Science.gov

Sample records for air research sst

  1. Overview of atmospheric ionizing radiation (AIR) Research: SST-present

    NASA Astrophysics Data System (ADS)

    Wilson, J. W.; Goldhagen, P.; Rafnsson, V.; Clem, J. M.; De Angelis, G.; Friedberg, W.

    The Supersonic Transport (SST) program proposed in 1961, first raised concern for the exposure of pregnant occupants by solar energetic particles (SEP), and neutrons were suspected to have a main role in particle propagation deep into the atmosphere. An eight-year flight program confirmed the role of SEP as a significant hazard and of the neutrons as contributing over half of the galactic cosmic ray exposures, with the largest contribution from neutrons above 10 MeV. The FAA Advisory Committee on the Radiobiological Aspects of the SST provided operational requirements. The more recent lowering of ICRP-recommended exposure limits 1990 with the classification of aircrew as "radiation workers" renewed interest in GCR background exposures at commercial flight altitudes and stimulated epidemiological studies in Europe, Japan, Canada and the USA. The proposed development of a High Speed Civil Transport (HSCT) required validation of the role of high-energy neutrons, and this resulted in ER-2 flights at solar minimum June 1997 and studies on effects of aircraft materials on interior exposures. Recent evaluation of health outcomes of DOE nuclear workers resulted in legislation for health compensation in year 2000 and recent European aircrew epidemiological studies of health outcomes bring renewed interest in aircraft radiation exposures. As improved radiation models become available, it is imperative that a corresponding epidemiological program of US aircrew be implemented.

  2. Overview of Atmospheric Ionizing Radiation (AIR) research: SST-present

    NASA Astrophysics Data System (ADS)

    Wilson, J.; Goldhagen, P.; Rafnson, V.; Clem, J.; Deangelis, G.

    The Super Sonic Transport (SST) program, proposed in 1961, first raised concern for the exposure of pregnant passengers and crew by solar energetic particles (SEP), and neutrons were suspected to have a main role in effects due to particle propagation deep into the atmosphere. An eight-year flight program confirmed the role of SEP as a significant hazard and of the neutrons as contributing over half of the galactic cosmic ray exposures, with the largest contribution from neutrons above 10 MeV. The FAA Standing Committee provided recommendations on SST radiobiological issues and operational requirements. The lowering of ICRP-recommended exposure limits (1990) with the classification of aircrew as "radiation workers" renewed interest in GCR background exposures at commercial flight altitudes and stimulated epidemiological studies in Europe, Japan, Canada and the USA. The proposed development of a High Speed Civil Transport (HSCT) required validation of the role of high-energy neutrons, and this resulted in ER-2 flights at solar minimum (June 1997) and studies of effects of aircraft materials on interior exposures. Recent evaluation of health outcomes of DOE nuclear workers resulted in legislation for health compensation in 2000 and more recent European aircrew epidemiological studies of health outcomes brings renewed interest in aircraft radiation exposures. As improved radiation models become available, it is imperative that a corresponding epidemiological program of US aircrew be implemented.

  3. Overview of Atmospheric Ionizing Radiation (AIR) Research: SST - Present

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Goldhagen, P.; Rafnsson, V.; Clem, J. M.; DeAngelis, G.; Friedberg, W.

    2002-01-01

    The Supersonic Transport (SST) program, proposed in 1961, first raised concern for the exposure of pregnant occupants by solar energetic particles (SEP), and neutrons were suspected to have a main role in particle propagation deep into the atmosphere. An eight-year flight program confirmed the role of SEP as a significant hazard and of the neutrons as contributing over half of the galactic cosmic ray (GCR) exposures, with the largest contribution from neutrons above 10 MeV. The FAA Advisory Committee on the Radiobiological Aspects of the SST provided operational requirements. The more recent (1990) lowering of recommended exposure limits by the International Commission on Radiological Protection with the classification of aircrew as "radiation workers" renewed interest in GCR background exposures at commercial flight altitudes and stimulated epidemiological studies in Europe, Japan, Canada and the USA. The proposed development of a High Speed Civil Transport (HSCT) required validation of the role of high-energy neutrons, and this resulted in ER-2 flights at solar minimum (June 1997) and studies on effects of aircraft materials on interior exposures. Recent evaluation of health outcomes of DOE nuclear workers resulted in legislation for health compensation in year 2000 and recent European aircrew epidemiological studies of health outcomes bring renewed interest in aircraft radiation exposures. As improved radiation models become available, it is imperative that a corresponding epidemiological program of US aircrew be implemented.

  4. Summary of Atmospheric Ionizing AIR Research: SST-Present

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Goldhagen, P.; Rafnsson, V.; deAngelis, G.; Friedberg, W.; Clem, J. M.

    2003-01-01

    The Supersonic Transport (SST) program, proposed in 1961, first raised concern for the exposure of pregnant occupants by solar energetic particles (SEP), and neutrons were suspected to have a main role in particle propagation deep into the atmosphere. An eight-year flight program confirmed the role of SEP as a significant hazard and of the neutrons as contributing over half of the galactic cosmic ray (GCR) exposures, with the largest contribution from neutrons above 10 MeV. The FAA Advisory Committee on the Radiobiological Aspects of the SST provided operational requirements. The more recent lowering of the radiation exposure limits by the International Commission on Radiological Protection with the classification of aircrew as radiation workers renewed interest in GCR background exposures at commercial flight altitudes and stimulated epidemiological studies in Europe, Japan, Canada and the USA. The proposed development of a High Speed Civil Transport (HSCT) required validation of the role of high-energy neutrons, and this resulted in ER-2 flights at solar minimum (June 1997) and studies on effects of aircraft materials on interior exposures. Recent evaluation of health outcomes of DOE nuclear workers resulted in legislation for health compensation in year 2000 and recent European aircrew epidemiological studies of health outcomes bring renewed interest in aircraft radiation exposures. As improved radiation models become available, it is imperative that a corresponding epidemiological program of US aircrew be implemented.

  5. Overview of atmospheric ionizing radiation (AIR) research: SST-present

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Goldhagen, P.; Rafnsson, V.; Clem, J. M.; De Angelis, G.; Friedberg, W.

    2003-01-01

    The Supersonic Transport (SST) program, proposed in 1961, first raised concern for the exposure of pregnant occupants by solar energetic particles (SEP), and neutrons were suspected to have a main role in particle propagation deep into the atmosphere. An eight-year flight program confirmed the role of SEP as a significant hazard and of the neutrons as contributing over half of the galactic cosmic ray exposures, with the largest contribution from neutrons above 10 MeV. The FAA Advisory Committee on the Radiobiological Aspects of the SST provided operational requirements. The more recent lowering of ICRP-recommended exposure limits (1990) with the classification of aircrew as "radiation workers" renewed interest in GCR background exposures at commercial flight altitudes and stimulated epidemiological studies in Europe, Japan, Canada and the USA. The proposed development of a High Speed Civil Transport (HSCT) required validation of the role of high-energy neutrons, and this resulted in ER-2 flights at solar minimum (June 1997) and studies on effects of aircraft materials on interior exposures. Recent evaluation of health outcomes of DOE nuclear workers resulted in legislation for health compensation in year 2000 and recent European aircrew epidemiological studies of health outcomes bring renewed interest in aircraft radiation exposures. As improved radiation models become available, it is imperative that a corresponding epidemiological program of US aircrew be implemented. Published by Elsevier Ltd on behalf of COSPAR.

  6. Overview of atmospheric ionizing radiation (AIR) research: SST-present.

    PubMed

    Wilson, J W; Goldhagen, P; Rafnsson, V; Clem, J M; De Angelis, G; Friedberg, W

    2003-01-01

    The Supersonic Transport (SST) program, proposed in 1961, first raised concern for the exposure of pregnant occupants by solar energetic particles (SEP), and neutrons were suspected to have a main role in particle propagation deep into the atmosphere. An eight-year flight program confirmed the role of SEP as a significant hazard and of the neutrons as contributing over half of the galactic cosmic ray exposures, with the largest contribution from neutrons above 10 MeV. The FAA Advisory Committee on the Radiobiological Aspects of the SST provided operational requirements. The more recent lowering of ICRP-recommended exposure limits (1990) with the classification of aircrew as "radiation workers" renewed interest in GCR background exposures at commercial flight altitudes and stimulated epidemiological studies in Europe, Japan, Canada and the USA. The proposed development of a High Speed Civil Transport (HSCT) required validation of the role of high-energy neutrons, and this resulted in ER-2 flights at solar minimum (June 1997) and studies on effects of aircraft materials on interior exposures. Recent evaluation of health outcomes of DOE nuclear workers resulted in legislation for health compensation in year 2000 and recent European aircrew epidemiological studies of health outcomes bring renewed interest in aircraft radiation exposures. As improved radiation models become available, it is imperative that a corresponding epidemiological program of US aircrew be implemented.

  7. Air Research

    EPA Pesticide Factsheets

    EPA's air research provides the critical science to develop and implement outdoor air regulations under the Clean Air Act and puts new tools and information in the hands of air quality managers and regulators to protect the air we breathe.

  8. Impact of autumn SST in the Japan Sea on winter rainfall and air temperature in Northeast China

    NASA Astrophysics Data System (ADS)

    Shi, Xiaomeng; Sun, Jilin; Wu, Dexing; Yi, Li; Wei, Dongni

    2015-08-01

    We studied the impact of sea surface temperature anomaly (SSTA) in the Japan Sea and the sea area east of Japan on the winter rainfall and air temperature in Northeast (NE) China using the singular value decomposition (SVD) and empirical orthogonal function (EOF). The monthly-mean rainfall data observed at 160 stations in China, monthly-mean sea surface temperature (SST) of the Hadley Center for Climate Prediction and Research and monthly-mean air temperature from the NCEP reanalysis during 1960-2011 were used. Correlation analysis indicates that the SSTAs in the Japan Sea in September may last for three or four months and are an important index for forecasting the winter rainfall and air temperature in NE China. Positive SSTAs in the central Japan Sea and in the sea area east of Tokyo correspond to positive rainfall anomaly and negative air temperature anomaly in NE China. With the rise of SST in the Japan Sea, a weak cyclone appears over the Japan Sea. The northeasterly wind transports water vapor from the Okhotsk to NE China, resulting in more rainfall and lower air temperature. Negative SSTA years are accompanied by warmer air temperature and less snow in NE China. The 1000 hPa geopotential height anomaly and wind anomaly fields are simulated by IAP-9L model, which supports the analysis results.

  9. Impact of Air Temperature and SST Variability on Cholera Incidence in Southeastern Africa, 1971-2006

    NASA Astrophysics Data System (ADS)

    Paz, Shlomit

    2010-05-01

    The most important climatic parameter related to cholera outbreaks is the temperature, especially of the water bodies and the aquatic environment. This factor governs the survival and growth of V. cholerae, since it has a direct influence on its abundance in the environment, or alternatively, through its indirect influence on other aquatic organisms to which the pathogen is found to attach. Thus, the potential for cholera outbreaks may rise, parallel to the increase in ocean surface temperature. Indeed, recent studies indicate that global warming might create a favorable environment for V. cholerae and increase its incidence in vulnerable areas. Africa is vulnerable to climate variability. According to the recent IPCC report on Africa, the air temperature has indicated a significant warming trend since the 1960s. In recent years, most of the research into disease vectors in Africa related to climate variability has focused on malaria. The IPCC indicated that the need exists to examine the vulnerabilities and impacts of climatic factors on cholera in Africa. In light of this, the study uses a Poisson Regression Model to analyze the possible association between the cholera rates in southeastern Africa and the annual variability of air temperature and sea surface temperature (SST) at regional and hemispheric scales, for the period 1971-2006. Data description is as follows: Number of cholera cases per year in Uganda, Kenya, Rwanda, Burundi, Tanzania, Malawi, Zambia and Mozambique. Source: WHO Global Health Atlas - cholera. Seasonal and annual temperature time series: Regional scale: a) Air temperature for southeastern Africa (30° E-36° E, 5° S-17° S), source: NOAA NCEP-NCAR; b) Sea surface temperature, for the western Indian Ocean (0-20° S, 40° E-45° E), source: NOAA, Kaplan SST dataset. Hemispheric scale (for the whole Southern Hemisphere): a) Air temperature anomaly; b) Sea surface temperature anomaly. Source: CRU, University of East Anglia. The following

  10. Mechanisms controlling the SST air-sea heat flux feedback and its dependence on spatial scale

    NASA Astrophysics Data System (ADS)

    Hausmann, Ute; Czaja, Arnaud; Marshall, John

    2017-02-01

    The turbulent air-sea heat flux feedback (α, in {W m}^{-2} { K}^{-1}) is a major contributor to setting the damping timescale of sea surface temperature (SST) anomalies. In this study we compare the spatial distribution and magnitude of α in the North Atlantic and the Southern Ocean, as estimated from the ERA-Interim reanalysis dataset. The comparison is rationalized in terms of an upper bound on the heat flux feedback, associated with "fast" atmospheric export of temperature and moisture anomalies away from the marine boundary layer, and a lower bound associated with "slow" export. It is found that regions of cold surface waters (≤10 ° C) are best described as approaching the slow export limit. This conclusion is not only valid at the synoptic scale resolved by the reanalysis data, but also on basin scales. In particular, it applies to the heat flux feedback acting as circumpolar SST anomaly scales are approached in the Southern Ocean, with feedbacks of ≤10 {W m}^{-2} { K}^{-1}. In contrast, the magnitude of the heat flux feedback is close to that expected from the fast export limit over the Gulf Stream and its recirculation with values on the order of ≈40 {W m}^{-2} { K}^{-1}. Further analysis suggests that this high value reflects a compensation between a moderate thermodynamic adjustment of the boundary layer, which tends to weaken the heat flux feedback, and an enhancement of the surface winds over warm SST anomalies, which tend to enhance the feedback.

