Air Quality Awareness Among U.S. Adults With Respiratory and Heart Disease.
Mirabelli, Maria C; Boehmer, Tegan K; Damon, Scott A; Sircar, Kanta D; Wall, Hilary K; Yip, Fuyuen Y; Zahran, Hatice S; Garbe, Paul L
2018-05-01
Poor air quality affects respiratory and cardiovascular health. Information about health risks associated with outdoor air quality is communicated to the public using air quality alerts. This study was conducted to assess associations of existing respiratory and heart disease with three aspects of air quality awareness: awareness of air quality alerts, discussing with a health professional strategies to reduce air pollution exposure, and avoiding busy roads to reduce air pollution exposure when walking, biking, or exercising outdoors. During 2014-2016, a total of 12,599 U.S. adults participated in summer waves of the ConsumerStyles surveys and self-reported asthma, emphysema/chronic obstructive pulmonary disease, heart disease, and each aspect of air quality awareness. In 2017, associations between each health condition and air quality awareness were estimated using log binomial and multinomial regression. Overall, 49% of respondents were aware of air quality alerts, 3% discussed with a health professional strategies to reduce air pollution exposure, and 27% always/usually avoided busy roads to reduce air pollution exposure. Asthma was associated with increased prevalence of awareness of air quality alerts (prevalence ratio=1.11, 95% CI=1.04, 1.20), discussing with a health professional (prevalence ratio=4.88, 95% CI=3.74, 6.37), and always/usually avoiding busy roads to reduce air pollution exposure (prevalence ratio=1.13, 95% CI=1.01, 1.27). Heart disease was not associated with air quality awareness. Existing respiratory disease, but not heart disease, was associated with increased air quality awareness. These findings reveal important opportunities to raise awareness of air quality alerts and behavior changes aimed at reducing air pollution exposure among adults at risk of exacerbating respiratory and heart diseases. Published by Elsevier Inc.
75 FR 11461 - Approval and Promulgation of Air Quality Implementation Plans; Minnesota
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-11
... Promulgation of Air Quality Implementation Plans; Minnesota AGENCY: Environmental Protection Agency (EPA.... Because the PM 10 emission limits are being reduced, the air quality of Ramsey County will be protected... culpable source in the Childs Road area's nonattainment of the PM 10 National Ambient Air Quality Standards...
Air pollution removal and temperature reduction by Gainesville's urban forest
Francisco Escobedo; Jennifer A. Seitz; Wayne Zipperer
2009-01-01
Poor air quality is a common problem in many urban areas. It can lead to human health problems and reduced visibility, and it can impair the health of plants and wildlife. The urban forest can help improve air quality by removing pollutants and by reducing air temperature through shading and transpiration. Trees also emit volatile...
Improving indoor air quality through botanical air filtration in energy efficient residences
NASA Astrophysics Data System (ADS)
Newkirk, Daniel W.
According to the U.S. EPA, the average American spends 90% of their time indoors where pollutants are two to five times more prevalent than outside. The consequences of these pollutants are estimated to cost the U.S. 125 billion dollars in lost health and productivity. Background literature suggests botanical air filtration may be able to solve this problem by leveraging the natural ability of plants to purify indoor air. By improving indoor air quality, energy consumption can also be reduced by bringing in less outside air to dilute contaminants within the space. A botanical air filter, called the Biowall, was designed and grown aeroponically in a sealed environmental chamber. Precise measurements of air temperature, air humidity, air quality and energy consumption were made under various lighting levels, plant species and watering strategies to optimize its performance. It was found to reduce indoor air pollutants 60 percent and has the potential to reduce heating and cooling energy consumption by 20 to 30 percent.
75 FR 11503 - Approval and Promulgation of Air Quality Implementation Plans; Minnesota
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-11
... Promulgation of Air Quality Implementation Plans; Minnesota AGENCY: Environmental Protection Agency (EPA... PM 10 emission limits are being reduced, the air quality of Ramsey County will be protected. DATES...: (312) 385-5501. 4. Mail: Genevieve Damico, Acting Chief, Criteria Pollutant Section, Air Programs...
Olowoporoku, Dotun; Hayes, Enda; Longhurst, James; Parkhurst, Graham
2012-06-30
Regardless of its intent and purposes, the first decade of the Local Air Quality Management (LAQM) framework had little or no effect in reducing traffic-related air pollution in the UK. Apart from the impact of increased traffic volumes, the major factor attributed to this failure is that of policy disconnect between the process of diagnosing air pollution and its management, thereby limiting the capability of local authorities to control traffic-related sources of air pollution. Integrating air quality management into the Local Transport Plan (LTP) process therefore presents opportunities for enabling political will, funding and joined-up policy approach to reduce this limitation. However, despite the increased access to resources for air quality measures within the LTP process, there are local institutional, political and funding constraints which reduce the impact of these policy interventions on air quality management. This paper illustrate the policy implementation gaps between central government policy intentions and the local government process by providing evidence of the deprioritisation of air quality management compared to the other shared priorities in the LTP process. We draw conclusions on the policy and practice of integrating air quality management into transport planning. The evidence thereby indicate the need for a policy shift from a solely localised hotspot management approach, in which the LAQM framework operates, to a more holistic management of vehicular emissions within wider spatial administrative areas. Copyright © 2012 Elsevier Ltd. All rights reserved.
Assessing air quality index awareness and use in Mexico City.
Borbet, Timothy C; Gladson, Laura A; Cromar, Kevin R
2018-04-23
The Mexico City Metropolitan Area has an expansive urban population and a long history of air quality management challenges. Poor air quality has been associated with adverse pulmonary and cardiac health effects, particularly among susceptible populations with underlying disease. In addition to reducing pollution concentrations, risk communication efforts that inform behavior modification have the potential to reduce public health burdens associated with air pollution. This study investigates the utilization of Mexico's IMECA risk communication index to inform air pollution avoidance behavior among the general population living in the Mexico City Metropolitan Area. Individuals were selected via probability sampling and surveyed by phone about their air quality index knowledge, pollution concerns, and individual behaviors. The results indicated reasonably high awareness of the air quality index (53% of respondents), with greater awareness in urban areas, among older and more educated individuals, and for those who received air quality information from a healthcare provider. Additionally, behavior modification was less influenced by index reports as it was by personal perceptions of air quality, and there was no difference in behavior modification among susceptible and non-susceptible groups. Taken together, these results suggest there are opportunities to improve the public health impact of risk communication through an increased focus on susceptible populations and greater encouragement of public action in response to local air quality indices.
Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health
NASA Astrophysics Data System (ADS)
West, J. Jason; Smith, Steven J.; Silva, Raquel A.; Naik, Vaishali; Zhang, Yuqiang; Adelman, Zachariah; Fry, Meridith M.; Anenberg, Susan; Horowitz, Larry W.; Lamarque, Jean-Francois
2013-10-01
Actions to reduce greenhouse gas (GHG) emissions often reduce co-emitted air pollutants, bringing co-benefits for air quality and human health. Past studies typically evaluated near-term and local co-benefits, neglecting the long-range transport of air pollutants, long-term demographic changes, and the influence of climate change on air quality. Here we simulate the co-benefits of global GHG reductions on air quality and human health using a global atmospheric model and consistent future scenarios, via two mechanisms: reducing co-emitted air pollutants, and slowing climate change and its effect on air quality. We use new relationships between chronic mortality and exposure to fine particulate matter and ozone, global modelling methods and new future scenarios. Relative to a reference scenario, global GHG mitigation avoids 0.5+/-0.2, 1.3+/-0.5 and 2.2+/-0.8 million premature deaths in 2030, 2050 and 2100. Global average marginal co-benefits of avoided mortality are US$50-380 per tonne of CO2, which exceed previous estimates, exceed marginal abatement costs in 2030 and 2050, and are within the low range of costs in 2100. East Asian co-benefits are 10-70 times the marginal cost in 2030. Air quality and health co-benefits, especially as they are mainly local and near-term, provide strong additional motivation for transitioning to a low-carbon future.
Berry, Meredith S; Nickerson, Norma P; Odum, Amy L
2017-09-01
Poor air quality and resulting annual deaths represent significant public health concerns. Recently, rapid delay discounting (the devaluation of future outcomes) of air quality has been considered a potential barrier for engaging in long term, sustainable behaviors that might help to reduce emissions (e.g., reducing private car use, societal support for clean air initiatives). Delay discounting has been shown to be predictive of real world behavior outside of laboratory settings, and therefore may offer an important framework beyond traditional variables thought to measure sustainable behavior such as importance of an environmental issue, or environmental attitudes/values, although more research is needed in this area. We examined relations between discounting of air quality, respiratory health, and monetary gains and losses. We also examined, relations between discounting and self-reported importance of air quality and respiratory health, and nature relatedness. Results showed rapid delay discounting of all outcomes across the time frames assessed, and significant positive correlations between delay discounting of air quality, respiratory health, and monetary outcomes. Steeper discounting of monetary outcomes relative to air quality and respiratory health outcomes was observed in the context of gains; however, no differences in discounting were observed across losses of monetary, air quality, and respiratory health. Replicating the sign effect, monetary outcomes were discounted more steeply than monetary losses. Importance of air quality, respiratory health and nature relatedness were significantly and positively correlated with one another, but not with degree of delay discounting of any outcome, demonstrating the need for more comprehensive measures that predict pro-environmental behaviors that might benefit individuals and public health over time. These results add to our understanding of decision-making, and demonstrate alarming rates of delay discounting of air quality and health. These results implicate a major public health concern and potential barriers to individual and societal behavior that reduce pollution and emissions for conservation of clean air.
Berry, Meredith S.; Nickerson, Norma P.; Odum, Amy L.
2017-01-01
Poor air quality and resulting annual deaths represent significant public health concerns. Recently, rapid delay discounting (the devaluation of future outcomes) of air quality has been considered a potential barrier for engaging in long term, sustainable behaviors that might help to reduce emissions (e.g., reducing private car use, societal support for clean air initiatives). Delay discounting has been shown to be predictive of real world behavior outside of laboratory settings, and therefore may offer an important framework beyond traditional variables thought to measure sustainable behavior such as importance of an environmental issue, or environmental attitudes/values, although more research is needed in this area. We examined relations between discounting of air quality, respiratory health, and monetary gains and losses. We also examined, relations between discounting and self-reported importance of air quality and respiratory health, and nature relatedness. Results showed rapid delay discounting of all outcomes across the time frames assessed, and significant positive correlations between delay discounting of air quality, respiratory health, and monetary outcomes. Steeper discounting of monetary outcomes relative to air quality and respiratory health outcomes was observed in the context of gains; however, no differences in discounting were observed across losses of monetary, air quality, and respiratory health. Replicating the sign effect, monetary outcomes were discounted more steeply than monetary losses. Importance of air quality, respiratory health and nature relatedness were significantly and positively correlated with one another, but not with degree of delay discounting of any outcome, demonstrating the need for more comprehensive measures that predict pro-environmental behaviors that might benefit individuals and public health over time. These results add to our understanding of decision-making, and demonstrate alarming rates of delay discounting of air quality and health. These results implicate a major public health concern and potential barriers to individual and societal behavior that reduce pollution and emissions for conservation of clean air. PMID:28862671
NASA Astrophysics Data System (ADS)
Lee, Y. H.; Shindell, D. T.; Faluvegi, G.; Pinder, R. W.
2015-11-01
We have investigated how future air quality and climate change are influenced by the US air quality regulations that existed or were proposed in 2013 and a hypothetical climate mitigation policy that reduces 2050 CO2 emissions to be 50 % below 2005 emissions. Using NASA GISS ModelE2, we look at the impacts in year 2030 and 2055. The US energy-sector emissions are from the GLIMPSE project (GEOS-Chem LIDORT Integrated with MARKAL for the Purpose of Scenario Exploration), and other US emissions and the rest of the world emissions are based on the RCP4.5 scenario. The US air quality regulations are projected to have a strong beneficial impact on US air quality and public health in the future but result in positive radiative forcing. Surface PM2.5 is reduced by ~ 2 μg m-3 on average over the US, and surface ozone by ~ 8 ppbv. The improved air quality prevents about 91 400 premature deaths in the US, mainly due to the PM2.5 reduction (~ 74 200 lives saved). The air quality regulations reduces the light-reflecting aerosols (i.e., sulfate and organic matter) more than the light-absorbing species (i.e., black carbon and ozone), leading a strong positive radiative forcing (RF) by both aerosols direct and indirect forcing: total RF is ~ 0.04 W m-2 over the globe; ~ 0.8 W m-2 over the US. Under the hypothetical climate policy, future US energy relies less on coal and thus SO2 emissions are noticeably reduced. This provides air quality co-benefits, but it leads to climate dis-benefits over the US. In 2055, the US mean total RF is +0.22 W m-2 due to positive aerosol direct and indirect forcing, while the global mean total RF is -0.06 W m-2 due to the dominant negative CO2 RF (instantaneous RF). To achieve a regional-scale climate benefit via a climate policy, it is critical (1) to have multi-national efforts to reduce GHGs emissions and (2) to target emission reduction of light-absorbing species (e.g., BC and O3) on top of long-lived species. The latter is very desirable as the resulting climate benefit occurs faster and provides co-benefits to air quality and public health.
75 FR 78602 - Approval and Promulgation of Air Quality Implementation Plans; Minnesota
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-16
... Treatment Plant, considering all permit limitations, are reduced from 184.9 tpy to 47.8 tpy. Air Quality... 10 emissions, MCES Metropolitan Wastewater Treatment Plant provided an air quality analysis to... used five years of surface meteorological data from the Minneapolis/St. Paul airport and upper air data...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Traynor, G.W.; Talbott, J.M.; Moses, D.O.
Building ventilation consumes about 5.8 exajoules of energy each year in the US The annual cost of this energy, used for commercial building fans (1.6 exajoules) and the heating and cooling of outside air (4.2 exajoules), is about $US 33 billion per year. Energy conservation measures that reduce heating and cooling season ventilation rates 15 to 35% in commercial and residential buildings can result in a national savings of about 0.6 to 1.5 exajoules ($US 3-8 billion) per year assuming no reduction of commercial building fan energy use. The most significant adverse environmental impact of reduced ventilation and infiltration ismore » the potential degradation of the buildings indoor air quality. Potential benefits to the US from the implementation of sound indoor air quality and building ventilation reduction policies include reduced building-sector energy consumption; reduced indoor, outdoor, and global air pollution; reduced product costs; reduced worker absenteeism; reduced health care costs; reduced litigation; increased worker well-being and productivity; and increased product quality and competitiveness.« less
Reduced-form air quality modeling for community-scale ...
Transportation plays an important role in modern society, but its impact on air quality has been shown to have significant adverse effects on public health. Numerous reviews (HEI, CDC, WHO) summarizing findings of hundreds of studies conducted mainly in the last decade, conclude that exposures to traffic emissions near roads are a public health concern. The Community LINE Source Model (C-LINE) is a web-based model designed to inform the community user of local air quality impacts due to roadway vehicles in their region of interest using a simplified modeling approach. Reduced-form air quality modeling is a useful tool for examining what-if scenarios of changes in emissions, such as those due to changes in traffic volume, fleet mix, or vehicle speed. Examining various scenarios of air quality impacts in this way can identify potentially at-risk populations located near roadways, and the effects that a change in traffic activity may have on them. C-LINE computes dispersion of primary mobile source pollutants using meteorological conditions for the region of interest and computes air-quality concentrations corresponding to these selected conditions. C-LINE functionality has been expanded to model emissions from port-related activities (e.g. ships, trucks, cranes, etc.) in a reduced-form modeling system for local-scale near-port air quality analysis. This presentation describes the Community modeling tools C-LINE and C-PORT that are intended to be used by local gove
Analysis of air quality management with emphasis on transportation sources
NASA Technical Reports Server (NTRS)
English, T. D.; Divita, E.; Lees, L.
1980-01-01
The current environment and practices of air quality management were examined for three regions: Denver, Phoenix, and the South Coast Air Basin of California. These regions were chosen because the majority of their air pollution emissions are related to mobile sources. The impact of auto exhaust on the air quality management process is characterized and assessed. An examination of the uncertainties in air pollutant measurements, emission inventories, meteorological parameters, atmospheric chemistry, and air quality simulation models is performed. The implications of these uncertainties to current air quality management practices is discussed. A set of corrective actions are recommended to reduce these uncertainties.
Air-Microfluidics: Creating Small, Low-cost, Portable Air Quality Sensors
Air-microfluidics shows great promise in dramatically reducing the size, cost, and power requirements of future air quality sensors without compromising their accuracy. Microfabrication provides a suite of relatively new tools for the development of micro electro mechanical syste...
ERIC Educational Resources Information Center
Kennedy, Mike
2001-01-01
Shows how schools are working to avoid the types of equipment, supplies, and maintenance practices that harm indoor air quality. Simple steps to maintaining a cleaner indoor air environment are highlighted as are steps to reducing the problem air quality and the occurrence of asthma. (GR)
Impacts of Lowered Urban Air Temperatures on Precursor Emission and Ozone Air Quality.
Taha, Haider; Konopacki, Steven; Akbari, Hashem
1998-09-01
Meteorological, photochemical, building-energy, and power plant simulations were performed to assess the possible precursor emission and ozone air quality impacts of decreased air temperatures that could result from implementing the "cool communities" concept in California's South Coast Air Basin (SoCAB). Two pathways are considered. In the direct pathway, a reduction in cooling energy use translates into reduced demand for generation capacity and, thus, reduced precursor emissions from electric utility power plants. In the indirect pathway, reduced air temperatures can slow the atmospheric production of ozone as well as precursor emission from anthropogenic and biogenic sources. The simulations suggest small impacts on emissions following implementation of cool communities in the SoCAB. In summer, for example, there can be reductions of up to 3% in NO x emissions from in-basin power plants. The photochemical simulations suggest that the air quality impacts of these direct emission reductions are small. However, the indirect atmospheric effects of cool communities can be significant. For example, ozone peak concentrations can decrease by up to 11% in summer and population-weighted exceedance exposure to ozone above the California and National Ambient Air Quality Standards can decrease by up to 11 and 17%, respectively. The modeling suggests that if these strategies are combined with others, such as mobile-source emission control, the improvements in ozone air quality can be substantial.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-27
... Promulgation of Air Quality Implementation Plans; Maryland; Control Technique Guidelines for Paper, Film, and... Technique Guidelines (CTG) for paper, film, and foil coatings. These amendments will reduce volatile organic... Promulgation of Air Quality Implementation Plans; Maryland; Control Technique Guidelines for Paper, Film, and...
Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, Jason; Smith, Steven J.; Silva, Raquel
2013-10-01
Reducing greenhouse gas (GHG) emissions also influences air quality. We simulate the co-benefits of global GHG reductions on air quality and human health via two mechanisms: a) reducing co-emitted air pollutants, and b) slowing climate change and its effect on air quality. Relative to a reference scenario, global GHG mitigation in the RCP4.5 scenario avoids 0.5±0.2, 1.3±0.6, and 2.2±1.6 million premature deaths in 2030, 2050, and 2100, from changes in fine particulate matter and ozone. Global average marginal co-benefits of avoided mortality are $40-400 (ton CO2)-1, exceeding marginal abatement costs in 2030 and 2050, and within the low range ofmore » costs in 2100. East Asian co-benefits are 10-80 times the marginal cost in 2030. These results indicate that transitioning to a low-carbon future might be justified by air quality and health co-benefits.« less
Air Quality and Heart Health: Managing an Emerging ...
Dr. Cascio will share with a broad range of federal agencies current understanding of the links between air quality and cardiovascular health. The key facts include that air pollution contributes a high attributable health burden. That certain well-defined vulnerable subpopulations are at higher risk. At-risk populations include those with heart disease, lung disease and diabetes, older adults, children and individuals living in low socioeconomic neighborhoods. There is no established threshold level for safe long-term exposure to air particle pollution, and some of the basic biological mechanisms that account for adverse health effects are now known. This knowledge is giving us insight into how we might mitigate the effects apart from the regulatory efforts to improve overall air quality. Moreover, the work that each State has done to improve air quality has resulted in improved health outcomes including cardiovascular outcomes, and longer lives. The presentation will address: 1) What do we know? 2) Who are the at-risk populations? 3) What can communities do to reduce risk? 4) What can healthcare professionals do to reduce risk of the at-risk population? And 5) What tools are available to help healthcare professionals and their patients reduce exposure and risk from air pollutants? The talk will feature a description of the Air Quality Index and associated EPA tools and health information that can be used by health care providers to educate their at-ris
Regional-scale air quality models are being used to demonstrate attainment of the ozone air quality standard. In current regulatory applications, a regional-scale air quality model is applied for a base year and a future year with reduced emissions using the same meteorological ...
The Bottom Line For Air Quality.
ERIC Educational Resources Information Center
Ellis, Tom
2000-01-01
Discusses how the right type of flooring can help schools reduce indoor-air-quality problems. Using vinyl composition flooring to handle moisture and reduce fungi growth is examined as are the benefits of vinyl cushion tufted textile flooring for cost effectiveness, learning environment improvement, installation, and effectiveness in emergencies.…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-16
... alleviate air pollution, thus reducing poor air quality days. EPA agrees with this commenter. The Sierra... decision vacating the Cross State Air Pollution Rule (CSAPR). The comments are provided in the dockets for..., the D.C. Circuit Court issued an opinion vacating the Cross State Air Pollution Rule (CSAPR), which is...
NASA Astrophysics Data System (ADS)
Duran, P.; Holloway, T.; Brinkman, G.; Denholm, P.; Littlefield, C. M.
2011-12-01
Solar photovoltaics (PV) are an attractive technology because they can be locally deployed and tend to yield high production during periods of peak electric demand. These characteristics can reduce the need for conventional large-scale electricity generation, thereby reducing emissions of criteria air pollutants (CAPs) and improving ambient air quality with regard to such pollutants as nitrogen oxides, sulfur oxides and fine particulates. Such effects depend on the local climate, time-of-day emissions, available solar resources, the structure of the electric grid, and existing electricity production among other factors. This study examines the air quality impacts of distributed PV across the United States Eastern Interconnection. In order to accurately model the air quality impact of distributed PV in space and time, we used the National Renewable Energy Lab's (NREL) Regional Energy Deployment System (ReEDS) model to form three unique PV penetration scenarios in which new PV construction is distributed spatially based upon economic drivers and natural solar resources. Those scenarios are 2006 Eastern Interconnection business as usual, 10% PV penetration, and 20% PV penetration. With the GridView (ABB, Inc) dispatch model, we used historical load data from 2006 to model electricity production and distribution for each of the three scenarios. Solar PV electric output was estimated using historical weather data from 2006. To bridge the gap between dispatch and air quality modeling, we will create emission profiles for electricity generating units (EGUs) in the Eastern Interconnection from historical Continuous Emissions Monitoring System (CEMS) data. Via those emissions profiles, we will create hourly emission data for EGUs in the Eastern Interconnect for each scenario during 2006. Those data will be incorporated in the Community Multi-scale Air Quality (CMAQ) model using the Sparse Matrix Operator Kernel Emissions (SMOKE) model. Initial results indicate that PV penetration significantly reduces conventional peak electricity production and that, due to reduced emissions during periods of extremely active photochemistry, air quality could see benefits.
Brunt, H; Barnes, J; Jones, S J; Longhurst, J W S; Scally, G; Hayes, E
2017-09-01
Air pollution exposure reduces life expectancy. Air pollution, deprivation and poor-health status combinations can create increased and disproportionate disease burdens. Problems and solutions are rarely considered in a broad public health context, but doing so can add value to air quality management efforts by reducing air pollution risks, impacts and inequalities. An ecological study assessed small-area associations between air pollution (nitrogen dioxide and particulate matter), deprivation status and health outcomes in Wales, UK. Air pollution concentrations were highest in 'most' deprived areas. When considered separately, deprivation-health associations were stronger than air pollution-health associations. Considered simultaneously, air pollution added to deprivation-health associations; interactions between air pollution and deprivation modified and strengthened associations with all-cause and respiratory disease mortality, especially in 'most' deprived areas where most-vulnerable people lived and where health needs were greatest. There is a need to reduce air pollution-related risks for all. However, it is also the case that greater health gains can result from considering local air pollution problems and solutions in the context of wider health-determinants and acting on a better understanding of relationships. Informed and co-ordinated air pollution mitigation and public health action in high deprivation and pollution areas can reduce risks and inequalities. To achieve this, greater public health integration and collaboration in local air quality management policy and practice is needed. © The Author 2016. Published by Oxford University Press on behalf of Faculty of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Due to the computational cost of running regional-scale numerical air quality models, reduced form models (RFM) have been proposed as computationally efficient simulation tools for characterizing the pollutant response to many different types of emission reductions. The U.S. Envi...
A Reduced Form Model (RFM) is a mathematical relationship between the inputs and outputs of an air quality model, permitting estimation of additional modeling without costly new regional-scale simulations. A 21-year Community Multiscale Air Quality (CMAQ) simulation for the con...
NASA Astrophysics Data System (ADS)
Lee, Yunha; Shindell, Drew T.; Faluvegi, Greg; Pinder, Rob W.
2016-04-01
We have investigated how future air quality and climate change are influenced by the US air quality regulations that existed or were proposed in 2013 and a hypothetical climate mitigation policy that aims to reduce 2050 CO2 emissions to be 50 % below 2005 emissions. Using the NASA GISS ModelE2 general circulation model, we look at the impacts for year 2030 and 2055. The US energy-sector emissions are from the GLIMPSE project (GEOS-Chem LIDORT Integrated with MARKAL (MARKet ALlocation) for the Purpose of Scenario Exploration), and other US emissions data sets and the rest of the world emissions data sets are based on the RCP4.5 scenario. The US air quality regulations are projected to have a strong beneficial impact on US air quality and public health in year 2030 and 2055 but result in positive radiative forcing. Under this scenario, no more emission constraints are added after 2020, and the impacts on air quality and climate change are similar between year 2030 and 2055. Surface particulate matter with a diameter smaller than 2.5 µm (PM2.5) is reduced by ˜ 2 µg m-3 on average over the USA, and surface ozone by ˜ 8 ppbv. The improved air quality prevents about 91 400 premature deaths in the USA, mainly due to the PM2.5 reduction (˜ 74 200 lives saved). The air quality regulations reduce the light-reflecting aerosols (i.e., sulfate and organic matter) more than the light-absorbing species (i.e., black carbon and ozone), leading to a strong positive radiative forcing (RF) over the USA by both aerosols' direct and indirect forcing: the total RF is ˜ 0.04 W m-2 over the globe, and ˜ 0.8 W m-2 over the USA. Under the hypothetical climate policy, a future CO2 emissions cut is achieved in part by relying less on coal, and thus SO2 emissions are noticeably reduced. This provides air quality co-benefits, but it could lead to potential climate disbenefits over the USA. In 2055, the US mean total RF is +0.22 W m-2 due to positive aerosol direct and indirect forcing, while the global mean total RF is -0.06 W m-2 due to the dominant negative CO2 RF (instantaneous RF). To achieve a regional-scale climate benefit via a climate policy, it is critical (1) to have multinational efforts to reduce greenhouse gas (GHG) emissions and (2) to simultaneously target emission reduction of light-absorbing species (e.g., BC and O3) on top of long-lived species. The latter is very desirable as the resulting climate benefit occurs faster and provides co-benefits to air quality and public health.
NASA Technical Reports Server (NTRS)
Lee, Y. H.; Faluvegi, Gregory S.
2016-01-01
We have investigated how future air quality and climate change are influenced by the US air quality regulations that existed or were proposed in 2013 and a hypothetical climate mitigation policy that aims to reduce 2050 CO2 emissions to be 50% below 2005 emissions. Using the NASA GISS ModelE2 general circulation model, we look at the impacts for year 2030 and 2055. The US energy-sector emissions are from the GLIMPSE project (GEOS-Chem LIDORT Integrated with MARKAL (MARKet ALlocation) for the Purpose of Scenario Exploration), and other US emissions data sets and the rest of the world emissions data sets are based on the RCP4.5 scenario. The US air quality regulations are projected to have a strong beneficial impact on US air quality and public health in year 2030 and 2055 but result in positive radiative forcing. Under this scenario, no more emission constraints are added after 2020, and the impacts on air quality and climate change are similar between year 2030 and 2055. Surface particulate matter with a diameter smaller than 2.5 micron PM(sub 2:5) is reduced by 2 approximately µg/m(sup -3) on average over the USA, and surface ozone by approximately 8 ppbv. The improved air quality prevents about 91 400 premature deaths in the USA, mainly due to the PM(sub 2:5) reduction approximately (74 200 lives saved). The air quality regulations reduce the light-reflecting aerosols (i.e., sulfate and organic matter) more than the light-absorbing species (i.e., black carbon and ozone), leading to a strong positive radiative forcing (RF) over the USA by both aerosols' direct and indirect forcing: the total RF is approximately 0.04 W m(sup -2) over the globe, and approximately 0.8 W m(sup -2) over the USA. Under the hypothetical climate policy, a future CO2 emissions cut is achieved in part by relying less on coal, and thus SO2 emissions are noticeably reduced. This provides air quality co-benefits, but it could lead to potential climate disbenefits over the USA. In 2055, the US mean total RF is +C02 W m(sup -2) due to positive aerosol direct and indirect forcing, while the global mean total RF is -0.06 W m(sup -2) due to the dominant negative CO2 RF (instantaneous RF). To achieve a regional-scale climate benefit via a climate policy, it is critical (1) to have multinational efforts to reduce greenhouse gas (GHG) emissions and (2) to simultaneously target emission reduction of light-absorbing species (e.g., BC and O3) on top of long-lived species. The latter is very desirable as the resulting climate benefit occurs faster and provides cobenefits to air quality and public health.
D'Antoni, Donatella; Smith, Louise; Auyeung, Vivian; Weinman, John
2017-09-22
Although evidence shows that poor air quality can harm human health, we have a limited understanding about the behavioural impact of air quality forecasts. Our aim was to understand to what extent air quality warning systems influence protective behaviours in the general public, and to identify the demographic and psychosocial factors associated with adherence and non-adherence to the health advice accompanying these warnings. In August 2016 literature was systematically reviewed to find studies assessing intended or actual adherence to health advice accompanying air quality warning systems, and encouraging people to reduce exposure to air pollution. Predictors of adherence to the health advice and/or self-reported reasons for adherence or non-adherence were also systematically reviewed. Studies were included only if they involved participants who were using or were aware of these warning systems. Studies investigating only protective behaviours due to subjective perception of bad air quality alone were excluded. The results were narratively synthesised and discussed within the COM-B theoretical framework. Twenty-one studies were included in the review: seventeen investigated actual adherence; three investigated intended adherence; one assessed both. Actual adherence to the advice to reduce or reschedule outdoor activities during poor air quality episodes ranged from 9.7% to 57% (Median = 31%), whereas adherence to a wider range of protective behaviours (e.g. avoiding busy roads, taking preventative medication) ranged from 17.7% to 98.1% (Median = 46%). Demographic factors did not consistently predict adherence. However, several psychosocial facilitators of adherence were identified. These include knowledge on where to check air quality indices, beliefs that one's symptoms were due to air pollution, perceived severity of air pollution, and receiving advice from health care professionals. Barriers to adherence included: lack of understanding of the indices, being exposed to health messages that reduced both concern about air pollution and perceived susceptibility, as well as perceived lack of self-efficacy/locus of control, reliance on sensory cues and lack of time. We found frequent suboptimal adherence rates to health advice accompanying air quality alerts. Several psychosocial facilitators and barriers of adherence were identified. To maximise their health effects, health advice needs to target these specific psychosocial factors.
Usually the most effective way to improve indoor air quality is to eliminate individual sources of pollution or to reduce their emissions. Some sources, like those that contain asbestos, can be sealed or enclosed.
ERIC Educational Resources Information Center
Environmental Protection Agency, Washington, DC. Office of Radiation and Indoor Air.
The U.S. Environmental Protection Agency (EPA) developed the Indoor Air Quality Tools for Schools (IAQ TfS) Program to help schools prevent, identify, and resolve their IAQ problems. This publication describes the program and its advantages, explaining that through simple, low-cost measures, schools can: reduce IAQ-related health risks and…
Linking Air Quality and Human Health Effects Models: An Application to the Los Angeles Air Basin
Stewart, Devoun R; Saunders, Emily; Perea, Roberto A; Fitzgerald, Rosa; Campbell, David E; Stockwell, William R
2017-01-01
Proposed emission control strategies for reducing ozone and particulate matter are evaluated better when air quality and health effects models are used together. The Community Multiscale Air Quality (CMAQ) model is the US Environmental Protection Agency’s model for determining public policy and forecasting air quality. CMAQ was used to forecast air quality changes due to several emission control strategies that could be implemented between 2008 and 2030 for the South Coast Air Basin that includes Los Angeles. The Environmental Benefits Mapping and Analysis Program—Community Edition (BenMAP-CE) was used to estimate health and economic impacts of the different emission control strategies based on CMAQ simulations. BenMAP-CE is a computer program based on epidemiologic studies that link human health and air quality. This modeling approach is better for determining optimum public policy than approaches that only examine concentration changes. PMID:29162976
Linking Air Quality and Human Health Effects Models: An Application to the Los Angeles Air Basin.
Stewart, Devoun R; Saunders, Emily; Perea, Roberto A; Fitzgerald, Rosa; Campbell, David E; Stockwell, William R
2017-01-01
Proposed emission control strategies for reducing ozone and particulate matter are evaluated better when air quality and health effects models are used together. The Community Multiscale Air Quality (CMAQ) model is the US Environmental Protection Agency's model for determining public policy and forecasting air quality. CMAQ was used to forecast air quality changes due to several emission control strategies that could be implemented between 2008 and 2030 for the South Coast Air Basin that includes Los Angeles. The Environmental Benefits Mapping and Analysis Program-Community Edition (BenMAP-CE) was used to estimate health and economic impacts of the different emission control strategies based on CMAQ simulations. BenMAP-CE is a computer program based on epidemiologic studies that link human health and air quality. This modeling approach is better for determining optimum public policy than approaches that only examine concentration changes.
40 CFR 52.1164 - Localized high concentrations-carbon monoxide.
Code of Federal Regulations, 2010 CFR
2010-07-01
... meteorological modeling, traffic flow monitoring, air quality monitoring and other measures necessary to... reviewing all available traffic data, physical site data and air quality and meteorological data for all... containing measures to regulate traffic and parking so as to reduce carbon monoxide emissions to achieve air...
40 CFR 52.1164 - Localized high concentrations-carbon monoxide.
Code of Federal Regulations, 2014 CFR
2014-07-01
... meteorological modeling, traffic flow monitoring, air quality monitoring and other measures necessary to... reviewing all available traffic data, physical site data and air quality and meteorological data for all... containing measures to regulate traffic and parking so as to reduce carbon monoxide emissions to achieve air...
40 CFR 52.1164 - Localized high concentrations-carbon monoxide.
Code of Federal Regulations, 2013 CFR
2013-07-01
... meteorological modeling, traffic flow monitoring, air quality monitoring and other measures necessary to... reviewing all available traffic data, physical site data and air quality and meteorological data for all... containing measures to regulate traffic and parking so as to reduce carbon monoxide emissions to achieve air...
40 CFR 52.1164 - Localized high concentrations-carbon monoxide.
Code of Federal Regulations, 2011 CFR
2011-07-01
... meteorological modeling, traffic flow monitoring, air quality monitoring and other measures necessary to... reviewing all available traffic data, physical site data and air quality and meteorological data for all... containing measures to regulate traffic and parking so as to reduce carbon monoxide emissions to achieve air...
40 CFR 52.1164 - Localized high concentrations-carbon monoxide.
Code of Federal Regulations, 2012 CFR
2012-07-01
... meteorological modeling, traffic flow monitoring, air quality monitoring and other measures necessary to... reviewing all available traffic data, physical site data and air quality and meteorological data for all... containing measures to regulate traffic and parking so as to reduce carbon monoxide emissions to achieve air...
ERIC Educational Resources Information Center
US Environmental Protection Agency, 2009
2009-01-01
This issue of "Indoor Air Quality Tools for Schools" Update ("IAQ TfS" Update) contains the following items: (1) News and Events; (2) Feature Article: Reduce Energy Costs while Maintaining Healthy IAQ; (3) Insight into Excellence: North East Independent School District ; (4) School Building Week 2009; and (5) Have Your Questions Answered!
The impact of communicating information about air pollution events on public health.
McLaren, J; Williams, I D
2015-12-15
Short-term exposure to air pollution has been associated with exacerbation of asthma and chronic obstructive pulmonary disease (COPD). This study investigated the relationship between emergency hospital admissions for asthma, COPD and episodes of poor air quality in an English city (Southampton) from 2008-2013. The city's council provides a forecasting service for poor air quality to individuals with respiratory disease to reduce preventable admissions to hospital and this has been evaluated. Trends in nitrogen dioxide, ozone and particulate matter concentrations were related to hospital admissions data using regression analysis. The impacts of air quality on emergency admissions were quantified using the relative risks associated with each pollutant. Seasonal and weekly trends were apparent for both air pollution and hospital admissions, although there was a weak relationship between the two. The air quality forecasting service proved ineffective at reducing hospital admissions. Improvements to the health forecasting service are necessary to protect the health of susceptible individuals, as there is likely to be an increasing need for such services in the future. Copyright © 2015 Elsevier B.V. All rights reserved.
Khilnani, Gopi C; Tiwari, Pawan
2018-03-01
The review describes current status of air pollution in India, summarizes recent research on adverse health effects of ambient and household air pollution, and outlines the ongoing efforts and future actions required to improve air quality and reduce morbidity and mortality because of air pollution in India. Global burden of disease data analysis reveals more than one million premature deaths attributable to ambient air pollution in 2015 in India. More than one million additional deaths can be attributed to household air pollution. Particulate matter with diameter 2.5 μm or less has been causatively linked with most premature deaths. Acute respiratory tract infections, asthma, chronic obstructive pulmonary disease, exacerbations of preexisting obstructive airway disease and lung cancer are proven adverse respiratory effects of air pollution. Targeting air quality standards laid by WHO can significantly reduce morbidity and mortality because of air pollution in India. India is currently exposed to high levels of ambient and household air pollutants. Respiratory adverse effects of air pollution are significant contributors to morbidity and premature mortality in India. Substantial efforts are being made at legislative, administrative, and community levels to improve air quality. However, much more needs to be done to change the 'status quo' and attain the target air quality standards. VIDEO ABSTRACT: http://links.lww.com/COPM/A24.
Air quality and passenger comfort in an air-conditioned bus micro-environment.
Zhu, Xiaoxuan; Lei, Li; Wang, Xingshen; Zhang, Yinghui
2018-04-12
In this study, passenger comfort and the air pollution status of the micro-environmental conditions in an air-conditioned bus were investigated through questionnaires, field measurements, and a numerical simulation. As a subjective analysis, passengers' perceptions of indoor environmental quality and comfort levels were determined from questionnaires. As an objective analysis, a numerical simulation was conducted using a discrete phase model to determine the diffusion and distribution of pollutants, including particulate matter with a diameter < 10 μm (PM 10 ), which were verified by experimental results. The results revealed poor air quality and dissatisfactory thermal comfort conditions in Jinan's air-conditioned bus system. To solve these problems, three scenarios (schemes A, B, C) were designed to alter the ventilation parameters. According to the results of an improved simulation of these scenarios, reducing or adding air outputs would shorten the time taken to reach steady-state conditions and weaken the airflow or lower the temperature in the cabin. The airflow pathway was closely related to the layout of the air conditioning. Scheme B lowered the temperature by 0.4 K and reduced the airflow by 0.01 m/s, while scheme C reduced the volume concentration of PM 10 to 150 μg/m 3 . Changing the air supply angle could further improve the airflow and reduce the concentration of PM 10 . With regard to the perception of airflow and thermal comfort, the scheme with an airflow provided by a 60° nozzle was considered better, and the concentration of PM 10 was reduced to 130 μg/m 3 .
Peng, Wei; Yang, Junnan; Wagner, Fabian; Mauzerall, Denise L
2017-11-15
China is the world's top carbon emitter and suffers from severe air pollution. We examine near-term air quality and CO 2 co-benefits of various current sector-based policies in China. Using a 2015 base case, we evaluate the potential benefits of four sectoral mitigation strategies. All scenarios include a 20% increase in conventional air pollution controls as well as the following sector-specific fuel switching or technology upgrade strategies. Power sector (POW): 80% replacement of small coal power plants with larger more efficient ones; Industry sector (IND): 10% improvement in energy efficiency; Transport sector (TRA): replacement of high emitters with average vehicle fleet emissions; and Residential sector (RES): replacement of 20% of coal-based stoves with stoves using liquefied petroleum gas (LPG). Conducting an integrated assessment using the regional air pollution model WRF-Chem, we find that the IND scenario reduces national air-pollution-related deaths the most of the four scenarios examined (27,000, 24,000, 13,000 and 23,000 deaths reduced annually in IND, POW, TRA and RES, respectively). In addition, the IND scenario reduces CO 2 emissions more than 8times as much as any other scenario (440, 53, 0 and 52Mt CO 2 reduced in IND, POW, TRA and RES, respectively). We also examine the benefits of an industrial efficiency improvement of just 5%. We find the resulting air quality and health benefits are still among the largest of the sectoral scenarios, while the carbon mitigation benefits remain more than 3 times larger than any other scenario. Our analysis hence highlights the importance of even modest industrial energy efficiency improvements and air pollution control technology upgrades for air quality, health and climate benefits in China. Copyright © 2017 Elsevier B.V. All rights reserved.
HVAC SYSTEMS AS A TOOL IN CONTROLLING INDOOR AIR QUALITY: A LITERATURE REVIEW
The report gives results of a review of literature on the use of heating, ventilating, and air-conditioning (HVAC) systems to control indoor air quality (IAQ). Although significant progress has been made in reducing the energy consumption of HVAC systems, their effect on indoor a...
ERIC Educational Resources Information Center
Jones, Gerald L.; Westen, Risdon J.
The multivariate approach of canonical correlation was used to assess selection procedures of the Air Force Academy. It was felt that improved student selection methods might reduce the number of dropouts while maintaining or improving the quality of graduates. The method of canonical correlation was designed to maximize prediction of academic…
Global Air Quality and Climate
NASA Technical Reports Server (NTRS)
Fiore, Arlene M.; Naik, Vaishali; Steiner, Allison; Unger, Nadine; Bergmann, Dan; Prather, Michael; Righi, Mattia; Rumbold, Steven T.; Shindell, Drew T.; Skeie, Ragnhild B.;
2012-01-01
Emissions of air pollutants and their precursors determine regional air quality and can alter climate. Climate change can perturb the long-range transport, chemical processing, and local meteorology that influence air pollution. We review the implications of projected changes in methane (CH4), ozone precursors (O3), and aerosols for climate (expressed in terms of the radiative forcing metric or changes in global surface temperature) and hemispheric-to-continental scale air quality. Reducing the O3 precursor CH4 would slow near-term warming by decreasing both CH4 and tropospheric O3. Uncertainty remains as to the net climate forcing from anthropogenic nitrogen oxide (NOx) emissions, which increase tropospheric O3 (warming) but also increase aerosols and decrease CH4 (both cooling). Anthropogenic emissions of carbon monoxide (CO) and non-CH4 volatile organic compounds (NMVOC) warm by increasing both O3 and CH4. Radiative impacts from secondary organic aerosols (SOA) are poorly understood. Black carbon emission controls, by reducing the absorption of sunlight in the atmosphere and on snow and ice, have the potential to slow near-term warming, but uncertainties in coincident emissions of reflective (cooling) aerosols and poorly constrained cloud indirect effects confound robust estimates of net climate impacts. Reducing sulfate and nitrate aerosols would improve air quality and lessen interference with the hydrologic cycle, but lead to warming. A holistic and balanced view is thus needed to assess how air pollution controls influence climate; a first step towards this goal involves estimating net climate impacts from individual emission sectors. Modeling and observational analyses suggest a warming climate degrades air quality (increasing surface O3 and particulate matter) in many populated regions, including during pollution episodes. Prior Intergovernmental Panel on Climate Change (IPCC) scenarios (SRES) allowed unconstrained growth, whereas the Representative Concentration Pathway (RCP) scenarios assume uniformly an aggressive reduction, of air pollutant emissions. New estimates from the current generation of chemistry-climate models with RCP emissions thus project improved air quality over the next century relative to those using the IPCC SRES scenarios. These two sets of projections likely bracket possible futures. We find that uncertainty in emission-driven changes in air quality is generally greater than uncertainty in climate-driven changes. Confidence in air quality projections is limited by the reliability of anthropogenic emission trajectories and the uncertainties in regional climate responses, feedbacks with the terrestrial biosphere, and oxidation pathways affecting O3 and SOA.
Analysis of air quality in Dire Dawa, Ethiopia.
Kasim, Oluwasinaayomi Faith; Woldetisadik Abshare, Muluneh; Agbola, Samuel Babatunde
2017-12-07
Ambient air quality was monitored and analyzed to develop air quality index and its implications for livability and climate change in Dire Dawa, Ethiopia. Using survey research design, 16 georeferenced locations, representing different land uses, were randomly selected and assessed for sulfur dioxide (SO 2 ), nitrogen dioxide (NO 2 ), carbon dioxide (CO 2 ), carbon monoxide (CO),volatile organic compounds (VOCs), and meteorological parameters (temperature and relative humidity). The study found mean concentrations across all land uses for SO 2 of 0.37 ± 0.08 ppm, NO 2 of 0.13 ± 0.17 ppm, CO 2 of 465.65 ± 28.63 ppm, CO of 3.35 ± 2.04 ppm, and VOCs of 1850.67 ± 402 ppm. An air quality index indicated that ambient air quality for SO 2 was very poor, NO 2 ranged from moderate to very poor, whereas CO rating was moderate. Significant positive correlations existed between temperature and NO 2 , CO 2 , and CO and between humidity and VOCs. Significant relationships were also recorded between CO 2 and NO 2 and between CO and CO 2 . Poor urban planning, inadequate pollution control measure, and weak capacity to monitor air quality have implications for energy usage, air quality, and local meteorological parameters, with subsequent feedback into global climate change. Implementation of programs to monitor and control emissions in order to reduce air pollution will provide health, economic, and environmental benefits to the city. The need to develop and implement emission control programs to reduce air pollution in Dire Dawa City is urgent. This will provide enormous economic, health, and environmental benefits. It is expected that economic effects of air quality improvement will offset the expenditures for pollution control. Also, strategies that focus on air quality and climate change present a unique opportunity to engage different stakeholders in providing inclusive and sustainable development agenda for Dire Dawa.
The climate and air-quality benefits of wind and solar power in the United States
NASA Astrophysics Data System (ADS)
Millstein, Dev; Wiser, Ryan; Bolinger, Mark; Barbose, Galen
2017-09-01
Wind and solar energy reduce combustion-based electricity generation and provide air-quality and greenhouse gas emission benefits. These benefits vary dramatically by region and over time. From 2007 to 2015, solar and wind power deployment increased rapidly while regulatory changes and fossil fuel price changes led to steep cuts in overall power-sector emissions. Here we evaluate how wind and solar climate and air-quality benefits evolved during this time period. We find cumulative wind and solar air-quality benefits of 2015 US$29.7-112.8 billion mostly from 3,000 to 12,700 avoided premature mortalities, and cumulative climate benefits of 2015 US$5.3-106.8 billion. The ranges span results across a suite of air-quality and health impact models and social cost of carbon estimates. We find that binding cap-and-trade pollutant markets may reduce these cumulative benefits by up to 16%. In 2015, based on central estimates, combined marginal benefits equal 7.3 ¢ kWh-1 (wind) and 4.0 ¢ kWh-1 (solar).
Passenger aircraft cabin air quality: trends, effects, societal costs, proposals.
Hocking, M B
2000-08-01
As aircraft operators have sought to substantially reduce propulsion fuel cost by flying at higher altitudes, the energy cost of providing adequate outside air for ventilation has increased. This has lead to a significant decrease in the amount of outside air provided to the passenger cabin, partly compensated for by recirculation of filtered cabin air. The purpose of this review paper is to assemble the available measured air quality data and some calculated estimates of the air quality for aircraft passenger cabins to highlight the trend of the last 25 years. The influence of filter efficiencies on air quality, and a few medically documented and anecdotal cases of illness transmission aboard aircraft are discussed. Cost information has been collected from the perspective of both the airlines and passengers. Suggestions for air quality improvement are given which should help to result in a net, multistakeholder savings and improved passenger comfort.
Modeling green infrastructure land use changes on future air quality in Kansas City
Green infrastructure can be a cost-effective approach for reducing stormwater runoff and improving water quality as a result, but it could also bring co-benefits for air quality: less impervious surfaces and more vegetation can decrease the urban heat island effect, and also resu...
Air pollution and chronic airway diseases: what should people know and do?
Jiang, Xu-Qin; Mei, Xiao-Dong; Feng, Di
2016-01-01
The health effects of air pollution remain a public health concern worldwide. Exposure to air pollution has many substantial adverse effects on human health. Globally, seven million deaths were attributable to the joint effects of household and ambient air pollution. Subjects with chronic respiratory diseases such as chronic obstructive pulmonary disease (COPD) and asthma are especially vulnerable to the detrimental effects of air pollutants. Air pollution can induce the acute exacerbation of COPD and onset of asthma, increase the respiratory morbidity and mortality. The health effects of air pollution depend on the components and sources of pollutants, which varied with countries, seasons, and times. Combustion of solid fuels is a major source of air pollutants in developing countries. To reduce the detrimental effects of air pollution, people especially those with COPD or asthma should be aware of the air quality and take extra measures such as reducing the time outdoor and wearing masks when necessary. For reducing the air pollutants indoor, people should use clean fuels and improve the stoves so as to burn fuel more efficiently and vent emissions to the outside. Air cleaners that can improve the air quality efficiently are recommended.
Air pollution and chronic airway diseases: what should people know and do?
Jiang, Xu-Qin; Feng, Di
2016-01-01
The health effects of air pollution remain a public health concern worldwide. Exposure to air pollution has many substantial adverse effects on human health. Globally, seven million deaths were attributable to the joint effects of household and ambient air pollution. Subjects with chronic respiratory diseases such as chronic obstructive pulmonary disease (COPD) and asthma are especially vulnerable to the detrimental effects of air pollutants. Air pollution can induce the acute exacerbation of COPD and onset of asthma, increase the respiratory morbidity and mortality. The health effects of air pollution depend on the components and sources of pollutants, which varied with countries, seasons, and times. Combustion of solid fuels is a major source of air pollutants in developing countries. To reduce the detrimental effects of air pollution, people especially those with COPD or asthma should be aware of the air quality and take extra measures such as reducing the time outdoor and wearing masks when necessary. For reducing the air pollutants indoor, people should use clean fuels and improve the stoves so as to burn fuel more efficiently and vent emissions to the outside. Air cleaners that can improve the air quality efficiently are recommended. PMID:26904251
Alternative Fuels Data Center: School Bus Idle Reduction Strategies
, teachers, parents, and children to learn about air quality and diesel emissions. Recognizes the positive fuel, reduce engine wear and tear, protect the health of drivers and children, and improve air quality
Impact of air quality guidelines on COPD sufferers
Liu, Youcheng; Yan, Shuang; Poh, Karen; Liu, Suyang; Iyioriobhe, Emanehi; Sterling, David A
2016-01-01
Background COPD is one of the leading causes of morbidity and mortality in both high- and low-income countries and a major public health burden worldwide. While cigarette smoking remains the main cause of COPD, outdoor and indoor air pollution are important risk factors to its etiology. Although studies over the last 30 years helped reduce the values, it is not very clear if the current air quality guidelines are adequately protective for COPD sufferers. Objective This systematic review was to summarize the up-to-date literature on the impact of air pollution on the COPD sufferers. Methods PubMed and Google Scholar were utilized to search for articles related to our study’s focus. Search terms included “COPD exacerbation”, “air pollution”, “air quality guidelines”, “air quality standards”, “COPD morbidity and mortality”, “chronic bronchitis”, and “air pollution control” separately and in combination. We focused on articles from 1990 to 2015. We also used articles prior to 1990 if they contained relevant information. We focused on articles written in English or with an English abstract. We also used the articles in the reference lists of the identified articles. Results Both short-term and long-term exposures to outdoor air pollution around the world are associated with the mortality and morbidity of COPD sufferers even at levels below the current air quality guidelines. Biomass cooking in low-income countries was clearly associated with COPD morbidity in adult nonsmoking females. Conclusion There is a need to continue to improve the air quality guidelines. A range of intervention measures could be selected at different levels based on countries’ socioeconomic conditions to reduce the air pollution exposure and COPD burden. PMID:27143874
Latino and Non-Latino Perceptions of the Air Quality in California's San Joaquin Valley.
Brown, Paul; Cameron, Linda; Cisneros, Ricardo; Cox, Rachel; Gaab, Erin; Gonzalez, Mariaelena; Ramondt, Steven; Song, Anna
2016-12-15
The San Joaquin Valley (SJV) of California has poor air quality, high rates of asthma, and high rates of obesity. Informational campaigns aimed at increasing awareness of the health impacts of poor air quality and promoting behavior change need to be tailored to the specific target audiences. The study examined perceptions of air quality, perceived health impacts, and methods of accessing information about air quality between Latinos and other groups in the SJV. Residents of the SJV (n = 744) where surveyed via one of three methods: community organizations (256), public locations (251), and an internet panel (237). The results suggest that people perceive the air quality in their region to be generally unhealthy, particularly for sensitive groups. The air quality is more likely to be reported as being unhealthy by people with health problems and less unhealthy by Latinos and people who report regularly exercising. Latinos are more likely to report working outdoors regularly, but also more likely to report being able to reduce their exposure if the air quality is unhealthy. The results report differences in informational sources about air quality, suggesting that informational campaigns should target high risk groups using a variety of media.
Latino and Non-Latino Perceptions of the Air Quality in California’s San Joaquin Valley
Brown, Paul; Cameron, Linda; Cisneros, Ricardo; Cox, Rachel; Gaab, Erin; Gonzalez, Mariaelena; Ramondt, Steven; Song, Anna
2016-01-01
The San Joaquin Valley (SJV) of California has poor air quality, high rates of asthma, and high rates of obesity. Informational campaigns aimed at increasing awareness of the health impacts of poor air quality and promoting behavior change need to be tailored to the specific target audiences. The study examined perceptions of air quality, perceived health impacts, and methods of accessing information about air quality between Latinos and other groups in the SJV. Residents of the SJV (n = 744) where surveyed via one of three methods: community organizations (256), public locations (251), and an internet panel (237). The results suggest that people perceive the air quality in their region to be generally unhealthy, particularly for sensitive groups. The air quality is more likely to be reported as being unhealthy by people with health problems and less unhealthy by Latinos and people who report regularly exercising. Latinos are more likely to report working outdoors regularly, but also more likely to report being able to reduce their exposure if the air quality is unhealthy. The results report differences in informational sources about air quality, suggesting that informational campaigns should target high risk groups using a variety of media. PMID:27983706
Shendell, Derek G; Rawling, Mary-Michal; Foster, Christine; Bohlke, Alicia; Edwards, Bobbie; Rico, Susie A; Felix, Justina; Eaton, Sandra; Moen, Stephanie; Roberts, Eric M; Love, Mary Beth
2007-10-01
This paper describes a novel school-based, visual environmental public health educational intervention intended to help reduce the exposure of children-and adults-to outdoor air pollution, including known environmental asthma triggers like ozone and particles. The overarching goal was to enhance the learning, recreational, and work environments of students and staff. The specific purpose of the Asthma-Friendly Outdoor (Ambient) Air Quality Flag Program was to establish an education and communication tool for Central California communities that would accomplish two things: (1) Establish permanent local policy change to existing operating procedures in school districts and schools to help reduce the exposure of students, teachers, staff, and nearby communities to outdoor environmental asthma triggers and (2) provide education on air quality and potential health effects of exposure to air pollutants. Data on the program from its initial years are presented. To date, the following important lessons have been learned: (1) Science-based, simple, visual, low-cost school-based educational interventions to help reduce human exposure to outdoor environmental asthma triggers (i.e., ozone, particles, and pollens) can work in socioeconomically and ethnically diverse urban and rural or agricultural communities, and (2) local health and environmental justice groups such as asthma coalitions can successfully lead school-based environmental interventions to help improve children's quality of life.
Davidson, Carla; Spink, David
2018-04-01
Previous analyses of continuously measured compounds in Fort McKay, an indigenous community in the Athabasca Oil Sands, have detected increasing concentrations of nitrogen dioxide (NO 2 ) and total hydrocarbons (THC), but not of sulfur dioxide (SO 2 ), ozone (O 3 ), total reduced sulfur compounds (TRS), or particulate matter (aerodynamic diameter <2.5 μm; PM 2.5 ). Yet the community frequently experiences odors, dust, and reduced air quality. The authors used Fort McKay's continuously monitored air quality data (1998-2014) as a case study to assess techniques for air quality analysis that make no assumptions regarding type of change. Linear trend analysis detected increasing concentrations of higher percentiles of NO 2 , nitric oxide (NO), and nitrogen oxides (NO x ), and THC. However, comparisons of all compounds between an early industrial expansion period (1998-2001) and current day (2011-2014) show that concentrations of NO 2 , SO 2 , THC, TRS, and PM 2.5 have significantly increased, whereas concentrations of O 3 are significantly lower. An assessment of the frequency and duration of periods when concentrations of each compound were above a variety of thresholds indicated that the frequency of air quality events is increasing for NO 2 and THC. Assessment of change over time with odds ratios of the 25th, 50th, 75th, and 90th percentile concentrations for each compound compared with an estimate of natural background variability showed that concentrations of TRS, SO 2 , and THC are dynamic, higher than background, and changes are nonlinear and nonmonotonic. An assessment of concentrations as a function of wind direction showed a clear and generally increasing influence of industry on air quality. This work shows that evaluating air quality without assumptions of linearity reveals dynamic changes in air quality in Fort McKay, and that it is increasingly being affected by oil sands operations. Understanding the nature and types of air quality changes occurring in a community or region is essential for the development of appropriate air quality management policies. Time-series trending of air quality data is a common tool for assessing air quality changes and is often used to assess the effectiveness of current emission management programs. The use of this tool, in the context of oil sands development, has significant limitations, and alternate air quality change analysis approaches need to be applied to ensure that the impact of this development on air quality is fully understood so that appropriate emission management actions can be taken.
Improving and monitoring air quality.
DuPont, André
2018-05-01
Since the authorization of the Clean Air Act Amendments of 1990, the air quality in the USA has significantly improved because of strong public support. The lessons learned over the last 25 years are being shared with the policy analysts, technical professionals, and scientist who endeavor to improve air quality in their communities. This paper will review how the USA has achieved the "high" standard of air quality that was envisioned in the early 1990s. This document will describe SO 2 gas emission reduction technology and highlight operation of emission monitoring technology. This paper describes the basic process operation of an air pollution control scrubber. A technical review of measures required to operate and maintain a large-scale pollution control system will be described. Also, the author explains how quality assurance procedures in performance of continuous emission monitoring plays a significant role in reducing air pollution.
Air Quality and Health Impacts of an Aviation Biofuel Supply Chain in the Northwestern United States
NASA Astrophysics Data System (ADS)
Ravi, V.; Lamb, B. K.
2016-12-01
The Northwest Advanced Renewables Alliance (NARA) is a multi-institutional program aimed at the development of a supply chain for aviation biofuel using woody residues from logging operations as a feedstock. In this paper, we present results based on a comprehensive regional air quality modelling framework (AIRPACT) showing the effects of reduced prescribed fires due to harvesting of the woody biomass feedstock and air quality impacts from the biofuel supply chain. We will present results from two different scenarios - (1) a biorefinery scenario with all emissions associated with supply chain (i.e. vehicular, logging-activity, and biorefinery operations) with two biorefineries in eastern and western Washington and (2) a prescribed burn scenario with all and reduced prescribed fire emissions. Prescribed fire activities peak during Oct-Nov in the region, and prescribed fire simulations for this period in 2011 show significant improvement in particulate air quality in western Oregon for the case with reduced fire emissions. Harvesting woody residue and reducing the amount of prescribed fire activity decreased PM2.5 by 10-20 µg/m3 at several locations. Using BenMAP, an air quality benefit mapping tool, we show that a decrease in PM2.5 concentrations due to reduced prescribed and slash burning activity is associated with decrease in several health end points analysed. Decreases in PM2.5 concentrations also help to improve visibility in protected natural environments, such as national parks. For the biofuel supply chain, summertime simulations were completed and initial results indicate only a small increase (≤1 ppbv) in hourly ozone concentration downwind of a large biorefinery near the Puget Sound region. Impacts from a smaller biorefinery located in eastern Washington are much smaller. Impacts from mobile sources for biomass hauling are negligible.
Ambient air quality programmes for health impact assessment in the WHO European region.
Mücke, H G
2000-06-01
An important aim of air quality assessment is to provide information about population exposure and health impact assessment. Numerous epidemiological studies have already shown that exposure to excessive levels of ambient air pollutants are associated with either acute or chronic health effects. Until recently, the adequacy of monitoring population exposure in relation to quantitative assessment of health effects of air pollution was rarely considered in ambient air monitoring strategies. This made the formulation of health-related recommendations to risk management difficult and weakens preventive and other measures to reduce adverse health effects of air pollution. To improve local and national capacities for health impact assessment, the European Centre for Environment and Health of the World Health Organization has prepared methodology guidelines concerning selected aspects of air monitoring. The WHO Collaborating Centre for Air Quality Management and Air Pollution Control support efforts in line with international programmes on quality assurance and control for Europe.
Wang, Keran; Wu, Jinyi; Wang, Rui; Yang, Yingying; Chen, Renjie; Maddock, Jay E; Lu, Yuanan
2015-11-15
Shanghai, along with many major cities in China, faces deterioration of air quality and increases in air pollution-related respiratory diseases (RDs) in children due to rapid industrialization and urbanization. The Contingent Valuation Method (CVM) was used to qualitatively and quantitatively measure the willingness to pay (WTP) for reducing children's RDs through air quality improvement. Between April and May, 2014, 975 face-to-face interviews were collected from parents in a community-based and a hospital-setting in Shanghai. Multiple imputation and the Probit model were used to determine the relationship between the WTP and the related environmental factors, child health factors and the socio-economic status. Most respondents reported being willing to make a financial contribution to improve air quality in both the community (52.6%) and hospital (70.2%) samples. Those in the hospital setting were willing to pay significantly more ¥504 (USD$80.7) compared to the community sample ¥428 ($68.5) as expected. Reasons for those not being willing to pay included lack of disposable income and believing that responsibility of the air quality was a community issue. These did not differ by sample. Annual household income and education were related to WTP. This study indicated that parents in Shanghai would be willing to pay for improved air quality. Children's health can be the incentive for the citizens' participation and support in the air quality improvement, therefore, hospital settings may present unique places to improve education about air quality and enhance advocacy efforts. This study also suggested that future environmental policies be addressed more rigorously for targeted populations. Copyright © 2015 Elsevier B.V. All rights reserved.
Protecting wilderness air quality in the United States
K. A. Tonnessen
2000-01-01
Federal land managers are responsible for protecting air quality-related values (AQRVs) in parks and wilderness areas from air pollution damage or impairment. Few, if any, class 1 areas are unaffected by regional and global pollutants, such as visibility-reducing particles, ozone and deposition of sulfur (S), nitrogen (N) and toxics. This paper lays out the basic...
Cecchel, S; Chindamo, D; Turrini, E; Carnevale, C; Cornacchia, G; Gadola, M; Panvini, A; Volta, M; Ferrario, D; Golimbioschi, R
2018-02-01
This study presents a modelling system to evaluate the impact of weight reduction in light commercial vehicles with diesel engines on air quality and greenhouse gas emissions. The PROPS model assesses the emissions of one vehicle in the aforementioned category and its corresponding reduced-weight version. The results serve as an input to the RIAT+ tool, an air quality integrated assessment modelling system. This paper applies the tools in a case study in the Lombardy region (Italy) and discusses the input data pre-processing, the PROPS-RIAT+ modelling system runs, and the results. Copyright © 2017 Elsevier B.V. All rights reserved.
Cross-State Air Pollution Rule
The Cross-State Air Pollution Rule (CSAPR), requires states to significantly improve air quality by reducing power plant emissions that contribute to ozone and/or fine particle pollution in other states.
EPA Awards $25K Grant to Lewiston, Maine Non-profit for Indoor Air Quality Efforts
A non-profit in Lewiston, Maine, has received $25,000 from the US Environmental Protection Agency to reduce health threats caused by poor indoor air quality, including radon indoors, mold and secondhand smoke.
Bayesian Analysis of a Reduced-Form Air Quality Model
Numerical air quality models are being used for assessing emission control strategies for improving ambient pollution levels across the globe. This paper applies probabilistic modeling to evaluate the effectiveness of emission reduction scenarios aimed at lowering ground-level oz...
Flood Cleanup to Protect Indoor Air Quality
During a flood cleanup, the indoor air quality in your home or office may appear to be the least of your problems. However, failure to remove contaminated materials and to reduce moisture and humidity can present serious long-term health risks.
Of moss and men: Using moss as a bioindicator of toxic heavy metals at the city scale
Natasha Vizcarra; Sarah Jovan; Demetrios Gatziolis; Vicente Monleon
2018-01-01
Air quality is a critical issue affecting the health of billions of people worldwide, yet often little is known about what is in the air we breathe. To reduce air pollutionâs health impacts, pollution sources must first be reliably identified. Otherwise, it is impossible to design and effectively enforce environmental standards. However, urban networks of air quality...
NASA Astrophysics Data System (ADS)
Valenzuela, Victor Hugo
Air pollution emissions control strategies to reduce ozone precursor pollutants are analyzed by applying a photochemical modeling system. Simulations of air quality conditions during an ozone episode which occurred in June, 2006 are undertaken by increasing or reducing area source emissions in Ciudad Juarez, Chihuahua, Mexico. Two air pollutants are primary drivers in the formation of tropospheric ozone. Oxides of nitrogen (NOx) and volatile organic compounds (VOC) undergo multiple chemical reactions under favorable meteorological conditions to form ozone, which is a secondary pollutant that irritates respiratory systems in sensitive individuals especially the elderly and young children. The U.S. Environmental Protection Agency established National Ambient Air Quality Standards (NAAQS) to limit ambient air pollutants such as ozone by establishing an 8-hour average concentration of 0.075 ppm as the threshold at which a violation of the standard occurs. Ozone forms primarily due reactions in the troposphere of NOx and VOC emissions generated primarily by anthropogenic sources in urban regions. Data from emissions inventories indicate area sources account for ˜15 of NOx and ˜45% of regional VOC emissions. Area sources include gasoline stations, automotive paint bodyshops and nonroad mobile sources. Multiplicity of air pollution emissions sources provides an opportunity to investigate and potentially implement air quality improvement strategies to reduce emissions which contribute to elevated ozone concentrations. A baseline modeling scenario was established using the CAMx photochemical air quality model from which a series of sensitivity analyses for evaluating air quality control strategies were conducted. Modifications to area source emissions were made by varying NOx and / or VOC emissions in the areas of particular interest. Model performance was assessed for each sensitivity analysis. Normalized bias (NB) and normalized error (NE) were used to identify variability of the PREDICTED to OBSERVED ozone concentrations of both BASELINE model and simulations with modified emissions assessed by the sensitivity analysis. All simulations were found to vary within acceptable ranges of these two criteria variables. Simulation results indicate ozone formation in the PdN region is VOC-limited. Under VOC-limited conditions, modifications to NOx emissions do not produce a marked increase or decrease in ozone concentrations. Modifications to VOC emissions generated the highest variability in ozone concentrations. Increasing VOC emissions by 75% produced results which minimized model bias and error when comparing PREDICTED and OBSERVED ozone concentrations. Increasing VOC emissions by 75% either alone or in combination with a 75% increase in NOx emissions generated PREDICTED ozone concentrations very near to OBSERVED ozone. By evaluating the changes in ambient ozone concentrations through photochemical modeling, air quality planners may identify the most efficient or effective VOC emissions control strategies for area sources. Among the strategies to achieve emissions reductions are installation of gasoline vapor recovery systems, replacing high-pressure low-volume surface coating paint spray guns with high-volume low-pressure spray paint guns, requiring emissions control booths for surface coating operations as well as undertaking solvent management practices, requiring the sale of low VOC paint solvents in the surface-coating industry, and requiring low-VOC solvents in the dry cleaning industry. Other strategies to reduce VOC emissions include initiating Eco-Driving strategies to reduce fuel consumption from mobile sources and minimize vehicle idling at the international ports of entry by reducing bridge wait times. This dissertation depicts a tool for evaluating impacts of emissions on regional air quality by addressing the highly unresolved fugitive emissions in the Paso del Norte region. It provides a protocol for decision makers to assess the effects of various emission control strategies in the region. Impacts of specific source categories such as the international ports of entry, gasoline stations, paint body shops, truck stops, and military installations on the regional air quality can be easily and systematically addressed in a timely manner in the future.
