Science.gov

Sample records for air research sst

  1. Overview of atmospheric ionizing radiation (AIR) research: SST-present.

    PubMed

    Wilson, J W; Goldhagen, P; Rafnsson, V; Clem, J M; De Angelis, G; Friedberg, W

    2003-01-01

    The Supersonic Transport (SST) program, proposed in 1961, first raised concern for the exposure of pregnant occupants by solar energetic particles (SEP), and neutrons were suspected to have a main role in particle propagation deep into the atmosphere. An eight-year flight program confirmed the role of SEP as a significant hazard and of the neutrons as contributing over half of the galactic cosmic ray exposures, with the largest contribution from neutrons above 10 MeV. The FAA Advisory Committee on the Radiobiological Aspects of the SST provided operational requirements. The more recent lowering of ICRP-recommended exposure limits (1990) with the classification of aircrew as "radiation workers" renewed interest in GCR background exposures at commercial flight altitudes and stimulated epidemiological studies in Europe, Japan, Canada and the USA. The proposed development of a High Speed Civil Transport (HSCT) required validation of the role of high-energy neutrons, and this resulted in ER-2 flights at solar minimum (June 1997) and studies on effects of aircraft materials on interior exposures. Recent evaluation of health outcomes of DOE nuclear workers resulted in legislation for health compensation in year 2000 and recent European aircrew epidemiological studies of health outcomes bring renewed interest in aircraft radiation exposures. As improved radiation models become available, it is imperative that a corresponding epidemiological program of US aircrew be implemented.

  2. Overview of Atmospheric Ionizing Radiation (AIR) Research: SST - Present

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Goldhagen, P.; Rafnsson, V.; Clem, J. M.; DeAngelis, G.; Friedberg, W.

    2002-01-01

    The Supersonic Transport (SST) program, proposed in 1961, first raised concern for the exposure of pregnant occupants by solar energetic particles (SEP), and neutrons were suspected to have a main role in particle propagation deep into the atmosphere. An eight-year flight program confirmed the role of SEP as a significant hazard and of the neutrons as contributing over half of the galactic cosmic ray (GCR) exposures, with the largest contribution from neutrons above 10 MeV. The FAA Advisory Committee on the Radiobiological Aspects of the SST provided operational requirements. The more recent (1990) lowering of recommended exposure limits by the International Commission on Radiological Protection with the classification of aircrew as "radiation workers" renewed interest in GCR background exposures at commercial flight altitudes and stimulated epidemiological studies in Europe, Japan, Canada and the USA. The proposed development of a High Speed Civil Transport (HSCT) required validation of the role of high-energy neutrons, and this resulted in ER-2 flights at solar minimum (June 1997) and studies on effects of aircraft materials on interior exposures. Recent evaluation of health outcomes of DOE nuclear workers resulted in legislation for health compensation in year 2000 and recent European aircrew epidemiological studies of health outcomes bring renewed interest in aircraft radiation exposures. As improved radiation models become available, it is imperative that a corresponding epidemiological program of US aircrew be implemented.

  3. Overview of atmospheric ionizing radiation (AIR) research: SST-present

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Goldhagen, P.; Rafnsson, V.; Clem, J. M.; De Angelis, G.; Friedberg, W.

    2003-01-01

    The Supersonic Transport (SST) program, proposed in 1961, first raised concern for the exposure of pregnant occupants by solar energetic particles (SEP), and neutrons were suspected to have a main role in particle propagation deep into the atmosphere. An eight-year flight program confirmed the role of SEP as a significant hazard and of the neutrons as contributing over half of the galactic cosmic ray exposures, with the largest contribution from neutrons above 10 MeV. The FAA Advisory Committee on the Radiobiological Aspects of the SST provided operational requirements. The more recent lowering of ICRP-recommended exposure limits (1990) with the classification of aircrew as "radiation workers" renewed interest in GCR background exposures at commercial flight altitudes and stimulated epidemiological studies in Europe, Japan, Canada and the USA. The proposed development of a High Speed Civil Transport (HSCT) required validation of the role of high-energy neutrons, and this resulted in ER-2 flights at solar minimum (June 1997) and studies on effects of aircraft materials on interior exposures. Recent evaluation of health outcomes of DOE nuclear workers resulted in legislation for health compensation in year 2000 and recent European aircrew epidemiological studies of health outcomes bring renewed interest in aircraft radiation exposures. As improved radiation models become available, it is imperative that a corresponding epidemiological program of US aircrew be implemented. Published by Elsevier Ltd on behalf of COSPAR.

  4. Summary of Atmospheric Ionizing AIR Research: SST-Present

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Goldhagen, P.; Rafnsson, V.; deAngelis, G.; Friedberg, W.; Clem, J. M.

    2003-01-01

    The Supersonic Transport (SST) program, proposed in 1961, first raised concern for the exposure of pregnant occupants by solar energetic particles (SEP), and neutrons were suspected to have a main role in particle propagation deep into the atmosphere. An eight-year flight program confirmed the role of SEP as a significant hazard and of the neutrons as contributing over half of the galactic cosmic ray (GCR) exposures, with the largest contribution from neutrons above 10 MeV. The FAA Advisory Committee on the Radiobiological Aspects of the SST provided operational requirements. The more recent lowering of the radiation exposure limits by the International Commission on Radiological Protection with the classification of aircrew as radiation workers renewed interest in GCR background exposures at commercial flight altitudes and stimulated epidemiological studies in Europe, Japan, Canada and the USA. The proposed development of a High Speed Civil Transport (HSCT) required validation of the role of high-energy neutrons, and this resulted in ER-2 flights at solar minimum (June 1997) and studies on effects of aircraft materials on interior exposures. Recent evaluation of health outcomes of DOE nuclear workers resulted in legislation for health compensation in year 2000 and recent European aircrew epidemiological studies of health outcomes bring renewed interest in aircraft radiation exposures. As improved radiation models become available, it is imperative that a corresponding epidemiological program of US aircrew be implemented.

  5. Overview of atmospheric ionizing radiation (AIR) research: SST-present

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Goldhagen, P.; Rafnsson, V.; Clem, J. M.; De Angelis, G.; Friedberg, W.

    2003-01-01

    The Supersonic Transport (SST) program, proposed in 1961, first raised concern for the exposure of pregnant occupants by solar energetic particles (SEP), and neutrons were suspected to have a main role in particle propagation deep into the atmosphere. An eight-year flight program confirmed the role of SEP as a significant hazard and of the neutrons as contributing over half of the galactic cosmic ray exposures, with the largest contribution from neutrons above 10 MeV. The FAA Advisory Committee on the Radiobiological Aspects of the SST provided operational requirements. The more recent lowering of ICRP-recommended exposure limits (1990) with the classification of aircrew as "radiation workers" renewed interest in GCR background exposures at commercial flight altitudes and stimulated epidemiological studies in Europe, Japan, Canada and the USA. The proposed development of a High Speed Civil Transport (HSCT) required validation of the role of high-energy neutrons, and this resulted in ER-2 flights at solar minimum (June 1997) and studies on effects of aircraft materials on interior exposures. Recent evaluation of health outcomes of DOE nuclear workers resulted in legislation for health compensation in year 2000 and recent European aircrew epidemiological studies of health outcomes bring renewed interest in aircraft radiation exposures. As improved radiation models become available, it is imperative that a corresponding epidemiological program of US aircrew be implemented. Published by Elsevier Ltd on behalf of COSPAR.

  6. Overview of atmospheric ionizing radiation (AIR) Research: SST-present

    NASA Astrophysics Data System (ADS)

    Wilson, J. W.; Goldhagen, P.; Rafnsson, V.; Clem, J. M.; De Angelis, G.; Friedberg, W.

    The Supersonic Transport (SST) program proposed in 1961, first raised concern for the exposure of pregnant occupants by solar energetic particles (SEP), and neutrons were suspected to have a main role in particle propagation deep into the atmosphere. An eight-year flight program confirmed the role of SEP as a significant hazard and of the neutrons as contributing over half of the galactic cosmic ray exposures, with the largest contribution from neutrons above 10 MeV. The FAA Advisory Committee on the Radiobiological Aspects of the SST provided operational requirements. The more recent lowering of ICRP-recommended exposure limits 1990 with the classification of aircrew as "radiation workers" renewed interest in GCR background exposures at commercial flight altitudes and stimulated epidemiological studies in Europe, Japan, Canada and the USA. The proposed development of a High Speed Civil Transport (HSCT) required validation of the role of high-energy neutrons, and this resulted in ER-2 flights at solar minimum June 1997 and studies on effects of aircraft materials on interior exposures. Recent evaluation of health outcomes of DOE nuclear workers resulted in legislation for health compensation in year 2000 and recent European aircrew epidemiological studies of health outcomes bring renewed interest in aircraft radiation exposures. As improved radiation models become available, it is imperative that a corresponding epidemiological program of US aircrew be implemented.

  7. Overview of Atmospheric Ionizing Radiation (AIR) research: SST-present

    NASA Astrophysics Data System (ADS)

    Wilson, J.; Goldhagen, P.; Rafnson, V.; Clem, J.; Deangelis, G.

    The Super Sonic Transport (SST) program, proposed in 1961, first raised concern for the exposure of pregnant passengers and crew by solar energetic particles (SEP), and neutrons were suspected to have a main role in effects due to particle propagation deep into the atmosphere. An eight-year flight program confirmed the role of SEP as a significant hazard and of the neutrons as contributing over half of the galactic cosmic ray exposures, with the largest contribution from neutrons above 10 MeV. The FAA Standing Committee provided recommendations on SST radiobiological issues and operational requirements. The lowering of ICRP-recommended exposure limits (1990) with the classification of aircrew as "radiation workers" renewed interest in GCR background exposures at commercial flight altitudes and stimulated epidemiological studies in Europe, Japan, Canada and the USA. The proposed development of a High Speed Civil Transport (HSCT) required validation of the role of high-energy neutrons, and this resulted in ER-2 flights at solar minimum (June 1997) and studies of effects of aircraft materials on interior exposures. Recent evaluation of health outcomes of DOE nuclear workers resulted in legislation for health compensation in 2000 and more recent European aircrew epidemiological studies of health outcomes brings renewed interest in aircraft radiation exposures. As improved radiation models become available, it is imperative that a corresponding epidemiological program of US aircrew be implemented.

  8. Air Research

    EPA Pesticide Factsheets

    EPA's air research provides the critical science to develop and implement outdoor air regulations under the Clean Air Act and puts new tools and information in the hands of air quality managers and regulators to protect the air we breathe.

  9. Impact of autumn SST in the Japan Sea on winter rainfall and air temperature in Northeast China

    NASA Astrophysics Data System (ADS)

    Shi, Xiaomeng; Sun, Jilin; Wu, Dexing; Yi, Li; Wei, Dongni

    2015-08-01

    We studied the impact of sea surface temperature anomaly (SSTA) in the Japan Sea and the sea area east of Japan on the winter rainfall and air temperature in Northeast (NE) China using the singular value decomposition (SVD) and empirical orthogonal function (EOF). The monthly-mean rainfall data observed at 160 stations in China, monthly-mean sea surface temperature (SST) of the Hadley Center for Climate Prediction and Research and monthly-mean air temperature from the NCEP reanalysis during 1960-2011 were used. Correlation analysis indicates that the SSTAs in the Japan Sea in September may last for three or four months and are an important index for forecasting the winter rainfall and air temperature in NE China. Positive SSTAs in the central Japan Sea and in the sea area east of Tokyo correspond to positive rainfall anomaly and negative air temperature anomaly in NE China. With the rise of SST in the Japan Sea, a weak cyclone appears over the Japan Sea. The northeasterly wind transports water vapor from the Okhotsk to NE China, resulting in more rainfall and lower air temperature. Negative SSTA years are accompanied by warmer air temperature and less snow in NE China. The 1000 hPa geopotential height anomaly and wind anomaly fields are simulated by IAP-9L model, which supports the analysis results.

  10. Impact of Air Temperature and SST Variability on Cholera Incidence in Southeastern Africa, 1971-2006

    NASA Astrophysics Data System (ADS)

    Paz, Shlomit

    2010-05-01

    The most important climatic parameter related to cholera outbreaks is the temperature, especially of the water bodies and the aquatic environment. This factor governs the survival and growth of V. cholerae, since it has a direct influence on its abundance in the environment, or alternatively, through its indirect influence on other aquatic organisms to which the pathogen is found to attach. Thus, the potential for cholera outbreaks may rise, parallel to the increase in ocean surface temperature. Indeed, recent studies indicate that global warming might create a favorable environment for V. cholerae and increase its incidence in vulnerable areas. Africa is vulnerable to climate variability. According to the recent IPCC report on Africa, the air temperature has indicated a significant warming trend since the 1960s. In recent years, most of the research into disease vectors in Africa related to climate variability has focused on malaria. The IPCC indicated that the need exists to examine the vulnerabilities and impacts of climatic factors on cholera in Africa. In light of this, the study uses a Poisson Regression Model to analyze the possible association between the cholera rates in southeastern Africa and the annual variability of air temperature and sea surface temperature (SST) at regional and hemispheric scales, for the period 1971-2006. Data description is as follows: Number of cholera cases per year in Uganda, Kenya, Rwanda, Burundi, Tanzania, Malawi, Zambia and Mozambique. Source: WHO Global Health Atlas - cholera. Seasonal and annual temperature time series: Regional scale: a) Air temperature for southeastern Africa (30° E-36° E, 5° S-17° S), source: NOAA NCEP-NCAR; b) Sea surface temperature, for the western Indian Ocean (0-20° S, 40° E-45° E), source: NOAA, Kaplan SST dataset. Hemispheric scale (for the whole Southern Hemisphere): a) Air temperature anomaly; b) Sea surface temperature anomaly. Source: CRU, University of East Anglia. The following

  11. Decadal-scale teleconnection between South Atlantic SST and southeast Australia surface air temperature in austral summer

    NASA Astrophysics Data System (ADS)

    Xue, Jiaqing; Li, Jianping; Sun, Cheng; Zhao, Sen; Mao, Jiangyu; Dong, Di; Li, Yanjie; Feng, Juan

    2017-06-01

    Austral summer (December-February) surface air temperature over southeast Australia (SEA) is found to be remotely influenced by sea surface temperature (SST) in the South Atlantic at decadal time scales. In austral summer, warm SST anomalies in the southwest South Atlantic induce concurrent above-normal surface air temperature over SEA. This decadal-scale teleconnection occurs through the eastward propagating South Atlantic-Australia (SAA) wave train triggered by SST anomalies in the southwest South Atlantic. The excitation of the SAA wave train is verified by forcing experiments based on both linear barotropic and baroclinic models, propagation pathway and spatial scale of the observed SAA wave train are further explained by the Rossby wave ray tracing analysis in non-uniform basic flow. The SAA wave train forced by southwest South Atlantic warming is characterized by an anomalous anticyclone off the eastern coast of the Australia. Temperature diagnostic analyses based on the thermodynamic equation suggest anomalous northerly flows on western flank of this anticyclone can induce low-level warm advection anomaly over SEA, which thus lead to the warming of surface air temperature there. Finally, SST-forced atmospheric general circulation model ensemble experiments also demonstrate that SST forcing in the South Atlantic is associated with the SAA teleconnection wave train in austral summer, this wave train then modulate surface air temperature over SEA on decadal timescales. Hence, observations combined with numerical simulations consistently demonstrate the decadal-scale teleconnection between South Atlantic SST and summertime surface air temperature over SEA.

  12. Mechanisms controlling the SST air-sea heat flux feedback and its dependence on spatial scale

    NASA Astrophysics Data System (ADS)

    Hausmann, Ute; Czaja, Arnaud; Marshall, John

    2017-02-01

    The turbulent air-sea heat flux feedback (α, in {W m}^{-2} { K}^{-1}) is a major contributor to setting the damping timescale of sea surface temperature (SST) anomalies. In this study we compare the spatial distribution and magnitude of α in the North Atlantic and the Southern Ocean, as estimated from the ERA-Interim reanalysis dataset. The comparison is rationalized in terms of an upper bound on the heat flux feedback, associated with "fast" atmospheric export of temperature and moisture anomalies away from the marine boundary layer, and a lower bound associated with "slow" export. It is found that regions of cold surface waters (≤10 ° C) are best described as approaching the slow export limit. This conclusion is not only valid at the synoptic scale resolved by the reanalysis data, but also on basin scales. In particular, it applies to the heat flux feedback acting as circumpolar SST anomaly scales are approached in the Southern Ocean, with feedbacks of ≤10 {W m}^{-2} { K}^{-1}. In contrast, the magnitude of the heat flux feedback is close to that expected from the fast export limit over the Gulf Stream and its recirculation with values on the order of ≈40 {W m}^{-2} { K}^{-1}. Further analysis suggests that this high value reflects a compensation between a moderate thermodynamic adjustment of the boundary layer, which tends to weaken the heat flux feedback, and an enhancement of the surface winds over warm SST anomalies, which tend to enhance the feedback.

  13. Tu-144LL SST Flying Laboratory on Taxiway at Zhukovsky Air Development Center near Moscow, Russia

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The sleek lines of the Tupolev Tu-144LL are evident as it sits on the taxiway at the Zhukovsky Air Development Center near Moscow, Russia. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different engines than were used in production-model aircraft. Fifty experiments were proposed

  14. Russian Tu-144LL SST Flying Laboratory Landing with Drag Chutes at Zhukovsky Air Development Center

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The modified Tupolev Tu-144 supersonic flying laboratory touches down and deploys a trio of drag chutes following a test flight at the Zhukovsky Air Development Center near Moscow, Russia, in July 1997. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different engines than were used

  15. Tu-144LL SST Flying Laboratory on Taxiway at Zhukovsky Air Development Center near Moscow, Russia

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The sleek lines of the Tupolev Tu-144LL are evident as it sits on the taxiway at the Zhukovsky Air Development Center near Moscow, Russia. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different engines than were used in production-model aircraft. Fifty experiments were proposed

  16. Russian Tu-144LL SST Flying Laboratory Takeoff at Zhukovsky Air Development Center

    NASA Technical Reports Server (NTRS)

    1997-01-01

    With its nose drooped and canards extended, the Tupolev Tu-144LL supersonic flying laboratory lifts off from the Zhukovsky Air Development Center near Moscow, Russia on a 1997 test flight. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different engines than were used in production

  17. Russian Tu-144LL SST Flying Laboratory Landing at Zhukovsky Air Development Center

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Tupolev Tu-144LL supersonic flying laboratory touches down at the Zhukovsky Air Development Center near Moscow, Russia, following a 1997 test flight. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different engines than were used in production-model aircraft. Fifty experiments

  18. Russian Tu-144LL SST Flying Laboratory Landing at Zhukovsky Air Development Center

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Tupolev Tu-144LL supersonic flying laboratory lifts off from the Zhukovsky Air Development Center near Moscow, Russia, on a 1997 test flight. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different engines than were used in production-model aircraft. Fifty experiments were

  19. Russian Tu-144LL SST Flying Laboratory Landing at Zhukovsky Air Development Center

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Tupolev Tu-144LL supersonic flying laboratory touches down at the Zhukovsky Air Development Center near Moscow, Russia, following a 1997 test flight. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different engines than were used in production-model aircraft. Fifty experiments

  20. Research Pilot C. Gordon Fullerton in Cockpit of TU-144LL SST Flying Laboratory

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA Research pilot C. Gordon Fullerton sits in cockpit of TU-144LL SST Flying Laboratory. Fullerton was one of two NASA pilots who flew the aircraft as part of a joint high speed research program. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different engines than were used in

  1. Research Pilot C. Gordon Fullerton in Cockpit of TU-144LL SST Flying Laboratory

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA Research pilot C. Gordon Fullerton sits in cockpit of TU-144LL SST Flying Laboratory. Fullerton was one of two NASA pilots who flew the aircraft as part of a joint high speed research program. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different engines than were used in

  2. Russian Tu-144LL SST Roll-Out for Joint NASA Research Program

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The modified Tu-144LL supersonic flying laboratory is rolled out of its hangar at the Zhukovsky Air Development Center near Moscow, Russia in March 1996 at the beginning of a joint U.S. - Russian high-speed flight research program. The 'LL' stands for Letayuschaya Laboratoriya, which means Flying Laboratory. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The

  3. Tu-144LL SST Flying Laboratory Landing on Runway at Zhukovsky Air Development Center near Moscow, Ru

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Tupolev Tu-144LL SST Flying Laboratory rolls down the runway at the Zhukovsky Air Development Center near Moscow, Russia, after a 1998 test flight. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different engines than were used in production-model aircraft. Fifty experiments

  4. Tu-144LL SST Flying Laboratory Lifts off Runway on a High-Speed Research Flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Tupolev Tu-144LL lifts off from the Zhukovsky Air Development Center near Moscow, Russia, on a 1998 test flight. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different engines than were used in production-model aircraft. Fifty experiments were proposed for the program and

  5. Russian Tu-144LL SST Roll-out for Joint NASA Research Program

    NASA Technical Reports Server (NTRS)

    1996-01-01

    U.S. Ambassador Pickering addresses Russian and American dignitaries, industry representatives and members of the press during a roll-out ceremony for the modified Tu-144LL supersonic flying laboratory. The ceremony was held at the Zhukovsky Air Development Center near Moscow, Russia, on March 17, 1996. The 'LL' designation for the aircraft stands for Letayuschaya Laboratoriya, which means Flying Laboratory in Russian. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation

  6. Tu-144LL SST Flying Laboratory Lifts off Runway on a High-Speed Research Flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Tupolev Tu-144LL lifts off from the Zhukovsky Air Development Center near Moscow, Russia, on a 1998 test flight. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different engines than were used in production-model aircraft. Fifty experiments were proposed for the program and

  7. High-resolution simulations of heavy precipitation events: role of the Adriatic SST and air-sea interactions

    NASA Astrophysics Data System (ADS)

    Davolio, Silvio; Stocchi, Paolo

    2016-04-01

    Strong Bora and Sirocco winds over the Adriatic Sea favour intense air-sea interactions and are often associated with heavy rainfall that affects the mountainous areas surrounding the basin. A convection-permitting model (MOLOCH) has been implemented at high resolution (2 km) in order to analyse several precipitation events over northern Italy, occurred during different seasons of the year and presenting different rainfall characteristics (stratiform, convective, orographic), and to possibly identify the relevant physical mechanisms involved. With the aim of assessing the impact of the sea surface temperature (SST) and surface fluxes on the intensity and location of the rainfall, sensitivity experiments have been performed taking into account the possible variability of SST analysis for model initialization. The model has been validated and specific diagnostic tools have been developed and applied to evaluate the vertically integrated moisture fluxes feeding the precipitating system or to compute a water balance in the atmosphere over the sea. The results show that the Adriatic Sea plays a role in determining the boundary layer characteristics through exchange of heat and moisture thus modifying the low-level flow dynamics and its interaction with the orography. This in turn impacts on the rainfall. Although the results vary among the analysed events, the precise definition of the SST and its evolution can be relevant for accurate precipitation forecasting.

  8. AIRS radiometric calibration validation for climate research

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Pagano, Thomas S.; Elliott, Denis; Gaiser, Steve; Gregorich, Dave; Broberg, Steve

    2005-01-01

    Climate research using data from satellite based radiometers makes extreme demands on the traceability and stability of the radiometric calibration. The selection of a cooled grating array spectrometer for the Atmospheric Infrared Sounder, AIRS, is key, but does not ensured that AIRS data will be of climate quality. Additional design features, plus additional pre-launch testing, and extensive on-orbit calibration subsystem monitoring beyond what would suffice for application of the data to weather forecasting were required to ensure the radiometric data quality required for climate research. Validation that climate data quality are being generated makes use of the sea surface skin temperatures (SST and (obs-calc).

  9. A comprehensive comparison of SST of satellite, ship, buoy and model data in the sea around Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Kwak, M.; Cho, Y.; Kwak, H.; Seo, G.

    2012-12-01

    Sea surface temperature (SST) affects atmospheric temperature through air-sea interaction proces. Therefore a sufficient number of SST data with high accuracy is essential for improving weather forecasting precisely. A comparison of SST data provided by several oceanic and atmospheric organization is necessary because methods in observation and calculation have different properties and processes respectively. In situ data observed routinely by National Fisheries Research and Development Institute, Korea is compared with the satellite observed SSTs (AVHRR+AMSR, OSTIA). Buoy data operated by Korea Meteorological Administration is compared with the satellite observed SSTs and model SST calculated by ocean circulation model (Regional Ocean Modeling system). with harmonic analysis. These comparative studies clearly reveal that satellite observed SST is about 2°C higher than that of in situ SST in coastal area. The difference of SST between in situ SST and satellite SST in summer is higher than that in winter. The correlation coefficient of in situ data with the AVHRR+AMSR SST (r2=0.65) is lower than that with OSTIA SST (r2=0.80). Annual amplitude of SST observed by buoy, satellite and calculated by model in coastal area is commonly larger than that of SST of those in open ocean. Phase difference of SST between satellite and buoy data is about 10° at 365-day cycle. Phase difference of SST between model and buoy data is about 20° at 365-day cycle.

  10. Air Force Research Laboratory

    DTIC Science & Technology

    2009-06-08

    Air Force Research Laboratory 8 June 2009 Mr. Leo Marple Ai F R h L b t r orce esearc a ora ory Leo.Marple@wpafb.af.mil DISTRIBUTION STATEMENT A...TITLE AND SUBTITLE Air Force Research Laboratory 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER...5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Research Laboratory ,Wright

  11. Measured and Calculated Neutron Spectra and Dose Equivalent Rates at High Altitudes; Relevance to SST Operations and Space Research

    NASA Technical Reports Server (NTRS)

    Foelsche, T.; Mendell, R. B.; Wilson, J. W.; Adams, R. R.

    1974-01-01

    Results of the NASA Langley-New York University high-altitude radiation study are presented. Measurements of the absorbed dose rate and of secondary fast neutrons (1 to 10 MeV energy) during the years 1965 to 1971 are used to determine the maximum radiation exposure from galactic and solar cosmic rays of supersonic transport (SST) and subsonic jet occupants. The maximum dose equivalent rates that the SST crews might receive turn out to be 13 to 20 percent of the maximum permissible dose rate (MPD) for radiation workers (5 rem/yr). The exposure of passengers encountering an intense giant-energy solar particle event could exceed the MPD for the general population (0.5 rem/yr), but would be within these permissible limits if in such rare cases the transport descends to subsonic altitude; it is in general less than 12 percent of the MPD. By Monte Carlo calculations of the transport and buildup of nucleons in air for incident proton energies E of 0.02 to 10 GeV, the measured neutron spectra were extrapolated to lower and higher energies and for galactic cosmic rays were found to continue with a relatively high intensity to energies greater than 400 MeV, in a wide altitude range. This condition, together with the measured intensity profiles of fast neutrons, revealed that the biologically important fast and energetic neutrons penetrate deep into the atmosphere and contribute approximately 50 percent of the dose equivalant rates at SST and present subsonic jet altitudes.

  12. Combined MODIS/AMSR-E SST Composites for Regional Weather Applications

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary; Vazquez, Jorge; Armstrong, Ed; Haines, Stephanie

    2009-01-01

    Recent applications of a high resolution MODlS composite SST product have clearly shown the importance of developing high-resolution SST data sets for coastal applications and modeling. In general, coupling between the oceans and atmospheres has been closely linked to SST gradients and fronts, indicating a need for high resolution SSTs, specifically in the areas of large gradients associated with coastal regions. Thus an accurate determination of SST gradients has become critical for determining the appropriate air-sea coupling and the influence on ocean modeling. Recent research is focused on improving the accuracy and spatial coverage of the current operational MODIS SST composite product provided by the Short-term Prediction Research and Transition (SPORT) project and distributed to the community. GHRSST-PP MODlS data and microwave AMSR-E data are being combined to produce composite data sets for both the West Coast and East Coast of the United States, including the Gulf of Mexico. The use of 1 km MODIS data has explicit advantages over other SST products including its global coverage and high resolution. The AMSR-E data will reduce the latency of the composites. A strategy for utilizing the error characteristics contained in the GHRSST data has been developed. This strategy will include using the error characteristics directly to calculate weights in the SST composites, uncertainty maps based on the composite biases and RMS errors, and latency products calculated in the compositing process. Recent accomplishments include the development of an enhanced compositing approach based on the error-weighted combination of recent clear MODIS SST values, where the error contributions come from measurement error, potential cloud contamination, and data latency sources. Future plans call for the inclusion of AMSR-E SST values with appropriate weights based upon measurement accuracy, MODIS-AMSR-E SST bias, and latency.

  13. Application of Atmospheric Infrared Sounder (AIRS) Data to Climate Research

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Gregorich, David; Gaiser, Steve; Chahine, Moustafa T.

    2004-01-01

    The application of hyper spectral radiometric data to climate research requires very high absolute radiometric accuracy and stability. We use cloud-free tropical ocean data from the Atmospheric InfraRed Sounder (AIR) Calibration Data Subset (ADCS) to show that the radiometric precision and stability required climate applications has been achieved. The sea surface skin temperatures derived from the AIRS 2616cm-1 super window channel are stable relative to the RTG.SST at the better than 8 mK/year level, and the spectral calibration is stable at the 1 ppm/year level. The excellent stability and accuracy are the result of the implementation of AIRS as a grating array spectrometer, which is cooled and stabilized within 10 mK at 155 K. Analysis of daily measurements of the temperature gradient between the surface and 7 km altitude show that the AIRS Calibration Data Subset has applications which extend its original intent for calibration support to climate research. The Atmospheric Infrared Sounder (AIRS) on the EOS Aqua satellite was launched into polar orbit in May 2002. AIRS covers the spectral region from 640 to 2700 cm-1 with 2378 independent channels and represents the first of a new generation of hyper spectral resolution sounders in support of global sounding data for weather forecasting and climate research.

  14. Gas Fuelling System for SST-1Tokamak

    NASA Astrophysics Data System (ADS)

    Dhanani, Kalpesh; Raval, D. C.; Khan, Ziauddin; Semwal, Pratibha; George, Siju; Paravastu, Yuvakiran; Thankey, Prashant; Khan, M. S.; Pradhan, Subrata

    2017-04-01

    SST-1 Tokamak, the first Indian Steady-state Superconducting experimental device is at present under operation in the Institute for Plasma Research. For plasma break down & initiation, piezoelectric valve based gas feed system is implemented as a primary requirement due to its precise control, easy handling, low construction and maintenance cost and its flexibility in the selection of the working gas. Hydrogen gas feeding with piezoelectric valve is used in the SST-1 plasma experiments. The piezoelectric valves used in SST-1 are remotely driven by a PXI based platform and are calibrated before each SST-1 plasma operation with precise control. This paper will present the technical development and the results of the gas fuelling system of SST-1.

  15. Air Force Office of Scientific Research 1991 Research Highlights

    DTIC Science & Technology

    1991-01-01

    research at Air Force Europe, allied victory in the Persian Gulf con- programs totaling nearly $300 million annual- laboratories . Air Force ...transitioning nological environment? laboratories and research centers into four research accomplishments for Air Force use. In this added role as... Air Force’s saries; maintaining a strong research Organizationally, AFOSR has also glo ehran gol per infrastructure among Air Force

  16. Quiet Supersonic Technology (QueSST)

    NASA Image and Video Library

    2017-03-02

    Mechanical technician Dan Pitts prepares a scale model of Lockheed Martin's Quiet Supersonic Technology (QueSST) X-plane preliminary design for its first high-speed wind tunnel tests at NASA's Glenn Research Center.

  17. Air Force Research Laboratory, Edwards Air Force Base, CA

    DTIC Science & Technology

    2011-06-27

    Air Force Research Laboratory (AFMC) AFRL /RZS 1 Ara Road Edwards AFB CA 93524-7013 AFRL -RZ-ED-VG-2011-269 9...SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) Air Force Research Laboratory (AFMC) AFRL /RZS 11. SPONSOR...Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 Air Force Research Laboratory Ed d Ai F B CA Col Mike Platt war s r orce

  18. Air pollution: brown skies research.

    PubMed Central

    Tattersfield, A. E.

    1996-01-01

    Direct information on the health effects of air pollution in humans relies mainly on chamber studies and epidemiological studies. Although chamber studies have limitations they allow the acute effects of individual pollutants to be studied in well characterised subjects under controlled conditions. Most chamber studies have shown relatively small falls in lung function and relatively small increases in bronchial reactivity at the concentrations of ozone, SO2, and NO2 that occur even during high pollution episodes in the UK. The possible exception is SO2 where sensitive asthmatic patients may show a greater response at concentrations that are seen from time to time in certain areas and in proximity to power stations. There is no convincing evidence of potentiation between pollutants in chamber studies. Epidemiological studies are more difficult to carry out and require considerable epidemiological and statistical expertise to deal with the main problem-confounding by other factors. Although the health effects seen with current levels of pollution are small compared with those seen in the 1950s and close to the limits of detection, this should not be interpreted as being unimportant. A small effect may have large consequences when the population exposed is large (the whole population in this case). Recent data suggest that particles have more important health effects than the pollutant gases that have been studied. Much of this information comes from the USA though the findings are probably applicable in the UK. More information is needed on the size of the health effects that occur during the three types of air pollution episodes seen in this country and the relative contributions of particles, pollutant gases, pollen, and other factors such as temperature. Research into air pollution declined in the UK following the introduction of the Clean Air Acts; it is now increasing again following pressure from certain individuals and ginger groups, including the British

  19. Air Monitoring, Measuring, and Emissions Research

    EPA Pesticide Factsheets

    Measurement research is advancing the ability to determine the composition of sources of air pollution, conduct exposure assessments, improve monitoring capabilities and support public health research.

  20. Possibilities and goals for the future SST

    NASA Technical Reports Server (NTRS)

    Ferri, A.

    1975-01-01

    An approach directed to defining requirements that would make the development of the SST a worth-while program for the USA is presented. A detailed technical discussion of possible advances in propulsion, aerodynamics, structural construction and design and operational methods is presented. The impact on airplane performances of such improvements is evaluated. The ecological problems related to air pollution and sonic boom are discussed and possible solutions are described. It is concluded that the technical advances required for the development of an efficient economical competitive SST are within reach.

  1. Workshop on indoor air quality research needs

    SciTech Connect

    Not Available

    1980-01-01

    Workshop participants report on indoor air quality research needs including the monitoring of indoor air quality, report of the instrumentation subgroup of indoor air quality, health effects, and the report of the control technology session. Risk analysis studies addressing indoor environments were also summarized. (DLS)

  2. Responses of Precipitation and Hydrologic Processes to Tropical SST

    NASA Technical Reports Server (NTRS)

    Sui, C.-H.; Lau, K.-M.; Li, X.

    2001-01-01

    The goal of the research is to identify the mechanisms in the response of tropical precipitation and atmospheric hydrologic cycle to sea surface temperature (SST) variability at seasonal-to-interannual time scales, and to utilize the knowledge for better understanding of climate feedback processes relevant to global change. As a first step to achieve the goal, we characterize the inter-relationship among convective/stratiform rain, ice/water clouds water vapor, and SST using TRMM satellite data and a cloud-resolving model. We examined the daily hydrologic variables [column water vapor (PW), cloud liquid water (CW), rainfall rates (RR)] as a function of SST using high-resolution data (0.25 x 0.25, daily) derived from TRMM satellite measurements. Comparing the winter of 97/98 (El Nino condition) against the winter of 99/00 (La Nina condition), area-mean values of all four hydrologic variables in cloudy areas within the tropical Pacific are higher in the El Nino winter than in the La Nina winter. This is consistent with previous observational analyses and SST warming experiments (idealized or ENSO-like) that showed the interaction between hydrologic cyclic and radiation at the seasonal to interannual time scales leads to intensified tropical circulation and hydrologic cycle. However, there is evidence that the enhanced hydrologic cycle over the warm pool is accompanied by an expansion of radiatively -driven subsidence in response to a stronger SST gradient between warm pool and surrounding cold pool. The expanding subsidence effectively reduces cloud amounts over the warm pool. Our analysis of daily variability further indicates a more vigorous water cycle characterized by higher PW, CW, and RR in response to overall warming. This is expected from the Clausius Clapeyron relation as a thermodynamic response to warming. However cloudy areas decrease in response to overall warming. This may be due to factors that are fundamentally different. One possibility is that in a

  3. Air Traffic Management Research at NASA Ames

    NASA Technical Reports Server (NTRS)

    Davis, Thomas J.

    2012-01-01

    The Aviation Systems Division at the NASA Ames Research Center conducts leading edge research in air traffic management concepts and technologies. This overview will present concepts and simulation results for research in traffic flow management, safe and efficient airport surface operations, super density terminal area operations, separation assurance and system wide modeling and simulation. A brief review of the ongoing air traffic management technology demonstration (ATD-1) will also be presented. A panel discussion, with Mr. Davis serving as a panelist, on air traffic research will follow the briefing.

  4. QueSST Time-lapse

    NASA Image and Video Library

    2017-02-27

    Quiet Supersonic Technology (QueSST) X-plane in the 8x6 Supersonic Wind Tunnel at NASA Glenn Research Center. This time-lapse shows the model support structure buildup and balance checkout as well as the installation of the model in the test section.

  5. Air Force Research Laboratory’s Focused Long Term Challenges

    DTIC Science & Technology

    2008-04-01

    Air Force Research Laboratory ( AFRL ) mission is to provide support to the Air Force (AF) and the warfighters with... Air Force Research Laboratory’s Focused Long Term Challenges Leo J Rose Munitions Directorate, Air Force Research Laboratory , 101 W Eglin Blvd...This technology vision, which was born in our Air Force Research Laboratory , builds on the Air Force’s traditional kill

  6. Air Force Research Laboratory Fire Research (Postprint)

    DTIC Science & Technology

    2007-04-05

    High Pressure – Water or Foam Spray at ≥ 1200 psi. • Current emphasis on increasing throw distance. – Retrofit P-19 trucks with UHP system. • USAF set...suppressing large scale liquid hydrocarbon fuel fires. • UHP water and AFFF, compressed air foam, and combined agent AFFF-dry chemical systems. • Next...build a skid steered, all-terrain vehicle equipped with UHP and other advanced fire and rescue systems. • Closed Cell Foam Fire Protection – Develop

  7. Experimental research on air propellers

    NASA Technical Reports Server (NTRS)

    Durand, William F

    1918-01-01

    The purposes of the experimental investigation on the performance of air propellers described in this report are as follows: (1) the development of a series of design factors and coefficients drawn from model forms distributed with some regularity over the field of air-propeller design and intended to furnish a basis of check with similar work done in other aerodynamic laboratories, and as a point of departure for the further study of special or individual types and forms; (2) the establishment of a series of experimental values derived from models and intended for later use as a basis for comparison with similar results drawn from certain selected full-sized forms and tested in free flight.

  8. Air Force Research Laboratory Preparation for Year 2000.

    DTIC Science & Technology

    1998-10-05

    Air Force Research Laboratory , Phillips Research Site , Kirkland Air Force Base, New...Pentagon, Washington, D.C. 20301-1900. The identity of each writer and caller is fully protected. Acronym AFRL Air Force Research Laboratory INSPECTOR...completion of the implementation phase was May 31, 1999. Air Force Research Laboratory . The Air Force Research

  9. Tidal cooling effect on SST and its influence on typhoon simulation over the East China Sea

    NASA Astrophysics Data System (ADS)

    Zong, H.; WU, H.

    2013-12-01

    Each summer, tropical cyclones (including typhoon) frequently travel across the East China Sea (ECS), beating the surrounding regions with massive damages. Therefore, it is very important to predict their intensities and tracks by using numerical models, so as to advise people to evacuate from the possible affected area. Unfortunately, forecasting the typhoon is still a big challenge since a couple of reasons. To numerically predict the typhoons, an atmosphere-ocean coupling model is often required. Researchers have done many efforts on the atmosphere part to improve the accuracy, while the ocean part was often treated simply. For example, many operational forecasting models simply set the SST as climatological values. As the ocean motion is energetic and the sea conditions vary significantly with time, this brief setting could result in some error. Some other models include an ocean model that considering the air-sea exchange of heat and momentum, as well as large-scale ocean motions like circulation. However, in the shallow coastal oceans like the ECS, tidal forcing also plays an important role that modulate the vertical exchange to adjust the SST. So far no atmosphere-ocean coupling model in this region consider the tide. In this study, we have found that 1) Accuracy of SST is essential to correctly predict the intensity and track of typhoons; 2) It is important to include the tide to correctly simulate the SST in the shallow oceans like the ECS. We setup an Advanced Research Hurricane WRF (WRF-AHW) model in the ECS and simulated typhoon Muifa (No. 201109). The 6-hourly data of the NCEP FNL Global Analyses was used as the initial and lateral boundary conditions in the model. Firstly, We run the model only with NCEP FNL Global Analyses data. The simulated track was very similar to China forecasted one, which was more than 200 kilometers far from the Joint Typhoon Warning Center (JTWC) provided typhoon location at 0:00 am, 6 August, 2011. Then, We run the model

  10. Tasks of air flow research

    NASA Technical Reports Server (NTRS)

    Prandtl, L

    1926-01-01

    The researches at the Gottingen Institute are discussed especially in regards to the physical properties of fluids. The three main properties of fluids examined concern density, viscosity, and compressibility.

  11. Impact of High Resolution SST Data on Regional Weather Forecasts

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Case, Jonathon; LaFontaine, Frank; Vazquez, Jorge; Mattocks, Craig

    2010-01-01

    Past studies have shown that the use of coarse resolution SST products such as from the real-time global (RTG) SST analysis[1] or other coarse resolution once-a-day products do not properly portray the diurnal variability of fluxes of heat and moisture from the ocean that drive the formation of low level clouds and precipitation over the ocean. For example, the use of high resolution MODIS SST composite [2] to initialize the Advanced Research Weather Research and Forecast (WRF) (ARW) [3] has been shown to improve the prediction of sensible weather parameters in coastal regions [4][5}. In an extend study, [6] compared the MODIS SST composite product to the RTG SST analysis and evaluated forecast differences for a 6 month period from March through August 2007 over the Florida coastal regions. In a comparison to buoy data, they found that that the MODIS SST composites reduced the bias and standard deviation over that of the RTG data. These improvements led to significant changes in the initial and forecasted heat fluxes and the resulting surface temperature fields, wind patterns, and cloud distributions. They also showed that the MODIS composite SST product, produced for the Terra and Aqua satellite overpass times, captured a component of the diurnal cycle in SSTs not represented in the RTG or other one-a-day SST analyses. Failure to properly incorporate these effects in the WRF initialization cycle led to temperature biases in the resulting short term forecasts. The forecast impact was limited in some situations however, due to composite product inaccuracies brought about by data latency during periods of long-term cloud cover. This paper focuses on the forecast impact of an enhanced MODIS/AMSR-E composite SST product designed to reduce inaccuracies due data latency in the MODIS only composite product.

  12. Air Traffic Management Research at NASA

    NASA Technical Reports Server (NTRS)

    Farley, Todd

    2012-01-01

    The U.S. air transportation system is the most productive in the world, moving far more people and goods than any other. It is also the safest system in the world, thanks in part to its venerable air traffic control system. But as demand for air travel continues to grow, the air traffic control systems aging infrastructure and labor-intensive procedures are impinging on its ability to keep pace with demand. And that impinges on the growth of our economy. Part of NASA's current mission in aeronautics research is to invent new technologies and procedures for ATC that will enable our national airspace system to accommodate the increasing demand for air transportation well into the next generation while still maintaining its excellent record for safety. It is a challenging mission, as efforts to modernize have, for decades, been hamstrung by the inability to assure safety to the satisfaction of system operators, system regulators, and/or the traveling public. In this talk, we'll provide a brief history of air traffic control, focusing on the tension between efficiency and safety assurance, and we'll highlight some new NASA technologies coming down the pike.

  13. Air Traffic Management Research at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Lee, Katharine

    2005-01-01

    Since the late 1980's, NASA Ames researchers have been investigating ways to improve the air transportation system through the development of decision support automation. These software advances, such as the Center-TRACON Automation System (eTAS) have been developed with teams of engineers, software developers, human factors experts, and air traffic controllers; some ASA Ames decision support tools are currently operational in Federal Aviation Administration (FAA) facilities and some are in use by the airlines. These tools have provided air traffic controllers and traffic managers the capabilities to help reduce overall delays and holding, and provide significant cost savings to the airlines as well as more manageable workload levels for air traffic service providers. NASA is continuing to collaborate with the FAA, as well as other government agencies, to plan and develop the next generation of decision support tools that will support anticipated changes in the air transportation system, including a projected increase to three times today's air-traffic levels by 2025. The presentation will review some of NASA Ames' recent achievements in air traffic management research, and discuss future tool developments and concepts currently under consideration.

  14. Ingested (oral) SST inhibits EAE.

    PubMed

    Brod, Staley A; Hood, Zachary M

    2011-08-01

    Ingested immunoactive proteins type I interferon, soluble immune response suppressor peptide 1-21 and melanocyte-stimulating hormone inhibit clinical attacks and inflammation in acute experimental autoimmune encephalomyelitis (EAE). We examined whether another immunoactive protein, somatostatin (SST), would have similar anti-inflammatory effects on EAE after oral administration. B6 mice were immunized with MOG peptide 35-55 and gavaged with control saline or SST during ongoing disease. Splenocytes from mock-fed or SST-fed mice were adoptively transferred into active MOG peptide 35-55-immunized recipient mice during ongoing disease. In actively fed mice, increased Th2-like cytokines in both the spleen and the central nervous system (CNS) inhibited active disease. In recipients of donor cells from SST-fed donors, reduction of Th1 and Th17 and induction of Th2-like IL-4 cytokines in both the spleen and CNS inhibited disease. T(reg) cells were increased threefold in actively fed spleen cells that are responsible for protection against disease after adoptive transfer. Ingested (orally administered) SST can inhibit clinical disease, inhibit CNS inflammation by decreasing Th17 and Th1-like cytokines and increasing Th2-like cytokines in the CNS via induction of T(reg) cells.

  15. The effects of SST magnitude and gradient on the wind and rain water over the Yellow Sea

    NASA Astrophysics Data System (ADS)

    Park, R.; Cho, Y.; Choi, B.; Song, C. H.

    2009-12-01

    Composition of satellite-observed Sea Surface Temperature (SST) data presents differences in magnitude and gradient over Yellow Sea, compared with in-situ measured SST. The differences can result in different wind speed/direction and rain water amount in a mesoscale meteorological model. The Yellow Sea is dominated by the strong and persistent northerly (NNE-NW) monsoon during the winter season, and the characteristics of the air masses inflowing into over the Korean Peninsula are altered by SST over the Yellow Sea. In this study, the effects of the SST magnitude and SST gradient on the wind fields, rain water amounts and evaporation rates over the Yellow Sea were investigated. Through the sensitivity studies, it was found that the SST magnitude controls air temperature and vertical heat fluxes between atmosphere and ocean surfaces and the SST gradient affects atmospheric stability and wind convergence. Although the SST magnitude can also affect the atmospheric stability and the wind fields but is less sensitive, compared with the influences from the SST gradient. Both the SST gradient and magnitude clearly affect the evaporation rates but in a complicated manner. The magnitude of the evaporation rates being regulated by the difference between saturated mixing ratio over the sea surface and mixing ratio of air is found to be directly controlled by the SST magnitude, whereas the horizontal distribution of the evaporation rates being affected by the horizontal velocity is controlled by the SST gradient. The use of the accurate SST in the meteorological model is therefore of primary importance, particularly for a more accurate weather forecast. In this study, it is demonstrated that the construction of the realistic SSTs using data retrieved from satellite observations and in-situ observation in conjunction with numerical ocean circulation modeling can produce more accurate and realistic meteorological fields over/around the Yellow Sea area in the mesoscale

  16. Networks of Absolute Calibration Stars for SST, AKARI, and WISE

    NASA Astrophysics Data System (ADS)

    Cohen, M.

    2007-04-01

    I describe the Cohen-Walker-Witteborn (CWW) network of absolute calibration stars built to support ground-based, airborne, and space-based sensors, and how they are used to calibrate instruments on the SPITZER Space Telescope (SST and Japan's AKARI (formerly ASTRO-F), and to support NASA's planned MidEx WISE (the Wide-field Infrared Survey Explorer). All missions using this common calibration share a self-consistent framework embracing photometry and low-resolution spectroscopy. CWW also underpins COBE/DIRBE several instruments used on the Kuiper Airborne Observatory ({KAO}), the joint Japan-USA ``IR Telescope in Space" (IRTS) Near-IR and Mid-IR spectrometers, the European Space Agency's IR Space Observatory (ISO), and the US Department of Defense's Midcourse Space eXperiment (MSX). This calibration now spans the far-UV to mid-infrared range with Sirius (one specific Kurucz synthetic spectrum) as basis, and zero magnitude defined from another Kurucz spectrum intended to represent an ideal Vega (not the actual star with its pole-on orientation and mid-infrared dust excess emission). Precision 4-29 μm radiometric measurements on MSX validate CWW's absolute Kurucz spectrum of Sirius, the primary, and a set of bright K/MIII secondary standards. Sirius is measured to be 1.0% higher than predicted. CWW's definitions of IR zero magnitudes lie within 1.1% absolute of MSX measurements. The US Air Force Research Laboratory's independent analysis of on-orbit {MSX} stellar observations compared with emissive reference spheres show CWW primary and empirical secondary spectra lie well within the ±1.45% absolute uncertainty associated with this 15-year effort. Our associated absolute calibration for the InfraRed Array Camera (IRAC) on the SST lies within ˜2% of the recent extension of the calibration of the Hubble Space Telescope's STIS instrument to NICMOS (Bohlin, these Proceedings), showing the closeness of these two independent approaches to calibration.

  17. Impact of intra-daily SST variability on ENSO characteristics in a coupled model

    NASA Astrophysics Data System (ADS)

    Masson, Sébastien; Terray, Pascal; Madec, Gurvan; Luo, Jing-Jia; Yamagata, Toshio; Takahashi, Keiko

    2012-08-01

    This paper explores the impact of intra-daily Sea Surface Temperature (SST) variability on the tropical large-scale climate variability and differentiates it from the response of the system to the forcing of the solar diurnal cycle. Our methodology is based on a set of numerical experiments based on a fully global coupled ocean-atmosphere general circulation in which we alter (1) the frequency at which the atmosphere sees the SST variations and (2) the amplitude of the SST diurnal cycle. Our results highlight the complexity of the scale interactions existing between the intra-daily and inter-annual variability of the tropical climate system. Neglecting the SST intra-daily variability results, in our CGCM, to a systematic decrease of 15% of El Niño—Southern Oscillation (ENSO) amplitude. Furthermore, ENSO frequency and skewness are also significantly modified and are in better agreement with observations when SST intra-daily variability is directly taken into account in the coupling interface of our CGCM. These significant modifications of the SST interannual variability are not associated with any remarkable changes in the mean state or the seasonal variability. They can therefore not be explained by a rectification of the mean state as usually advocated in recent studies focusing on the diurnal cycle and its impact. Furthermore, we demonstrate that SST high frequency coupling is systematically associated with a strengthening of the air-sea feedbacks involved in ENSO physics: SST/sea level pressure (or Bjerknes) feedback, zonal wind/heat content (or Wyrtki) feedback, but also negative surface heat flux feedbacks. In our model, nearly all these results (excepted for SST skewness) are independent of the amplitude of the SST diurnal cycle suggesting that the systematic deterioration of the air-sea coupling by a daily exchange of SST information is cascading toward the major mode of tropical variability, i.e. ENSO.

  18. Air quality research: perspective from climate change modelling research.

    PubMed

    Semazzi, Fredrick

    2003-06-01

    A major component of climate change is a manifestation of changes in air quality. This paper explores the question of air quality from the climate change modelling perspective. It reviews recent research advances on the cause-effect relationships between atmospheric air composition and climate change, primarily based on the Intergovernmental Panel on Climate Change (IPCC) assessment of climate change over the past decade. There is a growing degree of confidence that the warming world over the past century was caused by human-related changes in the composition of air. Reliability of projections of future climate change is highly dependent on future emission scenarios that have been identified that in turn depend on a multitude of complicated interacting social-economic factors. Anticipated improvements in the performance of climate models is a major source of optimism for better climate projections in the future, but the real benefits of its contribution will be closely coupled with other sources of uncertainty, and in particular emission projections.

  19. 33 CFR 334.700 - Choctawhatchee Bay, aerial gunnery ranges, Air Proving Ground Center, Air Research and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... gunnery ranges, Air Proving Ground Center, Air Research and Development Command, Eglin Air Force Base, Fla... gunnery ranges, Air Proving Ground Center, Air Research and Development Command, Eglin Air Force Base, Fla... regulations in this section shall be enforced by the Commander, Air Proving Ground Center, Eglin AFB, and...

  20. 33 CFR 334.700 - Choctawhatchee Bay, aerial gunnery ranges, Air Proving Ground Center, Air Research and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... gunnery ranges, Air Proving Ground Center, Air Research and Development Command, Eglin Air Force Base, Fla... gunnery ranges, Air Proving Ground Center, Air Research and Development Command, Eglin Air Force Base, Fla... regulations in this section shall be enforced by the Commander, Air Proving Ground Center, Eglin AFB, and such...

  1. Research on Near Roadway and Other Near Source Air Pollution

    EPA Pesticide Factsheets

    Research has shown that living and working near sources of air pollution can lead to higher exposures to air contaminants many of which contribute to adverse health effects including reduced lung function, asthma, cardiovascular disease and premature death

  2. Research on Health and Environmental Effects of Air Quality

    EPA Pesticide Factsheets

    Research has linked regulated air pollutants such as ozone and particulate matter, to lung, heart disease and other health problems. Further investigation is needed to understand the role poor air quality plays on health and disease

  3. VENTILATION RESEARCH: A REVIEW OF RECENT INDOOR AIR QUALITY LITERATURE

    EPA Science Inventory

    The report gives results of a literature review, conducted to survey and summarize recent and ongoing engineering research into building ventilation, air exchange rate, pollutant distribution and dispersion, and other effects of heating, ventilation, and air-conditioning (HVAC) s...

  4. Experimental research on air propellers V

    NASA Technical Reports Server (NTRS)

    Durand, W F; Lesley, E P

    1923-01-01

    In previous reports on experimental research on air propellers, by W. F. Durand and E. P. Lesley, as contained in the National Advisory Committee for Aeronautics reports nos. 14, 30, and 64, the investigations were made progressively and each without reference to results given in preceding reports and covering only information relating to forms perhaps adjacent in geometrical form and proportion. This report is a review of the entire series of results of the preceding reports with a view of examining through graphical and other appropriate means the nature of the history of the characteristics of operation as related to the systematic variations in characteristics of forms, etc., through the series of such characteristics.

  5. The use of neural networks in identifying error sources in satellite-derived tropical SST estimates.

    PubMed

    Lee, Yung-Hsiang; Ho, Chung-Ru; Su, Feng-Chun; Kuo, Nan-Jung; Cheng, Yu-Hsin

    2011-01-01

    An neural network model of data mining is used to identify error sources in satellite-derived tropical sea surface temperature (SST) estimates from thermal infrared sensors onboard the Geostationary Operational Environmental Satellite (GOES). By using the Back Propagation Network (BPN) algorithm, it is found that air temperature, relative humidity, and wind speed variation are the major factors causing the errors of GOES SST products in the tropical Pacific. The accuracy of SST estimates is also improved by the model. The root mean square error (RMSE) for the daily SST estimate is reduced from 0.58 K to 0.38 K and mean absolute percentage error (MAPE) is 1.03%. For the hourly mean SST estimate, its RMSE is also reduced from 0.66 K to 0.44 K and the MAPE is 1.3%.

  6. SST — EDRN Public Portal

    Cancer.gov

    The hormone somatostatin (SST) has active 14 aa and 28 aa forms that are produced by alternate cleavage of the single preproprotein encoded by this gene. Somatostatin is expressed throughout the body and inhibits the release of numerous secondary hormones by binding to high-affinity G-protein-coupled somatostatin receptors. This hormone is an important regulator of the endocrine system through its interactions with pituitary growth hormone, thyroid stimulating hormone, and most hormones of the gastrointestinal tract. Somatostatin also affects rates of neurotransmission in the central nervous system and proliferation of both normal and tumorigenic cells. The promoter of somatostatin, a primary inhibitor of gastrin-stimulated gastric acid secretion, is hypermethylated in 80% of human colon cancers. A synthetic analog of SST, known as octreotide or SMS 201-995, is available under the name Sandostatin (Novartis). It is used for the treatment of a variety of disorders including acromegaly and the symptomatic treatment of carcinoid tumors and vasoactive intestinal peptide tumors.

  7. POLLUTION PREVENTION FOR CLEANER AIR: EPA'S AIR AND ENERGY ENGINEERING RESEARCH LABORATORY

    EPA Science Inventory

    The article discusses the role of EPA's Air and Energy Engineering Research Laboratory (AEERL) in pollution prevention research for cleaner air. For more than 20 years, AEERL has been conducting research to identify control approaches for the pollutants and sources which contribu...

  8. POLLUTION PREVENTION FOR CLEANER AIR: EPA'S AIR AND ENERGY ENGINEERING RESEARCH LABORATORY

    EPA Science Inventory

    The article discusses the role of EPA's Air and Energy Engineering Research Laboratory (AEERL) in pollution prevention research for cleaner air. For more than 20 years, AEERL has been conducting research to identify control approaches for the pollutants and sources which contribu...

  9. The first experiments in SST-1

    NASA Astrophysics Data System (ADS)

    Pradhan, S.; Khan, Z.; Tanna, V. L.; Sharma, A. N.; Doshi, K. J.; Prasad, U.; Masand, H.; Kumar, Aveg; Patel, K. B.; Bhandarkar, M. K.; Dhongde, J. R.; Shukla, B. K.; Mansuri, I. A.; Varadarajulu, A.; Khristi, Y. S.; Biswas, P.; Gupta, C. N.; Sharma, D. K.; Raval, D. C.; Srinivasan, R.; Pandya, S. P.; Atrey, P. K.; Sharma, P. K.; Patel, P. J.; Patel, H. S.; Santra, P.; Parekh, T. J.; Dhanani, K. R.; Paravastu, Y.; Pathan, F. S.; Chauhan, P. K.; Khan, M. S.; Tank, J. K.; Panchal, P. N.; Panchal, R. N.; Patel, R. J.; George, S.; Semwal, P.; Gupta, P.; Mahesuriya, G. I.; Sonara, D. P.; Jayswal, S. P.; Sharma, M.; Patel, J. C.; Varmora, P. P.; Patel, D. J.; Srikanth, G. L. N.; Christian, D. R.; Garg, A.; Bairagi, N.; Babu, G. R.; Panchal, A. G.; Vora, M. M.; Singh, A. K.; Sharma, R.; Raju, D.; Kulkarni, S. V.; Kumar, M.; Manchanda, R.; Joisa, S.; Tahiliani, K.; Pathak, S. K.; Patel, K. M.; Nimavat, H. D.; Shah, P. R.; Chudasma, H. H.; Raval, T. Y.; Sharma, A. L.; Ojha, A.; Parghi, B. R.; Banaudha, M.; Makwana, A. R.; Chowdhuri, M. B.; Ramaiya, N.; kumar, A.; Raval, J. V.; Gupta, S.; Purohit, S.; Kaur, R.; Adhiya, A. N.; Jha, R.; Kumar, S.; Nagora, U. C.; Siju, V.; Thomas, J.; Chaudhari, V. R.; Patel, K. G.; Ambulkar, K. K.; Dalakoti, S.; Virani, C. G.; Parmar, P. R.; Thakur, A. L.; Das, A.; Bora, D.; the SST-1 Team

    2015-10-01

    A steady state superconducting tokamak (SST-1) has been commissioned after the successful experimental and engineering validations of its critical sub-systems. During the ‘engineering validation phase’ of SST-1; the cryostat was demonstrated to be leak-tight in all operational scenarios, 80 K thermal shields were demonstrated to be uniformly cooled without regions of ‘thermal runaway and hot spots’, the superconducting toroidal field magnets were demonstrated to be cooled to their nominal operational conditions and charged up to 1.5 T of the field at the major radius. The engineering validations further demonstrated the assembled SST-1 machine shell to be a graded, stress-strain optimized and distributed thermo-mechanical device, apart from the integrated vacuum vessel being validated to be UHV compatible etc. Subsequently, ‘field error components’ in SST-1 were measured to be acceptable towards plasma discharges. A successful breakdown in SST-1 was obtained in SST-1 in June 2013 assisted with electron cyclotron pre-ionization in the second harmonic mode, thus marking the ‘first plasma’ in SST-1 and the arrival of SST-1 into the league of contemporary steady state devices. Subsequent to the first plasma, successful repeatable plasma start-ups with E ˜ 0.4 V m-1, and plasma current in excess of 70 kA for 400 ms assisted with electron cyclotron heating pre-ionization at a field of 1.5 T have so far been achieved in SST-1. Lengthening the plasma pulse duration with lower hybrid current drive, confinement and transport in SST-1 plasmas and magnetohydrodynamic activities typical to large aspect ratio SST-1 discharges are presently being investigated in SST-1. In parallel, SST-1 has uniquely demonstrated reliable cryo-stable high field operation of superconducting TF magnets in the two-phase cooling mode, operation of vapour-cooled current leads with cold gas instead of liquid helium and an order less dc joint resistance in superconducting magnet winding

  10. Statistical Engineering in Air Traffic Management Research

    NASA Technical Reports Server (NTRS)

    Wilson, Sara R.

    2015-01-01

    NASA is working to develop an integrated set of advanced technologies to enable efficient arrival operations in high-density terminal airspace for the Next Generation Air Transportation System. This integrated arrival solution is being validated and verified in laboratories and transitioned to a field prototype for an operational demonstration at a major U.S. airport. Within NASA, this is a collaborative effort between Ames and Langley Research Centers involving a multi-year iterative experimentation process. Designing and analyzing a series of sequential batch computer simulations and human-in-the-loop experiments across multiple facilities and simulation environments involves a number of statistical challenges. Experiments conducted in separate laboratories typically have different limitations and constraints, and can take different approaches with respect to the fundamental principles of statistical design of experiments. This often makes it difficult to compare results from multiple experiments and incorporate findings into the next experiment in the series. A statistical engineering approach is being employed within this project to support risk-informed decision making and maximize the knowledge gained within the available resources. This presentation describes a statistical engineering case study from NASA, highlights statistical challenges, and discusses areas where existing statistical methodology is adapted and extended.

  11. Immunolocalization of Leishmania (Viannia) braziliensis membrane antigens recognized by mAbs SST-2, SST-3, and SST-4.