  11. Russian Tu-144LL SST Flying Laboratory Landing with Drag Chutes at Zhukovsky Air Development Center

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The modified Tupolev Tu-144 supersonic flying laboratory touches down and deploys a trio of drag chutes following a test flight at the Zhukovsky Air Development Center near Moscow, Russia, in July 1997. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different engines than were used

  12. Tu-144LL SST Flying Laboratory on Taxiway at Zhukovsky Air Development Center near Moscow, Russia

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The sleek lines of the Tupolev Tu-144LL are evident as it sits on the taxiway at the Zhukovsky Air Development Center near Moscow, Russia. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different engines than were used in production-model aircraft. Fifty experiments were proposed

  13. Russian Tu-144LL SST Flying Laboratory Takeoff at Zhukovsky Air Development Center

    NASA Technical Reports Server (NTRS)

    1997-01-01

    With its nose drooped and canards extended, the Tupolev Tu-144LL supersonic flying laboratory lifts off from the Zhukovsky Air Development Center near Moscow, Russia on a 1997 test flight. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different engines than were used in production

  14. Russian Tu-144LL SST Flying Laboratory Landing at Zhukovsky Air Development Center

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Tupolev Tu-144LL supersonic flying laboratory touches down at the Zhukovsky Air Development Center near Moscow, Russia, following a 1997 test flight. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different engines than were used in production-model aircraft. Fifty experiments

  15. Russian Tu-144LL SST Flying Laboratory Landing at Zhukovsky Air Development Center

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Tupolev Tu-144LL supersonic flying laboratory lifts off from the Zhukovsky Air Development Center near Moscow, Russia, on a 1997 test flight. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different engines than were used in production-model aircraft. Fifty experiments were

  16. Research Pilot C. Gordon Fullerton in Cockpit of TU-144LL SST Flying Laboratory

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA Research pilot C. Gordon Fullerton sits in cockpit of TU-144LL SST Flying Laboratory. Fullerton was one of two NASA pilots who flew the aircraft as part of a joint high speed research program. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different engines than were used in

  17. Russian Tu-144LL SST Roll-Out for Joint NASA Research Program

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The modified Tu-144LL supersonic flying laboratory is rolled out of its hangar at the Zhukovsky Air Development Center near Moscow, Russia in March 1996 at the beginning of a joint U.S. - Russian high-speed flight research program. The 'LL' stands for Letayuschaya Laboratoriya, which means Flying Laboratory. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The

  18. Tu-144LL SST Flying Laboratory Landing on Runway at Zhukovsky Air Development Center near Moscow, Ru

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Tupolev Tu-144LL SST Flying Laboratory rolls down the runway at the Zhukovsky Air Development Center near Moscow, Russia, after a 1998 test flight. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different engines than were used in production-model aircraft. Fifty experiments

  19. Russian Tu-144LL SST Roll-out for Joint NASA Research Program

    NASA Technical Reports Server (NTRS)

    1996-01-01

    U.S. Ambassador Pickering addresses Russian and American dignitaries, industry representatives and members of the press during a roll-out ceremony for the modified Tu-144LL supersonic flying laboratory. The ceremony was held at the Zhukovsky Air Development Center near Moscow, Russia, on March 17, 1996. The 'LL' designation for the aircraft stands for Letayuschaya Laboratoriya, which means Flying Laboratory in Russian. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation

  20. Tu-144LL SST Flying Laboratory Lifts off Runway on a High-Speed Research Flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Tupolev Tu-144LL lifts off from the Zhukovsky Air Development Center near Moscow, Russia, on a 1998 test flight. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different engines than were used in production-model aircraft. Fifty experiments were proposed for the program and

  1. High-resolution simulations of heavy precipitation events: role of the Adriatic SST and air-sea interactions

    NASA Astrophysics Data System (ADS)

    Davolio, Silvio; Stocchi, Paolo

    2016-04-01

    Strong Bora and Sirocco winds over the Adriatic Sea favour intense air-sea interactions and are often associated with heavy rainfall that affects the mountainous areas surrounding the basin. A convection-permitting model (MOLOCH) has been implemented at high resolution (2 km) in order to analyse several precipitation events over northern Italy, occurred during different seasons of the year and presenting different rainfall characteristics (stratiform, convective, orographic), and to possibly identify the relevant physical mechanisms involved. With the aim of assessing the impact of the sea surface temperature (SST) and surface fluxes on the intensity and location of the rainfall, sensitivity experiments have been performed taking into account the possible variability of SST analysis for model initialization. The model has been validated and specific diagnostic tools have been developed and applied to evaluate the vertically integrated moisture fluxes feeding the precipitating system or to compute a water balance in the atmosphere over the sea. The results show that the Adriatic Sea plays a role in determining the boundary layer characteristics through exchange of heat and moisture thus modifying the low-level flow dynamics and its interaction with the orography. This in turn impacts on the rainfall. Although the results vary among the analysed events, the precise definition of the SST and its evolution can be relevant for accurate precipitation forecasting.

  2. AIRS radiometric calibration validation for climate research

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Pagano, Thomas S.; Elliott, Denis; Gaiser, Steve; Gregorich, Dave; Broberg, Steve

    2005-01-01

    Climate research using data from satellite based radiometers makes extreme demands on the traceability and stability of the radiometric calibration. The selection of a cooled grating array spectrometer for the Atmospheric Infrared Sounder, AIRS, is key, but does not ensured that AIRS data will be of climate quality. Additional design features, plus additional pre-launch testing, and extensive on-orbit calibration subsystem monitoring beyond what would suffice for application of the data to weather forecasting were required to ensure the radiometric data quality required for climate research. Validation that climate data quality are being generated makes use of the sea surface skin temperatures (SST and (obs-calc).

  3. Air Force Research Laboratory

    DTIC Science & Technology

    2009-06-08

    Air Force Research Laboratory 8 June 2009 Mr. Leo Marple Ai F R h L b t r orce esearc a ora ory Leo.Marple@wpafb.af.mil DISTRIBUTION STATEMENT A...TITLE AND SUBTITLE Air Force Research Laboratory 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER...5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Research Laboratory ,Wright

  4. Measured and Calculated Neutron Spectra and Dose Equivalent Rates at High Altitudes; Relevance to SST Operations and Space Research

    NASA Technical Reports Server (NTRS)

    Foelsche, T.; Mendell, R. B.; Wilson, J. W.; Adams, R. R.

    1974-01-01

    Results of the NASA Langley-New York University high-altitude radiation study are presented. Measurements of the absorbed dose rate and of secondary fast neutrons (1 to 10 MeV energy) during the years 1965 to 1971 are used to determine the maximum radiation exposure from galactic and solar cosmic rays of supersonic transport (SST) and subsonic jet occupants. The maximum dose equivalent rates that the SST crews might receive turn out to be 13 to 20 percent of the maximum permissible dose rate (MPD) for radiation workers (5 rem/yr). The exposure of passengers encountering an intense giant-energy solar particle event could exceed the MPD for the general population (0.5 rem/yr), but would be within these permissible limits if in such rare cases the transport descends to subsonic altitude; it is in general less than 12 percent of the MPD. By Monte Carlo calculations of the transport and buildup of nucleons in air for incident proton energies E of 0.02 to 10 GeV, the measured neutron spectra were extrapolated to lower and higher energies and for galactic cosmic rays were found to continue with a relatively high intensity to energies greater than 400 MeV, in a wide altitude range. This condition, together with the measured intensity profiles of fast neutrons, revealed that the biologically important fast and energetic neutrons penetrate deep into the atmosphere and contribute approximately 50 percent of the dose equivalant rates at SST and present subsonic jet altitudes.

  5. Combined MODIS/AMSR-E SST Composites for Regional Weather Applications

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary; Vazquez, Jorge; Armstrong, Ed; Haines, Stephanie

    2009-01-01

    Recent applications of a high resolution MODlS composite SST product have clearly shown the importance of developing high-resolution SST data sets for coastal applications and modeling. In general, coupling between the oceans and atmospheres has been closely linked to SST gradients and fronts, indicating a need for high resolution SSTs, specifically in the areas of large gradients associated with coastal regions. Thus an accurate determination of SST gradients has become critical for determining the appropriate air-sea coupling and the influence on ocean modeling. Recent research is focused on improving the accuracy and spatial coverage of the current operational MODIS SST composite product provided by the Short-term Prediction Research and Transition (SPORT) project and distributed to the community. GHRSST-PP MODlS data and microwave AMSR-E data are being combined to produce composite data sets for both the West Coast and East Coast of the United States, including the Gulf of Mexico. The use of 1 km MODIS data has explicit advantages over other SST products including its global coverage and high resolution. The AMSR-E data will reduce the latency of the composites. A strategy for utilizing the error characteristics contained in the GHRSST data has been developed. This strategy will include using the error characteristics directly to calculate weights in the SST composites, uncertainty maps based on the composite biases and RMS errors, and latency products calculated in the compositing process. Recent accomplishments include the development of an enhanced compositing approach based on the error-weighted combination of recent clear MODIS SST values, where the error contributions come from measurement error, potential cloud contamination, and data latency sources. Future plans call for the inclusion of AMSR-E SST values with appropriate weights based upon measurement accuracy, MODIS-AMSR-E SST bias, and latency.

  6. Application of Atmospheric Infrared Sounder (AIRS) Data to Climate Research

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Gregorich, David; Gaiser, Steve; Chahine, Moustafa T.

    2004-01-01

    The application of hyper spectral radiometric data to climate research requires very high absolute radiometric accuracy and stability. We use cloud-free tropical ocean data from the Atmospheric InfraRed Sounder (AIR) Calibration Data Subset (ADCS) to show that the radiometric precision and stability required climate applications has been achieved. The sea surface skin temperatures derived from the AIRS 2616cm-1 super window channel are stable relative to the RTG.SST at the better than 8 mK/year level, and the spectral calibration is stable at the 1 ppm/year level. The excellent stability and accuracy are the result of the implementation of AIRS as a grating array spectrometer, which is cooled and stabilized within 10 mK at 155 K. Analysis of daily measurements of the temperature gradient between the surface and 7 km altitude show that the AIRS Calibration Data Subset has applications which extend its original intent for calibration support to climate research. The Atmospheric Infrared Sounder (AIRS) on the EOS Aqua satellite was launched into polar orbit in May 2002. AIRS covers the spectral region from 640 to 2700 cm-1 with 2378 independent channels and represents the first of a new generation of hyper spectral resolution sounders in support of global sounding data for weather forecasting and climate research.

  7. Air Force Office of Scientific Research 1991 Research Highlights

    DTIC Science & Technology

    1991-01-01

    research at Air Force Europe, allied victory in the Persian Gulf con- programs totaling nearly $300 million annual- laboratories . Air Force ...transitioning nological environment? laboratories and research centers into four research accomplishments for Air Force use. In this added role as... Air Force’s saries; maintaining a strong research Organizationally, AFOSR has also glo ehran gol per infrastructure among Air Force

  8. Air Force Research Laboratory Technology Milestones 2008

    DTIC Science & Technology

    2008-01-01

    Air Force Research Laboratory ( AFRL ) is the only science and technology (S&T) organization for the Air Force . Accordingly, AFRL fulfills a mission to...Readership survey is sponsored by the Air Force Research Laboratory ( AFRL ), Wright-Patterson Air Force Base, Ohio. Thank you in advance for your...Base Defense AFRL researchers participated in the Robotic Physical Security Experiment, conducted at

  9. Air Force Research Laboratory, Edwards Air Force Base, CA

    DTIC Science & Technology

    2011-06-27

    Air Force Research Laboratory (AFMC) AFRL /RZS 1 Ara Road Edwards AFB CA 93524-7013 AFRL -RZ-ED-VG-2011-269 9...SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) Air Force Research Laboratory (AFMC) AFRL /RZS 11. SPONSOR...Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 Air Force Research Laboratory Ed d Ai F B CA Col Mike Platt war s r orce

  10. Air Monitoring, Measuring, and Emissions Research

    EPA Pesticide Factsheets

    Measurement research is advancing the ability to determine the composition of sources of air pollution, conduct exposure assessments, improve monitoring capabilities and support public health research.

  11. Air pollution: brown skies research.

    PubMed Central

    Tattersfield, A. E.

