Science.gov

Sample records for air quality forecasts

  1. The Economic Value of Air Quality Forecasting

    NASA Astrophysics Data System (ADS)

    Anderson-Sumo, Tasha

    Both long-term and daily air quality forecasts provide an essential component to human health and impact costs. According the American Lung Association, the estimated current annual cost of air pollution related illness in the United States, adjusted for inflation (3% per year), is approximately $152 billion. Many of the risks such as hospital visits and morality are associated with poor air quality days (where the Air Quality Index is greater than 100). Groups such as sensitive groups become more susceptible to the resulting conditions and more accurate forecasts would help to take more appropriate precautions. This research focuses on evaluating the utility of air quality forecasting in terms of its potential impacts by building on air quality forecasting and economical metrics. Our analysis includes data collected during the summertime ozone seasons between 2010 and 2012 from air quality models for the Washington, DC/Baltimore, MD region. The metrics that are relevant to our analysis include: (1) The number of times that a high ozone or particulate matter (PM) episode is correctly forecasted, (2) the number of times that high ozone or PM episode is forecasted when it does not occur and (3) the number of times when the air quality forecast predicts a cleaner air episode when the air was observed to have high ozone or PM. Our collection of data included available air quality model forecasts of ozone and particulate matter data from the U.S. Environmental Protection Agency (EPA)'s AIRNOW as well as observational data of ozone and particulate matter from Clean Air Partners. We evaluated the performance of the air quality forecasts with that of the observational data and found that the forecast models perform well for the Baltimore/Washington region and the time interval observed. We estimate the potential amount for the Baltimore/Washington region accrues to a savings of up to 5,905 lives and 5.9 billion dollars per year. This total assumes perfect compliance with

  2. USWRP Workshop on Air Quality Forecasting

    SciTech Connect

    Dabberdt, Walter F.; Carroll, Mary Anne; Appleby, William; Baumgardner, Darrel; Carmichael, Gregory; Davidson, Paula; Doran, J. C.; Dye, Timothy G.; Grimmond, Susan; Middleton, Paulette; Neff, William; Zhang, Yang

    2006-02-01

    There has recently been increased emphasis on air quality forecasting (AQF) and the research and development activities that are required to improve AQF skill and implement an operational AQF capability. In November 2001, the US Weather Research Program (USWRP) charged Prospectus Develop Team 11 with identification of the meteorological research needs for improved air quality forecasting (Dabberdt et al. 2004a). Subsequently, the Interagency Working Group (IWG) of the USWRP tentatively adopted Air Quality as one of its principal scientific foci. In addition, the National Oceanic and Atmospheric Administration (NOAA) and the United States Environmental Protection Agency (EPA) have made substantial progress towards developing an operational air quality forecast system. With these activities as background, the lead scientist of the USWRP requested that a community workshop be conducted to further define and prioritize AQF research needs and opportunities. The results of the workshop would then be used in the development of an Implementation Plan that the IWG would use to prioritize and support research directed at improving air quality knowledge, monitoring and forecasting capabilities, and evaluating new air quality forecast products. The resulting USWRP Air Quality Forecasting Workshop was held April 29 – May 1, 2003, in Houston, Texas. This report summarizes the findings and recommendations.

  3. FORECASTING AIR QUALITY OVER THE UNITED STATES

    EPA Science Inventory

    Increased awareness of national air quality issues on the part of the media and the general public have recently led to more demand for short-term (1-2 day) air quality forecasts for use in assessing potential health impacts (e.g., on children, the elderly, and asthmatics) and po...

  4. Urban Air Quality Forecasting in Canada

    NASA Astrophysics Data System (ADS)

    Pavlovic, Radenko; Menard, Sylvain; Cousineau, Sophie; Stroud, Craig; Moran, Michael

    2016-04-01

    Environment and Climate Change Canada has been providing air quality (AQ) forecasts for major Canadian urban centers since 2001. Over this period, the Canadian AQ Forecast Program has expanded and evolved. It currently uses the Regional Air Quality Deterministic Prediction System (RAQDPS) modelling framework. At the heart of the RAQDPS is the GEM-MACH model, an on-line coupled meteorology‒chemistry model configured for a North American domain with 10 km horizontal grid spacing and 80 vertical levels. A statistical post-processing model (UMOS-AQ) is then applied to the RAQDPS hourly forecasts for locations with AQ monitors to reduce point forecast bias and error. These outputs provide the primary guidance from which operational meteorologists disseminate Air Quality Health Index (AQHI) forecasts to the public for major urban centres across Canada. During the 2015 summer Pan Am and Parapan Am Games, which were held in Ontario, Canada, an experimental version of the RAQDPS at 2.5 km horizontal grid spacing was run for a domain over the greater Toronto area. Currently, there is ongoing research to develop and assess AQ systems run at 1 km resolution. This presentation will show analyses of operational AQ forecast performance for several pollutants over the last few years in major Canadian urban centres such as Toronto, Montreal, Vancouver, Ottawa, and Calgary. Trends in observed pollution along with short- and long-term development plans for urban AQ forecasting will also be presented.

  5. Metrics for the Evaluation the Utility of Air Quality Forecasting

    NASA Astrophysics Data System (ADS)

    Sumo, T. M.; Stockwell, W. R.

    2013-12-01

    Global warming is expected to lead to higher levels of air pollution and therefore the forecasting of both long-term and daily air quality is an important component for the assessment of the costs of climate change and its impact on human health. Some of the risks associated with poor air quality days (where the Air Pollution Index is greater than 100), include hospital visits and mortality. Accurate air quality forecasting has the potential to allow sensitive groups to take appropriate precautions. This research builds metrics for evaluating the utility of air quality forecasting in terms of its potential impacts. Our analysis of air quality models focuses on the Washington, DC/Baltimore, MD region over the summertime ozone seasons between 2010 and 2012. The metrics that are relevant to our analysis include: (1) The number of times that a high ozone or particulate matter (PM) episode is correctly forecasted, (2) the number of times that high ozone or PM episode is forecasted when it does not occur and (3) the number of times when the air quality forecast predicts a cleaner air episode when the air was observed to have high ozone or PM. Our evaluation of the performance of air quality forecasts include those forecasts of ozone and particulate matter and data available from the U.S. Environmental Protection Agency (EPA)'s AIRNOW. We also examined observational ozone and particulate matter data available from Clean Air Partners. Overall the forecast models perform well for our region and time interval.

  6. Improving Air Quality Forecasts with AURA Observations

    NASA Technical Reports Server (NTRS)

    Newchurch, M. J.; Biazer, A.; Khan, M.; Koshak, W. J.; Nair, U.; Fuller, K.; Wang, L.; Parker, Y.; Williams, R.; Liu, X.

    2008-01-01

    Past studies have identified model initial and boundary conditions as sources of reducible errors in air-quality simulations. In particular, improving the initial condition improves the accuracy of short-term forecasts as it allows for the impact of local emissions to be realized by the model and improving boundary conditions improves long range transport through the model domain, especially in recirculating anticyclones. During the August 2006 period, we use AURA/OMI ozone measurements along with MODIS and CALIPSO aerosol observations to improve the initial and boundary conditions of ozone and Particulate Matter. Assessment of the model by comparison of the control run and satellite assimilation run to the IONS06 network of ozonesonde observations, which comprise the densest ozone sounding campaign ever conducted in North America, to AURA/TES ozone profile measurements, and to the EPA ground network of ozone and PM measurements will show significant improvement in the CMAQ calculations that use AURA initial and boundary conditions. Further analyses of lightning occurrences from ground and satellite observations and AURA/OMI NO2 column abundances will identify the lightning NOx signal evident in OMI measurements and suggest pathways for incorporating the lightning and NO2 data into the CMAQ simulations.

  7. IMPROVING NATIONAL AIR QUALITY FORECASTS WITH SATELLITE AEROSOL OBSERVATIONS

    EPA Science Inventory

    Air quality forecasts for major US metropolitan areas have been provided to the public through a partnership between the US Environmental Protection Agency and state and local air agencies since 1997. Recent years have witnessed improvement in forecast skill and expansion of fore...

  8. EMISSIONS PROCESSING FOR THE ETA/ CMAQ AIR QUALITY FORECAST SYSTEM

    EPA Science Inventory

    NOAA and EPA have created an Air Quality Forecast (AQF) system. This AQF system links an adaptation of the EPA's Community Multiscale Air Quality Model with the 12 kilometer ETA model running operationally at NOAA's National Center for Environmental Predication (NCEP). One of the...

  9. AIR QUALITY FORECAST VERIFICATION USING SATELLITE DATA

    EPA Science Inventory

    NOAA 's operational geostationary satellite retrievals of aerosol optical depths (AODs) were used to verify National Weather Service (NWS) experimental (research mode) particulate matter (PM2.5) forecast guidance issued during the summer 2004 International Consortium for Atmosp...

  10. Local Air Quality Conditions and Forecasts

    MedlinePlus

    ... Location Map Center Forecast AQI Current AQI Current Ozone Current PM AQI Loop Ozone Loop PM Loop Action Day Maps by Monitor ... Partners Kids Movies NAQ Conferences NOAA Older Adults Ozone Particle Pollution (PM2.5, PM10) Publications Publicaciones (En ...

  11. AN OPERATIONAL EVALUATION OF THE ETA-CMAQ AIR QUALITY FORECAST MODEL

    EPA Science Inventory

    The National Oceanic and Atmospheric Administration (NOAA), in collaboration with the Environmental Protection Agency (EPA), are developing an Air Quality Forecasting Program that will eventually result in an operational Nationwide Air Quality Forecasting System. The initial pha...

  12. Forecasting of daily air quality index in Delhi.

    PubMed

    Kumar, Anikender; Goyal, P

    2011-11-15

    As the impact of air pollutants on human health through ambient air address much attention in recent years, the air quality forecasting in terms of air pollution parameters becomes an important topic in environmental science. The Air Quality Index (AQI) can be estimated through a formula, based on comprehensive assessment of concentration of air pollutants, which can be used by government agencies to characterize the status of air quality at a given location. The present study aims to develop forecasting model for predicting daily AQI, which can be used as a basis of decision making processes. Firstly, the AQI has been estimated through a method used by US Environmental Protection Agency (USEPA) for different criteria pollutants as Respirable Suspended Particulate Matter (RSPM), Sulfur dioxide (SO2), Nitrogen dioxide (NO2) and Suspended Particulate Matter (SPM). However, the sub-index and breakpoint concentrations in the formula are made according to Indian National Ambient Air Quality Standard. Secondly, the daily AQI for each season is forecasted through three statistical models namely time series auto regressive integrated moving average (ARIMA) (model 1), principal component regression (PCR) (model 2) and combination of both (model 3) in Delhi. The performance of all three models are evaluated with the help of observed concentrations of pollutants, which reflects that model 3 agrees well with observed values, as compared to the values of model 1 and model 2. The same is supported by the statistical parameters also. The significance of meteorological parameters of model 3 has been assessed through principal component analysis (PCA), which indicates that daily rainfall, station level pressure, daily mean temperature, wind direction index are maximum explained in summer, monsoon, post-monsoon and winter respectively. Further, the variation of AQI during the weekends (holidays) and weekdays are found negligible. Therefore all the days of week are accounted same in

  13. Dust and Air Quality Forecasting in the Eastern Caribbean

    NASA Astrophysics Data System (ADS)

    Sealy, A. M.; Reyes, A.; Farrell, D. A.

    2015-12-01

    Significant amounts of dust travel across the northern tropical Atlantic to the Caribbean every year from the Sahara region. These dust concentrations in the Caribbean often exceed United States Environmental Protection Agency (EPA) standards for particulate matter of 2.5 microns or less (PM 2.5) which could have serious implications for human health in the region. Air pollution has become a major issue in the Caribbean because of urban development, increased vehicle emissions and growing industrialisation. However, the majority of territories in the Caribbean do not have routine air quality monitoring programmes and several do not have or enforce air quality standards for PM2.5 and PM10. As a result, the Caribbean Institute for Meteorology and Hydrology (CIMH) has taken the initiative to provide dust and air quality forecasts for the Eastern Caribbean using the advanced WRF-Chem modeling system. The applications of the WRF-Chem modelling system at CIMH that are currently being focused on are the coupled weather prediction/dispersion model to simulate the release and transport of constituents, especially Saharan dust transport and concentration; and as a coupled weather/dispersion/air quality model with full interaction of chemical species with prediction of particulate matter (PM2.5 and PM10). This will include future applications in the prediction of ozone (O3) and ultraviolet (UV) radiation as well as examining dust radiative forcing and effects on atmospheric precipitation and dynamics. The simulations are currently initialised at 00Z for a seven day forecast and run at 36 km resolution with a planned second domain (at 12 km) for air quality forecasts. Preliminary results from this study will be presented and compared to other dust forecast models currently used in other regions. This work also complements in situ measurements at Ragged Point, Barbados (oldest dust record since 1965), Martinique, Guadeloupe, French Guiana and Puerto Rico. The goal of this study

  14. THE EMERGENCE OF NUMERICAL AIR QUALITY FORECASTING MODELS AND THEIR APPLICATION

    EPA Science Inventory

    In recent years the U.S. and other nations have begun programs for short-term local through regional air quality forecasting based upon numerical three-dimensional air quality grid models. These numerical air quality forecast (NAQF) models and systems have been developed and test...

  15. Operational air quality forecasting system for Spain: CALIOPE

    NASA Astrophysics Data System (ADS)

    Baldasano, J. M.; Piot, M.; Jorba, O.; Goncalves, M.; Pay, M.; Pirez, C.; Lopez, E.; Gasso, S.; Martin, F.; García-Vivanco, M.; Palomino, I.; Querol, X.; Pandolfi, M.; Dieguez, J. J.; Padilla, L.

    2009-12-01

    The European Commission (EC) and the United States Environmental Protection Agency (US-EPA) have shown great concerns to understand the transport and dynamics of pollutants in the atmosphere. According to the European directives (1996/62/EC, 2002/3/EC, 2008/50/EC), air quality modeling, if accurately applied, is a useful tool to understand the dynamics of air pollutants, to analyze and forecast the air quality, and to develop programs reducing emissions and alert the population when health-related issues occur. The CALIOPE project, funded by the Spanish Ministry of the Environment, has the main objective to establish an air quality forecasting system for Spain. A partnership of four research institutions composes the CALIOPE project: the Barcelona Supercomputing Center (BSC), the center of investigation CIEMAT, the Earth Sciences Institute ‘Jaume Almera’ (IJA-CSIC) and the CEAM Foundation. CALIOPE will become the official Spanish air quality operational system. This contribution focuses on the recent developments and implementation of the integrated modelling system for the Iberian Peninsula (IP) and Canary Islands (CI) with a high spatial and temporal resolution (4x4 sq. km for IP and 2x2 sq. km for CI, 1 hour), namely WRF-ARW/HERMES04/CMAQ/BSC-DREAM. The HERMES04 emission model has been specifically developed as a high-resolution (1x1 sq. km, 1 hour) emission model for Spain. It includes biogenic and anthropogenic emissions such as on-road and paved-road resuspension production, power plant generation, ship and plane traffic, airports and ports activities, industrial and agricultural sectors as well as domestic and commercial emissions. The qualitative and quantitative evaluation of the model was performed for a reference year (2004) using data from ground-based measurement networks. The products of the CALIOPE system will provide 24h and 48h forecasts for O3, NO2, SO2, CO, PM10 and PM2.5 at surface level. An operational evaluation system has been developed

  16. A PERFORMANCE EVALUATION OF THE ETA- CMAQ AIR QUALITY FORECAST SYSTEM FOR THE SUMMER OF 2005

    EPA Science Inventory

    This poster presents an evaluation of the Eta-CMAQ Air Quality Forecast System's experimental domain using O3 observations obtained from EPA's AIRNOW program and a suite of statistical metrics examining both discrete and categorical forecasts.

  17. Air Quality Forecasting through Different Statistical and Artificial Intelligence Techniques

    NASA Astrophysics Data System (ADS)

    Mishra, D.; Goyal, P.

    2014-12-01

    Urban air pollution forecasting has emerged as an acute problem in recent years because there are sever environmental degradation due to increase in harmful air pollutants in the ambient atmosphere. In this study, there are different types of statistical as well as artificial intelligence techniques are used for forecasting and analysis of air pollution over Delhi urban area. These techniques are principle component analysis (PCA), multiple linear regression (MLR) and artificial neural network (ANN) and the forecasting are observed in good agreement with the observed concentrations through Central Pollution Control Board (CPCB) at different locations in Delhi. But such methods suffers from disadvantages like they provide limited accuracy as they are unable to predict the extreme points i.e. the pollution maximum and minimum cut-offs cannot be determined using such approach. Also, such methods are inefficient approach for better output forecasting. But with the advancement in technology and research, an alternative to the above traditional methods has been proposed i.e. the coupling of statistical techniques with artificial Intelligence (AI) can be used for forecasting purposes. The coupling of PCA, ANN and fuzzy logic is used for forecasting of air pollutant over Delhi urban area. The statistical measures e.g., correlation coefficient (R), normalized mean square error (NMSE), fractional bias (FB) and index of agreement (IOA) of the proposed model are observed in better agreement with the all other models. Hence, the coupling of statistical and artificial intelligence can be use for the forecasting of air pollutant over urban area.

  18. Operational air quality forecast guidance for the United States

    NASA Astrophysics Data System (ADS)

    Stajner, Ivanka; Lee, Pius; Tong, Daniel; Pan, Li; McQueen, Jeff; Huang, Jinaping; Djalalova, Irina; Wilczak, James; Huang, Ho-Chun; Wang, Jun; Stein, Ariel; Upadhayay, Sikchya

    2016-04-01

    NOAA provides operational air quality predictions for ozone and wildfire smoke over the United States (U.S.) and predictions of airborne dust over the contiguous 48 states at http://airquality.weather.gov. These predictions are produced using U.S. Environmental Protection Agency (EPA) Community Model for Air Quality (CMAQ) and NOAA's HYSPLIT model (Stein et al., 2015) with meteorological inputs from the North American Mesoscale Forecast System (NAM). The current efforts focus on improving test predictions of fine particulate matter (PM2.5) from CMAQ. Emission inputs for ozone and PM2.5 predictions include inventory information from the U.S. EPA and recently added contributions of particulate matter from intermittent wildfires and windblown dust that rely on near real-time information. Current testing includes refinement of the vertical grid structure in CMAQ and inclusion of contributions of dust transport from global sources into the U.S. domain using the NEMS Global Aerosol Capability (NGAC). The addition of wildfire smoke and dust contributions in CMAQ reduced model underestimation of PM2.5 in summertime. Wintertime overestimation of PM2.5 was reduced by suppressing emissions of soil particles when the terrain is covered by snow or ice. Nevertheless, seasonal biases and biases in the diurnal cycle of PM2.5 are still substantial. Therefore, a new bias correction procedure based on an analog ensemble approach was introduced (Djalalova et al., 2015). It virtually eliminates biases in monthly means or in the diurnal cycle, but it also reduces day-to-day variability in PM2.5 predictions. Refinements to the bias correction procedure are being developed. Upgrades for the representation of wildfire smoke emissions within the domain and from global sources are in testing. Another area of active development includes approaches to scale emission inventories for nitrogen oxides in order to reproduce recent changes observed by the AirNow surface monitoring network and by

  19. Urban air quality forecast for the city of Budapest, Hungary

    NASA Astrophysics Data System (ADS)

    Baranka, G.; Labancz, K.

    2009-09-01

    The aim of this research is to develop a forecasting system producing enhanced maps of present and predicted concentrations of air pollutants in Budapest. In addition to the in-situ concentrations observed at a station, this tool will calculate the map of pollutant distribution using other monitored and calculated ambient air concentrations as well as predicted distributions calculated for one or two days using an integrated system of meteorological and dispersion models. The emissions of different primary pollutants from road transport in Budapest have been calculated using the European standard methodology. The emission model is based on emission factors of the well-known COPERT IV. The vehicles were grouped by category and by the emission of the vehicle's EURO standards. COPERT IV contains emission factors for each vehicle categories. The forecasting modelling system recently consists of a version of the MM5 meteorological model and the CHIMERE photochemistry transport model. Output of the CHIMERE dispersion model is the spatial distributions of the daily averages and maximum values that also determine whether or not standards are exceeded and to what degree. Otherwise calculated O3 values generally are in good agreement with measurements. The calculated values showed acceptable results compared to measured concentration, but further statistical evaluation is needed. The temporal variation of calculated O3 values is in good agreement with measurements, which proves that the photochemistry in the model works very well. In course of this research project, the coupled emission-dispersion model system would be established, in which case it will be possible to improve urban air quality using traffic control strategies.

  20. THE NEW ENGLAND AIR QUALITY FORECASTING PILOT PROGRAM: DEVELOPMENT OF AN EVALUATION PROTOCOL AND PERFORMANCE BENCHMARK

    EPA Science Inventory

    The National Oceanic and Atmospheric Administration recently sponsored the New England Forecasting Pilot Program to serve as a "test bed" for chemical forecasting by providing all of the elements of a National Air Quality Forecasting System, including the development and implemen...

  1. Use of Air Quality Observations by the National Air Quality Forecast Capability

    NASA Astrophysics Data System (ADS)

    Stajner, I.; McQueen, J.; Lee, P.; Stein, A. F.; Kondragunta, S.; Ruminski, M.; Tong, D.; Pan, L.; Huang, J. P.; Shafran, P.; Huang, H. C.; Dickerson, P.; Upadhayay, S.

    2015-12-01

    The National Air Quality Forecast Capability (NAQFC) operational predictions of ozone and wildfire smoke for the United States (U.S.) and predictions of airborne dust for continental U.S. are available at http://airquality.weather.gov/. NOAA National Centers for Environmental Prediction (NCEP) operational North American Mesoscale (NAM) weather predictions are combined with the Community Multiscale Air Quality (CMAQ) model to produce the ozone predictions and test fine particulate matter (PM2.5) predictions. The Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model provides smoke and dust predictions. Air quality observations constrain emissions used by NAQFC predictions. NAQFC NOx emissions from mobile sources were updated using National Emissions Inventory (NEI) projections for year 2012. These updates were evaluated over large U.S. cities by comparing observed changes in OMI NO2 observations and NOx measured by surface monitors. The rate of decrease in NOx emission projections from year 2005 to year 2012 is in good agreement with the observed changes over the same period. Smoke emissions rely on the fire locations detected from satellite observations obtained from NESDIS Hazard Mapping System (HMS). Dust emissions rely on a climatology of areas with a potential for dust emissions based on MODIS Deep Blue aerosol retrievals. Verification of NAQFC predictions uses AIRNow compilation of surface measurements for ozone and PM2.5. Retrievals of smoke from GOES satellites are used for verification of smoke predictions. Retrievals of dust from MODIS are used for verification of dust predictions. In summary, observations are the basis for the emissions inputs for NAQFC, they are critical for evaluation of performance of NAQFC predictions, and furthermore they are used in real-time testing of bias correction of PM2.5 predictions, as we continue to work on improving modeling and emissions important for representation of PM2.5.

  2. AN OPERATIONAL EVALUATION OF THE ETA - CMAQ AIR QUALITY FORECAST MODEL

    EPA Science Inventory

    The National Oceanic and Atmospheric Administration (NOAA), in partnership with the United States Environmental Protection Agency (EPA), are developing an operational, nationwide Air Quality Forecasting (AQF) system. An experimental phase of this program, which couples NOAA's Et...

  3. THE SCIENTIFIC BASIS OF NOAA'S AIR QUALITY FORECASTING PROGRAM

    EPA Science Inventory

    For many years, the National Oceanic and Atmospheric Administration (NOAA) has conducted atmospheric research, including chemical and physical measurements, process studies, and the development and evaluation of experimental meteorological and photochemical air quality models. ...

  4. COMPUTATIONAL ASPECTS OF THE AIR QUALITY FORECASTING VERSION OF CMAQ (CMAQ-F)

    EPA Science Inventory

    The air quality forecast version of the Community Modeling Air Quality (CMAQ) model (CMAQ-F) was developed from the public release version of CMAQ (available from http://www.cmascenter.org), and is running operationally at the National Weather Service's National Centers for Envir...

  5. THE EMISSION PROCESSING SYSTEM FOR THE ETA/CMAQ AIR QUALITY FORECAST SYSTEM

    EPA Science Inventory

    NOAA and EPA have created an Air Quality Forecast (AQF) system. This AQF system links an adaptation of the EPA's Community Multiscale Air Quality Model with the 12 kilometer ETA model running operationally at NOAA's National Center for Environmental Predication (NCEP). One of th...

  6. APPLICATION AND EVALUATION OF CMAQ IN THE UNITED STATES: AIR QUALITY FORECASTING AND RETROSPECTIVE MODELING

    EPA Science Inventory

    Presentation slides provide background on model evaluation techniques. Also included in the presentation is an operational evaluation of 2001 Community Multiscale Air Quality (CMAQ) annual simulation, and an evaluation of PM2.5 for the CMAQ air quality forecast (AQF) ...

  7. APPLICATION OF BIAS AND ADJUSTMENT TECHNIQUES TO THE ETA-CMAQ AIR QUALITY FORECAST

    EPA Science Inventory

    The current air quality forecast system, based on linking NOAA's Eta meteorological model with EPA's Community Multiscale Air Quality (CMAQ) model, consistently overpredicts surface ozone concentrations, but simulates its day-to-day variability quite well. The ability of bias cor...

  8. Using OMI data to improve air quality forecast - does it work?

    NASA Astrophysics Data System (ADS)

    Hvidberg, M.; Brandt, J.

    2009-04-01

    What benefits can we obtain from using data assimilation of remotely sensed air quality parameters into the CTM? This work presented aims to compare an air quality forecast with and without the use of satellite data, and to quantify the improvement gained from satellite data. The air quality forecast used is the Danish O3 operational warning system. Forecast are generated for each hour, for a 50km grid over Europe. O3 can irritate lungs and airways and can cause inflammation in the respiratory system. It can also trigger other diseases like asthma or bronchitis. O3 is a very important parameter in the CTM as it is highly reactive. The forecast is based on DEHM "Danish Eulerian Hemispheric Model" that is a CTM "Chemical Transport Model" designed to forecast air pollution. DEHM is part of the Thor model system. The satellite data used is the OMI NO2, Near Real Time data stream (DOMINO) from KNMI. The model was run for a reference year 2005, both with and without the use of Data Assimilation of OMI data. The results were each compared to reference measurements from ground stations in the European EMEP network. Many stations do not report hourly, but daily values. The validation uses the highest available resolution, temporal ans well as spatial. The present project is not entirely completed. However, expectations are that data assimilation of remotely sensed air quality parameters will increase the accuracy of the air pollution forecasts.

  9. Methodology for Air Quality Forecast Downscaling from Regional- to Street-Scale

    NASA Astrophysics Data System (ADS)

    Baklanov, Alexander; Nuterman, Roman; Mahura, Alexander; Amstrup, Bjarne; Hansen Saas, Bent; Havskov Sørensen, Jens; Lorenzen, Thomas; Weismann, Jakob

    2010-05-01

    The most serious air pollution events occur in cities where there is a combination of high population density and air pollution, e.g. from vehicles. The pollutants can lead to serious human health problems, including asthma, irritation of the lungs, bronchitis, pneumonia, decreased resistance to respiratory infections, and premature death. In particular air pollution is associated with increase in cardiovascular disease and lung cancer. In 2000 WHO estimated that between 2.5 % and 11 % of total annual deaths are caused by exposure to air pollution. However, European-scale air quality models are not suited for local forecasts, as their grid-cell is typically of the order of 5 to 10km and they generally lack detailed representation of urban effects. Two suites are used in the framework of the EC FP7 project MACC (Monitoring of Atmosphere Composition and Climate) to demonstrate how downscaling from the European MACC ensemble to local-scale air quality forecast will be carried out: one will illustrate capabilities for the city of Copenhagen (Denmark); the second will focus on the city of Bucharest (Romania). This work is devoted to the first suite, where methodological aspects of downscaling from regional (European/ Denmark) to urban scale (Copenhagen), and from the urban down to street scale. The first results of downscaling according to the proposed methodology are presented. The potential for downscaling of European air quality forecasts by operating urban and street-level forecast models is evaluated. This will bring a strong support for continuous improvement of the regional forecast modelling systems for air quality in Europe, and underline clear perspectives for the future regional air quality core and downstream services for end-users. At the end of the MACC project, requirements on "how-to-do" downscaling of European air-quality forecasts to the city and street levels with different approaches will be formulated.

  10. Ensemble Statistical Post-Processing of the National Air Quality Forecast Capability: Enhancing Ozone Forecasts in Baltimore, Maryland

    NASA Technical Reports Server (NTRS)

    Garner, Gregory G.; Thompson, Anne M.

    2013-01-01

    An ensemble statistical post-processor (ESP) is developed for the National Air Quality Forecast Capability (NAQFC) to address the unique challenges of forecasting surface ozone in Baltimore, MD. Air quality and meteorological data were collected from the eight monitors that constitute the Baltimore forecast region. These data were used to build the ESP using a moving-block bootstrap, regression tree models, and extreme-value theory. The ESP was evaluated using a 10-fold cross-validation to avoid evaluation with the same data used in the development process. Results indicate that the ESP is conditionally biased, likely due to slight overfitting while training the regression tree models. When viewed from the perspective of a decision-maker, the ESP provides a wealth of additional information previously not available through the NAQFC alone. The user is provided the freedom to tailor the forecast to the decision at hand by using decision-specific probability thresholds that define a forecast for an ozone exceedance. Taking advantage of the ESP, the user not only receives an increase in value over the NAQFC, but also receives value for An ensemble statistical post-processor (ESP) is developed for the National Air Quality Forecast Capability (NAQFC) to address the unique challenges of forecasting surface ozone in Baltimore, MD. Air quality and meteorological data were collected from the eight monitors that constitute the Baltimore forecast region. These data were used to build the ESP using a moving-block bootstrap, regression tree models, and extreme-value theory. The ESP was evaluated using a 10-fold cross-validation to avoid evaluation with the same data used in the development process. Results indicate that the ESP is conditionally biased, likely due to slight overfitting while training the regression tree models. When viewed from the perspective of a decision-maker, the ESP provides a wealth of additional information previously not available through the NAQFC alone

  11. Spatial and temporal bias correction to enhance air quality forecast over Spain

    NASA Astrophysics Data System (ADS)

    Sicardi, V.; Arevalo, G.; Gassó, S.; Baldasano, J. M.

    2012-04-01

    The air quality modeling system CALIOPE (www.bsc.es/caliope) is a high resolution system running operational at the Barcelona Supercomputing Center since 2006 to forecast the air quality of Europe (resolution: 12 km) and Spain (resolution: 4 km). The evaluation of forecast modeling system relays on direct comparison of the model results with the values at the monitoring stations over the domain of study. In this sense, the model forecast should be the closest possible to the observations. To improve the air quality forecasts of the CALIOPE system, the Kalman filter bias adjustment technique has been used to lead significant improvements in the daily air quality forecast. Nevertheless, the improvements are limited to the monitoring stations used in the post-process. The comparison of air quality measurements, which are spatially sparse point estimates, and the model forecasts, which are time-varying spatial fields, is limited to the points where measurements are available. Hence, the application of punctual bias correction does not improve the forecast over the area where no observations are available. In this work we present a technique that fuses the point values of the stations and the spatial varying information of the modeling system to produce improved air quality forecast, maintainer the relief seen in the model output. By the application of a bias-adjustment technique based on the Kalman filter we calculate the model biases for the location where stations are available. Then, correction fields are obtained by spatially interpolating using Kriging of these Kalman-estimated biases. The correction fields are used, then, to adjust the model forecasts. The fusion technique is applied to hourly ground level O3 and NO2 forecast over Spain in the winter and summer conditions for year 2011. By the comparison of observed values with model results, with fused predictions, and with predictions obtained by the post-processing at individual locations, we show that the

  12. Daily air quality forecast (gases and aerosols) over Switzerland. Modeling tool description and first results analysis.

    NASA Astrophysics Data System (ADS)

    Couach, O.; Kirchner, F.; Porchet, P.; Balin, I.; Parlange, M.; Balin, D.

    2009-04-01

    Map3D, the acronym for "Mesoscale Air Pollution 3D modelling", was developed at the EFLUM laboratory (EPFL) and received an INNOGRANTS awards in Summer 2007 in order to move from a research phase to a professional product giving daily air quality forecast. It is intended to give an objective base for political decisions addressing the improvement of regional air quality. This tool is a permanent modelling system which provides daily forecast of the local meteorology and the air pollutant (gases and particles) concentrations. Map3D has been successfully developed and calculates each day at the EPFL site a three days air quality forecast over Europe and the Alps with 50 km and 15 km resolution, respectively (see http://map3d.epfl.ch). The Map3D user interface is a web-based application with a PostgreSQL database. It is written in object-oriented PHP5 on a MVC (Model-View-Controller) architecture. Our prediction system is operational since August 2008. A first validation of the calculations for Switzerland is performed for the period of August 2008 - January 2009 comparing the model results for O3, NO2 and particulates with the results of the Nabel measurements stations. The subject of air pollution regimes (NOX/VOC) and specific indicators application with the forecast will be also addressed.

  13. A Stochastic Deterministic Air Quality Forecasting System : Combining Time Series Models with Data-Assimilation

    NASA Astrophysics Data System (ADS)

    Kumar, U.; De Ridder, K.; Lefebvre, W.; Janssen, S.

    2012-04-01

    A new air quality forecast system has been developed in which all the corrections for the air quality model output by assimilating observations have been carried out in post-processing mode. In order to make more accurate forecasts of the air pollutants, time series models have been used in combination with data-assimilation. The approach has been validated for one day ahead forecasts of daily mean PM10 and daily mean NO2. First, the air quality model AURORA has been applied over the domain Belgium including part of its neighbouring areas with grid resolution of 3×3 km2 for a total of 121×71 grids. The observations data from AIRBASE archive has been used for the assimilation purpose. Only the background stations (urban or rural) data has been used. For data-assimilation, optimal interpolation in conjunction with Hollingsworth-Lönnberg method has been applied. The time series of the residuals, i.e., observations minus model output (for the daily mean PM10 and NO2) has been collected for the grids where monitoring stations were available. These time series were tested for their suitability for time series modelling applications. We applied the ARIMA(p,d,q) (Autoregressive Integrated Moving Average) as time series modelling technique to forecast the residuals in the future (one day ahead). In the next step, these forecasted residuals were assimilated with forecasted AURORA model output in order to get improved forecasted fields. The validation was carried out by leaving three stations out in one run of data-assimilation/time series forecasting. Thus, the validation results for one day ahead forecasts at the 15 stations for the duration 1-Mar-07 to 31-Dec-07 reveal that there has been substantial improvement in root mean square error (RMSE), a reduction ranging from 2% to 30%, has been observed. Similarly, correlation has also increased upto 30%. The results show that the approach presented here has tremendous potential to be applied in air quality forecasts.

  14. PREMAQ: A NEW PRE-PROCESSOR TO CMAQ FOR AIR-QUALITY FORECASTING

    EPA Science Inventory

    A new pre-processor to CMAQ (PREMAQ) has been developed as part of the national air-quality forecasting system. PREMAQ combines the functionality of MCIP and parts of SMOKE in a single real-time processor. PREMAQ was specifically designed to link NCEP's Eta model with CMAQ, and...

  15. Exploring the applicability of future air quality predictions based on synoptic system forecasts.

    PubMed

    Yuval; Broday, David M; Alpert, Pinhas

    2012-07-01

    For a given emissions inventory, the general levels of air pollutants and the spatial distribution of their concentrations are determined by the physiochemical state of the atmosphere. Apart from the trivial seasonal and daily cycles, most of the variability is associated with the atmospheric synoptic scale. A simple methodology for assessing future levels of air pollutants' concentrations based on synoptic forecasts is presented. At short time scales the methodology is comparable and slightly better than persistence and seasonal forecasts at categorical classification of pollution levels. It's utility is shown for air quality studies at the long time scale of a changing climate scenario, where seasonality and persistence cannot be used. It is demonstrated that the air quality variability due to changes in the pollution emissions can be expected to be much larger than that associated with the effects of climatic changes.

  16. Utilizing Operational and Improved Remote Sensing Measurements to Assess Air Quality Monitoring Model Forecasts

    NASA Astrophysics Data System (ADS)

    Gan, Chuen-Meei

    Air quality model forecasts from Weather Research and Forecast (WRF) and Community Multiscale Air Quality (CMAQ) are often used to support air quality applications such as regulatory issues and scientific inquiries on atmospheric science processes. In urban environments, these models become more complex due to the inherent complexity of the land surface coupling and the enhanced pollutants emissions. This makes it very difficult to diagnose the model, if the surface parameter forecasts such as PM2.5 (particulate matter with aerodynamic diameter less than 2.5 microm) are not accurate. For this reason, getting accurate boundary layer dynamic forecasts is as essential as quantifying realistic pollutants emissions. In this thesis, we explore the usefulness of vertical sounding measurements on assessing meteorological and air quality forecast models. In particular, we focus on assessing the WRF model (12km x 12km) coupled with the CMAQ model for the urban New York City (NYC) area using multiple vertical profiling and column integrated remote sensing measurements. This assessment is helpful in probing the root causes for WRF-CMAQ overestimates of surface PM2.5 occurring both predawn and post-sunset in the NYC area during the summer. In particular, we find that the significant underestimates in the WRF PBL height forecast is a key factor in explaining this anomaly. On the other hand, the model predictions of the PBL height during daytime when convective heating dominates were found to be highly correlated to lidar derived PBL height with minimal bias. Additional topics covered in this thesis include mathematical method using direct Mie scattering approach to convert aerosol microphysical properties from CMAQ into optical parameters making direct comparisons with lidar and multispectral radiometers feasible. Finally, we explore some tentative ideas on combining visible (VIS) and mid-infrared (MIR) sensors to better separate aerosols into fine and coarse modes.

  17. Improving Forecast Skill by Assimilation of Quality-controlled AIRS Temperature Retrievals under Partially Cloudy Conditions

    NASA Technical Reports Server (NTRS)

    Reale, O.; Susskind, J.; Rosenberg, R.; Brin, E.; Riishojgaard, L.; Liu, E.; Terry, J.; Jusem, J. C.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) Atmospheric Infrared Sounder (AIRS) on board the Aqua satellite has been long recognized as an important contributor towards the improvement of weather forecasts. At this time only a small fraction of the total data produced by AIRS is being used by operational weather systems. In fact, in addition to effects of thinning and quality control, the only AIRS data assimilated are radiance observations of channels unaffected by clouds. Observations in mid-lower tropospheric sounding AIRS channels are assimilated primarily under completely clear-sky conditions, thus imposing a very severe limitation on the horizontal distribution of the AIRS-derived information. In this work it is shown that the ability to derive accurate temperature profiles from AIRS observations in partially cloud-contaminated areas can be utilized to further improve the impact of AIRS observations in a global model and forecasting system. The analyses produced by assimilating AIRS temperature profiles obtained under partial cloud cover result in a substantially colder representation of the northern hemisphere lower midtroposphere at higher latitudes. This temperature difference has a strong impact, through hydrostatic adjustment, in the midtropospheric geopotential heights, which causes a different representation of the polar vortex especially over northeastern Siberia and Alaska. The AIRS-induced anomaly propagates through the model's dynamics producing improved 5-day forecasts.

  18. The air quality forecast in Beijing with Community Multi-scale Air Quality Modeling (CMAQ) System: model evaluation and improvement

    NASA Astrophysics Data System (ADS)

    Wu, Q.

    2013-12-01

    The MM5-SMOKE-CMAQ model system, which is developed by the United States Environmental Protection Agency(U.S. EPA) as the Models-3 system, has been used for the daily air quality forecast in the Beijing Municipal Environmental Monitoring Center(Beijing MEMC), as a part of the Ensemble Air Quality Forecast System for Beijing(EMS-Beijing) since the Olympic Games year 2008. In this study, we collect the daily forecast results of the CMAQ model in the whole year 2010 for the model evaluation. The results show that the model play a good model performance in most days but underestimate obviously in some air pollution episode. A typical air pollution episode from 11st - 20th January 2010 was chosen, which the air pollution index(API) of particulate matter (PM10) observed by Beijing MEMC reaches to 180 while the prediction of PM10-API is about 100. Taking in account all stations in Beijing, including urban and suburban stations, three numerical methods are used for model improvement: firstly, enhance the inner domain with 4km grids, the coverage from only Beijing to the area including its surrounding cities; secondly, update the Beijing stationary area emission inventory, from statistical county-level to village-town level, that would provide more detail spatial informance for area emissions; thirdly, add some industrial points emission in Beijing's surrounding cities, the latter two are both the improvement of emission. As the result, the peak of the nine national standard stations averaged PM10-API, which is simulated by CMAQ as daily hindcast PM10-API, reach to 160 and much near to the observation. The new results show better model performance, which the correlation coefficent is 0.93 in national standard stations average and 0.84 in all stations, the relative error is 15.7% in national standard stations averaged and 27% in all stations. The time series of 9 national standard in Beijing urban The scatter diagram of all stations in Beijing, the red is the forecast and

  19. THE NOAA - EPA NATIONAL AIR QUALITY FORECASTING SYSTEM

    EPA Science Inventory

    Building upon decades of collaboration in air pollution meteorology research, in 2003 the National Oceanic and Atmospheric Administration (NOAA) and the United States Environmental Protection Agency (EPA) signed formal partnership agreements to develop and implement an operationa...

  20. PERFORMANCE AND DIAGNOSTIC EVALUATION OF OZONE PREDICTIONS BY THE ETA-COMMUNITY MULTISCALE AIR QUALITY FORECAST SYSTEM DURING THE 2002 NEW ENGLAND AIR QUALITY STUDY

    EPA Science Inventory

    A real-time air quality forecasting system (Eta-CMAQ model suite) has been developed by linking the NCEP Eta model to the U.S. EPA CMAQ model. This work presents results from the application of the Eta-CMAQ modeling system for forecasting O3 over the northeastern U.S d...

  1. An Evaluation of Real-time Air Quality Forecasts and their Urban Emissions over Eastern Texas During the Summer of 2006 Second Texas Air Quality Study Field Study

    EPA Science Inventory

    Forecasts of ozone (O3) and particulate matter (diameter less than 2.5 µm, PM2.5) from seven air quality forecast models (AQFMs) are statistically evaluated against observations collected during August and September of 2006 (49 days) through the AIRNow netwo...

  2. Improving Forecast Skill by Assimilation of Quality Controlled AIRS Version 5 Temperature Soundings

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Reale, Oreste

    2009-01-01

    The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AIRS data. The AIRS Science Team Version 5 retrieval algorithm contains two significant improvements over Version 4: 1) Improved physics allows for use of AIRS observations in the entire 4.3 micron CO2 absorption band in the retrieval of temperature profile T(p) during both day and night. Tropospheric sounding 15 micron CO2 observations are now used primarily in the generation of cloud cleared radiances R(sub i). This approach allows for the generation of accurate values of R(sub i) and T(p) under most cloud conditions. 2) Another very significant improvement in Version 5 is the ability to generate accurate case-by-case, level-by-level error estimates for the atmospheric temperature profile, as well as for channel-by-channel error estimates for R(sub i). These error estimates are used for Quality Control of the retrieved products. We have conducted forecast impact experiments assimilating AIRS temperature profiles with different levels of Quality Control using the NASA GEOS-5 data assimilation system. Assimilation of Quality Controlled T(p) resulted in significantly improved forecast skill compared to that obtained from analyses obtained when all data used operationally by NCEP, except for AIRS data, is assimilated. We also conducted an experiment assimilating AIRS radiances uncontaminated by clouds, as done operationally by ECMWF and NCEP. Forecast resulting from assimilated AIRS radiances were of poorer quality than those obtained assimilating AIRS temperatures.

  3. Forecasts using neural network versus Box-Jenkins methodology for ambient air quality monitoring data.

    PubMed

    Kao, J J; Huang, S S

    2000-02-01

    This study explores ambient air quality forecasts using the conventional time-series approach and a neural network. Sulfur dioxide and ozone monitoring data collected from two background stations and an industrial station are used. Various learning methods and varied numbers of hidden layer processing units of the neural network model are tested. Results obtained from the time-series and neural network models are discussed and compared on the basis of their performance for 1-step-ahead and 24-step-ahead forecasts. Although both models perform well for 1-step-ahead prediction, some neural network results reveal a slightly better forecast without manually adjusting model parameters, according to the results. For a 24-step-ahead forecast, most neural network results are as good as or superior to those of the time-series model. With the advantages of self-learning, self-adaptation, and parallel processing, the neural network approach is a promising technique for developing an automated short-term ambient air quality forecast system.

  4. Development of On-line Wildfire Emissions for the Operational Canadian Air Quality Forecast System

    NASA Astrophysics Data System (ADS)

    Pavlovic, R.; Menard, S.; Chen, J.; Anselmo, D.; Paul-Andre, B.; Gravel, S.; Moran, M. D.; Davignon, D.

    2013-12-01

    An emissions processing system has been developed to incorporate near-real-time emissions from wildfires and large prescribed burns into Environment Canada's real-time GEM-MACH air quality (AQ) forecast system. Since the GEM-MACH forecast domain covers Canada and most of the USA, including Alaska, fire location information is needed for both of these large countries. Near-real-time satellite data are obtained and processed separately for the two countries for organizational reasons. Fire location and fuel consumption data for Canada are provided by the Canadian Forest Service's Canadian Wild Fire Information System (CWFIS) while fire location and emissions data for the U.S. are provided by the SMARTFIRE (Satellite Mapping Automated Reanalysis Tool for Fire Incident Reconciliation) system via the on-line BlueSky Gateway. During AQ model runs, emissions from individual fire sources are injected into elevated model layers based on plume-rise calculations and then transport and chemistry calculations are performed. This 'on the fly' approach to the insertion of emissions provides greater flexibility since on-line meteorology is used and reduces computational overhead in emission pre-processing. An experimental wildfire version of GEM-MACH was run in real-time mode for the summers of 2012 and 2013. 48-hour forecasts were generated every 12 hours (at 00 and 12 UTC). Noticeable improvements in the AQ forecasts for PM2.5 were seen in numerous regions where fire activity was high. Case studies evaluating model performance for specific regions, computed objective scores, and subjective evaluations by AQ forecasters will be included in this presentation. Using the lessons learned from the last two summers, Environment Canada will continue to work towards the goal of incorporating near-real-time intermittent wildfire emissions within the operational air quality forecast system.