Canada-wide standards and innovative transboundary air quality initiatives.
Barton, Jane
2008-01-01
Canada's approach to air quality management is one that has brought with it opportunities for the development of unique approaches to risk management. Even with Canada's relatively low levels of pollution, science has demonstrated clearly that air quality and ecosystem improvements are worthwhile. To achieve change and address air quality in Canada, Canadian governments work together since, under the constitution, they share responsibility for the environment. At the same time, because air pollution knows no boundaries, working with the governments of other nations is essential to get results. International cooperation at all levels provides opportunities with potential for real change. Cooperation within transboundary airsheds is proving a fruitful source of innovative opportunities to reduce cross-border barriers to air quality improvements. In relation to the NERAM Colloquium objective to establish principles for air quality management based on the identification of international best practice in air quality policy development and implementation, Canada has developed, both at home and with the United States, interesting air management strategies and initiatives from which certain lessons may be taken that could be useful in other countries with similar situations. In particular, the Canada-wide strategies for smog and acid rain were developed by Canadian governments, strategies that improve and protect air quality at home, while Canada-U.S. transboundary airshed projects provide examples of international initiatives to improve air quality.
NASA Astrophysics Data System (ADS)
Yoshioka, M.; Carslaw, K. S.; Reddington, C.; Mann, G.
2013-12-01
Controlling emissions of aerosols and their precursors to improve air quality will impact the climate through direct and indirect radiative forcing. We have investigated the impacts of changes in a range of aerosol and gas-phase emission fluxes and changes in temperature on air quality and climate change metrics using a global aerosol microphysics and chemistry model, GLOMAP. We investigate how the responses of PM2.5 and cloud condensation nuclei (CCN) are coupled, and how attempts to improve air quality could have inadvertent effects on CCN, clouds and climate. The parameter perturbations considered are a 5°C increase in global temperature, increased or decreased precursor emissions of anthropogenic SO2, NH3, and NOx, and biogenic monoterpenes, and increased or decreased primary emissions of organic and black carbon aerosols from wildfire, fossil fuel, and biofuel. To quantify the interactions, we define a new sensitivity metric in terms of the response of CCN divided by the response of PM in different regions. .Our results show that the coupled chemistry and aerosol processes cause complex responses that will make any co-benefit policy decision problematic. In particular, we show that reducing SO2 emissions effectively reduces surface-level PM2.5 over continental regions in summer when background PM2.5 is high, with a relatively small reduction in marine CCN (and hence indirect radiative cooling over ocean), which is beneficial for near-term climate. Reducing NOx emissions does not improve summertime air quality very effectively but leads to a relatively high reduction of marine CCN. Reducing NH3 emissions has moderate effects on both PM2.5 and CCN. These three species are strongly coupled chemically and microphysically and the effects of changing emissions of one species on mass and size distributions of aerosols are very complex and spatially and temporally variable. For example, reducing SO2 emissions leads to reductions in sulphate and ammonium mass concentrations and an increase in nitrate aerosol mass due to an increase in available NH3 for NOx to form aerosol. However, the rate of new particle formation increases due to a decrease in the condensation on pre-existing particles, so the effect of reduced SO2 on CCN is partly compensated. Controlling primary or precursor emissions of carbonaceous aerosols appears less effective in improving air quality, although it shows strong effects on marine CCN, which would constitute a detrimental effect on climate. Any policy decisions related to particulate matter, air quality and climate need to account for such couplings.
Air quality impacts from prescribed forest fires under different management practices.
Tian, Di; Wang, Yuhang; Bergin, Michelle; Hu, Yongtao; Liu, Yongqiang; Russell, Armistead G
2008-04-15
Large amounts of air pollutants are emitted during prescribed forest fires. Such emissions and corresponding air quality impacts can be modulated by different forest management practices. The impacts of changing burning seasons and frequencies and of controlling emissions during smoldering on regional air quality in Georgia are quantified using source-oriented air quality modeling, with modified emissions from prescribed fires reflecting effects of each practice. Equivalent fires in the spring and winter are found to have a greater impact on PM2.5 than those in summer, though ozone impacts are larger from spring and summer fires. If prescribed fires are less frequent more biofuel is burnt in each fire, leading to larger emissions and air quality impacts per fire. For example, emissions from a fire with a 5-year fire return interval (FRI) are 72% larger than those from a fire of the same acreage with a 2-year FRI. However, corresponding long-term regional impacts are reduced with the longer FRI since the annual burned area is reduced. Total emissions for fires in Georgia with a 5-year FRI are 32% less than those with a 2-year FRI. Smoldering emissions can lead to approximately 1.0 or 1.9 microg/m3 of PM2.5 in the Atlanta PM2.5 nonattainment area during March 2002.
Sustainable freight infrastructure to meet climate and air quality goals.
DOT National Transportation Integrated Search
2012-02-01
This report examines the potential for freight modal shift from truck-to-rail in the upper Midwestern U.S. : to improve air quality and reduce CO2 emissions. Two scenarios were generated, one focusing on : intra-regional freight movements within the ...
ERIC Educational Resources Information Center
Mahoney, Daniel P.
2008-01-01
Healthful indoor air quality (IAQ) in education facilities can improve the learning environment for students, enhance teacher job satisfaction, and reduce staff complaints. A proactive indoor air quality program helps identify and eliminate conditions that could lead to IAQ complaints, building-related illnesses, and workers' compensation claims.…
ERIC Educational Resources Information Center
Smolkin, Rachel
2003-01-01
Describes use of Environmental Protection Agency's Tools for Schools tool kit to improve indoor air quality aimed specifically at eliminating asthma triggers such as dust mites and mold. Includes several examples of school district efforts to reduce or eliminate student health problems associated with poor indoor air quality. (PKP)
NASA Astrophysics Data System (ADS)
Mauzerall, D. L.; Peng, W.; Wagner, F.; Yang, J.
2016-12-01
China is the world's top carbon emitter and suffers from severe air pollution. It has recently made commitments to improve air quality and peak its carbon emissions by 2030. Here we examine near-term air quality and implications for CO2 emissions of various sector-based policies in China that are widely discussed and technically plausible for immediate implementation. For each sector, we consider the effect of a 20% increase in the installation rate of available air pollution control devices, along with the following sector-specific policies. Power sector (POW): 80% replacement of small coal power plants with larger more efficient ones; Industry sector (IND): 20% improvement in energy efficiency; Transport sector (TRA): replacement of high emitters with average vehicle fleet emissions; and Residential sector (RES): replacement of 20% of coal-based stoves with those using liquefied petroleum gas. We conduct an integrated assessment using the air pollution model WRF-Chem and epidemiological concentration-response relationships to evaluate a 2015 base case and various counterfactual scenarios. We find that the IND scenario would reduce both the total national air-pollution-related deaths and carbon emissions the most of the four sectorial scenarios examined. Benefits of addressing the industrial sector remain large even when efficiency improvements are smaller than 20%. Moreover, we find that simultaneously implementing all the measures in all four sectors (combined, COMB) leads to slightly larger air quality and health benefits than obtained by summing the benefits achieved from the four sectorial scenarios individually. This is because nonlinearity in atmospheric chemistry leads to a larger reduction in fine particulate concentrations when emissions from all sectors are reduced simultaneously. The resulting lower concentrations imply a lower position on the concave human premature mortality relative risk curve with fewer associated deaths. While much effort has focused on reducing emissions from the power and transportation sectors, our analysis highlights the importance of efficiency improvements in the industrial sector as a mechanism to simultaneously improve air quality and public health while reducing CO2 emissions.
Evaluating the effectiveness of air quality interventions.
van Erp, Annemoon M M; O'Keefe, Robert; Cohen, Aaron J; Warren, Jane
2008-01-01
Evaluating the extent to which air quality regulations improve public health--sometimes referred to as accountability--is part of an emerging effort to assess the effectiveness of environmental regulatory policies. Air quality has improved substantially in the United States and Western Europe in recent decades, with far less visible pollution and decreasing concentrations of several major pollutants. In large part, these gains were achieved through increasingly stringent air quality regulations. The costs associated with compliance and, importantly, the need to ensure that the regulations are achieving the intended public health benefits underscore the importance of accountability research. To date, accountability research has emphasized measuring the effects of actions already taken to improve air quality. Such research may also contribute to estimating the burden of disease that might be avoided in the future if certain actions are taken. The Health Effects Institute (HEI) currently funds eight ongoing studies on accountability, which cover near-term interventions to improve air quality including (1) a ban on the sale of coal, (2) replacing old wood stoves with cleaner ones, (3) decreasing sulfur content in fuel, (4) measures to reduce traffic, and (5) longer term, wide-ranging actions or events (such as complex changes associated with the reunification of Germany). HEI is also funding the development of methods and research to assess regulations that are implemented incrementally over extended periods of time, such as Title IV of the 1990 Clean Air Act Amendments, which reduces sulfur dioxide emissions from power plants in the eastern United States.
Windblown Dust and Air Quality Under a Changing Climate in the Pacific Northwest
NASA Astrophysics Data System (ADS)
Sharratt, B. S.; Tatarko, J.; Abatzoglou, J. T.; Fox, F.; Huggins, D. R.
2016-12-01
Wind erosion is a concern for sustainable agriculture and societal health in the US Pacific Northwest. Indeed, wind erosion continues to cause exceedances of the National Ambient Air Quality Standard for PM10 in the region. Can we expect air quality to deteriorate or improve as climate changes? Will wind erosion escalate in the future under a warmer and drier climate as forecast for Australia, southern prairies of Canada, northern China, and United States Corn Belt and Colorado Plateau? To answer these questions, we used 18 global climate models, cropping systems simulation model (CropSyst), and the Wind Erosion Prediction System (WEPS) to simulate the complex interactions among climate, crop production, and wind erosion. These simulations were carried out in eastern Washington where wind erosion of agricultural lands contribute to poor air quality in the region. Our results suggest that an increase in temperature and CO2 concentration, coupled with nominal increases in precipitation, will enhance biomass production and reduce soil and PM10 losses by the mid-21st century. This study reveals that climate change may reduce the risk of wind erosion and improve air quality in the Inland Pacific Northwest.
Global air quality and climate.
Fiore, Arlene M; Naik, Vaishali; Spracklen, Dominick V; Steiner, Allison; Unger, Nadine; Prather, Michael; Bergmann, Dan; Cameron-Smith, Philip J; Cionni, Irene; Collins, William J; Dalsøren, Stig; Eyring, Veronika; Folberth, Gerd A; Ginoux, Paul; Horowitz, Larry W; Josse, Béatrice; Lamarque, Jean-François; MacKenzie, Ian A; Nagashima, Tatsuya; O'Connor, Fiona M; Righi, Mattia; Rumbold, Steven T; Shindell, Drew T; Skeie, Ragnhild B; Sudo, Kengo; Szopa, Sophie; Takemura, Toshihiko; Zeng, Guang
2012-10-07
Emissions of air pollutants and their precursors determine regional air quality and can alter climate. Climate change can perturb the long-range transport, chemical processing, and local meteorology that influence air pollution. We review the implications of projected changes in methane (CH(4)), ozone precursors (O(3)), and aerosols for climate (expressed in terms of the radiative forcing metric or changes in global surface temperature) and hemispheric-to-continental scale air quality. Reducing the O(3) precursor CH(4) would slow near-term warming by decreasing both CH(4) and tropospheric O(3). Uncertainty remains as to the net climate forcing from anthropogenic nitrogen oxide (NO(x)) emissions, which increase tropospheric O(3) (warming) but also increase aerosols and decrease CH(4) (both cooling). Anthropogenic emissions of carbon monoxide (CO) and non-CH(4) volatile organic compounds (NMVOC) warm by increasing both O(3) and CH(4). Radiative impacts from secondary organic aerosols (SOA) are poorly understood. Black carbon emission controls, by reducing the absorption of sunlight in the atmosphere and on snow and ice, have the potential to slow near-term warming, but uncertainties in coincident emissions of reflective (cooling) aerosols and poorly constrained cloud indirect effects confound robust estimates of net climate impacts. Reducing sulfate and nitrate aerosols would improve air quality and lessen interference with the hydrologic cycle, but lead to warming. A holistic and balanced view is thus needed to assess how air pollution controls influence climate; a first step towards this goal involves estimating net climate impacts from individual emission sectors. Modeling and observational analyses suggest a warming climate degrades air quality (increasing surface O(3) and particulate matter) in many populated regions, including during pollution episodes. Prior Intergovernmental Panel on Climate Change (IPCC) scenarios (SRES) allowed unconstrained growth, whereas the Representative Concentration Pathway (RCP) scenarios assume uniformly an aggressive reduction, of air pollutant emissions. New estimates from the current generation of chemistry-climate models with RCP emissions thus project improved air quality over the next century relative to those using the IPCC SRES scenarios. These two sets of projections likely bracket possible futures. We find that uncertainty in emission-driven changes in air quality is generally greater than uncertainty in climate-driven changes. Confidence in air quality projections is limited by the reliability of anthropogenic emission trajectories and the uncertainties in regional climate responses, feedbacks with the terrestrial biosphere, and oxidation pathways affecting O(3) and SOA.
Alternative Fuels Data Center: City of Hoover Fleet Boasts 200-Plus Flex
Quality (CMAQ) Improvement Program. In response, the City of Hoover submitted a proposal to install a flex-fuel vehicles (FFVs) in hopes of reducing emissions and improving the region's air quality. At the : Municipal Fuel: E85 Flex Fuel Vehicles: 212 Infrastructure: Municipal E85 station Motivations: Air quality
Wang, Zhan-Shan; Pan, Li-Bo
2014-03-01
The emission inventory of air pollutants from the thermal power plants in the year of 2010 was set up. Based on the inventory, the air quality of the prediction scenarios by implementation of both 2003-version emission standard and the new emission standard were simulated using Models-3/CMAQ. The concentrations of NO2, SO2, and PM2.5, and the deposition of nitrogen and sulfur in the year of 2015 and 2020 were predicted to investigate the regional air quality improvement by the new emission standard. The results showed that the new emission standard could effectively improve the air quality in China. Compared with the implementation results of the 2003-version emission standard, by 2015 and 2020, the area with NO2 concentration higher than the emission standard would be reduced by 53.9% and 55.2%, the area with SO2 concentration higher than the emission standard would be reduced by 40.0%, the area with nitrogen deposition higher than 1.0 t x km(-2) would be reduced by 75.4% and 77.9%, and the area with sulfur deposition higher than 1.6 t x km(-2) would be reduced by 37.1% and 34.3%, respectively.
The U.S. Environmental Protection Agency's Particulate Matter (PM) Supersites Program (Program) is a nationwide air quality methods, measurement, modeling, and data analysis program initiated through cooperative agreements with leading universities in the United States. The Progr...
Stratospheric Intrusion-Influenced Ozone Air Quality Exceedences Investigated in MERRA-2
NASA Technical Reports Server (NTRS)
Knowland, K. Emma; Ott, Lesley; Duncan, Bryan; Wargan, Krzysztof
2017-01-01
Ozone near the surface is harmful to human health and is a result of the photochemical reaction with both man-made and natural precursor pollutant sources. Therefore, in order to reduce near surface ozone concentrations, communities must reduce anthropogenic pollution sources. However, the injection of stratospheric ozone into the troposphere, known as a stratospheric intrusion, can also lead to concentrations of ground-level ozone exceeding air quality standards. Stratospheric intrusions are dynamical atmospheric features, however, these intrusions have been misrepresented in models and reanalyses until recently, as the features of a stratospheric intrusion are best identified in horizontal resolutions of approximately 50 km or smaller. NASA's Modern-Era Retrospective Analysis for Research and Applications Version-2 (MERRA-2) reanalysis is a publicly-available high-resolution dataset (50 km) with assimilated ozone that characterizes stratospheric ozone on the same spatiotemporal resolution as the meteorology. We show that stratospheric intrusions that impact surface air quality are well represented in the MERRA-2 reanalysis. This is demonstrated through a case study analysis of stratospheric intrusion events which were identified by the United States Environmental Protection Agency (EPA) to impact surface ozone air quality in spring 2012 in Colorado. The stratospheric intrusions are identified in MERRA-2 by the folding of the dynamical tropopause under the jet stream and subsequent isentropic descent of dry, O3-rich stratospheric air towards the surface where ozone air quality exceedences were observed. The MERRA-2 reanalysis can support air quality agencies for more rapid identification of the impact of stratospheric air on ground-level ozone.
[Development and current status of atmospheric pollution].
Elichegaray, C; Bouallala, S; Maitre, A; Ba, M
2009-02-01
Air quality is a public health issue and this article includes a reminder of the related causes and issues and a description of the monitoring of ambient air quality in France. It also provides a review of major developments in recent years of the pollutants measured. Emissions of major air pollutants have declined significantly since the 1970s, and this is reflected in an overall improvement in the quality of ambient air. Nevertheless, various forms of air pollution remain a concern (in the case of photochemical pollution) and health data show that air pollution is still a cause of morbidity and mortality. The fight against air pollution must remain a priority and requires multi-pollutant and multi-effect approaches. The National Health and Environment Program adopted during the Grenelle environment stakeholder consultation processes includes targets for reducing human exposure to air pollution, especially particulate matter, as well as measures to improve indoor air quality. In a context dominated by the struggle against the emission of greenhouse gases, problems of air quality should not be underestimated and policies relating to climate protection must be taken into account.
Competing Air Quality and Water Conservation Co-benefits from Power Sector Decarbonization
NASA Astrophysics Data System (ADS)
Peng, W.; Wagner, F.; Mauzerall, D. L.; Ramana, M. V.; Zhai, H.; Small, M.; Zhang, X.; Dalin, C.
2016-12-01
Decarbonizing the power sector can reduce fossil-based generation and associated air pollution and water use. However, power sector configurations that prioritize air quality benefits can be different from those that maximize water conservation benefits. Despite extensive work to optimize the generation mix under an air pollution or water constraint, little research has examined electricity transmission networks and the choice of which fossil fuel units to displace in order to achieve both environmental objectives simultaneously. When air pollution and water stress occur in different regions, the optimal transmission and displacement decisions still depend on priorities placed on air quality and water conservation benefits even if low-carbon generation planning is fixed. Here we use China as a test case, and develop a new optimization framework to study transmission and displacement decisions and the resulting air quality and water use impacts for six power sector decarbonization scenarios in 2030 ( 50% of national generation is low carbon). We fix low-carbon generation in each scenario (e.g. type, location, quantity) and vary technology choices and deployment patterns across scenarios. The objective is to minimize the total physical costs (transmission costs and coal power generation costs) and the estimated environmental costs. Environmental costs are estimated by multiplying effective air pollutant emissions (EMeff, emissions weighted by population density) and effective water use (Weff, water use weighted by a local water stress index) by their unit economic values, Vem and Vw. We are hence able to examine the effect of varying policy priorities by imposing different combinations of Vem and Vw. In all six scenarios, we find that increasing the priority on air quality co-benefits (higher Vem) reduces air pollution impacts (lower EMeff) at the expense of lower water conservation (higher Weff); and vice versa. Such results can largely be explained by differences in optimal transmission decisions due to different locations of air pollution and water stress in China (severe in the east and north respectively). To achieve both co-benefits simultaneously, it is therefore critical to coordinate policies that reduce air pollution (pollution tax) and water use (water pricing) with power sector planning.
Reduced-form air quality modeling for community-scale applications
Transportation plays an important role in modern society, but its impact on air quality has been shown to have significant adverse effects on public health. Numerous reviews (HEI, CDC, WHO) summarizing findings of hundreds of studies conducted mainly in the last decade, conclude ...
Asbestos: Rationale Behind a Proposed Air Quality Standard
ERIC Educational Resources Information Center
Bruckman, Leonard; Rubino, Robert A.
1975-01-01
This article proposes an asbestos air quality standard for Connecticut lower than proposed Federal regulation. Data are given relating mesothelioma incidence to occupational and non-occupational asbestos exposure. New standards lower asbestos emissions from manufacturing operations thus reducing possible asbestos-related fatalities. Rebuttals and…
Effects of Anode Arc Root Fluctuation on Coating Quality During Plasma Spraying
NASA Astrophysics Data System (ADS)
An, Lian-Tong; Gao, Yang; Sun, Chengqi
2011-06-01
To obtain a coating of high quality, a new type of plasma torch was designed and constructed to increase the stability of the plasma arc and reduce the air entrainment into the plasma jet. The torch, called bi-anode torch, generates an elongated arc with comparatively high arc voltage and low arc fluctuation. Spraying experiments were carried out to compare the quality of coatings deposited by a conventional torch and a bi-anode torch. Alumina coatings and tungsten carbide coatings were prepared to appraise the heating of the sprayed particles in the plasma jets and the entrainment of the surrounding air into the plasma jets, respectively. The results show that anode arc root fluctuation has only a small effect on the melting rate of alumina particles. On the other hand, reduced air entrainment into the plasma jet of the bi-anode torch will drastically reduce the decarbonization of tungsten carbide coatings.
Dias, M Beatrice; Taylor, Michael
2018-01-01
Background Air quality affects us all and is a rapidly growing concern in the 21st century. We spend the majority of our lives indoors and can be exposed to a number of pollutants smaller than 2.5 microns (particulate matter, PM2.5) resulting in detrimental health effects. Indoor air quality sensors have the potential to provide people with the information they need to understand their risk and take steps to reduce their exposure. One such sensor is the Speck sensor developed at the Community Robotics, Education and Technology Empowerment Lab at Carnegie Mellon University. This sensor provides users with continuous real-time and historical PM2.5 information, a Web-based platform where people can track their PM2.5 levels over time and learn about ways to reduce their exposure, and a venue (blog post) for the user community to exchange information. Little is known about how the use of such monitors affects people’s knowledge, attitudes, and behaviors with respect to indoor air pollution. Objective The aim of this study was to assess whether using the sensor changes what people know and do about indoor air pollution. Methods We conducted 2 studies. In the first study, we recruited 276 Pittsburgh residents online and through local branches of the Carnegie Library of Pittsburgh, where the Speck sensor was made available by the researchers in the library catalog. Participants completed a 10- to 15-min survey on air pollution knowledge (its health impact, sources, and mitigation options), perceptions of indoor air quality, confidence in mitigation, current behaviors toward air quality, and personal empowerment and creativity in the spring and summer of 2016. In our second study, we surveyed 26 Pittsburgh residents in summer 2016 who checked out the Speck sensor for 3 weeks on the same measures assessed in the first study, with additional questions about the perception and use of the sensor. Follow-up interviews were conducted with a subset of those who used the Speck sensor. Results A series of paired t tests found participants were significantly more knowledgeable (t25=−2.61, P=.02), reported having significantly better indoor air quality (t25=−5.20, P<.001), and felt more confident about knowing how to mitigate their risk (t25=−1.87, P=.07) after using the Speck sensor than before. McNemar test showed participants tended to take more action to reduce indoor air pollution after using the sensor (χ225=2.7, P=.10). Qualitative analysis suggested possible ripple effects of use, including encouraging family and friends to learn about indoor air pollution. Conclusions Providing people with low- or no-cost portable indoor air quality monitors, with a supporting Web-based platform that offers information about how to reduce risk, can help people better express perceptions and adopt behaviors commensurate with the risks they face. Thus, thoughtfully designed and deployed personal sensing devices can help empower people to take steps to reduce their risk. PMID:29519779
Wong-Parodi, Gabrielle; Dias, M Beatrice; Taylor, Michael
2018-03-08
Air quality affects us all and is a rapidly growing concern in the 21st century. We spend the majority of our lives indoors and can be exposed to a number of pollutants smaller than 2.5 microns (particulate matter, PM 2.5 ) resulting in detrimental health effects. Indoor air quality sensors have the potential to provide people with the information they need to understand their risk and take steps to reduce their exposure. One such sensor is the Speck sensor developed at the Community Robotics, Education and Technology Empowerment Lab at Carnegie Mellon University. This sensor provides users with continuous real-time and historical PM 2.5 information, a Web-based platform where people can track their PM 2.5 levels over time and learn about ways to reduce their exposure, and a venue (blog post) for the user community to exchange information. Little is known about how the use of such monitors affects people's knowledge, attitudes, and behaviors with respect to indoor air pollution. The aim of this study was to assess whether using the sensor changes what people know and do about indoor air pollution. We conducted 2 studies. In the first study, we recruited 276 Pittsburgh residents online and through local branches of the Carnegie Library of Pittsburgh, where the Speck sensor was made available by the researchers in the library catalog. Participants completed a 10- to 15-min survey on air pollution knowledge (its health impact, sources, and mitigation options), perceptions of indoor air quality, confidence in mitigation, current behaviors toward air quality, and personal empowerment and creativity in the spring and summer of 2016. In our second study, we surveyed 26 Pittsburgh residents in summer 2016 who checked out the Speck sensor for 3 weeks on the same measures assessed in the first study, with additional questions about the perception and use of the sensor. Follow-up interviews were conducted with a subset of those who used the Speck sensor. A series of paired t tests found participants were significantly more knowledgeable (t 25 =-2.61, P=.02), reported having significantly better indoor air quality (t 25 =-5.20, P<.001), and felt more confident about knowing how to mitigate their risk (t 25 =-1.87, P=.07) after using the Speck sensor than before. McNemar test showed participants tended to take more action to reduce indoor air pollution after using the sensor (χ 2 25 =2.7, P=.10). Qualitative analysis suggested possible ripple effects of use, including encouraging family and friends to learn about indoor air pollution. Providing people with low- or no-cost portable indoor air quality monitors, with a supporting Web-based platform that offers information about how to reduce risk, can help people better express perceptions and adopt behaviors commensurate with the risks they face. Thus, thoughtfully designed and deployed personal sensing devices can help empower people to take steps to reduce their risk. ©Gabrielle Wong-Parodi, M Beatrice Dias, Michael Taylor. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 08.03.2018.
Air quality benefits of universal particle filter and NOx controls on diesel trucks
NASA Astrophysics Data System (ADS)
Tao, L.; Mcdonald, B. C.; Harley, R.
2015-12-01
Heavy-duty diesel trucks are a major source of black carbon/particulate matter and nitrogen oxide emissions on urban and regional scales. These emissions are relevant to both air quality and climate change. Since 2010 in the US, new engines are required to be equipped with emission control systems that greatly reduce both PM and NOx emissions, by ~98% relative to 1988 levels. To reduce emissions from the legacy fleet of older trucks that still remain on the road, regulations have been adopted in Califonia to accelerate the replacement of older trucks and thereby reduce associated emissions of PM and NOx. Use of diesel particle filters will be widespread by 2016, and universal use of catalytic converters for NOx control is required by 2023. We assess the air quality consequences of this clean-up effort in Southern California, using the Community Multiscale Air Quality model (CMAQ), and comparing three scenarios: historical (2005), present day (2016), and future year (2023). Emissions from the motor vehicle sector are mapped at high spatial resolution based on traffic count and fuel sales data. NOx emissions from diesel engines in 2023 are expected to decrease by ~80% compared to 2005, while the fraction of NOx emitted as NO2 is expected to increase from 5 to 18%. Air quality model simulations will be analyzed to quantify changes in NO2, black carbon, particulate matter, and ozone, both basin-wide and near hot spots such as ports and major highways.
Air quality and human health improvements from reduced deforestation in Brazil
NASA Astrophysics Data System (ADS)
Reddington, C.; Butt, E. W.; Ridley, D. A.; Artaxo, P.; Morgan, W.; Coe, H.; Spracklen, D. V.
2015-12-01
Significant areas of the Brazilian Amazon have been deforested over the past few decades, with fire being the dominant method through which forests and vegetation are cleared. Fires emit large quantities of particulate matter into the atmosphere, degrading air quality and negatively impacting human health. Since 2004, Brazil has achieved substantial reductions in deforestation rates and associated deforestation fires. Here we assess the impact of this reduction on air quality and human health. We show that dry season (August - October) aerosol optical depth (AOD) retrieved by satellite over southwest Brazil and Bolivia is positively related to Brazil's annual deforestation rate (r=0.96, P<0.001). Observed dry season AOD is more than a factor two greater in years with high deforestation rates compared to years with low deforestation rates, suggesting regional air quality is degraded substantially by fire emissions associated with deforestation. This link is further demonstrated by the positive relationship between observed AOD and satellite-derived particulate emissions from deforestation fires (r=0.89, P<0.01). Using a global aerosol model with satellite-derived fire emissions, we show that reductions in fires associated with reduced deforestation have reduced regional dry season mean surface particulate matter concentrations by ~30%. Using concentration response functions we estimate that this reduction in particulate matter may be preventing 1060 (388-1721) premature adult mortalities annually across South America. Future increases in Brazil's deforestation rates and associated fires may threaten the improved air quality reported here.
How smoke-free laws improve air quality: A global study of Irish pubs
Carpenter, Carrie M.; Travers, Mark J.; Cummings, K. Michael; Hyland, Andrew; Mulcahy, Maurice; Clancy, Luke
2009-01-01
Introduction The present study examined indoor air quality in a global sample of smoke-free and smoking-permitted Irish pubs. We hypothesized that levels of respirable suspended particles, an important marker of secondhand smoke, would be significantly lower in smoke-free Irish pubs than in pubs that allowed smoking. Methods Indoor air quality was assessed in 128 Irish pubs in 15 countries between 21 January 2004 and 10 March 2006. Air quality was evaluated using an aerosol monitor, which measures the level of fine particle (PM2.5) pollution in the air. A standard measurement protocol was used by data collectors across study sites. Results Overall, the level of air pollution inside smoke-free Irish pubs was 93% lower than the level found in pubs where smoking was permitted. Discussion Levels of indoor air pollution can be massively reduced by enacting and enforcing smoke-free policies. PMID:19380381
How smoke-free laws improve air quality: a global study of Irish pubs.
Connolly, Gregory N; Carpenter, Carrie M; Travers, Mark J; Cummings, K Michael; Hyland, Andrew; Mulcahy, Maurice; Clancy, Luke
2009-06-01
The present study examined indoor air quality in a global sample of smoke-free and smoking-permitted Irish pubs. We hypothesized that levels of respirable suspended particles, an important marker of secondhand smoke, would be significantly lower in smoke-free Irish pubs than in pubs that allowed smoking. Indoor air quality was assessed in 128 Irish pubs in 15 countries between 21 January 2004 and 10 March 2006. Air quality was evaluated using an aerosol monitor, which measures the level of fine particle (PM(2.5)) pollution in the air. A standard measurement protocol was used by data collectors across study sites. Overall, the level of air pollution inside smoke-free Irish pubs was 93% lower than the level found in pubs where smoking was permitted. Levels of indoor air pollution can be massively reduced by enacting and enforcing smoke-free policies.
Assessment of the impacts of vehicular pollution on urban air quality.
Ghose, Mrinal K; Paul, R; Banerjee, S K
2004-01-01
Air quality crisis in cities is mainly due to vehicular emissions. Owing to the expanding economic base Indian cities are growing at a faster rate. Transportation systems are increasing everywhere and the improved technology is insufficient to counteract growth. The effect of vehicular emission on urban air quality and human health has been described. A survey has been conducted in an Indian mega city to evaluate the status of air pollution at traffic intersections and the unique problem arising out of vehicular emissions in the study area has been narrated. Approach for the selection of the air monitoring stations, methodology adopted for data collection and the results have been discussed. Vulnerability analysis (VA) has been carried out to identify the zones at what pollution stress. Options for reducing mobile source emission have been discussed and a strategic air quality management plan has been proposed to mitigate the air pollution in the city.
Ni, Ji-Qin
2015-05-01
There was an increasing interest in reducing production and emission of air pollutants to improve air quality for animal feeding operations (AFOs) in the U.S. in the 21st century. Research was focused on identification, quantification, characterization, and modeling of air pollutions; effects of emissions; and methodologies and technologies for scientific research and pollution control. Mitigation effects were on pre-excretion, pre-release, pre-emission, and post-emission. More emphasis was given on reducing pollutant emissions than improving indoor air quality. Research and demonstrations were generally continuation and improvement of previous efforts. Most demonstrated technologies were still in a limited scale of application. Future efforts are needed in many fundamental and applied research areas. Advancement in instrumentation, computer technology, and biological sciences and genetic engineering is critical to bring major changes in this area. Development in research and demonstration will depend on the actual political, economic, and environmental situations. Copyright © 2015 Elsevier Ltd. All rights reserved.
Reducing greenhouse gas emissions and improving air quality: Two global challenges.
Erickson, Larry E
2017-07-01
There are many good reasons to promote sustainable development and reduce greenhouse gas emissions and other combustion emissions. The air quality in many urban environments is causing many premature deaths because of asthma, cardiovascular disease, chronic obstructive pulmonary disease, lung cancer, and dementia associated with combustion emissions. The global social cost of air pollution is at least $3 trillion/year; particulates, nitrogen oxides and ozone associated with combustion emissions are very costly pollutants. Better air quality in urban environments is one of the reasons for countries to work together to reduce greenhouse gas emissions through the Paris Agreement on Climate Change. There are many potential benefits associated with limiting climate change. In the recent past, the concentrations of greenhouse gases in the atmosphere have been increasing and the number of weather and climate disasters with costs over $1 billion has been increasing. The average global temperature set new record highs in 2014, 2015, and 2016. To reduce greenhouse gas emissions, the transition to electric vehicles and electricity generation using renewable energy must take place in accord with the goals of the Paris Agreement on Climate Change. This work reviews progress and identifies some of the health benefits associated with reducing combustion emissions. © 2017 American Institute of Chemical Engineers Environ Prog, 36: 982-988, 2017.
Reducing greenhouse gas emissions and improving air quality: Two global challenges
2017-01-01
There are many good reasons to promote sustainable development and reduce greenhouse gas emissions and other combustion emissions. The air quality in many urban environments is causing many premature deaths because of asthma, cardiovascular disease, chronic obstructive pulmonary disease, lung cancer, and dementia associated with combustion emissions. The global social cost of air pollution is at least $3 trillion/year; particulates, nitrogen oxides and ozone associated with combustion emissions are very costly pollutants. Better air quality in urban environments is one of the reasons for countries to work together to reduce greenhouse gas emissions through the Paris Agreement on Climate Change. There are many potential benefits associated with limiting climate change. In the recent past, the concentrations of greenhouse gases in the atmosphere have been increasing and the number of weather and climate disasters with costs over $1 billion has been increasing. The average global temperature set new record highs in 2014, 2015, and 2016. To reduce greenhouse gas emissions, the transition to electric vehicles and electricity generation using renewable energy must take place in accord with the goals of the Paris Agreement on Climate Change. This work reviews progress and identifies some of the health benefits associated with reducing combustion emissions. © 2017 American Institute of Chemical Engineers Environ Prog, 36: 982–988, 2017 PMID:29238442
Towards an operational high-resolution air quality forecasting system at ECCC
NASA Astrophysics Data System (ADS)
Munoz-Alpizar, Rodrigo; Stroud, Craig; Ren, Shuzhan; Belair, Stephane; Leroyer, Sylvie; Souvanlasy, Vanh; Spacek, Lubos; Pavlovic, Radenko; Davignon, Didier; Moran, Moran
2017-04-01
Urban environments are particularly sensitive to weather, air quality (AQ), and climatic conditions. Despite the efforts made in Canada to reduce pollution in urban areas, AQ continues to be a concern for the population, especially during short-term episodes that could lead to exceedances of daily air quality standards. Furthermore, urban air pollution has long been associated with significant adverse health effects. In Canada, the large percentage of the population living in urban areas ( 81%, according to the Canada's 2011 census) is exposed to elevated air pollution due to local emissions sources. Thus, in order to improve the services offered to the Canadian public, Environment and Climate Change Canada has launched an initiative to develop a high-resolution air quality prediction capacity for urban areas in Canada. This presentation will show observed pollution trends (2010-2016) for Canadian mega-cities along with some preliminary high-resolution air quality modelling results. Short-term and long-term plans for urban AQ forecasting in Canada will also be described.
Health benefits from improved outdoor air quality and intervention in China.
Li, Shanshan; Williams, Gail; Guo, Yuming
2016-07-01
China is at its most critical stage of outdoor air quality management. In order to prevent further deterioration of air quality and to protect human health, the Chinese government has made a series of attempts to reduce ambient air pollution. Unlike previous literature reviews on the widespread hazards of air pollution on health, this review article firstly summarized the existing evidence of human health benefits from intermittently improved outdoor air quality and intervention in China. Contents of this paper provide concrete and direct clue that improvement in outdoor air quality generates various health benefits in China, and confirm from a new perspective that it is worthwhile for China to shift its development strategy from economic growth to environmental economic sustainability. Greater emphasis on sustainable environment design, consistently strict regulatory enforcement, and specific monitoring actions should be regarded in China to decrease the health risks and to avoid long-term environmental threats. Copyright © 2016 Elsevier Ltd. All rights reserved.
Alternative Fuels Data Center: Idle Reduction Programs at Tennessee Schools
quality and reduce oil consumption," Keel said. But the impact is being felt inside the classroom too program is drawing interest, in part because the area has air quality challenges. "We're in a valley Jake Tisinger said that Knoxville has made great strides in improving its air quality, and the Idle
NASA Astrophysics Data System (ADS)
Turnock, S. T.; Butt, E. W.; Richardson, T. B.; Mann, G. W.; Reddington, C. L.; Forster, P. M.; Haywood, J.; Crippa, M.; Janssens-Maenhout, G.; Johnson, C. E.; Bellouin, N.; Carslaw, K. S.; Spracklen, D. V.
2016-02-01
European air quality legislation has reduced emissions of air pollutants across Europe since the 1970s, affecting air quality, human health and regional climate. We used a coupled composition-climate model to simulate the impacts of European air quality legislation and technology measures implemented between 1970 and 2010. We contrast simulations using two emission scenarios; one with actual emissions in 2010 and the other with emissions that would have occurred in 2010 in the absence of technological improvements and end-of-pipe treatment measures in the energy, industrial and road transport sectors. European emissions of sulphur dioxide, black carbon (BC) and organic carbon in 2010 are 53%, 59% and 32% lower respectively compared to emissions that would have occurred in 2010 in the absence of legislative and technology measures. These emission reductions decreased simulated European annual mean concentrations of fine particulate matter (PM2.5) by 35%, sulphate by 44%, BC by 56% and particulate organic matter by 23%. The reduction in PM2.5 concentrations is calculated to have prevented 80 000 (37 000-116 000, at 95% confidence intervals) premature deaths annually across the European Union, resulting in a perceived financial benefit to society of US232 billion annually (1.4% of 2010 EU GDP). The reduction in aerosol concentrations due to legislative and technology measures caused a positive change in the aerosol radiative effect at the top of atmosphere, reduced atmospheric absorption and also increased the amount of solar radiation incident at the surface over Europe. We used an energy budget approximation to estimate that these changes in the radiative balance have increased European annual mean surface temperatures and precipitation by 0.45 ± 0.11 °C and by 13 ± 0.8 mm yr-1 respectively. Our results show that the implementation of European legislation and technological improvements to reduce the emission of air pollutants has improved air quality and human health over Europe, as well as having an unintended impact on the regional radiative balance and climate.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Bowden, J. H.; Adelman, Z.; Naik, V.; Horowitz, L. W.; Smith, S.; West, J. J.
2014-12-01
Reducing greenhouse gases (GHGs) not only slows climate change, but can also have co-benefits for improved air quality. In this study, we examine the co-benefits of global and regional GHG mitigation on US air quality at fine resolution through dynamical downscaling, using the latest Community Multi-scale Air Quality (CMAQ) model. We will investigate the co-benefits on US air quality due to domestic GHG mitigation alone, and due to mitigation outside of the US. We also quantity the co-benefits resulting from reductions in co-emitted air pollutants versus slowing climate change and its effects on air quality. Projected climate in the 2050s from the IPCC RCP4.5 and RCP8.5 scenarios is dynamically downscaled with the Weather Research and Forecasting model (WRF). Anthropogenic emissions projections from the RCP4.5 scenario and its reference (REF), are directly processed in SMOKE to provide temporally- and spatially-resolved CMAQ emission input files. Chemical boundary conditions (BCs) are obtained from West et al. (2013), who studied the co-benefits of global GHG reductions on global air quality and human health. Our preliminary results show that the global GHG reduction (RCP4.5 relative to REF) reduces the 1hr daily maximum ozone by 3.3 ppbv annually over entire US, as high as 6 ppbv in September. The west coast of California and the Northeast US are the regions that benefit most. By comparing different scenarios, we find that foreign countries' GHGs mitigation has a larger influence on the US ozone decreases (accounting for 77% of the total decrease), compared with 23% from domestic GHG mitigation only, highlighting the importance of methane reductions and the intercontinental transport of air pollutants. The reduction of global co-emitted air pollutants has a more pronounced effect on ozone decreasing, relative to the effect from slowing climate and its effects on air quality. We also plan to report co-benefits for PM2.5 in the US.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strategic Priorities and Impact Analysis Team, Office of Strategic Programs
This fact sheet "Boise, Idaho: Improving Air Quality through Alternative Fuels & Reduced Vehicular Travel" explains how the City of Boise used data from the U.S. Department of Energy's Cities Leading through Energy Analysis and Planning (Cities-LEAP) and the State and Local Energy Data (SLED) programs to inform its city energy planning. It is one of ten fact sheets in the "City Energy: From Data to Decisions" series.
Shandas, Vivek; Voelkel, Jackson; Rao, Meenakshi; George, Linda
2016-01-01
Reducing exposure to degraded air quality is essential for building healthy cities. Although air quality and population vary at fine spatial scales, current regulatory and public health frameworks assess human exposures using county- or city-scales. We build on a spatial analysis technique, dasymetric mapping, for allocating urban populations that, together with emerging fine-scale measurements of air pollution, addresses three objectives: (1) evaluate the role of spatial scale in estimating exposure; (2) identify urban communities that are disproportionately burdened by poor air quality; and (3) estimate reduction in mobile sources of pollutants due to local tree-planting efforts using nitrogen dioxide. Our results show a maximum value of 197% difference between cadastrally-informed dasymetric system (CIDS) and standard estimations of population exposure to degraded air quality for small spatial extent analyses, and a lack of substantial difference for large spatial extent analyses. These results provide the foundation for improving policies for managing air quality, and targeting mitigation efforts to address challenges of environmental justice. PMID:27527205
Impacts of potential CO2-reduction policies on air quality in the United States.
Trail, Marcus A; Tsimpidi, Alexandra P; Liu, Peng; Tsigaridis, Kostas; Hu, Yongtao; Rudokas, Jason R; Miller, Paul J; Nenes, Athanasios; Russell, Armistead G
2015-04-21
Impacts of emissions changes from four potential U.S. CO2 emission reduction policies on 2050 air quality are analyzed using the community multiscale air quality model (CMAQ). Future meteorology was downscaled from the Goddard Institute for Space Studies (GISS) ModelE General Circulation Model (GCM) to the regional scale using the Weather Research Forecasting (WRF) model. We use emissions growth factors from the EPAUS9r MARKAL model to project emissions inventories for two climate tax scenarios, a combined transportation and energy scenario, a biomass energy scenario and a reference case. Implementation of a relatively aggressive carbon tax leads to improved PM2.5 air quality compared to the reference case as incentives increase for facilities to install flue-gas desulfurization (FGD) and carbon capture and sequestration (CCS) technologies. However, less capital is available to install NOX reduction technologies, resulting in an O3 increase. A policy aimed at reducing CO2 from the transportation sector and electricity production sectors leads to reduced emissions of mobile source NOX, thus reducing O3. Over most of the U.S., this scenario leads to reduced PM2.5 concentrations. However, increased primary PM2.5 emissions associated with fuel switching in the residential and industrial sectors leads to increased organic matter (OM) and PM2.5 in some cities.
OZONE AMBIENT AIR QUALITY STANDARD HAS BENEFICIAL EFFECT ON PONDEROSA PINE IN CALIFORNIA
Ambient air quality standards and control strategies are implemented to protect humans and vegetation from adverse effects. However, to date there has not been a simple and objective method to determine if the standards and resultant control strategies have reduced O3 impacts on ...
Managing Indoor Air Quality in Schools.
ERIC Educational Resources Information Center
Woolums, Jennifer
This publication examines the causes and effects of poor indoor air quality and provides information for reducing exposure to indoor contaminants in schools. It discusses the various indoor pollutants found in schools, including dust, chemical agents, gases, and volatile organic compounds; where they are found in schools; and their health effects…
Ambient air conditions and variation in urban trail use.
Holmes, Ann M; Lindsey, Greg; Qiu, Chenchen
2009-11-01
This study examines the effect of air quality and administrative policies on use of urban trails in Indianapolis, IN. Attention is focused on two policy variables: (1) issuance of air pollution advisories and (2) the adoption of Daylight Savings Time. Results suggest that while trail use varies with air quality, current public advisories regarding air pollution may be of limited effectiveness in reducing trail users' exposures to hazardous pollutants. In contrast, the adoption of Daylight Savings Time was associated with a statistically significant increase in traffic levels.
Cost-benefit analysis of different air change rates in an operating room environment.
Gormley, Thomas; Markel, Troy A; Jones, Howard; Greeley, Damon; Ostojic, John; Clarke, James H; Abkowitz, Mark; Wagner, Jennifer
2017-12-01
Hospitals face growing pressure to meet the dual but often competing goals of providing a safe environment while controlling operating costs. Evidence-based data are needed to provide insight for facility management practices to support these goals. The quality of the air in 3 operating rooms was measured at different ventilation rates. The energy cost to provide the heating, ventilation, and air conditioning to the rooms was estimated to provide a cost-benefit comparison of the effectiveness of different ventilation rates currently used in the health care industry. Simply increasing air change rates in the operating rooms tested did not necessarily provide an overall cleaner environment, but did substantially increase energy consumption and costs. Additionally, and unexpectedly, significant differences in microbial load and air velocity were detected between the sterile fields and back instrument tables. Increasing the ventilation rates in operating rooms in an effort to improve clinical outcomes and potentially reduce surgical site infections does not necessarily provide cleaner air, but does typically increase operating costs. Efficient distribution or management of the air can improve quality indicators and potentially reduce the number of air changes required. Measurable environmental quality indicators could be used in lieu of or in addition to air change rate requirements to optimize cost and quality for an operating room and other critical environments. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
Air quality and climate benefits of long-distance electricity transmission in China
NASA Astrophysics Data System (ADS)
Peng, Wei; Yuan, Jiahai; Zhao, Yu; Lin, Meiyun; Zhang, Qiang; Victor, David G.; Mauzerall, Denise L.
2017-06-01
China is the world’s top carbon emitter and suffers from severe air pollution. It has recently made commitments to improve air quality and to peak its CO2 emissions by 2030. We examine one strategy that can potentially address both issues—utilizing long-distance electricity transmission to bring renewable power to the polluted eastern provinces. Based on an integrated assessment using state-of-the-science atmospheric modeling and recent epidemiological evidence, we find that transmitting a hybrid of renewable (60%) and coal power (40%) (Hybrid-by-wire) reduces 16% more national air-pollution-associated deaths and decreases three times more carbon emissions than transmitting only coal-based electricity. Moreover, although we find that transmitting coal power (Coal-by-Wire, CbW) is slightly more effective at reducing air pollution impacts than replacing old coal power plants with newer cleaner ones in the east (Coal-by-Rail, CbR) (CbW achieves a 6% greater reduction in national total air-pollution-related mortalities than CbR), both coal scenarios have approximately the same carbon emissions. We thus demonstrate that coordinating transmission planning with renewable energy deployment is critical to maximize both local air quality benefits and global climate benefits.
Impact of emission control on regional air quality in the Pearl Delta River region, southern China
NASA Astrophysics Data System (ADS)
Wang, N.; Xuejiao, D.
2017-12-01
The Pearl River Delta (PRD) in China has been suffering from air quality issues and the government has implemented a series of strategies in controlling emissions. In an attempt to provide scientific support for improving air quality, the paper investigates the concerning past-to-present air quality data and assesses air quality resulting from emission control. Statistical data revealed that energy consumption doubled from 2004 to 20014 and vehicle usage increased significantly from 2006 to 2014. Due to the effect of control efforts, primary emission of SO2, NOx and PM2.5 decreased resulting in ambient concentrations of SO2, NO2 and PM10 decreased by 66%, 20% and 24%, respectively. However, O3 increased 19% because of the increase of VOC emission. A chemical transport model, the Community Multi-scale Air Quality, was employed to evaluate the responses of nitrate, ammonium, SOA, PM2.5 and O3 to changes in NOx, VOC and NH3 emissions. Three scenarios, a baseline scenario, a CAP scenario (control strength followed as past tendency), and a REF scenario (strict control referred to latest policy and plans), were conducted to investigate the responses and mechanisms. NOx controlling scenarios showed that NOx, nitrate and PM2.5 reduced by 1.8%, 0.7% and 0.2% under CAP and reduced by 7.2%, 1.8% and 0.3% under REF, respectively. The results indicated that reducing NOx emission caused the increase of atmospheric oxidizability, which might result in a compensation of PM2.5 due to the increase of nitrate or sulfate. NH3 controlling scenarios showed that nitrate was sensitive to NH3 emission in PRD, with nitrate decreased by 0 - 10.6% and 0 - 48% under CAP and REF, respectively. Since controlling NH3 emissions not only reduced ammonium but also significantly reduced nitrate, the implement of NH3 controlling strategy was highly suggested. The VOC scenarios revealed that though SOA was not the major component of PM2.5, controlling VOC emission might take effect in southwestern PRD where photochemical pollution usually occurred. Last but not least, the responses of O3 indicated that the PRD was generally VOC-sensitive, while the regime turned to NOx-sensitive in the afternoon, therefore controlling VOC emission could reduce the overall O3 and controlling NOx emission in the afternoon could reduce peak O3.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-17
... strategies to reduce air pollution. Based upon review of the state's infrastructure SIP submissions for the... the Kansas Air Quality Act through the Division of Environment within KDHE. Air pollution is defined... cause or contribute to air pollution. Furthermore, the Secretary has the authority to require such air...
A Breath of Fresh Air: Addressing Indoor Air Quality
ERIC Educational Resources Information Center
Palliser, Janna
2011-01-01
Indoor air pollution refers to "chemical, biological, and physical contamination of indoor air," which may result in adverse health effects (OECD 2003). The causes, sources, and types of indoor air pollutants will be addressed in this article, as well as health effects and how to reduce exposure. Learning more about potential pollutants in home…
Assessing the Public Health Impact of Regional-Scale Air Quality Regulations
The Clean Air Interstate Rule (CAIR) will further reduce regional emissions of sulfur dioxide (SO2) and nitrogen oxides (NOx), thus reducing fine particulate matter (PM2.5) and ground-level ozone pollution. The U.S. Environmental Protection Agency (EPA) estimates that CAIR will ...
Controlling Urban Air Pollution: A Benefit-Cost Assessment.
ERIC Educational Resources Information Center
Krupnick, Alan J.; Portney, Paul R.
1991-01-01
The pros and cons of air pollution control efforts are discussed. Both national and regional air pollution control plans are described. Topics of discussion include benefit-cost analysis, air quality regulation, reducing ozone in the urban areas, the Los Angeles plan, uncertainties, and policy implications. (KR)
IDENTIFYING SOURCES OF HUMAN EXPOSURE
Air pollution from ambient sources continues to adversely impact human health in the United States. A fundamental goal for EPA is to implement air quality standards and regulations that reduce health risks associated with exposures to criteria pollutants and air toxics. However...
Particulate Matter (PM) Pollution
Particulate matter (PM) is one of the air pollutants regulated by the National Ambient Air Quality Standards (NAAQS). Reducing emissions of inhalable particles improves public health as well as visibility.
Asthma and Air Quality in the Presence of Fires - A Foundation for Public Health Policy in Florida
NASA Technical Reports Server (NTRS)
Crosson, William; Al-Hamdan, Mohammad; Estes, Maurice, Jr.; Estes, Sue; Luvall, Jeffrey; Sifford, Cody; Young, Linda
2012-01-01
Outdoor air quality and its associated impacts on respiratory problems in Florida are of public health significance. Air quality in Florida can be poor during the extended wildfire season, threatening persons with compromised respiratory systems each year. Studies have demonstrated that particulate matter, which is generally elevated in the vicinity of wildfires, is associated with increases in hospital admissions and occurrences of acute asthma exacerbations. However, few studies have examined the modifying effect of socio-demographic characteristics of cities or regional areas on the relationship between air quality and health outcomes. In an ongoing university/multi-agency project, asthma hospital/emergency room (patient) data are being used to create a health outcome indicator of human response to environmental air quality. Environmental data are derived from satellite measurements, with special attention being given to the effect of wildfires and prescribed burns on air quality. This presentation will focus on the environmental data sets particulate matter, location of fires, smoke plumes that are being collected and processed for linkage with health data. After this linkage has been performed, space-time models of asthma rates as a function of air quality data and socio-demographic variables will be developed and validated. The Florida Department of Health (FDOH) will work with county health department staff and representatives from the medical community to establish a protocol with triggers for issuing public health advisories/alerts based on the developed and validated health outcome indicators. From this effort, a science-based policy for issuing public health advisories/alerts for asthma relating to air quality will be developed, giving FDOH the ability to (1) predict, with stated levels of uncertainty, case load of hospital admissions based on air quality, (2) reduce asthma exacerbations by forewarning asthmatics to limit outside activities on poor air quality days, (3) apply management practices on the rates of hospital/emergency room visits for asthma, and (4) provide information that would help translate interventions into policy decisions, thereby reducing the economic burden and increasing well being of asthmatics. Further, the results of the study will be incorporated into Florida s Environmental Public Health Tracking (EPHT) program, which is part of the Centers for Disease Control and Prevention's (CDC's) EPHT network.
Emission controls and changes in air quality in Guangzhou during the Asian Games
NASA Astrophysics Data System (ADS)
Liu, Huan; Wang, Xuemei; Zhang, Jinpu; He, Kebin; Wu, Ye; Xu, Jiayu
2013-09-01
With the new air quality standards forthcoming in China, the Pearl River Delta region is facing new challenges to achieve its air quality goal. The success of the emission reduction measures introduced by local authorities in the run-up to the Guangzhou Asian Games demonstrated that the Pearl River Delta air quality can be improved by introducing integrated emission reduction measures. This paper combines observation data, emission reduction measures, and air quality simulations that were applied during the Asian Games (12-27 November 2010) to analyze the relationship between emissions and concentrations of pollutants in Guangzhou. The Asian Games abatement strategy totally reduced emissions of 41.1% SO2, 41.9% NOx, 26.5% PM10, 25.8% PM2.5 and 39.7% VOC. The concentrations of SO2, NO2, PM10 and PM2.5 were reduced by 66.8%, 51.3%, 21.5% and 17.1%, respectively. In Guangzhou, the main challenge to be overcome with the new air quality daily requirements is mostly for NO2, PM2.5, and hourly ozone maxima. If pollutants maintain the same concentrations before and after the Asian Games, there will be 47.4% and 31.6% non-attainment days for NO2 and PM2.5 respectively as a period average. Although PM10 concentration can meet the daily limits (150 μg m-3), it is quite difficult to meet the annual limit value (70 μg m-3). One important implication is that the long-term, step-by-step integrated measures of the past six years work better than the strict, intensive, short-term measures on SO2, NO2 and VOC control. Dust control by limiting construction sites and watering the roads can further reduce 12.8% of the PM10 concentration. However, to reduce ambient PM2.5, the abatement strategy should be more complex and extensive. On the contrary, ozone pollution was not improved during the Asian Games, indicating that alleviation strategies should be improved by scientific studies to determine the appropriate control ratio of NO2 and VOC in the Pearl River Delta region.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-05
... facilities in the state. Additionally, the state removed a section regarding an equivalent substitute control... a selective non-catalytic reducing (SNCR) control device to meet an emission limit of 0.975 lbs NO X... and Promulgation of Air Quality Implementation Plans; New Hampshire; Reasonably Available Control...
USDA-ARS?s Scientific Manuscript database
Wind erosion of soil is a major concern of the agricultural community as it removes the most fertile part of the soil and thus degrades soil productivity. Furthermore, dust emissions due to wind erosion contribute to poor air quality, reduce visibility, and cause perturbations to regional radiation ...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-22
... Promulgation of Air Quality Implementation Plans; Pennsylvania; Control of Nitrogen Oxides Emissions From Glass... revisions pertain to the control of nitrogen oxide (NO X ) emissions from glass melting furnaces. EPA is approving these revisions to reduce NO X emissions from glass melting furnaces in accordance with the...
Atmospheric ammonia (NH3) plays an important role in fine-mode aerosol formation. Accurate estimates of ammonia from both human and natural emissions can reduce uncertainties in air quality modeling. The majority of ammonia anthropogenic emissions come from the agricul...
State Implementation Plans: Related Resources
Guidance, strategies and links are offered for reducing vehicle air pollution, including ozone or smog-forming pollutants, particulate matter and other emissions that pose public health and air quality concerns.
General Guidance on Innovative and Voluntary Air Pollution Control Strategies
State and Local Transporation Resources is an EPA/OTAQ web page for state and local air quality regulators and transportation planners that offers guidance on how to reduce air pollution from cars, diesel trucks, city and school buses.
NASA Astrophysics Data System (ADS)
Moschandreas, D. J.; Chang, P. E.
In recent years a number of building managers have invested small amounts of money to measure indoor air quality in offices and other non-industrial buildings. Their objective is to reduce the number of occupant complaints, and not necessarily to reduce the risk associated with such complaints. Clearly, reduction of the risk would require greater investment of funds and effort. This paper focuses on individuals and the amount of money they are willing to invest in order to reduce risks associated with indoor air pollution in their home. Psychologists assert that lay judgement of risks are influenced by cognitive biases and attitudes. This study investigates the possibility that cognitive elements and general attitudes influence not only the perceived risk associated with exposures to indoor air pollutants, but also the willingness of individuals to invest in order to reduce the risk. A three-stage study was performed to determine some of the factors that influence public decisions to control the quality of the air inside their home. The study is focused on the design of a risk ladder, and the survey of 400 randomly selected individuals in the Chicago metropolitan area. The survey was designed to determine if demographics, smoking, education, or income influence the desire of individuals to invest in order to reduce indoor air pollution. The following conclusions were reached: (i) public awareness of indoor air pollution is high; (ii) media campaigns on indoor air pollution affect the determination of the specific pollutant the public perceives as important, but do not influence the public's desire to invest larger amounts of money to reduce risks from exposures to air pollutants in the residential environment; (iii) the public is not willing to spend large amounts of money to reduce indoor residential air pollution; (iv) education does not affect the level of awareness regarding indoor air pollution, but it increases the willingness to invest in an effort to reduce indoor air pollution; and (v) smoking status does not affect any of the above.
A multi-model assessment of the co-benefits of climate mitigation for global air quality
NASA Astrophysics Data System (ADS)
Rao, Shilpa; Klimont, Zbigniew; Leitao, Joana; Riahi, Keywan; van Dingenen, Rita; Aleluia Reis, Lara; Calvin, Katherine; Dentener, Frank; Drouet, Laurent; Fujimori, Shinichiro; Harmsen, Mathijs; Luderer, Gunnar; Heyes, Chris; Strefler, Jessica; Tavoni, Massimo; van Vuuren, Detlef P.
2016-12-01
We present a model comparison study that combines multiple integrated assessment models with a reduced-form global air quality model to assess the potential co-benefits of global climate mitigation policies in relation to the World Health Organization (WHO) goals on air quality and health. We include in our assessment, a range of alternative assumptions on the implementation of current and planned pollution control policies. The resulting air pollution emission ranges significantly extend those in the Representative Concentration Pathways. Climate mitigation policies complement current efforts on air pollution control through technology and fuel transformations in the energy system. A combination of stringent policies on air pollution control and climate change mitigation results in 40% of the global population exposed to PM levels below the WHO air quality guideline; with the largest improvements estimated for India, China, and Middle East. Our results stress the importance of integrated multisector policy approaches to achieve the Sustainable Development Goals.
NASA Astrophysics Data System (ADS)
Matichuk, R.; Tonnesen, G.; Luecken, D.; Roselle, S. J.; Napelenok, S. L.; Baker, K. R.; Gilliam, R. C.; Misenis, C.; Murphy, B.; Schwede, D. B.
2015-12-01
The western United States is an important source of domestic energy resources. One of the primary environmental impacts associated with oil and natural gas production is related to air emission releases of a number of air pollutants. Some of these pollutants are important precursors to the formation of ground-level ozone. To better understand ozone impacts and other air quality issues, photochemical air quality models are used to simulate the changes in pollutant concentrations in the atmosphere on local, regional, and national spatial scales. These models are important for air quality management because they assist in identifying source contributions to air quality problems and designing effective strategies to reduce harmful air pollutants. The success of predicting oil and natural gas air quality impacts depends on the accuracy of the input information, including emissions inventories, meteorological information, and boundary conditions. The treatment of chemical and physical processes within these models is equally important. However, given the limited amount of data collected for oil and natural gas production emissions in the past and the complex terrain and meteorological conditions in western states, the ability of these models to accurately predict pollution concentrations from these sources is uncertain. Therefore, this presentation will focus on understanding the Community Multiscale Air Quality (CMAQ) model's ability to predict air quality impacts associated with oil and natural gas production and its sensitivity to input uncertainties. The results will focus on winter ozone issues in the Uinta Basin, Utah and identify the factors contributing to model performance issues. The results of this study will help support future air quality model development, policy and regulatory decisions for the oil and gas sector.
NASA Astrophysics Data System (ADS)
Keuken, M. P.; Jonkers, S.; Verhagen, H. L. M.; Perez, L.; Trüeb, S.; Okkerse, W.-J.; Liu, J.; Pan, X. C.; Zheng, L.; Wang, H.; Xu, R.; Sabel, C. E.
2014-12-01
Two traffic scenarios to reduce CO2 emissions from road traffic in two European cities (Basel and Rotterdam) and two Chinese cities (Xi'an and Suzhou) were evaluated in terms of their impact on air quality. The two scenarios, one modelling a reduction of private vehicle kilometres driven by 10% on urban streets and the other modelling the introduction of 50% electric-powered private vehicle kilometres on urban streets, were both compared to a scenario following “business-as-usual”: 2020-BAU. The annual average concentrations of NO2, PM2.5, PM10 and elemental carbon (EC) were modelled separately in busy street canyons, near urban motorways and in the remainder of the urban area. It was concluded that traffic-related CO2 emissions in 2020-BAU could be expected to remain at the levels of 2010 in Basel and Rotterdam, while in Xi'an and Suzhou to increase 30-50% due to growth in the traffic volume. Traffic-related CO2 emissions may be reduced by up to 5% and 25%, respectively using the first and second scenarios. Air pollution in the Chinese cities is a factor 3 to 5 higher than in the European cities in 2010 and 2020-BAU. The impact of both CO2 reduction scenarios on air quality in 2020-BAU is limited. In Europe, due to implementation of stringent emission standards in all sectors, air quality is expected to improve at both the urban background and near busy road traffic. In China, the regional background is expected to improve for EC, stabilize for PM2.5 and PM10, and decrease for NO2. The urban background follows this regional trend, while near busy road traffic, air pollution will remain elevated due to the considerable growth in traffic volume. A major constraint for modelling air quality in China is access to the input data required and lack of measurements at ground level for validation.
The microbiological quality of air improves when using air conditioning systems in cars.
Vonberg, Ralf-Peter; Gastmeier, Petra; Kenneweg, Björn; Holdack-Janssen, Hinrich; Sohr, Dorit; Chaberny, Iris F
2010-06-01
Because of better comfort, air conditioning systems are a common feature in automobiles these days. However, its impact on the number of particles and microorganisms inside the vehicle--and by this its impact on the risk of an allergic reaction--is yet unknown. Over a time period of 30 months, the quality of air was investigated in three different types of cars (VW Passat, VW Polo FSI, Seat Alhambra) that were all equipped with a automatic air conditioning system. Operation modes using fresh air from outside the car as well as circulating air from inside the car were examined. The total number of microorganisms and the number of mold spores were measured by impaction in a high flow air sampler. Particles of 0.5 to 5.0 microm diameter were counted by a laser particle counter device. Overall 32 occasions of sampling were performed. The concentration of microorganisms outside the cars was always higher than it was inside the cars. Few minutes after starting the air conditioning system the total number of microorganisms was reduced by 81.7%, the number of mold spores was reduced by 83.3%, and the number of particles was reduced by 87.8%. There were no significant differences neither between the types of cars nor between the types of operation mode of the air conditioning system (fresh air vs. circulating air). All parameters that were looked for in this study improved during utilization of the car's air conditioning system. We believe that the risk of an allergic reaction will be reduced during use also. Nevertheless, we recommend regular maintenance of the system and replacement of older filters after defined changing intervals.
The microbiological quality of air improves when using air conditioning systems in cars
2010-01-01
Background Because of better comfort, air conditioning systems are a common feature in automobiles these days. However, its impact on the number of particles and microorganisms inside the vehicle - and by this its impact on the risk of an allergic reaction - is yet unknown. Methods Over a time period of 30 months, the quality of air was investigated in three different types of cars (VW Passat, VW Polo FSI, Seat Alhambra) that were all equipped with a automatic air conditioning system. Operation modes using fresh air from outside the car as well as circulating air from inside the car were examined. The total number of microorganisms and the number of mold spores were measured by impaction in a high flow air sampler. Particles of 0.5 to 5.0 μm diameter were counted by a laser particle counter device. Results Overall 32 occasions of sampling were performed. The concentration of microorganisms outside the cars was always higher than it was inside the cars. Few minutes after starting the air conditioning system the total number of microorganisms was reduced by 81.7%, the number of mold spores was reduced by 83.3%, and the number of particles was reduced by 87.8%. There were no significant differences neither between the types of cars nor between the types of operation mode of the air conditioning system (fresh air vs. circulating air). All parameters that were looked for in this study improved during utilization of the car's air conditioning system. Conclusions We believe that the risk of an allergic reaction will be reduced during use also. Nevertheless, we recommend regular maintenance of the system and replacement of older filters after defined changing intervals. PMID:20515449
Slowing global warming: benefits for patients and the planet.
Parker, Cindy L
2011-08-01
Global warming will cause significant harm to the health of persons and their communities by compromising food and water supplies; increasing risks of morbidity and mortality from infectious diseases and heat stress; changing social determinants of health resulting from extreme weather events, rising sea levels, and expanding flood plains; and worsening air quality, resulting in additional morbidity and mortality from respiratory and cardiovascular diseases. Vulnerable populations such as children, older persons, persons living at or below the poverty level, and minorities will be affected earliest and greatest, but everyone likely will be affected at some point. Family physicians can help reduce greenhouse gas emissions, stabilize the climate, and reduce the risks of climate change while also directly improving the health of their patients. Health interventions that have a beneficial effect on climate change include encouraging patients to reduce the amount of red meat in their diets and to replace some vehicular transportation with walking or bicycling. Patients are more likely to make such lifestyle changes if their physician asks them to and leads by example. Medical offices and hospitals can become more energy efficient by recycling, purchasing wind-generated electricity, and turning off appliances, computers, and lights when not in use. Moreover, physicians can play an important role in improving air quality and reducing greenhouse gas emissions by advocating for enforcement of existing air quality regulations and working with local and national policy makers to further improve air quality standards, thereby improving the health of their patients and slowing global climate change.
Impact of particulate air pollution on quality-adjusted life expectancy in Canada.
Coyle, Douglas; Stieb, Dave; Burnett, Richard T; DeCivita, Paul; Krewski, Daniel; Chen, Yue; Thun, Michael J
Air pollution and premature death are important public health concerns. Analyses have repeatedly demonstrated that airborne particles are associated with increased mortality and estimates have been used to forecast the impact on life expectancy. In this analysis, we draw upon data from the American Cancer Society (ACS) cohort and literature on utility-based measures of quality of life in relation to health status to more fully quantify the effects of air pollution on mortality in terms of quality-adjusted life expectancy. The analysis was conducted within a decision analytic model using Monte Carlo simulation techniques. Outcomes were estimated based on projections of the Canadian population. A one-unit reduction in sulfate air pollution would yield a mean annual increase in Quality-Adjusted Life Years (QALYs) of 20,960, with gains being greater for individuals with lower educational status and for males compared to females. This suggests that the impact of reductions in sulfate air pollution on quality-adjusted life expectancy is substantial. Interpretation of the results is unclear. However, the potential gains in QALYs from reduced air pollutants can be contrasted to the costs of policies to bring about such reductions. Based on a tentative threshold for the value of health benefits, analysis suggests that an investment in Canada of over 1 billion dollars per annum would be an efficient use of resources if it could be demonstrated that this would reduce sulfate concentrations in ambient air by 1 microg/m(3). Further analysis can assess the efficiency of targeting such initiatives to communities that are most likely to benefit.