    1996-01-01

    Direct information on the health effects of air pollution in humans relies mainly on chamber studies and epidemiological studies. Although chamber studies have limitations they allow the acute effects of individual pollutants to be studied in well characterised subjects under controlled conditions. Most chamber studies have shown relatively small falls in lung function and relatively small increases in bronchial reactivity at the concentrations of ozone, SO2, and NO2 that occur even during high pollution episodes in the UK. The possible exception is SO2 where sensitive asthmatic patients may show a greater response at concentrations that are seen from time to time in certain areas and in proximity to power stations. There is no convincing evidence of potentiation between pollutants in chamber studies. Epidemiological studies are more difficult to carry out and require considerable epidemiological and statistical expertise to deal with the main problem-confounding by other factors. Although the health effects seen with current levels of pollution are small compared with those seen in the 1950s and close to the limits of detection, this should not be interpreted as being unimportant. A small effect may have large consequences when the population exposed is large (the whole population in this case). Recent data suggest that particles have more important health effects than the pollutant gases that have been studied. Much of this information comes from the USA though the findings are probably applicable in the UK. More information is needed on the size of the health effects that occur during the three types of air pollution episodes seen in this country and the relative contributions of particles, pollutant gases, pollen, and other factors such as temperature. Research into air pollution declined in the UK following the introduction of the Clean Air Acts; it is now increasing again following pressure from certain individuals and ginger groups, including the British

  12. Responses of Precipitation and Hydrologic Processes to Tropical SST

    NASA Technical Reports Server (NTRS)

    Sui, C.-H.; Lau, K.-M.; Li, X.

    2001-01-01

    The goal of the research is to identify the mechanisms in the response of tropical precipitation and atmospheric hydrologic cycle to sea surface temperature (SST) variability at seasonal-to-interannual time scales, and to utilize the knowledge for better understanding of climate feedback processes relevant to global change. As a first step to achieve the goal, we characterize the inter-relationship among convective/stratiform rain, ice/water clouds water vapor, and SST using TRMM satellite data and a cloud-resolving model. We examined the daily hydrologic variables [column water vapor (PW), cloud liquid water (CW), rainfall rates (RR)] as a function of SST using high-resolution data (0.25 x 0.25, daily) derived from TRMM satellite measurements. Comparing the winter of 97/98 (El Nino condition) against the winter of 99/00 (La Nina condition), area-mean values of all four hydrologic variables in cloudy areas within the tropical Pacific are higher in the El Nino winter than in the La Nina winter. This is consistent with previous observational analyses and SST warming experiments (idealized or ENSO-like) that showed the interaction between hydrologic cyclic and radiation at the seasonal to interannual time scales leads to intensified tropical circulation and hydrologic cycle. However, there is evidence that the enhanced hydrologic cycle over the warm pool is accompanied by an expansion of radiatively -driven subsidence in response to a stronger SST gradient between warm pool and surrounding cold pool. The expanding subsidence effectively reduces cloud amounts over the warm pool. Our analysis of daily variability further indicates a more vigorous water cycle characterized by higher PW, CW, and RR in response to overall warming. This is expected from the Clausius Clapeyron relation as a thermodynamic response to warming. However cloudy areas decrease in response to overall warming. This may be due to factors that are fundamentally different. One possibility is that in a

  13. Workshop on indoor air quality research needs

    SciTech Connect

    Not Available

    1980-01-01

    Workshop participants report on indoor air quality research needs including the monitoring of indoor air quality, report of the instrumentation subgroup of indoor air quality, health effects, and the report of the control technology session. Risk analysis studies addressing indoor environments were also summarized. (DLS)

  14. Air Traffic Management Research at NASA Ames

    NASA Technical Reports Server (NTRS)

    Davis, Thomas J.

    2012-01-01

    The Aviation Systems Division at the NASA Ames Research Center conducts leading edge research in air traffic management concepts and technologies. This overview will present concepts and simulation results for research in traffic flow management, safe and efficient airport surface operations, super density terminal area operations, separation assurance and system wide modeling and simulation. A brief review of the ongoing air traffic management technology demonstration (ATD-1) will also be presented. A panel discussion, with Mr. Davis serving as a panelist, on air traffic research will follow the briefing.

  15. Air Force Research Laboratory’s Focused Long Term Challenges

    DTIC Science & Technology

    2008-04-01

    Air Force Research Laboratory ( AFRL ) mission is to provide support to the Air Force (AF) and the warfighters with... Air Force Research Laboratory’s Focused Long Term Challenges Leo J Rose Munitions Directorate, Air Force Research Laboratory , 101 W Eglin Blvd...This technology vision, which was born in our Air Force Research Laboratory , builds on the Air Force’s traditional kill

  16. Air Force Research Laboratory Preparation for Year 2000.

    DTIC Science & Technology

    2007-11-02

    Air Force Research Laboratory , Phillips Research Site , Kirkland Air Force Base, New...Pentagon, Washington, D.C. 20301-1900. The identity of each writer and caller is fully protected. Acronym AFRL Air Force Research Laboratory INSPECTOR...completion of the implementation phase was May 31, 1999. Air Force Research Laboratory . The Air Force Research

  17. Experimental research on air propellers

    NASA Technical Reports Server (NTRS)

    Durand, William F

    1918-01-01

    The purposes of the experimental investigation on the performance of air propellers described in this report are as follows: (1) the development of a series of design factors and coefficients drawn from model forms distributed with some regularity over the field of air-propeller design and intended to furnish a basis of check with similar work done in other aerodynamic laboratories, and as a point of departure for the further study of special or individual types and forms; (2) the establishment of a series of experimental values derived from models and intended for later use as a basis for comparison with similar results drawn from certain selected full-sized forms and tested in free flight.

  18. Air Force Research Laboratory Fire Research (Postprint)

    DTIC Science & Technology

    2007-04-05

    High Pressure – Water or Foam Spray at ≥ 1200 psi. • Current emphasis on increasing throw distance. – Retrofit P-19 trucks with UHP system. • USAF set...suppressing large scale liquid hydrocarbon fuel fires. • UHP water and AFFF, compressed air foam, and combined agent AFFF-dry chemical systems. • Next...build a skid steered, all-terrain vehicle equipped with UHP and other advanced fire and rescue systems. • Closed Cell Foam Fire Protection – Develop

  19. Impact of High Resolution SST Data on Regional Weather Forecasts

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Case, Jonathon; LaFontaine, Frank; Vazquez, Jorge; Mattocks, Craig

    2010-01-01

    Past studies have shown that the use of coarse resolution SST products such as from the real-time global (RTG) SST analysis[1] or other coarse resolution once-a-day products do not properly portray the diurnal variability of fluxes of heat and moisture from the ocean that drive the formation of low level clouds and precipitation over the ocean. For example, the use of high resolution MODIS SST composite [2] to initialize the Advanced Research Weather Research and Forecast (WRF) (ARW) [3] has been shown to improve the prediction of sensible weather parameters in coastal regions [4][5}. In an extend study, [6] compared the MODIS SST composite product to the RTG SST analysis and evaluated forecast differences for a 6 month period from March through August 2007 over the Florida coastal regions. In a comparison to buoy data, they found that that the MODIS SST composites reduced the bias and standard deviation over that of the RTG data. These improvements led to significant changes in the initial and forecasted heat fluxes and the resulting surface temperature fields, wind patterns, and cloud distributions. They also showed that the MODIS composite SST product, produced for the Terra and Aqua satellite overpass times, captured a component of the diurnal cycle in SSTs not represented in the RTG or other one-a-day SST analyses. Failure to properly incorporate these effects in the WRF initialization cycle led to temperature biases in the resulting short term forecasts. The forecast impact was limited in some situations however, due to composite product inaccuracies brought about by data latency during periods of long-term cloud cover. This paper focuses on the forecast impact of an enhanced MODIS/AMSR-E composite SST product designed to reduce inaccuracies due data latency in the MODIS only composite product.

  20. The effects of SST magnitude and gradient on the wind and rain water over the Yellow Sea

    NASA Astrophysics Data System (ADS)

    Park, R.; Cho, Y.; Choi, B.; Song, C. H.

    2009-12-01

    Composition of satellite-observed Sea Surface Temperature (SST) data presents differences in magnitude and gradient over Yellow Sea, compared with in-situ measured SST. The differences can result in different wind speed/direction and rain water amount in a mesoscale meteorological model. The Yellow Sea is dominated by the strong and persistent northerly (NNE-NW) monsoon during the winter season, and the characteristics of the air masses inflowing into over the Korean Peninsula are altered by SST over the Yellow Sea. In this study, the effects of the SST magnitude and SST gradient on the wind fields, rain water amounts and evaporation rates over the Yellow Sea were investigated. Through the sensitivity studies, it was found that the SST magnitude controls air temperature and vertical heat fluxes between atmosphere and ocean surfaces and the SST gradient affects atmospheric stability and wind convergence. Although the SST magnitude can also affect the atmospheric stability and the wind fields but is less sensitive, compared with the influences from the SST gradient. Both the SST gradient and magnitude clearly affect the evaporation rates but in a complicated manner. The magnitude of the evaporation rates being regulated by the difference between saturated mixing ratio over the sea surface and mixing ratio of air is found to be directly controlled by the SST magnitude, whereas the horizontal distribution of the evaporation rates being affected by the horizontal velocity is controlled by the SST gradient. The use of the accurate SST in the meteorological model is therefore of primary importance, particularly for a more accurate weather forecast. In this study, it is demonstrated that the construction of the realistic SSTs using data retrieved from satellite observations and in-situ observation in conjunction with numerical ocean circulation modeling can produce more accurate and realistic meteorological fields over/around the Yellow Sea area in the mesoscale

  1. Air Traffic Management Research at NASA

    NASA Technical Reports Server (NTRS)

    Farley, Todd

    2012-01-01

    The U.S. air transportation system is the most productive in the world, moving far more people and goods than any other. It is also the safest system in the world, thanks in part to its venerable air traffic control system. But as demand for air travel continues to grow, the air traffic control systems aging infrastructure and labor-intensive procedures are impinging on its ability to keep pace with demand. And that impinges on the growth of our economy. Part of NASA's current mission in aeronautics research is to invent new technologies and procedures for ATC that will enable our national airspace system to accommodate the increasing demand for air transportation well into the next generation while still maintaining its excellent record for safety. It is a challenging mission, as efforts to modernize have, for decades, been hamstrung by the inability to assure safety to the satisfaction of system operators, system regulators, and/or the traveling public. In this talk, we'll provide a brief history of air traffic control, focusing on the tension between efficiency and safety assurance, and we'll highlight some new NASA technologies coming down the pike.

  2. Air Traffic Management Research at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Lee, Katharine

    2005-01-01

    Since the late 1980's, NASA Ames researchers have been investigating ways to improve the air transportation system through the development of decision support automation. These software advances, such as the Center-TRACON Automation System (eTAS) have been developed with teams of engineers, software developers, human factors experts, and air traffic controllers; some ASA Ames decision support tools are currently operational in Federal Aviation Administration (FAA) facilities and some are in use by the airlines. These tools have provided air traffic controllers and traffic managers the capabilities to help reduce overall delays and holding, and provide significant cost savings to the airlines as well as more manageable workload levels for air traffic service providers. NASA is continuing to collaborate with the FAA, as well as other government agencies, to plan and develop the next generation of decision support tools that will support anticipated changes in the air transportation system, including a projected increase to three times today's air-traffic levels by 2025. The presentation will review some of NASA Ames' recent achievements in air traffic management research, and discuss future tool developments and concepts currently under consideration.

  3. Networks of Absolute Calibration Stars for SST, AKARI, and WISE

    NASA Astrophysics Data System (ADS)

    Cohen, M.

    2007-04-01

    I describe the Cohen-Walker-Witteborn (CWW) network of absolute calibration stars built to support ground-based, airborne, and space-based sensors, and how they are used to calibrate instruments on the SPITZER Space Telescope (SST and Japan's AKARI (formerly ASTRO-F), and to support NASA's planned MidEx WISE (the Wide-field Infrared Survey Explorer). All missions using this common calibration share a self-consistent framework embracing photometry and low-resolution spectroscopy. CWW also underpins COBE/DIRBE several instruments used on the Kuiper Airborne Observatory ({KAO}), the joint Japan-USA ``IR Telescope in Space" (IRTS) Near-IR and Mid-IR spectrometers, the European Space Agency's IR Space Observatory (ISO), and the US Department of Defense's Midcourse Space eXperiment (MSX). This calibration now spans the far-UV to mid-infrared range with Sirius (one specific Kurucz synthetic spectrum) as basis, and zero magnitude defined from another Kurucz spectrum intended to represent an ideal Vega (not the actual star with its pole-on orientation and mid-infrared dust excess emission). Precision 4-29 μm radiometric measurements on MSX validate CWW's absolute Kurucz spectrum of Sirius, the primary, and a set of bright K/MIII secondary standards. Sirius is measured to be 1.0% higher than predicted. CWW's definitions of IR zero magnitudes lie within 1.1% absolute of MSX measurements. The US Air Force Research Laboratory's independent analysis of on-orbit {MSX} stellar observations compared with emissive reference spheres show CWW primary and empirical secondary spectra lie well within the ±1.45% absolute uncertainty associated with this 15-year effort. Our associated absolute calibration for the InfraRed Array Camera (IRAC) on the SST lies within ˜2% of the recent extension of the calibration of the Hubble Space Telescope's STIS instrument to NICMOS (Bohlin, these Proceedings), showing the closeness of these two independent approaches to calibration.