  5. VERIFICATION OF SURFACE LAYER OZONE FORECASTS IN THE NOAA/EPA AIR QUALITY FORECAST SYSTEM IN DIFFERENT REGIONS UNDER DIFFERENT SYNOPTIC SCENARIOS

    EPA Science Inventory

    An air quality forecast (AQF) system has been established at NOAA/NCEP since 2003 as a collaborative effort of NOAA and EPA. The system is based on NCEP's Eta mesoscale meteorological model and EPA's CMAQ air quality model (Davidson et al, 2004). The vision behind this system is ...

  6. Evaluation of CMAQ and CAMx Ensemble Air Quality Forecasts during the 2015 MAPS-Seoul Field Campaign

    NASA Astrophysics Data System (ADS)

    Kim, E.; Kim, S.; Bae, C.; Kim, H. C.; Kim, B. U.

    2015-12-01

    The performance of Air quality forecasts during the 2015 MAPS-Seoul Field Campaign was evaluated. An forecast system has been operated to support the campaign's daily aircraft route decisions for airborne measurements to observe long-range transporting plume. We utilized two real-time ensemble systems based on the Weather Research and Forecasting (WRF)-Sparse Matrix Operator Kernel Emissions (SMOKE)-Comprehensive Air quality Model with extensions (CAMx) modeling framework and WRF-SMOKE- Community Multi_scale Air Quality (CMAQ) framework over northeastern Asia to simulate PM10 concentrations. Global Forecast System (GFS) from National Centers for Environmental Prediction (NCEP) was used to provide meteorological inputs for the forecasts. For an additional set of retrospective simulations, ERA Interim Reanalysis from European Centre for Medium-Range Weather Forecasts (ECMWF) was also utilized to access forecast uncertainties from the meteorological data used. Model Inter-Comparison Study for Asia (MICS-Asia) and National Institute of Environment Research (NIER) Clean Air Policy Support System (CAPSS) emission inventories are used for foreign and domestic emissions, respectively. In the study, we evaluate the CMAQ and CAMx model performance during the campaign by comparing the results to the airborne and surface measurements. Contributions of foreign and domestic emissions are estimated using a brute force method. Analyses on model performance and emissions will be utilized to improve air quality forecasts for the upcoming KORUS-AQ field campaign planned in 2016.

  7. Development and evaluation of the operational Air-Quality forecast model for Austria ALARO-CAMx

    NASA Astrophysics Data System (ADS)

    Flandorfer, Claudia; Hirtl, Marcus; Krüger, Bernd C.

    2014-05-01

    The Air-Quality model for Austria (AQA) is operated at ZAMG in cooperation with the University of Natural Resources and Life Sciences (BOKU) in Vienna by order of the regional governments since 2005. The modeling system is currently a combination of the meteorological model ALARO and the photochemical dispersion model CAMx. Two modeling domains are used with the highest resolution (5 km) in the alpine region. Various extensions with external data sources have been conducted in the past to improve the daily forecasts of the model. Since 2013 O3- and PM10-observations from the Austrian measurement network have been assimilated daily using optimum interpolation. Dynamic chemical boundary conditions are obtained from Air-Quality forecasts provided by ECMWF in the frame of MACC-II. Additionally the latest available high resolved emission inventories for Austria are combined with TNO and EMEP data. The biogenic emissions are provided by the SMOKE model. ZAMG provides daily forecasts of O3, PM10 and NO2 to the regional governments of Austria. The evaluation of these forecasts is done for the summer 2013 with the main focus on the forecasts of ozone. The measurements of the Air-Quality stations are compared with the punctual forecasts at the sites of the station and with the area forecasts for every province of Austria. In the summer of 2013, two heat waves occurred. The first very short heat wave was in June 2013. During this period one exceedance of the alert threshold value for ozone occurred. The second heat wave took place from the end of July to the mid of August. Due to very high temperatures (new temperature record for Austria measured in Bad Deutsch-Altenburg with 40.5°C) and long dryness episodes the information threshold value has been exceeded several times in the eastern regions of Austria. The alert threshold value has been exceeded one time in this period. For the evaluation, the results for the second heat wave episode in Eastern Austria will be discussed

  8. PM2.5 analog forecast and Kalman filter post-processing for the Community Multiscale Air Quality (CMAQ) model

    NASA Astrophysics Data System (ADS)

    Djalalova, Irina; Delle Monache, Luca; Wilczak, James

    2015-10-01

    A new post-processing method for surface particulate matter (PM2.5) predictions from the National Oceanic and Atmospheric Administration (NOAA) developmental air quality forecasting system using the Community Multiscale Air Quality (CMAQ) model is described. It includes three main components: A real-time quality control procedure for surface PM2.5 observations; Model post-processing at each observational site using historical forecast analogs and Kalman filtering; Spreading the forecast corrections from the observation locations to the entire gridded domain.

  9. "Developing a multi hazard air quality forecasting model for Santiago, Chile"

    NASA Astrophysics Data System (ADS)

    Mena, M. A.; Delgado, R.; Hernandez, R.; Saide, P. E.; Cienfuegos, R.; Pinochet, J. I.; Molina, L. T.; Carmichael, G. R.

    2013-05-01

    Santiago, Chile has reduced annual particulate matter from 69ug/m3 (in 1989) to 25ug/m3 (in 2012), mostly by forcing industry, the transport sector, and the residential heating sector to adopt stringent emission standards to be able to operate under bad air days. Statistical forecasting has been used to predict bad air days, and pollution control measures in Santiago, Chile, for almost two decades. Recently an operational PM2.5 deterministic model has been implemented using WRF-Chem. The model was developed by the University of Iowa and is run at the Chilean Meteorological Office. Model configuration includes high resolution emissions gridding (2km) and updated population distribution using 2008 data from LANDSCAN. The model is run using a 2 day spinup with a 5 day forecast. This model has allowed a preventive approach in pollution control measures, as episodes are the results of multiple days of bad dispersion. Decreeing air pollution control measures in advance of bad air days resulted in a reduction of 40% of alert days (80ug/m3 mean 24h PM2.5) and 66% of "preemergency days" (110ug/m3 mean 24h PM2.5) from 2011 to 2012, despite similar meteorological conditions. This model will be deployed under a recently funded Center for Natural Disaster Management, and include other meteorological hazards such as flooding, high temperature, storm waves, landslides, UV radiation, among other parameters. This paper will present the results of operational air quality forecasting, and the methodology that will be used to transform WRF-Chem into a multi hazard forecasting system.

  10. Evaluation of the operational Air-Quality forecast model for Austria ALARO-CAMx

    NASA Astrophysics Data System (ADS)

    Flandorfer, Claudia; Hirtl, Marcus

    2016-04-01

    The Air-Quality model for Austria (AQA) is operated at ZAMG by order of the regional governments of Vienna, Lower Austria, and Burgenland since 2005. The emphasis of this modeling system is on predicting ozone peaks in the North-east Austrian flatlands. The modeling system is currently a combination of the meteorological model ALARO and the photochemical dispersion model CAMx. Two modeling domains are used with the highest resolution (5 km) in the alpine region. Various extensions with external data sources have been conducted in the past to improve the daily forecasts of the model, e.g. data assimilation of O3- and PM10-observations from the Austrian measurement network (with optimum interpolation method technique), MACC-II boundary conditions; combination of high resolved emission inventories for Austria with TNO and EMEP data. The biogenic emissions are provided by the SMOKE model. The model runs 2 times per day for a period of 48 hours. ZAMG provides daily forecasts of O3, PM10 and NO2 to the regional governments of Austria. The evaluation of these forecasts is done for January to September 2015, with the main focus on the summer peaks of ozone. The measurements of the Air-Quality stations are compared with the punctual forecasts at the sites of the stations and the area forecasts for every province of Austria. Several heat waves occurred between June and September 2015 (new temperature records for St. Pölten and Linz). During these periods the information threshold for ozone has been exceeded 19 times, mostly in the Eastern regions of Austria. Values above the alert threshold have been measured at some stations in Lower Austria and Vienna at the beginning of July. For the evaluation, the results for the periods with exceedances in Eastern Austria will be discussed in detail.

  11. A Study on the Potential Applications of Satellite Data in Air Quality Monitoring and Forecasting

    NASA Technical Reports Server (NTRS)

    Li, Can; Hsu, N. Christina; Tsay, Si-Chee

    2011-01-01

    In this study we explore the potential applications of MODIS (Moderate Resolution Imaging Spectroradiometer) -like satellite sensors in air quality research for some Asian regions. The MODIS aerosol optical thickness (AOT), NCEP global reanalysis meteorological data, and daily surface PM(sub 10) concentrations over China and Thailand from 2001 to 2009 were analyzed using simple and multiple regression models. The AOT-PM(sub 10) correlation demonstrates substantial seasonal and regional difference, likely reflecting variations in aerosol composition and atmospheric conditions, Meteorological factors, particularly relative humidity, were found to influence the AOT-PM(sub 10) relationship. Their inclusion in regression models leads to more accurate assessment of PM(sub 10) from space borne observations. We further introduced a simple method for employing the satellite data to empirically forecast surface particulate pollution, In general, AOT from the previous day (day 0) is used as a predicator variable, along with the forecasted meteorology for the following day (day 1), to predict the PM(sub 10) level for day 1. The contribution of regional transport is represented by backward trajectories combined with AOT. This method was evaluated through PM(sub 10) hindcasts for 2008-2009, using ohservations from 2005 to 2007 as a training data set to obtain model coefficients. For five big Chinese cities, over 50% of the hindcasts have percentage error less than or equal to 30%. Similar performance was achieved for cities in northern Thailand. The MODIS AOT data are responsible for at least part of the demonstrated forecasting skill. This method can be easily adapted for other regions, but is probably most useful for those having sparse ground monitoring networks or no access to sophisticated deterministic models. We also highlight several existing issues, including some inherent to a regression-based approach as exemplified by a case study for Beijing, Further studies will be

  12. Application of model output statistics to the GEM-AQ high resolution air quality forecast

    NASA Astrophysics Data System (ADS)

    Struzewska, J.; Kaminski, J. W.; Jefimow, M.

    2016-11-01

    The aim of the presented work was to analyse the impact of data stratification on the efficiency of the Model Output Statistics (MOS) methodology as applied to a high-resolution deterministic air quality forecast carried out with the GEM-AQ model. The following parameters forecasted by the GEM-AQ model were selected as predictors for the MOS equation: pollutant concentration, air temperature in the lowest model layer, wind speed in the lowest model layer, temperature inversion and the precipitation rate. A representative 2-year series were used to construct regression functions. Data series were divided into two subsets. Approximately 75% of the data (first 3 weeks of each month) were used to estimate the regression function parameters. Remaining 25% (last week of each month) were used to test the method (control period). The subsequent 12 months were used for method verification (verification period). A linear model fitted the function based on forecasted parameters to the observations. We have assumed four different temperature-based data stratification methods (for each method, separate equations were constructed). For PM10 and PM2.5, SO2 and NO2 the best correction results were obtained with the application of temperature thresholds in the cold season and seasonal distribution combined with temperature thresholds in the warm season. For the PM10, PM2.5 and SO2 the best results were obtained using a combination of two stratification methods separately for cold and warm seasons. For CO, the systematic bias of the forecasted concentrations was partly corrected. For ozone more sophisticated methods of data stratification did not bring a significant improvement.

  13. Towards a forecasting system of air quality for Asia using the WRF-Chem model

    NASA Astrophysics Data System (ADS)

    Katinka Petersen, Anna; Kumar, Rajesh; Brasseur, Guy; Granier, Claire

    2013-04-01

    The degradation of air quality in Asia resulting from the intensification of human activities, and the related impacts on the health of billions of people have become an urgent matter of concern. The World Health Organization states that each year nearly 3.3 million people die worldwide prematurely because of air pollution. The situation is particularly acute in Asia. Improving air quality over the Asian continent has become a major challenge for national, regional and local authorities. A prerequisite for air quality improvement is the development of a reliable monitoring system with surface instrumentation and space platforms as well as an analysis and prediction system based on an advanced chemical-meteorological model. The aim is to use the WRF-Chem model for the prediction of daily air quality for the Asian continent with spatial resolution that will be increased in densely populated areas by grid nesting. The modeling system covers a nearly the entire Asian continent so that transport processes of chemical compounds within the continent are simulated and analyzed. To additionally account for the long-range effects and assess their relative importance against regional emissions, the regional chemical transport modeling system uses information from a global modeling system as boundary conditions. The first steps towards a forecasting system over Asia are to test the model performance over this large model domain and the different emissions inventories available for Asia. In this study, the WRF-Chem model was run for a domain covering 60°E to 150°E, 5°S to 50°N at a resolution of 60 km x 60 km for January 2006 with three alternative emission inventories available for Asia (MACCITY, INTEX-B and REAS). We present an intercomparison of the three different simulations and evaluate the simulations with satellite and in situ observations, with focus on ozone, particulate matter, nitrogen oxides and carbon monoxide. The differences between the simulations using

  14. The air quality forecast of PM10 in Beijing with Community Multi-scale Air Quality Modeling (CMAQ) system: emission and improvement

    NASA Astrophysics Data System (ADS)

    Wu, Q.; Xu, W.; Shi, A.; Li, Y.; Zhao, X.; Wang, Z.; Li, J.; Wang, L.

    2014-05-01

    The MM5-SMOKE-CMAQ model system, which was developed by the United States Environmental Protection Agency (US EPA) as the Models-3 system, has been used for daily air quality forecasts in the Beijing Municipal Environmental Monitoring Center (Beijing MEMC), as a part of the Ensemble Air Quality Forecast System for Beijing (EMS-Beijing) since the Olympic Games 2008. According to the daily forecast results for the entire duration of 2010, the model shows good model performances in the PM10 forecast on most days but clearly underestimates some air pollution episodes. A typical air pollution episode from 11-20 January 2010 was chosen, where the observed air pollution index of particulate matter (PM10-API) reached to 180 while the forecast's PM10-API was about 100. In this study, three numerical methods are used for model improvement: first, enhance the inner domain with 3 km resolution grids: the coverage is expanded from only Beijing to the area including Beijing and its surrounding cities; second, add more regional point source emissions located at Baoding, Landfang and Tangshan, which is to the south and east of Beijing; third, update the area source emissions, which includes the regional area source emissions in Baoding and Tangshan and the local village-town level area source emissions in Beijing. As a result, the hindcast shows a much better model performance in the national standard station-averaged PM10-API, whereas the daily hindcast PM10-API reaches 180 and is much closer to the observation and has a correlation coefficient of 0.93. The correlation coefficient of the PM10-API in all Beijing MEMC stations between the hindcast and observation is 0.82, obviously higher than the forecast's 0.54, and the FAC2 increases from 56% in the forecast to 84% in the hindcast, while the NMSE decreases from 0.886 to 0.196. The hindcast also has better model performance in PM10 hourly concentrations during the typical air pollution episode, the correlation coefficient

  15. ManUniCast: A Community Weather and Air-Quality Forecasting Teaching Portal

    NASA Astrophysics Data System (ADS)

    Schultz, David M.; Anderson, Stuart; Fairman, Jonathan G.; Lowe, Douglas; McFiggans, Gordon; Lee, Elsa; Seo-Zindy, Ryo

    2014-05-01

    Manunicast was borne out of the needs of our teaching program: students were entering a world where environmental prediction via numerical model was an essential skill, but were not exposed to the production or output of such models. Our site is an educational testbed to explain to students and the public how weather, air-quality, and air-chemistry forecasts are made using real-time predictions as examples. As far as we know, this site provides the first freely available real-time predictions for the UK. We perform two simulations a day over three domains using the most popular, freely available, community atmospheric mesoscale and chemistry models WRF-ARW and WRF-Chem: 1. a WRF-ARW domain over the North Atlantic and western Europe (20-km horizontal grid spacing) 2. a WRF-ARW domain over the UK and Ireland (4-km grid spacing, nested within the 20-km domain) 3. a WRF-Chem domain over the UK and Ireland (12-km grid spacing) Called ManUniCast (Manchester University Forecast), we offer a suite of products from horizontal maps, time series at stations (meteograms), skew-T-logp charts, and cross sections to help students better visualize the weather and the relationships between the various fields more effectively, specifically through the ability to overlay and fade between different plotted products. This presentation discusses how we funded and built ManUniCast, the struggles we faced, and its use in our classes.

  16. Interactions of physical, chemical, and biological weather calling for an integrated approach to assessment, forecasting, and communication of air quality.

    PubMed

    Klein, Thomas; Kukkonen, Jaakko; Dahl, Aslög; Bossioli, Elissavet; Baklanov, Alexander; Vik, Aasmund Fahre; Agnew, Paul; Karatzas, Kostas D; Sofiev, Mikhail

    2012-12-01

    This article reviews interactions and health impacts of physical, chemical, and biological weather. Interactions and synergistic effects between the three types of weather call for integrated assessment, forecasting, and communication of air quality. Today's air quality legislation falls short of addressing air quality degradation by biological weather, despite increasing evidence for the feasibility of both mitigation and adaptation policy options. In comparison with the existing capabilities for physical and chemical weather, the monitoring of biological weather is lacking stable operational agreements and resources. Furthermore, integrated effects of physical, chemical, and biological weather suggest a critical review of air quality management practices. Additional research is required to improve the coupled modeling of physical, chemical, and biological weather as well as the assessment and communication of integrated air quality. Findings from several recent COST Actions underline the importance of an increased dialog between scientists from the fields of meteorology, air quality, aerobiology, health, and policy makers.

  17. Development of the GEM-MACH-FireWork System: An Air Quality Model with On-line Wildfire Emissions within the Canadian Operational Air Quality Forecast System

    NASA Astrophysics Data System (ADS)

    Pavlovic, Radenko; Chen, Jack; Beaulieu, Paul-Andre; Anselmp, David; Gravel, Sylvie; Moran, Mike; Menard, Sylvain; Davignon, Didier

    2014-05-01

    A wildfire emissions processing system has been developed to incorporate near-real-time emissions from wildfires and large prescribed burns into Environment Canada's real-time GEM-MACH air quality (AQ) forecast system. Since the GEM-MACH forecast domain covers Canada and most of the U.S.A., including Alaska, fire location information is needed for both of these large countries. During AQ model runs, emissions from individual fire sources are injected into elevated model layers based on plume-rise calculations and then transport and chemistry calculations are performed. This "on the fly" approach to the insertion of the fire emissions provides flexibility and efficiency since on-line meteorology is used and computational overhead in emissions pre-processing is reduced. GEM-MACH-FireWork, an experimental wildfire version of GEM-MACH, was run in real-time mode for the summers of 2012 and 2013 in parallel with the normal operational version. 48-hour forecasts were generated every 12 hours (at 00 and 12 UTC). Noticeable improvements in the AQ forecasts for PM2.5 were seen in numerous regions where fire activity was high. Case studies evaluating model performance for specific regions and computed objective scores will be included in this presentation. Using the lessons learned from the last two summers, Environment Canada will continue to work towards the goal of incorporating near-real-time intermittent wildfire emissions into the operational air quality forecast system.

  18. Forecasting daily source air quality using multivariate statistical analysis and radial basis function networks.

    PubMed

    Sun, Gang; Hoff, Steven J; Zelle, Brian C; Nelson, Minda A

    2008-12-01

    It is vital to forecast gas and particle matter concentrations and emission rates (GPCER) from livestock production facilities to assess the impact of airborne pollutants on human health, ecological environment, and global warming. Modeling source air quality is a complex process because of abundant nonlinear interactions between GPCER and other factors. The objective of this study was to introduce statistical methods and radial basis function (RBF) neural network to predict daily source air quality in Iowa swine deep-pit finishing buildings. The results show that four variables (outdoor and indoor temperature, animal units, and ventilation rates) were identified as relative important model inputs using statistical methods. It can be further demonstrated that only two factors, the environment factor and the animal factor, were capable of explaining more than 94% of the total variability after performing principal component analysis. The introduction of fewer uncorrelated variables to the neural network would result in the reduction of the model structure complexity, minimize computation cost, and eliminate model overfitting problems. The obtained results of RBF network prediction were in good agreement with the actual measurements, with values of the correlation coefficient between 0.741 and 0.995 and very low values of systemic performance indexes for all the models. The good results indicated the RBF network could be trained to model these highly nonlinear relationships. Thus, the RBF neural network technology combined with multivariate statistical methods is a promising tool for air pollutant emissions modeling.

  19. Air quality forecast of PM10 in Beijing with Community Multi-scale Air Quality Modeling (CMAQ) system: emission and improvement

    NASA Astrophysics Data System (ADS)

    Wu, Q.; Xu, W.; Shi, A.; Li, Y.; Zhao, X.; Wang, Z.; Li, J.; Wang, L.

    2014-10-01

    The MM5-SMOKE-CMAQ model system, which was developed by the United States Environmental Protection Agency (US EPA) as the MODELS-3 system, has been used for daily air quality forecasts in the Beijing Municipal Environmental Monitoring Center (Beijing MEMC), as a part of the Ensemble air quality Modeling forecast System for Beijing (EMS-Beijing) since the 2008 Olympic Games. According to the daily forecast results for the entire duration of 2010, the model shows good performance in the PM10 forecast on most days but clearly underestimates PM10 concentration during some air pollution episodes. A typical air pollution episode from 11-20 January 2010 was chosen, in which the observed air pollution index of particulate matter (PM10-API) reached 180 while the forecast PM10-API was about 100. In this study, three numerical methods are used for model improvement: first, by enhancing the inner domain with 3 km resolution grids, and expanding the coverage from only Beijing to an area including Beijing and its surrounding cities; second, by adding more regional point source emissions located at Baoding, Landfang and Tangshan, to the south and east of Beijing; third, by updating the area source emissions, including the regional area source emissions in Baoding and Tangshan and the local village/town-level area source emissions in Beijing. The last two methods are combined as the updated emissions method. According to the model sensitivity testing results by the CMAQ model, the updated emissions method and expanded model domain method can both improve the model performance separately. But the expanded model domain method has better ability to capture the peak values of PM10 than the updated emissions method due to better reproduction of the pollution transport process in this episode. As a result, the hindcast results ("New(CMAQ)"), which are driven by the updated emissions in the expanded model domain, show a much better model performance in the national standard station

  20. A regional air quality forecasting system over Europe: the MACC-II daily ensemble production

    NASA Astrophysics Data System (ADS)

    Marécal, V.; Peuch, V.-H.; Andersson, C.; Andersson, S.; Arteta, J.; Beekmann, M.; Benedictow, A.; Bergström, R.; Bessagnet, B.; Cansado, A.; Chéroux, F.; Colette, A.; Coman, A.; Curier, R. L.; Denier van der Gon, H. A. C.; Drouin, A.; Elbern, H.; Emili, E.; Engelen, R. J.; Eskes, H. J.; Foret, G.; Friese, E.; Gauss, M.; Giannaros, C.; Guth, J.; Joly, M.; Jaumouillé, E.; Josse, B.; Kadygrov, N.; Kaiser, J. W.; Krajsek, K.; Kuenen, J.; Kumar, U.; Liora, N.; Lopez, E.; Malherbe, L.; Martinez, I.; Melas, D.; Meleux, F.; Menut, L.; Moinat, P.; Morales, T.; Parmentier, J.; Piacentini, A.; Plu, M.; Poupkou, A.; Queguiner, S.; Robertson, L.; Rouïl, L.; Schaap, M.; Segers, A.; Sofiev, M.; Tarasson, L.; Thomas, M.; Timmermans, R.; Valdebenito, Á.; van Velthoven, P.; van Versendaal, R.; Vira, J.; Ung, A.

    2015-09-01

    This paper describes the pre-operational analysis and forecasting system developed during MACC (Monitoring Atmospheric Composition and Climate) and continued in the MACC-II (Monitoring Atmospheric Composition and Climate: Interim Implementation) European projects to provide air quality services for the European continent. This system is based on seven state-of-the art models developed and run in Europe (CHIMERE, EMEP, EURAD-IM, LOTOS-EUROS, MATCH, MOCAGE and SILAM). These models are used to calculate multi-model ensemble products. The paper gives an overall picture of its status at the end of MACC-II (summer 2014) and analyses the performance of the multi-model ensemble. The MACC-II system provides daily 96 h forecasts with hourly outputs of 10 chemical species/aerosols (O3, NO2, SO2, CO, PM10, PM2.5, NO, NH3, total NMVOCs (non-methane volatile organic compounds) and PAN+PAN precursors) over eight vertical levels from the surface to 5 km height. The hourly analysis at the surface is done a posteriori for the past day using a selection of representative air quality data from European monitoring stations. The performance of the system is assessed daily, weekly and every 3 months (seasonally) through statistical indicators calculated using the available representative air quality data from European monitoring stations. Results for a case study show the ability of the ensemble median to forecast regional ozone pollution events. The seasonal performances of the individual models and of the multi-model ensemble have been monitored since September 2009 for ozone, NO2 and PM10. The statistical indicators for ozone in summer 2014 show that the ensemble median gives on average the best performances compared to the seven models. There is very little degradation of the scores with the forecast day but there is a marked diurnal cycle, similarly to the individual models, that can be related partly to the prescribed diurnal variations of anthropogenic emissions in the models

  1. Use of Quality Controlled AIRS Temperature Soundings to Improve Forecast Skill

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Reale, Oreste; Iredell, Lena

    2010-01-01

    on use of a Standard profile dependent threshold (Delta)T(p). These Standard thresholds were designed as a compromise between optimal use for data assimilation purposes, which requires highest accuracy (tighter Quality Control), and climate purposes, which requires more spatial coverage (looser Quality Control). Subsequent research using Version 5 sounding and error estimates showed that tighter Quality Control performs better for data assimilation proposes, while looser Quality Control better spatial coverage) performs better for climate purposes. We conducted a number of data assimilation experiments using the NASA GEOS-5 Data Assimilation System as a step toward finding an optimum balance of spatial coverage and sounding accuracy with regard to improving forecast skill. The model was run at a horizontal resolution of 0.5 degree latitude x 0.67 degree longitude with 72 vertical levels. These experiments were run during four different seasons, each using a different year. The AIRS temperature profiles were presented to the GEOS-5 analysis as rawinsonde profiles, and the profile error estimates (delta)T(p) were used as the uncertainty for each measurement in the data assimilation process.

  2. A regional air quality forecasting system over Europe: the MACC-II daily ensemble production

    NASA Astrophysics Data System (ADS)

    Marécal, V.; Peuch, V.-H.; Andersson, C.; Andersson, S.; Arteta, J.; Beekmann, M.; Benedictow, A.; Bergström, R.; Bessagnet, B.; Cansado, A.; Chéroux, F.; Colette, A.; Coman, A.; Curier, R. L.; Denier van der Gon, H. A. C.; Drouin, A.; Elbern, H.; Emili, E.; Engelen, R. J.; Eskes, H. J.; Foret, G.; Friese, E.; Gauss, M.; Giannaros, C.; Guth, J.; Joly, M.; Jaumouillé, E.; Josse, B.; Kadygrov, N.; Kaiser, J. W.; Krajsek, K.; Kuenen, J.; Kumar, U.; Liora, N.; Lopez, E.; Malherbe, L.; Martinez, I.; Melas, D.; Meleux, F.; Menut, L.; Moinat, P.; Morales, T.; Parmentier, J.; Piacentini, A.; Plu, M.; Poupkou, A.; Queguiner, S.; Robertson, L.; Rouïl, L.; Schaap, M.; Segers, A.; Sofiev, M.; Thomas, M.; Timmermans, R.; Valdebenito, Á.; van Velthoven, P.; van Versendaal, R.; Vira, J.; Ung, A.

    2015-03-01

    This paper describes the pre-operational analysis and forecasting system developed during MACC (Monitoring Atmospheric Composition and Climate) and continued in MACC-II (Monitoring Atmospheric Composition and Climate: Interim Implementation) European projects to provide air quality services for the European continent. The paper gives an overall picture of its status at the end of MACC-II (summer 2014). This system is based on seven state-of-the art models developed and run in Europe (CHIMERE, EMEP, EURAD-IM, LOTOS-EUROS, MATCH, MOCAGE and SILAM). These models are used to calculate multi-model ensemble products. The MACC-II system provides daily 96 h forecasts with hourly outputs of 10 chemical species/aerosols (O3, NO2, SO2, CO, PM10, PM2.5, NO, NH3, total NMVOCs and PAN + PAN precursors) over 8 vertical levels from the surface to 5 km height. The hourly analysis at the surface is done a posteriori for the past day using a selection of representative air quality data from European monitoring stations. The performances of the system are assessed daily, weekly and 3 monthly (seasonally) through statistical indicators calculated using the available representative air quality data from European monitoring stations. Results for a case study show the ability of the median ensemble to forecast regional ozone pollution events. The time period of this case study is also used to illustrate that the median ensemble generally outperforms each of the individual models and that it is still robust even if two of the seven models are missing. The seasonal performances of the individual models and of the multi-model ensemble have been monitored since September 2009 for ozone, NO2 and PM10 and show an overall improvement over time. The change of the skills of the ensemble over the past two summers for ozone and the past two winters for PM10 are discussed in the paper. While the evolution of the ozone scores is not significant, there are improvements of PM10 over the past two winters

  3. The use of air quality forecasts to assess impacts of air pollution on crops: Methodology and case study

    NASA Astrophysics Data System (ADS)

    Tong, Daniel; Mathur, Rohit; Schere, Kenneth; Kang, Daiwen; Yu, Shaocai

    It has been reported that ambient ozone (O 3), either alone or in concurrence with acid rain precursors, accounts for up to 90% of US crop losses resulting from exposure to all major air pollutants. Crop damage due to O 3 exposure is of particular concern as ambient O 3 concentrations remain high in many major food-producing regions. Assessing O 3 damage to crops is challenging due to the difficulties in determining the reduction in crop yield that results from exposure to surface O 3, for which monitors are limited and mostly deployed in non-rural areas. This work explores the potential benefits of using operational air quality forecast (AQF) data to estimate rural O 3 exposure. Using the results from the first nationwide AQF as a case study, we demonstrate how the O 3 data provided by AQF can be combined with concurrent crop information to assess O 3 damages to soybeans in the United States. We estimate that exposure to ambient O 3 reduces the US soybean production by 10% in 2005.

  4. Eastern Texas Air Quality Forecasting System to Support TexAQS-II and 8-hour Ozone Modeling

    NASA Astrophysics Data System (ADS)

    Byun, D. W.

    2005-12-01

    The main objective of the Second Texas Air Quality Study (TexAQS-II) for 2005 and 2006 is to understand emissions and processes associated with the formation and transport of ozone and regional haze in Texas. The target research area is the more populated eastern half of the state, roughly from Interstate 35 eastward. Accurate meteorological and photochemical modeling efforts are essential to support this study and further enhance modeling efforts for establishing the State Implementation Plan (SIP) by Texas Commission on Environmental Quality (TCEQ). An air quality forecasting (AQF) system for Eastern Texas has been developed to provide these data and to further facilitate retrospective simulations to allow for model improvement and increased understanding of ozone episodes and emissions. We perform two-day air quality forecasting simulations with the 12-km Eastern Texas regional domain, and the 4-km Houston-Galveston area (HGA) domain utilizing a 48-CPU Beowulf Linux computer system. The dynamic boundary conditions are provided by the 36-km resolution conterminous US (CONUS) domain CMAQ simulations. Initial meteorological conditions are provided by the daily ETA forecast results. The results of individual runs are stored and made available to researchers and state and local officials via internet to study the patterns of air quality and its relationship to weather conditions and emissions. The data during the pre- and post-processing stages are in tens of gigabytes and must be managed efficiently during both the actual real-time and the subsequent computation periods. The nature of these forecasts and the time at which the initial data is available necessitates that models be executed within tight deadlines. A set of complex operational scripts is used to allow automatic operation of the data download, sequencing processors, performing graphical analysis, building database archives, and presenting on the web.

  5. CALIPSO Satellite Lidar Identification Of Elevated Dust Over Australia Compared With Air Quality Model PM60 Forecasts

    NASA Technical Reports Server (NTRS)

    Young, Stuart A.; Vaughan, Mark; Omar, Ali; Liu, Zhaoyan; Lee, Sunhee; Hu, Youngxiang; Cope, Martin

    2008-01-01

    Global measurements of the vertical distribution of clouds and aerosols have been recorded by the lidar on board the CALIPSO (Cloud Aerosol Lidar Infrared Pathfinder Satellite Observations) satellite since June 2006. Such extensive, height-resolved measurements provide a rare and valuable opportunity for developing, testing and validating various atmospheric models, including global climate, numerical weather prediction, chemical transport and air quality models. Here we report on the initial results of an investigation into the performance of the Australian Air Quality Forecast System (AAQFS) model in forecasting the distribution of elevated dust over the Australian region. The model forecasts of PM60 dust distribution are compared with the CALIPSO lidar Vertical Feature Mask (VFM) data product. The VFM classifies contiguous atmospheric regions of enhanced backscatter as either cloud or aerosols. Aerosols are further classified into six subtypes. By comparing forecast PM60 concentration profiles to the spatial distribution of dust reported in the CALIPSO VFM, we can assess the model s ability to predict the occurrence and the vertical and horizontal extents of dust events within the study area.

  6. A fully coupled regional atmospheric numerical model for integrated air quality and weather forecasting.

    NASA Astrophysics Data System (ADS)

    Freitas, S. R.; Longo, K. M.; Marecal, V.; Pirre, M.; Gmai, T.

    2012-04-01

    A new numerical modelling tool devoted to local and regional studies of atmospheric chemistry from surface to the lower stratosphere designed for both operational and research purposes will be presented. This model is based on the limited-area model CATT-BRAMS (Coupled Aerosol-Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System, Freitas et al. 2009, Longo et al. 2010) which is a meteorological model (BRAMS) including transport processes of gaseous and aerosols (CATT model). BRAMS is a version of the RAMS model (Walko et al. 2000) adapted to better represent tropical and subtropical processes and several new features. CATT-BRAMS has been used operationally at CPTEC (Brazilian Center for Weather Prediction and Climate Studies) since 2003 providing coupled weather and air quality forecast. In the Chemistry-CATT-BRAMS (called hereafter CCATT-BRAMS) a chemical module is fully coupled to the meteorological/tracer transport model CATT-BRAMS. This module includes gaseous chemistry, photochemistry, scavenging and dry deposition. The CCATT-BRAMS model takes advantages of the BRAMS specific development for the tropics/subtropics and of the recent availability of preprocessing tools for chemical mechanisms and of fast codes for photolysis rates. Similarly to BRAMS this model is conceived to run for horizontal resolutions ranging from a few meters to more than a hundred kilometres depending on the chosen scientific objective. In the last decade CCATT-BRAMS has being broadly (or extensively) used for applications mainly over South America, with strong emphasis over the Amazonia area and the main South American megacities. An overview of the model development and main applications will be presented.

  7. Air Quality Monitoring and Forecasting Applications of Suomi NPP VIIRS Aerosol Products

    NASA Astrophysics Data System (ADS)

    Kondragunta, Shobha

    The Suomi National Polar-orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) instrument was launched on October 28, 2011. It provides Aerosol Optical Thickness (AOT) at two different spatial resolutions: a pixel level (~750 m at nadir) product called the Intermediate Product (IP) and an aggregated (~6 km at nadir) product called the Environmental Data Record (EDR), and a Suspended Matter (SM) EDR that provides aerosol type (dust, smoke, sea salt, and volcanic ash) information. An extensive validation of VIIRS best quality aerosol products with ground based L1.5 Aerosol Robotic NETwork (AERONET) data shows that the AOT EDR product has an accuracy/precision of -0.01/0.11 and 0.01/0.08 over land and ocean respectively. Globally, VIIRS mean AOT EDR (0.20) is similar to Aqua MODIS (0.16) with some important regional and seasonal differences. The accuracy of the SM product, however, is found to be very low (20 percent) when compared to Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) and AERONET. Several algorithm updates which include a better approach to retrieve surface reflectance have been developed for AOT retrieval. For dust aerosol type retrieval, a new approach that takes advantage of spectral dependence of Rayleigh scattering, surface reflectance, dust absorption in the deep blue (412 nm), blue (440 nm), and mid-IR (2.2 um) has been developed that detects dust with an accuracy of ~80 percent. For smoke plume identification, a source apportionment algorithm that combines fire hot spots with AOT imagery has been developed that provides smoke plume extent with an accuracy of ~70 percent. The VIIRS aerosol products will provide continuity to the current operational use of aerosol products from Aqua and Terra MODIS. These include aerosol data assimilation in Naval Research Laboratory (NRL) global aerosol model, verification of National Weather Service (NWS) dust and smoke forecasts, exceptional events monitoring by different states

  8. Convective Weather Forecast Quality Metrics for Air Traffic Management Decision-Making

    NASA Technical Reports Server (NTRS)

    Chatterji, Gano B.; Gyarfas, Brett; Chan, William N.; Meyn, Larry A.

    2006-01-01

    the process described in Refs. 5 through 7, in terms of percentage coverage or confidence level is notionally sound compared to characterizing in terms of probabilities because the probability of the forecast being correct can only be determined using actual observations. References 5 through 7 only use the forecast data and not the observations. The method for computing the probability of detection, false alarm ratio and several forecast quality metrics (Skill Scores) using both the forecast and observation data are given in Ref. 2. This paper extends the statistical verification method in Ref. 2 to determine co-occurrence probabilities. The method consists of computing the probability that a severe weather cell (grid location) is detected in the observation data in the neighborhood of the severe weather cell in the forecast data. Probabilities of occurrence at the grid location and in its neighborhood with higher severity, and with lower severity in the observation data compared to that in the forecast data are examined. The method proposed in Refs. 5 through 7 is used for computing the probability that a certain number of cells in the neighborhood of severe weather cells in the forecast data are seen as severe weather cells in the observation data. Finally, the probability of existence of gaps in the observation data in the neighborhood of severe weather cells in forecast data is computed. Gaps are defined as openings between severe weather cells through which an aircraft can safely fly to its intended destination. The rest of the paper is organized as follows. Section II summarizes the statistical verification method described in Ref. 2. The extension of this method for computing the co-occurrence probabilities in discussed in Section HI. Numerical examples using NCWF forecast data and NCWD observation data are presented in Section III to elucidate the characteristics of the co-occurrence probabilities. This section also discusses the procedure for computing

  9. Real-Time Bias-Adjusted O3 and PM2.5 Air Quality Index Forecasts and their Performance Evaluations over the Continental United States

    EPA Science Inventory

    The National Air Quality Forecast Capacity (NAQFC) system, which links NOAA's North American Mesoscale (NAM) meteorological model with EPA's Community Multiscale Air Quality (CMAQ) model, provided operational ozone (O3) and experimental fine particular matter (PM2...

  10. Performance and diagnostic evaluation of ozone predictions by the Eta-Community Multiscale Air Quality Forecast System during the 2002 New England Air Quality Study.

    PubMed

    Yu, Shaocai; Mathur, Rohit; Kang, Daiwen; Schere, Kenneth; Eder, Brian; Pleim, Jonathan

    2006-10-01

    A real-time air quality forecasting system (Eta-Community Multiscale Air Quality [CMAQ] model suite) has been developed by linking the National Centers for Environmental Estimation Eta model to the U.S. Environmental Protection Agency (EPA) CMAQ model. This work presents results from the application of the Eta-CMAQ modeling system for forecasting ozone (O3) over the Northeastern United States during the 2002 New England Air Quality Study (NEAQS). Spatial and temporal performance of the Eta-CMAQ model for O3 was evaluated by comparison with observations from the EPA Air Quality System (AQS) network. This study also examines the ability of the model to simulate the processes governing the distributions of tropospheric O3 on the basis of the intensive datasets obtained at the four Atmospheric Investigation, Regional Modeling, Analysis, and Estimation (AIRMAP) and Harvard Forest (HF) surface sites. The episode analysis reveals that the model captured the buildup of O3 concentrations over the northeastern domain from August 11 and reproduced the spatial distributions of observed O3 very well for the daytime (8:00 p.m.) of both August 8 and 12 with most of normalized mean bias (NMB) within +/- 20%. The model reproduced 53.3% of the observed hourly O3 within a factor of 1.5 with NMB of 29.7% and normalized mean error of 46.9% at the 342 AQS sites. The comparison of modeled and observed lidar O3 vertical profiles shows that whereas the model reproduced the observed vertical structure, it tended to overestimate at higher altitude. The model reproduced 64-77% of observed NO2 photolysis rate values within a factor of 1.5 at the AIRMAP sites. At the HF site, comparison of modeled and observed O3/nitrogen oxide (NOx) ratios suggests that the site is mainly under strongly NOx-sensitive conditions (>53%). It was found that the modeled lower limits of the O3 production efficiency values (inferred from O3-CO correlation) are close to the observations.

  11. Performance and diagnostic evaluation of ozone predictions by the Eta-Community Multiscale Air Quality Forecast System during the 2002 New England Air Quality Study.

    PubMed

    Yu, Shaocai; Mathur, Rohit; Kang, Daiwen; Schere, Kenneth; Eder, Brian; Pleim, Jonathan

    2006-10-01

    A real-time air quality forecasting system (Eta-Community Multiscale Air Quality [CMAQ] model suite) has been developed by linking the National Centers for Environmental Estimation Eta model to the U.S. Environmental Protection Agency (EPA) CMAQ model. This work presents results from the application of the Eta-CMAQ modeling system for forecasting ozone (O3) over the Northeastern United States during the 2002 New England Air Quality Study (NEAQS). Spatial and temporal performance of the Eta-CMAQ model for O3 was evaluated by comparison with observations from the EPA Air Quality System (AQS) network. This study also examines the ability of the model to simulate the processes governing the distributions of tropospheric O3 on the basis of the intensive datasets obtained at the four Atmospheric Investigation, Regional Modeling, Analysis, and Estimation (AIRMAP) and Harvard Forest (HF) surface sites. The episode analysis reveals that the model captured the buildup of O3 concentrations over the northeastern domain from August 11 and reproduced the spatial distributions of observed O3 very well for the daytime (8:00 p.m.) of both August 8 and 12 with most of normalized mean bias (NMB) within +/- 20%. The model reproduced 53.3% of the observed hourly O3 within a factor of 1.5 with NMB of 29.7% and normalized mean error of 46.9% at the 342 AQS sites. The comparison of modeled and observed lidar O3 vertical profiles shows that whereas the model reproduced the observed vertical structure, it tended to overestimate at higher altitude. The model reproduced 64-77% of observed NO2 photolysis rate values within a factor of 1.5 at the AIRMAP sites. At the HF site, comparison of modeled and observed O3/nitrogen oxide (NOx) ratios suggests that the site is mainly under strongly NOx-sensitive conditions (>53%). It was found that the modeled lower limits of the O3 production efficiency values (inferred from O3-CO correlation) are close to the observations. PMID:17063868

  12. GEM-MACH10: Implementation of a New Version of the Canadian Operational Air Quality Forecast Model for North America

    NASA Astrophysics Data System (ADS)

    Pavlovic, R.; Menard, S.; Moran, M. D.; Gravel, S.; Gilbert, S.; Hugo, L.; Zhang, J.; Zheng, Q.

    2012-12-01

    GEM-MACH15 has been Environment Canada's operational regional air quality forecast model since November 2009. GEM-MACH15 is a limited-area configuration of GEM-MACH, an on-line chemical transport model that is embedded within GEM, Environment Canada's multi-scale operational weather forecast model. It is run twice daily to produce 48 hour forecasts of hourly O3, PM2.5, and NO2 fields over a North American grid with 15 km horizontal grid spacing, 58 vertical levels from the surface to 0.1 hPa, and a 450 s time step. A new model version, called GEM-MACH10, has been developed for operational implementation. It uses 10 km horizontal grid spacing, 80 vertical levels, a 300 s time step, updated model source code, and updated anthropogenic emissions. The computational cost of GEM-MACH10 is roughly a factor of four larger than that of GEM-MACH15 due to the increased spatial resolution. The improved forecast performance resulting from these changes will be described by means of a number of evaluation metrics and analysis techniques. Some of the challenges encountered in developing this new model version will also be discussed.

  13. An evaluation of real-time air quality forecasts and their urban emissions over eastern Texas during the summer of 2006 Second Texas Air Quality Study field study

    NASA Astrophysics Data System (ADS)

    McKeen, S.; Grell, G.; Peckham, S.; Wilczak, J.; Djalalova, I.; Hsie, E.-Y.; Frost, G.; Peischl, J.; Schwarz, J.; Spackman, R.; Holloway, J.; de Gouw, J.; Warneke, C.; Gong, W.; Bouchet, V.; Gaudreault, S.; Racine, J.; McHenry, J.; McQueen, J.; Lee, P.; Tang, Y.; Carmichael, G. R.; Mathur, R.

    2009-04-01

    Forecasts of ozone (O3) and particulate matter (diameter less than 2.5 μm, PM2.5) from seven air quality forecast models (AQFMs) are statistically evaluated against observations collected during August and September of 2006 (49 days) through the Aerometric Information Retrieval Now (AIRNow) network throughout eastern Texas and adjoining states. Ensemble O3 and PM2.5 forecasts created by combining the seven separate forecasts with equal weighting, and simple bias-corrected forecasts, are also evaluated in terms of standard statistical measures, threshold statistics, and variance analysis. For O3 the models and ensemble generally show statistical skill relative to persistence for the entire region, but fail to predict high-O3 events in the Houston region. For PM2.5, none of the models, or ensemble, shows statistical skill, and all but one model have significant low bias. Comprehensive comparisons with the full suite of chemical and aerosol measurements collected aboard the NOAA WP-3 aircraft during the summer 2006 Second Texas Air Quality Study and the Gulf of Mexico Atmospheric Composition and Climate Study (TexAQS II/GoMACCS) field study are performed to help diagnose sources of model bias at the surface. Aircraft flights specifically designed for sampling of Houston and Dallas urban plumes are used to determine model and observed upwind or background biases, and downwind excess concentrations that are used to infer relative emission rates. Relative emissions from the U.S. Environmental Protection Agency 1999 National Emission Inventory (NEI-99) version 3 emissions inventory (used in two of the model forecasts) are evaluated on the basis of comparisons between observed and model concentration difference ratios. Model comparisons demonstrate that concentration difference ratios yield a reasonably accurate measure (within 25%) of relative input emissions. Boundary layer height and wind data are combined with the observed up-wind and downwind concentration

  14. Impact of AIRS Thermodynamic Profile on Regional Weather Forecast

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Brad; Jedlovee, Gary

    2010-01-01

    Prudent assimilation of AIRS thermodynamic profiles and quality indicators can improve initial conditions for regional weather models. AIRS-enhanced analysis has warmer and moister PBL. Forecasts with AIRS profiles are generally closer to NAM analyses than CNTL. Assimilation of AIRS leads to an overall QPF improvement in 6-h accumulated precipitation forecasts. Including AIRS profiles in assimilation process enhances the moist instability and produces stronger updrafts and a better precipitation forecast than the CNTL run.

