forecasting (WRF-ARW) model using its three-dimension variational (3DVAR) analysis component (WRF-Var). Quality indicators are used to select only the highest quality temperature and moisture profiles for assimilation in both clear and partly cloudy regions. Separate error characteristics for land and water profiles are also used in the assimilation process. Assimilation results indicate that AIRS profiles produce an analysis closer to in situ observations than the background field. Forecasts from a 37-day case study period in the winter of 2007 show that AIRS profile data can lead to improvements in 6-h cumulative precipitation forecasts due to instability added in the forecast soundings by the AIRS profiles. Additionally, in a convective heavy rainfall event from February 2007, assimilation of AIRS profiles produces a more unstable boundary layer resulting in enhanced updrafts in the model. These updrafts produce a squall line and precipitation totals that more closely reflect ground-based observations than a no AIRS control forecast. The location of available high-quality AIRS profiles ahead of approaching storm systems is found to be of paramount importance to the amount of impact the observations will have on the resulting forecasts.
The Co-benefits of Domestic and Foreign GHG Mitigation on US Air Quality
NASA Astrophysics Data System (ADS)
Zhang, Y.; Bowden, J.; Adelman, Z.; Naik, V.; Horowitz, L. W.; West, J. J.
2013-12-01
Authors: Yuqiang Zhang1, Jared Bowden2 , Zachariah Adelman1,2, Vaishali Naik3, Larry W. Horowitz4 , J. Jason West1 1 University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 2 Institute for the Environment, Chapel Hill, NC 27599 3 UCAR/NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ 08540 4 NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ 08540 Abstract: Actions to mitigate greenhouse gas (GHG) emissions will reduce co-emitted air pollutants, which can immediately affect air quality; slowing climate change through GHG mitigation also influences air quality in the long term. We previously used a global model (MOZART-4) to show that global GHG mitigation will have significant co-benefits for air quality and human health. In doing so, we contrasted the Representative Concentration Pathway Scenario 4.5 (RCP4.5), treated as a GHG mitigation scenario, with its associated reference case scenario (REF). Using these same scenarios, we investigate here the air quality co-benefits due to domestic GHGs mitigation in the US alone at fine resolution, and compare these co-benefits with those resulting from foreign GHG mitigation. This work focuses on downscaling the meteorology and air pollutant chemistry to the US scale. We use the latest Weather Research and Forecasting (WRF) model as a Regional Climate Model (RCM) to dynamically downscale the GFDL AM3 Global Climate Model (GCM) over the US at 36 km resolution, in 2000 and 2050. The 2000 simulation will be compared with the multi-year surface observation data, satellite data, and all simulations with the GCM simulation. These simulations will be used as inputs for the newest Community Multiscale Air Quality (CMAQ) modeling system. Initial conditions (IC) and dynamic boundary conditions (BC) for CMAQ will be derived from the global MOZART-4 simulations. Anthropogenic emissions for the REF and RCP4.5 scenarios will be processed through SMOKE to prepare temporally- and spatially-resolved emission files. We will evaluate the co-benefits of GHG mitigation by changing the meteorological and air pollutant emissions inputs for RCP4.5 and REF, as well as the fixed methane level, and will separate the co-benefits of domestic vs. foreign GHG mitigation by using RCP4.5 emissions in the US only, but REF boundary conditions and REF emissions elsewhere.
Ambient Air Quality Data Inventory
The Office of Air and Radiation's (OAR) Ambient Air Quality Data (Current) contains ambient air pollution data collected by EPA, other federal agencies, as well as state, local, and tribal air pollution control agencies. Its component data sets have been collected over the years from approximately 10,000 monitoring sites, of which approximately 5,000 are currently active. OAR's Office of Air Quality Planning and Standards (OAQPS) and other internal and external users, rely on this data to assess air quality, assist in Attainment/Non-Attainment designations, evaluate State Implementation Plans for Non-Attainment Areas, perform modeling for permit review analysis, and other air quality management functions. Air quality information is also used to prepare reports for Congress as mandated by the Clean Air Act. This data covers air quality data collected after 1980, when the Clean Air Act requirements for monitoring were significantly modified. Air quality data from the Agency's early years (1970s) remains available (see OAR PRIMARY DATA ASSET: Ambient Air Quality Data -- Historical), but because of technical and definitional differences the two data assets are not directly comparable. The Clean Air Act of 1970 provided initial authority for monitoring air quality for Conventional Air Pollutants (CAPs) for which EPA has promulgated National Ambient Air Quality Standards (NAAQS). Requirements for monitoring visibility-related parameters were added in 1977. Requiremen
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-23
... Promulgation of Air Quality Implementation Plans; Illinois; Air Quality Standards Revision AGENCY... Illinois state implementation plan (SIP) to reflect current National Ambient Air Quality Standards (NAAQS... Implementation Plan at 35 Illinois Administrative Code part 243, which updates National Ambient Air Quality...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-26
... Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality Standards AGENCY... Ohio Administrative Code (OAC) relating to the consolidation of Ohio's Ambient Air Quality Standards... apply to Ohio's SIP. Incorporating the air quality standards into Ohio's SIP helps assure that...
NASA Astrophysics Data System (ADS)
Yahya, Khairunnisa; Campbell, Patrick; Zhang, Yang
2017-03-01
Following a comprehensive model evaluation, this Part II paper presents projected changes in future (2046-2055) climate, air quality, and their interactions under the RCP4.5 and RCP8.5 scenarios using the Weather, Research and Forecasting model with Chemistry (WRF/Chem). In general, both WRF/Chem RCP4.5 and RCP8.5 simulations predict similar increases on average (∼2 °C) for 2-m temperature (T2) but different spatial distributions of the projected changes in T2, 2-m relative humidity, 10-m wind speed, precipitation, and planetary boundary layer height, due to differences in the spatial distributions of projected emissions, and their feedbacks into climate. Future O3 mixing ratios will decrease for most parts of the U.S. under the RCP4.5 scenario but increase for all areas under the RCP8.5 scenario due to higher projected temperature, greenhouse gas concentrations and biogenic volatile organic compounds (VOC) emissions, higher O3 values for boundary conditions, and disbenefit of NOx reduction and decreased NO titration over VOC-limited O3 chemistry regions. Future PM2.5 concentrations will decrease for both RCP4.5 and RCP8.5 scenarios with different trends in projected concentrations of individual PM species. Total cloud amounts decrease under both scenarios in the future due to decreases in PM and cloud droplet number concentration thus increased radiation. Those results illustrate the impacts of carbon policies with different degrees of emission reductions on future climate and air quality. The WRF/Chem and WRF simulations show different spatial patterns for projected changes in T2 for future decade, indicating different impacts of prognostic and prescribed gas/aerosol concentrations, respectively, on climate change.
How Clean is your Local Air? Here's an app for that
NASA Astrophysics Data System (ADS)
Maskey, M.; Yang, E.; Christopher, S. A.; Keiser, K.; Nair, U. S.; Graves, S. J.
2011-12-01
Air quality is a vital element of our environment. Accurate and localized air quality information is critical for characterizing environmental impacts at the local and regional levels. Advances in location-aware handheld devices and air quality modeling have enabled a group of UAHuntsville scientists to develop a mobile app, LocalAQI, that informs users of current conditions and forecasts of up to twenty-four hours, of air quality indices. The air quality index is based on Community Multiscale Air Quality Modeling System (CMAQ). UAHuntsville scientists have used satellite remote sensing products as inputs to CMAQ, resulting in forecast guidance for particulate matter air quality. The CMAQ output is processed to compute a standardized air quality index. Currently, the air quality index is available for the eastern half of the United States. LocalAQI consists of two main views: air quality index view and map view. The air quality index view displays current air quality for the zip code of a location of interest. Air quality index value is translated into a color-coded advisory system. In addition, users are able to cycle through available hourly forecasts for a location. This location-aware app defaults to the current air quality of user's location. The map view displays color-coded air quality information for the eastern US with an ability to animate through the available forecasts. The app is developed using a cross-platform native application development tool, appcelerator; hence LocalAQI is available for iOS and Android-based phones and pads.
Principal Component Analysis for Enhancement of Infrared Spectra Monitoring
NASA Astrophysics Data System (ADS)
Haney, Ricky Lance
The issue of air quality within the aircraft cabin is receiving increasing attention from both pilot and flight attendant unions. This is due to exposure events caused by poor air quality that in some cases may have contained toxic oil components due to bleed air that flows from outside the aircraft and then through the engines into the aircraft cabin. Significant short and long-term medical issues for aircraft crew have been attributed to exposure. The need for air quality monitoring is especially evident in the fact that currently within an aircraft there are no sensors to monitor the air quality and potentially harmful gas levels (detect-to-warn sensors), much less systems to monitor and purify the air (detect-to-treat sensors) within the aircraft cabin. The specific purpose of this research is to utilize a mathematical technique called principal component analysis (PCA) in conjunction with principal component regression (PCR) and proportionality constant calculations (PCC) to simplify complex, multi-component infrared (IR) spectra data sets into a reduced data set used for determination of the concentrations of the individual components. Use of PCA can significantly simplify data analysis as well as improve the ability to determine concentrations of individual target species in gas mixtures where significant band overlap occurs in the IR spectrum region. Application of this analytical numerical technique to IR spectrum analysis is important in improving performance of commercial sensors that airlines and aircraft manufacturers could potentially use in an aircraft cabin environment for multi-gas component monitoring. The approach of this research is two-fold, consisting of a PCA application to compare simulation and experimental results with the corresponding PCR and PCC to determine quantitatively the component concentrations within a mixture. The experimental data sets consist of both two and three component systems that could potentially be present as air contaminants in an aircraft cabin. In addition, experimental data sets are analyzed for a hydrogen peroxide (H2O2) aqueous solution mixture to determine H2O2 concentrations at various levels that could be produced during use of a vapor phase hydrogen peroxide (VPHP) decontamination system. After the PCA application to two and three component systems, the analysis technique is further expanded to include the monitoring of potential bleed air contaminants from engine oil combustion. Simulation data sets created from database spectra were utilized to predict gas components and concentrations in unknown engine oil samples at high temperatures as well as time-evolved gases from the heating of engine oils.
Air quality implications of the Deepwater Horizon oil spill.
Middlebrook, Ann M; Murphy, Daniel M; Ahmadov, Ravan; Atlas, Elliot L; Bahreini, Roya; Blake, Donald R; Brioude, Jerome; de Gouw, Joost A; Fehsenfeld, Fred C; Frost, Gregory J; Holloway, John S; Lack, Daniel A; Langridge, Justin M; Lueb, Rich A; McKeen, Stuart A; Meagher, James F; Meinardi, Simone; Neuman, J Andrew; Nowak, John B; Parrish, David D; Peischl, Jeff; Perring, Anne E; Pollack, Ilana B; Roberts, James M; Ryerson, Thomas B; Schwarz, Joshua P; Spackman, J Ryan; Warneke, Carsten; Ravishankara, A R
2012-12-11
During the Deepwater Horizon (DWH) oil spill, a wide range of gas and aerosol species were measured from an aircraft around, downwind, and away from the DWH site. Additional hydrocarbon measurements were made from ships in the vicinity. Aerosol particles of respirable sizes were on occasions a significant air quality issue for populated areas along the Gulf Coast. Yields of organic aerosol particles and emission factors for other atmospheric pollutants were derived for the sources from the spill, recovery, and cleanup efforts. Evaporation and subsequent secondary chemistry produced organic particulate matter with a mass yield of 8 ± 4% of the oil mixture reaching the water surface. Approximately 4% by mass of oil burned on the surface was emitted as soot particles. These yields can be used to estimate the effects on air quality for similar events as well as for this spill at other times without these data. Whereas emission of soot from burning surface oil was large during the episodic burns, the mass flux of secondary organic aerosol to the atmosphere was substantially larger overall. We use a regional air quality model to show that some observed enhancements in organic aerosol concentration along the Gulf Coast were likely due to the DWH spill. In the presence of evaporating hydrocarbons from the oil, NO(x) emissions from the recovery and cleanup operations produced ozone.