  4. Impact of intra-daily SST variability on ENSO characteristics in a coupled model

    NASA Astrophysics Data System (ADS)

    Masson, Sébastien; Terray, Pascal; Madec, Gurvan; Luo, Jing-Jia; Yamagata, Toshio; Takahashi, Keiko

    2012-08-01

    This paper explores the impact of intra-daily Sea Surface Temperature (SST) variability on the tropical large-scale climate variability and differentiates it from the response of the system to the forcing of the solar diurnal cycle. Our methodology is based on a set of numerical experiments based on a fully global coupled ocean-atmosphere general circulation in which we alter (1) the frequency at which the atmosphere sees the SST variations and (2) the amplitude of the SST diurnal cycle. Our results highlight the complexity of the scale interactions existing between the intra-daily and inter-annual variability of the tropical climate system. Neglecting the SST intra-daily variability results, in our CGCM, to a systematic decrease of 15% of El Niño—Southern Oscillation (ENSO) amplitude. Furthermore, ENSO frequency and skewness are also significantly modified and are in better agreement with observations when SST intra-daily variability is directly taken into account in the coupling interface of our CGCM. These significant modifications of the SST interannual variability are not associated with any remarkable changes in the mean state or the seasonal variability. They can therefore not be explained by a rectification of the mean state as usually advocated in recent studies focusing on the diurnal cycle and its impact. Furthermore, we demonstrate that SST high frequency coupling is systematically associated with a strengthening of the air-sea feedbacks involved in ENSO physics: SST/sea level pressure (or Bjerknes) feedback, zonal wind/heat content (or Wyrtki) feedback, but also negative surface heat flux feedbacks. In our model, nearly all these results (excepted for SST skewness) are independent of the amplitude of the SST diurnal cycle suggesting that the systematic deterioration of the air-sea coupling by a daily exchange of SST information is cascading toward the major mode of tropical variability, i.e. ENSO.

  5. Nanoscience and Technology at the Air Force Research Laboratory (AFRL)

    DTIC Science & Technology

    2005-05-01

    AIR FORCE RESEARCH LABORATORY ( AFRL ) Dr. Richard A. Vaia Dr. Daniel Miracle Dr. Thomas Cruse Air Force Research ...Technology At The Air Force Research Laboratory ( AFRL ) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...98) Prescribed by ANSI Std Z39-18 AFRL NST Overview 2 AIR FORCE RESEARCH LABORATORY VISION We defend

  6. Nanoscience and Technology at the Air Force Research Laboratory (AFRL)

    DTIC Science & Technology

    2005-02-01

    AIR FORCE RESEARCH LABORATORY ( AFRL ) Dr. Richard A. Vaia Dr. Daniel Miracle Dr. Thomas Cruse Air Force Research ...Technology At The Air Force Research Laboratory ( AFRL ) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...98) Prescribed by ANSI Std Z39-18 AFRL NST Overview 2 AIR FORCE RESEARCH LABORATORY VISION We defend

  7. SST — EDRN Public Portal

    Cancer.gov

    The hormone somatostatin (SST) has active 14 aa and 28 aa forms that are produced by alternate cleavage of the single preproprotein encoded by this gene. Somatostatin is expressed throughout the body and inhibits the release of numerous secondary hormones by binding to high-affinity G-protein-coupled somatostatin receptors. This hormone is an important regulator of the endocrine system through its interactions with pituitary growth hormone, thyroid stimulating hormone, and most hormones of the gastrointestinal tract. Somatostatin also affects rates of neurotransmission in the central nervous system and proliferation of both normal and tumorigenic cells. The promoter of somatostatin, a primary inhibitor of gastrin-stimulated gastric acid secretion, is hypermethylated in 80% of human colon cancers. A synthetic analog of SST, known as octreotide or SMS 201-995, is available under the name Sandostatin (Novartis). It is used for the treatment of a variety of disorders including acromegaly and the symptomatic treatment of carcinoid tumors and vasoactive intestinal peptide tumors.

  8. 33 CFR 334.700 - Choctawhatchee Bay, aerial gunnery ranges, Air Proving Ground Center, Air Research and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... gunnery ranges, Air Proving Ground Center, Air Research and Development Command, Eglin Air Force Base, Fla... gunnery ranges, Air Proving Ground Center, Air Research and Development Command, Eglin Air Force Base, Fla... regulations in this section shall be enforced by the Commander, Air Proving Ground Center, Eglin AFB, and...

  9. 33 CFR 334.700 - Choctawhatchee Bay, aerial gunnery ranges, Air Proving Ground Center, Air Research and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... gunnery ranges, Air Proving Ground Center, Air Research and Development Command, Eglin Air Force Base, Fla... gunnery ranges, Air Proving Ground Center, Air Research and Development Command, Eglin Air Force Base, Fla... regulations in this section shall be enforced by the Commander, Air Proving Ground Center, Eglin AFB, and...

  10. Air quality research: perspective from climate change modelling research.

    PubMed

    Semazzi, Fredrick

    2003-06-01

    A major component of climate change is a manifestation of changes in air quality. This paper explores the question of air quality from the climate change modelling perspective. It reviews recent research advances on the cause-effect relationships between atmospheric air composition and climate change, primarily based on the Intergovernmental Panel on Climate Change (IPCC) assessment of climate change over the past decade. There is a growing degree of confidence that the warming world over the past century was caused by human-related changes in the composition of air. Reliability of projections of future climate change is highly dependent on future emission scenarios that have been identified that in turn depend on a multitude of complicated interacting social-economic factors. Anticipated improvements in the performance of climate models is a major source of optimism for better climate projections in the future, but the real benefits of its contribution will be closely coupled with other sources of uncertainty, and in particular emission projections.

  11. The first experiments in SST-1

    NASA Astrophysics Data System (ADS)

    Pradhan, S.; Khan, Z.; Tanna, V. L.; Sharma, A. N.; Doshi, K. J.; Prasad, U.; Masand, H.; Kumar, Aveg; Patel, K. B.; Bhandarkar, M. K.; Dhongde, J. R.; Shukla, B. K.; Mansuri, I. A.; Varadarajulu, A.; Khristi, Y. S.; Biswas, P.; Gupta, C. N.; Sharma, D. K.; Raval, D. C.; Srinivasan, R.; Pandya, S. P.; Atrey, P. K.; Sharma, P. K.; Patel, P. J.; Patel, H. S.; Santra, P.; Parekh, T. J.; Dhanani, K. R.; Paravastu, Y.; Pathan, F. S.; Chauhan, P. K.; Khan, M. S.; Tank, J. K.; Panchal, P. N.; Panchal, R. N.; Patel, R. J.; George, S.; Semwal, P.; Gupta, P.; Mahesuriya, G. I.; Sonara, D. P.; Jayswal, S. P.; Sharma, M.; Patel, J. C.; Varmora, P. P.; Patel, D. J.; Srikanth, G. L. N.; Christian, D. R.; Garg, A.; Bairagi, N.; Babu, G. R.; Panchal, A. G.; Vora, M. M.; Singh, A. K.; Sharma, R.; Raju, D.; Kulkarni, S. V.; Kumar, M.; Manchanda, R.; Joisa, S.; Tahiliani, K.; Pathak, S. K.; Patel, K. M.; Nimavat, H. D.; Shah, P. R.; Chudasma, H. H.; Raval, T. Y.; Sharma, A. L.; Ojha, A.; Parghi, B. R.; Banaudha, M.; Makwana, A. R.; Chowdhuri, M. B.; Ramaiya, N.; kumar, A.; Raval, J. V.; Gupta, S.; Purohit, S.; Kaur, R.; Adhiya, A. N.; Jha, R.; Kumar, S.; Nagora, U. C.; Siju, V.; Thomas, J.; Chaudhari, V. R.; Patel, K. G.; Ambulkar, K. K.; Dalakoti, S.; Virani, C. G.; Parmar, P. R.; Thakur, A. L.; Das, A.; Bora, D.; the SST-1 Team

    2015-10-01

    A steady state superconducting tokamak (SST-1) has been commissioned after the successful experimental and engineering validations of its critical sub-systems. During the ‘engineering validation phase’ of SST-1; the cryostat was demonstrated to be leak-tight in all operational scenarios, 80 K thermal shields were demonstrated to be uniformly cooled without regions of ‘thermal runaway and hot spots’, the superconducting toroidal field magnets were demonstrated to be cooled to their nominal operational conditions and charged up to 1.5 T of the field at the major radius. The engineering validations further demonstrated the assembled SST-1 machine shell to be a graded, stress-strain optimized and distributed thermo-mechanical device, apart from the integrated vacuum vessel being validated to be UHV compatible etc. Subsequently, ‘field error components’ in SST-1 were measured to be acceptable towards plasma discharges. A successful breakdown in SST-1 was obtained in SST-1 in June 2013 assisted with electron cyclotron pre-ionization in the second harmonic mode, thus marking the ‘first plasma’ in SST-1 and the arrival of SST-1 into the league of contemporary steady state devices. Subsequent to the first plasma, successful repeatable plasma start-ups with E ˜ 0.4 V m-1, and plasma current in excess of 70 kA for 400 ms assisted with electron cyclotron heating pre-ionization at a field of 1.5 T have so far been achieved in SST-1. Lengthening the plasma pulse duration with lower hybrid current drive, confinement and transport in SST-1 plasmas and magnetohydrodynamic activities typical to large aspect ratio SST-1 discharges are presently being investigated in SST-1. In parallel, SST-1 has uniquely demonstrated reliable cryo-stable high field operation of superconducting TF magnets in the two-phase cooling mode, operation of vapour-cooled current leads with cold gas instead of liquid helium and an order less dc joint resistance in superconducting magnet winding

  12. Research on Health and Environmental Effects of Air Quality

    EPA Pesticide Factsheets

    Research has linked regulated air pollutants such as ozone and particulate matter, to lung, heart disease and other health problems. Further investigation is needed to understand the role poor air quality plays on health and disease

  13. Research on Near Roadway and Other Near Source Air Pollution

    EPA Pesticide Factsheets

    Research has shown that living and working near sources of air pollution can lead to higher exposures to air contaminants many of which contribute to adverse health effects including reduced lung function, asthma, cardiovascular disease and premature death

  14. VENTILATION RESEARCH: A REVIEW OF RECENT INDOOR AIR QUALITY LITERATURE

    EPA Science Inventory

    The report gives results of a literature review, conducted to survey and summarize recent and ongoing engineering research into building ventilation, air exchange rate, pollutant distribution and dispersion, and other effects of heating, ventilation, and air-conditioning (HVAC) s...

  15. Experimental research on air propellers V

    NASA Technical Reports Server (NTRS)

    Durand, W F; Lesley, E P

    1923-01-01

    In previous reports on experimental research on air propellers, by W. F. Durand and E. P. Lesley, as contained in the National Advisory Committee for Aeronautics reports nos. 14, 30, and 64, the investigations were made progressively and each without reference to results given in preceding reports and covering only information relating to forms perhaps adjacent in geometrical form and proportion. This report is a review of the entire series of results of the preceding reports with a view of examining through graphical and other appropriate means the nature of the history of the characteristics of operation as related to the systematic variations in characteristics of forms, etc., through the series of such characteristics.

  16. Value of Bulk Heat Flux Parameterizations for Ocean SST Prediction

    DTIC Science & Technology

    2008-01-01

    Section 3 gives details of the OGCM used in this study. Section 4 presents SST results from an OGCM in relation to the bulk heat flux parameteriza- tion...HYCOM uses a penetrating solar radiation scheme (Kara ct al., 2005a) that accounts for spatial and temporal water turbidity (Kara et al.. 2005b,c...including air mixing ratio (i/.t), near-surface air temperature (’/],) (all of which arc 10 m above the sea surface), mixing ratio for sea water

  17. POLLUTION PREVENTION FOR CLEANER AIR: EPA'S AIR AND ENERGY ENGINEERING RESEARCH LABORATORY

    EPA Science Inventory

    The article discusses the role of EPA's Air and Energy Engineering Research Laboratory (AEERL) in pollution prevention research for cleaner air. For more than 20 years, AEERL has been conducting research to identify control approaches for the pollutants and sources which contribu...

  18. First Operational Results with the SST-1 Superconducting Magnet & its Cryogenics

    NASA Astrophysics Data System (ADS)

    Pradhan, S.; Tanna, V.; Sharma, A.; Khan, Z.; Prasad, U.; Doshi, K.; Khristi, Y.; Parghi, B.; Banoudha, M.; Mahesuria, G.; Patel, R.; Panchal, P.; Panchal, R.; Tank, J.; Sonara, D.; Sharma, D.; Vora, M.; Varadarajulu, A.

    The Steady State Superconducting Tokamak (SST-1) at the Institute for Plasma Research was commissioned in 2013 with the successful experimental validations of its magnets and cryogenic systems. Subsequently, the first plasma in SST-1 has been obtained on June 20, 2013. Since then, the cryo-magnetic systems of SST-1 have been operating reliably, in successive plasma campaigns. Unlike other contemporary cable-in-conduit-conductor (CICC) based superconducting Tokamak magnets, SST-1 CICC in Toroidal Field (TF) winding packs are cooled with two phase helium from a dedicated 1.3 kW helium refrigerator liquefier plant. The TF magnets in SST-1 together with other magnets have been supporting creditable plasma operational scenarios since then, with the TF magnets being charged up to a maximum of 2.0 T on the plasma major radius so far. The vapour cooled current leads of SST-1 are also uniquely operated with cooled helium vapour all along, instead of liquid helium being stored in the lower superconducting sections. The operational experiences with SST-1 TF magnets, PF magnets, and the supporting 5 K and 80 K cryogenic systems contributing towards successful operations of SST-1 plasma experiments are elaborated in this paper.