  15. Dust events in Arizona: Long-term satellite and surface observations, and the National Air Quality Forecasting Capability CMAQ simulations

    NASA Astrophysics Data System (ADS)

    Huang, M.; Tong, D.; Lee, P.; Pan, L.; Tang, Y.; Stajner, I.; Pierce, R. B.; McQueen, J.

    2015-12-01

    Dust events in Arizona: An analysis integrating satellite and surface weather and aerosol measurements, and National Air Quality Forecasting Capability CMAQ simulations Dust records in Arizona during 2005-2013 are developed using multiple observation datasets, including level 2 deep blue aerosol product by the Moderate Resolution Imaging Spectroradiometer (MODIS) and the in-situ measurements at the surface Air Quality System (AQS) and Interagency Monitoring of Protected Visual Environments (IMPROVE) sites in Phoenix. The satellite and surface aerosol observations were anti-correlated with three drought indicators (i.e., MODIS vegetation index, a European satellite soil moisture dataset, and Palmer Drought Severity Index). During the dusty year of 2007, we show that the dust events were stronger and more frequent in the afternoon hours than in the morning due to faster winds and drier soil, and the Sonoran and Chihuahuan deserts were important dust source regions during identified dust events in Phoenix as indicated by NOAA's Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) Model calculations. Based on these findings, we suggested a potential for use of satellite soil moisture and vegetation index products to interpret and predict dust activity. We also emphasized the importance of using hourly observations for better capturing dust events, and expect the hourly geostationary satellite observations in the future to well complement the current surface PM and meteorological observations considering their broader spatial coverage. Additionally, the performance of the National Air Quality Forecasting Capability (NAQFC) 12 km CMAQ model simulation is evaluated during a recent strong dust event in the western US accompanied by stratospheric ozone intrusion. The current modeling system well captured the temporal variability and the magnitude of aerosol concentrations during this event. Directions of integrating satellite weather and vegetation observations

  16. ADAPTATION AND APPLICATION OF THE COMMUNITY MULTISCALE AIR QUALITY (CMAQ) MODELING SYSTEM FOR REAL-TIME AIR QUALITY FORECASTING DURING THE SUMMER OF 2004

    EPA Science Inventory

    The ability to forecast local and regional air pollution events is challenging since the processes governing the production and sustenance of atmospheric pollutants are complex and often non-linear. Comprehensive atmospheric models, by representing in as much detail as possible t...

  17. Ensemble-based air quality forecasts: A multimodel approach applied to ozone

    NASA Astrophysics Data System (ADS)

    Mallet, Vivien; Sportisse, Bruno

    2006-09-01

    The potential of ensemble techniques to improve ozone forecasts is investigated. Ensembles with up to 48 members (models) are generated using the modeling system Polyphemus. Members differ in their physical parameterizations, their numerical approximations, and their input data. Each model is evaluated during 4 months (summer 2001) over Europe with hundreds of stations from three ozone-monitoring networks. We found that several linear combinations of models have the potential to drastically increase the performances of model-to-data comparisons. Optimal weights associated with each model are not robust in time or space. Forecasting these weights therefore requires relevant methods, such as selection of adequate learning data sets, or specific learning algorithms. Significant performance improvements are accomplished by the resulting forecasted combinations. A decrease of about 10% of the root-mean-square error is obtained on ozone daily peaks. Ozone hourly concentrations show stronger improvements.

  18. Corrigendum to "Development of ANFIS model for air quality forecasting and input optimization for reducing the computational cost and time" [Atmos. Environ. 128 (2016) 246-262

    NASA Astrophysics Data System (ADS)

    Prasad, Kanchan; Gorai, Amit Kumar; Goyal, Pramila

    2016-10-01

    In the paper entitled "Development of ANFIS model for air quality forecasting and input optimization for reducing the computational cost and time" the correlation coefficient values of O3 with the other parameters (shown in Table 4) were mistakenly written from some other results. But, the analyses were done based on the actual results. The actual values are listed in the revised Table 4.

  19. Vegetation Exposure to Ozone over the Continental United States: Assessment of Exposure Indices by the Eta-CMAQ Air Quality Forecast Model

    EPA Science Inventory

    This study presents the first evaluation of the performance of the Eta-CMAQ air quality forecast model to predict a variety of widely used seasonal mean and cumulative O3 exposure indices associated with vegetation using the U.S. AIRNow O3 observations.

  20. Survey of air cargo forecasting techniques

    NASA Technical Reports Server (NTRS)

    Kuhlthan, A. R.; Vermuri, R. S.

    1978-01-01

    Forecasting techniques currently in use in estimating or predicting the demand for air cargo in various markets are discussed with emphasis on the fundamentals of the different forecasting approaches. References to specific studies are cited when appropriate. The effectiveness of current methods is evaluated and several prospects for future activities or approaches are suggested. Appendices contain summary type analyses of about 50 specific publications on forecasting, and selected bibliographies on air cargo forecasting, air passenger demand forecasting, and general demand and modalsplit modeling.

  1. Evaluation of the high resolution WRF-Chem (v3.4.1) air quality forecast and its comparison with statistical ozone predictions

    NASA Astrophysics Data System (ADS)

    Žabkar, R.; Honzak, L.; Skok, G.; Forkel, R.; Rakovec, J.; Ceglar, A.; Žagar, N.

    2015-07-01

    An integrated modelling system based on the regional online coupled meteorology-atmospheric chemistry WRF-Chem model configured with two nested domains with horizontal resolutions of 11.1 and 3.7 km has been applied for numerical weather prediction and for air quality forecasts in Slovenia. In the study, an evaluation of the air quality forecasting system has been performed for summer 2013. In the case of ozone (O3) daily maxima, the first- and second-day model predictions have been also compared to the operational statistical O3 forecast and to the persistence. Results of discrete and categorical evaluations show that the WRF-Chem-based forecasting system is able to produce reliable forecasts which, depending on monitoring site and the evaluation measure applied, can outperform the statistical model. For example, the correlation coefficient shows the highest skill for WRF-Chem model O3 predictions, confirming the significance of the non-linear processes taken into account in an online coupled Eulerian model. For some stations and areas biases were relatively high due to highly complex terrain and unresolved local meteorological and emission dynamics, which contributed to somewhat lower WRF-Chem skill obtained in categorical model evaluations. Applying a bias correction could further improve WRF-Chem model forecasting skill in these cases.

  2. PLAM - a meteorological pollution index for air quality and its applications in fog-haze forecasts in North China

    NASA Astrophysics Data System (ADS)

    Yang, Y. Q.; Wang, J. Z.; Gong, S. L.; Zhang, X. Y.; Wang, H.; Wang, Y. Q.; Wang, J.; Li, D.; Guo, J. P.

    2016-02-01

    Using surface meteorological observation and high-resolution emission data, this paper discusses the application of the PLAM/h index (Parameter Linking Air-quality to Meteorological conditions/haze) in the prediction of large-scale low visibility and fog-haze events. Based on the two-dimensional probability density function diagnosis model for emissions, the study extends the diagnosis and prediction of the meteorological pollution index PLAM to the regional visibility fog-haze intensity. The results show that combining the influence of regular meteorological conditions and emission factors together in the PLAM/h parameterization scheme is very effective in improving the diagnostic identification ability of the fog-haze weather in North China. The determination coefficients for four seasons (spring, summer, autumn, and winter) between PLAM/h and visibility observation are 0.76, 0.80, 0.96, and 0.86, respectively, and all of their significance levels exceed 0.001, showing the ability of PLAM/h to predict the seasonal changes and differences of fog-haze weather in the North China region. The high-value correlation zones are located in Jing-Jin-Ji (Beijing, Tianjin, Hebei), Bohai Bay rim, and southern Hebei-northern Henan, indicating that the PLAM/h index is related to the distribution of frequent heavy fog-haze weather in North China and the distribution of emission high-value zone. Through comparative analysis of the heavy fog-haze events and large-scale clear-weather processes in winter and summer, it is found that PLAM/h index 24 h forecast is highly correlated with the visibility observation. Therefore, the PLAM/h index has good capability in identification, analysis, and forecasting.

  3. Evaluation of a seven-year air quality simulation using the Weather Research and Forecasting (WRF)/Community Multiscale Air Quality (CMAQ) models in the eastern United States.

    PubMed

    Zhang, Hongliang; Chen, Gang; Hu, Jianlin; Chen, Shu-Hua; Wiedinmyer, Christine; Kleeman, Michael; Ying, Qi

    2014-03-01

    The performance of the Weather Research and Forecasting (WRF)/Community Multi-scale Air Quality (CMAQ) system in the eastern United States is analyzed based on results from a seven-year modeling study with a 4-km spatial resolution. For 2-m temperature, the monthly averaged mean bias (MB) and gross error (GE) values are generally within the recommended performance criteria, although temperature is over-predicted with MB values up to 2K. Water vapor at 2-m is well-predicted but significant biases (>2 g kg(-1)) were observed in wintertime. Predictions for wind speed are satisfactory but biased towards over-prediction with 0

  4. Evaluation of a seven-year air quality simulation using the Weather Research and Forecasting (WRF)/Community Multiscale Air Quality (CMAQ) models in the eastern United States.

    PubMed

    Zhang, Hongliang; Chen, Gang; Hu, Jianlin; Chen, Shu-Hua; Wiedinmyer, Christine; Kleeman, Michael; Ying, Qi

    2014-03-01

    The performance of the Weather Research and Forecasting (WRF)/Community Multi-scale Air Quality (CMAQ) system in the eastern United States is analyzed based on results from a seven-year modeling study with a 4-km spatial resolution. For 2-m temperature, the monthly averaged mean bias (MB) and gross error (GE) values are generally within the recommended performance criteria, although temperature is over-predicted with MB values up to 2K. Water vapor at 2-m is well-predicted but significant biases (>2 g kg(-1)) were observed in wintertime. Predictions for wind speed are satisfactory but biased towards over-prediction with 0

  5. AQA - Air Quality model for Austria: comparison of ALADIN and ALARO forecasts with observed meteorological profiles and PM10 predictions with CAMx

    NASA Astrophysics Data System (ADS)

    Hirtl, M.; Krüger, B. C.; Kaiser, A.

    2009-09-01

    In AQA, Air Quality model for Austria, the regional weather forecast model ALADIN-Austria of the Central Institute for Meteorology and Geodynamics (ZAMG) is used in combination with the chemical transport model CAMx (www.camx.com) to conduct forecasts of gaseous and particulate air pollutants over Austria. The forecasts which are done in cooperation with the University of Natural Resources and Applied Life Sciences in Vienna (BOKU) are supported by the regional governments since 2005. In the current model version AQA uses the operational meteorological forecasts conducted with ALADIN which has a horizontal resolution of 9.7 km. Since 2008 the higher resolved ALARO is also available at the ZAMG. It has a horizontal resolution of 4.9 km and models the PBL with more vertical layers than ALADIN. ALARO also uses more complex algorithms to calculate precipitation, radiation and TKE. Another advantage of ALARO concerning the chemical modelling with CAMx is that additionally to the higher resolved meteorological forecasts it is possible to use finer emission inventories which are available for Austria. From 2006 to 2007 a SODAR-RASS of the ZAMG was operated in the north-eastern Austrian flat lands (Kittsee). In this study the measured vertical profiles of wind and temperature are compared with the model predictions. The evaluation is conducted for an episode in January 2007 when high PM10 concentrations were measured at the air quality station Kittsee. Analysis of the RASS-temperature-profiles show that during this episode a strong nocturnal inversion developed at the investigated area. The ability of the models ALADIN and ALARO to predict this complex meteorological condition is investigated. Both models are also used as meteorological driver for the chemical dispersion model CAMx and the results of predicted PM10 concentrations are compared to air quality measurements.

  6. Development of ANFIS models for air quality forecasting and input optimization for reducing the computational cost and time

    NASA Astrophysics Data System (ADS)

    Prasad, Kanchan; Gorai, Amit Kumar; Goyal, Pramila

    2016-03-01

    This study aims to develop adaptive neuro-fuzzy inference system (ANFIS) for forecasting of daily air pollution concentrations of five air pollutants [sulphur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), ozone (O3) and particular matters (PM10)] in the atmosphere of a Megacity (Howrah). Air pollution in the city (Howrah) is rising in parallel with the economics and thus observing, forecasting and controlling the air pollution becomes increasingly important due to the health impact. ANFIS serve as a basis for constructing a set of fuzzy IF-THEN rules, with appropriate membership functions to generate the stipulated input-output pairs. The ANFIS model predictor considers the value of meteorological factors (pressure, temperature, relative humidity, dew point, visibility, wind speed, and precipitation) and previous day's pollutant concentration in different combinations as the inputs to predict the 1-day advance and same day air pollution concentration. The concentration value of five air pollutants and seven meteorological parameters of the Howrah city during the period 2009 to 2011 were used for development of the ANFIS model. Collinearity tests were conducted to eliminate the redundant input variables. A forward selection (FS) method is used for selecting the different subsets of input variables. Application of collinearity tests and FS techniques reduces the numbers of input variables and subsets which helps in reducing the computational cost and time. The performances of the models were evaluated on the basis of four statistical indices (coefficient of determination, normalized mean square error, index of agreement, and fractional bias).

  7. Ozone distributions over southern Lake Michigan: comparisons between ferry-based observations, shoreline-based DOAS observations and air quality forecast models

    NASA Astrophysics Data System (ADS)

    Cleary, P. A.; Fuhrman, N.; Schulz, L.; Schafer, J.; Fillingham, J.; Bootsma, H.; Langel, T.; Williams, E. J.; Brown, S. S.

    2014-09-01

    Air quality forecast models typically predict large ozone abundances over water relative to land in the Great Lakes region. While each state bordering Lake Michigan has dedicated monitoring systems, offshore measurements have been sparse, mainly executed through specific short-term campaigns. This study examines ozone abundances over Lake Michigan as measured on the Lake Express ferry, by shoreline Differential Optical Absorption Spectroscopy (DOAS) observations in southeastern Wisconsin, and as predicted by the National Air Quality Forecast System. From 2008-2009 measurements of O3, SO2, NO2 and formaldehyde were made in the summertime by DOAS at a shoreline site in Kenosha, WI. From 2008-2010 measurements of ambient ozone conducted on the Lake Express, a high-speed ferry that travels between Milwaukee, WI and Muskegon, MI up to 6 times daily from spring to fall. Ferry ozone observations over Lake Michigan were an average of 3.8 ppb higher than those measured at shoreline in Kenosha with little dependence on position of the ferry or temperature but with highest differences during evening and night. Concurrent ozone forecast images from National Weather System's National Air Quality Forecast System in the upper Midwestern region surrounding Lake Michigan were saved over the ferry ozone sampling period in 2009. The bias of the model O3 forecast was computed and evaluated with respect to ferry-based measurements. The model 1 and 8 h ozone mean biases were both 12 ppb higher than observed ozone, and maximum daily 1 h ozone mean bias was 10 ppb, indicating substantial ozone over-prediction over water. Trends in the bias with respect to location and time of day or month were also explored showing non-uniformity in model bias. Extreme ozone events were predicted by the model but not observed by ferry measurements.

  8. THE USE OF AIR QUALITY FORECASTS TO ASSESS IMPACTS OF AIR POLLUTION ON CROPS: METHODOLOGY AND CASE STUDY

    EPA Science Inventory

    It has been reported that ambient ozone (O3), either alone or in concurrence with acid rain precursors, accounts for up to 90% of U.S. crop losses resulting from exposure to all major air pollutants. Crop damage due to O3 exposure is of particular concern as...

  9. Implementation of Real-Time Bias-Adjusted O3 and PM2.5 Air Quality Forecasts and their Performance Evaluations during 2008 over the Continental United States

    EPA Science Inventory

    The National Oceanic and Atmospheric Administration (NOAA), in partnership with the United States Environmental Protection Agency (EPA), is operationally implementing an Air Quality Forecast (AQF) system. This program, which couples NOAA's North American Mesoscale (NAM) weather p...

  10. Air quality forecasting for winter-time PM2.5 episodes occurring in multiple cities in central and southern Chile

    NASA Astrophysics Data System (ADS)

    Saide, Pablo E.; Mena-Carrasco, Marcelo; Tolvett, Sebastian; Hernandez, Pablo; Carmichael, Gregory R.

    2016-01-01

    Episodic air quality degradation due to particles occurs in multiple cities in central and southern Chile during the austral winter reaching levels up to 300-800 µg/m3 hourly PM2.5, which can be associated with severe effects on human health. An air quality prediction system is developed to predict such events in near real time up to 3 days in advance for nine cities with regular air quality monitoring: Santiago, Rancagua, Curicó, Talca, Chillan, Los Ángeles, Temuco, Valdivia, and Osorno. The system uses the Weather Research and Forecasting with Chemistry model configured with a nested 2 km grid-spacing domain to predict weather and inert tracers. The tracers are converted to hourly PM2.5 concentrations using an observationally based calibration which is substantially less computationally intensive than a full chemistry model. The conversion takes into account processes occurring in these cities, including higher likelihood of episode occurrence during weekends and during colder days, the latter related to increased wood-burning-stove activity for heating. The system is calibrated and evaluated for April-August 2014 where it has an overall skill of 53-72% of episodes accurately forecasted (61-76% for the best initialization) which is better than persistence for most stations. Forecasts one, two, and three days in advance all have skill in forecasting events but often present large variability within them due to different meteorological initializations. The system is being implemented in Chile to assist authority decisions not only to warn the population but also to take contingency-based emission restrictions to try to avoid severe pollution events.

  11. An air quality forecasting system in Beijing--application to the study of dust storm events in China in May 2008.

    PubMed

    Zhang, Qijie; Laurent, Benoit; Velay-Lasry, Fanny; Ngo, Richard; Derognat, Claude; Marticorena, Béatrice; Albergel, Armand

    2012-01-01

    An air pollution forecast system, ARIA Regional, was implemented in 2007-2008 at the Beijing Municipality Environmental Monitoring Center, providing daily forecast of main pollutant concentrations. The chemistry-transport model CHIMERE was coupled with the dust emission model MB95 for restituting dust storm events in springtime so as to improve forecast results. Dust storm events were sporadic but could be extremely intense and then control air quality indexes close to the source areas but also far in the Beijing area. A dust episode having occurred at the end of May 2008 was analyzed in this article, and its impact of particulate matter on the Chinese air pollution index (API) was evaluated. Following our estimation, about 23 Tg of dust were emitted from source areas in Mongolia and in the Inner Mongolia of China, transporting towards southeast. This episode of dust storm influenced a large part of North China and East China, and also South Korea. The model result was then evaluated using satellite observations and in situ data. The simulated daily concentrations of total suspended particulate at 6:00 UTC had a similar spatial pattern with respect to OMI satellite aerosol index. Temporal evolution of dust plume was evaluated by comparing dust aerosol optical depth (AOD) calculated from the simulations with AOD derived from MODIS satellite products. Finally, the comparison of reported Chinese API in Beijing with API calculated from the simulation including dust emissions had showed the significant improvement of the model results taking into account mineral dust correctly. PMID:22783620

  12. Ensemble and Bias-Correction Techniques for Air-Quality Model Forecasts of Surface O3 and PM2.5 during the TEXAQS-II Experiment of 2006

    EPA Science Inventory

    Several air quality forecasting ensembles were created from seven models, running in real-time during the 2006 Texas Air Quality (TEXAQS-II) experiment. These multi-model ensembles incorporated a diverse set of meteorological models, chemical mechanisms, and emission inventories...

  13. Emissions Inventory of Anthropogenic PM2.5 and PM10 in Mega city, Delhi, India for Air Quality Forecasting during CWG- 2010

    NASA Astrophysics Data System (ADS)

    Sahu, S.; Beig, G.; Schultz, M.; Parkhi, N.; Stein, O.

    2012-04-01

    The mega city of Delhi is the second largest urban agglomeration in India with 16.7 mio. inhabitants. Delhi has the highest per capita power consumption of electricity in India and the demand has risen by more than 50% during the last decade. Emissions from commercial, power, domestic and industrial sectors have strongly increased causing more and more environmental problems due to air pollution and its adverse impacts on human health. Particulate matter (PM) of size less than 2.5-micron (PM2.5) and 10 micron (PM10) have emerged as primary pollutants of concern due to their adverse impact on human health. As part of the System of Air quality Forecasting and Research (SAFAR) project developed for air quality forecasting during the Commonwealth Games (CWG) - 2010, a high resolution Emission Inventory (EI) of PM10 and PM2.5 has been developed for the metropolitan city Delhi for the year 2010. The comprehensive inventory involves detailed activity data and has been developed for a domain of 70km×65km with a 1.67km×1.67km resolution covering Delhi and its surrounding region (i.e. National Capital Region (NCR)). In creating this inventory, Geographical Information System (GIS) based techniques were used for the first time in India. The major sectors considered are, transport, thermal power plants, industries, residential and commercial cooking along with windblown road dust which is found to play a major role for the megacity environment. Extensive surveys were conducted among the Delhi slum dwellers (Jhuggi) in order to obtain more robust estimates for the activity data related to domestic cooking and heating. Total emissions of PM10 and PM2.5 including wind blown dust over the study area are found to be 236 Gg/yr and 94 Gg/yr respectively. About half of the PM10 emissions stem from windblown road dust. The new emission inventory has been used for regional air quality forecasts in the Delhi region during the Commonwealth games (SAFAR project), and they will soon be

  14. Meteorological and air quality forecasting using the WRF-STEM model during the 2008 ARCTAS field campaign

    NASA Astrophysics Data System (ADS)

    D'Allura, Alessio; Kulkarni, Sarika; Carmichael, Gregory R.; Finardi, Sandro; Adhikary, Bhupesh; Wei, Chao; Streets, David; Zhang, Qiang; Pierce, Robert B.; Al-Saadi, Jassim A.; Diskin, Glenn; Wennberg, Paul

    2011-12-01

    In this study, the University of Iowa's Chemical Weather Forecasting System comprising meteorological predictions using the WRF model, and off-line chemical weather predictions using tracer and full chemistry versions of the STEM model, designed to support the flight planning during the ARCTAS 2008 mission is described and evaluated. The system includes tracers representing biomass burning and anthropogenic emissions from different geographical emissions source regions, as well as air mass age indicators. We demonstrate how this forecasting system was used in flight planning and in the interpretation of the experimental data obtained through the case study of the summer mission ARCTAS DC-8 flight executed on July 9 2008 that sampled near the North Pole. The comparison of predicted meteorological variables including temperature, pressure, wind speed and wind direction against the flight observations shows that the WRF model is able to correctly describe the synoptic circulation and cloud coverage in the Arctic region The absolute values of predicted CO match the measured CO closely suggesting that the STEM model is able to capture the variability in observations within the Arctic region. The time-altitude cross sections of source region tagged CO tracers along the flight track helped in identifying biomass burning (from North Asia) and anthropogenic (largely China) as major sources contributing to the observed CO along this flight. The difference between forecast and post analysis biomass burning emissions can lead to significant changes (˜10-50%) in primary CO predictions reflecting the large uncertainty associated with biomass burning estimates and the need to reduce this uncertainty for effective flight planning.

  15. Six-day PM 10 air quality forecasts for the Netherlands with the chemistry transport model Lotos-Euros

    NASA Astrophysics Data System (ADS)

    de Ruyter de Wildt, Martijn; Eskes, Henk; Manders, Astrid; Sauter, Ferd; Schaap, Martijn; Swart, Daan; van Velthoven, Peter

    2011-10-01

    In this work we study the ability of the chemistry transport model Lotos-Euros to forecast, with a range of six days, PM 10 concentrations and exceedances thereof. For both rural and non-rural locations in The Netherlands and based on one year of data, model performance does not deteriorate up to a lead time of three days. Thereafter the PM 10 forecast is increasingly affected by uncertainty in the meteorological forecast. However, up to a lead time of 6 days the forecast still has skill, beats persistence and complies with several performance criteria. The correlation between forecast and observations is between 0.66 and 0.70 for the first half of the forecast and remains above 0.54 until the end of the forecast range. Exceedances of the PM 10 concentration over thresholds are also forecasted with reasonable skill up to a forecast range of three days, after which a gradual deterioration sets in. The stability of the forecast displays the same behaviour. Up to a lead time of three days, the forecast remains reasonably stable with more than 80% of forecasted exceedances still present in all later shorter-term forecasts for the same date. Because exceedances can be forecasted with considerable skill a number of days in advance, the forecast can be used for applications that require a range of a few days, such as outdoor activities and the scheduling and implementation of short-term emission reduction measures.

  16. Techniques for Forecasting Air Passenger Traffic

    NASA Technical Reports Server (NTRS)

    Taneja, N.

    1972-01-01

    The basic techniques of forecasting the air passenger traffic are outlined. These techniques can be broadly classified into four categories: judgmental, time-series analysis, market analysis and analytical. The differences between these methods exist, in part, due to the degree of formalization of the forecasting procedure. Emphasis is placed on describing the analytical method.

  17. Application of active optical sensors to probe the vertical structure of the urban boundary layer and assess anomalies in air quality model PM 2.5 forecasts

    NASA Astrophysics Data System (ADS)

    Gan, Chuen-Meei; Wu, Yonghua; Madhavan, B. L.; Gross, Barry; Moshary, Fred

    2011-12-01

    In this paper, the simulations of the Weather Research and Forecast (WRF) and Community Multiscale Air Quality (CMAQ) Models applied to the New York City (NYC) area are assessed with the aid of vertical profiling and column integrated remote sensing measurements. First, we find that when turbulent mixing processes are dominant, the WRF-derived planetary boundary layer (PBL) height exhibits a strong linear correlation ( R > 0.85) with lidar-derived PBL height. In these comparisons, we estimate the PBL height from the lidar measurements using a Wavelet Covariance Transform (WCT) approach that is modified to better isolate the convective layer from the residual layer (RL). Furthermore, the WRF-Lidar PBL height comparisons are made using different PBL parameterization schemes, including the Asymmetric Convective Model-version2 (ACM2) and the Modified Blackadar (BLK) scheme (which are both runs using hindcast data), as well as the Mellor-Yamada-Janjic (MYJ) scheme run in forecast mode. Our findings show that the correlations for these runs are high (>0.8), but the hindcast runs exhibit smaller overall dispersion (≈0.1) than the forecast runs. We also apply continuous 24-hour/7-day vertical ceilometer measurements to assess WRF-CMAQ model forecasts of surface PM 2.5 (particulate matter has aerodynamic diameter <2.5 μm). Strong overestimations in the surface PM 2.5 mass that are observed in the summer prior to sunrise are particularly shown to be strongly connected to underestimations of the PBL height and less to enhanced emissions. This interpretation is consistent with observations that TEOM (Tapered Element Oscillating MicroBalance) PM 2.5 measurements are better correlated to path-integrated CMAQ PM 2.5 than the near-surface measurements during these periods.

  18. Application of active optical sensors to probe the vertical structure of the urban boundary layer and assess anomalies in air quality model PM2.5forecasts

    NASA Astrophysics Data System (ADS)

    Gan, Chuen-Meei; Wu, Yonghua; Bomidi, L. M.; Gross, Barry; Moshary, Fred

    2011-11-01

    In this paper, the simulations of the Weather Research and Forecast (WRF) and Community Multiscale Air Quality (CMAQ) Models applied to the New York City (NYC) area are assessed with the aid of vertical profiling and column integrated remote sensing measurements. First, we find that when turbulent mixing processes are dominant, the WRFderived planetary boundary layer (PBL) height exhibits a strong linear correlation (R>0.85) with lidar-derived PBL height. In these comparisons, we estimate the PBL height from the lidar measurements using a Wavelet Covariance Transform (WCT) approach that is modified to better isolate the convective layer from the residual layer (RL). Furthermore, the WRF-Lidar PBL height comparisons are made using different PBL parameterization schemes, including the Asymmetric Convective Model-version2 (ACM2) and the Modified Blackadar (BLK) scheme (which are both runs using hindcast data), as well as the Mellor-Yamada-Janjic (MYJ) scheme run in forecast mode. Our findings show that the correlations for these runs are high (>0.8), but the hindcast runs exhibit smaller overall dispersion (~0.1) than the forecast runs. We also apply continuous 24-hour/7-day vertical ceilometer measurements to assess WRFCMAQ model forecasts of surface PM2.5 (particulate matter has aerodynamic diameter <2.5μm). Strong overestimations in the surface PM2.5 mass that are observed in the summer prior to sunrise are particularly shown to be strongly connected to underestimations of the PBL height and less to enhanced emissions. This interpretation is consistent with observations that TEOM (Tapered Element Oscillating MicroBalance) PM2.5 measurements are better correlated to pathintegrated CMAQ PM2.5 than the near-surface measurements during these periods.

  19. Assessing the Influence of Western Boundary Ozone Inflow for the Pacific Northwest Using the AIRPACT-4 Air-Quality Forecast System

    NASA Astrophysics Data System (ADS)

    Vaughan, J. K.; Chung, S. H.; Herron-Thorpe, F. L.; Lamb, B. K.; Zhang, R.; Mount, G. H.; Emmons, L. K.

    2013-12-01

    The AIRPACT project has provided state, local and tribal air quality managers in the Pacific and Inland Northwest with state-of-the-art near-real time air quality forecasts, beginning in 2001 (Vaughan et al., 2004). Air-quality modeling is also an important tool for evaluating strategies for complying with the NAAQS, especially as the ozone standard is likely to be tightened from 75 ppb to 60 - 70 ppb. For the Pacific Northwest a perennial issue is the significance of trans-boundary transport effects on air quality. Under the EPA Exceptional Events Policy, for example, a nominal exceedance can be excluded from design value calculation if it can be credibly ascribed to long-range transport (LRT); air-quality modeling is an accepted tool for making a case that LRT contributes to an exceedance, and thus qualifies as an Exceptional Event. Also, evidence is accumulating that local air pollution should sometimes be viewed in the context of baseline pollution levels, and that these baseline levels are influenced by LRT (Wigder et al., 2013). AIRPACT4, a WRF-SMOKE-CMAQ air quality modeling system, uses chemical boundary conditions from global MOZART4 model runs that assimilate MOPITT/TERRA satellite CO (Herron-Thorpe et al., 2012). Here we use a non-reactive tracer species version of CMAQv4.7.1 to develop a chemical climatology describing trans-boundary ozone contributions (across the western boundary only) to the ozone background of the Pacific Northwest, including ozone input to the domain from trans-Pacific transport originating in Asia. Discrete tracers are assigned to the boundary condition ozone from each of the 21 model layers. The modeling results are analyzed for ozone-season months to determine: 1) monthly statistics on the ratio of trans-boundary tracer ozone to standard AIRPACT4 ground level ozone, and 2) the contribution of trans-boundary tracer ozone to episodes of high ozone concentration. Preliminary results will be presented along with discussion of

  20. High-resolution visibility and air quality forecasting using multi-layer urban canopy model for highly urbanized Hong Kong and the Pearl River Delta

    NASA Astrophysics Data System (ADS)

    Piu NG, Chak; HAO, Song; Fat LAM, Yun

    2015-04-01

    Visibility is a universally critical element which affects the public in many aspects, including economic activities, health of local citizens and safety of marine transportation and aviation. The Interagency Monitoring of Protected Visual Environments (IMPROVE) visibility equation, an empirical equation developed by USEPA, has been modified by various studies to fit into the application upon the Asian continent including Hong Kong and China. Often these studies focused on the improvement of the existing IMPROVE equation by modifying its particulate speciation using local observation data. In this study, we developed an Integrated Forecast System (IFS) to predict the next-day air quality and visibility using Weather Research and Forecasting model with Building Energy Parameterization and Building Energy Model (WRF-BEP+BEM) and Community Multi-scale Air Quality Model (CMAQ). Unlike the other studies, the core of this study is to include detailed urbanization impacts with calibrated "IMPROVE equation for PRD" into the modeling system for Hong Kong's environs. The ultra-high resolution land cover information (~1km x 1km) from Google images, was digitized into the Geographic Information System (GIS) for preparing the model-ready input for IFS. The NCEP FNL (Final) Operation Global Analysis (FNL) and the Global Forecasting System (GFS) datasets were tested for both hind-cast and forecast cases, in order to calibrate the input of urban parameters in the WRF-BEP+BEM model. The evaluation of model performance with sensitivity cases was performed on sea surface temperature (SST), surface temperature (T), wind speed/direction with the major pollutants (i.e., PM10, PM2.5, NOx, SO2 and O3) using local observation and will be presented/discussed in this paper. References: 1. Y. L. Lee, R. Sequeira, Visibility degradation across Hong Kong its components and their relative contribution. Atmospheric Environment 2001, 35, 5861-5872. doi:10.1016/S1352-2310(01)00395-8 2. R. Zhang, Q

  1. The Application of Satellite-Derived, High-Resolution Land Use/Land Cover Data to Improve Urban Air Quality Model Forecasts

    NASA Technical Reports Server (NTRS)

    Quattrochi, D. A.; Lapenta, W. M.; Crosson, W. L.; Estes, M. G., Jr.; Limaye, A.; Kahn, M.

    2006-01-01

    Local and state agencies are responsible for developing state implementation plans to meet National Ambient Air Quality Standards. Numerical models used for this purpose simulate the transport and transformation of criteria pollutants and their precursors. The specification of land use/land cover (LULC) plays an important role in controlling modeled surface meteorology and emissions. NASA researchers have worked with partners and Atlanta stakeholders to incorporate an improved high-resolution LULC dataset for the Atlanta area within their modeling system and to assess meteorological and air quality impacts of Urban Heat Island (UHI) mitigation strategies. The new LULC dataset provides a more accurate representation of land use, has the potential to improve model accuracy, and facilitates prediction of LULC changes. Use of the new LULC dataset for two summertime episodes improved meteorological forecasts, with an existing daytime cold bias of approx. equal to 3 C reduced by 30%. Model performance for ozone prediction did not show improvement. In addition, LULC changes due to Atlanta area urbanization were predicted through 2030, for which model simulations predict higher urban air temperatures. The incorporation of UHI mitigation strategies partially offset this warming trend. The data and modeling methods used are generally applicable to other U.S. cities.

  2. Sensitivity of the Weather Research and Forecast/Community Multiscale Air Quality modeling system to MODIS LAI, FPAR, and albedo

    NASA Astrophysics Data System (ADS)

    Ran, Limei; Gilliam, Robert; Binkowski, Francis S.; Xiu, Aijun; Pleim, Jonathan; Band, Larry

    2015-08-01

    This study aims to improve land surface processes in a retrospective meteorology and air quality modeling system through the use of Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation and albedo products for more realistic vegetation and surface representation. MODIS leaf area index (LAI), fraction of absorbed photosynthetically active radiation (FPAR), and albedo are incorporated into the Pleim-Xiu land surface model (PX LSM) used in a combined meteorology and air quality modeling system. The current PX LSM intentionally exaggerates vegetation coverage and LAI in western dry lands so that its soil moisture nudging scheme is more effective in simulating surface temperature and mixing ratio. Reduced vegetation coverage from the PX LSM with MODIS input results in hotter and dryer daytime conditions with reduced ozone dry deposition velocities in much of western North America. Evaluations of the new system indicate greater error and bias in temperature, but reduced error and bias in moisture with the MODIS vegetation input. Hotter daytime temperatures and reduced dry deposition result in greater ozone concentrations in the western arid regions even with deeper boundary layer depths. MODIS albedo has much less impact on the meteorology simulations than MODIS LAI and FPAR. The MODIS vegetation and albedo input does not have much influence in the east where differences in vegetation and albedo parameters are less extreme. Evaluation results showing increased temperature errors with more accurate representation of vegetation suggests that improvements are needed in the model surface physics, particularly the soil processes in the PX LSM.

  3. Comprehensive evaluation of multi-year real-time air quality forecasting using an online-coupled meteorology-chemistry model over southeastern United States

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Hong, Chaopeng; Yahya, Khairunnisa; Li, Qi; Zhang, Qiang; He, Kebin

    2016-08-01

    An online-coupled meteorology-chemistry model, WRF/Chem-MADRID, has been deployed for real time air quality forecast (RT-AQF) in southeastern U.S. since 2009. A comprehensive evaluation of multi-year RT-AQF shows overall good performance for temperature and relative humidity at 2-m (T2, RH2), downward surface shortwave radiation (SWDOWN) and longwave radiation (LWDOWN), and cloud fraction (CF), ozone (O3) and fine particles (PM2.5) at surface, tropospheric ozone residuals (TOR) in O3 seasons (May-September), and column NO2 in winters (December-February). Moderate-to-large biases exist in wind speed at 10-m (WS10), precipitation (Precip), cloud optical depth (COT), ammonium (NH4+), sulfate (SO42-), and nitrate (NO3-) from the IMPROVE and SEARCH networks, organic carbon (OC) at IMPROVE, and elemental carbon (EC) and OC at SEARCH, aerosol optical depth (AOD) and column carbon monoxide (CO), sulfur dioxide (SO2), and formaldehyde (HCHO) in both O3 and winter seasons, column nitrogen dioxide (NO2) in O3 seasons, and TOR in winters. These biases indicate uncertainties in the boundary layer and cloud process treatments (e.g., surface roughness, microphysics cumulus parameterization), emissions (e.g., O3 and PM precursors, biogenic, mobile, and wildfire emissions), upper boundary conditions for all major gases and PM2.5 species, and chemistry and aerosol treatments (e.g., winter photochemistry, aerosol thermodynamics). The model shows overall good skills in reproducing the observed multi-year trends and inter-seasonal variability in meteorological and radiative variables such as T2, WS10, Precip, SWDOWN, and LWDOWN, and relatively well in reproducing the observed trends in surface O3 and PM2.5, but relatively poor in reproducing the observed column abundances of CO, NO2, SO2, HCHO, TOR, and AOD. The sensitivity simulations using satellite-constrained boundary conditions for O3 and CO show substantial improvement for both spatial distribution and domain-mean performance

  4. Eta-CMAQ Air Quality Forecasts for O3 and Related Species Using Three Different Photochemical Mechanisms (CB4, CB05, SAPRC-99): Comparisons with Measurements During the 2004 ICARTT Study

    EPA Science Inventory

    In this study, we compare the CB4, CB05 and SAPRC-99 mechanisms by examining the impact of these different chemical mechanisms on the Eta-CMAQ air quality forecast model simulations for O3 and its related precursors over the eastern US through comparisons with the inte...

  5. A new approach for monthly updates of anthropogenic sulfur dioxide emissions from space: Application to China and implications for air quality forecasts

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Wang, Jun; Xu, Xiaoguang; Henze, Daven K.; Wang, Yuxuan; Qu, Zhen

    2016-09-01

    SO2 emissions, the largest source of anthropogenic aerosols, can respond rapidly to economic and policy driven changes. However, bottom-up SO2 inventories have inherent limitations owing to 24-48 months latency and lack of month-to-month variation in emissions (especially in developing countries). This study develops a new approach that integrates Ozone Monitoring Instrument (OMI) SO2 satellite measurements and GEOS-Chem adjoint model simulations to constrain monthly anthropogenic SO2 emissions. The approach's effectiveness is demonstrated for 14 months in East Asia; resultant posterior emissions not only capture a 20% SO2 emission reduction in Beijing during the 2008 Olympic Games but also improve agreement between modeled and in situ surface measurements. Further analysis reveals that posterior emissions estimates, compared to the prior, lead to significant improvements in forecasting monthly surface and columnar SO2. With the pending availability of geostationary measurements of tropospheric composition, we show that it may soon be possible to rapidly constrain SO2 emissions and associated air quality predictions at fine spatiotemporal scales.

  6. Improving Forecast Skill by Assimilation of AIRS Temperature Soundings

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Reale, Oreste

    2010-01-01

    AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU-A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU-A are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The AIRS Version 5 retrieval algorithm, is now being used operationally at the Goddard DISC in the routine generation of geophysical parameters derived from AIRS/AMSU data. A major innovation in Version 5 is the ability to generate case-by-case level-by-level error estimates delta T(p) for retrieved quantities and the use of these error estimates for Quality Control. We conducted a number of data assimilation experiments using the NASA GEOS-5 Data Assimilation System as a step toward finding an optimum balance of spatial coverage and sounding accuracy with regard to improving forecast skill. The model was run at a horizontal resolution of 0.5 deg. latitude X 0.67 deg longitude with 72 vertical levels. These experiments were run during four different seasons, each using a different year. The AIRS temperature profiles were presented to the GEOS-5 analysis as rawinsonde profiles, and the profile error estimates delta (p) were used as the uncertainty for each measurement in the data assimilation process. We compared forecasts analyses generated from the analyses done by assimilation of AIRS temperature profiles with three different sets of thresholds; Standard, Medium, and Tight. Assimilation of Quality Controlled AIRS temperature profiles significantly improve 5-7 day forecast skill compared to that obtained without the benefit of AIRS data in all of the cases studied. In addition, assimilation of Quality Controlled AIRS temperature soundings performs better than assimilation of AIRS observed radiances. Based on the experiments shown, Tight Quality Control of AIRS temperature profile performs best

  7. Using DOE-ARM and Space-Based Assets to Assess the Quality of Air Force Weather 3D Cloud Analysis and Forecast Products

    NASA Astrophysics Data System (ADS)

    Nobis, T. E.

    2015-12-01

    Air Force Weather (AFW) has documented requirements for global cloud analysis and forecasting to support DoD missions around the world. To meet these needs, AFW utilizes a number of cloud products. Cloud analyses are constructed using 17 different near real time satellite sources. Products include analysis of the individual satellite transmissions at native satellite resolution and an hourly global merge of all 17 sources on a 24km grid. AFW has also recently started creation of a time delayed global cloud reanalysis to produce a 'best possible' analysis for climatology and verification purposes. Forecasted cloud products include global short-range cloud forecasts created using advection techniques as well as statistically post processed cloud forecast products derived from various global and regional numerical weather forecast models. All of these cloud products cover different spatial and temporal resolutions and are produced on a number of different grid projections. The longer term vision of AFW is to consolidate these various approaches into uniform global numerical weather modeling (NWM) system using advanced cloudy-data assimilation processes to construct the analysis and a licensed version of UKMO's Unified Model to produce the various cloud forecast products. In preparation for this evolution in cloud modeling support, AFW has started to aggressively benchmark the performance of their current capabilities. Cloud information collected from so called 'active' sensors on the ground at the DOE-ARM sites and from space by such instruments as CloudSat, CALIPSO and CATS are being utilized to characterize the performance of AFW products derived largely by passive means. The goal is to understand the performance of the 3D cloud analysis and forecast products of today to help shape the requirements and standards for the future NWM driven system.This presentation will present selected results from these benchmarking efforts and highlight insights and observations

  8. Ozone Production in the Boston Urban Area and Transport Downwind: Computation from Lidar Measurements and Comparison with Air Quality Forecast Models

    NASA Astrophysics Data System (ADS)

    Hardesty, R. M.; Senff, C. J.; Alvarez, R. J.; Sandberg, S. P.; McKeen, S. A.; Wilczak, J. M.; Djalalova, I. V.; White, A. B.

    2005-12-01

    An important element in understanding and successfully forecasting local air quality events is accurate characterization of production of pollutants in urban regions and advection to areas downwind. During the 2004 New England Air Quality Study (NEAQS), which was conducted within the framework of the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) field experiment, NOAA deployed its airborne ozone and aerosol lidar to characterize the 3-dimensional structure of ozone and aerosol fields in the New England region. We have used the data set gathered with the lidar to compute ozone production in the Boston urban plume and to investigate transport and mixing processes for several days of the study. One of the few high ozone events in northern New England during the summer of 2004 occurred on July 30, when ozone levels exceeded 100 ppbv on Appledore Island just east of Portsmouth, NH. On this day, trajectories computed from wind profiler data showed that the New York plume was transported directly over Boston and then north-northeastwards along the New Hampshire and Maine coasts. By flying across the plume upstream and downwind of Boston and computing the horizontal ozone flux within the plume, we were able to estimate that the ozone flux downwind of Boston increased by 36 percent, concentrating the pollutants and likely playing a role in the high ozone observed. We also examined transport on August 3, when a shallow plume of high ozone was observed near Bar Harbor, ME. Trajectories indicated that this was a piece of the previous day's Boston plume, which was likely transported overnight across the Gulf of Maine in a very shallow layer. Later in the day, another plume was observed further south near Portland, ME. Trajectories showed that this was the Boston plume emitted on the morning of August 3, which followed a different transport path due to changes in the wind field over the period. On August 9, we mapped out the Boston

  9. The FireWork air quality forecast system with near-real-time biomass burning emissions: Recent developments and evaluation of performance for the 2015 North American wildfire season

    PubMed Central

    Pavlovic, Radenko; Chen, Jack; Anderson, Kerry; Moran, Michael D.; Beaulieu, Paul-André; Davignon, Didier; Cousineau, Sophie

    2016-01-01

    ABSTRACT Environment and Climate Change Canada’s FireWork air quality (AQ) forecast system for North America with near-real-time biomass burning emissions has been running experimentally during the Canadian wildfire season since 2013. The system runs twice per day with model initializations at 00 UTC and 12 UTC, and produces numerical AQ forecast guidance with 48-hr lead time. In this work we describe the FireWork system, which incorporates near-real-time biomass burning emissions based on the Canadian Wildland Fire Information System (CWFIS) as an input to the operational Regional Air Quality Deterministic Prediction System (RAQDPS). To demonstrate the capability of the system we analyzed two forecast periods in 2015 (June 2–July 15, and August 15–31) when fire activity was high, and observed fire-smoke-impacted areas in western Canada and the western United States. Modeled PM2.5 surface concentrations were compared with surface measurements and benchmarked with results from the operational RAQDPS, which did not consider near-real-time biomass burning emissions. Model performance statistics showed that FireWork outperformed RAQDPS with improvements in forecast hourly PM2.5 across the region; the results were especially significant for stations near the path of fire plume trajectories. Although the hourly PM2.5 concentrations predicted by FireWork still displayed bias for areas with active fires for these two periods (mean bias [MB] of –7.3 µg m−3 and 3.1 µg m−3), it showed better forecast skill than the RAQDPS (MB of –11.7 µg m−3 and –5.8 µg m−3) and demonstrated a greater ability to capture temporal variability of episodic PM2.5 events (correlation coefficient values of 0.50 and 0.69 for FireWork compared to 0.03 and 0.11 for RAQDPS). A categorical forecast comparison based on an hourly PM2.5 threshold of 30 µg m−3 also showed improved scores for probability of detection (POD), critical success index (CSI), and false alarm rate (FAR

  10. Indoor Air Quality Manual.

    ERIC Educational Resources Information Center

    Baldwin Union Free School District, NY.