Erickson, Larry E; Jennings, Merrisa
2017-01-01
The Paris Agreement on Climate Change has the potential to improve air quality and human health by encouraging the electrification of transportation and a transition from coal to sustainable energy. There will be human health benefits from reducing combustion emissions in all parts of the world. Solar powered charging infrastructure for electric vehicles adds renewable energy to generate electricity, shaded parking, and a needed charging infrastructure for electric vehicles that will reduce range anxiety. The costs of wind power, solar panels, and batteries are falling because of technological progress, magnitude of commercial activity, production experience, and competition associated with new trillion dollar markets. These energy and transportation transitions can have a very positive impact on health. The energy, transportation, air quality, climate change, health nexus may benefit from additional progress in developing solar powered charging infrastructure.
Torczynski, John R.
2000-01-01
A spin coating apparatus requires less cleanroom air flow than prior spin coating apparatus to minimize cleanroom contamination. A shaped exhaust duct from the spin coater maintains process quality while requiring reduced cleanroom air flow. The exhaust duct can decrease in cross section as it extends from the wafer, minimizing eddy formation. The exhaust duct can conform to entrainment streamlines to minimize eddy formation and reduce interprocess contamination at minimal cleanroom air flow rates.
Urban-rural variations in air quality and health impacts in northern India
NASA Astrophysics Data System (ADS)
Karambelas, A. N.; Holloway, T.; Fiore, A. M.; Kinney, P.; DeFries, R. S.; Kiesewetter, G.; Heyes, C.
2017-12-01
Ambient air pollution in India is a severe problem, contributing to negative health impacts and early death. Ground-based monitors often used to quantify health impacts are often located in urban regions, however approximately 70% of India's population resides in rural areas. We use high-resolution concentrations from the regional Community Multi-scale Air Quality (CMAQ) model over densely-populated northern India to estimate air quality and health impacts due to anthropogenic emission sectors separately for urban and rural regions. Modeled concentrations inform relative risk calculations and exposure estimates as performed in the Global Burden of Disease. Anthropogenic emissions from the International Institute for Applied Systems Analysis (IIASA) Greenhouse Gas-Air Pollution Interactions and Synergies (GAINS) model following version 5a of the Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants project gridding structure are updated to reflect urban- and rural-specific activity information for transportation and residential combustion, and industrial and electrical generating unit location and magnitude information. We estimate 314,000 (95% Confidence Interval: 304,000—323,000) and 58,000 (CI: 39,000—70,000) adults (25 years or older) die prematurely each year from PM2.5 and O3 respectively in northern India, with the greatest impacts along the Indo-Gangetic Plain. Using urban and rural population distributions, we estimate that the majority of premature deaths resulting from PM2.5 and O3 are in rural (292,000) as opposed to urban (79,000) regions. These findings indicate the need for designing monitoring networks and ground-based health studies in rural areas of India to more accurately quantify the true health implications of ambient air pollution, in addition to supporting model evaluation. Using this urban-versus-rural emissions framework, we are assessing anthropogenic contributions to regional air quality and health impacts, and examining mitigation strategies to reduce anthropogenic emissions, improve air quality, and reduce PM2.5 and O3 attributable premature death in the near-term.
NASA Technical Reports Server (NTRS)
Faruque, Fazlay; Finley, Richard; Marshall, Gailen; Brackin, Bruce; Li, Hui; Williams, Worth; Al-Hamdan, Mohammad; Luvall, Jeffrey; Rickman, Doug; Crosson, Bill
2006-01-01
Studies have shown that reducing exposure to triggers such as air pollutants can reduce symptoms and the need for medication in asthma patients. However, systems that track asthma are generally not integrated with those that track environmental hazards related to asthma. Tlvs lack of integration hinders public health awareness and responsiveness to these environmental triggers. The current study is a collaboration between health and environmental professionals to utilize NASA-derived environmental data to develop a decision support system (DSS) for asthma prediction, surveillance, and intervention. The investigators link asthma morbidity data from the University of Mississippi Medical Center (UMMC) and Mississippi Department of Health (MDH) with air quality data from the Mississippi Department of Environmental Quality (MDEQ) and remote sensing data from NASA. Daily ambient environmental hazard data for PM2.5 and ozone are obtained from the MDEQ air quality monitoring locations and are combined with remotely sensed data from NASA to develop a state-wide spatial and time series profile of environmental air quality. These data are then used to study the correlation of these measures of air quality variation with the asthma exacerbation incidence throughout the state over time. The goal is to utilize these readily available measures to allow real-time risk assessment for asthma exacerbations. GeoMedStat, a DSS previously developed for biosurveillance, will integrate these measures to monitor, analyze and report the real-time risk assessment for asthma exacerbation throughout the state.
NASA Astrophysics Data System (ADS)
Haghighat, Fariborz; Lee, Chang-Seo; Pant, Bhuvan; Bolourani, Golnoush; Lakdawala, Ness; Bastani, Arash
There are increased demands for security, sustainability and indoor air quality in today's building design, construction, operation and maintenance. Installation of air cleaning systems can improve the indoor air quality by reducing the air pollution levels, and enhance the building security against sudden release of chemical and/or biological agents. At the same time, air cleaning techniques may reduce the building energy consumption by reducing the outdoor air supply rate, hence lowering the needs for conditioning of outdoor air. While the air filtration of particulate matter is well standardized, the standards against which the performance of air cleaning for gaseous contaminants is measured or classified are still under development. This study examined the performance of various granular activated carbons (GACs) for the removal of volatile organic compounds (VOCs) from mechanically ventilated buildings. Eight different GACs (three virgin and five impregnated) were tested against toluene using a dynamic test system. The virgin GACs showed better performance than impregnated ones, the percentage and the type of impregnation affected the removal efficiencies. Tests were also conducted with selected GACs against toluene, cyclohexane and ethyl acetate at relative humidity (RH) values of 30%, 50% and 70%. The effect of humidity was dependant on the VOC used. Both for toluene and cyclohexane, the removal efficiency decreased as RH increased. However, higher humidity showed a positive impact on the removal of ethyl acetate.
Transportation Related Documents for State and Local Transportation
Guidance and strategies are offered for reducing vehicle air pollution, including ozone or smog-forming pollutants, particulate matter and other emissions that pose public health and air quality concerns.
Effect of extruded wheat flour as a fat replacer on batter characteristics and cake quality.
Román, Laura; Santos, Isabel; Martínez, Mario M; Gómez, Manuel
2015-12-01
The effects of three levels of fat replacement (1/3, 2/3, and 3/3) by extruded flour paste and the effects of the presence of emulsifier on layer cake batter characteristics and final cake quality were studied. Replacement of oil by extruded flour paste modified the batter density and microscopy, reducing the number of air bubbles and increasing their size, while emulsifier incorporation facilitated air entrapment in batter. Emulsifier addition also increased the elastic and viscous moduli of the batter, while oil reduction resulted in a less structured batter. Emulsifier incorporation leads to good quality cakes, minimizing the negative effect of oil reduction, maintaining the volume and reducing the hardness of cakes. Furthermore, consumer acceptability of the reduced fat cakes was improved by the addition of emulsifier. Thus, the results confirmed the positive effect of partial oil substitution (up to 2/3) by extruded flour paste on the quality of reduced fat cakes when emulsifier was incorporated.
Immediate impact of smoke-free laws on indoor air quality.
Lee, Kiyoung; Hahn, Ellen J; Riker, Carol; Head, Sara; Seithers, Peggy
2007-09-01
Smoke-free laws significantly impact indoor air quality. However, the temporal effects of these laws on indoor air pollution have not been determined. This paper assesses the temporal impact of one smoke-free law on indoor air quality. This quasi-experimental study compared the indoor air quality of nine hospitality venues and one bingo hall in Georgetown, Kentucky, before and after implementation of a 100% smoke-free workplace law. We made real-time measurements of particulate matter with 2.5 microm aerodynamic diameter or smaller (PM2.5). Among the nine Georgetown hospitality venues, the average indoor PM2.5 concentration was 84 microg/m3 before the law took effect. The average indoor PM2.5 concentrations in nine compliant venues significantly decreased to 18 microg/m3 one week after the law took effect. Three venues having 82 microg/m3 before the law had significantly lower levels from the first day the law was implemented, and the low level was maintained. Compliance with the law is critical to achieving clean indoor air. Indoor air pollution in the bingo hall was not reduced until the establishment decided to comply with the law. The smoke-free law showed immediate impact on indoor air quality.
Recent assessments have analyzed the health impacts of PM2.5 from emissions from different locations and sectors using simplified or reduced-form air quality models. Here we present an alternative approach using the adjoint of the Community Multiscale Air Quality (CMAQ) model, wh...
41 CFR 102-74.205 - What Federal facility ridesharing policy must Executive agencies follow?
Code of Federal Regulations, 2014 CFR
2014-01-01
..., improve air quality, and provide an economical way for Federal employees to commute to work. (b) In... is required to take steps to improve the air quality, and to reduce traffic congestion by providing for the establishment of programs that encourage Federal employees to commute to work by means other...
Ozone Control Strategies | Ground-level Ozone | New ...
2017-09-05
The Air Quality Planning Unit's primary goal is to protect your right to breathe clean air. Guided by the Clean Air Act, we work collaboratively with states, communities, and businesses to develop and implement strategies to reduce air pollution from a variety of sources that contribute to the ground-level ozone or smog problem.
Air pollution interventions and their impact on public health.
Henschel, Susann; Atkinson, Richard; Zeka, Ariana; Le Tertre, Alain; Analitis, Antonis; Katsouyanni, Klea; Chanel, Olivier; Pascal, Mathilde; Forsberg, Bertil; Medina, Sylvia; Goodman, Patrick G
2012-10-01
Numerous epidemiological studies have found a link between air pollution and health. We are reviewing a collection of published intervention studies with particular focus on studies assessing both improvements in air quality and associated health effects. Interventions, defined as events aimed at reducing air pollution or where reductions occurred as a side effect, e.g. strikes, German reunification, from the 1960s onwards were considered for inclusion. This review is not a complete record of all existing air pollution interventions. In total, 28 studies published in English were selected based on a systematic search of internet databases. Overall air pollution interventions have succeeded at improving air quality. Consistently published evidence suggests that most of these interventions have been associated with health benefits, mainly by the way of reduced cardiovascular and/or respiratory mortality and/or morbidity. The decrease in mortality from the majority of the reviewed interventions has been estimated to exceed the expected predicted figures based on the estimates from time-series studies. There is consistent evidence that decreased air pollution levels following an intervention resulted in health benefits for the assessed population.
The impact of European measures to reduce air pollutants on air quality, human health and climate
NASA Astrophysics Data System (ADS)
Turnock, S.; Butt, E. W.; Richardson, T.; Mann, G.; Forster, P.; Haywood, J. M.; Crippa, M.; Janssens-Maenhout, G. G. A.; Johnson, C.; Bellouin, N.; Spracklen, D. V.; Carslaw, K. S.; Reddington, C.
2015-12-01
European air quality legislation has reduced emissions of air pollutants across Europe since the 1970s, resulting in improved air quality and benefits to human health but also an unintended impact on regional climate. Here we used a coupled chemistry-climate model and a new policy relevant emission scenario to determine the impact of air pollutant emission reductions over Europe. The emission scenario shows that a combination of technological improvements and end-of-pipe abatement measures in the energy, industrial and road transport sectors reduced European emissions of sulphur dioxide, black carbon and organic carbon by 53%, 59% and 32% respectively. We estimate that these emission reductions decreased European annual mean concentrations of fine particulate matter (PM2.5) by 35%, sulphate by 44%, black carbon (BC) by 56% and particulate organic matter (POM) by 23%. The reduction in PM2.5 concentrations is calculated to have prevented 107,000 (40,000-172,000, 5-95% confidence intervals) premature deaths annually from cardiopulmonary disease and lung cancer across the EU member states. The decrease in aerosol concentrations caused a positive all-sky aerosol radiative forcing at the top of atmosphere over Europe of 2.3±0.06 W m-2 and a positive clear-sky forcing of 1.7±0.05 W m-2. Additionally, the amount of solar radiation incident at the surface over Europe increased by 3.3±0.07 W m-2 under all-sky and by 2.7±0.05 W m-2 under clear-sky conditions. Reductions in BC concentrations caused a 1 Wm-2 reduction in atmospheric absorption. We use an energy budget approximation to show that the aerosol induced radiative changes caused both temperature and precipitation to increase globally and over Europe. Our results show that the implementation of European legislation to reduce the emission of air pollutants has improved air quality and human health over Europe, as well as altered the regional radiative balance and climate.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-26
....) Since for asphalt concrete plants and mineral crushers this revision (ARM 17.8.743(1)(b)) reduces the... plants and mineral crushers reduces the stringency of the current SIP approved regulations. We commented... of Subjects in 40 CFR Part 52 Environmental protection, Air pollution control, Carbon monoxide...
Evaluation of food drying with air dehumidification system: a short review
NASA Astrophysics Data System (ADS)
Djaeni, M.; Utari, F. D.; Sasongko, S. B.; Kumoro, A. C.
2018-01-01
Energy efficient drying for food and agriculture products resulting high quality products has been an important issue. Currently, about 50% of total energy for postharvest treatment was used for drying. This paper presents the evaluation of new approach namely air dehumidification system with zeolite for food drying. Zeolite is a material having affinity to water in which reduced the moisture in air. With low moisture content and relative humidity, the air can improve driving force for drying even at low temperature. Thus, the energy efficiency can be potentially enhanced and the product quality can be well retained. For proving the hypothesis, the paddy and onion have been dried using dehumidified air. As performance indicators, the drying time, product quality, and heat efficiency were evaluated. Results indicated that the drying with zeolite improved the performances significantly. At operating temperature ranging 50 - 60°C, the efficiency of drying system can reach 75% with reasonable product quality.
Processes of Ammonia Air-Surface Exchange in a Fertilized Zea Mays Canopy
Recent incorporation of coupled soil biogeochemical and bi-directional NH3 air-surface exchange algorithms into regional air quality models holds promise for further reducing uncertainty in estimates of NH3 emissions from fertilized soils. While this advancement represents a sig...
NASA Astrophysics Data System (ADS)
Lin, Hualiang; Liu, Tao; Xiao, Jianpeng; Zeng, Weilin; Li, Xing; Guo, Lingchuan; Xu, Yanjun; Zhang, Yonghui; Vaughn, Michael G.; Nelson, Erik J.; Qian, Zhengmin (Min); Ma, Wenjun
2016-07-01
In 2012, Chinese Environmental Bureau modified its National Ambient Air Quality Standards to include fine particulate matter (PM2.5). Recent air pollution monitoring data shows that numerous locations have exceeded this standard, which may have resulted in avoidable adverse health effects. For example, among the 74 Chinese cities with PM2.5 monitoring data in 2013, only three cities attained the annual air quality standard (35 μg/m3). This study aimed to quantify the potential short- and long-term health benefits from achieving the Chinese ambient air quality standard and WHO's air quality objectives. A generalized additive model was used to estimate the short-term association of mortality with changes in daily PM2.5 concentrations, based on which we estimated the potential premature mortality reduction that would have been achieved during the period of 2012-2015 if the daily air quality standard had been met in Guangzhou, China; we also estimated the avoidable deaths if attaining the annual air quality standard using the relative risk obtained from a previous cohort study. During the study period, there were 160 days exceeding the national daily PM2.5 standard (75 μg/m3) in Guangzhou, and the annual average concentration (47.7 μg/m3) was higher than the air quality standard of 35 μg/m3. Significant associations between PM2.5 and mortality were observed. An increase of 10 μg/m3 in PM2.5 was associated with increases in daily death counts of 0.95% (95% CI: 0.56%, 1.34%) in natural mortality, 1.31% (95% CI: 0.75%, 1.87%) in cardiovascular mortality, and 1.06% (95% CI: 0.19%, 1.94%) in respiratory mortality. The health benefits of attaining the national daily air quality standard of PM2.5 (75 μg/m3) would have prevented 143 [95% confidence interval (CI): 84, 203] fewer natural deaths, including 84 (95% CI: 48, 121) fewer cardiovascular deaths and 27 (95% CI: 5, 49) fewer respiratory deaths. Had the annual PM2.5 levels been reduced to 35 μg/m3, an estimated 3875 (95% CI: 1852, 6074) natural deaths, 2378 (95% CI: 800, 4230) cardiovascular deaths, and 227 (95% CI: -437, 1033) respiratory deaths could have been prevented. Even greater substantial mortality reductions could be achieved if the WHO's air quality objectives were met. Our study suggests that air pollution is significantly associated with mortality in Guangzhou, and more stringent air quality standards would significantly reduce air pollution-related premature mortality.
Reducing indoor residential exposures to outdoor pollutants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sherman, Max H.; Matson, Nance E.
2003-07-01
The basic strategy for providing indoor air quality in residences is to dilute indoor sources with outdoor air. This strategy assumes that the outdoor air does not have pollutants at harmful levels or that the outdoor air is, at least, less polluted than the indoor air. When this is not the case, different strategies need to be employed to ensure adequate air quality in the indoor environment. These strategies include ventilation systems, filtration and other measures. These strategies can be used for several types of outdoor pollution, including smog, particulates and toxic air pollutants. This report reviews the impacts thatmore » typical outdoor air pollutants can have on the indoor environment and provides design and operational guidance for mitigating them. Poor quality air cannot be used for diluting indoor contaminants, but more generally it can become an indoor contaminant itself. This paper discusses strategies that use the building as protection against potentially hazardous outdoor pollutants, including widespread pollutants, accidental events, and potential attacks.« less
NASA Astrophysics Data System (ADS)
Neu, J. L.; Schimel, D.; Lerdau, M.; Drewry, D.; Fu, D.; Payne, V.; Bowman, K. W.; Worden, J. R.
2016-12-01
Tropospheric ozone concentrations are increasing in many regions of the world, and this ozone can severely damage vegetation. Ozone enters plants through their stomata and oxidizes tissues, inhibiting physiology and decreasing ecosystem productivity. Ozone has been experimentally shown to reduce crop production, with important implications for global food security as concentrations rise. Ozone damage to forests also alters productivity and carbon storage and may drive changes in species distributions and biodiversity. Process-based quantitative estimates of these ozone impacts on terrestrial ecosystems at continental to global scales as well as of feedbacks to air quality via production of volatile organic compounds (VOCs) are thus crucial to sustainable development planning. We demonstrate that leveraging planned and proposed missions to measure ozone, formaldehyde, and isoprene along with solar-induced fluorescence (SiF), evapotranspiration, and plant nitrogen content can meet the requirements of an integrated observing system for air quality-ecosystem interactions while also meeting the needs of the individual Air Quality, Carbon Cycle, and Ecosystems communities.
Oikawa, P. Y.; Ge, C.; Wang, J.; Eberwein, J. R.; Liang, L. L.; Allsman, L. A.; Grantz, D. A.; Jenerette, G. D.
2015-01-01
Fertilized soils have large potential for production of soil nitrogen oxide (NOx=NO+NO2), however these emissions are difficult to predict in high-temperature environments. Understanding these emissions may improve air quality modelling as NOx contributes to formation of tropospheric ozone (O3), a powerful air pollutant. Here we identify the environmental and management factors that regulate soil NOx emissions in a high-temperature agricultural region of California. We also investigate whether soil NOx emissions are capable of influencing regional air quality. We report some of the highest soil NOx emissions ever observed. Emissions vary nonlinearly with fertilization, temperature and soil moisture. We find that a regional air chemistry model often underestimates soil NOx emissions and NOx at the surface and in the troposphere. Adjusting the model to match NOx observations leads to elevated tropospheric O3. Our results suggest management can greatly reduce soil NOx emissions, thereby improving air quality. PMID:26556236
Snider, Graydon; Carter, Ellison; Clark, Sierra; Tseng, Joy Tzu Wei; Yang, Xudong; Ezzati, Majid; Schauer, James J; Wiedinmyer, Christine; Baumgartner, Jill
2018-05-04
Decades of intervention programs that replaced traditional biomass stoves with cleaner-burning technologies have failed to meet the World Health Organization (WHO) interim indoor air quality target of 35-μg m -3 for PM 2.5 . Many attribute these results to continued use of biomass stoves and poor outdoor air quality, though the relative impacts of these factors have not been empirically quantified. We measured 496 days of real-time stove use concurrently with outdoor and indoor air pollution (PM 2.5 ) in 150 rural households in Sichuan, China. The impacts of stove use patterns and outdoor air quality on indoor PM 2.5 were quantified. We also estimated the potential avoided cardiovascular mortality in southwestern China associated with transition from traditional to clean fuel stoves using established exposure-response relationships. Mean daily indoor PM 2.5 was highest in homes using both wood and clean fuel stoves (122 μg m -3 ), followed by exclusive use of wood stoves (106 μg m -3 ) and clean fuel stoves (semi-gasifiers: 65 μg m -3 ; gas or electric: 55 μg m -3 ). Wood stoves emitted proportionally higher indoor PM 2.5 during ignition, and longer stove use was not associated with higher indoor PM 2.5 . Only 24% of days with exclusive use of clean fuel stoves met the WHO indoor air quality target, though this fraction rose to 73% after subtracting the outdoor PM 2.5 contribution. Reduced PM 2.5 exposure through exclusive use of gas or electric stoves was estimated to prevent 48,000 yearly premature deaths in southwestern China, with greater reductions if local outdoor PM 2.5 is also reduced. Clean stove and fuel interventions are not likely to reduce indoor PM 2.5 to the WHO target unless their use is exclusive and outdoor air pollution is sufficiently low, but may still offer some cardiovascular benefits. Copyright © 2018. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Miraei Ashtiani, Seyed-Hassan; Sturm, Barbara; Nasirahmadi, Abozar
2018-04-01
Drying and physicochemical characteristics of nectarine slices were investigated using hot-air and hybrid hot air-microwave drying methods under fixed air temperature and air speed (50 °C and 0.5 m/s, respectively). Microwave power levels for the combined hot air-microwave method were 80, 160, 240, and 320 W. Drying kinetics were analyzed and compared using six mathematical models. For both drying methods the model with the best fitness in explaining the drying behavior was the Midilli-Kucuk model. The coefficient of determination ( R 2), root mean square error (RMSE) and reduced chi square ( χ 2) for this model have been obtained greater than 0.999 and less than 0.006 and 0.0001 for hybrid hot air-microwave drying while those values for hot-air drying were more than 0.999 and less than 0.003 and 0.0001, respectively. Results showed that the hybrid method reduced the drying time considerably and produced products with higher quality. The range of effective moisture diffusivity ( D eff ) of hybrid and hot-air drying was between 8.15 × 10-8 and 2.83 × 10-7 m2/s and 1.27 × 10-8 m2/s, respectively. The total color difference (ΔE) has also been obtained from 36.68 to 44.27 for hybrid method; however this value for hot-air drying was found 49.64. Although reduced microwave power output led to a lower drying rate, it reduced changes in product parameters i.e. total color change, surface roughness, shrinkage and microstructural change and increased hardness and water uptake.
ERIC Educational Resources Information Center
Quraishi, Arif; Kapfer, Tom
1999-01-01
Presents practical solutions to school indoor-air-quality problems. Areas where school administrators should set IAQ goals and provide resources are listed, and tips for HVAC maintenance and cleaning to reduce air pollutants are provided. (GR)
Grants and Funding for State and Local Transportation
State and Local Transportation resources are for air quality and transportation government and community leaders. Guidance, strategies and links to grant opportunities are offered for reducing vehicle air pollution, including ozone or smog.
NASA Astrophysics Data System (ADS)
Knox, Andrew James
Energy conservation can improve air quality by reducing emissions from fuel combustion. The human health value retained through better air quality can then offset the cost of energy conservation. Through this thesis' innovative yet widely-accessible combination of air pollution dispersion modeling and atmospheric chemistry, it is estimated that the health value retained by avoiding emissions from Ontario's former coal-fired generating stations is 5.74/MWh (using an upper-bound value of 265,000 per year of life lost). This value is combined with energy modeling of homes in the first-ever assessment of the air-quality health benefits of low-energy buildings. It is shown that avoided health damages can equal 7% of additional construction costs of energy efficient buildings in Ontario. At 7%, health savings are a significant item in the cost analysis of efficient buildings. Looking to energy efficiency in the context of likely future low-resource natural gas scenarios, building efficient buildings today is shown to be more economically efficient than any building retrofit option. Considering future natural gas scarcity in the context of Ontario's Long-Term Energy Plan reveals that Ontario may be forced to return to coal-fired electricity. Projected coal use would result in externalities greater than $600 million/year; 80% more than air-quality externalities from Ontario's electricity in 1985. Radically aggressive investment in electricity conservation (75% reduction per capita by 2075) is one promising path forward that keeps air-quality externalities below 1985 levels. Non-health externalities are an additional concern, the quantification, and ultimately monetization, of which could be practical using emerging air pollution monitoring technologies. Energy, conservation, energy planning, and energy's externalities form a complex situation in which today's decisions are critical to a successful future. It is clear that reducing the demand for energy is essential and that there are economically efficient conservation opportunities, particularly in the building sector, being missed.
A cost-efficiency and health benefit approach to improve urban air quality.
Miranda, A I; Ferreira, J; Silveira, C; Relvas, H; Duque, L; Roebeling, P; Lopes, M; Costa, S; Monteiro, A; Gama, C; Sá, E; Borrego, C; Teixeira, J P
2016-11-01
When ambient air quality standards established in the EU Directive 2008/50/EC are exceeded, Member States are obliged to develop and implement Air Quality Plans (AQP) to improve air quality and health. Notwithstanding the achievements in emission reductions and air quality improvement, additional efforts need to be undertaken to improve air quality in a sustainable way - i.e. through a cost-efficiency approach. This work was developed in the scope of the recently concluded MAPLIA project "Moving from Air Pollution to Local Integrated Assessment", and focuses on the definition and assessment of emission abatement measures and their associated costs, air quality and health impacts and benefits by means of air quality modelling tools, health impact functions and cost-efficiency analysis. The MAPLIA system was applied to the Grande Porto urban area (Portugal), addressing PM10 and NOx as the most important pollutants in the region. Four different measures to reduce PM10 and NOx emissions were defined and characterized in terms of emissions and implementation costs, and combined into 15 emission scenarios, simulated by the TAPM air quality modelling tool. Air pollutant concentration fields were then used to estimate health benefits in terms of avoided costs (external costs), using dose-response health impact functions. Results revealed that, among the 15 scenarios analysed, the scenario including all 4 measures lead to a total net benefit of 0.3M€·y(-1). The largest net benefit is obtained for the scenario considering the conversion of 50% of open fire places into heat recovery wood stoves. Although the implementation costs of this measure are high, the benefits outweigh the costs. Research outcomes confirm that the MAPLIA system is useful for policy decision support on air quality improvement strategies, and could be applied to other urban areas where AQP need to be implemented and monitored. Copyright © 2016. Published by Elsevier B.V.
Erickson, Larry E.; Jennings, Merrisa
2017-01-01
The Paris Agreement on Climate Change has the potential to improve air quality and human health by encouraging the electrification of transportation and a transition from coal to sustainable energy. There will be human health benefits from reducing combustion emissions in all parts of the world. Solar powered charging infrastructure for electric vehicles adds renewable energy to generate electricity, shaded parking, and a needed charging infrastructure for electric vehicles that will reduce range anxiety. The costs of wind power, solar panels, and batteries are falling because of technological progress, magnitude of commercial activity, production experience, and competition associated with new trillion dollar markets. These energy and transportation transitions can have a very positive impact on health. The energy, transportation, air quality, climate change, health nexus may benefit from additional progress in developing solar powered charging infrastructure. PMID:29922702
What can individuals do to reduce personal health risks from air pollution?
Laumbach, Robert; Meng, Qingyu
2015-01-01
In many areas of the world, concentrations of ambient air pollutants exceed levels associated with increased risk of acute and chronic health problems. While effective policies to reduce emissions at their sources are clearly preferable, some evidence supports the effectiveness of individual actions to reduce exposure and health risks. Personal exposure to ambient air pollution can be reduced on high air pollution days by staying indoors, reducing outdoor air infiltration to indoors, cleaning indoor air with air filters, and limiting physical exertion, especially outdoors and near air pollution sources. Limited evidence suggests that the use of respirators may be effective in some circumstances. Awareness of air pollution levels is facilitated by a growing number of public air quality alert systems. Avoiding exposure to air pollutants is especially important for susceptible individuals with chronic cardiovascular or pulmonary disease, children, and the elderly. Research on mechanisms underlying the adverse health effects of air pollution have suggested potential pharmaceutical or chemopreventive interventions, such as antioxidant or antithrombotic agents, but in the absence of data on health outcomes, no sound recommendations can be made for primary prevention. Health care providers and their patients should carefully consider individual circumstances related to outdoor and indoor air pollutant exposure levels and susceptibility to those air pollutants when deciding on a course of action to reduce personal exposure and health risks from ambient air pollutants. Careful consideration is especially warranted when interventions may have unintended negative consequences, such as when efforts to avoid exposure to air pollutants lead to reduced physical activity or when there is evidence that dietary supplements, such as antioxidants, have potential adverse health effects. These potential complications of partially effective personal interventions to reduce exposure or risk highlight the primary importance of reducing emissions of air pollutants at their sources. PMID:25694820
What can individuals do to reduce personal health risks from air pollution?
Laumbach, Robert; Meng, Qingyu; Kipen, Howard
2015-01-01
In many areas of the world, concentrations of ambient air pollutants exceed levels associated with increased risk of acute and chronic health problems. While effective policies to reduce emissions at their sources are clearly preferable, some evidence supports the effectiveness of individual actions to reduce exposure and health risks. Personal exposure to ambient air pollution can be reduced on high air pollution days by staying indoors, reducing outdoor air infiltration to indoors, cleaning indoor air with air filters, and limiting physical exertion, especially outdoors and near air pollution sources. Limited evidence suggests that the use of respirators may be effective in some circumstances. Awareness of air pollution levels is facilitated by a growing number of public air quality alert systems. Avoiding exposure to air pollutants is especially important for susceptible individuals with chronic cardiovascular or pulmonary disease, children, and the elderly. Research on mechanisms underlying the adverse health effects of air pollution have suggested potential pharmaceutical or chemopreventive interventions, such as antioxidant or antithrombotic agents, but in the absence of data on health outcomes, no sound recommendations can be made for primary prevention. Health care providers and their patients should carefully consider individual circumstances related to outdoor and indoor air pollutant exposure levels and susceptibility to those air pollutants when deciding on a course of action to reduce personal exposure and health risks from ambient air pollutants. Careful consideration is especially warranted when interventions may have unintended negative consequences, such as when efforts to avoid exposure to air pollutants lead to reduced physical activity or when there is evidence that dietary supplements, such as antioxidants, have potential adverse health effects. These potential complications of partially effective personal interventions to reduce exposure or risk highlight the primary importance of reducing emissions of air pollutants at their sources.
An Experiment with Air Purifiers in Delhi during Winter 2015-2016
Vyas, Sangita
2016-01-01
Particulate pollution has important consequences for human health, and is an issue of global concern. Outdoor air pollution has become a cause for alarm in India in particular because recent data suggest that ambient pollution levels in Indian cities are some of the highest in the world. We study the number of particles between 0.5μm and 2.5μm indoors while using affordable air purifiers in the highly polluted city of Delhi. Though substantial reductions in indoor number concentrations are observed during air purifier use, indoor air quality while using an air purifier is frequently worse than in cities with moderate pollution, and often worse than levels observed even in polluted cities. When outdoor pollution levels are higher, on average, indoor pollution levels while using an air purifier are also higher. Moreover, the ratio of indoor air quality during air purifier use to two comparison measures of air quality without an air purifier are also positively correlated with outdoor pollution levels, suggesting that as ambient air quality worsens there are diminishing returns to improvements in indoor air quality during air purifier use. The findings of this study indicate that although the most affordable air purifiers currently available are associated with significant improvements in the indoor environment, they are not a replacement for public action in regions like Delhi. Although private solutions may serve as a stopgap, reducing ambient air pollution must be a public health and policy priority in any region where air pollution is as high as Delhi’s during the winter. PMID:27978542
Reduced bleed air extraction for DC-10 cabin air conditioning
NASA Technical Reports Server (NTRS)
Newman, W. H.; Viele, M. R.; Hrach, F. J.
1980-01-01
It is noted that a significant fuel savings can be achieved by reducing bleed air used for cabin air conditioning. Air in the cabin can be recirculated to maintain comfortable ventilation rates but the quality of the air tends to decrease due to entrainment of smoke and odors. Attention is given to a development system designed and fabricated under the NASA Engine Component Improvement Program to define the recirculation limit for the DC-10. It is shown that with the system, a wide range of bleed air reductions and recirculation rates is possible. A goal of 0.8% fuel savings has been achieved which results from a 50% reduction in bleed extraction from the engine.
Driving Less for Better Air: Impacts of a Public Information Campaign
ERIC Educational Resources Information Center
Henry, Gary T.; Gordon, Craig S.
2003-01-01
In the wake of the 1990 amendments to the Clean Air Act, localities across the United States initiated public information campaigns both to raise awareness of threats to air quality and to change behavior related to air pollution by recommending specific behavioral changes in the campaign messages. These campaigns are designed to reduce the health…
Challenges and Opportunities of Air Quality Management in Mexico City
NASA Astrophysics Data System (ADS)
Paramo, V.
2013-05-01
The Mexico City Metropolitan Area (MCMA) is located in the central plateau of Mexico and is the capital of the country. Its natural characteristics present favorable conditions for air pollution formation and accumulation: mountains surrounding the city, frequent thermal inversions, high isolation all around the year and weak winds. To these natural conditions, a population of more than 20 million inhabitants, a fleet of 4.5 million vehicles and more than 4 thousands industries, make air quality management a real challenge for governments of the region. Intensive air quality improvement actions and programs began at the end of the 1980's and continued nowadays. Since then criteria air pollutants concentrations have decreased in such a way that currently most of pollutants meet the Mexican air quality standards, except for ozone and particulate matter. Applied measures comprised of fuel quality improvements, fuel replacements, regulations for combustion processes, closing of high polluting refineries and industries, regulations of emissions for new and on road vehicles, mandatory I/M programs for vehicles, circulation restrictions for vehicles (Day without car program), alert program for elevated air pollution episodes, improvement of public transportation, among others. Recent researches (MILAGRO 2006 campaign) found that currently it is necessary to implement emissions reduction actions for Volatile Organic Compounds, particulate matter with a diameter of less than 2.5 micrometers PM2.5 and Nitrogen Oxides, in order to reduce concentrations of ozone and fine particulate matter. Among the new measures to be implemented are: regulations for VOCs emissions in the industry and commercial sectors; regulation of the diesel fleet that includes fleets renewal, filters and particulate traps for in use vehicles and regulation of the cargo fleet; new schemes for reducing the number of vehicles circulating in the city; implementation of non-motorized mobility programs; among others.
NASA Astrophysics Data System (ADS)
Abel, David; Holloway, Tracey; Harkey, Monica; Rrushaj, Arber; Brinkman, Greg; Duran, Phillip; Janssen, Mark; Denholm, Paul
2018-02-01
We evaluate how fine particulate matter (PM2.5) and precursor emissions could be reduced if 17% of electricity generation was replaced with solar photovoltaics (PV) in the Eastern United States. Electricity generation is simulated using GridView, then used to scale electricity-sector emissions of sulfur dioxide (SO2) and nitrogen oxides (NOX) from an existing gridded inventory of air emissions. This approach offers a novel method to leverage advanced electricity simulations with state-of-the-art emissions inventories, without necessitating recalculation of emissions for each facility. The baseline and perturbed emissions are input to the Community Multiscale Air Quality Model (CMAQ version 4.7.1) for a full accounting of time- and space-varying air quality changes associated with the 17% PV scenario. These results offer a high-value opportunity to evaluate the reduced-form AVoided Emissions and geneRation Tool (AVERT), while using AVERT to test the sensitivity of results to changing base-years and levels of solar integration. We find that average NOX and SO2 emissions across the region decrease 20% and 15%, respectively. PM2.5 concentrations decreased on average 4.7% across the Eastern U.S., with nitrate (NO3-) PM2.5 decreasing 3.7% and sulfate (SO42-) PM2.5 decreasing 9.1%. In the five largest cities in the region, we find that the most polluted days show the most significant PM2.5 decrease under the 17% PV generation scenario, and that the greatest benefits are accrued to cities in or near the Ohio River Valley. We find summer health benefits from reduced PM2.5 exposure estimated as 1424 avoided premature deaths (95% Confidence Interval (CI): 284 deaths, 2 732 deaths) or a health savings of 13.1 billion (95% CI: 0.6 billion, 43.9 billion) These results highlight the potential for renewable energy as a tool for air quality managers to support current and future health-based air quality regulations.
Air quality impacts of implementing emission reduction strategies at southern California airports
NASA Astrophysics Data System (ADS)
Benosa, Guillem; Zhu, Shupeng; Kinnon, Michael Mac; Dabdub, Donald
2018-07-01
Reducing aviation emissions will be a major concern in the coming years, as the relative contribution of aviation to overall emissions is projected to increase in the future. The South Coast Air Basin of California (SoCAB) is an extreme nonattainment area with many airports located upwind of the most polluted regions in the basin. Techniques to reduce aviation emissions have been studied in the past, and strategies that can be implemented at airports include taxi-out times reduction, ground support equipment electrification and aviation biofuel implementation. These strategies have been analyzed only at the national scale, their effectiveness to improve air quality within the SoCAB given the local meteorology and chemical regimes is unclear. This work studies how the adoption of the techniques at commercial SoCAB airports affect ozone (O3) and fine particulate matter (PM2.5) concentrations. In addition, potential impacts on public exposure to PM2.5 and O3 resulting from changes in the concentration of these pollutants are estimated. In addition, the work calculates aviation emissions for each scenario and simulate the transport and atmospheric chemistry of the pollutants using the Community Multiscale Air Quality (CMAQ) model. The simultaneous application of all reduction strategies is projected to reduce the aviation-attributable population weighted ground-level PM2.5 by 36% in summer and 32% in winter. On the other hand, O3 increases by 16% in winter. Occurring mostly in densely populated areas, the decrease in ground-level PM2.5 would have a positive health impact and help the region achieve attainment of national ambient air quality standards.
[Does ultraclean air in the operating room provide greater safety?].
van Tiel, Frank H; Buiting, Anton G; Meessen, Nico E L; Voss, Andreas; Vos, Margreet C
2010-01-01
The Dutch quality control plan for climatisation of the operating room (OR), which was published in 2005, describes the management and maintenance of the air conditioning system. This management plan proposes a standard for air quality in class 1 ORs. This has been adopted by the Dutch Orthopaedic Society, but not by other surgical societies. The British study which underlies the proposed norm for air quality in class 1 ORs, a study on the infection preventive effect of ultraclean air, dates from 1982 and is inadequately controlled for prophylactic use of antibiotics. Antibiotic prophylaxis in itself already reduces the number of surgical site infections.-More recent studies fail to show an infection preventive effect of ultraclean air in the OR. The Dutch Working Party for Infection Prevention (WIP) ought to take the initiative, together with the medical Scientific Societies and the Society of Infection Prevention and Control in the health care setting (VHIG), to establish enforceable norms for microbiological air quality and to set criteria as to which types of operations are allowed to be performed in which class of OR.
Air quality early-warning system for cities in China
NASA Astrophysics Data System (ADS)
Xu, Yunzhen; Yang, Wendong; Wang, Jianzhou
2017-01-01
Air pollution has become a serious issue in many developing countries, especially in China, and could generate adverse effects on human beings. Air quality early-warning systems play an increasingly significant role in regulatory plans that reduce and control emissions of air pollutants and inform the public in advance when harmful air pollution is foreseen. However, building a robust early-warning system that will improve the ability of early-warning is not only a challenge but also a critical issue for the entire society. Relevant research is still poor in China and cannot always satisfy the growing requirements of regulatory planning, despite the issue's significance. Therefore, in this paper, a hybrid air quality early-warning system was successfully developed, composed of forecasting and evaluation. First, a hybrid forecasting model was proposed as an important part of this system based on the theory of "decomposition and ensemble" and combined with the advanced data processing technique, support vector machine, the latest bio-inspired optimization algorithm and the leave-one-out strategy for deciding weights. Afterwards, to intensify the research, fuzzy evaluation was performed, which also plays an indispensable role in the early-warning system. The forecasting model and fuzzy evaluation approaches are complementary. Case studies using daily air pollution concentrations of six air pollutants from three cities in China (i.e., Taiyuan, Harbin and Chongqing) are used as examples to evaluate the efficiency and effectiveness of the developed air quality early-warning system. Experimental results demonstrate that both the accuracy and the effectiveness of the developed system are greatly superior for air quality early warning. Furthermore, the application of forecasting and evaluation enables the informative and effective quantification of future air quality, offering a significant advantage, and can be employed to develop rapid air quality early-warning systems.
ERIC Educational Resources Information Center
Freeman, Laurie
1996-01-01
A new elementary school in New Hampshire uses innovative European ventilation technology to ensure excellent air quality. Combined with high-efficiency lighting, the system should reduce energy consumption by 10 to 20%, compared with a traditional facility. (MLF)
Adequacy Review of State Implementation Plan (SIP) Submissions for Conformity
This page is for state and local air quality regulators and transportation planners that offers guidance on how to reduce air pollution from cars, diesel trucks, city and school buses, construction equipme
Improved navigation by combining VOR/DME information with air or inertial data
NASA Technical Reports Server (NTRS)
Bobick, J. C.; Bryson, A. E., Jr.
1972-01-01
The improvement was determined in navigational accuracy obtainable by combining VOR/DME information (from one or two stations) with air data (airspeed and heading) or with data from an inertial navigation system (INS) by means of a maximum-likelihood filter. It was found that the addition of air data to the information from one VOR/DME station reduces the RMS position error by a factor of about 2, whereas the addition of inertial data from a low-quality INS reduces the RMS position error by a factor of about 3. The use of information from two VOR/DME stations with air or inertial data yields large factors of improvement in RMS position accuracy over the use of a single VOR/DME station, roughly 15 to 20 for the air-data case and 25 to 35 for the inertial-data case. As far as position accuracy is concerned, at most one VOR station need be used. When continuously updating an INS with VOR/DME information, the use of a high-quality INS (0.01 deg/hr gyro drift) instead of a low-quality INS (1.0 deg/hr gyro drift) does not substantially improve position accuracy.
NASA Astrophysics Data System (ADS)
Huang, Qian; Wang, Tijian; Chen, Pulong; Huang, Xiaoxian; Zhu, Jialei; Zhuang, Bingliang
2017-11-01
As the holding city of the 2nd Youth Olympic Games (YOG), Nanjing is highly industrialized and urbanized, and faces several air pollution issues. In order to ensure better air quality during the event, the local government took great efforts to control the emissions from pollutant sources. However, air quality can still be affected by synoptic weather, not only emission. In this paper, the influences of meteorological factors and emission reductions were investigated using observational data and numerical simulations with WRF-CMAQ (Weather Research and Forecasting - Community Multiscale Air Quality). During the month in which the YOG were held (August 2014), the observed hourly mean concentrations of SO2, NO2, PM10, PM2.5, CO and O3 were 11.6 µg m-3, 34.0 µg m-3, 57.8 µg m-3, 39.4 µg m-3, 0.9 mg m-3 and 38.8 µg m-3, respectively, which were below China National Ambient Air Quality Standard (level 2). However, model simulation showed that the weather conditions, such as weaker winds during the YOG, were adverse for better air quality and could increase SO2, NO2, PM10, PM2.5 and CO by 17.5, 16.9, 18.5, 18.8, 7.8 and 0.8 %. Taking account of local emission abatement only, the simulated SO2, NO2, PM10, PM2.5 and CO decreased by 24.6, 12.1, 15.1, 8.1 and 7.2 %. Consequently, stringent emission control measures can reduce the concentrations of air pollutants in the short term, and emission reduction is very important for air quality improvement during the YOG. A good example has been set for air quality protection for important social events.
Monitoring Indoor Air Quality for Enhanced Occupational Health.
Pitarma, Rui; Marques, Gonçalo; Ferreira, Bárbara Roque
2017-02-01
Indoor environments are characterized by several pollutant sources. Because people spend more than 90% of their time in indoor environments, several studies have pointed out the impact of indoor air quality on the etiopathogenesis of a wide number of non-specific symptoms which characterizes the "Sick Building Syndrome", involving the skin, the upper and lower respiratory tract, the eyes and the nervous system, as well as many building related diseases. Thus, indoor air quality (IAQ) is recognized as an important factor to be controlled for the occupants' health and comfort. The majority of the monitoring systems presently available is very expensive and only allow to collect random samples. This work describes the system (iAQ), a low-cost indoor air quality monitoring wireless sensor network system, developed using Arduino, XBee modules and micro sensors, for storage and availability of monitoring data on a web portal in real time. Five micro sensors of environmental parameters (air temperature, humidity, carbon monoxide, carbon dioxide and luminosity) were used. Other sensors can be added for monitoring specific pollutants. The results reveal that the system can provide an effective indoor air quality assessment to prevent exposure risk. In fact, the indoor air quality may be extremely different compared to what is expected for a quality living environment. Systems like this would have benefit as public health interventions to reduce the burden of symptoms and diseases related to "sick buildings".
Environmental Assessment of the City of El Cerrito, CA: Creek, Trash and Air Quality Analysis
NASA Astrophysics Data System (ADS)
Moore, A.; Ilan, A.
2015-12-01
The City of El Cerrito, CA is located within Western Contra Costa County and adjacent to the San Francisco Bay. Local land-uses that affect its overall public and environmental health include major freeways, railways, and commercial and industrial zones. In an effort to assess the overall health of the local environment, students at Korematsu Middle School conducted a comprehensive analysis that included street litter auditing, water monitoring of Cerritos Creek and air quality measurements made along local streets. In 2014 the City of El Cerrito adopted a long-term trash plan that included strategies for reducing trash loads of local stormwater sewer systems. This plan called for load reduction of 70% by July 1, 2017 and 100% by July 1, 2022. To evaluate the effectiveness of the trash plan, our team quantified and scored trash concentration levels at two locations—one in a residential neighborhood and the other in a commercial zone. We also monitored water quality at nearby Cerritos Creek to investigate the impacts that each area's trash concentrations had on water quality. We also monitored particulate matter (PM) concentration levels in air within these locations to determine whether or not differences exist between residential and commercial areas. Preliminary analysis of litter data suggests that the Long Term Trash Plan has thus far been effective in reducing concentrations of street litter along San Pablo Avenue, which is located within a major commercial zone, but has been inadequate in reducing trash in nearby parks. Water quality results indicate that Cerritos Creek contains waters that are quite healthy with respect to Ammonia and Nitrate concentration levels (i.e., very low values for every sample collected). However, elevated concentration levels of Phosphates were detected in every sample collected. Air quality data surprisingly revealed that extremely high PM concentration levels occur in air surrounding a residential park in El Cerrito.
The effect of natural ventilation strategy on indoor air quality in schools.
Stabile, Luca; Dell'Isola, Marco; Russi, Aldo; Massimo, Angelamaria; Buonanno, Giorgio
2017-10-01
In order to reduce children's exposure to pollutants in classrooms a proper ventilation strategy need to be adopted. Such strategy is even more important in naturally ventilated schools where the air exchange rate is only based on the manual airing of classrooms. The present work aimed to evaluate the effect of the manual airing strategy on indoor air quality in Italian classrooms. For this aim, schools located in the Central Italy were investigated. Indoor air quality was studied in terms of CO 2 , particle number and PM concentrations and compared to corresponding outdoor levels. In particular two experimental analyses were performed: i) a comparison between heating and non heating season in different schools; ii) an evaluation of the effect of scheduled airing periods on the dilution of indoor-generated pollutants and the penetration of outdoor-generated ones. In particular, different airing procedures, i.e. different window opening periods (5 to 20min per hour) were imposed and controlled through contacts installed on classroom windows and doors. Results revealed that the airing strategy differently affect the several pollutants detected in indoors depending on their size, origin and dynamics. Longer airing periods may result in reduced indoor CO 2 concentrations and, similarly, other gaseous indoor-generated pollutants. Simultaneously, higher ultrafine particle (and other vehicular-related pollutants) levels in indoors were measured due to infiltration from outdoors. Finally, a negligible effect of the manual airing on PM levels in classroom was detected. Therefore, a simultaneous reduction in concentration levels for all the pollutant metrics in classrooms cannot be obtained just relying upon air permeability of the building envelope and manual airing of the classrooms. Copyright © 2017 Elsevier B.V. All rights reserved.
Sadiq, Abderrahmane; El Fazziki, Abdelaziz; Ouarzazi, Jamal; Sadgal, Mohamed
2016-01-01
This paper presents an integrated and adaptive problem-solving approach to control the on-road air quality by modeling the road infrastructure, managing traffic based on pollution level and generating recommendations for road users. The aim is to reduce vehicle emissions in the most polluted road segments and optimizing the pollution levels. For this we propose the use of historical and real time pollution records and contextual data to calculate the air quality index on road networks and generate recommendations for reassigning traffic flow in order to improve the on-road air quality. The resulting air quality indexes are used in the system's traffic network generation, which the cartography is represented by a weighted graph. The weights evolve according to the pollution indexes and path properties and the graph is therefore dynamic. Furthermore, the systems use the available pollution data and meteorological records in order to predict the on-road pollutant levels by using an artificial neural network based prediction model. The proposed approach combines the benefits of multi-agent systems, Big data technology, machine learning tools and the available data sources. For the shortest path searching in the road network, we use the Dijkstra algorithm over Hadoop MapReduce framework. The use Hadoop framework in the data retrieve and analysis process has significantly improved the performance of the proposed system. Also, the agent technology allowed proposing a suitable solution in terms of robustness and agility.
Chen, Hong; Li, Qiongsi; Kaufman, Jay S; Wang, Jun; Copes, Ray; Su, Yushan; Benmarhnia, Tarik
2018-01-01
Ambient air pollution is a major health risk globally. To reduce adverse health effects on days when air pollution is high, government agencies worldwide have implemented air quality alert programmes. Despite their widespread use, little is known about whether these programmes produce any observable public-health benefits. We assessed the effectiveness of such programmes using a quasi-experimental approach. We assembled a population-based cohort comprising all individuals who resided in the city of Toronto (Ontario, Canada) from 2003 to 2012 (about 2·6 million people). We ascertained seven health outcomes known to be affected by short-term elevation of air pollution, using provincial health administrative databases. These health outcomes were cardiovascular-related mortality, respiratory-related mortality, and hospital admissions or emergency-department visits for acute myocardial infarction, heart failure, stroke, asthma, and chronic obstructive pulmonary disease (COPD). We applied a regression discontinuity design to assess the effectiveness of an intervention (ie, the air quality alert programme). To quantify the effect of the air quality alert programme, we estimated for each outcome both the absolute rate difference and the rate ratio attributable to programme eligibility (by intention-to-treat analysis) and the alerts themselves (by two-stage regression approach), respectively. Between Jan 1, 2003, and Dec 31, 2012, on average between three and 27 daily cardiovascular or respiratory events were reported in Toronto (depending on the outcome). Alert announcements reduced asthma-related emergency-department visits by 4·73 cases per 1 000 000 people per day (95% CI 0·55-9·38), or in relative terms by 25% (95% CI 1-47). Programme eligibility also led to 2·05 (95% CI 0·07-4·00) fewer daily emergency-department visits for asthma. We did not detect a significant reduction in any other health outcome as a result of alert announcements or programme eligibility. However, a non-significant trend was noted towards decreased asthma-related and COPD-related admissions. In this population-based cohort, the air quality alert programme was related to some reductions in respiratory morbidity, but not any other health outcome examined. This finding suggests that issuing air quality alerts alone has a limited effect on public health and that implementing enforced public actions to reduce air pollution on high pollution days could be warranted. Together with accumulating evidence of substantial burden from long-term air pollution exposure, this study underscores the need for further strengthening of global efforts that can lead to long-term improvement of overall air quality. Public Health Ontario, Canadian Institutes for Health Research. Copyright © 2018 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license. Published by Elsevier Ltd.. All rights reserved.
Lu, Sen; Ren, Tusheng; Lu, Yili; Meng, Ping; Zhang, Jinsong
2017-01-05
The thermal conductivity of dry soils is related closely to air pressure and the contact areas between solid particles. In this study, the thermal conductivity of two-phase soil systems was determined under reduced and increased air pressures. The thermal separation of soil particles, i.e., the characteristic dimension of the pore space (d), was then estimated based on the relationship between soil thermal conductivity and air pressure. Results showed that under both reduced and increased air pressures, d estimations were significantly larger than the geometrical mean separation of solid particles (D), which suggested that conductive heat transfer through solid particles dominated heat transfer in dry soils. The increased air pressure approach gave d values lower than that of the reduced air pressure method. With increasing air pressure, more collisions between gas molecules and solid surface occurred in micro-pores and intra-aggregate pores due to the reduction of mean free path of air molecules. Compared to the reduced air pressure approach, the increased air pressure approach expressed more micro-pore structure attributes in heat transfer. We concluded that measuring thermal conductivity under increased air pressure procedures gave better-quality d values, and improved soil micro-pore structure estimation.
Case Study: Advances in Modelling Exposure
Concerned about the health impacts of air pollution. many environmental agencies around the world are implementing regulations to reduce emissions from various sectors, thus maintaining ambient air quality at acceptable levels. The United States Environmental Protection Agency (E...
This web site will educate the public about indoor environmental issues including health risks and means by which human exposures can be reduced. Content on this site will be focused on Spanish translated resources for information about indoor air quality.
Improving Air Quality with Solar Energy
DOE R&D Accomplishments Database
2008-04-01
This fact sheet series highlights how renewable energy and energy efficiency technologies can and are being used to reduce air emissions and meet environmental goals, showcasing case studies and technology-specific topics. This one focus on solar energy technologies.
Impacts of weatherization on indoor air quality: A field study of 514 homes.
Pigg, S; Cautley, D; Francisco, P W
2018-03-01
Residential energy efficiency retrofits continue to be common in the United States, especially through governmental and utility programs. Because of the potential for reduced air exchange, there have been concerns raised regarding the potential for negative impacts on health and safety of residents when air sealing occurs. To address this concern, a study was undertaken in 2009-2010 to evaluate the indoor air quality impacts of weatherization performed through the U.S. Department of Energy's Weatherization Assistance Program. Testing was conducted on 514 homes throughout the United States. The results show that weatherization, as performed at the time of the study, could result in small but statistically significant increases in some indoor contaminants such as radon and humidity, while also reducing exposures to elevated carbon monoxide in some homes. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Li, Qing; Jiang, Jingkun; Wang, Shuxiao; Rumchev, Krassi; Mead-Hunter, Ryan; Morawska, Lidia; Hao, Jiming
2017-01-15
This review briefly introduces current status of indoor and ambient air pollution originating from household coal and biomass combustion in mainland China. Owing to low combustion efficiency, emissions of CO, PM 2.5 , black carbon (BC), and polycyclic aromatic hydrocarbons have significant adverse consequences for indoor and ambient air qualities, resulting in relative contributions of more than one-third in all anthropogenic emissions. Their contributions are higher in less economically developed regions, such as Guizhou (61% PM 2.5 , 80% BC), than that in more developed regions, such as Shanghai (4% PM 2.5 , 17% BC). Chimneys can reduce ~80% indoor PM 2.5 level when burning dirty solid fuels, such as plant materials. Due to spending more time near stoves, housewives suffer much more (~2 times) PM 2.5 than the adult men, especially in winter in northern China (~4 times). Improvement of stove combustion/thermal efficiencies and solid fuel quality are the two essential methods to reduce pollutant emissions. PM 2.5 and BC emission factors (EFs) have been identified to increase with volatile matter content in traditional stove combustion. EFs of dirty fuels are two orders higher than that of clean ones. Switching to clean ones, such as semi-coke briquette, was identified to be a feasible path for reducing >90% PM 2.5 and BC emissions. Otherwise, improvement of thermal and combustion efficiencies by using under-fire technology can reduce ~50% CO 2 , 87% NH 3 , and 80% PM 2.5 and BC emissions regardless of volatile matter content in solid fuel. However, there are still some knowledge gaps, such as, inventory for the temporal impact of household combustion on air quality, statistic data for deployed clean solid fuels and advanced stoves, and the effect of socioeconomic development. Additionally, further technology research for reducing air pollution emissions is urgently needed, especially low cost and clean stove when burning any type of solid fuel. Furthermore, emission-abatement oriented policy should base on sound scientific evidence to significantly reduce pollutant emissions. Copyright © 2016 Elsevier B.V. All rights reserved.
Air Quality: A Comparison of Students' Conceptions and Attitudes across the Continents
ERIC Educational Resources Information Center
Boyes, Edward; Myers, George; Skamp, Keith; Stanisstreet, Martin; Yeung, Stephen
2007-01-01
A closed-form questionnaire was used to explore the ideas of school students about the composition of air, the causes and consequences of air pollution and the extent to which the students would accept various courses of action to reduce air pollution. Items for the questionnaire were derived from the results of interviews and an earlier open-form…
Effects of future land use and ecosystem changes on boundary-layer meteorology and air quality
NASA Astrophysics Data System (ADS)
Tai, A. P. K.; Wang, L.; Sadeke, M.
2017-12-01
Land vegetation plays key roles shaping boundary-layer meteorology and air quality via various pathways. Vegetation can directly affect surface ozone via dry deposition and biogenic emissions of volatile organic compounds (VOCs). Transpiration from land plants can also influence surface temperature, soil moisture and boundary-layer mixing depth, thereby indirectly affecting surface ozone. Future changes in the distribution, density and physiology of vegetation are therefore expected to have major ramifications for surface ozone air quality. In our study, we examine two aspects of potential vegetation changes using the Community Earth System Model (CESM) in the fully coupled land-atmosphere configuration, and evaluate their implications on meteorology and air quality: 1) land use change, which alters the distribution of plant functional types and total leaf density; and 2) ozone damage on vegetation, which alters leaf density and physiology (e.g., stomatal resistance). We find that, following the RCP8.5 scenario for 2050, global cropland expansion induces only minor changes in surface ozone in tropical and subtropical regions, but statistically significant changes by up to +4 ppbv in midlatitude North America and East Asia, mostly due to higher surface temperature that enhances biogenic VOC emissions, and reduced dry deposition to a lesser degree. These changes are in turn to driven mostly by meteorological changes that include a shift from latent to sensible heat in the surface energy balance and reduced soil moisture, reflecting not only local responses but also a northward expansion of the Hadley Cell. On the other hand, ozone damage on vegetation driven by rising anthropogenic emissions is shown to induce a further enhancement of ozone by up to +6 ppbv in midlatitude regions by 2050. This reflects a strong localized positive feedback, with severe ozone damage in polluted regions generally inducing stomatal closure, which in turn reduces transpiration, increases surface temperature, and thus enhances biogenic VOC emissions and surface ozone. Our findings demonstrate the importance of considering meteorological responses to vegetation changes in future air quality assessment, and call for greater coordination among land use, ecosystem and air quality management efforts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Xinyi; Gao, Yang; Fu, Joshua S.
On February 29th 2012, China published its new National Ambient Air Quality Standard (CH-NAAQS) aiming at revising the standards and measurements for both gaseous pollutants including ozone (O3), nitrogen dioxide (NO2), and sulfur dioxide (SO2), and also particle pollutants including PM10 and PM2.5. In order to understand the air pollution status regarding this new standard, the integrated MM5/CMAQ modeling system was applied over Yangtze River Delta (YRD) within this study to examine the criteria gaseous pollutants listed in the new CH-NAAQS. Sensitivity simulations were also conducted to assess the responses of gaseous pollutants under 8 different sector-dependent emission reduction scenariosmore » in order to evaluate the potential control strategies. 2006 was selected as the simulation year in order to review the air quality condition at the beginning of China’s 11th Five-Year-Plan (FYP, from 2006 to 2010), and also compared with air quality status in 2010 as the end of 11th FYP to probe into the effectiveness of the national emission control efforts. Base case simulation showed distinct seasonal variation for gaseous pollutants: SO2, and NO2 were found to have higher surface concentrations in winter while O3 was found to have higher concentrations in spring and summer than other seasons. According to the analyses focused on 3 megacities within YRD, Shanghai, Nanjing, and Hangzhou, we found different air quality conditions among the cities: NO2 was the primary pollutant that having the largest number of days exceeding the CH-NAAQS daily standard (80 μg/m3) in Shanghai (59 days) and Nanjing (27 days); SO2 was the primary pollutant with maximum number of days exceeding daily air quality standard (150 μg/m3) in Hangzhou (28 days), while O3 exceeding the daily maximum 8-hour standard (160 μg/m3) for relatively fewer days in all the three cities (9 days in Shanghai, 14 days in Nanjing, and 11 days in Hangzhou). Simulation results from predefined potential applicable emission control scenarios suggested significant air quality improvements from emission reduction: 90% of SO2 emission removed from power plant in YRD would be able to reduce more than 85% of SO2 pollution, 85% NOx emission reduction from power plant would reduce more than 60% of NO2 pollution, in terms of reducing the number of days exceeding daily air quality standard. NOx emission reduction from transportation and industry were also found to effectively reduce NO2 pollution but less efficient than emission control from power plants. We also found that multi-pollutants emission control including both NOx and VOC would be a better strategy than independent NOx control over YRD which is China’s 12th Five-Year-Plan (from 2011 to 2015), because O3 pollution would be increased as a side effect of NOx control and counteract NO2 pollution reduction benefit.« less
NASA Astrophysics Data System (ADS)
Wang, Zhanshan; Pan, Libo; Li, Yunting; Zhang, Dawei; Ma, Jin; Sun, Feng; Xu, Wenshuai; Wang, Xingrun
2015-04-01
In 2010, an emission inventory of air pollutants in China was created using the Chinese Bulletin of the Environment, the INTEX-B program, the First National Pollution Source Census, the National Generator Set Manual, and domestic and international research studies. Two emission scenarios, the standard failed emission scenario (S1) and the standard successful emission scenario (S2), were constructed based upon the Instructions for the Preparation of Emission Standards for Air Pollutants from Thermal Power Plants (second draft). The Fifth-Generation NCAR/Penn State Mesoscale Model (MM5) and the U.S. EPA Models-3 Community Multiscale Air Quality (CMAQ) model were applied to China to study the air quality benefits from Emission Standards for Air Pollutants from Thermal Power Plants GB13223-2011. The performance of MM5 and CMAQ was evaluated with meteorological data from Global Surface Data from the National Climatic Data Center (NCDC) and the daily Air Pollution Index (API) reported by Chinese local governments. The results showed that the implementation of the new standards could reduce the concentration of air pollutants and acid deposition in China by varying degrees. The new standards could reduce NO2 pollution in China. By 2020, for the scenario S2, the area with an NO2 concentration higher than the second-level emission standard, and the average NO2 concentration in 31 selected provinces would be reduced by 55.2% and 24.3%, respectively. The new standards could further reduce the concentration of declining SO2 in China. By 2020, for S2, the area with an SO2 concentration higher than the second-level emission standard and the average SO2 concentration in the 31 selected provinces would be reduced by 40.0% and 31.6%, respectively. The new standards could also reduce PM2.5 pollution in China. By 2020, for S2, the area with a PM2.5 concentration higher than the second-level emission standard and the average concentration of PM2.5 in the 31 selected provinces would be reduced by 17.2% and 14.7%, respectively. The new standard could reduce nitrogen deposition pollution in China. By 2020, for S2, the area with a nitrogen deposition concentration >2.0 tons·km-2 and the total nitrogen deposition in China would be reduced by 28.6% and 16.8%, respectively. The new standards could reduce sulfur deposition pollution in China. By 2020, for S2, the area with a sulfur deposition >1.5 tons·km-2 and the total sulfur deposition in China would be reduced by 55.3% and 21.0%, respectively.
Addressing equity in interventions to reduce air pollution in urban areas: a systematic review.
Benmarhnia, Tarik; Rey, Lynda; Cartier, Yuri; Clary, Christelle M; Deguen, Séverine; Brousselle, Astrid
2014-12-01
We did a systematic review to assess quantitative studies investigating the association between interventions aiming to reduce air pollution, health benefits and equity effects. Three databases were searched for studies investigating the association between evaluated interventions aiming to reduce air pollution and heath-related benefits. We designed a two-stage selection process to judge how equity was assessed and we systematically determined if there was a heterogeneous effect of the intervention between subgroups or subareas. Of 145 identified articles, 54 were reviewed in-depth with eight satisfying the inclusion criteria. This systematic review showed that interventions aiming to reduce air pollution in urban areas have a positive impact on air quality and on mortality rates, but the documented effect on equity is less straightforward. Integration of equity in evidence-based public health is a great challenge nowadays. In this review we draw attention to the importance of considering equity in air pollution interventions. We also propose further methodological and theoretical challenges when assessing equity in interventions to reduce air pollution and we present opportunities to develop this research area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moss, M.T.; Segal, H.M.
1994-06-01
A new complex source microcomputer model has been developed for use at civil airports and Air Force bases. This paper describes both the key features of this model and its application in evaluating the air quality impact of new construction projects at three airports: one in the United States and two in Canada. The single EDMS model replaces the numerous models previously required to assess the air quality impact of pollution sources at airports. EDMS also employs a commercial data base to reduce the time and manpower required to accurately assess and document the air quality impact of airfield operations.more » On July 20, 1993, the U.S. Environmental Protection Agency (EPA) issued the final rule (Federal Register, 7/20/93, page 38816) to add new models to the Guideline on Air Quality Models. At that time EDMS was incorporated into the Guideline as an Appendix A model. 12 refs., 4 figs., 1 tab.« less
NASA Astrophysics Data System (ADS)
Shi, J.; Donahue, N. M.; Klima, K.; Blackhurst, M.
2016-12-01
In order to tradeoff global impacts of greenhouse gases with highly local impacts of conventional air pollution, researchers require a method to compare global and regional impacts. Unfortunately, we are not aware of a method that allows these to be compared, "apples-to-apples". In this research we propose a three-step model to compare possible city-wide actions to reduce greenhouse gases and conventional air pollutants. We focus on Pittsburgh, PA, a city with consistently poor air quality that is interested in reducing both greenhouse gases and conventional air pollutants. First, we use the 2013 Pittsburgh Greenhouse Gas Inventory to update the Blackhurst et al. model and conduct a greenhouse gas abatement potentials and implementation costs of proposed greenhouse gas reduction efforts. Second, we use field tests for PM2.5, NOx, SOx, organic carbon (OC) and elemental carbon (EC) data to inform a Land-use Regression Model for local air pollution at a 100m x 100m spatial level, which combined with a social cost of air pollution model (EASIUR) allows us to calculate economic social damages. Third, we combine these two models into a three-dimensional greenhouse gas cost abatement curve to understand the implementation costs and social benefits in terms of air quality improvement and greenhouse gas abatement for each potential intervention. We anticipated such results could provide policy-maker insights in green city development.
NASA Technical Reports Server (NTRS)
Underwood, Lauren; Ryan, Robert E.
2007-01-01
This Candidate Solution is based on using NASA Earth science research on atmospheric ozone and aerosols data as a means to predict and evaluate the effectiveness of photocatalytically created surfaces (building materials like glass, tile and cement) for air pollution mitigation purposes. When these surfaces are exposed to near UV light, organic molecules, like air pollutants and smog precursors, will degrade into environmentally friendly compounds. U.S. EPA (Environmental Protection Agency) is responsible for forecasting daily air quality by using the Air Quality Index (AQI) that is provided by AIRNow. EPA is partnered with AIRNow and is responsible for calculating the AQI for five major air pollutants that are regulated by the Clean Air Act. In this Solution, UV irradiance data acquired from the satellite mission Aura and the OMI Surface UV algorithm will be used to help understand both the efficacy and efficiency of the photocatalytic decomposition process these surfaces facilitate, and their ability to reduce air pollutants. Prediction models that estimate photocatalytic function do not exist. NASA UV irradiance data will enable this capability, so that air quality agencies that are run by state and local officials can develop and implement programs that utilize photocatalysis for urban air pollution control and, enable them to make effective decisions about air pollution protection programs.