    PubMed

    Silveira, T G V; Takahashi, H K; Straus, A H

    2003-11-01

    The immunolocalization of Leishmania (Viannia) braziliensis stage-specific antigens recognized by mAbs was analysed by transmission electron microscopy. The antigen recognized by mAb SST-2 was present at the surface of promastigotes, including the flagellum and flagellar pocket. The reactivity of SST-2 with isolates of different serodemes showed a pronounced microheterogeneity in terms of the number of reactive bands within the low molecular weight range from 24 to 33 kDa. The 180 kDa glycoprotein recognized by mAb SST-3 was present only in the flagellar membrane. SST-3 also recognized multiple discrete bands from 160 to 200 kDa, as observed in several serodemes. In contrast, mAb SST-4, which recognizes a 98 kDa antigen, showed weak labelling on the promastigote surface by transmission electron microscopy and indirect immunofluorescence. Based on Western blotting, indirect immunofluorescence, and solid-phase radioimmunoassay, the antigens recognized by mAbs SST-2, SST-3 and SST-4 were present in all L. (V.) braziliensis analysed, from 7 different serodemes.

  12. AIR TOXICS MODELING RESEARCH PROGRAM: AN OVERVIEW

    EPA Science Inventory

    This product is a Microsoft Powerpoint slide presentation which was given at the joint EPA Region 3 - Mid-Atlantic Regional Air Management Association (MARAMA) Air Toxic Summit in Philadelphia, Pennsylvania held from October 18, 2005 through October 20, 2005. The slide presentat...

  13. AIR TOXICS MODELING RESEARCH PROGRAM: AN OVERVIEW

    EPA Science Inventory

    This product is a Microsoft Powerpoint slide presentation which was given at the joint EPA Region 3 - Mid-Atlantic Regional Air Management Association (MARAMA) Air Toxic Summit in Philadelphia, Pennsylvania held from October 18, 2005 through October 20, 2005. The slide presentat...

  14. Air Force Research Laboratory Support for Sustainment

    DTIC Science & Technology

    2011-08-18

    Reduce or eliminate chromium, cadmium, nickel , hazardous air pollutants (HAPS), and volatile organic compounds (VOCs) from coatings and related...hazardous waste Less toxic exposure Less hazardous air emissions Reduced cost Improved performance Hazardous Cr and Cd Replacements Laser Paint...Pb) Aircraft electronics Significant Cadmium (Cd) Circuit breakers, relays, connectors, wire Significant Hexavalent Chrome Anti-corrosion primer

  15. Results of the air emission research study

    USDA-ARS?s Scientific Manuscript database

    Air quality was monitored in beef mono-slope barns. The objectives of the study were 1) to gather baseline data for the levels of gas emissions and particulate matter from beef mono-slope facilities, 2) evaluate the effect of two different manure handling systems on air quality, and 3) provide infor...

  16. LRC-QueSST-14x22-video-file

    NASA Image and Video Library

    2017-09-19

    Researchers at NASA's Langley Research Center in Hampton, Virginia, installed a 15-percent scale model of the Quiet Supersonic Technology (QueSST) preliminary design of a Low-Boom Flight Demonstration (LBFD) aircraft in the 14- by- 22-Foot Subsonic Tunnel. Data from six weeks of wind tunnel tests will characterize the design's low-speed aerodynamic performance. The testing will build on work done earlier this year at NASA's Glenn Research Center in Cleveland, Ohio.

  17. Research review: Indoor air quality control techniques

    SciTech Connect

    Fisk, W.J.

    1986-10-01

    Techniques for controlling the concentration of radon, formaldehyde, and combustion products in the indoor air are reviewed. The most effective techniques, which are generally based on limiting or reducing indoor pollutant source strengths, can decrease indoor pollutant concentrations by a factor of 3 to 10. Unless the initial ventilation rate is unusually low, it is difficult to reduce indoor pollutant concentrations more than approximately 50% by increasing the ventilation rate of an entire building. However, the efficiency of indoor pollutant control by ventilation can be enhanced through the use of local exhaust ventilation near concentrated sources of pollutants, by minimizing short circuiting of air from supply to exhaust when pollutant sources are dispersed and, in some situations, by promoting a displacement flow of air and pollutants toward the exhaust. Active air cleaning is also examined briefly. Filtration and electrostatic air cleaning for removal of particles from the indoor air are the most practical and effective currently available techniques of air cleaning. 49 refs., 7 figs.

  18. Modeling and Simulation Technologies: Two Articles from Air Force Research

    DTIC Science & Technology

    1996-08-01

    policies; Learning ; Education ; Training research; Training curriculum; Training methods; Instruction 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...a review of learning , education , and training research; (3) analyses of survey responses and structured interviews with Air Force fighter pilots

  19. Helical Explosive Flux Compression Generator Research at the Air Force Research Laboratory

    DTIC Science & Technology

    1999-06-01

    Air Force Research Laboratory Kirtland AFB...ORGANIZATION NAME(S) AND ADDRESS(ES) Directed Energy Directorate, Air Force Research Laboratory Kirtland AFB, NM 8. PERFORMING ORGANIZATION REPORT...in support of the Air Force Research Laboratory ( AFRL ) explosive pulsed power program. These include circuit codes such as Microcap and

  20. First Operational Results with the SST-1 Superconducting Magnet & its Cryogenics

    NASA Astrophysics Data System (ADS)

    Pradhan, S.; Tanna, V.; Sharma, A.; Khan, Z.; Prasad, U.; Doshi, K.; Khristi, Y.; Parghi, B.; Banoudha, M.; Mahesuria, G.; Patel, R.; Panchal, P.; Panchal, R.; Tank, J.; Sonara, D.; Sharma, D.; Vora, M.; Varadarajulu, A.

    The Steady State Superconducting Tokamak (SST-1) at the Institute for Plasma Research was commissioned in 2013 with the successful experimental validations of its magnets and cryogenic systems. Subsequently, the first plasma in SST-1 has been obtained on June 20, 2013. Since then, the cryo-magnetic systems of SST-1 have been operating reliably, in successive plasma campaigns. Unlike other contemporary cable-in-conduit-conductor (CICC) based superconducting Tokamak magnets, SST-1 CICC in Toroidal Field (TF) winding packs are cooled with two phase helium from a dedicated 1.3 kW helium refrigerator liquefier plant. The TF magnets in SST-1 together with other magnets have been supporting creditable plasma operational scenarios since then, with the TF magnets being charged up to a maximum of 2.0 T on the plasma major radius so far. The vapour cooled current leads of SST-1 are also uniquely operated with cooled helium vapour all along, instead of liquid helium being stored in the lower superconducting sections. The operational experiences with SST-1 TF magnets, PF magnets, and the supporting 5 K and 80 K cryogenic systems contributing towards successful operations of SST-1 plasma experiments are elaborated in this paper.

  1. How do the strength and type of ENSO affect SST predictability in coupled models

    PubMed Central

    Sohn, Soo-Jin; Tam, Chi-Yung; Jeong, Hye-In

    2016-01-01

    The effects of amplitude and type of the El Niño-Southern Oscillation (ENSO) on sea surface temperature (SST) predictability on a global scale were investigated, by examining historical climate forecasts for the period 1982–2006 from air-sea coupled seasonal prediction systems. Unlike in previous studies, SST predictability was evaluated in different phases of ENSO and for episodes with various strengths. Our results reveal that the seasonal mean Niño 3.4 index is well predicted in a multi-model ensemble (MME), even for four-month lead predictions. However, coupled models have particularly low skill in predicting the global SST pattern during weak ENSO events. During weak El Niño events, which are also El Niño Modoki in this period, a number of models fail to reproduce the associated tri-pole SST pattern over the tropical Pacific. During weak La Niña periods, SST signals in the MME tend to be less persistent than observations. Therefore, a good ENSO forecast does not guarantee a good SST prediction from a global perspective. The strength and type of ENSO need to be considered when inferring global SST and other climate impacts from model-predicted ENSO information. PMID:27650415

  2. How do the strength and type of ENSO affect SST predictability in coupled models.

    PubMed

    Sohn, Soo-Jin; Tam, Chi-Yung; Jeong, Hye-In

    2016-09-21

    The effects of amplitude and type of the El Niño-Southern Oscillation (ENSO) on sea surface temperature (SST) predictability on a global scale were investigated, by examining historical climate forecasts for the period 1982-2006 from air-sea coupled seasonal prediction systems. Unlike in previous studies, SST predictability was evaluated in different phases of ENSO and for episodes with various strengths. Our results reveal that the seasonal mean Niño 3.4 index is well predicted in a multi-model ensemble (MME), even for four-month lead predictions. However, coupled models have particularly low skill in predicting the global SST pattern during weak ENSO events. During weak El Niño events, which are also El Niño Modoki in this period, a number of models fail to reproduce the associated tri-pole SST pattern over the tropical Pacific. During weak La Niña periods, SST signals in the MME tend to be less persistent than observations. Therefore, a good ENSO forecast does not guarantee a good SST prediction from a global perspective. The strength and type of ENSO need to be considered when inferring global SST and other climate impacts from model-predicted ENSO information.

  3. Air Force Deployment Reintegration Research: Implications for Leadership

    DTIC Science & Technology

    2004-09-27

    Air Force Deployment Reintegration Research: Implications for Leadership Wendy Sullivan-Kwantes Angela R. Febbraro Ann-Renee Blais...TITLE AND SUBTITLE Air Force Deployment Reintegration Research: Implications for Leadership 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 DRDC Toronto TR 2004-149 i Abstract Expanding on previous research on the reintegration

  4. Committee on air pollution effects research: 40 years of UK air pollution.

    PubMed

    Fowler, David; Dise, Nancy; Sheppard, Lucy

    2016-01-01

    The UK Committee on Air Pollution Effects Research (CAPER) was established 40 years ago. This special section was compiled to mark this anniversary. During this time there have been dramatic changes in the composition of the air over the UK. The four papers in this special section of Environmental Pollution represent the current air pollution effects research focus on ozone and nitrogen deposition, two related issues and are proving from a policy perspective to be quite intractable issues. The UK CAPER research community continues to advance the underpinning science and engages closely with the user community in government departments. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  5. Joint University Program for Air Transportation Research, 1985

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1987-01-01

    Air transportation research being carried on at the Massachusetts Institute of Technology, Princeton University, and Ohio University is discussed. Global Positioning System experiments, Loran-C monitoring, inertial navigation, the optimization of aircraft trajectories through severe microbursts, fault tolerant flight control systems, and expert systems for air traffic control are among the topics covered.

  6. Tu-144LL SST Flying Laboratory in Flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Tupolev Tu-144LL supersonic flying laboratory shows off its sleek lines in a low-level pass over the Zhukovsky Air Development Center near Moscow, Russia, on a 1998 research flight. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different engines than were used in production

  7. Tu-144LL SST Flying Laboratory Being Towed Down Taxiway

    NASA Technical Reports Server (NTRS)

    1998-01-01

    With its giant delta wings drooping toward the ground, the Tupolev Tu-144LL is towed down a taxiway at the Zhukovsky Air Development Center near Moscow, Russia, in preparation for a high-speed research flight in 1998. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different engines

  8. Some current challenges in research on air pollution and health.

    PubMed

    Samet, Jonathan M

    2014-01-01

    This commentary addresses some of the diverse questions of current interest with regard to the health effects of air pollution, including exposure-response relationships, toxicity of inhaled particles and risks to health, multipollutant mixtures, traffic-related pollution, accountability research, and issues with susceptibility and vulnerability. It considers the challenges posed to researchers as they attempt to provide useful evidence for policy-makers relevant to these issues. This commentary accompanies papers giving the results from the ESCALA project, a multi-city study in Latin America that has an overall goal of providing policy-relevant results. While progress has been made in improving air quality, driven by epidemiological evidence that air pollution is adversely affecting public health, the research questions have become more subtle and challenging as levels of air pollution dropped. More research is still needed, but also novel methods and approaches to address these new questions.

  9. ORD Clean Air Research Program Review and Response

    EPA Pesticide Factsheets

    The objective of this review was to evaluate the relevance, quality, performance, scientific and managerial leadership, and outcomes of the Program and provide guidance and recommendations as to the progress and directions of the Clean Air Research Program

  10. Tu-144LL SST Flying Laboratory in Flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The delta wing of the Tupolev Tu-144LL supersonic flying laboratory is evident in this view from underneath the aircraft during a 1998 test flight at the Zhukovsky Air Development Center near Moscow, Russia. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different engines than were

  11. Some tunnel-wall effects on transonic flutter. [from Boeing SST model tests

    NASA Technical Reports Server (NTRS)

    Ruhlin, C. L.; Destuynder, R. M.; Gregory, R. A.

    1974-01-01

    Significant effects of wind-tunnel walls were observed on the transonic flutter boundaries of wall-mounted models during two flutter model research studies. In these studies, flutter experiments with cantilevered SST-type wing models were conducted in three different wind tunnels. The experimental results are compared to flutter boundaries calculated for the models in free air. The results indicate that transonic flutter boundaries can be affected by tunnel-wall interference, tunnel resonances, and shock-wave reflections, and that flutter model data accuracy is a function of model/tunnel size and tunnel wall porosity. However, models within the recommended size limits should give accurate results in transonic tunnels with normal ventilation. A flutter trend analysis for a two-dimensional wing-demonstrating tunnel wall and resonance effects on flutter are also presented.

  12. SST-1 Magnet System Refurbishment: An Update

    NASA Astrophysics Data System (ADS)

    Pradhan, Subrata; SST-1 Mission Team

    The Magnet System of the Steady State Superconducting Tokamak (SST-1) has been completely refurbished under the SST-1 Mission. Since Jan 2009, a wide spectrum of refurbishment has been undertaken which, includes developing reliable designs and processes leading to the fabrication of leak tight low DC resistances in SST-1 magnet winding packs, equipping each of the sixteen SST-1 Toroidal Field (TF) magnets with a supercritical helium cooled bubble type thermal shields and testing each of the prepared TF magnets under representative conditions in cold with nominal currents along with manifolds and isolators in near representative conditions. Each of the sixteen SST-1 TF magnets has been tested fully and successfully in a dedicated test stand in nineteen campaigns during June 10, 2010 and was concluded on Jan 24, 2011. These campaigns ensured that all the sixteen TF magnets could be charged to their nominal currents of 10000 A in either two-phase or supercritical cooling conditions with leak-tight inter-double pancake resistances being in the range of 150 pico ohms to 1200 pico ohms. The supercritical helium cooled thermal shields welded in the inner bore of the TF magnets have also performed as per the design specifications. Subsequently, the assemblies of the SST-1 TF magnets and the Poloidal Field (PF) magnets in SST-1 machine shell have begun. The SST-1 TF magnets are being assembled in pairs (known as octants) together with a SST-1 vacuum vessel module, sector of 80 K bubble type thermal shields and a pair of outer-inter-coil-structures. The octant assemblies have been completed. The nine superconducting Poloidal Field (PF) magnets will shortly be assembled being supported from the TF cases. The resistive central solenoid magnets, compensating coils and the newly designed in-vessel radial control coils will be subsequently assembled. The assembled magnets inside the cryostat are expected to be cooled down starting from Jan 2012 when a detailed engineering

  13. Impacts of sea ice / SST changes for the observed climate change -GREENICE project-

    NASA Astrophysics Data System (ADS)

    Ogawa, Fumiaki; Cheung, Ho Nam; Gao, Yongqi; Keenlyside, Noel; Koenigk, Torben; Semenov, Vladimir; Suo, Lingling; Yang, Shuting; Wang, Tao; King, Martin; Gastineau, Guillaume; Gulev, Sergey

    2017-04-01

    Under the recent global warming, melting of arctic sea-ice in recent decades could have contributed to recent climate changes including its long-term trend and extreme weather events. While the climatic response to the sea-ice loss have been studied recently, it is still an open question to what extent the sea-ice change has influenced recent climate change. Other factors, such as for example, SST could also have had an influence. A main objective of GREENICE research project is to show what extent of the observed climate trend as well as observed weather extremes could be explained by the change and variability in sea ice and SST, respectively. In this project, we designed two atmospheric general circulation model experiments: In both experiments observed daily sea ice cover variations are prescribed, while for SST, one experiment uses observed daily variations and the other the observed climatology. The experiment is performed by several different state-of-the-art AGCMs. Our preliminary results show that the observed wintertime temperature trend near the surface is poorly reproduced in our hindcast experiments using observed SIC and SST. The impact of SIC variation seems to be confined near the surface, while SST variation seems a key for temperature trend above. It suggests a necessity to consider the atmospheric poleward energy transport associated with SST variation to understand the observed arctic amplification. Other aspects of SIC/SST impact on the observed circulation change such as NAO shall also be discussed.

  14. Impacts of sea ice / SST changes for the observed climate change -GREENICE project-

    NASA Astrophysics Data System (ADS)

    Cheung, H. N.; Ogawa, F.; Gao, Y.; Keenlyside, N. S.; Koenigk, T.; Semenov, V. A.; Suo, L.; Yang, S.; Wang, T.; King, M. P.; Gastineau, G.; Gulev, S.

    2016-12-01

    Under the recent global warming, melting of arctic sea-ice in recent decades could have contributed to recent climate changes including its long-term trend and extreme weather events. While the climatic response to the sea-ice loss have been studied recently, it is still an open question to what extent the sea-ice change has influenced recent climate change. Other factors, such as for example, SST could also have had an influence. A main objective of GREENICE research project is to show what extent of the observed climate trend as well as observed weather extremes could be explained by the change and variability in sea ice and SST, respectively. In this project, we designed two atmospheric general circulation model experiments: In both experiments observed daily sea ice cover variations are prescribed, while for SST, one experiment uses observed daily variations and the other the observed climatology. The experiment is performed by several different state-of-the-art AGCMs. Our preliminary results show that the observed wintertime temperature trend near the surface is poorly reproduced in our hindcast experiments using observed SIC and SST. The impact of SIC variation seems to be confined near the surface, while SST variation seems a key for temperature trend above. It suggests a necessity to consider the atmospheric poleward energy transport associated with SST variation to understand the observed arctic amplification. Other aspects of SIC/SST impact on the observed circulation change such as NAO shall also be discussed.

  15. Impacts of sea ice / SST changes for the observed climate change -GREENICE project-

    NASA Astrophysics Data System (ADS)

    Ogawa, Fumiaki; Gao, Yongqi; Keenlyside, Noel; Koenigk, Torben; Semenov, Vladimir; Suo, Lingling; Yang, Shuting; Wang, Tao

    2016-04-01

    Under the recent global warming, melting of arctic sea-ice in recent decades could have contributed to recent climate changes including its long-term trend and extreme weather events. While the climatic response to the sea-ice loss have been studied recently, it is still an open question to what extent the sea-ice change has influenced recent climate change. Other factors, such as for example, SST could also have had an influence. A main objective of GREENICE research project is to show what extent of the observed climate trend as well as observed weather extremes could be explained by the change and variability in sea ice and SST, respectively. In this project, we designed two atmospheric general circulation model experiments: In both experiments observed daily sea ice cover variations are prescribed, while for SST, one experiment uses observed daily variations and the other the observed climatology. The experiment is performed by several different state-of-the-art AGCMs. Our preliminary results show that the observed wintertime temperature trend near the surface is poorly reproduced in our hindcast experiments using observed SIC and SST. The impact of SIC variation seems to be confined near the surface, while SST variation seems a key for temperature trend above. It suggests a necessity to consider the atmospheric poleward energy transport associated with SST variation to understand the observed arctic amplification. Other aspects of SIC/SST impact on the observed circulation change such as NAO shall also be discussed.

  16. Air Force Research Laboratory Technology Milestones 2007

    DTIC Science & Technology

    2007-01-01

    Earpiece System, or ACCES®, under a Cooperative Research and Development Agreement with Westone Laboratories, Inc. The innovative technology improves...trained in creating impressions for the custom-molded earpieces . Often this meant contacting researchers at AFRL. With hundreds of sets of this product...the flyers’ ears. By integrating specialized electronics into custom-molded earpieces , ACCES allows wearers to experience clear audio communications

  17. Relative roles of differential SST warming, uniform SST warming and land surface warming in determining the Walker circulation changes under global warming

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Li, Tim

    2017-02-01

    Most of CMIP5 models projected a weakened Walker circulation in tropical Pacific, but what causes such change is still an open question. By conducting idealized numerical simulations separating the effects of the spatially uniform sea surface temperature (SST) warming, extra land surface warming and differential SST warming, we demonstrate that the weakening of the Walker circulation is attributed to the western North Pacific (WNP) monsoon and South America land effects. The effect of the uniform SST warming is through so-called "richest-get-richer" mechanism. In response to a uniform surface warming, the WNP monsoon is enhanced by competing moisture with other large-scale convective branches. The strengthened WNP monsoon further induces surface westerlies in the equatorial western-central Pacific, weakening the Walker circulation. The increase of the greenhouse gases leads to a larger land surface warming than ocean surface. As a result, a greater thermal contrast occurs between American Continent and equatorial Pacific. The so-induced zonal pressure gradient anomaly forces low-level westerly anomalies over the equatorial eastern Pacific and weakens the Walker circulation. The differential SST warming also plays a role in driving low-level westerly anomalies over tropical Pacific. But such an effect involves a positive air-sea feedback that amplifies the weakening of both east-west SST gradient and Pacific trade winds.

  18. Relative roles of differential SST warming, uniform SST warming and land surface warming in determining the Walker circulation changes under global warming

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Li, Tim

    2016-04-01

    Most of CMIP5 models projected a weakened Walker circulation in tropical Pacific, but what causes such change is still an open question. By conducting idealized numerical simulations separating the effects of the spatially uniform sea surface temperature (SST) warming, extra land surface warming and differential SST warming, we demonstrate that the weakening of the Walker circulation is attributed to the western North Pacific (WNP) monsoon and South America land effects. The effect of the uniform SST warming is through so-called "richest-get-richer" mechanism. In response to a uniform surface warming, the WNP monsoon is enhanced by competing moisture with other large-scale convective branches. The strengthened WNP monsoon further induces surface westerlies in the equatorial western-central Pacific, weakening the Walker circulation. The increase of the greenhouse gases leads to a larger land surface warming than ocean surface. As a result, a greater thermal contrast occurs between American Continent and equatorial Pacific. The so-induced zonal pressure gradient anomaly forces low-level westerly anomalies over the equatorial eastern Pacific and weakens the Walker circulation. The differential SST warming also plays a role in driving low-level westerly anomalies over tropical Pacific. But such an effect involves a positive air-sea feedback that amplifies the weakening of both east-west SST gradient and Pacific trade winds.

  19. Theoretical Research Investigation for Air Molecular Calculations.

    DTIC Science & Technology

    1981-04-15

    reported energy at the barrier is -183.160 hartrees, a value already equal to the atomic dissociation limit (-183.159998) with his basiL set. Hopper’s...Michels Stewart Radiance Laboratories I De Angelo Drive Bedford, MA 01730 1 cy ATTN: R. D. Sharma I cy ATTN: J. C. Ulwick Aerodyne Research, Inc. Crosby

  20. Air Force Cambridge Research Laboratories balloon operations

    NASA Technical Reports Server (NTRS)

    Danaher, T. J.

    1974-01-01

    The establishment and functions of the AFCRL balloon operations facility are discussed. The types of research work conducted by the facility are defined. The facilities which support the balloon programs are described. The free balloon and tethered balloon capabilities are analyzed.

  1. Review of Air Force Job Satisfaction Research.

    ERIC Educational Resources Information Center

    Gould, R. Bruce

    A comprehensive plan for job satisfaction research has been developed as an outgrowth of the USAF Occupational Survey Program. The long-range goal of the plan is retention of qualified military personnel. This document reviews the basic steps of the plan and discusses projects and findings to date. Discussion centers on the following: (1) an…

  2. Joint University Program for Air Transportation Research, 1982

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A summary of the research on air transportation is addressed including navigation; guidance, control and display concepts; and hardware, with special emphasis on applications to general aviation aircraft. Completed works and status reports are presented also included are annotated bibliographies of all published research sponsored on these grants since 1972.

  3. Somatostatin receptor activation (sst(1) -sst(5) ) differentially influences human retinal pigment epithelium cell viability.

    PubMed

    Papadaki, Thekla; Tsilimbaris, Miltiadis; Pallikaris, Ioannis; Thermos, Kyriaki

    2010-09-01

    To investigate the differential effects of somatostatin and its receptors (sst(1-5) ) on the viability of cultured human retinal pigment epithelium (hRPE) cells. MTT [3 (4, 5-dimethylthiazol-2yl)-2, 5 diphenyltetrazolium bromide], APO Percentage(TM) and trypan blue assays were performed to assess the mechanisms via which somatostatin (10(-10) -10(-4) m) and selective receptor (sst(1-5) ) ligands (10(-12) -10(-4) m) affect cell viability. The effect of orthovanadate (phosphatase inhibitor, 10(-7) -10(-5) m) on somatostatin's (10(-5) m) actions was examined, and western blot analysis was employed to determine the presence of ssts and phosphotyrosine phosphatase SHP-1 in human RPE cells. Somatostatin and selective ligands for the five somatostatin receptor subtypes (sst(1-5) ) decreased cell viability in a concentration-dependent manner. The observed decrease in cell number was partly because of apoptosis via the activation of sst(1) and sst(5) receptors. Activation of sst(2) , sst(3) and sst(4) receptors led to inhibition of cell growth that did not involve apoptosis, but rather antiproliferative actions. SHP-1 was found in the human RPE cells and sodium orthovanadate reversed somatostatin's actions. This study provides new information regarding the involvement of ssts in human RPE cell viability and suggests that a pathway involving the phosphotyrosine phosphatase may mediate somatostatin's actions. © 2010 The Authors. Journal compilation © 2010 Acta Ophthalmol.

  4. Breakthrough Air Force Capabilities Spawned By Basic Research

    DTIC Science & Technology

    2007-04-01

    techniques to identify individuals and groups that pose potential threats to U.S. interests and how they might respond across a spectrum of actions ...modern United States Air Force. A continued robust investment in basic research will lead to capabilities that have the potential to reshape Air Force... actions and respond with synchronized management of battlespace effects. FLTC 2: Unprecedented Proactive Surveillance and Reconnaissance (S&R

  5. Air Force Office of Scientific Research Overview

    DTIC Science & Technology

    2005-12-06

    compounds • Biomimetics: Examining morphology and physiology associated with infrared detection in pit vipers and pythons • Potential room-temperature IR...Nanoscience Initiatives: Taiwan & Korea – Leveraging Asia’s $1 Billion Nano-science Investment – Research Areas Include: Quantum Dots, Polymer ...Sciences • All-Nitrogen Propellants • Theoretical Chemistry • Polymer Chemistry • Biomimetic Sensors • Chronobiology and Neural Adaptation • Information

  6. United States Air Force Summer Research Program -- 1993. Volume 13. Phillips Laboratory

    DTIC Science & Technology

    1993-12-01

    Research Kirtland Air Force Base, Albuquerque, NM August 1993 14-1 My Summer Apprenticeship At Kirtland Air Force Base, Phillips Laboratory Andrea Garcia...AFOSR Summer Research Program Phillips Laboratory Sponsored By: Air Force Office of Scientific Research Kirtland Air Force Base, Albuquerque, NM... Phillips Laboratory Sponsored by: Air

  7. Guidelines for interpreting retinal photographs and coding findings in the Submacular Surgery Trials (SST): SST report no. 8.

    PubMed

    Solomon, Sharon D; Bressler, Susan B; Hawkins, Barbara S; Marsh, Marta J; Bressler, Neil M

    2005-01-01

    To describe the guidelines followed by the Submacular Surgery Trials (SST) Research Group in the interpretation of color fundus photographs and fluorescein angiograms of subfoveal choroidal neovascular lesions evaluated in the SST and to assist ophthalmologists in applying the results of the SST. Stereoscopic color fundus photographs and fluorescein angiograms of the study eye and nonstudy eye of 1,015 patients with subfoveal choroidal neovascular lesions secondary to age-related macular degeneration, ocular histoplasmosis syndrome, or idiopathic choroidal neovascularization (CNV) were obtained and graded by certified SST fundus photograph readers at the baseline examination in three randomized clinical trials comparing surgery with observation. Adherence to the inclusion and exclusion criteria and ocular features that might affect visual outcome were documented. Stereoscopic color fundus photography and fluorescein angiography were repeated 1 month after randomization for patients assigned to surgery to provide documentation that surgery was performed and to assess compliance with the surgery protocol. Photographs and fluorescein angiograms of both the study eye and the fellow eye in all patients then were obtained 3 months, 6 months, and 12 months after randomization and then annually up to 48 months. The kappa statistic was used to evaluate interobserver reliability of photograph gradings. Lesion components at baseline included classic CNV, occult CNV, and features contiguous to CNV, including blood, fibrous tissue, hypofluorescence not corresponding to blood, serous detachment of the retinal pigment epithelium, and prior areas of laser photocoagulation. At follow-up, fluorescein leakage from CNV was assessed peripheral to or within the area of the retinal pigment epithelium abnormality after surgery. The lesion at follow-up could include any of the features identified at baseline as well as retinal pigment epithelium abnormalities, such as mottling of the

  8. The effect of selective sst1, sst2, sst5 somatostatin receptors agonists, a somatostatin/dopamine (SST/DA) chimera and bromocriptine on the "clinically non-functioning" pituitary adenomas in vitro.

    PubMed

    Gruszka, A; Kunert-Radek, J; Radek, A; Pisarek, H; Taylor, J; Dong, J Z; Culler, M D; Pawlikowski, M

    2006-01-11

    The aim of the work was to investigate the effects of somatostatin analogs acting selectively on sst1 (BIM-23926), sst2 (BIM-23120) and sst5 (BIM-23206) receptor subtypes on the viability of "clinically non-functioning" pituitary adenomas in vitro. The effects of native SST (SST-14), a SST/DA chimera (BIM-23A387) and a D(2)-dopamine receptor agonist bromocriptine (BC) were also examined. The study was performed on 10 surgically removed pituitary macroadenomas, diagnosed before surgery as "non-functioning". A part of each tumor was mechanically dispersed and digested with collagenase to isolate the tumoral cells. Another part of each tumor was fixed, embedded in paraffin and immunostained to reveal the pituitary hormones and SST receptor subtypes (sst1, sst2A, sst2B, sst3, sst4, sst5). The tumoral cell suspensions were incubated for 24 h with the substances mentioned above. The quantity of viable cells was estimated using the EZ4U system. The results were compared with the immunohistochemical evaluation of the hormonal profile of adenoma and the sst receptor subtype immunoreactivities present. The findings indicate that selective sst1, sst2 and sst5 receptors agonists, SST/DA chimera and D(2)-dopamine receptor agonist bromocriptine affect the viability of some, but not all, "clinically non-functioning" pituitary adenomas in vitro. The most effective was bromocriptine. The investigated somatostatin analogs including SST/DA chimera exerted roughly similar inhibitory effects. Further studies are needed to fully evaluate the potential usefulness of these compounds in the pharmacological treatment of "non-functioning" pituitary tumors.

  9. Is the air pollution health research community prepared to support a multipollutant air quality management framework?

    PubMed

    Mauderly, Joe L; Burnett, Richard T; Castillejos, Margarita; Ozkaynak, Halûk; Samet, Jonathan M; Stieb, David M; Vedal, Sverre; Wyzga, Ronald E

    2010-06-01

    Ambient air pollution is always encountered as a complex mixture, but past regulatory and research strategies largely focused on single pollutants, pollutant classes, and sources one-at-a-time. There is a trend toward managing air quality in a progressively "multipollutant" manner, with the idealized goal of controlling as many air contaminants as possible in an integrated manner to achieve the greatest total reduction of adverse health and environmental impacts. This commentary considers the current ability of the environmental air pollution exposure and health research communities to provide evidence to inform the development of multipollutant air quality management strategies and assess their effectiveness. The commentary is not a literature review, but a summary of key issues and information gaps, strategies for filling the gaps, and realistic expectations for progress that could be made during the next decade. The greatest need is for researchers and sponsors to address air quality health impacts from a truly multipollutant perspective, and the most limiting current information gap is knowledge of personal exposures of different subpopulations, considering activities and microenvironments. Emphasis is needed on clarifying the roles of a broader range of pollutants and their combinations in a more forward-looking manner; that is not driven by current regulatory structures. Although advances in research tools and outcome data will enhance progress, the greater need is to direct existing capabilities toward strategies aimed at placing into proper context the contributions of multiple pollutants and their combinations to the health burdens, and the relative contributions of pollutants and other factors influencing the same outcomes. The authors conclude that the research community has very limited ability to advise multipollutant air quality management and assess its effectiveness at this time, but that considerable progress can be made in a decade, even at

  10. Joint University Program for Air Transportation Research, 1989-1990

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1990-01-01

    Research conducted during the academic year 1989-90 under the NASA/FAA sponsored Joint University Program for Air Transportation research is discussed. Completed works, status reports and annotated bibliographies are presented for research topics, which include navigation, guidance and control theory and practice, aircraft performance, human factors, and expert systems concepts applied to airport operations. An overview of the year's activities for each university is also presented.

  11. Air Force research in human sensory feedback for telepresence

    NASA Technical Reports Server (NTRS)

    Julian, Ronald G.

    1993-01-01

    Telepresence operations require high quality information transfer between the human master and the remotely located slave. Present Air Force research focuses on the human aspects of the information needed to complete the control/feedback loop. Work in three key areas of human sensory feedback for manipulation of objects are described. Specific projects in each key area are outlined, including research tools (hardware), planned research, and test results. Nonmanipulative feedback technologies are mentioned to complete the advanced teleoperation discussions.

  12. Joint University Program for Air Transportation Research, 1986

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1988-01-01

    The research conducted under the NASA/FAA sponsored Joint University Program for Air Transportation Research is summarized. The Joint University Program is a coordinated set of three grants sponsored by NASA and the FAA, one each with the Mass. Inst. of Tech., Ohio Univ., and Princeton Univ. Completed works, status reports, and bibliographies are presented for research topics, which include computer science, guidance and control theory and practice, aircraft performance, flight dynamics, and applied experimental psychology. An overview of activities is presented.

  13. Is a staged SST the answer

    SciTech Connect

    Not Available

    1991-02-01

    Recent studies indicate that a staged supersonic transport concept offers several advantages over conventional SST configurations. A staged SST could be optimized for cruise flight and also would not be subject to the noise and runway-length constraints normally associated with a transport aircraft. The cumulative effect of the various weight saving factors is an appreciably lower launch/takeoff weight. Other advantages include the fact that a landing gear would not be required and the staged SST can be designed to low-speed criteria. These initial studies suggest that launch and recovery operations from another aircraft could be made feasible with the use of a 747 type aircraft as the support vehicle.

  14. Future directions in air quality research: economic issues.

    PubMed

    Adams, Richard M; Horst, Robert L

    2003-06-01

    Our challenge was to address future directions in air quality research that involve economic issues. The paper outlines the role of economics in the evaluation of air pollution impacts on environmental systems and describes existing research. We identify studies that address economic effects in the agricultural sector, in the commercial forest sector, and in unmanaged natural systems. Effects related to ozone exposure are highlighted. The summary of available research is followed by a discussion of research recommendations. Several short-term recommendations are identified that can augment some of the new research being considered by scientists. A more ambitious, long-term research project is outlined for valuing air pollution impacts in unmanaged natural environments. Specifically, the paper describes possible advantages of an 'integrated assessment' framework that more formally brings together the complex relationships that exist in both ecological and economic systems. A final section contains thoughts on the importance of education (i.e., information transfer) in the research process, especially in relation to policy. It is further noted that education should be inclusive of all members of the research team, throughout all stages of the research process.

  15. Air Quality Research and Applications Using AURA OMi Data

    NASA Technical Reports Server (NTRS)

    Bhartia, P.K.; Gleason, J.F.; Torres, O.; Levelt, P.; Liu, X.; Ziemke, J.; Chandra, S.; Krotkov, N.

    2007-01-01

    The Ozone Monitoring Instrument (OMI) on EOS Aura is a new generation of satellite remote sensing instrument designed to measure trace gas and aerosol absorption at the UV and blue wavelengths. These measurements are made globally at urban scale resolution with no inter-orbital gaps that make them potentially very useful for air quality research, such as the determination of the sources and processes that affect global and regional air quality, and to develop applications such as air quality forecast. However, the use of satellite data for such applications is not as straight forward as satellite data have been for stratospheric research. There is a need for close interaction between the satellite product developers, in-situ measurement programs, and the air quality research community to overcome some of the inherent difficulties in interpreting data from satellite-based remote sensing instruments. In this talk we will discuss the challenges and opportunities in using OMI products for air quality research and applications. A key conclusion of this work is that to realize the full potential of OMI measurements it will be necessary to combine OMI data with data from instruments such as MLS, MODIS, AIRS, and CALIPSO that are currently flying in the "A-train" satellite constellation. In addition similar data taken by satellites crossing the earth at different local times than the A-train (e.g., the recently MetOp satellite) would need to be processed in a consistent manner to study diurnal variability, and to capture the effects on air quality of rapidly changing events such as wild fires.

  16. Air Quality Research and Applications Using AURA OMi Data

    NASA Technical Reports Server (NTRS)

    Bhartia, P.K.; Gleason, J.F.; Torres, O.; Levelt, P.; Liu, X.; Ziemke, J.; Chandra, S.; Krotkov, N.

    2007-01-01

    The Ozone Monitoring Instrument (OMI) on EOS Aura is a new generation of satellite remote sensing instrument designed to measure trace gas and aerosol absorption at the UV and blue wavelengths. These measurements are made globally at urban scale resolution with no inter-orbital gaps that make them potentially very useful for air quality research, such as the determination of the sources and processes that affect global and regional air quality, and to develop applications such as air quality forecast. However, the use of satellite data for such applications is not as straight forward as satellite data have been for stratospheric research. There is a need for close interaction between the satellite product developers, in-situ measurement programs, and the air quality research community to overcome some of the inherent difficulties in interpreting data from satellite-based remote sensing instruments. In this talk we will discuss the challenges and opportunities in using OMI products for air quality research and applications. A key conclusion of this work is that to realize the full potential of OMI measurements it will be necessary to combine OMI data with data from instruments such as MLS, MODIS, AIRS, and CALIPSO that are currently flying in the "A-train" satellite constellation. In addition similar data taken by satellites crossing the earth at different local times than the A-train (e.g., the recently MetOp satellite) would need to be processed in a consistent manner to study diurnal variability, and to capture the effects on air quality of rapidly changing events such as wild fires.

  17. Impact of SST resolution on cyclone activity over the Kuroshio

    NASA Astrophysics Data System (ADS)

    Iizuka, S.; Kawamura, R.

    2012-12-01

    The impact of high resolution sea surface temperature (SST) data on the winter time cyclone activity around Japan is investigated using a WRF model with a horizontal resolution of 20 km. A fine scale SST and a smoothed one of that SST are used as the lower boundary condition in the experiments. Generally, a fine scale SST is warmer in the south of the Polar Front over the Japan Sea, the Kuroshio/Oyashio extension, and the coastal regions around Japan comparing with the smoothed SST because the former resolves the small scale features in the SST related to ocean currents. In comparison, the smoothed SST weakened the simulated cyclones passing over the Kuroshio near the Ryukyu Islands. This may be due to the weaker surface baroclinicity associated with the smoothed SST. The similar features are found around the Polar Front over the Japan Sea. The results imply a potential impact of SST gradients on cyclone activity.

  18. Observed subseasonal variability of heat flux and the SST response of the tropical Indian Ocean

    NASA Astrophysics Data System (ADS)

    Raj Parampil, Sindu; Bharathraj, G. N.; Harrison, Matthew; Sengupta, Debasis

    2016-10-01

    We develop an experimental daily surface heat flux data set based on satellite observations to study subseasonal variability (periods shorter than 90 days) in the tropical Indian Ocean. We use incoming shortwave and longwave radiation from the International Satellite Cloud Climatology Project, and sea surface temperature (SST) from microwave sensors, to estimate net radiative flux. Latent and sensible heat fluxes are estimated from scatterometer winds and near-surface air temperature and specific humidity from Atmospheric Infrared Sounder (AIRS) observations calibrated to buoy data. Seasonal biases in net heat flux are generally within 10 W m-2 of estimates from moorings, and the phases and amplitudes of subseasonal variability of heat fluxes are realistic. We find that the contribution of subseasonal changes in air-sea humidity gradients to latent heat flux equals or exceeds the contribution of subseasonal changes in wind speed in all seasons. SST responds coherently to subseasonal oscillations of net heat flux associated with active and suppressed phases of atmospheric convection in the summer hemisphere. Thus, subseasonal SST changes are mainly forced by heat flux in the northeast Indian Ocean in northern summer, and in the 15°S-5°N latitude belt in southern summer. In the winter hemisphere, subseasonal SST changes are not a one-dimensional response to heat flux, implying that they are mainly due to oceanic advection, entrainment, or vertical mixing. The coherent evolution of subseasonal SST variability and surface heat flux suggests active coupling between SST and large-scale, organized tropical convection in the summer season.

  19. The series of siemens SST-200 to SST-900 steam turbines in Russia

    NASA Astrophysics Data System (ADS)

    Kasilov, V. F.

    2015-04-01

    The chronology of cooperation between the transnational German concern Siemens and Russia is given. The designs of the SST-200-SST-900 series of industrial steam turbines for electrical capacities ranging from 10 to 180 MW that were installed at thermal power plants and industrial facilities of Russia in the period 2004-2014 are reviewed. The design features of the SST-600 steam turbine used as part of the PGU-200 combined-cycle plant installed at the Southwest cogeneration station are considered.

  20. Somatostatin increases rat locomotor activity by activating sst(2) and sst (4) receptors in the striatum and via glutamatergic involvement.

    PubMed

    Santis, Stratos; Kastellakis, Andreas; Kotzamani, Dimitra; Pitarokoili, Kalliopi; Kokona, Despoina; Thermos, Kyriaki

    2009-02-01

    The involvement of striatal somatostatin receptors (sst(1), sst(2) and sst(4)) in locomotor activity was investigated. Male Sprague-Dawley rats, 280-350 g, received in the striatum bilateral infusions of saline, somatostatin, and selective sst(1), sst(2), and sst(4) ligands. Spontaneous locomotor activity was recorded for 60 min. The involvement of excitatory amino acid receptors (AMPA and NMDA) on somatostatin's actions was also examined. Western blot analysis was employed for the identification of somatostatin receptors in striatal membranes. Somatostatin, sst(2) and sst(4), but not sst(1), selective ligands increased rat locomotor activity in a dose-dependent manner. Blockade of AMPA and NMDA receptors reversed somatostatin's actions. In conclusion, striatal somatostatin receptor activation differentially influence rat locomotor activity, while glutamatergic actions underlie the behavioral actions of somatostatin.

  1. Statistical Significance Testing Should Be Discontinued in Mathematics Education Research.

    ERIC Educational Resources Information Center

    Menon, Rama

    1993-01-01

    Discusses five common myths about statistical significance testing (SST), the possible erroneous and harmful contributions of SST to educational research, and suggested alternatives to SST for mathematics education research. (Contains 61 references.) (MKR)

  2. Status Report [Air Pollution Research Advisory Committee of the Coordinating Research Council].

    ERIC Educational Resources Information Center

    Coordinating Research Council, New York, NY. Air Pollution Research Advisory Committee.

    Research projects sponsored by the Coordinating Research Council, Air Pollution Research Advisory Committee, and dealing with vehicle emissions and their wide ranging effects on the environment are compiled in this status report. Spanning the range of problems associated with reducing emissions, they are divided into three main areas of research:…

  3. Joint University Program for Air Transportation Research, 1991-1992

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1993-01-01

    This report summarizes the research conducted during the academic year 1991-1992 under the FAA/NASA sponsored Joint University Program for Air Transportation Research. The year end review was held at Ohio University, Athens, Ohio, June 18-19, 1992. The Joint University Program is a coordinated set of three grants sponsored by the Federal Aviation Administration and NASA Langley Research Center, one each with the Massachusetts Institute of Technology (NGL-22-009-640), Ohio University (NGR-36-009-017), and Princeton University (NGL-31-001-252). Completed works, status reports, and annotated bibliographies are presented for research topics, which include navigation, guidance and control theory and practice, intelligent flight control, flight dynamics, human factors, and air traffic control processes. An overview of the year's activities for each university is also presented.

  4. Air Force Office of Scientific Research. AFOSR Technical Report Summaries

    DTIC Science & Technology

    1993-06-01

    The Air Force Office of Scientific Research Technical Report Summaries is published quarterly (March, June, September, and December). It contains a...brief summary of each technical report received in the Technical Information Division and submitted to the Defense Technical Information Center (DTIC

  5. AFOSR (Air Force Office of Scientific Research) Technical Report Summaries.

    DTIC Science & Technology

    1985-09-01

    The Air Frce Office of Scientific Research Technical Report Summaries are published quarterly as of March, June, September, and December of each...calender of each calender year. They consist of a brief summary of each AFOSR technical report received in the Technical Information Division and

  6. AFOSR (Air Force Office of Scientific Research) Technical Report Summaries.

    DTIC Science & Technology

    1985-12-01

    The Air Force Office of Scientific Research Technical Report Summaries are published quarterly as of March, June, September, and December of each...calendar year. They consist of a brief summary of each AFOSR technical report received in the Technical Information Division and submitted to the Defense

  7. NAS Report Reveals Dangers From SST

    ERIC Educational Resources Information Center

    Fowler, Jo Ann V.

    1973-01-01

    Reported are some harmful effects of supersonic travel on humans and other living organisms. Slight decreases in ozone concentration as a result of emissions from the SST aircrafts reduce absorption of ultraviolet radiation. Effects of this may include skin cancer, distort balance of activity in cells and have a deleterious effect on insects and…

  8. NAS Report Reveals Dangers From SST

    ERIC Educational Resources Information Center

    Fowler, Jo Ann V.

    1973-01-01

    Reported are some harmful effects of supersonic travel on humans and other living organisms. Slight decreases in ozone concentration as a result of emissions from the SST aircrafts reduce absorption of ultraviolet radiation. Effects of this may include skin cancer, distort balance of activity in cells and have a deleterious effect on insects and…

  9. Joint University Program for Air Transportation Research, 1988-1989

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1990-01-01

    The research conducted during 1988 to 1989 under the NASA/FAA-sponsored Joint University Program for Air Transportation Research is summarized. The Joint University Program is a coordinated set of three grants sponsored by NASA Langley Research Center and the Federal Aviation Administration, one each with the Massachusetts Institute of Technology, Ohio University, and Princeton University. Completed works, status reports, and annotated bibliographies are presented for research topics, which include computer science, guidance and control theory and practice, aircraft performance, flight dynamics, and applied experimental psychology. An overview of the year's activities for each university is also presented.

  10. Joint University Program for Air Transportation Research, 1983

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1987-01-01

    The research conducted during 1983 under the NASA/FAA sponsored Joint University Program for Air Transportation Research is summarized. The material was presented at a conference held at the Federal Aviation Administration Technical Center, Altantic City, New Jersey, December 16, 1983. The Joint University Program is a coordinated set of three grants sponsored by NASA Langley Research Center and the Federal Aviation Administration, one each with the Massachusetts Institute of Technology, Ohio University, and Princeton University. Completed works, status reports, and bibliographies are presented for research topics, which include navigation, guidance, control, and display concepts. An overview of the year's activities for each of the universities is also presented.

  11. Joint University Program for Air Transportation Research, 1984

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1987-01-01

    The research conducted during 1984 under the NASA/FAA sponsored Joint University Program for Air Transportation Research is summarized. The Joint University Program is a coordinated set of three grants sponsored by NASA Langley Research Center and the Federal Aviation Administration, one each with the Massachusetts Institute of Technology, Ohio University, and Princeton University. Completed works, status reports, and bibliographies are presented for research topics, which include navigation, guidance, control and display concepts. An overview of the year's activities for each of the schools is also presented.

  12. Air Force Research Laboratory’s 2006 Technology Milestones

    DTIC Science & Technology

    2006-01-01

    from the plate’s leading edge through the trailing edge) from positive to neutral and then negative. They used instruments that measured skin friction...Patterson Air Force Base (WPAFB), Ohio, allows researchers to produce custom thin-film sensors suited to perform different types of measurements ...Scientists will test these sensors in a fully rotating, transient HPT rig test in AFRL’s Turbine Research Facility (WPAFB). Traditional measurement

  13. Air Force Office of Scientific Research, Air Force Systems Command Technical Report Summaries. First Quarter 1986.

    DTIC Science & Technology

    1986-03-01

    The AFOSR Technical Report Summaries are published quarterly by the Air Force Office of Scientific Research (AFOSR) of each calendar year. They...consist of a brief summary of each AFOSR technical report received in the Technical Information Division and submitted to the Defense Technical Information Center for that quarter.

  14. Remote sensing of SST in the coastal ocean and inland seas

    NASA Astrophysics Data System (ADS)

    Kostianoy, Andrey

    Sea Surface Temperature (SST) is the main oceanographic parameter widely used in oceanogra-phy that can be easily obtained from satellite measurements. Oceanic infrared remote sensing, based on the measurement of the thermal radiance emitted by the ocean, allows retrieving the SST corresponding to the temperature of the uppermost thin layer of the ocean. Theoretically the infrared signal only comes from the upper few microns "skin layer", therefore the thermal signatures cannot represent the dynamics of the mixed layer. But wind mixing during the daytime and nighttime convection mix the upper layer, so that SST usually is representative of that of the mixed layer. This is why nighttime passes of satellites are preferred for SST analysis. Since 1978 the Advanced Very High Resolution Radiometer (AVHRR), onboard the meteorolog-ical satellites of the NOAA series are widely used to derive SST maps. The temporal coverage is ensured by two-three NOAA satellites which provide 4-6 images/day over the globe with a swath of about 2800 km, the spatial resolution by a pixel of about 1.1 km, and thermal resolu-tion of about 0.1 deg. C. The typical data processing includes the retrieval of the SST from the combination of NN 3, 4, and 5 infrared channels of AVHRR, the geographical correction and localisation, with a generation of cloud and land masks. SST data can be then composed into daily to monthly (as well as season to yearly) maps/products. Moderate Resolution Imaging Spectroradiometer (MODIS)-Terra (since 2000) and -Aqua (since 2002), among the others, are the most known satellite instruments which increase the flow of the remote sensing SST data. In the regions with almost permanent cloudy conditions passive microwave radiometers are of vital importance for SST measurements, but they have significantly low spatial (25 km) and thermal (0.8 deg. C) resolution. Today, SST images/data are routinely acquired by satellite receiving stations worldwide including research vessels

  15. The modeled atmospheric and oceanic response to the South China Sea SST anomaly

    NASA Astrophysics Data System (ADS)

    Zhu, Xiande; Wu, Lixin; Zhou, Jun; Gao, Jianjun

    2016-10-01

    The sensitivity of the global atmospheric and oceanic response to sea surface temperature anomaly (SSTA) throughout the South China Sea (SCS) is investigated using the Fast Ocean-Atmosphere Model (FOAM). Forced by a warming SST, the experiment explicitly demonstrates that the responses of surface air temperature (SAT) and SST exhibit positive anomalous center over SCS and negative anomalous center over the Northern Pacific Ocean (NPO). The atmospheric response to the warm SST anomalies is characterized by a barotropical anomaly in middle-latitude, leading to a weak subtropical high in summer and a weak Aleutian low in winter. Accordingly, Indian monsoon and eastern Asian monsoon strengthen in summer but weaken in winter as a result of wind convergence owing to the warm SST. It is worth noting that the abnormal signals propagate poleward and eastward away in the form of Rossby Waves from the forcing region, which induces high pressure anomaly. Owing to action of the wind-driven circulation, an anomalous anti-cyclonic circulation is induced with a primary southward current in the upper ocean. An obvious cooling appears over the North Pacific, which can be explained by anomalous meridional cold advection and mixing as shown in the analysises of heat budget and other factors that affect SST.

  16. SST variability in the East Asian marginal sea: mechanisms for local and remote atmospheric impacts

    NASA Astrophysics Data System (ADS)

    Seo, H.

    2015-12-01

    The Japan/East Sea (JES), a part of East Asian Marginal Seas, is a semi-enclosed sea located upstream of the North Pacific storm track. SST variability in the JES and the ensuing air-sea process are important for local winter atmospheric condition. It is believed that the marginal sea processes also influence the storm track evolution far downstream. Dynamical processes leading to local and remote atmospheric circulation response to leading JES SST anomaly patterns are investigated using a hemispheric WRF atmospheric model with two-way multi-nesting capabilities. The atmospheric circulation in direct contact with anomalous diabatic forcing exhibits a linear baroclinic response with respect to sign of SST anomalies; that is, the northwesterly surface wind is strengthened (weakened) and the local precipitin is enhanced (reduced) over the warm (cold) SSTs. The linearity of the local response confirms the importance of fine-scale SST patterns to the predictability of regional weather and climate conditions. The downstream response, in contrast, is nonlinear, with an enhanced intraseasonal equivalent barotropic ridge emerging in the Gulf of Alaska irrespective of the polarity of JES SST anomalies. This downstream blocking high response is maintained by the positive low-frequency height tendency due to transient eddy vorticity flux convergence associated with altered storm track. The significant remote response in the North Pacific storm track and the blocking suggests that the marginal sea process is an active part of the North Pacific climate variability.

  17. Science and Technology: The Making of the Air Force Research Laboratory

    DTIC Science & Technology

    2000-01-01

    AFRL . . . . . . . . . . . 187 11 Air Force Research Laboratory : Before and After...United States Air Force during my tenure as chief of staff—the crea - tion of the Air Force Research Laboratory ( AFRL ). As the “high technology” service...consolidate four existing laboratories into one Air Force Research Laboratory ( AFRL ) designed to lead to a more efficient and streamlined

  18. Test results on systems developed for the SST-1 tokamak

    NASA Astrophysics Data System (ADS)

    Bora, D.; SST-1 Team

    2003-12-01

    The steady state superconducting tokamak (SST-1) is a large aspect ratio tokamak, configured to run double null diverted plasmas with significant elongation (kgr) and triangularity (dgr). Superconducting (SC) magnets are deployed for both the toroidal and poloidal field coils in SST-1. A NbTi based cable-in-conduit conductor (CICC) has been fabricated by M/S Hitachi Cables Ltd., Japan under specification and supervision of the Institute for Plasma Research (IPR). The suitability of this CICC for the SST-1 magnets has been validated through test carried out on a model coil wound from this CICC. Toroidal and poloidal SC magnets have been fabricated and factory acceptance tests have been performed. SC magnets require liquid helium (LHe) cooled current leads, electrical isolators at LHe temperature, superconducting bus bars and LHe transfer lines. Full scale prototypes of these have been developed and tested successfully. SC magnets will be cooled to 4.5 K by forced flow of supercritical helium through the CICC. A 1 kW grade liquefier/refrigerator has been installed and is in final stages of commissioning at IPR. SST-1 deploys a fully welded ultra high vacuum vessel, made up of 16 vessel sectors (VSs) having ports and 16 rings with {\\sf D} -shaped cross-section. To establish the fabrication methodology for this, a fullscale prototype of the vessel with two VSs and three rings has been fabricated and tested successfully. Based on this the fabrication of the VSs and rings is in final stage of fabrication. Liquid nitrogen cooled radiation shield are deployed between the vacuum vessel and SC magnets as well as SC magnets and cryostat, to minimize the radiation losses at the SC magnets. SST-1 will have three different high power radio frequency systems to additionally heat and non-inductively drive plasma current to sustain the plasma in steady state for a duration of up to 1000 s. Ion cyclotron resonance frequency (ICRF) and electron cyclotron resonance frequency (ECRF

  19. Joint University Program for Air Transportation Research, 1987

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1989-01-01

    The research conducted during 1987 under the NASA/FAA sponsored Joint University Program for Air Transportation Research is summarized. The Joint University Program is a coordinated set of 3 grants sponsored by NASA-Langley and the FAA, one each with the MIT, Ohio Univ., and Princeton Univ. Completed works, status reports, and annotated bibliographies are presented for research topics, which include computer science, guidance and control theory and practice, aircraft performance, flight dynamics, and applied experimental psychology. An overview of the year's activities for each university is also presented.

  20. Boreal winter Arctic Oscillation as an indicator of summer SST anomalies over the western tropical Indian Ocean

    NASA Astrophysics Data System (ADS)

    Gong, Dao-Yi; Guo, Dong; Gao, Yongqi; Yang, Jing; Mao, Rui; Qu, Jingxuan; Gao, Miaoni; Li, Sang; Kim, Seong-Joong

    2017-04-01

    The inter-annual relationship between the boreal winter Arctic Oscillation (AO) and summer sea surface temperature (SST) over the western tropical Indian Ocean (TIO) for the period from 1979 to 2015 is investigated. The results show that the January-February-March AO is significantly correlated with the June-July-August SST and SST tendency. When both El Niño/Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) variance are excluded, the winter AO is significantly correlated with the regional mean SST of the western TIO (40°-60°E and 10°S-10°N), r=0.71. The multi-month SST tendency, i.e., the SST difference of June-July-August minus April-May, is correlated with the winter AO at r=0.75. Composite analysis indicates similar warming over the western TIO. Two statistical models are established to predict the subsequent summer's SST and SST tendency. The models use the winter AO, the winter ENSO and the autumn-winter IOD indexes as predictors and explain 65 and 62 % of the variance of the subsequent summer's SST and SST tendency, respectively. Investigation of the regional air-sea fluxes and oceanic dynamics reveals that the net surface heat flux cannot account for the warming, whereas the oceanic Rossby wave plays a predominant role. During positive AO winters, the enhanced Arabian High causes stronger northern winds in the northern Indian Ocean and leads to anomalous cross-equatorial air-flow. The Ekman pumping in association with the anomalous wind stress curl in the central TIO generates a significantly deeper thermocline and above-normal sea surface height at 60°-75°E and 5°-10°S. The winter AO-forced Rossby wave propagates westward and arrives at the western coast in summer, resulting in the significant SST increase. Forced by the observed winter AO-related wind stress anomalies over the Indian Ocean, the ocean model reasonably reproduces the Rossby wave as well as the resulting surface ocean warming over the western TIO in the subsequent summer

  1. Boreal winter Arctic Oscillation as an indicator of summer SST anomalies over the western tropical Indian Ocean

    NASA Astrophysics Data System (ADS)

    Gong, Dao-Yi; Guo, Dong; Gao, Yongqi; Yang, Jing; Mao, Rui; Qu, Jingxuan; Gao, Miaoni; Li, Sang; Kim, Seong-Joong

    2016-06-01

    The inter-annual relationship between the boreal winter Arctic Oscillation (AO) and summer sea surface temperature (SST) over the western tropical Indian Ocean (TIO) for the period from 1979 to 2015 is investigated. The results show that the January-February-March AO is significantly correlated with the June-July-August SST and SST tendency. When both El Niño/Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) variance are excluded, the winter AO is significantly correlated with the regional mean SST of the western TIO (40° -60° E and 10° S-10° N), r=0.71 . The multi-month SST tendency, i.e., the SST difference of June-July-August minus April-May, is correlated with the winter AO at r=0.75 . Composite analysis indicates similar warming over the western TIO. Two statistical models are established to predict the subsequent summer's SST and SST tendency. The models use the winter AO, the winter ENSO and the autumn-winter IOD indexes as predictors and explain 65 and 62 % of the variance of the subsequent summer's SST and SST tendency, respectively. Investigation of the regional air-sea fluxes and oceanic dynamics reveals that the net surface heat flux cannot account for the warming, whereas the oceanic Rossby wave plays a predominant role. During positive AO winters, the enhanced Arabian High causes stronger northern winds in the northern Indian Ocean and leads to anomalous cross-equatorial air-flow. The Ekman pumping in association with the anomalous wind stress curl in the central TIO generates a significantly deeper thermocline and above-normal sea surface height at 60° -75° E and 5° -10° S. The winter AO-forced Rossby wave propagates westward and arrives at the western coast in summer, resulting in the significant SST increase. Forced by the observed winter AO-related wind stress anomalies over the Indian Ocean, the ocean model reasonably reproduces the Rossby wave as well as the resulting surface ocean warming over the western TIO in the

  2. Evaluations of SST Climatologies in the Tropical Pacific Ocean

    DTIC Science & Technology

    2009-02-27

    Pacific SST . , • , .. .. . . r . , .. / ,. . * . K .. . . * ’ * ucts which provide high temporal ...boundaries Casey and Cornillon, 1999]. An observation-based clima - r 1 -ru 1 r.u- • . .r e...along with SSTs from AVHRR satellite retrievals. The NOAA SST product was built from two intermediate climatologies: a 2° SST clima - tology developed

  3. Architectural Design for European SST System

    NASA Astrophysics Data System (ADS)

    Utzmann, Jens; Wagner, Axel; Blanchet, Guillaume; Assemat, Francois; Vial, Sophie; Dehecq, Bernard; Fernandez Sanchez, Jaime; Garcia Espinosa, Jose Ramon; Agueda Mate, Alberto; Bartsch, Guido; Schildknecht, Thomas; Lindman, Niklas; Fletcher, Emmet; Martin, Luis; Moulin, Serge

    2013-08-01

    The paper presents the results of a detailed design, evaluation and trade-off of a potential European Space Surveillance and Tracking (SST) system architecture. The results have been produced in study phase 1 of the on-going "CO-II SSA Architectural Design" project performed by the Astrium consortium as part of ESA's Space Situational Awareness Programme and are the baseline for further detailing and consolidation in study phase 2. The sensor network is comprised of both ground- and space-based assets and aims at being fully compliant with the ESA SST System Requirements. The proposed ground sensors include a surveillance radar, an optical surveillance system and a tracking network (radar and optical). A space-based telescope system provides significant performance and robustness for the surveillance and tracking of beyond-LEO target objects.

  4. DURIP: Fast Oscilloscope and Detectors for Air Laser Research

    DTIC Science & Technology

    2015-01-01

    Approved for public release; distribution is unlimited.       DURIP: Fast Oscilloscope and Detectors for Air Laser Research Office of...low as 10 picoseconds. Fast real-time oscilloscopes and fast detectors were needed for this purpose. 2. Manufacturer of equipment and model number...NEWPORT 2x 1454-50 DET, 18.5PS, detector , VIS- IR, K/FC coupling, multimode 3. Cost of the equipment $245,452.00 4. Quantity Two fast real-time

  5. Air Force Personnel Research Issues: A Manager’s Handbook

    DTIC Science & Technology

    2007-09-01

    Personality In the late 1950’s, a landmark study by researchers at the Air Force Human Resources Laboratory, Dr. Ernest Tupes and Dr. Raymond Christal ...The Tupes and Christal study used peer ratings to assess 35 personality traits that were considered to be representative of the personality...Independent-Minded. 110 In 1993, Dr. Christal developed a computerized Self Description Inventory (SDI) to measure the Five-Factor Model

  6. Laser simulation at the Air Force Research Laboratory

    NASA Astrophysics Data System (ADS)

    Grosek, Jacob; Naderi, Shadi; Oliker, Benjamin; Lane, Ryan; Dajani, Iyad; Madden, Timothy

    2017-01-01

    The physics of high brightness, high-power lasers present a variety of challenges with respect to simulation. The Air Force Research Laboratory is developing high-fidelity models for Yb-doped, Tm-doped, and Raman fiber amplifiers, hollow-core optical fiber gas lasers, and diode pumped alkali lasers. The approach to simulation and the physics specific to each laser technology are described, along with highlights of results, and relevant modeling considerations and limitations.