    This manual identifies ways to improve a school's indoor air quality (IAQ) and discusses practical actions that can be carried out by school staff in managing air quality. The manual includes discussions of the many sources contributing to school indoor air pollution and the preventive planning for each including renovation and repair work,…

  11. Transforming air quality management

    SciTech Connect

    Janet McCabe

    2005-04-01

    Earlier this year, the Clean Air Act Advisory Committee submitted to EPA 38 recommendations intended to improve air quality management in the United States. This article summarizes the evaluation process leading up to the Committee's recommendations. 3 refs., 2 figs.

  12. Traffic air quality index.

    PubMed

    Bagieński, Zbigniew

    2015-02-01

    Vehicle emissions are responsible for a considerable share of urban air pollution concentrations. The traffic air quality index (TAQI) is proposed as a useful tool for evaluating air quality near roadways. The TAQI associates air quality with the equivalent emission from traffic sources and with street structure (roadway structure) as anthropogenic factors. The paper presents a method of determining the TAQI and defines the degrees of harmfulness of emitted pollution. It proposes a classification specifying a potential threat to human health based on the TAQI value and shows an example of calculating the TAQI value for real urban streets. It also considers the role that car traffic plays in creating a local UHI.

  13. P.88 Regional Precipitation Forecast with Atmospheric Infrared Sounder (AIRS) Profiles

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Bradley; Jedlovec, Gary

    2010-01-01

    Prudent assimulation of AIRS thermodynamic profiles and quality indicators can improve initial conditions for regional weather models. In general, AIRS-enhanced analysis more closely resembles radiosondes than the CNTL; forecasts with AIRS profiles are generally closer to NAM analyses than CNTL for sensible weather parameters (not shown here). Assimilation of AIRS leads to an overall QPF improvement in 6-h accumulated precipitation forecases. Including AIRS profiles in assimilation process enhances the low-level instability and produces stronger updrafts and a better precipitation forecast than the CNTL run.

  14. Summary Report for the Workshop on Integrating Climate Change Adaption into Air Quality Decision Making

    EPA Science Inventory

    Over the past few decades, air quality planners have forecasted future air pollution levels based on information about changing emissions from stationary and mobile sources, population trends, transportation demand, natural sources of emissions, and other pressures on air quality...

  15. Culture systems: air quality.

    PubMed

    Thomas, Theodore

    2012-01-01

    Poor laboratory air quality is a known hazard to the culture of human gametes and embryos. Embryologists and chemists have employed analytical methods for identifying and measuring bulk and select air pollutants to assess the risk they pose to the embryo culture system. However, contaminant concentrations that result in gamete or embryotoxicity are poorly defined. Combating the ill effects of poor air quality requires an understanding of how toxicants can infiltrate the laboratory, the incubator, and ultimately the culture media. A further understanding of site-specific air quality can then lead to the consideration of laboratory design and management strategies that can minimize the deleterious effects that air contamination may have on early embryonic development in vitro.

  16. Process air quality data

    NASA Technical Reports Server (NTRS)

    Butler, C. M.; Hogge, J. E.

    1978-01-01

    Air quality sampling was conducted. Data for air quality parameters, recorded on written forms, punched cards or magnetic tape, are available for 1972 through 1975. Computer software was developed to (1) calculate several daily statistical measures of location, (2) plot time histories of data or the calculated daily statistics, (3) calculate simple correlation coefficients, and (4) plot scatter diagrams. Computer software was developed for processing air quality data to include time series analysis and goodness of fit tests. Computer software was developed to (1) calculate a larger number of daily statistical measures of location, and a number of daily monthly and yearly measures of location, dispersion, skewness and kurtosis, (2) decompose the extended time series model and (3) perform some goodness of fit tests. The computer program is described, documented and illustrated by examples. Recommendations are made for continuation of the development of research on processing air quality data.

  17. State Air Quality Standards.

    ERIC Educational Resources Information Center

    Pollution Engineering, 1978

    1978-01-01

    This article presents in tabular form the air quality standards for sulfur dioxide, carbon monoxide, nitrogen dioxide, photochemicals, non-methane hydrocarbons and particulates for each of the 50 states and the District of Columbia. (CS)

  18. Canada/United States Air Quality Agreement: Progress report, 1996

    SciTech Connect

    1996-12-31

    This report builds on the 1992 and 1994 Canada/United States Air Quality Agreement Progress Reports. The report reviews the acid rain control programs, emissions forecasts, and scientific research in both countries; discusses new areas of concern, such as ground-level ozone (smog) and air toxics; and includes the first five-year review of the Air Quality Agreement.

  19. Impact of Atmospheric Infrared Sounder (AIRS) Thermodynamic Profiles on Regional Weather Forecasting

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Bradley T.; Jedlovee, Gary J.

    2010-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses and lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles with accuracy comparable to that of radiosondes. The purpose of this paper is to describe a procedure to assimilate AIRS thermodynamic profile data into a regional configuration of the Advanced Research Weather Research and Forecasting (WRF-ARW) model using its three-dimension variational (3DVAR) analysis component (WRF-Var). Quality indicators are used to select only the highest quality temperature and moisture profiles for assimilation in both clear and partly cloudy regions. Separate error characteristics for land and water profiles are also used in the assimilation process. Assimilation results indicate that AIRS profiles produce an analysis closer to in situ observations than the background field. Forecasts from a 37-day case study period in the winter of 2007 show that AIRS profile data can lead to improvements in 6-h cumulative precipitation forecasts due to instability added in the forecast soundings by the AIRS profiles. Additionally, in a convective heavy rainfall event from February 2007, assimilation of AIRS profiles produces a more unstable boundary layer resulting in enhanced updrafts in the model. These updrafts produce a squall line and precipitation totals that more closely reflect ground-based observations than a no AIRS control forecast. The location of available high-quality AIRS profiles ahead of approaching storm systems is found to be of paramount importance to the amount of impact the observations will have on the resulting forecasts.

  20. AIRS Impact on the Analysis and Forecast Track of Tropical Cyclone Nargis in a Global Data Assimilation and Forecasting System

    NASA Technical Reports Server (NTRS)

    Reale, O.; Lau, W.K.; Susskind, J.; Brin, E.; Liu, E.; Riishojgaard, L. P.; Rosenburg, R.; Fuentes, M.

    2009-01-01

    Tropical cyclones in the northern Indian Ocean pose serious challenges to operational weather forecasting systems, partly due to their shorter lifespan and more erratic track, compared to those in the Atlantic and the Pacific. Moreover, the automated analyses of cyclones over the northern Indian Ocean, produced by operational global data assimilation systems (DASs), are generally of inferior quality than in other basins. In this work it is shown that the assimilation of Atmospheric Infrared Sounder (AIRS) temperature retrievals under partial cloudy conditions can significantly impact the representation of the cyclone Nargis (which caused devastating loss of life in Myanmar in May 2008) in a global DAS. Forecasts produced from these improved analyses by a global model produce substantially smaller track errors. The impact of the assimilation of clear-sky radiances on the same DAS and forecasting system is positive, but smaller than the one obtained by ingestion of AIRS retrievals, possibly due to poorer coverage.

  1. Traffic air quality index.

    PubMed

    Bagieński, Zbigniew

    2015-02-01

    Vehicle emissions are responsible for a considerable share of urban air pollution concentrations. The traffic air quality index (TAQI) is proposed as a useful tool for evaluating air quality near roadways. The TAQI associates air quality with the equivalent emission from traffic sources and with street structure (roadway structure) as anthropogenic factors. The paper presents a method of determining the TAQI and defines the degrees of harmfulness of emitted pollution. It proposes a classification specifying a potential threat to human health based on the TAQI value and shows an example of calculating the TAQI value for real urban streets. It also considers the role that car traffic plays in creating a local UHI. PMID:25461063

  2. THE EMERGENCE OF NUMERICAL AIR QUALITY FORCASTING MODELS AND THEIR APPLICATIONS

    EPA Science Inventory

    In recent years the U.S. and other nations have begun programs for short-term local through regional air quality forecasting based upon numerical three-dimensional air quality grid models. These numerical air quality forecast (NAQF) models and systems have been developed and test...

  3. The Impact of Atmospheric InfraRed Sounder (AIRS) Profiles on Short-term Weather Forecasts

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Brad; Jedlovec, Gary J.; Lapenta, William

    2007-01-01

    The Atmospheric Infrared Sounder (AIRS), together with the Advanced Microwave Sounding Unit (AMSU), represents one of the most advanced spacebased atmospheric sounding systems. The combined AlRS/AMSU system provides radiance measurements used to retrieve temperature profiles with an accuracy of 1 K over 1 km layers under both clear and partly cloudy conditions, while the accuracy of the derived humidity profiles is 15% in 2 km layers. Critical to the successful use of AIRS profiles for weather and climate studies is the use of profile quality indicators and error estimates provided with each profile Aside form monitoring changes in Earth's climate, one of the objectives of AIRS is to provide sounding information of sufficient accuracy such that the assimilation of the new observations, especially in data sparse region, will lead to an improvement in weather forecasts. The purpose of this paper is to describe a procedure to optimally assimilate highresolution AIRS profile data in a regional analysis/forecast model. The paper will focus on the impact of AIRS profiles on a rapidly developing east coast storm and will also discuss preliminary results for a 30-day forecast period, simulating a quasi-operation environment. Temperature and moisture profiles were obtained from the prototype version 5.0 EOS science team retrieval algorithm which includes explicit error information for each profile. The error profile information was used to select the highest quality temperature and moisture data for every profile location and pressure level for assimilation into the ARPS Data Analysis System (ADAS). The AIRS-enhanced analyses were used as initial fields for the Weather Research and Forecast (WRF) system used by the SPORT project for regional weather forecast studies. The ADASWRF system will be run on CONUS domain with an emphasis on the east coast. The preliminary assessment of the impact of the AIRS profiles will focus on quality control issues associated with AIRS

  4. Tribal Air Quality Monitoring.

    ERIC Educational Resources Information Center

    Wall, Dennis

    2001-01-01

    The Institute for Tribal Environmental Professionals (ITEP) (Flagstaff, Arizona) provides training and support for tribal professionals in the technical job skills needed for air quality monitoring and other environmental management tasks. ITEP also arranges internships, job placements, and hands-on training opportunities and supports an…

  5. Forecasting for New York City and its Surroundings, with Emphasis on Sea-Surface Temperature's Effect on Sea Breezes and Other Coastal Circulations that Influence Air Quality

    NASA Astrophysics Data System (ADS)

    Knievel, J. C.; Rife, D. L.; Grim, J. A.

    2008-12-01

    The complex coastal setting of New York City, Long Island, and the surrounding urban environment affects boundary-layer winds and the way they transport hazardous airborne materials, including pollutants. Properly forecasting coastal circulations, such as sea breezes, is critical if weather-based decision support systems (DSSs) are to be useful to health officials, emergency responders, and anyone else interested in the challenges of predicting transport and dispersion in urban settings. The Research Applications Laboratory (RAL) within the National Center for Atmospheric Research (NCAR) is running a real-time forecast system focused on New York City (NYC) and its urban and suburban surroundings. The system is based on the Weather Research and Forecasting (WRF) Model and NCAR's Real-Time Four-Dimensional Data Assimilation (RTFDDA) System. The presenter will provide an overview of the project and present results from a few case studies of sea breezes and other circulations characteristic of the complex coastal setting of NYC and Long Island. A particular emphasis of the presentation will be the sensitivity of forecasts to sea-surface temperature (SST). The forecast system is currently using SSTs from gridded composites created by NCAR from observations by the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA's Aqua and Terra satellites.

  6. Data Assimilation and Regional Forecasts Using Atmospheric InfraRed Sounder (AIRS) Profiles

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Bradley; Jedlovec, Gary

    2009-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses, which in turn should lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles with an accuracy comparable to that of radiosondes. The purpose of this paper is to describe a procedure to optimally assimilate AIRS thermodynamic profiles--obtained from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm-into a regional configuration of the Weather Research and Forecasting (WRF) model using WRF-Var. The paper focuses on development of background error covariances for the regional domain and background field type, a methodology for ingesting AIRS profiles as separate over-land and over-water retrievals with different error characteristics, and utilization of level-by-level quality indicators to select only the highest quality data. The assessment of the impact of the AIRS profiles on WRF-Var analyses will focus on intelligent use of the quality indicators, optimized tuning of the WRF-Var, and comparison of analysis soundings to radiosondes. The analyses will be used to conduct a month-long series of regional forecasts over the continental U.S. The long-tern1 impact of AIRS profiles on forecast will be assessed against verifying radiosonde and stage IV precipitation data.

  7. Energy and air quality

    NASA Astrophysics Data System (ADS)

    Orgill, M. M.; Thorp, J. M.

    Many coal, oil shale, and geothermal energy sources are located in areas where atmospheric transport and dispersion processes are dominated by the complexity of the terrain. The U.S. Department of Energy (DOE), responsible for developing new energy technologies that meet air-quality regulations, developed a program aimed specifically at Atmospheric Studies in Complex Terrain (ASCOT) in 1978. The program uses theoretical atmospheric physics research, mathematical models, field experiments, and physical models. The goal is to develop a modeling and measurement methodology to (1) improve fundamental knowledge of transport and dispersion processes in complex terrain and (2) build on this improvement to provide a methodology for performing air quality assessments. The ASCOT team, managed by Marvin Dickerson and Paul Gudiksen of Lawrence Livermore Laboratory, Livermore, Calif., is composed of scientists from DOE supported research laboratories and university programs.

  8. AIRS Impact on Analysis and Forecast of an Extreme Rainfall Event (Indus River Valley 2010) with a Global Data Assimilation and Forecast System

    NASA Technical Reports Server (NTRS)

    Reale, O.; Lau, W. K.; Susskind, J.; Rosenberg, R.

    2011-01-01

    A set of data assimilation and forecast experiments are performed with the NASA Global data assimilation and forecast system GEOS-5, to compare the impact of different approaches towards assimilation of Advanced Infrared Spectrometer (AIRS) data on the precipitation analysis and forecast skill. The event chosen is an extreme rainfall episode which occurred in late July 11 2010 in Pakistan, causing massive floods along the Indus River Valley. Results show that the assimilation of quality-controlled AIRS temperature retrievals obtained under partly cloudy conditions produce better precipitation analyses, and substantially better 7-day forecasts, than assimilation of clear-sky radiances. The improvement of precipitation forecast skill up to 7 day is very significant in the tropics, and is caused by an improved representation, attributed to cloudy retrieval assimilation, of two contributing mechanisms: the low-level moisture advection, and the concentration of moisture over the area in the days preceding the precipitation peak.

  9. Impact of Atmospheric Infrared Sounder (AIRS) Thermodynamic Profiles on Regional Precipitation Forecasting

    NASA Technical Reports Server (NTRS)

    Chou, S.-H.; Zavodsky, B. T.; Jedloved, G. J.

    2010-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses and lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles in clear and cloudy regions with accuracy which approaches that of radiosondes. The purpose of this paper is to describe an approach to assimilate AIRS thermodynamic profile data into a regional configuration of the Advanced Research WRF (ARW) model using WRF-Var. Quality indicators are used to select only the highest quality temperature and moisture profiles for assimilation in clear and partly cloudy regions, and uncontaminated portions of retrievals above clouds in overcast regions. Separate error characteristics for land and water profiles are also used in the assimilation process. Assimilation results indicate that AIRS profiles produce an analysis closer to in situ observations than the background field. Forecasts from a 37-day case study period in the winter of 2007 show that AIRS profile data can lead to improvements in 6-h cumulative precipitation forecasts resulting from improved thermodynamic fields. Additionally, in a convective heavy rainfall event from February 2007, assimilation of AIRS profiles produces a more unstable boundary layer resulting in enhanced updrafts in the model. These updrafts produce a squall line and precipitation totals that more closely reflect ground-based observations than a no AIRS control forecast. The location of available high-quality AIRS profiles ahead of approaching storm systems is found to be of paramount importance to the amount of impact the observations will have on the resulting forecasts.

  10. Ozone - Current Air Quality Index

    MedlinePlus

    ... reducing exposure to extremely high levels of particle pollution is available here . Fires: Current Conditions Click to ... Air Quality Basics Air Quality Index | Ozone | Particle Pollution | Smoke from fires | What You Can Do Health ...

  11. Progress made towards including wildfires in real-time cloud resolving forecasts at NOAA/ESRL and examining its impact upon weather and air quality

    NASA Astrophysics Data System (ADS)

    Grell, G. A.; Peckham, S.; Smirnova, T.; Benjamin, S.; McKeen, S. A.; Stuefer, M.; Freitas, S. R.; Longo, K.

    2009-12-01

    The growing influence of biomass burning emissions on air quality, human health, and feedbacks to the climate system has become undeniable in recent years. Recognized impacts include enhanced emissions of greenhouse gases changes in atmospheric chemistry, deposition of trace gases and particles onto Arctic surfaces, and altered patterns of precipitation. Chemical Transport Models use a variety of methods to include emissions from fires, and different applications and results can vary significantly. Variability in emission estimates can result from selection of area burned products, ecosystem types, fuel contained in ecosystems and the amount of fuel consumed, which is directly related to weather and climate. Each of these can differ by an order of magnitude, which can significantly influence the simulated radiation and chemistry products produced. From the ground up through the fire column, assumptions in fire behavior (i.e. level of severity, energy release rate, flaming versus smoldering combustion) and injection height can lead to a variety of emission estimations . The focus of this session is on the distinct assumptions that are made to estimate bottom-up fire emissions for use in regional and global models. Defining methodologies and the unique contribution of the variety of model assumptions will be a major goal of this session. We are particularly interested in the differences that result from the variety of assumptions and the disparity in model simulations that stem from these distinctions, because this is where we will find the interesting science questions and where we can begin to move more closely towards approximating reality.

  12. Air quality management in Mexico.

    PubMed

    Fernández-Bremauntz, Adrián

    2008-01-01

    Several significant program and policy measures have been implemented in Mexico over the past 15 yr to improve air quality. This article provides an overview of air quality management strategies in Mexico, including (1) policy initiatives such as vehicle use restrictions, air quality standards, vehicle emissions, and fuel quality standards, and (2) supporting programs including establishment of a national emission inventory, an air pollution episodes program, and the implementation of exposure and health effects studies. Trends in air pollution episodes and ambient air pollutant concentrations are described.

  13. Computationally efficient air quality forecasting tool: implementation of STOPS v1.5 model into CMAQ v5.0.2 for a prediction of Asian dust

    NASA Astrophysics Data System (ADS)

    Jeon, Wonbae; Choi, Yunsoo; Percell, Peter; Souri, Amir Hossein; Song, Chang-Keun; Kim, Soon-Tae; Kim, Jhoon

    2016-10-01

    This study suggests a new modeling framework using a hybrid Eulerian-Lagrangian-based modeling tool (the Screening Trajectory Ozone Prediction System, STOPS) for a prediction of an Asian dust event in Korea. The new version of STOPS (v1.5) has been implemented into the Community Multi-scale Air Quality (CMAQ) model version 5.0.2. The STOPS modeling system is a moving nest (Lagrangian approach) between the source and the receptor inside the host Eulerian CMAQ model. The proposed model generates simulation results that are relatively consistent with those of CMAQ but within a comparatively shorter computational time period. We find that standard CMAQ generally underestimates PM10 concentrations during the simulation period (February 2015) and fails to capture PM10 peaks during Asian dust events (22-24 February 2015). The underestimation in PM10 concentration is very likely due to missing dust emissions in CMAQ rather than incorrectly simulated meteorology, as the model meteorology agrees well with the observations. To improve the underestimated PM10 results from CMAQ, we used the STOPS model with constrained PM concentrations based on aerosol optical depth (AOD) data from the Geostationary Ocean Color Imager (GOCI), reflecting real-time initial and boundary conditions of dust particles near the Korean Peninsula. The simulated PM10 from the STOPS simulations were improved significantly and closely matched the surface observations. With additional verification of the capabilities of the methodology on emission estimations and more STOPS simulations for various time periods, the STOPS model could prove to be a useful tool not just for the predictions of Asian dust but also for other unexpected events such as wildfires and oil spills.

  14. Safeguarding indoor air quality

    SciTech Connect

    Sexton, K.; Wesolowski, J.J.

    1985-01-01

    California has created and implemented the first state program devoted exclusively to the investigation of nonindustrial indoor air quality. The program is responsible for promoting and conducting research on the determining factors of healthful indoor environments and is structured to obtain information about emission sources, ventilation effects, indoor concentrations, human activity patterns, exposures, health risks, control measures and public policy options. Data are gathered by a variety of methods, including research conducted by staff members, review of the available scientific literature, participation in technical meetings, contractual agreements with outside agencies, cooperative research projects with other groups and consultation with experts. 23 references, 1 figure, 1 table.

  15. Regional Precipitation Forecast with Atmospheric InfraRed Sounder (AIRS) Profile Assimilation

    NASA Technical Reports Server (NTRS)

    Chou, S.-H.; Zavodsky, B. T.; Jedloved, G. J.

    2010-01-01

    Advanced technology in hyperspectral sensors such as the Atmospheric InfraRed Sounder (AIRS; Aumann et al. 2003) on NASA's polar orbiting Aqua satellite retrieve higher vertical resolution thermodynamic profiles than their predecessors due to increased spectral resolution. Although these capabilities do not replace the robust vertical resolution provided by radiosondes, they can serve as a complement to radiosondes in both space and time. These retrieved soundings can have a significant impact on weather forecasts if properly assimilated into prediction models. Several recent studies have evaluated the performance of specific operational weather forecast models when AIRS data are included in the assimilation process. LeMarshall et al. (2006) concluded that AIRS radiances significantly improved 500 hPa anomaly correlations in medium-range forecasts of the Global Forecast System (GFS) model. McCarty et al. (2009) demonstrated similar forecast improvement in 0-48 hour forecasts in an offline version of the operational North American Mesoscale (NAM) model when AIRS radiances were assimilated at the regional scale. Reale et al. (2008) showed improvements to Northern Hemisphere 500 hPa height anomaly correlations in NASA's Goddard Earth Observing System Model, Version 5 (GEOS-5) global system with the inclusion of partly cloudy AIRS temperature profiles. Singh et al. (2008) assimilated AIRS temperature and moisture profiles into a regional modeling system for a study of a heavy rainfall event during the summer monsoon season in Mumbai, India. This paper describes an approach to assimilate AIRS temperature and moisture profiles into a regional configuration of the Advanced Research Weather Research and Forecasting (WRF-ARW) model using its three-dimensional variational (3DVAR) assimilation system (WRF-Var; Barker et al. 2004). Section 2 describes the AIRS instrument and how the quality indicators are used to intelligently select the highest-quality data for assimilation

  16. Improving Regional Forecast by Assimilating Atmospheric InfraRed Sounder (AIRS) Profiles into WRF Model

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Brad; Jedlovec, Gary J.

    2009-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses and produce improved forecasts. One such source comes from the Atmospheric InfraRed Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), represents one of the most advanced space-based atmospheric sounding systems. The purpose of this paper is to describe a procedure to optimally assimilate high resolution AIRS profile data into a regional configuration of the Advanced Research WRF (ARW) version 2.2 using WRF-Var. The paper focuses on development of background error covariances for the regional domain and background type, and an optimal methodology for ingesting AIRS temperature and moisture profiles as separate overland and overwater retrievals with different error characteristics. The AIRS thermodynamic profiles are derived from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm and contain information about the quality of each temperature layer. The quality indicators were used to select the highest quality temperature and moisture data for each profile location and pressure level. The analyses were then used to conduct a month-long series of regional forecasts over the continental U.S. The long-term impacts of AIRS profiles on forecast were assessed against verifying NAM analyses and stage IV precipitation data.

  17. Improving 7-Day Forecast Skill by Assimilation of Retrieved AIRS Temperature Profiles

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Rosenberg, Bob

    2016-01-01

    We conducted a new set of Data Assimilation Experiments covering the period January 1 to February 29, 2016 using the GEOS-5 DAS. Our experiments assimilate all data used operationally by GMAO (Control) with some modifications. Significant improvement in Global and Southern Hemisphere Extra-tropical 7-day forecast skill was obtained when: We assimilated AIRS Quality Controlled temperature profiles in place of observed AIRS radiances, and also did not assimilate CrISATMS radiances, nor did we assimilate radiosonde temperature profiles or aircraft temperatures. This new methodology did not improve or degrade 7-day Northern Hemispheric Extra-tropical forecast skill. We are conducting experiments aimed at further improving of Northern Hemisphere Extra-tropical forecast skill.

  18. Evaluating ammonia (NH3) predictions in the NOAA National Air Quality Forecast Capability (NAQFC) using in situ aircraft, ground-level, and satellite measurements from the DISCOVER-AQ Colorado campaign

    NASA Astrophysics Data System (ADS)

    Battye, William H.; Bray, Casey D.; Aneja, Viney P.; Tong, Daniel; Lee, Pius; Tang, Youhua

    2016-09-01

    The U.S. National Oceanic and Atmospheric Administration (NOAA) is responsible for forecasting elevated levels of air pollution within the National Air Quality Forecast Capability (NAQFC). The current research uses measurements gathered in the DISCOVER-AQ Colorado field campaign and the concurrent Front Range Air Pollution and Photochemistry Experiment (FRAPPE) to test performance of the NAQFC CMAQ modeling framework for predicting NH3. The DISCOVER-AQ and FRAPPE field campaigns were carried out in July and August 2014 in Northeast Colorado. Model predictions are compared with measurements of NH3 gas concentrations and the NH4+ component of fine particulate matter concentrations measured directly by the aircraft in flight. We also compare CMAQ predictions with NH3 measurements from ground-based monitors within the DISCOVER-AQ Colorado geographic domain, and from the Tropospheric Emission Spectrometer (TES) on the Aura satellite. In situ aircraft measurements carried out in July and August of 2014 suggest that the NAQFC CMAQ model underestimated the NH3 concentration in Northeastern Colorado by a factor of ∼2.7 (NMB = -63%). Ground-level monitors also produced a similar result. Average satellite-retrieved NH3 levels also exceeded model predictions by a factor of 1.5-4.2 (NMB = -33 to -76%). The underestimation of NH3 was not accompanied by an underestimation of particulate NH4+, which is further controlled by factors including acid availability, removal rate, and gas-particle partition. The average measured concentration of NH4+ was close to the average predication (NMB = +18%). Seasonal patterns measured at an AMoN site in the region suggest that the underestimation of NH3 is not due to the seasonal allocation of emissions, but to the overall annual emissions estimate. The underestimation of NH3 varied across the study domain, with the largest differences occurring in a region of intensive agriculture near Greeley, Colorado, and in the vicinity of Denver. The

  19. Indoor Air Quality in Schools.

    ERIC Educational Resources Information Center

    Torres, Vincent M.

    Asserting that the air quality inside schools is often worse than outdoor pollution, leading to various health complaints and loss of productivity, this paper details factors contributing to schools' indoor air quality. These include the design, operation, and maintenance of heating, ventilating, and air conditioning (HVAC) systems; building…

  20. Time Relevance of Convective Weather Forecast for Air Traffic Automation

    NASA Technical Reports Server (NTRS)

    Chan, William N.

    2006-01-01

    The Federal Aviation Administration (FAA) is handling nearly 120,000 flights a day through its Air Traffic Management (ATM) system and air traffic congestion is expected to increse substantially over the next 20 years. Weather-induced impacts to throughput and efficiency are the leading cause of flight delays accounting for 70% of all delays with convective weather accounting for 60% of all weather related delays. To support the Next Generation Air Traffic System goal of operating at 3X current capacity in the NAS, ATC decision support tools are being developed to create advisories to assist controllers in all weather constraints. Initial development of these decision support tools did not integrate information regarding weather constraints such as thunderstorms and relied on an additional system to provide that information. Future Decision Support Tools should move towards an integrated system where weather constraints are factored into the advisory of a Decision Support Tool (DST). Several groups such at NASA-Ames, Lincoln Laboratories, and MITRE are integrating convective weather data with DSTs. A survey of current convective weather forecast and observation data show they span a wide range of temporal and spatial resolutions. Short range convective observations can be obtained every 5 mins with longer range forecasts out to several days updated every 6 hrs. Today, the short range forecasts of less than 2 hours have a temporal resolution of 5 mins. Beyond 2 hours, forecasts have much lower temporal. resolution of typically 1 hour. Spatial resolutions vary from 1km for short range to 40km for longer range forecasts. Improving the accuracy of long range convective forecasts is a major challenge. A report published by the National Research Council states improvements for convective forecasts for the 2 to 6 hour time frame will only be achieved for a limited set of convective phenomena in the next 5 to 10 years. Improved longer range forecasts will be probabilistic

  1. Understanding the relationships between air quality and human health

    SciTech Connect

    S.T. Rao

    2006-09-15

    Although there has been substantial progress in improving ambient air quality in the United States, atmospheric concentrations of ozone and fine particulate matter (PM2.5) continue to exceed the National Ambient Air Quality Standards in many locations. Consequently, a large portion of the U.S. population continues to be exposed to unhealthful levels of ozone and fine particles. This issue of EM, entitled 'Understanding the relationships between air quality and human health' presents a series of articles that focus on the relationships between air quality and human health - what we know so far and the challenges that remain. Their titles are: Understanding the effects of air pollution on human health; Assessing population exposures in studies of human health effects of PM2.5; Establishing a national environmental public health tracking network; Linking air quality and exposure models; and On alert: air quality forecasting and health advisory warnings.

  2. Air Quality Monitor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Stak-Tracker CEM (Continuous Emission Monitor) Gas Analyzer is an air quality monitor capable of separating the various gases in a bulk exhaust stream and determining the amounts of individual gases present within the stream. The monitor is produced by GE Reuter- Stokes, a subsidiary of GE Corporate Research & Development Center. The Stak-Tracker uses a Langley Research Center software package which measures the concentration of a target gas by determining the degree to which molecules of that gas absorb an infrared beam. The system is environmental-friendly, fast and has relatively low installation and maintenance costs. It is applicable to gas turbines and various industries including glass, paper and cement.

  3. The chemistry CATT-BRAMS model (CCATT-BRAMS 4.5): a regional atmospheric model system for integrated air quality and weather forecasting and research

    NASA Astrophysics Data System (ADS)

    Longo, K. M.; Freitas, S. R.; Pirre, M.; Marécal, V.; Rodrigues, L. F.; Panetta, J.; Alonso, M. F.; Rosário, N. E.; Moreira, D. S.; Gácita, M. S.; Arteta, J.; Fonseca, R.; Stockler, R.; Katsurayama, D. M.; Fazenda, A.; Bela, M.

    2013-02-01

    The Coupled Chemistry Aerosol-Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CCATT-BRAMS, version 4.5) is an online regional chemical transport model designed for local and regional studies of atmospheric chemistry from surface to the lower stratosphere suitable both for operational and research purposes. It includes gaseous/aqueous chemistry, photochemistry, scavenging and dry deposition. The CCATT-BRAMS model takes advantages of the BRAMS specific development for the tropics/subtropics and of the recent availability of preprocessing tools for chemical mechanisms and of fast codes for photolysis rates. BRAMS includes state-of-the-art physical parameterizations and dynamic formulations to simulate atmospheric circulations of scales down to meters. The online coupling between meteorology and chemistry allows the system to be used for simultaneous atmospheric weather and chemical composition forecasts as well as potential feedbacks between them. The entire system comprises three preprocessing software tools for chemical mechanism (which are user defined), aerosol and trace gases emission fields and atmospheric and chemistry fields for initial and boundary conditions. In this paper, the model description is provided along evaluations performed using observational data obtained from ground-based stations, instruments aboard of aircrafts and retrieval from space remote sensing. The evaluation takes into account model application on different scales from megacities and Amazon Basin up to intercontinental region of the Southern Hemisphere.

  4. The Chemistry CATT-BRAMS model (CCATT-BRAMS 4.5): a regional atmospheric model system for integrated air quality and weather forecasting and research

    NASA Astrophysics Data System (ADS)

    Longo, K. M.; Freitas, S. R.; Pirre, M.; Marécal, V.; Rodrigues, L. F.; Panetta, J.; Alonso, M. F.; Rosário, N. E.; Moreira, D. S.; Gácita, M. S.; Arteta, J.; Fonseca, R.; Stockler, R.; Katsurayama, D. M.; Fazenda, A.; Bela, M.

    2013-09-01

    Coupled Chemistry Aerosol-Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CCATT-BRAMS, version 4.5) is an on-line regional chemical transport model designed for local and regional studies of atmospheric chemistry from the surface to the lower stratosphere suitable both for operational and research purposes. It includes gaseous/aqueous chemistry, photochemistry, scavenging and dry deposition. The CCATT-BRAMS model takes advantage of BRAMS-specific development for the tropics/subtropics as well as the recent availability of preprocessing tools for chemical mechanisms and fast codes for photolysis rates. BRAMS includes state-of-the-art physical parameterizations and dynamic formulations to simulate atmospheric circulations down to the meter. This on-line coupling of meteorology and chemistry allows the system to be used for simultaneous weather and chemical composition forecasts as well as potential feedback between the two. The entire system is made of three preprocessing software tools for user-defined chemical mechanisms, aerosol and trace gas emissions fields and the interpolation of initial and boundary conditions for meteorology and chemistry. In this paper, the model description is provided along with the evaluations performed by using observational data obtained from ground-based stations, instruments aboard aircrafts and retrieval from space remote sensing. The evaluation accounts for model applications at different scales from megacities and the Amazon Basin up to the intercontinental region of the Southern Hemisphere.

  5. Enabling Mobile Air Quality App Development with an AirNow API

    NASA Astrophysics Data System (ADS)

    Dye, T.; White, J. E.; Ludewig, S. A.; Dickerson, P.; Healy, A. N.; West, J. W.; Prince, L. A.

    2013-12-01

    The U.S. Environmental Protection Agency's (EPA) AirNow program works with over 130 participating state, local, and federal air quality agencies to obtain, quality control, and store real-time air quality observations and forecasts. From these data, the AirNow system generates thousands of maps and products each hour. Each day, information from AirNow is published online and in other media to assist the public in making health-based decisions related to air quality. However, an increasing number of people use mobile devices as their primary tool for obtaining information, and AirNow has responded to this trend by publishing an easy-to-use Web API that is useful for mobile app developers. This presentation will describe the various features of the AirNow application programming interface (API), including Representational State Transfer (REST)-type web services, file outputs, and RSS feeds. In addition, a web portal for the AirNow API will be shown, including documentation on use of the system, a query tool for configuring and running web services, and general information about the air quality data and forecasts available. Data published via the AirNow API includes corresponding Air Quality Index (AQI) levels for each pollutant. We will highlight examples of mobile apps that are using the AirNow API to provide location-based, real-time air quality information. Examples will include mobile apps developed for Minnesota ('Minnesota Air') and Washington, D.C. ('Clean Air Partners Air Quality'), and an app developed by EPA ('EPA AirNow').

  6. Urban Air Quality Modelling with AURORA: Prague and Bratislava

    NASA Astrophysics Data System (ADS)

    Veldeman, N.; Viaene, P.; De Ridder, K.; Peelaerts, W.; Lauwaet, D.; Muhammad, N.; Blyth, L.

    2012-04-01

    The European Commission, in its strategy to protect the health of the European citizens, states that in order to assess the impact of air pollution on public health, information on long-term exposure to air pollution should be available. Currently, indicators of air quality are often being generated using measured pollutant concentrations. While air quality monitoring stations data provide accurate time series information at specific locations, air quality models have the advantage of being able to assess the spatial variability of air quality (for different resolutions) and predict air quality in the future based on different scenarios. When running such air quality models at a high spatial and temporal resolution, one can simulate the actual situation as closely as possible, allowing for a detailed assessment of the risk of exposure to citizens from different pollutants. AURORA (Air quality modelling in Urban Regions using an Optimal Resolution Approach), a prognostic 3-dimensional Eulerian chemistry-transport model, is designed to simulate urban- to regional-scale atmospheric pollutant concentration and exposure fields. The AURORA model also allows to calculate the impact of changes in land use (e.g. planting of trees) or of emission reduction scenario's on air quality. AURORA is currently being applied within the ESA atmospheric GMES service, PASODOBLE (http://www.myair-eu.org), that delivers information on air quality, greenhouse gases, stratospheric ozone, … At present there are two operational AURORA services within PASODOBLE. Within the "Air quality forecast service" VITO delivers daily air quality forecasts for Belgium at a resolution of 5 km and for the major Belgian cities: Brussels, Ghent, Antwerp, Liege and Charleroi. Furthermore forecast services are provided for Prague, Czech Republic and Bratislava, Slovakia, both at a resolution of 1 km. The "Urban/regional air quality assessment service" provides urban- and regional-scale maps (hourly resolution

  7. New Federal Air Quality Standards.

    ERIC Educational Resources Information Center

    Stopinski, O. W.

    The report discusses the current procedures for establishing air quality standards, the bases for standards, and, finally, proposed and final National Primary and Secondary Ambient Air Quality Standards for sulfur dioxide, particulate matter, carbon monoxide, nonmethane hydrocarbons, photochemical oxidants, and nitrogen dioxide. (Author/RH)

  8. Building Air Quality. Action Plan.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Indoor Air Div.

    Building managers and owners often confront competing demands to reduce operating costs and increase revenues that can siphon funds and resources from other building management concerns such as indoor air quality (IAQ). This resource booklet, designed for use with the "Building Air Quality Guide," provides building owners and managers with an…

  9. Combination of synoptical-analogous and dynamical methods to increase skill score of monthly air temperature forecasts over Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Khan, Valentina; Tscepelev, Valery; Vilfand, Roman; Kulikova, Irina; Kruglova, Ekaterina; Tischenko, Vladimir

    2016-04-01

    Long-range forecasts at monthly-seasonal time scale are in great demand of socio-economic sectors for exploiting climate-related risks and opportunities. At the same time, the quality of long-range forecasts is not fully responding to user application necessities. Different approaches, including combination of different prognostic models, are used in forecast centers to increase the prediction skill for specific regions and globally. In the present study, two forecasting methods are considered which are exploited in operational practice of Hydrometeorological Center of Russia. One of them is synoptical-analogous method of forecasting of surface air temperature at monthly scale. Another one is dynamical system based on the global semi-Lagrangian model SL-AV, developed in collaboration of Institute of Numerical Mathematics and Hydrometeorological Centre of Russia. The seasonal version of this model has been used to issue global and regional forecasts at monthly-seasonal time scales. This study presents results of the evaluation of surface air temperature forecasts generated with using above mentioned synoptical-statistical and dynamical models, and their combination to potentially increase skill score over Northern Eurasia. The test sample of operational forecasts is encompassing period from 2010 through 2015. The seasonal and interannual variability of skill scores of these methods has been discussed. It was noticed that the quality of all forecasts is highly dependent on the inertia of macro-circulation processes. The skill scores of forecasts are decreasing during significant alterations of synoptical fields for both dynamical and empirical schemes. Procedure of combination of forecasts from different methods, in some cases, has demonstrated its effectiveness. For this study the support has been provided by Grant of Russian Science Foundation (№14-37-00053).

  10. Colorado Air Quality Control Regulations and Ambient Air Quality Standards.

    ERIC Educational Resources Information Center

    Colorado State Dept. of Health, Denver. Div. of Air Pollution Control.

    Regulations and standards relative to air quality control in Colorado are defined in this publication. Presented first are definitions of terms, a statement of intent, and general provisions applicable to all emission control regulations adopted by the Colorado Air Pollution Control Commission. Following this, three regulations are enumerated: (1)…

  11. Indoor Air Quality

    NASA Astrophysics Data System (ADS)

    Miyazaki, Takeji

    The reduction of intake of outdoor air volume in air conditioned buildings, adopted as the strategy for saving energy, has caused sick building syndrome abroad. Such symptoms of sick building as headache, stimuli of eye and nose and lethargy, appears to result from cigarette smoke, folmaldehyde and volatile organic carbons. On the other hand, in airtight residences not only carbon monoxide and nitrogen oxides from domestic burning appliances but also allergens of mite, fungi, pollen and house dust, have become a subject of discussion. Moreover, asbestos and radon of carcinogen now attract a great deal of attention. Those indoor air pollutants are discussed.

  12. What can data assimilation do for water quality forecasting?

    NASA Astrophysics Data System (ADS)

    Kim, S.; Riazi, H.; Seo, D. J.; Shin, C.; Kim, K.

    2014-12-01

    Proactive water quality management through preventive actions requires predictive information. Water quality forecasting can provide such information, e.g., to protect public health from harmful water quality conditions such as algal blooms or bacterial pollution and to allow the decision makers to respond more quickly to emergency situations such as oil spills for protection of water resources systems. Operational water quality forecasting is a large challenge due to the complexities and large uncertainties associated with various physiobiochemical processes involved. As such, there is an added impetus to utilize real-time observations effectively in the forecast process. In this work, we apply data assimilation (DA) to the Hydrologic Simulation Program - Fortran (HSPF) model to improve accuracy of watershed water quality forecast. The DA technique used is based on maximum likelihood ensemble filter (MLEF).The resulting DA module, MLEF-HSPF, has been implemented in the Water Quality Forecast System at the National Institute of Environmental Research (WQFS-NIER) in Korea. In this presentation, we describe MLEF-HSPF, share multi-catchment evaluation results for the Nakdong River Basin in Korea, and identify science and operational challenges.

  13. Indoor Air Quality

    MedlinePlus

    ... is critical. Learn how to recognize and eliminate pollution sources in and around your home, on the ... especially vulnerable to the harmful effects of air pollution. Cleaning up pollution in their schools will help ...

  14. Mind Your Indoor Air Quality

    ERIC Educational Resources Information Center

    Mak, Lily

    2012-01-01

    When it comes to excelling in the classroom, it turns out the air students are breathing is just as important as the lessons they are learning. Studies show poor indoor air quality (IAQ) can lessen the comfort of students as well as staff--affecting concentration, attendance and student performance. It can even lead to lower IQs. What's more, poor…

  15. [Indoor air quality in schools].

    PubMed

    Cartieaux, E; Rzepka, M-A; Cuny, D

    2011-07-01

    Indoor air quality in schools has received particular attention over the past several years. Children are considered as one of the most sensitive groups to atmospheric pollution because their bodies are actively growing and they breathe higher volumes of air relative to their body weights than adults do. They also spend more time in school or group structures (preschools, day nurseries) than in any indoor environments other than the home. The analysis of children's exposure to air pollution at school requires the identification of the main pollutant sources present in these educational institutions. Both a strong contribution of outdoor pollution and a very specific pollution bound to school activities such as the use of paints, markers, glues, and manufactured ink eraser pens, exist. The ventilation in school buildings also plays an important role in air quality. A higher air exchange may improve thermal comfort and air quality. The cause of indoor air pollution is a combinatory effect of physical, chemical, and biological factors, and the adequacy of ventilation in the environment. Several pollutants have been reported to exist in classrooms such as bacteria, molds, volatile organic compounds, persistent organic pollutants and microparticles. There is a correlation between the concentrations of the pollutants and onset of health problems in schoolchildren. We observe predominantly respiratory symptoms as well as a prevalence of respiratory diseases such as asthma and allergies. This study shows that poor indoor air quality affects children's health. PMID:21621987

  16. [Indoor air quality in schools].

    PubMed

    Cartieaux, E; Rzepka, M-A; Cuny, D

    2011-07-01

    Indoor air quality in schools has received particular attention over the past several years. Children are considered as one of the most sensitive groups to atmospheric pollution because their bodies are actively growing and they breathe higher volumes of air relative to their body weights than adults do. They also spend more time in school or group structures (preschools, day nurseries) than in any indoor environments other than the home. The analysis of children's exposure to air pollution at school requires the identification of the main pollutant sources present in these educational institutions. Both a strong contribution of outdoor pollution and a very specific pollution bound to school activities such as the use of paints, markers, glues, and manufactured ink eraser pens, exist. The ventilation in school buildings also plays an important role in air quality. A higher air exchange may improve thermal comfort and air quality. The cause of indoor air pollution is a combinatory effect of physical, chemical, and biological factors, and the adequacy of ventilation in the environment. Several pollutants have been reported to exist in classrooms such as bacteria, molds, volatile organic compounds, persistent organic pollutants and microparticles. There is a correlation between the concentrations of the pollutants and onset of health problems in schoolchildren. We observe predominantly respiratory symptoms as well as a prevalence of respiratory diseases such as asthma and allergies. This study shows that poor indoor air quality affects children's health.

  17. Forecast quality and predictability of severe extra-tropical cyclones in operational forecasts

    NASA Astrophysics Data System (ADS)

    Owen, J. S. R.; Knippertz, P.; Trzeciak, T. M.