  19. How do the strength and type of ENSO affect SST predictability in coupled models

    PubMed Central

    Sohn, Soo-Jin; Tam, Chi-Yung; Jeong, Hye-In

    2016-01-01

    The effects of amplitude and type of the El Niño-Southern Oscillation (ENSO) on sea surface temperature (SST) predictability on a global scale were investigated, by examining historical climate forecasts for the period 1982–2006 from air-sea coupled seasonal prediction systems. Unlike in previous studies, SST predictability was evaluated in different phases of ENSO and for episodes with various strengths. Our results reveal that the seasonal mean Niño 3.4 index is well predicted in a multi-model ensemble (MME), even for four-month lead predictions. However, coupled models have particularly low skill in predicting the global SST pattern during weak ENSO events. During weak El Niño events, which are also El Niño Modoki in this period, a number of models fail to reproduce the associated tri-pole SST pattern over the tropical Pacific. During weak La Niña periods, SST signals in the MME tend to be less persistent than observations. Therefore, a good ENSO forecast does not guarantee a good SST prediction from a global perspective. The strength and type of ENSO need to be considered when inferring global SST and other climate impacts from model-predicted ENSO information. PMID:27650415

  20. Statistical Engineering in Air Traffic Management Research

    NASA Technical Reports Server (NTRS)

    Wilson, Sara R.

    2015-01-01

    NASA is working to develop an integrated set of advanced technologies to enable efficient arrival operations in high-density terminal airspace for the Next Generation Air Transportation System. This integrated arrival solution is being validated and verified in laboratories and transitioned to a field prototype for an operational demonstration at a major U.S. airport. Within NASA, this is a collaborative effort between Ames and Langley Research Centers involving a multi-year iterative experimentation process. Designing and analyzing a series of sequential batch computer simulations and human-in-the-loop experiments across multiple facilities and simulation environments involves a number of statistical challenges. Experiments conducted in separate laboratories typically have different limitations and constraints, and can take different approaches with respect to the fundamental principles of statistical design of experiments. This often makes it difficult to compare results from multiple experiments and incorporate findings into the next experiment in the series. A statistical engineering approach is being employed within this project to support risk-informed decision making and maximize the knowledge gained within the available resources. This presentation describes a statistical engineering case study from NASA, highlights statistical challenges, and discusses areas where existing statistical methodology is adapted and extended.

  1. Results of the air emission research study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Air quality was monitored in beef mono-slope barns. The objectives of the study were 1) to gather baseline data for the levels of gas emissions and particulate matter from beef mono-slope facilities, 2) evaluate the effect of two different manure handling systems on air quality, and 3) provide infor...

  2. AIR TOXICS MODELING RESEARCH PROGRAM: AN OVERVIEW

    EPA Science Inventory

    This product is a Microsoft Powerpoint slide presentation which was given at the joint EPA Region 3 - Mid-Atlantic Regional Air Management Association (MARAMA) Air Toxic Summit in Philadelphia, Pennsylvania held from October 18, 2005 through October 20, 2005. The slide presentat...

  3. Helical Explosive Flux Compression Generator Research at the Air Force Research Laboratory

    DTIC Science & Technology

    1999-06-01

    Air Force Research Laboratory Kirtland AFB...ORGANIZATION NAME(S) AND ADDRESS(ES) Directed Energy Directorate, Air Force Research Laboratory Kirtland AFB, NM 8. PERFORMING ORGANIZATION REPORT...in support of the Air Force Research Laboratory ( AFRL ) explosive pulsed power program. These include circuit codes such as Microcap and

  4. Research review: Indoor air quality control techniques

    SciTech Connect

    Fisk, W.J.

    1986-10-01

    Techniques for controlling the concentration of radon, formaldehyde, and combustion products in the indoor air are reviewed. The most effective techniques, which are generally based on limiting or reducing indoor pollutant source strengths, can decrease indoor pollutant concentrations by a factor of 3 to 10. Unless the initial ventilation rate is unusually low, it is difficult to reduce indoor pollutant concentrations more than approximately 50% by increasing the ventilation rate of an entire building. However, the efficiency of indoor pollutant control by ventilation can be enhanced through the use of local exhaust ventilation near concentrated sources of pollutants, by minimizing short circuiting of air from supply to exhaust when pollutant sources are dispersed and, in some situations, by promoting a displacement flow of air and pollutants toward the exhaust. Active air cleaning is also examined briefly. Filtration and electrostatic air cleaning for removal of particles from the indoor air are the most practical and effective currently available techniques of air cleaning. 49 refs., 7 figs.

  5. Tu-144LL SST Flying Laboratory in Flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Tupolev Tu-144LL supersonic flying laboratory shows off its sleek lines in a low-level pass over the Zhukovsky Air Development Center near Moscow, Russia, on a 1998 research flight. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different engines than were used in production

  6. Tu-144LL SST Flying Laboratory Being Towed Down Taxiway

    NASA Technical Reports Server (NTRS)

    1998-01-01

    With its giant delta wings drooping toward the ground, the Tupolev Tu-144LL is towed down a taxiway at the Zhukovsky Air Development Center near Moscow, Russia, in preparation for a high-speed research flight in 1998. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different engines

  7. Tu-144LL SST Flying Laboratory in Flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The delta wing of the Tupolev Tu-144LL supersonic flying laboratory is evident in this view from underneath the aircraft during a 1998 test flight at the Zhukovsky Air Development Center near Moscow, Russia. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different engines than were

  8. Air Force Deployment Reintegration Research: Implications for Leadership

    DTIC Science & Technology

    2007-11-02

    Air Force Deployment Reintegration Research: Implications for Leadership Wendy Sullivan-Kwantes Angela R. Febbraro Ann-Renee Blais...TITLE AND SUBTITLE Air Force Deployment Reintegration Research: Implications for Leadership 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 DRDC Toronto TR 2004-149 i Abstract Expanding on previous research on the reintegration

  9. Impacts of sea ice / SST changes for the observed climate change -GREENICE project-

    NASA Astrophysics Data System (ADS)

    Ogawa, Fumiaki; Gao, Yongqi; Keenlyside, Noel; Koenigk, Torben; Semenov, Vladimir; Suo, Lingling; Yang, Shuting; Wang, Tao

    2016-04-01

    Under the recent global warming, melting of arctic sea-ice in recent decades could have contributed to recent climate changes including its long-term trend and extreme weather events. While the climatic response to the sea-ice loss have been studied recently, it is still an open question to what extent the sea-ice change has influenced recent climate change. Other factors, such as for example, SST could also have had an influence. A main objective of GREENICE research project is to show what extent of the observed climate trend as well as observed weather extremes could be explained by the change and variability in sea ice and SST, respectively. In this project, we designed two atmospheric general circulation model experiments: In both experiments observed daily sea ice cover variations are prescribed, while for SST, one experiment uses observed daily variations and the other the observed climatology. The experiment is performed by several different state-of-the-art AGCMs. Our preliminary results show that the observed wintertime temperature trend near the surface is poorly reproduced in our hindcast experiments using observed SIC and SST. The impact of SIC variation seems to be confined near the surface, while SST variation seems a key for temperature trend above. It suggests a necessity to consider the atmospheric poleward energy transport associated with SST variation to understand the observed arctic amplification. Other aspects of SIC/SST impact on the observed circulation change such as NAO shall also be discussed.

  10. Committee on air pollution effects research: 40 years of UK air pollution.

    PubMed

    Fowler, David; Dise, Nancy; Sheppard, Lucy

    2016-01-01

    The UK Committee on Air Pollution Effects Research (CAPER) was established 40 years ago. This special section was compiled to mark this anniversary. During this time there have been dramatic changes in the composition of the air over the UK. The four papers in this special section of Environmental Pollution represent the current air pollution effects research focus on ozone and nitrogen deposition, two related issues and are proving from a policy perspective to be quite intractable issues. The UK CAPER research community continues to advance the underpinning science and engages closely with the user community in government departments.

  11. Joint University Program for Air Transportation Research, 1985

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1987-01-01

    Air transportation research being carried on at the Massachusetts Institute of Technology, Princeton University, and Ohio University is discussed. Global Positioning System experiments, Loran-C monitoring, inertial navigation, the optimization of aircraft trajectories through severe microbursts, fault tolerant flight control systems, and expert systems for air traffic control are among the topics covered.

  12. Relative roles of differential SST warming, uniform SST warming and land surface warming in determining the Walker circulation changes under global warming

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Li, Tim

    2016-04-01

    Most of CMIP5 models projected a weakened Walker circulation in tropical Pacific, but what causes such change is still an open question. By conducting idealized numerical simulations separating the effects of the spatially uniform sea surface temperature (SST) warming, extra land surface warming and differential SST warming, we demonstrate that the weakening of the Walker circulation is attributed to the western North Pacific (WNP) monsoon and South America land effects. The effect of the uniform SST warming is through so-called "richest-get-richer" mechanism. In response to a uniform surface warming, the WNP monsoon is enhanced by competing moisture with other large-scale convective branches. The strengthened WNP monsoon further induces surface westerlies in the equatorial western-central Pacific, weakening the Walker circulation. The increase of the greenhouse gases leads to a larger land surface warming than ocean surface. As a result, a greater thermal contrast occurs between American Continent and equatorial Pacific. The so-induced zonal pressure gradient anomaly forces low-level westerly anomalies over the equatorial eastern Pacific and weakens the Walker circulation. The differential SST warming also plays a role in driving low-level westerly anomalies over tropical Pacific. But such an effect involves a positive air-sea feedback that amplifies the weakening of both east-west SST gradient and Pacific trade winds.

  13. Relative roles of differential SST warming, uniform SST warming and land surface warming in determining the Walker circulation changes under global warming

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Li, Tim

    2017-02-01

    Most of CMIP5 models projected a weakened Walker circulation in tropical Pacific, but what causes such change is still an open question. By conducting idealized numerical simulations separating the effects of the spatially uniform sea surface temperature (SST) warming, extra land surface warming and differential SST warming, we demonstrate that the weakening of the Walker circulation is attributed to the western North Pacific (WNP) monsoon and South America land effects. The effect of the uniform SST warming is through so-called "richest-get-richer" mechanism. In response to a uniform surface warming, the WNP monsoon is enhanced by competing moisture with other large-scale convective branches. The strengthened WNP monsoon further induces surface westerlies in the equatorial western-central Pacific, weakening the Walker circulation. The increase of the greenhouse gases leads to a larger land surface warming than ocean surface. As a result, a greater thermal contrast occurs between American Continent and equatorial Pacific. The so-induced zonal pressure gradient anomaly forces low-level westerly anomalies over the equatorial eastern Pacific and weakens the Walker circulation. The differential SST warming also plays a role in driving low-level westerly anomalies over tropical Pacific. But such an effect involves a positive air-sea feedback that amplifies the weakening of both east-west SST gradient and Pacific trade winds.

  14. ORD Clean Air Research Program Review and Response

    EPA Pesticide Factsheets

    The objective of this review was to evaluate the relevance, quality, performance, scientific and managerial leadership, and outcomes of the Program and provide guidance and recommendations as to the progress and directions of the Clean Air Research Program

  15. Some current challenges in research on air pollution and health.

    PubMed

    Samet, Jonathan M

    2014-01-01

    This commentary addresses some of the diverse questions of current interest with regard to the health effects of air pollution, including exposure-response relationships, toxicity of inhaled particles and risks to health, multipollutant mixtures, traffic-related pollution, accountability research, and issues with susceptibility and vulnerability. It considers the challenges posed to researchers as they attempt to provide useful evidence for policy-makers relevant to these issues. This commentary accompanies papers giving the results from the ESCALA project, a multi-city study in Latin America that has an overall goal of providing policy-relevant results. While progress has been made in improving air quality, driven by epidemiological evidence that air pollution is adversely affecting public health, the research questions have become more subtle and challenging as levels of air pollution dropped. More research is still needed, but also novel methods and approaches to address these new questions.

  16. Is a staged SST the answer

    SciTech Connect

    Not Available

    1991-02-01

    Recent studies indicate that a staged supersonic transport concept offers several advantages over conventional SST configurations. A staged SST could be optimized for cruise flight and also would not be subject to the noise and runway-length constraints normally associated with a transport aircraft. The cumulative effect of the various weight saving factors is an appreciably lower launch/takeoff weight. Other advantages include the fact that a landing gear would not be required and the staged SST can be designed to low-speed criteria. These initial studies suggest that launch and recovery operations from another aircraft could be made feasible with the use of a 747 type aircraft as the support vehicle.

  17. Impact of SST resolution on cyclone activity over the Kuroshio

    NASA Astrophysics Data System (ADS)

    Iizuka, S.; Kawamura, R.

    2012-12-01

    The impact of high resolution sea surface temperature (SST) data on the winter time cyclone activity around Japan is investigated using a WRF model with a horizontal resolution of 20 km. A fine scale SST and a smoothed one of that SST are used as the lower boundary condition in the experiments. Generally, a fine scale SST is warmer in the south of the Polar Front over the Japan Sea, the Kuroshio/Oyashio extension, and the coastal regions around Japan comparing with the smoothed SST because the former resolves the small scale features in the SST related to ocean currents. In comparison, the smoothed SST weakened the simulated cyclones passing over the Kuroshio near the Ryukyu Islands. This may be due to the weaker surface baroclinicity associated with the smoothed SST. The similar features are found around the Polar Front over the Japan Sea. The results imply a potential impact of SST gradients on cyclone activity.