  7. Radiation measurements and doses at SST altitudes

    NASA Technical Reports Server (NTRS)

    Foelsche, T.

    1972-01-01

    Radiation components and dose equivalents due to galactic and solar cosmic rays in the high atmosphere, especially at SST altitudes, are presented. The dose equivalent rate for the flight personnel flying 500 hours per year in cruise altitudes of 60,000-65,000 feet (18-19.5 km) in high magnetic latitudes is about 0.75-1.0 rem per year averaged over the solar cycle, or about 15-20 percent of the maximum permissible dose rate.

  8. Looking back and looking forwards: Historical and future trends in sea surface temperature (SST) in the Indo-Pacific region from 1982 to 2100

    NASA Astrophysics Data System (ADS)

    Khalil, Idham; Atkinson, Peter M.; Challenor, Peter

    2016-03-01

    The ocean warming trend is a well-known global phenomenon. As early as 2001, and then reiterated in 2007, the Intergovernmental Panel on Climate Change (IPCC) reported that the global average sea surface temperature (SST) will increase by about 0.2 °C per decade. To date, however, only a limited number of studies have been published reporting the spatio-temporal trends in SST in the Indo-Pacific region, one the richest marine ecosystems on Earth. In this research, the monthly 1° spatial resolution NOAA Optimum Interpolation (OI) sea surface temperature (SST) V2 dataset (OISSTv2) derived from measurements made by the Advanced Very High Resolution Radiometer (AVHRR) and in situ measurements, were used to examine the spatio-temporal trends in SST in the region. The multi-model mean SST from the Representative Concentration Pathways (RCP2.6) mitigation scenario of the Coupled Model Intercomparison Project Phase 5 (CMIP5) was also used to forecast future SST from 2020 to 2100, decadally. Three variables from the OISSTv2, namely maximum (MaxSST), mean (MeanSST) and minimum (MinSST) monthly mean SST, were regressed against time measured in months from 1982 to 2010 using linear regression. Results revealed warming trends detected for all three SST variables. In the Coral Triangle a warming trend with a rate of 0.013 °C year-1, 0.017 °C year-1, and 0.019 °C year-1 was detected over 29 years for MaxSST, MeanSST and MinSST, respectively. In the SCS, the warming rate was 0.011 °C year-1, (MaxSST), 0.012 °C year-1 (MeanSST) and 0.015 °C year-1 (MinSST) over 29 years. The CMIP5 RCP2.6 forecast suggested a future warming rate to 2100 of 0.004 °C year-1 for both areas, and for all three SST variables. The warming trends reported in this study provide useful insights for improved marine-related management.

  9. United States Air Force Summer Research Program -- 1993. Volume 8. Phillips Laboratory

    DTIC Science & Technology

    1993-12-01

    Research Program Phillips Laboratory Kirtland Air Force Base Albuquerque. New Mexico Sponsored by...Best Available Copy UNITED STATES AIR FORCE SUMMER RESEARCH PROGRAM -- 1993 SUMMER RESEARCH PROGRAM FINAL REPORTS VOLUME 8 PHILLIPS LABORATORY ...Alabama Box 870344 Tuscaloosa, AL 35487-0344 Final Report for: Graduate Student Research Program Phillips Laboratory , Hanscom AFB Sponsored by: Air

  10. Environmental Assessment for Air Force Research Laboratory Space Vehicles Integrated Experiments Division Office Space at Kirtland Air Force Base, Albuquerque, New Mexico

    DTIC Science & Technology

    2005-06-01

    AIR FORCE RESEARCH LABORATORY SPACE VEHICLES INTEGRATED EXPERMENTS DIVISION OFFICE SPACE AT KIRTLAND AIR FORCE ... Kirtland Air Force Base (KAFB). The office building would house the Air Force Research Laboratory Space Vehicles Integrated Experiments Division...ADDRESS(ES) Air Force Research Laboratory ,Space Vehicles Directorate,3550 Aberdeen Ave. SE, Kirtland

  11. Michigan/Air Force Research Laboratory (AFRL) Collaborative Center in Control Science (MACCCS)

    DTIC Science & Technology

    2016-09-01

    AFRL-RQ-WP-TR-2016-0139 MICHIGAN/AIR FORCE RESEARCH LABORATORY (AFRL) COLLABORATIVE CENTER IN CONTROL SCIENCE (MACCCS) Anouck Girard...inside pages AIR FORCE RESEARCH LABORATORY AEROSPACE SYSTEMS DIRECTORATE WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7541 AIR FORCE...Final 18 April 2007 – 30 September 2016 4. TITLE AND SUBTITLE MICHIGAN/AIR FORCE RESEARCH LABORATORY (AFRL) COLLABORATIVE CENTER IN CONTROL SCIENCE

  12. Preclinical antitumor activity of SST0116CL1: a novel heat shock protein 90 inhibitor.

    PubMed

    Vesci, Loredana; Milazzo, Ferdinando Maria; Carollo, Valeria; Pace, Silvia; Giannini, Giuseppe

    2014-10-01

    4-Amino substituted resorcino-isoxazole (SST0116CL1) (property of Sigma-Tau Research Switzerland S.A.) is a potent, second generation, small-molecule heat shock protein 90 inhibitor (Hsp90i). SST0116CL1 binds to the ATP binding pocket of Hsp90, and interferes with Hsp90 chaperone function thus resulting in client protein degradation and tumor growth inhibition. The aim of the study was to assess SST0116CL1 in various solid and haematological tumors. The antitumor properties of SST0116CL1 were assessed using in vitro cell proliferation and client protein degradation assays and in vivo different tumor xenograft models. Pharmacokinetic (PK) data were also generated in tumor-bearing mice to gain an understanding of optimal dosing schedules and regimens. SST0116CL1 was shown to inhibit recombinant Hsp90α and to induce the destabilization of different client proteins, often overexpressed and constitutively activated in different types of hematological or solid human tumors. In preclinical in vivo studies, it was revealed to induce antitumor effects in murine models of leukemia and of gastric and ovarian carcinoma. A modulation of PD biomarkers in terms of downregulation of Hsp90 client proteins in tumor-bearing mice was found. SST0116CL1 is a new clinical candidate for cancer therapy. The antitumor property of SST0116CL1, likely due to direct inhibition of the Hsp90 enzymatic activity, may prove to be a critical attribute as the compound enters phase I clinical trials.

  13. O the Genesis of Anomalous SST and Rainfall Patterns Over the Tropical Atlantic Basin

    NASA Astrophysics Data System (ADS)

    Nobre, Paulo

    Empirical orthogonal functions (EOFs), correlation, and composite analyses are used to investigate the evolution of phenomena associated with sea surface temperature (SST) and rainfall variability over the tropical Atlantic. The most important findings in this research are as follows. 1. The well known droughts over northeastern Brazil (Nordeste) are a local manifestation of a much larger -scale anomalies pattern encompassing the whole equatorial Atlantic and Amazon region. 2. The large-scale dipole-like anomalous rainfall pattern over the equatorial Atlantic and Amazon in March, April, and May (MAM), which is the rainy season for Nordeste region, is a consequence of meridional displacements of the inter-tropical convergence zone (ITCZ). In particular, negative rainfall anomalies to the south of the equator during MAM are related to an early withdrawal of ITCZ towards the warm SST anomalies over the northern tropical Atlantic. Concurrent with the rainfall anomaly dipole, there are large-scale patterns of SST and wind stress over the tropical Atlantic Ocean which also show a prominent dipole-like structure. The dipole patterns of SST and surface wind stress are the most dominant mode of interannual variability. Weaker trade winds are associated with warmer SST; stronger trade winds with cooler SST. 3. The spatial structure of (dipole-like) anomalous SST, rainfall and surface wind stress during MAM are clearly a modulation of the annual cycle for that season. The similarity between the patterns of interannual variability and MAM seasonal anomalies (departure from the annual mean) is quite remarkable. 4. Previous work has suggested the direct influence of the El Nino/Southern Oscillation (ENSO) on the southern Atlantic. This study brings observational evidence that ENSO effect over the northern Atlantic may happen through teleconnection patterns into higher latitudes of the Northern Hemisphere. The teleconnection effects over the northern Atlantic are out of phase

  14. Summer SST anomalies in the Indian Ocean and the seasonal timing of ENSO decay phase

    NASA Astrophysics Data System (ADS)

    Ren, Rongcai; Sun, Shuyue; Yang, Yang; Li, Qian

    2016-09-01

    ENSO affects the tropical Indian Ocean (TIO) SST in winter-spring in ENSO decay years through an ENSO-induced `atmospheric-bridge' and subsequent air-sea coupling processes. The interdecadal delay of El Niño decay phase has been related to a warming change in the summer TIO since 1970s. A physical linkage between the summer SST anomalies over the TIO and the timing of ENSO decay phase is however still unclear. This study uses multi-source data to distinguish `later-decay' from `normal-decay' El Niño/La Niña events, and performs diagnostic analysis of the changes in various thermodynamic and dynamic processes due to later-decay ENSO for quantifying the partial contribution by each of these processes to the summer SST changes over the TIO. The results show that, at both the interannual and interdecadal timescales, the significant warmer and colder SST anomalies in the spring TIO in later-decay El Niño and La Niña years respectively can persist into summer. Most of the ENSO-induced atmospheric-bridge-related processes contribute positively to the TIO SST changes in summer due to later-decay of ENSO, as they do in spring during normal-delay ENSO year. The exceptions are the surface wind-evaporation-mechanism and sensible heat-flux anomalies in summer, which always contribute negatively to the summer SST anomalies over most parts of the TIO. The negative contributions from these two processes in summer exist no matter whether there is a weakening or strengthening surface wind due to later-decay of ENSO events. Generally, the presence of five later-decay El Niño events after the 1970s is mainly responsible for the observed interdecadal summer TIO warming in recent decades.

  15. microRNAs: implications for air pollution research.

    PubMed

    Jardim, Melanie J

    2011-12-01

    The purpose of this review is to provide an update of the current understanding on the role of microRNAs in mediating genetic responses to air pollutants and to contemplate on how these responses ultimately control susceptibility to ambient air pollution. Morbidity and mortality attributable to air pollution continues to be a growing public health concern worldwide. Despite several studies on the health effects of ambient air pollution, underlying molecular mechanisms of susceptibility and disease remain elusive. In the last several years, special attention has been given to the role of epigenetics in mediating, not only genetic and physiological responses to certain environmental insults, but also in regulating underlying susceptibility to environmental stressors. Epigenetic mechanisms control the expression of gene products, both basally and as a response to a perturbation, without affecting the sequence of DNA itself. These mechanisms include structural regulation of the chromatin structure, such as DNA methylation and histone modifications, and post-transcriptional gene regulation, such as microRNA mediated repression of gene expression. microRNAs are small noncoding RNAs that have been quickly established as key regulators of gene expression. As such, miRNAs have been found to control several cellular processes including apoptosis, proliferation and differentiation. More recently, research has emerged suggesting that changes in the expression of some miRNAs may be critical for mediating biological, and ultimately physiological, responses to air pollutants. Although the study of microRNAs, and epigenetics as a whole, has come quite far in the field of cancer, the understanding of how these mechanisms regulate gene-environment interactions to environmental exposures in everyday life is unclear. This article does not necessarily reflect the views and policies of the US EPA.

  16. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  17. Highlights from the Coordinating Research Council’s 2016 Air Quality Research Needs Workshop: Top 11 ResearchNeeds

    EPA Science Inventory

    The Coordinating Research Council (CRC) conducted an Air Quality Research Needs Workshop on February 9-10, 2016 at the Georgia Institute of Technology, in Atlanta, GA. The workshop brought together researchers from academia, government, and industry to brainstorm and prioritize ...

  18. Investigation and validation of MODIS SST in the northern Persian Gulf

    NASA Astrophysics Data System (ADS)

    Ghanea, Mohsen; Moradi, Masoud; Kabiri, Keivan; Mehdinia, Ali

    2016-01-01

    Validation of satellite derived sea surface temperature (SST) is necessary since satellite minus buoy SST (= bias) relies on atmospheric and oceanographic conditions and time periods. This research validates MODIS (Terra and Aqua) satellite daytime SST with buoy SST at the northern Persian Gulf. Sixteen dates during June 2011 to June 2015 were selected for validation. The buoy-satellite matchups were gained within one image pixel (1 km at nadir) and ±6 h in time. For most matchups, time interval was ±3 h. Effects of total column water vapor, aerosol optical depth, wind speed, glint, and satellite zenith angle on bias are then investigated. These parameters are classified based on root mean square (RMS) difference between satellite and buoy SST. Final results represent a near-perfect R2 (>0.989) for both satellites. The bias was 0.07 ± 0.53 °C and -0.06 ± 0.44 °C for MODIS-Aqua and -Terra, respectively.

  19. A Perspective on NASA Ames Air Traffic Management Research

    NASA Technical Reports Server (NTRS)

    Schroeder, Jeffery A.

    2012-01-01

    This paper describes past and present air-traffic-management research at NASA Ames Research Center. The descriptions emerge from the perspective of a technical manager who supervised the majority of this research for the last four years. Past research contributions built a foundation for calculating accurate flight trajectories to enable efficient airspace management in time. That foundation led to two predominant research activities that continue to this day - one in automatically separating aircraft and the other in optimizing traffic flows. Today s national airspace uses many of the applications resulting from research at Ames. These applications include the nationwide deployment of the Traffic Management Advisor, new procedures enabling continuous descent arrivals, cooperation with industry to permit more direct flights to downstream way-points, a surface management system in use by two cargo carriers, and software to evaluate how well flights conform to national traffic management initiatives. The paper concludes with suggestions for prioritized research in the upcoming years. These priorities include: enabling more first-look operational evaluations, improving conflict detection and resolution for climbing or descending aircraft, and focusing additional attention on the underpinning safety critical items such as a reliable datalink.

  20. The Air Force Research Laboratory’s In-Space Propulsion Program

    DTIC Science & Technology

    2015-02-01

    Air Force Research Laboratory (AFMC) AFRL /RQRS 1 Ara...MONITOR’S ACRONYM(S) Air Force Research Laboratory (AFMC) AFRL /RQR 5 Pollux Drive 11. SPONSOR/MONITOR’S REPORT Edwards AFB CA 93524-7048 NUMBER(S) AFRL ...illustrate the rationale behind AFRL’s technology development strategy. INTRODUCTION The Air Force Research Laboratory ( AFRL ) is the technology

  1. Overview of NASA's Next Generation Air Transportation System (NextGen) Research

    NASA Technical Reports Server (NTRS)

    Swenson, Harry N.

    2009-01-01

    This slide presentation is an overview of the research for the Next Generation Air Transportation System (NextGen). Included is a review of the current air transportation system and the challenges of air transportation research. Also included is a review of the current research highlights and significant accomplishments.

  2. Research in Observations of Oceanic Air/Sea Interaction

    NASA Technical Reports Server (NTRS)

    Long, David G.; Arnold, David V.

    1995-01-01

    The primary purpose of this research has been: (1) to develop an innovative research radar scatterometer system capable of directly measuring both the radar backscatter and the small-scale and large-scale ocean wave field simultaneously and (2) deploy this instrument to collect data to support studies of air/sea interaction. The instrument has been successfully completed and deployed. The system deployment lasted for six months during 1995. Results to date suggest that the data is remarkably useful in air/sea interaction studies. While the data analysis is continuing, two journal and fifteen conference papers have been published. Six papers are currently in review with two additional journal papers scheduled for publication. Three Master's theses on this research have been completed. A Ph.D. student is currently finalizing his dissertation which should be completed by the end of the calendar year. We have received additional 'mainstream' funding from the NASA oceans branch to continue data analysis and instrument operations. We are actively pursuing results from the data expect additional publications to follow. This final report briefly describes the instrument system we developed and results to-date from the deployment. Additional detail is contained in the attached papers selected from the bibliography.

  3. United States Air Force Graduate Student Research Program. 1989 Program Management Report

    DTIC Science & Technology

    1989-12-01

    research at Air Force laboratories /centers. Each assignment is in a subject area and at an Air Force facility mutually agreed upon by the...housing difficult to find, c) 10 weeks too short for research period. June 20, 1989 Astronautics Laboratory Edwards Air Force Base, California June 21...1989 HRL: Operations Training Division Williams Air Force Base, Arizona June 22, 1989 Weapons Laboratory Kirtland Air

  4. The United States Air Force Academy Solar Energy Research

    DTIC Science & Technology

    1980-07-01

    LEVYELV *j ENGINEERING AND SERVICES LABORATORY TECHNICAL REPORT *j (ESL TR) 80-34/ THE U.S. AIR FORCE ACADEMY SOLAR ENERGY RESEARCH PROJECT FINAL...2-1 2.3 System Performance 2-5 2.4 Influence of Occupancy on 2-11 Energy Consumption 2.5 Investigations on UF Foam Insulation 2-13 3 EVACUATED TUBE...LOSS OF ENERGY SITUATION-SIMULATION (LESS) 4-1 4.1 Introduction 4-1 4.2 Procedure 4-1 4.3 Results 4-4 4.4 Conclusion 4-5 , FINAL SYSTEM CONFIGURATION

  5. Differences in coastal and oceanic SST warming rates along the Canary upwelling ecosystem from 1982 to 2010

    NASA Astrophysics Data System (ADS)

    Santos, F.; deCastro, M.; Gómez-Gesteira, M.; Álvarez, I.

    2012-09-01

    Sea surface temperature (SST) trends were calculated for the Moroccan part (22-33 °N) of the Canary upwelling ecosystem, which is characterized by permanent upwelling. This analysis was carried out from 1982 to 2010 by means of daily SST data with an approximate spatial resolution of 4×4 km. SST trends are not homogeneous either in latitude or longitude. SST trends were observed to increase southward, which can be explained in terms of air temperature (Tair) trends that follow a similar pattern. In addition, remarkable differences in warming trends were observed between coastal and ocean locations at the same latitude (ΔSSTtrend=SSToceantrend-SSTcoasttrend). ΔSSTtrend is positive at most of latitudes showing that the ocean warming rate is higher than the coastal one. The differences between coast and ocean were observed to depend on upwelling index (UI) intensity. Actually, UI calculated for the months with intense upwelling (May-September) showed a no significant positive trend and was significantly correlated (R=0.44; p<0.05) with ΔSST averaged from August to December. In addition, the extended winter EA (December-March) showed a significant correlation (R=0.57; p<0.01) with ΔSST for the months of highest upwelling intensity when a lag of 1 yr was considered between both variables.

  6. New research on bioregenerative air/water purification systems

    NASA Technical Reports Server (NTRS)

    Johnson, Anne H.; Ellender, R. D.; Watkins, Paul J.

    1991-01-01

    For the past several years, air and water purification systems have been developed and used. This technology is based on the combined activities of plants and microorganisms as they function in a natural environment. More recently, researchers have begun to address the problems associated with indoor air pollution. Various common houseplants are currently being evaluated for their abilities to reduce concentrations of volatile organic compounds (VOCS) such as formaldehyde and benzene. With development of the Space Exploration Initiative, missions will increase in duration, and problems with resupply necessitates implementation of regenerative technology. Aspects of bioregenerative technology have been included in a habitat known as the BioHome. The ultimate goal is to use this technology in conjunction with physicochemical systems for air and water purification within closed systems. This study continued the risk assessment of bioregenerative technology with emphasis on biological hazards. In an effort to evaluate the risk for human infection, analyses were directed at enumeration of fecal streptococci and enteric viruses with the BioHome waste water treatment system.

  7. Intraseasonal Variability of SST and Precipitation in the Arabian Sea during Indian Summer Monsoon: Impact of Ocean Mixed Layer Depth

    NASA Astrophysics Data System (ADS)

    Li, Y.; Han, W.; Wang, W.; Ravichandran, M.

    2016-12-01

    This study investigates sea surface temperature (SST) and precipitation variations in the eastern Arabian Sea (EAS) induced by the northward-propagating Indian summer monsoon (ISM) intraseasonal oscillations (MISOs), through analyzing satellite observations and the climate forecast system reanalysis (CFSR) and performing ocean general circulation model (OGCM) experiments. MISOs in the EAS achieve the largest intensity in the developing stage (May-June) of the ISM. The MISOs induce intraseasonal SST variability primarily through surface heat flux forcing, contributed by both shortwave radiation and turbulent heat flux, and secondarily through mixed layer entrainment. The shallow MLD (< 40 m) in the developing stage and decaying stage (September-October) of the ISM significantly amplifies the heat flux forcing effect on SST and causes large intraseasonal SST variability. Meanwhile, the high SST (> 29 °C) in the developing stage leads to enhanced response of MISO convection to SST anomaly. It means that the ocean state of the EAS region during the developing stage favors active two-way air-sea interaction and the formation of the strong first-pulse MISO event. These results provide compelling evidence for the vital role played by the ocean in the MISO mechanisms and have implications for understanding and forecasting the ISM onset. Compared to satellite observation, MISOs in CFSR data have weaker SST variability by 50% and biased SST-precipitation relation. Reducing these biases in CFSR which provides initial conditions of the National Center for Environmental Prediction (NCEP) climate forecast system version 2 (CFSv2) may help improve the ISM rainfall forecast.

  8. Airborne mass spectrometers: four decades of atmospheric and space research at the Air Force research laboratory.

    PubMed

    Viggiano, A A; Hunton, D E

    1999-11-01

    Mass spectrometry is a versatile research tool that has proved to be extremely useful for exploring the fundamental nature of the earth's atmosphere and ionosphere and in helping to solve operational problems facing the Air Force and the Department of Defense. In the past 40 years, our research group at the Air Force Research Laboratory has flown quadrupole mass spectrometers of many designs on nearly 100 sounding rockets, nine satellites, three Space Shuttles and many missions of high-altitude research aircraft and balloons. We have also used our instruments in ground-based investigations of rocket and jet engine exhaust, combustion chemistry and microwave breakdown chemistry. This paper is a review of the instrumentation and techniques needed for space research, a summary of the results from many of the experiments, and an introduction to the broad field of atmospheric and space mass spectrometry in general.

  9. Observed and simulated influence of rainy-region SST on the tropical upper tropospheric humidity (UTH)

    NASA Astrophysics Data System (ADS)

    Chuang, H.; Huang, X.

    2008-12-01

    Tropical deep convections play a key role in vertically transporting moisture from the boundary layer to the upper troposphere. In this study we investigate how the variations of surface temperature over the tropical deep convective regions (hereafter, rainy-region SST) affect the interannual variations of tropical UTH profiles. Interannual anomalies of UTH profiles from the 20th-century run of four IPCC-AR4 GCMs (GFDL- CM2.1, ECHAM5, MRI-CGCM2.3.2, and NCAR-CCSM3) are analyzed. For comparison, rainy-region SST is derived from the observed SST and GPCP pentad-resolution dataset and UTHs from ECMWF and AIRS are used. The four models have consistently high correlation (>0.9) between interannual anomalies of humidity and tropical-mean surface temperature, but it is not the case of the ECMWF and AIRS data. When the inner tropical (15S-15N) rainy-region surface temperature is used instead of the mean surface temperature, the correlations between UTH (250-450mb) anomalies and surface temperature anomalies are improved by 14.6% for ECMWF and by 24.6% for AIRS, but only slightly improved for four GCMs (between 0.6-4.9%). These results indicate that the GCMs, though consistent with each other, have difficulties in capturing observed influence of rainy-region SST on the UTH anomalies. We then examine the fractional change of specific humidity with respect to the inner tropical rainy-region SST as well as the cloud radiative forcing and the cloud fraction to investigate the connection between the maximum outflow level of deep convection and UTH variability. Though the fractional changes of specific humidity with rainy-region SST tend to have a maximum around 200mb for all GCMs, the analysis of cloud properties suggests that, in all GCMs, the variation of maximum outflow level should not dictate the UTH variability. Given that the air parcel more closely follows the isentropic surfaces rather than the isobaric surfaces, we further examine the UTH variability over the constant

  10. Impact of SST Resolution on Climate Simulation around Japan

    NASA Astrophysics Data System (ADS)

    Iizuka, S.; Sasaki, W.; Dairaku, K.; Matsuura, T.

    2008-12-01

    The impact of high resolution sea surface temperature (SST) data on the winter time climate around Japan is investigated using a WRF model with a horizontal resolution of 20 km. The OISST (0.25 deg) and the JRA25 (JMA Re-Analysis) SST data (1.25deg) are used as the lower boundary condition in the experiments. Generally, the OISST is warmer in the south of the Polar Front over the Japan Sea, the Kuroshio/Oyashio extension, and the coastal regions around Japan comparing with the JRA25 SST because the OISST resolves the small scale features in the SST related to ocean currents. In comparison, the magnitude of surface winds simulated with the OISST is weaker (stronger) on the (colder) warmer SST regions. The difference affects the convergence fields of surface winds, further causing the difference in precipitation. The results suggest a potential impact of small scale features in SST on atmosphere.

  11. Seasonal differences of model predictability and the impact of SST in the Pacific

    NASA Astrophysics Data System (ADS)

    Lang, X. M.; Wang, H. J.

    2005-01-01

    Both seasonal potential predictability and the impact of SST in the Pacific on the forecast skill over China are investigated by using a 9-level global atmospheric general circulation model developed at the Institute of Atmospheric Physics under the Chinese Academy of Sciences (IAP9L-ACCM). For each year during 1970 to 1999, the ensemble consists of seven integrations started from consecutive observational daily atmospheric fields and forced by observational monthly SST. For boreal winter, spring and summer, the variance ratios of the SST-forced variability to the total variability and the differences in the spatial correlation coefficients of seasonal mean fields in special years versus normal years are computed respectively. It follows that there are slightly inter-seasonal differences in the model potential predictability in the Tropics. At northern middle and high latitudes, prediction skill is generally low in spring and relatively high either in summer for surface air temperature and middle and upper tropospheric geopotential height or in winter for wind and precipitation. In general, prediction skill rises notably in western China, especially in northwestern China, when SST anomalies (SSTA) in the Ni (n) over tildeo-3 region are significant. Moreover, particular attention should be paid to the SSTA in the North Pacific (NP) if one aims to predict summer climate over the eastern part of China, i.e., northeastern China, North China and southeastern China.

  12. Baking and helium glow discharge cleaning of SST-1 Tokamak with graphite plasma facing components

    NASA Astrophysics Data System (ADS)

    Semwal, P.; Khan, Z.; Raval, D. C.; Dhanani, K. R.; George, S.; Paravastu, Y.; Prakash, A.; Thankey, P.; Ramesh, G.; Khan, M. S.; Saikia, P.; Pradhan, S.

    2017-04-01

    Graphite plasma facing components (PFCs) were installed inside the SST-1 vacuum vessel. Prior to installation, all the graphite tiles were baked at 1000 °C in a vacuum furnace operated below 1.0 × 10-5 mbar. However due to the porous structure of graphite, they absorb a significant amount of water vapour from air during the installation process. Rapid desorption of this water vapour requires high temperature bake-out of the PFCs at ≥ 250 °C. In SST-1 the PFCs were baked at 250 °C using hot nitrogen gas facility to remove the absorbed water vapour. Also device with large graphite surface area has the disadvantage that a large quantity of hydrogen gets trapped inside it during plasma discharges which makes density control difficult. Helium glow discharge cleaning (He-GDC) effectively removes this stored hydrogen as well as other impurities like oxygen and hydrocarbon within few nano-meters from the surface by particle induced desorption. Before plasma operation in SST-1 tokamak, both baking of PFCs and He-GDC were carried out so that these impurities were removed effectively. The mean desorption yield of hydrogen was found to be 0.24. In this paper the results of baking and He-GDC experiments of SST-1 will be presented in detail.

  13. ASTRI SST-2M camera electronics

    NASA Astrophysics Data System (ADS)

    Sottile, G.; Catalano, O.; La Rosa, G.; Capalbi, M.; Gargano, C.; Giarrusso, S.; Impiombato, D.; Russo, F.; Sangiorgi, P.; Segreto, A.; Bonanno, G.; Garozzo, S.; Marano, D.; Romeo, G.; Scuderi, S.; Stringhetti, L.; Canestrari, R.; Gimenes, R.

    2016-07-01

    ASTRI SST-2M is an Imaging Atmospheric Cherenkov Telescope (IACT) developed by the Italian National Institute of Astrophysics, INAF. It is the prototype of the ASTRI telescopes proposed to be installed at the southern site of the Cherenkov Telescope Array, CTA. The optical system of the ASTRI telescopes is based on a dual mirror configuration, an innovative solution for IACTs, and the focal plane of the camera is composed of silicon photo-multipliers (SiPM), a recently developed technology for light detection, that exhibit very fast response and an excellent single photoelectron resolution. The ASTRI camera electronics is specifically designed to directly interface the SiPM sensors, detecting the fast pulses produced by the Cherenkov flashes, managing the trigger generation, the digital conversion of the signals and the transmission of the data to an external camera server connected through a LAN. In this contribution we present the general architecture of the camera electronics developed for the ASTRI SST-2M prototype, with special emphasis to some innovative solutions.

  14. Spectra Handling from AIRS and IRIS for Climate Change Research

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Lau, M.; Aumann, H. H.; Yung, Y. L.

    2010-12-01

    Outgoing longwave radiation (OLR) measurements over a long period from satellites provide valuable information for the climate change research. Due to the different coverage, spectral resolution and instrument sensitivities, the data comparisons between different satellites could be problematic and possible artifacts could be easily introduced. In this paper, we have analyzed the data taken by IRIS in 1970 and by AIRS from 2002 to 2010. IRIS (Prabhakara, 1988) was a Fourier transform spectrometer (FTS) and it flew on the NASA Nimbus 4 satellite which was launched in April 1970 into an 1100km altitude sun-synchronous polar orbit. It collected data from the nadir track between 400cm-1 and 1600 cm-1 from April 1970 until January 1971. AIRS (Aumann, 2003) is a grating spectrometer launched on the EOS-Aqua satellite in May 2002 and it measures spectra from 650cm-1 to 2700cm-1. AIRS scans to ±49.5o cross track as the satellite moves forwards taking 90 spectra each with an instantaneous field of view of 1.1o in a row perpendicular to the direction of motion of the satellite. This results in a ground footprint of 13km diameter at nadir. In this paper, we analyzed the spectra between 650 cm-1 and 1350 cm-1 for nadir view footprints in order to match the IRIS’s measurements. Most of the possible sources of error or biases have been carefully handled, these include the errors from the data editing, spatial coverage, missing data (spatial gap), and spectral resolution, spectra frequency shift due to the fields of view, sea surface temperature fluctuations, clear sky determination, and spectra response function symmetry. It is extremely important when comparing spectra in the high slope spectra regions where possible large artifacts could be introduced. We have used a radiative model to simulate the spectra as observed in both IRIS and AIRS by using US Standard Atmospheric Profiles. The tropospheric warming and stratospheric warming are introduced in the model as well. The

  15. Environmental equity research: review with focus on outdoor air pollution research methods and analytic tools.

    PubMed

    Miao, Qun; Chen, Dongmei; Buzzelli, Michael; Aronson, Kristan J

    2015-01-01

    The objective of this study was to review environmental equity research on outdoor air pollution and, specifically, methods and tools used in research, published in English, with the aim of recommending the best methods and analytic tools. English language publications from 2000 to 2012 were identified in Google Scholar, Ovid MEDLINE, and PubMed. Research methodologies and results were reviewed and potential deficiencies and knowledge gaps identified. The publications show that exposure to outdoor air pollution differs by social factors, but findings are inconsistent in Canada. In terms of study designs, most were small and ecological and therefore prone to the ecological fallacy. Newer tools such as geographic information systems, modeling, and biomarkers offer improved precision in exposure measurement. Higher-quality research using large, individual-based samples and more precise analytic tools are needed to provide better evidence for policy-making to reduce environmental inequities.

  16. Research Lasers and Air Traffic Safety: Issues, Concerns and Responsibilities of the Research Community

    NASA Technical Reports Server (NTRS)

    Nessler, Phillip J., Jr.

    1998-01-01

    The subject of outdoor use of lasers relative to air traffic has become a diverse and dynamic topic. During the past several decades, the use of lasers in outdoor research activities have increased significantly. Increases in the outdoor use of lasers and increases in air traffic densities have changed the levels of risk involved. To date there have been no documented incidents of air traffic interference from research lasers; however, incidents involving display lasers have shown a marked increase. As a result of the national response to these incidents, new concerns over lasers have arisen. Through the efforts of the SAE G-10T Laser Safety Hazards Subcommittee and the ANSI Z136.6 development committee, potential detrimental effects to air traffic beyond the traditional eye damage concerns have been identified. An increased emphasis from the Federal Aviation Administration (FAA), the Center for Devices and Radiological Hazards (CDRH), and the National Transportation Safety Board (NTSB) along with increased concern by the public have resulted in focused scrutiny of potential hazards presented by lasers. The research community needs to rethink the traditional methods of risk evaluation and application of protective measures. The best current approach to assure adequate protection of air traffic is the application of viable hazard and risk analysis and the use of validated protective measures. Standards making efforts and regulatory development must be supported by the research community to assure that reasonable measures are developed. Without input, standards and regulations can be developed that are not compatible with the needs of the research community. Finally, support is needed for the continued development and validation of protective measures.

  17. Commentary: Is the Air Pollution Health Research Community Prepared to Support a Multipollutant Air Quality Management Framework?

    EPA Science Inventory

    Ambient air pollution is always encountered as a complex mixture, but past regulatory and research strategies largely focused on single pollutants, pollutant classes, and sources one-at-a-time. There is a trend toward managing air quality in a progressively “multipollutant” manne...

  18. Commentary: Is the Air Pollution Health Research Community Prepared to Support a Multipollutant Air Quality Management Framework?

    EPA Science Inventory

    Ambient air pollution is always encountered as a complex mixture, but past regulatory and research strategies largely focused on single pollutants, pollutant classes, and sources one-at-a-time. There is a trend toward managing air quality in a progressively “multipollutant” manne...

  19. [Research and production of air cleaner for traveller train carriage].

    PubMed

    Bi, Z

    1998-07-01

    After the traveller train carriage is closed, the air pollution would be serious in the carriage. In order to control the air pollution, the air cleaning technology must be studied and the air cleaner for the carriage must be designed. The authors discussed. 1. Working out a technology scheme and main technology parameter for the air cleaner, and the structure design of the air cleaner. 2. Texting the function and performance of the air cleaner. 3. Investigating the effectiveness of the cleaner in same train sections. Thereby it will be confirmed that the air cleaner can improve the air environment in the carriage, and give convincingly security to the health of attendants and travellers.

  20. Indian Ocean SST, evaporation, and precipitation during the South Asian summer monsoon in IPCC-AR4 coupled simulations

    NASA Astrophysics Data System (ADS)

    Bollasina, Massimo; Nigam, Sumant

    2009-12-01

    The veracity of modeled air-sea interactions in the Indian Ocean during the South Asian summer monsoon is examined. Representative simulations of the twentieth century climate, produced by coupled general circulation models as part of the Intergovernmental Panel on Climate Change Fourth Assessment Report, are the analysis targets along with observational data. The analysis shows the presence of large systematic biases in coupled simulations of boreal summer precipitation, evaporation, and sea surface temperature (SST) in the Indian Ocean, often exceeding 50% of the climatological values. Many of the biases are pervasive, being common to most simulations. The representation of air-sea interactions is also compromised. Coupled models tend to emphasize local forcing in the Indian Ocean as reflected by their large precipitation-SST correlations, at odds with the weak links in observations which suggest the importance of non-local controls. The evaporation-SST correlations are also differently represented, indicating atmospheric control on SST in some models and SST control on evaporation in others. The Indian monsoon rainfall-SST links are also misrepresented: the former is essentially uncorrelated with antecedent and contemporaneous Indian Ocean SSTs in nature, but not so in most of the simulations. Overall, coupled models are found deficient in portraying local and non-local air-sea interactions in the Indian Ocean during boreal summer. In our opinion, current models cannot provide durable insights on regional climate feedbacks nor credible projections of regional hydroclimate variability and change, should these involve ocean-atmosphere interactions in the Indian basin.

  1. Air Force Officers Visit Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1945-08-21

    A group of 60 Army Air Forces officers visited the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory on August 27, 1945. The laboratory enacted strict security regulations throughout World War II. During the final months of the war, however, the NACA began opening its doors to groups of writers, servicemen, and aviation industry leaders. These events were the first exposure of the new engine laboratory to the outside world. Grandstands were built alongside the Altitude Wind Tunnel specifically for group photographs. George Lewis, Raymond Sharp, and Addison Rothrock (right to left) addressed this group of officers in the Administration Building auditorium. Lewis was the NACA’s Director of Aeronautical Research, Sharp was the lab’s manager, and Rothrock was the lab’s chief of research. Abe Silverstein, Jesse Hall and others watch from the rear of the room. The group toured several facilities after the talks, including the Altitude Wind Tunnel and a new small supersonic wind tunnel. The visit concluded with a NACA versus Army baseball game and cookout.

  2. Design and research on discharge performance for aluminum-air battery

    NASA Astrophysics Data System (ADS)

    Liu, Zu; Zhao, Junhong; Cai, Yanping; Xu, Bin

    2017-01-01

    As a kind of clean energy, the research of aluminum air battery is carried out because aluminum-air battery has advantages of high specific energy, silence and low infrared. Based on the research on operating principle of aluminum-air battery, a novel aluminum-air battery system was designed composed of aluminum-air cell and the circulation system of electrolyte. A system model is established to analyze the polarization curve, the constant current discharge performance and effect of electrolyte concentration on the performance of monomer. The experimental results show that the new energy aluminum-air battery has good discharge performance, which lays a foundation for its application.

  3. Nitrogen Gas Heating and Supply System for SST-1 Tokamak

    NASA Astrophysics Data System (ADS)

    Ziauddin, Khan; Firozkhan, Pathan; Yuvakiran, Paravastu; Siju, George; Gattu, Ramesh; Hima, Bindu; Dilip, C. Raval; Prashant, Thankey; Kalpesh, Dhanani; Subrata, Pradhan

    2013-02-01

    Steady State Tokamak (SST-1) vacuum vessel baking as well as baking of the first wall components of SST-1 are essential to plasma physics experiments. Under a refurbishment spectrum of SST-1, the nitrogen gas heating and supply system has been fully refurbished. The SST-1 vacuum vessel consists of ultra-high vacuum (UHV) compatible eight modules and eight sectors. Rectangular baking channels are embedded on each of them. Similarly, the SST-1 plasma facing components (PFC) are comprised of modular graphite diverters and movable graphite based limiters. The nitrogen gas heating and supply system would bake the plasma facing components at 350°C and the SST-1 vacuum vessel at 150°C over an extended duration so as to remove water vapour and other absorbed gases. An efficient PLC based baking facility has been developed and implemented for monitoring and control purposes. This paper presents functional and operational aspects of a SST-1 nitrogen gas heating and supply system. Some of the experimental results obtained during the baking of SST-1 vacuum modules and sectors are also presented here.

  4. R & D GTDS SST: Code Flowcharts and Input

    DTIC Science & Technology

    1995-01-01

    source code now running on a SUN sparc workstation and the mathematical algorithms Leo Early prepared linkage diagrams which will be used here...spherical mean Keplerian used with Brouwer Brouwer Lyddane Brouwer Gordon and Vinti analytic propagators DODS ight parameters Averaged...The rest of the card is for SST Code Time regularized Cowell See TIMREG Card Cowell default Brouwer Brouwer Lyddane SST

  5. Air, Climate, and Energy Strategic Research Action Plan, 2012 - 2016

    EPA Pesticide Factsheets

    As the U.S. Environmental Protection Agency (EPA) moves forward, it is necessary to more fully understand the interplay between air, climate change, and the changing energy landscape to develop innovative and sustainable solutions to improve air quality

  6. Turbulent statistics in the vicinity of an SST front: A north wind case, FASINEX February 16, 1986

    NASA Technical Reports Server (NTRS)

    Stage, Steven A.; Herbster, Chris

    1990-01-01

    The technique of boxcar variances and covariances is used to examine NCAR Electra data from FASINEX (Frontal Air-Sea Interaction EXperiment). This technique was developed to examine changes in turbulent fluxes near a sea surface temperature (SST) front. The results demonstrate the influence of the SST front on the MABL (Marine Atmospheric Boundary Layer). Data shown are for February 16, 1986, when the winds blew from over cold water to warm. The front directly produced horizontal variability in the turbulence. The front also induced a secondary circulation which further modified the turbulence.

  7. Deficiency of somatostatin (SST) receptor type 5 (SSTR5) is associated with sexually dimorphic changes in the expression of SST and SST receptors in brain and pancreas.

    PubMed

    Ramírez, José L; Grant, M; Norman, M; Wang, X P; Moldovan, S; de Mayo, F J; Brunicardi, C; Kumar, U

    2004-06-30

    The actions of somatostatin (SST) are mediated through five somatostatin receptor subtypes, termed SSTR1-5. Although SSTRs commonly display an overlapping pattern of tissue distribution, subtype-selective responses have been shown to occur in the same tissue. In the present study, we have investigated the changes in SSTR subtypes at the cellular and molecular level in both the brain and the pancreatic islets of mice deficient in SSTR5 (SSTR5KO). Expression levels of insulin and glucagon were also determined in the pancreas of these mice. Semi-quantitative RT-PCR and Western blot analysis showed significant increases in the expression of SSTR2 and 3 with a corresponding reduction in SSTR4 in the brains of female SSTR5KOs, while no changes were observed in male KOs. Strikingly, SST mRNA and SST-like immunoreactivity (SST-LI) were reduced in the brain of male KO animals but not in their female counterparts. In male SSTR5KO islets, there was an increase in the number of cells immunoreactive for SSTR1-3, whereas in female islets only SSTR3 expression was increased. Pancreatic SST-LI and SST mRNA, as well as immunoreactivity for insulin were reduced in male but not in female KO mice. These data indicate that deficiency of SSTR5 leads to subtype-selective sexually dimorphic changes in the expression of both brain and pancreatic SSTRs.

  8. Air Breathing Propulsion Controls and Diagnostics Research at NASA Glenn Under NASA Aeronautics Research Mission Programs

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2015-01-01

    The Intelligent Control and Autonomy Branch (ICA) at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet the goals of the NASA Aeronautics Research Mission Directorate (ARMD) Programs. These efforts are primarily under the various projects under the Advanced Air Vehicles Program (AAVP), Airspace Operations and Safety Program (AOSP) and Transformative Aeronautics Concepts Program (TAC). The ICA Branch is focused on advancing the state-of-the-art of aero-engine control and diagnostics technologies to help improve aviation safety, increase efficiency, and enable operation with reduced emissions. This paper describes the various ICA research efforts under the NASA Aeronautics Research Mission Programs with a summary of motivation, background, technical approach, and recent accomplishments for each of the research tasks.

  9. SST/Wind stress mesoscale coupling in the Peru-Chile region : what drives its temporal variations ?

    NASA Astrophysics Data System (ADS)

    Oerder, V.; Colas, F.; Echevin, V.; Masson, S. G.; Lemarié, F.; Jullien, S.; Madec, G.

    2016-02-01

    Recent air-sea interaction studies showed that mesoscale ( 10-100 km) oceanic structures, e.g. fronts and eddies, induce an atmospheric response which also affect in return the near-surface ocean dynamics. In this study we focus on the oceanic feedback on the surface wind stress (SWS) in the Peru-Chile region.We use a regional coupled model (WRF-NEMO) at ˜ 9 km horizontal resolution to characterize the interaction between sea surface temperature (SST) and SWS. We compare this coupling to observed values. Spatial and temporal variations are evidenced in the mesoscale SST-SWS relation. In particular, the coupling characteristics are more intense during winter than during summer. We examine this seasonal variation by an in-depth analysis of the underlying mechanisms. A downwind momentum balance shows that SST mesoscale anomalies are associated to wind speed and wind shear anomalies generated by downward mixing of momentum. Near-surface air pressure gradient anomalies have a negligible contribution because of the back-pressure effect related to the air temperature inversion . Turbulent stress anomalies are created by mixing coefficient anomalies and partially compensated by the wind shear anomalies. The response of the stress to the mesoscale SST is mainly modulated by the seasonal variations of the large-scale wind vertical shear.

  10. Impact of the Gulf Stream SST front on North Atlantic climate variability: a high-resolution regional model study

    NASA Astrophysics Data System (ADS)

    Hsieh, J.; Li, M.; Saravanan, R.; Chang, P.

    2011-12-01

    The inability of the current generation of global climate models to realistically resolve the Gulf Stream separation from the east coast of the North America leads to improper representation of the associated sea surface temperature (SST) front in these models, which further impacts the modeled climate variability. To evaluate the impact of this misrepresented SST front on the overlying atmosphere, ensembles of high-resolution regional atmospheric model simulations are carried out, forced with SST simulated by an intermediate resolution and a high-resolution regional ocean model. It is found that the difference in the representation of the Gulf Stream separation between the two ocean model simulations has a significant impact on the climatologies of regional precipitation, stormtracks, and even the remote large-scale mean background states. As the simulation of the Gulf Stream separation improves with the increase in the ocean model resolution, the associated shift in the SST front causes a northward shift of the winter storm track in upper levels as the synoptic disturbances propagate eastward. Moreover, a trough at low levels originates near the warm SST associated with the Gulf Stream separation and a strong anomalous ridge forms far downstream near the northeastern Atlantic and West Europe, which leads to a weaker subtropical jet near this region. These results support the notion of active frontal-scale air-sea interactions along the Gulf Stream Extension and highlight the importance of resolving frontal-scale structures along western boundary currents in climate models.

  11. The effect of SST and soil moisture anomalies on GLA model simulations of the 1988 U.S. summer drought

    NASA Technical Reports Server (NTRS)

    Atlas, R.; Wolfson, N.; Terry, J.

    1993-01-01

    A series of simulations of the late spring and early summer of 1988 were conducted in order to study the relative importance of different boundary forcings to the Goddard Laboratory for Atmospheres (GLA) model's simulation of the heat wave and drought over the Great Plains of the United States during this time period. Separate 60-day simulations were generated from 10, 20, and 30 May 1988 with a variety of boundary condition datasets. For the control experiment, climatological boundary conditions were used. This was followed by experiments in which either the observed 1988 sea surface temperatures (SST) or derived 1988 soil moisture values, or both, were used in place of the climatological fields. Additional experiments were conducted in which only tropical or midlatitude SST anomalies were used. The impact of the different boundary forcings was evaluated relative to the control simulations of the precipitation and surface air temperature over the Great Plains. It was found that the tropical SST anomalies had a significant effect in reducing precipitation in this area, while the midlatitude anomalies did not. Due to the prescribed climatological soil moistures for the SST experiments, a significant increase in surface temperature did not occur in these simulations. In contrast, the simulations with the anomalous 1988 soil moistures produced both a larger reduction of precipitation and a significant increase in surface temperature over the Great Plains. The simulations with both anomalous SST and soil moisture showed only a slight augmentation of the heat wave and drought relative to the experiments with anomalous soil moisture alone.

  12. The effect of SST and soil moisture anomalies on GLA model simulations of the 1988 U.S. summer drought

    NASA Technical Reports Server (NTRS)

    Atlas, R.; Wolfson, N.; Terry, J.

    1993-01-01

    A series of simulations of the late spring and early summer of 1988 were conducted in order to study the relative importance of different boundary forcings to the Goddard Laboratory for Atmospheres (GLA) model's simulation of the heat wave and drought over the Great Plains of the United States during this time period. Separate 60-day simulations were generated from 10, 20, and 30 May 1988 with a variety of boundary condition datasets. For the control experiment, climatological boundary conditions were used. This was followed by experiments in which either the observed 1988 sea surface temperatures (SST) or derived 1988 soil moisture values, or both, were used in place of the climatological fields. Additional experiments were conducted in which only tropical or midlatitude SST anomalies were used. The impact of the different boundary forcings was evaluated relative to the control simulations of the precipitation and surface air temperature over the Great Plains. It was found that the tropical SST anomalies had a significant effect in reducing precipitation in this area, while the midlatitude anomalies did not. Due to the prescribed climatological soil moistures for the SST experiments, a significant increase in surface temperature did not occur in these simulations. In contrast, the simulations with the anomalous 1988 soil moistures produced both a larger reduction of precipitation and a significant increase in surface temperature over the Great Plains. The simulations with both anomalous SST and soil moisture showed only a slight augmentation of the heat wave and drought relative to the experiments with anomalous soil moisture alone.

  13. Overview of Atmospheric Ionizing Radiation (AIR)

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Maiden, D. L.; Goldhagen, P.; Tai, H.; Shinn, J. L.

    2003-01-01

    The SuperSonic Transport (SST) development program within the US was based at the Langley Research Center as was the Apollo radiation testing facility (Space Radiation Effects Laboratory) with associated radiation research groups. It was natural for the issues of the SST to be first recognized by this unique combination of research programs. With a re-examination of the technologies for commercial supersonic flight and the possible development of a High Speed Civil Transport (HSCT), the remaining issues of the SST required resolution. It was the progress of SST radiation exposure research program founded by T. Foelsche at the Langley Research Center and the identified remaining issues after that project over twenty-five years ago which became the launch point of the current atmospheric ionizing radiation (AIR) research project. Added emphasis to the need for reassessment of atmospheric radiation resulted from the major lowering of the recommended occupational exposure limits, the inclusion of aircrew as radiation workers, and the recognition of civil aircrew as a major source of occupational exposures. Furthermore, the work of Ferenc Hajnal of the Environmental Measurements Laboratory brought greater focus to the uncertainties in the neutron flux at high altitudes. A re-examination of the issues involved was committed at the Langley Research Center and by the National Council on Radiation Protection (NCRP). As a result of the NCRP review, a new flight package was assembled and flown during solar minimum at which time the galactic cosmic radiation is at a maximum (June 1997). The present workshop is the initial analysis of the new data from that flight. The present paper is an overview of the status of knowledge of atmospheric ionizing radiations. We will re-examine the exposures of the world population and examine the context of aircrew exposures with implications for the results of the present research. A condensed version of this report was given at the 1998

  14. [Medical research in the US Armed Forces. (Report 5). The US Air Force and Coast Guard].

    PubMed

    Agapitov, A A; Aleĭnikov, S I; Bolekhan, V N; Ivchenko, E V; Krassiĭ, A B; Nagibovich, O A; Petrov, S V; Rezvantsev, M V; Soldatov, E A; Shalakhin, R A; Sheppli, E V

    2013-02-01

    The present article is the last part of the review dedicated to organization and management of medical research in the US Armed Forces. The first through fourth parts were published in the previous issues of the journal. Specifically this article is dedicated to organization and management of medical research in the US Air Force and Coast Guard. It is shown that in the US Air Force the medical research is conducted in the Air Force Research Laboratory and in the US Coast Guard--in its Research and Development Center. The particular research programs conducted in the above mentioned units are discussed.

  15. Oceanic Origin of Tropical Atlantic SST Biases

    NASA Astrophysics Data System (ADS)

    Chang, P.; Xu, Z.; Li, M.; Patricola, C. M.

    2012-12-01

    Most coupled general circulation models (CGCMs) suffer from a prominent warm sea surface temperature (SST) bias in the southeastern tropical Atlantic Ocean off the coast of Africa. The origin of the bias is not understood and remains highly controversial. Previous studies suggest that the origin of the bias stems from systematic errors of atmospheric models in simulating surface heat flux and coastal wind, or poorly simulated coastal upwelling. In this study, we show, using different reanalysis and observational data sets combined with a set of eddy-resolving regional ocean model simulations, that systematic errors in ocean models also make a significant contribution to the bias problem. In particular, (1) the strong warm bias at the Angola Benguela front that is maintained by the local wind and the convergence of Angola and Benguela Current is caused by an overshooting of the Angola Current in ocean models and (2) the alongshore warm bias to the south of the front is caused by ocean model deficiencies in simulating the sharp thermocline along the equator, the strong thermal gradient beneath the Angola current, and the complex circulation system within the Benguela upwelling zone.

  16. Perspective on One Decade of Laser Propulsion Research at Air Force Research Laboratory

    SciTech Connect

    Larson, C. William

    2008-04-28

    The Air Force Laser Propulsion Program spanned nearly 10-years and included about 35-weeks of experimental research with the Pulsed Laser Vulnerability Test System of the High Energy Laser Systems Test Facility at White Sands Missile Range, New Mexico, WSMR/HELSTF/PLVTS. PLVTS is a pulsed CO2 laser that produces up to 10 kW of power in {approx}10 cm{sup 2} spot at wavelength of 10.6 microns. The laser is capable of a pulse repetition rate up to 25 Hz, with pulse durations of about 20 microseconds. During the program basic research was conducted on the production of propulsion thrust from laser energy through heating of air and ablation of various candidate rocket propellant fuels. Flight tests with an ablation fuel (Delrin) and air were accomplished with a model Laser Lightcraft vehicle that was optimized for propulsion by the PLVTS at its maximum power output, 10 kW at 25 Hz, 400 J/pulse. Altitudes exceeding 200-feet were achieved with ablation fuels. The most recent contributions to the technology included development of a mini-thruster standard for testing of chemically enhanced fuels and theoretical calculations on the performance of formulations containing ammonium nitrate and Delrin. Results of these calculations will also be reported here.

  17. microRNAs: Implications for Air Pollution Research

    EPA Science Inventory

    The purpose of this review is to provide an update of the current understanding on the role of microRNAs in mediating genetic responses to air pollutants and to contemplate on how these responses ultimately control susceptibility to ambient air pollution. Morbidity and mortality ...

  18. microRNAs: Implications for Air Pollution Research

    EPA Science Inventory

    The purpose of this review is to provide an update of the current understanding on the role of microRNAs in mediating genetic responses to air pollutants and to contemplate on how these responses ultimately control susceptibility to ambient air pollution. Morbidity and mortality ...

  19. Anxiolytic-like effects of somatostatin isoforms SST 14 and SST 28 in two animal models (Rattus norvegicus) after intra-amygdalar and intra-septal microinfusions.

    PubMed

    Yeung, Michelle; Engin, Elif; Treit, Dallas

    2011-08-01

    Somatostatin (SST) isoforms, SST 14 and SST 28, inhibit regulatory hormones in the periphery (e.g., growth hormone) and are widely distributed in the brain. In recent experiments, intracerebroventricular (ICV) SST produced anxiolytic-like effects in both behavioral and electrophysiological models. The sites of action of these anxiolytic effects in the brain, however, and the relative contributions of SST 14 and SST 28 to these effects are unknown. Anxiolytic effects were assessed in the plus-maze and shock-probe tests after (1) intra-amygdalar microinfusion of SST 14 (0.5 or 3 μg per hemisphere) or SST 28 (3 μg per hemisphere), (2) intra-septal microinfusion of SST 14 (0.5 or 1.5 μg per hemisphere) or SST 28 (1.5 μg per hemisphere), or (3) intra-striatal microinfusion of SST 14 (3 μg per hemisphere). Intra-amygdalar and intra-septal microinfusions of SST 14 and SST 28 produced robust anxiolytic-like effects in the behavioral tests, unlike intra-striatal microinfusions. The magnitude of the anxiolytic effects in the amygdala and septum were comparable to those found previously with ICV SST 14, ICV L-779976, an SST (sst2) receptor agonist, and ICV diazepam, a classical benzodiazepine anxiolytic. SST receptors in the septum and amygdala are responsive to both SST 14 and SST 28, but not those in the striatum. Although no obvious differences in the anxiolytic-like effects of the isoforms were detected, quantitative or even qualitative differences in their specific anxiolytic effects may occur in different sub-regions of the septum and amygdala, as has been found for benzodiazepine anxiolytics.

  20. INITIAL SINGLE SHELL TANK (SST) SYSTEM PERFORMANCE ASSESSMENT OF THE HANFORD SITE

    SciTech Connect

    JARAYSI, M.N.

    2007-01-08

    The ''Initial Single-Shell Tank System Performance Assessment for the Hanford Site [1] (SST PA) presents the analysis of the long-term impacts of residual wastes assumed to remain after retrieval of tank waste and closure of the SST farms at the US Department of Energy (DOE) Hanford Site. The SST PA supports key elements of the closure process agreed upon in 2004 by DOE, the Washington State Department of Ecology (Ecology), and the US Environmental Protection Agency (EPA). The SST PA element is defined in Appendix I of the ''Hanford Federal Facility Agreement and Consent Order'' (HFFACO) (Ecology et al. 1989) [2], the document that establishes the overall closure process for the SST and double-shell tank (DST) systems. The approach incorporated in the SST PA integrates substantive features of both hazardous and radioactive waste management regulations into a single analysis. The defense-in-depth approach used in this analysis defined two major engineering barriers (a surface barrier and the grouted tank structure) and one natural barrier (the vadose zone) that will be relied on to control waste release into the accessible environment and attain expected performance metrics. The analysis evaluates specific barrier characteristics and other site features that influence contaminant migration by the various pathways. A ''reference'' case and a suite of sensitivity/uncertainty cases are considered. The ''reference case'' evaluates environmental impacts assuming central tendency estimates of site conditions. ''Reference'' case analysis results show residual tank waste impacts on nearby groundwater, air resources; or inadvertent intruders to be well below most important performance objectives. Conversely, past releases to the soil, from previous tank farm operations, are shown to have groundwater impacts that re significantly above most performance objectives. Sensitivity/uncertainty cases examine single and multiple parameter variability along with plausible alternatives

  1. CFD simulation research on residential indoor air quality.

    PubMed

    Yang, Li; Ye, Miao; He, Bao-Jie

    2014-02-15

    Nowadays people are excessively depending on air conditioning to create a comfortable indoor environment, but it could cause some health problems in a long run. In this paper, wind velocity field, temperature field and air age field in a bedroom with wall-hanging air conditioning running in summer are analyzed by CFD numerical simulation technology. The results show that wall-hanging air conditioning system can undertake indoor heat load and conduct good indoor thermal comfort. In terms of wind velocity, air speed in activity area where people sit and stand is moderate, most of which cannot feel wind flow and meet the summer indoor wind comfort requirement. However, for air quality, there are local areas without ventilation and toxic gases not discharged in time. Therefore it is necessary to take effective measures to improve air quality. Compared with the traditional measurement method, CFD software has many advantages in simulating indoor environment, so it is hopeful for humans to create a more comfortable, healthy living environment by CFD in the future.

  2. Impact of air-sea coupling on the simulation of tropical cyclones in the North Indian Ocean using a simple 3-D ocean model coupled to ARW

    NASA Astrophysics Data System (ADS)

    Srinivas, C. V.; Mohan, Greeshma M.; Naidu, C. V.; Baskaran, R.; Venkatraman, B.

    2016-08-01

    In this work, the impact of air-sea coupling on tropical cyclone (TC) predictions is studied using a three-dimensional Price-Weller-Pinkel (3DPWP) ocean model coupled to the Advanced Research Weather Research and Forecasting in six tropical storms in the North Indian Ocean, representing different intensities, seasonality, and varied oceanic conditions. A set of numerical experiments are conducted for each cyclone using sea surface temperature (SST) boundary conditions derived from Global Forecast System (GFS) SST, NOAA/National Centers for Environmental Prediction SST, and ocean coupling (3DPWP). Significant differences and improvements are found in the predicted intensity and track in the simulations, in which the cyclones' impact on SST is included. It has been found that while the uncoupled model using GFS SST considerably overestimated the intensity as well as produced large track errors, the ocean coupling substantially improved the track and intensity predictions. The improvements with 3DPWP are because of simulating the ocean-atmosphere feedback in terms of deepening of ocean mixed layer, reduction in enthalpy fluxes, and storm-induced SST cooling as seen in observations. The coupled model could simulate the cold wake in SST, asymmetries in the surface winds, enthalpy fluxes, size, and structure of the storm in better agreement with observations than the uncoupled model. The coupled model reduced the track errors by roughly 0.3-39% and intensity errors by 29-47% at 24-96 h predictions by controlling the northward deviation of storms tracks by SST cooling and associated changes in the dynamics. The vorticity changes associated with horizontal advection and stretching terms affect the tracks of the storms in the three simulations.

  3. The ASTRI SST-2M prototype for the Cherenkov Telescope Array: primary mirror characterization by deflectometry

    NASA Astrophysics Data System (ADS)

    Sironi, Giorgia; Canestrari, Rodolfo

    2015-09-01

    In 2014 the ASTRI Collaboration, led by the Italian National Institute for Astrophysics, has constructed an end-to-end prototype of a dual-mirror imaging air Cherenkov telescope, proposed for the small size class of telescopes for the Cherenkov Telescope Array. The prototype, named ASTRI SST-2M, has been installed at the observing station located at Serra La Nave (Italy). In this project the Brera Astronomical Observatory was responsible for the production and the testing of the primary mirror. The ASTRI SST-2M telescope's primary mirror has an aperture of ~ 4 m, a polynomial design, and consists of 18 individual hexagonal facets. These characteristics require the production and testing of panels with a typical size of ~1 m vertex-to-vertex and with an aspheric component of up to several millimetres. The mirror segments were produced assembling a sandwich of thin glass foils bent at room temperature to reach the desired shape. For the characterization of the mirrors we developed an ad-hoc deflectometry facility that works as an inverse Ronchi test in combination with a ray-tracing code. In this contribution we report the results of the deflectometric measurements performed on the primary mirror segments of the ASTRI SST-2M dual mirror telescope. The expected point spread function and the contributions to the degradation of the image quality are studied.

  4. Using a 1-D model to reproduce the diurnal variability of SST

    NASA Astrophysics Data System (ADS)

    Karagali, Ioanna; Høyer, Jacob L.; Donlon, Craig J.