NASA Astrophysics Data System (ADS)
Saari, R.; Selin, N. E.
2015-12-01
We examine the effect of state, regional, and national cooperation on the costs and air quality co-benefits of a policy to limit the carbon intensity of existing electricity generation. Electricity generation is a significant source of both greenhouse gases and air pollutant emissions that harm human health. Previous studies have shown that air quality co-benefits can be substantial compared to the costs of limiting carbon emissions in the energy system. The EPA's proposed Clean Power Plan seeks to impose carbon intensity limits for each state, but allows states to cooperate in order to meet combined limits. We explore how such cooperation might produce trade-offs between lower costs, widespread pollution reductions, and local reductions. We employ a new state-level model of the US energy system and economy to examine the costs and emissions as states reduce demand or deploy cleaner generation. We use an advanced air quality impacts modeling system, including SMOKE, CAMx, and BenMAP, to estimate health-related air quality co-benefits and compare these to costs under different levels of cooperation. We draw conclusions about the potential impacts of cooperation on economic welfare at various scales.
Modeling the effects of urban vegetation on air pollution
David J. Nowak; Patrick J. McHale; Myriam Ibarra; Daniel Crane; Jack C. Stevens; Chris J. Luley
1998-01-01
Urban vegetation can directly and indirectly affect local and regional air quality by altering the urban atmospheric environment. Trees affect local air temperature by transpiring water through their leaves, by blocking solar radiation (tree shade), which reduces radiation absorption and heat storage by various anthropogenic surfaces (e.g., buildings, roads), and by...
Air-microfluidics is a field that has the potential to dramatically reduce the size, cost, and power requirements of future air quality sensors. Microfabrication provides a suite of relatively new tools for the development of micro electro mechanical systems (MEMS) that can be ap...
The presentation will describe measurement and modeling activities to study the dispersion of air pollution from transit emissions (highway, rail, port) and evaluation of barriers as a mitigation method.
ERIC Educational Resources Information Center
Odle, R. Duane; Bieghler, Kelley
2001-01-01
Discusses how primary air systems for school climate control can help reduce maintenance costs, possesses a lower initial cost, provides good indoor air quality, and can work for all schools undergoing renovation. Details of one community school's climate control renovation are highlighted. (GR)
Stationary Source Related Documents for State and Local Transportation
State and Local Transporation Resources is an EPA/OTAQ web page for state and local air quality regulators and transportation planners that offers guidance on how to reduce air pollution from cars, diesel trucks, city and school buses
Mexico City Air Quality Research Initiative; Volume 5, Strategic evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-03-01
Members of the Task HI (Strategic Evaluation) team were responsible for the development of a methodology to evaluate policies designed to alleviate air pollution in Mexico City. This methodology utilizes information from various reports that examined ways to reduce pollutant emissions, results from models that calculate the improvement in air quality due to a reduction in pollutant emissions, and the opinions of experts as to the requirements and trade-offs that are involved in developing a program to address the air pollution problem in Mexico City. The methodology combines these data to produce comparisons between different approaches to improving Mexico City`smore » air quality. These comparisons take into account not only objective factors such as the air quality improvement or cost of the different approaches, but also subjective factors such as public acceptance or political attractiveness of the different approaches. The end result of the process is a ranking of the different approaches and, more importantly, the process provides insights into the implications of implementing a particular approach or policy.« less
Low temperature air with high IAQ for dry climates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scofield, C.M.; Des Champs, N.H.
1995-01-01
This article describes how low temperature supply air and air-to-air heat exchangers can furnish 100% outdoor air with reduced peak energy demands. The use of low temperature supply air systems in arid climates greatly simplifies the air-conditioning design. Risks associated with moisture migration and sweating of duct and terminal equipment are reduced. Insulation and vapor barrier design requirements are not nearly as critical as they are in the humid, ambient conditions that exist in the eastern United States. The introduction of outdoor air to meet ASHRAE Standard 62-1989 becomes far less taxing on the mechanical cooling equipment because of themore » lower enthalpy levels of the dry western climate. Energy costs to assure indoor air quality (IAQ) are lower than for more tropical climates. In arid regions, maintaining acceptable indoor relative humidity (RH) levels becomes a major IAQ concern. For the western United States, coupling an air-to-air heat exchanger to direct (adiabatic) evaporative coolers can greatly reduce low temperature supply air refrigeration energy requirements and winter humidification costs while ensuring proper ventilation.« less
Larkin, Andrew; Williams, David E; Kile, Molly L; Baird, William M
2015-06-01
There is considerable evidence that exposure to air pollution is harmful to health. In the U.S., ambient air quality is monitored by Federal and State agencies for regulatory purposes. There are limited options, however, for people to access this data in real-time which hinders an individual's ability to manage their own risks. This paper describes a new software package that models environmental concentrations of fine particulate matter (PM 2.5 ), coarse particulate matter (PM 10 ), and ozone concentrations for the state of Oregon and calculates personal health risks at the smartphone's current location. Predicted air pollution risk levels can be displayed on mobile devices as interactive maps and graphs color-coded to coincide with EPA air quality index (AQI) categories. Users have the option of setting air quality warning levels via color-coded bars and were notified whenever warning levels were exceeded by predicted levels within 10 km. We validated the software using data from participants as well as from simulations which showed that the application was capable of identifying spatial and temporal air quality trends. This unique application provides a potential low-cost technology for reducing personal exposure to air pollution which can improve quality of life particularly for people with health conditions, such as asthma, that make them more susceptible to these hazards.
Weichenthal, S; Mallach, G; Kulka, R; Black, A; Wheeler, A; You, H; St-Jean, M; Kwiatkowski, R; Sharp, D
2013-06-01
Few studies have examined indoor air quality in First Nations communities and its impact on cardiorespiratory health. To address this need, we conducted a crossover study on a First Nations reserve in Manitoba, Canada, including 37 residents in 20 homes. Each home received an electrostatic air filter and a placebo filter for 1 week in random order, and lung function, blood pressure, and endothelial function measures were collected at the beginning and end of each week. Indoor air pollutants were monitored throughout the study period. Indoor PM2.5 decreased substantially during air filter weeks relative to placebo (mean difference: 37 μg/m(3) , 95% CI: 10, 64) but remained approximately five times greater than outdoor concentrations owing to a high prevalence of indoor smoking. On average, air filter use was associated with a 217-ml (95% CI: 23, 410) increase in forced expiratory volume in 1 s, a 7.9-mm Hg (95% CI: -17, 0.82) decrease in systolic blood pressure, and a 4.5-mm Hg (95% CI: -11, 2.4) decrease in diastolic blood pressure. Consistent inverse associations were also observed between indoor PM2.5 and lung function. In general, our findings suggest that reducing indoor PM2.5 may contribute to improved lung function in First Nations communities. Indoor air quality is known to contribute to adverse cardiorespiratory health, but few studies have examined indoor air quality in First Nations communities. Our findings suggest that indoor PM2.5 may contribute to reduced lung function and that portable air filters may help to alleviate these effects by effectively reducing indoor levels of particulate matter. © Her Majesty the Queen in Right of Canada 2012. Reproduced with the permission of the Minister of Health Canada.
Potential impacts of electric vehicles on air quality in Taiwan.
Li, Nan; Chen, Jen-Ping; Tsai, I-Chun; He, Qingyang; Chi, Szu-Yu; Lin, Yi-Chiu; Fu, Tzung-May
2016-10-01
The prospective impacts of electric vehicle (EV) penetration on the air quality in Taiwan were evaluated using an air quality model with the assumption of an ambitious replacement of current light-duty vehicles under different power generation scenarios. With full EV penetration (i.e., the replacement of all light-duty vehicles), CO, VOCs, NOx and PM2.5 emissions in Taiwan from a fleet of 20.6 million vehicles would be reduced by 1500, 165, 33.9 and 7.2Ggyr(-1), respectively, while electric sector NOx and SO2 emissions would be increased by up to 20.3 and 12.9Ggyr(-1), respectively, if the electricity to power EVs were provided by thermal power plants. The net impacts of these emission changes would be to reduce the annual mean surface concentrations of CO, VOCs, NOx and PM2.5 by about 260, 11.3, 3.3ppb and 2.1μgm(-3), respectively, but to increase SO2 by 0.1ppb. Larger reductions tend to occur at time and place of higher ambient concentrations and during high pollution events. Greater benefits would clearly be attained if clean energy sources were fully encouraged. EV penetration would also reduce the mean peak-time surface O3 concentrations by up to 7ppb across Taiwan with the exception of the center of metropolitan Taipei where the concentration increased by <2ppb. Furthermore, full EV penetration would reduce annual days of O3 pollution episodes by ~40% and PM2.5 pollution episodes by 6-10%. Our findings offer important insights into the air quality impacts of EV and can provide useful information for potential mitigation actions. Copyright © 2016 Elsevier B.V. All rights reserved.
Indoor Air Quality in the Metro System in North Taiwan.
Chen, Ying-Yi; Sung, Fung-Chang; Chen, Mei-Lien; Mao, I-Fang; Lu, Chung-Yen
2016-12-02
Indoor air pollution is an increasing health concern, especially in enclosed environments such as underground subway stations because of increased global usage by urban populations. This study measured the indoor air quality of underground platforms at 10 metro stations of the Taipei Rapid Transit system (TRTS) in Taiwan, including humidity, temperature, carbon monoxide (CO), carbon dioxide (CO₂), formaldehyde (HCHO), total volatile organic compounds (TVOCs), ozone (O₃), airborne particulate matter (PM 10 and PM 2.5 ), bacteria and fungi. Results showed that the CO₂, CO and HCHO levels met the stipulated standards as regulated by Taiwan's Indoor Air Quality Management Act (TIAQMA). However, elevated PM 10 and PM 2.5 levels were measured at most stations. TVOCs and bacterial concentrations at some stations measured in summer were higher than the regulated standards stipulated by Taiwan's Environmental Protection Administration. Further studies should be conducted to reduce particulate matters, TVOCs and bacteria in the air of subway stations.
Patel, Disa; Shibata, Tomoyuki; Wilson, James; Maidin, Alimin
2016-02-01
Particulate matter (PM) contributes to an increased risk of respiratory and cardiovascular illnesses, cancer, and preterm birth complications. This project assessed PM exposure in Eastern Indonesia's largest city, where air quality has not been comprehensively monitored. We examined the efficacy of wearing masks as an individual intervention effort to reduce in-transit PM exposures. Handheld particulate counters were used to investigate ambient air quality for spatial analysis, as well as the differences in exposure to PM2.5 and PM10 (μg/m(3)) by different transportation methods [e.g. motorcycle (n=97), pete-pete (n=53), and car (n=55); note: n=1 means 1m(3) of air sample]. Mask efficacy to reduce PM exposure was evaluated [e.g. surgical masks (n=39), bandanas (n=52), and motorcycle masks (n=39)]. A Monte Carlo simulation was used to provide a range of uncertainty in exposure assessment. Overall PM10 levels (91±124 μg/m(3)) were elevated compared to the World Health Organization (WHO)'s 24-hour air quality guideline (50 μg/m(3)). While average PM2.5 levels (9±14 μg/m(3)) were below the WHO's guideline (25 μg/m(3)), measurements up to 139 μg/m(3) were observed. Compared to cars, average motorcycle and pete-pete PM exposures were four and three times higher for PM2.5, and 13 and 10 times higher for PM10, respectively. Only surgical masks were consistent in lowering PM2.5 and PM10 (p<0.01). Young children (≤5) were the most vulnerable age group, and could not reach the safe dosage even when wearing surgical masks. Individual interventions can effectively reduce individual PM exposures; however, policy interventions will be needed to improve the overall air quality and create safer transportation. Copyright © 2015 Elsevier B.V. All rights reserved.
Strength of smoke-free air laws and indoor air quality.
Lee, Kiyoung; Hahn, Ellen J; Robertson, Heather E; Lee, Seongjik; Vogel, Suzann L; Travers, Mark J
2009-04-01
Smoke-free air laws have been implemented in many Kentucky communities to protect the public from the harmful effects of secondhand smoke exposure. The impact of different strengths of smoke-free air laws on indoor air quality was assessed. Indoor air quality in hospitality venues was assessed in seven communities before and after comprehensive smoke-free air laws and in two communities only after partial smoke-free air laws. One community was measured three times: before any smoke-free air law, after the initial partial law, and after the law was strengthened to cover all workplaces and public places with few exemptions. Real-time measurements of particulate matters with 2.5 mum aerodynamic diameter or smaller (PM(2.5)) were obtained. When comprehensive smoke-free air laws were implemented, indoor PM(2.5) concentrations decreased significantly from 161 to 20 microg/m3. In one community that implemented a comprehensive smoke-free law after initially passing a partial law, indoor PM(2.5) concentrations were 304 microg/m3 before the law, 338 microg/m3 after the partial law, and 9 microg/m3 after the comprehensive law. The study clearly demonstrated that partial smoke-free air laws do not improve indoor air quality. A significant linear trend indicated that PM(2.5) levels in the establishments decreased with fewer numbers of burning cigarettes. Only comprehensive smoke-free air laws are effective in reducing indoor air pollution from secondhand tobacco smoke.
Strength of smoke-free air laws and indoor air quality
Hahn, Ellen J.; Robertson, Heather E.; Vogel, Suzann L.; Travers, Mark J.
2009-01-01
Introduction: Smoke-free air laws have been implemented in many Kentucky communities to protect the public from the harmful effects of secondhand smoke exposure. The impact of different strengths of smoke-free air laws on indoor air quality was assessed. Methods: Indoor air quality in hospitality venues was assessed in seven communities before and after comprehensive smoke-free air laws and in two communities only after partial smoke-free air laws. One community was measured three times: before any smoke-free air law, after the initial partial law, and after the law was strengthened to cover all workplaces and public places with few exemptions. Real-time measurements of particulate matters with 2.5 μm aerodynamic diameter or smaller (PM2.5) were obtained. Results: When comprehensive smoke-free air laws were implemented, indoor PM2.5 concentrations decreased significantly from 161 to 20 μg/m3. In one community that implemented a comprehensive smoke-free law after initially passing a partial law, indoor PM2.5 concentrations were 304 μg/m3 before the law, 338 μg/m3 after the partial law, and 9 μg/m3 after the comprehensive law. Discussion: The study clearly demonstrated that partial smoke-free air laws do not improve indoor air quality. A significant linear trend indicated that PM2.5 levels in the establishments decreased with fewer numbers of burning cigarettes. Only comprehensive smoke-free air laws are effective in reducing indoor air pollution from secondhand tobacco smoke. PMID:19346510
Air Quality Impacts of Electrifying Vehicles and Equipment Across the United States.
Nopmongcol, Uarporn; Grant, John; Knipping, Eladio; Alexander, Mark; Schurhoff, Rob; Young, David; Jung, Jaegun; Shah, Tejas; Yarwood, Greg
2017-03-07
U.S.-wide air quality impacts of electrifying vehicles and off-road equipment are estimated for 2030 using 3-D photochemical air quality model and detailed emissions inventories. Electrification reduces tailpipe emissions and emissions from petroleum refining, transport, and storage, but increases electricity demand. The Electrification Case assumes approximately 17% of light duty and 8% of heavy duty vehicle miles traveled and from 17% to 79% of various off-road equipment types considered good candidates for electrification is powered by electricity. The Electrification Case raises electricity demand by 5% over the 2030 Base Case but nitrogen oxide (NO x ) emissions decrease by 209 thousand tons (3%) overall. Emissions of other criteria pollutants also decrease. Air quality benefits of electrification are modest, mostly less than 1 ppb for ozone and 0.5 μg m -3 for fine particulate matter (PM 2.5 ), but widespread. The largest reductions for ozone and PM occur in urban areas due to lower mobile source emissions. Electrifying off-road equipment yields more benefits than electrifying on-road vehicles. Reduced crude oil imports and associated marine vessel emissions cause additional benefits in port cities. Changes in other gas and PM emissions, as well as impacts on acid and nutrient deposition, are discussed.
U.S. Air Quality and Health Benefits from Avoided Climate Change under Greenhouse Gas Mitigation.
Garcia-Menendez, Fernando; Saari, Rebecca K; Monier, Erwan; Selin, Noelle E
2015-07-07
We evaluate the impact of climate change on U.S. air quality and health in 2050 and 2100 using a global modeling framework and integrated economic, climate, and air pollution projections. Three internally consistent socioeconomic scenarios are used to value health benefits of greenhouse gas mitigation policies specifically derived from slowing climate change. Our projections suggest that climate change, exclusive of changes in air pollutant emissions, can significantly impact ozone (O3) and fine particulate matter (PM2.5) pollution across the U.S. and increase associated health effects. Climate policy can substantially reduce these impacts, and climate-related air pollution health benefits alone can offset a significant fraction of mitigation costs. We find that in contrast to cobenefits from reductions to coemitted pollutants, the climate-induced air quality benefits of policy increase with time and are largest between 2050 and 2100. Our projections also suggest that increasing climate policy stringency beyond a certain degree may lead to diminishing returns relative to its cost. However, our results indicate that the air quality impacts of climate change are substantial and should be considered by cost-benefit climate policy analyses.
NASA Astrophysics Data System (ADS)
Kilic, M.; Akyol, S. M.
2012-08-01
The air quality and thermal comfort strongly influenced by the heat and mass transfer take place together in an automobile cabin. In this study, it is aimed to investigate and assess the effects of air intake settings (recirculation and fresh air) on the thermal comfort, air quality satisfaction and energy usage during the cooling period of an automobile cabin. For this purpose, measurements (temperature, air velocity, CO2) were performed at various locations inside the cabin. Furthermore, whole body and local responses of the human subjects were noted while skin temperatures were measured. A mathematical model was arranged in order to estimate CO2 concentration and energy usage inside the vehicle cabin and verified with experimental data. It is shown that CO2 level inside of the cabin can be greater than the threshold value recommended for the driving safety if two and more occupants exist in the car. It is also shown that an advanced climate control system may satisfy the requirements for the air quality and thermal comfort as well as to reduce the energy usage for the cooling of a vehicle cabin.
Low-cost interventions improve indoor air quality and children's health.
Johnson, Linda; Ciaccio, Christina; Barnes, Charles S; Kennedy, Kevin; Forrest, Erika; Gard, Luke C; Pacheco, Freddy; Dowling, Paul; Portnoy, Jay M
2009-01-01
Intervention in the home environment to reduce asthma triggers theoretically improves health outcomes for asthmatic children. Practical benefit from application of these interventions has proven difficult. This single-blind study tested the effectiveness of simple low-cost home interventions in improving health scores of children with asthma. Families with at least one asthmatic child were recruited. Initial health examination, health, and home assessments were conducted and targeted interventions were implemented. Interventions included dehumidification, air filtration, furnace servicing, and high-efficiency furnace filters. When present, gross fungal contamination was remediated. Asthma education was provided along with education in healthy home practices. Follow-up assessments were conducted after 6 months. Health surveys were completed at enrollment and follow-up. This study enrolled 219 children with asthma. Home inspections and interventions were conducted in 181 homes and 83 families completed all phases. Reduction in asthma and allergy-related health scores was shown in follow-up health surveys. Health improvements were significant for cough when heating, ventilation, and air conditioning (HVAC) service and dehumidification were used. Breathing problems were significantly improved for dehumidification, HVAC service, and room air cleaners. Total dust allergen load was reduced for the dehumidification group (p < 0.05). Mold spore counts were reduced one order of magnitude in 25% of the homes. Indoor spore counts adjusted for outdoor spore levels were reduced overall (p < 0.01). Simple low-cost interventions directed to producing cleaner indoor air coupled with healthy home education improve the indoor air quality and health in asthmatic children.
Air Pollution Episodes Associated with Prescribed Burns
NASA Astrophysics Data System (ADS)
Hart, M.; Di Virgilio, G.; Jiang, N.
2017-12-01
Air pollution events associated with wildfires have been associated with extreme health impacts. Prescribed burns are an important tool to reduce the severity of wildfires. However, if undertaken during unfavourable meteorological conditions, they too have the capacity to trigger extreme air pollution events. The Australian state of New South Wales has increased the annual average area treated by prescribed burn activities by 45%, in order to limit wildfire activity. Prescribed burns need to be undertaken during meteorological conditions that allow the fuel load to burn, while still allowing the burn to remain under control. These conditions are similar to those that inhibit atmospheric dispersion, resulting in a fine balance between managing fire risk and managing ambient air pollution. During prescribed burns, the Sydney air shed can experience elevated particulate matter concentrations, especially fine particulates (PM2.5) that occasionally exceed national air quality standards. Using pollutant and meteorological data from sixteen monitoring stations in Sydney we used generalized additive model and CART analyses to profile the meteorological conditions influencing air quality during planned burns. The insights gained from this study will help improve prescribed burn scheduling in order to reduce the pollution risk to the community, while allowing fire agencies to conduct this important work.
ERIC Educational Resources Information Center
Singer, Terry E.; Shonkwiler, Tonja; Birr, David
1998-01-01
Examines how indoor air quality (IAQ) problems can create difficulties for a school both administratively, and legally. Discusses how to identify the IAQ symptoms and the Occupational Safety and Health Administration's industry standards for IAQ, as well as tips for reducing liability risk. (GR)
The State of Ambient Air Quality of Jeddah, Saudi Arabia
NASA Astrophysics Data System (ADS)
Hussain, M. M.; Aburizaiza, O. S.; Khwaja, H. A.; Siddique, A.; Nayebare, S. R.; Zeb, J.; Blake, D. R.
2014-12-01
Ambient air pollution in major cities of Saudi Arabia is a substantial environmental and health concern. A study was undertaken to assess the air quality of Jeddah, Saudi Arabia by the analysis of respirable particulate matter (PM2.5), black carbon (BC), trace metals (Na, Mg, Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Sr, Cd, Sb, and Pb), and water-soluble ions (F-, Cl-, NO3-, SO42-, C2O42-, and NH42+). Sulfur and BC mass concentration ranged 0.99 - 7.39 μg/m3 and 0.70 - 3.09 μg/m3, respectively, while the PM2.5 mass concentration ranged 23 - 186 μg/m3. Maximum BC contribution to PM2.5 was 5.6%. Atmospheric PM2.5 concentrations were well above the 24 h WHO guideline of 20 μg/m3. Air Quality Index (AQI) indicates that there were 8% days of moderate air quality, 28% days of unhealthy air quality for sensitive groups, 55% days of unhealthy air quality, and 9% days of very unhealthy air quality during the study period. Sulfate SO42- dominated the identifiable components. The major contributors to PM2.5 were soil and crustal material; vehicle emissions (black carbon factor); and fuel oil combustion in industries (sulfur factor), according to the Positive Matrix Factorization (PMF). This study highlights the importance of focusing control strategies not only on reducing PM concentration, but also on the reduction of toxic components of the PM, to most effectively protect human health and the environment.
Research and Development of Natural Draft Ultra-Low Emissions Burners for Gas Appliances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Therkelsen, Peter; Cheng, Robert; Sholes, Darren
Combustion systems used in residential and commercial cooking appliances must be robust and easy to use while meeting air quality standards. Current air quality standards for cooking appliances are far greater than other stationary combustion equipment. By developing an advanced low emission combustion system for cooking appliances, the air quality impacts from these devices can be reduced. This project adapted the Lawrence Berkeley National Laboratory (LBNL) Ring-Stabilizer Burner combustion technology for residential and commercial natural gas fired cooking appliances (such as ovens, ranges, and cooktops). LBNL originally developed the Ring-Stabilizer Burner for a NASA funded microgravity experiment. This natural draftmore » combustion technology reduces NOx emissions significantly below current SCAQMD emissions standards without post combustion treatment. Additionally, the Ring-Stabilizer Burner technology does not require the assistance of a blower to achieve an ultra-low emission lean premix flame. The research team evaluated the Ring-Stabilizer Burner and fabricated the most promising designs based on their emissions and turndown.« less
A self-consistent method to assess air quality co-benefits from U.S. climate policies.
Saari, Rebecca K; Selin, Noelle E; Rausch, Sebastian; Thompson, Tammy M
2015-01-01
Air quality co-benefits can potentially reduce the costs of greenhouse gas mitigation. However, whereas many studies of the cost of greenhouse gas mitigation model the macroeconomic welfare impacts of mitigation, most studies of air quality co-benefits do not. We employ a U.S. computable general equilibrium economic model previously linked to an air quality modeling system and enhance it to represent the economy-wide welfare impacts of fine particulate matter. We present a first application of this method to explore the efficiency and distributional implications of a Clean Energy Standard (CES) and a Cap and Trade (CAT) program that both reduce CO₂emissions by 10% in 2030 relative to 2006. We find that co-benefits from fine particulate matter reduction (median $6; $2 to $10/tCO₂) completely offset policy costs by 110% (40% to 190%), transforming the net welfare impact of the CAT into a gain of $1 (-$5 to $7) billion 2005$. For the CES, the corresponding co-benefit (median $8; $3 to $14/tCO₂) is a smaller fraction (median 5%; 2% to 9%) of its higher policy cost. The eastern United States garners 78% and 71% of co-benefits for the CES and CAT, respectively. By representing the effects of pollution-related morbidities and mortalities as an impact to labor and the demand for health services, we find that the welfare impact per unit of reduced pollution varies by region. These interregional differences can enhance the preference of some regions, such as Texas, for a CAT over a CES, or switch the calculation of which policy yields higher co-benefits, compared with an approach that uses one valuation for all regions. This framework could be applied to quantify consistent air quality impacts of other pricing instruments, subnational trading programs, or green tax swaps.
Vicente, A B; Sanfeliu, T; Jordan, M M
2012-10-15
Environmental pollution control is one of the most important goals in pollution risk assessment today. In this sense, modern and precise tools that allow scientists to evaluate, quantify and predict air pollution are of particular interest. Monitoring atmospheric particulate matter is a challenge faced by the European Union. Specific rules on this subject are being developed (Directive 2004/107/EC, Directive 2008/50/EC) in order to reduce the potential adverse effects on human health caused by air pollution. Air pollution has two sources: natural and anthropogenic. Contributions from natural sources can be assessed but cannot be controlled, while emissions from anthropogenic sources can be controlled; monitoring to reduce this latter type of pollution should therefore be carried out. In this paper, we describe an air quality evaluation in terms of levels of atmospheric particles (PM10), as outlined by European Union legislation, carried out in an industrialised Spanish coastal area over a five-year period with the purpose of comparing these values with those of other areas in the Mediterranean Basin with different weather conditions from North of Europe. The study area is in the province of Castellón. This province is a strategic area in the frame work of European Union (EU) pollution control. Approximately 80% of European ceramic tiles and ceramic frit manufacturers are concentrated in two areas, forming the so-called "ceramics clusters"; ones in Modena (Italy) and the other in Castellón. In this kind of areas, there are a lot of air pollutants from this industry then it is difficult to fulfill de European limits of PM10 so it is necessary to control the air quality in them. The seasonal differences in the number of days in which pollutant level limits were exceeded were evaluated and the sources of contamination were identified. Air quality indexes for each pollutant have been established to determine easily and clearly the quality of air breathed. Furthermore, in accordance with Directive 2008/50/EC, an Air Quality Plan is proposed to protect human health, and the environment as a whole, in the study area. General and specific corrective measures of main emission sources are provided. A strategy for air pollution management is thus presented. Copyright © 2012 Elsevier Ltd. All rights reserved.
The paper presents the Community Line Source (C-LINE) modeling system that estimates toxic air pollutant (air toxics) concentration gradients within 500 meters of busy roadways for community-sized areas on the order of 100 km2. C-LINE accesses publicly available datasets with nat...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-11
...) and Cross State Air Pollution Rule (CSAPR or the Transport Rule) On May 12, 2005, EPA published CAIR...) for the purpose of reducing SO 2 and NO X emissions. The monitoring data used to demonstrate the Area... Source Review (NSR) permit programs; Provisions for air pollution modeling; and Provisions for public and...
Local-Scale Air Quality Modeling in Support of Human Health and Exposure Research (Invited)
NASA Astrophysics Data System (ADS)
Isakov, V.
2010-12-01
Spatially- and temporally-sparse information on air quality is a key concern for air-pollution-related environmental health studies. Monitor networks are sparse in both space and time, are costly to maintain, and are often designed purposely to avoid detecting highly localized sources. Recent studies have shown that more narrowly defining the geographic domain of the study populations and improvements in the measured/estimated ambient concentrations can lead to stronger associations between air pollution and hospital admissions and mortality records. Traditionally, ambient air quality measurements have been used as a primary input to support human health and exposure research. However, there is increasing evidence that the current ambient monitoring network is not capturing sharp gradients in exposure due to the presence of high concentration levels near, for example, major roadways. Many air pollutants exhibit large concentration gradients near large emitters such as major roadways, factories, ports, etc. To overcome these limitations, researchers are now beginning to use air quality models to support air pollution exposure and health studies. There are many advantages to using air quality models over traditional approaches based on existing ambient measurements alone. First, models can provide spatially- and temporally-resolved concentrations as direct input to exposure and health studies and thus better defining the concentration levels for the population in the geographic domain. Air quality models have a long history of use in air pollution regulations, and supported by regulatory agencies and a large user community. Also, models can provide bidirectional linkages between sources of emissions and ambient concentrations, thus allowing exploration of various mitigation strategies to reduce risk to exposure. In order to provide best estimates of air concentrations to support human health and exposure studies, model estimates should consider local-scale features, regional-scale transport, and photochemical transformations. Since these needs are currently not met by a single model, hybrid air quality modeling has recently been developed to combine these capabilities. In this paper, we present the results of two studies where we applied the hybrid modeling approach to provide spatial and temporal details in air quality concentrations to support exposure and health studies: a) an urban-scale air quality accountability study involving near-source exposures to multiple ambient air pollutants, and b) an urban-scale epidemiological study involving human health data based on emergency department visits.
NASA Astrophysics Data System (ADS)
Beig, Gufran; Chate, Dilip M.; Ghude, Sachin. D.; Mahajan, A. S.; Srinivas, R.; Ali, K.; Sahu, S. K.; Parkhi, N.; Surendran, D.; Trimbake, H. R.
2013-12-01
In 2010, the XIX Commonwealth Games (CWG-2010) were held in India for the first time at Delhi and involved 71 commonwealth nations and dependencies with more than 6000 athletes participating in 272 events. This was the largest international multi-sport event to be staged in India and strict emission controls were imposed during the games in order to ensure improved air quality for the participating athletes as a significant portion of the population in Delhi is regularly exposed to elevated levels of pollution. The air quality control measures ranged from vehicular and traffic controls to relocation of factories and reduction of power plant emissions. In order to understand the effects of these policy induced control measures, a network of air quality and weather monitoring stations was set-up across different areas in Delhi under the Government of India's System of Air quality Forecasting And Research (SAFAR) project. Simultaneous measurements of aerosols, reactive trace gases (e.g. NOx, O3, CO) and meteorological parameters were made before, during and after CWG-2010. Contrary to expectations, the emission controls implemented were not sufficient to reduce the pollutants, instead in some cases, causing an increase. The measured pollutants regularly exceeded the National Ambient Air Quality limits over the games period. The reasons for this increase are attributed to an underestimation of the required control measures, which resulted in inadequate planning. The results indicate that any future air quality control measures need to be well planned and strictly imposed in order to improve the air quality in Delhi, which affects a large population and is deteriorating rapidly. Thus, the presence of systematic high resolution data and realistic emission inventories through networks such as SAFAR will be directly useful for the future.
NASA Astrophysics Data System (ADS)
Tai, A. P. K.
2016-12-01
Surface ozone is an air pollutant of significant concerns due to its harmful effects on human health, vegetation and crop productivity. Chronic ozone exposure is shown to reduce photosynthesis and interfere with gas exchange in plants, thereby influencing surface energy balance and biogeochemical fluxes with important ramifications for climate and atmospheric composition, including possible feedbacks onto ozone itself that are not well understood. Ozone damage on crops has been well documented, but a mechanistic understanding is not well established. Here we present several results pertaining to the effects of ozone-vegetation coupling on air quality, ecosystems and agriculture. Using the Community Earth System Model (CESM), we find that inclusion of ozone damage on plants reduces the global land carbon sink by up to 5%, while simulated ozone is enhanced by up to 6 ppbv North America, Europe and East Asia. This strong positive feedback on ozone air quality via ozone-vegetation coupling arises mainly from reduced stomatal conductance, which induces two feedback pathways: 1) reduced dry deposition and ozone uptake; and 2) reduced evapotranspiration that enhances vegetation temperature and thus isoprene emission. Using the same ozone-vegetation scheme in a crop model within CESM, we further examine the impacts of historical ozone exposure on global crop production. We contrast our model results with a separate statistical analysis designed to characterize the spatial variability of crop-ozone-temperature relationships and account for the confounding effect of ozone-temperature covariation, using multidecadal global datasets of crop yields, agroclimatic variables and ozone exposures. We find that several crops (especially C4 crops such as maize) exhibit stronger sensitivities to ozone than found by field studies or in CESM simulations. We also find a strong anticorrelation between crop sensitivities and average ozone levels, reflecting biological adaptive ozone resistance that is not accounted for in current generation of crop models. Our results show that a more complete understanding of ozone-vegetation interactions is necessary to derive more realistic future projections of climate, air quality, ecosystem functions and food security.
Assessment of the emissions and air quality impacts of biomass and biogas use in California.
Carreras-Sospedra, Marc; Williams, Robert; Dabdub, Donald
2016-02-01
It is estimated that there is sufficient in-state "technically" recoverable biomass to support nearly 4000 MW of bioelectricity generation capacity. This study assesses the emissions of greenhouse gases and air pollutants and resulting air quality impacts of new and existing bioenergy capacity throughout the state of California, focusing on feedstocks and advanced technologies utilizing biomass resources predominant in each region. The options for bioresources include the production of bioelectricity and renewable natural gas (NG). Emissions of criteria pollutants and greenhouse gases are quantified for a set of scenarios that span the emission factors for power generation and the use of renewable natural gas for vehicle fueling. Emissions are input to the Community Multiscale Air Quality (CMAQ) model to predict regional and statewide temporal air quality impacts from the biopower scenarios. With current technology and at the emission levels of current installations, maximum bioelectricity production could increase nitrogen oxide (NOx) emissions by 10% in 2020, which would cause increases in ozone and particulate matter concentrations in large areas of California. Technology upgrades would achieve the lowest criteria pollutant emissions. Conversion of biomass to compressed NG (CNG) for vehicles would achieve comparable emission reductions of criteria pollutants and minimize emissions of greenhouse gases (GHG). Air quality modeling of biomass scenarios suggest that applying technological changes and emission controls would minimize the air quality impacts of bioelectricity generation. And a shift from bioelectricity production to CNG production for vehicles would reduce air quality impacts further. From a co-benefits standpoint, CNG production for vehicles appears to provide the best benefits in terms of GHG emissions and air quality. This investigation provides a consistent analysis of air quality impacts and greenhouse gas emissions for scenarios examining increased biomass use. Further work involving economic assessment, seasonal or annual emissions and air quality modeling, and potential exposure analysis would help inform policy makers and industry with respect to further development and direction of biomass policy and bioenergy technology alternatives needed to meet energy and environmental goals in California.
Castell, Nuria; Schneider, Philipp; Grossberndt, Sonja; Fredriksen, Mirjam F; Sousa-Santos, Gabriela; Vogt, Mathias; Bartonova, Alena
2018-08-01
In Norway, children in kindergartens spend significant time outdoors under all weather conditions, and there is thus a natural concern about the quality of outdoor air. It is well known that air pollution is associated with a wide variety of adverse health impacts for children, with greater impact on children with asthma. Especially during winter and spring, kindergartens in Oslo that are situated close to streets with busy traffic, or in areas where wood burning is used for house heating, can experience many days with bad air quality. During these periods, updated information on air quality levels can help the kindergarten teachers to plan appropriate outdoor activities and thus protect children's health. We have installed 17 low-cost air quality nodes in kindergartens in Oslo. These nodes are smaller, cheaper and less complex to use than traditional equipment. Performance evaluation shows that while they are less accurate and suffer from higher uncertainty than reference equipment, they still can provide reliable coarse information about local pollution. The main challenge when using this technology is that calibration parameters might change with time depending on the atmospheric conditions. Thus, even if the sensors are calibrated a priori, once deployed, and especially if they are deployed for a long time, it is not possible to determine if a node is over- or under-estimating the concentration levels. To enhance the data from the sensors, we employed a data fusion technique that allows generating a detailed air quality map merging the data from the sensors and the data from an urban model, thus being able to offer air quality information to any location within Oslo. We arranged a focus group with the participation of local administration, kindergarten staff and parents to understand their opinion and needs related to the air quality information that was provided to the participant kindergartens. They expressed concern about the data quality but agree that having updated information on the air quality in the surroundings of kindergartens can help them to reduce children's exposure to air pollution. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Implementation of marine halogen chemistry into the Community Multiscale Air Quality (CMAQ) model
NASA Astrophysics Data System (ADS)
Gantt, B.; Sarwar, G.
2017-12-01
In two recent studies (Sarwar et al, 2015 and Gantt et al., 2017), the impact of marine halogen (bromine and iodine) chemistry on air quality has been evaluated using the Community Multiscale Air Quality (CMAQ) model. We found that marine halogen chemistry not only has the expected effect of reducing marine boundary layer ozone concentrations, but also reduces ozone in the free troposphere and inland from the coast. In Sarwar et al. (2015), the impact of the halogen chemistry without and with photochemical reactions of higher iodine oxides over the Northern Hemisphere was examined using the coarse horizontal grids of a hemispheric domain. Halogen chemistry without and with the photochemical reactions of higher iodine oxides reduces ozone over seawater by 15% and 48%, respectively. Using the results of the chemistry without the photochemical reactions of higher iodine oxides, we developed a simple first order ozone loss rate and implemented it into the public version of CMAQv52. In Gantt et al. (2017), the impact of the simple first order loss rate as well as the full halogen chemistry without photochemical reactions of higher iodine oxides over the continental United States was examined using finer horizontal grids of the regional domain and boundary conditions from the hemispheric domain with and without marine halogen chemistry. The boundary conditions obtained with the halogen chemistry as well as the simple halogen chemistry reduces ozone along the coast where CMAQ typically overpredicts the concentrations. Development of halogen chemistry in CMAQ has continued with the implementation of several heterogeneous reactions of bromine and iodine species, revised reactions of higher iodine oxides, and a refined marine halogen emissions inventory. Our latest version of halogen chemistry with photochemical reactions of higher iodine oxides reduces ozone by 23% over the seawater. This presentation will discuss the previous and ongoing implementation of revised halogen chemistry in CMAQ and its impacts on air quality.
Air Quality and Heart Health: An Emerging Topic for Heart ...
Air Quality and Heart Health: An Emerging Topic for Heart Month: Ambient air particle pollution increases short- and long-term cardiovascular morbidity and mortality. Older-people, those with pre-existing heart disease and lung disease and diabetes are at higher risk. Mechanisms are under investigation and are likely related to oxidative stress, inflammation and effects on autonomic control. Improvements in air pollution levels reduce health impacts and increase life expectancy. Reductions of short-term exposure in those at highest risk are predicted to mitigate adverse health effects. EPA regularly evaluates the standards, health risks and issues improved standards when needed. Public health action is needed along with EPA standards to reduce the public health burden of short- and long-term adverse health effects of air pollution. Health risks remain and need to be addressed through integrated efforts of public health, health care, environmental health, individuals and communities. Presented at Webinar for the National Association of Clean Air Agencies, February 2, 2017, Chapel Hill, NC- This webinar provided an update of environmental health information related to the effects of air pollution and heart and blood vessel disease. Such information is critically important for the Clean Air Agencies to understand as it provides the justification of their actions.
Effectiveness of green infrastructure for improvement of air quality in urban street canyons.
Pugh, Thomas A M; Mackenzie, A Robert; Whyatt, J Duncan; Hewitt, C Nicholas
2012-07-17
Street-level concentrations of nitrogen dioxide (NO(2)) and particulate matter (PM) exceed public health standards in many cities, causing increased mortality and morbidity. Concentrations can be reduced by controlling emissions, increasing dispersion, or increasing deposition rates, but little attention has been paid to the latter as a pollution control method. Both NO(2) and PM are deposited onto surfaces at rates that vary according to the nature of the surface; deposition rates to vegetation are much higher than those to hard, built surfaces. Previously, city-scale studies have suggested that deposition to vegetation can make a very modest improvement (<5%) to urban air quality. However, few studies take full account of the interplay between urban form and vegetation, specifically the enhanced residence time of air in street canyons. This study shows that increasing deposition by the planting of vegetation in street canyons can reduce street-level concentrations in those canyons by as much as 40% for NO(2) and 60% for PM. Substantial street-level air quality improvements can be gained through action at the scale of a single street canyon or across city-sized areas of canyons. Moreover, vegetation will continue to offer benefits in the reduction of pollution even if the traffic source is removed from city centers. Thus, judicious use of vegetation can create an efficient urban pollutant filter, yielding rapid and sustained improvements in street-level air quality in dense urban areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abel, David; Holloway, Tracey; Harkey, Monica
We evaluate how fine particulate matter (PM2.5) and precursor emissions could be reduced if 17% of electricity generation was replaced with solar photovoltaics (PV) in the Eastern United States. Electricity generation is simulated using GridView, then used to scale electricity-sector emissions of sulfur dioxide (SO2) and nitrogen oxides (NOX) from an existing gridded inventory of air emissions. This approach offers a novel method to leverage advanced electricity simulations with state-of-the-art emissions inventories, without necessitating recalculation of emissions for each facility. The baseline and perturbed emissions are input to the Community Multiscale Air Quality Model (CMAQ version 4.7.1) for a fullmore » accounting of time- and space-varying air quality changes associated with the 17% PV scenario. These results offer a high-value opportunity to evaluate the reduced-form AVoided Emissions and geneRation Tool (AVERT), while using AVERT to test the sensitivity of results to changing base-years and levels of solar integration. We find that average NOX and SO2 emissions across the region decrease 20% and 15%, respectively. PM2.5 concentrations decreased on average 4.7% across the Eastern U.S., with nitrate (NO3-) PM2.5 decreasing 3.7% and sulfate (SO42-) PM2.5 decreasing 9.1%. In the five largest cities in the region, we find that the most polluted days show the most significant PM2.5 decrease under the 17% PV generation scenario, and that the greatest benefits are accrued to cities in or near the Ohio River Valley. We find summer health benefits from reduced PM2.5 exposure estimated as 1424 avoided premature deaths (95% Confidence Interval (CI): 284 deaths, 2 732 deaths) or a health savings of $13.1 billion (95% CI: $0.6 billion, $43.9 billion) These results highlight the potential for renewable energy as a tool for air quality managers to support current and future health-based air quality regulations.« less
Modeling of Particulate Emissions
2011-12-01
Concern Local Air Quality - A Continuing Concern Ground Level Troposphere Ozone Layer Depletion • H2O Ozone Depletion (ice formation) 5 Modeling... Ozone & Smog Formation Health Effects Local Air Quality 33,000-58,000 ft• NOx •Traffic Growth • CO2* • NOx O3* • NOx Reduces CH4 • H2O Vapor...Particulates • SOx Cloud Formation Global Warming * - Greenhouse Gases Ozone Layer Depletion - Not an Immediate Concern Global Warming - An Emerging
Advanced air distribution: improving health and comfort while reducing energy use.
Melikov, A K
2016-02-01
Indoor environment affects the health, comfort, and performance of building occupants. The energy used for heating, cooling, ventilating, and air conditioning of buildings is substantial. Ventilation based on total volume air distribution in spaces is not always an efficient way to provide high-quality indoor environments at the same time as low-energy consumption. Advanced air distribution, designed to supply clean air where, when, and as much as needed, makes it possible to efficiently achieve thermal comfort, control exposure to contaminants, provide high-quality air for breathing and minimizing the risk of airborne cross-infection while reducing energy use. This study justifies the need for improving the present air distribution design in occupied spaces, and in general the need for a paradigm shift from the design of collective environments to the design of individually controlled environments. The focus is on advanced air distribution in spaces, its guiding principles and its advantages and disadvantages. Examples of advanced air distribution solutions in spaces for different use, such as offices, hospital rooms, vehicle compartments, are presented. The potential of advanced air distribution, and individually controlled macro-environment in general, for achieving shared values, that is, improved health, comfort, and performance, energy saving, reduction of healthcare costs and improved well-being is demonstrated. Performance criteria are defined and further research in the field is outlined. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Protecting Public Health: Plug-In Electric Vehicle Charging and the Healthcare Industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryder, Carrie; Lommele, Stephen
In 2014, the U.S. transportation sector consumed more than 13 million barrels of petroleum a day, approximately 70% of all domestic petroleum consumption. Internal combustion engine vehicles are major sources of greenhouse gases (GHGs), smog-forming compounds, particulate matter, and other air pollutants. Widespread use of alternative fuels and advanced vehicles, including plug-in electric vehicles (PEVs), can reduce our national dependence on petroleum and decrease the emissions that impact our air quality and public health. Healthcare organizations are major employers and community leaders that are committed to public well-being and are often early adopters of employer best practices. A growing numbermore » of hospitals are offering PEV charging stations for employees to help promote driving electric vehicles, reduce their carbon footprint, and improve local air quality.« less
Review on urban vegetation and particle air pollution - Deposition and dispersion
NASA Astrophysics Data System (ADS)
Janhäll, Sara
2015-03-01
Urban vegetation affects air quality through influencing pollutant deposition and dispersion. Both processes are described by many existing models and experiments, on-site and in wind tunnels, focussing e.g. on urban street canyons and crossings or vegetation barriers adjacent to traffic sources. There is an urgent need for well-structured experimental data, including detailed empirical descriptions of parameters that are not the explicit focus of the study. This review revealed that design and choice of urban vegetation is crucial when using vegetation as an ecosystem service for air quality improvements. The reduced mixing in trafficked street canyons on adding large trees increases local air pollution levels, while low vegetation close to sources can improve air quality by increasing deposition. Filtration vegetation barriers have to be dense enough to offer large deposition surface area and porous enough to allow penetration, instead of deflection of the air stream above the barrier. The choice between tall or short and dense or sparse vegetation determines the effect on air pollution from different sources and different particle sizes.
Jaojaruek, Kitipong; Jarungthammachote, Sompop; Gratuito, Maria Kathrina B; Wongsuwan, Hataitep; Homhual, Suwan
2011-04-01
This study conducted experiments on three different downdraft gasification approaches: single stage, conventional two-stage, and an innovative two-stage air and premixed air/gas supply approach. The innovative two-stage approach has two nozzle locations, one for air supply at combustion zone and the other located at the pyrolysis zone for supplying the premixed gas (air and producer gas). The producer gas is partially bypassed to mix with air and supplied to burn at the pyrolysis zone. The result shows that producer gas quality generated by the innovative two-stage approach improved as compared to conventional two-stage. The higher heating value (HHV) increased from 5.4 to 6.5 MJ/Nm(3). Tar content in producer gas reduced to less than 45 mg/Nm(3). With this approach, gas can be fed directly to an internal combustion engine. Furthermore, the gasification thermal efficiency also improved by approximately 14%. The approach gave double benefits on gas qualities and energy savings. Copyright © 2010 Elsevier Ltd. All rights reserved.
Experiences of a Rail Yard Community: Life Is Hard
Spencer-Hwang, Rhonda; Montgomery, Susanne; Dougherty, Molly; Valladares, Johanny; Rangel, Sany; Gleason, Peter; Soret, Sam
2015-01-01
Community groups and local air pollution control agencies have identified the San Bernardino Railyard (SBR) as a significant public health and environmental justice issue. In response, the authors conducted a comprehensive study with community members living in close proximity to the rail yard. The purpose of this article is to share the community's perceptions about the rail yard and ideas on sustainable change. A qualitative study using key informant interviews and focus group discussions was conducted and resulted in four emerging themes. Themes emerged as follows: “health as an unattainable value,” “air quality challenges,” “rail yard pros and cons,” and “violence and unemployment ripple effect.” Community participants expressed concern for poor air quality, but other challenges took priority. The authors' findings suggest that future mitigation work to reduce air pollution exposure should not only focus on reducing risk from air pollution but address significant cooccurring community challenges. A “Health in All Policies” approach is warranted in addressing impacted communities in close proximity to the goods movement industry. PMID:25226779
Tang, Chin-Sheng; Wan, Gwo-Hwa
2013-01-01
To prevent surgical site infection (SSI), the airborne microbial concentration in operating theaters must be reduced. The air quality in operating theaters and nearby areas is also important to healthcare workers. Therefore, this study assessed air quality in the post-operative recovery room, locations surrounding the operating theater area, and operating theaters in a medical center. Temperature, relative humidity (RH), and carbon dioxide (CO2), suspended particulate matter (PM), and bacterial concentrations were monitored weekly over one year. Measurement results reveal clear differences in air quality in different operating theater areas. The post-operative recovery room had significantly higher CO2 and bacterial concentrations than other locations. Bacillus spp., Micrococcus spp., and Staphylococcus spp. bacteria often existed in the operating theater area. Furthermore, Acinetobacter spp. was the main pathogen in the post-operative recovery room (18%) and traumatic surgery room (8%). The mixed effect models reveal a strong correlation between number of people in a space and high CO2 concentration after adjusting for sampling locations. In conclusion, air quality in the post-operative recovery room and operating theaters warrants attention, and merits long-term surveillance to protect both surgical patients and healthcare workers.
Plants for Sustainable Improvement of Indoor Air Quality.
Brilli, Federico; Fares, Silvano; Ghirardo, Andrea; de Visser, Pieter; Calatayud, Vicent; Muñoz, Amalia; Annesi-Maesano, Isabella; Sebastiani, Federico; Alivernini, Alessandro; Varriale, Vincenzo; Menghini, Flavio
2018-06-01
Indoor pollution poses a serious threat to human health. Plants represent a sustainable but underexploited solution to enhance indoor air quality. However, the current selection of plants suitable for indoors fails to consider the physiological processes and mechanisms involved in phytoremediation. Therefore, the capacity of plants to remove indoor air pollutants through stomatal uptake (absorption) and non-stomatal deposition (adsorption) remains largely unknown. Moreover, the effects of the indoor plant-associated microbiome still need to be fully analyzed. Here, we discuss how a combination of the enhanced phytoremediation capacity of plants together with cutting-edge air-cleaning and smart sensor technologies can improve indoor life while reducing energy consumption. Copyright © 2018 Elsevier Ltd. All rights reserved.
2006-09-29
originating in Los Angeles. The long ridge of ozone in the north east part of Figure 14a is due to polluted air from San Diego area that has undergone...Further north of this small ridge (2 ppbv), we find a decrease in O3 of up to 6ppb (i.e., without DoD emissions, O3 is reduced by 6ppb). This period is...ships on urban air quality. 35 6.0 References Alexis, A., P. Gaffney , C. Garcia, M. Nystrom, and R. Rood (2000), The 1999 California Almanac of
Yang, B; Sekhar, S C; Melikov, A K
2010-08-01
The benefits of thermal comfort and indoor air quality with personalized ventilation (PV) systems have been demonstrated in recent studies. One of the barriers for wide spread acceptance by architects and HVAC designers has been attributed to challenges and constraints faced in the integration of PV systems with the work station. A newly developed ceiling-mounted PV system addresses these challenges and provides a practical solution while retaining much of the apparent benefits of PV systems. Assessments of thermal environment, air movement, and air quality for ceiling-mounted PV system were performed with tropically acclimatized subjects in a Field Environmental Chamber. Thirty-two subjects performed normal office work and could choose to be exposed to four different PV airflow rates (4, 8, 12, and 16 L/s), thus offering themselves a reasonable degree of individual control. Ambient temperatures of 26 and 23.5 degrees C and PV air temperatures of 26, 23.5, and 21 degrees C were employed. The local and whole body thermal sensations were reduced when PV airflow rates were increased. Inhaled air temperature was perceived cooler and perceived air quality and air freshness improved when PV airflow rate was increased or temperature was reduced. The newly developed ceiling-mounted PV system offers a practical solution to the integration of PV air terminal devices (ATDs) in the vicinity of the workstation. By remotely locating the PV ATDs on the ceiling directly above the occupants and under their control, the conditioned outdoor air is now provided to the occupants through the downward momentum of the air. A secondary air-conditioning and air distribution system offers additional cooling in the room and maintains a higher ambient temperature, thus offering significant benefits in conserving energy. The results of this study provide designers and consultants with needed knowledge for design of PV systems.
USDA-ARS?s Scientific Manuscript database
Managing animal production systems to reduce environmental impacts is most difficult for air quality. Water and soil quality responses to animal production can be managed through planning and understanding the risk of spills, overapplication, or improper use of manure. Escape of gaseous or particula...
Air pollution and vulnerability: solving the puzzle of prioritization.
Wright, Caradee Y; Diab, Roseanne
2011-01-01
While ambient air pollution levels in excess of prescribed health standards are generally unacceptable, the exceedance is even more serious in areas where people reside. Vulnerability caused by poverty, disease, lack of education, and poor living conditions exacerbates the problem. Air quality management plans identify prioritized strategies for improved air quality independent of consideration of vulnerability. A population exposure and vulnerability risk prioritization framework comprising five themes (air pollution sources; air pollution levels; air pollution potential; community awareness, observations, perceptions, and actions; and vulnerability factors) was proposed and applied to the eThekwini Municipality (Durban, South Africa). Data were scored according to predetermined risk threshold values to ascertain at-risk communities. While those urban wards located in a known air pollution hotspot had the highest air pollution levels, a periurban ward with moderate exposure levels was most vulnerable. This framework will prove invaluable for the development of focused interventions to reduce vulnerability and air pollution-associated adverse health impacts.
Cold air systems: Sleeping giant
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacCracken, C.D.
1994-04-01
This article describes how cold air systems help owners increase the profits from their buildings by reducing electric costs and improving indoor air quality through lower relative humidity levels. Cold air distribution involves energy savings, cost savings, space savings, greater comfort, cleaner air, thermal storage, tighter ducting, coil redesign, lower relative humidities, retrofitting, and improved indoor air quality (IAQ). It opens a door for architects, engineers, owners, builders, environmentalists, retrofitters, designers, occupants, and manufacturers. Three things have held up cold air's usage: multiple fan-powered boxes that ate up the energy savings of primary fans. Cold air room diffusers that providedmore » inadequate comfort. Condensation from ducts, boxes, and diffusers. Such problems have been largely eliminated through research and development by utilities and manufacturers. New cold air diffusers no longer need fan powered boxes. It has also been found that condensation is not a concern so long as the ducts are located in air conditioned space, such as drop ceilings or central risers, where relative humidity falls quickly during morning startup.« less
Modeling the impact of solid noise barriers on near road air quality
Studies based on field measurements, wind tunnel experiments, and controlled tracer gas releases indicate that solid, roadside noise barriers can lead to reductions in downwind near-road air pollutant concentrations. A tracer gas study showed that a solid barrier reduced pollutan...
Clean the Air and Breathe Easier.
ERIC Educational Resources Information Center
Guevin, John
1997-01-01
Failure to prevent indoor air quality problems or act promptly can result in increased chances for long- or short-term health problems for staff and students, reduced productivity, faster plant deterioration, and strained school-community relations. Basic pollution control measures include source management, local exhausts, ventilation, exposure…
AIRBORNE PARTICLE SIZES AND SOURCES FOUND IN INDOOR AIR
As concern about indoor air quality (IAQ) has grown in recent years, understanding indoor aerosols has become increasingly important so that control techniques may be implemented to reduce damaging health effects and soiling problems. This paper begins with a brief look at the me...
Economics of oversized cyclones in the cotton ginning industry
USDA-ARS?s Scientific Manuscript database
Cost of reducing pollution to meet increasingly stringent air quality standards particularly for the U.S. cotton ginning industry is rising overtime. Most industry participants use cyclones to control air pollutants. These cyclones have no moving parts and their initial investment costs are relative...
Modeling green infrastructure land use changes on future air ...
Green infrastructure can be a cost-effective approach for reducing stormwater runoff and improving water quality as a result, but it could also bring co-benefits for air quality: less impervious surfaces and more vegetation can decrease the urban heat island effect, and also result in more removal of air pollutants via dry deposition with increased vegetative surfaces. Cooler surface temperatures can also decrease ozone formation through the increases of NOx titration; however, cooler surface temperatures also lower the height of the boundary layer resulting in more concentrated pollutants within the same volume of air, especially for primary emitted pollutants (e.g. NOx, CO, primary particulate matter). To better understand how green infrastructure impacts air quality, the interactions between all of these processes must be considered collectively. In this study, we use a comprehensive coupled meteorology-air quality model (WRF-CMAQ) to simulate the influence of planned land use changes that include green infrastructure in Kansas City (KC) on regional meteorology and air quality. Current and future land use data was provided by the Mid-America Regional Council for 2012 and 2040 (projected land use due to population growth, city planning and green infrastructure implementation). These land use datasets were incorporated into the WRF-CMAQ modeling system allowing the modeling system to propagate the changes in vegetation and impervious surface coverage on meteoro
Larkin, Andrew; Williams, David E.; Kile, Molly L.; Baird, William M.
2014-01-01
Background There is considerable evidence that exposure to air pollution is harmful to health. In the U.S., ambient air quality is monitored by Federal and State agencies for regulatory purposes. There are limited options, however, for people to access this data in real-time which hinders an individual's ability to manage their own risks. This paper describes a new software package that models environmental concentrations of fine particulate matter (PM2.5), coarse particulate matter (PM10), and ozone concentrations for the state of Oregon and calculates personal health risks at the smartphone's current location. Predicted air pollution risk levels can be displayed on mobile devices as interactive maps and graphs color-coded to coincide with EPA air quality index (AQI) categories. Users have the option of setting air quality warning levels via color-coded bars and were notified whenever warning levels were exceeded by predicted levels within 10 km. We validated the software using data from participants as well as from simulations which showed that the application was capable of identifying spatial and temporal air quality trends. This unique application provides a potential low-cost technology for reducing personal exposure to air pollution which can improve quality of life particularly for people with health conditions, such as asthma, that make them more susceptible to these hazards. PMID:26146409
Jazcilevich, Arón D; García, Agustín R; Ruiz-Suárez, Luis-Gerardo
2003-10-01
The dry lakebed of what once was the lake of Texcoco is the location selected for the New International Airport of Mexico City. This project will generate an important urban development near the airport with regional implications on air quality. Using a prognostic air quality model, the consequences of photochemical air pollution in the metropolitan area of Mexico City resulting from three possible coverings for the areas of the lakebed that are not occupied by the runway and terminal building are investigated. These coverings are desert, grassland, and water and occupy an area of 63 km2. This study is based on a representative high pollution episode. In addition to reducing the emission of primary natural particles, the water covering generates a land-water breeze capable of maintaining enough ventilation to reduce pollutant concentrations over a localized region of the metropolitan area and may enhance the wind speed on the coasts of the proposed lake.
Improving the indoor air quality by using a surface emissions trap
NASA Astrophysics Data System (ADS)
Markowicz, Pawel; Larsson, Lennart
2015-04-01
The surface emissions trap, an adsorption cloth developed for reducing emissions of volatile organic compounds and particulate matter from surfaces while allowing evaporation of moisture, was used to improve the indoor air quality of a school building with elevated air concentrations of 2-ethyl-1-hexanol. An improvement of the perceived air quality was noticed a few days after the device had been attached on the PVC flooring. In parallel, decreased air concentrations of 2-ethyl-1-hexanol were found as well as a linear increase of the amounts of the same compound adsorbed on the installed cloth as observed up to 13 months after installation. Laboratory studies revealed that the performance of the device is not affected by differences in RH (35-85%), temperature (30-40 °C) or by accelerated aging simulating up to 10 years product lifetime, and, from a blinded exposure test, that the device efficiently blocks chemical odors. This study suggests that the device may represent a fast and efficient means of restoring the indoor air quality in a building e.g. after water damage leading to irritating and potentially harmful emissions from building material surfaces indoors.
Evaluating strategies to reduce urban air pollution
NASA Astrophysics Data System (ADS)
Duque, L.; Relvas, H.; Silveira, C.; Ferreira, J.; Monteiro, A.; Gama, C.; Rafael, S.; Freitas, S.; Borrego, C.; Miranda, A. I.
2016-02-01
During the last years, specific air quality problems have been detected in the urban area of Porto (Portugal). Both PM10 and NO2 limit values have been surpassed in several air quality monitoring stations and, following the European legislation requirements, Air Quality Plans were designed and implemented to reduce those levels. In this sense, measures to decrease PM10 and NO2 emissions have been selected, these mainly related to the traffic sector, but also regarding the industrial and residential combustion sectors. The main objective of this study is to investigate the efficiency of these reduction measures with regard to the improvement of PM10 and NO2 concentration levels over the Porto urban region using a numerical modelling tool - The Air Pollution Model (TAPM). TAPM was applied over the study region, for a simulation domain of 80 × 80 km2 with a spatial resolution of 1 × 1 km2. The entire year of 2012 was simulated and set as the base year for the analysis of the impacts of the selected measures. Taking into account the main activity sectors, four main scenarios have been defined and simulated, with focus on: (1) hybrid cars; (2) a Low Emission Zone (LEZ); (3) fireplaces and (4) industry. The modelling results indicate that measures to reduce PM10 should be focused on residential combustion (fireplaces) and industrial activity and for NO2 the strategy should be based on the traffic sector. The implementation of all the defined scenarios will allow a total maximum reduction of 4.5% on the levels of both pollutants.
Utility of NCEP Operational and Emerging Meteorological Models for Driving Air Quality Prediction
NASA Astrophysics Data System (ADS)
McQueen, J.; Huang, J.; Huang, H. C.; Shafran, P.; Lee, P.; Pan, L.; Sleinkofer, A. M.; Stajner, I.; Upadhayay, S.; Tallapragada, V.
2017-12-01
Operational air quality predictions for the United States (U. S.) are provided at NOAA by the National Air Quality Forecasting Capability (NAQFC). NAQFC provides nationwide operational predictions of ozone and particulate matter twice per day (at 06 and 12 UTC cycles) at 12 km resolution and 1 hour time intervals through 48 hours and distributed at http://airquality.weather.gov. The NOAA National Centers for Environmental Prediction (NCEP) operational North American Mesoscale (NAM) 12 km weather prediction is used to drive the Community Multiscale Air Quality (CMAQ) model. In 2017, the NAM was upgraded in part to reduce a warm 2m temperature bias in Summer (V4). At the same time CMAQ was updated to V5.0.2. Both versions of the models were run in parallel for several months. Therefore the impact of improvements from the atmospheric chemistry model versus upgrades with the weather prediction model could be assessed. . Improvements to CMAQ were related to improvements to improvements in NAM 2 m temperature bias through increasing the opacity of clouds and reducing downward shortwave radiation resulted in reduced ozone photolysis. Higher resolution operational NWP models have recently been introduced as part of the NCEP modeling suite. These include the NAM CONUS Nest (3 km horizontal resolution) run four times per day through 60 hours and the High Resolution Rapid Refresh (HRRR, 3 km) run hourly out to 18 hours. In addition, NCEP with other NOAA labs has begun to develop and test the Next Generation Global Prediction System (NGGPS) based on the FV3 global model. This presentation also overviews recent developments with operational numerical weather prediction and evaluates the ability of these models for predicting low level temperatures, clouds and capturing boundary layer processes important for driving air quality prediction in complex terrain. The assessed meteorological model errors could help determine the magnitude of possible pollutant errors from CMAQ if used for driving meteorology. The NWP models will be evaluated against standard and mesonet fields averaged for various regions during the summer 2017. An evaluation of meteorological fields important to air quality modeling (eg: near surface winds, temperatures, moisture and boundary layer heights, cloud cover) will be reported on.
Quantifying Co-benefits of Renewable Energy through Integrated Electricity and Air Quality Modeling
NASA Astrophysics Data System (ADS)
Abel, D.
2016-12-01
This work focuses on the coordination of electricity sector changes with air quality and health improvement strategies through the integration of electricity and air quality models. Two energy models are used to calculate emission perturbations associated with changes in generation technology (20% generation from solar photovoltaics) and demand (future electricity use under a warmer climate). Impacts from increased solar PV penetration are simulated with the electricity model GridView, in collaboration with the National Renewable Energy Laboratory (NREL). Generation results are used to scale power plant emissions from an inventory developed by the Lake Michigan Air Directors Consortium (LADCO). Perturbed emissions and are used to calculate secondary particulate matter with the Community Multiscale Air Quality (CMAQ) model. We find that electricity NOx and SO2 emissions decrease at a rate similar to the total fraction of electricity supplied by solar. Across the Eastern U.S. region, average PM2.5 is reduced 5% over the summer, with highest reduction in regions and on days of greater PM2.5. A similar approach evaluates the air quality impacts of elevated electricity demand under a warmer climate. Meteorology is selected from the North American Regional Climate Change Assessment Program (NARCCAP) and input to a building energy model, eQUEST, to assess electricity demand as a function of ambient temperature. The associated generation and emissions are calculated on a plant-by-plant basis by the MyPower power sector model. These emissions are referenced to the 2011 National Emissions Inventory to be modeled in CMAQ for the Eastern U.S. and extended to health impact evaluation with the Environmental Benefits Mapping and Analysis Program (BenMAP). All results focus on the air quality and health consequences of energy system changes, considering grid-level changes to meet climate and air quality goals.
Air ionization as a control technology for off-gas emissions of volatile organic compounds.
Kim, Ki-Hyun; Szulejko, Jan E; Kumar, Pawan; Kwon, Eilhann E; Adelodun, Adedeji A; Reddy, Police Anil Kumar
2017-06-01
High energy electron-impact ionizers have found applications mainly in industry to reduce off-gas emissions from waste gas streams at low cost and high efficiency because of their ability to oxidize many airborne organic pollutants (e.g., volatile organic compounds (VOCs)) to CO 2 and H 2 O. Applications of air ionizers in indoor air quality management are limited due to poor removal efficiency and production of noxious side products, e.g., ozone (O 3 ). In this paper, we provide a critical evaluation of the pollutant removal performance of air ionizing system through comprehensive review of the literature. In particular, we focus on removal of VOCs and odorants. We also discuss the generation of unwanted air ionization byproducts such as O 3 , NOx, and VOC oxidation intermediates that limit the use of air-ionizers in indoor air quality management. Copyright © 2017. Published by Elsevier Ltd.
Indoor Air Quality of Residential Building Before and After Renovation
NASA Astrophysics Data System (ADS)
Sánka, Imrich; Földváry, Veronika
2017-06-01
This study investigates the impact of energy renovation on the indoor air quality of an apartment building during the heating season. The study was performed in one residential building before and after its renovation. An evaluation of the indoor air quality was performed using objective measurements and a subjective survey. The concentration of CO2 was measured in the bedrooms, and a sampling of the total volatile compounds (TVOC) was performed in the living rooms of the selected apartments. Higher concentrations of CO2 and TVOC were observed in the residential building after its renovation. The concentrations of CO2, and TVOC in some of the cases exceeded the recommended maximum limits, especially after implementing energy-saving measures on the building. The average air exchange rate was visibly higher before the renovation of the building. The current study indicates that large-scale renovations may reduce the quality of an indoor environment in many apartments, especially in the winter season.
Lee, Jong-Tae; Son, Ji-Young; Cho, Yong-Sung
2007-08-01
The objective of this study is to see whether there were any health benefits of mitigated air pollution concentration due to reduced traffic flow during a citywide intervention for the 2002 Summer Asian Games. Relative risks of hospitalization for childhood asthma during the post-Asian Game period compared with the baseline period were estimated using a time-series analysis of the generalized additive Poisson model. Fourteen consecutive days of traffic volume control in Busan during the Games reduced all regulated air pollutant levels by 1-25%. The estimated relative risk of hospitalization during the post-Games period over the baseline period was 0.73 (95% confidence interval [CI] = 0.49, 1.11). We observed that this reduced air pollution was unique in 2002 when the traffic volume reduction program was applied during the Games period. This empirical data provides epidemiologic evidence of the health benefits resulting from environmental interventions to reduce ambient air pollution.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-08
... each of which has limits for baked or air-dried coatings ranging from 0.275 kg to 0.420 kg VOC/l. These... coatings, have a higher limit (0.420 kg VOC/l (baked or air dried)) than the previous general coating limit, the new general use coating limit has been reduced from 0.36 kg to 0.275 kg VOC/l (baked or air dried...