    2012-04-01

    Severe extratropical cyclones are the most damaging weather phenomena affecting Europe, frequently causing fatalities and severe economic losses. Reliable forecasts of such events on timescales of several days are crucial to warn the population and allow mitigating action to be taken. Funded by the AXA Research Fund, this study investigates how accurately eighteen historic damaging and/or intense storms over Europe were forecast by operational numerical weather prediction (NWP) models. An automatic tracking algorithm is used to identify the cyclones from gridded fields of mean-sea level pressure. As a first step, the evolution of the storms and the synoptic conditions in which they developed is examined based on re-analysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF). The next step is to evaluate forecast performance by the ECMWF and the UK Met Office deterministic models looking at core pressure evolution and track for different forecast lead times. Finally, ECMWF ensemble predictions are used to investigate the predictability of the investigated storms through examining the forecast spread, again for different lead times. First results indicate that the quality of the forecasts varies widely across the storms; however, they confirm previous studies in that the cyclones' core pressures are generally less well predicted than their position. The extent to which these differences can be related to the type of storm and to the ensemble spread is currently under investigation. For example, are storms with a strong diabatic influence less well forecast than those where baroclinicity dominates? Are deterministic forecasts less reliable in situations with low predictability? Additionally, the magnitude of the forecast errors will be compared to those of less intense cyclones to see whether the most intense systems stand out in terms of their forecast quality and predictability. In the longer run, this work will feed into a broader project that

  18. Aeromicrobiology/air quality

    USGS Publications Warehouse

    Andersen, Gary L.; Frisch, A.S.; Kellogg, Christina A.; Levetin, E.; Lighthart, Bruce; Paterno, D.

    2009-01-01

    The most prevalent microorganisms, viruses, bacteria, and fungi, are introduced into the atmosphere from many anthropogenic sources such as agricultural, industrial and urban activities, termed microbial air pollution (MAP), and natural sources. These include soil, vegetation, and ocean surfaces that have been disturbed by atmospheric turbulence. The airborne concentrations range from nil to great numbers and change as functions of time of day, season, location, and upwind sources. While airborne, they may settle out immediately or be transported great distances. Further, most viable airborne cells can be rendered nonviable due to temperature effects, dehydration or rehydration, UV radiation, and/or air pollution effects. Mathematical microbial survival models that simulate these effects have been developed.

  19. Manual on indoor air quality

    SciTech Connect

    Diamond, R.C.; Grimsrud, D.T.

    1983-12-01

    This reference manual was prepared to assist electric utilities in helping homeowners, builders, and new home buyers to understand a broad range of issues related to indoor air quality. The manual is directed to technically knowledgeable persons employed by utility companies - the customer service or marketing representative, applications engineer, or technician - who may not have specific expertise in indoor air quality issues. In addition to providing monitoring and control techniques, the manual summarizes the link between pollutant concentrations, air exchange, and energy conservation and describes the characteristics and health effects of selected pollutants. Where technical information is too lengthy or complex for inclusion in this volume, reference sources are given. Information for this manual was gathered from technical studies, manufacturers' information, and other materials from professional societies, institutes, and associations. The aim has been to provide objective technical and descriptive information that can be used by utility personnel to make informed decisions about indoor air quality issues.

  20. Urban air quality

    NASA Astrophysics Data System (ADS)

    Fenger, Jes

    Since 1950 the world population has more than doubled, and the global number of cars has increased by a factor of 10. In the same period the fraction of people living in urban areas has increased by a factor of 4. In year 2000 this will amount to nearly half of the world population. About 20 urban regions will each have populations above 10 million people. Seen over longer periods, pollution in major cities tends to increase during the built up phase, they pass through a maximum and are then again reduced, as abatement strategies are developed. In the industrialised western world urban air pollution is in some respects in the last stage with effectively reduced levels of sulphur dioxide and soot. In recent decades however, the increasing traffic has switched the attention to nitrogen oxides, organic compounds and small particles. In some cities photochemical air pollution is an important urban problem, but in the northern part of Europe it is a large-scale phenomenon, with ozone levels in urban streets being normally lower than in rural areas. Cities in Eastern Europe have been (and in many cases still are) heavily polluted. After the recent political upheaval, followed by a temporary recession and a subsequent introduction of new technologies, the situation appears to improve. However, the rising number of private cars is an emerging problem. In most developing countries the rapid urbanisation has so far resulted in uncontrolled growth and deteriorating environment. Air pollution levels are here still rising on many fronts. Apart from being sources of local air pollution, urban activities are significant contributors to transboundary pollution and to the rising global concentrations of greenhouse gasses. Attempts to solve urban problems by introducing cleaner, more energy-efficient technologies will generally have a beneficial impact on these large-scale problems. Attempts based on city planning with a spreading of the activities, on the other hand, may generate

  1. Impact of inherent meteorology uncertainty on air quality model predictions

    NASA Astrophysics Data System (ADS)

    Gilliam, Robert C.; Hogrefe, Christian; Godowitch, James M.; Napelenok, Sergey; Mathur, Rohit; Rao, S. Trivikrama

    2015-12-01

    It is well established that there are a number of different classifications and sources of uncertainties in environmental modeling systems. Air quality models rely on two key inputs, namely, meteorology and emissions. When using air quality models for decision making, it is important to understand how uncertainties in these inputs affect the simulated concentrations. Ensembles are one method to explore how uncertainty in meteorology affects air pollution concentrations. Most studies explore this uncertainty by running different meteorological models or the same model with different physics options and in some cases combinations of different meteorological and air quality models. While these have been shown to be useful techniques in some cases, we present a technique that leverages the initial condition perturbations of a weather forecast ensemble, namely, the Short-Range Ensemble Forecast system to drive the four-dimensional data assimilation in the Weather Research and Forecasting (WRF)-Community Multiscale Air Quality (CMAQ) model with a key focus being the response of ozone chemistry and transport. Results confirm that a sizable spread in WRF solutions, including common weather variables of temperature, wind, boundary layer depth, clouds, and radiation, can cause a relatively large range of ozone-mixing ratios. Pollutant transport can be altered by hundreds of kilometers over several days. Ozone-mixing ratios of the ensemble can vary as much as 10-20 ppb or 20-30% in areas that typically have higher pollution levels.

  2. Global Air Quality and Climate

    NASA Technical Reports Server (NTRS)

    Fiore, Arlene M.; Naik, Vaishali; Steiner, Allison; Unger, Nadine; Bergmann, Dan; Prather, Michael; Righi, Mattia; Rumbold, Steven T.; Shindell, Drew T.; Skeie, Ragnhild B.; Sudo, Kengo; Szopa, Sophie; Horowitz, Larry W.; Takemura, Toshihiko; Zeng, Guang; Cameron-Smith, Philip J.; Cionni, Irene; Collins, William J.; Dalsoren, Stig; Eyring, Veronika; Folberth, Gerd A.; Ginoux, Paul; Josse, Batrice; Lamarque, Jean-Francois; OConnor, Fiona M.; Mackenzie, Ian A.; Nagashima, Tatsuya; Shindell, Drew Todd; Spracklen, Dominick V.

    2012-01-01

    Emissions of air pollutants and their precursors determine regional air quality and can alter climate. Climate change can perturb the long-range transport, chemical processing, and local meteorology that influence air pollution. We review the implications of projected changes in methane (CH4), ozone precursors (O3), and aerosols for climate (expressed in terms of the radiative forcing metric or changes in global surface temperature) and hemispheric-to-continental scale air quality. Reducing the O3 precursor CH4 would slow near-term warming by decreasing both CH4 and tropospheric O3. Uncertainty remains as to the net climate forcing from anthropogenic nitrogen oxide (NOx) emissions, which increase tropospheric O3 (warming) but also increase aerosols and decrease CH4 (both cooling). Anthropogenic emissions of carbon monoxide (CO) and non-CH4 volatile organic compounds (NMVOC) warm by increasing both O3 and CH4. Radiative impacts from secondary organic aerosols (SOA) are poorly understood. Black carbon emission controls, by reducing the absorption of sunlight in the atmosphere and on snow and ice, have the potential to slow near-term warming, but uncertainties in coincident emissions of reflective (cooling) aerosols and poorly constrained cloud indirect effects confound robust estimates of net climate impacts. Reducing sulfate and nitrate aerosols would improve air quality and lessen interference with the hydrologic cycle, but lead to warming. A holistic and balanced view is thus needed to assess how air pollution controls influence climate; a first step towards this goal involves estimating net climate impacts from individual emission sectors. Modeling and observational analyses suggest a warming climate degrades air quality (increasing surface O3 and particulate matter) in many populated regions, including during pollution episodes. Prior Intergovernmental Panel on Climate Change (IPCC) scenarios (SRES) allowed unconstrained growth, whereas the Representative

  3. Three-Dimensional Air Quality System (3D-AQS)

    NASA Astrophysics Data System (ADS)

    Engel-Cox, J.; Hoff, R.; Weber, S.; Zhang, H.; Prados, A.

    2007-12-01

    The 3-Dimensional Air Quality System (3DAQS) integrates remote sensing observations from a variety of platforms into air quality decision support systems at the U.S. Environmental Protection Agency (EPA), with a focus on particulate air pollution. The decision support systems are the Air Quality System (AQS) / AirQuest database at EPA, Infusing satellite Data into Environmental Applications (IDEA) system, the U.S. Air Quality weblog (Smog Blog) at UMBC, and the Regional East Atmospheric Lidar Mesonet (REALM). The project includes an end user advisory group with representatives from the air quality community providing ongoing feedback. The 3DAQS data sets are UMBC ground based LIDAR, and NASA and NOAA satellite data from MODIS, OMI, AIRS, CALIPSO, MISR, and GASP. Based on end user input, we are co-locating these measurements to the EPA's ground-based air pollution monitors as well as re-gridding to the Community Multiscale Air Quality (CMAQ) model grid. These data provide forecasters and the scientific community with a tool for assessment, analysis, and forecasting of U.S Air Quality. The third dimension and the ability to analyze the vertical transport of particulate pollution are provided by aerosol extinction profiles from the UMBC LIDAR and CALIPSO. We present examples of a 3D visualization tool we are developing to facilitate use of this data. We also present two specific applications of 3D-AQS data. The first is comparisons between PM2.5 monitor data and remote sensing aerosol optical depth (AOD) data, which show moderate agreement but variation with EPA region. The second is a case study for Baltimore, Maryland, as an example of 3D-analysis for a metropolitan area. In that case, some improvement is found in the PM2.5 /LIDAR correlations when using vertical aerosol information to calculate an AOD below the boundary layer.

  4. Indoor air quality

    SciTech Connect

    Not Available

    1987-08-01

    Possible indoor air contaminants include carbon monoxide, carbon dioxide, nitrogen oxides, particulates, bacteria, fungi, and VOCs (volatile organic compounds). Sources comprise paints, pesticides, solvents, sealants, smoke, soils, adhesives, aerosols, dusts, cleansers, and moisture. Health effects can range from simple discomfort, tight-building syndrome symptoms, and dermatitis to much more serious maladies, such as Legionnaire's disease and cancer. Difficulties abound in dealing with IAQ problems. Government standards used in industrial settings-such as the OSHA permissible exposure limits or threshold limit values of the American Conference of Governmental Industrial Hygienists-are typically designed for heavy, short-term exposures to specific hazardous substances. These frequently prove inadequate in determining the deleterious nature of an IAQ complaint in a home, office, or school where pollutant concentrations may be quite low, exposures long-term, contaminants mixed, and, with some substances, interactions and health effects unknown. Also, government authority and responsibilities in nonindustrial settings are ill-defined.

  5. Influence of Boundary Conditions on Simulated U.S. Air Quality

    EPA Science Inventory

    One of the key inputs to regional-scale photochemical models frequently used in air quality planning and forecasting applications are chemical boundary conditions representing background pollutant concentrations originating outside the regional modeling domain. A number of studie...

  6. Air-quality-model update

    SciTech Connect

    Penner, J.E.; Walton, J.J.

    1982-01-15

    The Livermore Regional Air Quality Model (LIRAQ) has been updated and improved. This report describes the changes that have been made in chemistry, species treatment, and boundary conditions. The results of smog chamber simulations that were used to verify the chemistry as well as simulations of the entire air quality model for two prototype days in the Bay Area are reported. The results for the prototype day simulations are preliminary due to the need for improvement in meteorology fields, but they show the dependence and sensitivity of high hour ozone to changes in selected boundary and initial conditions.

  7. Aspects of clear air turbulence severity forecasting and detection

    NASA Technical Reports Server (NTRS)

    Ehernberger, L. J.

    1982-01-01

    Factors influencing the accuracy of the forecasts of incidences of clear air turbulence (CAT) are discussed, along with techniques for improved verification. Descriptive ranking terms for the intensity of CAT events, ranging from light to extreme, are developed, and meteorological parameters used for predictions are reviewed, including jetstream core location, vertical and horizontal wind shears, stable layers, tropopause height, trough speed, 500-mb vorticity, surface fronts, pressure centers and cyclogenesis, and wind speeds near mountain ridges. Methods of remote detection of CAT, particularly by using radiometry sensitive to the IR water vapor band, are noted to have had some success in detecting actual CAT events and decreasing false alarms. Statistical aspects of CAT encounter severity are discussed, including the establishment of confidence intervals for thresholds of detection of CATs of varying intensities.

  8. Indoor Air Quality and Disease

    EPA Science Inventory

    Concern over the quality of indoor (i.e., residential) as well as outdoor (i.e., environmental) air is increasing. Accordingly, owners of companion animals may approach their veterinarian about the potential for airborne irritants, allergens, pollutants, or infectious agents to n...

  9. Indoor Air Quality Management Program.

    ERIC Educational Resources Information Center

    Anne Arundel County Public Schools, Annapolis, MD.

    In an effort to provide Indoor Air Quality (IAQ) management guidance, Anne Arundel County Public Schools was selected by the Maryland State Department of Education to develop a program that could be used by other school systems. A major goal was to produce a handbook that was "user friendly." Hence, its contents are a mix of history, philosophy,…

  10. Cabin air quality: an overview.

    PubMed

    Rayman, Russell B

    2002-03-01

    In recent years, there have been increasing complaints from cockpit crew, cabin crew, and passengers that the cabin air quality of commercial aircraft is deficient. A myriad of complaints including headache, fatigue, fever, and respiratory difficulties among many others have been registered, particularly by flight attendants on long-haul routes. There is also much concern today regarding the transmission of contagious disease inflight, particularly tuberculosis. The unanswered question is whether these complaints are really due to poor cabin air quality or to other factors inherent intlight such as lowered barometric pressure, hypoxia, low humidity, circadian dysynchrony, work/rest cycles, vibration, etc. This paper will review some aspects relevant to cabin air quality such as volatile organic compounds (VOCs), carbon dioxide (CO2), carbon monoxide (CO), ozone (O3), particulates, and microorganisms, as well as the cabin ventilation system, to discern possible causes and effects of illness contracted inflight. The paper will conclude with recommendations on how the issue of cabin air quality may be resolved.

  11. 32 CFR 989.30 - Air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Air quality. 989.30 Section 989.30 National... ENVIRONMENTAL IMPACT ANALYSIS PROCESS (EIAP) § 989.30 Air quality. Section 176(c) of the Clean Air Act..., Air Quality Compliance. 10 10 See footnote 1 to § 989.1....

  12. 32 CFR 989.30 - Air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Air quality. 989.30 Section 989.30 National... ENVIRONMENTAL IMPACT ANALYSIS PROCESS (EIAP) § 989.30 Air quality. Section 176(c) of the Clean Air Act..., Air Quality Compliance. 10 10 See footnote 1 to § 989.1....

  13. 32 CFR 989.30 - Air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Air quality. 989.30 Section 989.30 National... ENVIRONMENTAL IMPACT ANALYSIS PROCESS (EIAP) § 989.30 Air quality. Section 176(c) of the Clean Air Act..., Air Quality Compliance. 10 10 See footnote 1 to § 989.1....

  14. 32 CFR 989.30 - Air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Air quality. 989.30 Section 989.30 National... ENVIRONMENTAL IMPACT ANALYSIS PROCESS (EIAP) § 989.30 Air quality. Section 176(c) of the Clean Air Act..., Air Quality Compliance. 10 10 See footnote 1 to § 989.1....

  15. Diagnostic Analysis of Ozone Concentrations Simulated by Two Regional-Scale Air Quality Models

    EPA Science Inventory

    Since the Community Multiscale Air Quality modeling system (CMAQ) and the Weather Research and Forecasting with Chemistry model (WRF/Chem) use different approaches to simulate the interaction of meteorology and chemistry, this study compares the CMAQ and WRF/Chem air quality simu...

  16. Megacities, air quality and climate

    NASA Astrophysics Data System (ADS)

    Baklanov, Alexander; Molina, Luisa T.; Gauss, Michael

    2016-02-01

    The rapid urbanization and growing number of megacities and urban complexes requires new types of research and services that make best use of science and available technology. With an increasing number of humans now living in urban sprawls, there are urgent needs of examining what the rising number of megacities means for air pollution, local climate and the effects these changes have on global climate. Such integrated studies and services should assist cities in facing hazards such as storm surge, flooding, heat waves, and air pollution episodes, especially in changing climates. While important advances have been made, new interdisciplinary research studies are needed to increase our understanding of the interactions between emissions, air quality, and regional and global climates. Studies need to address both basic and applied research and bridge the spatial and temporal scales connecting local emissions and air pollution and local weather, global atmospheric chemistry and climate. This paper reviews the current status of studies of the complex interactions between climate, air quality and megacities, and identifies the main gaps in our current knowledge as well as further research needs in this important field of research.

  17. Visual air quality simulation techniques

    NASA Astrophysics Data System (ADS)

    Molenar, John V.; Malm, William C.; Johnson, Christopher E.

    Visual air quality is primarily a human perceptual phenomenon beginning with the transfer of image-forming information through an illuminated, scattering and absorbing atmosphere. Visibility, especially the visual appearance of industrial emissions or the degradation of a scenic view, is the principal atmospheric characteristic through which humans perceive air pollution, and is more sensitive to changing pollution levels than any other air pollution effect. Every attempt to quantify economic costs and benefits of air pollution has indicated that good visibility is a highly valued and desired environmental condition. Measurement programs can at best approximate the state of the ambient atmosphere at a few points in a scenic vista viewed by an observer. To fully understand the visual effect of various changes in the concentration and distribution of optically important atmospheric pollutants requires the use of aerosol and radiative transfer models. Communication of the output of these models to scientists, decision makers and the public is best done by applying modern image-processing systems to generate synthetic images representing the modeled air quality conditions. This combination of modeling techniques has been under development for the past 15 yr. Initially, visual air quality simulations were limited by a lack of computational power to simplified models depicting Gaussian plumes or uniform haze conditions. Recent explosive growth in low cost, high powered computer technology has allowed the development of sophisticated aerosol and radiative transfer models that incorporate realistic terrain, multiple scattering, non-uniform illumination, varying spatial distribution, concentration and optical properties of atmospheric constituents, and relative humidity effects on aerosol scattering properties. This paper discusses these improved models and image-processing techniques in detail. Results addressing uniform and non-uniform layered haze conditions in both

  18. Progress in developing an ANN model for air pollution index forecast

    NASA Astrophysics Data System (ADS)

    Jiang, Dahe; Zhang, Yang; Hu, Xiang; Zeng, Yun; Tan, Jianguo; Shao, Demin

    An air pollution index (API) reporting system is introduced to selected cities of China for public communication on air quality data. Shanghai is the first city in China providing daily average API reports and forecasts. This paper describes the development of an artificial neural network (ANN) model for the API forecasting in Shanghai. It is a multiple layer perceptron (MLP) network, with meteorological forecasting data as the main input, to output the next day average API values. However, the initial version of the MLP model did not work well. To improve the model, a series of tests were conducted with respect to the training method and structure optimization. Based on the test results, the training algorithm was modified and a new model was built. The new model is now being used in Shanghai for API forecasting. Its performance is shown reasonably well in comparison with observation. The application of the old model was only weakly correlated with observation. In 1-year application, the correlation coefficients were 0.2314, 0.1022 and 0.1710 for TSP, SO2 and NOx, respectively. But for the new model, for over 8 months application, the correlation coefficients are raised to 0.6056, 0.6993 and 0.6300 for PM10, SO2, and NO2. Further, the new algorithm does not rely on manpower intervention so that it is now being applied in several other Chinese cities with quite different meteorological conditions. The structure of the model and the application results are presented in this paper and also the problems to be further studied.

  19. Indoor Air Quality in Schools: Clean Air Is Good Business.

    ERIC Educational Resources Information Center

    Guarneiri, Michele A.

    2003-01-01

    Describes the effect of poor indoor air quality (IAQ) on student health, the cost of safeguarding good IAQ, the cause of poor IAQ in schools, how to tell whether a school has an IAQ problem, and how the U.S. Environmental Protection Agency can help schools improve indoor air quality though the use of their free "Indoor Air Quality Tools for…

  20. Air quality in the home

    SciTech Connect

    Whitaker, R.

    1982-03-01

    The average person breathes indoor air 75% or more of the day. Yet existing regulations are based solely on outdoor concentrations. Indoor levels of many contaminants are typically higher than outdoors, and common household items such as gas stoves, paint, cigarettes, bath towels, fireplaces, cleaning chemicals, even glued furniture joints and the walls themselves, can produce significant amounts of regulated substances. Efforts are now under way to create a total-exposure air-quality model that will improve epidemiologic studies of human health. 4 figures.

  1. Sensitivity of Short-Term Weather Forecasts to Assimilated AIRS Data: Implications for NPOESS Applications

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; McCarty, Will; Chou, Shih-Hung; Jedlovec, Gary

    2009-01-01

    The Atmospheric Infrared Sounder (AIRS) is acting as a heritage and risk reduction instrument for the Cross-track lnfrared Sounder (CrIS) to be flown aboard the NPP and NPOESS satellites. The hyperspectral nature of AIRS and CrIS provides high-quality soundings that, along with their asynoptic observation time over North America, make them attractive sources to fill the spatial and temporal data voids in upper air temperature and moisture measurements for use in data assimilation and numerical weather prediction. Observations from AlRS can be assimilated either as direct radiances or retrieved thermodynamic profiles, and the Short-Term Prediction Research and Transition (SPORT) Center at NASA's Marshall Space Flight Center has used both data types to improve short-term (0-48h), regional forecasts. The purpose of this paper is to share SPORT'S experiences using AlRS radiances and retrieved profiles in regional data assimilation activities by showing that proper handling of issues-including cloud contamination and land emissivity characterization-are necessary to produce optimal analyses and forecasts.

  2. SPATIAL PREDICTION OF AIR QUALITY DATA

    EPA Science Inventory

    Site-specific air quality monitoring data have been used extensively in both scientific and regulatory programs. As such, these data provide essential information to the public, environmental managers, and the atmospheric research community. Currently, air quality management prac...

  3. 30 CFR 75.321 - Air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Air quality. 75.321 Section 75.321 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.321 Air quality. (a)(1) The air in areas where... air current in these areas shall be sufficient to dilute, render harmless, and carry away...

  4. 30 CFR 75.321 - Air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Air quality. 75.321 Section 75.321 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.321 Air quality. (a)(1) The air in areas where... air current in these areas shall be sufficient to dilute, render harmless, and carry away...

  5. 30 CFR 75.321 - Air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Air quality. 75.321 Section 75.321 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.321 Air quality. (a)(1) The air in areas where... air current in these areas shall be sufficient to dilute, render harmless, and carry away...

  6. 30 CFR 75.321 - Air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air quality. 75.321 Section 75.321 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.321 Air quality. (a)(1) The air in areas where... air current in these areas shall be sufficient to dilute, render harmless, and carry away...

  7. AQA - Air Quality model for Austria - Evaluation and Developments

    NASA Astrophysics Data System (ADS)

    Hirtl, M.; Krüger, B. C.; Baumann-Stanzer, K.; Skomorowski, P.

    2009-04-01

    The regional weather forecast model ALADIN of the Central Institute for Meteorology and Geodynamics (ZAMG) is used in combination with the chemical transport model CAMx (www.camx.com) to conduct forecasts of gaseous and particulate air pollution over Europe. The forecasts which are done in cooperation with the University of Natural Resources and Applied Life Sciences in Vienna (BOKU) are supported by the regional governments since 2005 with the main interest on the prediction of tropospheric ozone. The daily ozone forecasts are evaluated for the summer 2008 with the observations of about 150 air quality stations in Austria. In 2008 the emission-model SMOKE was integrated into the modelling system to calculate the biogenic emissions. The anthropogenic emissions are based on the newest EMEP data set as well as on regional inventories for the core domain. The performance of SMOKE is shown for a summer period in 2007. In the frame of the COST-action 728 „Enhancing mesoscale meteorological modelling capabilities for air pollution and dispersion applications", multi-model ensembles are used to conduct an international model evaluation. The model calculations of meteorological- and concentration fields are compared to measurements on the ensemble platform at the Joint Research Centre (JRC) in Ispra. The results for 2 episodes in 2006 show the performance of the different models as well as of the model ensemble.

  8. Workshop on indoor air quality research needs

    SciTech Connect

    Not Available

    1980-01-01

    Workshop participants report on indoor air quality research needs including the monitoring of indoor air quality, report of the instrumentation subgroup of indoor air quality, health effects, and the report of the control technology session. Risk analysis studies addressing indoor environments were also summarized. (DLS)

  9. Indoor air quality and health

    NASA Astrophysics Data System (ADS)

    Jones, A. P.

    During the last two decades there has been increasing concern within the scientific community over the effects of indoor air quality on health. Changes in building design devised to improve energy efficiency have meant that modern homes and offices are frequently more airtight than older structures. Furthermore, advances in construction technology have caused a much greater use of synthetic building materials. Whilst these improvements have led to more comfortable buildings with lower running costs, they also provide indoor environments in which contaminants are readily produced and may build up to much higher concentrations than are found outside. This article reviews our current understanding of the relationship between indoor air pollution and health. Indoor pollutants can emanate from a range of sources. The health impacts from indoor exposure to combustion products from heating, cooking, and the smoking of tobacco are examined. Also discussed are the symptoms associated with pollutants emitted from building materials. Of particular importance might be substances known as volatile organic compounds (VOCs), which arise from sources including paints, varnishes, solvents, and preservatives. Furthermore, if the structure of a building begins to deteriorate, exposure to asbestos may be an important risk factor for the chronic respiratory disease mesothelioma. The health effects of inhaled biological particles can be significant, as a large variety of biological materials are present in indoor environments. Their role in inducing illness through immune mechanisms, infectious processes, and direct toxicity is considered. Outdoor sources can be the main contributors to indoor concentrations of some contaminants. Of particular significance is Radon, the radioactive gas that arises from outside, yet only presents a serious health risk when found inside buildings. Radon and its decay products are now recognised as important indoor pollutants, and their effects are

  10. Uncertainty in Air Quality Modeling.

    NASA Astrophysics Data System (ADS)

    Fox, Douglas G.

    1984-01-01

    Under the direction of the AMS Steering Committee for the EPA Cooperative Agreement on Air Quality Modeling, a small group of scientists convened to consider the question of uncertainty in air quality modeling. Because the group was particularly concerned with the regulatory use of models, its discussion focused on modeling tall stack, point source emissions.The group agreed that air quality model results should be viewed as containing both reducible error and inherent uncertainty. Reducible error results from improper or inadequate meteorological and air quality data inputs, and from inadequacies in the models. Inherent uncertainty results from the basic stochastic nature of the turbulent atmospheric motions that are responsible for transport and diffusion of released materials. Modelers should acknowledge that all their predictions to date contain some associated uncertainty and strive also to quantify uncertainty.How can the uncertainty be quantified? There was no consensus from the group as to precisely how uncertainty should be calculated. One subgroup, which addressed statistical procedures, suggested that uncertainty information could be obtained from comparisons of observations and predictions. Following recommendations from a previous AMS workshop on performance evaluation (Fox. 1981), the subgroup suggested construction of probability distribution functions from the differences between observations and predictions. Further, they recommended that relatively new computer-intensive statistical procedures be considered to improve the quality of uncertainty estimates for the extreme value statistics of interest in regulatory applications.A second subgroup, which addressed the basic nature of uncertainty in a stochastic system, also recommended that uncertainty be quantified by consideration of the differences between observations and predictions. They suggested that the average of the difference squared was appropriate to isolate the inherent uncertainty that

  11. Ground cloud air quality effects

    NASA Technical Reports Server (NTRS)

    Brubaker, K. L.

    1980-01-01

    The effects of the ground cloud associated with launching of a large rocket on air quality are discussed. The ground cloud consists of the exhaust emitted by the rocket during the first 15 to 25 seconds following ignition and liftoff, together with a large quantity of entrained air, cooling water, dust and other debris. Immediately after formation, the ground cloud rises in the air due to the buoyant effect of its high thermal energy content. Eventually, at an altitude typically between 0.7 and 3 km, the cloud stabilizes and is carried along by the prevailing wind at that altitude. For the use of heavy lift launch vehicles small quantities of nitrogen oxides, primarily nitric oxide and nitrogen dioxide, are expected to be produced from a molecular nitrogen impurity in the fuel or liquid oxygen, or from entrainment and heating of ambient air in the hot rocket exhaust. In addition, possible impurities such as sulfur in the fuel would give rise to a corresponding amount of oxidation products such as sulfur dioxide.

  12. Estimating Errors in Student Enrollment Forecasting. AIR Forum 1979 Paper.

    ERIC Educational Resources Information Center

    Marshall, K. T.; Oliver, R. M.

    The use of data on longitudinal student attendance patterns to determine variances, and hence confidence bounds, on student enrollment forecasts, in addition to finding the forecasts themselves, is demonstrated. The formulation of the enrollment model based on longitudinal student attendance patterns is described step by step, presenting the…

  13. Minorities and substandard air quality

    SciTech Connect

    Wernette, D.R.; Nieves, L.A.

    1994-05-01

    Scientists at Argonne National Laboratory have been studying the relative potential for exposure of minority population groups to substandard outdoor air quality. The US Environmental Protection Agency (EPA) has identified areas that have excess levels of ozone, carbon monoxide, sulfur dioxide, nitrogen dioxide, lead, or particulate matter. These areas generally consist of counties covering many square miles, and the degree to which their residents are exposed to air pollution certainly varies. However, the differences in population groups living in these areas can imply differences in potential exposure to pollutants and may suggest directions for research and remedial action. So far, the scientists have examined these differences for African-Americans, Hispanics, and Whites (non-Hispanic).

  14. Joint space-time geostatistical model for air quality surveillance

    NASA Astrophysics Data System (ADS)

    Russo, A.; Soares, A.; Pereira, M. J.

    2009-04-01

    Air pollution and peoples' generalized concern about air quality are, nowadays, considered to be a global problem. Although the introduction of rigid air pollution regulations has reduced pollution from industry and power stations, the growing number of cars on the road poses a new pollution problem. Considering the characteristics of the atmospheric circulation and also the residence times of certain pollutants in the atmosphere, a generalized and growing interest on air quality issues led to research intensification and publication of several articles with quite different levels of scientific depth. As most natural phenomena, air quality can be seen as a space-time process, where space-time relationships have usually quite different characteristics and levels of uncertainty. As a result, the simultaneous integration of space and time is not an easy task to perform. This problem is overcome by a variety of methodologies. The use of stochastic models and neural networks to characterize space-time dispersion of air quality is becoming a common practice. The main objective of this work is to produce an air quality model which allows forecasting critical concentration episodes of a certain pollutant by means of a hybrid approach, based on the combined use of neural network models and stochastic simulations. A stochastic simulation of the spatial component with a space-time trend model is proposed to characterize critical situations, taking into account data from the past and a space-time trend from the recent past. To identify near future critical episodes, predicted values from neural networks are used at each monitoring station. In this paper, we describe the design of a hybrid forecasting tool for ambient NO2 concentrations in Lisbon, Portugal.

  15. Statistical Short-Range Guidance for Peak Wind Speed Forecasts at Edwards Air Force Base, CA

    NASA Technical Reports Server (NTRS)

    Dreher, Joseph; Crawford, Winifred; Lafosse, Richard; Hoeth, Brian; Burns, Kerry

    2008-01-01

    The peak winds near the surface are an important forecast element for Space Shuttle landings. As defined in the Shuttle Flight Rules (FRs), there are peak wind thresholds that cannot be exceeded in order to ensure the safety of the shuttle during landing operations. The National Weather Service Spaceflight Meteorology Group (SMG) is responsible for weather forecasts for all shuttle landings. They indicate peak winds are a challenging parameter to forecast. To alleviate the difficulty in making such wind forecasts, the Applied Meteorology Unit (AMTJ) developed a personal computer based graphical user interface (GUI) for displaying peak wind climatology and probabilities of exceeding peak-wind thresholds for the Shuttle Landing Facility (SLF) at Kennedy Space Center. However, the shuttle must land at Edwards Air Force Base (EAFB) in southern California when weather conditions at Kennedy Space Center in Florida are not acceptable, so SMG forecasters requested that a similar tool be developed for EAFB. Marshall Space Flight Center (MSFC) personnel archived and performed quality control of 2-minute average and 10-minute peak wind speeds at each tower adjacent to the main runway at EAFB from 1997- 2004. They calculated wind climatologies and probabilities of average peak wind occurrence based on the average speed. The climatologies were calculated for each tower and month, and were stratified by hour, direction, and direction/hour. For the probabilities of peak wind occurrence, MSFC calculated empirical and modeled probabilities of meeting or exceeding specific 10-minute peak wind speeds using probability density functions. The AMU obtained and reformatted the data into Microsoft Excel PivotTables, which allows users to display different values with point-click-drag techniques. The GUT was then created from the PivotTables using Visual Basic for Applications code. The GUI is run through a macro within Microsoft Excel and allows forecasters to quickly display and

  16. Development of Water Quality Forecasting Models Based on the SOM-ANN on TMDL Unit Watershed in Nakdong River

    NASA Astrophysics Data System (ADS)

    KIM, M.; Kim, J.; Baek, J.; Kim, C.; Shin, H.

    2013-12-01

    It has being happened as flush flood or red/green tide in various natural phenomena due to climate change and indiscreet development of river or land. Especially, water being very important to man should be protected and managed from water quality pollution, and in water resources management, real-time watershed monitoring system is being operated with the purpose of keeping watch and managing on rivers. It is especially important to monitor and forecast water quality in watershed. A study area selected Nak_K as one site among TMDL unit watershed in Nakdong River. This study is to develop a water quality forecasting model connected with making full use of observed data of 8 day interval from Nakdong River Environment Research Center. When forecasting models for each of the BOD, DO, COD, and chlorophyll-a are established considering correlation of various water quality factors, it is needed to select water quality factors showing highly considerable correlation with each water quality factor which is BOD, DO, COD, and chlorophyll-a. For analyzing the correlation of the factors (reservoir discharge, precipitation, air temperature, DO, BOD, COD, Tw, TN, TP, chlorophyll-a), in this study, self-organizing map was used and cross correlation analysis method was also used for comparing results drawn. Based on the results, each forecasting model for BOD, DO, COD, and chlorophyll-a was developed during the short period as 8, 16, 24, 32 days at 8 day interval. The each forecasting model is based on neural network with back propagation algorithm. That is, the study is connected with self-organizing map for analyzing correlation among various factors and neural network model for forecasting of water quality. It is considerably effective to manage the water quality in plenty of rivers, then, it specially is possible to monitor a variety of accidents in water quality. It will work well to protect water quality and to prevent destruction of the environment becoming more and more

  17. Meteorological determinants of air quality

    NASA Astrophysics Data System (ADS)

    Turoldo, F.; Del Frate, S.; Gallai, I.; Giaiotti, D. B.; Montanari, F.; Stel, F.; Goi, D.

    2010-09-01

    Air quality is the result of complex phenomena, among which the major role is played by human emissions of pollutants. Atmospheric processes act as determinants, e.g., modulating, dumping or amplifying the effects of emissions as an orchestra's director does with musical instruments. In this work, a series of small-scale and meso-scale meteorological determinants of air-quality are presented as they are observed in an area characterized by complex orography (Friuli Venezia Giulia, in the north-eastern side of Italy). In particular, attention is devoted to: i) meso-scale flows favouring the persistence of high concentrations of particulate matter; ii) meso-scale periodic flows (breezes) favouring high values of particulate matter; iii) local-scale thermodynamic behaviour favouring high atmospheric values of nitrogen oxides. The effects of these different classes of determinants are shown through comparisons between anthropic emissions (mainly traffic) and ground-based measurements. The relevance of complex orography (relatively steep relieves near to the sea) is shown for the meso-scale flows and, in particular, for local-scale periodic flows, which favour the increase of high pollutants concentrations mainly in summer, when the breezes regime is particularly relevant. Part of these results have been achieved through the ETS - Alpine Space EU project iMONITRAF!

  18. Air Quality Criteria for Particulate Matter.

    ERIC Educational Resources Information Center

    National Air Pollution Control Administration (DHEW), Washington, DC.

    To assist states in developing air quality standards, this book offers a review of literature related to atmospheric particulates and the development of criteria for air quality. It not only summarizes the current scientific knowledge of particulate air pollution, but points up the major deficiencies in that knowledge and the need for further…

  19. EPA Pushing Improved Air Quality in Schools.

    ERIC Educational Resources Information Center

    Sack, Joetta L.

    2002-01-01

    Discusses how, in response to the growing problem of poor air quality in schools, the Environmental Protection Agency (EPA) has set new voluntary air-quality guidelines for schools. Addresses common air-related irritants; successful efforts at Guerrero Elementary School in Mesa, Arizona; preventive maintenance; and a sample of the EPA's…

  20. Extending the Applicability of the Community Multiscale Air Quality Model to Hemispheric Scales: Motivation, Challenges, and Progress

    EPA Science Inventory

    The adaptation of the Community Multiscale Air Quality (CMAQ) modeling system to simulate O3, particulate matter, and related precursor distributions over the northern hemisphere is presented. Hemispheric simulations with CMAQ and the Weather Research and Forecasting (...

  1. Just How Accurate are Your Probabilistic Forecasts? Improving Forecast Quality Assessment in the Presence of Sampling Uncertainty

    NASA Astrophysics Data System (ADS)

    Kang, T. H.; Sharma, A.; Marshall, L. A.

    2015-12-01

    Use of ensemble forecasts as a means of characterising predictive uncertainty has become increasingly common in hydrological and meteorological forecasting. The needs to characterize ensemble forecast quality has encouraged the development of reliable verification tools. Most of the metrics used currently are related to the Brier score, first proposed in 1950. However, the Brier score and its alterations including the decomposition of the Brier score, as well as the Ranked Probability Score, have paid little attention to the difference in the characteristics of the forecasted and sampled probability distributions. This difference, or the error in the probability distribution, can lead to a bias in all existing metrics derived from the Brier score. Similar biases arise where the second moment is different to that observed, or when the observations are scarce and hence difficult to characterise. Therefore, this study suggests simple and reliable measures for the first and second moment bias of the forecasted ensemble and in addition, approaches to analytically estimate the sampling uncertainty of the proposed measures. The proposed approaches are tested through synthetically generated hydrologic forecasts and observations, as well as seasonal forecasts of the El Nino Southern Oscillation issued by the International research Institute for Climate and Society (IRI-ENSO). The results show that the estimated uncertainty range of the first and second moment bias can accurately represent the sampling error under most circumstances in a real forecasting system.

  2. How to judge the quality and value of weather forecast products

    NASA Astrophysics Data System (ADS)

    Thornes, John E.; Stephenson, David B.

    2001-09-01

    In order to decide whether or not a weather service supplier is giving good value for money we need to monitor the quality of the forecasts and the use that is made of the forecasts to estimate their value. A number of verification statistics are examined to measure the quality of forecasts - including Miss Rate, False Alarm Rate, the Peirce Skill Score and the Odds Ratio Skill Score - and a means of testing the significance of these values is presented. In order to assess the economic value of the forecasts a value index is suggested that takes into account the cost-loss ratio and forecast errors. It is suggested that a combination of these quality and value statistics could be used by weather forecast customers to choose the best forecast provider and to set limits for performance related contracts.

  3. Indoor air quality: A psychosocial perspective

    SciTech Connect

    Boxer, P.A. )

    1990-05-01

    The incidence of indoor air quality problems has increased dramatically over the past decade. Investigation of these problems has yielded a definitive cause in only one third of the cases. Psychosocial factors may play a key role in the development and propagation of symptoms attributed to poor indoor air quality. Guidelines for managing indoor air quality problems from the organizational perspective are based upon psychosocial principles and elements of risk perception.

  4. Status and Roadmap of the Global Air Quality Data Network

    NASA Astrophysics Data System (ADS)

    Schultz, M. G.; Husar, R. B.

    2012-04-01

    With the recognition of air quality as a transboundary problem the need for harmonizing, harvesting and synthesizing air quality data on the continental and global scale has grown. Observational data from urban, rural and remote surface sites, from regular aircraft flights and from satellites are made available together with numerical analyses and forecasts of the atmospheric chemical composition through various databases, which are for historic reasons only loosely connected and rarely allow for a seamless, interoperable and easy access across different networks and data centers. A number of pilot services have been established under the auspices of the GEO Air Quality Community of Practice, and a meeting of this community in 2011 discussed the technical and semantic challenges for linking these services together and expanding the existing air quality data network. Key issues that were identified are the capability of existing server software to translate data formats and metadata requirements, the lack of a community-wide coherent set of metadata tags to identify data sets in catalogue applications, the need for clear rules to define the granularity of data sets in catalogues, the requirement of data traceability and information needs on calibration and modification records, and the ambiguities in the interpretation of current information exchange standards such as WCS and netcdf-CF. Particular challenges for exchanging air quality data result from the need for near-realtime information and from the necessity to obtain concurrent meteorological data in order to assess and interpret the air quality information. This presentation will summarize the present status of the air quality data network and provide a draft roadmap for the future development.

  5. Winter wheat quality monitoring and forecasting system based on remote sensing and environmental factors

    NASA Astrophysics Data System (ADS)

    Haiyang, Yu; Yanmei, Liu; Guijun, Yang; Xiaodong, Yang; Dong, Ren; Chenwei, Nie

    2014-03-01

    To achieve dynamic winter wheat quality monitoring and forecasting in larger scale regions, the objective of this study was to design and develop a winter wheat quality monitoring and forecasting system by using a remote sensing index and environmental factors. The winter wheat quality trend was forecasted before the harvest and quality was monitored after the harvest, respectively. The traditional quality-vegetation index from remote sensing monitoring and forecasting models were improved. Combining with latitude information, the vegetation index was used to estimate agronomy parameters which were related with winter wheat quality in the early stages for forecasting the quality trend. A combination of rainfall in May, temperature in May, illumination at later May, the soil available nitrogen content and other environmental factors established the quality monitoring model. Compared with a simple quality-vegetation index, the remote sensing monitoring and forecasting model used in this system get greatly improved accuracy. Winter wheat quality was monitored and forecasted based on the above models, and this system was completed based on WebGIS technology. Finally, in 2010 the operation process of winter wheat quality monitoring system was presented in Beijing, the monitoring and forecasting results was outputted as thematic maps.

  6. Lichen recolonization following air quality improvement

    SciTech Connect

    Showman, R.E.

    1981-01-01

    Air quality improvement near a coal-fired power plant led to recolonization of Parmelia caperata (L.) Ach. in a pollution-induced void area. Recolonization was first observed about four years after pollution abatement. Least-affected sites were slowest to recover. After eight years of improved air quality, the distribution of P. caperata has returned to near normal. Lichen biomonitoring is useful not only to detect the effects of poor air quality but to document air quality improvements as well. 5 references, 4 figures.

  7. Use of MODIS/AIRS Direct Broadcast Data for Short Term Weather Forecasting

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary

    2003-01-01

    Operational weather forecasting relies heavily on real time data and modeling products for forecast preparation and dissemination of significant weather information to the public. The key to this success is access to real time data and integration of the data and products into weather decision support systems. NASA's Short-term Prediction Research and Transition (SPORT) Program has demonstrated this capability with MODIS and AIRS data through several local NWS Forecast Offices. This presentation will describe the use of real time EOS Direct Broadcast (DB) data in local weather forecast operations, highlight the utility of real time data from the EOS DB systems, and provide insight into how EOS DB data can have the most impact on the weather forecast community.

  8. Air Quality Research and Applications Using AURA OMi Data

    NASA Technical Reports Server (NTRS)

    Bhartia, P.K.; Gleason, J.F.; Torres, O.; Levelt, P.; Liu, X.; Ziemke, J.; Chandra, S.; Krotkov, N.

    2007-01-01

    The Ozone Monitoring Instrument (OMI) on EOS Aura is a new generation of satellite remote sensing instrument designed to measure trace gas and aerosol absorption at the UV and blue wavelengths. These measurements are made globally at urban scale resolution with no inter-orbital gaps that make them potentially very useful for air quality research, such as the determination of the sources and processes that affect global and regional air quality, and to develop applications such as air quality forecast. However, the use of satellite data for such applications is not as straight forward as satellite data have been for stratospheric research. There is a need for close interaction between the satellite product developers, in-situ measurement programs, and the air quality research community to overcome some of the inherent difficulties in interpreting data from satellite-based remote sensing instruments. In this talk we will discuss the challenges and opportunities in using OMI products for air quality research and applications. A key conclusion of this work is that to realize the full potential of OMI measurements it will be necessary to combine OMI data with data from instruments such as MLS, MODIS, AIRS, and CALIPSO that are currently flying in the "A-train" satellite constellation. In addition similar data taken by satellites crossing the earth at different local times than the A-train (e.g., the recently MetOp satellite) would need to be processed in a consistent manner to study diurnal variability, and to capture the effects on air quality of rapidly changing events such as wild fires.

  9. Air Quality Index (AQI) -- A Guide to Air Quality and Your Health

    MedlinePlus

    ... the AQI value, the greater the level of air pollution and the greater the health concern. For example, ... to 50. Air quality is considered satisfactory, and air pollution poses little or no risk. "Moderate" AQI is ...

  10. Air Traffic Forecasting at the Port Authority of New York and New Jersey

    NASA Technical Reports Server (NTRS)

    Augustine, J. G.

    1972-01-01

    Procedures for conducting air traffic forecasts with specific application to the Port Authority of New York and New Jersey are discussed. The procedure relates air travel growth to detailed socio-economic and demographic characteristics of the U.S. population rather than to aggregate economic data such as Gross National Product, personal income, and industrial production. Charts are presented to show the relationship between various selected characteristics and the use of air transportation facilities.

  11. Introduction to Indoor Air Quality

    MedlinePlus

    ... as conditions caused by outdoor impacts (such as climate change). Many reports and studies indicate that the following ... Air Duct Cleaning Asthma Health, Energy Efficiency and Climate Change Flood Cleanup Home Remodel Indoor airPLUS Mold Radon ...