  18. Air Defense: A Computer Game for Research in Human Performance.

    DTIC Science & Technology

    1981-07-01

    AD-A102 725 NAVY PERSONNEL RESEARCH AND DEVELOPMENT CENTER SAN DETC F/6 5/10 AIR DEFENSE: A COMPUTER GAME FOR RESEARCH IN HUMAN PERFORMANCE.(U) JUL... RESEARCH IN HUMAN PERFORMANCE R ichard T. Kelly Frank L. Greitzer Ramon L. Hershman *i Reviewcd by . ,’. Kochler Released by James 1:. Kelly, Jr. Ccr ni ng...Oflicer Navy Personnel Research and 0evelopment Center San Diego, California 92152 UNCLASSIFED SECURITY CLASSIFICATION OF THIS PAGE (Whlen. Dole

  19. Air Force Research Laboratory Technology Milestones 2007

    DTIC Science & Technology

    2007-01-01

    Earpiece System, or ACCES®, under a Cooperative Research and Development Agreement with Westone Laboratories, Inc. The innovative technology improves...trained in creating impressions for the custom-molded earpieces . Often this meant contacting researchers at AFRL. With hundreds of sets of this product...the flyers’ ears. By integrating specialized electronics into custom-molded earpieces , ACCES allows wearers to experience clear audio communications

  20. The series of siemens SST-200 to SST-900 steam turbines in Russia

    NASA Astrophysics Data System (ADS)

    Kasilov, V. F.

    2015-04-01

    The chronology of cooperation between the transnational German concern Siemens and Russia is given. The designs of the SST-200-SST-900 series of industrial steam turbines for electrical capacities ranging from 10 to 180 MW that were installed at thermal power plants and industrial facilities of Russia in the period 2004-2014 are reviewed. The design features of the SST-600 steam turbine used as part of the PGU-200 combined-cycle plant installed at the Southwest cogeneration station are considered.

  1. Observed subseasonal variability of heat flux and the SST response of the tropical Indian Ocean

    NASA Astrophysics Data System (ADS)

    Raj Parampil, Sindu; Bharathraj, G. N.; Harrison, Matthew; Sengupta, Debasis

    2016-10-01

    We develop an experimental daily surface heat flux data set based on satellite observations to study subseasonal variability (periods shorter than 90 days) in the tropical Indian Ocean. We use incoming shortwave and longwave radiation from the International Satellite Cloud Climatology Project, and sea surface temperature (SST) from microwave sensors, to estimate net radiative flux. Latent and sensible heat fluxes are estimated from scatterometer winds and near-surface air temperature and specific humidity from Atmospheric Infrared Sounder (AIRS) observations calibrated to buoy data. Seasonal biases in net heat flux are generally within 10 W m-2 of estimates from moorings, and the phases and amplitudes of subseasonal variability of heat fluxes are realistic. We find that the contribution of subseasonal changes in air-sea humidity gradients to latent heat flux equals or exceeds the contribution of subseasonal changes in wind speed in all seasons. SST responds coherently to subseasonal oscillations of net heat flux associated with active and suppressed phases of atmospheric convection in the summer hemisphere. Thus, subseasonal SST changes are mainly forced by heat flux in the northeast Indian Ocean in northern summer, and in the 15°S-5°N latitude belt in southern summer. In the winter hemisphere, subseasonal SST changes are not a one-dimensional response to heat flux, implying that they are mainly due to oceanic advection, entrainment, or vertical mixing. The coherent evolution of subseasonal SST variability and surface heat flux suggests active coupling between SST and large-scale, organized tropical convection in the summer season.

  2. Joint University Program for Air Transportation Research, 1982

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A summary of the research on air transportation is addressed including navigation; guidance, control and display concepts; and hardware, with special emphasis on applications to general aviation aircraft. Completed works and status reports are presented also included are annotated bibliographies of all published research sponsored on these grants since 1972.

  3. NAS Report Reveals Dangers From SST

    ERIC Educational Resources Information Center

    Fowler, Jo Ann V.

    1973-01-01

    Reported are some harmful effects of supersonic travel on humans and other living organisms. Slight decreases in ozone concentration as a result of emissions from the SST aircrafts reduce absorption of ultraviolet radiation. Effects of this may include skin cancer, distort balance of activity in cells and have a deleterious effect on insects and…

  4. Air Force Research Laboratory’s 2006 Technology Milestones

    DTIC Science & Technology

    2006-01-01

    suitable for the SOFC , permits the use of a reliable and easily operated fuel cell power system as an alternative to current mobile electric power (MEP...transfer, or technical achievement AFRL Technologies Air Force Office of Scientific Research (AFOSR) Mission Statement: AFOSR orchestrates the Air Force...and Microsystems Boundary Layers and Hypersonics Unsteady and Rotating Flows Combustion and Diagnostics Space Power and Propulsion Metallic Materials

  5. United States Air Force Summer Research Program -- 1993. Volume 13. Phillips Laboratory

    DTIC Science & Technology

    1993-12-01

    Research Kirtland Air Force Base, Albuquerque, NM August 1993 14-1 My Summer Apprenticeship At Kirtland Air Force Base, Phillips Laboratory Andrea Garcia...AFOSR Summer Research Program Phillips Laboratory Sponsored By: Air Force Office of Scientific Research Kirtland Air Force Base, Albuquerque, NM... Phillips Laboratory Sponsored by: Air

  6. Air Force Cambridge Research Laboratories balloon operations

    NASA Technical Reports Server (NTRS)

    Danaher, T. J.

    1974-01-01

    The establishment and functions of the AFCRL balloon operations facility are discussed. The types of research work conducted by the facility are defined. The facilities which support the balloon programs are described. The free balloon and tethered balloon capabilities are analyzed.

  7. Air Force Office of Scientific Research Overview

    DTIC Science & Technology

    2005-12-06

    compounds • Biomimetics: Examining morphology and physiology associated with infrared detection in pit vipers and pythons • Potential room-temperature IR...Nanoscience Initiatives: Taiwan & Korea – Leveraging Asia’s $1 Billion Nano-science Investment – Research Areas Include: Quantum Dots, Polymer ...Sciences • All-Nitrogen Propellants • Theoretical Chemistry • Polymer Chemistry • Biomimetic Sensors • Chronobiology and Neural Adaptation • Information

  8. Is the air pollution health research community prepared to support a multipollutant air quality management framework?

    PubMed

    Mauderly, Joe L; Burnett, Richard T; Castillejos, Margarita; Ozkaynak, Halûk; Samet, Jonathan M; Stieb, David M; Vedal, Sverre; Wyzga, Ronald E

    2010-06-01

    Ambient air pollution is always encountered as a complex mixture, but past regulatory and research strategies largely focused on single pollutants, pollutant classes, and sources one-at-a-time. There is a trend toward managing air quality in a progressively "multipollutant" manner, with the idealized goal of controlling as many air contaminants as possible in an integrated manner to achieve the greatest total reduction of adverse health and environmental impacts. This commentary considers the current ability of the environmental air pollution exposure and health research communities to provide evidence to inform the development of multipollutant air quality management strategies and assess their effectiveness. The commentary is not a literature review, but a summary of key issues and information gaps, strategies for filling the gaps, and realistic expectations for progress that could be made during the next decade. The greatest need is for researchers and sponsors to address air quality health impacts from a truly multipollutant perspective, and the most limiting current information gap is knowledge of personal exposures of different subpopulations, considering activities and microenvironments. Emphasis is needed on clarifying the roles of a broader range of pollutants and their combinations in a more forward-looking manner; that is not driven by current regulatory structures. Although advances in research tools and outcome data will enhance progress, the greater need is to direct existing capabilities toward strategies aimed at placing into proper context the contributions of multiple pollutants and their combinations to the health burdens, and the relative contributions of pollutants and other factors influencing the same outcomes. The authors conclude that the research community has very limited ability to advise multipollutant air quality management and assess its effectiveness at this time, but that considerable progress can be made in a decade, even at

  9. Joint University Program for Air Transportation Research, 1989-1990

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1990-01-01

    Research conducted during the academic year 1989-90 under the NASA/FAA sponsored Joint University Program for Air Transportation research is discussed. Completed works, status reports and annotated bibliographies are presented for research topics, which include navigation, guidance and control theory and practice, aircraft performance, human factors, and expert systems concepts applied to airport operations. An overview of the year's activities for each university is also presented.

  10. Air Force research in human sensory feedback for telepresence

    NASA Technical Reports Server (NTRS)

    Julian, Ronald G.

    1993-01-01

    Telepresence operations require high quality information transfer between the human master and the remotely located slave. Present Air Force research focuses on the human aspects of the information needed to complete the control/feedback loop. Work in three key areas of human sensory feedback for manipulation of objects are described. Specific projects in each key area are outlined, including research tools (hardware), planned research, and test results. Nonmanipulative feedback technologies are mentioned to complete the advanced teleoperation discussions.

  11. Joint University Program for Air Transportation Research, 1986

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1988-01-01

    The research conducted under the NASA/FAA sponsored Joint University Program for Air Transportation Research is summarized. The Joint University Program is a coordinated set of three grants sponsored by NASA and the FAA, one each with the Mass. Inst. of Tech., Ohio Univ., and Princeton Univ. Completed works, status reports, and bibliographies are presented for research topics, which include computer science, guidance and control theory and practice, aircraft performance, flight dynamics, and applied experimental psychology. An overview of activities is presented.

  12. Future directions in air quality research: economic issues.

    PubMed

    Adams, Richard M; Horst, Robert L

    2003-06-01

    Our challenge was to address future directions in air quality research that involve economic issues. The paper outlines the role of economics in the evaluation of air pollution impacts on environmental systems and describes existing research. We identify studies that address economic effects in the agricultural sector, in the commercial forest sector, and in unmanaged natural systems. Effects related to ozone exposure are highlighted. The summary of available research is followed by a discussion of research recommendations. Several short-term recommendations are identified that can augment some of the new research being considered by scientists. A more ambitious, long-term research project is outlined for valuing air pollution impacts in unmanaged natural environments. Specifically, the paper describes possible advantages of an 'integrated assessment' framework that more formally brings together the complex relationships that exist in both ecological and economic systems. A final section contains thoughts on the importance of education (i.e., information transfer) in the research process, especially in relation to policy. It is further noted that education should be inclusive of all members of the research team, throughout all stages of the research process.

  13. Air Quality Research and Applications Using AURA OMi Data

    NASA Technical Reports Server (NTRS)

    Bhartia, P.K.; Gleason, J.F.; Torres, O.; Levelt, P.; Liu, X.; Ziemke, J.; Chandra, S.; Krotkov, N.

    2007-01-01

    The Ozone Monitoring Instrument (OMI) on EOS Aura is a new generation of satellite remote sensing instrument designed to measure trace gas and aerosol absorption at the UV and blue wavelengths. These measurements are made globally at urban scale resolution with no inter-orbital gaps that make them potentially very useful for air quality research, such as the determination of the sources and processes that affect global and regional air quality, and to develop applications such as air quality forecast. However, the use of satellite data for such applications is not as straight forward as satellite data have been for stratospheric research. There is a need for close interaction between the satellite product developers, in-situ measurement programs, and the air quality research community to overcome some of the inherent difficulties in interpreting data from satellite-based remote sensing instruments. In this talk we will discuss the challenges and opportunities in using OMI products for air quality research and applications. A key conclusion of this work is that to realize the full potential of OMI measurements it will be necessary to combine OMI data with data from instruments such as MLS, MODIS, AIRS, and CALIPSO that are currently flying in the "A-train" satellite constellation. In addition similar data taken by satellites crossing the earth at different local times than the A-train (e.g., the recently MetOp satellite) would need to be processed in a consistent manner to study diurnal variability, and to capture the effects on air quality of rapidly changing events such as wild fires.

  14. Test results on systems developed for the SST-1 tokamak

    NASA Astrophysics Data System (ADS)

    Bora, D.; SST-1 Team

    2003-12-01

    The steady state superconducting tokamak (SST-1) is a large aspect ratio tokamak, configured to run double null diverted plasmas with significant elongation (kgr) and triangularity (dgr). Superconducting (SC) magnets are deployed for both the toroidal and poloidal field coils in SST-1. A NbTi based cable-in-conduit conductor (CICC) has been fabricated by M/S Hitachi Cables Ltd., Japan under specification and supervision of the Institute for Plasma Research (IPR). The suitability of this CICC for the SST-1 magnets has been validated through test carried out on a model coil wound from this CICC. Toroidal and poloidal SC magnets have been fabricated and factory acceptance tests have been performed. SC magnets require liquid helium (LHe) cooled current leads, electrical isolators at LHe temperature, superconducting bus bars and LHe transfer lines. Full scale prototypes of these have been developed and tested successfully. SC magnets will be cooled to 4.5 K by forced flow of supercritical helium through the CICC. A 1 kW grade liquefier/refrigerator has been installed and is in final stages of commissioning at IPR. SST-1 deploys a fully welded ultra high vacuum vessel, made up of 16 vessel sectors (VSs) having ports and 16 rings with {\\sf D} -shaped cross-section. To establish the fabrication methodology for this, a fullscale prototype of the vessel with two VSs and three rings has been fabricated and tested successfully. Based on this the fabrication of the VSs and rings is in final stage of fabrication. Liquid nitrogen cooled radiation shield are deployed between the vacuum vessel and SC magnets as well as SC magnets and cryostat, to minimize the radiation losses at the SC magnets. SST-1 will have three different high power radio frequency systems to additionally heat and non-inductively drive plasma current to sustain the plasma in steady state for a duration of up to 1000 s. Ion cyclotron resonance frequency (ICRF) and electron cyclotron resonance frequency (ECRF

  15. SST variability in the East Asian marginal sea: mechanisms for local and remote atmospheric impacts

    NASA Astrophysics Data System (ADS)

    Seo, H.