Lindgren, T; Norbäck, D; Wieslander, G
2007-06-01
The influence of air humidification in aircraft, on perception of cabin air quality among airline crew (N = 71) was investigated. In-flight investigations were performed in the forward part and in the aft part on eight intercontinental flights with one Boeing 767 individually, equipped with an evaporation humidifier combined with a dehumidifying unit, to reduce accumulation of condensed water in the wall construction. Four flights had the air humidification active when going out, and turned off on the return flight. The four others had the inverse humidification sequence. The sequences were randomized, and double blind. Air humidification increased relative air humidity (RH) by 10% in forward part, and by 3% in aft part of the cabin and in the cockpit. When the humidification device was active, the cabin air was perceived as being less dry (P = 0.008), and fresher (P = 0.002). The mean concentration of viable bacteria (77-108 cfu/m(3)), viable molds (74-84 cfu/m(3)), and respirable particles (1-8 microg/m3) was low, both during humidified and non-humidified flights. On flights with air humidification, there were less particles in the forward part of the aircraft (P = 0.01). In conclusion, RH can be slightly increased by using ceramic evaporation humidifier, without any measurable increase of microorganisms in cabin air. The cabin air quality was perceived as being better with air humidification. PRACTICAL IMPLICATION: Relative air humidity is low (10-20%) during intercontinental flights, and can be increased by using ceramic evaporation humidifier, without any measurable increase of microorganism in cabin air. Air humidification could increase the sensation of better cabin air quality.
Evaluating the Environmental Performance of the U.S. Next Generation Air Transportation System
NASA Technical Reports Server (NTRS)
Graham, Michael; Augustine, Stephen; Ermatinger, Christopher; Difelici, John; Thompson, Terence R.; Marcolini, Michael A.; Creedon, Jeremiah F.
2009-01-01
The environmental impacts of several possible U.S. Next Generation Air Transportation scenarios have been quantitatively evaluated for noise, air-quality, fuel-efficiency, and CO2 impacts. Three principal findings have emerged. (1) 2025 traffic levels about 30% higher than 2006 are obtained by increasing traffic according to FAA projections while also limiting traffic at each airport using reasonable ratios of demand to capacity. NextGen operational capabilities alone enable attainment of an additional 10-15% more flights beyond that 2025 baseline level with negligible additional noise, air-quality, and fuel-efficiency impacts. (2) The addition of advanced engine and airframe technologies provides substantial additional reductions in noise and air-quality impacts, and further improves fuel efficiency. 2025 environmental goals based on projected system-wide improvement rates of about 1% per year for noise and fuel-efficiency (an air-quality goal is not yet formulated) are achieved using this new vehicle technology. (3) Overall air-transport "product", as measured by total flown distance or total payload distance, increases by about 50% relative to 2006, but total fuel consumption and CO2 production increase by only about 40% using NextGen operational capabilities. With the addition of advanced engine/airframe technologies, the increase in total fuel consumption and CO2 production can be reduced to about 30%.
NASA Technical Reports Server (NTRS)
Fairlie, T. D.; Szykman, Jim; Pierce, Robert B.; Gilliland, A. B.; Engel-Cox, Jill; Weber, Stephanie; Kittaka, Chieko; Al-Saadi, Jassim A.; Scheffe, Rich; Dimmick, Fred;
2008-01-01
The Clean Air Interstate Rule (CAIR) is expected to reduce transport of air pollutants (e.g. fine sulfate particles) in nonattainment areas in the Eastern United States. CAIR highlights the need for an integrated air quality observational and modeling system to understand sulfate as it moves in multiple dimensions, both spatially and temporally. Here, we demonstrate how results from an air quality model can be combined with a 3d monitoring network to provide decision makers with a tool to help quantify the impact of CAIR reductions in SO2 emissions on regional transport contributions to sulfate concentrations at surface monitors in the Baltimore, MD area, and help improve decision making for strategic implementation plans (SIPs). We sample results from the Community Multiscale Air Quality (CMAQ) model using ensemble back trajectories computed with the NASA Langley Research Center trajectory model to provide Lagrangian time series and vertical profile information, that can be compared with NASA satellite (MODIS), EPA surface, and lidar measurements. Results are used to assess the regional transport contribution to surface SO4 measurements in the Baltimore MSA, and to characterize the dominant source regions for low, medium, and high SO4 episodes.
Community-LINE Source Model (C-LINE) to estimate roadway emissions
C-LINE is a web-based model that estimates emissions and dispersion of toxic air pollutants for roadways in the U.S. This reduced-form air quality model examines what-if scenarios for changes in emissions such as traffic volume fleet mix and vehicle speed.
ERIC Educational Resources Information Center
Watts, Marty
2006-01-01
In this article, the author discusses the role of window films in enhancing indoor air quality in schools. Historically, window film has been used to reduce temperatures in buildings prone to overheating. Too much solar energy entering through windows makes occupants uncomfortable and air conditioning more costly. Film has been a simple solution…
ERIC Educational Resources Information Center
American School & University, 1998
1998-01-01
Explores the steps to take to reduce the likelihood that indoor-air-quality (IAQ) problems will develop in educational facilities. Highlights sources and hazards of IAQ when renovating buildings; control strategies and the establishment of IAQ close-out criteria for all renovation projects; heating, ventilation, and air-conditioning system…
Shamo, Farid; Wilson, Teri; Kiley, Janet; Repace, James
2015-01-01
Objectives To assess the effect of Michigan's smoke-free air (SFA) law on the air quality inside selected restaurants and casinos. The hypothesis of the study: if the SFA law is effectively implemented in restaurants and casinos, there will be a significant reduction in the particulate matter PM2.5 measured in the same establishments after the law is implemented. Setting Prelaw and postlaw design study. Participants 78 restaurants in 14 Michigan cities from six major regions of the state, and three Detroit casinos. Methods We monitored the real-time PM2.5 in 78 restaurants and three Detroit casinos before the SFA law, and again monitored the same restaurants and casinos after implementation of the law, which was enacted on 1 May 2010. Primary and secondary outcome measures Concentration measurements of secondhand smoke (SHS) fine particles (PM2.5) were compared in each restaurant in the prelaw period to measurements of PM2.5 in the same restaurants during the postlaw period. A second comparison was made for PM2.5 levels in three Detroit casinos prelaw and postlaw; these casinos were exempted from the SFA law. Results Prelaw data indicated that 85% of the restaurants had poor to hazardous air quality, with the average venue having ‘unhealthy’ air according to Michigan's Air Quality Index for PM2.5. Postlaw, air quality in 93% of the restaurants improved to ‘good’. The differences were statistically significant (p<0.0001). By comparison, the three casinos measured had ‘unhealthy’ air both before and after the law. Conclusions The significant air quality improvement in the Michigan restaurants after implementation of the SFA law indicates that the law was very effective in reducing exposure to SHS. Since the Detroit casinos were exempted from the law, the air quality was unchanged, and remained unhealthy in both prelaw and postlaw periods. PMID:26185176
Effect of additives and steaming on quality of air dried noodles.
Gatade, Abhijeet Arun; Sahoo, Akshaya Kumar
2015-12-01
Texture is the most important property for consumer acceptance in cooked noodles. The air dried noodles are known to have higher cooking loss and cooking time, to that of instant fried noodles. But the fat content of instant fried noodles is more. In the present work attempts were made to optimize the moisture content so as to obtain a smooth dough for extruded noodle preparation and develop air dried noodles of low fat content with lesser cooking loss and cooking time. To meet the objectives, the effect of various additives and steaming treatment on cooking quality, sensory attributes, textural properties and microstructure of noodles were studied. Dough prepared by addition of 40 ml water to 100 g flour resulted into formation of a soft dough, leading to production of noodles of improved surface smoothness and maximum yield. The use of additives (5 g oil, 0.2 g guar gum, 2 g gluten and 1 ml of 1 % kansui solution for 100 g of flour) and steaming treatment showed significant effect on noodles quality, with respect to cooking characteristics, sensory attributes and textural properties. The microstructure images justified the positive correlation between the effects of ingredients with steaming and quality parameters of noodles. Air dried noodles with reduced cooking loss (~50 % reduction) with marginal reduction in cooking time was developed, which were having similar characteristics to that of instant fried noodles. Compared to the instant fried noodle, the prepared air dried noodle was having substantially reduced fat content (~70 % reduction). Thus the present study will be useful for guiding extrusion processes for production of air dried noodles having less cooking time and low fat content.
NASA Astrophysics Data System (ADS)
Baldasano, José M.; Gonçalves, María; Soret, Albert; Jiménez-Guerrero, Pedro
2010-08-01
Assessing the effects of air quality management strategies in urban areas is a major concern worldwide because of the large impacts on health caused by the exposure to air pollution. In this sense, this work analyses the changes in urban air quality due to the introduction of a maximum speed limit to 80 km h -1 on motorways in a large city by using a novel methodology combining traffic assimilation data and modelling systems implemented in a supercomputing facility. Albeit the methodology has been non-specifically developed and can be extrapolated to any large city or megacity, the case study of Barcelona is presented here. Hourly simulations take into account the entire year 2008 (when the 80 km h -1 limit has been introduced) vs. the traffic conditions for the year 2007. The data has been assimilated in an emission model, which considers hourly variable speeds and hourly traffic intensity in the affected area, taken from long-term measurement campaigns for the aforementioned years; it also permits to take into account the traffic congestion effect. Overall, the emissions are reduced up to 4%; however the local effects of this reduction achieve an important impact for the adjacent area to the roadways, reaching 11%. In this sense, the speed limitation effects assessed represent enhancements in air quality levels (5-7%) of primary pollutants over the area, directly improving the welfare of 1.35 million inhabitants (over 41% of the population of the Metropolitan Area) and affecting 3.29 million dwellers who are potentially benefited from this strategy for air quality management (reducing 0.6% the mortality rates in the area).
Modelling of Carbon Monoxide Air Pollution in Larg Cities by Evaluetion of Spectral LANDSAT8 Images
NASA Astrophysics Data System (ADS)
Hamzelo, M.; Gharagozlou, A.; Sadeghian, S.; Baikpour, S. H.; Rajabi, A.
2015-12-01
Air pollution in large cities is one of the major problems that resolve and reduce it need multiple applications and environmental management. Of The main sources of this pollution is industrial activities, urban and transport that enter large amounts of contaminants into the air and reduces its quality. With Variety of pollutants and high volume manufacturing, local distribution of manufacturing centers, Testing and measuring emissions is difficult. Substances such as carbon monoxide, sulfur dioxide, and unburned hydrocarbons and lead compounds are substances that cause air pollution and carbon monoxide is most important. Today, data exchange systems, processing, analysis and modeling is of important pillars of management system and air quality control. In this study, using the spectral signature of carbon monoxide gas as the most efficient gas pollution LANDSAT8 images in order that have better spatial resolution than appropriate spectral bands and weather meters،SAM classification algorithm and Geographic Information System (GIS ), spatial distribution of carbon monoxide gas in Tehran over a period of one year from the beginning of 2014 until the beginning of 2015 at 11 map have modeled and then to the model valuation ،created maps were compared with the map provided by the Tehran quality comparison air company. Compare involved plans did with the error matrix and results in 4 types of care; overall, producer, user and kappa coefficient was investigated. Results of average accuracy were about than 80%, which indicates the fit method and data used for modeling.
Next Generation Air Quality Platform: Openness and Interoperability for the Internet of Things.
Kotsev, Alexander; Schade, Sven; Craglia, Massimo; Gerboles, Michel; Spinelle, Laurent; Signorini, Marco
2016-03-18
The widespread diffusion of sensors, mobile devices, social media and open data are reconfiguring the way data underpinning policy and science are being produced and consumed. This in turn is creating both opportunities and challenges for policy-making and science. There can be major benefits from the deployment of the IoT in smart cities and environmental monitoring, but to realize such benefits, and reduce potential risks, there is an urgent need to address current limitations, including the interoperability of sensors, data quality, security of access and new methods for spatio-temporal analysis. Within this context, the manuscript provides an overview of the AirSensEUR project, which establishes an affordable open software/hardware multi-sensor platform, which is nonetheless able to monitor air pollution at low concentration levels. AirSensEUR is described from the perspective of interoperable data management with emphasis on possible use case scenarios, where reliable and timely air quality data would be essential.
Next Generation Air Quality Platform: Openness and Interoperability for the Internet of Things
Kotsev, Alexander; Schade, Sven; Craglia, Massimo; Gerboles, Michel; Spinelle, Laurent; Signorini, Marco
2016-01-01
The widespread diffusion of sensors, mobile devices, social media and open data are reconfiguring the way data underpinning policy and science are being produced and consumed. This in turn is creating both opportunities and challenges for policy-making and science. There can be major benefits from the deployment of the IoT in smart cities and environmental monitoring, but to realize such benefits, and reduce potential risks, there is an urgent need to address current limitations, including the interoperability of sensors, data quality, security of access and new methods for spatio-temporal analysis. Within this context, the manuscript provides an overview of the AirSensEUR project, which establishes an affordable open software/hardware multi-sensor platform, which is nonetheless able to monitor air pollution at low concentration levels. AirSensEUR is described from the perspective of interoperable data management with emphasis on possible use case scenarios, where reliable and timely air quality data would be essential. PMID:26999160
Indoor Air Quality in the Metro System in North Taiwan
Chen, Ying-Yi; Sung, Fung-Chang; Chen, Mei-Lien; Mao, I-Fang; Lu, Chung-Yen
2016-01-01
Indoor air pollution is an increasing health concern, especially in enclosed environments such as underground subway stations because of increased global usage by urban populations. This study measured the indoor air quality of underground platforms at 10 metro stations of the Taipei Rapid Transit system (TRTS) in Taiwan, including humidity, temperature, carbon monoxide (CO), carbon dioxide (CO2), formaldehyde (HCHO), total volatile organic compounds (TVOCs), ozone (O3), airborne particulate matter (PM10 and PM2.5), bacteria and fungi. Results showed that the CO2, CO and HCHO levels met the stipulated standards as regulated by Taiwan’s Indoor Air Quality Management Act (TIAQMA). However, elevated PM10 and PM2.5 levels were measured at most stations. TVOCs and bacterial concentrations at some stations measured in summer were higher than the regulated standards stipulated by Taiwan’s Environmental Protection Administration. Further studies should be conducted to reduce particulate matters, TVOCs and bacteria in the air of subway stations. PMID:27918460
A hybridized membrane-botanical biofilter for improving air quality in occupied spaces
NASA Astrophysics Data System (ADS)
Llewellyn, David; Darlington, Alan; van Ras, Niels; Kraakman, Bart; Dixon, Mike
Botanical biofilters have been shown to be effective in improving indoor air quality through the removal of complex mixtures of gaseous contaminants typically found in human-occupied environments. Traditional, botanical biofilters have been comprised of plants rooted into a thin and highly porous synthetic medium that is hung on vertical surfaces. Water flows from the top of the biofilter and air is drawn horizontally through the rooting medium. These botanical biofilters have been successfully marketed in office and institutional settings. They operate efficiently, with adequate contaminant removal and little maintenance for many years. Depending on climate and outdoor air quality, botanical biofiltration can substantially reduce costs associated with ventilation of stale indoor air. However, there are several limitations that continue to inhibit widespread acceptance: 1. Current designs are architecturally limiting and inefficient at capturing ambient light 2. These biofilters can add significant amounts of humidity to an indoor space. This water loss also leads to a rapid accumulation of dissolved salts; reducing biofilter health and performance 3. There is the perception of potentially actively introducing harmful bioaerosols into the air stream 4. Design and practical limitations inhibit the entrance of this technology into the lucrative residential marketplace This paper describes the hybridization of membrane and botanical biofiltration technologies by incorporating a membrane array into the rootzone of a conventional interior planting. This technology has the potential for addressing all of the above limitations, expanding the range of indoor settings where botanical biofiltration can be applied. This technology was developed as the CSA-funded Canadian component an ESA-MAP project entitled: "Biological airfilter for air quality control of life support systems in manned space craft and other closed environments", A0-99-LSS-019. While the project addressed a number of space-specific applications such as odors arising from aspects of the MELiSSA system and spacequalified small animal cages, our focus was on indoor air quality as the terrestrial application of this technology. This paper describes aspects of the development of this technology from conceptualization through laboratory trials to the design, construction and field trials of pre-market prototypes.
Sharma, Manju; O'Connell, Susan; Garelli, Brett; Sattayatewa, Chakkrid; Moschandreas, Demetrios; Pagilla, Krishna
2012-01-01
Indoor air quality (IAQ) and odors were determined using sampling/monitoring, measurement, and modeling methods in a large dewatering building at a very large water reclamation plant. The ultimate goal was to determine control strategies to reduce the sensory impacts on the workforce and achieve odor reduction within the building. Study approaches included: (1) investigation of air mixing by using CO(2) as an indicator, (2) measurement of airflow capacity of ventilation fans, (3) measurement of odors and odorants, (4) development of statistical and IAQ models, and (5) recommendation of control strategies. The results showed that air quality in the building complies with occupational safety and health guidelines; however, nuisance odors that can increase stress and productivity loss still persist. Excess roof fan capacity induced odor dispersion to the upper levels. Lack of a local air exhaust system of sufficient capacity and optimum design was found to be the contributor to occasional less than adequate indoor air quality and odors. Overall, air ventilation rate in the building has less effect on persistence of odors in the building. Odor/odorant emission rates from centrifuge drops were approximately 100 times higher than those from the open conveyors. Based on measurements and modeling, the key control strategies recommended include increasing local air exhaust system capacity and relocation of exhaust hoods closer to the centrifuge drops.
NASA Astrophysics Data System (ADS)
Xue, Yifeng; Zhou, Zhen; Nie, Teng; Wang, Kun; Nie, Lei; Pan, Tao; Wu, Xiaoqing; Tian, Hezhong; Zhong, Lianhong; Li, Jing; Liu, Huanjia; Liu, Shuhan; Shao, Panyang
2016-10-01
Residential coal combustion is considered to be an important source of air pollution in Beijing. However, knowledge regarding the emission characteristics of residential coal combustion and the related impacts on the air quality is very limited. In this study, we have developed an emission inventory for multiple hazardous air pollutants (HAPs) associated with residential coal combustion in Beijing for the period of 2000-2012. Furthermore, a widely used regional air quality model, the Community Multi-Scale Air Quality model (CMAQ), is applied to analyze the impact of residential coal combustion on the air quality in Beijing in 2012. The results show that the emissions of primary air pollutants from residential coal combustion have basically remained the same levels during the past decade, however, along with the strict emission control imposed on major industrial sources, the contribution of residential coal combustion emissions to the overall emissions from anthropogenic sources have increased obviously. In particular, the contributions of residential coal combustion to the total air pollutants concentrations of PM10, SO2, NOX, and CO represent approximately 11.6%, 27.5%, 2.8% and 7.3%, respectively, during the winter heating season. In terms of impact on the spatial variation patterns, the distributions of the pollutants concentrations are similar to the distribution of the associated primary HAPs emissions, which are highly concentrated in the rural-urban fringe zones and rural suburb areas. In addition, emissions of primary pollutants from residential coal combustion are forecasted by using a scenario analysis. Generally, comprehensive measures must be taken to control residential coal combustion in Beijing. The best way to reduce the associated emissions from residential coal combustion is to use economic incentive means to promote the conversion to clean energy sources for residential heating and cooking. In areas with reliable energy supplies, the coal used for residential heating can be replaced with gas-burning wall-heaters, ground-source heat pumps, solar energy and electricity. In areas with inadequate clean energy sources, low-sulfur coal should be used instead of the traditional raw coal with high sulfur and ash content, thereby slightly reducing the emissions of PM, SO2, CO and other toxic pollutants.
ERIC Educational Resources Information Center
McCarron, Colleen
2001-01-01
Explores the renewed attention architects and end users are giving to green design strategies from reducing energy waste to utilizing sustainable materials. Green design characteristics involving, water efficiency, reducing energy waste, indoor air quality, and use of particular environmentally responsible materials are examined. (GR)
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-26
... other NAAQS, improving visibility in the mountains and other scenic vistas, and reducing acid rain. EPA... the mountains and other scenic vistas, and reducing acid rain. The specific approved provisions...
Regulatory and urban planning programs require an accurate evaluation of how traffic emissions transport and disperse from roads to fully determine exposures and health risks. Roadside vegetation barriers have shown the potential to reduce near-road air pollution concentrations; ...
Predicting the Effects of Nano-Scale Cerium Additives in Diesel Fuel on Regional-Scale Air Quality
Diesel vehicles are a major source of air pollutant emissions. Fuel additives containing nanoparticulate cerium (nCe) are currently being used in some diesel vehicles to improve fuel efficiency. These fuel additives also reduce fine particulate matter (PM2.5) emissio...
J.R. Simpson; E.G. McPherson
2011-01-01
Urban trees can produce a number of benefits, among them improved air quality. Biogenic volatile organic compounds (BVOCs) emitted by some species are ozone precursors. Modifying future tree planting to favor lower-emitting species can reduce these emissions and aid air management districts in meeting federally mandated emissions reductions for these compounds. Changes...
EPA Science Matters Newsletter: Good for the Climate and Your Health (Published April 2014)
Read about the findings of a study published in Nature Climate Change that looked at the projected global air quality in two scenarios: one with reduced carbon dioxide in the air, and one with increase of the gas, and compared the results.
Traffic emissions are associated with the elevation of health risks of people living close to highways. Roadside vegetation barriers have the potential of reducing these risks by decreasing near-road air pollution concentrations. However, while we understand the mechanisms that d...
CONTROLLED, SHORT-TERM DERMAL AND INHALATION EXPOSURE TO MTBE AND DIBROMOCHLOROMETHANE
The oxygenate methyl tert-butyl ether (MTBE) has been added to gasoline to meet national ambient air quality standards in those parts of the US that are non-compliant for carbon monoxide. Although MTBE has provided important health benefits in terms of reduced hazardous air po...
Could Expanded Freight Rail Reduce Air Pollution from Trucks?
NASA Astrophysics Data System (ADS)
Bickford, E. E.; Holloway, T.; Johnston, M.
2010-12-01
Cars, trucks and trains are a significant source of emissions that impact both climate and air quality on regional to global scales. Diesel vehicles, most used for freight transport, account for 42% of on-road nitrogen oxide emissions, 58% of on-road fine particulate emissions, and 21% of on-road carbon dioxide emissions. With freight tonnage projected to increase 28% by 2018, and freight trucks the fastest growing source of transportation emissions, we evaluate the potential for increased rail capacity to reduce the environmental impacts of trucks. Most widely available mobile source emissions inventories contain insufficient spatial detail to quantify realistic emission scenario options, and none to date have been linked with commodity flow information in a manner appropriate to consider the true potential of rail substitution. To support a truck-to-rail analysis, and other policy assessments requiring roadway-by-roadway analysis, we have developed a freight emissions inventory for the Upper Midwest based on the Federal Highway Administration’s Freight Analysis Framework version 2.2 and the Environmental Protection Agency’s on-road emissions model, Mobile6.2. Using a Geographical Information System (GIS), we developed emissions scenarios for truck-to-rail modal shifts where 95% of freight tonnage on trips longer than 400 miles is shifted off of trucks and onto railways. Scenarios will be analyzed with the Community Multiscale Air Quality (CMAQ) regional model to assess air quality impacts of associated changes. By using well-respected transportation data and realistic assumptions, results from this study have the potential to inform decisions on transportation sustainability, carbon management, public health, and air quality.
ERIC Educational Resources Information Center
Birr, David
2000-01-01
Energy performance contracting allows schools to pay for needed new energy equipment and modernization improvements with savings from reduced utility and maintenance costs. Improved energy efficiency reduces demand for burning fossil fuels, which reduces air pollution, leading to improved learning environments and budgets (through improved average…
ESCOs: Helping Schools Save Money and Energy.
ERIC Educational Resources Information Center
School Planning & Management, 2000
2000-01-01
Discusses the use of energy savings performance contracts to help reduce costs and improve school infrastructure and the educational environment. Further discussed are how indoor air quality reduces health, productivity, and costs; and examples are provided of how other schools have achieved better school environments and reduced energy costs. (GR)
MEGAPOLI: concept and first results of multi-scale modelling of megacity impacts
NASA Astrophysics Data System (ADS)
Baklanov, A. A.; Lawrence, M.; Pandis, S.
2009-09-01
The European FP7 project MEGAPOLI: ‘Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation' (http://megapoli.info), started in October 2008, brings together 27 leading European research groups from 11 countries, state-of-the-art scientific tools and key players from countries outside Europe to investigate the interactions among megacities, air quality and climate. MEGAPOLI bridges the spatial and temporal scales that connect local emissions, air quality and weather with global atmospheric chemistry and climate. The main MEGAPOLI objectives are: 1. to assess impacts of megacities and large air-pollution hot-spots on local, regional and global air quality, 2. to quantify feedbacks among megacity air quality, local and regional climate, and global climate change, 3. to develop improved integrated tools for prediction of air pollution in megacities. In order to achieve these objectives the following tasks are realizing: • Develop and evaluate integrated methods to improve megacity emission data, • Investigate physical and chemical processes starting from the megacity street level, continuing to the city, regional and global scales, • Assess regional and global air quality impacts of megacity plumes, • Determine the main mechanisms of regional meteorology/climate forcing due to megacity plumes, • Assess global megacity pollutant forcing on climate, • Examine feedback mechanisms including effects of climate change on megacity air quality, • Develop integrated tools for prediction of megacity air quality, • Evaluate these integrated tools and use them in case studies, • Develop a methodology to estimate the impacts of different scenarios of megacity development on human health and climate change, • Propose and assess mitigation options to reduce the impacts of megacity emissions. We follow a pyramid strategy of undertaking detailed measurements in one European major city, Paris, performing detailed analysis for 12 megacities with existing air quality datasets and investigate the effects of all megacities on climate and global atmospheric chemistry. The project focuses on the multi-scale modelling of interacting meteorology and air quality, spanning the range from emissions to air quality, effects on climate, and feedbacks and mitigation potentials. Our hypothesis is that megacities around the world have an impact on air quality not only locally, but also regionally and globally and therefore can also influence the climate of our planet. Some of the links between megacities, air quality and climate are reasonably well-understood. However, a complete quantitative picture of these interactions is clearly missing. Understanding and quantifying these missing links is the focus of MEGAPOLI. The current status and modeling results after the first project year on examples of Paris and other European megacities are discussed.
You, Mingqing
2014-01-01
PM2.5 has gradually become a major environmental problem of China with its rapid economic development, urbanization, and increasing of motor vehicles. Findings and awareness of serious PM2.5 pollution make the PM2.5 a new criterion pollutant of the Chinese National Ambient Air Quality Standard (NAAQS) revised in 2012. The 2012 NAAQS sets the PM2.5 concentrate limitation with the 24-hour average value and the annual mean value. Wuhan is quite typical among central and southern China in climate, economy, development level, and energy consumption. The data are cited from the official website of Wuhan Environmental Protection Bureau and cover the period from 1 January to 30 June 2013. The data definitely confirm the existence of serious PM2.5 pollution in Wuhan and indicate that the addition of PM2.5 as a criterion pollutant significantly brings down the attainment rate of air quality. The example of Wuhan reveals that local governments should take measures to reduce the emission of PM2.5 if it affects the attainment rate and the performance evaluation value of air quality. The main contribution of 2012 NAAQS is that it brings down the attainment rate of the air quality and forces local governmental officials to take the measures accordingly. PMID:24982994
Joint space-time geostatistical model for air quality surveillance
NASA Astrophysics Data System (ADS)
Russo, A.; Soares, A.; Pereira, M. J.
2009-04-01
Air pollution and peoples' generalized concern about air quality are, nowadays, considered to be a global problem. Although the introduction of rigid air pollution regulations has reduced pollution from industry and power stations, the growing number of cars on the road poses a new pollution problem. Considering the characteristics of the atmospheric circulation and also the residence times of certain pollutants in the atmosphere, a generalized and growing interest on air quality issues led to research intensification and publication of several articles with quite different levels of scientific depth. As most natural phenomena, air quality can be seen as a space-time process, where space-time relationships have usually quite different characteristics and levels of uncertainty. As a result, the simultaneous integration of space and time is not an easy task to perform. This problem is overcome by a variety of methodologies. The use of stochastic models and neural networks to characterize space-time dispersion of air quality is becoming a common practice. The main objective of this work is to produce an air quality model which allows forecasting critical concentration episodes of a certain pollutant by means of a hybrid approach, based on the combined use of neural network models and stochastic simulations. A stochastic simulation of the spatial component with a space-time trend model is proposed to characterize critical situations, taking into account data from the past and a space-time trend from the recent past. To identify near future critical episodes, predicted values from neural networks are used at each monitoring station. In this paper, we describe the design of a hybrid forecasting tool for ambient NO2 concentrations in Lisbon, Portugal.
NASA Astrophysics Data System (ADS)
Weger, L.; Lupascu, A.; Cremonese, L.; Butler, T. M.
2017-12-01
Numerous countries in Europe that possess domestic shale gas reserves are considering exploiting this unconventional gas resource as part of their energy transition agenda. While natural gas generates less CO2 emissions upon combustion compared to coal or oil, making it attractive as a bridge in the transition from fossil fuels to renewables, production of shale gas leads to emissions of CH4 and air pollutants such as NOx, VOCs and PM. These gases in turn influence the climate as well as air quality. In this study, we investigate the impact of a potential shale gas development in Germany and the United Kingdom on local and regional air quality. This work builds on our previous study in which we constructed emissions scenarios based on shale gas utilization in these counties. In order to explore the influence of shale gas production on air quality, we investigate emissions predicted from our shale gas scenarios with the Weather Research and Forecasting model with chemistry (WRF-Chem) model. In order to do this, we first design a model set-up over Europe and evaluate its performance for the meteorological and chemical parameters. Subsequently we add shale gas emissions fluxes based on the scenarios over the area of the grid in which the shale gas activities are predicted to occur. Finally, we model these emissions and analyze the impact on air quality on both a local and regional scale. The aims of this work are to predict the range of adverse effects on air quality, highlight the importance of emissions control strategies in reducing air pollution, to promote further discussion, and to provide policy makers with information for decision making on a potential shale gas development in the two study countries.
Vutukuru, Satish; Carreras-Sospedra, Marc; Brouwer, Jacob; Dabdub, Donald
2011-12-01
Distributed power generation-electricity generation that is produced by many small stationary power generators distributed throughout an urban air basin-has the potential to supply a significant portion of electricity in future years. As a result, distributed generation may lead to increased pollutant emissions within an urban air basin, which could adversely affect air quality. However, the use of combined heating and power with distributed generation may reduce the energy consumption for space heating and air conditioning, resulting in a net decrease of pollutant and greenhouse gas emissions. This work used a systematic approach based on land-use geographical information system data to determine the spatial and temporal distribution of distributed generation emissions in the San Joaquin Valley Air Basin of California and simulated the potential air quality impacts using state-of-the-art three-dimensional computer models. The evaluation of the potential market penetration of distributed generation focuses on the year 2023. In general, the air quality impacts of distributed generation were found to be small due to the restrictive 2007 California Air Resources Board air emission standards applied to all distributed generation units and due to the use of combined heating and power. Results suggest that if distributed generation units were allowed to emit at the current Best Available Control Technology standards (which are less restrictive than the 2007 California Air Resources Board standards), air quality impacts of distributed generation could compromise compliance with the federal 8-hr average ozone standard in the region.
Vutukuru, Satish; Carreras-Sospedra, Marc; Brouwer, Jacob; Dabdub, Donald
2011-12-01
Distributed power generation-electricity generation that is produced by many small stationary power generators distributed throughout an urban air basin-has the potential to supply a significant portion of electricity in future years. As a result, distributed generation may lead to increased pollutant emissions within an urban air basin, which could adversely affect air quality. However, the use of combined heating and power with distributed generation may reduce the energy consumption for space heating and air conditioning, resulting in a net decrease of pollutant and greenhouse gas emissions. This work used a systematic approach based on land-use geographical information system data to determine the spatial and temporal distribution of distributed generation emissions in the San Joaquin Valley Air Basin of California and simulated the potential air quality impacts using state-of-the-art three-dimensional computer models. The evaluation of the potential market penetration of distributed generation focuses on the year 2023. In general, the air quality impacts of distributed generation were found to be small due to the restrictive 2007 California Air Resources Board air emission standards applied to all distributed generation units and due to the use of combined heating and power. Results suggest that if distributed generation units were allowed to emit at the current Best Available Control Technology standards (which are less restrictive than the 2007 California Air Resources Board standards), air quality impacts of distributed generation could compromise compliance with the federal 8-hr average ozone standard in the region. [Box: see text].
Workplace threats to health and job turnover among women workers.
Gucer, Patricia W; Oliver, Marc; McDiarmid, Melissa
2003-07-01
Is job turnover related to concern about workplace health risks? Using data from a national sample of working women, we examined the relationships among workplace risk communications, worker concerns about workplace threats from hazardous substances, indoor air quality, and job change. Eight percent reported changing a job as a result of concern over workplace threats to health. Previous workplace injury predicted concern about hazardous materials and indoor air quality as well as job change, but employer communication about workplace health risks was associated with less job change and less concern about indoor air quality. Women worry about workplace threats to their health enough to change their jobs, but employers may have the power to cut turnover costs and reduce disruption to workers' lives through the use of risk communication programs.
NASA Astrophysics Data System (ADS)
Shen, L.; Mickley, L. J.
2016-12-01
Atlantic sea surface temperatures have a significant influence on the summertime meteorology and air quality in the eastern United States. In this study, we investigate the effect of the Atlantic Multidecadal Oscillation (AMO) on two key air pollutants, surface ozone and PM2.5, over the eastern United States. The shift of AMO from cold to warm phase increases surface air temperatures by 0.5 K across the East and reduces precipitation, resulting in a warmer and drier summer. By applying observed, present-day relationships between these pollutants and meteorological variables to a variety of observations and historical reanalysis datasets, we calculate the impacts of AMO on U.S. air quality. Our study reveals a multidecadal variability in mean summertime (JJA) maximum daily 8-hour (MDA8) ozone and surface PM2.5 concentrations in the eastern United States. In one-half cycle ( 30 years) of the AMO from negative to positive phase with constant anthropogenic emissions, JJA MDA8 ozone concentrations increase by 1-3 ppbv in the Northeast and 2-5 ppbv in the Great Plains; JJA PM2.5 concentrations increase by 0.8-1.2 μg m-3 in the Northeast and Southeast. The resulting impact on mortality rates is 4000 excess deaths per half cycle of AMO. We suggest that a complete picture of air quality management in coming decades requires consideration of the AMO influence.
Muñiz-Unamunzaga, Maria; Borge, Rafael; Sarwar, Golam; Gantt, Brett; de la Paz, David; Cuevas, Carlos A; Saiz-Lopez, Alfonso
2018-01-01
The oceans are the main source of natural halogen and sulfur compounds, which have a significant influence on the oxidizing capacity of the marine atmosphere; however, their impact on the air quality of coastal cities is currently unknown. We explore the effect of marine halogens (Cl, Br and I) and dimethyl sulfide (DMS) on the air quality of a large coastal city through a set of high-resolution (4-km) air quality simulations for the urban area of Los Angeles, US, using the Community Multiscale Air Quality (CMAQ model). The results indicate that marine halogen emissions decrease ozone and nitrogen dioxide levels up to 5ppbv and 2.5ppbv, respectively, in the city of Los Angeles. Previous studies suggested that the inclusion of chlorine in air quality models leads to the generation of ozone in urban areas through photolysis of nitryl chloride (ClNO 2 ). However, we find that when considering the chemistry of Cl, Br and I together the net effect is a reduction of surface ozone concentrations. Furthermore, combined ocean emissions of halogens and DMS cause substantial changes in the levels of key urban atmospheric oxidants such as OH, HO 2 and NO 3 , and in the composition and mass of fine particles. Although the levels of ozone, NO 3 and HO x are reduced, we find a 10% increase in secondary organic aerosol (SOA) mean concentration, attributed to the increase in aerosol acidity and sulfate aerosol formation when combining DMS and bromine. Therefore, this new pathway for enhanced SOA formation may potentially help with current model under predictions of urban SOA. Although further observations and research are needed to establish these preliminary conclusions, this first city-scale investigation suggests that the inclusion of oceanic halogens and DMS in air quality models may improve regional air quality predictions over coastal cities around the world. Copyright © 2017 Elsevier B.V. All rights reserved.
Tang, Chin-Sheng; Wan, Gwo-Hwa
2013-01-01
To prevent surgical site infection (SSI), the airborne microbial concentration in operating theaters must be reduced. The air quality in operating theaters and nearby areas is also important to healthcare workers. Therefore, this study assessed air quality in the post-operative recovery room, locations surrounding the operating theater area, and operating theaters in a medical center. Temperature, relative humidity (RH), and carbon dioxide (CO2), suspended particulate matter (PM), and bacterial concentrations were monitored weekly over one year. Measurement results reveal clear differences in air quality in different operating theater areas. The post-operative recovery room had significantly higher CO2 and bacterial concentrations than other locations. Bacillus spp., Micrococcus spp., and Staphylococcus spp. bacteria often existed in the operating theater area. Furthermore, Acinetobacter spp. was the main pathogen in the post-operative recovery room (18%) and traumatic surgery room (8%). The mixed effect models reveal a strong correlation between number of people in a space and high CO2 concentration after adjusting for sampling locations. In conclusion, air quality in the post-operative recovery room and operating theaters warrants attention, and merits long-term surveillance to protect both surgical patients and healthcare workers. PMID:23573296
The Utility of the OMI HCHO/NO2 in Air Quality Decision-Making Activities
NASA Technical Reports Server (NTRS)
Duncan, Bryan
2010-01-01
I will discuss a novel and practical application of the OMI HCHU and NO2 data products to the "weight of evidence" in the air quality decision-making process (e.g., State Implementation Plan (SIP)) for a city, region, or state to demonstrate that it is making progress toward attainment of the National Ambient Air Quality Standard (NAAQS) for ozone. Any trend, or lack thereof, in the observed OMI HCHO/NO2 may support that an emission control strategy implemented to reduce ozone is or is not occurring for a metropolitan area. In addition, the observed OMI HCHO/NO2 may be used to define new emission control strategies as the photochemical environments of urban areas evolve over time. I will demonstrate the utility of the OMI HCHO/NO2 over the U.S. for air quality applications with support from simulations with both a regional model and a photochemical box model. These results support mission planning of an OMI-like instrument for the proposed GEO-CAPE satellite that has as one of its objectives to study air quality from space. However, I'm attending the meeting as the Aura Deputy Project Scientist, so I don't technically need to present anything to justify the travel.
Morakinyo, Tobi Eniolu; Lam, Yun Fat; Hao, Song
2016-11-01
To enhance the quality of human life in a rapidly urbanized world plagued with high transportation, the masterful contribution of improved urban and local air quality cannot be overemphasized. In order to reduce human exposure to near-road air pollution, several approaches including the installation of roadside structural barriers especially in open street areas, such as city entrances are being applied. In the present study, the air quality around real world and idealized green infrastructures was investigated by means of numerical simulation and a short field measurement campaign. Fair agreement was found between ENVI-met modelled and measured particulate matter's concentration data around a realistic vegetation barrier indicating a fair representation of reality in the model. Several numerical experiments were conducted to investigate the influence of barrier type (vegetation/hedge and green wall) and dimensions on near-road air quality. The results show different horizontal/vertical patterns and magnitudes of upwind and downwind relative concentration (with and without a barrier) depending on wind condition, barrier type and dimension. Furthermore, an integrated dispersion-deposition approach was employed to assess the impact on air quality of near-road vegetation barrier. At last, recommendations to city and urban planners on the implementation of roadside structural barriers were made. Copyright © 2016 Elsevier Ltd. All rights reserved.
Clean Air Markets - Where You Live (National and State Maps)
Where You Live accesses facility and unit attribute data as well as emissions data using a series of interactive national and state maps. This module allows the user to view data for regions of interest throughout the country using an intuitive interface, while also providing a national and statewide context for data specific to one or more facilities.EPA's Clean Air Markets Division (CAMD) includes several market-based regulatory programs designed to improve air quality and ecosystems. The most well-known of these programs are EPA's Acid Rain Program and the NOx Programs, which reduce emissions of sulfur dioxide (SO2) and nitrogen oxides (NOx)-compounds that adversely affect air quality, the environment, and public health. CAMD also plays an integral role in the development and implementation of the Clean Air Interstate Rule (CAIR).
NASA Astrophysics Data System (ADS)
Wang, Litao; Jang, Carey; Zhang, Yang; Wang, Kai; Zhang, Qiang; Streets, David; Fu, Joshua; Lei, Yu; Schreifels, Jeremy; He, Kebin; Hao, Jiming; Lam, Yun-Fat; Lin, Jerry; Meskhidze, Nicholas; Voorhees, Scott; Evarts, Dale; Phillips, Sharon
2010-09-01
Following the meteorological evaluation in Part I, this Part II paper presents the statistical evaluation of air quality predictions by the U.S. Environmental Protection Agency (U.S. EPA)'s Community Multi-Scale Air Quality (Models-3/CMAQ) model for the four simulated months in the base year 2005. The surface predictions were evaluated using the Air Pollution Index (API) data published by the China Ministry of Environmental Protection (MEP) for 31 capital cities and daily fine particulate matter (PM 2.5, particles with aerodiameter less than or equal to 2.5 μm) observations of an individual site in Tsinghua University (THU). To overcome the shortage in surface observations, satellite data are used to assess the column predictions including tropospheric nitrogen dioxide (NO 2) column abundance and aerosol optical depth (AOD). The result shows that CMAQ gives reasonably good predictions for the air quality. The air quality improvement that would result from the targeted sulfur dioxide (SO 2) and nitrogen oxides (NO x) emission controls in China were assessed for the objective year 2010. The results show that the emission controls can lead to significant air quality benefits. SO 2 concentrations in highly polluted areas of East China in 2010 are estimated to be decreased by 30-60% compared to the levels in the 2010 Business-As-Usual (BAU) case. The annual PM 2.5 can also decline by 3-15 μg m -3 (4-25%) due to the lower SO 2 and sulfate concentrations. If similar controls are implemented for NO x emissions, NO x concentrations are estimated to decrease by 30-60% as compared with the 2010 BAU scenario. The annual mean PM 2.5 concentrations will also decline by 2-14 μg m -3 (3-12%). In addition, the number of ozone (O 3) non-attainment areas in the northern China is projected to be much lower, with the maximum 1-h average O 3 concentrations in the summer reduced by 8-30 ppb.
NASA Astrophysics Data System (ADS)
Yang, J.; Mauzerall, D. L.
2017-12-01
During periods of high pollution in winter, household space heating can contribute more than half of PM2.5 concentrations in China's Beijing-Tianjin-Hebei (BTH) region. The majority of rural households and some urban households in the region still heat with small stoves and solid fuels such as raw coal, coal briquettes and biomass. Thus, reducing emissions from residential space heating has become a top priority of the Chinese government's air pollution mitigation plan. Electrified space heating is a promising alternative to solid fuel. However, there is little analysis of the air quality and climate implications of choosing various electrified heating devices and utilizing different electricity sources. Here we conduct an integrated assessment of the air quality, human health and climate implications of various electrified heating scenarios in the BTH region using the Weather Research and Forecasting model with Chemistry. We use the Multi-resolution Emission Inventory for China for the year 2012 as our base case and design two electrification scenarios in which either direct resistance heaters or air source heat pumps are installed to replace all household heating stoves. We initially assume all electrified heating devices use electricity from supercritical coal-fired power plants. We find that installing air source heat pumps reduces CO2 emissions and premature deaths due to PM2.5 pollution more than resistance heaters, relative to the base case. The increased health and climate benefits of heat pumps occur because they have a higher heat conversion efficiency and thus require less electricity for space heating than resistance heaters. We also find that with the same heat pump installation, a hybrid electricity source (40% of the electricity generated from renewable sources and the rest from coal) further reduces both CO2 emissions and premature deaths than using electricity only from coal. Our study demonstrates the air pollution and CO2 mitigation potential and public health benefits of using electrified space heating. In particular, we find air source heat pumps could bring more climate and health benefits than direct resistance heaters. Our results also support policies to integrate renewable energy sources with the reduction of solid fuel combustion for residential space heating.
Air quality improvements and health benefits from China’s clean air action since 2013
NASA Astrophysics Data System (ADS)
Zheng, Yixuan; Xue, Tao; Zhang, Qiang; Geng, Guannan; Tong, Dan; Li, Xin; He, Kebin
2017-11-01
Aggressive emission control measures were taken by the Chinese government after the promulgation of the ‘Air Pollution Prevention and Control Action Plan’ in 2013. Here we evaluated the air quality and health benefits associated with this stringent policy during 2013-2015 by using surface PM2.5 concentrations estimated from a three-stage data fusion model and cause-specific integrated exposure-response functions. The population-weighted annual mean PM2.5 concentrations decreased by 21.5% over China during 2013-2015, reducing from 60.5 in 2013 to 47.5 μg m-3 in 2015. Subsequently, the national PM2.5-attributable mortality decreased from 1.22 million (95% CI: 1.05, 1.37) in 2013 to 1.10 million (95% CI: 0.95, 1.25) in 2015, which is a 9.1% reduction. The limited health benefits compared to air quality improvements are mainly due to the supralinear responses of mortality to PM2.5 over the high concentration end of the concentration-response functions. Our study affirms the effectiveness of China’s recent air quality policy; however, due to the nonlinear responses of mortality to PM2.5 variations, current policies should remain in place and more stringent measures should be implemented to protect public health.
Assessment of air quality in and around a steel industry with direct reduction iron route.
Jena, Pradip K; Behera, Dillip K; Mishra, C S K; Mohanty, Saswat K
2011-10-01
The coal based Direct Reduced Iron (DRI) route for secondary steel production is now a preferred choice in India. Steel making is invariably associated with emission of air pollutants into the environment. Air quality monitoring was carried out in Winter, Summer and Rainy seasons of 2008 in eight monitoring stations in the work zone and five stations in the residential zone of an Integrated Steel Industry located in Orissa state, India. Four air quality parameters i.e. SPM, RSPM, SO2 and NO2 were monitored. Mean SPM and RSPM values were found to be significantly high (p < 0.01) at stations nearer to source in both work zone and residential zone .The highest average SPM and RSPM values in the work zone recorded were 4869 microg/m3 and 1420 microg/m3 and in the residential zone 294 microg/m3 and 198 microg/m3 respectively. No significant difference in the SO2 and NO2 levels was observed between the work and residential zones. In general, the values of air pollutants were highest in Winter followed by Summer and Rainy season. SPM and RSPM values exceeded the National Air Quality Standards (NAAQS) in both the residential and work zones.
Predicting indoor pollutant concentrations, and applications to air quality management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lorenzetti, David M.
Because most people spend more than 90% of their time indoors, predicting exposure to airborne pollutants requires models that incorporate the effect of buildings. Buildings affect the exposure of their occupants in a number of ways, both by design (for example, filters in ventilation systems remove particles) and incidentally (for example, sorption on walls can reduce peak concentrations, but prolong exposure to semivolatile organic compounds). Furthermore, building materials and occupant activities can generate pollutants. Indoor air quality depends not only on outdoor air quality, but also on the design, maintenance, and use of the building. For example, ''sick building'' symptomsmore » such as respiratory problems and headaches have been related to the presence of air-conditioning systems, to carpeting, to low ventilation rates, and to high occupant density (1). The physical processes of interest apply even in simple structures such as homes. Indoor air quality models simulate the processes, such as ventilation and filtration, that control pollutant concentrations in a building. Section 2 describes the modeling approach, and the important transport processes in buildings. Because advection usually dominates among the transport processes, Sections 3 and 4 describe methods for predicting airflows. The concluding section summarizes the application of these models.« less
Levasseur, Marie-Eve; Poulin, Patrick; Campagna, Céline; Leclerc, Jean-Marc
2017-11-25
A paradigm change in the management of environmental health issues has been observed in recent years: instead of managing specific risks individually, a holistic vision of environmental problems would assure sustainable solutions. However, concrete actions that could help translate these recommendations into interventions are lacking. This review presents the relevance of using an integrated indoor air quality management approach to ensure occupant health and comfort. At the nexus of three basic concepts (reducing contaminants at the source, improving ventilation, and, when relevant, purifying the indoor air), this approach can help maintain and improve indoor air quality and limit exposure to several contaminants. Its application is particularly relevant in a climate change context since the evolving outdoor conditions have to be taken into account during building construction and renovation. The measures presented through this approach target public health players, building managers, owners, occupants, and professionals involved in building design, construction, renovation, and maintenance. The findings of this review will help the various stakeholders initiate a strategic reflection on the importance of indoor air quality and climate change issues for existing and future buildings. Several new avenues and recommendations are presented to set the path for future research activities.
Levasseur, Marie-Eve; Poulin, Patrick; Campagna, Céline; Leclerc, Jean-Marc
2017-01-01
A paradigm change in the management of environmental health issues has been observed in recent years: instead of managing specific risks individually, a holistic vision of environmental problems would assure sustainable solutions. However, concrete actions that could help translate these recommendations into interventions are lacking. This review presents the relevance of using an integrated indoor air quality management approach to ensure occupant health and comfort. At the nexus of three basic concepts (reducing contaminants at the source, improving ventilation, and, when relevant, purifying the indoor air), this approach can help maintain and improve indoor air quality and limit exposure to several contaminants. Its application is particularly relevant in a climate change context since the evolving outdoor conditions have to be taken into account during building construction and renovation. The measures presented through this approach target public health players, building managers, owners, occupants, and professionals involved in building design, construction, renovation, and maintenance. The findings of this review will help the various stakeholders initiate a strategic reflection on the importance of indoor air quality and climate change issues for existing and future buildings. Several new avenues and recommendations are presented to set the path for future research activities. PMID:29186831
Key issues in controlling air pollutants in Dhaka, Bangladesh
NASA Astrophysics Data System (ADS)
Begum, Bilkis A.; Biswas, Swapan K.; Hopke, Philip K.
2011-12-01
Particulate matter (PM) sampling for both coarse and fine fractions was conducted in a semi-residential site (AECD) in Dhaka from February 2005 to December 2006. The samples were analyzed for mass, black carbon (BC), and elemental compositions. The resulting data set were analyzed for sources by Positive Matrix Factorization (EPA-PMF). From previous studies, it is found that, the air quality became worse in the dry winter period compared to the rainy season because of higher particulate matter concentration in the ambient air. Therefore, seasonal source contributions were determined from seasonally segregated data using EPA-PMF modeling so that further policy interventions can be undertaken to improve air quality. From the source apportionment results, it is observed that vehicular emissions and emission from brick kiln are the major contributors to air pollution in Dhaka especially in the dry seasons, while contribution from emissions from metal smelters increases during rainy seasons. The Government of Bangladesh is considering different interventions to reduce the emissions from those sources by adopting conversion of diesel/petrol vehicles to CNG, increasing traffic speed in the city and by introducing green technologies for brick production. However, in order to reduce the transboundary effect it is necessary to take action regionally.
Noll, J.; Cecala, A.; Hummer, J.
2016-01-01
The National Institute for Occupational Safety and Health has observed that many control rooms and operator compartments in the U.S. mining industry do not have filtration systems capable of maintaining low dust concentrations in these areas. In this study at a mineral processing plant, to reduce respirable dust concentrations in a control room that had no cleaning system for intake air, a filtration and pressurization system originally designed for enclosed cabs was modified and installed. This system was composed of two filtering units: one to filter outside air and one to filter and recirculate the air inside the control room. Eighty-seven percent of submicrometer particles were reduced by the system under static conditions. This means that greater than 87 percent of respirable dust particles should be reduced as the particle-size distribution of respirable dust particles is greater than that of submicrometer particles, and filtration systems usually are more efficient in capturing the larger particles. A positive pressure near 0.02 inches of water gauge was produced, which is an important component of an effective system and minimizes the entry of particles, such as dust, into the room. The intake airflow was around 118 cfm, greater than the airflow suggested by the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) for acceptable indoor air quality. After one year, the loading of the filter caused the airflow to decrease to 80 cfm, which still produces acceptable indoor air quality. Due to the loading of the filters, the reduction efficiency for submicrometer particles under static conditions increased to 94 percent from 87 percent. PMID:26834293
Anthony, T. Renée; Altmaier, Ralph; Park, Jae Hong; Peters, Thomas M.
2016-01-01
Because adverse health effects experienced by swine farm workers in concentrated animal feeding operations (CAFOs) have been associated with exposure to dust and gases, efforts to reduce exposures are warranted, particularly in winter seasons when exposures increase due to decreased ventilation. Simulation of air quality and operating costs for ventilating swine CAFO, including treating and recirculating air through a farrowing room, was performed using mass and energy balance equations over a 90-day winter season. System operation required controlling heater operation to achieve room temperatures optimal to ensure animal health (20 to 22.5°C). Five air pollution control devices, four room ventilation rates, and five recirculation patterns were examined. Inhalable dust concentrations were easily reduced using standard industrial air pollution control devices, including a cyclone, filtration, and electrostatic precipitator. Operating ventilation systems at 0.94 m3 s−1 (2000 cfm) with 75 to 100% recirculation of treated air from cyclone, electrostatic precipitator, and shaker dust filtration system achieves adequate particle control with operating costs under $1.00 per pig produced ($0.22 to 0.54), although carbon dioxide (CO2) concentrations approach 2000 ppm using in-room ventilated gas fired heaters. In no simulation were CO2 concentrations below industry recommended concentrations (1540 ppm), but alternative heating devices could reduce CO2 to acceptable concentrations. While this investigation does not represent all production swine farrowing barns, which differ in characteristics including room dimensions and swine occupancy, the simulation model and ventilation optimization methods can be applied to other production sites. This work shows that ventilation may be a cost-effective control option in the swine industry to reduce exposures. PMID:24433305
Anthony, T Renée; Altmaier, Ralph; Park, Jae Hong; Peters, Thomas M
2014-01-01
Because adverse health effects experienced by swine farm workers in concentrated animal feeding operations (CAFOs) have been associated with exposure to dust and gases, efforts to reduce exposures are warranted, particularly in winter seasons when exposures increase due to decreased ventilation. Simulation of air quality and operating costs for ventilating swine CAFO, including treating and recirculating air through a farrowing room, was performed using mass and energy balance equations over a 90-day winter season. System operation required controlling heater operation to achieve room temperatures optimal to ensure animal health (20 to 22.5 °C). Five air pollution control devices, four room ventilation rates, and five recirculation patterns were examined. Inhalable dust concentrations were easily reduced using standard industrial air pollution control devices, including a cyclone, filtration, and electrostatic precipitator. Operating ventilation systems at 0.94 m3 s(-1) (2000 cfm) with 75 to 100% recirculation of treated air from cyclone, electrostatic precipitator, and shaker dust filtration system achieves adequate particle control with operating costs under $1.00 per pig produced ($0.22 to 0.54), although carbon dioxide (CO2) concentrations approach 2000 ppm using in-room ventilated gas fired heaters. In no simulation were CO2 concentrations below industry recommended concentrations (1540 ppm), but alternative heating devices could reduce CO2 to acceptable concentrations. While this investigation does not represent all production swine farrowing barns, which differ in characteristics including room dimensions and swine occupancy, the simulation model and ventilation optimization methods can be applied to other production sites. This work shows that ventilation may be a cost-effective control option in the swine industry to reduce exposures.
Outdoor air pollutants and patient health.
Laumbach, Robert J
2010-01-15
Almost 160 million persons live in areas of the United States that exceed federal health-based air pollution standards. The two air pollutants that most commonly exceed standards are ozone and particulate matter. Ozone and particulate matter can harm anyone if levels are sufficiently elevated, but health risk from air pollution is greatest among vulnerable populations. Both ozone and particulate matter can cause pulmonary inflammation, decreased lung function, and exacerbation of asthma and chronic obstructive pulmonary disease. Particulate matter is also strongly associated with increased cardiovascular morbidity and mortality. Children, older adults, and other vulnerable persons may be sensitive to lower levels of air pollution. Persons who are aware of local air pollution levels, reported daily by the U.S. Environmental Protection Agency as the Air Quality Index, can take action to reduce exposure. These actions include simple measures to limit exertion and time spent outdoors when air pollution levels are highest, and to reduce the infiltration of outdoor air pollutants into indoor spaces.
Air Quality Strategies on Public Health and Health Equity in Europe-A Systematic Review.
Wang, Li; Zhong, Buqing; Vardoulakis, Sotiris; Zhang, Fengying; Pilot, Eva; Li, Yonghua; Yang, Linsheng; Wang, Wuyi; Krafft, Thomas
2016-12-02
Air pollution is an important public health problem in Europe and there is evidence that it exacerbates health inequities. This calls for effective strategies and targeted interventions. In this study, we conducted a systematic review to evaluate the effectiveness of strategies relating to air pollution control on public health and health equity in Europe. Three databases, Web of Science, PubMed, and Trials Register of Promoting Health Interventions (TRoPHI), were searched for scientific publications investigating the effectiveness of strategies on outdoor air pollution control, public health and health equity in Europe from 1995 to 2015. A total of 15 scientific papers were included in the review after screening 1626 articles. Four groups of strategy types, namely, general regulations on air quality control, road traffic related emission control interventions, energy generation related emission control interventions and greenhouse gas emission control interventions for climate change mitigation were identified. All of the strategies reviewed reported some improvement in air quality and subsequently in public health. The reduction of the air pollutant concentrations and the reported subsequent health benefits were more significant within the geographic areas affected by traffic related interventions. Among the various traffic related interventions, low emission zones appeared to be more effective in reducing ambient nitrogen dioxide (NO₂) and particulate matter levels. Only few studies considered implications for health equity, three out of 15, and no consistent results were found indicating that these strategies could reduce health inequity associated with air pollution. Particulate matter (particularly fine particulate matter) and NO₂ were the dominant outdoor air pollutants examined in the studies in Europe in recent years. Health benefits were gained either as a direct, intended objective or as a co-benefit from all of the strategies examined, but no consistent impact on health equity from the strategies was found. The strategy types aiming to control air pollution in Europe and the health impact assessment methodology were also discussed in this review.
Air Quality Strategies on Public Health and Health Equity in Europe—A Systematic Review
Wang, Li; Zhong, Buqing; Vardoulakis, Sotiris; Zhang, Fengying; Pilot, Eva; Li, Yonghua; Yang, Linsheng; Wang, Wuyi; Krafft, Thomas
2016-01-01
Air pollution is an important public health problem in Europe and there is evidence that it exacerbates health inequities. This calls for effective strategies and targeted interventions. In this study, we conducted a systematic review to evaluate the effectiveness of strategies relating to air pollution control on public health and health equity in Europe. Three databases, Web of Science, PubMed, and Trials Register of Promoting Health Interventions (TRoPHI), were searched for scientific publications investigating the effectiveness of strategies on outdoor air pollution control, public health and health equity in Europe from 1995 to 2015. A total of 15 scientific papers were included in the review after screening 1626 articles. Four groups of strategy types, namely, general regulations on air quality control, road traffic related emission control interventions, energy generation related emission control interventions and greenhouse gas emission control interventions for climate change mitigation were identified. All of the strategies reviewed reported some improvement in air quality and subsequently in public health. The reduction of the air pollutant concentrations and the reported subsequent health benefits were more significant within the geographic areas affected by traffic related interventions. Among the various traffic related interventions, low emission zones appeared to be more effective in reducing ambient nitrogen dioxide (NO2) and particulate matter levels. Only few studies considered implications for health equity, three out of 15, and no consistent results were found indicating that these strategies could reduce health inequity associated with air pollution. Particulate matter (particularly fine particulate matter) and NO2 were the dominant outdoor air pollutants examined in the studies in Europe in recent years. Health benefits were gained either as a direct, intended objective or as a co-benefit from all of the strategies examined, but no consistent impact on health equity from the strategies was found. The strategy types aiming to control air pollution in Europe and the health impact assessment methodology were also discussed in this review. PMID:27918457
Persistence of initial conditions in continental scale air quality simulations
NASA Astrophysics Data System (ADS)
Hogrefe, Christian; Roselle, Shawn J.; Bash, Jesse O.
2017-07-01
This study investigates the effect of initial conditions (IC) for pollutant concentrations in the atmosphere and soil on simulated air quality for two continental-scale Community Multiscale Air Quality (CMAQ) model applications. One of these applications was performed for springtime and the second for summertime. Results show that a spin-up period of ten days commonly used in regional-scale applications may not be sufficient to reduce the effects of initial conditions to less than 1% of seasonally-averaged surface ozone concentrations everywhere while 20 days were found to be sufficient for the entire domain for the spring case and almost the entire domain for the summer case. For the summer case, differences were found to persist longer aloft due to circulation of air masses and even a spin-up period of 30 days was not sufficient to reduce the effects of ICs to less than 1% of seasonally-averaged layer 34 ozone concentrations over the southwestern portion of the modeling domain. Analysis of the effect of soil initial conditions for the CMAQ bidirectional NH3 exchange model shows that during springtime they can have an important effect on simulated inorganic aerosols concentrations for time periods of one month or longer. The effects are less pronounced during other seasons. The results, while specific to the modeling domain and time periods simulated here, suggest that modeling protocols need to be scrutinized for a given application and that it cannot be assumed that commonly-used spin-up periods are necessarily sufficient to reduce the effects of initial conditions on model results to an acceptable level. What constitutes an acceptable level of difference cannot be generalized and will depend on the particular application, time period and species of interest. Moreover, as the application of air quality models is being expanded to cover larger geographical domains and as these models are increasingly being coupled with other modeling systems to better represent air-surface-water exchanges, the effects of model initialization in such applications needs to be studied in future work.
Michigan`s air emission trading program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russette, T.M.; VanKolken, A.M.
1997-12-31
Michigan`s Emission Trading Program took effect on March 16, 1996 after two years of rule development by the Michigan Department of Environmental Quality, Air Quality Division and affected stakeholders. This program is based on the open market trading model and has been designed to (1) be consistent with existing federal and state rules and regulations, (2) integrate with existing air programs such as the permit program, and (3) address the needs of Michigan`s regulated community. Michigan`s Air Quality Division, along with other interested parties, initiated this program as part of market-based approaches to improve air quality through the reduction ofmore » criteria pollutants (except ozone) and volatile organic compounds. The Emission Trading rules offer potential benefits for Michigan companies that include increased operational flexibility, lower compliance costs, and/or money generated from the sale of the emission reduction credits. The environment also benefits from this program because the rules require that 10 percent of all registered emission reductions must be permanently retired as an air quality benefit. The emission trading program provides new opportunities for consulting firms to assist companies by identifying acceptable ways to generate and use emission reduction credits. Air pollution control companies may also see new opportunities by designing and installing control equipment in order to reduce air emissions. The role of consultants and equipment companies may expand to that of a broker selling and/or buying emission reduction credits on the Emission Trading Registry. Much has been learned since the conception of the air emission trading program. This paper will discuss how the program works in practice compared to what was envisioned in theory and the potential benefits from Michigan`s Emission Trading Program.« less
Characteristics and cause of the "parade blue" in Beijing 2015
NASA Astrophysics Data System (ADS)
Kang, Zhi Ming; Gui, Hai lin; wang, Ji kang
2017-04-01
During the military parade in Beijing — a massive spectacle to mark the 70th anniversary of World War II, the Chinese government made significant efforts to clean up capital's sky. Due to the favorable meteorology condition and the emission control measures, the air quality was significantly improved during the parade,which was called the "Parade Blue". By using atmospheric composition and meteorological observation data, PM2.5 concentration variation characteristics and relevant meteorological conditions during the period from August to September 2015 in Beijing were studied. With the application of the Comprehensive Air quality Model with extensions (CMAx), the contributions of the meteorological conditions, emission control policies and regional collaborations on emission control to the air quality in Beijing were analyzed. The results show that, the air quality of Beijing was significantly improved during the memorial activity period (20 August to 03 September). The average PM2.5 concentration was 18.7μg/m3, reduced by 70% compared with the previous period (August 1st to August 19 th) and reduced by 74% compared with the same period last year. Long period maintain of northeast cold vortex provided the favorable circulation background for the air quality improvement. During the period of memorial activity, the meteorological factors such as mixed layer height, relative humidity and wind speed presented favorable conditions in improving the air quality. In particular, the shifting of dominant wind direction on the ground level prevented the pollutant invading from the southern part of Beijing and from middle and southern areas of North China. CMAx model well simulated the variations of PM2.5 concentrations in Beijing. The simulation results show that, comparing with the same period last year, the meteorological conditions contributed 73% to the total change of PM2.5. 33% of the PM2.5 reduction was attributed to the emission control polices. The contribution of PM2.5 in Beijing was primarily come from local emissions. The local emission reduction took account for 72% for the PM2.5 concentration decrease, while the surrounding areas of emission reduction contributed about 28%.
The Green Heart Initiatives designed to raise public awareness about the role outdoor air pollution plays in cardiovascular health. Developed by the U.S. Environmental Protection Agency (EPA) to complement the national Million Hearts” initiative1, Green Heart seeks to teach healt...
It is desirable for local air quality agencies to accurately forecast tropospheric PM2.5 concentrations to alert the sensitive population of the onset, severity and duration of unhealthy air, and to encourage the public and industry to reduce emissions-producing activi...
Minimum airflow reset of single-duct VAV terminal boxes
NASA Astrophysics Data System (ADS)
Cho, Young-Hum
Single duct Variable Air Volume (VAV) systems are currently the most widely used type of HVAC system in the United States. When installing such a system, it is critical to determine the minimum airflow set point of the terminal box, as an optimally selected set point will improve the level of thermal comfort and indoor air quality (IAQ) while at the same time lower overall energy costs. In principle, this minimum rate should be calculated according to the minimum ventilation requirement based on ASHRAE standard 62.1 and maximum heating load of the zone. Several factors must be carefully considered when calculating this minimum rate. Terminal boxes with conventional control sequences may result in occupant discomfort and energy waste. If the minimum rate of airflow is set too high, the AHUs will consume excess fan power, and the terminal boxes may cause significant simultaneous room heating and cooling. At the same time, a rate that is too low will result in poor air circulation and indoor air quality in the air-conditioned space. Currently, many scholars are investigating how to change the algorithm of the advanced VAV terminal box controller without retrofitting. Some of these controllers have been found to effectively improve thermal comfort, indoor air quality, and energy efficiency. However, minimum airflow set points have not yet been identified, nor has controller performance been verified in confirmed studies. In this study, control algorithms were developed that automatically identify and reset terminal box minimum airflow set points, thereby improving indoor air quality and thermal comfort levels, and reducing the overall rate of energy consumption. A theoretical analysis of the optimal minimum airflow and discharge air temperature was performed to identify the potential energy benefits of resetting the terminal box minimum airflow set points. Applicable control algorithms for calculating the ideal values for the minimum airflow reset were developed and applied to actual systems for performance validation. The results of the theoretical analysis, numeric simulations, and experiments show that the optimal control algorithms can automatically identify the minimum rate of heating airflow under actual working conditions. Improved control helps to stabilize room air temperatures. The vertical difference in the room air temperature was lower than the comfort value. Measurements of room CO2 levels indicate that when the minimum airflow set point was reduced it did not adversely affect the indoor air quality. According to the measured energy results, optimal control algorithms give a lower rate of reheating energy consumption than conventional controls.
NASA Astrophysics Data System (ADS)
Poerbo, Heru W.; Martokusumo, Widjaja; Donny Koerniawan, M.; Aulia Ardiani, Nissa; Krisanti, Susan
2017-12-01
The Local Government of Bandung city has stipulated a Green Building regulation through the Peraturan Walikota Number 1023/2016. Signed by the mayor in October 2016, Bandung became the first city in Indonesia that put green building as mandatory requirement in the building permit (IMB) process. Green Building regulation is intended to have more efficient consumption of energy and water, improved indoor air quality, management of liquid and solid waste etc. This objective is attained through various design method in building envelope, ventilation and air conditioning system, lighting, indoor transportation system, and electrical system. To minimize energy consumption of buildings that have large openings, sun shading device is often utilized together with low-E glass panes. For buildings in hot humid tropical climate, this method reduces indoor air temperature and thus requires less energy for air conditioning. Indoor air quality is often done by monitoring the carbon dioxide levels. Application of algae as part of building system façade has recently been introduced as replacement of large glass surface in the building façade. Algae are not yet included in the green building regulation because it is relatively new. The research will investigate, with the help of the modelling process and extensive literature, how effective is the implementation of algae in building façade to reduce energy consumption and improve its indoor air quality. This paper is written based on the design of ITB Innovation Park as an ongoing architectural design-based research how the algae-integrated building façade affects the energy consumption.