    2017-04-01

    A wide range of applications, from air-sea interaction studies to fisheries and biological modeling, need accurate, high resolution SST which requires that the diurnal signal is known; for many applications, diurnal estimates are necessary and should be included in blended SST products. A widely preferred approach to bridge the gap between in situ and remotely sensed measurements and obtain diurnal warming estimates at large spatial scales is modeling of the upper ocean temperature. This study uses the one-dimensional General Ocean Turbulence Model (GOTM) to resolve diurnal signals identified from satellite SSTs and in situ measurements. Focus is given on testing and validation of different parameterizations of the basic physical processes known to influence the generation of a warm surface layer. GOTM is tested and validated using in situ measurements obtained at three locations, two in the Atlantic Ocean and one in the Baltic Sea, where different oceanographic and atmospheric conditions occur, in order to obtain an insight into its general performance. It is found that the model, with a 9 band solar absorption model rather than the standard 2 band scheme, performs well when using 3 hourly NWP forcing fields and is able to resolve daily SST variability seen both from satellite and in situ measurements. As such, and due to its low computational cost, it is proposed as a candidate model for diurnal variability estimates.

  5. The impact of the storm-induced SST cooling on hurricane intensity

    NASA Astrophysics Data System (ADS)

    Zhu, T.; Zhang, D. L.

    2006-01-01

    The effects of storm-induced sea surface temperature (SST) cooling on hurricane intensity are investigated using a 5-day cloud-resolving simulation of Hurricane Bonnie (1998). Two sensitivity simulations are performed in which the storm-induced cooling is either ignored or shifted close to the modeled storm track. Results show marked sensitivity of the model-simulated storm intensity to the magnitude and relative position with respect to the hurricane track. It is shown that incorporation of the storm-induced cooling, with an average value of 1.3 degrees C, causes a 25-hPa weakening of the hurricane, which is about 20 hPa per 1 degrees C change in SST. Shifting the SST cooling close to the storm track generates the weakest storm, accounting for about 47% reduction in the storm intensity. It is found that the storm intensity changes are well correlated with the air-sea temperature difference. The results have important implications for the use of coupled hurricane-ocean models for numerical prediction of tropical cyclones.

  6. Air Force Research Laboratory (AFRL) research highlights, September--October 1998

    SciTech Connect

    1998-10-01

    New AFOSR-sponsored research shows that exhausts from solid-fueled rocket motors have very limited impact on stratospheric ozone. The research provides the Air Force with hard data to support continued access to space using the existing fleet of rockets and rocket technology. This basic research data allows the Air Force to maintain a strongly proactive environmental stance, and to meet federal guidelines regarding environmental impacts. Long-standing conjecture within the international rocket community suggests that chlorine compounds and alumina particulates produced in solid rocket motor (SRM) exhausts could create localized, temporary ozone toss in rocket plumes following launches. The extent of a local depletion of ozone and its environmental impact depends on details of the composition and chemistry in these plumes. Yet direct measurements of plume composition and plume chemistry in the stratosphere had never been made. Uncertainty about these details left the Air Force and commercial space launch capability potentially vulnerable to questions about the environmental impact of rocket launches. In 1995, APOSR and the Space and Missiles Systems Center Launch Programs Office (SMC/CL) jointly began the Rocket Impacts on Stratospheric Ozone (RISO) program to make the first-ever detailed measurements of rocket exhaust plumes. These measurements were aimed at understanding how the exhaust from large rocket motors effect the Earth`s stratospheric ozone layer. The studies determined: the size distribution of alumina particles in these exhausts, the amount of reactive chlorine in SRM exhaust, and the size and duration of localized ozone toss in the rocket plumes.

  7. United States Air Force Summer Research Program -- 1992 High School Apprenticeship Program (HSAP) Reports. Volume 13. Phillips Laboratory

    DTIC Science & Technology

    1992-01-01

    Research Program Phillips Laboratory I4oJ A*6Iv4 Sponsored by: Air Force Office of Scientific Research Kirtland Air ...UNITED STATES AIR FORCE SUMMER RESEARCH PROGki"A -- 1992 HIGH SCHOOL APPRENTICESHIP PROGRAM (HSAP) REPORTS VOLUME 13 (t PHILLIPS LABORATORY . RESEARCH ...Arlington High School Final Report for: Summer Research Program Geophysics Directorate Phillips Laboratory

  8. Single Shell Tank (SST) System Surveillance & Monitoring Program

    SciTech Connect

    BARNES, D.A.

    2002-02-21

    This document describes the leak detection programs presently being used in the Hanford Single-Shell Tank (SST) System and is submitted to meet the Hanford Federal Facility Agreement and Consent Order (HFFACO) milestone M-23-22-T01.

  9. Structural Simluation Toolkit (SST) V 2.0

    SciTech Connect

    RODRIGUES, ARUN; HEMMERT, KARL; BARRETT, BRIAN; RIESEN, ROLF; MURPHY, RICHARD; HSIEH, MING; LEVENHAGEN, MICHAEL; MCLENDON, III, WILLIAM; COOK, JEANINE; JANSSEN, CURTIS; ADALSTEINSSON, HELGI; CRANFORD, SCOTT; KENNY, JOSEPH; EVENSKY, DAVID; & PINAR, ALI

    2009-12-04

    The SST provides a parallel framework to perform system simulation of computer architectures to determine their performance and power consumption. Additionally, the SST contains basic models of a computer processor, and interconnect and can connect to an external memory simulator (DRAMSim II). The SST framework provides a simple interface by which other computer simulation models can be combined under a common parallel discrete event-based simulation environment. This allows design exploration of future architectures, analysis of how current computer programs will function on future architectures. The SST provides a parallel discrete event simulation framework, including partitioning and object distribution over MPI. It also provides a mechanism by which components can report their power consumption for analysis.

  10. Improving the global SST record: estimates of biases from engine room intake SST using high quality satellite data

    NASA Astrophysics Data System (ADS)

    Carella, Giulia; Kent, Elizabeth C.; Berry, David I.; Morak-Bozzo, Simone; Merchant, Christopher J.

    2016-04-01

    Sea Surface Temperature (SST) is the marine component of the global surface temperature record, a primary metric of climate change. SST observations from ships form one of the longest instrumental records of surface marine climate. However, over the years several different methods of measuring SST have been used, each with different bias characteristics. The estimation of systematic biases in the SST record is critical for climatic decadal predictions, and uncertainties in long-term trends are expected to be dominated by uncertainties in biases introduced by changes of instrumentation and measurement practices. Although the largest systematic errors in SST observations relate to the period before about 1940, where SST measurements were mostly made using buckets, there are also issues with modern data, in particular when the SST reported is the temperature of the engine-room cooling water intake (ERI). Physical models for biases in ERI SSTs have not been developed as the details of the individual setup on each ship are extremely important, and almost always unknown. Existing studies estimate that the typical ERI biases are around 0.2°C and most estimates of the mean bias fall between 0.1°C and 0.3°C, but there is some evidence of much larger differences. However, these analyses provide only broad estimates, being based only on subsamples of the data and ignoring ship-by-ship differences. Here we take advantage of a new, high spatial resolution, gap-filled, daily SST for the period 1992-2010 from the European Space Agency Climate Change Initiative (ESA CCI) for SST dataset version 1.1. In this study, we use a Bayesian statistical model to characterise the uncertainty in reports of ERI SST for individual ships using the ESA CCI SST as a reference. A Bayesian spatial analysis is used to model the differences of the observed SST from the ESA CCI SST for each ship as a constant offset plus a function of the climatological SST. This was found to be an important term

  11. Tu-144LL SST Flying Laboratory Front View with Nose Dropped for Takeoff and Landing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A front view of the Tupolev Tu-144LL supersonic flying laboratory at the Zhukovsky Air Development Center near Moscow, Russia. The plane's nose droops down for take off and landing and is then raised for high-speed flight. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different

  12. Air-sea interactions in sea surface temperature frontal region

    NASA Astrophysics Data System (ADS)

    Pianezze, Joris; Redelsperger, Jean-Luc; Ardhuin, Fabrice; Reynaud, Thierry; Marié, Louis; Bouin, Marie-Noelle; Garnier, Valerie

    2015-04-01

    Representation of air-sea exchanges in coastal, regional and global models represent a challenge firstly due to the small scale of acting turbulent processes comparatively to the resolved scales of these models. Beyond this subgrid parameterization issue, a comprehensive understanding of air-sea interactions at the turbulent process scales is still lacking. Many successful efforts are dedicated to measure the energy and mass exchanges between atmosphere and ocean, including the effect of surface waves. In comparison less efforts are brought to understand the interactions between the atmospheric boundary layer and the oceanic mixing layer. In this regard, we are developing research mainly based on ideal and realistic numerical simulations which resolve very small scales (horizontal resolutions from 1 to 100 meters) in using grid nesting technics and coupled ocean-wave-atmosphere models. As a first step, the impact of marked gradients in sea surface temperatures (SST) on air-sea exchanges has been explored through realistic numerical simulations at 100m horizontal resolution. Results from simulations of a case observed during the FROMVAR experiment will be shown. The talk will mainly focus on the marked impact of SST front on the atmospheric boundary layer (stability and winds), the air-sea exchanges and surface parameters (rugosity, drag coefficient) Results will be also shown on the strong impact on the simulated atmosphere of small scale variability of SST field.

  13. Research on Annual Energy Consumption of Air Conditioning Equipment

    NASA Astrophysics Data System (ADS)

    Watanabe, Naho; Tanaka, Kousuke; Hihara, Eiji

    Energy consumption in almost all sectors is constantly increasing. Air conditioner is one of energy-intensive equipments and it is important to evaluate energy consumption with reasonable accuracy. For evaluation of energy conservation of air conditioners, it is necessary to take into account the variations of outdoor temperature, the heating/cooling load throughout a year and all the operating conditions. But according to the current standard, only a few found values and other estimated values are used to calculate annual energy consumption of air conditioner. It is needed to assess the legitimacy of current standard. Seasonal performance of air conditioners was tested, and an appropriate way of evaluation of energy conservation was investigated.

  14. Evaluation and selection of SST regression algorithms for JPSS VIIRS

    NASA Astrophysics Data System (ADS)

    Petrenko, Boris; Ignatov, Alexander; Kihai, Yury; Stroup, John; Dash, Prasanjit

    2014-04-01

    Two global level 2 sea surface temperature (SST) products are generated at NOAA from the Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite (VIIRS) sensor data records (L1) with two independent processing systems, the Joint Polar Satellite System (JPSS) Interface Data Processing Segment (IDPS) and the NOAA heritage Advanced Clear-Sky Processor for Oceans (ACSPO). The two systems use different SST retrieval and cloud masking algorithms. Validation against in situ and L4 analyses has shown suboptimal performance of the IDPS product. In this context, existing operational and proposed SST algorithms have been evaluated for their potential implementation in IDPS. This paper documents the evaluation methodology and results. The performance of SST retrievals is characterized with bias and standard deviation with respect to in situ SSTs and sensitivity to true SST. Given three retrieval metrics, all being variable in space and with observational conditions, an additional integral metric is needed to evaluate the overall performance of SST algorithms. Therefore, we introduce the Quality Retrieval Domain (QRD) as a part of the global ocean, where the retrieval characteristics meet predefined specifications. Based on the QRDs analyses for all tested algorithms over a representative range of specifications for accuracy, precision, and sensitivity, we have selected the algorithms developed at the EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI-SAF) for implementation in IDPS and ACSPO. Testing the OSI-SAF algorithms with ACSPO and IDPS products shows the improved consistency between VIIRS SST and Reynolds L4 daily analysis. Further improvement of the IDPS SST product requires adjustment of the VIIRS cloud and ice masks.

  15. Investigation of Sea Surface Temperature (SST) anomalies over Cyprus area

    NASA Astrophysics Data System (ADS)

    Georgiou, Andreas; Akçit, Nuhcan

    2016-08-01

    The temperature of the sea surface has been identified as an important parameter of the natural environment, governing processes that occur in the upper ocean. This paper focuses on the analysis of the Sea Surface Temperature (SST) anomalies at the greater area of Cyprus. For that, SST data derived from MODerate-resolution Imaging Spectroradiometer (MODIS) instrument on board both Aqua and Terra sun synchronous satellites were used. A four year period was chosen as a first approach to address and describe this phenomenon. Geographical Information Systems (GIS) has been used as an integrated platform of analysis and presentation in addition of the support of MATLAB®. The methodology consists of five steps: (i) Collection of MODIS SST imagery, (ii) Development of the digital geo-database; (iii) Model and run the methodology in GIS as a script; (iv) Calculation of SST anomalies; and (v) Visualization of the results. The SST anomaly values have presented a symmetric distribution over the study area with an increase trend through the years of analysis. The calculated monthly and annual average SST anomalies (ASST) make more obvious this trend, with negative and positive SST changes to be distributed over the study area. In terms of seasons, the same increase trend presented during spring, summer, autumn and winter with 2013 to be the year with maximum ASST observed values. Innovative aspects comprise of straightforward integration and modeling of available tools, providing a versatile platform of analysis and semi-automation of the operation. In addition, the fine resolution maps that extracted from the analysis with a wide spatial coverage, allows the detail representation of SST and ASST respectively in the region.

  16. Recent researches on the air resistance of spheres

    NASA Technical Reports Server (NTRS)

    Flachsbart, O

    1928-01-01

    The following conclusions on air resistance of spheres are drawn: 1) disturbances in front of the sphere and even single fine wires affect the critical Reynolds Number; 2) disturbances around the sphere increased the drag of the sphere without martially affecting the value of the Reynolds Number(sub crith); 3) great disturbances of the boundary layer of the sphere likewise change R.N.(sub crith); 4) turbulence of the approaching air stream lowers critical R.N.

  17. Operations Research in a New Spanish Air Force Planning System

    DTIC Science & Technology

    1991-06-01

    Until nowadays, when any Air Force felt that a weapon system was obsolete, they studied the potential market , or they built up a system that fulfilled...for a new weapons system which will cover all the requirements. If the weapon system already exists in the national or foreign market , then the system...medium transport. This can be an important factor to be considered but, sometimes, the Spanish Air Force has to look at the for- eign markets for the

  18. Variability of winter extreme precipitation in Southeast China: contributions of SST anomalies

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Sielmann, Frank; Fraedrich, Klaus; Zhu, Xiuhua; Zhi, Xiefei

    2015-11-01

    Tropical SST anomalies are among the largest drivers of circulation regime changes on interannual time scales due to its characteristic heat capacity decay time scales. The circulation anomalies associated with extreme precipitation and the corresponding atmospheric response to SST anomalies are derived from ECMWF ERA-Interim reanalysis data by employing composite analysis and lagged maximum covariance analysis. Our results show that interannual variability of extreme winter precipitation in Southeast China is in close accordance with the interannual variability of total winter precipitation. Both are associated with similar abnormal circulation regimes, but for extreme precipitation events the circulation anomalies and moisture transport channels are significantly intensified. Two main moisture transport channels are captured: one extends from the North Indian Ocean through India and the Bay of Bengal to South China, and the other from the West Pacific Ocean through Maritime Continent and South China Sea towards South China, which are related to the preceding autumn SST patterns, El Niño and the Indian Ocean dipole (IOD), respectively. El Niño (La Niña) SST anomalies induce anomalous anticyclonic (cyclonic) circulation over Philippine Sea, which is favorable (unfavorable) to warm and humid air transport to South China from the tropical West Pacific by southwesterly (northeasterly) anomalies. Under these circulations, northeasterlies of East Asian Winter Monsoon are weakened (strengthened) resulting in extreme precipitation to be more (less) frequent in Southeast China. During the positive (negative) IOD phase, abundant (reduced) moisture transport to South China from tropical regions through India and Bay of Bengal is observed due to weakened (strengthened) Walker circulations and abnormal anticyclonic (cyclonic) circulation over India, leading to a higher (lower) likelihood for extreme precipitation events in Southeast China. The underlying physical mechanisms

  19. Identifying and Investigating the Late-1960s Interhemispheric SST Shift

    NASA Astrophysics Data System (ADS)

    Friedman, A. R.; Lee, S. Y.; Liu, Y.; Chiang, J. C. H.

    2014-12-01

    The global north-south interhemispheric sea surface temperature (SST) difference experienced a pronounced and rapid decrease in the late 1960s, which has been linked to drying in the Sahel, South Asia, and East Asia. However, some basic questions about the interhemispheric SST shift remain unresolved, including its scale and whether the constituent changes in different basins were coordinated. In this study, we systematically investigate the spatial and temporal behavior of the late-1960s interhemispheric SST shift using ocean surface and subsurface observations. We also evaluate potential mechanisms using control and specific-forcing CMIP5 simulations. Using a regime shift detection technique, we identify the late-1960s shift as the most prominent in the historical observational SST record. We additionally examine the corresponding changes in upper-ocean heat content and salinity associated with the shift. We find that there were coordinated upper-ocean cooling and freshening in the subpolar North Atlantic, the region of the largest-magnitude SST decrease during the interhemispheric shift. These upper-ocean changes correspond to a weakened North Atlantic thermohaline circulation (THC). However, the THC decrease does not fully account for the rapid global interhemispheric SST shift, particularly the warming in the extratropical Southern Hemisphere.

  20. Epidemiologic evidence for asthma and exposure to air toxics: linkages between occupational, indoor, and community air pollution research.

    PubMed Central

    Delfino, Ralph J

    2002-01-01

    Outdoor ambient air pollutant exposures in communities are relevant to the acute exacerbation and possibly the onset of asthma. However, the complexity of pollutant mixtures and etiologic heterogeneity of asthma has made it difficult to identify causal components in those mixtures. Occupational exposures associated with asthma may yield clues to causal components in ambient air pollution because such exposures are often identifiable as single-chemical agents (e.g., metal compounds). However, translating occupational to community exposure-response relationships is limited. Of the air toxics found to cause occupational asthma, only formaldehyde has been frequently investigated in epidemiologic studies of allergic respiratory responses to indoor air, where general consistency can be shown despite lower ambient exposures. The specific volatile organic compounds (VOCs) identified in association with occupational asthma are generally not the same as those in studies showing respiratory effects of VOC mixtures on nonoccupational adult and pediatric asthma. In addition, experimental evidence indicates that airborne polycyclic aromatic hydrocarbon (PAH) exposures linked to diesel exhaust particles (DEPs) have proinflammatory effects on airways, but there is insufficient supporting evidence from the occupational literature of effects of DEPs on asthma or lung function. In contrast, nonoccupational epidemiologic studies have frequently shown associations between allergic responses or asthma with exposures to ambient air pollutant mixtures with PAH components, including black smoke, high home or school traffic density (particularly truck traffic), and environmental tobacco smoke. Other particle-phase and gaseous co-pollutants are likely causal in these associations as well. Epidemiologic research on the relationship of both asthma onset and exacerbation to air pollution is needed to disentangle effects of air toxics from monitored criteria air pollutants such as particle mass

  1. Partial tachyphylaxis to somatostatin (SST) analogues in a patient with acromegaly: the role of SST receptor desensitisation and circulating antibodies to SST analogues.

    PubMed

    Wahid, Shahid T; Marbach, Peter; Stolz, Barbara; Miller, Margaret; James, Robert Andrew; Ball, Steve G

    2002-03-01

    Somatostatin (SST) analogues are a key option in the management of a variety of conditions, including acromegaly. Tachyphylaxis to SST analogues is not documented in acromegaly. We describe such a phenomenon. A 74-year-old female with acromegaly previously treated with (90)Y implant, external radiotherapy and thrice daily s.c. octreotide had stable GH levels of 19 mU/l. GH progressively rose following switches to lanreotide and depot octreotide as Sandostatin LAR: from 29 to 126 mU/l. Magnetic resonance imaging and (111)In-pentetreotide scanning revealed no tumour growth or alteration in SST receptor (SSTR) status. Tachyphylaxis to SST analogues was considered. Therapy was discontinued and re-introduced in daily 200 microg/24 h increments by continuous s.c. infusion, to a maximum of 1000 microg/24 h, and maintained over 3 weeks with daily, followed by weekly, GH profiles. Competitive (125)I-octreotide radioligand binding assays measured in vitro bio-activity of anti-SST analogue antibodies. In vitro SSTR binding studies utilised SSTR-expressing rat cortex membrane. Median GH fell by 93% from 504 to 39.5 mU/l and rose reproducibly on continued infusion to 120 mU/l. Octreotide withdrawal for 16 h produced a 64% increase in sensitivity. High-affinity IgG anti-lanreotide (IC(50)=187 pmol/l) and anti-octreotide (IC(50)=82 nmol/l) antibody, with no crossreactivity with natural SST, was demonstrated. In vitro inhibition of (125)I-octreotide SSTR binding by anti-SST analogue crossreacting antibody was observed at 1:1 serum dilution. This is the first report of tachyphylaxis to SST analogues in acromegaly. We believe that the short time course of resensitisation following acute octreotide withdrawal is suggestive of an effect(s) on receptor function or on the receptor signal transduction cascade at sites further downstream, rather than an immune-mediated phenomenon.

  2. Bay of Bengal salinity stratification and Indian summer monsoon intraseasonal oscillation: 2. Impact on SST and convection

    NASA Astrophysics Data System (ADS)

    Li, Yuanlong; Han, Weiqing; Wang, Wanqiu; Ravichandran, M.; Lee, Tong; Shinoda, Toshiaki

    2017-05-01

    The Indian summer monsoon intraseasonal oscillations (MISOs) induce pronounced intraseasonal sea surface temperature (SST) variability in the Bay of Bengal (BoB), which has important feedbacks to atmospheric convection. An ocean general circulation model (OGCM) is employed to investigate the upper-ocean processes affecting intraseasonal SST variability and its feedback to the MISO convection. In the BoB, the MISO induces intraseasonal SST variability predominantly through surface heat flux forcing with comparable contributions from shortwave radiation and turbulent heat flux, and to a much smaller extent through wind-driven ocean mixed layer entrainment. The ocean salinity stratification, represented by mixed layer depth (MLD) and barrier layer thickness (BLT), has a strong control on SST but weak impact on convection of the MISO. The MLD is critical for the amplitude of SST response to various forcing processes, while the BLT mainly affects entrainment by determining the temperature difference between the mixed layer and the water below. From May to mid-June, the shallow MLD and thin barrier layer greatly enhance intraseasonal SST anomalies, which can amplify convection fluctuations of the MISO through air-sea interaction and leads to intense but short-duration postconvection break spells. When either the MLD or the BLT is large, intraseasonal SSTs tend to be weak. Further investigation reveals that freshwater flux of the monsoon gives rise to the shallow MLD and thick barrier layer, and its overall effect on intraseasonal SSTs is a 20% enhancement. These results provide implications for improving the simulation and forecast of the MISO in climate models.

  3. Unmanned air vehicle (UAV) ultra-persitence research

    SciTech Connect

    Dron, S. B.

    2012-03-01

    Sandia National Laboratories and Northrop Grumman Corporation Integrated Systems, Unmanned Systems (NGIS UMS) collaborated to further ultra-persistence technologies for unmanned air vehicles (UAVs). The greatest shortfalls in UAV capabilities have been repeatedly identified as (1) insufficient flight persistence or 'hang time,' (2) marginal electrical power for running higher power avionics and payload systems, and (3) inadequate communications bandwidth and reach. NGIS UMS requested support from Sandia to develop an ultra-persistent propulsion and power system (UP3S) for potential incorporation into next generation UAV systems. The team members tried to determine which energy storage and power generation concepts could most effectively push UAV propulsion and electrical power capabilities to increase UAV sortie duration from days to months while increasing available electrical power at least two-fold. Primary research and development areas that were pursued included these goals: perform general system engineering and integration analyses; develop initial thermal and electrical power estimates; provide mass, volume, dimensional, and balance estimates; conduct preliminary safety assessments; assess logistics support requirements; perform, preliminary assessments of any security and safeguards; evaluate options for removal, replacement, and disposition of materials; generally advance the potential of the UP3S concept. The effort contrasted and compared eight heat sources technologies, three power conversion, two dual cycle propulsion system configurations, and a single electrical power generation scheme. Overall performance, specific power parameters, technical complexities, security, safety, and other operational features were successfully investigated. Large and medium sized UAV systems were envisioned and operational flight profiles were developed for each concept. Heat source creation and support challenges for domestic and expeditionary operations were

  4. Air pollution control system research: An iterative approach to developing affordable systems

    NASA Technical Reports Server (NTRS)

    Watt, Lewis C.; Cannon, Fred S.; Heinsohn, Robert J.; Spaeder, Timothy A.

    1995-01-01

    This paper describes a Strategic Environmental Research and Development Program (SERDP) funded project led jointly by the Marine Corps Multi-Commodity Maintenance Centers, and the Air and Energy Engineering Research Laboratory (AEERL) of the USEPA. The research focuses on paint booth exhaust minimization using recirculation, and on volatile organic compound (VOC) oxidation by the modules of a hybrid air pollution control system. The research team is applying bench, pilot and full scale systems to accomplish the goals of reduced cost and improved effectiveness of air treatment systems for paint booth exhaust.

  5. [Structure and functioning of research ethics committees in the Autonomous City of Buenos Aires and Greater Buenos Aires].

    PubMed

    Sabio, María Fernanda; Bortz, Jaime Elías

    2015-06-01

    Given the few existing studies on research ethics committees (RECs) in Argentina, this paper aims to describe the structure and functioning of institutional RECs in the Autonomous City of Buenos Aires and Greater Buenos Aires. A descriptive, qualitative and quantitative research study was carried out using a survey conducted between March and July 2012. The sample was made up of 46 RECs. Forty percent of committee members were doctors and the age and sex distribution met standards. Inadequate numbers of methodologists, community representatives, lawyers and members external to the institution were identified, as well as shortcomings regarding administrative staff, fixed locations for meetings, budgets adequate to expenditures and training in research ethics. Some of those surveyed reported problems in their relationship with the institution and with researchers, in addition to difficulties regarding the time available to perform tasks.

  6. Mexico City Air Quality Research Initiative; Volume 5, Strategic evaluation

    SciTech Connect

    1994-03-01

    Members of the Task HI (Strategic Evaluation) team were responsible for the development of a methodology to evaluate policies designed to alleviate air pollution in Mexico City. This methodology utilizes information from various reports that examined ways to reduce pollutant emissions, results from models that calculate the improvement in air quality due to a reduction in pollutant emissions, and the opinions of experts as to the requirements and trade-offs that are involved in developing a program to address the air pollution problem in Mexico City. The methodology combines these data to produce comparisons between different approaches to improving Mexico City`s air quality. These comparisons take into account not only objective factors such as the air quality improvement or cost of the different approaches, but also subjective factors such as public acceptance or political attractiveness of the different approaches. The end result of the process is a ranking of the different approaches and, more importantly, the process provides insights into the implications of implementing a particular approach or policy.

  7. Understanding Southern Ocean SST Trends in Historical Simulations and Observations

    NASA Astrophysics Data System (ADS)

    Kostov, Yavor; Ferreira, David; Marshall, John; Armour, Kyle

    2017-04-01

    Historical simulations with CMIP5 global climate models do not reproduce the observed 1979-2014 Southern Ocean (SO) cooling, and most ensemble members predict gradual warming around Antarctica. In order to understand this discrepancy and the mechanisms behind the SO cooling, we analyze output from 19 CMIP5 models. For each ensemble member we estimate the characteristic responses of SO SST to step changes in greenhouse gas (GHG) forcing and in the seasonal indices of the Southern Annular Mode (SAM). Using these step-response functions and linear convolution theory, we reconstruct the original CMIP5 simulations of 1979-2014 SO SST trends. We recover the CMIP5 ensemble mean trend, capture the intermodel spread, and reproduce very well the behavior of individual models. We thus suggest that GHG forcing and the SAM are major drivers of the simulated 1979-2014 SO SST trends. In consistence with the seasonal signature of the Antarctic ozone hole, our results imply that the summer (DJF) and fall (MAM) SAM exert a particularly important effect on the SO SST. In some CMIP5 models the SO SST response to SAM partially counteracts the warming due to GHG forcing, while in other ensemble members the SAM-induced SO SST trends complement the warming effect of GHG forcing. The compensation between GHG and SAM-induced SO SST anomalies is model-dependent and is determined by multiple factors. Firstly, CMIP5 models have different characteristic SST step response functions to SAM. Kostov et al. (2016) relate these differences to biases in the models' climatological SO temperature gradients. Secondly, many CMIP5 historical simulations underestimate the observed positive trends in the DJF and MAM seasonal SAM indices. We show that this affects the models' ability to reproduce the observed SO cooling. Last but not least, CMIP5 models differ in their SO SST step response functions to GHG forcing. Understanding the diverse behavior of CMIP5 models helps shed light on the physical processes

  8. The telescope control of the ASTRI SST-2M prototype for the Cherenkov telescope Array: hardware and software design architecture

    NASA Astrophysics Data System (ADS)

    Antolini, Elisa; Cascone, Enrico; Schwarz, Joseph; Stringhetti, Luca; Tanci, Claudio; Tosti, Gino; Aisa, Damiano; Aisa, Simone; Bagaglia, Marco; Busatta, Andrea; Campeggi, Carlo; Cefala, Marco; Farnesini, Lucio; Giacomel, Stefano; Marchiori, Gianpiero; Marcuzzi, Enrico; Nucciarelli, Giuliano; Piluso, Antonfranco

    2014-07-01

    ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) is a flagship project of the Italian Ministry of Research and led by the Italian National Institute of Astrophysics (INAF). One of its aims is to develop, within the Cherenkov Telescope Array (CTA) framework, an end-to-end small-sized telescope prototype in a dual-mirror configuration (SST-2M) in order to investigate the energy range E ~ 1-100 TeV. A long-term goal of the ASTRI program is the production of an ASTRI/CTA mini-array composed of seven SST-2M telescopes. The prototype, named ASTRI SST-2M, is seen as a standalone system that needs only network and power connections to work. The software system that is being developed to control the prototype is the base for the Mini-Array Software System (MASS), which has the task to make possible the operation of both the ASTRI SST-2M prototype and the ASTRI/CTA mini-array. The scope of this contribution is to give an overview of the hardware and software architecture adopted for the ASTRI SST- 2M prototype, showing how to apply state of the art industrial technologies to telescope control and monitoring systems.

  9. Research on the net amount of air traffic network

    NASA Astrophysics Data System (ADS)

    Hu, Jun; Wu, Zhenya

    2013-03-01

    As accurate prediction of traffic flow states could reduce the congestion possibility, the theoretical study of air traffic was how to determinate the next time the state with fluid mechanics based on random condition. Then, a novel depicting method of air traffic flow is proposed, which calculated the change of net amount in flow conservation equation with discrete time loss queuing, further, it could determine the relationship between flow and density. Compared to the existing general algorithm, the threshold of net amount was presented in the method, and it had good adaptability.

  10. Russian Tu-144LL SST Joint NASA Flying Laboratory - Flight November 29, 1996

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The modified Tupolev Tu-144LL supersonic flying laboratory during a test flight from the Zhukovsky Airfield near Moscow, Russia. The 'LL' stands for Letayuschaya Laboratoriya, which means Flying Laboratory. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different engines than were

  11. Communication Theory and Research in Air Force Education and Training.

    ERIC Educational Resources Information Center

    Kline, John A.

    The United States Air Force is unique among the armed services in placing all its professional military education (PME) and professional continuing education (PCE) under a single command. Furthermore, most of the schools and courses are in the same geographical location at the Maxwell/Gunter complex in Montgomery, Alabama. There are basic…

  12. Air Force Research in Aero Propulsion Technology (AFRAPT)

    DTIC Science & Technology

    1990-09-27

    impact on rotordynamic stability. Air (or other gas) flowing through the clearances of labyrinth seals can induce an asymmetric pressure distribution... Rotordynamic Instability, College Station, TX, May 1990. 17 B Ih=o.166 KgIS (baeJ A i6O.137 KgIS el r0.1S@ Kg/S

  13. Role of the bomber in integrated air power. Research report

    SciTech Connect

    Lumpkin, P.R.

    1988-05-01

    The role of bombers and the concept of strategic nuclear deterrence have become dysfunctionally linked. The Air Force fostered this linkage in the post-World War II and Korea era with its reliance on nuclear weapons and strategy of mutually assured destruction. Bombers continue to be a vital component of our nation's strategic nuclear-deterrent forces. However, bombers are not limited to deterring nuclear war. In addition to employing the first nuclear weapons, U.S. war fighting experience shows that bombers have played a crucial role in every major conflict beginning with World War II. Since our experience shows that we have historically employed bombers in a conventional role, the author suggests that we should be prepared to employ them across the spectrum of conflict today. Our experience also clearly shows that bombers have been best employed as an element of integrated air power, rarely as an independent force. Therefore, we should prepare to employ bombers as a member of an integrated air power team. The author also suggests that the concepts of tactical and strategic are ill-defined and serve to divide air power into organizations and forces. The author draws lessons from World War II and Vietnam experiences that could help guide our preparation for future conflicts.

  14. Urban air pollution and atmospheric diffusion research in China

    NASA Astrophysics Data System (ADS)

    Ning, Datong; Whitney, Joseph B.; Yap, David

    1987-11-01

    Air pollution has become a serious problem in China as a result of that country's efforts in the last 30 years to become a great industrial power. The burning of coal, which currently provides over 70% of all China's energy needs, is a major source of air pollution. Because Chinese coal is high in sulfur and ash content and because most combustion devices in China have low efficiencies, SO2 and particulate emissions are a serious problem and are comparable to or exceed those found in many countries that are much more industrialized. Although most coal is burned in North China, acid precipitation is most severe in South China because of the lack of buffering loess dust found in the former region. The Chinese government has already taken major steps to mitigate air pollution, such as relocating polluting industries, supplying coal with lower sulfur content, using gas instead of coal for residential heating, and levying fines on industries that exceed pollution standards. Atmospheric environmental impact assessment (AEIA) is also required for all major new projects. This article describes three types of mathematical diffusion models and field and wind-tunnel experiments that are used in such assessments. The Chinese authorities believe that a range of technological, managerial, locational, and behavioral changes must be effected before the air of Chinese cities can be significantly improved.

  15. The impact of the subtropical South Atlantic SST on South American precipitation

    NASA Astrophysics Data System (ADS)

    Taschetto, A. S.; Wainer, I.

    2008-11-01

    The Community Climate Model (CCM3) from the National Center for Atmospheric Research (NCAR) is used to investigate the effect of the South Atlantic sea surface temperature (SST) anomalies on interannual to decadal variability of South American precipitation. Two ensembles composed of multidecadal simulations forced with monthly SST data from the Hadley Centre for the period 1949 to 2001 are analysed. A statistical treatment based on signal-to-noise ratio and Empirical Orthogonal Functions (EOF) is applied to the ensembles in order to reduce the internal variability among the integrations. The ensemble treatment shows a spatial and temporal dependence of reproducibility. High degree of reproducibility is found in the tropics while the extratropics is apparently less reproducible. Austral autumn (MAM) and spring (SON) precipitation appears to be more reproducible over the South America-South Atlantic region than the summer (DJF) and winter (JJA) rainfall. While the Inter-tropical Convergence Zone (ITCZ) region is dominated by external variance, the South Atlantic Convergence Zone (SACZ) over South America is predominantly determined by internal variance, which makes it a difficult phenomenon to predict. Alternatively, the SACZ over western South Atlantic appears to be more sensitive to the subtropical SST anomalies than over the continent. An attempt is made to separate the atmospheric response forced by the South Atlantic SST anomalies from that associated with the El Niño Southern Oscillation (ENSO). Results show that both the South Atlantic and Pacific SSTs modulate the intensity and position of the SACZ during DJF. Particularly, the subtropical South Atlantic SSTs are more important than ENSO in determining the position of the SACZ over the southeast Brazilian coast during DJF. On the other hand, the ENSO signal seems to influence the intensity of the SACZ not only in DJF but especially its oceanic branch during MAM. Both local and remote influences, however

  16. GUIDELINES FOR INTERPRETING RETINAL PHOTOGRAPHS AND CODING FINDINGS IN THE SUBMACULAR SURGERY TRIALS (SST)

    PubMed Central

    2005-01-01

    Purpose To describe the guidelines followed by the Submacular Surgery Trials (SST) Research Group in the interpretation of color fundus photographs and fluorescein angiograms of subfoveal choroidal neovascular lesions evaluated in the SST and to assist ophthalmologists in applying the results of the SST. Methods Stereoscopic color fundus photographs and fluorescein angiograms of the study eye and nonstudy eye of 1,015 patients with subfoveal choroidal neovascular lesions secondary to age-related macular degeneration, ocular histoplasmosis syndrome, or idiopathic choroidal neovascularization (CNV) were obtained and graded by certified SST fundus photograph readers at the baseline examination in three randomized clinical trials comparing surgery with observation. Adherence to the inclusion and exclusion criteria and ocular features that might affect visual outcome were documented. Stereoscopic color fundus photography and fluorescein angiography were repeated 1 month after randomization for patients assigned to surgery to provide documentation that surgery was performed and to assess compliance with the surgery protocol. Photographs and fluorescein angiograms of both the study eye and the fellow eye in all patients then were obtained 3 months, 6 months, and 12 months after randomization and then annually up to 48 months. The κ statistic was used to evaluate interobserver reliability of photograph gradings. Results Lesion components at baseline included classic CNV, occult CNV, and features contiguous to CNV, including blood, fibrous tissue, hypofluorescence not corresponding to blood, serous detachment of the retinal pigment epithelium, and prior areas of laser photocoagulation. At follow-up, fluorescein leakage from CNV was assessed peripheral to or within the area of the retinal pigment epithelium abnormality after surgery. The lesion at follow-up could include any of the features identified at baseline as well as retinal pigment epithelium abnormalities, such as

  17. Japanese GHRSST activities and the AMSR2 SST Validations

    NASA Astrophysics Data System (ADS)

    Kachi, Misako; Shibata, Akira; Murakami, Hiroshi; Imaoka, Keiji

    2014-05-01

    The Japan Aerospace Exploration Agency (JAXA) developed the Ocean Color and Temperature Scanner (OCTS) as optical imagers to observe sea surface temperature (SST) onboard the Advanced Earth Observing Satellite (ADEOS) operated from 1996 to 1997, the Global Imager (GLI) onboard the Advanced Earth Observing Satellite-II (ADEOS-II) operated from 2002 to 2003, and is developing the Second generation Global Imager (SGLI), which will be carried by the first generation of the Global Change Observation Mission (GCOM) - Climate (GCOM-C1) scheduled to be launched in Japanese Fiscal Year (JFY) of 2016. JAXA also developed a series of passive microwave imagers that has C-band (6.9-GHz/7.2GHz) channel; the Advanced Microwave Scanning Radiometer (AMSR) on board the ADEOS-II satellite; AMSR for EOS (AMSR-E) on board the NASA's EOS Aqua satellite; and the AMSR2 on board the first generation of the GCOM - Water (GCOM-W1) satellite. C-band channels on these instruments are indispensable for retrieving global SST and soil moisture through the clouds. All-weather and frequent measurements enables analyses of rapid changes of SST. The GCOM-W1 satellite was launched on May 18, 2012 (JST) and all AMSR2 standard products including SST have been released to public since May 2013. The AMSR2 SST product is validated by comparing with various buoy SST observations reported through the Global Telecommunication System (GTS) operated by World Meteorological Organization (WMO). Each match-up data will include AMSR2 footprints around buoy stations within radius of 30 km and 2 hours. Root mean square error (RMSE) between the AMSR2 and Buoy SSTs from July 3, 2012 to March 31, 3013 is 0.56 °C and correlation coefficient is 0.998. JAXA is operating the GHRSST server in Japan (http://suzaku.eorc.jaxa.jp/GHRSST/) to distribute SST products in GHRSST Data Specification (GDS) version 2.0 produced in JAXA. Currently, L2P and L3C SST products retrieved from AMSR2, AMSR-E, Windsat on board the Colioris

  18. INDOOR AIR QUALITY AND FURNITURE PROCUREMENT IN EPA'S NEW RESEARCH TRIANGLE CAMPUS

    EPA Science Inventory

    The paper discusses various aspects of the EPA's new 1.2 million square foot building in Research Triangle Park that pertain to indoor air, with a particular focus on the process EPA used to select furniture to meet its indoor air guidelines. In keeping with its mission of protec...

  19. Causes of Indoor Air Quality Problems in Schools: Summary of Scientific Research.

    ERIC Educational Resources Information Center

    Bayer, Charlene W.; Crow, Sidney A.; Fischer, John

    Research show that one in five U.S. schools has indoor air quality (IAQ) problems; 36 percent have inadequate heating, ventilation, and air conditioning (HVAC) systems; and there appears to be a correlation between IAQs and the proportion of a school's students coming from low-income households. This report examines the IAQ issue in U.S. public…

  20. Adaptation of forest ecosystems to air pollution and climate change: a global assessment on research priorities

    Treesearch

    Y. Serengil; A. Augustaitis; Andrzej Bytnerowicz; Nancy Grulke; A.R. Kozovitz; R. Matyssek; G. Müller-Starck; M. Schaub; G. Wieser; A.A. Coskun; E. Paoletti

    2011-01-01

    Climate change and air pollution are two of the anthropogenic stressors that require international collaboration. Influence mechanisms and combating strategies towards them have similarities to some extent. Impacts of air pollution and climate change have long been studied under IUFRO Research Group 7.01 and state of the art findings are presented at biannual meetings...

  1. 75 FR 22126 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-27

    ... AGENCY Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods: Designation of One New Equivalent Method AGENCY: Environmental Protection Agency. ACTION: Notice of the designation of one new equivalent method for monitoring ambient air quality. SUMMARY: Notice is hereby...

  2. INDOOR AIR QUALITY AND FURNITURE PROCUREMENT IN EPA'S NEW RESEARCH TRIANGLE CAMPUS

    EPA Science Inventory

    The paper discusses various aspects of the EPA's new 1.2 million square foot building in Research Triangle Park that pertain to indoor air, with a particular focus on the process EPA used to select furniture to meet its indoor air guidelines. In keeping with its mission of protec...

  3. Characterisation and quantification of regional diurnal SST cycles from SEVIRI

    NASA Astrophysics Data System (ADS)

    Karagali, I.; Høyer, J. L.

    2014-04-01

    Hourly SST fields from the geostationary Spinning Enhanced Visible and Infrared Imager (SEVIRI) offer a unique opportunity for the characterisation and quantification of the diurnal cycle of SST in the Atlantic Ocean, the Mediterranean Sea and the Northern European Shelf seas. Six years of SST fields from the SEVIRI dataset are validated against the polar orbiting Advanced Along Track Scanning Radiometer (AATSR) archive to identify biases in the SEVIRI data. Identification of the diurnal signal requires a night-time SST field representative of foundation temperatures, i.e. well-mixed conditions and free of any diurnal signal. Such fields are generated from the SEVIRI archive and are validated against pre-dawn SEVIRI SSTs and night-time SSTs from drifting buoys. The overall SEVIRI-AATSR bias is -0.07 K, and the standard deviation is 0.51 K, based on more than 53 × 106 match-ups. The different methodologies tested for the foundation temperature fields reveal variability introduced by averaging night-time SSTs over many days compared to single-day, pre-dawn values. Diurnal warming is most pronounced in the Mediterranean and Baltic Seas while smallest diurnal signals are found in the Tropics. Longer diurnal warming duration is identified in the high latitudes compared to the Tropics. The mean diurnal signal of monthly mean SST can be up to 0.5° in specific regions.

  4. Cryogenic heat loads analysis from SST-1 plasma experiments

    NASA Astrophysics Data System (ADS)

    Bairagi, N.; Tanna, V. L.; Pradhan, S.

    2017-02-01

    Cryogenic heat load analysis is an important aspect for stable operation of Tokamaks employing large scale superconducting magnets. Steady State Superconducting Tokamak (SST-1) at IPR is equipped with superconducting magnets system (SCMS) comprising sixteen numbers of modified ‘D’ shaped toroidal field (TF) and nine poloidal field (PF) superconducting coils which are wound using NbTi/Cu based cable-in conduit conductor (CICC). SST-1 magnets operation has flexibility to cool either in two-phase with sub-cooling, two-phase without sub-cooling or single phase (supercritical) helium using a dedicated 1.3 kW helium refrigerator cum liquefier (HRL). Here, we report gross heat losses for integrated TF superconducting magnets of SST-1 during the plasma campaign using cryogenic helium supply/return thermodynamic data from cryoplant. Heat loads mainly comprising of steady state as well as transient loads are smoothly absorbed by SST-1 cryogenic helium plant during plasma experiments. The corresponding heat produced in the coils is totally released to the helium flowing through the TF coils, which in turn is dumped into liquid helium stored in main control Dewar. These results are very useful reference for heat loss analysis for TF as well as PF coils and provides database for future operation of SST-1 machine.

  5. Decadal-Interdecadal SST Variability and Regional Climate Teleconnections

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Weng, H.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Dominant modes of decadal and interdecadal SST variability and their impacts on summertime rainfall variability over East Asia and the North America are studied. Two dominant modes of interdecadal SST variability, one associated with El Nino-like warming in the global oceans and one with an east-west seesaw variation in the equatorial Pacific have been identified. The first mode is associated in part with a long-term warming trend in the topical oceans and cooling over the northern Pacific. The second mode suggests an westward shift and strengthening of the Walker circulation from 1960s to the 1980s. Over East Asian, the first SST mode is correlated with reduced rainfall in northern China and excessive rainfall in central China. This SST mode is also associated with the tendency for increased rainfall over the midwest region, and reduced rainfall over the east Coast of the US. The results suggest a teleconnection pattern which links the occurrences of drought and floods over the Asian monsoon and the US summertime time climate. This teleconnection is likely to be associated with decadal variability of the East Asian jetstream, which are affected by strong land surface heating over the Siberian region, as well as El Nino-like SST forcings. The occurrences of major droughts and floods in the East Asian and US continent in recent decades are discussed in light of the above teleconnection patterns.

  6. SST dual-mirror telescopes for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Dumas, Delphine; Laporte, Philippe; Sol, Hélène; Pareschi, Giovanni; Canestrari, Rodolfo; Stringhetti, Luca; Catalano, Osvaldo; White, Richard; Greenshaw, Tim; Hinton, Jim; Blake, Simon

    2014-07-01

    The Cherenkov Telescope Array (CTA) is an international collaboration that aims to create the world's foremost very high energy gamma-ray observatory, composed of large, medium and small size telescopes (SST). The SSTs will be the most numerous telescopes on site and will focus on capturing the rarer highest energy photons. Three prototypes of SST are designed and currently under construction; two of them, ASTRI and SST-GATE, have been designed, based on a dual-mirror Schwarzschild-Couder (SC) design which has never been built before for any astronomical observation. The SC optical design allows for a small plate scale, a wide field of view and a lightweight cameras aiming to minimize the cost of SST telescopes in order to increase their number in the array. The aim of this article is to report the progress of the two telescope projects prototyping telescope structures and cameras for the Small Size Telescopes for CTA. After a discussion of the CTA project and its scientific objectives, the performance of the SC design is described, with focus on the specific designs of SST-GATE and ASTRI telescopes. The design of both prototypes and their progress is reported in the current prototyping phase. The designs of Cherenkov cameras, CHEC and ASTRI, to be mounted on these telescopes are discussed and progresses are reported.

  7. Overall behaviour of PFC integrated SST-1 vacuum system

    NASA Astrophysics Data System (ADS)

    Khan, Ziauddin; Raval, Dilip C.; Paravasu, Yuvakiran; Semwal, Pratibha; Dhanani, Kalpeshkumar R.; George, Siju; Shoaib, Mohammad; Prakash, Arun; Babu, Gattu R.; Thankey, Prashant; Pathan, Firozkhan S.; Pradhan, Subrata

    2017-04-01

    As a part of phase-I up-gradation of Steady-state Superconducting Tokamak (SST-1), Graphite Plasma Facing Components (PFCs) have been integrated inside SST-1 vacuum vessel as a first wall (FW) during Nov 14 and May 2015. The SST-1 FW has a total surface area of the installed PFCs exposed to plasma is ∼ 40 m2 which is nearly 50% of the total surface area of stainless steel vacuum chamber (∼75 m2). The volume of the vessel within the PFCs is ∼ 16 m3. After the integration of PFCs, the entire vessel as well as the PFC cooling/baking circuits has been qualified with an integrated helium leak tightness of < 1.0 x 10-8 mbar 1/s. The pumping system of the SST-1 vacuum vessel comprises of one number of Roots’ pump, four numbers of turbomolecular pumps and a cryopump. After the initial pump down, the PFCs were baked at 250 °C for nearly 20 hours employing hot nitrogen gas to remove the absorbed water vapours. Thereafter, Helium glow discharges cleaning were carried out towards the removal of surface impurities. The pump down characteristics of SST-1 vacuum chamber and the changes in the residual gaseous impurities after the installation of the PFCs will be discussed in this paper.

  8. Validation and optimization of SST k-ω turbulence model for pollutant dispersion within a building array

    NASA Astrophysics Data System (ADS)

    Yu, Hesheng; Thé, Jesse

    2016-11-01

    The prediction of the dispersion of air pollutants in urban areas is of great importance to public health, homeland security, and environmental protection. Computational Fluid Dynamics (CFD) emerges as an effective tool for pollutant dispersion modelling. This paper reports and quantitatively validates the shear stress transport (SST) k-ω turbulence closure model and its transitional variant for pollutant dispersion under complex urban environment for the first time. Sensitivity analysis is performed to establish recommendation for the proper use of turbulence models in urban settings. The current SST k-ω simulation is validated rigorously by extensive experimental data using hit rate for velocity components, and the "factor of two" of observations (FAC2) and fractional bias (FB) for concentration field. The simulation results show that current SST k-ω model can predict flow field nicely with an overall hit rate of 0.870, and concentration dispersion with FAC2 = 0.721 and FB = 0.045. The flow simulation of the current SST k-ω model is slightly inferior to that of a detached eddy simulation (DES), but better than that of standard k-ε model. However, the current study is the best among these three model approaches, when validated against measurements of pollutant dispersion in the atmosphere. This work aims to provide recommendation for proper use of CFD to predict pollutant dispersion in urban environment.

  9. Why and Whither Hypersonics Research in the US Air Force

    DTIC Science & Technology

    2000-12-01

    airbreathing SSTO leads to very large increases in GTOW. Staging velocity was chosen as a fundamental variable in the study. The metric for...hypersonic space launch system in about 2025. This program includes several exit ramps and potential options. The exit ramps would lead to either an...would lead to either an operational rocket-based reusable launch system or continuation of the expendable course the Air Force is currently on. A

  10. Aluminum-air power cell research and development progress report

    SciTech Connect

    Cooper, J.F.

    1984-12-01

    The wedge-shaped cell design, of the aluminum-air battery being developed, is mechanically simple and capable of full anode utilization and rapid full or partial recharge. To maintain constant interelectrode separation and to collect anodic current, the cell uses tin-coated copper tracks mounted on removable cassettes. Under gravity feed, slabs of aluminum enter the cell at a continuous and constant rate and gradually assume the wedge shape as they dissolve. Voltage losses at this tin-aluminum junction are 7 mV at 2 kA/m/sup 2/. A second-generation wedge cell incorporates air and electrolyte manifolding into individually replaceable air-cathode cassettes. Prototype wedge cells of one design were operated simultaneously with a fluidized-bed crystallizer, which stabilized aluminate concentration and produced a granular aluminum-trihydroxide reaction product. Electrolyte was circulated between the cell and crystallizer, and a hydrocyclone was used to retain particles larger than 0.015 mm within the crystallizer. Air electrodes were tested over simulated vehicle drive systems that include a standby phase in cold, supersaturated electrolyte. Electrodes using advanced sintering and wet-proofing techniques and catalyzed with a nonnoble metal catalyst have been operated over 1500 cycles (a two-year drive life). The fuel costs of aluminum were estimated on the basis of model alloy production and distribution costs, leading to a projected operating cost of 8 to 10 cents per mile, depending on alloy and vehicle drive-train efficiencies. While unalloyed aluminum has a peak electrical energy consumption of 4.5 kWh/kg, the Hall and Alcoa processes consume 11.3 and 8.3 kWh/kg, respectively. The significance of these and other energy-use estimates for the 1990s and beyond is discussed.

  11. Aluminum-air power cell research and development. Progress report

    SciTech Connect

    Cooper, J.F.

    1984-02-22

    An aluminum-air battery is under development with the objective of providing an electric vehicle with the range, acceleration and rapid refueling capability of common automobiles. From tested refuelable cell designs, a wedge-shaped cell was chosen for mechanical simplicity and for its capability of full anode utilization and rapid partial- or full-recharge. The cell uses tin-plated copper tracks to maintain a constant interelectrode separation and to collect anodic current. Rectangular slabs of aluminum enter the cell under gravity feed and gradually assume the wedge shape during dissolution. The feed is constant and continuous and tin/aluminum junction losses are 7 mV at 2 kA/m/sup 2/. A second generation wedge cell has been developed which incorporates air- and electrolyte-manifolding into individually-replaceable air-cathode cassettes. A prototype wedge cell using replaceable cassettes was operated simultaneously with a crystallizer, which stabilized aluminate concentration and produced a granular aluminum-trihydroxide reaction product. Electrolyte was circulated between cell and fluidized-bed crystallizer, and particles of sizes greater than 0.015 mm were retained within the crystallizer using a hydrocyclone. Air electrodes have been tested over simulated vehicle drive cycles. Electrodes using advanced sintering and wet-proofing techniques and catalyzed with a non-noble metal catalyst (CoTMPP) have been operated for over 1400 drive-cycles. Fuel costs of $1.72/kg-Al (installed) were estimated on the basis of model alloy production and distribution costs, leading to a projected operating cost of 8-10 cents/mile, depending on alloy and vehicle drive-train efficiencies. Unalloyed aluminum yields a peak of 4.5 kWh/kg, while an advanced industrial Hall Process and the pilot-plant Alcoa Smelting Process have electrical energy consumptions of 11.3- and 8.3 kWh/kg, respectively.

  12. A Causal-Comparative Analysis of the Effects of a Student Support Team (SST) Intervention Model at a Secondary School

    ERIC Educational Resources Information Center

    Johnson, Mid D.

    2010-01-01

    The purpose of this research was to identify and examine the effectiveness of a "Student Support Team" (SST) intervention model designed to increase the performance of struggling secondary students and to help them achieve prescribed state standards on the mathematics "Texas Assessment of Knowledge and Skills (TAKS)"…

  13. A Causal-Comparative Analysis of the Effects of a Student Support Team (SST) Intervention Model at a Secondary School

    ERIC Educational Resources Information Center

    Johnson, Mid D.

    2010-01-01

    The purpose of this research was to identify and examine the effectiveness of a "Student Support Team" (SST) intervention model designed to increase the performance of struggling secondary students and to help them achieve prescribed state standards on the mathematics "Texas Assessment of Knowledge and Skills (TAKS)"…

  14. Research on Air Traffic Control Automatic System Software Reliability Based on Markov Chain

    NASA Astrophysics Data System (ADS)

    Wang, Xinglong; Liu, Weixiang

    Ensuring the space of air craft and high efficiency of air traffic are the main job tasks of the air traffic control automatic system. An Air Traffic Control Automatic System (ATCAS) and Markov model is put forward in this paper, which collected the 36 month failure data of ATCAS; A method to predict the s1,s2,s3 of ATCAS is based on Markov chain which predicts and validates the Reliability of ATCTS according to the deriving theory of Reliability. The experimental results show that the method can be used for the future research and proved to be practicable.

  15. Towards Personal Exposures: How Technology Is Changing Air Pollution and Health Research.

    PubMed

    Larkin, A; Hystad, P

    2017-10-05

    We present a review of emerging technologies and how these can transform personal air pollution exposure assessment and subsequent health research. Estimating personal air pollution exposures is currently split broadly into methods for modeling exposures for large populations versus measuring exposures for small populations. Air pollution sensors, smartphones, and air pollution models capitalizing on big/new data sources offer tremendous opportunity for unifying these approaches and improving long-term personal exposure prediction at scales needed for population-based research. A multi-disciplinary approach is needed to combine these technologies to not only estimate personal exposures for epidemiological research but also determine drivers of these exposures and new prevention opportunities. While available technologies can revolutionize air pollution exposure research, ethical, privacy, logistical, and data science challenges must be met before widespread implementations occur. Available technologies and related advances in data science can improve long-term personal air pollution exposure estimates at scales needed for population-based research. This will advance our ability to evaluate the impacts of air pollution on human health and develop effective prevention strategies.

  16. Evaluating Membrane Processes for Air Conditioning; Highlights in Research and Development, NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-06-01

    This NREL Highlight discusses a recent state-of-the-art review of membrane processes for air conditioning that identifies future research opportunities. This highlight is being developed for the June 2015 S&T Alliance Board meeting.

  17. POPULATION-BASED EXPOSURE MODELING FOR AIR POLLUTANTS AT EPA'S NATIONAL EXPOSURE RESEARCH LABORATORY

    EPA Science Inventory

    The US EPA's National Exposure Research Laboratory (NERL) has been developing, applying, and evaluating population-based exposure models to improve our understanding of the variability in personal exposure to air pollutants. Estimates of population variability are needed for E...

  18. Automated Aerodynamic Optimization System for SST Wing-Body Configuration

    NASA Astrophysics Data System (ADS)

    Sasaki, Daisuke; Yang, Guowei; Obayashi, Shigeru

    In this paper, wing-body configurations for a next generation Supersonic Transport are designed by means of Multiobjective Evolutionary Algorithms. SST wing-body configurations are designed to reduce the aerodynamic drag and the sonic boom for supersonic flight. To lower the sonic boom intensity, the present objective function is to satisfy the equivalent area distribution for low sonic boom proposed by Darden. Wing and fuselage is defined by 131 design variables and optimized at the same time. Structured multiblock grids around SST wing-body configuration are generated automatically and an Euler solver is used to evaluate the aerodynamic performance of SST wing-body configuration. Compromised solutions are found as Pareto solutions. Although they have a variety of fuselage configurations, all of them have a similar wing planform due to the imposed constraints. The present results imply that a lifting surface should be distributed innovatively to match Darden’s distribution for low boom.

  19. Coastal and Oceanic SST variability along the western Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Santos, F.; Gómez Gesteira, M.; Decastro, M.; Álvarez, I.

    2010-09-01

    Trends in coastal and oceanic Sea Surface Temperature (SST) were analyzed along the western Iberian Peninsula for the period 1900-2008. SST data were obtained from the UK Meteorological Office, Hadley Centre (http://badc.nerc.ac.uk/data/hadisst). Nodes were distributed on a 1°x1° grid with monthly periodicity. Twelve points were considered from 37°N to 43°N, six at coastal locations (9°W) and six at oceanic locations (14°W). SST has undergone several periods of warming and cooling during the last century. In particularly, two warming periods (from 1900 to 1955 and from 1970 to 2008), and one cooling period (from 1955 to 1975). In addition, the increment of SSTSST) has been calculated as the SST difference between coastal and ocean locations at the same latitude. This parameter has been used by some authors to characterize the upwelling (Nykjaer & VanCamp, 1994). In the inter-annual evolution of the average of ΔSST: two of increase (from 1920 to 1950 and from 1980 to 2008) and one of decrease (from 1950 to 1980). The same study was carried out seasonally. Three seasons were selected according to the periods of high, moderate or low ΔSST: November-February (NDJF); March-June (MAMJ) and July-October (JASO). The greatest differences between coast and ocean were observed during JASO and lowest ones during MAMJ. Negative values were detected during the whole year being more negative from July to September coinciding with the upwelling season (Alvarez et al., 2005). The seasonal ΔSST shows the same increase and decrease cycles as the annual ΔSST evolution. SST patterns showed that warming and cooling trends were less intense near coast than in the ocean. The possible causes of this behavior were analyzed. If the mechanism described by Bakun (1990) and McGregor et al., (2007) is assumed, coastal upwelling is revealed as the main cause of this behavior. On the contrary, when upwelling index evolution is calculated from wind data, coastal upwelling is not

  20. The Atmospheric Bridge: The Influence of ENSO Teleconnections on Air-Sea Interaction over the Global Oceans.

    NASA Astrophysics Data System (ADS)

    Alexander, Michael A.; Bladé, Ileana; Newman, Matthew; Lanzante, John R.; Lau, Ngar-Cheung; Scott, James D.

    2002-08-01

    During El Niño-Southern Oscillation (ENSO) events, the atmospheric response to sea surface temperature (SST) anomalies in the equatorial Pacific influences ocean conditions over the remainder of the globe. This connection between ocean basins via the `atmospheric bridge' is reviewed through an examination of previous work augmented by analyses of 50 years of data from the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) reanalysis project and coupled atmospheric general circulation (AGCM)-mixed layer ocean model experiments. Observational and modeling studies have now established a clear link between SST anomalies in the equatorial Pacific with those in the North Pacific, north tropical Atlantic, and Indian Oceans in boreal winter and spring. ENSO-related SST anomalies also appear to be robust in the western North Pacific during summer and in the Indian Ocean during fall. While surface heat fluxes are the key component of the atmospheric bridge driving SST anomalies, Ekman transport also creates SST anomalies in the central North Pacific although the full extent of its impact requires further study. The atmospheric bridge not only influences SSTs on interannual timescales but also affects mixed layer depth (MLD), salinity, the seasonal evolution of upper-ocean temperatures, and North Pacific SST variability at lower frequencies. The model results indicate that a significant fraction of the dominant pattern of low-frequency (>10 yr) SST variability in the North Pacific is associated with tropical forcing. AGCM experiments suggest that the oceanic feedback on the extratropical response to ENSO is complex, but of modest amplitude. Atmosphere-ocean coupling outside of the tropical Pacific slightly modifies the atmospheric circulation anomalies in the Pacific-North America (PNA) region but these modifications appear to depend on the seasonal cycle and air-sea interactions both within and beyond the North Pacific Ocean.

  1. Influence of SST biases on future climate change projections

    SciTech Connect

    Ashfaq, Moetasim; Skinner, Chris B; Cherkauer, Keith

    2010-01-01

    We use a quantile-based bias correction technique and a multi-member ensemble of the atmospheric component of NCAR CCSM3 (CAM3) simulations to investigate the influence of sea surface temperature (SST) biases on future climate change projections. The simulations, which cover 1977 1999 in the historical period and 2077 2099 in the future (A1B) period, use the CCSM3-generated SSTs as prescribed boundary conditions. Bias correction is applied to the monthly time-series of SSTs so that the simulated changes in SST mean and variability are preserved. Our comparison of CAM3 simulations with and without SST correction shows that the SST biases affect the precipitation distribution in CAM3 over many regions by introducing errors in atmospheric moisture content and upper-level (lower-level) divergence (convergence). Also, bias correction leads to significantly different precipitation and surface temperature changes over many oceanic and terrestrial regions (predominantly in the tropics) in response to the future anthropogenic increases in greenhouse forcing. The differences in the precipitation response from SST bias correction occur both in the mean and the percent change, and are independent of the ocean atmosphere coupling. Many of these differences are comparable to or larger than the spread of future precipitation changes across the CMIP3 ensemble. Such biases can affect the simulated terrestrial feedbacks and thermohaline circulations in coupled climate model integrations through changes in the hydrological cycle and ocean salinity. Moreover, biases in CCSM3-generated SSTs are generally similar to the biases in CMIP3 ensemble mean SSTs, suggesting that other GCMs may display a similar sensitivity of projected climate change to SST errors. These results help to quantify the influence of climate model biases on the simulated climate change, and therefore should inform the effort to further develop approaches for reliable climate change projection.