Air quality implications of the Deepwater Horizon oil spill
Middlebrook, Ann M.; Murphy, Daniel M.; Ahmadov, Ravan; Atlas, Elliot L.; Bahreini, Roya; Blake, Donald R.; Brioude, Jerome; de Gouw, Joost A.; Fehsenfeld, Fred C.; Frost, Gregory J.; Holloway, John S.; Lack, Daniel A.; Langridge, Justin M.; Lueb, Rich A.; McKeen, Stuart A.; Meagher, James F.; Meinardi, Simone; Neuman, J. Andrew; Nowak, John B.; Parrish, David D.; Peischl, Jeff; Perring, Anne E.; Pollack, Ilana B.; Roberts, James M.; Ryerson, Thomas B.; Schwarz, Joshua P.; Spackman, J. Ryan; Warneke, Carsten; Ravishankara, A. R.
2012-01-01
During the Deepwater Horizon (DWH) oil spill, a wide range of gas and aerosol species were measured from an aircraft around, downwind, and away from the DWH site. Additional hydrocarbon measurements were made from ships in the vicinity. Aerosol particles of respirable sizes were on occasions a significant air quality issue for populated areas along the Gulf Coast. Yields of organic aerosol particles and emission factors for other atmospheric pollutants were derived for the sources from the spill, recovery, and cleanup efforts. Evaporation and subsequent secondary chemistry produced organic particulate matter with a mass yield of 8 ± 4% of the oil mixture reaching the water surface. Approximately 4% by mass of oil burned on the surface was emitted as soot particles. These yields can be used to estimate the effects on air quality for similar events as well as for this spill at other times without these data. Whereas emission of soot from burning surface oil was large during the episodic burns, the mass flux of secondary organic aerosol to the atmosphere was substantially larger overall. We use a regional air quality model to show that some observed enhancements in organic aerosol concentration along the Gulf Coast were likely due to the DWH spill. In the presence of evaporating hydrocarbons from the oil, NOx emissions from the recovery and cleanup operations produced ozone. PMID:22205764
Vanos, Jennifer K; Hebbern, Christopher; Cakmak, Sabit
2014-02-01
Synoptic weather and ambient air quality synergistically influence human health. We report the relative risk of mortality from all non-accidental, respiratory-, and cardiovascular-related causes, associated with exposure to four air pollutants, by weather type and season, in 10 major Canadian cities for 1981 through 1999. We conducted this multi-city time-series study using Poisson generalized linear models stratified by season and each of six distinctive synoptic weather types. Statistically significant relationships of mortality due to short-term exposure to carbon monoxide, nitrogen dioxide, sulphur dioxide, and ozone were found, with significant modifications of risk by weather type, season, and mortality cause. In total, 61% of the respiratory-related mortality relative risk estimates were significantly higher than for cardiovascular-related mortality. The combined effect of weather and air pollution is greatest when tropical-type weather is present in the spring or summer. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Using spacecraft trace contaminant control systems to cure sick building syndrome
NASA Technical Reports Server (NTRS)
Graf, John C.
1994-01-01
Many residential and commercial buildings with centralized, recirculating, heating ventilation and air conditioning systems suffer from 'Sick Building Syndrome.' Ventilation rates are reduced to save energy costs, synthetic building materials off-gas contaminants, and unsafe levels of volatile organic compounds (VOC's) accumulate. These unsafe levels of contaminants can cause irritation of eyes and throat, fatigue and dizziness to building occupants. Increased ventilation, the primary method of treating Sick Building Syndrome is expensive (due to increased energy costs) and recently, the effectiveness of increased ventilation has been questioned. On spacecraft venting is not allowed, so the primary methods of air quality control are; source control, active filtering, and destruction of VOC's. Four non-venting contaminant removal technologies; strict material selection to provide source control, ambient temperature catalytic oxidation, photocatalytic oxidation, and uptake by higher plants, may have potential application for indoor air quality control.
A case study of air quality above an urban roof top vegetable farm.
Tong, Zheming; Whitlow, Thomas H; Landers, Andrew; Flanner, Benjamin
2016-01-01
The effect of elevation and rooftop configuration on local air quality was investigated at the Brooklyn Grange rooftop farm during a short-term observational campaign. Using multiple particle counters and sonic anemometers deployed along vertical gradients, we found that PM2.5 concentration decayed with height above the street. Samples adjacent to the street had the highest average PM2.5 concentration and frequent stochastic spikes above background. Rooftop observations 26 m above ground showed 7-33% reductions in average PM2.5 concentration compared with the curbside and had far fewer spikes. A relationship between the vertical extinction rate of PM2.5 and atmospheric stability was found whereby less unstable atmosphere and greater wind shear led to greater PM2.5 extinction due to damped vertical motion of air. Copyright © 2015 Elsevier Ltd. All rights reserved.
40 CFR 81.77 - Puerto Rico Air Quality Control Region.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Puerto Rico Air Quality Control Region... PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.77 Puerto Rico Air Quality Control Region. The Puerto Rico Air Quality Control Region...
40 CFR 81.76 - State of Hawaii Air Quality Control Region.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 17 2011-07-01 2011-07-01 false State of Hawaii Air Quality Control... PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.76 State of Hawaii Air Quality Control Region. The State of Hawaii Air Quality...
40 CFR 81.77 - Puerto Rico Air Quality Control Region.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Puerto Rico Air Quality Control Region... PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.77 Puerto Rico Air Quality Control Region. The Puerto Rico Air Quality Control Region...
40 CFR 81.76 - State of Hawaii Air Quality Control Region.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 18 2012-07-01 2012-07-01 false State of Hawaii Air Quality Control... PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.76 State of Hawaii Air Quality Control Region. The State of Hawaii Air Quality...
40 CFR 81.76 - State of Hawaii Air Quality Control Region.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 18 2013-07-01 2013-07-01 false State of Hawaii Air Quality Control... PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.76 State of Hawaii Air Quality Control Region. The State of Hawaii Air Quality...
40 CFR 81.77 - Puerto Rico Air Quality Control Region.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Puerto Rico Air Quality Control Region... PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.77 Puerto Rico Air Quality Control Region. The Puerto Rico Air Quality Control Region...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-03
... Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality Standards; Correction AGENCY... approved revisions to Ohio regulations that consolidated air quality standards in a new chapter of rules... State's air quality standards into Ohio Administrative Code (OAC) 3745-25 and modifying an assortment of...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-01
... Promulgation of Air Quality Implementation Plans; Indiana; Lead Ambient Air Quality Standards AGENCY... incorporates the National Ambient Air Quality Standards (NAAQS) for Pb promulgated by EPA in 2008. DATES: This... FR 66964) and codified at 40 CFR 50.16, ``National primary and secondary ambient air quality...
40 CFR 81.77 - Puerto Rico Air Quality Control Region.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Puerto Rico Air Quality Control Region... PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.77 Puerto Rico Air Quality Control Region. The Puerto Rico Air Quality Control Region...
40 CFR 81.76 - State of Hawaii Air Quality Control Region.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 17 2010-07-01 2010-07-01 false State of Hawaii Air Quality Control... PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.76 State of Hawaii Air Quality Control Region. The State of Hawaii Air Quality...
The 2010 California Research at the Nexus of Air Quality and Climate Change (CalNex) field study
NASA Astrophysics Data System (ADS)
Ryerson, T. B.; Andrews, A. E.; Angevine, W. M.; Bates, T. S.; Brock, C. A.; Cairns, B.; Cohen, R. C.; Cooper, O. R.; de Gouw, J. A.; Fehsenfeld, F. C.; Ferrare, R. A.; Fischer, M. L.; Flagan, R. C.; Goldstein, A. H.; Hair, J. W.; Hardesty, R. M.; Hostetler, C. A.; Jimenez, J. L.; Langford, A. O.; McCauley, E.; McKeen, S. A.; Molina, L. T.; Nenes, A.; Oltmans, S. J.; Parrish, D. D.; Pederson, J. R.; Pierce, R. B.; Prather, K.; Quinn, P. K.; Seinfeld, J. H.; Senff, C. J.; Sorooshian, A.; Stutz, J.; Surratt, J. D.; Trainer, M.; Volkamer, R.; Williams, E. J.; Wofsy, S. C.
2013-06-01
The California Research at the Nexus of Air Quality and Climate Change (CalNex) field study was conducted throughout California in May, June, and July of 2010. The study was organized to address issues simultaneously relevant to atmospheric pollution and climate change, including (1) emission inventory assessment, (2) atmospheric transport and dispersion, (3) atmospheric chemical processing, and (4) cloud-aerosol interactions and aerosol radiative effects. Measurements from networks of ground sites, a research ship, tall towers, balloon-borne ozonesondes, multiple aircraft, and satellites provided in situ and remotely sensed data on trace pollutant and greenhouse gas concentrations, aerosol chemical composition and microphysical properties, cloud microphysics, and meteorological parameters. This overview report provides operational information for the variety of sites, platforms, and measurements, their joint deployment strategy, and summarizes findings that have resulted from the collaborative analyses of the CalNex field study. Climate-relevant findings from CalNex include that leakage from natural gas infrastructure may account for the excess of observed methane over emission estimates in Los Angeles. Air-quality relevant findings include the following: mobile fleet VOC significantly declines, and NOx emissions continue to have an impact on ozone in the Los Angeles basin; the relative contributions of diesel and gasoline emission to secondary organic aerosol are not fully understood; and nighttime NO3 chemistry contributes significantly to secondary organic aerosol mass in the San Joaquin Valley. Findings simultaneously relevant to climate and air quality include the following: marine vessel emissions changes due to fuel sulfur and speed controls result in a net warming effect but have substantial positive impacts on local air quality.
Assessment of indoor levels of volatile organic compounds and carbon dioxide in schools in Kuwait.