Potassium sorbate reduces production of ethanols and 2 esters in corn silage
USDA-ARS?s Scientific Manuscript database
The objective of this work was to evaluate the effects of biological and chemical silage additives on the production of volatile organic compounds (VOC) within corn silage. Recent work has shown that silage VOC can contribute to poor air quality and reduce feed intake. Silage additives may reduce VO...
Recessions and health: the impact of economic trends on air pollution in California.
Davis, Mary E
2012-10-01
I explored the hypothesis that economic activity has a significant impact on exposure to air pollution and ultimately human health. I used county-level employment statistics in California (1980-2000), along with major regulatory periods and other controlling factors, to estimate local concentrations of the coefficient of haze, carbon monoxide, and nitrogen dioxide using a mixed regression model approach. The model explained between 33% and 48% of the variability in air pollution levels as estimated by the overall R(2) values. The relationship between employment measures and air pollution was statistically significant, suggesting that air quality improves during economic downturns. Additionally, major air quality regulations played a significant role in reducing air pollution levels over the study period. This study provides important evidence of a role for the economy in understanding human exposure to environmental pollution. The evidence further suggests that the impact of environmental regulations are likely to be overstated when they occur during recessionary periods, and understated when they play out during periods of economic growth.
A Context-Aware Indoor Air Quality System for Sudden Infant Death Syndrome Prevention
De Paz, Juan F.; Barriuso, Alberto L.
2018-01-01
Context-aware monitoring systems designed for e-Health solutions and ambient assisted living (AAL) play an important role in today’s personalized health-care services. The majority of these systems are intended for the monitoring of patients’ vital signs by means of bio-sensors. At present, there are very few systems that monitor environmental conditions and air quality in the homes of users. A home’s environmental conditions can have a significant influence on the state of the health of its residents. Monitoring the environment is the key to preventing possible diseases caused by conditions that do not favor health. This paper presents a context-aware system that monitors air quality to prevent a specific health problem at home. The aim of this system is to reduce the incidence of the Sudden Infant Death Syndrome, which is triggered mainly by environmental factors. In the conducted case study, the system monitored the state of the neonate and the quality of air while it was asleep. The designed proposal is characterized by its low cost and non-intrusive nature. The results are promising. PMID:29498653
A Context-Aware Indoor Air Quality System for Sudden Infant Death Syndrome Prevention.
De La Iglesia, Daniel H; De Paz, Juan F; Villarrubia González, Gabriel; Barriuso, Alberto L; Bajo, Javier
2018-03-02
Context-aware monitoring systems designed for e-Health solutions and ambient assisted living (AAL) play an important role in today's personalized health-care services. The majority of these systems are intended for the monitoring of patients' vital signs by means of bio-sensors. At present, there are very few systems that monitor environmental conditions and air quality in the homes of users. A home's environmental conditions can have a significant influence on the state of the health of its residents. Monitoring the environment is the key to preventing possible diseases caused by conditions that do not favor health. This paper presents a context-aware system that monitors air quality to prevent a specific health problem at home. The aim of this system is to reduce the incidence of the Sudden Infant Death Syndrome, which is triggered mainly by environmental factors. In the conducted case study, the system monitored the state of the neonate and the quality of air while it was asleep. The designed proposal is characterized by its low cost and non-intrusive nature. The results are promising.
Air quality and acute myocardial infarction in adults during the 2016 Hangzhou G20 summit.
Wang, Ming-Wei; Chen, Juan; Cai, Ran
2018-04-01
To fulfill its commitment to a successful Hangzhou G20 summit (4 to 5 September 2016), the Chinese government implemented a series of measures to improve the air quality in Hangzhou. We report findings on air quality and acute myocardial infarction (AMI) hospital admissions in adults during the Hangzhou G20 summit. Three study periods were defined. The first period was pre-G20 (28 July to 27 August: limited restrictions on industrial emissions). The second period was G20 (28 August to 6 September) when there were further restrictions on industrial emissions and increased transportation restrictions. The third period was post-G20 (7 September to 6 October) when restrictions were relaxed again. The mean number of AMI admissions per day was, respectively, 8.2 during G20, 13.3 during pre-G20, and 15.1 during post-G20. We used time-series Poisson regression models to estimate the relative risk (RR) for AMI associated with pollution levels. Our results suggest that the air quality improvement can reduce the number of hospital admissions for AMI.
Wang, Shuxiao; Xing, Jia; Zhao, Bin; Jang, Carey; Hao, Jiming
2014-01-01
Understanding the effectiveness of national air pollution controls is important for control policy design to improve the future air quality in China. This study evaluated the effectiveness of major national control policies implemented recently in China through a modeling analysis. The sulfur dioxide (SO2) control policy during the 11th Five Year Plan period (2006-2010) had succeeded in reducing the national SO2 emission in 2010 by 14% from its 2005 level, which correspondingly reduced ambient SO2 and sulfate (SO4(2-)) concentrations by 13%-15% and 8%-10% respectively over east China. The nitrogen oxides (NO(x)) control policy during the 12th Five Year Plan period (2011-2015) targets the reduction of the national NO(x) emission in 2015 by 10% on the basis of 2010. The simulation results suggest that such a reduction in NO(x) emission will reduce the ambient nitrogen dioxide (NO2), nitrate (NO3(-)), 1-hr maxima ozone (O3) concentrations and total nitrogen deposition by 8%, 3%-14%, 2% and 2%-4%, respectively over east China. The application of new emission standards for power plants will further reduce the NO2, NO3(-), 1-hr maxima O(3 concentrations and total nitrogen deposition by 2%-4%, 1%-6%, 0-2% and 1%-2%, respectively. Sensitivity analysis was conducted to evaluate the inter-provincial impacts of emission reduction in Beijing-Tianjin-Hebei and the Yangtze River Delta, which indicated the need to implement joint regional air pollution control.
Schiavon, S; Yang, B; Donner, Y; Chang, V W-C; Nazaroff, W W
2017-05-01
In a warm and humid climate, increasing the temperature set point offers considerable energy benefits with low first costs. Elevated air movement generated by a personally controlled fan can compensate for the negative effects caused by an increased temperature set point. Fifty-six tropically acclimatized persons in common Singaporean office attire (0.7 clo) were exposed for 90 minutes to each of five conditions: 23, 26, and 29°C and in the latter two cases with and without occupant-controlled air movement. Relative humidity was maintained at 60%. We tested thermal comfort, perceived air quality, sick building syndrome symptoms, and cognitive performance. We found that thermal comfort, perceived air quality, and sick building syndrome symptoms are equal or better at 26°C and 29°C than at the common set point of 23°C if a personally controlled fan is available for use. The best cognitive performance (as indicated by task speed) was obtained at 26°C; at 29°C, the availability of an occupant-controlled fan partially mitigated the negative effect of the elevated temperature. The typical Singaporean indoor air temperature set point of 23°C yielded the lowest cognitive performance. An elevated set point in air-conditioned buildings augmented with personally controlled fans might yield benefits for reduced energy use and improved indoor environmental quality in tropical climates. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Anthony, T. Renée; Altmaier, Ralph; Jones, Samuel; Gassman, Rich; Park, Jae Hong; Peters, Thomas M.
2016-01-01
The performance of a recirculating ventilation system with dust filtration was evaluated to determine its effectiveness to improve the air quality in a swine farrowing room of a concentrated animal feeding operation (CAFO). Air was exhausted from the room (0.47 m3sec−1; 1000 cfm), treated with a filtration unit (Shaker-Dust Collector), and returned to the farrowing room to reduce dust concentrations while retaining heat necessary for livestock health. The air quality in the room was assessed over a winter, during which time limited fresh air is traditionally brought into the building. Over the study period, dust concentrations ranged from 0.005 to 0.31 mg m−3 (respirable) and 0.17 to 2.09 mg m−3 (inhalable). In-room dust concentrations were reduced (41% for respirable and 33% for inhalable) with the system in operation, while gas concentrations (ammonia [NH3], hydrogen sulfide [H2S], carbon monoxide [CO], carbon dioxide [CO2]) were unchanged. The position of the exhaust and return air systems provided reasonably uniform contaminant distributions, although the respirable dust concentrations nearest one of the exhaust ducts was statistically higher than other locations in the room, with differences averaging only 0.05 mg m−3. Throughout the study, CO2 concentrations consistently exceeded 1540 ppm (industry recommendations) and on eight of the 18 study days it exceeded 2500 ppm (50% of the ACGIH TLV), with significantly higher concentrations near a door to a temperature-controlled hallway that was typically often left open. Alternative heaters are recommended to reduce CO2 concentrations in the room. Contaminant concentrations were modeled using production and environmental factors, with NH3 related to the number of sow in the room and outdoor temperatures and CO2 related to the number of piglets and outdoor temperatures. The recirculating ventilation system provided dust reduction without increasing concentrations of hazardous gases. PMID:25950713
Health effects of outdoor air pollution
Abelsohn, Alan; Stieb, Dave M.
2011-01-01
Abstract Objective To inform family physicians about the health effects of air pollution and to provide an approach to counseling vulnerable patients in order to reduce exposure. Sources of information MEDLINE was searched using terms relevant to air pollution and its adverse effects. We reviewed English-language articles published from January 2008 to December 2009. Most studies provided level II evidence. Main message Outdoor air pollution causes substantial morbidity and mortality in Canada. It can affect both the respiratory system (exacerbating asthma and chronic obstructive pulmonary disease) and the cardiovascular system (triggering arrhythmias, cardiac failure, and stroke). The Air Quality Health Index (AQHI) is a new communication tool developed by Health Canada and Environment Canada that indicates the level of health risk from air pollution on a scale of 1 to 10. The AQHI is widely reported in the media, and the tool might be of use to family physicians in counseling high-risk patients (such as those with asthma, chronic obstructive pulmonary disease, or cardiac failure) to reduce exposure to outdoor air pollution. Conclusion Family physicians can use the AQHI and its health messages to teach patients with asthma and other high-risk patients how to reduce health risks from air pollution. PMID:21841106
Carbon Dioxide Detection and Indoor Air Quality Control.
Bonino, Steve
2016-04-01
When building ventilation is reduced, energy is saved because it is not necessary to heat or cool as much outside air. Reduced ventilation can result in higher levels of carbon dioxide, which may cause building occupants to experience symptoms. Heating or cooling for ventilation air can be enhanced by a DCV system, which can save energy while providing a comfortable environment. Carbon dioxide concentrations within a building are often used to indicate whether adequate fresh air is being supplied to the building. These DCV systems use carbon dioxide sensors in each space or in the return air and adjust the ventilation based on carbon dioxide concentration; the higher the concentration, the more people occupy the space relative to the ventilation rate. With a carbon dioxide sensor DCV system, the fresh air ventilation rate varies based on the number ofpeople in the space, saving energy while maintaining a safe and comfortable environment.
McHenry, John N; Vukovich, Jeffery M; Hsu, N Christina
2015-12-01
This two-part paper reports on the development, implementation, and improvement of a version of the Community Multi-Scale Air Quality (CMAQ) model that assimilates real-time remotely-sensed aerosol optical depth (AOD) information and ground-based PM2.5 monitor data in routine prognostic application. The model is being used by operational air quality forecasters to help guide their daily issuance of state or local-agency-based air quality alerts (e.g. action days, health advisories). Part 1 describes the development and testing of the initial assimilation capability, which was implemented offline in partnership with NASA and the Visibility Improvement State and Tribal Association of the Southeast (VISTAS) Regional Planning Organization (RPO). In the initial effort, MODIS-derived aerosol optical depth (AOD) data are input into a variational data-assimilation scheme using both the traditional Dark Target and relatively new "Deep Blue" retrieval methods. Evaluation of the developmental offline version, reported in Part 1 here, showed sufficient promise to implement the capability within the online, prognostic operational model described in Part 2. In Part 2, the addition of real-time surface PM2.5 monitoring data to improve the assimilation and an initial evaluation of the prognostic modeling system across the continental United States (CONUS) is presented. Air quality forecasts are now routinely used to understand when air pollution may reach unhealthy levels. For the first time, an operational air quality forecast model that includes the assimilation of remotely-sensed aerosol optical depth and ground based PM2.5 observations is being used. The assimilation enables quantifiable improvements in model forecast skill, which improves confidence in the accuracy of the officially-issued forecasts. This helps air quality stakeholders be more effective in taking mitigating actions (reducing power consumption, ride-sharing, etc.) and avoiding exposures that could otherwise result in more serious air quality episodes or more deleterious health effects.
Kerl, Paul Y; Zhang, Wenxian; Moreno-Cruz, Juan B; Nenes, Athanasios; Realff, Matthew J; Russell, Armistead G; Sokol, Joel; Thomas, Valerie M
2015-09-01
Integrating accurate air quality modeling with decision making is hampered by complex atmospheric physics and chemistry and its coupling with atmospheric transport. Existing approaches to model the physics and chemistry accurately lead to significant computational burdens in computing the response of atmospheric concentrations to changes in emissions profiles. By integrating a reduced form of a fully coupled atmospheric model within a unit commitment optimization model, we allow, for the first time to our knowledge, a fully dynamical approach toward electricity planning that accurately and rapidly minimizes both cost and health impacts. The reduced-form model captures the response of spatially resolved air pollutant concentrations to changes in electricity-generating plant emissions on an hourly basis with accuracy comparable to a comprehensive air quality model. The integrated model allows for the inclusion of human health impacts into cost-based decisions for power plant operation. We use the new capability in a case study of the state of Georgia over the years of 2004-2011, and show that a shift in utilization among existing power plants during selected hourly periods could have provided a health cost savings of $175.9 million dollars for an additional electricity generation cost of $83.6 million in 2007 US dollars (USD2007). The case study illustrates how air pollutant health impacts can be cost-effectively minimized by intelligently modulating power plant operations over multihour periods, without implementing additional emissions control technologies.
Kerl, Paul Y.; Zhang, Wenxian; Moreno-Cruz, Juan B.; Nenes, Athanasios; Realff, Matthew J.; Russell, Armistead G.; Sokol, Joel; Thomas, Valerie M.
2015-01-01
Integrating accurate air quality modeling with decision making is hampered by complex atmospheric physics and chemistry and its coupling with atmospheric transport. Existing approaches to model the physics and chemistry accurately lead to significant computational burdens in computing the response of atmospheric concentrations to changes in emissions profiles. By integrating a reduced form of a fully coupled atmospheric model within a unit commitment optimization model, we allow, for the first time to our knowledge, a fully dynamical approach toward electricity planning that accurately and rapidly minimizes both cost and health impacts. The reduced-form model captures the response of spatially resolved air pollutant concentrations to changes in electricity-generating plant emissions on an hourly basis with accuracy comparable to a comprehensive air quality model. The integrated model allows for the inclusion of human health impacts into cost-based decisions for power plant operation. We use the new capability in a case study of the state of Georgia over the years of 2004–2011, and show that a shift in utilization among existing power plants during selected hourly periods could have provided a health cost savings of $175.9 million dollars for an additional electricity generation cost of $83.6 million in 2007 US dollars (USD2007). The case study illustrates how air pollutant health impacts can be cost-effectively minimized by intelligently modulating power plant operations over multihour periods, without implementing additional emissions control technologies. PMID:26283358
Regulatory effects on particulate pollution in the early hours of Chinese New Year, 2015.
Lai, Yonghang; Brimblecombe, Peter
2017-08-23
Human activities are a key driver of air pollution, so it is hardly surprising that celebrations affect air quality. The use of fireworks contributes to high particulate concentrations in many parts of the world, with the Chinese Lunar New Year (spring festival) particularly noticeable, as firecrackers are traditionally used to drive off evil spirits. Fireworks lead to short-term peaks in the concentration of PM10, PM2.5 and SO 2 . Regulatory actions that restrict the use of fireworks have been evident in China since the 1990s. This paper investigates the particulate concentrations in nine Chinese cities (Beijing, Chengdu, Chongqing, Tianjin, Xi'an, Nanjing, Shanghai, Guangzhou and Shenzhen, along with Hong Kong (a Special Administrative Region) and Taipei and Kaohsiung (Taiwan) with a particular focus on the celebrations of 2015. Extremely high concentrations of particulate matter were observed, with some sites revealing peak PM10 concentrations in excess of 1000 μg m -3 in the early hours of the New Year. In Beijing, Tianjin and Chongqing, the activities caused high particulate matter concentrations at most sites throughout the city. These peaks in particulate load in the early hours of Chinese New Year do not appear to be closely related to meteorological parameters. However, in cities where fireworks appear to be better regulated, there are fewer sharp pollution peaks just after midnight, although lowered air quality can still be found in the outer parts of some cities, remote from regulatory pressures. A few cities seem to have been effective at reducing the impact of the celebrations on air quality, with Nanjing a recent example. An increasing focus on light displays and electric lanterns also seems to offer a sense of celebration with much reduced impacts on air quality.
Schweizer, Don; Cisneros, Ricardo
2014-11-01
Management of fire is an important and controversial policy issue. Active fire suppression has led to a backlog of fuels, limited the ecological benefits of fire, and reduced short-term smoke impacts likely delaying these emissions to future generations over a larger spatial extent. Smoke impacts can be expected to increase as fire size and intensity increase and the fuel backlog is consumed; whether through reintroduction of fire under desirable conditions or through stand replacing fire. Land Management Agencies would like to increase the use of naturally ignited fires to burn during favorable conditions as a way to reduce catastrophic fires. This study provides information about the levels of air quality impacts expected from these types of fires and discusses some of the policy controversies of managed fire that propagate inconsistencies between agencies and enter the public discourse. The Lion Fire, a primarily low intensity 8,370 ha fire that was extensively monitored for Particulate Matter less than 2.5 microns (PM2.5), is used to quantify impacts to air quality. PM2.5 monitoring sites are used to assess exposure, public health impacts, and subsequently quantify annual air quality during a year with a fire that is within the historic normal fire size and intensity for this area. Ground level PM2.5 impacts were found to be localized with 99% of the hourly Air Quality Index readings in the moderate or good category for the sites impacted by the fire. PM2.5 concentrations at sites nearest the fire were below annual federal air quality standards for PM2.5 with annual 98th percentile at the most impacted sites (Johnsondale, Kernville, and Camp Nelson) of 35.0, 34.0, and 28.0 μg m(-3) respectively. Smoke impacts to PM2.5 concentrations were not found to reach the populated Central Valley. The findings suggest that this type of fire can be implemented with minimal public health impacts thus allowing an opportunity for air and fire managers to alter policy to allow additional burning in an area with severe anthropogenic air pollution and where frequent widespread fire is both beneficial and inevitable. The more extensive air quality impacts documented with large high intensity fire may be averted by embracing the use of fire to prevent unwanted high intensity burns. A widespread increase in the use of fire for ecological benefit may provide the resiliency needed in Sierra Nevada forests as well as be the most beneficial to public health through the reduction of single dose exposure to smoke and limiting impacts spatially. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, X.; Li, G.; Junji, C.
2017-12-01
In the present study, a persistent heavy haze episode from 13 to 20 January 2014 in Beijing-Tianjin-Hebei (BTH) is simulated using the WRF-CHEM model to evaluate the contribution of residential coal combustion to the air quality. The residential coal used in BTH is replaced by the water-quenched semi-coke with much lower emission factors (EFs) in simulations. The EFs of OC for water-quenched semi-coke (0.12 g kg-1) is 2.42 times lower than that for residential coal used in Beijing-Tianjin (0.29 g kg-1) and 9.17 times in Hebei (1.1 g kg-1). The WRF-CHEM model reasonably well reproduces the spatial distributions and temporal variations of PM2.5 mass concentrations in BTH against the observations over monitoring sites and the temporal variations of aerosol species compared to the AMS measurements in Beijing. On average, the PM2.5 concentration is reduced by around 20 µg m-3 due to the residential coal replacement. Organic aerosols constitute about 62.3% of the PM2.5 reduction in BTH, much higher than the contribution from sulfate (7.0%), nitrate (3.1%), and ammonium (3.1%). In addition, the usage of water-quenched semi-coke in BTH also significantly reduces polycyclic aromatic hydrocarbon (PAHs) concentrations by 50-450 ng m-3 on average. Therefore, the usage of water-quenched semi-coke in BTH could considerably reduce the emissions of air pollutants and decrease the PM2.5 level, beneficial to improvement of the air quality in BTH.
Shamo, Farid; Wilson, Teri; Kiley, Janet; Repace, James
2015-07-16
To assess the effect of Michigan's smoke-free air (SFA) law on the air quality inside selected restaurants and casinos. The hypothesis of the study: if the SFA law is effectively implemented in restaurants and casinos, there will be a significant reduction in the particulate matter PM2.5 measured in the same establishments after the law is implemented. Prelaw and postlaw design study. 78 restaurants in 14 Michigan cities from six major regions of the state, and three Detroit casinos. We monitored the real-time PM2.5 in 78 restaurants and three Detroit casinos before the SFA law, and again monitored the same restaurants and casinos after implementation of the law, which was enacted on 1 May 2010. Concentration measurements of secondhand smoke (SHS) fine particles (PM2.5) were compared in each restaurant in the prelaw period to measurements of PM2.5 in the same restaurants during the postlaw period. A second comparison was made for PM2.5 levels in three Detroit casinos prelaw and postlaw; these casinos were exempted from the SFA law. Prelaw data indicated that 85% of the restaurants had poor to hazardous air quality, with the average venue having 'unhealthy' air according to Michigan's Air Quality Index for PM2.5. Postlaw, air quality in 93% of the restaurants improved to 'good'. The differences were statistically significant (p<0.0001). By comparison, the three casinos measured had 'unhealthy' air both before and after the law. The significant air quality improvement in the Michigan restaurants after implementation of the SFA law indicates that the law was very effective in reducing exposure to SHS. Since the Detroit casinos were exempted from the law, the air quality was unchanged, and remained unhealthy in both prelaw and postlaw periods. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Sick Schools 2009: America's Continuing Environmental Health Crisis for Children
ERIC Educational Resources Information Center
Healthy Schools Network, Inc., 2010
2010-01-01
Everybody knows that healthy school buildings contribute to student learning, reduce health and operating costs, and ultimately, increase school quality and competitiveness. However, 55 million of the nation's children attend public and private K-12 schools where poor air quality, hazardous chemicals and other unhealthy conditions make students…
Assessing the Future Vehicle Fleet Electrification: The Impacts on Regional and Urban Air Quality.
Ke, Wenwei; Zhang, Shaojun; Wu, Ye; Zhao, Bin; Wang, Shuxiao; Hao, Jiming
2017-01-17
There have been significant advancements in electric vehicles (EVs) in recent years. However, the different changing patterns in emissions at upstream and on-road stages and complex atmospheric chemistry of pollutants lead to uncertainty in the air quality benefits from fleet electrification. This study considers the Yangtze River Delta (YRD) region in China to investigate whether EVs can improve future air quality. The Community Multiscale Air Quality model enhanced by the two-dimensional volatility basis set module is applied to simulate the temporally, spatially, and chemically resolved changes in PM 2.5 concentrations and the changes of other pollutants from fleet electrification. A probable scenario (Scenario EV1) with 20% of private light-duty passenger vehicles and 80% of commercial passenger vehicles (e.g., taxis and buses) electrified can reduce average PM 2.5 concentrations by 0.4 to 1.1 μg m -3 during four representative months for all urban areas of YRD in 2030. The seasonal distinctions of the air quality impacts with respect to concentration reductions in key aerosol components are also identified. For example, the PM 2.5 reduction in January is mainly attributed to the nitrate reduction, whereas the secondary organic aerosol reduction is another essential contributor in August. EVs can also effectively assist in mitigating NO 2 concentrations, which would gain greater reductions for traffic-dense urban areas (e.g., Shanghai). This paper reveals that the fleet electrification in the YRD region could generally play a positive role in improving regional and urban air quality.
EPA Collaboration with South Korea
EPA, the Ministry of Environment of Korea, and partner agencies in both countries cooperate to strengthen environmental governance, improve air and water quality, and reduce exposure to toxic chemicals.
Other Remedy Options Evaluated
EPA considered several remedy options for reducing emissions from electric generating units (EGUs) that contribute significantly to nonattainment or interfere with maintenance of the air quality standards by downwind states.
Port Stakeholder Summit - April 2014
EPA's National Port Stakeholders Summit, Advancing More Sustainable Ports, focused on actions to protect air quality while reducing climate risk and supporting economic growth, making ports more environmentally sustainable.
2012-05-01
indoor air quality from installation of a new, improved cleaning line ventilation system. Cultural Resources No adverse effect on cultural...EA) has been prepared to assess the potential effects on the human and natural environment of replacing the chemical cleaning line at Tinker Air...providing improved system monitors and controls, reducing the overall energy consumption of the system, and enabling the system to accommodate larger
Wang, N; Lyu, X P; Deng, X J; Guo, H; Deng, T; Li, Y; Yin, C Q; Li, F; Wang, S Q
2016-12-15
To evaluate the impact of emission control measures on the air quality in the Pearl River Delta (PRD) region of South China, statistic data including atmospheric observations, emissions and energy consumptions during 2006-2014 were analyzed, and a Weather Research and Forecasting - Community Multi-scale Air Quality (WRF-CMAQ) model was used for various scenario simulations. Although energy consumption doubled from 2004 to 2014 and vehicle number significantly increased from 2006 to 2014, ambient SO 2 , NO 2 and PM 10 were reduced by 66%, 20% and 24%, respectively, mainly due to emissions control efforts. In contrast, O 3 increased by 19%. Model simulations of three emission control scenarios, including a baseline (a case in 2010), a CAP (a case in 2020 assuming control strength followed past control tendency) and a REF (a case in 2020 referring to the strict control measures based on recent policy/plans) were conducted to investigate the variations of air pollutants to the changes in NO x , VOCs and NH 3 emissions. Although the area mean concentrations of NO x , nitrate and PM 2.5 decreased under both NO x CAP (reduced by 1.8%, 0.7% and 0.2%, respectively) and NO x REF (reduced by 7.2%, 1.8% and 0.3%, respectively), a rising of PM 2.5 was found in certain areas as reducing NO x emissions elevated the atmospheric oxidizability. Furthermore, scenarios with NH 3 emission reductions showed that nitrate was sensitive to NH 3 emissions, with decreasing percentages of 0-10.6% and 0-48% under CAP and REF, respectively. Controlling emissions of VOCs reduced PM 2.5 in the southwestern PRD where severe photochemical pollution frequently occurred. It was also found that O 3 formation in PRD was generally VOCs-limited while turned to be NO x -limited in the afternoon (13:00-17:00), suggesting that cutting VOCs emissions would reduce the overall O 3 concentrations while mitigating NO x emissions in the afternoon could reduce the peak O 3 levels. Copyright © 2016 Elsevier B.V. All rights reserved.
Effects of future anthropogenic pollution emissions on global air quality
NASA Astrophysics Data System (ADS)
Pozzer, A.; Zimmermann, P.; Doering, U.; van Aardenne, J.; Dentener, F.; Lelieveld, J.
2012-04-01
The atmospheric chemistry general circulation model EMAC is used to estimate the impact of anthropogenic emission changes on global and regional air quality in recent and future years (2005, 2010, 2025 and 2050). The emission scenario assumes that population and economic growth largely determine energy consumption and consequent pollution sources ("business as usual"). By comparing with recent observations, it is shown that the model reproduces the main features of regional air pollution distributions though with some imprecision inherent to the coarse horizontal resolution (around 100 km). To identify possible future hot spots of poor air quality, a multi pollutant index (MPI) has been applied. It appears that East and South Asia and the Arabian Gulf regions represent such hotspots due to very high pollutant concentrations. In East Asia a range of pollutant gases and particulate matter (PM2.5) are projected to reach very high levels from 2005 onward, while in South Asia air pollution, including ozone, will grow rapidly towards the middle of the century. Around the Arabian Gulf, where natural PM2.5 concentrations are already high (desert dust), ozone levels will increase strongly. By extending the MPI definition, we calculated a Per Capita MPI (PCMPI) in which we combined population projections with those of pollution emissions. It thus appears that a rapidly increasing number of people worldwide will experience reduced air quality during the first half of the 21st century. It is projected that air quality for the global average citizen in 2050 will be comparable to the average in East Asia in the year 2005.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allison, J.E.
1999-07-01
Following more than a decade of negotiations, the Canada-United States Agreement on Air Quality entered into force on March 13, 1991, with the signatures of then-Canadian Prime Minister Brian Mulroney and US President George Bush. Why was it so difficult for Canadian and US negotiators to reach agreement? The author argues that Canadian and US domestic politics were the primary impediments to resolving the US-Canada acid rain dispute. This article thus casts the dispute in terms of a pair of domestic environmental policy problems, whose timely and complementary solution, furthermore, required executive initiative as the handmaiden of ecological crisis. Heightenedmore » public concern about the threat of acidic air pollution in Canada prompted Mulroney's efforts to reduce acid rain. In the US, a likewise critical change in the public's perception of air quality as a national emergency created the mass support necessary for Bush's federal acid rain control initiative.« less
Usui, Yasuhiro; Sakai, Hidemitsu; Tokida, Takeshi; Nakamura, Hirofumi; Nakagawa, Hiroshi; Hasegawa, Toshihiro
2016-03-01
Rising air temperatures are projected to reduce rice yield and quality, whereas increasing atmospheric CO2 concentrations ([CO2 ]) can increase grain yield. For irrigated rice, ponded water is an important temperature environment, but few open-field evaluations are available on the combined effects of temperature and [CO2 ], which limits our ability to predict future rice production. We conducted free-air CO2 enrichment and soil and water warming experiments, for three growing seasons to determine the yield and quality response to elevated [CO2 ] (+200 μmol mol(-1) , E-[CO2 ]) and soil and water temperatures (+2 °C, E-T). E-[CO2 ] significantly increased biomass and grain yield by approximately 14% averaged over 3 years, mainly because of increased panicle and spikelet density. E-T significantly increased biomass but had no significant effect on the grain yield. E-T decreased days from transplanting to heading by approximately 1%, but days to the maximum tiller number (MTN) stage were reduced by approximately 8%, which limited the panicle density and therefore sink capacity. On the other hand, E-[CO2 ] increased days to the MTN stage by approximately 4%, leading to a greater number of tillers. Grain appearance quality was decreased by both treatments, but E-[CO2 ] showed a much larger effect than did E-T. The significant decrease in undamaged grains (UDG) by E-[CO2 ] was mainly the result of an increased percentage of white-base grains (WBSG), which were negatively correlated with grain protein content. A significant decrease in grain protein content by E-[CO2 ] accounted in part for the increased WBSG. The dependence of WBSG on grain protein content, however, was different among years; the slope and intercept of the relationship were positively correlated with a heat dose above 26 °C. Year-to-year variation in the response of grain appearance quality demonstrated that E-[CO2 ] and rising air temperatures synergistically reduce grain appearance quality of rice. © 2015 John Wiley & Sons Ltd.
A Regional Multi-permit Market for Ecosystem Services
NASA Astrophysics Data System (ADS)
Bernknopf, R.; Amos, P.; Zhang, E.
2014-12-01
Regional cap and trade programs have been in operation since the 1970's to reduce environmental externalities (NOx and SOx emissions) and have been shown to be beneficial. Air quality and water quality limits are enforced through numerous Federal and State laws and regulations while local communities are seeking ways to protect regional green infrastructure and their ecosystems services. Why not combine them in a market approach to reduce many environmental externalities simultaneously? In a multi-permit market program reforestation (land offsets) as part of a nutrient or carbon sequestration trading program would provide a means to reduce agrochemical discharges into streams, rivers, and groundwater. Land conversions also improve the quality and quantity of other environmental externalities such as air pollution. Collocated nonmarket ecosystem services have societal benefits that can expand the crediting system into a multi-permit trading program. At a regional scale it is possible to combine regulation of water quality, air emissions and quality, and habitat conservation and restoration into one program. This research is about the economic feasibility of a Philadelphia regional multi-permit (cap and trade) program for ecosystem services. Instead of establishing individual markets for ecosystem services, the assumption of the spatial portfolio approach is that it is based on the interdependence of ecosystem functions so that market credits encompasses a range of ecosystem services. Using an existing example the components of the approach are described in terms of scenarios of land portfolios and the calculation of expected return on investment and risk. An experiment in the Schuylkill Watershed will be described for ecosystem services such as nutrients in water and populations of bird species along with Green House Gases. The Philadelphia regional market includes the urban - nonurban economic and environmental interactions and impacts.
Tong, Zheming; Chen, Yujiao; Malkawi, Ali; Adamkiewicz, Gary; Spengler, John D
2016-01-01
Improper natural ventilation practices may deteriorate indoor air quality when in close proximity to roadways, although the intention is often to reduce energy consumption. In this study, we employed a CFD-based air quality model to quantify the impact of traffic-related air pollution on the indoor air quality of a naturally ventilated building. Our study found that the building envelope restricts dispersion and dilution of particulate matter. The indoor concentration in the baseline condition located 10m away from the roadway is roughly 16-21% greater than that at the edge of the roadway. The indoor flow recirculation creates a well-mixed zone with little variation in fine particle concentration (i.e., 253nm). For ultrafine particles (<100nm), a noticeable decrease in particle concentrations indoors with increasing distance from the road is observed due to Brownian and turbulent diffusion. In addition, the indoor concentration strongly depends on the distance between the roadway and building, particle size, wind condition, and window size and location. A break-even point is observed at D'~2.1 (normalized distance from the roadway by the width of the road). The indoor particle concentration is greater than that at the highway where D'<2.1, and vice versa. For new building planning, the distance from the roadway and the ambient wind condition need to be considered at the early design stage whereas the size and location of the window openings, the interior layout, and the placement of fresh air intakes are important to the indoor air quality of existing buildings adjacent to roadways. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effect of β-glucan-rich barley flour fraction on rheology and quality of frozen yeasted dough.
Hamed, Abdelmagid; Ragaee, Sanaa; Abdel-Aal, El-Sayed M
2014-12-01
Research has shown that prolonged frozen storage of bread dough reduces the quality of the end product. In this study, the effect of air-classified barley flour fraction rich in β-glucan (approximately 25%) on rheology and quality of frozen yeasted bread dough was investigated. Wheat flour (W) was replaced by air-classified barley flour fraction (B) at 10% without or with 1.4% vital gluten to produce β-glucan enriched barley dough (WB) or barley dough plus gluten (WB + G). Dough products were stored at -18 ºC for 8 wk and their rheological properties were investigated weekly. During frozen storage dough extensibility increased, while elastic and viscous moduli decreased. Differential scanning calorimeter and nuclear magnetic resonance data indicated that WB and WB + G dough products contained approximately 10% less freezable water and 9% more bound water compared to the control dough (W). β-Glucan enriched dough also exhibited less changes in gluten network as shown by SEM photographs. The addition of air-classified barley flour fraction at 10% in frozen dough reduced deterioration effects caused by frozen storage via minimizing water redistribution and maintaining rheological properties of frozen dough. © 2014 Institute of Food Technologists®
Thatcher, Andrew; Milner, Karen
2014-01-01
Based on improvements in indoor environmental quality claims are that 'green' buildings are healthier and promote greater productivity than conventional buildings. However, the empirical evidence over the last decade has been inconclusive, usually with flawed study designs. This study explored whether a 'green' building leads to a healthier, more productive work environment. A one-year, longitudinal comparison of two groups of employees of a large commercial bank; a group that moved into a GreenStar-accredited building and a group that stayed in a conventional building, was conducted. Measures of psychological wellbeing, physical wellbeing, productivity, and perceptions of the physical environment were taken before the move, six months later, and one year later. Results indicate that the 'green' building group had significantly increased self-reported productivity and physical wellbeing. The perceptions of the physical work environment indicate that respondents in the 'green' building group experienced significant air quality improvements (specifically, reduced stale air, better ventilation, improved air movement, reduced humidity, and conditions that were not too drafty) but perceived the lighting conditions as dimmer. Despite positive findings 'green' building rating tools require amendment to focus on those qualities that actually lead to improved wellbeing and productivity.
10 CFR 32.55 - Same: Quality assurance; prohibition of transfer.
Code of Federal Regulations, 2010 CFR
2010-01-01
... water for 24 hours and shall show no visible evidence of water entry. Absolute pressure of the air above the water shall then be reduced to 1 inch of mercury. Lowered pressure shall be maintained for 1 minute or until air bubbles cease to be given off by the water, whichever is the longer. Pressure shall...
Communities along Utah’s Wasatch Front are currently developing strategies to reduce daily average PM2.5 levels to below National Ambient Air Quality Standards during wintertime, persistent, multi-day stable atmospheric conditions or cold-air pools. Speciated PM2.5 data from the ...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-22
... Retrofit Technology (BART) provision of the Clean Air Act (CAA or Act). EPA proposed the BART FIP to reduce... included in the proposal due to the unique purpose and history of NGS and the numerous stakeholder... Use I. National Technology Transfer and Advancement Act J. Executive Order 12898: Federal Actions To...
Zigler, Corwin M; Choirat, Christine; Dominici, Francesca
2018-03-01
Despite dramatic air quality improvement in the United States over the past decades, recent years have brought renewed scrutiny and uncertainty surrounding the effectiveness of specific regulatory programs for continuing to improve air quality and public health outcomes. We employ causal inference methods and a spatial hierarchical regression model to characterize the extent to which a designation of "nonattainment" with the 1997 National Ambient Air Quality Standard for ambient fine particulate matter (PM2.5) in 2005 causally affected ambient PM2.5 and health outcomes among over 10 million Medicare beneficiaries in the Eastern United States in 2009-2012. We found that, on average across all retained study locations, reductions in ambient PM2.5 and Medicare health outcomes could not be conclusively attributed to the nonattainment designations against the backdrop of other regional strategies that impacted the entire Eastern United States. A more targeted principal stratification analysis indicates substantial health impacts of the nonattainment designations among the subset of areas where the designations are estimated to have actually reduced ambient PM2.5 beyond levels achieved by regional measures, with noteworthy reductions in all-cause mortality, chronic obstructive pulmonary disorder, heart failure, ischemic heart disease, and respiratory tract infections. These findings provide targeted evidence of the effectiveness of local control measures after nonattainment designations for the 1997 PM2.5 air quality standard.
Ventilation, indoor air quality, and health in homes undergoing weatherization.
Francisco, P W; Jacobs, D E; Targos, L; Dixon, S L; Breysse, J; Rose, W; Cali, S
2017-03-01
Ventilation standards, health, and indoor air quality have not been adequately examined for residential weatherization. This randomized trial showed how ASHRAE 62-1989 (n=39 houses) and ASHRAE 62.2-2010 (n=42 houses) influenced ventilation rates, moisture balance, indoor air quality, and self-reported physical and mental health outcomes. Average total airflow was nearly twice as high for ASHRAE 62.2-2010 (79 vs. 39 cfm). Volatile organic compounds, formaldehyde and carbon dioxide were all significantly reduced for the newer standard and first-floor radon was marginally lower, but for the older standard, only formaldehyde significantly decreased. Humidity in the ASHRAE 62.2-2010 group was only about half that of the ASHRAE 62-1989 group using the moisture balance metric. Radon was higher in the basement but lower on the first floor for ASHRAE 62.2-2010. Children in each group had fewer headaches, eczema, and skin allergies after weatherization and adults had improvements in psychological distress. Indoor air quality and health improve when weatherization is accompanied by an ASHRAE residential ventilation standard, and the 2010 ASHRAE standard has greater improvements in certain outcomes compared to the 1989 standard. Weatherization, home repair, and energy conservation projects should use the newer ASHRAE standard to improve indoor air quality and health. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Guevara, M; Tena, C; Soret, A; Serradell, K; Guzmán, D; Retama, A; Camacho, P; Jaimes-Palomera, M; Mediavilla, A
2017-04-15
This article describes the High-Elective Resolution Modelling Emission System for Mexico (HERMES-Mex) model, an emission processing tool developed to transform the official Mexico City Metropolitan Area (MCMA) emission inventory into hourly, gridded (up to 1km 2 ) and speciated emissions used to drive mesoscale air quality simulations with the Community Multi-scale Air Quality (CMAQ) model. The methods and ancillary information used for the spatial and temporal disaggregation and speciation of the emissions are presented and discussed. The resulting emission system is evaluated, and a case study on CO, NO 2 , O 3 , VOC and PM 2.5 concentrations is conducted to demonstrate its applicability. Moreover, resulting traffic emissions from the Mobile Source Emission Factor Model for Mexico (MOBILE6.2-Mexico) and the MOtor Vehicle Emission Simulator for Mexico (MOVES-Mexico) models are integrated in the tool to assess and compare their performance. NO x and VOC total emissions modelled are reduced by 37% and 26% in the MCMA when replacing MOBILE6.2-Mexico for MOVES-Mexico traffic emissions. In terms of air quality, the system composed by the Weather Research and Forecasting model (WRF) coupled with the HERMES-Mex and CMAQ models properly reproduces the pollutant levels and patterns measured in the MCMA. The system's performance clearly improves in urban stations with a strong influence of traffic sources when applying MOVES-Mexico emissions. Despite reducing estimations of modelled precursor emissions, O 3 peak averages are increased in the MCMA core urban area (up to 30ppb) when using MOVES-Mexico mobile emissions due to its VOC-limited regime, while concentrations in the surrounding suburban/rural areas decrease or increase depending on the meteorological conditions of the day. The results obtained suggest that the HERMES-Mex model can be used to provide model-ready emissions for air quality modelling in the MCMA. Copyright © 2017 Elsevier B.V. All rights reserved.
The impact of particle filtration on indoor air quality in a classroom near a highway.
van der Zee, S C; Strak, M; Dijkema, M B A; Brunekreef, B; Janssen, N A H
2017-03-01
A pilot study was performed to investigate whether the application of a new mechanical ventilation system with a fine F8 (MERV14) filter could improve indoor air quality in a high school near the Amsterdam ring road. PM10, PM2.5, and black carbon (BC) concentrations were measured continuously inside an occupied intervention classroom and outside the school during three sampling periods in the winter of 2013/2014. Initially, 3 weeks of baseline measurements were performed, with the existing ventilation system and normal ventilation habits. Next, an intervention study was performed. A new ventilation system was installed in the classroom, and measurements were performed during 8 school weeks, in alternating 2-week periods with and without the filter in the ventilation system under otherwise identical ventilation conditions. Indoor/outdoor ratios measured during the weeks with filter were compared with those measured without filter to evaluate the ability of the F8 filter to improve indoor air quality. During teaching hours, the filter reduced BC exposure by, on average, 36%. For PM10 and PM2.5, a reduction of 34% and 30% was found, respectively. This implies that application of a fine filter can reduce the exposure of schoolchildren to traffic exhaust at hot spot locations by about one-third. © 2016 The Authors. Indoor Air published by John Wiley & Sons Ltd.
Barnes, Natasha Maria; Ng, Tsz Wai; Ma, Kwok Keung; Lai, Ka Man
2018-03-27
Many people spend lengthy periods each day in enclosed vehicles in Hong Kong. However, comparably limited data is available about in-cabin air quality in air-conditioned private vehicles, and the car usage that may affect the air quality. Fifty-one vehicles were tested for particulate matter (PM 0.3 and PM 2.5 ), total volatile organic compounds (TVOCs), carbon monoxide (CO), carbon dioxide (CO₂), airborne bacteria, and fungi levels during their routine travel journey. Ten of these vehicles were further examined for PM 0.3 , PM 2.5 , TVOCs, CO, and CO₂ during engine idling. In general, during driving PM 2.5 levels in-cabin reduced overtime, but not PM 0.3 . For TVOCs, 24% vehicles exceeded the recommended Indoor Air Quality (IAQ) level in offices and public places set by the Hong Kong Environmental Protection Department. The total volatile organic compounds (TVOC) concentration positively correlated with the age of the vehicle. Carbon monoxide (CO) levels in all of the vehicles were lower than the IAQ recommendation, while 96% vehicles exceeded the recommended CO₂ level of 1000 ppmv; 16% vehicles >5000 ppmv. Microbial counts were relatively low. TVOCs levels at idle engine were higher than that during driving. Although the time we spend in vehicles is short, the potential exposure to high levels of pollutants should not be overlooked.
Barnes, Natasha Maria; Ng, Tsz Wai; Ma, Kwok Keung; Lai, Ka Man
2018-01-01
Many people spend lengthy periods each day in enclosed vehicles in Hong Kong. However, comparably limited data is available about in-cabin air quality in air-conditioned private vehicles, and the car usage that may affect the air quality. Fifty-one vehicles were tested for particulate matter (PM0.3 and PM2.5), total volatile organic compounds (TVOCs), carbon monoxide (CO), carbon dioxide (CO2), airborne bacteria, and fungi levels during their routine travel journey. Ten of these vehicles were further examined for PM0.3, PM2.5, TVOCs, CO, and CO2 during engine idling. In general, during driving PM2.5 levels in-cabin reduced overtime, but not PM0.3. For TVOCs, 24% vehicles exceeded the recommended Indoor Air Quality (IAQ) level in offices and public places set by the Hong Kong Environmental Protection Department. The total volatile organic compounds (TVOC) concentration positively correlated with the age of the vehicle. Carbon monoxide (CO) levels in all of the vehicles were lower than the IAQ recommendation, while 96% vehicles exceeded the recommended CO2 level of 1000 ppmv; 16% vehicles >5000 ppmv. Microbial counts were relatively low. TVOCs levels at idle engine were higher than that during driving. Although the time we spend in vehicles is short, the potential exposure to high levels of pollutants should not be overlooked. PMID:29584686
Air quality considerations for stormwater green street design.
Shaneyfelt, Kathryn M; Anderson, Andrew R; Kumar, Prashant; Hunt, William F
2017-12-01
Green streets are increasingly being used as a stormwater management strategy to mitigate stormwater runoff at its source while providing other environmental and societal benefits, including connecting pedestrians to the street. Simultaneously, human exposure to particulate matter from urban transportation is of major concern worldwide due to the proximity of pedestrians, drivers, and cyclists to the emission sources. Vegetation used for stormwater treatment can help designers limit the exposure of people to air pollutants. This goal can be achieved through the deliberate placement of green streets, along with strategic planting schemes that maximize pollutant dispersion. This communication presents general design considerations for green streets that combine stormwater management and air quality goals. There is currently limited guidance on designing green streets for air quality considerations; this is the first communication to offer suggestions and advice for the design of green stormwater streets in regards to their effects on air quality. Street characteristics including (1) the width to height ratio of the street to the buildings, (2) the type of trees and their location, and (3) any prevailing winds can have an impact on pollutant concentrations within the street and along sidewalks. Vegetation within stormwater control measures has the ability to reduce particulate matter concentrations; however, it must be carefully selected and placed within the green street to promote the dispersion of air flow. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ambient air pollution, climate change, and population health in China.
Kan, Haidong; Chen, Renjie; Tong, Shilu
2012-07-01
As the largest developing country, China has been changing rapidly over the last three decades and its economic expansion is largely driven by the use of fossil fuels, which leads to a dramatic increase in emissions of both ambient air pollutants and greenhouse gases (GHGs). China is now facing the worst air pollution problem in the world, and is also the largest emitter of carbon dioxide. A number of epidemiological studies on air pollution and population health have been conducted in China, using time-series, case-crossover, cross-sectional, cohort, panel or intervention designs. The increased health risks observed among Chinese population are somewhat lower in magnitude, per amount of pollution, than the risks found in developed countries. However, the importance of these increased health risks is greater than that in North America or Europe, because the levels of air pollution in China are very high in general and Chinese population accounts for more than one fourth of the world's totals. Meanwhile, evidence is mounting that climate change has already affected human health directly and indirectly in China, including mortality from extreme weather events; changes in air and water quality; and changes in the ecology of infectious diseases. If China acts to reduce the combustion of fossil fuels and the resultant air pollution, it will reap not only the health benefits associated with improvement of air quality but also the reduced GHG emissions. Consideration of the health impact of air pollution and climate change can help the Chinese government move forward towards sustainable development with appropriate urgency. Copyright © 2011 Elsevier Ltd. All rights reserved.
Local action on outdoor air pollution to improve public health.
Vardoulakis, Sotiris; Kettle, Rachel; Cosford, Paul; Lincoln, Paul; Holgate, Stephen; Grigg, Jonathan; Kelly, Frank; Pencheon, David
2018-06-01
The National Institute for Health and Care Excellence, jointly with Public Health England, have developed a guideline on outdoor air pollution and its links to health. The guideline makes recommendations on local interventions that can help improve air quality and prevent a range of adverse health outcomes associated with road-traffic-related air pollution. The guideline was based on a rigorous assessment of the scientific evidence by an independent advisory committee, with input from public health professionals and other professional groups. The process included systematics reviews of the literature, expert testimonies and stakeholder consultation. The guideline includes recommendations for local planning, clean air zones, measures to reduce emissions from public sector transport services, smooth driving and speed reduction, active travel, and awareness raising. The guideline recommends taking a number of actions in combination, because multiple interventions, each producing a small benefit, are likely to act cumulatively to produce significant change. These actions are likely to bring multiple public health benefits, in addition to air quality improvements.
Clean Air Markets - Compliance Query Wizard
The Compliance Query Wizard is part of a suite of Clean Air Markets-related tools that are accessible at http://ampd.epa.gov/ampd/. The Compliance module provides final compliance results. Using the Compliance Query Wizard, the user can find compliance information associated with specific programs, facilities, states or time frames. Quick Reports and Prepackaged Datasets are also available for data that are commonly requested. Final compliance results are available for all years since 1995 for the Acid Rain Program and for the various NOx trading programs EPA has operated since 1999.EPA's Clean Air Markets Division (CAMD) includes several market-based regulatory programs designed to improve air quality and ecosystems. The most well-known of these programs are EPA's Acid Rain Program and the NOx Programs, which reduce emissions of sulfur dioxide (SO2) and nitrogen oxides (NOx)-compounds that adversely affect air quality, the environment, and public health. CAMD also plays an integral role in the development and implementation of the Clean Air Interstate Rule (CAIR).
Clean Air Markets - Allowances Query Wizard
The Allowances Query Wizard is part of a suite of Clean Air Markets-related tools that are accessible at http://camddataandmaps.epa.gov/gdm/index.cfm. The Allowances module allows the user to view allowance data associated with EPA's emissions trading programs. Allowance data can be specified and organized using the Allowance Query Wizard to find allowances information associated with specific accounts, companies, transactions, programs, facilities, representatives, allowance type, or by date. Quick Reports and Prepackaged Datasets are also available for data that are commonly requested.EPA's Clean Air Markets Division (CAMD) includes several market-based regulatory programs designed to improve air quality and ecosystems. The most well-known of these programs are EPA's Acid Rain Program and the NOx Programs, which reduce emissions of sulfur dioxide (SO2) and nitrogen oxides (NOx)-compounds that adversely affect air quality, the environment, and public health. CAMD also plays an integral role in the development and implementation of the Clean Air Interstate Rule (CAIR).
Clean Air Markets - Quick Facts and Trends
The Quick Facts and Trends module is part of a suite of Clean Air Markets-related tools that are accessible at http://camddataandmaps.epa.gov/gdm/index.cfm. The Quick Facts and Trends module provides charts and graphs depicting national trends in emissions and heat input. The user can view, for example, data pertaining to the top annual and ozone season emitters of a selected pollutant, the number of units and facilities in a particular state, and trends in sulfur dioxide, nitrogen oxide and carbon dioxide emissions.EPA's Clean Air Markets Division (CAMD) includes several market-based regulatory programs designed to improve air quality and ecosystems. The most well-known of these programs are EPA's Acid Rain Program and the NOx Programs, which reduce emissions of sulfur dioxide (SO2) and nitrogen oxides (NOx)-compounds that adversely affect air quality, the environment, and public health. CAMD also plays an integral role in the development and implementation of the Clean Air Interstate Rule (CAIR).
Urban local air quality management framework for non-attainment areas in Indian cities.
Gulia, Sunil; Nagendra, S M Shiva; Barnes, Jo; Khare, Mukesh
2018-04-01
Increasing urban air pollution level in Indian cities is one of the major concerns for policy makers due to its impact on public health. The growth in population and increase in associated motorised road transport demand is one of the major causes of increasing air pollution in most urban areas along with other sources e.g., road dust, construction dust, biomass burning etc. The present study documents the development of an urban local air quality management (ULAQM) framework at urban hotspots (non-attainment area) and a pathway for the flow of information from goal setting to policy making. The ULAQM also includes assessment and management of air pollution episodic conditions at these hotspots, which currently available city/regional-scale air quality management plans do not address. The prediction of extreme pollutant concentrations using a hybrid model differentiates the ULAQM from other existing air quality management plans. The developed ULAQM framework has been applied and validated at one of the busiest traffic intersections in Delhi and Chennai cities. Various scenarios have been tested targeting the effective reductions in elevated levels of NO x and PM 2.5 concentrations. The results indicate that a developed ULAQM framework is capable of providing an evidence-based graded action to reduce ambient pollution levels within the specified standard level at pre-identified locations. The ULAQM framework methodology is generalised and therefore can be applied to other non-attainment areas of the country. Copyright © 2017 Elsevier B.V. All rights reserved.
Air quality and climate impacts due to CNG conversion of motor vehicles in Dhaka, Bangladesh.
Wadud, Zia; Khan, Tanzila
2013-12-17
Dhaka had recently experienced rapid conversion of its motor vehicle fleet to run on compressed natural gas (CNG). This paper quantifies ex-post the air quality and climate benefits of the CNG conversion policy, including monetary valuations, through an impact pathway approach. Around 2045 (1665) avoided premature deaths in greater Dhaka (City Corporation) can be attributed to air quality improvements from the CNG conversion policy in 2010, resulting in a saving of around USD 400 million. Majority of these health benefits resulted from the conversion of high-emitting diesel vehicles. CNG conversion was clearly detrimental from climate change perspective using the changes in CO2 and CH4 only (CH4 emissions increased); however, after considering other global pollutants (especially black carbon), the climate impact was ambiguous. Uncertainty assessment using input distributions and Monte Carlo simulation along with a sensitivity analysis show that large uncertainties remain for climate impacts. For our most likely estimate, there were some climate costs, valued at USD 17.7 million, which is an order of magnitude smaller than the air quality benefits. This indicates that such policies can and should be undertaken on the grounds of improving local air pollution alone and that precautions should be taken to reduce the potentially unintended increases in GHG emissions or other unintended effects.
Likelihood of achieving air quality targets under model uncertainties.
Digar, Antara; Cohan, Daniel S; Cox, Dennis D; Kim, Byeong-Uk; Boylan, James W
2011-01-01
Regulatory attainment demonstrations in the United States typically apply a bright-line test to predict whether a control strategy is sufficient to attain an air quality standard. Photochemical models are the best tools available to project future pollutant levels and are a critical part of regulatory attainment demonstrations. However, because photochemical models are uncertain and future meteorology is unknowable, future pollutant levels cannot be predicted perfectly and attainment cannot be guaranteed. This paper introduces a computationally efficient methodology for estimating the likelihood that an emission control strategy will achieve an air quality objective in light of uncertainties in photochemical model input parameters (e.g., uncertain emission and reaction rates, deposition velocities, and boundary conditions). The method incorporates Monte Carlo simulations of a reduced form model representing pollutant-precursor response under parametric uncertainty to probabilistically predict the improvement in air quality due to emission control. The method is applied to recent 8-h ozone attainment modeling for Atlanta, Georgia, to assess the likelihood that additional controls would achieve fixed (well-defined) or flexible (due to meteorological variability and uncertain emission trends) targets of air pollution reduction. The results show that in certain instances ranking of the predicted effectiveness of control strategies may differ between probabilistic and deterministic analyses.
Quality in the Operational Air Force: A Case of Misplaced Emphasis
1994-05-01
other quality advocates of the era. These men included Joseph Juran, Armand Feigenbaum, Kaoru Ishikawa , and Genichi Taguchi. Juran contributed disciplined...planning theories, while Feigenbaum felt that producing quality could actually reduce production costs. In addition, Ishikawa and Taguchi lent...statistically based problem solving techniques, but the more modem approaches of Ishikawa , Taguchi and others. The operative concept of TQM is ’continuous
Trans-Pacific Air Pollution and NAAQS Attainment: Domestic and International Policy Options
NASA Astrophysics Data System (ADS)
Dolsak, N.; Jaegle, L.
2002-12-01
Observational data and models of global air pollution increasingly indicate that Asian air pollution caused by fossil fuel burning is transported across the Pacific, thereby affecting local air quality in the United States. This may have policy ramifications for a number of counties in the U.S. struggling to meet the NAAQS. This problem will be exacerbated as the EPA tightens the standards for Ozone and PM. As the new 8-hour, 80 ppb ozone standard and the new PM2.5 standards are implemented, the number of counties considered to be in non-attainment is estimated to double (for ozone) and quadruple (for PM2.5), respectively. State Implementation Plans that rely only on local emission reductions may not be enough to meet the new NAAQS if a considerable proportion of the background concentrations come from Asia or other distant sources. Further, reducing emissions locally may not be the most cost-effective way of meeting the new EPA standards. This presentation will draw on observational data in the western U.S. and global models, such as GEOS-CHEM, to examine the significance of trans-pacific pollution (background pollution as well as episodic impacts) to air quality in the Western United States in their attempts to meet the new NAAQS for Ozone and Particulate Matter. The size of Asian economies, their reliance on fossil fuels, and their rapid industrialization suggests that the importance of trans-pacific air pollution will increase. This presentation will examine policy implications of Asian emissions under three of the IPCC future emission scenarios. We will also identify an array of domestic policies that States and counties in non-attainment areas may consider to reduce the concentrations of ozone and PM. Further, we will examine the potential for reducing local concentrations by devising policy instruments for reducing emissions where they can be reduced at a lower cost. For this work, we will draw on policy experience from regional air pollution in the European Union and evaluate options for devising policy instruments within the institutional framework of the Asia Pacific Economic Cooperation.
Urban air quality measurements using a sensor-based system
NASA Astrophysics Data System (ADS)
Ródenas, Mila; Hernández, Daniel; Gómez, Tatiana; López, Ramón; Muñoz, Amalia
2017-04-01
Air pollution levels in urban areas have increased the interest, not only of the scientific community but also of the general public, and both at the regional and at the European level. This interest has run in parallel to the development of miniaturized sensors, which only since very recently are suitable for air quality measurements. Certainly, their small size and price allows them to be used as a network of sensors capable of providing high temporal and spatial frequency measurements to characterize an area or city and with increasing potential, under certain considerations, as a complement of conventional methods. Within the frame of the LIFE PHOTOCITYTEX project (use of photocatalytic textiles to help reducing air pollution), CEAM has developed a system to measure gaseous compounds of importance for urban air quality characterization. This system, which allows an autonomous power supply, uses commercial NO, NO2, O3 and CO2 small sensors and incorporates measurements of temperature and humidity. A first version, using XBee boards (Radiofrequency) for communications has been installed in the urban locations defined by the project (tunnel and school), permitting the long-term air quality characterization of sites in the presence of the textiles. An improved second version of the system which also comprises a sensor for measuring particles and which uses GPRS for communications, has been developed and successfully installed in the city center of Valencia. Data are sent to a central server where they can be accessed by citizens in nearly real time and online and, in general, they can be utilized in the air quality characterization, for decision-making related to decontamination (traffic regulation, photocatalytic materials, etc.), in air quality models or in mobile applications of interest for the citizens. Within this work, temporal trends obtained with this system in different urban locations will be shown, discussing the impact of the characteristics of the selected sites and the seasonal variability on the air quality levels observed. Acknowledgements EUPHORE staff is acknowledged. PHOTOCITYTEX project (LIFE13 ENV/ES/000603) is acknowledged for supporting this work. Fundación CEAM is partly supported by Generalitat Valenciana - Spain.
Sexton, Ken; Linder, Stephen H
2015-01-01
Although ambient concentrations have declined steadily over the past 30 years, Houston has recorded some of the highest levels of hazardous air pollutants in the United States. Nevertheless, federal and state regulatory efforts historically have emphasized compliance with the National Ambient Air Quality Standard for ozone, treating “air toxics” in Houston as a residual problem to be solved through application of technology-based standards. Between 2004 and 2009, Mayor Bill White and his administration challenged the well-established hierarchy of air quality management spelled out in the Clean Air Act, whereby federal and state authorities are assigned primacy over local municipalities for the purpose of designing and implementing air pollution control strategies. The White Administration believed that existing regulations were not sufficient to protect the health of Houstonians and took a diversity of both collaborative and combative policy actions to mitigate air toxic emissions from stationary sources. Opposition was substantial from a local coalition of entrenched interests satisfied with the status quo, which hindered the city’s attempts to take unilateral policy actions. In the short term, the White Administration successfully raised the profile of the air toxics issue, pushed federal and state regulators to pay more attention, and induced a few polluting facilities to reduce emissions. But since White left office in 2010, air quality management in Houston has returned to the way it was before, and today there is scant evidence that his policies have had any lasting impact. PMID:25698880
Cost analysis of impacts of climate change on regional air quality.
Liao, Kuo-Jen; Tagaris, Efthimios; Russell, Armistead G; Amar, Praveen; He, Shan; Manomaiphiboon, Kasemsan; Woo, Jung-Hun
2010-02-01
Climate change has been predicted to adversely impact regional air quality with resulting health effects. Here a regional air quality model and a technology analysis tool are used to assess the additional emission reductions required and associated costs to offset impacts of climate change on air quality. Analysis is done for six regions and five major cities in the continental United States. Future climate is taken from a global climate model simulation for 2049-2051 using the Intergovernmental Panel on Climate Change (IPCC) A1B emission scenario, and emission inventories are the same as current ones to assess impacts of climate change alone on air quality and control expenses. On the basis of the IPCC A1B emission scenario and current control technologies, least-cost sets of emission reductions for simultaneously offsetting impacts of climate change on regionally averaged 4th highest daily maximum 8-hr average ozone and yearly averaged PM2.5 (particulate matter [PM] with an aerodynamic diameter less than 2.5 microm) for the six regions examined are predicted to range from $36 million (1999$) yr(-1) in the Southeast to $5.5 billion yr(-1) in the Northeast. However, control costs to offset climate-related pollutant increases in urban areas can be greater than the regional costs because of the locally exacerbated ozone levels. An annual cost of $4.1 billion is required for offsetting climate-induced air quality impairment in 2049-2051 in the five cities alone. Overall, an annual cost of $9.3 billion is estimated for offsetting climate change impacts on air quality for the six regions and five cities examined. Much of the additional expense is to reduce increased levels of ozone. Additional control costs for offsetting the impacts everywhere in the United States could be larger than the estimates in this study. This study shows that additional emission controls and associated costs for offsetting climate impacts could significantly increase currently estimated control requirements and should be considered in developing control strategies for achieving air quality targets in the future.
Indoor environment program. 1994 annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daisey, J.M.
1995-04-01
Buildings use approximately one-third of the energy consumed in the United States. The potential energy savings derived from reduced infiltration and ventilation in buildings are substantial, since energy use associated with conditioning and distributing ventilation air is about 5.5 EJ per year. However, since ventilation is the dominant mechanism for removing pollutants from indoor sources, reduction of ventilation can have adverse effects on indoor air quality, and on the health, comfort, and productivity of building occupants. The Indoor Environment Program in LBL`s Energy and Environment Division was established in 1977 to conduct integrated research on ventilation, indoor air quality, andmore » energy use and efficiency in buildings for the purpose of reducing energy liabilities associated with airflows into, within, and out of buildings while maintaining or improving occupant health and comfort. The Program is part of LBL`s Center for Building Science. Research is conducted on building energy use and efficiency, ventilation and infiltration, and thermal distribution systems; on the nature, sources, transport, transformation, and deposition of indoor air pollutants; and on exposure and health risks associated with indoor air pollutants. Pollutants of particular interest include radon; volatile, semivolatile, and particulate organic compounds; and combustion emissions, including environmental tobacco smoke, CO, and NO{sub x}.« less
Klingberg, Jenny; Broberg, Malin; Strandberg, Bo; Thorsson, Pontus; Pleijel, Håkan
2017-12-01
Air pollution levels (NO 2 , PAHs, O 3 ) were investigated, before (BLE) and after (ALE) leaf emergence, in the urban landscape of Gothenburg, Sweden. The aims were to study the 1) spatial and temporal variation in pollution levels between urban green areas, 2) effect of urban vegetation on air pollution levels at the same distance from a major emission source (traffic route), 3) improvement of urban air quality in urban parks compared to adjacent sites near traffic, 4) correlation between air pollution and noise in a park. O 3 varied little over the urban landscape. NO 2 varied strongly and was higher in situations strongly influenced by traffic. Four PAH variables were included: total PAH, total particle-bound PAH, the quantitatively important gaseous phenanthrene and the highly toxic particle-bound benzo(a)pyrene. The variation of PAHs was similar to NO 2 , but for certain PAHs the difference between highly and less polluted sites was larger than for NO 2 . At a vegetated site, NO 2 and particulate PAH levels were lower than at a non-vegetated site at a certain distance from a busy traffic route. This effect was significantly larger ALE compared to BLE for NO 2 , indicating green leaf area to be highly significant factor for air quality improvement. For particulate PAHs, the effect was similar BLE and ALE, indicating that tree bark and branches also could be an important factor in reducing air pollution. Parks represented considerably cleaner local environments (park effect), which is likely to be a consequence of both a dilution (distance effect) and deposition. Noise and air pollution (NO 2 and PAH) levels were strongly correlated. Comparison of noise levels BLE and ALE also showed that the presence of leaves significantly reduced noise levels. Our results are evidence that urban green spaces are beneficial for urban environmental quality, which is important to consider in urban planning. Copyright © 2017 Elsevier B.V. All rights reserved.
Environmental Impact of Megacities - Results from CityZen
NASA Astrophysics Data System (ADS)
Gauss, M.
2012-04-01
Megacities have increasingly important impacts on air quality and climate change on different spatial scales, owing to their high population densities and concentrated emission sources. The EU FP7 project CityZen (Megacity - Zoom for the Environment) ended in 2011 and was, together with its sister project MEGAPOLI, part of a major research effort within FP7 on megacities in Europe and worldwide. The project mainly focused on air pollution trends in large cities and emission hotspots, climate-chemistry couplings, future projections, and emission mitigation options. Both observational and modeling tools have been extensively used. This paper reviews some of the main results from CityZen regarding present air pollution in and around megacities, future scenarios and mitigation options to reduce air pollution and/or climate change, and the main policy messages from the project. The different observed trends over European and Asian hotspots during the last 10 to 15 years are shown. Results of source attribution of pollutants, which have been measured and calculated in and around the different selected hot spots in CityZen will be discussed. Another important question to be addressed is the extent to which climate change will affect air quality and the effectiveness of air quality legislation. Although projected emission reductions are a major determinate influencing the predictions of future air pollution, model results suggest that climate change has to be taken into account when devising future air quality legislation. This paper will also summarize some important policy messages in terms of ozone, particles and the observational needs that have been put forward as conclusions from the project.
tools,data, and models that are: improving air quality; helping communities become more resilient; reducing emissions of carbon and other pollutants; ushering in new generations of safer, more sustainable chemicals, advancing safe drinking water resources
Computational and experimental study of airflow around a fan powered UVGI lamp
NASA Astrophysics Data System (ADS)
Kaligotla, Srikar; Tavakoli, Behtash; Glauser, Mark; Ahmadi, Goodarz
2011-11-01
The quality of indoor air environment is very important for improving the health of occupants and reducing personal exposure to hazardous pollutants. An effective way of controlling air quality is by eliminating the airborne bacteria and viruses or by reducing their emissions. Ultraviolet Germicidal Irradiation (UVGI) lamps can effectively reduce these bio-contaminants in an indoor environment, but the efficiency of these systems depends on airflow in and around the device. UVGI lamps would not be as effective in stagnant environments as they would be when the moving air brings the bio-contaminant in their irradiation region. Introducing a fan into the UVGI system would augment the efficiency of the system's kill rate. Airflows in ventilated spaces are quite complex due to the vast range of length and velocity scales. The purpose of this research is to study these complex airflows using CFD techniques and validate computational model with airflow measurements around the device using Particle Image Velocimetry measurements. The experimental results including mean velocities, length scales and RMS values of fluctuating velocities are used in the CFD validation. Comparison of these data at different locations around the device with the CFD model predictions are performed and good agreement was observed.
NASA Astrophysics Data System (ADS)
Wang, S.; Huang, G. H.; Veawab, A.
2013-03-01
This study proposes a sequential factorial analysis (SFA) approach for supporting regional air quality management under uncertainty. SFA is capable not only of examining the interactive effects of input parameters, but also of analyzing the effects of constraints. When there are too many factors involved in practical applications, SFA has the advantage of conducting a sequence of factorial analyses for characterizing the effects of factors in a systematic manner. The factor-screening strategy employed in SFA is effective in greatly reducing the computational effort. The proposed SFA approach is applied to a regional air quality management problem for demonstrating its applicability. The results indicate that the effects of factors are evaluated quantitatively, which can help decision makers identify the key factors that have significant influence on system performance and explore the valuable information that may be veiled beneath their interrelationships.