  2. Observations of SST diurnal variability in the South China Sea

    NASA Astrophysics Data System (ADS)

    Tu, Qianguang; Pan, Delu; Hao, Zengzhou; Chen, Jianyu

    2015-10-01

    In this study, a 3-hourly time resolution gap free sea surface temperature (SST) analysis is generated to resolve the diurnal cycle in the South China Sea (SCS, 0°-25°N, 100°-125°E).It takes advantage of hourly geostationary satellite MTSAT observations and combines three infrared and two microwave polar satellite observations at different local times. First, all the data are classified into eight SST datasets at 3 hour intervals and then remapped to 0.05°resolution grids. A series of critical quality control is done to remove the outliers.Then bias adjustment is applied to the polar satellite observations with reference to the MTSAT data. Finally, the six satellites SST data are blended by using the optimal interpolated algorithm. The 3-hourly blended SST is compared against buoy measurements. It shows a good agreement that the biases do not exceed 0.2 °C and root mean square errors range from 0.5 to 0.65 °C. A typical diurnal cycle similar to sine wave is observed. The minimum SST occurs at around 0600h and warming peak occurring between 1300h and 1500h local solar time and then decrease in the late afternoon, tapering off at night on March 13, 2008 for example. The frequency of diurnal warming events derived from four years of the blended SST provides solid statistics to investigate the seasonal and spatial distributions of the diurnal warming in the SCS. The sea surface diurnal warming tends to appear more easily in spring, especially in the coastal regions than other seasons and the central regions.

  3. National Air Quality Forecast Capability: Status and Research Needs

    NASA Astrophysics Data System (ADS)

    Stajner, I.; McQueen, J.; Lee, P.; Draxler, R. R.; Tong, D.; Pan, L.; Huang, J. P.; Shafran, P.; Dickerson, P.; Upadhayay, S.

    2014-12-01

    Operational air quality predictions for the United States (U. S.) are provided by National Air Quality Forecasting Capability (NAQFC), which is being built by NOAA in partnership with the U.S. EPA. NAQFC provides nationwide operational predictions of ozone, smoke from wildfires, as well as dust from dust storms for the contiguous 48 states. Predictions are produced beyond midnight of the following day at 12 km resolution and 1 hour time intervals and distributed at http://airquality.weather.gov. Ozone predictions and developmental testing of aerosol predictions combine the NOAA National Centers for Environmental Prediction (NCEP) operational North American Mesoscale (NAM) weather predictions with the Community Multiscale Air Quality (CMAQ) model. Predictions of smoke and dust storms use the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model. Routine verification of ozone and developmental aerosol predictions relies on AIRNow observations, whereas smoke and dust predictions rely on satellite retrievals. Recent updates to operational ozone prediction at NOAA have focused on mobile emissions, which were updated using the projections of mobile sources for 2012. Satellite and ground observations were used to derive NOx trends, which were compared with the emissions data used by NAQFC indicating improved agreement over large metropolitan areas in the US. Updates to the chemical mechanism are being tested for operational implementation. Recent testing of PM2.5 predictions is relying on National Emission Inventory (NEI) inputs augmented by real time sources from wildfires and dust storms. Testing of PM2.5 predictions continues to exhibit seasonal biases - overprediction in the winter and underprediction in the summer. Current efforts are focusing on inclusion of bias correction and development of linkages with global atmospheric composition predictions.

  4. US Air Force 1989 Research Initiation Program. Volume 4.

    DTIC Science & Technology

    1992-06-25

    alphabetical order . Variable Original Dimension New Dimension Name Declaration Declaration CONVEC (2,4,1 10) (2,4,120) D (3,3,110) (3,3,120) ICOLOR 111...past. The new Air Force recruit, assigned to an aircraft maintenance squadron, faces an impossibly complex task. He or she nust learn in short order to...in order to save the data collected so far. The program may be resumed (will begin a NEW measurement site) by selecting the NEWSTART function ( new

  5. Thirty years of research and development of air cushion vehicles

    NASA Astrophysics Data System (ADS)

    Bertelsen, William R.

    This paper describes the conception of the air cushion vehicle (ACV) from experiments with the ground effect of a VTOL aircraft model. Then it describes the evolution of the ultimate ACV drive system through building and testing many models and 16 full-scale ACV to arrive at complete controllability. Adequate control of the frictionless craft, which are without inherent yaw stability, requires control force of the order of magnitude of propulsion. The derived gimbal fans provide such control force in the form of direct thrust, which is instantly available in any of 360 degrees, meterable, instantly cancelable, and reversible.

  6. Aeronautical Communications Research and Development Needs for Future Air Traffic Management Applications

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.

    2002-01-01

    Continuing growth in regional and global air travel has resulted in increasing traffic congestion in the air and on the ground. In spite of occasional temporary downturns due to economic recessions and catastrophic events, average growth rates of air travel have remained high since the 1960s. The resulting congestion, which constrains expansion of the air transportation industry, inflicts schedule delays and decreases overall system efficiency, creating a pressing need to develop more efficient methods of air traffic management (ATM). New ATM techniques, procedures, air space automation methods, and decision support tools are being researched and developed for deployment in time frames stretching from the next few years to the year 2020 and beyond. As these methods become more advanced and increase in complexity, the requirements for information generation, sharing and transfer among the relevant entities in the ATM system increase dramatically. However, current aeronautical communications systems will be inadequate to meet the future information transfer demands created by these advanced ATM systems. Therefore, the NASA Glenn Research Center is undertaking research programs to develop communication, methods and key technologies that can meet these future requirements. As part of this process, studies, workshops, testing and experimentation, and research and analysis have established a number of research and technology development needs. The purpose of this paper is to outline the critical research and technology needs that have been identified in these activities, and explain how these needs have been determined.

  7. Land Surface Process and Air Quality Research and Applications at MSFC

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale; Khan, Maudood

    2007-01-01

    This viewgraph presentation provides an overview of land surface process and air quality research at MSFC including atmospheric modeling and ongoing research whose objective is to undertake a comprehensive spatiotemporal analysis of the effects of accurate land surface characterization on atmospheric modeling results, and public health applications. Land use maps as well as 10 meter air temperature, surface wind, PBL mean difference heights, NOx, ozone, and O3+NO2 plots as well as spatial growth model outputs are included. Emissions and general air quality modeling are also discussed.

  8. Survey of Training Research in AFOSR: Implications for Manpower and Training Research for the All-Volunteer Air Force.

    ERIC Educational Resources Information Center

    Noble, Clyde E.

    The AFOSR research plan calls for fundamental studies in human learning and performance that would provide the foundations for general laws of learning applicable to Air Force problems. The report describes gaps in research that should be eliminated by investigations in specific fields. Studies of individual and group differences in aptitude and…

  9. Survey of Training Research in AFOSR: Implications for Manpower and Training Research for the All-Volunteer Air Force.

    ERIC Educational Resources Information Center

    Noble, Clyde E.

    The AFOSR research plan calls for fundamental studies in human learning and performance that would provide the foundations for general laws of learning applicable to Air Force problems. The report describes gaps in research that should be eliminated by investigations in specific fields. Studies of individual and group differences in aptitude and…

  10. FLAMMABLE GAS DIFFUSION THROUGH SINGLE SHELL TANK (SST) DOMES

    SciTech Connect

    MEACHAM, J.E.

    2003-11-10

    This report quantified potential hydrogen diffusion through Hanford Site Single-Shell tank (SST) domes if the SSTs were hypothetically sealed airtight. Results showed that diffusion would keep headspace flammable gas concentrations below the lower flammability limit in the 241-AX and 241-SX SST. The purpose of this document is to quantify the amount of hydrogen that could diffuse through the domes of the SSTs if they were hypothetically sealed airtight. Diffusion is assumed to be the only mechanism available to reduce flammable gas concentrations. The scope of this report is limited to the 149 SSTs.

  11. Tomography for SST-1 tokamak with pixel method

    SciTech Connect

    Chattopadhyay, Asim Kumar; Anand, Arun; Rao, C.V.S.

    2005-06-15

    A soft x-ray tomography code by pixel method has been prepared and tested with simulated data for the five array and seven array system of the SST-1 tokamak. A relatively small number of detectors have been used to obtain a partial view of the highly noncircular plasma in a poloidal plane produced in a machine of limited access like SST-1 by optimizing the pixel size and array positions. Tomographic inversions are done using linear regularization, minimum Fisher information and maximum entropy methods. Singular value decomposition method has been used for the identification of magnetohydrodynamic modes by analyzing inversion results.

  12. Somatostatin mediates nitric oxide production by activating sst(2) receptors in the rat retina.

    PubMed

    Vasilaki, A; Mouratidou, M; Schulz, S; Thermos, K

    2002-10-01

    Somatostatin and its receptors (ssts) are found in the retina. Recent evidence suggested the involvement of sst(2A) and sst(2B) receptors in the regulation of nitric oxide (NO) (). In this study, we investigated further the localization of sst(1), sst(3)-sst(5), and the possible involvement of all subtypes, present in the rat retina, in the regulation of NO production. Polyclonal antibodies raised against sst(1), sst(3-5) were applied to 10-14 micro m cryostat sections of rat retinas fixed in paraformaldehyde. NADPH-diaphorase reactivity was assessed histochemically. The levels of NO in rat retinal explants were assessed by the production of its stable metabolites NO(2)(-) and NO(3)(-). sst(1) immunofluorescence was detected mainly in the retinal pigment epithelium, blood vessels of the inner retina, where it was colocalized with NADPH-diaphorase, and in processes of the inner plexiform layer (IPL). sst(4) immunohistochemistry was found in ganglion cell bodies, where it was colocalized with NADPH-diaphorase, processes of the IPL and ganglion cell layer, and optic nerve fibers. sst(3) or sst(5) immunostain was not detected. Somatostatin increased NO production and this effect was mimicked only by the sst(2) specific analog L-779976. The sst(2) antagonist CYN-154806 blocked the L-779976 increase of NO production. These results present conclusive evidence that somatostatin's role in the retina involves the regulation of NO by an sst(2) mechanism.

  13. JPL Researcher Tim Miller at the primary AirSAR station aboard NASA's DC-8 flying laboratory during the AirSAR 2004 campaign

    NASA Image and Video Library

    2004-03-03

    JPL Researcher Tim Miller at the primary AirSAR station aboard NASA's DC-8 flying laboratory during the AirSAR 2004 campaign. AirSAR 2004 is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), in a mission ranging from the tropical rain forests of Central America to frigid Antarctica.

  14. JPL Researcher Bruce Chapman at an AirSAR station aboard NASA's DC-8 flying laboratory during the AirSAR 2004 campaign

    NASA Image and Video Library

    2004-03-03

    JPL Researcher Bruce Chapman at an AirSAR station aboard NASA's DC-8 flying laboratory during the AirSAR 2004 campaign. AirSAR 2004 is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), in a mission ranging from the tropical rain forests of Central America to frigid Antarctica.

  15. SST Variability over the Southern South China Sea: Local effects and Remote forcing

    NASA Astrophysics Data System (ADS)

    Thompson, B.; Tkalich, P.

    2012-04-01

    The South China Sea (SCS) is one of the largest semi-enclosed marginal seas in the world ocean. The SCS is connected to the East China Sea through the Taiwan Strait to the northeast and the Pacific Ocean in the east through the Luzon Strait, laying between the Luzon and Taiwan Islands. To the south, SCS is connected to the Indonesian Sea (IS) through the Karimata and Gaspar Straits, and to the Indian Ocean though the Malacca Strait. The large-scale circulation and SST over the SCS is dominantly influenced by the seasonal reversal of the monsoon winds. Beyond the seasonal time scale, the circulation and temperature variability over the SCS demonstrate strong relationship with the El Niño/Southern Oscillation (ENSO) events in the Pacific Ocean. The present study addresses the inter-annual variability of Sea Surface Temperature (SST) over the southern South China Sea with special emphasis on the ENSO and Indian Ocean Dipole (IOD) events during the period 1993 to 2009. Due to its geographical location, the dynamics and thermodynamics of the southern SCS is largely influenced by the anomalous events occurring in the Pacific and Indian Oceans. A high resolution, three-dimensional sigma co-ordinate, regional ocean general circulation model (ROMS) configured for the South China Sea and Bay of Bengal region is used for the analysis. The model has been forced by 12-hourly varying surface wind, air temperature, relative humidity, surface downward solar and longwave radiation and precipitation fields obtained from the ERA-interim re-analysis data set as well as space- and time-dependent lateral fluxes of temperature, salinity, currents and sea level. Detailed analysis has been done to identify the roles of the surface heat fluxes, and the water mass advection from the Java Sea and northern South China Sea in driving the SST variability over the region. The surface heat flux data set (NOC v2.0) developed by the National Oceanography Centre, Southampton, is also used to

  16. Understanding Energy Impacts of Oversized Air Conditioners; NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-06-01

    This NREL highlight describes a simulation-based study that analyzes the energy impacts of oversized residential air conditioners. Researchers found that, if parasitic power losses are minimal, there is very little increase in energy use for oversizing an air conditioner. The research demonstrates that new residential air conditioners can be sized primarily based on comfort considerations, because capacity typically has minimal impact on energy efficiency. The results of this research can be useful for contractors and homeowners when choosing a new air conditioner or heat pump during retrofits of existing homes. If the selected unit has a crankcase heater, performing proper load calculations to be sure the new unit is not oversized will help avoid excessive energy use.

  17. Air quality, environment, and energy. Transportation research record

    SciTech Connect

    Not Available

    1992-01-01

    Partial Contents: Part 1 -- Energy -- Estimating Automobile Fuel Consumption in Urban Traffic; Economic Evaluation of Compressed Natural Gas Fleet Conversion and Operation; Part 2 -- Environmental Analysis -- Washington State Department of Transportation Wetland Monitoring Program; Calcium Magnesium Acetate Degradation in Roadside Soil: Acetate Microcosms; Total Petroleum Hydrocarbons in Highway Maintenance Waste; Part 3 -- Air Quality -- Impact of Preaggregation of Highway Network Travel Data on Accuracy of MOBILE4-Based Emissions; Toll Plaza Design to Minimize Carbon Monoxide Levels at Roadway Rights-of-Way; Improving Average Travel Speeds Estimated by Planning Models; Comparison of Vehicular Emissions in Free-Flow and Congestion Using MOBILE4 and Highway Performance Monitoring System; Carbon Monoxide Emission Effects of Drive-Up Facilities; Part 4 -- Historic Preservation -- Finland's Highway and Traffic Museum: Preserving the Nation's Transportation Legacy; Part 5 -- Noise --Field Evaluation of Acoustical Performance of Parallel Highway Noise Barriers in California.

  18. Research in ground-to-air microwave imaging

    NASA Astrophysics Data System (ADS)

    Steinberg, Bernard D.; Carlson, Donald

    1995-03-01

    Many potential applications exist for high resolution radar such as direction finding, high accuracy tracking, target counting, and high resolution radar imaging. All of these applications require the use of large, thinned, random or periodic antenna arrays. Many uncertainties exist in such large antenna systems. For example, exact element positions are generally not known because of surveying problems or flexing of the large antenna structure. Adaptive beamforming (ABF) is the solution to the unusual design that achieves these objectives. It deduces the errors in the locations of the receivers that are distributed around the airport or on the air frame and automatically compensates for them in the image processing. This year's work concentrated on three tasks. The first was to develop a generalized ABF theory for the class of spatial correlation algorithms. The second was to extend thc resolution of a microwave imaging radar to 15 cm, and the third was to study enhanced target detection sensitivity and target recognition.

  19. Recent Research in Compression Refrigeration Cycle Air Source Heat Pumps.

    NASA Astrophysics Data System (ADS)

    Arai, Akira; Senshu, Takao

    The most important theme for heat pump air conditioners is the improvement of energy saving and comfort. Recently, cycle components, especially compressores and heat exchangers have been improved greatly in their performance and efficiency. As for compressors, large progress in their efficiencies have been made by detailed analysises such as mechanical losses and by the development of a new type compression mechanism. As for heat exchangers, various high heat transfer surfaces have been developed together with the improvement of the production technologies for them. Further, the effect of the capacity-modulated cycle is evaluated quantitatively through the improvements of static and transient cycle simulation technologies. And in order to realize this cffect, the electrically driven expansion valves heve been marketed. This review introduces the trends of these energy-saving technologies as well as comfort improvement studies.

  20. [Application research of data assimilation in air pollution numerical prediction].

    PubMed

    Bai, Xiao-ping; Li, Hong; Fang, Dong; Costabile, Francesca; Liu, Feng-lei

    2008-02-01

    Based on an air pollution modeling system coupling with the non-hydrostatic fifth generation mesoscale meteorological model (MM5) and the regional modeling system for aerosols and deposition (REMSAD), the forecast results of NOx and SO2 in August and September 2002 in Nanjing were assimilated with the optimal interpolation method and the ensemble Kalman filter. The results show that the improvement rates of deviation mean value of NOx and SO2 after assimilated with the optimal interpolation method are 34.20% and 47.53%, and the improvement rates of root mean square errors are 31.95% and 42.04% respectively. It is also demonstrated that the improvement rates of deviation mean value of NOx and SO2 after assimilated with the ensemble Kalman filter with 30 ensemble members are 26.73% and 60.75%, and the improvement rates of root mean square errors are 25.20% and 55.16% respectively. So, the optimal interpolation method and the ensemble Kalman filter both can improve the quality of the initial state from the air pollution numerical prediction model. The comparative experiments on the assimilation performance with the optimal interpolation method and the ensemble Kalman filter with 61 ensemble members were performed, and the experiments demonstrate that the assimilation performance of the ensemble Kalman filter with 61 ensemble members were improved compared with 30 ensemble members, and with the increase of the ensemble members, the improvement to the initial state of NOx and SO2 with the ensemble Kalman filter will be better than the optimal interpolation method.

  1. Ergoline derivatives as highly potent and selective antagonists at the somatostatin sst 1 receptor.

    PubMed

    Troxler, Thomas; Enz, Albert; Hoyer, Daniel; Langenegger, Daniel; Neumann, Peter; Pfäffli, Paul; Schoeffter, Philippe; Hurth, Konstanze

    2008-02-01

    Non-peptidic compounds containing the octahydro-indolo[4,3-fg]quinoline (ergoline) structural element have been optimized into derivatives with high affinity (pK(d) r sst(1)>9) and selectivity (>1000-fold for h sst(1) over h sst(2)-h sst(5)) for the somatostatin sst(1) receptor. In functional assays, these ergolines act as antagonists at human recombinant sst(1) receptors. Pharmacokinetic studies in rodents reveal good oral bioavailability and brain penetration for some of these compounds.

  2. Collaboration with the United Kingdom on Air Quality Research

    EPA Pesticide Factsheets

    To initiate research collaboration among the United States Environmental Protection Agency (EPA), the Unitd Kingdom's (UK) Department for Environment, Food and Rural Affairs (Defra), and the Environment Agency for England and Wales (EA) on exposure science

  3. ASBESTOS EXPOSURE RESEARCH - AIR, SOIL AND BULK MATERIAL SCENARIOS

    EPA Science Inventory

    Presently, asbestos and other mineral fibers are monitored in the workplace and in the environment using several basic analytical techniques, based primarily upon observing the fiber by either optical or electron microscopy. EPA is conducting research to determine which sampling ...

  4. ASBESTOS EXPOSURE RESEARCH - AIR, SOIL AND BULK MATERIAL SCENARIOS

    EPA Science Inventory

    Presently, asbestos and other mineral fibers are monitored in the workplace and in the environment using several basic analytical techniques, based primarily upon observing the fiber by either optical or electron microscopy. EPA is conducting research to determine which sampling ...

  5. Using full-mission simulation for human factors research in air transport operations

    NASA Technical Reports Server (NTRS)

    Orlady, Harry W.; Hennessy, Robert W.; Obermayer, Richard; Vreuls, Donald; Murphy, Miles R.

    1988-01-01

    This study examined state-of-the-art mission oriented simulation and its use in human factors research. Guidelines were developed for doing full-mission human factors research on crew member behavior during simulated air transport operations. The existing literature was reviewed. However, interviews with experienced investigators provided the most useful information. The fundamental scientific and practical issues of behavioral research in a simulation environment are discussed. Guidelines are presented for planning, scenario development, and the execution of behavioral research using full-mission simulation in the context of air transport flight operations . Research is recommended to enhance the validity and productivity of full-mission research by: (1) validating the need for high-fidelity simulation of all major elements in the operational environment, (2) improving methods for conducting full-mission research, and (3) examining part-task research on specific problems through the use of vehicles which contain higher levels of abstraction (and lower fidelity) of the operational environment.

  6. Air Force Office of Scientific Research, May/Jun 98 Research Highlights.

    DTIC Science & Technology

    1998-06-01

    quality of airfield pavements, proteins that protect against toxicity, compact laser development , scientist and engineer exchange program and technology transitions that benefit Air Force operations.

  7. The effect of SST emissions on the earth's ozone layer

    NASA Technical Reports Server (NTRS)

    Whitten, R. C.; Turco, R. P.

    1974-01-01

    The work presented here is directed toward assessment of environmental effects of the supersonic transport (SST). The model used for the purpose includes vertical eddy transport and the photochemistry of the O-H-N system. It is found that the flight altitude has a pronounced effect on ozone depletion. The largest ozone reduction occurs for NO deposition above an altitude of 20 km.

  8. Characterisation and quantification of regional diurnal SST cycles from SEVIRI

    NASA Astrophysics Data System (ADS)

    Karagali, I.; Høyer, J. L.

    2014-09-01

    Hourly SST (sea surface temperature) fields from the geostationary Spinning Enhanced Visible and Infrared Imager (SEVIRI) offer a unique opportunity for the characterisation and quantification of the diurnal cycle of SST in the Atlantic Ocean, the Mediterranean Sea and the northern European shelf seas. Six years of SST fields from SEVIRI are validated against the Advanced Along-Track Scanning Radiometer (AATSR) Reprocessed for Climate (ARC) data set. The overall SEVIRI-AATSR bias is -0.07 K, and the standard deviation is 0.51 K, based on more than 53 × 106 match-ups. Identification of the diurnal signal requires an SST foundation temperature field representative of well-mixed conditions which typically occur at night-time or under moderate and strong winds. Such fields are generated from the SEVIRI archive and are validated against pre-dawn SEVIRI SSTs and night-time SSTs from drifting buoys. The different methodologies tested for the foundation temperature fields reveal variability introduced by averaging night-time SSTs over many days compared to single-day, pre-dawn values. Diurnal warming is most pronounced in the Mediterranean and Baltic seas while weaker diurnal signals are found in the tropics. Longer diurnal warming duration is identified in the high latitudes compared to the tropics. The maximum monthly mean diurnal signal can be up to 0.5 K in specific regions.

  9. Global ocean current reconstruction from altimetric and microwave SST measurements

    NASA Astrophysics Data System (ADS)

    González-Haro, C.; Isern-Fontanet, J.

    2014-06-01

    Ocean currents are a key component to understanding many oceanic and climatic phenomena and knowledge of them is crucial for both navigation and operational applications. Currently, they are derived from Sea Surface Height (SSH) measurements provided by altimeters. However, distances between tracks and the limited number of available altimeters lead to errors in the accurate location of oceanic currents. In this study, we investigate the capability of Sea Surface Temperature (SST) observations to reconstruct surface currents at a global scale. The methodology we use consists of estimating the stream function by taking the phase from SST and the spectrum of SSH and then comparing it with altimetric measurements. Results reveal that SST provided by microwave radiometers can be used to retrieve ocean currents during winter near the major extratropical current systems, which are characterized by an intense mesoscale activity and the presence of strong thermal gradients. We have also found that surface ocean current reconstruction based on Surface Quasi-Geostrophic approach can be improved if the information about the energy spectrum provided by altimeters is used. This points to the development of a new method of reconstructing ocean currents based on the combination of the phase of SST images with the energy spectrum derived from along-track altimetric measurements.

  10. Time Series of SST Anomalies Off Western Africa

    DTIC Science & Technology

    2014-09-09

    found to appropriately correspond with regions of high insolation and low wind stress aligned with atmospheric fronts. SST variability off the west...warming is typical of the forecast events in this region corresponding to regions of low wind stress and high insolation aligned with patterns of

  11. SST-1 Gas feed and Gas Exhaust system

    NASA Astrophysics Data System (ADS)

    Raval, Dilip C.; Khan, Ziauddin; Thankey, Prashant L.; Dhanani, Kalpesh R.; Pathan, Firozkhan S.; Semwal, Pratibha; George, Siju; Yuvakiran, Paravastu; Manthena, Himabindu; Pradhan, Subrata

    2012-11-01

    SST-1 tokamak is a long pulse tokamak designed for the plasma operation up to 1000 sec duration. Gas feed system and gas exhaust management will play a very crucial role during plasma discharge. During the different type of operations of tokamak like wall conditioning, diverter operation and neutral beam injection, a large amount of gas will be fed into the vacuum chamber at different locations. Also during plasma operations, the gas will be fed both in continues and pulse mode. Gas feed will be carried out mainly using piezo-electric valves controlled by PXI based data acquisition and control system. Such operations will lead to a huge amount gas exhaust by the main system which requires good exhaust facility to searches, great care should be taken in constructing both. Also initial pumping of cryostat and vacuum vessel of SST-1 will release a large amount of gas. Exhausted gases from SST -1 will be Hydrogen, Nitrogen, Mixture gases or some toxic gases. Dedicated exhaust system controlling the different gases are installed. Special treatment of hazardous/explosive gases is done before releasing to the atmosphere. This paper describes design and implementations of the complete gas feed and exhaust system of SST-1.

  12. Observational constraints on the response function of Southern Ocean SST to SAM forcing

    NASA Astrophysics Data System (ADS)

    Hausmann, U.; Ferreira, D.; Marshall, J.

    2015-12-01

    Recent coupled model studies of the polar Southern Ocean (SO) revealed an initial (fast) cooling, but longer-term (slow) and equilibrium warming, of sea surface temperature (SST) in response to stratospheric ozone depletion and the concurrent shift of the Southern Annular Mode (SAM) to its positive phase. Yet there is much spread across models in the amplitude and time scale of the equilibration, so that even the sign of the implied recent-decade SST response to ozone depletion is not robust. Here we use the framework of a simple layered model (representing mixed layer, seasonal thermocline and upper permanent thermocline of the SO south of the polar front) combined with observations of the SO, to derive constraints on the equilibrium response of the real-world SO to annually-repeating seasonal SAM forcing. We obtain simple expressions for the equilibrium response in terms of the SAM-induced air-sea fluxes of heat and momentum and the SO horizontal and vertical temperature stratifications. These are then evaluated using satellite observations and atmospheric reanalysis data, as well as in-situ ocean climatologies. Our estimates suggest that, for observed characteristics (mixed layer depths, stratification, phasing of the SAM-forcing in season and space), the well-documented surface-forced fast SO SST cooling is large in comparison to the dynamically-induced subsurface-forced warming, and thus also largely sets the sign and amplitude of the equilibrium response.Exploration of the parameter space of coupled model versus observed ratios of horizontal to vertical stratifications provides a rationale for the discrepant equilibrium responses.

  13. Local-Scale Air Quality Modeling in Support of Human Health and Exposure Research (Invited)

    NASA Astrophysics Data System (ADS)

    Isakov, V.

    2010-12-01

    Spatially- and temporally-sparse information on air quality is a key concern for air-pollution-related environmental health studies. Monitor networks are sparse in both space and time, are costly to maintain, and are often designed purposely to avoid detecting highly localized sources. Recent studies have shown that more narrowly defining the geographic domain of the study populations and improvements in the measured/estimated ambient concentrations can lead to stronger associations between air pollution and hospital admissions and mortality records. Traditionally, ambient air quality measurements have been used as a primary input to support human health and exposure research. However, there is increasing evidence that the current ambient monitoring network is not capturing sharp gradients in exposure due to the presence of high concentration levels near, for example, major roadways. Many air pollutants exhibit large concentration gradients near large emitters such as major roadways, factories, ports, etc. To overcome these limitations, researchers are now beginning to use air quality models to support air pollution exposure and health studies. There are many advantages to using air quality models over traditional approaches based on existing ambient measurements alone. First, models can provide spatially- and temporally-resolved concentrations as direct input to exposure and health studies and thus better defining the concentration levels for the population in the geographic domain. Air quality models have a long history of use in air pollution regulations, and supported by regulatory agencies and a large user community. Also, models can provide bidirectional linkages between sources of emissions and ambient concentrations, thus allowing exploration of various mitigation strategies to reduce risk to exposure. In order to provide best estimates of air concentrations to support human health and exposure studies, model estimates should consider local-scale features

  14. Initial results in SST-1 after up-gradation

    NASA Astrophysics Data System (ADS)

    Pradhan, S.; Khan, Z.; Tanna, V. L.; Prasad, U.; Paravastu, Y.; Raval, D. C.; Masand, H.; Kumar, Aveg; Dhongde, J. R.; Jana, S.; Kakati, B.; Patel, K. B.; Bhandarkar, M. K.; Shukla, B. K.; Ghosh, D.; Patel, H. S.; Parekh, T. J.; Mansuri, I. A.; Dhanani, K. R.; Varadharajulu, A.; Khristi, Y. S.; Biswas, P.; Gupta, C. N.; George, S.; Semwal, P.; Sharma, D. K.; Gulati, H. K.; Mahajan, K.; Praghi, B. R.; Banaudha, M.; Makwana, A. R.; Chudasma, H. H.; Kumar, M.; Manchanda, R.; Joisa, Y. S.; Asudani, K.; Pandya, S. N.; Pathak, S. K.; Banerjee, S.; Patel, P. J.; Santra, P.; Pathan, F. S.; Chauhan, P. K.; Khan, M. S.; Thankey, P. L.; Prakash, A.; Panchal, P. N.; Panchal, R. N.; Patel, R. J.; Mahsuria, G. I.; Sonara, D. P.; Patel, K. M.; Jayaswal, S. P.; Sharma, M.; Patel, J. C.; Varmora, P.; Srikanth, G. L. N.; Christian, D. R.; Garg, A.; Bairagi, N.; Babu, G. R.; Panchal, A. G.; Vora, M. M.; Singh, A. K.; Sharma, R.; Nimavat, H. D.; Shah, P. R.; Purwar, G.; Raval, T. Y.; Sharma, A. L.; Ojha, A.; Kumar, S.; Ramaiya, N. K.; Siju, V.; Gopalakrishna, M. V.; Kumar, A.; Sharma, P. K.; Atrey, P. K.; Kulkarni, SV; Ambulkar, K. K.; Parmar, P. R.; Thakur, A. L.; Raval, J. V.; Purohit, S.; Mishra, P. K.; Adhiya, A. N.; Nagora, U. C.; Thomas, J.; Chaudhari, V. K.; Patel, K. G.; Dalakoti, S.; Virani, C. G.; Gupta, S.; Kumar, Ajay; Chaudhari, B.; Kaur, R.; Srinivasan, R.; Raju, D.; Kanabar, D. H.; Jha, R.; Das, A.; Bora, D.

    2017-04-01

    SST-1 Tokamak has recently completed the 1st phase of up-gradation with successful installation and integration of all its First Wall components. The First Wall of SST-1 comprises of ∼ 3800 high heat flux compatible graphite tiles being assembled and installed on 132 CuCrZr heat sink back plates engraved with ∼ 4 km of leak tight baking and cooling channels in five major sub groups equipped with ∼ 400 sensors and weighing ∼ 6000 kg in total in thirteen isolated galvanic and six isolated hydraulic circuits. The phase-1 up-gradation spectrum also includes addition of Supersonic Molecular Beam Injection (SMBI) both on the in-board and out-board side, installation of fast reciprocating probes, adding some edge plasma probe diagnostics in the SOL region, installation and integration of segmented and up-down symmetric radial coils aiding/controlling plasma rotations, introduction of plasma position feedback and density controls etc. Post phase-I up-gradation spanning from Nov 2014 till June 2016, initial plasma experiments in up-graded SST-1 have begun since Aug 2016 after a brief engineering validation period in SST-1. The first experiments in SST-1 have revealed interesting aspects on the ‘eddy currents in the First Wall support structures’ influencing the ‘magnetic Null evolution dynamics’ and the subsequent plasma start-up characteristics after the ECH pre-ionization, the influence of the first walls on the ‘field errors’ and the resulting locked modes observed, the magnetic index influencing the evolution of the equilibrium of the plasma column, low density supra-thermal electron induced discharges and normal ohmic discharges etc. Presently; repeatable ohmic discharges regimes in SST-1 having plasma currents in excess of 65 KA (qa ∼ 3.8, BT = 1.5 T) with a current ramp rates ∼ 1.2 MA/s over a duration of ∼ 300 ms with line averaged densities ∼ 0.8 × 1019 and temperatures ∼ 200 eV with copious MHD signatures have been experimentally

  15. Merging of multi-temporal SST data at South China Sea

    NASA Astrophysics Data System (ADS)

    Ng, H. G.; MatJafri, M. Z.; Abdullah, K.; Lim, H. S.

    2008-10-01

    The sea surface temperature (SST) mapping could be performed with a wide spatial and temporal extent in a reasonable time limit. The space-borne sensor of AVHRR was widely used for the purpose. However, the current SST retrieval techniques for infrared channels were limited only for the cloud-free area, because the electromagnetic waves in the infrared wavelengths could not penetrate the cloud. Therefore, the SST availability was low for the single image. To overcome this problem, we studied to produce the composite of three day's SST map. The diurnal changes of SST data are quite stable through a short period of time if no abrupt natural disaster occurrence. Therefore, the SST data of three consecutive days with nearly coincident daily time were merged in order to create a three day's composite SST data. The composite image could increase the SST availability. In this study, we acquired the level 1b AVHRR (Advanced Very High Resolution Radiometer) images from Malaysia Center of Remote Sensing (MACRES). The images were first preprocessed and the cloud and land areas were masked. We made some modifications on the technique of obtaining the threshold value for cloud masking. The SST was estimated by using the day split MCSST algorithm. The cloud free water pixels availability were computed and compared. The mean of SST for three day's composite data were calculated and a SST map was generated. The cloud free water pixels availability were computed and compared. The SST data availability was increased by merging the SST data.

  16. Assessment of SMOS Salinity and SST in the Aegean Sea (Greece) and correlations with MODIS SST measurements. Exploring the SSS and SST correlation to 137Cs inventory

    NASA Astrophysics Data System (ADS)

    Sykioti, Olga; Florou, Heleni

    2014-05-01

    A program concept has been developed to utilize sea surface salinity (SSS) and sea surface temperature (SST) information for the inventory of artificial radionuclides, which are conservative and part of the sea salinity. As a pilot study, activity concentrations of 137Cs in the Aegean Sea (Greece) are combined to SMOS and other satellite data so as to develop an innovative tool for the remote radioactivity detection either for routine observations and emergency recordings. The presented first results are a part of an effort to attempt for the integration in space and time of field measurements to the respective satellite observations of salinity variations by model simulations, which might be also applicable for the prediction of the radiological impact of potential accidental events. The presented results involve the first assessment of SMOS SSS and SST measurements over the Aegean Sea. SMOS measurements are averaged over a surface of 40x40 sq km at an average distance of 100 km from the coastline. For this reason, totally thirty nine pixels from SMOS Level 2 data cover part of the Aegean Sea. Two time series are created that include all available measurements spanning December 2011 to current date, from descending and ascending passes, each one representing an acquisition frequency of about three days. The average SSS values in the Aegean Sea are 37-38psu following no distinct seasonal pattern. A general trend of increasing values is observed from north to south. Noise and uncertainty in the measurements are most probably due to land and RFI contamination. High island density is combined with radiofrequency interferences generated by illegal man-made emissions. The latter is a detected common issue in specific areas worldwide, such as the Mediterranean Sea. On the other hand, SST follows a clear typical seasonal variation pattern with maximum values observed in August and minimum ones around March and a general trend of increasing values from north to south

  17. FAA/NASA Joint University Program for Air Transportation Research 1994-1995

    NASA Technical Reports Server (NTRS)

    Remer, J. H.

    1998-01-01

    The Joint University Program for Air Transportation Research (JUP) is a coordinated set of three grants co-sponsored by the Federal Aviation Administration (FAA) and the National Aeronautics and Space Administration (NASA). Under JUP, three institutions: the Massachusetts Institute of Technology, Princeton, and Ohio Universities receive research grants and collaborate with FAA and NASA in defining and performing civil aeronautics research in a multitude of areas. Some of these disciplines are artificial intelligence, control theory, atmospheric hazards, navigation, avionics, human factors, flight dynamics, air traffic management, and electronic communications.

  18. FAA/NASA Joint University Program for Air Transportation Research 1994-1995

    NASA Technical Reports Server (NTRS)

    Remer, J. H.

    1998-01-01

    The Joint University Program for Air Transportation Research (JUP) is a coordinated set of three grants co-sponsored by the Federal Aviation Administration (FAA) and the National Aeronautics and Space Administration (NASA). Under JUP, three institutions: the Massachusetts Institute of Technology, Princeton, and Ohio Universities receive research grants and collaborate with FAA and NASA in defining and performing civil aeronautics research in a multitude of areas. Some of these disciplines are artificial intelligence, control theory, atmospheric hazards, navigation, avionics, human factors, flight dynamics, air traffic management, and electronic communications.

  19. Satellite Microwave Detected SST Anomalies and Hurricane Intensification

    NASA Astrophysics Data System (ADS)

    Sun, D.; Kafatos, M.; Cervone, G.; Boybeyi, Z.; Yang, R.

    2006-12-01

    The year 2005 is a record-breaking year for Atlantic Hurricanes. There were 28 named storms and 15 hurricanes, including three Category 5 hurricanes, Katrina, Rita, and the strongest hurricane on record, Wilma. Katrina became the costliest and one of the deadliest hurricanes in the US history. Better understanding and prediction of hurricanes will allow societies to be better prepared to minimize life and property damages. SST data from remotely sensed infrared measurements, like GOES, AVHRR, and MODIS, show missing values over the cloudy regions associated with hurricanes. While satellite microwave measurements, like the Tropical Rainfall Measuring Mission (TRMM) microwave imager (TMI), can provide SST even under cloudy conditions. Both satellite measurements and buoy observations show that SST increases in advance of significant hurricane intensification. This is probably because it may need a period of time for a tropical cyclone to accumulate energy to develop into a hurricane. Moreover, hurricane intensification may also be related to the actual location of high SST. Our results indicate pre-existing high SST anomaly (SSTA) located at the right side of the storm track for Hurricane Katrina. Numerical simulations of three control experiments also confirm the importance of the relative positioning of SSTA with respect to the storm track. Similar situations are also found for Hurricanes Rita and Wilma. On the contrary, if there is no high SSTA at the right location, a hurricane may not be able to undergo further intensification. This may explain why not all tropical cyclones associated with warm waters can attain peak intensity (categories 4 and 5) during their life cycle. Using this finding, during this year, in advance of several days, we successfully predicted tropical storm Ernesto could not have developed into a hurricane again after it entered the ocean since its first landfall in Cuba.

  20. Strategies in Retention Research. AIR 1997 Annual Forum Paper.

    ERIC Educational Resources Information Center

    McLaughlin, Gerald W.; Brozovsky, Paul; McLaughlin, Josetta S.

    This paper discusses the role of institutional researchers in changing attitudes within institutions of higher education on the importance of efforts to improve student retention. It describes activities undertaken at Virginia Tech to determine why students voluntarily withdraw from the university in the context of changing attitudes within the…

  1. Catastrophe Theory in Higher Education Research. AIR Forum 1981 Paper.

    ERIC Educational Resources Information Center

    Staman, E. Michael

    The applicability of catastrophe theory to research in higher education is considered, with several problems that typically appear in the literature presented in a theoretical framework. A catastrophe model is attempted for each. The nature of mathematical modeling and the relationship between modeling continuous systems and discontinuous systems…

  2. HUMAN EXPOSURE AIR MONITORING: EXAMPLES FROM THE NATIONAL EXPOSURE RESEARCH LABORATORY

    EPA Science Inventory

    The US-EPA and North Carolina Central University (NCCU) have a cross-pollination agenda to help share research opportunities between the two institutions. This presentation provides NCCU with an understanding of current air monitoring research the US EPA is involved in and some o...

  3. EPA Awards $700,000+ Grant to Harvard for Research on Climate Impacts on Air Quality

    EPA Pesticide Factsheets

    A US EPA research grant of $719,780 will assist a Harvard researcher for a project to study how climate change will affect changes in dust and smoke on the Earth's surface over the next several decades, which can have significant impacts on air quality.

  4. Review and Implications of Job Satisfaction and Work Motivation Theories for Air Force Research.

    ERIC Educational Resources Information Center

    Tuttle, Thomas C.; Hazel, Joe T.

    The purpose of this report is to: (a) review certain major theories of work motivation, particularly as related to job satisfaction, (b) distill from such theories and other research, implications for an Air Force job satisfaction research program, and (c) provide a comprehensive bibliography of satisfaction/retention studies. The theoretical…

  5. 76 FR 62402 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ... AGENCY Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods; Designation of One New Equivalent Method AGENCY: Environmental Protection Agency. ACTION: Notice of the..., Research Triangle Park, North Carolina 27711. Designation of this new equivalent method is intended...

  6. HUMAN EXPOSURE AIR MONITORING: EXAMPLES FROM THE NATIONAL EXPOSURE RESEARCH LABORATORY

    EPA Science Inventory

    The US-EPA and North Carolina Central University (NCCU) have a cross-pollination agenda to help share research opportunities between the two institutions. This presentation provides NCCU with an understanding of current air monitoring research the US EPA is involved in and some o...

  7. The research of press drop of compressed air foam flow through the bend

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Chen, T.; Hu, C.; Fu, X. C.; Bao, Z. M.; Zhang, X. Z.; Xia, J. J.

    2017-08-01

    Compressed air foam system (CAFS) had obvious advantages in engineering. The flow model of compressed air foam in the pipeline was different from water flow model because the foam was the gas-liquid two phase flow with non-Newtonian fluid properties and compressibility, and, the water supply theory was not suitable for foam press pipeline transport. At present, there was little research on non-Newtonian fluid flow, especially the foam flow. This study researched the effect of foam flux, end valve and foam type on the press in the straight pipe and bend. The press drop in straight pipes and bends filled with compressed air foam was analyzed, and the result could provide experimental support for theoretical calculation of compressed air foam in bend.

  8. Impact of new technology weapons on SAC (Strategic Air Command) conventional air operations. Research report

    SciTech Connect

    Bodenheimer, C.E.

    1983-06-01

    Chapter I introduces the issue of conventional-response capability. The point stressed first is that the strategic bomber's primary mission is in support of the single integrated operations plan (SIOP) as a nuclear weapons delivery vehicle. However, as cited by Secretary of Defense Caspar Weinberger, we must have a rapid deployment conventional capability to areas where there are small if any U.S. forces present. The SAC strategic projection force (SPF) is available but with gravity weapons of World War II vintage. New technology can provide answers to the problem by providing highly accurate long-range conventional standoff weapons. Chapter II gives a basic historical perspective on the use of the strategic bomber in past wars. It discusses the development of strategy, weapons, and targets in World War II, Korean War, and Vietnam War. Chapter III presents a very brief look at current US policy, strategy, and guidance. Chapter IV covers the aircraft attrition issue in today's highly lethal defensive environment. Chapter V describes the development of air-to-ground weapons. Chapter VI addresses the potential for the future in the shifting balance of Soviet and US technology. The final chapter makes the point that a decision must be made on weapons-acquisition programs and bomber force structure. New technology-standoff conventional weapons could make AAA and SAM defenses a modern Maginot Line.

  9. Radiological air monitoring and sample analysis; Research and development progress report, January--March 1993

    SciTech Connect

    1993-12-31

    The INEL Oversight Program (OP) began work in 1992 to establish a network of permanent air monitoring stations around the perimeter of the Idaho National Engineering Laboratory (INEL). Sponsored as a Department of Energy (DOE) research and development grant, the project was designed to provide the public with an independent assessment of air quality resulting from operations at the INEL. This progress report summarizes the results of air sampling during the first quarter of 1993. During 1992 and the first half of 1993, the OP obtained and operated air sampling equipment from EPA-Las Vegas and EG and G Idaho. These samplers were obtained on loan until the OP could develop specifications for and purchase instruments to be used in the permanent air monitoring network. These samplers were deployed at selected air sampling locations, while quality assurance plans and specifications for permanent samplers were developed. The results presented in this progress report should be considered as research data. During the initial phase of establishing the air monitoring network, several modifications were made to sampling instruments and, in some cases, sampling locations. Therefore, the OP did not complete a formal quality assurance plan during this development program.

  10. Radiological air monitoring and sample analysis; Research and development progress report, April--June 1993

    SciTech Connect

    1993-12-31

    The INEL Oversight Program (OP) began work in 1992 to establish a network of permanent air monitoring stations around the perimeter of the Idaho National Engineering Laboratory (INEL). Sponsored as a Department of Energy (DOE) research and development grant, the project was designed to provide the public with an independent assessment of air quality resulting from operations at the INEL. This progress report summarizes the results of air sampling during the second quarter of 1993. During 1992 and the first half of 1993, the OP obtained and operated air sampling equipment from EPA-Las Vegas and EG and G Idaho. These samplers were obtained on loan until the OP could develop specifications for and purchase instruments to be used in the permanent air monitoring network. These sampler were deployed at selected air sampling locations, while quality assurance plans and specifications for permanent samplers were developed. The results presented in this progress report should be considered as research data. During the initial phase of establishing the air monitoring network, several modifications were made to sampling instruments and, in some cases, sampling locations. Therefore, the OP Did not complete a formal quality assurance plan during this developmental program.

  11. Short-haul CTOL aircraft research. [on reduced energy for commercial air transportation

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1978-01-01

    The results of the reduced energy for commercial air transportation studies on air transportation energy efficiency improvement alternatives are reviewed along with subsequent design studies of advanced turboprop powered transport aircraft. The application of this research to short-haul transportation is discussed. The results of several recent turboprop aircraft design are included. The potential fuel savings and cost savings for advanced turboprop aircraft appear substantial, particularly at shorter ranges.

  12. Investigating Team Collaboration of an Air Force Research Event October 2008

    DTIC Science & Technology

    2009-06-01

    Joint Force Commander MARLO Marine Liaison Officer MIO Maritime Interdiction Operations MURI Multidisciplinary University Research...maritime interdiction operations ( MIO ) chat logs from three MIO exercises and air warfare audio transcripts from four different teams. A MIO is an...State University: Team Training Paradigm for Better CID . Retrieved on May 19, 2009 from Hwww.cerici.org Sirak, M. (2006). Air Force to Pick Contractor

  13. Conduction and Utilization of Research: The Relationship Between Air Force Nurses’ Attitudes, Levels of Education, and Rank

    DTIC Science & Technology

    1999-05-01

    Respondents 22 Table 5. Highest Level of Non- Nursing Education of the Air Force Nurse Respondents 23 Table 6. Overall Highest Level of Education...Force Rank (Good Attitude vs Bad Attitude 41 Table 13. Air Force Nurse Respondents’ Attitudes by Highest Level of Nursing Education 44 Table 14. Air...Figure 2. Research Experience of Air Force Nurse Respondents by Highest Level of Nursing Education (Excellent, Fair or Poor Experience 38 Figure 3. Air

  14. The ASTRI SST-2M prototype for the Cherenkov Telescope Array: prototype technologies goals and strategies for the future SST

    NASA Astrophysics Data System (ADS)

    Marchiori, Gianpietro; Busatta, Andrea; Giacomel, Stefano; Folla, Ivan; Valsecchi, Marco; Canestrari, Rodolfo; Bonnoli, Giacomo; Cascone, Enrico; Conconi, Paolo; Fiorini, Mauro; Giro, Enrico; La Palombara, Nicola; Pareschi, Giovanni; Perri, Luca; Rodeghiero, Gabriele; Sironi, Giorgia; Stringhetti, Luca; Toso, Giorgio; Tosti, Gino; Pellicciari, Carlo

    2014-07-01

    The Cherenkov Telescope Array (CTA) observatory will represent the next generation of Imaging Atmospheric Cherenkov Telescope. Using a combination of large-, medium-, and small-scale telescopes (LST, MST, SST, respectively), it will explore the Very High Energy domain from a few tens of GeVup to about few hundreds of TeV with unprecedented sensitivity, angular resolution and imaging quality. In this framework, the Italian ASTRI program, led by the Italian National Institute of Astrophysics (INAF) developed a 4-meter class telescope, which will adopt an aplanatic, wide-field, double-reflection optical layout in a Schwarzschild- Couder configuration. Within this program INAF assigned to the consortium between Galbiati Group and EIE Group the construction, assembly and tests activities of the prototype named ASTRI SST-2M. On the basis of the lesson learnt from the prototype, other telescopes will be produced, starting from a re-design phase, in order to optimize performances and the overall costs and production schedule for the CTA-SST telescope. This paper will firstly give an overview of the concept for the SST prototype mount structure. In this contest, the technologies adopted for the design, manufacturing and tests of the entire system will be presented. Moreover, a specific focus on the challenges of the prototype and the strategies associated with it will be provided, in order to outline the near future performance goals for this type of Cherenkov telescopes employed for Gamma ray science.

  15. Connections between SST and cyclonicity parameters as deduced from empirical data and GCM runs with prescribed SST

    SciTech Connect

    Bardin, M.Yu.; Rubinstein, K.G.

    1997-12-31

    Previously the authors investigated separately effects of the underlying surface on climate variables (among them, parameters of cyclonicity) by empirical model data. The present study has a twofold goal: (i) to investigate model capabilities in reproducing relationships between SST and cyclonicity and (ii) deduce possible causes of certain large-scale climate anomalies, reflected in cyclone parameters, from model experiment data.

  16. Joint University Program for Air Transportation Research, 1990-1991

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1991-01-01

    The goals of this program are consistent with the interests of both NASA and the FAA in furthering the safety and efficiency of the National Airspace System. Research carried out at the Massachusetts Institute of Technology (MIT), Ohio University, and Princeton University are covered. Topics studied include passive infrared ice detection for helicopters, the cockpit display of hazardous windshear information, fault detection and isolation for multisensor navigation systems, neural networks for aircraft system identification, and intelligent failure tolerant control.

  17. Air Force Personnel Research: Recommendations for Improved Alignment

    DTIC Science & Technology

    2014-01-01

    Jay Tartell, and Bruce Gould . This research would also not have been possible without the help of many organizational representatives willing to let...tasks across jobs and help estimate the resources required for retraining (Lance, Kavanagh, and Gould , 1993; Lance, Mayfield, and Gould , 1993). J...and Theory Building,” Journal of Management, Vol. 26, No. 4, August 2000, pp. 657–684. Gilliland, Stephen W., “The Perceived Fairness of Selection

  18. Evaluation of ocean data assimilation in CAS-ESM-C: Constraining the SST field

    NASA Astrophysics Data System (ADS)

    Dong, Xiao; Lin, Renping; Zhu, Jiang; Lu, Zeting

    2016-07-01

    A weakly coupled assimilation system, in which SST observations are assimilated into a coupled climate model (CASESM-C) through an ensemble optimal interpolation scheme, was established. This system is a useful tool for historical climate simulation, showing substantial advantages, including maintaining the atmospheric feedback, and keeping the oceanic fields from drifting far away from the observation, among others. During the coupled model integration, the bias of both surface and subsurface oceanic fields in the analysis can be reduced compared to unassimilated fields. Based on 30 model years of output from the system, the climatology and interannual variability of the climate system were evaluated. The results showed that the system can reasonably reproduce the climatological global precipitation and SLP, but it still suffers from the double ITCZ problem. Besides, the ENSO footprint, which is revealed by ENSO-related surface air temperature, geopotential height and precipitation during El Niño evolution, is basically reproduced by the system. The system can also simulate the observed SST-rainfall relationships well on both interannual and intraseasonal timescales in the western North Pacific region, in which atmospheric feedback is crucial for climate simulation.

  19. The effects of remote SST forcings on ENSO dynamics, variability and diversity

    NASA Astrophysics Data System (ADS)

    Dommenget, Dietmar; Yu, Yanshan

    2016-12-01

    Air-sea interactions with remote regions in the tropical Indian and Atlantic, and extra-tropical oceans can influence ENSO features in the tropical Pacific. In this study these effects are explored by using an AGCM coupled with a Slab Ocean and a simple recharge oscillator ENSO model through switched on/off air-sea interaction in respective ocean area. It is shown that the decoupling in different remote regions has different impacts on ENSO dynamics, variability and diversity. The most interesting result is that the air-sea interactions with remote tropical oceans provide a delayed negative feedback to ENSO similar to that of the tropical Pacific Ocean internal wave dynamics. This is caused by the ENSO teleconnections: they lead to a delayed remote warming and cooling, which in turn feedbacks to ENSO effectively giving a delayed negative feedback. The model simulations suggest that this remote delayed feedback may contribute about 40% to the total delayed negative feedback of ENSO. Thus a central element of ENSO dynamics is partly due to interactions with other tropical ocean basins by atmospheric teleconnections. Furthermore, all remote regions effectively provide stochastic forcings for the ENSO variability and therefore increase the ENSO variability. The influence from the remote regions also causes different patterns of sea surface temperature (SST) variability in the tropical Pacific, contributing to the diversity of the ENSO mode. In particular the extra-tropical Pacific regions force SST variability that is different from the equatorial ENSO mode of variability. The influence that the remote regions have on the ENSO dynamics and variability is significantly altered by the interaction between the equatorial recharge oscillator dynamics and the simple thermodynamic slab ocean processes.

  20. Unobstrusive Research with Applications for Air Force Community Relations.

    DTIC Science & Technology

    1984-08-01

    second reader) rKt ion/ ~l-lA~tyCodes Amian~d/or A t. 1 Spe~cial S’ This document has been approved fcr public release and sale; its distribution is...communication channel itself and-can be updated periodically with little effort (Babbie, 1979, p. 274). Second , unobtrusive techniques are often less...observation can be used to identify those individuals the researcher might wish to further study obtrusively, through interviews or surveys. Body language is

  1. Forests under climate change and air pollution: gaps in understanding and future directions for research.

    PubMed

    Matyssek, R; Wieser, G; Calfapietra, C; de Vries, W; Dizengremel, P; Ernst, D; Jolivet, Y; Mikkelsen, T N; Mohren, G M J; Le Thiec, D; Tuovinen, J-P; Weatherall, A; Paoletti, E

    2012-01-01

    Forests in Europe face significant changes in climate, which in interaction with air quality changes, may significantly affect forest productivity, stand composition and carbon sequestration in both vegetation and soils. Identified knowledge gaps and research needs include: (i) interaction between changes in air quality (trace gas concentrations), climate and other site factors on forest ecosystem response, (ii) significance of biotic processes in system response, (iii) tools for mechanistic and diagnostic understanding and upscaling, and (iv) the need for unifying modelling and empirical research for synthesis. This position paper highlights the above focuses, including the global dimension of air pollution as part of climate change and the need for knowledge transfer to enable reliable risk assessment. A new type of research site in forest ecosystems ("supersites") will be conducive to addressing these gaps by enabling integration of experimentation and modelling within the soil-plant-atmosphere interface, as well as further model development. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Remotely-sensed sea surface temperatuares (SST) of Northeaster Pacific Coastal Zones

    EPA Science Inventory

    Sea surface temperature (SST) is an important indicator of long-term trends and geographical temperature patterns; however there have been relatively few long-term records of SST in near-coastal habitats. In situ SST measurements are irregular in both space and time. Therefore, w...

  3. Remotely-sensed sea surface temperatuares (SST) of Northeaster Pacific Coastal Zones

    EPA Science Inventory

    Sea surface temperature (SST) is an important indicator of long-term trends and geographical temperature patterns; however there have been relatively few long-term records of SST in near-coastal habitats. In situ SST measurements are irregular in both space and time. Therefore, w...

  4. Assessment of western Indian Ocean SST bias of CMIP5 models

    NASA Astrophysics Data System (ADS)

    Fathrio, Ibnu; Iizuka, Satoshi; Manda, Atsuyoshi; Kodama, Yasu-Masa; Ishida, Sachinobu; Moteki, Qoosaku; Yamada, Hiroyuki; Tachibana, Yoshihiro

    2017-04-01

    The western Indian Ocean sea surface temperature (SST) is among the key factors that affect precipitation over India and East Africa. This study examined the western Indian Ocean SST biases among the Coupled Model Intercomparison Project phase 5 (CMIP5) models. It was found that the multimodel ensemble-mean SST biases over the western equatorial Indian Ocean are warmer than the observations during the summer monsoon season. However, about half the models show positive SST biases, whereas negative ones in the other half. The models with warmer SST biases exhibit a pattern similar to the Indian Ocean Dipole, with stronger equatorial easterly wind biases during fall and a deeper thermocline in the western equatorial Indian Ocean. In the models with cooler SST biases, negative SST biases are observed over the entire tropical Indian Ocean throughout the year and the wind biases over the equatorial Indian Ocean are southeasterly during summer and fall. Heat budget analysis revealed the importance of ocean currents in forming the early summer development of SST biases over the western equatorial Indian Ocean. The formation of SST biases is related to surface current biases induced by the weaker biases of southwesterly monsoon winds and SST biases over the southwestern equatorial Indian Ocean, which are advected by the East African Coastal Currents. On the other hand, almost of all the CMIP5 models show prominent cold SST biases over the northern Arabian Sea during the premonsoon season. The SST biases are induced by excess surface cooling during the winter monsoon season.

  5. The Conference Proceedings of the 2003 Air Transport Research Society (ATRS) World Conference, Volume 5

    NASA Technical Reports Server (NTRS)

    Bowen, Brent (Editor); Gudmundsson, Sveinn (Editor); Oum, Tae (Editor)

    2003-01-01

    The UNO Aviation Institute Monograph Series began in 1994 as a key component of the education outreach and information transfer missions of the Aviation Institute and the NASA Nebraska Space Grant & EPSCoR Programs. The series is an outlet for aviation materials to be indexed and disseminated through an efficient medium. Publications are welcome in all aspects of aviation. Publication formats may include, but are not limited to, conference proceedings, bibliographies, research reports, manuals, technical reports, and other documents that should be archived and indexed for future reference by the aviation and world wide communities. The Conference proceedings of the 2003 Air Transport Research Society (ATRS) world conference, volume 5 is presented. The topics include: 1) The Temporal Configuration of Airline Networks in Europe; 2) Determination and Applications of Environmental Costs at Different Sized Airports-Aircraft Noise and Engine Emissions; 3) Cost Effective Measures to Reduce CO2 Emissions in the Air Freight Sector; 4) An Assessment of the Sustainability of Air Transport System: Quantification of Indicators; 5) Regulation, Competition and Network Evolution in Aviation; 6) Regulation in the Air: Price and Frequency Cap; 7) Industry Consolidation and Future Airline Network Structures in Europe; 8) Application of Core Theory to the U.S. Airline Industry; 9) Air Freight Transshipment Route Choice Analysis; 10) A Fuzzy Approach of the Competition on Air Transport Market; and 11) Developing Passenger Demand Models for International Aviation from/to Egypt: A Case Study of Cairo Airport and Egyptair.

  6. A Distributed Simulation Facility to Support Human Factors Research in Advanced Air Transportation Technology

    NASA Technical Reports Server (NTRS)

    Amonlirdviman, Keith; Farley, Todd C.; Hansman, R. John, Jr.; Ladik, John F.; Sherer, Dana Z.

    1998-01-01

    A distributed real-time simulation of the civil air traffic environment developed to support human factors research in advanced air transportation technology is presented. The distributed environment is based on a custom simulation architecture designed for simplicity and flexibility in human experiments. Standard Internet protocols are used to create the distributed environment, linking all advanced cockpit simulator, all Air Traffic Control simulator, and a pseudo-aircraft control and simulation management station. The pseudo-aircraft control station also functions as a scenario design tool for coordinating human factors experiments. This station incorporates a pseudo-pilot interface designed to reduce workload for human operators piloting multiple aircraft simultaneously in real time. The application of this distributed simulation facility to support a study of the effect of shared information (via air-ground datalink) on pilot/controller shared situation awareness and re-route negotiation is also presented.

  7. Climatic variability between SST and river discharge at Amazon region

    NASA Astrophysics Data System (ADS)

    Silva, M. E.; Silva, E. R. L.

    2012-04-01

    Climatic variability, related both to precipitation and river discharge, has been associated to ocean variability. Authors commonly relate Pacific sea surface temperature (SST) variation to South America (SA) precipitation. Zonal displacement of Walker cell, with intensified subsidence over northern portion of SA, Subtropical Jet strengthening/weakening over extratropical latitudes of SA are, respectively, dynamical reasons scientifically accepted for increasing and depletion of precipitation at the respective areas. Many studies point out the influence of tropical Atlantic SST anomalies in relation to precipitation/river discharge variability over northeast of Brazil. Aliseos variability at tropical Atlantic is also a physic process that contributes to explain precipitation and river flow variability over SA, mainly over the north portion. In this study, we aim to investigate the temporal correlation between SST, mainly from Pacific and Atlantic oceans, and rivers discharge at the Amazon region. Ji-Parana, Madeira and Tapajós river discharge in monthly and annual scale, between 1968 and 2008, were the time series selected to reach the purpose. Time series for river discharge were obtained from Agência Nacional de Águas (ANA, in Portuguese) and, SST data were obtained from CDC/NOAA. Before linear correlation computations between river discharge and SST have been made, seasonal cycle and linear tendency were removed from all original time series. Areas better correlated to river discharge at Amazon region show oceanic patterns apparently associated to PDO (Pacific Decadal Oscillation) and ENSO (El Niño-South Oscillation) variability, with absolute values greater than 0.3 and reaching 0.5 or 0.6. The spatial pattern observed at Pacific basin is similar to that showed by the first mode of PCA (Principal Component Analysis), such seen in many studies (the "horse shoe" pattern). In general, negative correlation values appear far more to the west of Pacific basin

  8. Technique for atmospheric rate chemistry calculations. [of SST exhaust

    NASA Technical Reports Server (NTRS)

    Matloff, G. L.