Al-Awadi, Layla
2018-01-01
Indoor air quality (IAQ) in schools is a matter of concern because children are most vulnerable and sensitive to pollutant exposure. Conservation of energy at the expense of ventilation in heating, ventilation, and air conditioning (HVAC) systems adversely affects IAQ. Extensive use of new materials in building, fitting, and refurbishing emit various pollutants such that the indoor environment creates its own discomfort and health risks. Various schools in Kuwait were selected to assess their IAQ. Comprehensive measurements of volatile organic compounds (VOCs) consisting of 72 organic compounds consisting of aliphatic (C 3 -C 6 ), aromatic (C 6 -C 9 ), halogenated (C 1 -C 7 ), and oxygenated (C 2 -C 9 ) functional groups in indoor air were made for the first time in schools in Kuwait. The concentrations of indoor air pollutants revealed hot spots (science preparation rooms, science laboratories, arts and crafts classes/paint rooms, and woodworking shops/decoration rooms where local sources contributed to the buildup of pollutants in each school. The most abundant VOC pollutant was chlorodifluoromethane (R22; ClF 2 CH), which leaked from air conditioning (AC) systems due to improper operation and maintenance. The other copious VOCs were alcohols and acetone at different locations due to improper handling of the chemicals and their excessive uses as solvents. Indoor carbon dioxide (CO 2 ) levels were measured, and these levels reflected the performance of HVAC systems; a specific rate or lack of ventilation affected the IAQ. Recommendations are proposed to mitigate the buildup of indoor air pollutants at school sites. Indoor air quality in elementary schools has been a subject of extreme importance due to susceptibility and sensibility of children to air pollutants. The schools were selected based on their surrounding environment especially downwind direction from the highly industrialized zone in Kuwait. Extensive sampling from different sites in four schools for comprehensive VOCs and CO 2 were completed for an extended period of over a year. Different hot spots were identified where leaked refrigerant and inadequate handling of laboratory solvents contributed to the high VOCs in the respective locations. CO 2 levels reflected HVAC performance and poor ventilation. A list of recommendations has been proposed to eradicate these high levels of air pollution.
Roadside vegetation design characteristics that can improve local, near road air quality
As public health concerns have increased due to the rising number of studies linking adverse health effects with exposures to traffic-related pollution near large roadways, interest in methods to mitigate these exposures have also increased. Several studies have investigated the...
Impact of enhanced ozone deposition and halogen chemistry on model performance
In this study, an enhanced ozone deposition scheme due to the interaction of iodide in sea-water and atmospheric ozone and the detailed chemical reactions of organic and inorganic halogen species are incorporated into the hemispheric Community Multiscale Air Quality model. Prelim...
ERIC Educational Resources Information Center
Grubb, Deborah
Health problems related to school buildings can be categorized in five major areas: sick-building syndrome; health-threatening building materials; environmental hazards such as radon gas and asbestos; lead poisoning; and poor indoor air quality due to smoke, chemicals, and other pollutants. This paper provides an overview of these areas,…
Light absorbing carbon emissions from commercial shipping
NASA Astrophysics Data System (ADS)
Lack, Daniel; Lerner, Brian; Granier, Claire; Baynard, Tahllee; Lovejoy, Edward; Massoli, Paola; Ravishankara, A. R.; Williams, Eric
2008-07-01
Extensive measurements of the emission of light absorbing carbon aerosol (LAC) from commercial shipping are presented. Vessel emissions were sampled using a photoacoustic spectrometer in the Gulf of Mexico region. The highest emitters (per unit fuel burnt) are tug boats, thus making significant contributions to local air quality in ports. Emission of LAC from cargo and non cargo vessels in this study appears to be independent of engine load. Shipping fuel consumption data (2001) was used to calculate a global LAC contribution of 133(+/-27) Ggyr-1, or ~1.7% of global LAC. This small fraction could have disproportionate effects on both air quality near port areas and climate in the Arctic if direct emissions of LAC occur in that region due to opening Arctic sea routes. The global contribution of this LAC burden was investigated using the MOZART model. Increases of 20-50 ng m-3 LAC (relative increases up to 40%) due to shipping occur in the tropical Atlantic, Indonesia, central America and the southern regions of South America and Africa.
Air quality modeling for effective environmental management in the mining region.
Asif, Zunaira; Chen, Zhi; Han, Yi
2018-04-18
Air quality in the mining sector is a serious environmental concern and associated with many health issues. The air quality management in mining region has been facing many challenges due to lack of understanding of atmospheric factors and physical removal mechanism. A modeling approach called mining air dispersion model (MADM) is developed to predict air pollutants concentration in the mining region while considering the deposition effect. The model is taken into account through the planet's boundary conditions and assuming that the eddy diffusivity depends on the downwind distance. The developed MADM is applied to a mining site in Canada. The model provides values as the predicted concentrations of PM 10 , PM 2.5 , TSP, NO 2 and six heavy metals (As, Pb, Hg, Cd, Zn, Cr) at various receptor locations. The model shows that neutral stability conditions are dominant for the study site. The maximum mixing height is achieved (1280 m) during the evening of summer, and minimum mixing height (380 m) is attained during the evening of winter. The dust fall (PM coarse) deposition flux is maximum during February and March with the deposition velocity of 4.67 cm/s. The results are evaluated with the monitoring field values, revealing a good agreement for the target air pollutants with R-squared ranging from 0.72 to 0.96 for PM 2.5 ; 0.71 to 0.82 for PM 10 and from 0.71 to 0.89 for NO 2 . The analyses illustrate that presented algorithm in this model can be used to assess air quality for the mining site in a systematic way. The comparison of MADM and CALPUFF modeling values are made for four different pollutants (PM 2.5 , PM 10 , TSP, and NO 2 ) under three different atmospheric stability classes (stable, neutral and unstable). Further, MADM results are statistically tested against CALPUFF for the air pollutants and model performance is found satisfactory.
Environmental impacts and sustainability of egg production systems.
Xin, H; Gates, R S; Green, A R; Mitloehner, F M; Moore, P A; Wathes, C M
2011-01-01
As part of a systemic assessment toward social sustainability of egg production, we have reviewed current knowledge about the environmental impacts of egg production systems and identified topics requiring further research. Currently, we know that 1) high-rise cage houses generally have poorer air quality and emit more ammonia than manure belt (MB) cage houses; 2) manure removal frequency in MB houses greatly affects ammonia emissions; 3) emissions from manure storage are largely affected by storage conditions, including ventilation rate, manure moisture content, air temperature, and stacking profile; 4) more baseline data on air emissions from high-rise and MB houses are being collected in the United States to complement earlier measurements; 5) noncage houses generally have poorer air quality (ammonia and dust levels) than cage houses; 6) noncage houses tend to be colder during cold weather due to a lower stocking density than caged houses, leading to greater feed and fuel energy use; 7) hens in noncage houses are less efficient in resource (feed, energy, and land) utilization, leading to a greater carbon footprint; 8) excessive application of hen manure to cropland can lead to nutrient runoff to water bodies; 9) hen manure on open (free) range may be subject to runoff during rainfall, although quantitative data are lacking; 10) mitigation technologies exist to reduce generation and emission of noxious gases and dust; however, work is needed to evaluate their economic feasibility and optimize design; and 11) dietary modification shows promise for mitigating emissions. Further research is needed on 1) indoor air quality, barn emissions, thermal conditions, and energy use in alternative hen housing systems (1-story floor, aviary, and enriched cage systems), along with conventional housing systems under different production conditions; 2) environmental footprint for different US egg production systems through life cycle assessment; 3) practical means to mitigate air emissions from different production systems; 4) process-based models for predicting air emissions and their fate; and 5) the interactions between air quality, housing system, worker health, and animal health and welfare.
The Impact of Indonesian Forest Fires on Singaporean Pollution and Health.
Sheldon, Tamara L; Sankaran, Chandini
2017-05-01
Between 1990 and 2015, Indonesia lost nearly 25 percent of its forests, largely due to intentional burning to clear land for cultivation of palm oil and timber plantations.1 The neighboring "victim countries" experienced severe deteriorations in air quality as a result of these fires. For example, Singapore experienced record air pollution levels in June of 2013 and again in September of 2015 as a result of the Indonesian forest fires.2 This air pollution is associated with increased incidences of upper respiratory tract infections, acute conjunctivitis, lung disease, asthma, bronchitis, emphysema, and pneumonia, among other ailments.2 Quantifying the impact of air pollution on health outcomes is challenging because pollution levels are often nonrandom for a variety of reasons, including policy endogeneity and sorting (Dominici, Greenstone, and Sunstein 2014). In this paper we offer the first causal analysis of the transboundary health effects of the Indonesian forest burning. The Indonesian fires induce exogenous variation in Singaporean air quality. We take advantage of this by using satellite fire data to instrument for changes in Singaporean air quality. Since Singapore is only 277.6 square miles in area (two-thirds the size of New York City), air pollution resulting from the fires is homogeneously spread so that sorting is less likely to be an issue. Using a two-stage least squares approach, we find that from 2010 through mid-2016, the Indonesian fires caused a statistically significant increase in pollution levels in Singapore. Our study also provides evidence that polyclinic attendances for acute respiratory tract infections and acute conjunctivitis in Singapore increased as a result of the deterioration in air quality. The reduced form estimates show that a one standard deviation increase in our measure of fires causes a 0.7 standard deviation increase in polyclinic attendances for each of these illnesses. These findings provide causal evidence of the transboundary pollution and health impacts of the Indonesian forest burning on neighboring Singapore.
40 CFR 81.16 - Metropolitan Denver Intrastate Air Quality Control Region.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.16 Metropolitan Denver Intrastate Air Quality Control Region. The Metropolitan Denver Intrastate Air Quality Control Region (Colorado) consists of the territorial area...
40 CFR 81.62 - Northeast Mississippi Intrastate Air Quality Control Region.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.62 Northeast Mississippi Intrastate Air Quality Control Region. The Alabama-Mississippi-Tennessee Interstate Air Quality Control Region has been renamed the Northeast...
40 CFR 81.16 - Metropolitan Denver Intrastate Air Quality Control Region.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.16 Metropolitan Denver Intrastate Air Quality Control Region. The Metropolitan Denver Intrastate Air Quality Control Region (Colorado) consists of the territorial area...
40 CFR 81.31 - Metropolitan Providence Interstate Air Quality Control Region.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.31 Metropolitan Providence Interstate Air Quality Control Region. The Metropolitan Providence Interstate Air Quality Control Region (Rhode Island-Massachusetts) consists of the...
40 CFR 81.16 - Metropolitan Denver Intrastate Air Quality Control Region.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.16 Metropolitan Denver Intrastate Air Quality Control Region. The Metropolitan Denver Intrastate Air Quality Control Region (Colorado) consists of the territorial area...
40 CFR 81.30 - Southeastern Wisconsin Intrastate Air Quality Control Region.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.30 Southeastern Wisconsin Intrastate Air Quality Control Region. The Metropolitan Milwaukee Intrastate Air Quality Control Region (Wisconsin) has been renamed the Southeastern...
40 CFR 81.31 - Metropolitan Providence Interstate Air Quality Control Region.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.31 Metropolitan Providence Interstate Air Quality Control Region. The Metropolitan Providence Interstate Air Quality Control Region (Rhode Island-Massachusetts) consists of the...
40 CFR 81.62 - Northeast Mississippi Intrastate Air Quality Control Region.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.62 Northeast Mississippi Intrastate Air Quality Control Region. The Alabama-Mississippi-Tennessee Interstate Air Quality Control Region has been renamed the Northeast...