The Benefits of Internalizing Air Quality and Greenhouse Gas Externalities in the US Energy System
NASA Astrophysics Data System (ADS)
Brown, Kristen E.
The emission of pollutants from energy use has effects on both local air quality and the global climate, but the price of energy does not reflect these externalities. This study aims to analyze the effect that internalizing these externalities in the cost of energy would have on the US energy system, emissions, and human health. In this study, we model different policy scenarios in which fees are added to emissions related to generation and use of energy. The fees are based on values of damages estimated in the literature and are applied to upstream and combustion emissions related to electricity generation, industrial energy use, transportation energy use, residential energy use, and commercial energy use. The energy sources and emissions are modeled through 2055 in five-year time steps. The emissions in 2045 are incorporated into a continental-scale atmospheric chemistry and transport model, CMAQ, to determine the change in air quality due to different emissions reduction scenarios. A benefit analysis tool, BenMAP, is used with the air quality results to determine the monetary benefit of emissions reductions related to the improved air quality. We apply fees to emissions associated with health impacts, climate change, and a combination of both. We find that the fees we consider lead to reductions in targeted emissions as well as co-reducing non-targeted emissions. For fees on the electric sector alone, health impacting pollutant (HIP) emissions reductions are achieved mainly through control devices while Greenhouse Gas (GHG) fees are addressed through changes in generation technologies. When sector specific fees are added, reductions come mainly from the industrial and electricity generation sectors, and are achieved through a mix of energy efficiency, increased use of renewables, and control devices. Air quality is improved in almost all areas of the country with fees, including when only GHG fees are applied. Air quality tends to improve more in regions with larger emissions reductions, especially for PM2.5.
Water quality and nitrogen mass loss from anaerobic lagoon columns receiving pretreated influent
USDA-ARS?s Scientific Manuscript database
Control methods are needed to abate ammonia losses from swine anaerobic lagoons to reduce contribution of confined swine operations to air pollution. In a 15-month meso-scale column study, we evaluated the effect of manure pretreatment on water quality, reduction of N losses, and sludge accumulation...
Nordström, K; Norbäck, D; Akselsson, R
1994-01-01
The sensation of dryness and irritation is essential in the sick building syndrome (SBS), and such symptoms are common in both office and hospital employees. In Scandinavia, the indoor relative humidity in well ventilated buildings is usually in the range 10-35% in winter. The aim of this study was to evaluate the effect of steam air humidification on SBS and perceived air quality during the heating season. The study base consisted of a dynamic population of 104 hospital employees, working in four new and well ventilated geriatric hospital units in southern Sweden. Air humidification raised the relative air humidity to 40-45% in two units during a four months period, whereas the other two units served as controls with relative humidity from 25-35%. Symptoms and perceived indoor air quality were measured before and after the study period by a standardised self administered questionnaire. The technical measurements comprised room temperature, air humidity, static electricity, exhaust air flow, aerosols, microorganisms, and volatile organic compounds in the air. The most pronounced effect of the humidification was a significant decrease of the sensation of air dryness, static electricity, and airway symptoms. After four months of air humidification during the heating season, 24% reported a weekly sensation of dryness in humidified units, compared with 73% in controls. No significant changes in symptoms of SBS or perceived air quality over time were found in the control group. The room temperature in all units was between 21-23 degrees C, and no significant effect of air humidification on the air concentration of aerosols or volatile organic compounds was found. No growth of microorganisms was found in the supply air ducts, and no legionella bacteria were found in the supply water of the humidifier. Air humidification, however, significantly reduced the measured personal exposure to static electricity. It is concluded that air humidification during the heating season in colder climates can decrease symptoms of SBS and perception of dry air. PMID:8000493
Effects of environmental alerts and pre-emergencies on pollutant concentrations in Santiago, Chile
NASA Astrophysics Data System (ADS)
Troncoso, Rodrigo; de Grange, Louis; Cifuentes, Luis A.
2012-12-01
To reduce air pollution levels in Santiago, Chile on days when the weather is expected to create poor ventilation conditions and increased air pollutant concentrations, the responsible authorities impose temporary restrictions on motor vehicles and certain industrial activities. We estimate the impact of these restrictions on the city's air quality using data collected by a network of monitoring stations. The estimates show that the restrictions do reduce the average concentrations of coarse and fine particulate matter, carbon monoxide and nitrogen oxide (both gases are emitted mainly by vehicles). However, no significant changes were found in the sulfur dioxide concentrations, which are primarily the result of industrial processes.
Variation of ambient non-methane hydrocarbons in Beijing city in summer 2008
NASA Astrophysics Data System (ADS)
Wang, B.; Shao, M.; Lu, S. H.; Yuan, B.; Zhao, Y.; Wang, M.; Zhang, S. Q.; Wu, D.
2010-02-01
In conjunction with hosting the 2008 Beijing Olympics, the municipal government implemented a series of stringent air quality control measures. To assess the impacts on variation of ambient non-methane hydrocarbons (NMHCs), the whole air was sampled by canisters at one urban site and two suburban sites in Beijing, and 55 NMHC species were quantified by gas chromatography equipped with a quadrupole mass spectrometer and a flame ionization detector (GC/MSD/FID) as parts of the field Campaign for the Beijing Olympic Games Air Quality program (CareBeijing). According to the control measures, the data were presented according to four periods: 18-30 June, 8-19 July, 15-24 August (during the Olympic Games), and 6-15 September (during the Paralympic Games). Compared with the levels in June, the mixing ratios of NMHCs obtained in the Olympic and Paralympic Games periods were reduced by 35% and 25%, respectively. Source contributions were calculated using a chemical mass balance model (CMB 8.2). After implementing the control measures, emissions from target sources were obviously reduced, and reductions in vehicle exhaust could explain 48-82% of the reductions of ambient NMHCs. Reductions in emissions from gasoline evaporation, paint and solvent use, and the chemical industry contributed 9-40%, 3-24%, and 1-5%, respectively, to reductions of ambient NMHCs. Sources of liquefied petroleum gas (LPG) and biogenic emissions were not controlled, and contributions from these sources from July to September were stable or even higher than in June. Ozone formation potentials (OFPs) were calculated for the measured NMHCs. The total OFPs during the Olympic and Paralympic Games were reduced by 48% and 32%, respectively, compared with values in June. Reductions in the OFPs of alkenes and aromatics explained 77-92% of total OFP reductions. The alkenes and aromatics were mainly from vehicle exhausts, and reductions of vehicle exhaust gases explained 67-87% of reductions in alkenes and 38-80% of reductions in aromatics. These findings demonstrate the effectiveness of the air quality control measures enacted for the 2008 Olympics and indicate that controlling vehicular emissions could be the most important measure to improve air quality in Beijing.
Variation of ambient non-methane hydrocarbons in Beijing city in summer 2008
NASA Astrophysics Data System (ADS)
Wang, B.; Shao, M.; Lu, S. H.; Yuan, B.; Zhao, Y.; Wang, M.; Zhang, S. Q.; Wu, D.
2010-07-01
In conjunction with hosting the 2008 Beijing Olympics, the municipal government implemented a series of stringent air quality control measures. To assess the impacts on variation of ambient non-methane hydrocarbons (NMHCs), the whole air was sampled by canisters at one urban site and two suburban sites in Beijing, and 55 NMHC species were quantified by gas chromatography equipped with a quadrupole mass spectrometer and a flame ionization detector (GC/MSD/FID) as parts of the field Campaign for the Beijing Olympic Games Air Quality program (CareBeijing). According to the control measures, the data were presented according to four periods: 18-30 June, 8-19 July, 15-24 August (during the Olympic Games), and 6-15 September (during the Paralympic Games). Compared with the levels in June, the mixing ratios of NMHCs obtained in the Olympic and Paralympic Games periods were reduced by 35% and 25%, respectively. Source contributions were calculated using a chemical mass balance model (CMB 8.2). After implementing the control measures, emissions from target sources were obviously reduced, and reductions in vehicle exhaust could explain 48-82% of the reductions of ambient NMHCs. Reductions in emissions from gasoline evaporation, paint and solvent use, and the chemical industry contributed 9-40%, 3-24%, and 1-5%, respectively, to reductions of ambient NMHCs. Sources of liquefied petroleum gas (LPG) and biogenic emissions were not controlled, and contributions from these sources from July to September were stable or even higher than in June. Ozone formation potentials (OFPs) were calculated for the measured NMHCs. The total OFPs during the Olympic and Paralympic Games were reduced by 48% and 32%, respectively, compared with values in June. Reductions in the OFPs of alkenes and aromatics explained 77-92% of total OFP reductions. The alkenes and aromatics were mainly from vehicle exhausts, and reductions of vehicle exhaust gases explained 67-87% of reductions in alkenes and 38-80% of reductions in aromatics. These findings demonstrate the effectiveness of the air quality control measures enacted for the 2008 Olympics and indicate that controlling vehicular emissions could be the most important measure to improve air quality in Beijing.
NASA Astrophysics Data System (ADS)
Rakowska, Agata; Wong, Ka Chun; Townsend, Thomas; Chan, Ka Lok; Westerdahl, Dane; Ng, Simon; Močnik, Griša; Drinovec, Luka; Ning, Zhi
2014-12-01
Vehicle emissions are identified as a major source of air pollution in metropolitan areas. Emission control programs in many cities have been implemented as part of larger scale transport policy interventions to control traffic pollutants and reduce public health risks. These interventions include provision of traffic-free and low emission zones and congestion charging. Various studies have investigated the impact of urban street configurations, such as street canyon in urban centers, on pollutants dispersion and roadside air quality. However, there are few investigations in the literature to study the impact of change of fleet composition and street canyon effects on the on-road pollutants concentrations and associated roadside pedestrian exposure to the pollutants. This study presents an experimental investigation on the traffic related gas and particle pollutants in and near major streets in one of the most developed business districts in Hong Kong, known as Central. Both street canyon and open roadway configurations were included in the study design. Mobile measurement techniques were deployed to monitor both on-road and roadside pollutants concentrations at different times of the day and on different days of a week. Multiple traffic counting points were also established to concurrently collect data on traffic volume and fleet composition on individual streets. Street canyon effects were evident with elevated on-road pollutants concentrations. Diesel vehicles were found to be associated with observed pollutant levels. Roadside black carbon concentrations were found to correlate with their on-road levels but with reduced concentrations. However, ultrafine particles showed very high concentrations in roadside environment with almost unity of roadside/on-road ratios possibly due to the accumulation of primary emissions and secondary PM formation. The results from the study provide useful information for the effective urban transport design and bus route reorganization to minimize the impact of traffic emissions on the urban air quality and public health. Observations on the elevated ultrafine particle concentrations in roadside pedestrian levels also demonstrate the urgent need to improve roadside air quality to reduce pedestrians' health risks especially inside street canyon.
Using the NEMA NU 4 PET image quality phantom in multipinhole small-animal SPECT.
Harteveld, Anita A; Meeuwis, Antoi P W; Disselhorst, Jonathan A; Slump, Cornelis H; Oyen, Wim J G; Boerman, Otto C; Visser, Eric P
2011-10-01
Several commercial small-animal SPECT scanners using multipinhole collimation are presently available. However, generally accepted standards to characterize the performance of these scanners do not exist. Whereas for small-animal PET, the National Electrical Manufacturers Association (NEMA) NU 4 standards have been defined in 2008, such standards are still lacking for small-animal SPECT. In this study, the image quality parameters associated with the NEMA NU 4 image quality phantom were determined for a small-animal multipinhole SPECT scanner. Multiple whole-body scans of the NEMA NU 4 image quality phantom of 1-h duration were performed in a U-SPECT-II scanner using (99m)Tc with activities ranging between 8.4 and 78.2 MBq. The collimator contained 75 pinholes of 1.0-mm diameter and had a bore diameter of 98 mm. Image quality parameters were determined as a function of average phantom activity, number of iterations, postreconstruction spatial filter, and scatter correction. In addition, a mouse was injected with (99m)Tc-hydroxymethylene diphosphonate and was euthanized 6.5 h after injection. Multiple whole-body scans of this mouse of 1-h duration were acquired for activities ranging between 3.29 and 52.7 MBq. An increase in the number of iterations was accompanied by an increase in the recovery coefficients for the small rods (RC(rod)), an increase in the noise in the uniform phantom region, and a decrease in spillover ratios for the cold-air- and water-filled scatter compartments (SOR(air) and SOR(wat)). Application of spatial filtering reduced image noise but lowered RC(rod). Filtering did not influence SOR(air) and SOR(wat). Scatter correction reduced SOR(air) and SOR(wat). The effect of total phantom activity was primarily seen in a reduction of image noise with increasing activity. RC(rod), SOR(air), and SOR(wat) were more or less constant as a function of phantom activity. The relation between acquisition and reconstruction settings and image quality was confirmed in the (99m)Tc-hydroxymethylene diphosphonate mouse scans. Although developed for small-animal PET, the NEMA NU 4 image quality phantom was found to be useful for small-animal SPECT as well, allowing for objective determination of image quality parameters and showing the trade-offs between several of these parameters on variation of acquisition and reconstruction settings.
Port Stakeholder Summit: Advancing More Sustainable Ports (April 2014)
EPA's National Port Stakeholders Summit, Advancing More Sustainable Ports, focused on actions to protect air quality while reducing climate risk and supporting economic growth, making ports more environmentally sustainable.
The Clean Diesel Program offers DERA funding in the form of grants and rebates as well as other support for projects that protect human health and improve air quality by reducing harmful emissions from diesel engines.
Decision-making is driven by research with the highest standards for integrity, peer review, transparency, and ethics. Ongoing positive impacts include reducing pollution, improving air quality, defining exposure pathways, and protecting water sources.
The Utility of the OMI HCHO and NO2 Data Products in Air Quality Decision- Making Activities
NASA Technical Reports Server (NTRS)
Duncan, Bryan N.
2010-01-01
We will present three related air quality applications of the OMI HCHO (formaldehyde) and NO2 (nitrogen dioxide) data products, which we us to support mission planning of an OMI-like instrument for the proposed GEO-CAPE satellite that has as one of its objectives to study air quality from space. First, we will discuss a novel and practical application of the data products to the "weight of evidence" in the air quality decision-making process (e.g., State Implementation Plan (SIP)) for a city, region, or state to demonstrate that it is making progress toward attainment of the National Ambient Air Quality Standard (NAAQS) for ozone. Any trend, or lack thereof, in the observed OMI HCHO/NO2, which we use as an air quality indicator, may support that an emission control strategy implemented to reduce ozone is or is not occurring for a metropolitan area. Second, we will discuss how we use variations in the OMI HCHO product as a proxy for variability in the biogenic hydrocarbon, isoprene, which is an important player for the formation of high levels of ozone and the dominant source of HCHO in the eastern U.S. Third, we will discuss the variability of NO2 in the U.S. as indicated by the OMI NO2 product. In addition, we will show the impact of the 2005 hurricanes on pollutant emissions, including those associated with the intensive oil extraction and refining activities, in the Gulf of Mexico region using the OMI NO2 product. The variability of HCHO and NO2 as indicated by OMI helps us to understand changes in the OMI HCHO/NO2 and the implications for ozone formation.
Impacts of flare emissions from an ethylene plant shutdown to regional air quality
NASA Astrophysics Data System (ADS)
Wang, Ziyuan; Wang, Sujing; Xu, Qiang; Ho, Thomas
2016-08-01
Critical operations of chemical process industry (CPI) plants such as ethylene plant shutdowns could emit a huge amount of VOCs and NOx, which may result in localized and transient ozone pollution events. In this paper, a general methodology for studying dynamic ozone impacts associated with flare emissions from ethylene plant shutdowns has been developed. This multi-scale simulation study integrates process knowledge of plant shutdown emissions in terms of flow rate and speciation together with regional air-quality modeling to quantitatively investigate the sensitivity of ground-level ozone change due to an ethylene plant shutdown. The study shows the maximum hourly ozone increments can vary significantly by different plant locations and temporal factors including background ozone data and solar radiation intensity. It helps provide a cost-effective air-quality control strategy for industries by choosing the optimal starting time of plant shutdown operations in terms of minimizing the induced ozone impact (reduced from 34.1 ppb to 1.2 ppb in the performed case studies). This study provides valuable technical supports for both CPI and environmental policy makers on cost-effective air-quality controls in the future.
Rachel White; Paul Hessburg; Sim Larkin; Morgan Varner
2017-01-01
Smoke from fire can sharply reduce air quality by releasing particulate matter, one of the most dangerous types of air pollution for human health. A third of U.S. households have someone sensitive to smoke. Minimizing the amount and impact of smoke is a high priority for land managers and regulators. One tool for achieving that goal is prescribed fire. Prescribed fire...
Indoor air quality inspection and analysis system based on gas sensor array
NASA Astrophysics Data System (ADS)
Gao, Xiang; Wang, Mingjiang; Fan, Binwen
2017-08-01
A detection and analysis system capable of measuring the concentration of four major gases in indoor air is designed. It uses four gas sensors constitute a gas sensor array, to achieve four indoor gas concentration detection, while the detection of data for further processing to reduce the cross-sensitivity between the gas sensor to improve the accuracy of detection.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-21
... control of power plant emissions, promulgation of the Transport Rule, also known as the Cross State Air Pollution Rule (CSAPR),\\2\\ was necessary to make recent reductions in power plant emissions (or equivalent... requirements of the CAA and required states to significantly reduce SO 2 and NO X emissions from power plants...
Grabow, Maggie L; Spak, Scott N; Holloway, Tracey; Stone, Brian; Mednick, Adam C; Patz, Jonathan A
2012-01-01
Automobile exhaust contains precursors to ozone and fine particulate matter (PM ≤ 2.5 µm in aerodynamic diameter; PM2.5), posing health risks. Dependency on car commuting also reduces physical fitness opportunities. In this study we sought to quantify benefits from reducing automobile usage for short urban and suburban trips. We simulated census-tract level changes in hourly pollutant concentrations from the elimination of automobile round trips ≤ 8 km in 11 metropolitan areas in the upper midwestern United States using the Community Multiscale Air Quality (CMAQ) model. Next, we estimated annual changes in health outcomes and monetary costs expected from pollution changes using the U.S. Environmental Protection Agency Benefits Mapping Analysis Program (BenMAP). In addition, we used the World Health Organization Health Economic Assessment Tool (HEAT) to calculate benefits of increased physical activity if 50% of short trips were made by bicycle. We estimate that, by eliminating these short automobile trips, annual average urban PM2.5 would decline by 0.1 µg/m3 and that summer ozone (O3) would increase slightly in cities but decline regionally, resulting in net health benefits of $4.94 billion/year [95% confidence interval (CI): $0.2 billion, $13.5 billion), with 25% of PM2.5 and most O3 benefits to populations outside metropolitan areas. Across the study region of approximately 31.3 million people and 37,000 total square miles, mortality would decline by approximately 1,295 deaths/year (95% CI: 912, 1,636) because of improved air quality and increased exercise. Making 50% of short trips by bicycle would yield savings of approximately $3.8 billion/year from avoided mortality and reduced health care costs (95% CI: $2.7 billion, $5.0 billion]. We estimate that the combined benefits of improved air quality and physical fitness would exceed $8 billion/year. Our findings suggest that significant health and economic benefits are possible if bicycling replaces short car trips. Less dependence on automobiles in urban areas would also improve health in downwind rural settings.
Spak, Scott N.; Holloway, Tracey; Stone, Brian; Mednick, Adam C.; Patz, Jonathan A.
2011-01-01
Background: Automobile exhaust contains precursors to ozone and fine particulate matter (PM ≤ 2.5 µm in aerodynamic diameter; PM2.5), posing health risks. Dependency on car commuting also reduces physical fitness opportunities. Objective: In this study we sought to quantify benefits from reducing automobile usage for short urban and suburban trips. Methods: We simulated census-tract level changes in hourly pollutant concentrations from the elimination of automobile round trips ≤ 8 km in 11 metropolitan areas in the upper midwestern United States using the Community Multiscale Air Quality (CMAQ) model. Next, we estimated annual changes in health outcomes and monetary costs expected from pollution changes using the U.S. Environmental Protection Agency Benefits Mapping Analysis Program (BenMAP). In addition, we used the World Health Organization Health Economic Assessment Tool (HEAT) to calculate benefits of increased physical activity if 50% of short trips were made by bicycle. Results: We estimate that, by eliminating these short automobile trips, annual average urban PM2.5 would decline by 0.1 µg/m3 and that summer ozone (O3) would increase slightly in cities but decline regionally, resulting in net health bene-fits of $4.94 billion/year [95% confidence interval (CI): $0.2 billion, $13.5 billion), with 25% of PM2.5 and most O3 bene-fits to populations outside metropolitan areas. Across the study region of approximately 31.3 million people and 37,000 total square miles, mortality would decline by approximately 1,295 deaths/year (95% CI: 912, 1,636) because of improved air quality and increased exercise. Making 50% of short trips by bicycle would yield savings of approximately $3.8 billion/year from avoided mortality and reduced health care costs (95% CI: $2.7 billion, $5.0 billion]. We estimate that the combined benefits of improved air quality and physical fitness would exceed $8 billion/year. Conclusion: Our findings suggest that significant health and economic benefits are possible if bicycling replaces short car trips. Less dependence on automobiles in urban areas would also improve health in downwind rural settings. PMID:22049372
Climate Change and Implications for Prevention. California's Efforts to Provide Leadership.
Balmes, John R
2018-04-01
The atmospheric concentration of carbon dioxide (CO 2 ) and the temperature of the earth's surface have been rising in parallel for decades, with the former recently reaching 400 parts per million, consistent with a 1.5°C increase in global warming. Climate change models predict that a "business as usual" approach, that is, no effort to control CO 2 emissions from combustion of fossil fuels, will result in a more than 2°C increase in annual average surface temperature by approximately 2034. With atmospheric warming comes increased air pollution. The concept of a "climate gap" in air quality control captures the decreased effectiveness of regulatory policies to reduce pollution with a hotter climate. Sources of greenhouse gases and climate-forcing aerosols ("black carbon") are the same sources of air pollutants that harm health. California has adopted robust climate change mitigation policies that are also designed to achieve public health cobenefits by improving air quality. These policies include advanced clean car standards, renewable energy, a sustainable communities strategy to limit suburban sprawl, a low carbon fuel standard, and energy efficiency. A market-based mechanism to put a price on CO 2 emissions is the cap-and-trade program that allows capped facilities to trade state-issued greenhouse gas emissions allowances. The "cap" limits total greenhouse gas emissions from all covered sources, and declines over time to progressively reduce emissions. An alternative approach is a carbon tax. California's leadership on air quality and climate change mitigation is increasingly important, given the efforts to slow or even reverse implementation of such policies at the U.S. national level.
Rodriguez, Daniel A.; Huegy, Joseph; Gibson, Jacqueline MacDonald
2014-01-01
Since motor vehicles are a major air pollution source, urban designs that decrease private automobile use could improve air quality and decrease air pollution health risks. Yet, the relationships among urban form, air quality, and health are complex and not fully understood. To explore these relationships, we model the effects of three alternative development scenarios on annual average fine particulate matter (PM2.5) concentrations in ambient air and associated health risks from PM2.5 exposure in North Carolina’s Raleigh-Durham-Chapel Hill area. We integrate transportation demand, land-use regression, and health risk assessment models to predict air quality and health impacts for three development scenarios: current conditions, compact development, and sprawling development. Compact development slightly decreases (−0.2%) point estimates of regional annual average PM2.5 concentrations, while sprawling development slightly increases (+1%) concentrations. However, point estimates of health impacts are in opposite directions: compact development increases (+39%) and sprawling development decreases (−33%) PM2.5-attributable mortality. Further, compactness increases local variation in PM2.5 concentrations and increases the severity of local air pollution hotspots. Hence, this research suggests that while compact development may improve air quality from a regional perspective, it may also increase the concentration of PM2.5 in local hotspots and increase population exposure to PM2.5. Health effects may be magnified if compact neighborhoods and PM2.5 hotspots are spatially co-located. We conclude that compactness alone is an insufficient means of reducing the public health impacts of transportation emissions in automobile-dependent regions. Rather, additional measures are needed to decrease automobile dependence and the health risks of transportation emissions. PMID:25490890
Ozdilek, Hasan Goksel
2006-11-01
Rapid industrialization and urbanization in Turkey, especially over the last twenty five years, has provided better living standards to its residents, but it also caused a decrease in environmental quality. In late 1970's, air quality monitoring activities were started in some major cities by individual researchers in Turkey. It was just around the 1990's that a countrywide program on continuous air pollution monitoring in major province centers and selected large towns was launched. The impact of air pollution on people depend on various factors, such as existence and magnitude of coal powered energy generation plants, type of urban heating and their efficiency, and the numbers and specifications of vehicles. In this study, current Turkish urban air quality over the turn of the Millennium (1992-2001) is studied in the light of the country's worst cities in terms of outdoor air quality, the number of upper respiratory diseases, sinusitis, bronchitis, and pneumonia cases in these provinces reported by the state medical treatment facilities in 2001. The population that is under outdoor urban air pollution hazard was computed. A comparative analysis between the provinces that use natural gas and others that use fossil fuels was also completed in order to project monetary gains if the studied provinces will transform their indoor heating and industrial operations to be run by natural gas or other cleaner energy sources. If natural gas use in air polluted urban centers could be realized in the near future, approximately 212 to 350 million US dollars per annum could to be saved just by reducing health related problems caused by outdoor air pollution.
NASA Astrophysics Data System (ADS)
Abhijith, K. V.; Kumar, Prashant; Gallagher, John; McNabola, Aonghus; Baldauf, Richard; Pilla, Francesco; Broderick, Brian; Di Sabatino, Silvana; Pulvirenti, Beatrice
2017-08-01
Intensifying the proportion of urban green infrastructure has been considered as one of the remedies for air pollution levels in cities, yet the impact of numerous vegetation types deployed in different built environments has to be fully synthesised and quantified. This review examined published literature on neighbourhood air quality modifications by green interventions. Studies were evaluated that discussed personal exposure to local sources of air pollution under the presence of vegetation in open road and built-up street canyon environments. Further, we critically evaluated the available literature to provide a better understanding of the interactions between vegetation and surrounding built-up environments and ascertain means of reducing local air pollution exposure using green infrastructure. The net effects of vegetation in each built-up environment are also summarised and possible recommendations for the future design of green infrastructure are proposed. In a street canyon environment, high-level vegetation canopies (trees) led to a deterioration in air quality, while low-level green infrastructure (hedges) improved air quality conditions. For open road conditions, wide, low porosity and tall vegetation leads to downwind pollutant reductions while gaps and high porosity vegetation could lead to no improvement or even deteriorated air quality. The review considers that generic recommendations can be provided for vegetation barriers in open road conditions. Green walls and roofs on building envelopes can also be used as effective air pollution abatement measures. The critical evaluation of the fundamental concepts and the amalgamation of key technical features of past studies by this review could assist urban planners to design and implement green infrastructures in the built environment.
Reduction of air pollutant concentrations in an indoor ice-skating rink
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, K.; Yanagisawa, Yukio; Spengler, J.D.
1994-01-01
High carbon monoxide and nitrogen dioxide concentrations were measured in an indoor ice-skating rink with fuel-powered ice-resurfacing equipment. In 22% to 33% of the measurements over 90-min segments, CO concentrations exceeded 20 [mu]L/L as a 90-min average in the absence of rink ventilation. Average NO[sub 2] concentrations over 14 h were higher than 600 nL/L. Reduction of air pollutant concentrations in the ice-skating rink is necessary to prevent air-pollutant-exposure-related health incidents. Various methods for reducing air pollutants in an ice-skating rink were evaluated by simultaneously measuring CO and NO[sub 2] concentrations. Single pollution reduction attempts, such as extension of themore » exhaust pipe, reduction in the number of resurfacer operations, or use of an air recirculation system, did not significantly reduce air pollutant concentrations in the rink. Full operation of the mechanical ventilation system combined with reduced resurfacer operation was required to keep the air pollutant levels in the skating rink below the recommended guidelines. This investigation showed that management of clean air quality in an ice-skating rink is practically difficult as long as fuel-powered resurfacing equipment is used. 16 refs., 3 figs., 5 tabs.« less
Global mortality attributable to aircraft cruise emissions.
Barrett, Steven R H; Britter, Rex E; Waitz, Ian A
2010-10-01
Aircraft emissions impact human health though degradation of air quality. The majority of previous analyses of air quality impacts from aviation have considered only landing and takeoff emissions. We show that aircraft cruise emissions impact human health over a hemispheric scale and provide the first estimate of premature mortalities attributable to aircraft emissions globally. We estimate ∼8000 premature mortalities per year are attributable to aircraft cruise emissions. This represents ∼80% of the total impact of aviation (where the total includes the effects of landing and takeoff emissions), and ∼1% of air quality-related premature mortalities from all sources. However, we note that the impact of landing and takeoff emissions is likely to be under-resolved. Secondary H(2)SO(4)-HNO(3)-NH(3) aerosols are found to dominate mortality impacts. Due to the altitude and region of the atmosphere at which aircraft emissions are deposited, the extent of transboundary air pollution is particularly strong. For example, we describe how strong zonal westerly winds aloft, the mean meridional circulation around 30-60°N, interaction of aircraft-attributable aerosol precursors with background ammonia, and high population densities in combination give rise to an estimated ∼3500 premature mortalities per year in China and India combined, despite their relatively small current share of aircraft emissions. Subsidence of aviation-attributable aerosol and aerosol precursors occurs predominantly around the dry subtropical ridge, which results in reduced wet removal of aviation-attributable aerosol. It is also found that aircraft NO(x) emissions serve to increase oxidation of nonaviation SO(2), thereby further increasing the air quality impacts of aviation. We recommend that cruise emissions be explicitly considered in the development of policies, technologies and operational procedures designed to mitigate the air quality impacts of air transportation.
Recessions and Health: The Impact of Economic Trends on Air Pollution in California
2012-01-01
Objectives. I explored the hypothesis that economic activity has a significant impact on exposure to air pollution and ultimately human health. Methods. I used county-level employment statistics in California (1980–2000), along with major regulatory periods and other controlling factors, to estimate local concentrations of the coefficient of haze, carbon monoxide, and nitrogen dioxide using a mixed regression model approach. Results. The model explained between 33% and 48% of the variability in air pollution levels as estimated by the overall R2 values. The relationship between employment measures and air pollution was statistically significant, suggesting that air quality improves during economic downturns. Additionally, major air quality regulations played a significant role in reducing air pollution levels over the study period. Conclusions. This study provides important evidence of a role for the economy in understanding human exposure to environmental pollution. The evidence further suggests that the impact of environmental regulations are likely to be overstated when they occur during recessionary periods, and understated when they play out during periods of economic growth. PMID:22897522
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-20
... Requirements for the 2006 PM 2.5 NAAQS; Revisions to FIPs To Reduce Interstate Transport of PM 2.5 and Ozone..., 2011, and February 21, 2012, actions pertain to Federal Implementation Plans (FIPs) to reduce... August 8, 2011, (76 FR 48208), EPA published FIPs to reduce interstate transport of PM 2.5 and ozone. It...
Potential benefits of long-distance electricity transmission in China for air quality and climate
NASA Astrophysics Data System (ADS)
Peng, W.; Mauzerall, D. L.; Yuan, J.; Zhao, Y.; Lin, M.; Zhang, Q.
2015-12-01
China is expanding west-to-east long-distance electricity transmission capacity with the aim of reducing eastern coal power production and resulting air pollution. In addition to coal power, this new grid capacity can be used to transport renewable-generated electricity with resulting climate co-benefits. Here we use an integrated assessment to evaluate the air quality and climate benefits of twelve proposed transmission lines in China, and compare two energy-by-wire strategies that transmit 1) only coal power (Coal-by-wire, CbW) or 2) combined renewable plus coal power (Renewable and coal-by-wire, (RE+C)bW), with 3) the current practice of transporting coal by rail for conversion to electricity near eastern demand centers (Coal-by-rail, CbR). Based on a regional atmospheric chemistry model, WRF-Chem, electricity transmission through the proposed lines leads to 2-3 μg/m3 (2-7%) reduction in the annual mean concentrations of fine particulate matter (PM2.5) in the eastern provinces relative to 2010 levels, roughly ~1 μg/m3 greater than the reduction achieved in CbR where dirty coal units are locally replaced with efficient ones. Although the eastern air quality improvement is similar irrespective of the fuel source to power the lines, adding coal generation results in up to 3% increase in annual mean PM2.5 levels in some exporting provinces, whereas such increase is not observed when most added capacity is renewable-based. Counting both the economic value of reduced carbon emissions and the health-related air quality benefits can significantly improve the cost-effectiveness of transmitting both renewable and coal power. Comparing (RE+C)bW with the two coal-based options, we find not only 20% larger reduction in air-pollution-related deaths, but also three times greater reduction in CO2 emissions. Our study hence demonstrates the significance of coordinating renewable energy planning with transmission planning to simultaneously tackle air pollution and climate change in China and globally.
Air pollution and public health: emerging hazards and improved understanding of risk.
Kelly, Frank J; Fussell, Julia C
2015-08-01
Despite past improvements in air quality, very large parts of the population in urban areas breathe air that does not meet European standards let alone the health-based World Health Organisation Air Quality Guidelines. Over the last 10 years, there has been a substantial increase in findings that particulate matter (PM) air pollution is not only exerting a greater impact on established health endpoints, but is also associated with a broader number of disease outcomes. Data strongly suggest that effects have no threshold within the studied range of ambient concentrations, can occur at levels close to PM2.5 background concentrations and that they follow a mostly linear concentration-response function. Having firmly established this significant public health problem, there has been an enormous effort to identify what it is in ambient PM that affects health and to understand the underlying biological basis of toxicity by identifying mechanistic pathways-information that in turn will inform policy makers how best to legislate for cleaner air. Another intervention in moving towards a healthier environment depends upon the achieving the right public attitude and behaviour by the use of optimal air pollution monitoring, forecasting and reporting that exploits increasingly sophisticated information systems. Improving air quality is a considerable but not an intractable challenge. Translating the correct scientific evidence into bold, realistic and effective policies undisputedly has the potential to reduce air pollution so that it no longer poses a damaging and costly toll on public health.
Health Effects of Ozone Pollution
Inhaling ozone can cause coughing, shortness of breath, worse asthma or bronchitis symptoms, and irritation and damage to airways.You can reduce your exposure to ozone pollution by checking air quality where you live.
How the SmartWay Partnership Works
This page describes how the SmartWay program and the SmartWay Transport Partnership work for carriers, shippers, and logistics companies to track air quality, reduce fuel consumption, improve freight supply chain sustainability.
NASA Astrophysics Data System (ADS)
Desyana, R. D.; Sulistyantara, B.; Nasrullah, N.; Fatimah, I. S.
2017-03-01
Transportation is one significant factor which contributes to urban air pollution. One of the pollutants emitted from transportation which affect human’s health is NO2. Plants, especially trees, have high potential in reducing air pollutants from transportation through diffusion, absorbtion, adsorption and deposition. Purpose of this study was to analyze the effectiveness of several tree canopy types on roadside green belt in influencing distribution of NO2 gas emitted from transportation. The study conducted in three plots of tree canopy in Jagorawi Highway: Bungur (Lagerstroemia speciosa), Gmelina (Gmelina arborea) and Tanjung (Mimusops elengi). The tree canopy ability in absorbing pollutant is derived by comparing air quality on vegetated area with ambience air quality at control area (open field). Air sampling was conducted to measure NO2 concentration at elevation 1.5m, 5m and 10m at distance 0m, 10m and 30m, using Air Sampler Impinger. Concentration of NO2 was analyzed with Griess-Saltzman method. From this research, the result of ANOVA showed that tree plot (vegetated area) affected significantly to NO2 concentration. However the effect of distance from road and elevation was not significant. Among the plots, the highest NO2 concentration was found on Control plot (area without tree canopy), while the lowest NO2 concentration was found in Tanjung plot. Tanjung plot with round shape and high density canopy performed better in reducing NO2 than Bungur plot with round shape and medium density canopy, regardless the sampling elevation and distance. Gmelina plot performed the best in reducing horizontal distribution of NO2 concentration at elevation 1.5 and 5m, but the result at elevation 10m was not significant.
Compressed Air Quality, A Case Study In Paiton Coal Fired Power Plant Unit 1 And 2
NASA Astrophysics Data System (ADS)
Indah, Nur; Kusuma, Yuriadi; Mardani
2018-03-01
The compressed air system becomes part of a very important utility system in a Plant, including the Steam Power Plant. In PLN’S coal fired power plant, Paiton units 1 and 2, there are four Centrifugal air compressor types, which produce compressed air as much as 5.652 cfm and with electric power capacity of 1200 kW. Electricity consumption to operate centrifugal compressor is 7.104.117 kWh per year. Compressed air generation is not only sufficient in quantity (flow rate) but also meets the required air quality standards. compressed air at Steam Power Plant is used for; service air, Instrument air, and for fly Ash. This study aims to measure some important parameters related to air quality, followed by potential disturbance analysis, equipment breakdown or reduction of energy consumption from existing compressed air conditions. These measurements include counting the number of dust particles, moisture content, relative humidity, and also compressed air pressure. From the measurements, the compressed air pressure generated by the compressor is about 8.4 barg and decreased to 7.7 barg at the furthest point, so the pressure drop is 0.63 barg, this number satisfies the needs in the end user. The measurement of the number of particles contained in compressed air, for particle of 0.3 micron reaches 170,752 particles, while for the particle size 0.5 micron reaches 45,245 particles. Measurements of particles conducted at several points of measurement. For some point measurements the number of dust particle exceeds the standard set by ISO 8573.1-2010 and also NACE Code, so it needs to be improved on the air treatment process. To see the amount of moisture content in compressed air, it is done by measuring pressure dew point temperature (PDP). Measurements were made at several points with results ranging from -28.4 to 30.9 °C. The recommendation of improving compressed air quality in steam power plant, Paiton unit 1 and 2 has the potential to extend the life of instrumentation equipment, improve the reliability of equipment, and reduce the amount of energy consumption up to 502,579 kWh per year.
Hardware and Procedures for Using the Diveair2 Monitor to Test Diving Air Quality in the Field
2011-09-01
Dive System ( LWDS ), and the Fly- Away Dive System (FADS); b. one pressure-reducing regulator (“reducer”) mounted on the inside of the lid of the...1. compressors and air banks, 6 2. scuba bottles that had already been charged, 3. the Navy’s LWDS , both during and after charging, and...site where the charging whip attaches to that scuba bottle. c. A LWDS adaptor, to allow air from the LWDS to be sampled both during and after
Analysis of Best Management Practices for Storm Water Compliance at Air Force Airfields
1993-09-01
before selecting an infiltration system. These factors include the local vegetation, soil type and condition, groundwater condition, and storm water quality . The...reduce the peak flow rate of storm water discharges and remove sediments in order to improve storm water quality . Detention facilities should be...discharge rate of runoff and/or provide significant detention time to improve storm water quality through natural physical, chemical, and biological
Indoor air quality in schools and its relationship with children's respiratory symptoms
NASA Astrophysics Data System (ADS)
Madureira, Joana; Paciência, Inês; Rufo, João; Ramos, Elisabete; Barros, Henrique; Teixeira, João Paulo; de Oliveira Fernandes, Eduardo
2015-10-01
A cross-sectional survey was conducted to characterize the indoor air quality (IAQ) in schools and its relationship with children's respiratory symptoms. Concentrations of volatile organic compounds (VOC), aldehydes, PM2.5, PM10, carbon dioxide, bacteria and fungi were assessed in 73 classrooms from 20 public primary schools located in Porto, Portugal. Children who attended the selected classrooms (n = 1134) were evaluated by a standardised health questionnaire completed by the legal guardians; spirometry and exhaled nitric oxide tests. The results indicated that no classrooms presented individual VOC pollutant concentrations higher than the WHO IAQ guidelines or by INDEX recommendations; while PM2.5, PM10 and bacteria levels exceeded the WHO air quality guidelines or national limit values. High levels of total VOC, acetaldehyde, PM2.5 and PM10 were associated with higher odds of wheezing in children. Thus, indoor air pollutants, some even at low exposure levels, were related with the development of respiratory symptoms. The results pointed out that it is crucial to take into account the unique characteristics of the public primary schools, to develop appropriate control strategies in order to reduce the exposure to indoor air pollutants and, therefore, to minimize the adverse health effects.
NASA Astrophysics Data System (ADS)
Huang, H. C.; Pan, L.; McQueen, J.; Lee, P.; ONeill, S. M.; Ruminski, M.; Shafran, P.; DiMego, G.; Huang, J.; Stajner, I.; Upadhayay, S.; Larkin, N. K.
2016-12-01
Wildfires contribute to air quality problems not only towards primary emissions of particular matters (PM) but also emitted ozone precursor gases that can lead to elevated ozone concentration. Wildfires are unpredictable and can be ignited by natural causes such as lightning or accidently by human negligent behavior such as live cigarette. Although wildfire impacts on the air quality can be studied by collecting fire information after events, it is extremely difficult to predict future occurrence and behavior of wildfires for real-time air quality forecasts. Because of the time constraints of operational air quality forecasting, assumption of future day's fire behavior often have to be made based on observed fire information in the past. The United States (U.S.) NOAA/NWS built the National Air Quality Forecast Capability (NAQFC) based on the U.S. EPA CMAQ to provide air quality forecast guidance (prediction) publicly. State and local forecasters use the forecast guidance to issue air quality alerts in their area. The NAQFC fine particulates (PM2.5) prediction includes emissions from anthropogenic and biogenic sources, as well as natural sources such as dust storms and fires. The fire emission input to the NAQFC is derived from the NOAA NESDIS HMS fire and smoke detection product and the emission module of the US Forest Service BlueSky Smoke Modeling Framework. This study focuses on the error estimation of NAQFC PM2.5 predictions resulting from fire emissions. The comparisons between the NAQFC modeled PM2.5 and the EPA AirNow surface observation show that present operational NAQFC fire emissions assumption can lead to a huge error in PM2.5 prediction as fire emissions are sometimes placed at wrong location and time. This PM2.5 prediction error can be propagated from the fire source in the Northwest U.S. to downstream areas as far as the Southeast U.S. From this study, a new procedure has been identified to minimize the aforementioned error. An additional 24 hours reanalysis-run of NAQFC using same-day observed fire emission are being tested. Preliminary results have shown that this procedure greatly improves the PM2.5 predictions at both nearby and downstream areas from fire sources. The 24 hours reanalysis-run is critical and necessary especially during extreme fire events to provide better PM2.5 predictions.
A Tale of Two Cities - HSI-DOAS Measurements of Air Quality
NASA Astrophysics Data System (ADS)
Graves, Rosemarie; Leigh, Roland; Anand, Jasdeep; McNally, Michael; Lawrence, James; Monks, Paul
2013-04-01
Differential Optical Absorption Spectroscopy is now commonly used as an air quality measuring system; primarily through the measurements of nitrogen dioxide (NO2) both as a ground-based and satellite technique. CityScan is a Hemispherical Scanning Imaging Differential Optical Absorption Spectrometer (HSI-DOAS) which has been optimised to measure concentrations of nitrogen dioxide. CityScan has a 95˚ field of view (FOV) between the zenith and 5˚ below the horizon. Across this FOV there are 128 resolved elements which are measured concurrently, the spectrometer is rotated azimuthally 1˚ per second providing full hemispherical coverage every 6 minutes. CityScan measures concentrations of nitrogen dioxide over specific lines of sight and due to the extensive field of view of the instrument this produces measurements which are representative over city-wide scales. Nitrogen dioxide is an important air pollutant which is produced in all combustion processes and can reduce lung function; especially in sensitised individuals. These instruments aim to bridge the gap in spatial scales between point source measurements of air quality and satellite measurements of air quality offering additional information on emissions, transport and the chemistry of nitrogen dioxide. More information regarding the CityScan technique can be found at http://www.leos.le.ac.uk/aq/index.html. CityScan has been deployed in both London and Bologna, Italy during 2012. The London deployment took place as part of the large NERC funded ClearfLo project in January and July/August. CityScan was deployed in Bologna in June as part of the large EU project PEGASOS. Analysis of both of these campaigns of data will be used to give unprecedented levels of spatial information to air quality measurements whilst also showing the difference in air quality between a relatively isolated mega city and a smaller city situated in a very polluted region; in this case the Po Valley. Results from multiple CityScan instruments will be used in conjunction with data from ground based in-situ monitor networks to evaluate the ability of in-situ monitors to effectively assess the air quality in an urban environment. Trend analysis will also be shown to demonstrate any changes in the air quality in London during the time of the Olympic Games in comparison with a normal summer.
Bakó-Biró, Z; Wargocki, P; Weschler, C J; Fanger, P O
2004-06-01
In groups of six, 30 female subjects were exposed for 4.8 h in a low-polluting office to each of two conditions--the presence or absence of 3-month-old personal computers (PCs). These PCs were placed behind a screen so that they were not visible to the subjects. Throughout the exposure the outdoor air supply was maintained at 10 l/s per person. Under each of the two conditions the subjects performed simulated office work using old low-polluting PCs. They also evaluated the air quality and reported Sick Building Syndrome (SBS) symptoms. The PCs were found to be strong indoor pollution sources, even after they had been in service for 3 months. The sensory pollution load of each PC was 3.4 olf, more than three times the pollution of a standard person. The presence of PCs increased the percentage of people dissatisfied with the perceived air quality from 13 to 41% and increased by 9% the time required for text processing. Chemical analyses were performed to determine the pollutants emitted by the PCs. The most significant chemicals detected included phenol, toluene, 2-ethylhexanol, formaldehyde, and styrene. The identified compounds were, however, insufficient in concentration and kind to explain the observed adverse effects. This suggests that chemicals other than those detected, so-called 'stealth chemicals', may contribute to the negative effects. PCs are an important, but hitherto overlooked, source of pollution indoors. They can decrease the perceived air quality, increase SBS symptoms and decrease office productivity. The ventilation rate in an office with a 3-month-old PC would need to be increased several times to achieve the same perceived air quality as in a low-polluting office with the PC absent. Pollution from PCs has an important negative impact on the air quality, not only in offices but also in many other spaces, including homes. PCs may have played a role in previously published studies on SBS and perceived air quality, where PCs were overlooked as a possible pollution source in the indoor environment. The fact that the chemicals identified in the office air and in the chamber experiments were insufficient to explain the adverse effects observed during human exposures illustrates the inadequacy of the analytical chemical methods commonly used in indoor air quality investigations. For certain chemicals the human senses are much more sensitive than the chemical methods routinely used in indoor air quality investigations. The adverse effects of PC-generated air pollutants could be reduced by modifications in the manufacturing process, increased ventilation, localized PC exhaust, or personalized ventilation systems.
Local Air Quality Conditions and Forecasts
... Monitor Location Archived Maps by Region Canada Air Quality Air Quality on Google Earth Links A-Z About AirNow AirNow International Air Quality Action Days / Alerts AirCompare Air Quality Index (AQI) ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendell, Mark J.; Apte, Mike G.
This report considers the question of whether the California Energy Commission should incorporate the ASHRAE 62.1 ventilation standard into the Title 24 ventilation rate (VR) standards, thus allowing buildings to follow the Indoor Air Quality Procedure. This, in contrast to the current prescriptive standard, allows the option of using ventilation rate as one of several strategies, which might include source reduction and air cleaning, to meet specified targets of indoor air concentrations and occupant acceptability. The research findings reviewed in this report suggest that a revised approach to a ventilation standard for commercial buildings is necessary, because the current prescriptivemore » ASHRAE 62.1 Ventilation Rate Procedure (VRP) apparently does not provide occupants with either sufficiently acceptable or sufficiently healthprotective air quality. One possible solution would be a dramatic increase in the minimum ventilation rates (VRs) prescribed by a VRP. This solution, however, is not feasible for at least three reasons: the current need to reduce energy use rather than increase it further, the problem of polluted outdoor air in many cities, and the apparent limited ability of increasing VRs to reduce all indoor airborne contaminants of concern (per Hodgson (2003)). Any feasible solution is thus likely to include methods of pollutant reduction other than increased outdoor air ventilation; e.g., source reduction or air cleaning. The alternative 62.1 Indoor Air Quality Procedure (IAQP) offers multiple possible benefits in this direction over the VRP, but seems too limited by insufficient specifications and inadequate available data to provide adequate protection for occupants. Ventilation system designers rarely choose to use it, finding it too arbitrary and requiring use of much non-engineering judgment and information that is not readily available. This report suggests strategies to revise the current ASHRAE IAQP to reduce its current limitations. These strategies, however, would make it more complex and more prescriptive, and would require substantial research. One practical intermediate strategy to save energy would be an alternate VRP, allowing VRs lower than currently prescribed, as long as indoor VOC concentrations were no higher than with VRs prescribed under the current VRP. This kind of hybrid, with source reduction and use of air cleaning optional but permitted, could eventually evolve, as data, materials, and air-cleaning technology allowed gradual lowering of allowable concentrations, into a fully developed IAQP. Ultimately, it seems that VR standards must evolve to resemble the IAQP, especially in California, where buildings must achieve zero net energy use within 20 years.« less
Yarahmadi, Maryam; Hadei, Mostafa; Nazari, Seyed Saeed Hashemi; Conti, Gea Oliveri; Alipour, Mohammd Reza; Ferrante, Margherita; Shahsavani, Abbas
2018-05-01
Few studies regarding the health effects of long-term exposure to particulate matter with an aerodynamic diameter of 2.5 μm or less (PM 2.5 ) have been carried out in Asia or the Middle East. The objective of our study was to assess total, lung cancer and chronic obstructive pulmonary disease (COPD) mortality attributed to long-term exposure to PM 2.5 among adults aged over 30 years in Tehran from March 2013 to March 2016 using AirQ + software. AirQ + modeling software was used to estimate the number of deaths attributed to PM 2.5 concentrations higher than 10 μg m -3 . Air quality data were obtained from the Department of Environment (DOE) and Tehran Air Quality Control Company (TAQCC). Only valid stations with data completeness of 75% in all 3 years were selected for entry into the model. The 3-year average of the 24-h concentrations was 39.17 μg m -3 . The results showed that the annual average concentration of PM 2.5 in 2015-2016 was reduced by 13% compared to that in 2013-2014. The annual average number of all natural, COPD, and lung cancer deaths attributable to long-term exposure to PM 2.5 in adults aged more than 30 years was 5073, 158, and 142 cases, respectively. The results of all three health endpoints indicate that the mortality attributable to PM 2.5 decreased yearly from 2013 to 2016 and that the reduced mortality was related to a corresponding reduction in the PM 2.5 concentration. Considering these first positive results, the steps that have been currently taken for reducing air pollution in Tehran should be continued to further improve the already positive effects of these measures on reducing health outcomes.
Elements that contribute to healthy building design.
Loftness, Vivian; Hakkinen, Bert; Adan, Olaf; Nevalainen, Aino
2007-06-01
The elements that contribute to a healthy building are multifactorial and can be discussed from different perspectives. WE PRESENT THREE VIEWPOINTS OF DESIGNING A HEALTHY BUILDING: the importance of sustainable development, the role of occupants for ensuring indoor air quality, and ongoing developments related to indoor finishes with low chemical emissions and good fungal resistance. Sustainable design rediscovers the social, environmental, and technical values of pedestrian and mixed-use communities, using existing infrastructures including "main streets" and small-town planning principles and recapturing indoor-outdoor relationships. This type of design introduces nonpolluting materials and assemblies with lower energy requirements and higher durability and recyclability. Building occupants play a major role in maintaining healthy indoor environments, especially in residences. Contributors to indoor air quality include cleaning habits and other behaviors; consumer products, furnishings, and appliances purchases, as well as where and how the occupants use them. Certification of consumer products and building materials as low-emitting products is a primary control measure for achieving good indoor air quality. Key products in this respect are office furniture, flooring, paints and coatings, adhesives and sealants, wall coverings, wood products, textiles, insulation, and cleaning products. Finishing materials play a major role in the quality of indoor air as related to moisture retention and mold growth. Sustainable design emphasizes the needs of infrastructure, lower energy consumption, durability, and recyclability. To ensure good indoor air quality, the product development for household use should aim to reduce material susceptibility to contaminants such as mold and should adopt consumer-oriented product labeling.
Carbon monoxide and nitrogen dioxide levels in an indoor ice skating rink with mitigation methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, K.; Yanagisawa, Y.; Spengler, J.D.
1993-05-01
An indoor ice skating rink is an enclosed space with intermittent air pollutant emissions from fuel-powered ice-resurfacing equipment, such as a resurfacer and an edger. Exhaust gases discharged from the resurfacing equipment actually include significant quantities of carbon monoxide (CO) and nitrogen dioxide (NO[sub 2]) which may induced adverse health effects. Carbon monoxide exposures in ice skating rinks resulting from malfunctioning ice resurfacing equipment were first reported more than twenty years ago. Attempts to reduce emissions of CO and NO[sub 2] form resurfacing equipment, such as the extended exhaust pipe, operation of the air recirculation system or reduced resurfacer operation,more » appeared not to be effective for maintaining the air pollutant concentrations below guidelines. Even though improved indoor air quality was obtained by the combination of the full operation of the air exhaust system and the reduced number of resurfacer operations in this investigation, these methods may be impractical for most skating rinks. Replacement of the fuel-powered resurfacer with a battery operated resurfacer is recommended. If replacement is not feasible, then increasing the air ventilation rate is recommended as a second choice. 10 refs., 1 fig., 1 tab.« less
Impact of energy taxation on economy, environmental and public health quality.
Wang, Baoqing; Liu, Bowei; Niu, Honghong; Liu, Jianfeng; Yao, Shu
2018-01-15
This paper argues computable general equilibrium model and assess impact of energy taxation on economy, environmental and public health quality in Tianjin. In order to investigate different energy taxation based on medical cost and labor loss, the computable general equilibrium model integrating with input-output table and social accounting matrix (SAM) was constructed. The medical expense caused by air pollution of Tianjin in 2007 is 396 million yuan and death for 18104 people, which accounted for the total GDP and population 0.754‰ and 1.6‰, respectively. The results show that the enery taxes levy can improve the GDP, but it is only slightly. The energy taxes have adverse impact on energy sector because that the energy cost is increased. The scale of production is reduced, and the capital and labor resources are transferred to low energy consumption low emissions sector. The energy tax levy can reduce air pollutants concentration and improve air environmental quality. The PM 10 , SO 2 and NO 2 concentration in the energy taxes 5%-30% was reduced by 0.24%-0.24%, 0.09-0.52% and 0.29%-0.52% respectively. The medical expense has little impact on GDP, but labor loss has a certain effect on GDP. For higher energy taxes rate, the health effects on GDP can reach 0.06%-0.16%. This simultaneous economic and environmental improvement and health effect would thus have positive implications regarding energy taxes of the country. Copyright © 2017 Elsevier Ltd. All rights reserved.
Reduce oil and grease content in wastewater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capps, R.W.; Matelli, G.N.; Bradford, M.L.
Poor water quality is often blamed on biological oxidation unit malfunction. However, poorly treated water entering the bio-unit is more often the problem. At the microscopic level, oil/water-separation dynamics are influenced by pH, fluid velocity, temperature, and unit volumes. Oily water's physical and chemical properties affect pretreatment systems such as API separators, corrugated plate interception (CPI) separators, air flotation and equalization systems. A better understanding of pretreatment systems' limits and efficiencies can improve wastewater quality before it upsets the biological oxidation (BIOX). Oil contamination in refinery wastewater originates from desalting, steam stripping, product treating, tank drains, sample drains and equipmentmore » washdown. The largest volumetric contributors are cooling tower blowdowns and contaminated stormwater. The paper describes the BIOX process; oil/water separation; oil/water emulsions and colloidal solutions; air flotation; surfactants; DAF (dissolved air flotation) process; IAF (induced air flotation) process; equalization; load factors; salts; and system design.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-02
... Matter and Ozone AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of public hearings... Implementation Plans to Reduce Interstate Transport of Fine Particulate Matter and Ozone'' (Transport Rule) which... matter (PM 2.5 ) national ambient air quality standards (NAAQS) and the 1997 ozone NAAQS. Public hearing...
DOT National Transportation Integrated Search
2008-11-01
In 2003, Congress established a program to reduce airport ground emissions at commercial service airports in areas failing to meet or maintain air quality standards. The Federal Aviation Administration (FAA) administers the Voluntary Airport Low Emis...
LINKING CHANGES IN UTILITY NO X EMISSIONS TO CHANGE IN OZONE AIR QUALITY
The NOx State Implementation Plan (SIP) Call was designed to reduce Northeastern U.S. NOx emissions from utilities. With these reductions, it was anticipated that the amount of ozone attributed to transport from other states would in turn be reduced. In th...
Pollution Abatement and Prevention Analysis (PAPA) Study.
1994-07-01
of information. Including suggestions for reducing this burden, to Washington Headquarters Services , Directorate for information Operations and Reports...areas include solid and hazardous waste management, wastewater discharge, noise abatement, endangered species, wetlands, air quality attainment, and...support this study. The Environmental Quality Office of HQ AMC provided policy and program guidance while the sites provided the specific pollution
Chen, Rong; Sung, Wen-Pei; Chang, Hung-Chang; Chi, Yi-Rou
2013-01-01
A human life demand set to emerge in the future is the achievement of sustainability by maintaining a comfortable indoor environment without excessive reliance on energy-consuming air conditioners. The major research processes in this study are: (1) measuring indoor air quality and thermal comfort to evaluate the comfort of an indoor environment; (2) implementing questionnaire survey analysis to explore people's environmental self-perceptions and conducting a meta-analysis of the measurement results for air quality and physical aspects; and (3) constructing an indoor monitoring and management system. The experimental and analysis results of this research reveal that most of the office occupants preferred a cooler environment with a lower temperature. Additionally, because the summers in Taiwan are humid and hot, the occupants of an indoor space tend to feel uncomfortable because of the high humidity and poor indoor air quality. Therefore, Variable Air Volume (VAV), two air intakes, and exhaust plant are installed to improve indoor environment. After improvement, a lower temperature (approximately 21.2–23.9°C) indirectly reduces humidity, thereby making the occupants comfortable. Increasing air velocity to 0.1 ~ 0.15 m/s, the carbon dioxide concentrations decrease below the requirement of the WHO. Ninety-five percent of the workers corresponded to the standard comfort zone after this improvement. PMID:24311976
The impact of traffic-flow patterns on air quality in urban street canyons.
Thaker, Prashant; Gokhale, Sharad
2016-01-01
We investigated the effect of different urban traffic-flow patterns on pollutant dispersion in different winds in a real asymmetric street canyon. Free-flow traffic causes more turbulence in the canyon facilitating more dispersion and a reduction in pedestrian level concentration. The comparison of with and without a vehicle-induced-turbulence revealed that when winds were perpendicular, the free-flow traffic reduced the concentration by 73% on the windward side with a minor increase of 17% on the leeward side, whereas for parallel winds, it reduced the concentration by 51% and 29%. The congested-flow traffic increased the concentrations on the leeward side by 47% when winds were perpendicular posing a higher risk to health, whereas reduced it by 17-42% for parallel winds. The urban air quality and public health can, therefore, be improved by improving the traffic-flow patterns in street canyons as vehicle-induced turbulence has been shown to contribute significantly to dispersion. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chalabi, Zaid; Milojevic, Ai; Doherty, Ruth M.; Stevenson, David S.; MacKenzie, Ian A.; Milner, James; Vieno, Massimo; Williams, Martin; Wilkinson, Paul
2017-10-01
A decision support system for evaluating UK air quality policies is presented. It combines the output from a chemistry transport model, a health impact model and other impact models within a multi-criteria decision analysis (MCDA) framework. As a proof-of-concept, the MCDA framework is used to evaluate and compare idealized emission reduction policies in four sectors (combustion in energy and transformation industries, non-industrial combustion plants, road transport and agriculture) and across six outcomes or criteria (mortality, health inequality, greenhouse gas emissions, biodiversity, crop yield and air quality legal compliance). To illustrate a realistic use of the MCDA framework, the relative importance of the criteria were elicited from a number of stakeholders acting as proxy policy makers. In the prototype decision problem, we show that reducing emissions from industrial combustion (followed very closely by road transport and agriculture) is more advantageous than equivalent reductions from the other sectors when all the criteria are taken into account. Extensions of the MCDA framework to support policy makers in practice are discussed.
NASA Technical Reports Server (NTRS)
Perry, J. L.; Tomes, K. M.; Tatara, J. D.
2005-01-01
Contaminated air, whether in a crewed spacecraft cabin or terrestrial work and living spaces, is a pervasive problem affecting human health, performance, and well being. The need for highly effective, economical air quality processes spans a wide range of terrestrial and space flight applications. Typically, air quality control processes rely on absorption-based processes. Most industrial packed-bed adsorption processes use activated carbon. Once saturated, the carbon is either dumped or regenerated. In either case, the dumped carbon and concentrated waste streams constitute a hazardous waste that must be handled safely while minimizing environmental impact. Thermal catalytic oxidation processes designed to address waste handling issues are moving to the forefront of cleaner air quality control and process gas decontamination processes. Careful consideration in designing the catalyst substrate and reactor can lead to more complete contaminant destruction and poisoning resistance. Maintenance improvements leading to reduced waste handling and process downtime can also be realized. Performance of a prototype thermal catalytic reaction based on ultra-short waste channel, monolith catalyst substrate design, under a variety of process flow and contaminant loading conditions, is discussed.
Sullivan, Marianne
2015-05-01
Childhood lead exposure and poisoning near primary lead smelters continues in developed and developing countries. In the United States, the problem of lead poisoning in children caused by smelter emissions was first documented in the early 1970s. In 1978, Environmental Protection Agency set National Ambient Air Quality Standards for lead. Attainment of this lead standard in areas near operating lead smelters took twenty to thirty years. Childhood lead exposure and poisoning continued to occur after the lead National Ambient Air Quality Standards were set and before compliance was achieved. This article analyzes and discusses the factors that led to the eventual achievement of the 1978 lead National Ambient Air Quality Standards near primary smelters and the reduction of children's blood lead levels in surrounding communities. Factors such as federal and state regulation, monitoring of emissions, public health activities such as blood lead surveillance and health education, relocation of children, environmental group and community advocacy, and litigation all played a role. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Potential impact of fireworks on respiratory health
Gouder, Caroline; Montefort, Stephen
2014-01-01
The world-wide use of fireworks with their consequent detrimental effect on the air quality is widely recognized with elevated ambient air levels of particulate matter and its several metallic components and gases identified in several studies carried out during such events. Exposed individuals may be at risk following inhalation of such produced pollutants. This review focuses on the impact of fireworks on air quality and the potential effect of fireworks on the respiratory system of healthy individuals as well as those suffering from underlying respiratory diseases, particularly asthma and chronic obstructive pulmonary disease (COPD). This applies not only to spectators including children but also to pyrotechnicians themselves. An extensive Medline search revealed that a strong evidence of the impact of fireworks on respiratory health is lacking in susceptible as well as healthy individuals with no formal studies on COPD or asthma, other than a few case reports in the latter. The implementation of global strategies to control the use of fireworks and hence improve air quality could possibly reduce their likely detrimental effect on human respiratory health in exposed individuals, but clearly a more targeted research is needed. PMID:25378846
Indoor air quality and health in schools*
Ferreira, Ana Maria da Conceição; Cardoso, Massano
2014-01-01
Objective: To determine whether indoor air quality in schools is associated with the prevalence of allergic and respiratory diseases in children. Methods: We evaluated 1,019 students at 51 elementary schools in the city of Coimbra, Portugal. We applied a questionnaire that included questions regarding the demographic, social, and behavioral characteristics of students, as well as the presence of smoking in the family. We also evaluated the indoor air quality in the schools. Results: In the indoor air of the schools evaluated, we identified mean concentrations of carbon dioxide (CO2) above the maximum reference value, especially during the fall and winter. The CO2 concentration was sometimes as high as 1,942 ppm, implying a considerable health risk for the children. The most prevalent symptoms and respiratory diseases identified in the children were sneezing, rales, wheezing, rhinitis, and asthma. Other signs and symptoms, such as poor concentration, cough, headache, and irritation of mucous membranes, were identified. Lack of concentration was associated with CO2 concentrations above the maximum recommended level in indoor air (p = 0.002). There were no other significant associations. Conclusions: Most of the schools evaluated presented with reasonable air quality and thermal comfort. However, the concentrations of various pollutants, especially CO2, suggest the need for corrective interventions, such as reducing air pollutant sources and improving ventilation. There was a statistically significant association between lack of concentration in the children and exposure to high levels of CO2. The overall low level of pollution in the city of Coimbra might explain the lack of other significant associations. PMID:25029649
Indoor air quality and health in schools.
Ferreira, Ana Maria da Conceição; Cardoso, Massano
2014-01-01
To determine whether indoor air quality in schools is associated with the prevalence of allergic and respiratory diseases in children. We evaluated 1,019 students at 51 elementary schools in the city of Coimbra, Portugal. We applied a questionnaire that included questions regarding the demographic, social, and behavioral characteristics of students, as well as the presence of smoking in the family. We also evaluated the indoor air quality in the schools. In the indoor air of the schools evaluated, we identified mean concentrations of carbon dioxide (CO2) above the maximum reference value, especially during the fall and winter. The CO2 concentration was sometimes as high as 1,942 ppm, implying a considerable health risk for the children. The most prevalent symptoms and respiratory diseases identified in the children were sneezing, rales, wheezing, rhinitis, and asthma. Other signs and symptoms, such as poor concentration, cough, headache, and irritation of mucous membranes, were identified. Lack of concentration was associated with CO2 concentrations above the maximum recommended level in indoor air (p = 0.002). There were no other significant associations. Most of the schools evaluated presented with reasonable air quality and thermal comfort. However, the concentrations of various pollutants, especially CO2, suggest the need for corrective interventions, such as reducing air pollutant sources and improving ventilation. There was a statistically significant association between lack of concentration in the children and exposure to high levels of CO2. The overall low level of pollution in the city of Coimbra might explain the lack of other significant associations.
Improving air quality in megacities: Mexico City case study.
Molina, Luisa T; Molina, Mario J
2004-06-01
The development and effective implementation of solutions to the air pollution problems in the Mexico City Metropolitan Area is essential to guarantee the health and welfare of its inhabitants. To achieve this, it is essential to have the active and informed participation of the civil society, the academic community, the private sector, and the government, because dealing with pollution requires the use of different strategies in multiple fields of action. The Mexico City case study brings together health, transportation, administration, and many other interdisciplinary approaches to understanding and defeating air pollution. Although focused on the Mexico City area, the work conducted under this case study has significance for developing nations generally. Although policies to reduce air pollution should be based on the best available scientific knowledge, political will and capacity must transform this knowledge into action. This case study has developed a series of recommendations emphasizing the interaction between different disciplines that have provided the foundation for the 10-year air quality management program prepared by the Mexican Metropolitan Environmental Commission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bloomquist, R.G.
District heating and cooling (DHC) can provide multiple opportunities to reduce air emissions associated with space conditioning and electricity generation, which contribute 30% to 50% of all such emissions. When DHC is combined with cogeneration (CHP), maximum reductions in sulfur oxides (SO{sub x}), nitrogen oxides (NO{sub x}), carbon dioxide (CO{sub 2}), particulates, and ozone-depleting chlorofluorocarbon (CFC) refrigerants can most effectively be achieved. Although significant improvements in air quality have been documented in Europe and Scandinavia due to DHC and CHP implementation, accurately predicting such improvements has been difficult. Without acceptable quantification methods, regulatory bodies are reluctant to grant air emissionsmore » credits, and local community leaders are unwilling to invest in DHC and CHP as preferred methods of providing energy or strategies for air quality improvement. The recent development and release of a number of computer models designed specifically to provide quantification of air emissions that can result from DHC and CHP implementation should help provide local, state, and national policymakers with information vital to increasing support and investment in DHC development.« less
The particulate-related health benefits of reducing power plant emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, C.