  12. 78 FR 30829 - Approval and Promulgation of Air Quality Implementation Plans; Illinois; Air Quality Standards...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-23

    ... AGENCY 40 CFR Part 52 Approval and Promulgation of Air Quality Implementation Plans; Illinois; Air... current national ambient air quality standards (NAAQS) for ozone, lead, and particulate matter. EPA is..., Control Strategies Section, Air Programs Branch (AR-18J), U.S. Environmental Protection Agency, 77...

  13. 76 FR 72097 - Air Quality Designations for the 2008 Lead (Pb) National Ambient Air Quality Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-22

    ... Environmental protection, Air pollution control, National parks, Wilderness areas. Dated: November 8, 2011. Lisa... AGENCY 40 CFR Part 81 RIN 2060-AR17 Air Quality Designations for the 2008 Lead (Pb) National Ambient Air... establishes air quality designations for most areas in the United States for the 2008 lead (Pb)...

  14. 40 CFR 52.1929 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.1929 Section 52.1929 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) Regulation for preventing significant deterioration of air... preventing significant deterioration of air quality....

  15. Indoor air quality investigation protocols

    SciTech Connect

    Greene, R.E.; Williams, P.L.

    1996-10-01

    Over the past 10 to 15 years, an increasing number of complaints about discomfort and health effects related to indoor air quality (IAQ) have been reported. The increase in complaints has been accompanied by an increase in requests for IAQ investigations. This study presents an overview of the many IAQ investigation protocols published since 1984. For analysis, the protocols are divided into four categories: solution-oriented, building diagnostics, industrial hygiene, and epidemiology. In general, the protocols begin with general observations, proceed to collect more specific data as indicated, and end with conclusions and recommendations. A generic IAQ protocol is presented that incorporates the common aspects of the various protocols. All of the current protocols place heavy emphasis on the ventilation system during the investigation. A major problem affecting all of the current protocols is the lack of generally accepted IAQ standards. IN addition, the use of questionnaires, occupant interviews, and personal diaries (as well as the point in the investigation at which they are administered) differs among the protocols. Medical evaluations and verification procedures also differ among the protocols.

  16. Air quality in Delhi during the CommonWealth Games

    NASA Astrophysics Data System (ADS)

    Marrapu, P.; Cheng, Y.; Beig, G.; Sahu, S.; Srinivas, R.; Carmichael, G. R.

    2014-04-01

    Air quality during The CommonWealth Games (CWG, held in Delhi in October 2010) is analyzed using a new air quality forecasting system established for the Games. The CWG stimulated enhanced efforts to monitor and model air quality in the region. The air quality of Delhi during the CWG had high levels of particles with mean values of PM2.5 and PM10 at the venues of 111 and 238 μg m-3, respectively. Black carbon (BC) accounted for ∼10% of the PM2.5 mass. It is shown that BC, PM2.5 and PM10 concentrations are well predicted, but with positive biases of ∼25%. The diurnal variations are also well captured, with both the observations and the modeled values showing nighttime maxima and daytime minima. A new emissions inventory, developed as part of this air quality forecasting initiative, is evaluated by comparing the observed and predicted species-species correlations (i.e., BC : CO; BC : PM2.5; PM2.5 : PM10). Assuming that the observations at these sites are representative and that all the model errors are associated with the emissions, then the modeled concentrations and slopes can be made consistent by scaling the emissions by: 0.6 for NOx, 2 for CO, and 0.7 for BC, PM2.5 and PM10. The emission estimates for particles are remarkably good considering the uncertainty in the estimates due to the diverse spread of activities and technologies that take place in Delhi and the rapid rates of change. The contribution of various emission sectors including transportation, power, domestic and industry to surface concentrations are also estimated. Transport, domestic and industrial sectors all make significant contributions to PM levels in Delhi, and the sectoral contributions vary spatially within the city. Ozone levels in Delhi are elevated, with hourly values sometimes exceeding 100 ppb. The continued growth of the transport sector is expected to make ozone pollution a more pressing air pollution problem in Delhi. The sector analysis provides useful inputs into the

  17. Air quality in Delhi during the Commonwealth Games

    NASA Astrophysics Data System (ADS)

    Marrapu, P.; Cheng, Y.; Beig, G.; Sahu, S.; Srinivas, R.; Carmichael, G. R.

    2014-10-01

    Air quality during the Commonwealth Games (CWG, held in Delhi in October 2010) is analyzed using a new air quality forecasting system established for the games. The CWG stimulated enhanced efforts to monitor and model air quality in the region. The air quality of Delhi during the CWG had high levels of particles with mean values of PM2.5 and PM10 at the venues of 111 and 238 μg m-3, respectively. Black carbon (BC) accounted for ~ 10% of the PM2.5 mass. It is shown that BC, PM2.5 and PM10 concentrations are well predicted, but with positive biases of ~ 25%. The diurnal variations are also well captured, with both the observations and the modeled values showing nighttime maxima and daytime minima. A new emissions inventory, developed as part of this air quality forecasting initiative, is evaluated by comparing the observed and predicted species-species correlations (i.e., BC : CO; BC : PM2.5; PM2.5 : PM10). Assuming that the observations at these sites are representative and that all the model errors are associated with the emissions, then the modeled concentrations and slopes can be made consistent by scaling the emissions by 0.6 for NOx, 2 for CO, and 0.7 for BC, PM2.5, and PM10. The emission estimates for particles are remarkably good considering the uncertainty in the estimates due to the diverse spread of activities and technologies that take place in Delhi and the rapid rates of change. The contribution of various emission sectors including transportation, power, domestic and industry to surface concentrations are also estimated. Transport, domestic and industrial sectors all make significant contributions to PM levels in Delhi, and the sectoral contributions vary spatially within the city. Ozone levels in Delhi are elevated, with hourly values sometimes exceeding 100 ppb. The continued growth of the transport sector is expected to make ozone pollution a more pressing air pollution problem in Delhi. The sector analysis provides useful inputs into the design of

  18. Air quality monitor and acid rain networks

    NASA Technical Reports Server (NTRS)

    Rudolph, H.

    1980-01-01

    The air quality monitor program which consists of two permanent air monitor stations (PAMS's) and four mobile shuttle pollutant air monitor stations (SPAMS's) is evaluated. The PAMS measures SO sub X, NO sub X particulates, CO, O3, and nonmethane hydrocarbons. The SPAMS measures O3, SO2, HCl, and particulates. The collection and analysis of data in the rain monitor program are discussed.

  19. 30 CFR 75.321 - Air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.321 Air quality. (a)(1) The air in areas where..., explosive, noxious, and harmful gases, dusts, smoke, and fumes. (2) The air in areas of bleeder entries...

  20. 40 CFR 240.205 - Air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Air quality. 240.205 Section 240.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.205 Air quality....

  1. 40 CFR 240.205 - Air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Air quality. 240.205 Section 240.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.205 Air quality....

  2. 40 CFR 240.205 - Air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Air quality. 240.205 Section 240.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.205 Air quality....

  3. 40 CFR 240.205 - Air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Air quality. 240.205 Section 240.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.205 Air quality....

  4. Air Quality Measurements for Science and Policy

    EPA Science Inventory

    Air quality measurements and the methods used to conduct them are vital to advancing our knowledge of the source-to-receptor-to-health effects continuum1-3. This information then forms the basis for evaluating and managing air quality to protect human health and welfa...

  5. Indoor Air Quality: A Guide for Educators.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento.

    Indoor air quality is a major concern for educators involved in the development of new school facilities, or the remodeling and maintenance of existing ones. This guide addresses the issue of air quality, the health concerns involved, and procedures for minimizing the impact of pollutants in the school environment. It defines common indoor air…

  6. 40 CFR 240.205 - Air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Air quality. 240.205 Section 240.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.205 Air quality....

  7. Source Emissions in Multipollutant Air Quality Management

    EPA Science Inventory

    Human activities and natural processes that emit pollutants into the ambient atmosphere are the underlying cause of all air quality problems. In a technical sense, we refer to these activities and processes as pollutant sources. Although air quality management is usually concerne...

  8. Breaking the Mold on Air Quality.

    ERIC Educational Resources Information Center

    NEA Today, 2001

    2001-01-01

    Indoor air quality is a growing problem in aging school buildings. The Environmental Protection Agency (EPA) offers an Indoor Air Quality Tools for Schools kit which is being used at schools nationwide to improve school maintenance. Profiles an aging school in Connecticut in which teachers were becoming ill to illustrate the use of the kit to…

  9. Air Quality Model System For The Vienna/bratislava Region

    NASA Astrophysics Data System (ADS)

    Krüger, B. C.; Schmittner, W.; Kromp-Kolb, H.

    A model system has been build up, consisting of the mesoscale meteorological fore- cast model MM5 and the chemical air-quality model CAMx. The coarse grid covers central Europe. By nesting, a spatial resolution of 3 km is reached for the core area, which includes the cities of Vienna (Austria) and Bratislava (Slovakia). In a first approach, the model system has been applied to a 6-day period in Febru- ary 1997, which was characterized by stagnant meteorological conditions. During this episode, primary pollutants like CO and NO2 have been compared with ambient mea- surements for the validation of the new model system. In the future it is foreseen to improve the spatial resolution, to apply the model system also for ozone and particulates, and to utilize it for a short-time forecast of air-quality parameters.

  10. AIRS: Improving Weather Forecasting and Providing New Data on Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Chahine, Moustafa T.; Pagano, Thomas S.; Aumann, Hartmut H.; Atlas, Robert; Barnet, Christopher; Blaisdell, John; Chen, Luke; Divakarla, Murty; Fetzer, Eric J.; Goldberg, Mitch; Gautier, Catherine; Granger, Stephanie; Hannon, Scott; Irion, Fredrick W; Kakar, Ramesh; Kalnay, Eugenia; Lambrigtsen, Bjorn H.; Lee, Sung-Yung; Marshall, John Le; McMillan, W. Wallace; McMillin, Larry; Olsen, Edward T.; Revercomb, Henry; Rosenkranz, Philip; Smith, William L.

    2006-01-01

    This paper discusses the performance of AIRS and examines how it is meeting its operational and research objectives based on the experience of more than 2 yr with AIRS data. We describe the science background and the performance of AIRS in terms of the accuracy and stability of its observed spectral radiances. We examine the validation of the retrieved temperature and water vapor profiles against collocated operational radiosondes, and then we assess the impact thereof on numerical weather forecasting of the assimilation of the AIRS spectra and the retrieved temperature. We close the paper with a discussion on the retrieval of several minor tropospheric constituents from AIRS spectra.

  11. Fundamentals of air quality systems

    SciTech Connect

    Noll, K.E.

    1999-08-01

    The book uses numerous examples to demonstrate how basic design concepts can be applied to the control of air emissions from industrial sources. It focuses on the design of air pollution control devices for the removal of gases and particles from industrial sources, and provides detailed, specific design methods for each major air pollution control system. Individual chapters provide design methods that include both theory and practice with emphasis on the practical aspect by providing numerous examples that demonstrate how air pollution control devices are designed. Contents include air pollution laws, air pollution control devices; physical properties of air, gas laws, energy concepts, pressure; motion of airborne particles, filter and water drop collection efficiency; fundamentals of particulate emission control; cyclones; fabric filters; wet scrubbers; electrostatic precipitators; control of volatile organic compounds; adsorption; incineration; absorption; control of gaseous emissions from motor vehicles; practice problems (with solutions) for the P.E. examination in environmental engineering. Design applications are featured throughout.

  12. Air Quality Monitoring: Risk-Based Choices

    NASA Technical Reports Server (NTRS)

    James, John T.

    2009-01-01

    Air monitoring is secondary to rigid control of risks to air quality. Air quality monitoring requires us to target the credible residual risks. Constraints on monitoring devices are severe. Must transition from archival to real-time, on-board monitoring. Must provide data to crew in a way that they can interpret findings. Dust management and monitoring may be a major concern for exploration class missions.

  13. Air quality risk assessment and management.

    PubMed

    Chen, Yue; Craig, Lorraine; Krewski, Daniel

    2008-01-01

    This article provides (1) a synthesis of the literature on the linkages between air pollution and human health, (2) an overview of quality management approaches in Canada, the United States, and the European Union (EU), and (3) future directions for air quality research. Numerous studies examining short-term effects of air pollution show significant associations between ambient levels of particulate matter (PM) and other air pollutants and increases in premature mortality and hospitalizations for cardiovascular and respiratory illnesses. Several well-designed epidemiological studies confirmed the adverse long-term effects of PM on both mortality and morbidity. Epidemiological studies also document significant associations between ozone (O3), sulfur (SO2), and nitrogen oxides (NO(x)) and adverse health outcomes; however, the effects of gaseous pollutants are less well documented. Subpopulations that are more susceptible to air pollution include children, the elderly, those with cardiorespiratory disease, and socioeconomically deprived individuals. Canada-wide standards for ambient air concentrations of PM2.5 and O3 were set in 2000, providing air quality targets to be achieved by 2010. In the United States, the Clean Air Act provides the framework for the establishment and review of National Ambient Air Quality Standards for criteria air pollutants and the establishment of emissions standards for hazardous air pollutants. The 1996 European Union's enactment of the Framework Directive for Air Quality established the process for setting Europe-wide limit values for a series of pollutants. The Clean Air for Europe program was established by the European Union to review existing limit values, emission ceilings, and abatement protocols, as set out in the current legislation. These initiatives serve as the legislative framework for air quality management in North America and Europe.

  14. Enhancing indoor air quality –The air filter advantage

    PubMed Central

    Vijayan, Vannan Kandi; Paramesh, Haralappa; Salvi, Sundeep Santosh; Dalal, Alpa Anil Kumar

    2015-01-01

    Air pollution has become the world's single biggest environmental health risk, linked to around 7 million deaths in 2012 according to a recent World Health Organisation (WHO) report. The new data further reveals a stronger link between, indoor and outdoor air pollution exposure and cardiovascular diseases, such as strokes and ischemic heart disease, as well as between air pollution and cancer. The role of air pollution in the development of respiratory diseases, including acute respiratory infections and chronic obstructive pulmonary diseases, is well known. While both indoor and outdoor pollution affect health, recent statistics on the impact of household indoor pollutants (HAP) is alarming. The WHO factsheet on HAP and health states that 3.8 million premature deaths annually - including stroke, ischemic heart disease, chronic obstructive pulmonary disease (COPD) and lung cancer are attributed to exposure to household air pollution. Use of air cleaners and filters are one of the suggested strategies to improve indoor air quality. This review discusses the impact of air pollutants with special focus on indoor air pollutants and the benefits of air filters in improving indoor air quality. PMID:26628762

  15. Enhancing indoor air quality -The air filter advantage.

    PubMed

    Vijayan, Vannan Kandi; Paramesh, Haralappa; Salvi, Sundeep Santosh; Dalal, Alpa Anil Kumar

    2015-01-01

    Air pollution has become the world's single biggest environmental health risk, linked to around 7 million deaths in 2012 according to a recent World Health Organisation (WHO) report. The new data further reveals a stronger link between, indoor and outdoor air pollution exposure and cardiovascular diseases, such as strokes and ischemic heart disease, as well as between air pollution and cancer. The role of air pollution in the development of respiratory diseases, including acute respiratory infections and chronic obstructive pulmonary diseases, is well known. While both indoor and outdoor pollution affect health, recent statistics on the impact of household indoor pollutants (HAP) is alarming. The WHO factsheet on HAP and health states that 3.8 million premature deaths annually - including stroke, ischemic heart disease, chronic obstructive pulmonary disease (COPD) and lung cancer are attributed to exposure to household air pollution. Use of air cleaners and filters are one of the suggested strategies to improve indoor air quality. This review discusses the impact of air pollutants with special focus on indoor air pollutants and the benefits of air filters in improving indoor air quality. PMID:26628762

  16. VIIRS Aerosol Optical Depth (AOD) Products for Air Quality Applications

    NASA Astrophysics Data System (ADS)

    Huff, A. K.; Zhang, H.; Kondragunta, S.; Laszlo, I.

    2014-12-01

    The air quality community uses satellite aerosol optical depth (AOD) for a variety of applications, including daily air quality forecasting, retrospective event analysis, and justification for Exceptional Events. AOD is suitable for ambient air quality applications because is related to particulate matter (e.g., PM2.5) concentrations in the atmosphere; higher values of AOD correspond to higher concentrations of particulate matter. AOD is useful for identifying and tracking areas of high PM2.5 concentrations that correspond to air quality events, such as wildfires, dust storms, or haze episodes. Currently, the air quality community utilizes AOD from the MODIS instrument on NASA's polar-orbiting Terra and Aqua satellites and from NOAA's GOES geostationary satellites (e.g, GASP). The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument on the Suomi-NPP satellite is making AOD measurements that are similar to MODIS AOD, but with higher spatial resolution. Two AOD products are available from VIIRS: the 750 m nadir resolution Intermediate Product (IP) and the 6 km resolution Environmental Data Record (EDR) product, which is aggregated from IP measurements. These VIIRS AOD products offer a substantial increase in spatial resolution compared to the MODIS AOD 3 km and 10 km AOD products, respectively. True color (RGB) imagery is also available from VIIRS as a decision aid for air quality applications. It serves as a complement to AOD measurements by providing visible information about areas of smoke, haze, and blowing dust in the atmosphere. Case studies of VIIRS AOD and RGB data for recent air quality events will be presented, with a focus on wildfires, and the relative pros and cons of the VIIRS AOD IP and EDR for air quality applications will be discussed in comparison to MODIS AOD products. Improvements to VIIRS aerosol products based on user feedback as part of the NOAA Satellite Air Quality Proving Ground (AQPG) will be outlined, and an overview of future

  17. A quality assessment of the MARS crop yield forecasting system for the European Union

    NASA Astrophysics Data System (ADS)

    van der Velde, Marijn; Bareuth, Bettina

    2015-04-01

    Timely information on crop production forecasts can become of increasing importance as commodity markets are more and more interconnected. Impacts across large crop production areas due to (e.g.) extreme weather and pest outbreaks can create ripple effects that may affect food prices and availability elsewhere. The MARS Unit (Monitoring Agricultural ResourceS), DG Joint Research Centre, European Commission, has been providing forecasts of European crop production levels since 1993. The operational crop production forecasting is carried out with the MARS Crop Yield Forecasting System (M-CYFS). The M-CYFS is used to monitor crop growth development, evaluate short-term effects of anomalous meteorological events, and provide monthly forecasts of crop yield at national and European Union level. The crop production forecasts are published in the so-called MARS bulletins. Forecasting crop yield over large areas in the operational context requires quality benchmarks. Here we present an analysis of the accuracy and skill of past crop yield forecasts of the main crops (e.g. soft wheat, grain maize), throughout the growing season, and specifically for the final forecast before harvest. Two simple benchmarks to assess the skill of the forecasts were defined as comparing the forecasts to 1) a forecast equal to the average yield and 2) a forecast using a linear trend established through the crop yield time-series. These reveal a variability in performance as a function of crop and Member State. In terms of production, the yield forecasts of 67% of the EU-28 soft wheat production and 80% of the EU-28 maize production have been forecast superior to both benchmarks during the 1993-2013 period. In a changing and increasingly variable climate crop yield forecasts can become increasingly valuable - provided they are used wisely. We end our presentation by discussing research activities that could contribute to this goal.

  18. A Peak Wind Probability Forecast Tool for Kennedy Space Center and Cape Canaveral Air Force Station

    NASA Technical Reports Server (NTRS)

    Crawford, Winifred; Roeder, William

    2008-01-01

    This conference abstract describes the development of a peak wind forecast tool to assist forecasters in determining the probability of violating launch commit criteria (LCC) at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) in east-central Florida. The peak winds are an important forecast element for both the Space Shuttle and Expendable Launch Vehicle (ELV) programs. The LCC define specific peak wind thresholds for each launch operation that cannot be exceeded in order to ensure the safety of the vehicle. The 45th Weather Squadron (45 WS) has found that peak winds are a challenging parameter to forecast, particularly in the cool season months of October through April. Based on the importance of forecasting peak winds, the 45 WS tasked the Applied Meteorology Unit (AMU) to develop a short-range peak-wind forecast tool to assist in forecasting LCC violatioas.The tool will include climatologies of the 5-minute mean end peak winds by month, hour, and direction, and probability distributions of the peak winds as a function of the 5-minute mean wind speeds.

  19. Forecasting the geographical spread of smallpox cases by air travel.

    PubMed Central

    Grais, R. F.; Ellis, J. H.; Glass, G. E.

    2003-01-01

    Instituting air travel restrictions to slow the geographical spread of smallpox cases would have significant consequences and present serious logistical concerns. Public health decision makers must weigh the potential benefits of such restrictions against their negative impact. The goal of this research is to provide a basic analytical framework to explore some of the issues surrounding the use of air travel restrictions as a part of an overall containment strategy. We report preliminary results of a compartmental model for the inter-city spread of smallpox cases resulting from US domestic air travel. Although air traffic can be halted within hours as was shown following the terrorist attacks of 11 September 2001, these results suggest that the consequences of halting domestic air travel may not be outweighed by public health benefits. PMID:14596525

  20. Breathing Easy over Air Quality.

    ERIC Educational Resources Information Center

    Greim, Clifton; Turner, William

    1991-01-01

    School systems should test the air in every school building for the presence and level of contaminants such as radon and asbestos and whether the ventilation system is circulating the proper amount of air. Periodic maintenance is required for all mechanical systems. (MLF)

  1. [Air quality control systems: heating, ventilating, and air conditioning (HVAC)].

    PubMed

    Bellucci Sessa, R; Riccio, G

    2004-01-01

    After a brief illustration of the principal layout schemes of Heating, Ventilating, and Air Conditioning (HVAC), the first part of this paper summarizes the standards, both voluntary and compulsory, regulating HVAC facilities design and installation with regard to the question of Indoor Air Quality (IAQ). The paper then examines the problem of ventilation systems maintenance and the essential hygienistic requirements in whose absence HVAC facilities may become a risk factor for people working or living in the building. Lastly, the paper deals with HVAC design strategies and methods, which aim not only to satisfy comfort and air quality requirements, but also to ensure easy and effective maintenance procedures.

  2. Forecasting the demand potential for STOL air transportation

    NASA Technical Reports Server (NTRS)

    Fan, S.; Horonjeff, R.; Kanafani, A.; Mogharabi, A.

    1973-01-01

    A process for predicting the potential demand for STOL aircraft was investigated to provide a conceptual framework, and an analytical methodology for estimating the STOL air transportation market. It was found that: (1) schedule frequency has the strongest effect on the traveler's choice among available routes, (2) work related business constitutes approximately 50% of total travel volume, and (3) air travel demand follows economic trends.

  3. Evaluating the Impact of Atmospheric Infrared Sounder (AIRS) Data On Convective Forecasts

    NASA Technical Reports Server (NTRS)

    Kozlowski, Danielle; Zavodsky, Bradley

    2011-01-01

    The Short-term Prediction Research and Transition Center (SPoRT) is a collaborative partnership between NASA and operational forecasting partners, including a number of National Weather Service (NWS) offices. SPoRT provides real-time NASA products and capabilities to its partners to address specific operational forecast challenges. The mission of SPoRT is to transition observations and research capabilities into operations to help improve short-term weather forecasts on a regional scale. Two areas of focus are data assimilation and modeling, which can to help accomplish SPoRT's programmatic goals of transitioning NASA data to operational users. Forecasting convective weather is one challenge that faces operational forecasters. Current numerical weather prediction (NWP) models that operational forecasters use struggle to properly forecast location, timing, intensity and/or mode of convection. Given the proper atmospheric conditions, convection can lead to severe weather. SPoRT's partners in the National Oceanic and Atmospheric Administration (NOAA) have a mission to protect the life and property of American citizens. This mission has been tested as recently as this 2011 severe weather season, which has seen more than 300 fatalities and injuries and total damages exceeding $10 billion. In fact, during the three day period from 25-27 April, 1,265 storms reports (362 tornado reports) were collected making this three day period one of most active in American history. To address the forecast challenge of convective weather, SPoRT produces a real-time NWP model called the SPoRT Weather Research and Forecasting (SPoRT-WRF), which incorporates unique NASA data sets. One of the NASA assets used in this unique model configuration is retrieved profiles from the Atmospheric Infrared Sounder (AIRS).The goal of this project is to determine the impact that these AIRS profiles have on the SPoRT-WRF forecasts by comparing to a current operational model and a control SPoRT-WRF model

  4. Air Quality Guide for Ozone

    MedlinePlus

    ... is one of our nation’s most common air pollutants. Use the chart below to help reduce your ... human health. Ozone forms when two types of pollutants (VOCs and NOx) react in sunlight. These pollutants ...

  5. 3D-AQS: a three-dimensional air quality system

    NASA Astrophysics Data System (ADS)

    Hoff, Raymond M.; Engel-Cox, Jill A.; Dimmick, Fred; Szykman, James J.; Johns, Brad; Kondragunta, Shobha; Rogers, Raymond; McCann, Kevin; Chu, D. Allen; Torres, Omar; Prados, Ana; Al-Saadi, Jassim; Kittaka, Chieko; Boothe, Vickie; Ackerman, Steve; Wimmers, Anthony

    2006-08-01

    In 2006, we began a three-year project funded by the NASA Integrated Decisions Support program to develop a three-dimensional air quality system (3D-AQS). The focus of 3D-AQS is on the integration of aerosol-related NASA Earth Science Data into key air quality decision support systems used for air quality management, forecasting, and public health tracking. These will include the U.S. Environmental Protection Agency (EPA)'s Air Quality System/AirQuest and AIRNow, Infusing satellite Data into Environmental Applications (IDEA) product, U.S. Air Quality weblog (Smog Blog) and the Regional East Atmospheric Lidar Mesonet (REALM). The project will result in greater accessibility of satellite and lidar datasets that, when used in conjunction with the ground-based particulate matter monitors, will enable monitoring across horizontal and vertical dimensions. Monitoring in multiple dimensions will enhance the air quality community's ability to monitor and forecast the geospatial extent and transboundary transport of air pollutants, particularly fine particulate matter. This paper describes the concept of this multisensor system and gives current examples of the types of products that will result from it.

  6. Call for improving air quality

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2013-01-01

    The European Environmental Bureau (EEB), a federation of citizen organizations, has called for stricter policies in Europe to protect human health and the environment. "Air pollution emanates from sources all around us, be they cars, industrial plants, shipping, agriculture, or waste. The [European Union] must propose ambitious legislation to address all of these sources if it is to tackle the grave public health consequences of air pollution," EEB secretary general Jeremy Wates said on 8 January.

  7. 77 FR 30087 - Air Quality Designations for the 2008 Ozone National Ambient Air Quality Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ... Columbia EPA Environmental Protection Agency FR Federal Register NAAQS National Ambient Air Quality... Environmental protection, Air pollution control, National parks, Wilderness areas. Dated: April 30, 2012. Lisa P... for the 2008 Ozone National Ambient Air Quality Standards; Implementation of the 2008 National...

  8. AIRQino, a low-cost air quality mobile platform

    NASA Astrophysics Data System (ADS)

    Zaldei, Alessandro; Vagnoli, Carolina; Di Lonardo, Sara; Gioli, Beniamino; Gualtieri, Giovanni; Toscano, Piero; Martelli, Francesca; Matese, Alessandro

    2015-04-01

    Recent air quality regulations (Directive 2008/50/EC) enforce the transition from point-based monitoring networks to new tools that must be capable of mapping and forecasting air quality on the totality of land area, and therefore the totality of citizens. This implies new technologies such as models and additional indicative measurements, are needed in addition to accurate fixed air quality monitoring stations, that until now have been taken as reference by local administrators for the enforcement of various mitigation strategies. However, due to their sporadic spatial distribution, they cannot describe the highly resolved spatial pollutant variations within cities. Integrating additional indicative measurements may provide adequate information on the spatial distribution of the ambient air quality, also allowing for a reduction of the required minimum number of fixed sampling points, whose high cost and complex maintenance still remain a crucial concern for local administrators. New low-cost and small size sensors are becoming available, that could be employed in air quality monitoring including mobile applications. However, accurate assessment of their accuracy and performance both in controlled and real monitoring conditions is crucially needed. Quantifying sensor response is a significant challenge due to the sensitivity to ambient temperature and humidity and the cross-sensitivity to others pollutant species. This study reports the development of an Arduino compatible electronic board (AIRQino) which integrates a series of low-cost metal oxide and NDIR sensors for air quality monitoring, with sensors to measure air temperature, relative humidity, noise, solar radiation and vertical acceleration. A comparative assessment was made for CO2, CO, NO2, CH4, O3, VOCs concentrations, temperature and relative humidity. A controlled climatic chamber study (-80°C / +80°C) was performed to verify temperature and humidity interference using reference gas cylinders and

  9. Air quality and future energy system planning

    NASA Astrophysics Data System (ADS)

    Sobral Mourao, Zenaida; Konadu, Dennis; Lupton, Rick

    2016-04-01

    Ambient air pollution has been linked to an increasing number of premature deaths throughout the world. Projected increases in demand for food, energy resources and manufactured products will likely contribute to exacerbate air pollution with an increasing impact on human health, agricultural productivity and climate change. Current events such as tampering emissions tests by VW car manufacturers, failure to comply with EU Air Quality directives and WHO guidelines by many EU countries, the problem of smog in Chinese cities and new industrial emissions regulations represent unique challenges but also opportunities for regulators, local authorities and industry. However current models and practices of energy and resource use do not consider ambient air impacts as an integral part of the planing process. Furthermore the analysis of drivers, sources and impacts of air pollution is often fragmented, difficult to understand and lacks effective visualization tools that bring all of these components together. This work aims to develop a model that links impacts of air quality on human health and ecosystems to current and future developments in the energy system, industrial and agricultural activity and patterns of land use. The model will be added to the ForeseerTM tool, which is an integrated resource analysis platform that has been developed at the University of Cambridge initially with funding from BP and more recently through the EPSRC funded Whole Systems Energy Modeling (WholeSEM) project. The basis of the tool is a set of linked physical models for energy, water and land, including the technologies that are used to transform these resources into final services such as housing, food, transport and household goods. The new air quality model will explore different feedback effects between energy, land and atmospheric systems with the overarching goal of supporting better communication about the drivers of air quality and to incorporate concerns about air quality into

  10. Monitoring Air Quality with Leaf Yeasts.

    ERIC Educational Resources Information Center

    Richardson, D. H. S.; And Others

    1985-01-01

    Proposes that leaf yeast serve as quick, inexpensive, and effective techniques for monitoring air quality. Outlines procedures and provides suggestions for data analysis. Includes results from sample school groups who employed this technique. (ML)

  11. Air Quality Science and Regulatory Efforts Require Geostationary Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Pickering, Kenneth E.; Allen, D. J.; Stehr, J. W.

    2006-01-01

    Air quality scientists and regulatory agencies would benefit from the high spatial and temporal resolution trace gas and aerosol data that could be provided by instruments on a geostationary platform. More detailed time-resolved data from a geostationary platform could be used in tracking regional transport and in evaluating mesoscale air quality model performance in terms of photochemical evolution throughout the day. The diurnal cycle of photochemical pollutants is currently missing from the data provided by the current generation of atmospheric chemistry satellites which provide only one measurement per day. Often peak surface ozone mixing ratios are reached much earlier in the day during major regional pollution episodes than during local episodes due to downward mixing of ozone that had been transported above the boundary layer overnight. The regional air quality models often do not simulate this downward mixing well enough and underestimate surface ozone in regional episodes. Having high time-resolution geostationary data will make it possible to determine the magnitude of this lower-and mid-tropospheric transport that contributes to peak eight-hour average ozone and 24-hour average PM2.5 concentrations. We will show ozone and PM(sub 2.5) episodes from the CMAQ model and suggest ways in which geostationary satellite data would improve air quality forecasting. Current regulatory modeling is typically being performed at 12 km horizontal resolution. State and regional air quality regulators in regions with complex topography and/or land-sea breezes are anxious to move to 4-km or finer resolution simulations. Geostationary data at these or finer resolutions will be useful in evaluating such models.

  12. Statistical Short-Range Guidance for Peak Wind Speed Forecasts at Edwards Air Force Base, CA

    NASA Technical Reports Server (NTRS)

    Dreher, Joseph G.; Crawford, Winifred; Lafosse, Richard; Hoeth, Brian; Burns, Kerry

    2009-01-01

    The peak winds near the surface are an important forecast element for space shuttle landings. As defined in the Flight Rules (FR), there are peak wind thresholds that cannot be exceeded in order to ensure the safety of the shuttle during landing operations. The National Weather Service Spaceflight Meteorology Group (SMG) is responsible for weather forecasts for all shuttle landings, and is required to issue surface average and 10-minute peak wind speed forecasts. They indicate peak winds are a challenging parameter to forecast. To alleviate the difficulty in making such wind forecasts, the Applied Meteorology Unit (AMU) developed a PC-based graphical user interface (GUI) for displaying peak wind climatology and probabilities of exceeding peak wind thresholds for the Shuttle Landing Facility (SLF) at Kennedy Space Center (KSC; Lambert 2003). However, the shuttle occasionally may land at Edwards Air Force Base (EAFB) in southern California when weather conditions at KSC in Florida are not acceptable, so SMG forecasters requested a similar tool be developed for EAFB.

  13. Urban air quality estimation study, phase 1

    NASA Technical Reports Server (NTRS)

    Diamante, J. M.; Englar, T. S., Jr.; Jazwinski, A. H.

    1976-01-01

    Possibilities are explored for applying estimation theory to the analysis, interpretation, and use of air quality measurements in conjunction with simulation models to provide a cost effective method of obtaining reliable air quality estimates for wide urban areas. The physical phenomenology of real atmospheric plumes from elevated localized sources is discussed. A fluctuating plume dispersion model is derived. Individual plume parameter formulations are developed along with associated a priori information. Individual measurement models are developed.

  14. Overview of the Diagnostic Cloud Forecast Model at the Air Force Weather Agency

    NASA Astrophysics Data System (ADS)

    Hildebrand, E. P.

    2014-12-01

    The Air Force Weather Agency (AFWA) is responsible for running and maintaining the Diagnostic Cloud Forecast (DCF) model to support DoD missions and those of their external partners. The DCF model generates three-dimensional cloud forecasts for global and regional domains at various resolutions. Regional domains are chosen based on Air Force mission needs. DCF is purely a statistical model that can be appended to any numerical weather prediction (NWP) model. Operationally, AFWA runs the DCF model deterministically using GFS data from NCEP and WRF data that are created in-house. In addition, AFWA also runs an ensemble version of the DCF model using the Mesoscale Ensemble Prediction System (MEPS). The deterministic DCF uses predictor variables from the WRF or GFS models, depending on whether the domain is regional or global, and statistically relates them to observed cloud cover from the World-Wide Merged Cloud Analysis (WWMCA). The forecast process of the model uses an ordinal logistic regression to predict membership in one of 101 groups (every 1% from 0-100%). The predicted group membership then is translated into a cloud amount. This is performed on 21 pressure levels ranging from 1000 hPa to 100 hPa. Cloud amount forecasts on these 21 levels are used along with the NWP geopotential height forecasts to estimate the base and top heights of cloud layers in the vertical. DCF also includes routines to estimate the amount and type of cloud within each layer. Forecasts of total cloud amount are verified using the WWMCA, as well as independent sources of cloud data. This presentation will include an overview of the DCF model and its use at AFWA. Results will be presented to show that DCF adds value over the raw cloud forecasts from NWP models. Ideas for future work also will be addressed.

  15. MANAGING INDOOR AIR QUALITY IN THE USA

    EPA Science Inventory

    The paper gives an overview of managing indoor air quality (IAQ) in the U.S. In contrast to outdoor air, which is regulated through various federal and state statutes, there is no unified and comprehensive governmental regulation of IAQ. Therefore, IAQ is managed through variou...

  16. 32 CFR 989.30 - Air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... been implemented by regulation, 40 CFR 93, Subpart B. All EIAP documents must address applicable... 32 National Defense 6 2010-07-01 2010-07-01 false Air quality. 989.30 Section 989.30 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE ENVIRONMENTAL...

  17. Air quality management in the United States

    SciTech Connect

    William Chameides; Daniel Greenbaum; Raymond Wassel; K. John Holmes; Karl Gustavson; Amanda Staudt

    2005-07-01

    In 2004, the National Research Council released Air Quality Management in the United States, a report prepared in response to a congressional request for an independent evaluation of the overall effectiveness of the Clean Air Act. Based on that report, this article summarizes the committee's findings and recommendations. 10 refs., 2 figs.

  18. Improving Regional Air Quality with Wind Energy

    SciTech Connect

    Not Available

    2005-05-01

    This model documentation is designed to assist State and local governments in pursuing wind energy purchases as a control measure under regional air quality plans. It is intended to support efforts to draft State Implementation Plans (SIPs), including wind energy purchases, to ensure compliance with the standard for ground-level ozone established under the Clean Air Act.

  19. Air Quality Instrumentation. Volume 2.

    ERIC Educational Resources Information Center

    Scales, John W., Ed.

    To insure a wide dissemination of information describing advances in measurement and control techniques, the Instrument Society of America (ISA) has published this monograph of selected papers, the second in a series, from recent ISA symposia dealing with air pollution. Papers range from a discussion of individual pollutant measurements to…

  20. Air Quality Instrumentation. Volume 1.

    ERIC Educational Resources Information Center

    Scales, John W., Ed.

    To insure a wide dissemination of information describing advances in measurement and control techniques, the Instrument Society of America (ISA) has published this monograph of selected papers from recent ISA symposia dealing with air pollution. Papers range from a discussion of some relatively new applications of proven techniques to discussions…

  1. SAMIRA - SAtellite based Monitoring Initiative for Regional Air quality

    NASA Astrophysics Data System (ADS)

    Schneider, Philipp; Stebel, Kerstin; Ajtai, Nicolae; Diamandi, Andrei; Horalek, Jan; Nicolae, Doina; Stachlewska, Iwona; Zehner, Claus

    2016-04-01

    Here, we present a new ESA-funded project entitled Satellite based Monitoring Initiative for Regional Air quality (SAMIRA), which aims at improving regional and local air quality monitoring through synergetic use of data from present and upcoming satellites, traditionally used in situ air quality monitoring networks and output from chemical transport models. Through collaborative efforts in four countries, namely Romania, Poland, the Czech Republic and Norway, all with existing air quality problems, SAMIRA intends to support the involved institutions and associated users in their national monitoring and reporting mandates as well as to generate novel research in this area. Despite considerable improvements in the past decades, Europe is still far from achieving levels of air quality that do not pose unacceptable hazards to humans and the environment. Main concerns in Europe are exceedances of particulate matter (PM), ground-level ozone, benzo(a)pyrene (BaP) and nitrogen dioxide (NO2). While overall sulfur dioxide (SO2) emissions have decreased in recent years, regional concentrations can still be high in some areas. The objectives of SAMIRA are to improve algorithms for the retrieval of hourly aerosol optical depth (AOD) maps from SEVIRI, and to develop robust methods for deriving column- and near-surface PM maps for the study area by combining satellite AOD with information from regional models. The benefit to existing monitoring networks (in situ, models, satellite) by combining these datasets using data fusion methods will be tested for satellite-based NO2, SO2, and PM/AOD. Furthermore, SAMIRA will test and apply techniques for downscaling air quality-related EO products to a spatial resolution that is more in line with what is generally required for studying urban and regional scale air quality. This will be demonstrated for a set of study sites that include the capitals of the four countries and the highly polluted areas along the border of Poland and the

  2. 40 CFR 52.499 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.499 Section 52.499 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  3. 40 CFR 52.1603 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.1603 Section 52.1603 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  4. 40 CFR 52.432 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.432 Section 52.432 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulation for preventing significant deterioration of air quality. The provisions...

  5. 40 CFR 52.632 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.632 Section 52.632 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  6. 40 CFR 52.2827 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.2827 Section 52.2827 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  7. 40 CFR 52.2676 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.2676 Section 52.2676 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  8. 40 CFR 52.499 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.499 Section 52.499 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  9. 40 CFR 52.499 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.499 Section 52.499 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  10. 40 CFR 52.2827 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.2827 Section 52.2827 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  11. 40 CFR 52.2729 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.2729 Section 52.2729 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  12. 40 CFR 52.499 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.499 Section 52.499 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  13. 40 CFR 52.432 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.432 Section 52.432 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulation for preventing significant deterioration of air quality. The provisions...

  14. 40 CFR 52.793 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.793 Section 52.793 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  15. 40 CFR 52.1884 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.1884 Section 52.1884 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  16. 40 CFR 52.738 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.738 Section 52.738 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  17. 40 CFR 52.1165 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.1165 Section 52.1165 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulation for preventing significant deterioration of air quality....

  18. 40 CFR 52.2729 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.2729 Section 52.2729 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  19. 40 CFR 52.793 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.793 Section 52.793 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  20. 40 CFR 52.1884 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.1884 Section 52.1884 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  1. 40 CFR 52.1884 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.1884 Section 52.1884 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  2. 40 CFR 52.1165 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.1165 Section 52.1165 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulation for preventing significant deterioration of air quality....

  3. 40 CFR 52.2497 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.2497 Section 52.2497 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  4. 40 CFR 52.793 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.793 Section 52.793 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  5. 40 CFR 52.1603 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.1603 Section 52.1603 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  6. 40 CFR 52.1180 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.1180 Section 52.1180 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  7. 40 CFR 52.738 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.738 Section 52.738 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  8. 40 CFR 52.793 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.793 Section 52.793 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  9. 40 CFR 52.2676 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.2676 Section 52.2676 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  10. 40 CFR 52.2497 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.2497 Section 52.2497 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  11. 40 CFR 52.632 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.632 Section 52.632 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  12. 40 CFR 52.2729 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.2729 Section 52.2729 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  13. 40 CFR 52.96 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.96 Section 52.96 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The State of Alaska Department of Environmental Conservation Air Quality... deterioration of air quality. (b) The requirements of sections 160 through 165 of the Clean Air Act are not...

  14. 40 CFR 52.1603 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.1603 Section 52.1603 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  15. 40 CFR 52.2676 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.2676 Section 52.2676 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  16. 40 CFR 52.2497 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.2497 Section 52.2497 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  17. 40 CFR 52.1603 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.1603 Section 52.1603 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  18. 40 CFR 52.2827 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.2827 Section 52.2827 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  19. 40 CFR 52.2779 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.2779 Section 52.2779 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  20. 40 CFR 52.432 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.432 Section 52.432 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulation for preventing significant deterioration of air quality. The provisions...

  1. 40 CFR 52.1180 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.1180 Section 52.1180 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  2. 40 CFR 52.2497 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.2497 Section 52.2497 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  3. 40 CFR 52.632 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.632 Section 52.632 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  4. 40 CFR 52.1180 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.1180 Section 52.1180 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  5. 40 CFR 52.1165 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.1165 Section 52.1165 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulation for preventing significant deterioration of air quality....

  6. 40 CFR 52.2729 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.2729 Section 52.2729 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  7. 40 CFR 52.738 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.738 Section 52.738 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  8. 40 CFR 52.632 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.632 Section 52.632 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  9. 40 CFR 52.2497 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.2497 Section 52.2497 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  10. 40 CFR 52.1165 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.1165 Section 52.1165 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulation for preventing significant deterioration of air quality....

  11. 40 CFR 52.2827 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.2827 Section 52.2827 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  12. 40 CFR 52.2729 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.2729 Section 52.2729 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  13. 40 CFR 52.2779 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.2779 Section 52.2779 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  14. 40 CFR 52.1180 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.1180 Section 52.1180 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  15. 40 CFR 52.632 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.632 Section 52.632 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  16. 40 CFR 52.1603 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.1603 Section 52.1603 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  17. 40 CFR 52.738 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.738 Section 52.738 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  18. 40 CFR 52.2676 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.2676 Section 52.2676 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  19. 40 CFR 52.2779 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.2779 Section 52.2779 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  20. 40 CFR 52.1165 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.1165 Section 52.1165 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulation for preventing significant deterioration of air quality....

  1. 40 CFR 52.1180 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.1180 Section 52.1180 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  2. 40 CFR 52.2779 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.2779 Section 52.2779 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  3. 40 CFR 52.2676 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.2676 Section 52.2676 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  4. 40 CFR 52.738 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.738 Section 52.738 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  5. 40 CFR 52.2827 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.2827 Section 52.2827 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  6. 40 CFR 52.1884 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.1884 Section 52.1884 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  7. 40 CFR 52.499 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.499 Section 52.499 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  8. 40 CFR 52.1689 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.1689 Section 52.1689 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  9. 40 CFR 52.2779 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.2779 Section 52.2779 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  10. 40 CFR 52.1884 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.1884 Section 52.1884 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  11. Inverse modelling of air quality data through a neural network approach

    NASA Astrophysics Data System (ADS)

    Russo, A.; Soares, A.; Trigo, R. M.; Pereira, M. J.

    2009-04-01

    Air quality is usually driven by a complex combination of factors where meteorology, physical obstacles and interaction between pollutants play significant roles. Considering the characteristics of the atmospheric circulation and also the residence times of certain pollutants in the atmosphere, air pollution is, nowadays, considered to be a global problem that affects everyone. As a result, a generalized and growing interest on air quality issues led to research intensification and publication of several articles with quite different levels of scientific depth. The main objective of this work is to produce an air quality model which allows forecasting critical concentration episodes of a certain pollutant by means of neural network modelling. In this paper, we describe the development of a neural network tool to forecast the daily average NO2 concentrations in Lisbon, Portugal, one day ahead. This research is based upon measurements from 22 air quality monitoring stations during the period 2001-2005. The analysis revealed that the most significant variable in predicting NO2 daily concentration is the previous day value of NO2 concentration followed by the 5a.m. NO2 concentration. This approach shows to be very promising for urban air quality characterization, allowing further developments in order to produce an integrated air quality and health surveillance/monitoring system in the area of Lisbon.

  12. Cabin air quality. Aerospace Medical Association.

    PubMed

    Thibeault, C

    1997-01-01

    Cabin Air Quality has generated considerable public and workers' concern and controversy in the last few years. To clarify the situation, AsMA requested the Passenger Health Subcommittee of the Air Transport Medicine Committee to review the situation and prepare a position statement. After identifying the various sources of confusion, we review the scientifically accepted facts in the different elements involved in Cabin Air Quality: pressurization, ventilation, contaminants, humidity and temperature. At the same time, we identify areas that need more research and make recommendations accordingly.