40 CFR 81.28 - Metropolitan Baltimore Intrastate Air Quality Control Region.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.28 Metropolitan Baltimore Intrastate Air Quality Control Region. The Metropolitan Baltimore Intrastate Air Quality Control Region (Maryland) consists of the territorial area...
40 CFR 81.78 - Metropolitan Portland Intrastate Air Quality Control Region.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.78 Metropolitan Portland Intrastate Air Quality Control Region. The Metropolitan Portland Intrastate Air Quality Control Region (Maine) consists of the territorial area...
40 CFR 81.78 - Metropolitan Portland Intrastate Air Quality Control Region.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.78 Metropolitan Portland Intrastate Air Quality Control Region. The Metropolitan Portland Intrastate Air Quality Control Region (Maine) consists of the territorial area...
40 CFR 81.28 - Metropolitan Baltimore Intrastate Air Quality Control Region.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.28 Metropolitan Baltimore Intrastate Air Quality Control Region. The Metropolitan Baltimore Intrastate Air Quality Control Region (Maryland) consists of the territorial area...
40 CFR 81.62 - Northeast Mississippi Intrastate Air Quality Control Region.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.62 Northeast Mississippi Intrastate Air Quality Control Region. The Alabama-Mississippi-Tennessee Interstate Air Quality Control Region has been renamed the Northeast...
40 CFR 81.28 - Metropolitan Baltimore Intrastate Air Quality Control Region.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.28 Metropolitan Baltimore Intrastate Air Quality Control Region. The Metropolitan Baltimore Intrastate Air Quality Control Region (Maryland) consists of the territorial area...
40 CFR 81.30 - Southeastern Wisconsin Intrastate Air Quality Control Region.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.30 Southeastern Wisconsin Intrastate Air Quality Control Region. The Metropolitan Milwaukee Intrastate Air Quality Control Region (Wisconsin) has been renamed the Southeastern...
40 CFR 81.29 - Metropolitan Indianapolis Intrastate Air Quality Control Region.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Air Quality Control Region. 81.29 Section 81.29 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.29 Metropolitan Indianapolis Intrastate Air Quality Control...
40 CFR 81.31 - Metropolitan Providence Interstate Air Quality Control Region.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.31 Metropolitan Providence Interstate Air Quality Control Region. The Metropolitan Providence Interstate Air Quality Control Region (Rhode Island-Massachusetts) consists of the...
40 CFR 81.29 - Metropolitan Indianapolis Intrastate Air Quality Control Region.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Air Quality Control Region. 81.29 Section 81.29 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.29 Metropolitan Indianapolis Intrastate Air Quality Control...
40 CFR 81.44 - Metropolitan Memphis Interstate Air Quality Control Region.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.44 Metropolitan Memphis Interstate Air Quality Control Region. The Metropolitan Memphis Interstate Air Quality Control Region (Arkansas-Mississippi-Tennessee) consists of the...
40 CFR 81.30 - Southeastern Wisconsin Intrastate Air Quality Control Region.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.30 Southeastern Wisconsin Intrastate Air Quality Control Region. The Metropolitan Milwaukee Intrastate Air Quality Control Region (Wisconsin) has been renamed the Southeastern...
40 CFR 81.30 - Southeastern Wisconsin Intrastate Air Quality Control Region.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.30 Southeastern Wisconsin Intrastate Air Quality Control Region. The Metropolitan Milwaukee Intrastate Air Quality Control Region (Wisconsin) has been renamed the Southeastern...
40 CFR 81.28 - Metropolitan Baltimore Intrastate Air Quality Control Region.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.28 Metropolitan Baltimore Intrastate Air Quality Control Region. The Metropolitan Baltimore Intrastate Air Quality Control Region (Maryland) consists of the territorial area...
40 CFR 81.29 - Metropolitan Indianapolis Intrastate Air Quality Control Region.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Air Quality Control Region. 81.29 Section 81.29 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.29 Metropolitan Indianapolis Intrastate Air Quality Control...
40 CFR 81.19 - Metropolitan Boston Intrastate Air Quality Control Region.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.19 Metropolitan Boston Intrastate Air Quality Control Region. The Metropolitan Boston Intrastate Air Quality Control Region (Massachusetts) consists of the territorial area...
40 CFR 81.19 - Metropolitan Boston Intrastate Air Quality Control Region.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.19 Metropolitan Boston Intrastate Air Quality Control Region. The Metropolitan Boston Intrastate Air Quality Control Region (Massachusetts) consists of the territorial area...
40 CFR 81.44 - Metropolitan Memphis Interstate Air Quality Control Region.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.44 Metropolitan Memphis Interstate Air Quality Control Region. The Metropolitan Memphis Interstate Air Quality Control Region (Arkansas-Mississippi-Tennessee) consists of the...
40 CFR 81.16 - Metropolitan Denver Intrastate Air Quality Control Region.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.16 Metropolitan Denver Intrastate Air Quality Control Region. The Metropolitan Denver Intrastate Air Quality Control Region (Colorado) consists of the territorial area...
40 CFR 81.19 - Metropolitan Boston Intrastate Air Quality Control Region.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.19 Metropolitan Boston Intrastate Air Quality Control Region. The Metropolitan Boston Intrastate Air Quality Control Region (Massachusetts) consists of the territorial area...
40 CFR 81.19 - Metropolitan Boston Intrastate Air Quality Control Region.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.19 Metropolitan Boston Intrastate Air Quality Control Region. The Metropolitan Boston Intrastate Air Quality Control Region (Massachusetts) consists of the territorial area...
40 CFR 81.29 - Metropolitan Indianapolis Intrastate Air Quality Control Region.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Air Quality Control Region. 81.29 Section 81.29 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.29 Metropolitan Indianapolis Intrastate Air Quality Control...
40 CFR 81.44 - Metropolitan Memphis Interstate Air Quality Control Region.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.44 Metropolitan Memphis Interstate Air Quality Control Region. The Metropolitan Memphis Interstate Air Quality Control Region (Arkansas-Mississippi-Tennessee) consists of the...
40 CFR 81.31 - Metropolitan Providence Interstate Air Quality Control Region.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.31 Metropolitan Providence Interstate Air Quality Control Region. The Metropolitan Providence Interstate Air Quality Control Region (Rhode Island-Massachusetts) consists of the...
40 CFR 81.44 - Metropolitan Memphis Interstate Air Quality Control Region.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.44 Metropolitan Memphis Interstate Air Quality Control Region. The Metropolitan Memphis Interstate Air Quality Control Region (Arkansas-Mississippi-Tennessee) consists of the...
40 CFR 81.44 - Metropolitan Memphis Interstate Air Quality Control Region.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.44 Metropolitan Memphis Interstate Air Quality Control Region. The Metropolitan Memphis Interstate Air Quality Control Region (Arkansas-Mississippi-Tennessee) consists of the...
40 CFR 81.16 - Metropolitan Denver Intrastate Air Quality Control Region.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.16 Metropolitan Denver Intrastate Air Quality Control Region. The Metropolitan Denver Intrastate Air Quality Control Region (Colorado) consists of the territorial area...
40 CFR 81.28 - Metropolitan Baltimore Intrastate Air Quality Control Region.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.28 Metropolitan Baltimore Intrastate Air Quality Control Region. The Metropolitan Baltimore Intrastate Air Quality Control Region (Maryland) consists of the territorial area...
40 CFR 81.30 - Southeastern Wisconsin Intrastate Air Quality Control Region.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.30 Southeastern Wisconsin Intrastate Air Quality Control Region. The Metropolitan Milwaukee Intrastate Air Quality Control Region (Wisconsin) has been renamed the Southeastern...
40 CFR 81.19 - Metropolitan Boston Intrastate Air Quality Control Region.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.19 Metropolitan Boston Intrastate Air Quality Control Region. The Metropolitan Boston Intrastate Air Quality Control Region (Massachusetts) consists of the territorial area...
40 CFR 81.29 - Metropolitan Indianapolis Intrastate Air Quality Control Region.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Air Quality Control Region. 81.29 Section 81.29 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.29 Metropolitan Indianapolis Intrastate Air Quality Control...
40 CFR 81.78 - Metropolitan Portland Intrastate Air Quality Control Region.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.78 Metropolitan Portland Intrastate Air Quality Control Region. The Metropolitan Portland Intrastate Air Quality Control Region (Maine) consists of the territorial area...
40 CFR 81.62 - Northeast Mississippi Intrastate Air Quality Control Region.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.62 Northeast Mississippi Intrastate Air Quality Control Region. The Alabama-Mississippi-Tennessee Interstate Air Quality Control Region has been renamed the Northeast...
40 CFR 81.31 - Metropolitan Providence Interstate Air Quality Control Region.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.31 Metropolitan Providence Interstate Air Quality Control Region. The Metropolitan Providence Interstate Air Quality Control Region (Rhode Island-Massachusetts) consists of the...
Air quality in Delhi during the CommonWealth Games
NASA Astrophysics Data System (ADS)
Marrapu, P.; Cheng, Y.; Beig, G.; Sahu, S.; Srinivas, R.; Carmichael, G. R.
2014-04-01
Air quality during The CommonWealth Games (CWG, held in Delhi in October 2010) is analyzed using a new air quality forecasting system established for the Games. The CWG stimulated enhanced efforts to monitor and model air quality in the region. The air quality of Delhi during the CWG had high levels of particles with mean values of PM2.5 and PM10 at the venues of 111 and 238 μg m-3, respectively. Black carbon (BC) accounted for ∼10% of the PM2.5 mass. It is shown that BC, PM2.5 and PM10 concentrations are well predicted, but with positive biases of ∼25%. The diurnal variations are also well captured, with both the observations and the modeled values showing nighttime maxima and daytime minima. A new emissions inventory, developed as part of this air quality forecasting initiative, is evaluated by comparing the observed and predicted species-species correlations (i.e., BC : CO; BC : PM2.5; PM2.5 : PM10). Assuming that the observations at these sites are representative and that all the model errors are associated with the emissions, then the modeled concentrations and slopes can be made consistent by scaling the emissions by: 0.6 for NOx, 2 for CO, and 0.7 for BC, PM2.5 and PM10. The emission estimates for particles are remarkably good considering the uncertainty in the estimates due to the diverse spread of activities and technologies that take place in Delhi and the rapid rates of change. The contribution of various emission sectors including transportation, power, domestic and industry to surface concentrations are also estimated. Transport, domestic and industrial sectors all make significant contributions to PM levels in Delhi, and the sectoral contributions vary spatially within the city. Ozone levels in Delhi are elevated, with hourly values sometimes exceeding 100 ppb. The continued growth of the transport sector is expected to make ozone pollution a more pressing air pollution problem in Delhi. The sector analysis provides useful inputs into the design of strategies to reduce air pollution levels in Delhi. The contribution for sources outside of Delhi on Delhi air quality range from ∼25% for BC and PM to ∼60% for day time ozone. The significant contributions from non-Delhi sources indicates that in Delhi (as has been show elsewhere) these strategies will also need a more regional perspective.