The report estimates the adverse human health effects due to exposure to particulate matter from power plants. Power plants are significant emitters of sulfur dioxide and nitrogen oxides. In many parts of the U.S., especially the Midwest, power plants are the largest contributors. These gases are harmful themselves, and they contribute to the formation of acid rain and particulate matter. Particulate matter reduces visibility, often producing a milky haze that blankets wide regions, and it is a serious public health problem. Over the past decade and more, numerous studies have linked particulate matter to a wide range of adverse healthmore » effects in people of all ages. Epidemiologists have consistently linked particulate matter with effects ranging from premature death, hospital admissions and asthma attacks to chronic bronchitis. This study documents the health impacts from power plant air pollution emissions. Using the best available emissions and air quality modeling programs, the stud y forecasts ambient air quality for a business-as-usual baseline scenario for 2007, assuming full implementation of the Acid Rain program and the U.S. Environmental Protection Agency's (EPA) Summer Smog rule (the 1999 NO{sub x} SIP Call). The study then estimates the attributable health impacts from all power plant emissions. Finally, the study estimates air quality for a specific policy alternative: reducing total power plant emissions of SO{sub 2} and NO{sub x} 75 percent form the levels emitted in 1997. The difference between this '75 percent reduction scenario' and the baseline provides an estimate of the health effects that would be avoided by this reduction in power plant emissions. In addition to the policy scenario, the work involved performing sensitivity analyses to examine alternative emission reductions and forecast ambient air quality using a second air quality model. EPA uses both air quality models extensively, and both suggest that power plants make a large contribution to ambient particulate matter levels in the Eastern U.S. To put the power plant results in context, air pollution from all on-road and off-road diesel engine emissions was also examined. The results suggest that both power plants and diesel engines make a large contribution to ambient particulate matter levels and the associated health effects. Chapter 2 describes the development of the emissions inventory. Chapter 3 describes the methods used to estimate changes in particulate matter concentrations. Chapter 4 describes general issues arising in estimating and valuing changes in adverse health effects associated with changes in particulate matter. Chapter 5 describes in some detail the methods used for estimating and valuing adverse health effects, and in Chapter 6, the results of the various analyses are presented. The study includes 6 appendices. Appendix A provides results of this analysis for all metropolitan areas in the U.S. and a list of the counties in each metropolitan area. Appendices B, C and D present a detailed examination of how the pollution emission estimates were derived and then translated into forecasts of ambient particulate matter levels.« less
Effect of ventilation rate on air cleanliness and energy consumption in operation rooms at rest.
Lee, Shih-Tseng; Liang, Ching-Chieh; Chien, Tsung-Yi; Wu, Feng-Jen; Fan, Kuang-Chung; Wan, Gwo-Hwa
2018-02-27
The interrelationships between ventilation rate, indoor air quality, and energy consumption in operation rooms at rest are yet to be understood. We investigate the effect of ventilation rate on indoor air quality indices and energy consumption in ORs at rest. The study investigates the air temperature, relative humidity, concentrations of carbon dioxide, particulate matter (PM), and airborne bacteria at different ventilation rates in operation rooms at rest of a medical center. The energy consumption and cost analysis of the heating, ventilating, and air conditioning (HVAC) system in the operation rooms at rest were also evaluated for all ventilation rates. No air-conditioned operation rooms had very highest PM and airborne bacterial concentrations in the operation areas. The bacterial concentration in the operation areas with 6-30 air changes per hour (ACH) was below the suggested level set by the United Kingdom (UK) for an empty operation room. A 70% of reduction in annual energy cost by reducing the ventilation rate from 30 to 6 ACH was found in the operation rooms at rest. Maintenance of operation rooms at ventilation rate of 6 ACH could save considerable amounts of energy and achieve the goal of air cleanliness.
Accountability analysis of title IV phase 2 of the 1990 Clean Air Act Amendments.
Morgenstern, Richard D; Harrington, Winston; Shih, Jhih-Shyang; Bell, Michelle L
2012-11-01
In this study, we sought to assess what portion, if any, of the reductions in ambient concentrations of particulate matter (PM*) < or = 2.5 microm in aerodynamic diameter (PM2.5) that occurred in the United States between the years 1999 and 2006 can be attributed to reductions in emissions of sulfur dioxide (SO2) and nitrogen oxides (NOx) resulting from implementation of Phase 2 of Title IV of the 1990 Clean Air Act Amendments. To this end, a detailed statistical model linking sources and monitors over time and space was used to estimate associations between the observed emissions reductions and improvements in air quality. Overall, it turned out to be quite feasible to use relatively transparent statistical methods to assess these outcomes of the Phase 2 program, which was designed to reduce long-range transport of emissions. Associations between changes in emissions from individual power plants and monitor-specific estimates of changes in concentrations of PM2.5, our indicator pollutant, were highly significant and were mostly of the expected relative magnitudes with respect to distances and directions from sources. Originally estimated on monthly data for a set of 193 monitors between 1999 and 2005, our preferred model performed equally well using data for the same 193 monitors for 2006 as well as for an additional 217 monitors not in the original set in 2006. Although substantial model uncertainty was observed, we were able to estimate that the Title IV Phase 2 emissions reduction program implemented between 1999 and 2005 reduced PM2.5 concentrations in the eastern United States by an average of 1.07 microg/m3 (standard deviation [SD] = 0.11 microg/m3) compared with a counterfactual case defined as there having been no change in emission rates per unit of energy input (1 million British thermal units [BTUs]). On a population-weighted basis, the comparable reduction in PM2.5 was 0.89 microg/m3. Compared with the air quality fate and transport models used by the U.S. Environmental Protection Agency (EPA) to estimate air quality improvements associated with the Clean Air Interstate Rule (CAIR) for 2010 and 2015, when baseline PM2.5 concentrations were expected to be about one-third lower, our statistical model yielded roughly similar results per ton of SO2 reduced, well within the estimated confidence intervals of the models. We have proposed a number of steps to advance air quality outcomes research using statistical methods. Specifically, we have emphasized the value of updating our analysis with post-2005 data to try to corroborate our findings. We have also recommended extending the work on air quality outcomes to include changes in health outcomes that might be associated with the implementation of Title IV Phase 2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taha, Haider; Hammer, Hillel; Akbari, Hashem
2002-04-30
The study described in this report is part of a project sponsored by the Toronto Atmospheric Fund, performed at the Lawrence Berkeley National Laboratory, to assess the potential role of surface property modifications on energy, meteorology, and air quality in the Greater Toronto Area (GTA), Canada. Numerical models were used to establish the possible meteorological and ozone air-quality impacts of increased urban albedo and vegetative fraction, i.e., ''cool-city'' strategies that can mitigate the urban heat island (UHI), significantly reduce urban energy consumption, and improve thermal comfort, particularly during periods of hot weather in summer. Mitigation is even more important duringmore » critical heat wave periods with possible increased heat-related hospitalization and mortality. The evidence suggests that on an annual basis cool-city strategies are beneficial, and the implementation of such measures is currently being investigated in the U.S. and Canada. We simulated possible scenari os for urban heat-island mitigation in the GTA and investigated consequent meteorological changes, and also performed limited air-quality analysis to assess related impacts. The study was based on a combination of mesoscale meteorological modeling, Lagrangian (trajectory), and photochemical trajectory modeling to assess the potential meteorological and ozone air-quality impacts of cool-city strategies. As available air-quality and emissions data are incompatible with models currently in use at LBNL, our air-quality analysis was based on photochemical trajectory modeling. Because of questions as to the accuracy and appropriateness of this approach, in our opinion this aspect of the study can be improved in the future, and the air-quality results discussed in this report should be viewed as relatively qualitative. The MM5 meteorological model predicts a UHI in the order of 2 to 3 degrees C in locations of maxima, and about 1 degree C as a typical value over most of the urban area. Our si mulations suggest that cool-city strategies can typically reduce local urban air temperature by 0.5-1 degrees C; as more sporadic events, larger decreases (1.5 degrees C, 2.5-2.7 degrees C and 4-6 degrees C) were also simulated. With regard to ozone mixing ratios along the simulated trajectories, the effects of cool-city strategies appear to be on the order of 2 ppb, a typical decrease. The photochemical trajectory model (CIT) also simulates larger decreases (e.g., 4 to 8 ppb), but these are not taken as representative of the potential impacts in this report. A comparison with other simulations suggest very crudely that a decrease of this magnitude corresponds to significant ''equivalent'' decreases in both NOx and VOCs emissions in the region. Our preliminary results suggest that significant UHI control can be achieved with cool-cities strategies in the GTA and is therefore worth further study. We recommend that better input data and more accurate modeling schemes be used to carry out f uture studies in the same direction.« less
Fontes, Tânia; Li, Peilin; Barros, Nelson; Zhao, Pengjun
2018-08-01
Air quality traffic-related measures have been implemented worldwide to control the pollution levels of urban areas. Although some of those measures are claiming environmental improvements, few studies have checked their real impact. In fact, quantitative estimates are often focused on reducing emissions, rather than on evaluating the actual measures' effect on air quality. Even when air quality studies are conducted, results are frequently unclear. In order to properly assess the real impact on air quality of traffic-related measures, a statistical method is proposed. The method compares the pollutant concentration levels observed after the implementation of a measure with the concentration values of the previous year. Short- and long-term impact is assessed considering not only their influence on the average pollutant concentration, but also on its maximum level. To control the effect of the main confounding factors, only the days with similar environmental conditions are analysed. The changeability of the key meteorological variables that affect the transport and dispersion of the pollutant studied are used to identify and group the days categorized as similar. Resemblance of the pollutants' concentration of the previous day is also taken into account. The impact of the road traffic measures on the air pollutants' concentration is then checked for those similar days using specific statistical functions. To evaluate the proposed method, the impact on PM 2.5 concentrations of two air quality traffic-related measures (M1 and M2) implemented in the city of Beijing are taken into consideration: M1 was implemented in 2009, restricting the circulation of yellow-labelled vehicles, while M2 was implemented in 2014, restricting the circulation of heavy-duty vehicles. To compare the results of each measure, a time-period when these measures were not applied is used as case-control. Copyright © 2018 Elsevier Ltd. All rights reserved.
Persistence of initial conditions in continental scale air quality ...
This study investigates the effect of initial conditions (IC) for pollutant concentrations in the atmosphere and soil on simulated air quality for two continental-scale Community Multiscale Air Quality (CMAQ) model applications. One of these applications was performed for springtime and the second for summertime. Results show that a spin-up period of ten days commonly used in regional-scale applications may not be sufficient to reduce the effects of initial conditions to less than 1% of seasonally-averaged surface ozone concentrations everywhere while 20 days were found to be sufficient for the entire domain for the spring case and almost the entire domain for the summer case. For the summer case, differences were found to persist longer aloft due to circulation of air masses and even a spin-up period of 30 days was not sufficient to reduce the effects of ICs to less than 1% of seasonally-averaged layer 34 ozone concentrations over the southwestern portion of the modeling domain. Analysis of the effect of soil initial conditions for the CMAQ bidirectional NH3 exchange model shows that during springtime they can have an important effect on simulated inorganic aerosols concentrations for time periods of one month or longer. The effects are less pronounced during other seasons. The results, while specific to the modeling domain and time periods simulated here, suggest that modeling protocols need to be scrutinized for a given application and that it cannot be assum
Forster, Mark; McAughey, John; Prasad, Krishna; Mavropoulou, Eleni; Proctor, Christopher
2018-03-01
The tobacco heating product THP1.0, which heats but does not burn tobacco, was tested as part of a modified-risk tobacco product assessment framework for its impacts on indoor air quality and residual tobacco smoke odour. THP1.0 heats the tobacco to less than 240 °C ± 5 °C during puffs. An environmentally controlled room was used to simulate ventilation conditions corresponding to residential, office and hospitality environments. An analysis of known tobacco smoke constituents, included CO, CO 2 , NO, NO 2 , nicotine, glycerol, 3-ethenyl pyridine, sixteen polycyclic aromatic hydrocarbons, eight volatile organic compounds, four carbonyls, four tobacco-specific nitrosamines and total aerosol particulate matter. Significant emissions reductions in comparison to conventional cigarettes were measured for THP1.0. Levels of nicotine, acetaldehyde, formaldehyde and particulate matter emitted from THP1.0 exceeded ambient air measurements, but were more than 90% reduced relative to cigarette smoke emissions within the laboratory conditions defined Residual tobacco smoke odour was assessed by trained sensory panels after exposure of cloth, hair and skin to both mainstream and environmental emissions from the test products. Residual tobacco smoke odour was significantly lower from THP1.0 than from a conventional cigarette. These data show that using THP1.0 has the potential to result in considerably reduced environmental emissions that affect indoor air quality relative to conventional cigarettes. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
A low emission vehicle procurement approach for Washington state
NASA Astrophysics Data System (ADS)
McCoy, G. A.; Lyons, J. K.; Ware, G.
1992-06-01
The Clean Air Washington Act of 1991 directs the Department of Ecology to establish a clean-fuel vehicle standard. The Department of General Administration shall purchase vehicles based on this standard beginning in the Fall of 1992. The following summarizes the major issues effecting vehicle emissions and their regulation, and present a methodology for procuring clean-fuel vehicles for the State of Washington. Washington State's air quality problems are much less severe than in other parts of the country such as California, the East Coast and parts of the Mid West. Ozone, which is arguably the dominant air quality problem in the US, is a recent and relatively minor issue in Washington. Carbon monoxide (CO) represents a more immediate problem in Washington, with most of the state's urban areas exceeding national CO air quality standards. Since the mid-1960's, vehicle tailpipe hydrocarbon and carbon monoxide emissions have been reduced by 96 percent relative to precontrol vehicles. Nitrogen oxide emissions have been reduced by 76 percent. Emissions from currently available vehicles are quite low with respect to in-place exhaust emission standards. Cold-start emissions constitute about 75 percent of the total emissions measured with the Federal Test Procedure used to certify motor vehicles. There is no currently available 'inherently clean burning fuel'. In 1991, 3052 vehicles were purchased under Washington State contract. Provided that the same number are acquired in 1993, the state will need to purchase 915 vehicles which meet the definition of a 'clean-fueled vehicle'.
Rhonda Mazza
2008-01-01
The fire hazard in many western forests is unacceptably high, posing risks to human health and property, wildlife habitat, and air and water quality. Cost is an inhibiting factor for reducing hazardous fuel, given the amount of acreage needing treatment. Thinning overly dense forests is one way to reduce fuel loads. Much of the product removed during these treatments...
AIR-MRF: Accelerated iterative reconstruction for magnetic resonance fingerprinting.
Cline, Christopher C; Chen, Xiao; Mailhe, Boris; Wang, Qiu; Pfeuffer, Josef; Nittka, Mathias; Griswold, Mark A; Speier, Peter; Nadar, Mariappan S
2017-09-01
Existing approaches for reconstruction of multiparametric maps with magnetic resonance fingerprinting (MRF) are currently limited by their estimation accuracy and reconstruction time. We aimed to address these issues with a novel combination of iterative reconstruction, fingerprint compression, additional regularization, and accelerated dictionary search methods. The pipeline described here, accelerated iterative reconstruction for magnetic resonance fingerprinting (AIR-MRF), was evaluated with simulations as well as phantom and in vivo scans. We found that the AIR-MRF pipeline provided reduced parameter estimation errors compared to non-iterative and other iterative methods, particularly at shorter sequence lengths. Accelerated dictionary search methods incorporated into the iterative pipeline reduced the reconstruction time at little cost of quality. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ghaemi, Z.; Farnaghi, M.; Alimohammadi, A.
2015-12-01
The critical impact of air pollution on human health and environment in one hand and the complexity of pollutant concentration behavior in the other hand lead the scientists to look for advance techniques for monitoring and predicting the urban air quality. Additionally, recent developments in data measurement techniques have led to collection of various types of data about air quality. Such data is extremely voluminous and to be useful it must be processed at high velocity. Due to the complexity of big data analysis especially for dynamic applications, online forecasting of pollutant concentration trends within a reasonable processing time is still an open problem. The purpose of this paper is to present an online forecasting approach based on Support Vector Machine (SVM) to predict the air quality one day in advance. In order to overcome the computational requirements for large-scale data analysis, distributed computing based on the Hadoop platform has been employed to leverage the processing power of multiple processing units. The MapReduce programming model is adopted for massive parallel processing in this study. Based on the online algorithm and Hadoop framework, an online forecasting system is designed to predict the air pollution of Tehran for the next 24 hours. The results have been assessed on the basis of Processing Time and Efficiency. Quite accurate predictions of air pollutant indicator levels within an acceptable processing time prove that the presented approach is very suitable to tackle large scale air pollution prediction problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Hao; Li, Yufeng; Wang, Shuai
Air-void structure was introduced in GaN-based blue light-emitting diodes (LED) with one-step growth on periodic laser drilling patterned sapphire substrate, which free of any photolithography or wet/dry etching process. The influence of filling factors (FF) of air-void on crystal quality and optical performance were investigate. Transmission electron microscopy images and micro-Raman spectroscopy indicated that the dislocation was bended and the partially compressed strain was released. When FF was 55.43%, compared with the LED structure grown on flat sapphire substrate, the incorporation of air-void was observed to reduce the compressed stress of ∼20% and the luminance intensity has improved by 128%.more » Together with the simulated reflection intensity enhancement by finite difference time-domain (FDTD) method, we attribute the enhanced optical performance to the combined contribution of strong back-side light reflection of air-void and better GaN epitaxial quality. This approach provides a simple replacement to the conventional air-void embedded LED process.« less
Clean Air Markets - Facility Attributes and Contacts Query Wizard
The Facility Attributes and Contacts Query Wizard is part of a suite of Clean Air Markets-related tools that are accessible at http://camddataandmaps.epa.gov/gdm/index.cfm. The Facility Attributes and Contact module gives the user access to current and historical facility, owner, and representative data using custom queries, via the Facility Attributes Query Wizard, or Quick Reports. In addition, data regarding EPA, State, and local agency staff are also available. The Query Wizard can be used to search for data about a facility or facilities by identifying characteristics such as associated programs, owners, representatives, locations, and unit characteristics, facility inventories, and classifications.EPA's Clean Air Markets Division (CAMD) includes several market-based regulatory programs designed to improve air quality and ecosystems. The most well-known of these programs are EPA's Acid Rain Program and the NOx Programs, which reduce emissions of sulfur dioxide (SO2) and nitrogen oxides (NOx)-compounds that adversely affect air quality, the environment, and public health. CAMD also plays an integral role in the development and implementation of the Clean Air Interstate Rule (CAIR).
Alternative fuels and advanced technology vehicles : issues in Congress
DOT National Transportation Integrated Search
2009-02-13
Alternative fuels and advanced technology vehicles are seen by proponents as integral to improving urban air quality, decreasing dependence on foreign oil, and reducing emissions of greenhouse gases. However, major barriers especially economics curre...
Silenced science: air pollution decision-making at the EPA threatens public health.
Rest, Kathleen
2007-01-01
The saga of the Environmental Protection Agency's new particulate matter (PM) rule is yet another example of this Administration's disregard for and disrespect of science and scientists--and may signal the beginning of a disturbing trend to reduce the role of science in protecting the quality of our air. Political interference in the PM case is clear. And more trouble may be in the wings when it comes to acceptable levels of ozone pollution and the process for setting the National Ambient Air Quality Standards (NAAQS). For several years, the Union of Concerned Scientists has been actively monitoring and documenting the misuse of science in public policy-making. Consider this a call to arms. Now is the time to engage your elected officials on these issues.
NASA Astrophysics Data System (ADS)
Cécé, Raphaël; Bernard, Didier; Brioude, Jérome; Zahibo, Narcisse
2016-08-01
Tropical islands are characterized by thermal and orographical forcings which may generate microscale air mass circulations. The Lesser Antilles Arc includes small tropical islands (width lower than 50 km) where a total of one-and-a-half million people live. Air quality over this region is affected by anthropogenic and volcanic emissions, or saharan dust. To reduce risks for the population health, the atmospheric dispersion of emitted pollutants must be predicted. In this study, the dispersion of anthropogenic nitrogen oxides (NOx) is numerically modelled over the densely populated area of the Guadeloupe archipelago under weak trade winds, during a typical case of severe pollution. The main goal is to analyze how microscale resolutions affect air pollution in a small tropical island. Three resolutions of domain grid are selected: 1 km, 333 m and 111 m. The Weather Research and Forecasting model (WRF) is used to produce real nested microscale meteorological fields. Then the weather outputs initialize the Lagrangian Particle Dispersion Model (FLEXPART). The forward simulations of a power plant plume showed good ability to reproduce nocturnal peaks recorded by an urban air quality station. The increase in resolution resulted in an improvement of model sensitivity. The nesting to subkilometer grids helped to reduce an overestimation bias mainly because the LES domains better simulate the turbulent motions governing nocturnal flows. For peaks observed at two air quality stations, the backward sensitivity outputs identified realistic sources of NOx in the area. The increase in resolution produced a sharper inverse plume with a more accurate source area. This study showed the first application of the FLEXPART-WRF model to microscale resolutions. Overall, the coupling model WRF-LES-FLEXPART is useful to simulate the pollutant dispersion during a real case of calm wind regime over a complex terrain area. The forward and backward simulation results showed clearly that the subkilometer resolution of 333 m is necessary to reproduce realistic air pollution patterns in this case of short-range transport over a complex terrain area. Globally, this work contributes to enrich the sparsely documented domain of real nested microscale air pollution modelling. This study dealing with the determination of the proper resolution grid and proper turbulence scheme, is of significant interest to the near-source and complex terrain air quality research community.
The measurement of carbon dioxide levels in a city canyon
NASA Astrophysics Data System (ADS)
Boyd, Jenny; Budinov, Daniel; Robinson, Iain; Jack, James
2016-10-01
Cities today have two major environmental concerns - carbon emissions and air quality. Global carbon levels are increasing and cities require to show plans to tackle and reduce the amount of carbon which they are emitting. At present carbon emissions in urban areas are calculated rather than measured. In some cities where industrial activity is not carbon intensive, the major contributors are the burning of fuel for heating and the emissions from vehicles. Air quality levels have a direct impact on human health and cities are under increased pressure to demonstrate plans to control and reduce levels of air pollution. Of great importance is the way in which emissions, both carbon rich emissions and pollutants, disperse in a city environment. Little work has been reported on the movement of CO2 in the urban environment and the effect the structure of the environment exerts on the movement and dispersion. This paper describes an investigation into the dispersion of CO2 within an urban environment in the Old Town of the City of Edinburgh, using a hand carried low cost portable CO2 sensor.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-21
...This action would establish more stringent vehicle emissions standards and reduce the sulfur content of gasoline beginning in 2017, as part of a systems approach to addressing the impacts of motor vehicles and fuels on air quality and public health. The proposed gasoline sulfur standard would make emission control systems more effective for both existing and new vehicles, and would enable more stringent vehicle emissions standards. The proposed vehicle standards would reduce both tailpipe and evaporative emissions from passenger cars, light-duty trucks, medium-duty passenger vehicles, and some heavy-duty vehicles. This would result in significant reductions in pollutants such as ozone, particulate matter, and air toxics across the country and help state and local agencies in their efforts to attain and maintain health-based National Ambient Air Quality Standards. Motor vehicles are an important source of exposure to air pollution both regionally and near roads. These proposed vehicle standards are intended to harmonize with California's Low Emission Vehicle program, thus creating a federal vehicle emissions program that would allow automakers to sell the same vehicles in all 50 states. The proposed vehicle standards would be implemented over the same timeframe as the greenhouse gas/fuel efficiency standards for light-duty vehicles, as part of a comprehensive approach toward regulating emissions from motor vehicles.
Vegetation-mediated Climate Impacts on Historical and Future Ozone Air Quality
NASA Astrophysics Data System (ADS)
Tai, A. P. K.; Fu, Y.; Mickley, L. J.; Heald, C. L.; Wu, S.
2014-12-01
Changes in climate, natural vegetation and human land use are expected to significantly influence air quality in the coming century. These changes and their interactions have important ramifications for the effectiveness of air pollution control strategies. In a series of studies, we use a one-way coupled modeling framework (GEOS-Chem driven by different combinations of historical and future meteorological, land cover and emission data) to investigate the effects of climate-vegetation changes on global and East Asian ozone air quality from 30 years ago to 40 years into the future. We find that future climate and climate-driven vegetation changes combine to increase summertime ozone by 2-6 ppbv in populous regions of the US, Europe, East Asia and South Asia by year 2050, but including the interaction between CO2 and biogenic isoprene emission reduces the climate impacts by more than half. Land use change such as cropland expansion has the potential to either mostly offset the climate-driven ozone increases (e.g., in the US and Europe), or greatly increase ozone (e.g., in Southeast Asia). The projected climate-vegetation effects in East Asia are particularly uncertain, reflecting a less understood ozone production regime. We thus further study how East Asian ozone air quality has evolved since the early 1980s in response to climate, vegetation and emission changes to shed light on its likely future course. We find that warming alone has led to a substantial increase in summertime ozone in populous regions by 1-4 ppbv. Despite significant cropland expansion and urbanization, increased summertime leafiness of vegetation in response to warming and CO2 fertilization has reduced ozone by 1-2 ppbv, driven by enhanced ozone deposition dominating over elevated biogenic emission and partially offsetting the warming effect. The historical role of CO2-isoprene interaction in East Asia, however, remains highly uncertain. Our findings demonstrate the important roles of land cover and vegetation in modulating climate-chemistry interactions, and highlight aspects that warrant further investigation.
Stephens-Romero, Shane; Carreras-Sospedra, Marc; Brouwer, Jacob; Dabdub, Donald; Samuelsen, Scott
2009-12-01
Adoption of hydrogen infrastructure and hydrogen fuel cell vehicles (HFCVs) to replace gasoline internal combustion engine (ICE) vehicles has been proposed as a strategy to reduce criteria pollutant and greenhouse gas (GHG) emissions from the transportation sector and transition to fuel independence. However, it is uncertain (1) to what degree the reduction in criteria pollutants will impact urban air quality, and (2) how the reductions in pollutant emissions and concomitant urban air quality impacts compare to ultralow emission gasoline-powered vehicles projected for a future year (e.g., 2060). To address these questions, the present study introduces a "spatially and temporally resolved energy and environment tool" (STREET) to characterize the pollutant and GHG emissions associated with a comprehensive hydrogen supply infrastructure and HFCVs at a high level of geographic and temporal resolution. To demonstrate the utility of STREET, two spatially and temporally resolved scenarios for hydrogen infrastructure are evaluated in a prototypical urban airshed (the South Coast Air Basin of California) using geographic information systems (GIS) data. The well-to-wheels (WTW) GHG emissions are quantified and the air quality is established using a detailed atmospheric chemistry and transport model followed by a comparison to a future gasoline scenario comprised of advanced ICE vehicles. One hydrogen scenario includes more renewable primary energy sources for hydrogen generation and the other includes more fossil fuel sources. The two scenarios encompass a variety of hydrogen generation, distribution, and fueling strategies. GHG emissions reductions range from 61 to 68% for both hydrogen scenarios in parallel with substantial improvements in urban air quality (e.g., reductions of 10 ppb in peak 8-h-averaged ozone and 6 mug/m(3) in 24-h-averaged particulate matter concentrations, particularly in regions of the airshed where concentrations are highest for the gasoline scenario).
Air quality in Delhi during the Commonwealth Games
NASA Astrophysics Data System (ADS)
Marrapu, P.; Cheng, Y.; Beig, G.; Sahu, S.; Srinivas, R.; Carmichael, G. R.
2014-10-01
Air quality during the Commonwealth Games (CWG, held in Delhi in October 2010) is analyzed using a new air quality forecasting system established for the games. The CWG stimulated enhanced efforts to monitor and model air quality in the region. The air quality of Delhi during the CWG had high levels of particles with mean values of PM2.5 and PM10 at the venues of 111 and 238 μg m-3, respectively. Black carbon (BC) accounted for ~ 10% of the PM2.5 mass. It is shown that BC, PM2.5 and PM10 concentrations are well predicted, but with positive biases of ~ 25%. The diurnal variations are also well captured, with both the observations and the modeled values showing nighttime maxima and daytime minima. A new emissions inventory, developed as part of this air quality forecasting initiative, is evaluated by comparing the observed and predicted species-species correlations (i.e., BC : CO; BC : PM2.5; PM2.5 : PM10). Assuming that the observations at these sites are representative and that all the model errors are associated with the emissions, then the modeled concentrations and slopes can be made consistent by scaling the emissions by 0.6 for NOx, 2 for CO, and 0.7 for BC, PM2.5, and PM10. The emission estimates for particles are remarkably good considering the uncertainty in the estimates due to the diverse spread of activities and technologies that take place in Delhi and the rapid rates of change. The contribution of various emission sectors including transportation, power, domestic and industry to surface concentrations are also estimated. Transport, domestic and industrial sectors all make significant contributions to PM levels in Delhi, and the sectoral contributions vary spatially within the city. Ozone levels in Delhi are elevated, with hourly values sometimes exceeding 100 ppb. The continued growth of the transport sector is expected to make ozone pollution a more pressing air pollution problem in Delhi. The sector analysis provides useful inputs into the design of strategies to reduce air pollution levels in Delhi. The contribution for sources outside of Delhi on Delhi air quality range from ~ 25% for BC and PM to ~ 60% for day time ozone. The significant contributions from non-Delhi sources indicates that in Delhi (as has been show elsewhere) these strategies will also need a more regional perspective.
Global health benefits of mitigating ozone pollution with methane emission controls.
West, J Jason; Fiore, Arlene M; Horowitz, Larry W; Mauzerall, Denise L
2006-03-14
Methane (CH(4)) contributes to the growing global background concentration of tropospheric ozone (O(3)), an air pollutant associated with premature mortality. Methane and ozone are also important greenhouse gases. Reducing methane emissions therefore decreases surface ozone everywhere while slowing climate warming, but although methane mitigation has been considered to address climate change, it has not for air quality. Here we show that global decreases in surface ozone concentrations, due to methane mitigation, result in substantial and widespread decreases in premature human mortality. Reducing global anthropogenic methane emissions by 20% beginning in 2010 would decrease the average daily maximum 8-h surface ozone by approximately 1 part per billion by volume globally. By using epidemiologic ozone-mortality relationships, this ozone reduction is estimated to prevent approximately 30,000 premature all-cause mortalities globally in 2030, and approximately 370,000 between 2010 and 2030. If only cardiovascular and respiratory mortalities are considered, approximately 17,000 global mortalities can be avoided in 2030. The marginal cost-effectiveness of this 20% methane reduction is estimated to be approximately 420,000 US dollars per avoided mortality. If avoided mortalities are valued at 1 US dollars million each, the benefit is approximately 240 US dollars per tone of CH(4) ( approximately 12 US dollars per tone of CO(2) equivalent), which exceeds the marginal cost of the methane reduction. These estimated air pollution ancillary benefits of climate-motivated methane emission reductions are comparable with those estimated previously for CO(2). Methane mitigation offers a unique opportunity to improve air quality globally and can be a cost-effective component of international ozone management, bringing multiple benefits for air quality, public health, agriculture, climate, and energy.
Quansah, Reginald; Ochieng, Caroline A; Semple, Sean; Juvekar, Sanjar; Emina, Jacques; Armah, Frederick Ato; Luginaah, Isaac
2015-03-04
Indoor air pollution (IAP) interventions are widely promoted as a means of reducing indoor air pollution/health from solid fuel use; and research addressing impact of these interventions has increased substantially in the past two decades. It is timely and important to understand more about effectiveness of these interventions. We describe the protocol of a systematic review to (i) evaluate effectiveness of IAP interventions to improve indoor air quality and/or health in homes using solid fuel for cooking and/or heating in lower- and middle-income countries, (ii) identify the most effective intervention to improve indoor air quality and/or health, and (iii) identify future research needs. This review will be conducted according to the National Institute for Health and Care Excellence (NICE) guidelines and will be reported following the PRISMA statement. Ovid MEDLINE, Ovid Embase, SCOPUS, and PubMed searches were conducted in September 2013 and updated in November 2014 (and include any further search updates in February 2015). Additional references will be located through searching the references cited by identified studies and through the World Health Organization Global database of household air pollution measurements. We will also search our own archives. Data extraction and risk of bias assessment of all included papers will be conducted independently by five reviewers. The study will provide insights into what interventions are most effective in reducing indoor air pollution and/or adverse health outcomes in homes using solid fuel for cooking or heating in lower- or middle-income countries. The findings from this review will be used to inform future IAP interventions and policy on poverty reduction and health improvement in poor communities who rely on biomass and solid fuels for cooking and heating. The review has been registered with PROSPERO (registration number CRD42014009768 ).
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-25
...] Approval of Air Quality Implementation Plans; California; El Dorado County Air Quality Management District... California for the El Dorado County Air Quality Management District (EDAQMD) portion of the California SIP... 24, 1987 Federal Register, May 25, 1988, U.S. EPA, Air Quality Management Division, Office of Air...
Scheepers, Paul T J; de Hartog, Jeroen J; Reijnaerts, Judith; Beckmann, Gwendolyn; Anzion, Rob; Poels, Katrien; Godderis, Lode
2015-02-01
Primary schools mostly rely on natural ventilation but also have an interest in affordable technology to improve indoor air quality (IAQ). Laboratory tests show promising results for dust reducing carpets and compact air filtration systems but there is no information available on the performance of these interventions in actual operating classrooms. An exploratory study was performed to evaluate a combination of the two systems in a primary school. Measurements of PM-10 and PM-2.5 were performed by filter sampling and aerosol spectrometry. Other IAQ parameters included black smoke (BS), volatile organic compounds (VOC), nitrogen dioxide (NO2) and formaldehyde. Both interventions were introduced in one classroom during one week, using another classroom as a reference. In a second week the interventions were moved to the other classroom, using the first as a reference (cross-over design). In three remaining weeks the classrooms were compared without interventions. Indoor IAQ parameters were compared to the corresponding outdoor parameters using the indoor/outdoor (I/O) ratio. When the classrooms were occupied (teaching hours) interventions resulted in 27-43% reductions of PM-10, PM-2.5 and BS values. During the weekends the systems reduced these levels by 51-87%. Evaluations using the change in I/O ratios gave comparable results. Levels of VOC, NO2 and formaldehyde were rather low and a contribution of the interventions to the improvement of these gas phase IAQ parameters was inconclusive.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michalski, Casey C.; DiSalvo, Rick; Boylan, John
2013-07-01
DOE's Rocky Flats Site in Colorado is a former nuclear weapons production facility that began operations in the early 1950's. Because of releases of hazardous substances to the environment, the federally owned property and adjacent offsite areas were placed on the CERCLA National Priorities List in 1989. The final remedy was selected in 2006. Engineered components of the remedy include four groundwater treatment systems that were installed before closure as CERCLA-accelerated actions. Two of the systems, the Mound Site Plume Treatment System and the East Trenches Plume Treatment System, remove low levels of volatile organic compounds using zero-valent iron media,more » thereby reducing the loading of volatile organic compounds in surface water resulting from the groundwater pathway. However, the zero-valent iron treatment does not reliably reduce all volatile organic compounds to consistently meet water quality goals. While adding additional zero-valent iron media capacity could improve volatile organic compound removal capability, installation of a solar powered air-stripper has proven an effective treatment optimization in further reducing volatile organic compound concentrations. A comparison of the air stripper to the alternative of adding additional zero-valent iron capacity to improve Mound Site Plume Treatment System and East Trenches Plume Treatment System treatment based on several key sustainable remediation aspects indicates the air stripper is also more 'environmentally friendly'. These key aspects include air pollutant emissions, water quality, waste management, transportation, and costs. (authors)« less
Fernandez, R L; Bonansea, M; Cosavella, A; Monarde, F; Ferreyra, M; Bresciano, J
2012-01-01
Artificial thermal mixing of the water column is a common method of addressing water quality problems with the most popular method of destratification being the bubble curtain. The air or oxygen distribution along submerged multiport diffusers is based on similar basic principles as those of outfall disposal systems. Moreover, the disposal of sequestered greenhouse gases into the ocean, as recently proposed by several researchers to mitigate the global warming problem, requires analogous design criteria. In this paper, the influence of a bubble-plume is evaluated using full-scale temperature and water quality data collected in San Roque Reservoir, Argentina. A composite system consisting of seven separated diffusers connected to four 500 kPa compressors was installed at this reservoir by the end of 2008. The original purpose of this air bubble system was to reduce the stratification, so that the water body may completely mix under natural phenomena and remain well oxygenated throughout the year. By using a combination of the field measurements and modelling, this work demonstrates that thermal mixing by means of compressed air may improve water quality; however, if improperly sized or operated, such mixing can also cause deterioration. Any disruption in aeration during the destratification process, for example, may result in a reduction of oxygen levels due to the higher hypolimnetic temperatures. Further, the use of artificial destratification appears to have insignificant influence on reducing evaporation rates in relatively shallow impoundments such as San Roque reservoir.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-26
... the California State Implementation Plan, Northern Sierra Air Quality Management District, Sacramento Metropolitan Air Quality Management District, and South Coast Air Quality Management District AGENCY... the Northern Sierra Air Quality Management District (NSAQMD), Sacramento Metropolitan Air Quality...
Improved Satellite-based Photosysnthetically Active Radiation (PAR) for Air Quality Studies
NASA Astrophysics Data System (ADS)
Pour Biazar, A.; McNider, R. T.; Cohan, D. S.; White, A.; Zhang, R.; Dornblaser, B.; Doty, K.; Wu, Y.; Estes, M. J.
2015-12-01
One of the challenges in understanding the air quality over forested regions has been the uncertainties in estimating the biogenic hydrocarbon emissions. Biogenic volatile organic compounds, BVOCs, play a critical role in atmospheric chemistry, particularly in ozone and particulate matter (PM) formation. In southeastern United States, BVOCs (mostly as isoprene) are the dominant summertime source of reactive hydrocarbon. Despite significant efforts in improving BVOC estimates, the errors in emission inventories remain a concern. Since BVOC emissions are particularly sensitive to the available photosynthetically active radiation (PAR), model errors in PAR result in large errors in emission estimates. Thus, utilization of satellite observations to estimate PAR can help in reducing emission uncertainties. Satellite-based PAR estimates rely on the technique used to derive insolation from satellite visible brightness measurements. In this study we evaluate several insolation products against surface pyranometer observations and offer a bias correction to generate a more accurate PAR product. The improved PAR product is then used in biogenic emission estimates. The improved biogenic emission estimates are compared to the emission inventories over Texas and used in air quality simulation over the period of August-September 2013 (NASA's Discover-AQ field campaign). A series of sensitivity simulations will be performed and evaluated against Discover-AQ observations to test the impact of satellite-derived PAR on air quality simulations.
USDA-ARS?s Scientific Manuscript database
Large volumes of wastewater from confined pig production are stored in anaerobic lagoons. Control methods are needed to reduce air pollution by foul odors released from these lagoons. In a pilot-scale experiment, we evaluated the effect of pig wastewater pre-treatment on reducing the concentration o...
Ammonia, total reduced sulfides, and greenhouse gases of pine chip and corn stover bedding packs
USDA-ARS?s Scientific Manuscript database
Bedding materials may affect air quality in livestock facilities. The objective of this study was to compare headspace concentrations of ammonia (NH3), total reduced sulfides (TRS), carbon dioxide (CO2),methane (CH4), and nitrous oxide (N2O) when pine wood chips and corn stover were mixed in various...
United Kingdom unveils ambitious air pollution plan
NASA Astrophysics Data System (ADS)
Warren, Matthew
2018-06-01
The U.K. government's new strategy to combat air pollution has drawn praise for its ambitious goals—and reservations about whether they will be achieved. Environmental scientists have applauded the aims of the Clean Air Strategy, which include substantially reducing the number of people breathing air containing high levels of fine particulates and curbing ammonia emissions from agriculture. But for now, the document, published as a draft for public consultation on 22 May, remains light on the specific policies that will help the country attain these goals. And although the government has said that with the new strategy it will go further than the European Union in tackling air pollution post-Brexit, scientists say major improvements to air quality will require a coordinated effort across Europe.
Managing respiratory effects of air pollution.
Watson, Bianca K; Sheppeard, Vicky
2005-12-01
Exposure to air pollution (both indoor and outdoor) has many potential adverse effects on human health. This article looks at the adverse respiratory health effects of air pollution and gives some guidance about management of exposure in susceptible individuals. Motor vehicle and industrial emissions are the primary contributors to outdoor air pollution in Australia. High levels of ozone and other pollutants can cause respiratory symptoms in susceptible individuals. Air quality advisory systems exist in most states. Clinicians can incorporate the health effects of air pollution, and awareness of advisory systems in the education of their susceptible patients and their carers. Asthma and chronic airways disease management plans should include provision for possible exposure to high pollution events and steps that can be taken to reduce exposure.
Technical methods for analyzing pricing measures to reduce transportation emissions.
DOT National Transportation Integrated Search
1998-08-01
State transportation and air quality planners have requested the Environmental Protection : Agency (EPA) and the Department of Transportation (DOT) for assistance in how to : quantify the impacts of transportation pricing measures in their regional t...
ERIC Educational Resources Information Center
Bloech, Henning M.
2003-01-01
Discusses how schools can benefit by establishing sustainable purchasing practices for furniture and furnishings. Describes the elements of sustainable purchasing (reduce, reuse, recycle; ingredients/contents; emissions/indoor air quality; and corporate guidelines), and the added vigilance required of purchasing agents. (EV)
Air quality impacts of intercity freight. Volume 1 : guidebook
DOT National Transportation Integrated Search
2000-01-01
Driver error remains the leading cause of highway crashes. Through the Intelligent Vehicle Initiative (IVI), the Department of Transportation hopes to reduce crashes by helping drivers avoid hazardous mistakes. IVI aims to accelerate the development ...
Racadio, John M.; Abruzzo, Todd A.; Johnson, Neil D.; Patel, Manish N.; Kukreja, Kamlesh U.; den Hartog, Mark. J. H.; Hoornaert, Bart P.A.; Nachabe, Rami A.
2015-01-01
The purpose of this study was to reduce pediatric doses while maintaining or improving image quality scores without removing the grid from X‐ray beam. This study was approved by the Institutional Animal Care and Use Committee. Three piglets (5, 14, and 20 kg) were imaged using six different selectable detector air kerma (Kair) per frame values (100%, 70%, 50%, 35%, 25%, 17.5%) with and without the grid. Number of distal branches visualized with diagnostic confidence relative to the injected vessel defined image quality score. Five pediatric interventional radiologists evaluated all images. Image quality score and piglet Kair were statistically compared using analysis of variance and receiver operating curve analysis to define the preferred dose setting and use of grid for a visibility of 2nd and 3rd order vessel branches. Grid removal reduced both dose to subject and imaging quality by 26%. Third order branches could only be visualized with the grid present; 100% detector Kair was required for smallest pig, while 70% detector Kair was adequate for the two larger pigs. Second order branches could be visualized with grid at 17.5% detector Kair for all three pig sizes. Without the grid, 50%, 35%, and 35% detector Kair were required for smallest to largest pig, respectively. Grid removal reduces both dose and image quality score. Image quality scores can be maintained with less dose to subject with the grid in the beam as opposed to removed. Smaller anatomy requires more dose to the detector to achieve the same image quality score. PACS numbers: 87.53.Bn, 87.57.N‐, 87.57.cj, 87.59.cf, 87.59.Dj PMID:26699297
Comparison of the Intensity of Ventilation at Windows Exchange in the Room - Case Study
NASA Astrophysics Data System (ADS)
Kapalo, Peter; Voznyak, Orest
2017-06-01
Doing the replacement of old wooden windows in a new plastic windows, in the old buildings, we get the great reducing of the building heat loss. Simpler maintenance and attendance of window is the next advantage. New windows are characterized by better tightness. The aim of the article is determination due to the performed experimental measurements, how much more are reduce the uncontrolled ventilation that is caused of the infiltration windows. In the article there is presented the experimental measurement of indoor air quality in the room in two phases. In the first phase there is the room installed by 55 year old wood window. In the second phase there is the same room installed by new plastic window. Due to the experimental measurement of indoor air quality it is calculated intensity of ventilation - infiltration. These results of ventilation intensity are reciprocally compared.
Ozone changes under solar geoengineering: implications for UV exposure and air quality
NASA Astrophysics Data System (ADS)
Nowack, P. J.; Abraham, N. L.; Braesicke, P.; Pyle, J. A.
2015-11-01
Various forms of geoengineering have been proposed to counter anthropogenic climate change. Methods which aim to modify the Earth's energy balance by reducing insolation are often subsumed under the term Solar Radiation Management (SRM). Here, we present results of a standard SRM modelling experiment in which the incoming solar irradiance is reduced to offset the global mean warming induced by a quadrupling of atmospheric carbon dioxide. For the first time in an atmosphere-ocean coupled climate model, we include atmospheric composition feedbacks such as ozone changes under this scenario. Including the composition changes, we find large reductions in surface UV-B irradiance, with implications for vitamin D production, and increases in surface ozone concentrations, both of which could be important for human health. We highlight that both tropospheric and stratospheric ozone changes should be considered in the assessment of any SRM scheme, due to their important roles in regulating UV exposure and air quality.
Meteorological controls on atmospheric particulate pollution during hazard reduction burns
NASA Astrophysics Data System (ADS)
Di Virgilio, Giovanni; Hart, Melissa Anne; Jiang, Ningbo
2018-05-01
Internationally, severe wildfires are an escalating problem likely to worsen given projected changes to climate. Hazard reduction burns (HRBs) are used to suppress wildfire occurrences, but they generate considerable emissions of atmospheric fine particulate matter, which depend upon prevailing atmospheric conditions, and can degrade air quality. Our objectives are to improve understanding of the relationships between meteorological conditions and air quality during HRBs in Sydney, Australia. We identify the primary meteorological covariates linked to high PM2.5 pollution (particulates < 2.5 µm in diameter) and quantify differences in their behaviours between HRB days when PM2.5 remained low versus HRB days when PM2.5 was high. Generalised additive mixed models were applied to continuous meteorological and PM2.5 observations for 2011-2016 at four sites across Sydney. The results show that planetary boundary layer height (PBLH) and total cloud cover were the most consistent predictors of elevated PM2.5 during HRBs. During HRB days with low pollution, the PBLH between 00:00 and 07:00 LT (local time) was 100-200 m higher than days with high pollution. The PBLH was similar during 10:00-17:00 LT for both low and high pollution days, but higher after 18:00 LT for HRB days with low pollution. Cloud cover, temperature and wind speed reflected the above pattern, e.g. mean temperatures and wind speeds were 2 °C cooler and 0.5 m s-1 lower during mornings and evenings of HRB days when air quality was poor. These cooler, more stable morning and evening conditions coincide with nocturnal westerly cold air drainage flows in Sydney, which are associated with reduced mixing height and vertical dispersion, leading to the build-up of PM2.5. These findings indicate that air pollution impacts may be reduced by altering the timing of HRBs by conducting them later in the morning (by a matter of hours). Our findings support location-specific forecasts of the air quality impacts of HRBs in Sydney and similar regions elsewhere.
GLIMPSE: a rapid decision framework for energy and environmental policy.
Akhtar, Farhan H; Pinder, Robert W; Loughlin, Daniel H; Henze, Daven K
2013-01-01
Over the coming decades, new energy production technologies and the policies that oversee them will affect human health, the vitality of our ecosystems, and the stability of the global climate. The GLIMPSE decision model framework provides insights about the implications of technology and policy decisions on these outcomes. Using GLIMPSE, decision makers can identify alternative techno-policy futures, examining their air quality, health, and short- and long-term climate impacts. Ultimately, GLIMPSE will support the identification of cost-effective strategies for simultaneously achieving performance goals for these metrics. Here, we demonstrate the utility of GLIMPSE by analyzing several future energy scenarios under existing air quality regulations and potential CO2 emission reduction policies. We find opportunities for substantial cobenefits in setting both climate change mitigation and health-benefit based air quality improvement targets. Though current policies which prioritize public health protection increase near-term warming, establishing policies that also reduce greenhouse gas emissions may offset warming in the near-term and lead to significant reductions in long-term warming.
Park, Seonghyun; Seo, Janghoo
2016-04-01
Reinforcing the insulation and airtightness of buildings and the use of building materials containing new chemical substances have caused indoor air quality problems. Use of sorptive building materials along with removal of pollutants, constant ventilation, bake-out, etc. are gaining attention in Korea and Japan as methods for improving such indoor air quality problems. On the other hand, sorptive building materials are considered a passive method of reducing the concentration of pollutants, and their application should be reviewed in the early stages. Thus, in this research, activated carbon was prepared as a sorptive building material. Then, computational fluid dynamics (CFD) was conducted, and a method for optimal installation of sorptive building materials was derived according to the indoor environment using the contribution ratio of pollution source (CRP) index. The results show that a method for optimal installation of sorptive building materials can be derived by predicting the contribution ratio of pollutant sources according to the CRP index.
[Influence of Moxa Smoke on Indoor Air Quality and Strategies for Its Control].
Yu, Chang; Wu, Qiao-Feng; Tang, Yong; Yu, Shu-Guang
2018-02-25
Moxibustion is an effective therapy for treatment of a lot of clinical problems, but the ignited moxa-induced smoke containing harmful substances may bring about indoor air pollution to affect both patients' and medical workers' health. However, there is no standards about controlling indoor air quality (IAQ) for moxibustion rooms in China. In the present study, the authors reviewed newly-published articles about some substances released from moxa smoke as inhalable particles (PM 10 and PM 2.5), formaldehyde, benzene, methylbenzene, xylene, bene[α]pyrene, total volatile organic compounds, CO, CO 2 , NO, SO 2 , NH 3 , O 3 , etc. some of which affect IAQ. On this account, the authors put forward some strategies for controlling IAQ in moxibustion clinics including setting united safe standards, enhancing ventilation, controlling moxibustion material quality and strengthening scientific research on the safety of moxa smoke control, fully playing the superiority of moxibustion therapy and reducing its unfavorable aspects in clinical practice in the future.
NASA Astrophysics Data System (ADS)
Liu, Z.; Yim, Steve H. L.; Wang, C.; Lau, N. C.
2018-05-01
Literature has reported the remarkable aerosol impact on low-level cloud by direct radiative forcing (DRF). Impacts on middle-upper troposphere cloud are not yet fully understood, even though this knowledge is important for regions with a large spatial heterogeneity of emissions and aerosol concentration. We assess the aerosol DRF and its cloud response in June (with strong convection) in Pearl River Delta region for 2008-2012 at cloud-resolving scale using an air quality-climate coupled model. Aerosols suppress deep convection by increasing atmospheric stability leading to less evaporation from the ground. The relative humidity is reduced in middle-upper troposphere due to induced reduction in both evaporation from the ground and upward motion. The cloud reduction offsets 20% of the aerosol DRF. The weaker vertical mixing further increases surface aerosol concentration by up to 2.90 μg/m3. These findings indicate the aerosol DRF impact on deep convection and in turn regional air quality.
Indoor air quality in Virginia waterpipe cafés
Cobb, Caroline Oates; Vansickel, Andrea Rae; Blank, Melissa D; Jentink, Kade; Travers, Mark J; Eissenberg, Thomas
2014-01-01
Introduction A revised indoor air quality law has been implemented in Virginia to protect the public from the harmful effects of secondhand smoke exposure. This legislation contains exemptions that include allowances for smoking in a room that is structurally separated and separately ventilated. The objective of the current study was to examine the impact of this law on air quality in waterpipe cafés, as well as to compare the air quality in these cafés to restaurants that allow cigarette smoking and those where no smoking is permitted. Methods Indoor air quality in 28 venues (17 waterpipe cafés, five cigarette smoking-permitted restaurants and six smoke-free restaurants (five with valid data)) in Virginia was assessed during 4 March to 27 May 2011. Real-time measurements of particulate matter (PM) with 2.5 µm aerodynamic diameter or smaller (PM2.5) were obtained and occupant behaviour/venue characteristics were assessed. Results The highest mean PM2.5 concentration was observed for waterpipe café smoking rooms (374 µg/m3, n=17) followed by waterpipe café non-smoking rooms (123 µg/m3, n=11), cigarette smoking-permitted restaurant smoking rooms (119 µg/m3, n=5), cigarette smoking-permitted restaurant non-smoking rooms (26 µg/m3, n=5) and smoke-free restaurants (9 µg/m3, n=5). Smoking density was positively correlated with PM2.5 across smoking rooms and the smoke-free restaurants. In addition, PM2.5 was positively correlated between smoking and non-smoking rooms of venues. Conclusions The PM2.5 concentrations observed among the waterpipe cafés sampled here indicated air quality in the waterpipe café smoking rooms was worse than restaurant rooms in which cigarette smoking was permitted, and state-required non-smoking rooms in waterpipe cafés may expose patrons and employees to PM2.5 concentrations above national and international air quality standards. Reducing the health risks of secondhand smoke may require smoke-free establishments in which tobacco smoking sources such as water pipes are, like cigarettes, prohibited. PMID:22447194
2016-11-28
infrastructure typically include energy, water, wastewater, electricity, natural gas , liquid fuel distribution systems, communication lines (e.g...with state off-road regulations would further reduce air quality and greenhouse gas emissions. Cultural Resources. The waste footprint as well as...maintenance of the prescriptive final cover and erosion control, landfill gas monitoring and well maintenance, groundwater monitoring and well maintenance
2010-09-03
Canadian and U.S. officials announced a new Joint Border Air Quality Strategy; under the initiative, pilot programs to reduce air pollution will be...ranging from the catastrophe of an oil spill, to more cumulative pollution caused by ocean dumping of ballast and garbage by transiting vessels. In...between Zug Island in Detroit and Brighton Beach area of Windsor. The DRIC proposal is supported by the Canadian government, which believes a new
Oxley, Tim; Dore, Anthony J; ApSimon, Helen; Hall, Jane; Kryza, Maciej
2013-11-01
Integrated assessment modelling has evolved to support policy development in relation to air pollutants and greenhouse gases by providing integrated simulation tools able to produce quick and realistic representations of emission scenarios and their environmental impacts without the need to re-run complex atmospheric dispersion models. The UK Integrated Assessment Model (UKIAM) has been developed to investigate strategies for reducing UK emissions by bringing together information on projected UK emissions of SO2, NOx, NH3, PM10 and PM2.5, atmospheric dispersion, criteria for protection of ecosystems, urban air quality and human health, and data on potential abatement measures to reduce emissions, which may subsequently be linked to associated analyses of costs and benefits. We describe the multi-scale model structure ranging from continental to roadside, UK emission sources, atmospheric dispersion of emissions, implementation of abatement measures, integration with European-scale modelling, and environmental impacts. The model generates outputs from a national perspective which are used to evaluate alternative strategies in relation to emissions, deposition patterns, air quality metrics and ecosystem critical load exceedance. We present a selection of scenarios in relation to the 2020 Business-As-Usual projections and identify potential further reductions beyond those currently being planned. © 2013.
Ambient Air Quality Data Inventory
The Office of Air and Radiation's (OAR) Ambient Air Quality Data (Current) contains ambient air pollution data collected by EPA, other federal agencies, as well as state, local, and tribal air pollution control agencies. Its component data sets have been collected over the years from approximately 10,000 monitoring sites, of which approximately 5,000 are currently active. OAR's Office of Air Quality Planning and Standards (OAQPS) and other internal and external users, rely on this data to assess air quality, assist in Attainment/Non-Attainment designations, evaluate State Implementation Plans for Non-Attainment Areas, perform modeling for permit review analysis, and other air quality management functions. Air quality information is also used to prepare reports for Congress as mandated by the Clean Air Act. This data covers air quality data collected after 1980, when the Clean Air Act requirements for monitoring were significantly modified. Air quality data from the Agency's early years (1970s) remains available (see OAR PRIMARY DATA ASSET: Ambient Air Quality Data -- Historical), but because of technical and definitional differences the two data assets are not directly comparable. The Clean Air Act of 1970 provided initial authority for monitoring air quality for Conventional Air Pollutants (CAPs) for which EPA has promulgated National Ambient Air Quality Standards (NAAQS). Requirements for monitoring visibility-related parameters were added in 1977. Requiremen
Urban Heat Islands and Their Mitigation vs. Local Impacts of Climate Change
NASA Astrophysics Data System (ADS)
Taha, H.
2007-12-01
Urban heat islands and their mitigation take on added significance, both negative and positive, when viewed from a climate-change perspective. In negative terms, urban heat islands can act as local exacerbating factors, or magnifying lenses, to the effects of regional and large-scale climate perturbations and change. They can locally impact meteorology, energy/electricity generation and use, thermal environment (comfort and heat waves), emissions of air pollutants, photochemistry, and air quality. In positive terms, on the other hand, mitigation of urban heat islands (via urban surface modifications and control of man-made heat, for example) can potentially have a beneficial effect of mitigating the local negative impacts of climate change. In addition, mitigation of urban heat islands can, in itself, contribute to preventing regional and global climate change, even if modestly, by helping reduce CO2 emissions from power plants and other sources as a result of decreased energy use for cooling (both direct and indirect) and reducing the rates of meteorology-dependent emissions of air pollutants. This presentation will highlight aspects and characteristics of heat islands, their mitigation, their modeling and quantification techniques, and recent advances in meso-urban modeling of California (funded by the California Energy Commission). In particular, the presentation will focus on results from quantitative, modeling-based analyses of the potential benefits of heat island mitigation in 1) reducing point- and area-source emissions of CO2, NOx, and VOC as a result of reduced cooling energy demand and ambient/surface temperatures, 2) reducing evaporative and fugitive hydrocarbon emissions as a result of lowered temperatures, 3) reducing biogenic hydrocarbon emissions from existing vegetative cover, 4) slowing the rates of tropospheric/ground-level ozone formation and/or accumulation in the urban boundary layer, and 5) helping improve air quality. Quantitative estimates of the above will be presented based on recent and earlier meteorological, energy, thermal environmental, emissions, and photochemical modeling studies for California and Texas.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-21
...On September 13, 2004, under authority of section 112 of the Clean Air Act, EPA promulgated national emission standards for hazardous air pollutants for new and existing industrial/commercial/ institutional boilers and process heaters. On June 19, 2007, the United States Court of Appeals for the District of Columbia Circuit vacated and remanded the standards. In response to the Court's vacatur and remand, EPA is, in this action, establishing emission standards that will require industrial/ commercial/institutional boilers and process heaters located at major sources to meet hazardous air pollutants standards reflecting the application of the maximum achievable control technology. This rule protects air quality and promotes public health by reducing emissions of the hazardous air pollutants listed in section 112(b)(1) of the Clean Air Act.
[Air pollution and health - counselling options for physicians].
Künzli, Nino; Kutlar, Meltem
2013-12-01
While air quality is usually an environmental condition patients can little do about, there are a few options and decisions that modify the personal exposure and risk. Location - in particular the residence - time and activity are the key determinants of personal exposure. Traffic-related primary pollutants such as ultrafine particles or diesel soot are highly concentrated along busy roads but reach urban background concentrations already some 100 - 200 meters off. Morbidity and mortality follow this spatial pattern, which is usually attributed to these pollutants. Depending on ventilation systems, indoor exposure can be substantially lower. Studies done in China confirm that the use of face masks in extremely polluted cities can reduce exposure, resulting in lower inflammatory and cardiovascular responses. A diet rich in antioxidants appears to also reduce some of the oxidative and inflammatory effects of air pollution and treatments such as leucotrien receptor antagonists or statins pay interfere with some of the adverse effects of pollution. However, the benefits, if any, are unlikely to be large. A quantitative comparison of the various pollution related health effects - namely from smoking, passive smoking and air pollution - reveal a typical paradox to be well understood: the individual risks related to air pollution and that one may reduce through personal decisions are rather small. However, given the large number of people exposed (i. e. in essence the entire population), the overall air pollution related health burden is rather substantial. This underscores that sustained clean air policies are indeed the most important and efficient solution to reduce the air pollution related health effects.
Radisic, Sally; Newbold, K Bruce
2016-03-31
The Air Quality Health Index (AQHI) provides air quality and health information such that the public can implement health protective behaviours (reducing and/or rescheduling outdoor activity) and decrease exposure to outdoor air pollution. The AQHI's health messages account for increased risk associated with "at risk" populations (i.e. young children, elderly and those with pre-existing respiratory and/or cardiovascular conditions) who rely on health care and service providers for guidance. Using Rogers' Diffusion of Innovations theory, our objective with respect to health care and service providers and their respective "at risk" populations was to explore: 1) level of AQHI knowledge; 2) factors influencing AQHI adoption and; 3) strategies that may increase uptake of AQHI, according to city divisions and socioeconomic status (SES). Semi-structured face-to-face interviews with health care (Registered Nurses and Certified Respiratory Educators) and service providers (Registered Early Childhood Educators) and focus groups with their respective "at risk" populations explored barriers and facilitators to AQHI adoption. Participants were selected using purposive sampling. Each transcript was analyzed using an Interpretive Description approach to identify themes. Analyses were informed by Rogers' Diffusion of Innovations theory. Fifty participants (6 health care and service providers, 16 parents, 13 elderly, 15 people with existing respiratory conditions) contributed to this study. AQHI knowledge, AQHI characteristics and perceptions of air quality and health influenced AQHI adoption. AQHI knowledge centred on numerical reliance and health protective intent but varied with SES. More emphasis on AQHI relevance with respect to health benefits was required to stress relative advantage over other indices and reduce index confusion. AQHI reporting at a neighbourhood scale was recognized as addressing geographic variability and uncertainty in perceived versus measured air quality impacting health. Participants predominantly expressed that they relied on sensory cues (i.e. feel, sight, taste) to determine when to implement health protective behaviours. Time constraints were identified as barriers; whereas local media reporting and wearable devices were identified as facilitators to AQHI adoption. Increasing knowledge, emphasizing relevance, and reporting AQHI information at a neighbourhood scale via local media sources and wearable devices may facilitate AQHI adoption while accounting for SES differences.
Air Quality Co-benefits of Energy Policy in China: Evidence from Iron & Steel and Cement Industries
NASA Astrophysics Data System (ADS)
Qiu, M.; Weng, Y.; Selin, N. E.; Karplus, V. J.; Cao, J.
2017-12-01
Previous literature has calculated large air quality co-benefits from policies that reduce CO2 emissions and increase energy efficiency. These (often prospective) studies rely on assumptions about how air pollutant emissions respond to energy use changes. Using a unique firm-level data set from China, we examine how a real-world energy efficiency policy affected SO2 emissions, estimate its actual effects on atmospheric PM2.5, and compare to ex ante theoretical estimates. During the 11th Five-year plan (2006-2010), the Chinese government implemented policies directing large energy-consuming firms to reduce their energy consumption per unit of economic output. The Top 1000 Enterprises Program (T1000P) set binding energy intensity targets for China's 1000 highest energy-consuming firms. This program is widely considered a policy success, as 92% of firms met their energy intensity target. Focusing on the cement and iron and steel industry, we examine how T1000P (and related provincial policies) affected firms' SO2 emissions and coal consumption from 2005 to 2008. By comparing T1000P firms with similar firms not subject to the policy, we find that T1000P had a very limited incremental effect on energy use or on air quality co-benefits. Compared to firms not subject to the policy, T1000P firms had 14.7% (cement) and 24.0% (iron & steel) lower reductions in SO2 emission per unit energy use. We also observe large, heterogeneous changes in emission factors (defined as SO2 emissions per unit of coal consumption) among all firms during this period. In comparison to co-benefits estimates that assume constant emission factors, SO2 emissions from T1000P firms in the post-policy period are 23.2% (iron and steel) and 40.2% (cement) lower, but spatially heterogeneous, with some regions experiencing increases. Using the GEOS-Chem model, we estimate the air quality co-benefits of the T1000P policy with realized SO2 emissions changes and compare them with two theoretical estimations of co-benefits: one assuming that emission factors stay the same, and one in which emissions factors decline exponentially with time. We conclude that heterogeneous technology and behavioral responses of covered firms can significantly affect the real-world air quality co-benefits of energy intensity policies delivered by a fixed policy design.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-23
... Promulgation of Air Quality Implementation Plans; Illinois; Air Quality Standards Revision AGENCY... Illinois state implementation plan (SIP) to reflect current National Ambient Air Quality Standards (NAAQS... Implementation Plan at 35 Illinois Administrative Code part 243, which updates National Ambient Air Quality...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-26
... Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality Standards AGENCY... Ohio Administrative Code (OAC) relating to the consolidation of Ohio's Ambient Air Quality Standards... apply to Ohio's SIP. Incorporating the air quality standards into Ohio's SIP helps assure that...
Elements That Contribute to Healthy Building Design
Loftness, Vivian; Hakkinen, Bert; Adan, Olaf; Nevalainen, Aino
2007-01-01
Background The elements that contribute to a healthy building are multifactorial and can be discussed from different perspectives. Objectives We present three viewpoints of designing a healthy building: the importance of sustainable development, the role of occupants for ensuring indoor air quality, and ongoing developments related to indoor finishes with low chemical emissions and good fungal resistance. Discussion Sustainable design rediscovers the social, environmental, and technical values of pedestrian and mixed-use communities, using existing infrastructures including “main streets” and small-town planning principles and recapturing indoor–outdoor relationships. This type of design introduces nonpolluting materials and assemblies with lower energy requirements and higher durability and recyclability. Building occupants play a major role in maintaining healthy indoor environments, especially in residences. Contributors to indoor air quality include cleaning habits and other behaviors; consumer products, furnishings, and appliances purchases, as well as where and how the occupants use them. Certification of consumer products and building materials as low-emitting products is a primary control measure for achieving good indoor air quality. Key products in this respect are office furniture, flooring, paints and coatings, adhesives and sealants, wall coverings, wood products, textiles, insulation, and cleaning products. Finishing materials play a major role in the quality of indoor air as related to moisture retention and mold growth. Conclusions Sustainable design emphasizes the needs of infrastructure, lower energy consumption, durability, and recyclability. To ensure good indoor air quality, the product development for household use should aim to reduce material susceptibility to contaminants such as mold and should adopt consumer-oriented product labeling. PMID:17589608
How Clean is your Local Air? Here's an app for that
NASA Astrophysics Data System (ADS)
Maskey, M.; Yang, E.; Christopher, S. A.; Keiser, K.; Nair, U. S.; Graves, S. J.
2011-12-01
Air quality is a vital element of our environment. Accurate and localized air quality information is critical for characterizing environmental impacts at the local and regional levels. Advances in location-aware handheld devices and air quality modeling have enabled a group of UAHuntsville scientists to develop a mobile app, LocalAQI, that informs users of current conditions and forecasts of up to twenty-four hours, of air quality indices. The air quality index is based on Community Multiscale Air Quality Modeling System (CMAQ). UAHuntsville scientists have used satellite remote sensing products as inputs to CMAQ, resulting in forecast guidance for particulate matter air quality. The CMAQ output is processed to compute a standardized air quality index. Currently, the air quality index is available for the eastern half of the United States. LocalAQI consists of two main views: air quality index view and map view. The air quality index view displays current air quality for the zip code of a location of interest. Air quality index value is translated into a color-coded advisory system. In addition, users are able to cycle through available hourly forecasts for a location. This location-aware app defaults to the current air quality of user's location. The map view displays color-coded air quality information for the eastern US with an ability to animate through the available forecasts. The app is developed using a cross-platform native application development tool, appcelerator; hence LocalAQI is available for iOS and Android-based phones and pads.
Li, Huichu; Zhou, Lian; Wang, Cuicui; Chen, Renjie; Ma, Xiaoying; Xu, Bin; Xiong, Lilin; Ding, Zhen; Chen, Xiaodong; Zhou, Yun; Xu, Yan; Kan, Haidong
2017-06-15
There is increasing interest in quasi-experimental research to evaluate whether actions taken to improve air quality will benefit public health. We conducted a quasi-experimental study to evaluate inflammatory response to changes in air quality during the 2014 Nanjing Youth Olympics in China. We repeatedly measured 8 biomarkers of systemic inflammation in 31 healthy adults and obtained hourly air pollutant concentrations from a nearby fixed-site monitoring station. We used linear mixed-effect models to examine the associations between air quality changes and blood biomarkers. Air pollutant concentrations decreased apparently during the Youth Olympics. Concomitantly, we observed significant decreases in levels of soluble cluster of differentiation 40 (CD40) ligand and interleukin 1β (geometric means ratios were 0.45 and 0.24, respectively) from the pre-Olympic period to the intra-Olympic period. Afterwards, levels of C-reactive protein and vascular cell adhesion molecule 1 increased significantly (geometric means ratios were 2.22 and 1.29, respectively) in the post-Olympic period. Fine particulate matter and ozone were significantly associated with soluble CD40 ligand, P-selectin, interleukin 1β, intercellular adhesion molecule 1, and vascular cell adhesion molecule 1. Other pollutants showed positive but nonsignificant associations. Our study indicated that reduced air pollution, especially fine particulate matter and ozone, during the 2014 Nanjing Youth Olympics was associated with alleviated systemic inflammation in healthy adults. © The Author 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.