  13. Meteorological air pollution potential for Santiago, Chile: Towards an objective episode forecasting.

    PubMed

    Rutllant, J; Garreaud, R

    1995-02-01

    The geography and climate of the Santiago basin are, in general, unfavorable for the diffusion of air pollutants. Consequently, extreme events occur frequently during the high pollution season extending from April to August. The meteorological conditions concurrent with those extreme events are mainly associated with the leading edges of coastal lows that bring down the base of the semipermanent temperature inversion reducing the dirunal growth of the surface mixed layer. In order to produce an objective 12 to 24-hour episode forecast, a two-way multivariate discriminant analysis has been used in the definition of a meteorological air-pollution potential index (MAPPI), separating high and low meteorological air-pollution potential days. The same procedure has been applied in the selection of the most efficient predictors for the MAPPI objective forecast, based on 12 and 24 UTC radiosonde data at Quintero, about 100 km to the NW of Santiago. Results indicate about 70% correctly forecasted days, with satisfactory skill-scores relative to persistency. The strong persistency characterizing the most efficient predictors in the 12-hour objective forecast scheme, makes the prediction of the first and last days of any particular air-pollution potential episode particularly difficult. To overcome this problem, a new set of predictors based on continuous measurements near the level of the top of the temperature inversion layer (900 hPa during air-pollution episodes) is being tested. Preliminary results indicate that the time-integrated zonal wind component at that level is a reliable precursor for both the onset and the end of air-pollution potential episodes. PMID:24202138

  14. Future directions of meteorology related to air-quality research.

    PubMed

    Seaman, Nelson L

    2003-06-01

    Meteorology is one of the major factors contributing to air-pollution episodes. More accurate representation of meteorological fields has been possible in recent years through the use of remote sensing systems, high-speed computers and fine-mesh meteorological models. Over the next 5-20 years, better meteorological inputs for air quality studies will depend on making better use of a wealth of new remotely sensed observations in more advanced data assimilation systems. However, for fine mesh models to be successful, parameterizations used to represent physical processes must be redesigned to be more precise and better adapted for the scales at which they will be applied. Candidates for significant overhaul include schemes to represent turbulence, deep convection, shallow clouds, and land-surface processes. Improvements in the meteorological observing systems, data assimilation and modeling, coupled with advancements in air-chemistry modeling, will soon lead to operational forecasting of air quality in the US. Predictive capabilities can be expected to grow rapidly over the next decade. This will open the way for a number of valuable new services and strategies, including better warnings of unhealthy atmospheric conditions, event-dependent emissions restrictions, and now casting support for homeland security in the event of toxic releases into the atmosphere.

  15. Assimilation of Quality Controlled AIRS Temperature Profiles using the NCEP GFS

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Reale, Oreste; Iredell, Lena; Rosenberg, Robert

    2013-01-01

    We have previously conducted a number of data assimilation experiments using AIRS Version-5 quality controlled temperature profiles as a step toward finding an optimum balance of spatial coverage and sounding accuracy with regard to improving forecast skill. The data assimilation and forecast system we used was the Goddard Earth Observing System Model , Version-5 (GEOS-5) Data Assimilation System (DAS), which represents a combination of the NASA GEOS-5 forecast model with the National Centers for Environmental Prediction (NCEP) operational Grid Point Statistical Interpolation (GSI) global analysis scheme. All analyses and forecasts were run at a 0.5deg x 0.625deg spatial resolution. Data assimilation experiments were conducted in four different seasons, each in a different year. Three different sets of data assimilation experiments were run during each time period: Control; AIRS T(p); and AIRS Radiance. In the "Control" analysis, all the data used operationally by NCEP was assimilated, but no AIRS data was assimilated. Radiances from the Aqua AMSU-A instrument were also assimilated operationally by NCEP and are included in the "Control". The AIRS Radiance assimilation adds AIRS observed radiance observations for a select set of channels to the data set being assimilated, as done operationally by NCEP. In the AIRS T(p) assimilation, all information used in the Control was assimilated as well as Quality Controlled AIRS Version-5 temperature profiles, i.e., AIRS T(p) information was substituted for AIRS radiance information. The AIRS Version-5 temperature profiles were presented to the GSI analysis as rawinsonde profiles, assimilated down to a case-by-case appropriate pressure level p(sub best) determined using the Quality Control procedure. Version-5 also determines case-by-case, level-by-level error estimates of the temperature profiles, which were used as the uncertainty of each temperature measurement. These experiments using GEOS-5 have shown that forecasts

  16. Forecasting Cool Season Daily Peak Winds at Kennedy Space Center and Cape Canaveral Air Force Station

    NASA Technical Reports Server (NTRS)

    Barrett, Joe, III; Short, David; Roeder, William

    2008-01-01

    The expected peak wind speed for the day is an important element in the daily 24-Hour and Weekly Planning Forecasts issued by the 45th Weather Squadron (45 WS) for planning operations at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The morning outlook for peak speeds also begins the warning decision process for gusts ^ 35 kt, ^ 50 kt, and ^ 60 kt from the surface to 300 ft. The 45 WS forecasters have indicated that peak wind speeds are a challenging parameter to forecast during the cool season (October-April). The 45 WS requested that the Applied Meteorology Unit (AMU) develop a tool to help them forecast the speed and timing of the daily peak and average wind, from the surface to 300 ft on KSC/CCAFS during the cool season. The tool must only use data available by 1200 UTC to support the issue time of the Planning Forecasts. Based on observations from the KSC/CCAFS wind tower network, surface observations from the Shuttle Landing Facility (SLF), and CCAFS upper-air soundings from the cool season months of October 2002 to February 2007, the AMU created multiple linear regression equations to predict the timing and speed of the daily peak wind speed, as well as the background average wind speed. Several possible predictors were evaluated, including persistence, the temperature inversion depth, strength, and wind speed at the top of the inversion, wind gust factor (ratio of peak wind speed to average wind speed), synoptic weather pattern, occurrence of precipitation at the SLF, and strongest wind in the lowest 3000 ft, 4000 ft, or 5000 ft. Six synoptic patterns were identified: 1) surface high near or over FL, 2) surface high north or east of FL, 3) surface high south or west of FL, 4) surface front approaching FL, 5) surface front across central FL, and 6) surface front across south FL. The following six predictors were selected: 1) inversion depth, 2) inversion strength, 3) wind gust factor, 4) synoptic weather pattern, 5) occurrence of

  17. Weather Research and Forecasting Model Wind Sensitivity Study at Edwards Air Force Base, CA

    NASA Technical Reports Server (NTRS)

    Watson, Leela R.; Bauman, William H., III

    2008-01-01

    NASA prefers to land the space shuttle at Kennedy Space Center (KSC). When weather conditions violate Flight Rules at KSC, NASA will usually divert the shuttle landing to Edwards Air Force Base (EAFB) in Southern California. But forecasting surface winds at EAFB is a challenge for the Spaceflight Meteorology Group (SMG) forecasters due to the complex terrain that surrounds EAFB, One particular phenomena identified by SMG is that makes it difficult to forecast the EAFB surface winds is called "wind cycling". This occurs when wind speeds and directions oscillate among towers near the EAFB runway leading to a challenging deorbit bum forecast for shuttle landings. The large-scale numerical weather prediction models cannot properly resolve the wind field due to their coarse horizontal resolutions, so a properly tuned high-resolution mesoscale model is needed. The Weather Research and Forecasting (WRF) model meets this requirement. The AMU assessed the different WRF model options to determine which configuration best predicted surface wind speed and direction at EAFB, To do so, the AMU compared the WRF model performance using two hot start initializations with the Advanced Research WRF and Non-hydrostatic Mesoscale Model dynamical cores and compared model performance while varying the physics options.

  18. There's Something in the Air: Indoor Air Quality in Schools.

    ERIC Educational Resources Information Center

    Schmidt, Edward A.

    1994-01-01

    Part 1 of this article, the first in a three-part series of articles that discuss indoor air quality (IAQ) issues affecting schools, provides a general overview of IAQ and discusses the three major health problems associated with IAQ: sick building syndrome, building-related illness, and multiple chemical sensitivity. (MLF)

  19. The biofiltration of indoor air: implications for air quality.

    PubMed

    Darlington, A; Chan, M; Malloch, D; Pilger, C; Dixon, M A

    2000-03-01

    An alternative method of maintaining indoor air quality may be through the biofiltration of air recirculating within the structure rather than the traditional approach of ventilation. This approach is currently being investigated. Prior to its acceptance for dealing with volatile organic compounds (VOCs) and CO2, efforts were made to determine whether the incorporation of this amount of biomass into the indoor space can have an (negative) impact on indoor air quality. A relatively large ecologically complex biofilter composed of a ca. 10 m2 bioscrubber, 30 m2 of plantings and a 3,500 litre aquarium were established in a 160 m2 'airtight' room in a recently constructed office building in downtown Toronto. This space maintained ca. 0.2 air changes per hour (ACH) compared to the 15 to 20 ACH (with a 30% refresh rate) of other spaces in the same building. Air quality parameters of concern were total VOCs (TVOCs), formaldehyde and aerial spore counts. TVOC and formaldehyde levels in the biofilter room were the same or significantly less than other spaces in the building despite a much slower refresh rate. Aerial spore levels were slightly higher than other indoor spaces but were well within reported values for 'healthy' indoor spaces. Levels appeared to be dependent on horticultural management practices within the space. Most genera of fungal spores present were common indoors and the other genera were associated with living or dead plant material or soil. From these results, the incorporation of a large amount of biomass associated with indoor biofilters does not in itself lower indoor air quality.

  20. 76 FR 76048 - Air Quality Designations for the 2008 Lead (Pb) National Ambient Air Quality Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-06

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 81 RIN 2060-AR17 Air Quality Designations for the 2008 Lead (Pb) National Ambient Air Quality Standards Correction In rule document 2011-29460 appearing on pages 72097-72120 in the issues...

  1. Quantifying architectural painting VOC air emissions - a methodology with estimates and forecasts

    SciTech Connect

    Anderson, S.P.; Rubick, C.

    1996-12-31

    Architectural coatings (referred to as paints), with the thinners/reducers and cleanup solvents used during their application, contain volatile organic compounds (VOCs) which are precursors to ground level ozone formation. Some of these paint compounds create hazardous air pollutants (HAPs) which are toxic. The nationally recommended emission factor (EF) of 4.6 lbs/year per capita is based on data from the 1970s. This paper documents the methodologies and the National Paint & Coatings Association sets used to develop revised per capita emissions factors (e.g. 3.6 lbs/year per capita for 1993) for estimating and forecasting the VOC air emissions from the area source category of architectural coatings. Emissions estimates, forecasts, trends and reasons for these trends are presented. Future emissions inventory (EI) challenges are addressed in light of data availability, information networks and the proposed category of Architectural and Industrial Maintenance (AIM) coatings.

  2. Indoor air quality in Brazilian universities.

    PubMed

    Jurado, Sonia R; Bankoff, Antônia D P; Sanchez, Andrea

    2014-07-11

    This study evaluated the indoor air quality in Brazilian universities by comparing thirty air-conditioned (AC) (n = 15) and naturally ventilated (NV) (n = 15) classrooms. The parameters of interest were indoor carbon dioxide (CO2), temperature, relative humidity (RH), wind speed, viable mold, and airborne dust levels. The NV rooms had larger concentration of mold than the AC rooms (1001.30 ± 125.16 and 367.00 ± 88.13 cfu/m3, respectively). The average indoor airborne dust concentration exceeded the Brazilian standards (<80 µg/m3) in both NV and AC classrooms. The levels of CO2 in the AC rooms were significantly different from the NV rooms (1433.62 ± 252.80 and 520.12 ± 37.25 ppm, respectively). The indoor air quality in Brazilian university classrooms affects the health of students. Therefore, indoor air pollution needs to be considered as an important public health problem.

  3. 40 CFR 52.683 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.683 Section 52.683 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The State of Idaho Rules for Control of Air Pollution in Idaho, specifically... the Clean Air Act for preventing significant deterioration of air quality. (b) The requirements...

  4. 40 CFR 52.683 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.683 Section 52.683 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The State of Idaho Rules for Control of Air Pollution in Idaho, specifically... Air Act for preventing significant deterioration of air quality. (b) The requirements of sections...

  5. 40 CFR 52.683 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.683 Section 52.683 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The State of Idaho Rules for Control of Air Pollution in Idaho, specifically... the Clean Air Act for preventing significant deterioration of air quality. (b) The requirements...

  6. 40 CFR 52.683 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.683 Section 52.683 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The State of Idaho Rules for Control of Air Pollution in Idaho, specifically... the Clean Air Act for preventing significant deterioration of air quality. (b) The requirements...

  7. 30 CFR 250.302 - Definitions concerning air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Definitions concerning air quality. 250.302... Definitions concerning air quality. For purposes of §§ 250.303 and 250.304 of this part: Air pollutant means..., pursuant to section 109 of the Clean Air Act, national primary or secondary ambient air quality...

  8. What is IAQ. [Indoor Air Quality (IAQ)

    SciTech Connect

    Huff, G.

    1992-01-01

    Does indoor air quality (IAQ) affect you The answer is an emphatic YES Problems affecting indoor air quality can range from a stinky rest room to Sick Building Syndrome. IAQ goes beyond avoiding odors through sufficient ventilation. Many health issues are also involved. IAQ problems are generally complex with no single source causing them. Rather, they result from a combination of several sources that require an organized, but flexible, plan of attack. The purpose of this paper is to define the terms associated with the subject of IAQ, provide some history on the subject, and finally describe my experiences with the continuing process of assessing and remediating problems associated with poor indoor air quality in a new laboratory building.

  9. Commissioning to avoid indoor air quality problems

    SciTech Connect

    Sterling, E.M.; Collett, C.W. ); Turner, S. ); Downing, C.C. )

    1992-10-01

    This paper reports on indoor air quality (IAQ) which has become a pervasive problem plaguing the building industry worldwide. Poor IAQ in commercial and office buildings is primarily related to new building technology, new materials and equipment and energy management operating systems. Occupants of buildings with air quality problems suffer from a common series of symptoms. As early as 1982, ASHRAE, realizing the significance of the problem, produced an IAQ position statement that identified strategies for solving IAQ problems. Many of those strategies have now been implemented, including Standard 62-1989, Ventilation for Acceptable Air Quality; Standard 90.1, Energy Efficient Design of New Buildings Except Low-Rise Residential Buildings; the 100 series of energy standards; and Guideline 1, Guideline for Commissioning of HVAC Systems.

  10. Developing Interoperable Air Quality Community Portals

    NASA Astrophysics Data System (ADS)

    Falke, S. R.; Husar, R. B.; Yang, C. P.; Robinson, E. M.; Fialkowski, W. E.

    2009-04-01

    Web portals are intended to provide consolidated discovery, filtering and aggregation of content from multiple, distributed web sources targeted at particular user communities. This paper presents a standards-based information architectural approach to developing portals aimed at air quality community collaboration in data access and analysis. An important characteristic of the approach is to advance beyond the present stand-alone design of most portals to achieve interoperability with other portals and information sources. We show how using metadata standards, web services, RSS feeds and other Web 2.0 technologies, such as Yahoo! Pipes and del.icio.us, helps increase interoperability among portals. The approach is illustrated within the context of the GEOSS Architecture Implementation Pilot where an air quality community portal is being developed to provide a user interface between the portals and clearinghouse of the GEOSS Common Infrastructure and the air quality community catalog of metadata and data services.

  11. Emerging Latin American air quality regulation

    SciTech Connect

    Hosmer, A.W.; Vitale, E.M.; Guerrero, C.R.; Solorzano-Vincent, L.

    1998-12-31

    Latin America is the most urbanized region in the developing world. In recent years, significant economic growth has resulted in population migration from rural areas to urban centers, as well as in a substantial rise in the standard of living within the Region. These changes have impacted the air quality of Latin American countries as increased numbers of industrial facilities and motor vehicles release pollutants into the air. With the advent of new free trade agreements such as MERCOSUR and NAFTA, economic activity and associated pollutant levels can only be expected to continue to expand in the future. In order to address growing air pollution problems, many Latin America countries including Argentina, Brazil, Chile, Columbia, Costa Rica, and Mexico have passed, or will soon pass, new legislation to develop and strengthen their environmental frameworks with respect to air quality. As a first step toward understanding the impacts that this increased environmental regulation will have, this paper will examine the regulatory systems in six Latin American countries with respect to ambient air quality and for each of these countries: review a short history of the air quality problems within the country; outline the legal and institutional framework including key laws and implementing institutions; summarize in brief the current status of the country in terms of program development and implementation; and identify projected future trends. In addition, the paper will briefly review the international treaties that have bearing on Latin American air quality. Finally, the paper will conclude by identifying and exploring emerging trends in individual countries and the region as a whole.

  12. Energy consumption and resultant air pollution; An ARIMA forecasting model for Taiwan

    SciTech Connect

    Hsu, G.J.Y. ); Liu, M.C. )

    1991-01-01

    In this paper, an ARIMA transfer model is developed toe valuate the interactions between energy use and particulate air pollution in eight major areas in Taiwan. Based on time series data from 1971 to 1985 and the estimates of the parameters of the model, a five-year (from 1986 to 1990) forecast is made for particulate pollution for these eight major areas. Finally, policy implications and recommendations are presented.

  13. 40 CFR 52.931 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.931 Section 52.931 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) Regulations for preventing significant deterioration of air quality. The..., the Kentucky Division for Air Quality has determined that the application complies with the...

  14. 40 CFR 52.2528 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.2528 Section 52.2528 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of Sections 160 through 165 of the Clean Air... Quality Deterioration. (b) Regulations for Preventing Significant Deterioration of Air Quality,...

  15. 40 CFR 52.931 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.931 Section 52.931 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) Regulations for preventing significant deterioration of air quality. The..., the Kentucky Division for Air Quality has determined that the application complies with the...

  16. 40 CFR 52.2528 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.2528 Section 52.2528 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of Sections 160 through 165 of the Clean Air... Quality Deterioration. (b) Regulations for Preventing Significant Deterioration of Air Quality,...

  17. 40 CFR 52.2451 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.2451 Section 52.2451 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... Quality Deterioration. (b) Regulations for preventing significant deterioration of air quality....

  18. 40 CFR 52.2528 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.2528 Section 52.2528 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of Sections 160 through 165 of the Clean Air... Quality Deterioration. (b) Regulations for Preventing Significant Deterioration of Air Quality,...

  19. 40 CFR 51.320 - Annual air quality data report.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 2 2012-07-01 2012-07-01 false Annual air quality data report. 51.320... REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Reports Air Quality Data Reporting § 51.320 Annual air quality data report. The requirements for reporting air quality data...

  20. 40 CFR 52.2528 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.2528 Section 52.2528 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of Sections 160 through 165 of the Clean Air... Quality Deterioration. (b) Regulations for Preventing Significant Deterioration of Air Quality,...

  1. 40 CFR 52.2451 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.2451 Section 52.2451 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... Quality Deterioration. (b) Regulations for preventing significant deterioration of air quality....

  2. 40 CFR 52.931 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.931 Section 52.931 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) Regulations for preventing significant deterioration of air quality. The..., the Kentucky Division for Air Quality has determined that the application complies with the...

  3. 40 CFR 52.931 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.931 Section 52.931 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) Regulations for preventing significant deterioration of air quality. The..., the Kentucky Division for Air Quality has determined that the application complies with the...

  4. 40 CFR 52.931 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.931 Section 52.931 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) Regulations for preventing significant deterioration of air quality. The..., the Kentucky Division for Air Quality has determined that the application complies with the...

  5. 40 CFR 52.2451 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.2451 Section 52.2451 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... Quality Deterioration. (b) Regulations for preventing significant deterioration of air quality....

  6. 40 CFR 52.2451 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.2451 Section 52.2451 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... Quality Deterioration. (b) Regulations for preventing significant deterioration of air quality....

  7. 40 CFR 52.2451 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.2451 Section 52.2451 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... Quality Deterioration. (b) Regulations for preventing significant deterioration of air quality....

  8. 40 CFR 51.320 - Annual air quality data report.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 2 2013-07-01 2013-07-01 false Annual air quality data report. 51.320... REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Reports Air Quality Data Reporting § 51.320 Annual air quality data report. The requirements for reporting air quality data...

  9. 40 CFR 51.320 - Annual air quality data report.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 2 2014-07-01 2014-07-01 false Annual air quality data report. 51.320... REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Reports Air Quality Data Reporting § 51.320 Annual air quality data report. The requirements for reporting air quality data...

  10. 40 CFR 51.320 - Annual air quality data report.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Annual air quality data report. 51.320... REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Reports Air Quality Data Reporting § 51.320 Annual air quality data report. The requirements for reporting air quality data...

  11. 40 CFR 51.320 - Annual air quality data report.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 2 2011-07-01 2011-07-01 false Annual air quality data report. 51.320... REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Reports Air Quality Data Reporting § 51.320 Annual air quality data report. The requirements for reporting air quality data...

  12. Investigation of infiltration and indoor air quality

    SciTech Connect

    Not Available

    1990-03-01

    A multitask study was performed in the State of New York to provide information for guiding home energy conservation programs while maintaining acceptable indoor air quality. During the study, the statistical distribution of radon concentrations inside 2,400 homes was determined. The relationships among radon levels, house characteristics, and sources were also investigated. The direct impact that two specific air infiltration reduction measures--caulking and weatherstripping of windows and doors, and installation of storm windows and storm doors--have on house air leakage was investigated in 60 homes. The effect of house age on the impact of weatherization was also evaluated. Indoor and outdoor measurements of NO{sub 2}, CO, SO{sub 2}, and respirable suspended particulates (RSP) were made for 400 homes to determine the effect of combustion sources on indoor air quality and to characterize the statistical distribution of the concentrations. Finally, the combustion source data were combined with the information on air infiltration reduction measures to estimate the potential impact of these measures on indoor air quality.

  13. Indoor Air Quality: Is Increased Ventilation the Answer?

    ERIC Educational Resources Information Center

    Hansen, Shirley

    1989-01-01

    Explains how indoor air quality is affected by pollutants in the air and also by temperature, humidity, and ventilation. Increased ventilation alone seldom solves the "sick building syndrome." Lists ways to improve indoor air quality and optimize energy efficiency. (MLF)

  14. The Impact of the Assimilation of AIRS Radiance Measurements on Short-term Weather Forecasts

    NASA Technical Reports Server (NTRS)

    McCarty, Will; Jedlovec, Gary; Miller, Timothy L.

    2009-01-01

    Advanced spaceborne instruments have the ability to improve the horizontal and vertical characterization of temperature and water vapor in the atmosphere through the explicit use of hyperspectral thermal infrared radiance measurements. The incorporation of these measurements into a data assimilation system provides a means to continuously characterize a three-dimensional, instantaneous atmospheric state necessary for the time integration of numerical weather forecasts. Measurements from the National Aeronautics and Space Administration (NASA) Atmospheric Infrared Sounder (AIRS) are incorporated into the gridpoint statistical interpolation (GSI) three-dimensional variational (3D-Var) assimilation system to provide improved initial conditions for use in a mesoscale modeling framework mimicking that of the operational North American Mesoscale (NAM) model. The methodologies for the incorporation of the measurements into the system are presented. Though the measurements have been shown to have a positive impact in global modeling systems, the measurements are further constrained in this system as the model top is physically lower than the global systems and there is no ozone characterization in the background state. For a study period, the measurements are shown to have positive impact on both the analysis state as well as subsequently spawned short-term (0-48 hr) forecasts, particularly in forecasted geopotential height and precipitation fields. At 48 hr, height anomaly correlations showed an improvement in forecast skill of 2.3 hours relative to a system without the AIRS measurements. Similarly, the equitable threat and bias scores of precipitation forecasts of 25 mm (6 hr)-1 were shown to be improved by 8% and 7%, respectively.

  15. A novel, fuzzy-based air quality index (FAQI) for air quality assessment

    NASA Astrophysics Data System (ADS)

    Sowlat, Mohammad Hossein; Gharibi, Hamed; Yunesian, Masud; Tayefeh Mahmoudi, Maryam; Lotfi, Saeedeh

    2011-04-01

    The ever increasing level of air pollution in most areas of the world has led to development of a variety of air quality indices for estimation of health effects of air pollution, though the indices have their own limitations such as high levels of subjectivity. Present study, therefore, aimed at developing a novel, fuzzy-based air quality index (FAQI ) to handle such limitations. The index developed by present study is based on fuzzy logic that is considered as one of the most common computational methods of artificial intelligence. In addition to criteria air pollutants (i.e. CO, SO 2, PM 10, O 3, NO 2), benzene, toluene, ethylbenzene, xylene, and 1,3-butadiene were also taken into account in the index proposed, because of their considerable health effects. Different weighting factors were then assigned to each pollutant according to its priority. Trapezoidal membership functions were employed for classifications and the final index consisted of 72 inference rules. To assess the performance of the index, a case study was carried out employing air quality data at five different sampling stations in Tehran, Iran, from January 2008 to December 2009, results of which were then compared to the results obtained from USEPA air quality index (AQI). According to the results from present study, fuzzy-based air quality index is a comprehensive tool for classification of air quality and tends to produce accurate results. Therefore, it can be considered useful, reliable, and suitable for consideration by local authorities in air quality assessment and management schemes. Fuzzy-based air quality index (FAQI).

  16. The AirQuality SenseBox

    NASA Astrophysics Data System (ADS)

    Demuth, Dustin; Nuest, Daniel; Bröring, Arne; Pebesma, Edzer

    2013-04-01

    In the past year, a group of open hardware enthusiasts and citizen scientists had large success in the crowd-funding of an open hardware-based sensor platform for air quality monitoring, called the Air Quality Egg. Via the kickstarter platform, the group was able to collect triple the amount of money than needed to fulfill their goals. Data generated by the Air Quality Egg is pushed to the data logging platform cosm.com, which makes the devices a part of the Internet of Things. The project aims at increasing the participation of citizens in the collection of data, the development of sensors, the operation of sensor stations, and, as data on cosm is publicly available, the sharing, visualization and analysis of data. Air Quality Eggs can measure NO2 and CO concentrations, as well as relative humidity and temperature. The chosen sensors are low-cost and have limited precision and accurracy. The Air Quality Egg consists of a stationary outdoor and a stationary indoor unit. Each outdoor unit will wirelessly transmit air quality measurements to the indoor unit, which forwards the data to cosm. Most recent versions of the Air Quality Egg allow a rough calibration of the gas sensors and on-the-fly conversion from raw sensor readings (impedance) to meaningful air quality data expressed in units of parts per billion. Data generated by these low-cost platforms are not intended to replace well-calibrated official monitoring stations, but rather augment the density of the total monitoring network with citizen sensors. To improve the usability of the Air Quality Egg, we present a new and more advanced concept, called the AirQuality SenseBox. We made the outdoor platform more autonomous and location-aware by adding solarpanels and rechargeable batteries as a power source. The AirQuality SenseBox knows its own position from a GPS device attached to the platform. As a mobile sensor platform, it can for instance be attached to vehicles. A low-cost and low-power wireless chipset

  17. Uncertainty in Regional Air Quality Modeling

    NASA Astrophysics Data System (ADS)

    Digar, Antara

    Effective pollution mitigation is the key to successful air quality management. Although states invest millions of dollars to predict future air quality, the regulatory modeling and analysis process to inform pollution control strategy remains uncertain. Traditionally deterministic ‘bright-line’ tests are applied to evaluate the sufficiency of a control strategy to attain an air quality standard. A critical part of regulatory attainment demonstration is the prediction of future pollutant levels using photochemical air quality models. However, because models are uncertain, they yield a false sense of precision that pollutant response to emission controls is perfectly known and may eventually mislead the selection of control policies. These uncertainties in turn affect the health impact assessment of air pollution control strategies. This thesis explores beyond the conventional practice of deterministic attainment demonstration and presents novel approaches to yield probabilistic representations of pollutant response to emission controls by accounting for uncertainties in regional air quality planning. Computationally-efficient methods are developed and validated to characterize uncertainty in the prediction of secondary pollutant (ozone and particulate matter) sensitivities to precursor emissions in the presence of uncertainties in model assumptions and input parameters. We also introduce impact factors that enable identification of model inputs and scenarios that strongly influence pollutant concentrations and sensitivity to precursor emissions. We demonstrate how these probabilistic approaches could be applied to determine the likelihood that any control measure will yield regulatory attainment, or could be extended to evaluate probabilistic health benefits of emission controls, considering uncertainties in both air quality models and epidemiological concentration-response relationships. Finally, ground-level observations for pollutant (ozone) and precursor

  18. Forecasting Lightning at Kennedy Space Center/Cape Canaveral Air Force Station, Florida

    NASA Technical Reports Server (NTRS)

    Lambert, Winfred; Wheeler, Mark; Roeder, William

    2005-01-01

    The Applied Meteorology Unit (AMU) developed a set of statistical forecast equations that provide a probability of lightning occurrence on Kennedy Space Center (KSC) I Cape Canaveral Air Force Station (CCAFS) for the day during the warm season (May September). The 45th Weather Squadron (45 WS) forecasters at CCAFS in Florida include a probability of lightning occurrence in their daily 24-hour and weekly planning forecasts, which are briefed at 1100 UTC (0700 EDT). This information is used for general scheduling of operations at CCAFS and KSC. Forecasters at the Spaceflight Meteorology Group also make thunderstorm forecasts for the KSC/CCAFS area during Shuttle flight operations. Much of the current lightning probability forecast at both groups is based on a subjective analysis of model and observational data. The objective tool currently available is the Neumann-Pfeffer Thunderstorm Index (NPTI, Neumann 1971), developed specifically for the KSCICCAFS area over 30 years ago. However, recent studies have shown that 1-day persistence provides a better forecast than the NPTI, indicating that the NPTI needed to be upgraded or replaced. Because they require a tool that provides a reliable estimate of the daily thunderstorm probability forecast, the 45 WS forecasters requested that the AMU develop a new lightning probability forecast tool using recent data and more sophisticated techniques now possible through more computing power than that available over 30 years ago. The equation development incorporated results from two research projects that investigated causes of lightning occurrence near KSCICCAFS and over the Florida peninsula. One proved that logistic regression outperformed the linear regression method used in NPTI, even when the same predictors were used. The other study found relationships between large scale flow regimes and spatial lightning distributions over Florida. Lightning, probabilities based on these flow regimes were used as candidate predictors in

  19. Indoor air quality investigation on commercial aircraft.

    PubMed

    Lee, S C; Poon, C S; Li, X D; Luk, F

    1999-09-01

    Sixteen flights had been investigated for indoor air quality (IAQ) on Cathay Pacific aircraft from June 1996 to August 1997. In general, the air quality on Cathay Pacific aircraft was within relevant air quality standards because the average age of aircraft was less than 2 years. Carbon dioxide (CO2) levels on all flights measured were below the Federal Aviation Administration (FAA) standard (30,000 ppm). The CO2 level was substantially higher during boarding and de-boarding than cruise due to low fresh air supply. Humidity on the aircraft was low, especially for long-haul flights. Minimum humidity during cruise was below the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) minimum humidity standard (20%). The average temperature was within a comfortable temperature range of 23 +/- 2 degrees C. The vertical temperature profile on aircraft was uniform and below the International Standard Organization (ISO) standard. Carbon monoxide levels were below the FAA standard (50 ppm). Trace amount of ozone detected ranged from undetectable to 90 ppb, which was below the FAA standard. Particulate level was low for most non-smoking flights, but peaks were observed during boarding and de-boarding. The average particulate level in smoking flights (138 micrograms/m3) was higher than non-smoking flights (7.6 micrograms/m3). The impact on IAQ by switching from low-mode to high-mode ventilation showed a reduction in CO2 levels, temperature, and relative humidity.

  20. INDOOR AIR QUALITY MODELING (CHAPTER 58)

    EPA Science Inventory

    The chapter discussses indoor air quality (IAQ) modeling. Such modeling provides a way to investigate many IAQ problems without the expense of large field experiments. Where experiments are planned, IAQ models can be used to help design experiments by providing information on exp...

  1. Managing Indoor Air Quality in Schools.

    ERIC Educational Resources Information Center

    Woolums, Jennifer

    This publication examines the causes and effects of poor indoor air quality and provides information for reducing exposure to indoor contaminants in schools. It discusses the various indoor pollutants found in schools, including dust, chemical agents, gases, and volatile organic compounds; where they are found in schools; and their health effects…

  2. Indoor Air Quality Basics for Schools.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Radiation and Indoor Air.

    This fact sheet details important information on Indoor Air Quality (IAQ) in school buildings, problems associated with IAQ, and various prevention and problem-solving strategies. Most people spend 90 percent of their time indoors, therefore the Environmental Protection Agency ranks IAQ in the top four environmental risks to the public. The…

  3. The Bottom Line For Air Quality.

    ERIC Educational Resources Information Center

    Ellis, Tom

    2000-01-01

    Discusses how the right type of flooring can help schools reduce indoor-air-quality problems. Using vinyl composition flooring to handle moisture and reduce fungi growth is examined as are the benefits of vinyl cushion tufted textile flooring for cost effectiveness, learning environment improvement, installation, and effectiveness in emergencies.…

  4. Shuttle applications in tropospheric air quality observations

    NASA Technical Reports Server (NTRS)

    Friedman, E.; Gupta, J.; Carmichael, J.

    1978-01-01

    The role which might be played by the space shuttle in obtaining data which describes the air quality of the north-eastern United States was investigated. The data requirements of users, a model for statistical interpretation of the observations, the influence of orbit parameters on the spatial and temporal sampling and an example of application of the the model were considered.

  5. Integration of air and water quality issues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The environmental sustainability of dairy farms is dependent upon a number of air and water quality issues. Atmospheric emissions include hazardous compounds such as ammonia and hydrogen sulfide along with greenhouse gases and their implications with global climate change. Runoff of sediment, phosph...

  6. OPTICAL REMOTE SENSING FOR AIR QUALITY MONITORING

    EPA Science Inventory

    The paper outlines recent developments in using optical remote sensing (ORS) instruments for air quality monitoring both for gaseous pollutants and airborne particulate matter (PM). The U.S. Environmental Protection Agency (EPA) has been using open-path Fourier transform infrared...

  7. AIR POLLUTION EFFECTS ON SEMEN QUALITY

    EPA Science Inventory

    The potential impact of exposure to periods of high air pollution on male reproductive health was examined within the framework of an international project conducted in the Czech Republic. Semen quality was evaluated in young men (age 18) living in the Teplice District who are ex...

  8. Indoor Air Quality Guidelines for Pennsylvania Schools.

    ERIC Educational Resources Information Center

    Zimmerman, Robert S., Jr.

    This report provides information and practical guidance on how to prevent indoor air quality (IAQ) problems in schools, and it describes how to implement a practical plan of action using a minimal amount of resources. It includes general guidelines to prevent or help resolve IAQ problems, guidelines on specific indoor contaminants, recommendations…

  9. An artificial neural network approach for the forecast of ambient air temperature

    NASA Astrophysics Data System (ADS)

    Philippopoulos, Kostas; Deligiorgi, Despina; Kouroupetroglou, Georgios

    2014-05-01

    Ambient air temperature forecasting is one of the most significant aspects of environmental and climate research. Accurate temperature forecasts are important in the energy and tourism industry, in agriculture for estimating potential hazards, and within an urban context, in studies for assessing the risk of adverse health effects in the general population. The scope of this study is to propose an Artificial Neural Network (ANN) approach for the one-day ahead maximum (Tmax) and minimum (Tmin) air temperature forecasting. The ANNs are signal processing systems consisted by an assembly of simple interconnected processing elements (neurons) and in geosciences are mainly used in pattern recognition problems. In this study the feed-forward ANN models are selected, which are theoretically capable of estimating a measurable input-output function to any desired degree of accuracy. The method is implemented at a single site (Souda Airport) located at the island of Crete in southeastern Mediterranean and employs the hourly, Tmax and Tmin temperature observations over a ten-yearly period (January 2000 to December 2009). Separate ANN models are trained and tested for the forecast of Tmax and Tmin, which are based on the 24 previous day's hourly temperature records. The first six years are used for training the ANNs, the subsequent two for validating the models and the last two (January 2008 to December 2009) for testing the ANN's overall predicting accuracy. The model architecture consists of a single hidden layer and multiple experiments with varying number of neurons are performed (from 1 to 80 neurons with hyperbolic tangent sigmoid transfer functions). The selection of the optimum number of neurons in the hidden layer is based on a trial and error procedure and the performance is measured using the mean absolute error (MAE) on the validation set. A comprehensive set of model output statistics is used for examining the ability of the models to estimate both Tmax and Tmin

  10. Equivalence in Ventilation and Indoor Air Quality

    SciTech Connect

    Sherman, Max; Walker, Iain; Logue, Jennifer

    2011-08-01

    We ventilate buildings to provide acceptable indoor air quality (IAQ). Ventilation standards (such as American Society of Heating, Refrigerating, and Air-Conditioning Enginners [ASHRAE] Standard 62) specify minimum ventilation rates without taking into account the impact of those rates on IAQ. Innovative ventilation management is often a desirable element of reducing energy consumption or improving IAQ or comfort. Variable ventilation is one innovative strategy. To use variable ventilation in a way that meets standards, it is necessary to have a method for determining equivalence in terms of either ventilation or indoor air quality. This study develops methods to calculate either equivalent ventilation or equivalent IAQ. We demonstrate that equivalent ventilation can be used as the basis for dynamic ventilation control, reducing peak load and infiltration of outdoor contaminants. We also show that equivalent IAQ could allow some contaminants to exceed current standards if other contaminants are more stringently controlled.

  11. Sensor selection for outdoor air quality monitoring

    NASA Astrophysics Data System (ADS)

    Dorsey, K. L.; Herr, John R.; Pisano, A. P.

    2014-06-01

    Gas chemical monitoring for next-generation robotics applications such as fire fighting, explosive gas detection, ubiquitous urban monitoring, and mine safety require high performance, reliable sensors. In this work, we discuss the performance requirements of fixed-location, mobile vehicle, and personal sensor nodes for outdoor air quality sensing. We characterize and compare the performance of a miniature commercial electrochemical and a metal oxide gas sensor and discuss their suitability for environmental monitoring applications. Metal oxide sensors are highly cross-sensitive to factors that affect chemical adsorption (e.g., air speed, pressure) and require careful enclosure design or compensation methods. In contrast, electrochemical sensors are less susceptible to environmental variations, have very low power consumption, and are well matched for mobile air quality monitoring.

  12. INTEGRATION OF SATELLITE, MODELED, AND GROUND BASED AEROSOL DATA FOR USE IN AIR QUALITY AND PUBLIC HEALTH APPLICATIONS ( AGU-BALTIMORE )

    EPA Science Inventory

    Within the next several years NOAA and EPA will begin to issue PM2.5 air quality forecasts over the entire domain of the eastern United States, eventually extending to national coverage. These forecasts will provide continuous estimated values of particulate matter on ...

  13. 40 CFR 52.432 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Significant deterioration of air quality. 52.432 Section 52.432 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) (b) Regulation for preventing significant deterioration of air quality....

  14. 40 CFR 52.2303 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.2303 Section 52.2303 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The plan submitted by Texas is approved as meeting the requirements of part C, Clean Air Act for preventing significant deterioration of air quality. The...

  15. 40 CFR 52.1485 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.1485 Section 52.1485 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... include approvable procedures for preventing the significant deterioration of air quality. (b)...

  16. 40 CFR 52.833 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.833 Section 52.833 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are met... for preventing significant deterioration of air quality. The provisions of § 52.21 except paragraph...

  17. 40 CFR 52.2303 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.2303 Section 52.2303 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The plan submitted by Texas is approved as meeting the requirements of part C, Clean Air Act for preventing significant deterioration of air quality. The...

  18. 40 CFR 52.1987 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.1987 Section 52.1987 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (d) The requirements of sections 160 through 165 of the Clean Air... Quality rules identified in paragraph (a) of this section, and the Lane Regional Air Pollution...

  19. 40 CFR 52.833 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.833 Section 52.833 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are met... for preventing significant deterioration of air quality. The provisions of § 52.21 except paragraph...

  20. 40 CFR 52.833 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.833 Section 52.833 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are met... for preventing significant deterioration of air quality. The provisions of § 52.21 except paragraph...

  1. 40 CFR 52.1485 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.1485 Section 52.1485 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... include approvable procedures for preventing the significant deterioration of air quality. (b)...

  2. 40 CFR 52.833 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.833 Section 52.833 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are met... for preventing significant deterioration of air quality. The provisions of § 52.21 except paragraph...

  3. 40 CFR 52.1485 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.1485 Section 52.1485 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... include approvable procedures for preventing the significant deterioration of air quality. (b)...

  4. 40 CFR 52.1485 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.1485 Section 52.1485 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... include approvable procedures for preventing the significant deterioration of air quality. (b)...

  5. 40 CFR 52.833 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.833 Section 52.833 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are met... for preventing significant deterioration of air quality. The provisions of § 52.21 except paragraph...

  6. 40 CFR 52.683 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.683 Section 52.683 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The State of Idaho Rules for Control of Air Pollution in Idaho, specifically... quality. (b) The requirements of sections 160 through 165 of the Clean Air Act are not met for...

  7. Impact of AIRS Thermodynamic Profiles on Precipitation Forecasts for Atmospheric River Cases Affecting the Western United States

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley T.; Jedlovec, Gary J.; Blakenship, Clay B.; Wick, Gary A.; Neiman, Paul J.

    2013-01-01

    This project is a collaborative activity between the NASA Short-term Prediction Research and Transition (SPoRT) Center and the NOAA Hydrometeorology Testbed (HMT) to evaluate a SPoRT Advanced Infrared Sounding Radiometer (AIRS: Aumann et al. 2003) enhanced moisture analysis product. We test the impact of assimilating AIRS temperature and humidity profiles above clouds and in partly cloudy regions, using the three-dimensional variational Gridpoint Statistical Interpolation (GSI) data assimilation (DA) system (Developmental Testbed Center 2012) to produce a new analysis. Forecasts of the Weather Research and Forecasting (WRF) model initialized from the new analysis are compared to control forecasts without the additional AIRS data. We focus on some cases where atmospheric rivers caused heavy precipitation on the US West Coast. We verify the forecasts by comparison with dropsondes and the Cooperative Institute for Research in the Atmosphere (CIRA) Blended Total Precipitable Water product.

  8. Observations and modeling of air quality trends over 1990-2010 across the northern hemisphere: China, the United States and Europe

    EPA Science Inventory

    Trends in air quality across the Northern Hemisphere over a 21-year period (1990–2010) were simulated using the Community Multiscale Air Quality (CMAQ) multiscale chemical transport model driven by meteorology from Weather Research and Forecasting WRF) simulations and internally ...

  9. The use of MODIS data and aerosol products for air quality prediction

    NASA Astrophysics Data System (ADS)

    Hutchison, Keith D.; Smith, Solar; Faruqui, Shazia

    2004-09-01

    The Center for Space Research (CSR) is exploring new approaches to integrate data collected by the MODerate resolution Imaging Spectroradiometer (MODIS) sensor, flown on NASA's Earth Observing System (EOS) satellites, into a real-time prediction methodology to support operational air quality forecasts issued by the Monitoring Operations Division (MOD) of the Texas Commission on Environmental Quality (TCEQ). Air pollution is a widespread problem in the United States, with over 130 million individuals exposed to levels of air pollution that exceed one or more health-based standards. Texas air quality is under assault by a variety of anthropogenic sources associated with a rapidly growing population along with increases in emissions from the diesel engines that drive international trade between the US and Central America. The challenges of meeting air quality standards established by the Environmental Protection Agency are further impacted by the transport of pollution into Texas that originates from outside its borders and are cumulative with those generated by local sources. In an earlier study, CSR demonstrated the value of MODIS imagery and aerosol products for monitoring ozone-laden pollution that originated in the central US before migrating into Texas and causing TCEQ to issue a health alert for 150 counties. Now, data from this same event are re-analyzed in an attempt to predict air quality from MODIS aerosol optical thickness (AOT) observations. The results demonstrate a method to forecast air quality from remotely sensed satellite observations when the transient pollution can be isolated from local sources. These pollution sources can be separated using TCEQ's network of ground-based Continuous Air quality Monitoring (CAM) stations.

  10. Atmospheric composition forecasting in Europe

    NASA Astrophysics Data System (ADS)

    Menut, L.; Bessagnet, B.

    2010-01-01

    The atmospheric composition is a societal issue and, following new European directives, its forecast is now recommended to quantify the air quality. It concerns both gaseous and particles species, identified as potential problems for health. In Europe, numerical systems providing daily air quality forecasts are numerous and, mostly, operated by universities. Following recent European research projects (GEMS, PROMOTE), an organization of the air quality forecast is currently under development. But for the moment, many platforms exist, each of them with strengths and weaknesses. This overview paper presents all existing systems in Europe and try to identify the main remaining gaps in the air quality forecast knowledge. As modeling systems are now able to reasonably forecast gaseous species, and in a lesser extent aerosols, the future directions would concern the use of these systems with ensemble approaches and satellite data assimilation. If numerous improvements were recently done on emissions and chemistry knowledge, improvements are still needed especially concerning meteorology, which remains a weak point of forecast systems. Future directions will also concern the use of these forecast tools to better understand and quantify the air pollution impact on health.

  11. Fuzzy-GA modeling in air quality assessment.

    PubMed

    Yadav, Jyoti; Kharat, Vilas; Deshpande, Ashok

    2015-04-01

    In this paper, the authors have suggested and implemented the defined soft computing methods in air quality classification with case studies. The first study relates to the application of Fuzzy C mean (FCM) clustering method in estimating pollution status in cities of Maharashtra State, India. In this study, the computation of weighting factor using a new concept of reference group is successfully demonstrated. The authors have also investigated the efficacy of fuzzy set theoretic approach in combination with genetic algorithm in straightway describing air quality in linguistic terms with linguistic degree of certainty attached to each description using Zadeh-Deshpande (ZD) approach. Two metropolitan cities viz., Mumbai in India and New York in the USA are identified for the assessment of the pollution status due to their somewhat similar geographical features. The case studies infer that the fuzzy sets drawn on the basis of expert knowledge base for the criteria pollutants are not much different from those obtained using genetic algorithm. Pollution forecast using various methods including fuzzy time series forms an integral part of the paper.