    1976-01-01

    The possibility that predictions of atmospheric photochemistry/transport models are sensitive to uncertainties in reaction rates and other inputs stresses the need for rapid numerical integration schemes in rate photochemistry problems. Reducing the computational burden has a major merit in facilitating sensitivity studies to assess the effect of uncertainties on predicted ozone diminutions from NOx (NO + NO2) in the exhaust plume of SST engines. The paper discusses the validity of an algorithmic approach to integration of rate chemistry problems in combustion, developed by Rubel and Baronti for an approximate calculation of the production rate of the i-th chemical species involved. An analysis of two projected SST engines confirms the validity of the proposed algorithm. Because of the relative arithmetical simplicity, it may be easier to treat diffusion rate chemistry calculations using the Rubel and Baronti approximation than would be possible by other approaches.

  9. RF assisted Glow Discharge Condition experiment for SST-1 Tokamak

    NASA Astrophysics Data System (ADS)

    Raval, Dilip; Khan, Ziauddin; George, Siju; Dhanani, Kalpeshkumar R.; Paravastu, Yuvakiran; Semwal, Pratibha; Thankey, Prashant; Shoaib Khan, Mohammad; Kakati, Bharat; Pradhan, Subrata

    2017-04-01

    Impurity control reduces the radiation loss from plasma and hence enhances the plasma operation. Oxygen and water vapors are the most common impurities in tokamak devices. Water vapour can be reduced with extensive baking while in order to have a significant reduction in oxygen it is necessary to use glow discharge condition (GDC). RF assisted glow discharge cleaning system will be implemented to remove low z impurities at PFC installed SST-1 vacuum vessel. A RF assisted Glow discharge conditioning is studied at laboratory to find the optimum operating parameters in a view to implement at SST-1 tokamak. Helium is used as a fuel gas in the present experiment. It is observed that the ultimate impurity level is reduced significantly below to the accepted level for plasma operation after RF assisted GDC. The experimental findings of RF assisted Glow discharge conditioning is discussed in details in this paper.

  10. The ASTRI SST-2M prototype: camera design

    NASA Astrophysics Data System (ADS)

    De Caprio, V.; Belluso, M.; Bonanno, G.; Canestrari, R.; Cascone, E.; Catalano, O.; La Rosa, G.; Pareschi, G.; Rodeghiero, G.; Sottile, G.

    2013-09-01

    ASTRI is an Flagship Project led by the Italian National Institute of Astrophysics, INAF, strictly linked to the development of the ambitious Cherenkov Telescope Array, CTA. Primary goal of the ASTRI project is the design, production, installation and calibration of an end-to-end Small Size Telescope prototype, devoted to the investigation of the highest gamma-ray energy band, from a fraction of TeV up to 100 TeV and beyond. The telescope, named ASTRI SST-2M, is mainly characterized by an optical system in dual-mirror configuration and by a modular camera at the curved focal surface composed of a matrix of Silicon Photo-Multipliers photo-sensors. In this paper we present an overview of the mechanical, thermal and electrical concept design of the camera and of the related technological solutions adopted for the ASTRI SST-2M prototype.

  11. Evidence that endogenous SST inhibits ACTH and ghrelin expression by independent pathways.

    PubMed

    Luque, Raul M; Gahete, Manuel D; Hochgeschwender, Ute; Kineman, Rhonda D

    2006-08-01

    Corticosterone and total ghrelin levels are increased in somatostatin (SST) knockout mice (Sst-/-) compared with SST-intact controls (Sst+/+). Because exogenous ghrelin can increase glucocorticoids, the question arises whether elevated levels of ghrelin contribute to elevated corticosterone levels in Sst-/- mice. We report that Sst-/- mice had elevated mRNA levels for pituitary proopiomelanocortin (POMC), the precursor of adrenocorticotropic hormone (ACTH), whereas mRNA levels for hypothalamic corticotropin-releasing hormone (CRH) did not differ from Sst+/+ mice. Furthermore, SST suppressed pituitary POMC mRNA levels and ACTH release in vitro independently of CRH actions. In contrast, it has been reported that ghrelin increases glucocorticoids via a central effect on CRH secretion and that n-octanoyl ghrelin is the form of ghrelin that activates the GHS-R1a and modulates CRH neuronal activity. Consistent with elevations in total ghrelin levels, Sst-/- mice displayed an increase in stomach ghrelin mRNA levels, whereas hypothalamic and pituitary expression of ghrelin was not altered. Despite the increase in total ghrelin levels, circulating levels of n-octanoyl ghrelin were not altered in Sst-/- mice. Because glucocorticoids and ghrelin increase in response to fasting, we examined the impact of fasting on the adrenal axis and ghrelin in Sst+/+ and Sst-/- mice and found that endogenous SST does not significantly contribute to this adaptive response. We conclude that endogenous SST inhibits basal ghrelin gene expression in a tissue specific manner and independently and directly inhibits pituitary ACTH synthesis and release. Thus endogenous SST exerts an inhibitory effect on ghrelin synthesis and on the adrenal axis through independent pathways.

  12. NASA Langley and NLR Research of Distributed Air/Ground Traffic Management

    NASA Technical Reports Server (NTRS)

    Ballin, Mark G.; Hoekstra, Jacco M.; Wing, David J.; Lohr, Gary W.

    2002-01-01

    Distributed Air/Ground Traffic Management (DAG-TM) is a concept of future air traffic operations that proposes to distribute information, decision-making authority, and responsibility among flight crews, the air traffic service provider, and aeronautical operational control organizations. This paper provides an overview and status of DAG-TM research at NASA Langley Research Center and the National Aerospace Laboratory of The Netherlands. Specific objectives of the research are to evaluate the technical and operational feasibility of the autonomous airborne component of DAG-TM, which is founded on the operational paradigm of free flight. The paper includes an overview of research approaches, the airborne technologies under development, and a summary of experimental investigations and findings to date. Although research is not yet complete, these findings indicate that free flight is feasible and will significantly enhance system capacity and safety. While free flight cannot alone resolve the complex issues faced by those modernizing the global airspace, it should be considered an essential part of a comprehensive air traffic management modernization activity.

  13. Air pollution concentration monitoring and effects research in U.S. National Parks

    SciTech Connect

    Maniero, T.

    1995-12-31

    The National Park Service (NPS) is mandated by legislation, such as the Clean Air Act, the agency Organic Act, and the Wilderness Act, to protect resources on its lands from air pollution. To fulfill that responsibility, the NPS must collect high-quality, defensible data regarding pollutant levels and resource effects, and use those data convincingly in the State and Federal regulatory arena. Accordingly, air pollution concentration monitoring and effects research has been conducted in a number of NPS units. Monitors collect ozone, deposition, and particle data to establish baselines and detect trends in pollutant levels. Research projects investigate the effects of these atmospheric pollutants on vegetation, soil and surface water chemistry and biota, and visibility. The results show that many NPS areas are affected by air pollution to some extent. High ozone concentrations and associated vegetation injury have been observed in Great Smoky Mountains and Shenandoah National Parks in the eastern US, and in Sequoia and Yosemite National Parks in the west. Acid-sensitive watersheds are found in parks of the Sierra Nevada, Cascades, Rocky Mountains, and Appalachians. Mercury, possibly from atmospheric sources, has been detected in fish collected in Acadia and Everglades National Parks. Some degree of visibility degradation has been observed in every park that has been monitored. Continuing research will help the NPS identify resources that are most sensitive to air pollution and determine pollution concentrations that adversely affect those resources.

  14. Global Meteorological Drought: A Synthesis of Current Understanding with a Focus on SST Drivers of Precipitation Deficits

    NASA Technical Reports Server (NTRS)

    Schubert, S.; Stewart, R.; Wang, H.; Barlow, M.; Berbery, H.; Cai, W.; Hoerling, M.; Kanikicharla, K.; Koster, R.; Lyon, B.; hide

    2016-01-01

    Drought affects virtually every region of the world, and potential shifts in its character in a changing climate are a major concern. This article presents a synthesis of current understanding of meteorological drought, with a focus on the large-scale controls on precipitation afforded by sea surface temperature (SST anomalies), land surface feedbacks, and radiative forcings. The synthesis is primarily based on regionally-focused articles submitted to the Global Drought Information System (GDIS) collection together with new results from a suite of atmospheric general circulation model experiments intended to integrate those studies into a coherent view of drought worldwide. On interannual time scales, the preeminence of ENSO as a driver of meteorological drought throughout much of the Americas, eastern Asia, Australia, and the Maritime Continent is now well established, whereas in other regions (e.g., Europe, Africa, and India), the response to ENSO is more ephemeral or nonexistent. Northern Eurasia, central Europe, as well as central and eastern Canada stand out as regions with little SST-forced impacts on precipitation interannual time scales. Decadal changes in SST appear to be a major factor in the occurrence of long-term drought, as highlighted by apparent impacts on precipitation of the late 1990s 'climate shifts' in the Pacific and Atlantic SST. Key remaining research challenges include (i) better quantification of unforced and forced atmospheric variability as well as land/atmosphere feedbacks, (ii) better understanding of the physical basis for the leading modes of climate variability and their predictability, and (iii) quantification of the relative contributions of internal decadal SST variability and forced climate change to long-term drought.

  15. MIL-STD-1553B system design in SST application

    NASA Astrophysics Data System (ADS)

    Xiong, Ying

    2001-06-01

    In this paper, we will first introduce what is MIL-STD-1553B and why we choose it. Then we will analyze the characteristics and the reliability of this standard. When we use this protocol to implement our SDU system in the SST, we also need to describe the whole system in which the 1553 standard is used. Finally, we will put our most attention on the system design, including hardware interconnection and software program.

  16. Operational and troubleshooting experiences in the SST-1 cryogenic system

    NASA Astrophysics Data System (ADS)

    Mahesuria, G.; Panchal, P.; Panchal, R.; Patel, R.; Sonara, D.; Gupta, N. C.; Srikanth, G. L. N.; Christian, D.; Garg, A.; Bairagi, N.; Patel, K.; Shah, P.; Nimavat, H.; Sharma, R.; Patel, J. C.; Tank, J.; Tanna, V. L.; Pradhan, S.

    2014-01-01

    Recently, the cooldown and current charging campaign have been carried out towards the demonstration of the first successful plasma discharge in the steady state superconducting Tokomak (SST-1). The SST-1 machine consists of cable-in-conduit wound superconducting toroidal as well as poloidal coils, cooled using 1.3 kW at 4.5 K helium refrigerator -cum- liquefier (HRL) system. The cryo system provides the two-phase helium at 0.13 MPa at 4.5 K as well as forced-flow pressurized helium at 0.4 MPa and in addition to 7 g-s-1 liquefaction capacity required for the current leads and other cold mass at 4.5 K. The entire integrated cold masses having different thermo hydraulic resistances cooled with the SST-1 HRL in optimised process parameters. In order to maintain different levels of temperatures and to facilitate smooth and reliable cooldown, warm-up, normal operations as well as to handle abnormal events such as, quench or utilities failures etc., exergy efficient process are adopted for the helium refrigerator-cum-liquefier (HRL) with an installed equivalent capacity of 1.3 kW at 4.5 K. Using the HRL, the cold mass of about 40 tons is being routinely cooled down from ambient temperature to 4.5 K with an average cooldown rate of 0.75 - 1 K-h-1. Long-term cryogenic stable conditions were obtained within 15 days in the superconducting coils and their connecting feeders. Afterwards, all of the cold mass is warmed-up in a controlled manner to ambient temperature. In this paper, we report the recent operational results of the cryogenic system during the first plasma discharge in SST-1 as well as the troubleshooting experiences of the cryogenic plant related hardware.

  17. Using SST, PDO and SOI for Streamflow Reconstruction

    NASA Astrophysics Data System (ADS)

    Bukhary, S. S.; Kalra, A.; Ahmad, S.

    2015-12-01

    Recurring droughts in southwestern U.S. particularly California, have strained the existing water reserves of the region. Frequency, severity and duration of these recurring drought events may not be captured by the available instrumental records. Thus streamflow reconstruction becomes imperative to identify the historic hydroclimatic extremes of a region and assists in developing better water management strategies, vital for sustainability of water reserves. Tree ring chronologies (TRC) are conventionally used to reconstruct streamflows, since tree rings are representative of climatic information. Studies have shown that sea surface temperature (SST) and climate indices of southern oscillation index (SOI) and pacific decadal oscillation (PDO) influence U.S. streamflow volumes. The purpose of this study was to improve the traditional reconstruction methodology by incorporating the oceanic-atmospheric variables of PDO, SOI, and Pacific Ocean SST, alongwith TRC as predictors in a step-wise linear regression model. The methodology of singular value decomposition was used to identify teleconnected regions of streamflow and SST. The approach was tested on eleven gage stations in Sacramento River Basin (SRB) and San Joaquin River Basin (JRB). The reconstructions were successfully generated from 1800-1980, having an overlap period of 1932-1980. Improved results were exhibited when using the predictor variable of SST along with TRC (calibration r2=0.6-0.91) compared to when using TRC in combination with SOI and PDO (calibration r2=0.51-0.78) or when using TRC by itself (calibration r2=0.51-0.86). For future work, this approach can be replicated for other watersheds by using the oceanic-atmospheric climate variables influencing that region.

  18. Review of Selected Army-Funded Research on Fog Oil Smoke Characteristics as Related to Clean Air Act Issues

    DTIC Science & Technology

    1998-03-01

    FUNDED RESEARCH ON FOG OIL SMOKE CHARACTERISTICS AS RELATED TO CLEAN AIR ACT ISSUES Nancy A. Chester RESEARCH AND TECHNOLOGY DIRECTORATE March 1998...TITLE AND SUBTITLE Review of Selected Army-Funded Research on Fog Oil Smoke Characteristics as Related to Clean Air Act Issues 6. AUTHOR(S...distribution). The fate of fog oil is reported in relation to its deposition and persistence. 14. SUBJECT TERMS Fog oil Clean Air Act Environmental

  19. The effect of atmospheric variability at intra-seasonal time scale on the SST of the Southwestern Atlantic Continental Shelf

    NASA Astrophysics Data System (ADS)

    Simionato, Claudia; Clara, Moira Luz; Jaureguizar, Andrés

    2017-04-01

    The Southwestern Atlantic Continental Shelf is characterized by large SST variability which origin remains unknown. In this work, we use blended SST data provided by NOAA CoastWatch Program, which combine the information coming from infrared and microwave sensors to provide daily images of an intermediate spatial resolution (11 km) with a noise floor of less than 0.2 °C. The data base starts at the middle of 2002, when an increase in signal variance is observed due to the fact that the Advanced Microwave Scanning Radiometer became available and as a consequence to its near all-weather coverage. Several years of observations are thus available, and even though the temporal and spatial resolution of these data is intermediate, they are reasonable for observing and characterizing the most significant patterns of SST variability in the (atmospheric) synoptic to intra-seasonal time scales, so as to help on understanding the physical processes which occur in the area and their forcing mechanisms. As we hypothesize that most of the variability in those time scales is wind forced, the study is complemented with the use of atmospheric observations -coming from remote sensing and reanalysis-. To perform the analysis, the long-term trend, inter-annual and seasonal variability are subtracted to the SST data to obtain the signal on intra-seasonal time scales. Then, Principal Components (EOF) analysis is applied to the data and composites of SST and several meteorological variables (wind, sea level pressure, air temperature, OLR, etc.) are computed for the days when the leading modes are active. It is found that the first three modes account for more than 70% of the variance. Modes 1 and 2 seem to be related to atmospheric waves generated in the tropical Pacific. Those waves, through atmospheric teleconnections, affect the SST on the southwestern South Atlantic Continental Shelf very rapidly. The oceanic anomalies exceed 0.7°C and are quite persistent. Mode 2 seems to be

  20. Commissioning and experimental validation of SST-1 plasma facing components

    NASA Astrophysics Data System (ADS)

    Paravastu, Yuvakiran; Raval, Dilip; Khan, Ziauddin; Patel, Hitesh; Biswas, Prabal; Parekh, Tejas; George, Siju; Santra, Prosenjit; Ramesh, Gattu; ArunPrakash, A.; Thankey, Prashant; Semwal, Pratibha; Dhanani, Kalpeshkumar R.; Jaiswal, Snehal; Chauhan, Pradeep; Pradhan, Subrata

    2017-04-01

    Plasma facing components of SST-1 are designed to withstand an input heat load of 1.0 MW/m2. They protect vacuum vessel, auxiliary heating source i.e. RF antennas, NBI and other in-vessel diagnostic from the plasma particles and high radiative heat loads. PFC’s are positioned symmetric to mid-plane to accommodate with circular, single and double null configuration. Graphite is used as plasma facing material, back made of copper alloy and SS cooling/baking tubes are brazed on copper alloy back plates for efficient heat removal of incident heat flux. Benchmarking of PFC assembly was first carried out in prototype vacuum vessel of SST-1 to develop understanding and methodology of co-ordinate measurements. Based on such hands-on-experience, the final assembly of PFC’s in vacuum vessel of SST-1 was carried out. Initially, PFC’s are to be baked at 250 °C for wall conditioning followed with cooling for heat removal of incident heat flux during long pulse plasma operation. For this purpose, the supply and return headers are designed and installed inside the vacuum vessel in such a way that it will cater water as well as hot nitrogen gas depending up on the cycle. This paper will discuss the successful installation of PFC’s and its plasma operation respecting all design criteria.

  1. Automated computational delimitation of SST upwelling areas using fuzzy clustering

    NASA Astrophysics Data System (ADS)

    Nascimento, Susana; Franco, Pedro; Sousa, Fátima; Dias, Joaquim; Neves, Filipe

    2012-06-01

    In our previous work we applied fuzzy clustering to the problem of identification of upwelling areas from Sea Surface Temperature (SST) images, and showed that the approach was promising. However, the approach required a user-supplied information for annotation of the upwelling area on the map in order to fine-tune parameters of the method. In this paper, we modify the method to apply it in a fully automated manner without any pre-specified expert knowledge. We describe a computational system, FuzzyUPWELL, that provides a framework needed for a totally unsupervised segmentation and delimitation of upwelling areas on SST images. The FuzzyUPWELL system integrates an unsupervised fuzzy clustering algorithm, a threshold procedure combining a set of features extracted from clusters to determine the upwelling fronts, a mechanism to delimitate the upwelling areas by fuzzy boundaries defined from measures of classification uncertainty, and a Graphical User Interface (GUI). The system has been successfully applied to a collection of 113 images obtained at the coastal ocean of Portugal during the upwelling seasons of 1998 and 1999. The collection covers much diverse upwelling situations. The system is shown to be robust to false positives when analysing its response on SST images without upwelling.

  2. Ranking the strongest ENSO events while incorporating SST uncertainty

    NASA Astrophysics Data System (ADS)

    Huang, Boyin; L'Heureux, Michelle; Hu, Zeng-Zhen; Zhang, Huai-Min

    2016-09-01

    The strength of El Niño-Southern Oscillation (ENSO) is often measured using a single, discrete value of the Niño index. However, this method does not consider the sea surface temperature (SST) uncertainty associated with the observations and data processing. On the basis of the Niño3.4 index and its uncertainty, we find that the strength of the three strongest ENSO events is not separable at 95% confidence level. The monthly peak SST anomalies in the most recent 2015-2016 El Niño is tied with 1997-1998 and 1982-1983 El Niño as the strongest. The three most negative monthly Niño values occur within the 1955-1956, 1973-1974, and 1975-1976 La Niña events, which cannot be discriminated by rank. The histograms of 1000-member ensemble analysis support the conclusion that the strength of the three strongest ENSO events is not separable. These results highlight that the ENSO ranking has to include the SST uncertainty.

  3. Air pollutant interactions with vegetation: research needs in data acquisition and interpretation

    SciTech Connect

    Lindberg, S. E.; McLauglin, S. B.

    1980-01-01

    The objective of this discussion is to consider problems involved in the acquisition, interpretation, and application of data collected in studies of air pollutant interactions with the terrestrial environment. Emphasis will be placed on a critical evaluation of current deficiencies and future research needs by addressing the following questions: (1) which pollutants are either sufficiently toxic, pervasive, or persistent to warrant the expense of monitoring and effects research; (2) what are the interactions of multiple pollutants during deposition and how do these influence toxicity; (3) how de we collect, report, and interpret deposition and air quality data to ensure its maximum utility in assessment of potential regional environmental effects; (4) what processes do we study, and how are they measured to most efficiently describe the relationship between air quality dose and ultimate impacts on terrestrial ecosystems; and (5) how do we integrate site-specific studies into regional estimates of present and potential environmental degradation (or benefit).

  4. The complexities of air pollution regulation: the need for an integrated research and regulatory perspective.

    PubMed

    Nadadur, Srikanth S; Miller, C Andrew; Hopke, Philip K; Gordon, Terry; Vedal, Sverre; Vandenberg, John J; Costa, Daniel L

    2007-12-01

    The Clean Air Act mandates the U.S. Environmental Protection Agency to periodically reassess existing and new science that underlie the regulation of major ambient pollutants -- particulate matter (PM) and tropospheric ozone being most notable. While toxic effects have been ascribed individually to these and other pollutants in the air, it is clear that mixtures of these contaminants have the potential to interact and thereby influence their overall toxic outcomes. It follows that a more comprehensive assessment of the potential health effects of the air pollution complex might better protect human health; however, traditional regulatory drivers and funding constraints have impeded progress to such a goal. Despite difficulties in empirically conducting studies of complex mixtures of air pollutants and acquiring relevant exposure data, there remains a need to develop integrated, interdisciplinary research and analytical strategies to provide more comprehensive (and relevant) assessments of associated health outcomes and risks. The research and assessment communities are endeavoring to dissect this complexity using varied approaches Here we present five interdisciplinary perspectives of this evolving line of thought among researchers and those who use such data in assessment: (1) analyses that coordinate air quality-health analyses utilizing representative polluted U.S. air sheds to apportion source and component-specific health risks; (2) novel approaches to characterize air quality in terms of emission sources and how emission reduction strategies might effectively impact pollutant levels; (3) insights from present-day studies of effects of single ambient pollutants in animal and controlled clinical toxicology studies and how these are evolving to address air pollution; (4) refinements in epidemiologic health assessments that take advantage of the complexities of existent air quality conditions; and (5) new approaches to integrative analyses to establish the

  5. Role of the oceanic bridge in linking the 18.6 year modulation of tidal mixing and long-term SST change in the North Pacific

    NASA Astrophysics Data System (ADS)

    Osafune, S.; Masuda, S.; Sugiura, N.

    2014-10-01

    The impact of the 18.6 year modulation of tidal mixing on sea surface temperature (SST) in the North Pacific is investigated in a comparative study using an ocean data synthesis system. We show that remote impact through a slow ocean response can make a significant contribution to the observed bidecadal variation in wintertime SST near the center of action of the Pacific Decadal Oscillation in the eastern Pacific. A comparative data synthesis experiment showed that the modified SST variation is amplified by bidecadal variation in the westerly wind. This relationship between SST and wind variations is consistent with an observed air-sea coupled mode in the extratropics, which suggests that a midlatitude air-sea interaction plays an important role in enhancing the climate signal of the 18.6 year modulation. This result supports the hypothesis that the 18.6 year tidal cycle influences long-term variability in climate; thus, knowledge of this cycle could contribute toward improving decadal predictions of climate.

  6. FAA/NASA Joint University Program for Air Transportation Research, 1992-1993

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1994-01-01

    The research conducted during the academic year 1992-1993 under the FAA/NASA sponsored Joint University Program for Air Transportation Research is summarized. The year end review was held at Ohio University, Athens, Ohio, 17-18 June 1993. The Joint University Program is a coordinated set of three grants sponsored by the Federal Aviation Administration and NASA Langley Research Center, one each with the Massachusetts Institute of Technology, Ohio University, and Princeton University. Completed works, status reports, and annotated bibliographies are presented for research topics, which include navigation, guidance, and control theory and practice, aircraft performance, human factors and air traffic management. An overview of the year's activities for each university is also presented.

  7. North American Tropical Cyclone Landfall and SST: A Statistical Model Study

    NASA Technical Reports Server (NTRS)

    Hall, Timothy; Yonekura, Emmi

    2013-01-01

    A statistical-stochastic model of the complete life cycle of North Atlantic (NA) tropical cyclones (TCs) is used to examine the relationship between climate and landfall rates along the North American Atlantic and Gulf Coasts. The model draws on archived data of TCs throughout the North Atlantic to estimate landfall rates at high geographic resolution as a function of the ENSO state and one of two different measures of sea surface temperature (SST): 1) SST averaged over the NA subtropics and the hurricane season and 2) this SST relative to the seasonal global subtropical mean SST (termed relSST). Here, the authors focus on SST by holding ENSO to a neutral state. Jackknife uncertainty tests are employed to test the significance of SST and relSST landfall relationships. There are more TC and major hurricane landfalls overall in warm years than cold, using either SST or relSST, primarily due to a basinwide increase in the number of storms. The signal along the coast, however, is complex. Some regions have large and significant sensitivity (e.g., an approximate doubling of annual major hurricane landfall probability on Texas from -2 to +2 standard deviations in relSST), while other regions have no significant sensitivity (e.g., the U.S. mid-Atlantic and Northeast coasts). This geographic structure is due to both shifts in the regions of primary TC genesis and shifts in TC propagation.

  8. Geophysical Global Modeling for Extreme Crop Production Using Photosynthesis Models Coupled to Ocean SST Dipoles

    NASA Astrophysics Data System (ADS)

    Kaneko, D.

    2016-12-01

    Climate change appears to have manifested itself along with abnormal meteorological disasters. Instability caused by drought and flood disasters is producing poor harvests because of poor photosynthesis and pollination. Fluctuations of extreme phenomena are increasing rapidly because amplitudes of change are much greater than average trends. A fundamental cause of these phenomena derives from increased stored energy inside ocean waters. Geophysical and biochemical modeling of crop production can elucidate complex mechanisms under seasonal climate anomalies. The models have progressed through their combination with global climate reanalysis, environmental satellite data, and harvest data on the ground. This study examined adaptation of crop production to advancing abnormal phenomena related to global climate change. Global environmental surface conditions, i.e., vegetation, surface air temperature, and sea surface temperature observed by satellites, enable global modeling of crop production and monitoring. Basic streams of the concepts of modeling rely upon continental energy flow and carbon circulation among crop vegetation, land surface atmosphere combining energy advection from ocean surface anomalies. Global environmental surface conditions, e.g., vegetation, surface air temperature, and sea surface temperature observed by satellites, enable global modeling of crop production and monitoring. The method of validating the modeling relies upon carbon partitioning in biomass and grains through carbon flow by photosynthesis using carbon dioxide unit in photosynthesis. Results of computations done for this study show global distributions of actual evaporation, stomata opening, and photosynthesis, presenting mechanisms related to advection effects from SST anomalies in the Pacific, Atlantic, and Indian oceans on global and continental croplands. For North America, climate effects appear clearly in severe atmospheric phenomena, which have caused drought and forest fires

  9. STEAM ENHANCED REMEDIATION RESEARCH FOR DNAPL IN FRACTURED ROCK, LORING AIR FORCE BASE, LIMESTONE, MAINE

    EPA Science Inventory

    This report details a research project on Steam Enhanced Remediation (SER) for the recovery of volatile organic compounds from fractured limestone that was carried out at the Quarry at the former Loring Air Force Base in Limestone, Maine. This project was carried out by USEPA, Ma...

  10. STEAM ENHANCED REMEDIATION RESEARCH FOR DNAPL IN FRACTURED ROCK, LORING AIR FORCE BASE, LIMESTONE, MAINE

    EPA Science Inventory

    This report details a research project on Steam Enhanced Remediation (SER) for the recovery of volatile organic compounds from fractured limestone that was carried out at the Quarry at the former Loring Air Force Base in Limestone, Maine. This project was carried out by USEPA, Ma...

  11. AFOSR (Air Force Office of Scientific Research) Technical Report Summaries, July-September 1983.

    DTIC Science & Technology

    1983-09-01

    The Air Force Office Scientific Research (AFOSR) Technical Report Summaries are published quarterly of each calendar year. They consist of a brief...summary of each AFOSR technical report received in the Technical Information Division and submitted to the Defense Technical Information Center for that

  12. AFOSR (Air Force Office of Scientific Research) Technical Report Summaries, October-December 1983

    DTIC Science & Technology

    1983-12-01

    The Air Force Office Scientific Research (AFOSR) Technical Report Summaries are published quarterly of each calendar year. They consist of a brief...summary of each AFOSR technical report received in the Technical Information Division and submitted to the Defense Technical Information Center for that

  13. AFOSR (Air Force Office of Scientific Research) Technical Report Summaries, January-March 1984

    DTIC Science & Technology

    1984-03-01

    The Air Force Office Scientific Research (AFOSR) Technical Report Summaries are published quarterly of each calendar year. They consist of a brief...summary of each AFOSR technical report received in the Technical Information Division and submitted to the Defense Technical Information Center for that

  14. AFOSR (Air Force Office of Scientific Research) Technical Report Summaries, July-September 1986

    DTIC Science & Technology

    1986-09-01

    The Air Force Office Scientific Research (AFOSR) Technical Report Summaries are published quarterly of each calendar year. They consists of a brief...summary of each AFOSR technical report received in the Technical Information Division and submitted to the Defense Technical Information Center for

  15. The Eighth Annual Air Pollution Medical Research Conference, Los Angeles, March 2-4, 1966.

    ERIC Educational Resources Information Center

    Archives of Environmental Health, 1967

    1967-01-01

    Papers read before the Eighth Annual American Medical Association Air Pollution Medical Research Conference, Los Angeles, California, March 2-4, 1966, are presented in this document. Topics deal with basic approaches to the study of the effects of inhaled irritants on the lung; environmental parameters in relation to host responses; biological…

  16. United States Air Force Summer Faculty Research Program. 1989 Program Management Report

    DTIC Science & Technology

    1989-12-01

    in a water tunnel. Preliminary verification tests show promise for accurate future velocity measurements. A separate flow visualization study involved...published as four separate documents under the 1989 Summer Faculty Research Program and are entitled, Graduate Student Summer Support Program Management...Program is published under a separate report entitled United States Air Force igh School Apprenticeship Program 1989 Program Management Report. 9

  17. The Eighth Annual Air Pollution Medical Research Conference, Los Angeles, March 2-4, 1966.

    ERIC Educational Resources Information Center

    Archives of Environmental Health, 1967

    1967-01-01

    Papers read before the Eighth Annual American Medical Association Air Pollution Medical Research Conference, Los Angeles, California, March 2-4, 1966, are presented in this document. Topics deal with basic approaches to the study of the effects of inhaled irritants on the lung; environmental parameters in relation to host responses; biological…

  18. Tu-144LL SST Flying Laboratory Side View of Nose, with a TU-144D on Ramp

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A Tupolev Tu-144D supersonic jetliner is framed by the drooped nose and forward fuselage of the Tu-144LL supersonic flying laboratory at the Zhukovsky Air Development Center near Moscow, Russia, in 1998. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different engines than were used

  19. Progress in aeronautical research and technology applicable to civil air transports

    NASA Technical Reports Server (NTRS)

    Bower, R. E.

    1981-01-01

    Recent progress in the aeronautical research and technology program being conducted by the United States National Aeronautics and Space Administration is discussed. Emphasis is on computational capability, new testing facilities, drag reduction, turbofan and turboprop propulsion, noise, composite materials, active controls, integrated avionics, cockpit displays, flight management, and operating problems. It is shown that this technology is significantly impacting the efficiency of the new civil air transports. The excitement of emerging research promises even greater benefits to future aircraft developments.

  20. Progress in aeronautical research and technology applicable to civil air transports

    NASA Technical Reports Server (NTRS)

    Bower, R. E.

    1981-01-01

    Recent progress in the aeronautical research and technology program being conducted by the United States National Aeronautics and Space Administration is discussed. Emphasis is on computational capability, new testing facilities, drag reduction, turbofan and turboprop propulsion, noise, composite materials, active controls, integrated avionics, cockpit displays, flight management, and operating problems. It is shown that this technology is significantly impacting the efficiency of the new civil air transports. The excitement of emerging research promises even greater benefits to future aircraft developments.

  1. Mexico City air quality research initiative. Volume 2, Problem definition, background, and summary of prior research

    SciTech Connect

    Not Available

    1994-06-01

    Air pollution in Mexico City has increased along with the growth of the city, the movement of its population, and the growth of employment created by industry. The main cause of pollution in the city is energy consumption. Therefore, it is necessary to take into account the city`s economic development and its prospects when considering the technological relationships between well-being and energy consumption. Air pollution in the city from dust and other particles suspended in the air is an old problem. However, pollution as we know it today began about 50 years ago with the growth of industry, transportation, and population. The level of well-being attained in Mexico City implies a high energy use that necessarily affects the valley`s natural air quality. However, the pollution has grown so fast that the City must act urgently on three fronts: first, following a comprehensive strategy, transform the economic foundation of the city with nonpolluting activities to replace the old industries, second, halt pollution growth through the development of better technologies; and third, use better fuels, emission controls, and protection of wooded areas.

  2. The Aqua-planet Experiment (APE): Response to Changed Meridional SST Profile

    NASA Technical Reports Server (NTRS)

    Williamson, David L.; Blackburn, Michael; Nakajima, Kensuke; Ohfuchi, Wataru; Takahashi, Yoshiyuki O.; Hayashi, Yoshi-Yuki; Nakamura, Hisashi; Ishiwatari, Masaki; Mcgregor, John L.; Borth, Hartmut; hide

    2013-01-01

    This paper explores the sensitivity of Atmospheric General Circulation Model (AGCM) simulations to changes in the meridional distribution of sea surface temperature (SST). The simulations are for an aqua-planet, a water covered Earth with no land, orography or sea- ice and with specified zonally symmetric SST. Simulations from 14 AGCMs developed for Numerical Weather Prediction and climate applications are compared. Four experiments are performed to study the sensitivity to the meridional SST profile. These profiles range from one in which the SST gradient continues to the equator to one which is flat approaching the equator, all with the same maximum SST at the equator. The zonal mean circulation of all models shows strong sensitivity to latitudinal distribution of SST. The Hadley circulation weakens and shifts poleward as the SST profile flattens in the tropics. One question of interest is the formation of a double versus a single ITCZ. There is a large variation between models of the strength of the ITCZ and where in the SST experiment sequence they transition from a single to double ITCZ. The SST profiles are defined such that as the equatorial SST gradient flattens, the maximum gradient increases and moves poleward. This leads to a weakening of the mid-latitude jet accompanied by a poleward shift of the jet core. Also considered are tropical wave activity and tropical precipitation frequency distributions. The details of each vary greatly between models, both with a given SST and in the response to the change in SST. One additional experiment is included to examine the sensitivity to an off-equatorial SST maximum. The upward branch of the Hadley circulation follows the SST maximum off the equator. The models that form a single precipitation maximum when the maximum SST is on the equator shift the precipitation maximum off equator and keep it centered over the SST maximum. Those that form a double with minimum on the equatorial maximum SST shift the double

  3. Research Interests and Broad Agency Announcement 95-1 of the Air Force Office of Scientific Research

    DTIC Science & Technology

    1994-10-01

    CBD publishes synopses of proposed U.S. Government contract actions that exceed $25,000 in value. Subscriptions to the CBD are available from the...local and global conducting basic research is also encouraged, as is inter- response correlation are of interest. Structural nonlinear action with Air...particulate media, includ- ity generation within the boundary layer along wing lead- ing their potential to flow and liquefy. ing edges, the

  4. A Review of Epidemiological Research on Adverse Neurological Effects of Exposure to Ambient Air Pollution

    PubMed Central

    Xu, Xiaohui; Ha, Sandie Uyen; Basnet, Rakshya

    2016-01-01

    There is a growing body of epidemiological research reporting the neurological effects of ambient air pollution. We examined current evidence, identified the strengths and weaknesses of published epidemiological studies, and suggest future directions for research in this area. Studies were identified through a systematic search of online scientific databases, in addition to a manual search of the reference lists from the identified papers. Despite being a relatively new area of investigation, overall, there is mounting evidence implicating adverse effects of air pollution on neurobehavioral function in both adults and children. Further research is needed to expand our understanding of these relationships, including improvement in the accuracy of exposure assessments; focusing on specific toxicants and their relationships to specific health endpoints, such as neurodevelopmental disorders and neurodegenerative diseases; investigating the combined neurological effects of multiple air pollutants; and further exploration of genetic susceptibility for neurotoxicity of air pollution. In order to achieve these goals collaborative efforts are needed from multidisciplinary teams, including experts in toxicology, biostatistics, geographical science, epidemiology, and neurology. PMID:27547751

  5. Air Enquirer's multi-sensor boxes as a tool for High School Education and Atmospheric Research

    NASA Astrophysics Data System (ADS)

    Morguí, Josep-Anton; Font, Anna; Cañas, Lidia; Vázquez-García, Eusebi; Gini, Andrea; Corominas, Ariadna; Àgueda, Alba; Lobo, Agustin; Ferraz, Carlos; Nofuentes, Manel; Ulldemolins, Delmir; Roca, Alex; Kamnang, Armand; Grossi, Claudia; Curcoll, Roger; Batet, Oscar; Borràs, Silvia; Occhipinti, Paola; Rodó, Xavier

    2016-04-01

    An educational tool was designed with the aim of making more comprehensive the research done on Greenhouse Gases (GHGs) in the ClimaDat Spanish network of atmospheric observation stations (www.climadat.es). This tool is called Air Enquirer and it consist of a multi-sensor box. It is envisaged to build more than two hundred boxes to yield them to the Spanish High Schools through the Education department (www.educaixa.com) of the "Obra Social 'La Caixa'", who funds this research. The starting point for the development of the Air Enquirers was the experience at IC3 (www.ic3.cat) in the CarboSchools+ FP7 project (www.carboschools.cat, www.carboschools.eu). The Air Enquirer's multi-sensor box is based in Arduino's architecture and contains sensors for CO2, temperature, relative humidity, pressure, and both infrared and visible luminance. The Air Enquirer is designed for taking continuous measurements. Every Air Enquirer ensemble of measurements is used to convert values to standard units (water content in ppmv, and CO2 in ppmv_dry). These values are referred to a calibration made with Cavity Ring Down Spectrometry (Picarro®) under different temperature, pressure, humidity and CO2 concentrations. Multiple sets of Air Enquirers are intercalibrated for its use in parallel during the experiments. The different experiments proposed to the students will be outdoor (observational) or indoor (experimental, in the lab) focusing on understanding the biogeochemistry of GHGs in the ecosystems (mainly CO2), the exchange (flux) of gases, the organic matter production, respiration and decomposition processes, the influence of the anthropogenic activities on the gases (and particles) exchanges, and their interaction with the structure and composition of the atmosphere (temperature, water content, cooling and warming processes, radiative forcing, vertical gradients and horizontal patterns). In order to ensure Air Enquirers a high-profile research performance the experimental designs

  6. Somatostatin inhibits potassium-evoked glutamate release by activation of the sst(2) somatostatin receptor in the mouse retina.

    PubMed

    Dal Monte, Massimo; Petrucci, Cristina; Cozzi, Andrea; Allen, Jeremy P; Bagnoli, Paola

    2003-02-01

    In the mammalian retina, somatostatin (SRIF-14) acts through distinct receptor subtypes (sst(1-5)). Among them, sst(2) has been localized to numerous retinal cells, including photoreceptors and rod bipolar cells (RBCs). The specific role of sst(2) in the retina is largely undetermined. In this study, we characterized retinas of mice with targeted deletion of sst(2) (sst(2) KO) and we investigated functions of sst(2) in respect to its possible modulation of glutamate (GLU) release, as measured by HPLC. In contrast with wild-type (WT) mice, sst(2) mRNA and sst(2A) immunoreactivity were no longer detectable in the retina of sst(2) KO mice. In retinal explants of WT mice, SRIF and its analogue octreotide that displays high selectivity for sst(2), similarly reduced the evoked release of GLU without affecting its basal level. In sst(2) KO retinas, SRIF or octreotide did not affect GLU release indicating that they act at sst(2). Unexpectedly, the compound CYN-154806, although introduced as the first potent sst(2) antagonist, reduced the evoked release of GLU with equipotency to SRIF and octreotide. Its inhibitory effect was no longer observed in sst(2) KO retinas, indicating that this substance acts at sst(2) receptors as an agonist. In conclusion, SRIF controls evoked release of GLU through sst(2) receptors and this control may represent part of a mechanism by which SRIF regulates GLU concentration in the retina.

  7. A review of research progress in air-to-water sound transmission

    NASA Astrophysics Data System (ADS)

    Peng, Zhao-Hui; Zhang, Ling-Shan

    2016-12-01

    International and domestic research progress in theory and experiment and applications of the air-to-water sound transmission are presented in this paper. Four classical numerical methods of calculating the underwater sound field generated by an airborne source, i.e., the ray theory, the wave solution, the normal-mode theory and the wavenumber integration approach, are introduced. Effects of two special conditions, i.e., the moving airborne source or medium and the rough air-water interface, on the air-to-water sound transmission are reviewed. In experimental studies, the depth and range distributions of the underwater sound field created by different kinds of airborne sources in near-field and far-field, the longitudinal horizontal correlation of underwater sound field and application methods for inverse problems are reviewed. Project supported by the National Natural Science Foundation of China (Grant Nos. 11434012 and 11674349).

  8. Performance evaluation of two air conditioners in contemporary research houses. Topical report, July-September 1990

    SciTech Connect

    Nagda, N.L.

    1991-12-01

    Under the sponsorship of the Gas Research Institute, a 2.5RT high-efficiency variable-speed electric heat pump and a 2.0RT constant-speed electric air conditioner were tested during the cooling season in unoccupied contemporary research houses located near Washington, D.C. The research houses were moderately furnished to approximate conditions of occupancy for a family of three. Presence of occupants and use of appliances were simulated. Performance of the units was evaluated on the basis of indoor comfort, dynamic response to changing indoor/outdoor conditions, and energy consumption.

  9. Indoor air pollution in developing countries: research and implementation needs for improvements in global public health.

    PubMed

    Gall, Elliott T; Carter, Ellison M; Earnest, C Matt; Stephens, Brent

    2013-04-01

    Exposure to indoor air pollution (IAP) from the burning of solid fuels for cooking, heating, and lighting accounts for a significant portion of the global burden of death and disease, and disproportionately affects women and children in developing regions. Clean cookstove campaigns recently received more attention and investment, but their successes might hinge on greater integration of the public health community with a variety of other disciplines. To help guide public health research in alleviating this important global environmental health burden, we synthesized previous research on IAP in developing countries, summarized successes and challenges of previous cookstove implementation programs, and provided key research and implementation needs from structured discussions at a recent symposium.

  10. Evidence that somatostatin sst2 receptors mediate striatal dopamine release

    PubMed Central

    Hathway, G J; Humphrey, P P A; Kendrick, K M

    1999-01-01

    Somatostatin (SRIF) is a cyclic tetradecapeptide present in medium-sized aspiny interneurones in the rat striatum. We have previously shown that exogenous SRIF potently stimulates striatal dopamine (DA) release via a glutamate-dependent mechanism. We now report the ability of the selective sst2 receptor agonist, BIM-23027, to mimic this effect of SRIF.In vivo microdialysis studies were performed in anaesthetized male Wistar rats. In most experiments, compounds were administered by retrodialysis into the striatum for 15 min periods, 90 min and 225 min after sampling commenced, with levels of neurotransmitters being measured by HPLC with electrochemical and fluorescence detection.BIM-23027 (50 and 100 nM) stimulated DA release with extracellular levels increasing by up to 18 fold.Prior retrodialysis of BIM-23027 (50 nM) abolished the effects of subsequent administration of SRIF (100 nM).The agonist effects of both BIM-23027 and SRIF were abolished by the selective sst2 receptor antagonist, L-Tyr8-CYN-154806 (100 nM).The AMPA/kainate receptor antagonist, DNQX (100 μM), abolished the agonist effects of BIM-23027 as previously shown for SRIF.This study provides evidence that the sst2 receptor mediates the potent dopamine-releasing actions observed with SRIF in the rat striatum. Dopamine release evoked by both peptides appears to be mediated indirectly via a glutamatergic pathway. Other subtype-specific somatostatin receptor ligands were unable to elicit any effects and therefore we conclude that no other somatostatin receptor types are involved in mediating the dopamine-releasing actions of SRIF in the striatum. PMID:10578151

  11. Extreme subseasonal tropical air-sea interactions and their relation to ocean thermal stratification

    NASA Astrophysics Data System (ADS)

    Lloyd, Ian D.

    2011-12-01

    representation of warm core eddies and the loop current in the Gulf of Mexico, and a new parameterization of the drag coefficient. The 2006--2009 period contains more intense hurricanes (category 4 and 5) and the non-monotonic nature of the SST-intensity response is more similar to observations than in 2005. This result was attributed to weaker ocean thermal stratification in the Gulf of Mexico allowing for greater storm intensification. A very simple Conceptual Hurricane Intensity Model consisting of two coupled equations was formulated to account for the non-monotonic SST-intensity response. Finally, dynamical oceanic changes in the tropical North Atlantic under climate change were examined across a range of climate models. Given the sensitivity of hurricane intensity to stratification, large-scale ocean changes must be understood in order to make robust intensity predictions. The models' mean state contained significant biases, and it is not clear whether these mean state biases are reduced in models with higher resolution. However, climate change projections indicate a robust subsurface warming response in the tropical North Atlantic that could impact hurricane intensity. The non-local air-sea processes that account for water mass biases were highlighted as an area for future research.

  12. A GIS Approach to Wind,SST(Sea Surface Temperature) and CHL(Chlorophyll) variations in the Caspian Sea

    NASA Astrophysics Data System (ADS)

    Mirkhalili, Seyedhamzeh

    2016-07-01

    Chlorophyll is an extremely important bio-molecule, critical in photosynthesis, which allows plants to absorb energy from light. At the base of the ocean food web are single-celled algae and other plant-like organisms known as Phytoplankton. Like plants on land, Phytoplankton use chlorophyll and other light-harvesting pigments to carry out photosynthesis. Where Phytoplankton grow depends on available sunlight, temperature, and nutrient levels. In this research a GIS Approach using ARCGIS software and QuikSCAT satellite data was applied to visualize WIND,SST(Sea Surface Temperature) and CHL(Chlorophyll) variations in the Caspian Sea.Results indicate that increase in chlorophyll concentration in coastal areas is primarily driven by terrestrial nutrients and does not imply that warmer SST will lead to an increase in chlorophyll concentration and consequently Phytoplankton abundance.

  13. Progress of ambient air pollution and cardiovascular disease research in Asia.

    PubMed

    Su, Ta-Chen; Chen, Szu-Ying; Chan, Chang-Chuan

    2011-01-01

    Asian countries are with deteriorating air quality accompanying the rapid economic and social development of the past decades, and the potential health impacts of air pollution have been noticed by researchers in the region. We reviewed the scientific literature on air pollution and cardiovascular diseases (CVD) published by Asian researchers in English since the 1980s to determine whether the findings in Europe and North America can be extrapolated to Asia. Epidemiological studies show that short-term particulate matter pollution is a strong predictor for CVD morbidity and mortality and suggestive on cerebrovascular morbidity and mortality in newly developed countries in Asia. Multicountry epidemiological studies are needed to fully appreciate the extent of air pollution on CVD in Asia, especially less developed Asian countries. New cohort studies should be initiated to improve our understanding of particulate matter's toxicological pathways, long-term exposure effects, and gene-environment interaction on CVD among the Asian population. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. ReefTemp: An interactive monitoring system for coral bleaching using high-resolution SST and improved stress predictors

    NASA Astrophysics Data System (ADS)

    Maynard, Jeffrey A.; Turner, Peter J.; Anthony, Kenneth R. N.; Baird, Andrew H.; Berkelmans, Ray; Eakin, C. Mark; Johnson, Johanna; Marshall, Paul A.; Packer, Gareck R.; Rea, Anthony; Willis, Bette L.

    2008-03-01

    Anomalously high sea surface temperatures (SST) have led to repeated mass coral bleaching events on a global scale. Existing satellite-based systems used to monitor conditions conducive to bleaching are based on low-resolution (0.5°, ~50 km) SST data. While these systems have served the research and management community well, they have inherent weaknesses that limit their capacity to predict stress on coral reefs at local scales, over which bleaching severity is known to vary dramatically. Here we discuss the development and testing of ReefTemp, a new operational remote sensing application for the Great Barrier Reef that assesses bleaching risk daily using: high-resolution (2 km) SST, regionally validated thermal stress indices, and color-graded legends directly related to past observations of bleaching severity. Given projections of sea temperature rise, ReefTemp is timely as it can accurately predict bleaching severity at a local scale and therefore help to give focus to future research and monitoring efforts.

  15. Identification of the somatostatin receptor subtypes (sst) mediating the divergent, stimulatory/inhibitory actions of somatostatin on growth hormone secretion.

    PubMed

    Luque, Raúl M; Durán-Prado, Mario; García-Navarro, Socorro; Gracia-Navarro, Francisco; Kineman, Rhonda D; Malagón, María M; Castaño, Justo P

    2006-06-01

    It is well established that somatostatin acts through G protein-coupled receptors, termed sst, to inhibit GH release. However in pigs somatostatin can stimulate or inhibit in vitro GH secretion in a dose- and somatotrope subpopulation-dependent manner. We report herein that somatostatin-stimulated GH release is blocked by pretreatment with GTPgamma-S, suggesting an involvement of G protein-coupled receptors. Consistent with this, an sst5 selective agonist stimulated spontaneous GH secretion at doses ranging 10(-13) to 10(-9) m, without influencing GHRH-induced GH release. Conversely, sst1-, sst2-, sst3-, and sst4-specific agonists inhibited GHRH-evoked GH release but not basal GH secretion. Examination of the effects of sst-specific agonists on two subpopulations of somatotrope cells separated by density gradient centrifugation [low- (LD) and high-density (HD) cells] showed that only a low dose of the sst5 agonist stimulated GH release in LD somatotropes, whereas both low and high doses of this agonist stimulated GH release in HD cells. In marked contrast, sst1 and sst2 agonists blocked GHRH-stimulated GH release in LD cells at all doses tested, whereas only a high dose of the sst2 agonist inhibited GHRH-induced GH release in HD somatotropes. Interestingly, sst expression pattern in these subpopulations correlates with the distinct actions of sst-selective agonists; specifically, sst5 is more abundant in HD somatotropes, whereas sst1 and sst2 mRNA predominate in LD cells. These results indicate that in the pig, sst1 and sst2 are the primary mediators of the inhibitory effects of somatostatin, whereas sst5 or an sst5-related mechanism mediates the stimulatory action of somatostatin on GH release.

  16. The US Air Force Academy solar energy research project summary report

    NASA Astrophysics Data System (ADS)

    Cornelius, K. A.

    1980-07-01

    This report summarizes the solar energy research which was conducted by the U.S. Air Force Academy from April 1975 to January 1980. This research consisted of investigations on a retrofit space heating system which was installed on a typical Military Family Housing (MFH) unit. This summary uses a lessons learned and designer tips approach in its discussion of the solar system's operation. This discussion is organized around the many areas of solar technology which were investigated during the course of this project. Those major areas were energy conservation effects, solar collectors, thermal storage, control systems, Thermography studies, performance comparison to a design model, and homeowner and maintenance manual development. A thermal performance summary of the solar system is also presented. The report concludes with numerous recommendations regarding policy initiatives which the Air Force should take to foster conversion to solar technology.

  17. Enhancing Faculty Involvement in Institutional Research. A Collaborative Action Research Strategy. AIR 1996 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Peterson, Marvin W.

    This paper focuses on the void in the literature on the methodology of institutional research and examines the complex process of interaction that occurs when an institution engages a faculty member or academic unit to assume primary responsibility for conducting a research project on behalf of the institution. A case study of a study conducted by…

  18. Air Breathing Propulsion Controls and Diagnostics Research at NASA Glenn Under NASA Aeronautics Research Mission Programs

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2014-01-01

    The Intelligent Control and Autonomy Branch (ICA) at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet the goals of the NASA Aeronautics Research Mission Directorate (ARMD) Programs. These efforts are primarily under the various projects under the Fundamental Aeronautics Program (FAP) and the Aviation Safety Program (ASP). The ICA Branch is focused on advancing the state-of-the-art of aero-engine control and diagnostics technologies to help improve aviation safety, increase efficiency, and enable operation with reduced emissions. This paper describes the various ICA research efforts under the NASA Aeronautics Research Mission Programs with a summary of motivation, background, technical approach, and recent accomplishments for each of the research tasks.

  19. Global climate sensitivity derived from ~784,000 years of SST data

    NASA Astrophysics Data System (ADS)

    Friedrich, T.; Timmermann, A.; Tigchelaar, M.; Elison Timm, O.; Ganopolski, A.

    2015-12-01

    Global mean temperatures will increase in response to future increasing greenhouse gas concentrations. The magnitude of this warming for a given radiative forcing is still subject of debate. Here we provide estimates for the equilibrium climate sensitivity using paleo-proxy and modeling data from the last eight glacial cycles (~784,000 years). First of all, two reconstructions of globally averaged surface air temperature (SAT) for the last eight glacial cycles are obtained from two independent sources: one mainly based on a transient model simulation, the other one derived from paleo- SST records and SST network/global SAT scaling factors. Both reconstructions exhibit very good agreement in both amplitude and timing of past SAT variations. In the second step, we calculate the radiative forcings associated with greenhouse gas concentrations, dust concentrations, and surface albedo changes for the last 784, 000 years. The equilibrium climate sensitivity is then derived from the ratio of the SAT anomalies and the radiative forcing changes. Our results reveal that this estimate of the Charney climate sensitivity is a function of the background climate with substantially higher values for warmer climates. Warm phases exhibit an equilibrium climate sensitivity of ~3.70 K per CO2-doubling - more than twice the value derived for cold phases (~1.40 K per 2xCO2). We will show that the current CMIP5 ensemble-mean projection of global warming during the 21st century is supported by our estimate of climate sensitivity derived from climate paleo data of the past 784,000 years.

  20. Modeling the surface heat flux response to long-lived SST anomalies in the North Atlantic

    SciTech Connect

    Power, S.B.; Kleeman, R.; Colman, R.A.

    1995-09-01

    An atmospheric general circulation model (AGCM), a simplified atmospheric model (SAM) of surface heat flux, and various idealized analytic models have been used to investigate the atmospheric response over the North Atlantic to SST anomalies, including a general cooling associated with a weakened thermohaline circulation. Latent heating dominates the surface heat flux response, while sensible heating plays an important secondary role. The total heat flux response is weaker than presumed in recent studies using ocean models under highly idealized surface boundary conditions. This implies that stability of the thermohaline circulation to high-latitude freshening in more sophisticated coupled systems (that incorporate either AGCMs or models like SAM) will be increased. All three kinds of atmospheric models exhibit nonrestorative behavior away from the anomaly peak that is primarily associated with the advection of cooled air eastward. This simple picture is complicated in the AGCM by the fact that the winds weaken over the SST anomaly, which helps to moderate the response. Analytic models for atmospheric temperature forced using imposed surface temperature anomalies highlight conditions under which a nonrestorative response can arise. Previous work has shown that the length scale of spatially periodic anomalies partially determines the magnitude of the response in a diffusive atmosphere. Here the authors show that this scale dependence has much wider applicability by considering more localized anomalies and by the inclusion of advective transport processes. The modification of the response by sea ice changes and the absence of any statistically significant change in the basin-averaged hydrological cycle are also discussed. 62 refs., 19 figs.

  1. Hippocampal sst(1) receptors are autoreceptors and do not affect seizures in rats.

    PubMed

    De Bundel, Dimitri; Aourz, Najat; Kiagiadaki, Foteini; Clinckers, Ralph; Hoyer, Daniel; Kastellakis, Andreas; Michotte, Yvette; Thermos, Kyriaki; Smolders, Ilse

    2010-03-10

    Somatostatin-14 (SRIF-14) exerts anticonvulsive effects in several rat seizure models, generally attributed to sst(2) receptor activation. Whereas sst(1) immunoreactivity has been localized to both polymorphic interneurons and principal cells in the rat hippocampus, its potential role as an inhibitory autoreceptor or as a receptor involved in mediating anticonvulsive actions remains unknown. We showed that intrahippocampal administration of the sst(1) antagonist SRA880 (1 microM) induced a robust increase in hippocampal SST-14 levels without affecting gamma-aminobutyric acid levels in conscious rats, indicating that the sst(1) receptor acts as an inhibitory autoreceptor. SRA880 did not affect seizure severity and did not reverse the anticonvulsive action of SRIF-14 (1 microM) against pilocarpine-induced seizures, suggesting that hippocampal sst(1) receptors are not involved in the anticonvulsive effects of SRIF-14.

  2. Seasonal dependence of surface wind stress variability on SST and precipitation over the tropical Pacific

    NASA Astrophysics Data System (ADS)

    Yang, Fanglin; Kumar, Arun; Wang, Wanqiu

    The dependence of interannual variability of surface zonal and meridional wind stresses (τx and τy) on sea-surface temperature (SST) and precipitation over the tropical Pacific is examined using observed data. A strong seasonality in the dependence is found. In January, the largest SST and precipitation anomalies are located in the central to eastern and central tropical Pacific respectively. τx anomalies in the southern central tropical Pacific and τy anomalies in the northern tropical Pacific are highly correlated to both the SST and precipitation anomalies. In contrast, during July the largest SST and precipitation anomalies are located at the eastern and western tropical Pacific respectively. East of the dateline, τx anomalies present little dependence on the SST anomalies. West of the dateline, τx anomalies depend strongly on the precipitation anomalies that are not linked to the leading modes of SST.

  3. Future Directions of Supersonic Combustion Research: Air Force/NASA Workshop on Supersonic Combustion

    NASA Technical Reports Server (NTRS)

    Tishkoff, Julian M.; Drummond, J. Philip; Edwards, Tim; Nejad, Abdollah S.

    1997-01-01

    The Air Force Office of Scientific Research, the Air Force Wright Laboratory Aero Propulsion and Power Directorate, and the NASA Langley Research Center held a joint supersonic combustion workshop on 14-16 May 1996. The intent of this meeting was to: (1) examine the current state-of-the-art in hydrocarbon and/or hydrogen fueled scramjet research; (2) define the future direction and needs of basic research in support of scramjet technology; and (3) when appropriate, help transition basic research findings to solve the needs of developmental engineering programs in the area of supersonic combustion and fuels. A series of topical sessions were planned. Opening presentations were designed to focus and encourage group discussion and scientific exchange. The last half-day of the workshop was set aside for group discussion of the issues that were raised during the meeting for defining future research opportunities and directions. The following text attempts to summarize the discussions that took place at the workshop.

  4. An Analysis of the Cost Estimating Process in Air Force Research and Development Laboratories.

    DTIC Science & Technology

    1981-09-01

    4. TITLE (and Subtitle) S. TYPE Of REPORT & PERIOO COvEREO AN ANALYSIS OF THE COST ESTIMATING PROCESS IN AIR FORCE RESEARCH AND DEVELOPMENT Master’s...final typed thesis. Her efficiency and professionalism was unexcelled. Finally, very special thanks go to my children, Chris and Brian, and especially my...42 3-6 Computer Costs - Estimating Methods. . 44 3-7 Type of Work Unit Versus Estimating Methods Used ... ............. .47 3-8 Cost Variance Between

  5. AFOSR (Air Force Office of Scientific Research) Chemical & Atmospheric Sciences Program Review (29th).

    DTIC Science & Technology

    1985-09-01

    U.S. Navy during World War II. When Denny Elliott retired in January, 1985, he was the Assistant Director of Chemical and Atmospheric Sciences, AFOSR...and involved ’Interpreting chemical research accomplishments for maximum benefit to the Air Force of the future. Denny Elliott was born and brought up...shells and two-ton bombs. In July 1943 Denny received a Commission as Ensign in the U.S. Navy. After three months of indoctrination courses at Cornell

  6. United States Air Force Graduate Student Research Program for 1990. Program Management Report

    DTIC Science & Technology

    1992-06-05

    Frank . Seiler Research Lab. Dept. of Chemistry Tuscaloosa, AL 35487 (205) 348-8443 Gene Carlisle Degree: PhD Professor Specialty: Inorganic Chemistry...Instructor Specialty: Applied Mathematics Morehouse College Assigned: Armament Laboratory 830 Westview Dr. SW Atlanta, GA 30312 (404) 681-2800 Ashok Goel ...Base) 1. Chih-Fan Chen ELECTRONIC TECHNOLOGY LABORATORY (WRDC/ETL) (Wright-Patterson Air Force Base) 1. Ashok Goel 2. Muhammad Numan 3. Devki Talwar

  7. Air Force Research Laboratory Test and Evaluation, Verification and Validation of Autonomous Systems Challenge Exploration

    DTIC Science & Technology

    2014-11-13

    OF AUTONOMOUS SYSTEMS CHALLENGE EXPLORATION FINAL REPORT Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for...display a currently valid OMB control number. 1. REPORT DATE 13 NOV 2014 2. REPORT TYPE Final 3. DATES COVERED 23 MAR 2013 - 07 JUL 2014 4...TITLE AND SUBTITLE AIR FORCE RESEARCH LABORATORY TEST AND EVALUATION, VERIFICATION AND VALIDATION OF AUTONOMOUS SYSTEMS CHALLENGE EXPLORATION FINAL

  8. Assembly & Metrology of First Wall Components of SST-1

    NASA Astrophysics Data System (ADS)

    Parekh, Tejas; Santra, Prosenjit; Biswas, Prabal; Patel, Hiteshkumar; Paravastu, Yuvakiran; Jaiswal, Snehal; Chauhan, Pradeep; Babu, Gattu Ramesh; A, Arun Prakash; Bhavsar, Dhaval; Raval, Dilip C.; Khan, Ziauddin; Pradhan, Subrata

    2017-04-01

    First Wall Components (FWC) of SST-1 tokamak, which are in the immediate vicinity of plasma comprises of limiters, divertors, baffles, passive stabilizers are designed to operate long duration (1000 s) discharges of elongated plasma. All FWC consists of a copper alloy heat sink modules with SS cooling tubes brazed onto it, graphite tiles acting as armour material facing the plasma, and are mounted to the vacuum vessels with suitable Inconel support structures at ring & port locations. The FWC are very recently assembled and commissioned successfully inside the vacuum vessel of SST-1 undergoing a meticulous planning of assembly sequence, quality checks at every stage of the assembly process. This paper will present the metrology aspects & procedure of each FWC, both outside the vacuum vessel, and inside the vessel, assembly tolerances, tools, equipment and jig/fixtures, used at each stage of assembly, starting from location of support bases on vessel rings, fixing of copper modules on support structures, around 3800 graphite tile mounting on 136 copper modules with proper tightening torques, till final toroidal and poloidal geometry of the in-vessel components are obtained within acceptable limits, also ensuring electrical continuity of passive stabilizers to form a closed saddle loop, electrical isolation of passive stabilizers from vacuum vessel.