Wilson, Sacoby M.; Tarver, Siobhan L.; Svendsen, Erik; Jiang, Chengsheng; Ogunsakin, Olalekan A.; Zhang, Hongmei; Campbell, Dayna; Fraser-Rahim, Herbert
2017-01-01
Abstract As the demand for goods continues to increase, a collective network of transportation systems is required to facilitate goods movement activities. This study examines air quality near the Port of Charleston before its expansion and briefly describes the establishment and structure of a community–university partnership used to monitor existing pollution. Particulate matter (PM) concentrations (PM2.5 and PM10) were measured using the Thermo Fisher Scientific Partisol 2000i-D Dichotomous Air Sampler, Thermo Scientific Dichotomous Sequential Air Sampler Partisol-Plus 2025-D, and Rupprecht & Patashnick TEOM Series 1400 Sampler at neighborhood (Union Heights, Rosemont, and Accabee) and reference (FAA2.5 and Jenkins Street) sites. Descriptive statistics were performed and an ANOVA (analysis of variance) was calculated to find the difference in overall mean 24-hour PM average concentrations in communities impacted by environmental injustice. PM2.5 (15.2 μg/m3) and PM10 (27.2 μg/m3) maximum concentrations were highest in neighborhoods such as Union Heights neighborhoods due to more goods movement activities. Nevertheless, there was no statistically significant difference in mean concentrations of PM2.5 and PM10 across neighborhood sites. In contrast, mean PM10 neighborhood concentrations were significantly lower than mean PM10 reference concentrations for Union Heights (p = 0.00), Accabee (p ≤ 0.0001), and Rosemont (p = 0.01). Although PM concentrations were lower than current National Ambient Air Quality Standards, this study demonstrated how community–university partners can work collectively to document baseline PM concentrations that will be used to examine changes in air quality after the port expansion brings additional goods movement activities to the area. PMID:29576842
NASA Astrophysics Data System (ADS)
Baldasano, José M.; Gonçalves, María; Soret, Albert; Jiménez-Guerrero, Pedro
2010-08-01
Assessing the effects of air quality management strategies in urban areas is a major concern worldwide because of the large impacts on health caused by the exposure to air pollution. In this sense, this work analyses the changes in urban air quality due to the introduction of a maximum speed limit to 80 km h -1 on motorways in a large city by using a novel methodology combining traffic assimilation data and modelling systems implemented in a supercomputing facility. Albeit the methodology has been non-specifically developed and can be extrapolated to any large city or megacity, the case study of Barcelona is presented here. Hourly simulations take into account the entire year 2008 (when the 80 km h -1 limit has been introduced) vs. the traffic conditions for the year 2007. The data has been assimilated in an emission model, which considers hourly variable speeds and hourly traffic intensity in the affected area, taken from long-term measurement campaigns for the aforementioned years; it also permits to take into account the traffic congestion effect. Overall, the emissions are reduced up to 4%; however the local effects of this reduction achieve an important impact for the adjacent area to the roadways, reaching 11%. In this sense, the speed limitation effects assessed represent enhancements in air quality levels (5-7%) of primary pollutants over the area, directly improving the welfare of 1.35 million inhabitants (over 41% of the population of the Metropolitan Area) and affecting 3.29 million dwellers who are potentially benefited from this strategy for air quality management (reducing 0.6% the mortality rates in the area).
Heavy truck restrictions and air quality implications in São Paulo, Brazil.
Pérez-Martínez, Pedro José; de Fátima Andrade, María; de Miranda, Regina Maura
2017-11-01
This study quantified the effects of traffic restrictions on diesel fuel heavy vehicles (HVs) on the air quality of the Bandeirantes corridor using hourly data obtained by continuous monitoring of traffic and air quality at sites located on this avenue. The study addressed the air quality of a city impacted by vehicular emissions and that PM 10 and NO X concentrations are mainly due to diesel burning. Data collection was split into two time periods, a period of no traffic constraint on HVs (Nov 2008 and 2009) and a period of constraint (Nov 2010, 2011 and 2012). We found that pollutants on this corridor, mainly PM 10 and NO X , decreased significantly during the period from 2008 to 2012 (28 and 43%, 15.8 and 86.9 ppb) as a direct consequence of HV traffic restrictions (a 72% reduction). Rebound effects in the form of increased traffic of light vehicles (LVs) during this time had impacts on the concentration levels, explaining the differences between rates of reduction in HV traffic and pollutants. Reductions in the number of trucks resulted in longer travel times and increased traffic congestion as a consequence of the modal shift towards LVs. We found that a 51% decrease in PM 10 (28.8 μg m -3 ) was due to a reduction in HV traffic (vehicle emissions were estimated to be 71% of total sources, 40.1 μg m -3 ). This percentage was partially offset by 10% more PM 10 emissions related to an increase in LV traffic, while other causes, such as climatic conditions, contributed to a 13% increase in PM 10 concentrations. The relationships analyzed in this research served to highlight the need to apply urban transport policies aimed at decreasing pollutant concentrations in São Paulo, especially in heavily congested urban corridors on working days. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Xiao-Huan; Zhang, Yang; Olsen, Kristen M.; Wang, Wen-Xing; Do, Bebhinn A.; Bridgers, George M.
2010-07-01
The prediction of future air quality and its responses to emission control strategies at national and state levels requires a reliable model that can replicate atmospheric observations. In this work, the Mesoscale Model (MM5) and the Community Multiscale Air Quality Modeling (CMAQ) system are applied at a 4-km horizontal grid resolution for four one-month periods, i.e., January, June, July, and August in 2002 to evaluate model performance and compare with that at 12-km. The evaluation shows skills of MM5/CMAQ that are overall consistent with current model performance. The large cold bias in temperature at 1.5 m is likely due to too cold soil initial temperatures and inappropriate snow treatments. The large overprediction in precipitation in July is due likely to too frequent afternoon convective rainfall and/or an overestimation in the rainfall intensity. The normalized mean biases and errors are -1.6% to 9.1% and 15.3-18.5% in January and -18.7% to -5.7% and 13.9-20.6% in July for max 1-h and 8-h O 3 mixing ratios, respectively, and those for 24-h average PM 2.5 concentrations are 8.3-25.9% and 27.6-38.5% in January and -57.8% to -45.4% and 46.1-59.3% in July. The large underprediction in PM 2.5 in summer is attributed mainly to overpredicted precipitation, inaccurate emissions, incomplete treatments for secondary organic aerosols, and model difficulties in resolving complex meteorology and geography. While O 3 prediction shows relatively less sensitivity to horizontal grid resolutions, PM 2.5 and its secondary components, visibility indices, and dry and wet deposition show a moderate to high sensitivity. These results have important implications for the regulatory applications of MM5/CMAQ for future air quality attainment.
Ramalho, José C; Pais, Isabel P; Leitão, António E; Guerra, Mauro; Reboredo, Fernando H; Máguas, Cristina M; Carvalho, Maria L; Scotti-Campos, Paula; Ribeiro-Barros, Ana I; Lidon, Fernando J C; DaMatta, Fábio M
2018-01-01
Climate changes, mostly related to high temperature, are predicted to have major negative impacts on coffee crop yield and bean quality. Recent studies revealed that elevated air [CO 2 ] mitigates the impact of heat on leaf physiology. However, the extent of the interaction between elevated air [CO 2 ] and heat on coffee bean quality was never addressed. In this study, the single and combined impacts of enhanced [CO 2 ] and temperature in beans of Coffea arabica cv. Icatu were evaluated. Plants were grown at 380 or 700 μL CO 2 L -1 air, and then submitted to a gradual temperature rise from 25°C up to 40°C during ca. 4 months. Fruits were harvested at 25°C, and in the ranges of 30-35 or 36-40°C, and bean physical and chemical attributes with potential implications on quality were then examined. These included: color, phenolic content, soluble solids, chlorogenic, caffeic and p -coumaric acids, caffeine, trigonelline, lipids, and minerals. Most of these parameters were mainly affected by temperature (although without a strong negative impact on bean quality), and only marginally, if at all, by elevated [CO 2 ]. However, the [CO 2 ] vs. temperature interaction strongly attenuated some of the negative impacts promoted by heat (e.g., total chlorogenic acids), thus maintaining the bean characteristics closer to those obtained under adequate temperature conditions (e.g., soluble solids, caffeic and p -coumaric acids, trigonelline, chroma, Hue angle, and color index), and increasing desirable features (acidity). Fatty acid and mineral pools remained quite stable, with only few modifications due to elevated air [CO 2 ] (e.g., phosphorous) and/or heat. In conclusion, exposure to high temperature in the last stages of fruit maturation did not strongly depreciate bean quality, under the conditions of unrestricted water supply and moderate irradiance. Furthermore, the superimposition of elevated air [CO 2 ] contributed to preserve bean quality by modifying and mitigating the heat impact on physical and chemical traits of coffee beans, which is clearly relevant in a context of predicted climate change and global warming scenarios.
Ramalho, José C.; Pais, Isabel P.; Leitão, António E.; Guerra, Mauro; Reboredo, Fernando H.; Máguas, Cristina M.; Carvalho, Maria L.; Scotti-Campos, Paula; Ribeiro-Barros, Ana I.; Lidon, Fernando J. C.; DaMatta, Fábio M.
2018-01-01
Climate changes, mostly related to high temperature, are predicted to have major negative impacts on coffee crop yield and bean quality. Recent studies revealed that elevated air [CO2] mitigates the impact of heat on leaf physiology. However, the extent of the interaction between elevated air [CO2] and heat on coffee bean quality was never addressed. In this study, the single and combined impacts of enhanced [CO2] and temperature in beans of Coffea arabica cv. Icatu were evaluated. Plants were grown at 380 or 700 μL CO2 L-1 air, and then submitted to a gradual temperature rise from 25°C up to 40°C during ca. 4 months. Fruits were harvested at 25°C, and in the ranges of 30–35 or 36–40°C, and bean physical and chemical attributes with potential implications on quality were then examined. These included: color, phenolic content, soluble solids, chlorogenic, caffeic and p-coumaric acids, caffeine, trigonelline, lipids, and minerals. Most of these parameters were mainly affected by temperature (although without a strong negative impact on bean quality), and only marginally, if at all, by elevated [CO2]. However, the [CO2] vs. temperature interaction strongly attenuated some of the negative impacts promoted by heat (e.g., total chlorogenic acids), thus maintaining the bean characteristics closer to those obtained under adequate temperature conditions (e.g., soluble solids, caffeic and p-coumaric acids, trigonelline, chroma, Hue angle, and color index), and increasing desirable features (acidity). Fatty acid and mineral pools remained quite stable, with only few modifications due to elevated air [CO2] (e.g., phosphorous) and/or heat. In conclusion, exposure to high temperature in the last stages of fruit maturation did not strongly depreciate bean quality, under the conditions of unrestricted water supply and moderate irradiance. Furthermore, the superimposition of elevated air [CO2] contributed to preserve bean quality by modifying and mitigating the heat impact on physical and chemical traits of coffee beans, which is clearly relevant in a context of predicted climate change and global warming scenarios. PMID:29559990
NASA Astrophysics Data System (ADS)
Gantt, B.; Kelly, J. T.; Bash, J. O.