    2015-12-01

    The Japan/East Sea (JES), a part of East Asian Marginal Seas, is a semi-enclosed sea located upstream of the North Pacific storm track. SST variability in the JES and the ensuing air-sea process are important for local winter atmospheric condition. It is believed that the marginal sea processes also influence the storm track evolution far downstream. Dynamical processes leading to local and remote atmospheric circulation response to leading JES SST anomaly patterns are investigated using a hemispheric WRF atmospheric model with two-way multi-nesting capabilities. The atmospheric circulation in direct contact with anomalous diabatic forcing exhibits a linear baroclinic response with respect to sign of SST anomalies; that is, the northwesterly surface wind is strengthened (weakened) and the local precipitin is enhanced (reduced) over the warm (cold) SSTs. The linearity of the local response confirms the importance of fine-scale SST patterns to the predictability of regional weather and climate conditions. The downstream response, in contrast, is nonlinear, with an enhanced intraseasonal equivalent barotropic ridge emerging in the Gulf of Alaska irrespective of the polarity of JES SST anomalies. This downstream blocking high response is maintained by the positive low-frequency height tendency due to transient eddy vorticity flux convergence associated with altered storm track. The significant remote response in the North Pacific storm track and the blocking suggests that the marginal sea process is an active part of the North Pacific climate variability.

  16. The modeled atmospheric and oceanic response to the South China Sea SST anomaly

    NASA Astrophysics Data System (ADS)

    Zhu, Xiande; Wu, Lixin; Zhou, Jun; Gao, Jianjun

    2016-10-01

    The sensitivity of the global atmospheric and oceanic response to sea surface temperature anomaly (SSTA) throughout the South China Sea (SCS) is investigated using the Fast Ocean-Atmosphere Model (FOAM). Forced by a warming SST, the experiment explicitly demonstrates that the responses of surface air temperature (SAT) and SST exhibit positive anomalous center over SCS and negative anomalous center over the Northern Pacific Ocean (NPO). The atmospheric response to the warm SST anomalies is characterized by a barotropical anomaly in middle-latitude, leading to a weak subtropical high in summer and a weak Aleutian low in winter. Accordingly, Indian monsoon and eastern Asian monsoon strengthen in summer but weaken in winter as a result of wind convergence owing to the warm SST. It is worth noting that the abnormal signals propagate poleward and eastward away in the form of Rossby Waves from the forcing region, which induces high pressure anomaly. Owing to action of the wind-driven circulation, an anomalous anti-cyclonic circulation is induced with a primary southward current in the upper ocean. An obvious cooling appears over the North Pacific, which can be explained by anomalous meridional cold advection and mixing as shown in the analysises of heat budget and other factors that affect SST.

  17. Boreal winter Arctic Oscillation as an indicator of summer SST anomalies over the western tropical Indian Ocean

    NASA Astrophysics Data System (ADS)

    Gong, Dao-Yi; Guo, Dong; Gao, Yongqi; Yang, Jing; Mao, Rui; Qu, Jingxuan; Gao, Miaoni; Li, Sang; Kim, Seong-Joong

    2016-06-01

    The inter-annual relationship between the boreal winter Arctic Oscillation (AO) and summer sea surface temperature (SST) over the western tropical Indian Ocean (TIO) for the period from 1979 to 2015 is investigated. The results show that the January-February-March AO is significantly correlated with the June-July-August SST and SST tendency. When both El Niño/Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) variance are excluded, the winter AO is significantly correlated with the regional mean SST of the western TIO (40° -60° E and 10° S-10° N), r=0.71 . The multi-month SST tendency, i.e., the SST difference of June-July-August minus April-May, is correlated with the winter AO at r=0.75 . Composite analysis indicates similar warming over the western TIO. Two statistical models are established to predict the subsequent summer's SST and SST tendency. The models use the winter AO, the winter ENSO and the autumn-winter IOD indexes as predictors and explain 65 and 62 % of the variance of the subsequent summer's SST and SST tendency, respectively. Investigation of the regional air-sea fluxes and oceanic dynamics reveals that the net surface heat flux cannot account for the warming, whereas the oceanic Rossby wave plays a predominant role. During positive AO winters, the enhanced Arabian High causes stronger northern winds in the northern Indian Ocean and leads to anomalous cross-equatorial air-flow. The Ekman pumping in association with the anomalous wind stress curl in the central TIO generates a significantly deeper thermocline and above-normal sea surface height at 60° -75° E and 5° -10° S. The winter AO-forced Rossby wave propagates westward and arrives at the western coast in summer, resulting in the significant SST increase. Forced by the observed winter AO-related wind stress anomalies over the Indian Ocean, the ocean model reasonably reproduces the Rossby wave as well as the resulting surface ocean warming over the western TIO in the

  18. Status Report [Air Pollution Research Advisory Committee of the Coordinating Research Council].

    ERIC Educational Resources Information Center

    Coordinating Research Council, New York, NY. Air Pollution Research Advisory Committee.

    Research projects sponsored by the Coordinating Research Council, Air Pollution Research Advisory Committee, and dealing with vehicle emissions and their wide ranging effects on the environment are compiled in this status report. Spanning the range of problems associated with reducing emissions, they are divided into three main areas of research:…

  19. Architectural Design for European SST System

    NASA Astrophysics Data System (ADS)

    Utzmann, Jens; Wagner, Axel; Blanchet, Guillaume; Assemat, Francois; Vial, Sophie; Dehecq, Bernard; Fernandez Sanchez, Jaime; Garcia Espinosa, Jose Ramon; Agueda Mate, Alberto; Bartsch, Guido; Schildknecht, Thomas; Lindman, Niklas; Fletcher, Emmet; Martin, Luis; Moulin, Serge

    2013-08-01

    The paper presents the results of a detailed design, evaluation and trade-off of a potential European Space Surveillance and Tracking (SST) system architecture. The results have been produced in study phase 1 of the on-going "CO-II SSA Architectural Design" project performed by the Astrium consortium as part of ESA's Space Situational Awareness Programme and are the baseline for further detailing and consolidation in study phase 2. The sensor network is comprised of both ground- and space-based assets and aims at being fully compliant with the ESA SST System Requirements. The proposed ground sensors include a surveillance radar, an optical surveillance system and a tracking network (radar and optical). A space-based telescope system provides significant performance and robustness for the surveillance and tracking of beyond-LEO target objects.

  20. Joint University Program for Air Transportation Research, 1991-1992

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1993-01-01

    This report summarizes the research conducted during the academic year 1991-1992 under the FAA/NASA sponsored Joint University Program for Air Transportation Research. The year end review was held at Ohio University, Athens, Ohio, June 18-19, 1992. The Joint University Program is a coordinated set of three grants sponsored by the Federal Aviation Administration and NASA Langley Research Center, one each with the Massachusetts Institute of Technology (NGL-22-009-640), Ohio University (NGR-36-009-017), and Princeton University (NGL-31-001-252). Completed works, status reports, and annotated bibliographies are presented for research topics, which include navigation, guidance and control theory and practice, intelligent flight control, flight dynamics, human factors, and air traffic control processes. An overview of the year's activities for each university is also presented.

  1. Air Force Research Initiation Program. 1986 Technical Report. Volume 3

    DTIC Science & Technology

    1988-04-01

    at Orono Jackson State University Specialty: Mathematical Statistics Specialty: Educational Psychology WILFORD HALL MEDICAL CENTER (Lackland Air Force...had a considerable 71-5 practical experience in applied research , administration, teaching and pedagogy, athletics and coaching, psychology , and...of facts and the frontier method preferred for procedural skills that have prerequisite relations. Second , once a topic, or more particularly a

  2. Joint University Program for Air Transportation Research, 1984

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1987-01-01

    The research conducted during 1984 under the NASA/FAA sponsored Joint University Program for Air Transportation Research is summarized. The Joint University Program is a coordinated set of three grants sponsored by NASA Langley Research Center and the Federal Aviation Administration, one each with the Massachusetts Institute of Technology, Ohio University, and Princeton University. Completed works, status reports, and bibliographies are presented for research topics, which include navigation, guidance, control and display concepts. An overview of the year's activities for each of the schools is also presented.

  3. Joint University Program for Air Transportation Research, 1988-1989

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1990-01-01

    The research conducted during 1988 to 1989 under the NASA/FAA-sponsored Joint University Program for Air Transportation Research is summarized. The Joint University Program is a coordinated set of three grants sponsored by NASA Langley Research Center and the Federal Aviation Administration, one each with the Massachusetts Institute of Technology, Ohio University, and Princeton University. Completed works, status reports, and annotated bibliographies are presented for research topics, which include computer science, guidance and control theory and practice, aircraft performance, flight dynamics, and applied experimental psychology. An overview of the year's activities for each university is also presented.

  4. Joint University Program for Air Transportation Research, 1983

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1987-01-01

    The research conducted during 1983 under the NASA/FAA sponsored Joint University Program for Air Transportation Research is summarized. The material was presented at a conference held at the Federal Aviation Administration Technical Center, Altantic City, New Jersey, December 16, 1983. The Joint University Program is a coordinated set of three grants sponsored by NASA Langley Research Center and the Federal Aviation Administration, one each with the Massachusetts Institute of Technology, Ohio University, and Princeton University. Completed works, status reports, and bibliographies are presented for research topics, which include navigation, guidance, control, and display concepts. An overview of the year's activities for each of the universities is also presented.

  5. Cyclotron resonance heating systems for SST-1

    NASA Astrophysics Data System (ADS)

    Bora, D.; Kumar, Sunil; Singh, Raj; Sathyanarayana, K.; Kulkarni, S. V.; Mukherjee, A.; Shukla, B. K.; Singh, J. P.; Srinivas, Y. S. S.; Khilar, P.; Kushwah, M.; Kumar, Rajnish; Sugandhi, R.; Chattopadhyay, P.; Raghuraj, Singh; Jadav, H. M.; Kadia, B.; Singh, Manoj; Babu, Rajan; Jatin, P.; Agrajit, G.; Biswas, P.; Bhardwaj, A.; Rathi, D.; Siju, G.; Parmar, K.; Varia, A.; Dani, S.; Pragnesh, D.; Virani, C.; Patel, Harsida; Dharmesh, P.; Makwana, A. R.; Kirit, P.; Harsha, M.; Soni, J.; Yadav, V.; Bhattacharya, D. S.; Shmelev, M.; Belousov, V.; Kurbatov, V.; Belov, Yu.; Tai, E.

    2006-03-01

    RF systems in the ion cyclotron resonance frequency (ICRF) range and electron cyclotron resonance frequency (ECRF) range are in an advanced stage of commissioning, to carry out pre-ionization, breakdown, heating and current drive experiments on the steady-state superconducting tokamak SST-1. Initially the 1.5 MW continuous wave ICRF system would be used to heat the SST-1 plasma to 1.0 keV during a pulse length of 1000 s. For different heating scenarios at 1.5 and 3.0 T, a wide band of operating frequencies (20-92 MHz) is required. To meet this requirement two CW 1.5 MW rf generators are being developed in-house. A pressurized as well as vacuum transmission line and launcher for the SST-1-ICRF system has been commissioned and tested successfully. A gyrotron for the 82.6 GHz ECRF system has been tested for a 200 kW/1000 s operation on a water dummy load with 17% duty cycle. High power tests of the transmission line have been carried out and the burn pattern at the exit of transmission line shows a gaussian nature. Launchers used to focus and steer the microwave beam in plasma volume are characterized by a low power microwave source and tested for UHV compatibility. Long pulse operation has been made feasible by actively cooling both the systems. In this paper detailed test results and the present status of both the systems are reported.

  6. Looking back and looking forwards: Historical and future trends in sea surface temperature (SST) in the Indo-Pacific region from 1982 to 2100

    NASA Astrophysics Data System (ADS)

    Khalil, Idham; Atkinson, Peter M.; Challenor, Peter

    2016-03-01

    The ocean warming trend is a well-known global phenomenon. As early as 2001, and then reiterated in 2007, the Intergovernmental Panel on Climate Change (IPCC) reported that the global average sea surface temperature (SST) will increase by about 0.2 °C per decade. To date, however, only a limited number of studies have been published reporting the spatio-temporal trends in SST in the Indo-Pacific region, one the richest marine ecosystems on Earth. In this research, the monthly 1° spatial resolution NOAA Optimum Interpolation (OI) sea surface temperature (SST) V2 dataset (OISSTv2) derived from measurements made by the Advanced Very High Resolution Radiometer (AVHRR) and in situ measurements, were used to examine the spatio-temporal trends in SST in the region. The multi-model mean SST from the Representative Concentration Pathways (RCP2.6) mitigation scenario of the Coupled Model Intercomparison Project Phase 5 (CMIP5) was also used to forecast future SST from 2020 to 2100, decadally. Three variables from the OISSTv2, namely maximum (MaxSST), mean (MeanSST) and minimum (MinSST) monthly mean SST, were regressed against time measured in months from 1982 to 2010 using linear regression. Results revealed warming trends detected for all three SST variables. In the Coral Triangle a warming trend with a rate of 0.013 °C year-1, 0.017 °C year-1, and 0.019 °C year-1 was detected over 29 years for MaxSST, MeanSST and MinSST, respectively. In the SCS, the warming rate was 0.011 °C year-1, (MaxSST), 0.012 °C year-1 (MeanSST) and 0.015 °C year-1 (MinSST) over 29 years. The CMIP5 RCP2.6 forecast suggested a future warming rate to 2100 of 0.004 °C year-1 for both areas, and for all three SST variables. The warming trends reported in this study provide useful insights for improved marine-related management.