  9. Performance of Superconducting Current Feeder System for SST-1

    NASA Astrophysics Data System (ADS)

    Garg, A.; Nimavat, H.; Shah, P.; Patel, K.; Sonara, D.; Srikanth, G. L. N.; Bairagi, N.; Christian, D.; Patel, R.; Mahesuria, G.; Panchal, R.; Panchal, P.; Sharma, R.; Purwar, G.; Singh, G. K.; Tanna, V. L.; Pradhan, S.

    2017-02-01

    Superconducting (SC) Current Feeder System (CFS) for SST-1 (Steady state superconducting Tokamak was installed and commissioned in 2012. Since then, it has been operating successfully in successive plasma campaigns. The aim of this system is to transfer electric current from power supply at ambient temperature to SC magnets which are at 4.5 K. It consists of 10 kA vapour cooled current leads, Nb-Ti/Cu bus-bars, liquid nitrogen cooled radiation shield and liquid/vapour helium circuits. This system had been operated reliably in different scenario such as initial cool- down, electric current (ramp-up, ramp down and long-time steady state condition), cold with no current and in quench etc. In addition to this, it has fulfilled the long term operation with SST-1 with current flat top of 4.7 kA for more than 20,000 seconds. This paper highlights operational performance along with results in different aspects.

  10. Decadal and interannual variability of the Indian Ocean SST

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Lakshmi; Krishnamurthy, V.

    2016-01-01

    The variability of the Indian Ocean on interannual and decadal timescales is investigated in observations, coupled model simulation and model experiment. The Indian Ocean Dipole (IOD) mode was specifically analyzed using a data-adaptive method. This study reveals one decadal mode and two interannual modes in the sea surface temperature (SST) of the IOD. The decadal mode in the IOD is associated with the Pacific Decadal Oscillation (PDO) of the North Pacific SST. The two interannual modes are related to the biennial and canonical components of El Niño-Southern Oscillation (ENSO), consistent with previous studies. This study hypothesizes that the relation between the Indian Ocean and the North Pacific on decadal scale may be through the northerly winds from the western North Pacific. The long simulation of Community Climate System Model version 4 also indicates the presence of IOD modes associated with the decadal PDO and canonical ENSO modes. However, the model fails to simulate the biennial ENSO mode in the Indian Ocean. The relation between the Indian Ocean and North Pacific Ocean is further supported by the regionally de-coupled model experiment.

  11. Rainfall variability over Alagoas under the influences of SST anomalies

    NASA Astrophysics Data System (ADS)

    Lyra, G. B.; Oliveira-Júnior, J. F.; Gois, G.; Cunha-Zeri, G.; Zeri, M.

    2017-04-01

    The rainfall variability for the state of Alagoas, Northeast of Brazil, was evaluated based on the Standardized Precipitation Index (SPI). Harmonic decomposition was applied to 31 years-long (1960-1990) series of SPI, from 33 stations, to relate their modes of variability to El Niño-Southern Oscillation (ENSO) and the Atlantic Ocean sea surface temperature (SST). The most important harmonics identified by the spectral analysis had periods of 10-15 and 2-3 years, followed by other oscillations with smaller periods. The 10-15 years harmonic was associated with the Atlantic interhemispheric SST gradient (AITG), a cross-equatorial dipole which impacts the northeast region of Brazil by influencing the position of the intertropical convergence zone (ITCZ), leading to dry or wet conditions. The 2-3 years harmonic was consistent with the variability of ENSO events. The harmonic analysis is a powerful tool to identify the principal modes of variability of SPI. Although the magnitude of SPI is underestimated in some cases, this tool significantly increases the knowledge of the main drivers of rainfall and droughts in the region.

  12. A computationally fast one-dimensional diffusion-photochemistry model of SST wakes

    NASA Technical Reports Server (NTRS)

    Matloff, G. L.; Hoffert, M. I.

    1977-01-01

    A computational technique applicable to analysis of supersonic transport (SST) wake photochemistry and diffusion is presented. Sensitivity studies of SST effluent effects upon ozone depletion are facilitated by the computational rapidity of the method. The article compares results from other studies and predictions of some variables related to global NOx input. Results indicate that the NO/NO2 ratio in an SST wake at photochemical equilibrium is a sensitive function of photolysis rates.

  13. Stability of blood analytes after storage in BD SST tubes for 12 mo.

    PubMed

    Mathew, Grace; Zwart, Sara R; Smith, Scott M

    2009-11-01

    We studied the stability of 33 analytes related to clinical chemistry, bone, and vitamin metabolism, after storage in serum separator tubes (SST). Blood was collected from 6 subjects using SST tubes. Some serum remained in the tube in contact with the barrier gel and was stored at -80 degrees C for 12 mo. Clinically significant changes occurred only in 1,25-dihydroxyvitamin D and retinol-binding protein. Freezing SST tubes before sample analysis is a viable option for some analytes.

  14. Structural determinants of agonist-selective signaling at the sst(2A) somatostatin receptor.

    PubMed

    Nagel, Falko; Doll, Christian; Pöll, Florian; Kliewer, Andrea; Schröder, Helmut; Schulz, Stefan

    2011-05-01

    The clinically used somatostatin (SS-14) analogs octreotide and pasireotide (SOM230) stimulate distinct species-specific patterns of sst(2A) somatostatin receptor phosphorylation and internalization. Like SS-14, octreotide promotes the phosphorylation of at least six carboxyl-terminal serine and threonine residues, namely S341, S343, T353, T354, T356, and T359, which in turn leads to a robust endocytosis of both rat and human sst(2A) receptors. Unlike SS-14, pasireotide fails to induce any substantial phosphorylation or internalization of the rat sst(2A) receptor. Nevertheless, pasireotide is able to stimulate a selective phosphorylation of S341 and S343 of the human sst(2A) receptor followed by a clearly detectable receptor sequestration. Here, we show that transplantation of amino acids 1-180 of the human sst(2A) receptor to the rat sst(2A) receptor facilitates pasireotide-induced internalization. Conversely, construction of a rat-human sst(2A) chimera conferred resistance to pasireotide-induced internalization. We then created a series of site-directed mutants leading to the identification of amino acids 27, 30, 163, and 164 that when exchanged to their human counterparts facilitated pasireotide-driven S341/S343 phosphorylation and internalization of the rat sst(2A) receptor. Exchange of these amino acids to their rat counterparts completely blocked the pasireotide-mediated internalization of the human sst(2A) receptor. Notably, octreotide and SS-14 stimulated a full phosphorylation and internalization of all mutant sst(2A) receptors tested. Together, these findings suggest that pasireotide activates the sst(2A) receptor via a molecular switch that is structurally and functionally distinct from that turned on during octreotide-driven sst(2A) activation.

  15. Comparison of Profiling Microwave Radiometer, Aircraft, and Radiosonde Measurements From the Alliance Icing Research Study (AIRS)

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.

    2001-01-01

    Measurements from a profiling microwave radiometer are compared to measurements from a research aircraft and radiosondes. Data compared is temperature, water vapor, and liquid water profiles. Data was gathered at the Alliance Icing Research Study (AIRS) at Mirabel Airport outside Montreal, Canada during December 1999 and January 2000. All radiometer measurements were found to lose accuracy when the radome was wet. When the radome was not wetted, the radiometer was seen to indicate an inverted distribution of liquid water within a cloud. When the radiometer measurements were made at 15 deg. instead of the standard zenith, the measurements were less accurate.

  16. Growth-Dependent Calibration of Coral Sr/Ca-SST From Multiple Colonies Provides Potential for Long SST Records from Fossil Corals

    NASA Astrophysics Data System (ADS)

    Goodkin, N. F.

    2005-12-01

    Extended reconstructions of sea surface temperature (SST) are critical to examining long-term climate variability not captured in instrumental records. Coral skeleton, which continuously accretes in annual density bands, preserves unique, multi-century archives of sub-annual resolution SST. Despite the promise of coral proxies, however, SSTs derived from corals are often several degrees cooler than those derived from other archives. Here we present strontium to calcium ratios (Sr/Ca) for four brain corals (Diploria labyrinthiformis) collected from the south shore of Bermuda that are strongly correlated with both instrumental SST (Hydrostation S, 30km southeast) and annual skeletal extension rate. High Sr/Ca ratios correspond with cold SSTs and slow skeletal growth rate, and vice versa. Over a ~25 year calibration period, the four corals have distinct average growth rates (2.57, 2.68, 3.55 and 4.03 mm/yr). For each colony, we provide a quantitative calibration of annual Sr/Ca to annual extension rate and annual SST along the axis of maximum growth and derive an individual growth dependent Sr/Ca-SST calibration equation: Sr/Ca = m*(SST) + n*(annual growth rate)*(SST) + b The slopes and intercepts of the four equations are found to be linearly related to the average growth-rate during the calibration periods of each colony, and a final multi-variant regression is performed to establish one final Sr/Ca-Growth Rate-SST calibration, in the form: Sr/Ca = m*(SST) + n*(annual growth rate)*(SST) + o*(average colony growth rate)*(SST) + b This growth-dependent calibration is shown to be applicable to a fossil coral of the same species in order to reconstruct SSTs at Bermuda for 223 years. A reconstruction excluding the influence of growth yields SSTs that exaggerate both cool and warm periods. SST anomalies near the end of the Little Ice Age (~1850) that are derived using a non-growth dependent calibration are exaggerated by a factor of two relative to those from a growth

  17. Research Reactor Preparations for the Air Shipment of Highly Enriched Uranium from Romania

    SciTech Connect

    K. J. Allen; I. Bolshinsky; L. L. Biro; M. E. Budu; N. V. Zamfir; M. Dragusin; C. Paunoiu; M. Ciocanescu

    2010-03-01

    In June 2009 two air shipments transported both unirradiated (fresh) and irradiated (spent) Russian-origin highly enriched uranium (HEU) nuclear fuel from two research reactors in Romania to the Russian Federation for conversion to low enriched uranium. The Institute for Nuclear Research at Pitesti (SCN Pitesti) shipped 30.1 kg of HEU fresh fuel pellets to Dimitrovgrad, Russia and the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH) shipped 23.7 kilograms of HEU spent fuel assemblies from the VVR S research reactor at Magurele, Romania, to Chelyabinsk, Russia. Both HEU shipments were coordinated by the Russian Research Reactor Fuel Return Program (RRRFR) as part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), were managed in Romania by the National Commission for Nuclear Activities Control (CNCAN), and were conducted in cooperation with the Russian Federation State Corporation Rosatom and the International Atomic Energy Agency. Both shipments were transported by truck to and from respective commercial airports in Romania and the Russian Federation and stored at secure nuclear facilities in Russia until the material is converted into low enriched uranium. These shipments resulted in Romania becoming the 3rd country under the RRRFR program and the 14th country under the GTRI program to remove all HEU. This paper describes the research reactor preparations and license approvals that were necessary to safely and securely complete these air shipments of nuclear fuel.

  18. Research into acetone removal from air by biofiltration using a biofilter with straight structure plates.

    PubMed

    Baltrėnas, Pranas; Zagorskis, Alvydas; Misevičius, Antonas

    2015-03-04

    The biological air treatment method is based on the biological destruction of organic compounds using certain cultures of microorganisms. This method is simple and may be applied in many branches of industry. The main element of biological air treatment devices is a filter charge. Tests were carried out using a new-generation laboratory air purifier with a plate structure. This purifier is called biofilter. The biofilter has a special system for packing material humidification which does not require additional energy inputs. In order to extend the packing material's durability, it was composed of thermally treated birch fibre. Pollutant (acetone) biodegradation occurred on thermally treated wood fibre in this research. According to the performed tests and the received results, the process of biodestruction was highly efficient. When acetone was passed through biofilter's packing material at 0.08 m s(-1) rate, the efficiency of the biofiltration process was from 70% up to 90%. The species of bacteria capable of removing acetone vapour from the air, i.e. Bacillus (B. cereus, B. subtilis), Pseudomonas (P. aeruginosa, P. putida), Stapylococcus (S. aureus) and Rhodococcus sp., was identified in this study during the process of biofiltration. Their amount in the biological packing material changed from 1.6 × 10(7) to 3.7 × 10(11) CFU g(-1).

  19. Research into acetone removal from air by biofiltration using a biofilter with straight structure plates

    PubMed Central

    Baltrėnas, Pranas; Zagorskis, Alvydas; Misevičius, Antonas

    2015-01-01

    The biological air treatment method is based on the biological destruction of organic compounds using certain cultures of microorganisms. This method is simple and may be applied in many branches of industry. The main element of biological air treatment devices is a filter charge. Tests were carried out using a new-generation laboratory air purifier with a plate structure. This purifier is called biofilter. The biofilter has a special system for packing material humidification which does not require additional energy inputs. In order to extend the packing material's durability, it was composed of thermally treated birch fibre. Pollutant (acetone) biodegradation occurred on thermally treated wood fibre in this research. According to the performed tests and the received results, the process of biodestruction was highly efficient. When acetone was passed through biofilter's packing material at 0.08 m s−1 rate, the efficiency of the biofiltration process was from 70% up to 90%. The species of bacteria capable of removing acetone vapour from the air, i.e. Bacillus (B. cereus, B. subtilis), Pseudomonas (P. aeruginosa, P. putida), Stapylococcus (S. aureus) and Rhodococcus sp., was identified in this study during the process of biofiltration. Their amount in the biological packing material changed from 1.6 × 107 to 3.7 × 1011 CFU g−1. PMID:26019659

  20. Research on the numerical simulation of secondary air diffusion angle to the swirl burners combustion process

    NASA Astrophysics Data System (ADS)

    Yu, Lei; Chang, Zhen; Liu, He; Yang, Guotian; Li, Xinli

    2017-09-01

    In this paper, the combustion process of swirl burners during 660 MW unit power plant is simulated. The influence of secondary air diffusion angle on the furnace temperature and furnace slagging is studied. In detail the temperature field and the carbon concentration field and velocity field inside the furnace are analysed when the secondary air diffusion angle is set as 30 °, 45 ° and 60 ° respectively. The simulation results show that when the secondary air diffusion angle is set as 30°, the center temperature of the furnace is highest, and at this time the pulverized coal combustion is sufficient, the carbon concentration near the water wall is the lowest, moreover, it is not easy to slag in the furnace. With the increase of secondary air diffusion angle, the center temperature of boiler burning zone gradually decline, carbon concentration near the water wall increase, it is the more prone to coking inside the furnace. The numerical simulation results not only provide a reference basis for the boiler operation, but also provide an important reference value for exquisite combustion research of the boiler.

  1. Mesoscale SST-wind stress coupling in the Peru-Chile current system: Which mechanisms drive its seasonal variability?

    NASA Astrophysics Data System (ADS)

    Oerder, Vera; Colas, François; Echevin, Vincent; Masson, Sebastien; Hourdin, Christophe; Jullien, Swen; Madec, Gurvan; Lemarié, Florian

    2016-10-01

    Satellite observations and a high-resolution regional ocean-atmosphere coupled model are used to study the air/sea interactions at the oceanic mesoscale in the Peru-Chile upwelling current system. Coupling between mesoscale sea surface temperature (SST) and wind stress (WS) intensity is evidenced and characterized by correlations and regression coefficients. Both the model and the observations display similar spatial and seasonal variability of the coupling characteristics that are stronger off Peru than off Northern Chile, in relation with stronger wind mean speed and steadiness. The coupling is also more intense during winter than during summer in both regions. It is shown that WS intensity anomalies due to SST anomalies are mainly forced by mixing coefficient anomalies and partially compensated by wind shear anomalies. A momentum balance analysis shows that wind speed anomalies are created by stress shear anomalies. Near-surface pressure gradient anomalies have a negligible contribution because of the back-pressure effect related to the air temperature inversion. As mixing coefficients are mainly unchanged between summer and winter, the stronger coupling in winter is due to the enhanced large-scale wind shear that enables a more efficient action of the turbulent stress perturbations. This mechanism is robust as it does not depend on the choice of planetary boundary layer parameterization.

  2. Nonlinear responses of southern African rainfall to forcing from Atlantic SST in a high-resolution regional climate model

    NASA Astrophysics Data System (ADS)

    Williams, C.; Kniveton, D.; Layberry, R.

    2009-04-01

    It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. In this research, high resolution satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA) are used as a basis for undertaking model experiments using a state-of-the-art regional climate model. The MIRA dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. Once the model's ability to reproduce extremes has been assessed, idealised regions of sea surface temperature (SST) anomalies are used to force the model, with the overall aim of investigating the ways in which SST anomalies influence rainfall extremes over southern Africa. In this paper, results from sensitivity testing of the regional climate model's domain size are briefly presented, before a comparison of simulated daily rainfall from the model with the satellite-derived dataset. Secondly, simulations of current climate and rainfall extremes from the model are compared to the MIRA dataset at daily timescales. Finally, the results from the idealised SST experiments are presented, suggesting highly nonlinear associations between rainfall extremes

  3. IMPACT OF AN OZONE GENERATOR AIR CLEANER ON STYRENE CONCENTRATIONS IN AN INDOOR AIR QUALITY RESEARCH CHAMBER

    EPA Science Inventory

    The paper gives results of an investigation of the impact of an ozone generator air cleaner on vapor-phase styrene concentrations in a full-scale indoor air quality test chamber. The time history of the concentrations of styrene and ozone is well predicted by a simulation model u...

  4. IMPACT OF AN OZONE GENERATOR AIR CLEANER ON STYRENE CONCENTRATIONS IN AN INDOOR AIR QUALITY RESEARCH CHAMBER

    EPA Science Inventory

    The paper gives results of an investigation of the impact of an ozone generator air cleaner on vapor-phase styrene concentrations in a full-scale indoor air quality test chamber. The time history of the concentrations of styrene and ozone is well predicted by a simulation model u...

  5. Atmospheric and oceanographic research review, 1978. [global weather, ocean/air interactions, and climate

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Research activities related to global weather, ocean/air interactions, and climate are reported. The global weather research is aimed at improving the assimilation of satellite-derived data in weather forecast models, developing analysis/forecast models that can more fully utilize satellite data, and developing new measures of forecast skill to properly assess the impact of satellite data on weather forecasting. The oceanographic research goal is to understand and model the processes that determine the general circulation of the oceans, focusing on those processes that affect sea surface temperature and oceanic heat storage, which are the oceanographic variables with the greatest influence on climate. The climate research objective is to support the development and effective utilization of space-acquired data systems in climate forecast models and to conduct sensitivity studies to determine the affect of lower boundary conditions on climate and predictability studies to determine which global climate features can be modeled either deterministically or statistically.

  6. FAA/NASA Joint University Program for Air Transportation Research: 1993-1994

    NASA Technical Reports Server (NTRS)

    Hueschen, Richard M. (Compiler)

    1995-01-01

    This report summarizes the research conducted during the academic year 1993-1994 under the NASA/FAA sponsored Joint University Program for Air Transportation Research. The year end review was held at Ohio University, Athens, Ohio, July 14-15, 1994. The Joint University Program is a coordinated set of three grants sponsored by NASA Langley Research Center and the Federal Aviation Administration, one each with the Massachusetts Institute of Technology (NGL-22-009-640), Ohio University (NGR-36-009-017), and Princeton University (NGL-31-001-252). Completed works, status reports, and annotated bibliographies are presented for research topics which include navigation, guidance and control theory and practice, aircraft performance, human factors, and expert systems concepts applied to aircraft and airport operations. An overview of the year's activities for each university is also presented.

  7. The intraseasonal SST variability from a global drifter program, two reanalysis products and one climatology

    NASA Astrophysics Data System (ADS)

    Koszalka, Inga Monika

    2017-04-01

    The global array of surface drifters supplies a constantly growing data base of position- and near-surface temperature (a proxy for the Sea Surface Temperature, SST) observations. The drifter-borne measurements integrate information about spatiotemporal variability of the underlying circulation and the air-sea exchange along their trajectories, and are unique for their extensive coverage and high temporal and horizontal resolution. The drifter data is used in operational services, and is assimilated to reanalysis products and ocean temperature climatologies. The questions remain whether the temperature variability from drifters and the gridded products are consistent, what is the contribution of the drifter observations to the products that utilize them, and whether their usage could be further optimized. We address these questions in the context of intraseasonal temperature variability diagnosed from drifter trajectories, two Reanalysis products of different resolutions (ERA-Interim and NCEP Reanalysis) and a mixed-layer monthly climatology (MIMOC) temperatures using a suite of Eulerian and Lagrangian diagnostics. The scope of the study is global and we interpret the regional differences in the context of the mixed layer depth, seasonality, ocean dynamics and drifter data coverage. With additional variables available through reanalysis products, we also address intraseasonal variability of the air-sea exchange.

  8. Supersonic Cruise Research 1979, part 2. [airframe structures and materials, systems integration, economic analysis

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Advances in airframe structure and materials technology for supersonic cruise aircraft are reported with emphasis on titanium and composite structures. The operation of the Concorde is examined as a baseline for projections into the future. A market survey of U.S. passenger attitudes and preferences, the impact of advanced air transport technology and the integration of systems for the advanced SST and for a smaller research/business jet vehicle are also discussed.

  9. The Conference Proceedings of the 1998 Air Transport Research Group (ATRG) of the WCTR Society. Volume 1

    NASA Technical Reports Server (NTRS)

    Oum, Tae Hoon (Editor); Bowen, Brent D. (Editor)

    1998-01-01

    This report (Volume 1) is comprised of 5 sessions of the Air Transport Research Group (ATRG) Conference held in Antwerp, Belgium, July 1998. The sessions contain 3-4 papers (presentations) each. The session numbers and their respective headings are: (1) Airline alliances; (2) Airline Competition and Market Structure; (4) Liberalization, Open Skies, and Policy Issues; (5) Yield Management and Other Models; and (11) Air Traffic Control (ATC) and Air Navigational Systems (ANS).

  10. Experimental research on the indoor temperature and humidity fields in radiant ceiling air-conditioning system under natural ventilation

    NASA Astrophysics Data System (ADS)

    Huang, Tao; Xiang, Yutong; Wang, Yonghong

    2017-05-01

    In this paper, the indoor temperature and humidity fields of the air in a metal ceiling radiant panel air conditioning system with fresh air under natural ventilation were researched. The temperature and humidity distributions at different height and different position were compared. Through the computation analysis of partial pressure of water vapor, the self-recovery characteristics of humidity after the natural ventilation was discussed.

  11. Ambient air pollution and lung disease in China: health effects, study design approaches and future research.

    PubMed

    Mandel, Jeffrey H; Wendt, Christine; Lo, Charles; Zhou, Guangbiao; Hertz, Marshall; Ramachandran, Gurumurthy

    2015-09-01

    Ambient air pollution in China has worsened following dramatic increases in industrialization, automobile use and energy consumption. Particularly bothersome is the increase in the PM2.5 fraction of pollutants. This fraction has been associated with increasing rates of cardio-respiratory disease in China and elsewhere. Ambient pollutant levels have been described in many of China's cities and are comparable to previous levels in southern California. Lung cancer mortality in China has increased since the 1970s and has been higher in men and in urban areas, the exact explanation for which has not been determined. The estimation of individual risk for Chinese citizens living in areas of air pollution will require further research. Occupational cohort and case-control designs each have unique attributes that could make them helpful to use in this setting. Other important future research considerations include detailed exposure assessment and the possible use of biomarkers as a means to better understand and manage the threat posed by air pollution in China.

  12. Air Traffic Management Technology Demostration: 1 Research and Procedural Testing of Routes

    NASA Technical Reports Server (NTRS)

    Wilson, Sara R.; Kibler, Jennifer L.; Hubbs, Clay E.; Smail, James W.

    2015-01-01

    NASA's Air Traffic Management Technology Demonstration-1 (ATD-1) will operationally demonstrate the feasibility of efficient arrival operations combining ground-based and airborne NASA technologies. The ATD-1 integrated system consists of the Traffic Management Advisor with Terminal Metering which generates precise time-based schedules to the runway and merge points; Controller Managed Spacing decision support tools which provide controllers with speed advisories and other information needed to meet the schedule; and Flight deck-based Interval Management avionics and procedures which allow flight crews to adjust their speed to achieve precise relative spacing. Initial studies identified air-ground challenges related to the integration of these three scheduling and spacing technologies, and NASA's airborne spacing algorithm was modified to address some of these challenges. The Research and Procedural Testing of Routes human-in-the-loop experiment was then conducted to assess the performance of the new spacing algorithm. The results of this experiment indicate that the algorithm performed as designed, and the pilot participants found the airborne spacing concept, air-ground procedures, and crew interface to be acceptable. However, the researchers concluded that the data revealed issues with the frequency of speed changes and speed reversals.

  13. Air Breathing Propulsion Controls and Diagnostics Research at NASA Glenn Under NASA Aeronautics Research Mission Programs

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2014-01-01

    This lecture will provide an overview of the aircraft turbine engine control research at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the current state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. The traditional engine control problem has been to provide a means to safely transition the engine from one steady-state operating point to another based on the pilot throttle inputs. With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects in partnership with other organizations within GRC and across NASA, other government agencies, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research Mission. The second part of the lecture provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges and the key progress to date are summarized. The technologies to be discussed include system level engine control concepts, gas path diagnostics, active component control, and distributed engine control architecture. The lecture will end with a futuristic perspective of how the various current technology developments will lead to an Intelligent and Autonomous Propulsion System requiring none to very minimum pilot interface

  14. Absolute Thermal SST Measurements over the Deepwater Horizon Oil Spill

    NASA Astrophysics Data System (ADS)

    Good, W. S.; Warden, R.; Kaptchen, P. F.; Finch, T.; Emery, W. J.

    2010-12-01

    Climate monitoring and natural disaster rapid assessment require baseline measurements that can be tracked over time to distinguish anthropogenic versus natural changes to the Earth system. Disasters like the Deepwater Horizon Oil Spill require constant monitoring to assess the potential environmental and economic impacts. Absolute calibration and validation of Earth-observing sensors is needed to allow for comparison of temporally separated data sets and provide accurate information to policy makers. The Ball Experimental Sea Surface Temperature (BESST) radiometer was designed and built by Ball Aerospace to provide a well calibrated measure of sea surface temperature (SST) from an unmanned aerial system (UAS). Currently, emissive skin SST observed by satellite infrared radiometers is validated by shipborne instruments that are expensive to deploy and can only take a few data samples along the ship track to overlap within a single satellite pixel. Implementation on a UAS will allow BESST to map the full footprint of a satellite pixel and perform averaging to remove any local variability due to the difference in footprint size of the instruments. It also enables the capability to study this sub-pixel variability to determine if smaller scale effects need to be accounted for in models to improve forecasting of ocean events. In addition to satellite sensor validation, BESST can distinguish meter scale variations in SST which could be used to remotely monitor and assess thermal pollution in rivers and coastal areas as well as study diurnal and seasonal changes to bodies of water that impact the ocean ecosystem. BESST was recently deployed on a conventional Twin Otter airplane for measurements over the Gulf of Mexico to access the thermal properties of the ocean surface being affected by the oil spill. Results of these measurements will be presented along with ancillary sensor data used to eliminate false signals including UV and Synthetic Aperture Radar (SAR

  15. Design of new central solenoid for SST-1

    NASA Astrophysics Data System (ADS)

    Prasad, Upendra; Pradhan, Subrata; Ghate, Mahesh; Raj, Piyush; Tanna, V. L.; Khan, Ziauddin; Roy, Swati; Santra, Prosenjit; Biswas, Prabal; Sharma, A. N.; Khristi, Yohan; Kanaber, Deven; Varmora, Pankaj

    2017-04-01

    The key role of central solenoid (CS) magnet of a Tokamak is for gas breakdown, ramp up and maintaining of plasma current. The magnetic flux change in CS along with other PF coils generates magnetic null and induces electric field in toroidal direction. The induced toroidal electric field accelerates the residual electrons which collide with the neutrals and an avalanche takes place which led to the net plasma in the vacuum vessel of a Tokamak. In order to maximize the CS volt-sec capability, the higher magnetic field with a greater magnetic flux linkage is necessary. In order to facilitate all these requirements of SST-1 a new superconducting CS has been designed for SST-1. The design of new central solenoid has two bases; first one is physics and second is smart engineering in limited bore diameter of ∼ 655 mm. The physics basis of the design includes volt-sec storage capacity of ∼ 0.8 volt-sec, magnetic field null around 0.2 m over major radius of 1.1 m and toroidal electric field of ∼ 0.3 volt/m. The engineering design of new CS consists of Nb3Sn cable in conduit conductor (CICC) of operating current of 14 kA @ 4.5 K at 6 T, consolidated winding pack, smart quench detection system, protection system, housing cryostat and conductor terminations and joint design. The winding pack consists of 576 numbers of turns distributed in four layers with 0.75 mm FRP tape soaked with cyanide Easter based epoxy resin turn insulation and 3 mm of ground insulation. The interlayer low resistance (∼1 nΩ) terminal praying hand joints at 14 kA at 4.5 K has been designed for making winding pack continuous. The total height of winding pack is 2500 mm. The stored energy of this winding pack is ∼ 3 MJ at 14 kA of operating current. The expected heat load at cryogenic temperature is ∼ 10 W per layer, which requires helium mass flow rate of 1.4 g/s at 1.4 bars @ 4.5 K. The typical diameter and height of housing cryostat are 650 mm and 2563 mm with 80 K shield respectively

  16. The Influence of Midlatitude Ocean-Atmosphere Coupling on the Low-Frequency Variability of a GCM. Part I: No Tropical SST Forcing*.

    NASA Astrophysics Data System (ADS)

    Bladé, Ileana

    1997-08-01

    This study examines the extent to which the thermodynamic interactions between the midlatitude atmosphere and the underlying oceanic mixed layer contribute to the low-frequency atmospheric variability. A general circulation model, run under perpetual northern winter conditions, is coupled to a motionless constant-depth mixed layer in midlatitudes, while elsewhere the sea surface temperature (SST) is kept fixed; interannual tropical SST forcing is not included. It is found that coupling does not modify the spatial organization of the variability. The influence of coupling is manifested as a slight reddening of the spectrum of 500-mb geopotential height and a significant enhancement of the lower-tropospheric thermal variance over the oceans at very low frequencies by virtue of the mixed-layer adjustment to surface air temperature variations that occurs on those timescales. This adjustment effectively reduces the thermal damping of the atmosphere associated with surface heat fluxes (or negative oceanic feedback), thus increasing the thermal variance and the persistence of circulation anomalies.In studying the covariability between ocean and atmosphere it is found that the dominant mode of natural atmospheric variability is coupled to the leading mode of SST in each ocean, with the atmosphere leading the ocean by about one month. The cross-correlation function between oceanic and atmospheric anomalies is strongly asymmetric about zero lag. The SST structures are consistent with direct forcing by the anomalous heat fluxes implied by the concurrent surface air temperature and wind fluctuations. Additionally, composites based on large amplitude SST anomaly events contain no evidence of direct driving of atmospheric perturbations by these SST anomalies. Thus, in terms of the spatial organization of the covariability and the evolution of the coupled system from one regime to another, large-scale air-sea interaction in the model is characterized by one-way atmospheric

  17. A USCLVAR Multi-Model Assessment of the Impact of SST Anomalies and Land-Atmosphere Feedbacks on Drought

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried

    2009-01-01

    noteworthy and to some extent unexpected results. These include a seasonal dependence of the precipitation response that is characterized by signal-to-noise ratios that peak in spring, and surface temperature signal-to-noise ratios that are both lower and show less agreement among the models than those found for the precipitation response. Another interesting result concerns what appears to be a substantially different character in the surface temperature response over the U.S. to the Pacific forcing by the only model examined here that was developed for use in numerical weather prediction. The response to the positive SST trend forcing pattern is an overall surface warming over the world's land areas with substantial regional variations that are in part reproduced in runs forced with a globally uniform SST trend forcing. The precipitation response to the trend forcing is weak in all the models. It is hoped that these early results will serve to stimulate further analysis of these simulations, as well as suggest new research on the physical mechanisms contributing to hydroclimatic variability and change throughout the world.

  18. A USCLVAR Multi-Model Assessment of the Impact of SST Anomalies and Land-Atmosphere Feedbacks on Drought

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried

    2009-01-01

    noteworthy and to some extent unexpected results. These include a seasonal dependence of the precipitation response that is characterized by signal-to-noise ratios that peak in spring, and surface temperature signal-to-noise ratios that are both lower and show less agreement among the models than those found for the precipitation response. Another interesting result concerns what appears to be a substantially different character in the surface temperature response over the U.S. to the Pacific forcing by the only model examined here that was developed for use in numerical weather prediction. The response to the positive SST trend forcing pattern is an overall surface warming over the world's land areas with substantial regional variations that are in part reproduced in runs forced with a globally uniform SST trend forcing. The precipitation response to the trend forcing is weak in all the models. It is hoped that these early results will serve to stimulate further analysis of these simulations, as well as suggest new research on the physical mechanisms contributing to hydroclimatic variability and change throughout the world.

  19. Development of Unmanned Airborne System (UAS) instrumentation for air-sea-ice interaction research

    NASA Astrophysics Data System (ADS)

    Reineman, B. D.; Lenain, L.; Melville, W. K.

    2011-12-01

    We have developed Unmanned Airborne System (UAS) instrumentation packages to directly measure air-sea momentum transfer, as well as latent, sensible, and radiative heat fluxes, topography, and surface wave kinematics. Two UAS (BAE Manta C1s) flying in vertical formation over the ocean will allow the direct measurement of air-sea fluxes within the marine atmospheric boundary layer, and, with onboard high-resolution video and laser altimetry, simultaneous observation of sea surface kinematics and sea-ice topography. The low altitude required for accurate air-sea or air-ice flux measurements is below the typical safety limit of manned research aircraft; however, with advancements in laser altimeters, small-aircraft flight control, and real-time Differential GPS, it now is within the capability of the UAS platform. Fast response turbulence, hygrometer, and temperature probes in the lower UAS permit surface layer flux measurements, and short and long wave radiometers in the upper UAS allow the determination of net radiation, surface temperature, and albedo. Engineering test flights of the two UAS over land were performed in January 2011 at Camp Roberts, CA. The tests demonstrated the capability of the systems to measure vertical profiles of georeferenced wind, temperature, and moisture content, as well as momentum flux and sensible, latent, and radiative heat fluxes. UAS-derived fluxes from low-altitude (20 -- 30 m) flights are in agreement with fluxes measured by a nearby tower-mounted sonic anemometer-based eddy covariance system. We present a description of the instrumentation, a summary of results from flight tests, and discuss potential applications of these instrumented platforms for air-sea-ice interaction studies.

  20. Forest models: their development and potential applications for air pollution effects research

    SciTech Connect

    Shugart, H.H.; McLaughlin, S.B.; West, D.C.

    1980-01-01

    As research tools for evaluating the effects of chronic air pollution stress, forest simulation models offer one means of integrating forest growth and development data with generalized indices of pollution stress. This approach permits consideration of both the competitive interactions of trees in the forest stand and the influences of the stage of stand development on sensitivity of component species. A review of forest growth models, including tree, stand, and gap models, is provided as a means of evaluating relative strengths, weaknesses, and limits of applicability of representative examples of each type. Data from recent simulations with a gap model of eastern deciduous forest responses to air pollution stress are presented to emphasize the potential importance of competition in modifying individual species' responses in a forest stand. Recent developments in dendroecology are discussed as a potential mechanism for model validation and extended application.

  1. Emerging research on real-time air pollution sensing with the United States Environmental Protection Agency, Office of Research and Development

    EPA Science Inventory

    Abstract: Air pollution research ranges broadly at the US EPA and includes the characterization of pollutant emissions from a wide array of sources, studying post-emission transport and transformation in the atmosphere, and evaluating the linkages between air pollution and advers...

  2. Emerging research on real-time air pollution sensing with the United States Environmental Protection Agency, Office of Research and Development

    EPA Science Inventory

    Abstract: Air pollution research ranges broadly at the US EPA and includes the characterization of pollutant emissions from a wide array of sources, studying post-emission transport and transformation in the atmosphere, and evaluating the linkages between air pollution and advers...

  3. Activation of somatostatin receptor (sst 5) protects the rat retina from AMPA-induced neurotoxicity.

    PubMed

    Kiagiadaki, Foteini; Savvaki, Maria; Thermos, Kyriaki

    2010-01-01

    In a recent study, we employed an in vivo model of retinal excitotoxicity to investigate the neuroprotective effect of somatostatinergic agents. Intravitreal administration of somatostatin and sst(2) selective agonists protected the retina from (RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid hydrobromide (AMPA) induced excitotoxicity. The sst(1) and sst(4) selective ligands had no effect (Kiagiadaki and Thermos, 2008). The presence of sst(5) receptors in rat retina was only recently reported (Ke and Zhong, 2007). Synthetic agonists that activate sst(2) receptors also bind with high affinity to the sst(5) subtype. In the present study the putative neuroprotective effects of sst(5) receptor activation were investigated. Adult female and male Sprague-Dawley (250-350g) rats were employed. Groups of animals received intravitreally PBS (50mM) or AMPA (42 nmol/eye) alone or in combination with L-817,818 (sst(5), 10(-5), 10(-4)M). To exclude neuroprotective effects via the activation of sst(2) receptors, L-817,818 (10(-4)M) was coinjected with the sst(2) antagonist CYN-154806 (10(-4)M). Immunohistochemistry (IHC) studies using the anti-retinal marker choline acetyltransferase (ChAT) and TUNEL staining were employed to examine retinal cell loss and protection. IHC and Western blot analysis were also employed to assess whether the sst(5) receptors are viable in the AMPA treated tissue as compared to control retina. sst(5) receptors were not affected by AMPA. L-817,818 protected the retina from the AMPA insult in the dose of 10(-4)M, while CYN-154806 (10(-4)M) had no effect on the sst(5) neuroprotection. TUNEL staining confirmed the AMPA-induced retinal toxicity and the L-817,818 neuroprotection. These results demonstrate for the first time that sst(5) receptors are functional in the retina, and that sst(5) analogs administered intravitreally protect the retina from excitotoxicity. Further studies are essential to ascertain the therapeutic relevance of these

  4. EMERGING TECHNOLOGY BULLETIN: VOLATILE ORGANIC COMPOUND REMOVAL FROM AIR STREAMS BY MEMBRANES SEPARATION MEMBRANE TECHNOLOGY AND RESEARCH, INC.

    EPA Science Inventory

    This membrane separation technology developed by Membrane Technology and Research (MTR), Incorporated, is designed to remove volatile organic compounds (VOCs) from contaminated air streams. In the process, organic vapor-laden air contacts one side of a membrane that is permeable ...

  5. EMERGING TECHNOLOGY BULLETIN: VOLATILE ORGANIC COMPOUND REMOVAL FROM AIR STREAMS BY MEMBRANES SEPARATION MEMBRANE TECHNOLOGY AND RESEARCH, INC.

    EPA Science Inventory

    This membrane separation technology developed by Membrane Technology and Research (MTR), Incorporated, is designed to remove volatile organic compounds (VOCs) from contaminated air streams. In the process, organic vapor-laden air contacts one side of a membrane that is permeable ...

  6. Enhanced Ahead-of-Eye TC Coastal Ocean Cooling Processes and their Impact on Air-Sea Heat Fluxes and Storm Intensity

    NASA Astrophysics Data System (ADS)

    Seroka, G. N.; Miles, T. N.; Glenn, S. M.; Xu, Y.; Forney, R.; Roarty, H.; Schofield, O.; Kohut, J. T.

    2016-02-01

    Any landfalling tropical cyclone (TC) must first traverse the coastal ocean. TC research, however, has focused over the deep ocean, where TCs typically spend the vast majority of their lifetime. This paper will show that the ocean's response to TCs can be different between deep and shallow water, and that the additional shallow water processes must be included in coupled models for accurate air-sea flux treatment and TC intensity prediction. The authors will present newly observed coastal ocean processes that occurred in response to Hurricane Irene (2011), due to the presence of a coastline, an ocean bottom, and highly stratified conditions. These newly observed processes led to enhanced ahead-of-eye SST cooling that significantly impacted air-sea heat fluxes and Irene's operationally over-predicted storm intensity. Using semi-idealized modeling, we find that in shallow water in Irene, only 6% of cooling due to air-sea heat fluxes, 17% of cooling due to 1D vertical mixing, and 50% of cooling due to all processes (1D mixing, air-sea heat fluxes, upwelling, and advection) occurred ahead-of-eye—consistent with previous studies. Observations from an underwater glider and buoys, however, indicated 75-100% of total SST cooling over the continental shelf was ahead-of-eye. Thus, the new coastal ocean cooling processes found in this study must occur almost completely ahead-of-eye. We show that Irene's intense cooling was not captured by basic satellite SST products and coupled ocean-atmosphere hurricane models, and that including the cooling in WRF modeling mitigated the high bias in model predictions. Finally, we provide evidence that this SST cooling—not track, wind shear, or dry air intrusion—was the key missing contribution to Irene's decay just prior to NJ landfall. Ongoing work is exploring the use of coupled WRF-ROMS modeling in the coastal zone.

  7. Satellite SST Trends and Climatologies - how many years is enough?

    NASA Astrophysics Data System (ADS)

    Heron, S. F.; Skirving, W. J.; Christensen, T. R.; Eakin, C. M.; Gledhill, D. K.; Liu, G.; Morgan, J. A.; Parker, B. A.; Strong, A. E.

    2009-05-01

    Stress on coral reef ecosystems is generally due to abnormal events, rather than absolute levels, of environmental conditions (e.g., temperature, salinity, and light). For example, ocean temperatures of 30°C would be "comfortable" for corals in the Persian Gulf but stressful for the corals off the coast of Brazil because they are accustomed to different conditions. Identifying anomalous conditions requires good knowledge of the baseline ("usual", "normal") conditions. Here we discuss whether a remotely-sensed, 4km sea surface temperature (SST) record of length 23 years is sufficient to calculate a long-term average (climatology) that can sensibly be used as a baseline for monitoring the health of corals. We also discuss issues related to ocean warming in determining this baseline and the relevance of adaptation by corals.

  8. Twentieth century correlations between extratropical SST variability and ITCZ shifts

    NASA Astrophysics Data System (ADS)

    Green, Brian; Marshall, John; Donohoe, Aaron

    2017-09-01

    The Intertropical Convergence Zone (ITCZ) is a global-scale band of tropical precipitation lying, in the annual mean, just north of the equator. Its position can be tied to the atmosphere's energy balance: the Northern Hemisphere is heated more strongly than the Southern Hemisphere, biasing the atmosphere's circulation and ITCZ north of the equator. In the context of this energy balance framework, we examine multidecadal connections between variations in the position of the global ITCZ and indices of extratropical sea surface temperature (SST) variability over the twentieth century. We find that the ITCZ and atmospheric circulation are shifted farther to the north during periods when North Atlantic and North Pacific SSTs are anomalously warm. Additionally, a warmer North Atlantic is correlated with a relatively warm Northern Hemisphere atmosphere. Our results suggest an important role for the ocean circulation in modulating ITCZ migrations on decade-and-longer timescales.

  9. Fates of endocytosed somatostatin sst2 receptors and associated agonists.

    PubMed Central

    Koenig, J A; Kaur, R; Dodgeon, I; Edwardson, J M; Humphrey, P P

    1998-01-01

    Somatostatin agonists are rapidly and efficiently internalized with the somatostatin sst2 receptor. The fate of internalized agonists and receptors is of critical importance because the rate of ligand recycling back to the cell surface can limit the amount of radioligand accumulated inside the cells, whereas receptor recycling might be of vital importance in providing the cell surface with dephosphorylated, resensitized receptors. Furthermore the accumulation of radioisotope-conjugated somatostatin agonists inside cancer cells resulting from receptor-mediated internalization has been used as a treatment for cancers that overexpress somatostatin receptors. In the present study, radio-iodinated agonists at the sst2 somatostatin receptor were employed to allow quantitative analysis of the fate of endocytosed agonist. After endocytosis, recycling back to the cell surface was the main pathway for both 125I-labelled somatostatin-14 (SRIF-14) and the more stable agonist 125I-labelled cyclo(N-Me-Ala-Tyr-d-Trp-Lys-Abu-Phe) (BIM-23027; Abu stands for aminobutyric acid), accounting for 75-85% of internalized ligand when re-endocytosis of radioligand was prevented. We have shown that there is a dynamic cycling of both somatostatin agonist ligands and receptors between the cell surface and internal compartments both during agonist treatment and after surface-bound agonist has been removed, unless steps are taken to prevent the re-activation of receptors by recycled agonist. Internalization leads to increased degradation of 125I-labelled SRIF-14 but not 125I-labelled BIM-23027. The concentration of recycled agonist accumulating in the extracellular medium was sufficient to re-activate the receptor, as measured both by the inhibition of forskolin-stimulated adenylate cyclase and the recovery of surface receptor number after internalization. PMID:9820803

  10. Indoor Air Pollution in Developing Countries: Research and Implementation Needs for Improvements in Global Public Health

    PubMed Central

    Gall, Elliott T.; Carter, Ellison M.; Matt Earnest, C.

    2013-01-01

    Exposure to indoor air pollution (IAP) from the burning of solid fuels for cooking, heating, and lighting accounts for a significant portion of the global burden of death and disease, and disproportionately affects women and children in developing regions. Clean cookstove campaigns recently received more attention and investment, but their successes might hinge on greater integration of the public health community with a variety of other disciplines. To help guide public health research in alleviating this important global environmental health burden, we synthesized previous research on IAP in developing countries, summarized successes and challenges of previous cookstove implementation programs, and provided key research and implementation needs from structured discussions at a recent symposium. PMID:23409891

  11. Inhibitory control of growth hormone secretion by somatostatin in rat pituitary GC cells: sst(2) but not sst(1) receptors are coupled to inhibition of single-cell intracellular free calcium concentrations.

    PubMed

    Cervia, Davide; Petrucci, Cristina; Bluet-Pajot, Marie Thérèse; Epelbaum, Jacques; Bagnoli, Paola

    2002-08-01

    Rat pituitary tumor cells (GC cells) exhibit spontaneous oscillations of intracellular free calcium concentration ([Ca(2+)](i)) that allow continuous release of growth hormone (GH). Of the somatostatin (SRIH) receptor subtypes (sst receptors) mediating SRIH action, sst(1) and sst(2) receptors are highly expressed by GC cell membranes. In the present study, the effects of sst(1) or sst(2) receptor activation on single-cell [Ca(2+)](i) were investigated in GC cells by confocal fluorescence microscopy. In addition, the effects of sst(1) or sst(2) receptor activation on GH secretion were also studied. Our results demonstrate that SRIH decreases [Ca(2+)](i) baseline and almost completely blocks Ca(2+) transients through activation of sst(2) but not of sst(1) receptors. In contrast, SRIH effectively inhibits GH secretion through activation of both sst(1) and sst(2) receptors. Blocking Ca(2+) transients is less efficient than SRIH to inhibit GH release. The cyclic octapeptide, CYN-154806, antagonizes sst(2) receptors at [Ca(2+)](i) since it abolishes the sst(2) receptor-mediated inhibition of [Ca(2+)](i) without affecting single-cell Ca(2+) signals. On the other hand, CYN-154806 alone potently inhibits GH secretion through the involvement of pertussis toxin-sensitive G proteins. In conclusion, the present results demonstrate that SRIH inhibition of GH release in GC cells involves mechanisms either dependent or independent on SRIH modulation of [Ca(2+)](i). The implications of CYN-154806 inhibition of GH secretion are discussed. Copyright 2002 S. Karger AG, Basel

  12. The accuracy of SST retrievals from AATSR: An initial assessment through geophysical validation against in situ radiometers, buoys and other SST data sets

    NASA Astrophysics Data System (ADS)

    Corlett, G. K.; Barton, I. J.; Donlon, C. J.; Edwards, M. C.; Good, S. A.; Horrocks, L. A.; Llewellyn-Jones, D. T.; Merchant, C. J.; Minnett, P. J.; Nightingale, T. J.; Noyes, E. J.; O'Carroll, A. G.; Remedios, J. J.; Robinson, I. S.; Saunders, R. W.; Watts, J. G.

    The Advanced Along-Track Scanning Radiometer (AATSR) was launched on Envisat in March 2002. The AATSR instrument is designed to retrieve precise and accurate global sea surface temperature (SST) that, combined with the large data set collected from its predecessors, ATSR and ATSR-2, will provide a long term record of SST data that is greater than 15 years. This record can be used for independent monitoring and detection of climate change. The AATSR validation programme has successfully completed its initial phase. The programme involves validation of the AATSR derived SST values using in situ radiometers, in situ buoys and global SST fields from other data sets. The results of the initial programme presented here will demonstrate that the AATSR instrument is currently close to meeting its scientific objectives of determining global SST to an accuracy of 0.3 K (one sigma). For night time data, the analysis gives a warm bias of between +0.04 K (0.28 K) for buoys to +0.06 K (0.20 K) for radiometers, with slightly higher errors observed for day time data, showing warm biases of between +0.02 (0.39 K) for buoys to +0.11 K (0.33 K) for radiometers. They show that the ATSR series of instruments continues to be the world leader in delivering accurate space-based observations of SST, which is a key climate parameter.

  13. Notification: Preliminary Research on the Office of Air and Radiation’s Timekeeping Practices and Compliance With Regulations and Policies

    EPA Pesticide Factsheets

    Project #OA-FY17-0090, December 29, 2016. The EPA OIG plans to begin preliminary research on the Office of Air and Radiation’s timekeeping practices and compliance with federal regulations and related EPA policies and procedures.

  14. Exploring similarity between 15 years of satellite SST and SSH using data-driven methods

    NASA Astrophysics Data System (ADS)

    Tandeo, Pierre; Gonzalez Haro, Cristina; Atencia, Aitor

    2017-04-01

    Ocean surface current is one of the main oceanographic variables and remote sensing retrieval still need to be improved. To estimate and track these currents, we classically use satellite measurements of Sea Surface Height (SSH), but these data are sparse in space and time, as they are collected along altimeter tracks. Sea Surface Temperature (SST) observations are much more complete in both space and time but the direct relation between SST and surface current is not clear. The covariance of SST and SSH can be exploited to use SST datasets to help fill in the missing information about ocean currents where SSH data are lacking. Here, we demonstrate the use of a data-driven approach to exploit 15 years of collocated satellite measurements of microwave SST fields and along-track SSH. The idea is to find analog situations on SST fields and artificially create pseudo-observations of along-track SSH from abundant SST. The relation between SST and SSH is tested for different scales, locations and time of the year and the results of this approach are evaluated on turbulent areas at the surface of the ocean.

  15. Error Estimation in an Optimal Interpolation Scheme for High Spatial and Temporal Resolution SST Analyses

    NASA Technical Reports Server (NTRS)

    Rigney, Matt; Jedlovec, Gary; LaFontaine, Frank; Shafer, Jaclyn

    2010-01-01

    Heat and moisture exchange between ocean surface and atmosphere plays an integral role in short-term, regional NWP. Current SST products lack both spatial and temporal resolution to accurately capture small-scale features that affect heat and moisture flux. NASA satellite is used to produce high spatial and temporal resolution SST analysis using an OI technique.

  16. Engineering Basis Document Review for Waste Feed Delivery from Single Shell Tanks (SST)

    SciTech Connect

    SMITH, D.F.

    1999-10-07

    This report provides the results of a review conducted on existing operating specifications and safety requirements and provides a summary of applicable design constraints on the Single-Shell Tank (SST) System. The SST System is required to transition from the current waste storage mission to support the Tank Waste Remediation System (TWRS) waste retrieval mission described in the Tank Waste Remediation System Mission Analysis Report (Acree 1998). The SST System is also required to support the Project Hanford Management Contract (PHMC) portions of the Waste Feed Delivery (WFD) mission. In Phase 1 the SST System will be required to retrieve waste from selected SSTs (tanks 241-C-102 and 241-C-104) for transfer to the Double-Shell Tank (DST) System (tanks 241-AZ-101,241-AY-102). The SST System will include all the systems, structures and components required to safely store, retrieve, and transfer waste in support of the TWRS mission. Operational Specification Documents (OSDs) govern operation of the existing SST System components. However, the system will be highly modified to support the TWRS mission. Therefore OSD requirements may not apply to the new system's design. This document describes the review of existing SST OSDs and provides the rationale for selecting or rejecting requirements as constraints on the SST System design. The selected requirements (or design constraints) will be included in System Specification for the Single-Shell Tank System, HNF-3912(Conrads 1999).

  17. Air-Quality Data from NARSTO (North American Research Strategy for Tropospheric Ozone)

    DOE Data Explorer

    NARSTO is a public/private partnership dedicated to improving management of air quality in North America. It was established on February 13, 1995 when representatives of Canada, the United States, and Mexico signed the NARSTO Charter in a ceremony at the White House. The Department of Energy is one of the charter members providing funding. The central programmatic goal of NARSTO is to provide data and information for use in the determination of workable, efficient, and effective strategies for local and regional ozone and fine particle management. Since its founding, NARSTO has completed three major scientific Assessments of critical air quality management issues. NARSTO maintains the Quality Systems Science Center and the NARSTO Data Archive for storing data from NARSTO Affiliated Research Activities and making these data available to the scientific community. NARSTO also facilitates activities, such as the Reactivity Research Working Group, which provide critical reviews of the state of the science in areas of interest to air quality policy makers. In January 1997, the U.S. Department of Energy's Environmental Sciences Division announced their sponsorship of the NARSTO Quality Systems Science Center (QSSC). The QSSC is located at the Oak Ridge National Laboratory within the Carbon Dioxide Information Analysis Center (CDIAC). Quality Assurance and Data Management assistance and guidelines are provided by the QSCC, along with access to data files. The permanent data archive is maintained by the NASA EOSDIS Distributed Active Archive Center at the Langley Research Center. The archived data can be reached by a link from the QSSC.(Specialized Interface) See also the NARSTO web site at http://www.narsto.org/

  18. PLANNING OF HEALTH EFFECTS RESEARCH ON HAZARDOUS AIR POLLUTANTS AND APPLICATION TO RISK ASSESSMENT PROBLEMS

    EPA Science Inventory

    The Clean Air Act Amendment of 1990 designated a set of compounds as hazardous air pollutants or "air toxics" which may be released into the air from a variety of sources including stationary, mobile and indoor air sources. Determination of the risks to human health from exposur...

  19. PLANNING OF HEALTH EFFECTS RESEARCH ON HAZARDOUS AIR POLLUTANTS AND APPLICATION TO RISK ASSESSMENT PROBLEMS

    EPA Science Inventory

    The Clean Air Act Amendment of 1990 designated a set of compounds as hazardous air pollutants or "air toxics" which may be released into the air from a variety of sources including stationary, mobile and indoor air sources. Determination of the risks to human health from exposur...

  20. Air pollution control system research: An iterative approach to developing affordable systems

    SciTech Connect

    Watt, L.C.; Cannon, F.S.; Heinsohn, R.J.; Spaeder, T.A.; Darvin, C.H.

    1993-12-31

    The research will be accomplished on lab scale, pilot scale, and production air pollution control systems (APCS). The production system, to be installed at Marine Corps Logistics Base (MCLB) Barstow, CA, will treat the exhaust from three paint booths which will be modified to recirculate a large percentage of their exhaust. These recirculation systems are, themselves, a critical element in the overall R and D effort. The goal of the program is to conduct an R and D effort which will improve and demonstrate a combination of technologies intended to make VOC treatment both effective and affordable. The US Marine Corps, the other services and industry will each benefit.

  1. Characterization of a New Continuous Air Monitoring System For the University of Massachusetts Lowell Research Reactor

    NASA Astrophysics Data System (ADS)

    Alqahtani, Mohammad Saad

    A continuous air monitor (CAM) is a critical piece of equipment to support radiation safety in nuclear facilities where the generation of airborne radioactivity is a possibility for either normal operations or accident scenarios. The University of Massachusetts Lowell Research Reactor is planning to install a new CAM system manufactured by Canberra Industries for monitoring airborne radioactive particulates. In this study, the new CAM was evaluated to determine 1) baseline response, 2) response to high exposure rates, 3) appropriate background compensation, 4) detection limits, and 5) alarm settings. The results of this study will help to properly integrate the new CAM into the reactor radiation monitoring system.

  2. Some possibilities of using gas mixtures other than air in aerodynamic research

    NASA Technical Reports Server (NTRS)

    Chapman, Dean R

    1956-01-01

    A study is made of the advantages that can be realized in compressible-flow research by employing a substitute heavy gas in place of air. The present report is based on the idea that by properly mixing a heavy monatomic gas with a suitable heavy polyatomic gas, it is possible to obtain a heavy gas mixture which has the correct ratio of specific heats and which is nontoxic, nonflammable, thermally stable, chemically inert, and comprised of commercially available components. Calculations were made of wind-tunnel characteristics for 63 gas pairs comprising 21 different polyatomic gases properly mixed with each of three monatomic gases (argon, krypton, and zenon).

  3. Research on measurement-device-independent quantum key distribution based on an air-water channel

    NASA Astrophysics Data System (ADS)

    Zhou, Yuan-yuan; Zhou, Xue-jun; Xu, Hua-bin; Cheng, Kang

    2016-11-01

    A measurement-device-independent quantum key distribution (MDI-QKD) method with an air-water channel is researched. In this method, the underwater vehicle and satellite are the legitimate parties, and the third party is at the airwater interface in order to simplify the unilateral quantum channel to water or air. Considering the condition that both unilateral transmission distance and transmission loss coefficient are unequal, a perfect model of the asymmetric channel is built. The influence of asymmetric channel on system loss tolerance and secure transmission distance is analyzed. The simulation results show that with the increase of the channel's asymmetric degree, the system loss tolerance will descend, one transmission distance will be reduced while the other will be increased. When the asymmetric coefficient of channel is between 0.068 and 0.171, MDI-QKD can satisfy the demand of QKD with an air-water channel, namely the underwater transmission distance and atmospheric transmission distance are not less than 60 m and 12 km, respectively.

  4. Land, sea, and air unmanned systems research and development at SPAWAR Systems Center Pacific

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoa G.; Laird, Robin; Kogut, Greg; Andrews, John; Fletcher, Barbara; Webber, Todd; Arrieta, Rich; Everett, H. R.

    2009-05-01

    The Space and Naval Warfare (SPAWAR) Systems Center Pacific (SSC Pacific) has a long and extensive history in unmanned systems research and development, starting with undersea applications in the 1960s and expanding into ground and air systems in the 1980s. In the ground domain, we are addressing force-protection scenarios using large unmanned ground vehicles (UGVs) and fixed sensors, and simultaneously pursuing tactical and explosive ordnance disposal (EOD) operations with small man-portable robots. Technology thrusts include improving robotic intelligence and functionality, autonomous navigation and world modeling in urban environments, extended operational range of small teleoperated UGVs, enhanced human-robot interaction, and incorporation of remotely operated weapon systems. On the sea surface, we are pushing the envelope on dynamic obstacle avoidance while conforming to established nautical rules-of-the-road. In the air, we are addressing cooperative behaviors between UGVs and small vertical-takeoff- and-landing unmanned air vehicles (UAVs). Underwater applications involve very shallow water mine countermeasures, ship hull inspection, oceanographic data collection, and deep ocean access. Specific technology thrusts include fiber-optic communications, adaptive mission controllers, advanced navigation techniques, and concepts of operations (CONOPs) development. This paper provides a review of recent accomplishments and current status of a number of projects in these areas.

  5. Relationships of Upper Tropospheric Water Vapor, Clouds and SST: MLS Observations, ECMWF Analyses and GCM Simulations

    NASA Technical Reports Server (NTRS)

    Su, Hui; Waliser, Duane E.; Jiang, Jonathan H.; Li, Jui-lin; Read, William G.; Waters, Joe W.; Tompkins, Adrian M.

    2006-01-01

    The relationships of upper tropospheric water vapor (UTWV), cloud ice and sea surface temperature (SST) are examined in the annual cycles of ECMWF analyses and simulations from 15 atmosphere-ocean coupled models which were contributed to the IPCC AR4. The results are compared with the observed relationships based on UTWV and cloud ice measurements from MLS on Aura. It is shown that the ECMWF analyses produce positive correlations between UTWV, cloud ice and SST, similar to the MLS data. The rate of the increase of cloud ice and UTWV with SST is about 30% larger than that for MLS. For the IPCC simulations, the relationships between UTWV, cloud ice and SST are qualitatively captured. However, the magnitudes of the simulated cloud ice show a considerable disagreement between models, by nearly a factor of 10. The amplitudes of the approximate linear relations between UTWV, cloud ice and SST vary by a factor up to 4.

  6. Effect of Radiative Cooling on Cloud-SST Relationship within the Tropical Pacific Region

    NASA Technical Reports Server (NTRS)

    Sui, Chung-Hsiung; Ho, Chang-Hoi; Chou, Ming-Dah; Lau, Ka-Ming; Li, Xiao-Fan; Einaudi, Franco (Technical Monitor)

    2000-01-01

    A recent analysis found a negative correlation between the area-mean cloud amount and the corresponding mean Sea Surface Temperature (SST) within the cloudy areas. The SST-cloud relation becomes more evident when the SST contrast between warm pool and surrounding cold pool (DSST) in the tropical Pacific is stronger than normal. The above feature is related to the finding that the strength of subsidence over the cold pool is limited by radiative cooling because of its small variability. As a result, the area of radiatively-driven subsidence must expand in response to enhanced low-boundary forcing due to SST warming or enhanced basin-scale DSST. This leads to more cloud free regions and less cloudy regions. The increased ratio of cloud-free areas to cloudy areas leads to more high SST areas (>29.50C) due to enhanced solar radiation.

  7. Air quality modeling for accountability research: Operational, dynamic, and diagnostic evaluation

    NASA Astrophysics Data System (ADS)

    Henneman, Lucas R. F.; Liu, Cong; Hu, Yongtao; Mulholland, James A.; Russell, Armistead G.

    2017-10-01

    Photochemical grid models play a central role in air quality regulatory frameworks, including in air pollution accountability research, which seeks to demonstrate the extent to which regulations causally impacted emissions, air quality, and public health. There is a need, however, to develop and demonstrate appropriate practices for model application and evaluation in an accountability framework. We employ a combination of traditional and novel evaluation techniques to assess four years (2001-02, 2011-12) of simulated pollutant concentrations across a decade of major emissions reductions using the Community Multiscale Air Quality (CMAQ) model. We have grouped our assessments in three categories: Operational evaluation investigates how well CMAQ captures absolute concentrations; dynamic evaluation investigates how well CMAQ captures changes in concentrations across the decade of changing emissions; diagnostic evaluation investigates how CMAQ attributes variability in concentrations and sensitivities to emissions between meteorology and emissions, and how well this attribution compares to empirical statistical models. In this application, CMAQ captures O3 and PM2.5 concentrations and change over the decade in the Eastern United States similarly to past CMAQ applications and in line with model evaluation guidance; however, some PM2.5 species-EC, OC, and sulfate in particular-exhibit high biases in various months. CMAQ-simulated PM2.5 has a high bias in winter months and low bias in the summer, mainly due to a high bias in OC during the cold months and low bias in OC and sulfate during the summer. Simulated O3 and PM2.5 changes across the decade have normalized mean bias of less than 2.5% and 17%, respectively. Detailed comparisons suggest biased EC emissions, negative wintertime SO42- sensitivities to mobile source emissions, and incomplete capture of OC chemistry in the summer and winter. Photochemical grid model-simulated O3 and PM2.5 responses to emissions and

  8. Mississippi State University Center for Air Sea Technology FY95 Research Program

    NASA Technical Reports Server (NTRS)

    Yeske, Lanny; Corbin, James H.