2015-11-01
Sea spray aerosols (SSAs) impact the particle mass concentration and gas-particle partitioning in coastal environments, with implications for human and ecosystem health. Model evaluations of SSA emissions have mainly focused on the global scale, but regional-scale evaluations are also important due to the localized impact of SSAs on atmospheric chemistry near the coast. In this study, SSA emissions in the Community Multiscale Air Quality (CMAQ) model were updated to enhance the fine-mode size distribution, include sea surface temperature (SST) dependency, and reduce surf-enhanced emissions. Predictions from the updated CMAQ model and those of the previous release version, CMAQv5.0.2, were evaluated using several coastal and national observational data sets in the continental US. The updated emissions generally reduced model underestimates of sodium, chloride, and nitrate surface concentrations for coastal sites in the Bay Regional Atmospheric Chemistry Experiment (BRACE) near Tampa, Florida. Including SST dependency to the SSA emission parameterization led to increased sodium concentrations in the southeastern US and decreased concentrations along parts of the Pacific coast and northeastern US. The influence of sodium on the gas-particle partitioning of nitrate resulted in higher nitrate particle concentrations in many coastal urban areas due to increased condensation of nitric acid in the updated simulations, potentially affecting the predicted nitrogen deposition in sensitive ecosystems. Application of the updated SSA emissions to the California Research at the Nexus of Air Quality and Climate Change (CalNex) study period resulted in a modest improvement in the predicted surface concentration of sodium and nitrate at several central and southern California coastal sites. This update of SSA emissions enabled a more realistic simulation of the atmospheric chemistry in coastal environments where marine air mixes with urban pollution.
Huading, Shi; Critto, Andrea; Torresan, Silvia; Qingxian, Gao
2018-06-13
With the rapid economic development and the continuous population growth, several important cities in China suffer serious air pollution, especially in the Beijing-Tianjin-Hebei economic developing area. Based on the daily air pollution index (API) and surface meteorological elements in Beijing, Tianjin and Shijiazhuang from 2001 to 2010, the relationships between API and meteorological elements were analyzed. The statistical analysis focused on the relationships at seasonal and monthly average scales, on different air pollution grades and air pollution processes. The results revealed that the air pollution conditions in the three areas gradually improved from 2001 to 2010, especially during summer; and the worst conditions in air quality were recorded in Beijing in spring due to the influences of dust, while in Tianjin and Shijiazhuang in winter due to household heating. Meteorological elements exhibited different influences on air pollution, showing similar relationships between API in monthly averages and four meteorological elements (i.e., the average, maximum and minimum temperatures, maximum air pressure, vapor pressure, and maximum wind speed); while the relationships on a seasonal average scale demonstrated significant differences. Compared with seasonal and monthly average scales of API, the relation coefficients based on different air pollution grades were significatively lower; while the relationship between API and meteorological elements based on air pollution process reduced the smoothing effect due to the average processing of seasonal and monthly API and improved the accuracy of the results based on different air pollution grades. Finally, statistical analysis of the distribution of pollution days in different wind directions indicated the directions of extreme and maximum wind speeds that mainly influence air pollution; representing a valuable information that could support the definition of air pollution control strategies through the identification of the regions (and the located emission sources) where to focus the implementation of emission reduction actions. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Effects of business-as-usual anthropogenic emissions on air quality
NASA Astrophysics Data System (ADS)
Pozzer, A.; Zimmermann, P.; Doering, U. M.; van Aardenne, J.; Tost, H.; Dentener, F.; Janssens-Maenhout, G.; Lelieveld, J.
2012-04-01
The atmospheric chemistry general circulation model EMAC has been used to estimate the impact of anthropogenic emission changes on global and regional air quality in recent and future years (2005, 2010, 2025 and 2050). The emission scenario assumes that population and economic growth largely determine energy and food consumption and consequent pollution sources with the current technologies ("business as usual"). This scenario is chosen to show the effects of not implementing legislation to prevent additional climate change and growing air pollution, other than what is in place for the base year 2005, representing a pessimistic (but feasible) future. By comparing with recent observations, it is shown that the model reproduces the main features of regional air pollution distributions though with some imprecisions inherent to the coarse horizontal resolution (~100 km) and simplified bottom-up emission input. To identify possible future hot spots of poor air quality, a multi pollutant index (MPI), suited for global model output, has been applied. It appears that East and South Asia and the Middle East represent such hotspots due to very high pollutant concentrations, although a general increase of MPIs is observed in all populated regions in the Northern Hemisphere. In East Asia a range of pollutant gases and fine particulate matter (PM2.5) is projected to reach very high levels from 2005 onward, while in South Asia air pollution, including ozone, will grow rapidly towards the middle of the century. Around the Arabian Gulf, where natural PM2.5 concentrations are already high (desert dust), ozone levels are expected to increase strongly. The per capita MPI (PCMPI), which combines demographic and pollutants concentrations projections, shows that a rapidly increasing number of people worldwide will experience reduced air quality during the first half of the 21st century. Following the business as usual scenario, it is projected that air quality for the global average citizen in 2050 would be almost comparable to that for the average citizen in the East Asia in the year 2005, which underscores the need to pursue emission reductions.
Effects of business-as-usual anthropogenic emissions on air quality
NASA Astrophysics Data System (ADS)
Pozzer, A.; Zimmermann, P.; Doering, U. M.; van Aardenne, J.; Tost, H.; Dentener, F.; Janssens-Maenhout, G.; Lelieveld, J.
2012-08-01
The atmospheric chemistry general circulation model EMAC has been used to estimate the impact of anthropogenic emission changes on global and regional air quality in recent and future years (2005, 2010, 2025 and 2050). The emission scenario assumes that population and economic growth largely determine energy and food consumption and consequent pollution sources with the current technologies ("business as usual"). This scenario is chosen to show the effects of not implementing legislation to prevent additional climate change and growing air pollution, other than what is in place for the base year 2005, representing a pessimistic (but plausible) future. By comparing with recent observations, it is shown that the model reproduces the main features of regional air pollution distributions though with some imprecisions inherent to the coarse horizontal resolution (~100 km) and simplified bottom-up emission input. To identify possible future hot spots of poor air quality, a multi pollutant index (MPI), suited for global model output, has been applied. It appears that East and South Asia and the Middle East represent such hotspots due to very high pollutant concentrations, while a general increase of MPIs is observed in all populated regions in the Northern Hemisphere. In East Asia a range of pollutant gases and fine particulate matter (PM2.5) is projected to reach very high levels from 2005 onward, while in South Asia air pollution, including ozone, will grow rapidly towards the middle of the century. Around the Persian Gulf, where natural PM2.5 concentrations are already high (desert dust), ozone levels are expected to increase strongly. The population weighted MPI (PW-MPI), which combines demographic and pollutant concentration projections, shows that a rapidly increasing number of people worldwide will experience reduced air quality during the first half of the 21st century. Following this business as usual scenario, it is projected that air quality for the global average citizen in 2050 would be almost comparable to that for the average citizen in East Asia in the year 2005, which underscores the need to pursue emission reductions.
NASA Astrophysics Data System (ADS)
Turnock, S. T.; Butt, E. W.; Richardson, T. B.; Mann, G. W.; Reddington, C. L.; Forster, P. M.; Haywood, J.; Crippa, M.; Janssens-Maenhout, G.; Johnson, C. E.; Bellouin, N.; Carslaw, K. S.; Spracklen, D. V.
2016-02-01
European air quality legislation has reduced emissions of air pollutants across Europe since the 1970s, affecting air quality, human health and regional climate. We used a coupled composition-climate model to simulate the impacts of European air quality legislation and technology measures implemented between 1970 and 2010. We contrast simulations using two emission scenarios; one with actual emissions in 2010 and the other with emissions that would have occurred in 2010 in the absence of technological improvements and end-of-pipe treatment measures in the energy, industrial and road transport sectors. European emissions of sulphur dioxide, black carbon (BC) and organic carbon in 2010 are 53%, 59% and 32% lower respectively compared to emissions that would have occurred in 2010 in the absence of legislative and technology measures. These emission reductions decreased simulated European annual mean concentrations of fine particulate matter (PM2.5) by 35%, sulphate by 44%, BC by 56% and particulate organic matter by 23%. The reduction in PM2.5 concentrations is calculated to have prevented 80 000 (37 000-116 000, at 95% confidence intervals) premature deaths annually across the European Union, resulting in a perceived financial benefit to society of US232 billion annually (1.4% of 2010 EU GDP). The reduction in aerosol concentrations due to legislative and technology measures caused a positive change in the aerosol radiative effect at the top of atmosphere, reduced atmospheric absorption and also increased the amount of solar radiation incident at the surface over Europe. We used an energy budget approximation to estimate that these changes in the radiative balance have increased European annual mean surface temperatures and precipitation by 0.45 ± 0.11 °C and by 13 ± 0.8 mm yr-1 respectively. Our results show that the implementation of European legislation and technological improvements to reduce the emission of air pollutants has improved air quality and human health over Europe, as well as having an unintended impact on the regional radiative balance and climate.
Zielinska, Barbara; Campbell, Dave; Samburova, Vera
2014-12-01
Rapid and extensive development of shale gas resources in the Barnett Shale region of Texas in recent years has created concerns about potential environmental impacts on water and air quality. The purpose of this study was to provide a better understanding of the potential contributions of emissions from gas production operations to population exposure to air toxics in the Barnett Shale region. This goal was approached using a combination of chemical characterization of the volatile organic compound (VOC) emissions from active wells, saturation monitoring for gaseous and particulate pollutants in a residential community located near active gas/oil extraction and processing facilities, source apportionment of VOCs measured in the community using the Chemical Mass Balance (CMB) receptor model, and direct measurements of the pollutant gradient downwind of a gas well with high VOC emissions. Overall, the study results indicate that air quality impacts due to individual gas wells and compressor stations are not likely to be discernible beyond a distance of approximately 100 m in the downwind direction. However, source apportionment results indicate a significant contribution to regional VOCs from gas production sources, particularly for lower-molecular-weight alkanes (< C6). Although measured ambient VOC concentrations were well below health-based safe exposure levels, the existence of urban-level mean concentrations of benzene and other mobile source air toxics combined with soot to total carbon ratios that were high for an area with little residential or commercial development may be indicative of the impact of increased heavy-duty vehicle traffic related to gas production. Implications: Rapid and extensive development of shale gas resources in recent years has created concerns about potential environmental impacts on water and air quality. This study focused on directly measuring the ambient air pollutant levels occurring at residential properties located near natural gas extraction and processing facilities, and estimating the relative contributions from gas production and motor vehicle emissions to ambient VOC concentrations. Although only a small-scale case study, the results may be useful for guidance in planning future ambient air quality studies and human exposure estimates in areas of intensive shale gas production.
40 CFR 81.75 - Metropolitan Charlotte Interstate Air Quality Control Region.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.75 Metropolitan Charlotte Interstate Air Quality Control Region. The Metropolitan Charlotte Interstate Air Quality Control Region (North Carolina-South Carolina) has been revised...
40 CFR 81.45 - Metropolitan Atlanta Intrastate Air Quality Control Region.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.45 Metropolitan Atlanta Intrastate Air Quality Control Region. The Metropolitan Atlanta Intrastate Air Quality Control Region (Georgia) has been revised to consist of the...
40 CFR 52.499 - Significant deterioration of air quality.
Code of Federal Regulations, 2011 CFR
2011-07-01
... quality. 52.499 Section 52.499 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality. The...