  12. Air-quality and Climatic Consequences of Bioenergy Crop Cultivation

    NASA Astrophysics Data System (ADS)

    Porter, William Christian

    Bioenergy is expected to play an increasingly significant role in the global energy budget. In addition to the use of liquid energy forms such as ethanol and biodiesel, electricity generation using processed energy crops as a partial or full coal alternative is expected to increase, requiring large-scale conversions of land for the cultivation of bioenergy feedstocks such as cane, grasses, or short rotation coppice. With land-use change identified as a major contributor to changes in the emission of biogenic volatile organic compounds (BVOCs), many of which are known contributors to the pollutants ozone (O 3) and fine particulate matter (PM2.5), careful review of crop emission profiles and local atmospheric chemistry will be necessary to mitigate any unintended air-quality consequences. In this work, the atmospheric consequences of bioenergy crop replacement are examined using both the high-resolution regional chemical transport model WRF/Chem (Weather Research and Forecasting with Chemistry) and the global climate model CESM (Community Earth System Model). Regional sensitivities to several representative crop types are analyzed, and the impacts of each crop on air quality and climate are compared. Overall, the high emitting crops (eucalyptus and giant reed) were found to produce climate and human health costs totaling up to 40% of the value of CO 2 emissions prevented, while the related costs of the lowest-emitting crop (switchgrass) were negligible.

  13. Indoor air quality and health in schools*

    PubMed Central

    Ferreira, Ana Maria da Conceição; Cardoso, Massano

    2014-01-01

    Objective: To determine whether indoor air quality in schools is associated with the prevalence of allergic and respiratory diseases in children. Methods: We evaluated 1,019 students at 51 elementary schools in the city of Coimbra, Portugal. We applied a questionnaire that included questions regarding the demographic, social, and behavioral characteristics of students, as well as the presence of smoking in the family. We also evaluated the indoor air quality in the schools. Results: In the indoor air of the schools evaluated, we identified mean concentrations of carbon dioxide (CO2) above the maximum reference value, especially during the fall and winter. The CO2 concentration was sometimes as high as 1,942 ppm, implying a considerable health risk for the children. The most prevalent symptoms and respiratory diseases identified in the children were sneezing, rales, wheezing, rhinitis, and asthma. Other signs and symptoms, such as poor concentration, cough, headache, and irritation of mucous membranes, were identified. Lack of concentration was associated with CO2 concentrations above the maximum recommended level in indoor air (p = 0.002). There were no other significant associations. Conclusions: Most of the schools evaluated presented with reasonable air quality and thermal comfort. However, the concentrations of various pollutants, especially CO2, suggest the need for corrective interventions, such as reducing air pollutant sources and improving ventilation. There was a statistically significant association between lack of concentration in the children and exposure to high levels of CO2. The overall low level of pollution in the city of Coimbra might explain the lack of other significant associations. PMID:25029649

  14. Evaluating the Impact of AIRS Observations on Regional Forecasts at the SPoRT Center

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley

    2011-01-01

    NASA Short-term Prediction Research and Transition (SPoRT) Center collaborates with operational partners of different sizes and operational goals to improve forecasts using targeted projects and data sets. Modeling and DA activities focus on demonstrating utility of NASA data sets and capabilities within operational systems. SPoRT has successfully assimilated the Atmospheric Infrared Sounder (AIRS) radiance and profile data. A collaborative project is underway with the Joint Center for Satellite Data Assimilation (JCSDA) to use AIRS profiles to better understand the impact of AIRS radiances assimilated within Gridpoint Statistical Interpolation (GSI) in hopes of engaging the operational DA community in a reassessment of assimilation methodologies to more effectively assimilate hyperspectral radiances.

  15. Achieving indoor air quality through contaminant control

    SciTech Connect

    Katzel, J.

    1995-07-10

    Federal laws outlining industry`s responsibilities in creating a healthy, hazard-free workspace are well known. OSHA`s laws on interior air pollution establish threshold limit values (TLVs) and permissible exposure limits (PELs) for more than 500 potentially hazardous substances found in manufacturing operations. Until now, OSHA has promulgated regulations only for the manufacturing environment. However, its recently-proposed indoor air quality (IAQ) ruling, if implemented, will apply to all workspaces. It regulates IAQ, including environmental tobacco smoke, and requires employers to write and implement IAQ compliance plans.

  16. Operational water quality forecasting with EnKF data assimilation in the Yeongsan river basin, Korea

    NASA Astrophysics Data System (ADS)

    Shin, Changmin; Kim, Kyunghyun; Min, Joong-Hyuk; Na, Eunhye; Park, Suyoung; Song, Hyunoh

    2016-04-01

    National institute of environmental research(NIER) have been operating the water quality forecasting to prevent water quality deterioration for the major rivers in South Korea through WQFS-NIER(Water Quality Forecasting System) which developed based on Delft-FEWS system by the international joint research with NIER and Deltares from 2011 to 2013 The coupled the Hydrologic Simulation Program Fortran(HSPF) and the Environmental Fluid Dynamic Code(EFDC) models are being used to quantitatively predict the water quality. HSPF watershed model are used to generate the flows and water quality loads of the major tributaries which are used as the boundary conditions for EFDC model. The uncertainties in water quality forecasting are contributed by various factors such as input uncertainty, model structure uncertainty, parametric uncertainty, initial conditions uncertainty, of which to reduce uncertainty on the initial conditions is relatively effective in improving accuracy of short term water quality forecast. To reduce initial conditions uncertainties, ensemble Kalman filter(EnKF) data assimilation(DA) techniques are applied to the EFDC models. DA is to condition the model state on the observations to get a better estimate of state. Model error is assumed to come from uncertainties of the boundary conditions of EFDC model. The case study for Yeongsan river demonstrate that EnKF is successful in bringing the algae concentrations closer to the observations.

  17. 40 CFR 52.1987 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.1987 Section 52.1987 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The Oregon Department of Environmental Quality rules for the prevention of significant deterioration of air quality (provisions of OAR Chapter 340, Divisions 200,...

  18. 40 CFR 51.115 - Air quality data and projections.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 2 2013-07-01 2013-07-01 false Air quality data and projections. 51... quality data and projections. (a) Each plan must contain a summary of data showing existing air quality. (b) Each plan must: (1) Contain a summary of air quality concentrations expected to result...

  19. 40 CFR 52.1987 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.1987 Section 52.1987 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The Oregon Department of Environmental Quality rules for the prevention of significant deterioration of air quality (provisions of OAR Chapter 340, Divisions 200,...

  20. 40 CFR 52.1987 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.1987 Section 52.1987 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The Oregon Department of Environmental Quality rules for the prevention of significant deterioration of air quality (provisions of OAR Chapter 340, Divisions 200,...

  1. 40 CFR 52.1987 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.1987 Section 52.1987 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The Oregon Department of Environmental Quality rules for the prevention of significant deterioration of air quality (provisions of OAR chapter 340, Divisions 200,...

  2. 40 CFR 51.115 - Air quality data and projections.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 2 2012-07-01 2012-07-01 false Air quality data and projections. 51... quality data and projections. (a) Each plan must contain a summary of data showing existing air quality. (b) Each plan must: (1) Contain a summary of air quality concentrations expected to result...

  3. 40 CFR 51.115 - Air quality data and projections.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 2 2011-07-01 2011-07-01 false Air quality data and projections. 51... quality data and projections. (a) Each plan must contain a summary of data showing existing air quality. (b) Each plan must: (1) Contain a summary of air quality concentrations expected to result...

  4. 40 CFR 51.115 - Air quality data and projections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Air quality data and projections. 51... quality data and projections. (a) Each plan must contain a summary of data showing existing air quality. (b) Each plan must: (1) Contain a summary of air quality concentrations expected to result...

  5. Operational data assimilation for improving hydrologic, hydrodynamic, and water quality forecasting using open tools

    NASA Astrophysics Data System (ADS)

    Weerts, Albrecht; Kockx, Arno; Sumihar, Julius; Verlaan, Martin; Hummel, Stef; Kramer, Werner; de Klaermaker, Simone

    2014-05-01

    Data assimilation holds considerable potential for improving water quantity (hydrologic/ hydraulic) and water quality predictions. However, advances in hydrologic DA research have not been adequately or timely implemented in operational forecast systems to improve the skill of forecasts for better informed real-world decision making. In contrast to most operational weather (related) forecast centers operational hydrologic forecast centers often are unable to support & maintain or lack the required computing support to implement such intensive DA calculations. Moreover, it remains difficult to achieve coupling of models, data, DA techniques and exploitation of high performance computing solutions in the operational forecasting process. Several potential components of a future solution have been or are being developed, one of those being the open source project OpenDA (www.openda.org). The objective of this poster is to highlight the development of OpenDA for operational forecasting and its integration with Delft-FEWS that is being used by more than 40 operational forecast centres around the world. Several applications of OpenDA using open source (and available) model codes from various fields will be highlighted.

  6. Rural southeast Texas air quality measurements during the 2006 Texas Air Quality Study.

    PubMed

    Schade, Gunnar W; Khan, Siraj; Park, Changhyoun; Boedeker, Ian

    2011-10-01

    The authors conducted air quality measurements of the criteria pollutants carbon monoxide, nitrogen oxides, and ozone together with meteorological measurements at a park site southeast of College Station, TX, during the 2006 Texas Air Quality Study II (TexAQS). Ozone, a primary focus of the measurements, was above 80 ppb during 3 days and above 75 ppb during additional 8 days in summer 2006, suggestive of possible violations of the ozone National Ambient Air Quality Standard (NAAQS) in this area. In concordance with other air quality measurements during the TexAQS II, elevated ozone mixing ratios coincided with northerly flows during days after cold front passages. Ozone background during these days was as high as 80 ppb, whereas southerly air flows generally provided for an ozone background lower than 40 ppb. Back trajectory analysis shows that local ozone mixing ratios can also be strongly affected by the Houston urban pollution plume, leading to late afternoon ozone increases of as high as 50 ppb above background under favorable transport conditions. The trajectory analysis also shows that ozone background increases steadily the longer a southern air mass resides over Texas after entering from the Gulf of Mexico. In light of these and other TexAQS findings, it appears that ozone air quality is affected throughout east Texas by both long-range and regional ozone transport, and that improvements therefore will require at least a regionally oriented instead of the current locally oriented ozone precursor reduction policies.

  7. Quality screening for air quality monitoring data in China.

    PubMed

    Liu, Jianzheng; Li, Weifeng; Li, Jie

    2016-09-01

    Particulate matter data obtained from the national air quality monitoring network in China has become an essential and critical data source for many current and forthcoming studies as well as the formulation and implementation of air pollution regulatory policies on particulate matter (PM2.5 and PM10). However, the quality control of this data is dubitable and can affect many future studies and policies. This study identifies and elucidates two significant quality control issues with the data. They are PM2.5 levels exceeding concurrent co-located PM10 levels and the registration of same concentrations for consecutive hours at some stations. Future studies utilizing particulate matter data need to acknowledge and address these issues to ensure accurate and reliable results.

  8. Quality screening for air quality monitoring data in China.

    PubMed

    Liu, Jianzheng; Li, Weifeng; Li, Jie

    2016-09-01

    Particulate matter data obtained from the national air quality monitoring network in China has become an essential and critical data source for many current and forthcoming studies as well as the formulation and implementation of air pollution regulatory policies on particulate matter (PM2.5 and PM10). However, the quality control of this data is dubitable and can affect many future studies and policies. This study identifies and elucidates two significant quality control issues with the data. They are PM2.5 levels exceeding concurrent co-located PM10 levels and the registration of same concentrations for consecutive hours at some stations. Future studies utilizing particulate matter data need to acknowledge and address these issues to ensure accurate and reliable results. PMID:27376986

  9. Enhancing water quality modelling & forecasting in the Han River basin (Korea) using data assimilation

    NASA Astrophysics Data System (ADS)

    Loos, Sibren; Sumihar, Julius; Min, Joong-Hyuk; El Serafy, Ghada; Kim, Kyunghyun; Weerts, Albrecht

    2013-04-01

    Data assimilation in operational systems is a promising method to enhance the lead-time and reduce the uncertainty of water quality forecasts and provides a good base for the setup of monitoring schemes in large catchments (locations and frequency of sampling). In the River Han (Korea) three weirs have been constructed to prevent flooding and improve the water quality in the main stream. With real-time automated data imports and two water quality models, HSPF and EFDC, embedded in the FEWS-NIER forecasting platform, information about the current water quality status and daily water quality forecasts seven days ahead is provided to -water management agencies in the basin. To improve both the quality and the lead time of the water quality forecasts the EFDC hydrodynamics and water quality model has been implemented in OpenDA, an open interface standard for data assimilation (DA) in numerical models. The setup of this real-time water quality data assimilation system to enhance the algal dynamics modelling and the forecasts in the Han River basin (20,960 km² in size) was performed by a number of steps using Ensemble Kalman Filtering (EnKF). Using a twin experiment the correct working of the algorithm was tested. Noise was applied to several water quality variables in the main tributaries with a sequential simulation algorithm, to obtain correct noise settings that result in a realistic spread between the individual ensemble members. As the next step, the inclusion of observations in the main stream for data assimilation was tested using the EnKF algorithm to define their effect on the model results. Noise was applied to global solar radiation to improve water temperature forecasts, as well as to phosphate, nitrate and chlorophyll-α concentrations in the large tributaries to improve the prediction of algal level upstream of the weirs. Different combinations of noise and observation settings (standard deviation and time correlation) to find the best model update of

  10. Development of short-term forecast quality for new offshore wind farms

    NASA Astrophysics Data System (ADS)

    Kurt, M.; Lange, B.

    2014-06-01

    As the rapid wind power build-out continues, a large number of new wind farms will come online but forecasters and forecasting algorithms have little experience with them. This is a problem for statistical short term forecasts, which must be trained on a long record of historical power production - exactly what is missing for a new farm. Focus of the study was to analyse development of the offshore wind power forecast (WPF) quality from beginning of operation up to one year of operational experience. This paper represents a case study using data of the first German offshore wind farm "alpha ventus" and first German commercial offshore wind farm "Baltic1". The work was carried out with measured data from meteorological measurement mast FINO1, measured power from wind farms and numerical weather prediction (NWP) from the German Weather Service (DWD). This study facilitates to decide the length of needed time series and selection of forecast method to get a reliable WPF on a weekly time axis. Weekly development of WPF quality for day-ahead WPF via different models is presented. The models are physical model; physical model extended with a statistical correction (MOS) and artificial neural network (ANN) as a pure statistical model. Selforganizing map (SOM) is investigated for a better understanding of uncertainties of forecast error.

  11. [Aircraft cabin air quality: exposure to ozone].

    PubMed

    Uva, António De Sousa

    2002-01-01

    Ozone is the principal component involved in photochemical pollution of the air. As an irritant of the respiratory system, its effects on the health of those exposed to it are characterised essentially by coughing, shortness of breath, chest pain or tightness and alterations to the pulmonary mechanical function. Additionally, a higher frequency and severity of asthmatic exacerbation and the occurrence of eye irritation are linked to environmental exposure to O3. In the early 1960s the first studies on the exposure to O3 in aircraft cabins appeared, prompted by the occurrence of clinical complaints of irritation of the respiratory tract in crewmembers and passengers. The symptoms had hitherto been attributed to the action of other factors, such as the ventilation system and low level of humidity in the air. An updating is done by author of some factors related to the quality of air inside aircraft cabins, namely the exposure to ozone in crewmembers and passengers.

  12. Building ventilation and indoor air quality

    SciTech Connect

    Hollowell, C.D.; Berk, J.V.; Boegel, M.L.; Miksch, R.R.; Nazaroff, W.W.; Traynor, G.W.

    1980-01-01

    Rising energy prices, among other factors, have generated an incentive to reduce ventilation rates and thereby reduce the cost of heating and cooling buildings. Reduced infiltration and ventilation in buildings may significantly increase exposure to indoor contaminants and perhaps have adverse effects on occupant health and comfort. Four indoor air contaminants - carbon monoxide and nitrogen dioxide from gas appliances; formaldehyde from particleboard, plywood, urea-formaldehyde foam insulation, and gas appliances; and radon from building materials, soil, and ground water - are currently receiving considerable attention in the context of potential health risks associated with reduced infiltration and ventilation rates. These air contaminants in conventional and energy efficient buildings were measured and analyzed with a view to assessing their potential health risks and various control strategies capable of lowering pollutant concentrations. Preliminary findings suggest that further intensive studies are needed in order to develop criteria for maintaining acceptable indoor air quality without compromising energy efficiency.

  13. South coast air quality management district

    SciTech Connect

    Not Available

    1989-03-01

    The first of several state-of-the-art sampling instruments to monitor acid fog in the South Coast Air Basin on an on-going basis has been in stalled in Rubidoux by the South Coast Air Quality Management District. The automated equipment, called the Caltech Active Strand Collector (CASC), is part of a long-term acid fog monitoring program developed by AQMD. The collecting process involves drawing a fog-laden air sample into the collector where fog droplets strike a series of teflon strands and run down to a collection trough. The sample is then sent to AQMD's laboratory to determine acidity and chemical composition. The monitoring equipment will be moved to Pomona later this winter, and to Crestline in the spring. Following this initial evaluation period, additional CASC units will be sited in the region.

  14. The Atlanta Urban Heat Island Mitigation and Air Quality Modeling Project: How High-Resoution Remote Sensing Data Can Improve Air Quality Models

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Estes, Maurice G., Jr.; Crosson, William L.; Khan, Maudood N.

    2006-01-01

    The Atlanta Urban Heat Island and Air Quality Project had its genesis in Project ATLANTA (ATlanta Land use Analysis: Temperature and Air quality) that began in 1996. Project ATLANTA examined how high-spatial resolution thermal remote sensing data could be used to derive better measurements of the Urban Heat Island effect over Atlanta. We have explored how these thermal remote sensing, as well as other imaged datasets, can be used to better characterize the urban landscape for improved air quality modeling over the Atlanta area. For the air quality modeling project, the National Land Cover Dataset and the local scale Landpro99 dataset at 30m spatial resolutions have been used to derive land use/land cover characteristics for input into the MM5 mesoscale meteorological model that is one of the foundations for the Community Multiscale Air Quality (CMAQ) model to assess how these data can improve output from CMAQ. Additionally, land use changes to 2030 have been predicted using a Spatial Growth Model (SGM). SGM simulates growth around a region using population, employment and travel demand forecasts. Air quality modeling simulations were conducted using both current and future land cover. Meteorological modeling simulations indicate a 0.5 C increase in daily maximum air temperatures by 2030. Air quality modeling simulations show substantial differences in relative contributions of individual atmospheric pollutant constituents as a result of land cover change. Enhanced boundary layer mixing over the city tends to offset the increase in ozone concentration expected due to higher surface temperatures as a result of urbanization.

  15. Altitude characteristics of selected air quality analyzers

    NASA Technical Reports Server (NTRS)

    White, J. H.; Strong, R.; Tommerdahl, J. B.

    1979-01-01

    The effects of altitude (pressure) on the operation and sensitivity of various air quality analyzers frequently flown on aircraft were analyzed. Two ozone analyzers were studied at altitudes from 600 to 7500 m and a nitrogen oxides chemiluminescence detector and a sulfur dioxide flame photometric detector were studied at altitudes from 600 to 3000 m. Calibration curves for altitude corrections to the sensitivity of the instruments are presented along with discussion of observed instrument behavior.

  16. Land use information and air quality planning

    USGS Publications Warehouse

    Reed, Wallace E.; Lewis, John E.

    1975-01-01

    The pilot national land use information system developed by the U.S. Geological Survey in the Central Atlantic Regional Ecological Test Site project has provided an improved technique for estimating emissions, diffusion, and impact patterns of sulfur dioxide (SO2) and particulate matter. Implementation of plans to control air quality requires land use information, which, until this time, has been inadequate. The pilot system, however, provided data for updating information on the sources of point and area emissions of SO2 and particulate matter affecting the Norfolk-Portsmouth area of Virginia for the 1971-72 winter (Dec.-Jan.-Feb.) and the annual 1972 period, and for a future annual period 1985. This emission information is used as input to the Air Quality Display Model of the Environmental Protection Agency to obtain diffusion and impact patterns for the three periods previously mentioned. The results are: (1) During the 1971-72 winter, estimated S02 amounts over an area with a SW-NE axis in the central section of Norfolk exceeded both primary and secondary levels; (2) future annual levels of SO2, estimated by anticipated residential development and point-source changes, are not expected to cause serious deterioration of the region's present air quality; and (3) for the 1971-72 winter and annual 1972 period the diffusion results showed that both primary and secondary standards for particulate matter are regularly exceeded in central Norfolk and Portsmouth. In addition, on the basis of current control programs, the 1985 levels of particulate matter are expected to exceed the presently established secondary air quality standards through central Norfolk and Portsmouth and in certain areas of Virginia Beach.

  17. Indoor Air Quality in Brazilian Universities

    PubMed Central

    Jurado, Sonia R.; Bankoff, Antônia D. P.; Sanchez, Andrea

    2014-01-01

    This study evaluated the indoor air quality in Brazilian universities by comparing thirty air-conditioned (AC) (n = 15) and naturally ventilated (NV) (n = 15) classrooms. The parameters of interest were indoor carbon dioxide (CO2), temperature, relative humidity (RH), wind speed, viable mold, and airborne dust levels. The NV rooms had larger concentration of mold than the AC rooms (1001.30 ± 125.16 and 367.00 ± 88.13 cfu/m3, respectively). The average indoor airborne dust concentration exceeded the Brazilian standards (<80 μg/m3) in both NV and AC classrooms. The levels of CO2 in the AC rooms were significantly different from the NV rooms (1433.62 ± 252.80 and 520.12 ± 37.25 ppm, respectively). The indoor air quality in Brazilian university classrooms affects the health of students. Therefore, indoor air pollution needs to be considered as an important public health problem. PMID:25019268

  18. Biogenic organic emissions, air quality and climate

    NASA Astrophysics Data System (ADS)

    Guenther, A. B.

    2015-12-01

    Living organisms produce copious amounts of a diverse array of metabolites including many volatile organic compounds that are released into the atmosphere. These compounds participate in numerous chemical reactions that influence the atmospheric abundance of important air pollutants and short-lived climate forcers including organic aerosol, ozone and methane. The production and release of these organics are strongly influenced by environmental conditions including air pollution, temperature, solar radiation, and water availability and they are highly sensitive to stress and extreme events. As a result, releases of biogenic organics to the atmosphere have an impact on, and are sensitive to, air quality and climate leading to potential feedback couplings. Their role in linking air quality and climate is conceptually clear but an accurate quantitative representation is needed for predictive models. Progress towards this goal will be presented including numerical model development and assessments of the predictive capability of the Model of Emission of Gases and Aerosols from Nature (MEGAN). Recent studies of processes controlling the magnitude and variations in biogenic organic emissions will be described and observations of their impact on atmospheric composition will be shown. Recent advances and priorities for future research will be discussed including laboratory process studies, long-term measurements, multi-scale regional studies, global satellite observations, and the development of a next generation model for simulating land-atmosphere chemical exchange.

  19. Toward a Global Water Quality Observing and Forecasting System

    EPA Science Inventory

    The Group on Earth Observations (GEO) Coastal and Inland Water Quality Working Group held a Water Quality Summit at the World Meteorological Organization (WMO) in Geneva, Switzerland April 20 to 22, 2015. The goal was to define specific water quality component requirements and de...

  20. A Method for Forecasting the Commercial Air Traffic Schedule in the Future

    NASA Technical Reports Server (NTRS)

    Long, Dou; Lee, David; Gaier, Eric; Johnson, Jesse; Kostiuk, Peter

    1999-01-01

    This report presents an integrated set of models that forecasts air carriers' future operations when delays due to limited terminal-area capacity are considered. This report models the industry as a whole, avoiding unnecessary details of competition among the carriers. To develop the schedule outputs, we first present a model to forecast the unconstrained flight schedules in the future, based on the assumption of rational behavior of the carriers. Then we develop a method to modify the unconstrained schedules, accounting for effects of congestion due to limited NAS capacities. Our underlying assumption is that carriers will modify their operations to keep mean delays within certain limits. We estimate values for those limits from changes in planned block times reflected in the OAG. Our method for modifying schedules takes many means of reducing the delays into considerations, albeit some of them indirectly. The direct actions include depeaking, operating in off-hours, and reducing hub airports'operations. Indirect actions include using secondary airports, using larger aircraft, and selecting new hub airports, which, we assume, have already been modeled in the FAA's TAF. Users of our suite of models can substitute an alternative forecast for the TAF.

  1. Weather Research and Forecasting Model Wind Sensitivity Study at Edwards Air Force Base, CA

    NASA Technical Reports Server (NTRS)

    Watson, Leela R.; Bauman, William H., III; Hoeth, Brian

    2009-01-01

    This abstract describes work that will be done by the Applied Meteorology Unit (AMU) in assessing the success of different model configurations in predicting "wind cycling" cases at Edwards Air Force Base, CA (EAFB), in which the wind speeds and directions oscillate among towers near the EAFB runway. The Weather Research and Forecasting (WRF) model allows users to choose among two dynamical cores - the Advanced Research WRF (ARW) and the Non-hydrostatic Mesoscale Model (NMM). There are also data assimilation analysis packages available for the initialization of the WRF model - the Local Analysis and Prediction System (LAPS) and the Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS). Having a series of initialization options and WRF cores, as well as many options within each core, creates challenges for local forecasters, such as determining which configuration options are best to address specific forecast concerns. The goal of this project is to assess the different configurations available and determine which configuration will best predict surface wind speed and direction at EAFB.

  2. Analysis of air quality management with emphasis on transportation sources

    NASA Technical Reports Server (NTRS)

    English, T. D.; Divita, E.; Lees, L.

    1980-01-01

    The current environment and practices of air quality management were examined for three regions: Denver, Phoenix, and the South Coast Air Basin of California. These regions were chosen because the majority of their air pollution emissions are related to mobile sources. The impact of auto exhaust on the air quality management process is characterized and assessed. An examination of the uncertainties in air pollutant measurements, emission inventories, meteorological parameters, atmospheric chemistry, and air quality simulation models is performed. The implications of these uncertainties to current air quality management practices is discussed. A set of corrective actions are recommended to reduce these uncertainties.

  3. Office Building Occupant's Guide to Indoor Air Quality

    MedlinePlus

    ... building ventilation systems; moisture and humidity; and occupant perceptions and susceptibilities. In addition, there are many other factors that affect comfort or perception of indoor air quality. Controlling indoor air quality ...

  4. Prediction Models are Basis for Rational Air Quality Control

    ERIC Educational Resources Information Center

    Daniels, Anders; Bach, Wilfrid

    1973-01-01

    An air quality control scheme employing meteorological diffusion, time averaging and frequency, and cost-benefit models is discussed. The methods outlined provide a constant feedback system for air quality control. Flow charts and maps are included. (BL)

  5. Data Assimilation Experiments using Quality Controlled AIRS Version 5 Temperature Soundings

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2008-01-01

    The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AlRS data. Version 5 contains accurate case-by-case error estimates for most derived products, which are also used for quality control. We have conducted forecast impact experiments assimilating AlRS quality controlled temperature profiles using the NASA GEOS-5 data assimilation system, consisting of the NCEP GSI analysis coupled with the NASA FVGCM. Assimilation of quality controlled temperature profiles resulted in significantly improved forecast skill in both the Northern Hemisphere and Southern Hemisphere Extra-Tropics, compared to that obtained from analyses obtained when all data used operationally by NCEP except for AlRS data is assimilated. Experiments using different Quality Control thresholds for assimilation of AlRS temperature retrievals showed that a medium quality control threshold performed better than a tighter threshold, which provided better overall sounding accuracy; or a looser threshold, which provided better spatial coverage of accepted soundings. We are conducting more experiments to further optimize this balance of spatial coverage and sounding accuracy from the data assimilation perspective. In all cases, temperature soundings were assimilated well below cloud level in partially cloudy cases. The positive impact of assimilating AlRS derived atmospheric temperatures all but vanished when only AIRS stratospheric temperatures were assimilated. Forecast skill resulting from assimilation of AlRS radiances uncontaminated by clouds, instead of AlRS temperature soundings, was only slightly better than that resulting from assimilation of only stratospheric AlRS temperatures. This reduction in forecast skill is most likely the result of significant loss of tropospheric information when only AIRS radiances unaffected by clouds are used in the data assimilation process.

  6. Forecasting forecast skill

    NASA Technical Reports Server (NTRS)

    Kalnay, Eugenia; Dalcher, Amnon

    1987-01-01

    It is shown that it is possible to predict the skill of numerical weather forecasts - a quantity which is variable from day to day and region to region. This has been accomplished using as predictor the dispersion (measured by the average correlation) between members of an ensemble of forecasts started from five different analyses. The analyses had been previously derived for satellite-data-impact studies and included, in the Northern Hemisphere, moderate perturbations associated with the use of different observing systems. When the Northern Hemisphere was used as a verification region, the prediction of skill was rather poor. This is due to the fact that such a large area usually contains regions with excellent forecasts as well as regions with poor forecasts, and does not allow for discrimination between them. However, when regional verifications were used, the ensemble forecast dispersion provided a very good prediction of the quality of the individual forecasts.

  7. The impact of AIRS atmospheric temperature and moisture profiles on hurricane forecasts: Ike (2008) and Irene (2011)

    NASA Astrophysics Data System (ADS)

    Zheng, Jing; Li, Jun; Schmit, Timothy J.; Li, Jinlong; Liu, Zhiquan

    2015-03-01

    Atmospheric InfraRed Sounder (AIRS) measurements are a valuable supplement to current observational data, especially over the oceans where conventional data are sparse. In this study, two types of AIRS-retrieved temperature and moisture profiles, the AIRS Science Team product (SciSup) and the single field-of-view (SFOV) research product, were evaluated with European Centre for Medium-Range Weather Forecasts (ECMWF) analysis data over the Atlantic Ocean during Hurricane Ike (2008) and Hurricane Irene (2011). The evaluation results showed that both types of AIRS profiles agreed well with the ECMWF analysis, especially between 200 hPa and 700 hPa. The average standard deviation of both temperature profiles was approximately 1 K under 200 hPa, where the mean AIRS temperature profile from the AIRS SciSup retrievals was slightly colder than that from the AIRS SFOV retrievals. The mean SciSup moisture profile was slightly drier than that from the SFOV in the mid troposphere. A series of data assimilation and forecast experiments was then conducted with the Advanced Research version of the Weather Research and Forecasting (WRF) model and its three-dimensional variational (3DVAR) data assimilation system for hurricanes Ike and Irene. The results showed an improvement in the hurricane track due to the assimilation of AIRS clear-sky temperature profiles in the hurricane environment. In terms of total precipitable water and rainfall forecasts, the hurricane moisture environment was found to be affected by the AIRS sounding assimilation. Meanwhile, improving hurricane intensity forecasts through assimilating AIRS profiles remains a challenge for further study.

  8. Towards European-scale Air Quality operational services for GMES Atmosphere

    NASA Astrophysics Data System (ADS)

    Peuch, V.-H.; Rouil, L.; Tarrason, L.; Elbern, H.; Gems/Macc Regional Subprojects Teams

    2009-09-01

    Basing upon the experience gained in national operational or pre-operational air quality forecasting activities, as for instance Prév'Air in France or EURAD in Germany, a range of European scale services have been developing in the context of the EU-funded project GEMS (6th FP) and are now brought a step further in the new project MACC (7th FP). Within the GEMS project, analyses, hindcasts and forecasts from a range of state-of-the-art Regional Air Quality models have been performed on a quasi-operational daily basis since the beginning of 2008. The models cover Europe with horizontal resolutions ranging from 0.2° to 0.5°, and rely on ECMWF operational meteorological forecasts as well as on GEMS global "chemical weather” data, in the form of chemical boundary conditions for key medium to long-lived trace gases and aerosols. They also all consider the same high-resolution (~8km) anthropogenic and biogenic emissions inventories, developed by TNO (The Netherlands) and NKUA (Greece). Access in quasi Near-Real-Time to AQ monitoring data has been obtained for over 15 European countries through fruitful collaborations with national and regional monitoring agencies. This has provided an interesting context, unprecedented to such an extent, to jointly monitor the performances of regional Air Quality forecasts, assess uncertainties and elaborate ensemble products that build upon the models' spread and their respective skills (both in average and for the few days preceding each forecast). Also a hindcast run covering the whole year of 2003 and using chemical boundaries from GEMS global re-analysis of tropospheric reactive gases has been performed and studied. This year 2003 was indeed marked by several episodes in spring and summer (heat wave) with strong health impacts due (at least in part) to bad Air Quality. The GEMS project has ended in May 2009 and the MACC project has started. Within MACC, a stronger emphasis is put on the use of chemical data assimilation and on

  9. New Zealand traffic and local air quality.

    PubMed

    Irving, Paul; Moncrieff, Ian

    2004-12-01

    Since 1996 the New Zealand Ministry of Transport (MOT) has been investigating the effects of road transport on local air quality. The outcome has been the government's Vehicle Fleet Emissions Control Strategy (VFECS). This is a programme of measures designed to assist with the improvement in local air quality, and especially in the appropriate management of transport sector emissions. Key to the VFECS has been the development of tools to assess and predict the contribution of vehicle emissions to local air pollution, in a given urban situation. Determining how vehicles behave as an emissions source, and more importantly, how the combined traffic flows contribute to the total emissions within a given airshed location was an important element of the programme. The actual emissions output of a vehicle is more than that determined by a certified emission standard, at the point of manufacture. It is the engine technology's general performance capability, in conjunction with the local driving conditions, that determines its actual emissions output. As vehicles are a mobile emissions source, to understand the effect of vehicle technology, it is necessary to work with the average fleet performance, or "fleet-weighted average emissions rate". This is the unit measure of performance of the general traffic flow that could be passing through a given road corridor or network, as an average, over time. The flow composition can be representative of the national fleet population, but also may feature particular vehicle types in a given locality, thereby have a different emissions 'signature'. A summary of the range of work that has been completed as part of the VFECS programme is provided. The NZ Vehicle Fleet Emissions Model and the derived data set available in the NZ Traffic Emission Rates provide a significant step forward in the consistent analysis of practical, sustainable vehicle emissions policy and air-quality management in New Zealand.

  10. 40 CFR 52.382 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Significant deterioration of air quality. 52.382 Section 52.382 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not...

  11. 40 CFR 52.1436 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Significant deterioration of air quality. 52.1436 Section 52.1436 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. The requirements of sections 160 through 165 of the Clean Air...

  12. 40 CFR 52.1436 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 4 2012-07-01 2012-07-01 false Significant deterioration of air quality. 52.1436 Section 52.1436 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. The requirements of sections 160 through 165 of the Clean Air...

  13. 40 CFR 52.343 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.343 Section 52.343 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met for the following categories of sources for preventing the significant deterioration of air...

  14. 40 CFR 52.884 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Significant deterioration of air quality. 52.884 Section 52.884 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of section 160 through 165 of the Clean Air Act, as...

  15. 40 CFR 52.382 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Significant deterioration of air quality. 52.382 Section 52.382 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not...

  16. 40 CFR 52.382 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Significant deterioration of air quality. 52.382 Section 52.382 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not...

  17. 40 CFR 52.884 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Significant deterioration of air quality. 52.884 Section 52.884 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of section 160 through 165 of the Clean Air Act, as...

  18. 40 CFR 52.382 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Significant deterioration of air quality. 52.382 Section 52.382 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not...

  19. 40 CFR 52.1436 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 4 2013-07-01 2013-07-01 false Significant deterioration of air quality. 52.1436 Section 52.1436 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. The requirements of sections 160 through 165 of the Clean Air...

  20. 40 CFR 52.382 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Significant deterioration of air quality. 52.382 Section 52.382 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not...

  1. 40 CFR 52.1436 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 4 2014-07-01 2014-07-01 false Significant deterioration of air quality. 52.1436 Section 52.1436 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. The requirements of sections 160 through 165 of the Clean Air...

  2. 40 CFR 52.884 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Significant deterioration of air quality. 52.884 Section 52.884 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of section 160 through 165 of the Clean Air Act, as...

  3. 40 CFR 52.1436 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Significant deterioration of air quality. 52.1436 Section 52.1436 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. The requirements of sections 160 through 165 of the Clean Air...

  4. 40 CFR 52.343 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.343 Section 52.343 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met for the following categories of sources for preventing the significant deterioration of air...

  5. 40 CFR 52.884 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Significant deterioration of air quality. 52.884 Section 52.884 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of section 160 through 165 of the Clean Air Act, as...

  6. 40 CFR 52.884 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Significant deterioration of air quality. 52.884 Section 52.884 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of section 160 through 165 of the Clean Air Act, as...

  7. 40 CFR 52.343 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.343 Section 52.343 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met for the following categories of sources for preventing the significant deterioration of air...

  8. Parent's Guide to School Indoor Air Quality. Revised

    ERIC Educational Resources Information Center

    Healthy Schools Network, Inc., 2012

    2012-01-01

    Air pollution is air pollution, indoors or out. Good indoor air quality (IAQ) contributes to a favorable learning environment for students, protects health, and supports the productivity of school personnel. In schools in poor repair, leaky roofs and crumbling walls have caused additional indoor air quality problems, including contamination with…

  9. Air Quality and Indoor Environmental Exposures: Clinical Impacts

    EPA Science Inventory

    Indoor air quality (IAQ) is a term which refers to the air quality within and around buildings and homes as it relates to the health and comfort of the occupants. Many ambient (outdoor) air pollutants readily permeate indoor spaces. Because indoor air can be considerably more pol...

  10. CMAQ (Community Multi-Scale Air Quality) atmospheric distribution model adaptation to region of Hungary

    NASA Astrophysics Data System (ADS)

    Lázár, Dóra; Weidinger, Tamás

    2016-04-01

    For our days, it has become important to measure and predict the concentration of harmful atmospheric pollutants such as dust, aerosol particles of different size ranges, nitrogen compounds, and ozone. The Department of Meteorology at Eötvös Loránd University has been applying the WRF (Weather Research and Forecasting) model several years ago, which is suitable for weather forecasting tasks and provides input data for various environmental models (e.g. DNDC). By adapting the CMAQ (Community Multi-scale Air Quality) model we have designed a combined ambient air-meteorological model (WRF-CMAQ). In this research it is important to apply different emission databases and a background model describing the initial distribution of the pollutant. We used SMOKE (Sparse Matrix Operator Kernel Emissions) model for construction emission dataset from EMEP (European Monitoring and Evaluation Programme) inventories and GEOS-Chem model for initial and boundary conditions. Our model settings were CMAQ CB05 (Carbon Bond 2005) chemical mechanism with 108 x 108 km, 36 x 36 km and 12 x 12 km grids for regions of Europe, the Carpathian Basin and Hungary respectively. i) The structure of the model system, ii) a case study for Carpathian Basin (an anticyclonic weather situation at 21th September 2012) are presented. iii) Verification of ozone forecast has been provided based on the measurements of background air pollution stations. iv) Effects of model attributes (f.e. transition time, emission dataset, parameterizations) for the ozone forecast in Hungary are also investigated.

  11. 40 CFR 52.2682 - Air quality surveillance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 5 2013-07-01 2013-07-01 false Air quality surveillance. 52.2682... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Guam § 52.2682 Air quality... Pollution Control Standards and Regulations” (buffer zones—air quality sampling) are not in conformance...

  12. 40 CFR 52.1280 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.1280 Section 52.1280 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) All applications and other information required pursuant to § 52... Address: Mississippi Department of Environmental Quality, Office of Pollution Control, Air Division,...

  13. 40 CFR 52.2233 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.2233 Section 52.2233 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a)(1) Paragraph 1200-3-9-.01(4)-(0)-2. of Tennessee's regulations... requesting innovative technology waivers which would significantly impact air quality in adjacent states....

  14. 40 CFR 52.1634 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.1634 Section 52.1634 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The plan submitted by the Governor of New Mexico on February 21... adopted by the NMEID on March 9, 1990), Air Quality Control Regulation 707—Permits, Prevention...

  15. 40 CFR 52.2178 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.2178 Section 52.2178 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The South Dakota plan, as submitted, is approved as meeting the... on Indian reservations; (b) Regulations for preventing significant deterioration of air quality....

  16. 40 CFR 52.1280 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.1280 Section 52.1280 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) All applications and other information required pursuant to § 52... Address: Mississippi Department of Environmental Quality, Office of Pollution Control, Air Division,...

  17. 40 CFR 51.190 - Ambient air quality monitoring requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 2 2014-07-01 2014-07-01 false Ambient air quality monitoring... PROGRAMS REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Ambient Air Quality Surveillance § 51.190 Ambient air quality monitoring requirements. The requirements for monitoring ambient...

  18. 40 CFR 52.2922 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.2922 Section 52.2922 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Northern Mariana Islands § 52.2922 Significant deterioration of air quality. (a) The requirements of... procedures for preventing the significant deterioration of air quality. (b) Regulations for...

  19. 40 CFR 51.190 - Ambient air quality monitoring requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 2 2011-07-01 2011-07-01 false Ambient air quality monitoring... PROGRAMS REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Ambient Air Quality Surveillance § 51.190 Ambient air quality monitoring requirements. The requirements for monitoring ambient...

  20. 40 CFR 52.2682 - Air quality surveillance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Air quality surveillance. 52.2682... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Guam § 52.2682 Air quality... Pollution Control Standards and Regulations” (buffer zones—air quality sampling) are not in conformance...

  1. 40 CFR 52.1116 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... deterioration of air quality. (b) The following provisions of 40 CFR 52.21 are hereby incorporated and made a... quality. 52.1116 Section 52.1116 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean...

  2. 40 CFR 52.1778 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.1778 Section 52.1778 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a)-(b) (c) All applications and other information required pursuant... Air Quality, 1641 Mail Service Center, Raleigh, North Carolina 27699-1641 or local agencies,...

  3. 40 CFR 52.2682 - Air quality surveillance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 5 2012-07-01 2012-07-01 false Air quality surveillance. 52.2682... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Guam § 52.2682 Air quality... Pollution Control Standards and Regulations” (buffer zones—air quality sampling) are not in conformance...

  4. 40 CFR 52.2682 - Air quality surveillance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 5 2014-07-01 2014-07-01 false Air quality surveillance. 52.2682... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Guam § 52.2682 Air quality... Pollution Control Standards and Regulations” (buffer zones—air quality sampling) are not in conformance...

  5. 40 CFR 52.1116 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... deterioration of air quality. (b) The following provisions of 40 CFR 52.21 are hereby incorporated and made a... quality. 52.1116 Section 52.1116 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean...

  6. 40 CFR 52.2178 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.2178 Section 52.2178 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The South Dakota plan, as submitted, is approved as meeting the... on Indian reservations; (b) Regulations for preventing significant deterioration of air quality....

  7. 40 CFR 52.1634 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.1634 Section 52.1634 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The plan submitted by the Governor of New Mexico on February 21... adopted by the NMEID on March 9, 1990), Air Quality Control Regulation 707—Permits, Prevention...

  8. 40 CFR 52.346 - Air quality monitoring requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Air Quality Monitoring plan as identified at 40 CFR 52.320 (c)(17). The revisions updated the plan to bring it into conformance with the Federal requirements for air quality monitoring as found in 40 CFR... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Air quality monitoring requirements....

  9. 40 CFR 52.2233 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.2233 Section 52.2233 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a)(1) Paragraph 1200-3-9-.01(4)-(0)-2. of Tennessee's regulations... requesting innovative technology waivers which would significantly impact air quality in adjacent states....

  10. 40 CFR 51.190 - Ambient air quality monitoring requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Ambient air quality monitoring... PROGRAMS REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Ambient Air Quality Surveillance § 51.190 Ambient air quality monitoring requirements. The requirements for monitoring ambient...

  11. 40 CFR 52.2233 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.2233 Section 52.2233 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a)(1) Paragraph 1200-3-9-.01(4)-(0)-2. of Tennessee's regulations... requesting innovative technology waivers which would significantly impact air quality in adjacent states....

  12. 40 CFR 52.1634 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.1634 Section 52.1634 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The plan submitted by the Governor of New Mexico on February 21... adopted by the NMEID on March 9, 1990), Air Quality Control Regulation 707—Permits, Prevention...

  13. 40 CFR 52.986 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.986 Section 52.986 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The plan submitted by the Governor of Louisiana on August 14, 1984 (as adopted... preventing significant deterioration of air quality. (b) The requirements of sections 160 through 165 of...

  14. 40 CFR 51.190 - Ambient air quality monitoring requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 2 2013-07-01 2013-07-01 false Ambient air quality monitoring... PROGRAMS REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Ambient Air Quality Surveillance § 51.190 Ambient air quality monitoring requirements. The requirements for monitoring ambient...

  15. 40 CFR 52.14 - State ambient air quality standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false State ambient air quality standards. 52.14 Section 52.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... quality standards. Any ambient air quality standard submitted with a plan which is less stringent than...

  16. 40 CFR 52.2233 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.2233 Section 52.2233 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a)(1) Paragraph 1200-3-9-.01(4)-(0)-2. of Tennessee's regulations... requesting innovative technology waivers which would significantly impact air quality in adjacent states....

  17. 40 CFR 52.1778 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.1778 Section 52.1778 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a)-(b) (c) All applications and other information required pursuant... Air Quality, 1641 Mail Service Center, Raleigh, North Carolina 27699-1641 or local agencies,...

  18. 40 CFR 52.1634 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.1634 Section 52.1634 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The plan submitted by the Governor of New Mexico on February 21... adopted by the NMEID on March 9, 1990), Air Quality Control Regulation 707—Permits, Prevention...

  19. 40 CFR 52.14 - State ambient air quality standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false State ambient air quality standards. 52.14 Section 52.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... quality standards. Any ambient air quality standard submitted with a plan which is less stringent than...

  20. 40 CFR 51.190 - Ambient air quality monitoring requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 2 2012-07-01 2012-07-01 false Ambient air quality monitoring... PROGRAMS REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Ambient Air Quality Surveillance § 51.190 Ambient air quality monitoring requirements. The requirements for monitoring ambient...