    1995-01-01

    The Mississippi State University (MSU) Center for Air Sea Technology (CAST) evolved from the Institute for Naval Oceanography's (INO) Experimental Center for Mesoscale Ocean Prediction (ECMOP) which was started in 1989. MSU CAST subsequently began operation on 1 October 1992 under an Office of Naval Research (ONR) two-year grant which ended on 30 September 1994. In FY95 MSU CAST was successful in obtaining five additional research grants from ONR, as well as several other research contracts from the Naval Oceanographic Office via NASA, the Naval Research Laboratory, the Army Corps of Engineers, and private industry. In the past, MSU CAST technical research and development has produced tools, systems, techniques, and procedures that improve efficiency and overcome deficiency for both the operational and research communities residing with the Department of Defense, private industry, and university ocean modeling community. We continued this effort with the following thrust areas: to develop advanced methodologies and tools for model evaluation, validation and visualization, both oceanographic and atmospheric; to develop a system-level capability for conducting temporally and ; spatially scaled ocean simulations driven by or are responsive to ocean models, and take into consideration coupling to atmospheric models; to continue the existing oceanographic/atmospheric data management task with emphasis on distributed databases in a network environment, with database optimization and standardization, including use of Mosaic and World Wide Web (WWW) access; and to implement a high performance parallel computing technology for CAST ocean models

  9. Mississippi State University Center for Air Sea Technology FY95 Research Program

    NASA Technical Reports Server (NTRS)

    Yeske, Lanny; Corbin, James H.

    1995-01-01

    The Mississippi State University (MSU) Center for Air Sea Technology (CAST) evolved from the Institute for Naval Oceanography's (INO) Experimental Center for Mesoscale Ocean Prediction (ECMOP) which was started in 1989. MSU CAST subsequently began operation on 1 October 1992 under an Office of Naval Research (ONR) two-year grant which ended on 30 September 1994. In FY95 MSU CAST was successful in obtaining five additional research grants from ONR, as well as several other research contracts from the Naval Oceanographic Office via NASA, the Naval Research Laboratory, the Army Corps of Engineers, and private industry. In the past, MSU CAST technical research and development has produced tools, systems, techniques, and procedures that improve efficiency and overcome deficiency for both the operational and research communities residing with the Department of Defense, private industry, and university ocean modeling community. We continued this effort with the following thrust areas: to develop advanced methodologies and tools for model evaluation, validation and visualization, both oceanographic and atmospheric; to develop a system-level capability for conducting temporally and ; spatially scaled ocean simulations driven by or are responsive to ocean models, and take into consideration coupling to atmospheric models; to continue the existing oceanographic/atmospheric data management task with emphasis on distributed databases in a network environment, with database optimization and standardization, including use of Mosaic and World Wide Web (WWW) access; and to implement a high performance parallel computing technology for CAST ocean models

  10. SST algorithms in ACSPO reanalysis of AVHRR GAC data from 2002-2013

    NASA Astrophysics Data System (ADS)

    Petrenko, B.; Ignatov, A.; Kihai, Y.; Zhou, X.; Stroup, J.

    2014-05-01

    In response to a request from the NOAA Coral Reef Watch Program, NOAA SST Team initiated reprocessing of 4 km resolution GAC data from AVHRRs flown onboard NOAA and MetOp satellites. The objective is to create a longterm Level 2 Advanced Clear-Sky Processor for Oceans (ACSPO) SST product, consistent with NOAA operations. ACSPO-Reanalysis (RAN) is used as input in the NOAA geo-polar blended Level 4 SST and potentially other Level 4 SST products. In the first stage of reprocessing (reanalysis 1, or RAN1), data from NOAA-15, -16, -17, -18, -19, and Metop-A and -B, from 2002-present have been processed with ACSPO v2.20, and matched up with quality controlled in situ data from in situ Quality Monitor (iQuam) version 1. The ~12 years time series of matchups were used to develop and explore the SST retrieval algorithms, with emphasis on minimizing spatial biases in retrieved SSTs, close reproduction of the magnitudes of true SST variations, and maximizing temporal, spatial and inter-platform stability of retrieval metrics. Two types of SST algorithms were considered: conventional SST regressions, and recently developed incremental regressions. The conventional equations were adopted in the EUMETSAT OSI-SAF formulation, which, according to our previous analyses, provide relatively small regional biases and well-balanced combination of precision and sensitivity, in its class. Incremental regression equations were specifically elaborated to automatically correct for model minus observation biases, always present when RTM simulations are employed. Improved temporal stability was achieved by recalculation of SST coefficients from matchups on a daily basis, with a +/-45 day window around the current date. This presentation describes the candidate SST algorithms considered for the next round of ACSPO reanalysis, RAN2.

  11. EOF analysis of long-term reconstructed AVHRR Pathfinder SST in the South China Sea

    NASA Astrophysics Data System (ADS)

    Huynh, Hong-Ngu T.; Alvera-Azcárate, Aida; Barth, Alexander; Beckers, Jean-Marie

    2014-05-01

    Sea surface temperature (SST) is one of the key variables often used to investigate ocean dynamics, ocean-atmosphere interaction, and climate change. For recent decades, the AVHRR Pathfinder SST, measured by infrared sensors, has been widely used because of its high resolution and long time-series. The disadvantage of the AVHRR Pathfinder SST is high percentage of missing data due to cloud coverage. This becomes more serious in the South China Sea (SCS) because it is located in the tropical region, frequently covered by clouds. In this study, we used the Data INterpolating Empirical Orthogonal Functions (DINEOF) method to reconstruct daily night-time 4 km AVHRR Pathfinder SST spanning from 1989 to 2009 for the whole SCS. In order to better understand the spatial and temporal variability of the SCS SST, an EOF analysis of the reconstructed field is performed in association with surface wind. The first SST mode, accounting for 69% of the variance, presents the cooling (warming) of the basin due to the solar inclination through seasons, water exchange, topography, and monsoon-induced cyclonic circulation. The second SST mode, explaining 24.8% of the variance, shows the advection of cold and warm water from two opposite directions along the southwest-northeast diagonal of the basin. The second SST mode is affected by the atmospheric anticyclone (cyclone) located over the Philippine Sea. Comparing both SST modes with Nino3.0 index, it shows that the interannual variability of the SCS SST is influenced by the moderate and strong ENSO events with a lag of 5-6 months. Moreover, the analysis of the high-resolution reconstructed dataset reveals some oceanic features that could not be captured in the previous EOF analyses.

  12. MoSST DAS: The First Working Geomagnetic Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Kuang, Weijia; Wei, Zigang; Tangborn, Andrew

    2011-01-01

    The Earth possesses an internal magnetic field (geomagnetic field) generated by convection in the outer core (geodynamo). Previous efforts have been focused along two distinct paths: (1) numerical geodynamo modeling to understand the origin of the geomagnetic field, and the mechanisms of geomagnetic secular variations (SV); and (2) geomagnetic field modeling to map the spatial/temporal variations of the field from geomagnetic data, and to derive core properties, e.g. inversion of core flow near the core-mantle boundary (CMB). Geomagnetic data assimilation is a new approach emerged over the past 5 years: surface observations are assimilated with geodynamo models for better understanding of the core dynamical state, and accurately prediction of SV. In collaboration with several geomagnetic research groups, we have developed the first working geomagnetic data assimilation system, Modular, Scalable, Self-consistent, and Three-dimensional (MoSST) DAS, that includes the MoSST numerical dynamo model; 7000 years of geomagnetic field maps from several field models utilizing satellite and ground observatory data, historical magnetic records and archeo/paleo magnetic data; and an ensemble based optimal interpolation (01) assimilation algorithm. With this system, we have demonstrated clearly that the assimilated core dynamical state is substantially different from those of pure geodynamo simulations. Ensemble assimilation runs also show the convergence of the assimilated solutions inside the core, suggesting that the simulation state is pulled closer to the truth via data assimilation. The forecasts from this system are also very accurate: the 5-year forecast of the geomagnetic field agrees very well with the observations; and the 5-year secular variation forecast is more accurate than the IGRF SV forecast models in the past. Using geomagnetic records up to 2009, we have made an SV forecast for the period from 2010-2015, and is a candidate SV model for IGRF-11.

  13. Contributions of Asian pollution and SST forcings on precipitation change in the North Pacific

    NASA Astrophysics Data System (ADS)

    Yeh, Sang-Wook; So, Jihyeon; Lee, Jong-Won; Kim, Minjoong J.; Jeong, Jaein I.; Park, Rokjin J.

    2017-08-01

    East Asia has a significant concentration of pollutant aerosols, mostly due to rapid industrialization. Previous research indicates that the aerosol effect from Asian pollution outflow could account for the trend of increasing deep convective clouds, as well as an intensification of the storm track, over the North Pacific Ocean in winter since the mid-1990s. However, it is not clear whether such change is solely due to Asian pollutant forcings or not. To understand the relative roles of Asian pollutant aerosols and sea surface temperature (SST) forcings on the precipitation change in the North Pacific, we examine the interannual variation of particulate matter 2.5 (PM2.5) simulated in the global chemical transport model (GEOS-Chem) and the idealized experiments using the Community Atmosphere Model version 5 (CAM5) for 1986-2010. The composite analysis indicates that the changes in precipitation amount and storm track intensity in the southwestern North Pacific might be associated with the increase in PM2.5 concentration in East China. However, El Niño-like warming during the years of high PM2.5 concentration may also influence the precipitation amount, as well as the storm track intensity in the central and eastern North Pacific. Model experiments also indicate that the El Niño-like warming and the Asian pollutant aerosols have different effects on precipitation amounts in the North Pacific. Therefore, the precipitation changes, as well as the intensification of the storm track, in the North Pacific might be attributed to both Asian pollutant aerosols and SST forcing in the tropics.

  14. Experience with helium leak and thermal shocks test of SST-1 cryo components

    NASA Astrophysics Data System (ADS)

    Sharma, Rajiv; Nimavat, Hiren; Srikanth, G. L. N.; Bairagi, Nitin; Shah, Pankil; Tanna, V. L.; Pradhan, S.

    2012-11-01

    A steady state superconducting Tokamak SST-1 is presently under its assembly stage at the Institute for Plasma Research. The SST-1 machine is a family of Superconducting SC coils for both Toroidal field and Poloidal Field. An ultra high vacuum compatible vacuum vessel, placed in the bore of the TF coils, houses the plasma facing components. A high vacuum cryostat encloses all the SC coils and the vacuum vessel. Liquid Nitrogen (LN2) cooled thermal shield between the vacuum vessel & SC coils as well as between cryostat and the SC coils. There are number of crucial cryogenic components as Electrical isolators, 80 K thermal shield, Cryogenic flexible hose etc., which have to be passed the performance validation tests as part of fulfillment of the stringent QA/QC before incorporated in the main assembly. The individual leak tests of components at RT as well as after thermal cycle from 300 K to 77 K ensure us to make final overall leak proof system. These components include, Large numbers of Electrical Isolators for Helium as well as LN2 services, Flexible Bellows and Hoses for Helium as well as LN2 services, Thermal shock tests of large numbers of 80 K Bubble shields In order to validate the helium leak tightness of these components, we have used the calibrated mass spectrometer leak detector (MSLD) at 300 K, 77 K and 4.2. Since it is very difficult to locate the leaks, which are appearing at rather lower temperatures e.g. less than 20 K, We have invented different approaches to resolve the issue of such leaks. This paper, in general describes the design of cryogenic flexible hose, assembly, couplings for leak testing, test method and techniques of thermal cycles test at 77 K inflow conditions and leak testing aspects of different cryogenic components. The test results, the problems encountered and its solutions techniques are discussed.

  15. Benchmarking, Research, Development, and Support for ORNL Automated Image and Signature Retrieval (AIR/ASR) Technologies

    SciTech Connect

    Tobin, K.W.

    2004-06-01

    This report describes the results of a Cooperative Research and Development Agreement (CRADA) with Applied Materials, Inc. (AMAT) of Santa Clara, California. This project encompassed the continued development and integration of the ORNL Automated Image Retrieval (AIR) technology, and an extension of the technology denoted Automated Signature Retrieval (ASR), and other related technologies with the Defect Source Identification (DSI) software system that was under development by AMAT at the time this work was performed. In the semiconductor manufacturing environment, defect imagery is used to diagnose problems in the manufacturing line, train yield management engineers, and examine historical data for trends. Image management in semiconductor data systems is a growing cause of concern in the industry as fabricators are now collecting up to 20,000 images each week. In response to this concern, researchers at the Oak Ridge National Laboratory (ORNL) developed a semiconductor-specific content-based image retrieval method and system, also known as AIR. The system uses an image-based query-by-example method to locate and retrieve similar imagery from a database of digital imagery using visual image characteristics. The query method is based on a unique architecture that takes advantage of the statistical, morphological, and structural characteristics of image data, generated by inspection equipment in industrial applications. The system improves the manufacturing process by allowing rapid access to historical records of similar events so that errant process equipment can be isolated and corrective actions can be quickly taken to improve yield. The combined ORNL and AMAT technology is referred to hereafter as DSI-AIR and DSI-ASR.

  16. Tobacco Research in the Military: Reflections on 20 Years of Research in the United States Air Force.

    PubMed

    Talcott, G Wayne; Ebbert, Jon O; Klesges, Robert C; Linde, Brittany D; Seals, Robert W; Krukowski, Rebecca A; Grieser, Emily A; Oh, John Y; Martin-Zona, Denise M

    2015-08-01

    The U.S. military is one of the world's largest employers. Approximately 30% of active duty military personnel smoke cigarettes and more than 14% use smokeless tobacco. The military has historically supported tobacco use and more recently is attempting to combat its use. Through 20 years of collaborative research with the United States Air Force, we have learned that smoking bans are effective, recruits who have never previously smoked cigarettes initiate tobacco use, smokeless tobacco serves as a gateway for smoking initiation, smoking is associated with discharge, smoking adds significant proximal training costs, tobacco use increases during deployment, and tobacco quitline counseling with a provision of medication is effective. Our findings may provide groundwork for future tobacco control efforts in the U.S. military. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.

  17. Radiological air monitoring and sample analysis research and development progress report. Calendar year, 1992

    SciTech Connect

    Not Available

    1992-12-31

    Sponsored by a Department Of Energy (DOE) research and development grant, the State of Idaho INEL Oversight Program (OP) personnel designed an independent air monitoring system that provides detection of the presence of priority airborne contaminants potentially migrating beyond INEL boundaries. Initial locations for off-site ambient air monitoring stations were chosen in consultation with: DOE and NOAA reports; Mesodif modeling; review of the relevant literature; and communication with private contractors and experts in pertinent fields. Idaho State University (ISU) has initiated an Environmental Monitoring Program (EMP). The EMP provides an independent monitoring function as well as a training ground for students. Students learn research techniques dedicated to environmental studies and learn analytical skills and rules of compliance related to monitoring. ISU-EMP assisted OP in specific aspects of identifying optimum permanent monitoring station locations, and in selecting appropriate sample collection equipment for each station. The authorization to establish, prepare and install sampling devices on selected sites was obtained by OP personnel in conjunction with ISU-EMP personnel. All samples described in this program are collected by OP or ISU-EMP personnel and returned to the ISU for analysis. This report represents the summary of results of those samples collected and analyzed for radioactivity during the year of 1992.

  18. Air-bearing-based satellite attitude dynamics simulator for control software research and development

    NASA Astrophysics Data System (ADS)

    Agrawal, Brij N.; Rasmussen, Richard E.

    2001-08-01

    A Satellite Attitude Dynamics Simulator (SADS) has been developed to facilitate the research and development of spacecraft flight attitude control software at the Naval Postgraduate School in Monterey, CA. The simulator provides a real-time 3 degree of freedom (3DOF) synthetic spacecraft hardware-in-the-loop environment, that includes realistic angular motions, sensor-effector delays, and control torque profiles. Control software, entered into a notebook PC mounted on the equipment platform, is input as high level object oriented code, allowing rapid code development and thorough post-test analysis. Three flight-like reaction wheels and eight cold-gas thrusters that are mounted to the SADS equipment platform provide motion simulation torque. The equipment platform is suspended in air by a spherical segment air bearing. This virtually frictionless suspension allows free rotation of the equipment platform about any rotation axis. Three separate sets of sensors, three single-axis rate gyros, a three-axis magnetometer, and a two-axis sun sensor monitor SADS platform motion. This paper discusses the SADS design, and the practical uses of this simulator for satellite attitude control system software research and development.

  19. Visual Steering and Verification of Mass Spectrometry Data Factorization in Air Quality Research.

    PubMed

    Engel, D; Greff, K; Garth, C; Bein, K; Wexler, A; Hamann, B; Hagen, H

    2012-12-01

    The study of aerosol composition for air quality research involves the analysis of high-dimensional single particle mass spectrometry data. We describe, apply, and evaluate a novel interactive visual framework for dimensionality reduction of such data. Our framework is based on non-negative matrix factorization with specifically defined regularization terms that aid in resolving mass spectrum ambiguity. Thereby, visualization assumes a key role in providing insight into and allowing to actively control a heretofore elusive data processing step, and thus enabling rapid analysis meaningful to domain scientists. In extending existing black box schemes, we explore design choices for visualizing, interacting with, and steering the factorization process to produce physically meaningful results. A domain-expert evaluation of our system performed by the air quality research experts involved in this effort has shown that our method and prototype admits the finding of unambiguous and physically correct lower-dimensional basis transformations of mass spectrometry data at significantly increased speed and a higher degree of ease.

  20. OVERVIEW OF HANFORD SINGLE SHELL TANK (SST) STRUCTURAL INTEGRITY - 12123

    SciTech Connect

    RAST RS; RINKER MW; WASHENFELDER DJ; JOHNSON JB

    2012-01-25

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration. Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford SSTs. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford SSTs is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS{reg_sign} The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford SSTs has concluded that the tanks are structurally sound and meet current industry standards. Analyses of the remaining Hanford SSTs are scheduled for FY2013. Hanford SSTs are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of the concrete tank domes, looking for cracks and

  1. Diagnosing southeast tropical Atlantic SST and ocean circulation biases in the CMIP5 ensemble

    NASA Astrophysics Data System (ADS)

    Xu, Zhao; Chang, Ping; Richter, Ingo; Kim, Who; Tang, Guanglin

    2014-12-01

    Warm sea-surface temperature (SST) biases in the southeastern tropical Atlantic (SETA), which is defined by a region from 5°E to the west coast of southern Africa and from 10°S to 30°S, are a common problem in many current and previous generation climate models. The Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble provides a useful framework to tackle the complex issues concerning causes of the SST bias. In this study, we tested a number of previously proposed mechanisms responsible for the SETA SST bias and found the following results. First, the multi-model ensemble mean shows a positive shortwave radiation bias of ~20 W m-2, consistent with models' deficiency in simulating low-level clouds. This shortwave radiation error, however, is overwhelmed by larger errors in the simulated surface turbulent heat and longwave radiation fluxes, resulting in excessive heat loss from the ocean. The result holds for atmosphere-only model simulations from the same multi-model ensemble, where the effect of SST biases on surface heat fluxes is removed, and is not sensitive to whether the analysis region is chosen to coincide with the maximum warm SST bias along the coast or with the main SETA stratocumulus deck away from the coast. This combined with the fact that there is no statistically significant relationship between simulated SST biases and surface heat flux biases among CMIP5 models suggests that the shortwave radiation bias caused by poorly simulated low-level clouds is not the leading cause of the warm SST bias. Second, the majority of CMIP5 models underestimate upwelling strength along the Benguela coast, which is linked to the unrealistically weak alongshore wind stress simulated by the models. However, a correlation analysis between the model simulated vertical velocities and SST biases does not reveal a statistically significant relationship between the two, suggesting that the deficient coastal upwelling in the models is not simply related to the

  2. Data Fusion of SST from HY-2A Satellite Radiometer in China Sea and its Adjacent Waters

    NASA Astrophysics Data System (ADS)

    Li, Xiaohui; Yang, Jingsong; Zheng, Gang; Han, Guoqi; Ren, Lin; Wang, Juan

    2016-08-01

    This paper focuses on using data fusion method to solve the problem that the global sea is not seamlessly covered by the along-track sea surface temperature (SST) data of scanning microwave radiometer on board Haiyang-2A (HY-2A), which is the first ocean dynamic environment satellite of China launched on 16th August 2011. The procedure includes following steps. Firstly, the HY-2A SST data within 200 km of the coastline were identified and removed, the outliers of the HY-2A SST data and the background SST data were also identified and removed. Secondly, the HY-2A SST data were gridded, filtered and corrected. The background SST data were only filtered. Finally, the HY-2A SST data were merged into background SST data by the inverse distance weighted method. Next, the above procedure was tested in the ocean area on the southeast of China. The global 1-km sea surface temperature (G1SST) data were used as the reference data. The results of the procedure with and without the second step were made comparisons, and the results implied that the application of median filter and third-order polynomial curve fitting in the second step could help to improve performance of the merged SST data. The along-track SST data of HY-2A can be merged into OSTIA SST data successfully by the above procedure, and the gaps between tracks were filled up.

  3. Pheromonal regulation and sequence of the Saccharomyces cerevisiae SST2 gene: a model for desensitization to pheromone.

    PubMed Central

    Dietzel, C; Kurjan, J

    1987-01-01

    Strains of both haploid mating types containing sst2 mutations are altered in response to pheromone; MATa sst2 cells are supersensitive to alpha-factor, and MAT alpha sst2 cells are supersensitive to a-factor. This phenotype suggests that SST2 encodes a component of the pheromone response pathway that is common to both mating types. We have cloned the SST2 gene by isolation of multicopy plasmids that complement the sst2-1 mutation. One such plasmid contained a 4.5-kilobase HindIII fragment that was able to complement the sst2-1 mutation in high or low copy number, integrated at the SST2 locus, and resulted in an sst2 phenotype when disrupted, indicating that this fragment contained the SST2 gene. We identified the functional region of the complementing DNA fragment by transposon mutagenesis. Sequencing of this fragment identified an open reading frame encoding 698 amino acids at a position that correlated well with the functional region. Expression of an Sst2-beta-galactosidase fusion was haploid specific and induced by exposure to pheromone. We discuss a model in which induction of the SST2 product results in inhibition of a component of the pheromone response pathway, resulting in desensitization to pheromone. PMID:2830483

  4. Estimation of SST extremes in the Arabian Sea and their link to the cyclogenesis

    NASA Astrophysics Data System (ADS)

    Zahid, Maida; Gilleland, Eric; Lucarini, Valerio

    2017-04-01

    Understanding the behavior of sea surface temperature (SST) extremes in the ocean is important for many aspects of the marine climate system. Even the changes of a few degrees in SST can influence large-scale weather phenomena, such as tropical cyclones or El Nino. The robust warming over Arabian Sea is evident in the recent decades, hence increasing the risk of frequent cyclonic activity in the pre-monsoon (May-June) and post-monsoon (Oct-Dec) periods. Here, we use SST data of the Hadley Center UK Met office, and the annual frequency of the tropical depressions, cyclonic storms, and severe cyclonic storms of the Indian Meteorological Department from 1871 to 2015. Firstly, we have investigated the SST extremes in the Arabian Sea during pre and post monsoon by applying block maxima method, in the stationary and non-stationary climate. The results show that the return levels of SST extremes in the pre-monsoon are slightly higher than the post-monsoon for shorter (2, 5, 10, 20) and longer return periods (50, 100, 200). Secondly, we use Poisson regression model to do the probabilistic prediction of tropical depressions, cyclonic storms and severe cyclonic storms using SST as a predictor. We have observed that the SST and cyclogenesis are positively correlated, and the probability of the severe cyclonic storm is higher during the pre-monsoon period in the Arabian Sea.

  5. The responses of the Hadley circulation to different meridional SST structures in the seasonal cycle

    NASA Astrophysics Data System (ADS)

    Feng, Juan; Li, Jianping; Jin, Feifei; Zhao, Sen; Xie, Fei

    2017-08-01

    The meridional structure of sea surface temperature (SST) plays an important role in determining the variations of the Hadley circulation (HC). The quantitative differences in the HC caused by the changing meridional structures of SST over seasonal cycles remain unclear. To determine the quantitative response of the HC to the meridional structure of SST during the seasonal cycle, this study decomposes the variations of the SST and HC into two components: equatorially asymmetric components (i.e., SEA for SST and HEA for HC) and equatorially symmetric components (i.e., SES for SST and HES for HC). Variations in HEA (HES) are closely associated with those in SEA (SES). In this study, five atmospheric reanalyses and two SST reanalyses are analyzed, focusing on the period of 1979-2013. The response amplitude of HEA to SEA is about four times than that of HES to SES in most of the reanalyses. This result provides a possible explanation for the dominance of the equatorially asymmetric mode over the variability of the HC during the seasonal march.

  6. AirSTAR Hardware and Software Design for Beyond Visual Range Flight Research

    NASA Technical Reports Server (NTRS)

    Laughter, Sean; Cox, David

    2016-01-01

    The National Aeronautics and Space Administration (NASA) Airborne Subscale Transport Aircraft Research (AirSTAR) Unmanned Aerial System (UAS) is a facility developed to study the flight dynamics of vehicles in emergency conditions, in support of aviation safety research. The system was upgraded to have its operational range significantly expanded, going beyond the line of sight of a ground-based pilot. A redesign of the airborne flight hardware was undertaken, as well as significant changes to the software base, in order to provide appropriate autonomous behavior in response to a number of potential failures and hazards. Ground hardware and system monitors were also upgraded to include redundant communication links, including ADS-B based position displays and an independent flight termination system. The design included both custom and commercially available avionics, combined to allow flexibility in flight experiment design while still benefiting from tested configurations in reversionary flight modes. A similar hierarchy was employed in the software architecture, to allow research codes to be tested, with a fallback to more thoroughly validated flight controls. As a remotely piloted facility, ground systems were also developed to ensure the flight modes and system state were communicated to ground operations personnel in real-time. Presented in this paper is a general overview of the concept of operations for beyond visual range flight, and a detailed review of the airborne hardware and software design. This discussion is held in the context of the safety and procedural requirements that drove many of the design decisions for the AirSTAR UAS Beyond Visual Range capability.

  7. Projecting future air pollution-related mortality under a changing climate: progress, uncertainties and research needs.

    PubMed

    Madaniyazi, Lina; Guo, Yuming; Yu, Weiwei; Tong, Shilu

    2015-02-01

    Climate change may affect mortality associated with air pollutants, especially for fine particulate matter (PM2.5) and ozone (O3). Projection studies of such kind involve complicated modelling approaches with uncertainties. We conducted a systematic review of researches and methods for projecting future PM2.5-/O3-related mortality to identify the uncertainties and optimal approaches for handling uncertainty. A literature search was conducted in October 2013, using the electronic databases: PubMed, Scopus, ScienceDirect, ProQuest, and Web of Science. The search was limited to peer-reviewed journal articles published in English from January 1980 to September 2013. Fifteen studies fulfilled the inclusion criteria. Most studies reported that an increase of climate change-induced PM2.5 and O3 may result in an increase in mortality. However, little research has been conducted in developing countries with high emissions and dense populations. Additionally, health effects induced by PM2.5 may dominate compared to those caused by O3, but projection studies of PM2.5-related mortality are fewer than those of O3-related mortality. There is a considerable variation in approaches of scenario-based projection researches, which makes it difficult to compare results. Multiple scenarios, models and downscaling methods have been used to reduce uncertainties. However, few studies have discussed what the main source of uncertainties is and which uncertainty could be most effectively reduced. Projecting air pollution-related mortality requires a systematic consideration of assumptions and uncertainties, which will significantly aid policymakers in efforts to manage potential impacts of PM2.5 and O3 on mortality in the context of climate change. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  8. Free Air CO2 Enrichment (FACE) Research Data from the Nevada Desert FACE Facility (NDFF)

    DOE Data Explorer

    DOE has conducted trace gas enrichment experiments since the mid 1990s. The FACE Data Management System is a central repository and archive for Free-Air Carbon Dioxide Enrichment (FACE) data, as well as for the related open-top chamber (OTC) experiments. FACE Data Management System is located at the Carbon Dioxide Information Analysis Center (CDIAC). While the data from the various FACE sites, each one a unique user facility, are centralized at CDIAC, each of the FACE sites presents its own view of its activities and information. For that reason, DOE Data Explorer users are advised to see both the central repository at http://public.ornl.gov/face/index.shtml and the individual home pages of each site. NDFF whole-ecosystem manipulation is a flagship experiment of the Terrestrial Carbon Process (TCP) research program of the US Dept. of Energy. It is also a core project of the International Geosphere-Biosphere Program (IGBP) and a contribution to the US Global Change Research Program. The NDFF was developed in conjunction with the National Science Foundation (NSF) and DOE-EPSCoR programs. FACE (Free-Air-Carbon dioxide-Enrichment) technology allows researchers to elevate the carbon dioxide level in large study plots while minimizing ecosystem disturbance. At the NDFF the concentration of CO2 was elevated by 50 percent above the present atmospheric levels in three plots in the Mojave Desert ecosystem, while six other plots remained at the current level. This experimental design provided a large area in which integrated teams of scientists could describe and quantify processes regulating carbon, nutrient, and water balances in desert ecosystems.

  9. The Symposium Proceedings of the 1998 Air Transport Research Group (ATRG). Volume 2

    NASA Technical Reports Server (NTRS)

    Reynolds-Feighan, Aisling (Editor); Bowen, Brent D. (Editor)

    1998-01-01

    The Air Transport Research Group of the World Conference on Transportation Research (WCTR) Society was formally launched as a special interest group at the 7th Triennial WCTR in Sydney, Australia in 1995. Since then, our membership base has expanded rapidly, and now includes over 400 active transportation researchers, policy-makers, industry executives, major corporations and research institutes from 28 countries. It became a tradition that the ATRG would hold an international conference at least once a year. In 1998, the ATRG organized a consecutive stream of 14 aviation sessions at the 8th Triennial WCTR Conference (July 12-17: Antwerp). Again, on 19-21 July, 1998, the ATRG Symposium was organized and executed very successfully by Dr. Aisling Reynolds-Feighan of the University College of Dublin. The Aviation Institute at the University of Nebraska at Omaha has published the Proceedings of the 1998 ATRG Dublin Symposium (being co-edited by Dr. Aisling Reynolds-Feighan and Professor Brent Bowen), and the Proceedings of the 1998 WCTR-ATRG Conference (being co-edited by Professors Tae H. Oum and Brent Bowen).

  10. Instrumentation and control system architecture of ECRH SST1

    NASA Astrophysics Data System (ADS)

    Patel, Harshida; Patel, Jatin; purohit, Dharmesh; Shukla, B. K.; Babu, Rajan; Mistry, Hardik

    2017-07-01

    The Electron Cyclotron Resonance Heating (ECRH) system is an important heating system for the reliable start-up of tokamak. The 42GHz and 82.6GHz Gyrotron based ECRH systems are used in tokomaks SST-1 and Aditya to carry out ECRH related experiments. The Gyrotrons are high power microwave tubes used as a source for ECRH systems. The Gyrotrons need to be handled with optimum care right from the installation to its Full parameter control operation. The Gyrotrons are associated with the subsystems like: High voltage power supplies (Beam voltage and anode voltage), dedicated crowbar system, magnet, filament and ion pump power supplies and cooling system. The other subsystems are transmission line, launcher and dummy load. A dedicated VME based data acquisition & control (DAC) system is developed to operate and control the Gyrotron and its associated sub system. For the safe operation of Gyrotron, two level interlocks with fail-safe logic are developed. Slow signals that are operated in scale of millisecond range are programmed through software and hardware interlock in scale of microsecond range are designed and developed indigenously. Water-cooling and the associated interlock are monitored and control by data logger with independent human machine interface.

  11. Ion cyclotron resonance heating in SST-1 tokamak

    SciTech Connect

    Bora, D.; Mukherjee, A.; Singh, J. P.; Gangopadhyay, S.; Kumar, Sunil; Singh RF Group, Raj

    1999-09-20

    Multimegawatt ion cyclotron resonance heating (ICRH) system is being developed for the steady state superconducting takamak SST-1 (1), which would form an important heating scheme during non-inductive steady state operation. 1.5 MW of RF power at different frequencies between 22-92 MHz is to be delivered to the plasma for pulse lengths of upto 1000 s. Water cooled antenna, interface and 9 inch Tx-line will ensure safe operation for long pulse operation. Three stages of matching would ensure maximum power coupling to the plasma. Power would be coupled to the plasma through two sets of antennae consisting of two strips in antenna box positioned 180 degree opposite to each other with capability of handling 0.8 MW/m{sup 2} heat load. Electromagnetic stress analysis of the antenna assembly shows that maximum 1.37 kNm torque would be exerted during plasma disruption operating at 3.0 T, 220 kA plasma current. Impurity generation by ICRH antennae is not so severe.

  12. Design of multipulse Thomson scattering diagnostic for SST-1 tokamak.

    PubMed

    Kumar, Ajai; Chavda, Chhaya; Saxena, Y C; Singh, Ranjeet; Thakar, Aruna; Thomas, Jinto; Patel, Kiran; Pandya, Kaushal; Bedakihale, Vijay

    2007-04-01

    A multipulse Nd:YAG (Yttrium aluminum garnet) Thomson scattering (TS) system is designed and developed for measuring electron temperature (T(e)) and density (n(e)) profiles of SST-1 tokamak. The system operates at vertical, divertor, and horizontal (midplane) regions of plasma and measures the electron temperature of 20 eV to 1.5 keV and density of 10(18)-10(19) m(-3). Six Nd:YAG lasers synchronized with external control is used to get three different temporal resolutions (30 Hz, 180 Hz, and 1 kHz). The entire system is laboratory tested for the stability of alignment and performance over a distance of 30 m. Different imaging lens assemblies are designed to image the scattered photons from each of the scattering region to an array of optical fibers. A low cost and compact five-channel interference filter polychromator is designed, fabricated, and tested for its image quality and the filter transmission characteristics. Detection system with an avalanche photodiode and required signal conditioning electronics is developed for detecting the scattered photons. A data acquisition and control module operating on PXI bus is developed for the real time data acquisition and system control. A detailed description of design and testing of TS subsystems is presented in this article.

  13. Validation and reliability of a Spanish version of Simple Shoulder Test (SST-Sp).

    PubMed

    Membrilla-Mesa, M D; Tejero-Fernández, V; Cuesta-Vargas, A I; Arroyo-Morales, M

    2015-02-01

    The Simple Shoulder Test (SST-Sp) is a widely used outcome measure. The purpose of this study was to develop and validate a Spanish-version SST (SST-Sp). A two-stage observational study was conducted. The SST was initially cross-culturally adapted to Spanish through double forward and backward translation and then validated for its psychometric characteristics. Participants (n = 66) with several shoulder disorders completed the SST-Sp, DASH, VAS and SF-12. The full sample was employed to determine factor structure, internal consistency and concurrent criterion validity. Reliability was determined in the first 24-48 h in a subsample of 21 patients. The SST-Sp showed three factors that explained the 56.1% of variance, and the internal consistency for each factor was α = 0.738, 0.723 and 0.667, and reliability was ICC = 0.687-0.944. The factor structure was three-dimensional and supported construct validity. Criterion validity determined from the relationship between the SST-Sp and DASH was strong (r = -0.73; p < 0.001) and fair for VAS (r = -0.537; p < 0.001). Relationships between SST-Sp and SF-12 were weak for both physical (r = -0.47; p < 0.001) and mental (r = -0.43; p < 0.001) dimensions. The SST-Sp supports the findings of the original English version as being a valid shoulder outcome measure with similar psychometric properties to the original English version.

  14. Near real time SST retrievals from Himawari-8 at NOAA using ACSPO system

    NASA Astrophysics Data System (ADS)

    Kramar, M.; Ignatov, A.; Petrenko, B.; Kihai, Y.; Dash, P.

    2016-05-01

    Japanese Himawari-8 (H8) satellite was launched on October 7, 2014 and placed into a geostationary orbit at ~ 140.7°E. The Advanced Himawari Imager (AHI) onboard H8 provides full-disk (FD) observations every 10 minutes, in 16 solar reflectance and thermal infrared (IR) bands, with spatial resolution at nadir of 0.5-1 km and 2 km, respectively. The NOAA Advanced Clear-Sky Processor for Ocean (ACSPO) SST system, previously used with several polar-orbiting sensors, was adapted to process the AHI data. The AHI SST product is routinely validated against quality controlled in situ SSTs available from the NOAA in situ SST Quality monitor (iQuam). The product performance is monitored in the NOAA SST Quality Monitor (SQUAM) system. Typical validation statistics show a bias within +/-0.2 K and standard deviation of 0.4-0.6 K. The ACSPO H8 SST is also compared with the NOAA heritage SST produced at OSPO from the Multifunctional Transport Satellite (MTSAT-2; renamed Himawari-7, or H7 after launch) and with another H8 SST produced by JAXA (Japan Aerospace Exploration Agency). This paper describes the ACSPO AHI SST processing and results of validation and comparisons. Work is underway to generate a reduced volume ACSPO AHI SST product L2C (collated in time; e.g., 1-hr instead of current 10-min) and/or L3C (additionally gridded in space). ACSPO AHI processing chain will be applied to the data of the Advanced Baseline Imager (ABI), which will be flown onboard the next generation US geostationary satellite, GOES-R, scheduled for launch in October 2016.

  15. Regime shift of the South China Sea SST in the late 1990s

    NASA Astrophysics Data System (ADS)

    Thompson, Bijoy; Tkalich, Pavel; Malanotte-Rizzoli, Paola

    2017-03-01

    Decadal variability of the South China Sea (SCS) sea surface temperature (SST) during 1982-2014 is investigated using observations and ocean reanalysis datasets. The SCS SST shows an abrupt transition from a cold-to-warm regime in the late 1990s. Based on the long-term SST variability two epochs are defined, 1982-1996 and 2000-2014 as cold and warm regimes respectively, spanning on either side of the 1997-1999 SCS warming. Despite the occurrence of strong El Nino induced warming events, the SST anomalies tend to be negative in the cold regime. Conversely during the warm regime, the positive SST anomalies have dominated over the La Nina driven cooling events. The cold (warm) SST regime is marked by net heat gain (loss) by the SCS. The long-term variations of net surface heat flux are mainly driven by the latent heat flux anomalies while the short wave flux plays a secondary role. Low-frequency variability of the South China Sea throughflow (SCSTF) appears to be closely related to the SCS SST regime shift. The SCSTF shows reversing trends during the cold and warm epochs. The weakened SCSTF in the warm regime has promoted the SCS warming by limiting the outward flow of warm water from the SCS. Meanwhile, enhanced SCSTF during the cold regime acts as a cooling mechanism and lead to persistent negative SST anomalies. The change in trend of the SCSTF and SST regime shift coincides with the switching of pacific decadal oscillation from a warm to cold phase in the late 1990s.

  16. Investigating Indoor Air Quality Using a Community-based Participatory Research Model

    NASA Astrophysics Data System (ADS)

    Collier, A. M.; Ware, G. E.; Iwasaki, P. G.; Main, D.; Billingsley, L. R.; Pandya, R.; Hannigan, M.

    2015-12-01

    Our project seeks to expand scientific knowledge of air pollutant screening methods while also gathering data a community group can use to improve local health outcomes. Working with Taking Neighborhood Health to Heart (TNH2H), a Denver-based neighborhood group with significant experience doing community-based participatory research (CBPR) related to improving individual and community health, we designed a project to help residents test their homes for two contaminants of interest: radon and perchloroethylene. Radon is naturally occurring and commonly found across Colorado. Perchloroethylene contamination has been discovered in other parts of Denver and residents of Northeast Denver would like to learn more about its possible presence in their neighborhood. Additionally while radon is simple to test for, the same cannot be said for perchloroethylene. This project provides an opportunity to pilot a low-cost sampling method for perchloroethylene, apply TNH2H's CBPR model to an environmental health issue, adapt it for the geosciences, and engage the community in education around air quality issues. Data collected during the project will be shared with participating homes and the larger community. Community members will also participate in understanding and interpreting the data, and together community members and scientists will plan possible next steps, which may involve conducting further research, taking community action, or recommending changes in policy and practice. Beyond the local impacts, we are testing an air quality sampling method that could make sampling more accessible to a broader range of communities. We are also learning more about how communities and scientists can best work together and what additional resources can help facilitate and ensure successful implementation of these types of projects. Our partner, the Thriving Earth Exchange, will use what we learn to facilitate scientist-community partnerships like this in other communities around the

  17. NASA Langley's Formal Methods Research in Support of the Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Munoz, Cesar A.

    2008-01-01

    This talk will provide a brief introduction to the formal methods developed at NASA Langley and the National Institute for Aerospace (NIA) for air traffic management applications. NASA Langley's formal methods research supports the Interagency Joint Planning and Development Office (JPDO) effort to define and develop the 2025 Next Generation Air Transportation System (NGATS). The JPDO was created by the passage of the Vision 100 Century of Aviation Reauthorization Act in Dec 2003. The NGATS vision calls for a major transformation of the nation s air transportation system that will enable growth to 3 times the traffic of the current system. The transformation will require an unprecedented level of safety-critical automation used in complex procedural operations based on 4-dimensional (4D) trajectories that enable dynamic reconfiguration of airspace scalable to geographic and temporal demand. The goal of our formal methods research is to provide verification methods that can be used to insure the safety of the NGATS system. Our work has focused on the safety assessment of concepts of operation and fundamental algorithms for conflict detection and resolution (CD&R) and self- spacing in the terminal area. Formal analysis of a concept of operations is a novel area of application of formal methods. Here one must establish that a system concept involving aircraft, pilots, and ground resources is safe. The formal analysis of algorithms is a more traditional endeavor. However, the formal analysis of ATM algorithms involves reasoning about the interaction of algorithmic logic and aircraft trajectories defined over an airspace. These trajectories are described using 2D and 3D vectors and are often constrained by trigonometric relations. Thus, in many cases it has been necessary to unload the full power of an advanced theorem prover. The verification challenge is to establish that the safety-critical algorithms produce valid solutions that are guaranteed to maintain separation

  18. Sikorsky UH-60 (USA 82-23748 NASA-748) Air-loads research aircraft - Blackhawk helicopter with

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Sikorsky UH-60 (USA 82-23748 NASA-748) Air-loads research aircraft - Blackhawk helicopter with MUX-Bucket in flight Note: Used in publication in Flight Research at Ames; 57 Years of Development and Validation of Aeronautical Technology NASA SP-1998-3300 fig. 135

  19. The Detroit Exposure and Aerosol Research Study (DEARS) - Article in National Ambient Air Quality Status and Trends through 2007

    EPA Science Inventory

    A research study that the U.S. Environmental Protection Agency conducted in Detroit, Michigan, named the Detroit Exposure and Aerosol Research Study (DEARS), will help develop data that improves our understanding of human exposure to various air pollutants in our environment.

  20. AFHRL/FT [Air Force Human Resources Laboratory/Flight Training] Capabilities in Undergraduate Pilot Training Simulation Research: Executive Summary.

    ERIC Educational Resources Information Center

    Matheny, W. G.; And Others

    The document presents a summary description of the Air Force Human Resource Laboratory's Flying Training Division (AFHRL/FT) research capabilities for undergraduate pilot training. One of the research devices investigated is the Advanced Simulator for Undergraduate Pilot Training (ASUPT). The equipment includes the ASUPT, the instrumented T-37…

  1. The effect of advanced technology on the second-generation SST

    NASA Technical Reports Server (NTRS)

    Coen, P. G.

    1986-01-01

    Technological developments that promise to substantially increase the efficiency of next-generation subsonic commercial aircraft, together with additional developments in supersonic aircraft aerodynamics, structures and propulsion systems, are presently evaluated in order to project the extent of performance and economic improvement obtainable for a future SST by comparison to the Concorde SST. It is demonstrated that the second-generation SST projected will double passenger-carrying capacity from 100 for the Concorde to 200, despite reducing takeoff gross weight from 400,000 to 321,000 lbs and extending range by some 2000 nm.

  2. SAMPLE AOR CALCULATION USING ANSYS SLICE PARAMETRIC MODEL FOR TANK SST-SX

    SciTech Connect

    JULYK, L.J.; MACKEY, T.C.

    2003-06-19

    This document documents the ANSYS slice parametric model for single-shell tank SX and provides sample calculation for analysis-of-record mechanical load conditions. The purpose of this calculation is to develop a parametric model for the single shell tank (SST) SX, and provide a sample analysis of the SST-SX tank based on analysis of record (AOR) loads. The SST-SX model is based on buyer-supplied as-built drawings and information for the AOR for SSTs, encompassing the existing tank load conditions, and evaluates stresses and deformations throughout the tank and surrounding soil mass.

  3. SAMPLE AOR CALCULATION USING ANSYS FULL PARAMETRIC MODEL FOR TANK SST-SX

    SciTech Connect

    JULYK, L.J.; MACKEY, T.C.

    2003-06-19

    This document documents the ANSYS parametric 360-degree model for single-shell tank SX and provides sample calculation for analysis-of-record mechanical load conditions. The purpose of this calculation is to develop a parametric full model for the single shell tank (SST) SX to deal with asymmetry loading conditions and provide a sample analysis of the SST-SX tank based on analysis of record (AOR) loads. The SST-SX model is based on buyer-supplied as-built drawings and information for the AOR for SSTs, encompassing the existing tank load conditions, and evaluates stresses and deformations throughout the tank and surrounding soil mass.

  4. SAMPLE AOR CALCULATION USING ANSYS SLICE PARAMETRIC MODEL FOR TANK SST-BX

    SciTech Connect

    JULYK, L.J.; MACKEY, T.C.

    2003-06-19

    This document documents the ANSYS slice parametric model for single-shell tank BX and provides sample calculation for analysis-of-record mechanical load conditions. The purpose of this calculation is to develop a parametric model for the single shell tank (SST) BX, and provide a sample analysis of the SST-BX tank based on analysis of record (AOR) loads. The SST-BX model is based on buyer-supplied as-built drawings and information for the AOR for SSTs, encompassing the existing tank load conditions, and evaluates stresses and deformations throughout the tank and surrounding soil mass.

  5. SAMPLE AOR CALCULATION USING ANSYS AXISYMMETRIC PARAMETRIC MODEL FOR TANK SST-S

    SciTech Connect

    JULYK, L.J.; MACKEY, T.C.

    2003-06-19

    This document documents the ANSYS axisymmetric parametric model for single-shell tank S and provides sample calculation for analysis-of-record mechanical load conditions. The purpose of this calculation is to develop a parametric model for single shell tank (SST) S, and provide a sample analysis of SST-S tank based on analysis of record (AOR) loads. The SST-S model is based on buyer-supplied as-built drawings and information for the AOR for SSTs, encompassing the existing tank load conditions, and evaluates stresses and deformations throughout the tank and surrounding soil mass.

  6. SAMPLE AOR CALCULATION USING ANSYS AXISYMMETRIC PARAMETRIC MODEL FOR TANK SST-SX

    SciTech Connect

    JULYK, L.J.; MACKEY, T.C.

    2003-06-19

    This document documents the ANSYS axisymmetric parametric model for single-shell tank SX and provides sample calculation for analysis-of-record mechanical load conditions. The purpose of this calculation is to develop a parametric model for single shell tank (SST) SX, and provide a sample analysis of the SST-SX tank based on analysis of record (AOR) loads. The SST-SX model is based on buyer-supplied as-built drawings and information for the AOR for SSTs, encompassing the existing tank load conditions, and evaluates stresses and deformations throughout the tank and surrounding soil mass.

  7. SAMPLE AOR CALCULATION USING ANSYS SLICE PARAMETRIC MODEL FOR TANK SST-S

    SciTech Connect

    JULYK, L.J.; MACKEY, T.C.

    2003-06-19

    This document documents the ANSYS slice parametric model for single-shell tank S and provides sample calculation for analysis-of-record mechanical load conditions. The purpose of this calculation is to develop a parametric model for the single shell tank (SST) S, and provide a sample analysis of the SST-S tank based on analysis of record (AOR) loads. The SST-S model is based on buyer-supplied as-built drawings and information for the AOR for SSTs, encompassing the existing tank load conditions, and evaluates stresses and deformations throughout the tank and surrounding soil mass.

  8. SAMPLE AOR CALCULATION USING ANSYS SLICE PARAMETRIC MODEL FOR TANK SST-AX

    SciTech Connect

    JULYK, L.J.; MACKEY, T.C.

    2003-06-19

    This document documents the ANSYS slice parametric model for single-shell tank AX and provides sample calculation for analysis-of-record mechanical load conditions. The purpose of this calculation is to develop a parametric model for the single shell tank (SST) AX, and provide a sample analysis of the SST-AX tank based on analysis of record (AOR) loads. The SST-AX model is based on buyer-supplied as-built drawings and information for the AOR for SSTs, encompassing the existing tank load conditions, and evaluates stresses and deformations throughout the tank and surrounding soil mass.

  9. SAMPLE AOR CALCULATION USING ANSYS AXISYMMETRIC PARAMETRIC MODEL FOR TANK SST-AX

    SciTech Connect

    JULYK, L.J.; MACKEY, T.C.

    2003-06-19

    This document documents the ANSYS axisymmetric parametric model for single-shell tank AX and provides sample calculation for analysis-of-record mechanical load conditions. The purpose of this calculation is to develop a parametric model for single shell tank (SST) AX, and provide a sample analysis of SST-AX tank based on analysis of record (AOR) loads. The SST-AX model is based on buyer-supplied as-built drawings and information for the AOR for SSTs, encompassing the existing tank load conditions, and evaluates stresses and deformations throughout the tank and surrounding soil mass.

  10. SAMPLE AOR CALCULATION USING ANSYS AXISYMMETRIC PARAMETRIC MODEL FOR TANK SST-A

    SciTech Connect

    JULYK, L.J.; MACKEY, T.C.

    2003-06-19

    This document documents the ANSYS axisymmetric parametric model for single-shell tank A and provides sample calculation for analysis-of-record mechanical load conditions. The purpose of this calculation is to develop a parametric model for single shell tank (SST) A, and provide a sample analysis of SST-A tank based on analysis of record (AOR) loads. The SST-A model is based on buyer-supplied as-built drawings and information for the AOR for SSTs, encompassing the existing tank load conditions, and evaluates stresses and deformations throughout the tank and surrounding soil mass.

  11. The Conference Proceedings of the 1997 Air Transport Research Group (ATRG) of the WCTR Society. Volume 1

    NASA Technical Reports Server (NTRS)

    Own, Tae Hoon (Editor); Bowen, Brent D. (Editor)

    1997-01-01

    The Aviation Institute University of Nebraska at Omaha (UNO) Monograph series has published the Conference Proceedings of the 1997 Air Transport Research Group (ATRG) of the World Conference on Transportation Research Society (WCTR) volume 1, number 3. The topics included in this document are: 1) Industrial Reform and Air Transport Development in China; 2) The Economic Effects of Airline Deregulation and the Open-Sky Policy of Korea; 3) The Economic Effects of Airline Deregulation and the Open-Sky Policy of Korea; 4) "Open Skies" in India-Is the policy succeeding? 5) The Japanese Domestic Air Fares under the Regulatory Regime: What will be expected after the revision of current charging system? 6) The Competitive Position of Airline Networks; and 7) Air Transport and Regional Economic Development in the European Union.

  12. Sea surface temperature anomalies, planetary waves, and air-sea feedback in the middle latitudes

    NASA Technical Reports Server (NTRS)

    Frankignoul, C.

    1985-01-01

    Current analytical models for large-scale air-sea interactions in the middle latitudes are reviewed in terms of known sea-surface temperature (SST) anomalies. The scales and strength of different atmospheric forcing mechanisms are discussed, along with the damping and feedback processes controlling the evolution of the SST. Difficulties with effective SST modeling are described in terms of the techniques and results of case studies, numerical simulations of mixed-layer variability and statistical modeling. The relationship between SST and diabatic heating anomalies is considered and a linear model is developed for the response of the stationary atmosphere to the air-sea feedback. The results obtained with linear wave models are compared with the linear model results. Finally, sample data are presented from experiments with general circulation models into which specific SST anomaly data for the middle latitudes were introduced.

  13. Australian Air Breathing Propulsion Research for Hypersonic, Beamed Energy-Propelled Vehicles

    NASA Astrophysics Data System (ADS)

    Froning, David

    2010-05-01

    A three year laser-propelled vehicle analysis and design investigation has been begun in June, 2009 by Faculty and graduate students at the University of Adelaide under a Grant/Cooperative Agreement Award to the University of Adelaide by the Asian Office of Aerospace Research and Development (AOARD). The major objectives of thsis investigation are: (a) development of hypersonic, air breathing "lightcraft" with innovative air inlets that enable acceptable airflow capture and combustion, and acceptable cowl-lip heating rates during hot, high-speed, high angle-of-attack hypersonic flight; (b) yest of the most promising lightcraft and inlet design in the high power laser beam that is part of the shock tunnel facility at CTO Instituto in Brazil; and (c) plan a series of laser guided and propelled flights that achieve supersonic or higher speed at the Woomera Test Facility (WTF) in South Australia—using the existing WTF launching and tracking facilities and sponsor-provided laser pointing and tracking and illumination systems.

  14. Pseudo Aircraft Systems - A multi-aircraft simulation system for air traffic control research

    NASA Technical Reports Server (NTRS)

    Weske, Reid A.; Danek, George L.

    1993-01-01

    Pseudo Aircraft Systems (PAS) is a computerized flight dynamics and piloting system designed to provide a high fidelity multi-aircraft real-time simulation environment to support Air Traffic Control research. PAS is composed of three major software components that run on a network of computer workstations. Functionality is distributed among these components to allow the system to execute fast enough to support real-time operation. PAS workstations are linked by an Ethernet Local Area Network, and standard UNIX socket protocol is used for data transfer. Each component of PAS is controlled and operated using a custom designed Graphical User Interface. Each of these is composed of multiple windows, and many of the windows and sub-windows are used in several of the components. Aircraft models and piloting logic are sophisticated and realistic and provide complex maneuvering and navigational capabilities. PAS will continually be enhanced with new features and improved capabilities to support ongoing and future Air Traffic Control system development.

  15. Pseudo Aircraft Systems - A multi-aircraft simulation system for air traffic control research

    NASA Technical Reports Server (NTRS)

    Weske, Reid A.; Danek, George L.

    1993-01-01

    Pseudo Aircraft Systems (PAS) is a computerized flight dynamics and piloting system designed to provide a high fidelity multi-aircraft real-time simulation environment to support Air Traffic Control research. PAS is composed of three major software components that run on a network of computer workstations. Functionality is distributed among these components to allow the system to execute fast enough to support real-time operation. PAS workstations are linked by an Ethernet Local Area Network, and standard UNIX socket protocol is used for data transfer. Each component of PAS is controlled and operated using a custom designed Graphical User Interface. Each of these is composed of multiple windows, and many of the windows and sub-windows are used in several of the components. Aircraft models and piloting logic are sophisticated and realistic and provide complex maneuvering and navigational capabilities. PAS will continually be enhanced with new features and improved capabilities to support ongoing and future Air Traffic Control system development.

  16. Impact of air-sea interaction on simulation of East Asian summer monsoon in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Lee, Soheon; Cha, Dong-Hyun

    2017-04-01

    In the western North Pacific (WNP), it is well known that there is a negative correlation between sea surface temperature (SST) and precipitation indicating that the atmosphere may force the ocean. If global climate models (GCMs) cannot capture the air-sea interaction over the WNP, it leads to the failure in simulating regional climate over East Asia. The East Asian summer monsoon (EASM) is an intrinsic atmospheric phenomenon in East Asia, which significantly affect the surrounding countries. In this study, therefore, we investigate the impact of the air-sea interaction on simulating the EASM in multi-GCMs. The GCMs from the Coupled Model Intercomparison Project 3 (CMIP3) have large errors in cross correlation between SST and precipitation over the WNP, which means that the models could not capture the negative correlation realistically. On the contrary, the GCMs participating in CMIP5 improve the air-sea interaction compared to CMIP3 models. They have smaller errors in cross correlation between SST and precipitation. Among CMIP5 models, the models which have the smaller errors in cross correlation showed realistic simulation of the EASM in terms of its evolution and associated principal mode. However, GCMs with larger errors tend to simulate the EASM unreasonably. This indicates that the realistic air-sea interaction over the WNP is required to improve the EASM simulation. Acknowledgements The research was supported by the Korea Meteorological Administration Research and Development program under grant KMIPA 2015-2083 and the National Research Foundation of Korea Grant funded by the Ministry of Science, ICT and Future Planning of Korea (NRF-2016M3C4A7952637) for its support and assistant in completion of the study.

  17. Repair of Corrosion in Air Supply Piping at the NASA Glenn Research Center's 1 by 1 Foot Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Henry, Michael

    2000-01-01

    During a test at the NASA Glenn Research Center's 1 x 1 Supersonic Wing Tunnel, it was discovered that particles entrained in the air flow were damaging the pressure sensitive paint on a test article. An investigation found the source of the entrained particles to be rust on the internal surfaces of the air supply piping. To remedy the situation, the air supply line components made from carbon steel were either refurbished or replaced with new stainless steel components. The refurbishment process included various combinations of chemical cleaning, bead blasting, painting and plating.

  18. Reducing the Impact of Sampling Bias in NASA MODIS and VIIRS Level 3 Satellite Derived IR SST Observations over the Arctic

    NASA Astrophysics Data System (ADS)

    Minnett, P. J.; Liu, Y.; Kilpatrick, K. A.

    2016-12-01

    Sea-surface temperature (SST) measurements by satellites in the northern hemisphere high latitudes confront several difficulties. Year-round prevalent clouds, effects near ice edges, and the relative small difference between SST and low-level cloud temperatures lead to a significant loss of infrared observations regardless of the more frequent polar satellite overpasses. Recent research (Liu and Minnett, 2016) identified sampling issues in the Level 3 NASA MODIS SST products when 4km observations are aggregated into global grids at different time and space scales, particularly in the Arctic, where a binary decision cloud mask designed for global data is often overly conservative at high latitudes and results in many gaps and missing data. This under sampling of some Arctic regions results in a warm bias in Level 3 products, likely a result of warmer surface temperature, more distant from the ice edge, being identified more frequently as cloud free. Here we present an improved method for cloud detection in the Arctic using a majority vote from an ensemble of four classifiers trained based on an Alternative Decision Tree (ADT) algorithm (Freund and Mason 1999, Pfahringer et. al. 2001). This new cloud classifier increases sampling of clear pixel by 50% in several regions and generally produces cooler monthly average SST fields in the ice-free Arctic, while still retaining the same error characteristics at 1km resolution relative to in situ observations. SST time series of 12 years of MODIS (Aqua and Terra) and more recently VIIRS sensors are compared and the improvements in errors and uncertainties resulting from better cloud screening for Level 3 gridded products are assessed and summarized.

  19. The influence of model resolution on the simulated sensitivity of North Atlantic tropical cyclone maximum intensity to sea surface temperature: MODEL RESOLUTION TC INTENSITY SST

    DOE PAGES

    Strazzo, S. E.; Elsner, J. B.; LaRow, T. E.; ...

    2016-07-10

    Global climate models (GCMs) are routinely relied upon to study the possible impacts of climate change on a wide range of meteorological phenomena, including tropical cyclones (TCs). Previous studies addressed whether GCMs are capable of reproducing observed TC frequency and intensity distributions. This research builds upon earlier studies by examining how well GCMs capture the physically relevant relationship between TC intensity and SST. Specifically, the influence of model resolution on the ability of a GCM to reproduce the sensitivity of simulated TC intensity to SST is examined for the MRI-AGCM (20 km), the GFDL-HiRAM (50 km), the FSU-COAPS (0.94°) model,more » and two versions of the CAM5 (1° and 0.25°). Results indicate that while a 1°C increase in SST corresponds to a 5.5–7.0 m s -1 increase in observed maximum intensity, the same 1°C increase in SST is not associated with a statistically significant increase in simulated TC maximum intensity for any of the models examined. However, it also is shown that the GCMs all capably reproduce the observed sensitivity of potential intensity to SST. The models generate the thermodynamic environment suitable for the development of strong TCs over the correct portions of the Nort h Atlantic basin, but strong simulated TCs do not develop over these areas, even for models that permit Category 5 TCs. This result supports the notion that direct simulation of TC eyewall convection is necessary to accurately represent TC intensity and intensification processes in climate models, although additional explanations are also explored.« less

  20. Observed changes of global and western Pacific precipitation associated with global warming SST mode and mega-ENSO SST mode

    NASA Astrophysics Data System (ADS)

    Kim, Byeong-Hee; Ha, Kyung-Ja

    2015-12-01

    Changes in the observed precipitation and moisture transport induced by anthropogenic forcing and natural variability were investigated. To separate into the anthropogenic and natural modes, the multi-variate EOF (MVEOF) analysis synthesized from three variables including of precipitation, SST, and moisture flux convergence is used. The precipitation pattern over the tropics has a tri-polar structure in anthropogenic mode but a zonal asymmetric structure near 150°E in natural mode. The patterns of precipitation were determined in the principal modes of moisture flux convergence using MVEOF. Through a moisture budget analysis, the dynamic factor of moisture flux was found to play an important role in the precipitation changes. The natural and anthropogenic modes have zonal wave patterns of potential function associated with the dynamic factor: zonal wavenumber 1 and 2 structure, respectively. When the decadal ENSO is in mega-La Niña phase, natural and anthropogenic forcings represent a positive sign of potential function, which means increased precipitation over the tropical western Pacific (WP). In the tropics, anthropogenic forcing slightly strengthens westerly winds over the Indian Ocean and easterly winds over the WP, while weaken the easterly winds over the eastern Pacific. The natural variability strengthens the Walker circulation in La Niña phase. Therefore, during recent three decades, the slightly strengthening of the wind convergence near the WP by anthropogenic forcing and the strengthening of the Walker circulation by natural variability have caused the increasing precipitation over the WP.