40 CFR 81.34 - Metropolitan Dayton Intrastate Air Quality Control Region.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.34 Metropolitan Dayton Intrastate Air Quality Control Region. The Metropolitan Dayton Intrastate Air Quality Control Region consists of the territorial area encompassed by the...
40 CFR 81.24 - Niagara Frontier Intrastate Air Quality Control Region.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.24 Niagara Frontier Intrastate Air Quality Control Region. The Niagara Frontier Intrastate Air Quality Control Region (New York) consists of the territorial area...
40 CFR 81.43 - Metropolitan Toledo Interstate Air Quality Control Region.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.43 Metropolitan Toledo Interstate Air Quality Control Region. The Metropolitan Toledo Interstate Air Quality Control Region (Ohio-Michigan) consists of the territorial area...
40 CFR 52.1884 - Significant deterioration of air quality.
Code of Federal Regulations, 2011 CFR
2011-07-01
... quality. 52.1884 Section 52.1884 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality. The...
40 CFR 52.1165 - Significant deterioration of air quality.
Code of Federal Regulations, 2013 CFR
2013-07-01
... quality. 52.1165 Section 52.1165 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulation for preventing significant deterioration of air quality. The...
40 CFR 81.36 - Maricopa Intrastate Air Quality Control Region.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Maricopa Intrastate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.36 Maricopa Intrastate Air Quality Control Region. The Phoenix-Tucson...
40 CFR 81.45 - Metropolitan Atlanta Intrastate Air Quality Control Region.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.45 Metropolitan Atlanta Intrastate Air Quality Control Region. The Metropolitan Atlanta Intrastate Air Quality Control Region (Georgia) has been revised to consist of the...
40 CFR 81.47 - Central Oklahoma Intrastate Air Quality Control Region.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.47 Central Oklahoma Intrastate Air Quality Control Region. The Metropolitan Oklahoma Intrastate Air Quality Control Region has been renamed the Central Oklahoma Intrastate...
40 CFR 81.41 - Metropolitan Birmingham Intrastate Air Quality Control Region.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.41 Metropolitan Birmingham Intrastate Air Quality Control Region. The Metropolitan Birmingham Intrastate Air Quality Control Region (Alabama) has been revised to consist of the...
40 CFR 52.1165 - Significant deterioration of air quality.
Code of Federal Regulations, 2011 CFR
2011-07-01
... quality. 52.1165 Section 52.1165 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulation for preventing significant deterioration of air quality. The...
40 CFR 52.1180 - Significant deterioration of air quality.
Code of Federal Regulations, 2014 CFR
2014-07-01
... quality. 52.1180 Section 52.1180 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality. The...
40 CFR 81.34 - Metropolitan Dayton Intrastate Air Quality Control Region.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.34 Metropolitan Dayton Intrastate Air Quality Control Region. The Metropolitan Dayton Intrastate Air Quality Control Region consists of the territorial area encompassed by the...
40 CFR 81.41 - Metropolitan Birmingham Intrastate Air Quality Control Region.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.41 Metropolitan Birmingham Intrastate Air Quality Control Region. The Metropolitan Birmingham Intrastate Air Quality Control Region (Alabama) has been revised to consist of the...
40 CFR 52.2729 - Significant deterioration of air quality.
Code of Federal Regulations, 2014 CFR
2014-07-01
... quality. 52.2729 Section 52.2729 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality. The...
40 CFR 81.42 - Chattanooga Interstate Air Quality Control Region.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Chattanooga Interstate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.42 Chattanooga Interstate Air Quality Control Region. The Chattanooga...
40 CFR 81.20 - Metropolitan Cincinnati Interstate Air Quality Control Region.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.20 Metropolitan Cincinnati Interstate Air Quality Control Region. The Metropolitan Cincinnati Interstate Air Quality Control Region (Ohio-Kentucky-Indiana) is revised to consist of...
40 CFR 81.23 - Southwest Pennsylvania Intrastate Air Quality Control Region.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.23 Southwest Pennsylvania Intrastate Air Quality Control Region. The Southwest Pennsylvania Intrastate Air Quality Control Region is redesignated to consist of the territorial...
40 CFR 52.1884 - Significant deterioration of air quality.
Code of Federal Regulations, 2014 CFR
2014-07-01
... quality. 52.1884 Section 52.1884 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality. The...
40 CFR 52.2779 - Significant deterioration of air quality.
Code of Federal Regulations, 2012 CFR
2012-07-01
... quality. 52.2779 Section 52.2779 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality. The...
40 CFR 81.34 - Metropolitan Dayton Intrastate Air Quality Control Region.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.34 Metropolitan Dayton Intrastate Air Quality Control Region. The Metropolitan Dayton Intrastate Air Quality Control Region consists of the territorial area encompassed by the...
40 CFR 81.51 - Portland Interstate Air Quality Control Region.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Portland Interstate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.51 Portland Interstate Air Quality Control Region. The Portland Interstate...
40 CFR 52.499 - Significant deterioration of air quality.
Code of Federal Regulations, 2013 CFR
2013-07-01
... quality. 52.499 Section 52.499 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality. The...
40 CFR 52.1603 - Significant deterioration of air quality.
Code of Federal Regulations, 2012 CFR
2012-07-01
... quality. 52.1603 Section 52.1603 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality. The...
40 CFR 81.79 - Northeastern Oklahoma Intrastate Air Quality Control Region.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.79 Northeastern Oklahoma Intrastate Air Quality Control Region. The Metropolitan Tulsa Intrastate Air Quality Control Region has been renamed the Northeastern Oklahoma Intrastate...
40 CFR 81.59 - Cumberland-Keyser Interstate Air Quality Control Region.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.59 Cumberland-Keyser Interstate Air Quality Control Region. The Cumberland-Keyser Interstate Air Quality Control Region (Maryland-West Virginia) has been revised to consist...
40 CFR 52.1234 - Significant deterioration of air quality.
Code of Federal Regulations, 2012 CFR
2012-07-01
... quality. 52.1234 Section 52.1234 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality. The...
40 CFR 81.49 - Southeast Florida Intrastate Air Quality Control Region.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.49 Southeast Florida Intrastate Air Quality Control Region. The Southeast Florida Intrastate Air Quality Control Region is redesignated to consist of the territorial area...
40 CFR 52.2497 - Significant deterioration of air quality.
Code of Federal Regulations, 2011 CFR
2011-07-01
... quality. 52.2497 Section 52.2497 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality. The...
40 CFR 52.2497 - Significant deterioration of air quality.
Code of Federal Regulations, 2012 CFR
2012-07-01
... quality. 52.2497 Section 52.2497 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality. The...
40 CFR 52.1603 - Significant deterioration of air quality.
Code of Federal Regulations, 2011 CFR
2011-07-01
... quality. 52.1603 Section 52.1603 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality. The...
40 CFR 52.1884 - Significant deterioration of air quality.
Code of Federal Regulations, 2012 CFR
2012-07-01
... quality. 52.1884 Section 52.1884 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality. The...
40 CFR 52.2676 - Significant deterioration of air quality.
Code of Federal Regulations, 2013 CFR
2013-07-01
... quality. 52.2676 Section 52.2676 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality. The...
40 CFR 81.35 - Louisville Interstate Air Quality Control Region.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Louisville Interstate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.35 Louisville Interstate Air Quality Control Region. The Louisville...
40 CFR 52.1603 - Significant deterioration of air quality.
Code of Federal Regulations, 2013 CFR
2013-07-01
... quality. 52.1603 Section 52.1603 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality. The...
40 CFR 81.36 - Maricopa Intrastate Air Quality Control Region.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Maricopa Intrastate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.36 Maricopa Intrastate Air Quality Control Region. The Phoenix-Tucson...
40 CFR 52.499 - Significant deterioration of air quality.
Code of Federal Regulations, 2012 CFR
2012-07-01
... quality. 52.499 Section 52.499 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality. The...
40 CFR 52.2676 - Significant deterioration of air quality.
Code of Federal Regulations, 2012 CFR
2012-07-01
... quality. 52.2676 Section 52.2676 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality. The...
40 CFR 81.49 - Southeast Florida Intrastate Air Quality Control Region.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.49 Southeast Florida Intrastate Air Quality Control Region. The Southeast Florida Intrastate Air Quality Control Region is redesignated to consist of the territorial area...
40 CFR 52.2779 - Significant deterioration of air quality.
Code of Federal Regulations, 2014 CFR
2014-07-01
... quality. 52.2779 Section 52.2779 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality. The...
40 CFR 52.1234 - Significant deterioration of air quality.
Code of Federal Regulations, 2014 CFR
2014-07-01
... quality. 52.1234 Section 52.1234 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality. The...
40 CFR 81.41 - Metropolitan Birmingham Intrastate Air Quality Control Region.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.41 Metropolitan Birmingham Intrastate Air Quality Control Region. The Metropolitan Birmingham Intrastate Air Quality Control Region (Alabama) has been revised to consist of the...
40 CFR 52.2676 - Significant deterioration of air quality.
Code of Federal Regulations, 2011 CFR
2011-07-01
... quality. 52.2676 Section 52.2676 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality. The...
40 CFR 52.1165 - Significant deterioration of air quality.
Code of Federal Regulations, 2014 CFR
2014-07-01
... quality. 52.1165 Section 52.1165 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulation for preventing significant deterioration of air quality. The...
40 CFR 81.41 - Metropolitan Birmingham Intrastate Air Quality Control Region.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.41 Metropolitan Birmingham Intrastate Air Quality Control Region. The Metropolitan Birmingham Intrastate Air Quality Control Region (Alabama) has been revised to consist of the...
40 CFR 81.34 - Metropolitan Dayton Intrastate Air Quality Control Region.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.34 Metropolitan Dayton Intrastate Air Quality Control Region. The Metropolitan Dayton Intrastate Air Quality Control Region consists of the territorial area encompassed by the...
40 CFR 52.2827 - Significant deterioration of air quality.
Code of Federal Regulations, 2014 CFR
2014-07-01
... quality. 52.2827 Section 52.2827 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality. The...
40 CFR 52.1165 - Significant deterioration of air quality.
Code of Federal Regulations, 2012 CFR
2012-07-01
... quality. 52.1165 Section 52.1165 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulation for preventing significant deterioration of air quality. The...
40 CFR 81.43 - Metropolitan Toledo Interstate Air Quality Control Region.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.43 Metropolitan Toledo Interstate Air Quality Control Region. The Metropolitan Toledo Interstate Air Quality Control Region (Ohio-Michigan) consists of the territorial area...
40 CFR 81.24 - Niagara Frontier Intrastate Air Quality Control Region.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.24 Niagara Frontier Intrastate Air Quality Control Region. The Niagara Frontier Intrastate Air Quality Control Region (New York) consists of the territorial area...
40 CFR 81.47 - Central Oklahoma Intrastate Air Quality Control Region.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.47 Central Oklahoma Intrastate Air Quality Control Region. The Metropolitan Oklahoma Intrastate Air Quality Control Region has been renamed the Central Oklahoma Intrastate...
40 CFR 81.23 - Southwest Pennsylvania Intrastate Air Quality Control Region.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.23 Southwest Pennsylvania Intrastate Air Quality Control Region. The Southwest Pennsylvania Intrastate Air Quality Control Region is redesignated to consist of the territorial...
40 CFR 81.49 - Southeast Florida Intrastate Air Quality Control Region.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.49 Southeast Florida Intrastate Air Quality Control Region. The Southeast Florida Intrastate Air Quality Control Region is redesignated to consist of the territorial area...
40 CFR 52.1180 - Significant deterioration of air quality.
Code of Federal Regulations, 2012 CFR
2012-07-01
... quality. 52.1180 Section 52.1180 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality. The...
40 CFR 52.2676 - Significant deterioration of air quality.
Code of Federal Regulations, 2014 CFR
2014-07-01
... quality. 52.2676 Section 52.2676 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality. The...
40 CFR 52.2497 - Significant deterioration of air quality.
Code of Federal Regulations, 2014 CFR
2014-07-01
... quality. 52.2497 Section 52.2497 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality. The...
40 CFR 81.45 - Metropolitan Atlanta Intrastate Air Quality Control Region.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.45 Metropolitan Atlanta Intrastate Air Quality Control Region. The Metropolitan Atlanta Intrastate Air Quality Control Region (Georgia) has been revised to consist of the...
40 CFR 81.47 - Central Oklahoma Intrastate Air Quality Control Region.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.47 Central Oklahoma Intrastate Air Quality Control Region. The Metropolitan Oklahoma Intrastate Air Quality Control Region has been renamed the Central Oklahoma Intrastate...
40 CFR 81.23 - Southwest Pennsylvania Intrastate Air Quality Control Region.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.23 Southwest Pennsylvania Intrastate Air Quality Control Region. The Southwest Pennsylvania Intrastate Air Quality Control Region is redesignated to consist of the territorial...
40 CFR 81.59 - Cumberland-Keyser Interstate Air Quality Control Region.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.59 Cumberland-Keyser Interstate Air Quality Control Region. The Cumberland-Keyser Interstate Air Quality Control Region (Maryland-West Virginia) has been revised to consist...
40 CFR 52.499 - Significant deterioration of air quality.
Code of Federal Regulations, 2014 CFR
2014-07-01
... quality. 52.499 Section 52.499 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality. The...
40 CFR 81.20 - Metropolitan Cincinnati Interstate Air Quality Control Region.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.20 Metropolitan Cincinnati Interstate Air Quality Control Region. The Metropolitan Cincinnati Interstate Air Quality Control Region (Ohio-Kentucky-Indiana) is revised to consist of...
40 CFR 81.43 - Metropolitan Toledo Interstate Air Quality Control Region.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.43 Metropolitan Toledo Interstate Air Quality Control Region. The Metropolitan Toledo Interstate Air Quality Control Region (Ohio-Michigan) consists of the territorial area...
40 CFR 52.2729 - Significant deterioration of air quality.
Code of Federal Regulations, 2013 CFR
2013-07-01
... quality. 52.2729 Section 52.2729 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality. The...
40 CFR 81.42 - Chattanooga Interstate Air Quality Control Region.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Chattanooga Interstate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.42 Chattanooga Interstate Air Quality Control Region. The Chattanooga...
40 CFR 81.36 - Maricopa Intrastate Air Quality Control Region.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Maricopa Intrastate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.36 Maricopa Intrastate Air Quality Control Region. The Phoenix-Tucson...
40 CFR 81.24 - Niagara Frontier Intrastate Air Quality Control Region.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.24 Niagara Frontier Intrastate Air Quality Control Region. The Niagara Frontier Intrastate Air Quality Control Region (New York) consists of the territorial area...
40 CFR 81.20 - Metropolitan Cincinnati Interstate Air Quality Control Region.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.20 Metropolitan Cincinnati Interstate Air Quality Control Region. The Metropolitan Cincinnati Interstate Air Quality Control Region (Ohio-Kentucky-Indiana) is revised to consist of...
40 CFR 81.43 - Metropolitan Toledo Interstate Air Quality Control Region.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.43 Metropolitan Toledo Interstate Air Quality Control Region. The Metropolitan Toledo Interstate Air Quality Control Region (Ohio-Michigan) consists of the territorial area...
40 CFR 81.42 - Chattanooga Interstate Air Quality Control Region.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Chattanooga Interstate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.42 Chattanooga Interstate Air Quality Control Region. The Chattanooga...
40 CFR 81.75 - Metropolitan Charlotte Interstate Air Quality Control Region.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.75 Metropolitan Charlotte Interstate Air Quality Control Region. The Metropolitan Charlotte Interstate Air Quality Control Region (North Carolina-South Carolina) has been revised...
40 CFR 81.35 - Louisville Interstate Air Quality Control Region.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Louisville Interstate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.35 Louisville Interstate Air Quality Control Region. The Louisville...
40 CFR 81.14 - Metropolitan Chicago Interstate Air Quality Control Region.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.14 Metropolitan Chicago Interstate Air Quality Control Region. The Metropolitan Chicago Interstate Air Quality Control Region (Illinois-Indiana) is revised to consist of the...
40 CFR 52.1180 - Significant deterioration of air quality.
Code of Federal Regulations, 2011 CFR
2011-07-01
... quality. 52.1180 Section 52.1180 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality. The...
40 CFR 81.14 - Metropolitan Chicago Interstate Air Quality Control Region.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.14 Metropolitan Chicago Interstate Air Quality Control Region. The Metropolitan Chicago Interstate Air Quality Control Region (Illinois-Indiana) is revised to consist of the...
40 CFR 81.36 - Maricopa Intrastate Air Quality Control Region.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Maricopa Intrastate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.36 Maricopa Intrastate Air Quality Control Region. The Phoenix-Tucson...
40 CFR 52.2497 - Significant deterioration of air quality.
Code of Federal Regulations, 2013 CFR
2013-07-01
... quality. 52.2497 Section 52.2497 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality. The...
40 CFR 52.1234 - Significant deterioration of air quality.
Code of Federal Regulations, 2013 CFR
2013-07-01
... quality. 52.1234 Section 52.1234 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality. The...
40 CFR 81.42 - Chattanooga Interstate Air Quality Control Region.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Chattanooga Interstate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.42 Chattanooga Interstate Air Quality Control Region. The Chattanooga...
40 CFR 81.24 - Niagara Frontier Intrastate Air Quality Control Region.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.24 Niagara Frontier Intrastate Air Quality Control Region. The Niagara Frontier Intrastate Air Quality Control Region (New York) consists of the territorial area...
40 CFR 81.35 - Louisville Interstate Air Quality Control Region.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Louisville Interstate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.35 Louisville Interstate Air Quality Control Region. The Louisville...
40 CFR 52.2827 - Significant deterioration of air quality.
Code of Federal Regulations, 2012 CFR
2012-07-01
... quality. 52.2827 Section 52.2827 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality. The...
40 CFR 81.49 - Southeast Florida Intrastate Air Quality Control Region.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.49 Southeast Florida Intrastate Air Quality Control Region. The Southeast Florida Intrastate Air Quality Control Region is redesignated to consist of the territorial area...
40 CFR 81.35 - Louisville Interstate Air Quality Control Region.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Louisville Interstate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.35 Louisville Interstate Air Quality Control Region. The Louisville...
40 CFR 52.1180 - Significant deterioration of air quality.
Code of Federal Regulations, 2013 CFR
2013-07-01
... quality. 52.1180 Section 52.1180 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality. The...
40 CFR 52.1884 - Significant deterioration of air quality.
Code of Federal Regulations, 2013 CFR
2013-07-01
... quality. 52.1884 Section 52.1884 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality. The...
40 CFR 52.2729 - Significant deterioration of air quality.
Code of Federal Regulations, 2011 CFR
2011-07-01
... quality. 52.2729 Section 52.2729 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality. The...
40 CFR 52.2729 - Significant deterioration of air quality.
Code of Federal Regulations, 2012 CFR
2012-07-01
... quality. 52.2729 Section 52.2729 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality. The...
40 CFR 81.23 - Southwest Pennsylvania Intrastate Air Quality Control Region.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.23 Southwest Pennsylvania Intrastate Air Quality Control Region. The Southwest Pennsylvania Intrastate Air Quality Control Region is redesignated to consist of the territorial...
40 CFR 52.2827 - Significant deterioration of air quality.
Code of Federal Regulations, 2013 CFR
2013-07-01
... quality. 52.2827 Section 52.2827 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality. The...
40 CFR 52.2827 - Significant deterioration of air quality.
Code of Federal Regulations, 2011 CFR
2011-07-01
... quality. 52.2827 Section 52.2827 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality. The...
40 CFR 52.1234 - Significant deterioration of air quality.
Code of Federal Regulations, 2011 CFR
2011-07-01
... quality. 52.1234 Section 52.1234 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality. The...
40 CFR 52.2779 - Significant deterioration of air quality.
Code of Federal Regulations, 2013 CFR
2013-07-01
... quality. 52.2779 Section 52.2779 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality. The...
40 CFR 81.14 - Metropolitan Chicago Interstate Air Quality Control Region.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.14 Metropolitan Chicago Interstate Air Quality Control Region. The Metropolitan Chicago Interstate Air Quality Control Region (Illinois-Indiana) is revised to consist of the...
40 CFR 81.20 - Metropolitan Cincinnati Interstate Air Quality Control Region.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.20 Metropolitan Cincinnati Interstate Air Quality Control Region. The Metropolitan Cincinnati Interstate Air Quality Control Region (Ohio-Kentucky-Indiana) is revised to consist of...
40 CFR 81.59 - Cumberland-Keyser Interstate Air Quality Control Region.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.59 Cumberland-Keyser Interstate Air Quality Control Region. The Cumberland-Keyser Interstate Air Quality Control Region (Maryland-West Virginia) has been revised to consist...
40 CFR 81.14 - Metropolitan Chicago Interstate Air Quality Control Region.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.14 Metropolitan Chicago Interstate Air Quality Control Region. The Metropolitan Chicago Interstate Air Quality Control Region (Illinois-Indiana) is revised to consist of the...
40 CFR 81.45 - Metropolitan Atlanta Intrastate Air Quality Control Region.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.45 Metropolitan Atlanta Intrastate Air Quality Control Region. The Metropolitan Atlanta Intrastate Air Quality Control Region (Georgia) has been revised to consist of the...
40 CFR 52.2779 - Significant deterioration of air quality.
Code of Federal Regulations, 2011 CFR
2011-07-01
... quality. 52.2779 Section 52.2779 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality. The...
40 CFR 81.59 - Cumberland-Keyser Interstate Air Quality Control Region.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.59 Cumberland-Keyser Interstate Air Quality Control Region. The Cumberland-Keyser Interstate Air Quality Control Region (Maryland-West Virginia) has been revised to consist...
40 CFR 81.87 - Metropolitan Boise Intrastate Air Quality Control Region.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.87 Metropolitan Boise Intrastate Air Quality Control Region. The Metropolitan Boise Intrastate Air Quality Control Region (Idaho) consists of the territorial area encompassed...