  7. O the Genesis of Anomalous SST and Rainfall Patterns Over the Tropical Atlantic Basin

    NASA Astrophysics Data System (ADS)

    Nobre, Paulo

    Empirical orthogonal functions (EOFs), correlation, and composite analyses are used to investigate the evolution of phenomena associated with sea surface temperature (SST) and rainfall variability over the tropical Atlantic. The most important findings in this research are as follows. 1. The well known droughts over northeastern Brazil (Nordeste) are a local manifestation of a much larger -scale anomalies pattern encompassing the whole equatorial Atlantic and Amazon region. 2. The large-scale dipole-like anomalous rainfall pattern over the equatorial Atlantic and Amazon in March, April, and May (MAM), which is the rainy season for Nordeste region, is a consequence of meridional displacements of the inter-tropical convergence zone (ITCZ). In particular, negative rainfall anomalies to the south of the equator during MAM are related to an early withdrawal of ITCZ towards the warm SST anomalies over the northern tropical Atlantic. Concurrent with the rainfall anomaly dipole, there are large-scale patterns of SST and wind stress over the tropical Atlantic Ocean which also show a prominent dipole-like structure. The dipole patterns of SST and surface wind stress are the most dominant mode of interannual variability. Weaker trade winds are associated with warmer SST; stronger trade winds with cooler SST. 3. The spatial structure of (dipole-like) anomalous SST, rainfall and surface wind stress during MAM are clearly a modulation of the annual cycle for that season. The similarity between the patterns of interannual variability and MAM seasonal anomalies (departure from the annual mean) is quite remarkable. 4. Previous work has suggested the direct influence of the El Nino/Southern Oscillation (ENSO) on the southern Atlantic. This study brings observational evidence that ENSO effect over the northern Atlantic may happen through teleconnection patterns into higher latitudes of the Northern Hemisphere. The teleconnection effects over the northern Atlantic are out of phase

  8. Preclinical antitumor activity of SST0116CL1: a novel heat shock protein 90 inhibitor.

    PubMed

    Vesci, Loredana; Milazzo, Ferdinando Maria; Carollo, Valeria; Pace, Silvia; Giannini, Giuseppe

    2014-10-01

    4-Amino substituted resorcino-isoxazole (SST0116CL1) (property of Sigma-Tau Research Switzerland S.A.) is a potent, second generation, small-molecule heat shock protein 90 inhibitor (Hsp90i). SST0116CL1 binds to the ATP binding pocket of Hsp90, and interferes with Hsp90 chaperone function thus resulting in client protein degradation and tumor growth inhibition. The aim of the study was to assess SST0116CL1 in various solid and haematological tumors. The antitumor properties of SST0116CL1 were assessed using in vitro cell proliferation and client protein degradation assays and in vivo different tumor xenograft models. Pharmacokinetic (PK) data were also generated in tumor-bearing mice to gain an understanding of optimal dosing schedules and regimens. SST0116CL1 was shown to inhibit recombinant Hsp90α and to induce the destabilization of different client proteins, often overexpressed and constitutively activated in different types of hematological or solid human tumors. In preclinical in vivo studies, it was revealed to induce antitumor effects in murine models of leukemia and of gastric and ovarian carcinoma. A modulation of PD biomarkers in terms of downregulation of Hsp90 client proteins in tumor-bearing mice was found. SST0116CL1 is a new clinical candidate for cancer therapy. The antitumor property of SST0116CL1, likely due to direct inhibition of the Hsp90 enzymatic activity, may prove to be a critical attribute as the compound enters phase I clinical trials.

  9. Joint University Program for Air Transportation Research, 1987

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1989-01-01

    The research conducted during 1987 under the NASA/FAA sponsored Joint University Program for Air Transportation Research is summarized. The Joint University Program is a coordinated set of 3 grants sponsored by NASA-Langley and the FAA, one each with the MIT, Ohio Univ., and Princeton Univ. Completed works, status reports, and annotated bibliographies are presented for research topics, which include computer science, guidance and control theory and practice, aircraft performance, flight dynamics, and applied experimental psychology. An overview of the year's activities for each university is also presented.

  10. Summer SST anomalies in the Indian Ocean and the seasonal timing of ENSO decay phase

    NASA Astrophysics Data System (ADS)

    Ren, Rongcai; Sun, Shuyue; Yang, Yang; Li, Qian

    2016-09-01

    ENSO affects the tropical Indian Ocean (TIO) SST in winter-spring in ENSO decay years through an ENSO-induced `atmospheric-bridge' and subsequent air-sea coupling processes. The interdecadal delay of El Niño decay phase has been related to a warming change in the summer TIO since 1970s. A physical linkage between the summer SST anomalies over the TIO and the timing of ENSO decay phase is however still unclear. This study uses multi-source data to distinguish `later-decay' from `normal-decay' El Niño/La Niña events, and performs diagnostic analysis of the changes in various thermodynamic and dynamic processes due to later-decay ENSO for quantifying the partial contribution by each of these processes to the summer SST changes over the TIO. The results show that, at both the interannual and interdecadal timescales, the significant warmer and colder SST anomalies in the spring TIO in later-decay El Niño and La Niña years respectively can persist into summer. Most of the ENSO-induced atmospheric-bridge-related processes contribute positively to the TIO SST changes in summer due to later-decay of ENSO, as they do in spring during normal-delay ENSO year. The exceptions are the surface wind-evaporation-mechanism and sensible heat-flux anomalies in summer, which always contribute negatively to the summer SST anomalies over most parts of the TIO. The negative contributions from these two processes in summer exist no matter whether there is a weakening or strengthening surface wind due to later-decay of ENSO events. Generally, the presence of five later-decay El Niño events after the 1970s is mainly responsible for the observed interdecadal summer TIO warming in recent decades.

  11. DURIP: Fast Oscilloscope and Detectors for Air Laser Research

    DTIC Science & Technology

    2015-01-01

    Approved for public release; distribution is unlimited.       DURIP: Fast Oscilloscope and Detectors for Air Laser Research Office of...1. Type of equipment The equipment purchased under this DURIP provides the capability to detect in real time events on very fast time scales, as...low as 10 picoseconds. Fast real-time oscilloscopes and fast detectors were needed for this purpose. 2. Manufacturer of equipment and model number

  12. Air Force Personnel Research Issues: A Manager’s Handbook

    DTIC Science & Technology

    2007-09-01

    Personality In the late 1950’s, a landmark study by researchers at the Air Force Human Resources Laboratory, Dr. Ernest Tupes and Dr. Raymond Christal ...The Tupes and Christal study used peer ratings to assess 35 personality traits that were considered to be representative of the personality...Independent-Minded. 110 In 1993, Dr. Christal developed a computerized Self Description Inventory (SDI) to measure the Five-Factor Model

  13. Laser simulation at the Air Force Research Laboratory

    NASA Astrophysics Data System (ADS)

    Grosek, Jacob; Naderi, Shadi; Oliker, Benjamin; Lane, Ryan; Dajani, Iyad; Madden, Timothy

    2017-01-01

    The physics of high brightness, high-power lasers present a variety of challenges with respect to simulation. The Air Force Research Laboratory is developing high-fidelity models for Yb-doped, Tm-doped, and Raman fiber amplifiers, hollow-core optical fiber gas lasers, and diode pumped alkali lasers. The approach to simulation and the physics specific to each laser technology are described, along with highlights of results, and relevant modeling considerations and limitations.

  14. Environmental Assessment for Air Force Research Laboratory Space Vehicles Integrated Experiments Division Office Space at Kirtland Air Force Base, Albuquerque, New Mexico

    DTIC Science & Technology

    2005-06-01

    AIR FORCE RESEARCH LABORATORY SPACE VEHICLES INTEGRATED EXPERMENTS DIVISION OFFICE SPACE AT KIRTLAND AIR FORCE ... Kirtland Air Force Base (KAFB). The office building would house the Air Force Research Laboratory Space Vehicles Integrated Experiments Division...ADDRESS(ES) Air Force Research Laboratory ,Space Vehicles Directorate,3550 Aberdeen Ave. SE, Kirtland

  15. United States Air Force Summer Research Program -- 1993. Volume 8. Phillips Laboratory

    DTIC Science & Technology

    1993-12-01

    Research Program Phillips Laboratory Kirtland Air Force Base Albuquerque. New Mexico Sponsored by...Best Available Copy UNITED STATES AIR FORCE SUMMER RESEARCH PROGRAM -- 1993 SUMMER RESEARCH PROGRAM FINAL REPORTS VOLUME 8 PHILLIPS LABORATORY ...Alabama Box 870344 Tuscaloosa, AL 35487-0344 Final Report for: Graduate Student Research Program Phillips Laboratory , Hanscom AFB Sponsored by: Air

  16. Air Force Research Laboratory Sensors Directorate Leadership Legacy, 1960-2011

    DTIC Science & Technology

    2011-03-01

    AFRL -RY-WP-TM-2011-1017 AIR FORCE RESEARCH LABORATORY SENSORS DIRECTORATE LEADERSHIP LEGACY, 1960-2011 Compiled by Raymond C. Rang...Structures Divi- sion, Space Vehicles Directorate, Air Force Research Laboratory , Kirtland AFB, N.M. 7. March 1998 - July 1999, Chief, Integration and... Research Laboratory ( AFRL ), and Deputy Director of the Sensors Direc- torate, Air Force Research

  17. Differences in coastal and oceanic SST warming rates along the Canary upwelling ecosystem from 1982 to 2010

    NASA Astrophysics Data System (ADS)

    Santos, F.; deCastro, M.; Gómez-Gesteira, M.; Álvarez, I.

    2012-09-01

    Sea surface temperature (SST) trends were calculated for the Moroccan part (22-33 °N) of the Canary upwelling ecosystem, which is characterized by permanent upwelling. This analysis was carried out from 1982 to 2010 by means of daily SST data with an approximate spatial resolution of 4×4 km. SST trends are not homogeneous either in latitude or longitude. SST trends were observed to increase southward, which can be explained in terms of air temperature (Tair) trends that follow a similar pattern. In addition, remarkable differences in warming trends were observed between coastal and ocean locations at the same latitude (ΔSSTtrend=SSToceantrend-SSTcoasttrend). ΔSSTtrend is positive at most of latitudes showing that the ocean warming rate is higher than the coastal one. The differences between coast and ocean were observed to depend on upwelling index (UI) intensity. Actually, UI calculated for the months with intense upwelling (May-September) showed a no significant positive trend and was significantly correlated (R=0.44; p<0.05) with ΔSST averaged from August to December. In addition, the extended winter EA (December-March) showed a significant correlation (R=0.57; p<0.01) with ΔSST for the months of highest upwelling intensity when a lag of 1 yr was considered between both variables.

  18. Impact of SST Resolution on Climate Simulation around Japan

    NASA Astrophysics Data System (ADS)

    Iizuka, S.; Sasaki, W.; Dairaku, K.; Matsuura, T.

    2008-12-01

    The impact of high resolution sea surface temperature (SST) data on the winter time climate around Japan is investigated using a WRF model with a horizontal resolution of 20 km. The OISST (0.25 deg) and the JRA25 (JMA Re-Analysis) SST data (1.25deg) are used as the lower boundary condition in the experiments. Generally, the OISST is warmer in the south of the Polar Front over the Japan Sea, the Kuroshio/Oyashio extension, and the coastal regions around Japan comparing with the JRA25 SST because the OISST resolves the small scale features in the SST related to ocean currents. In comparison, the magnitude of surface winds simulated with the OISST is weaker (stronger) on the (colder) warmer SST regions. The difference affects the convergence fields of surface winds, further causing the difference in precipitation. The results suggest a potential impact of small scale features in SST on atmosphere.

  19. ASTRI SST-2M camera electronics

    NASA Astrophysics Data System (ADS)

    Sottile, G.; Catalano, O.; La Rosa, G.; Capalbi, M.; Gargano, C.; Giarrusso, S.; Impiombato, D.; Russo, F.; Sangiorgi, P.; Segreto, A.; Bonanno, G.; Garozzo, S.; Marano, D.; Romeo, G.; Scuderi, S.; Stringhetti, L.; Canestrari, R.; Gimenes, R.

    2016-07-01

    ASTRI SST-2M is an Imaging Atmospheric Cherenkov Telescope (IACT) developed by the Italian National Institute of Astrophysics, INAF. It is the prototype of the ASTRI telescopes proposed to be installed at the southern site of the Cherenkov Telescope Array, CTA. The optical system of the ASTRI telescopes is based on a dual mirror configuration, an innovative solution for IACTs, and the focal plane of the camera is composed of silicon photo-multipliers (SiPM), a recently developed technology for light detection, that exhibit very fast response and an excellent single photoelectron resolution. The ASTRI camera electronics is specifically designed to directly interface the SiPM sensors, detecting the fast pulses produced by the Cherenkov flashes, managing the trigger generation, the digital conversion of the signals and the transmission of the data to an external camera server connected through a LAN. In this contribution we present the general architecture of the camera electronics developed for the ASTRI SST-2M prototype, with special emphasis to some innovative solutions.

  20. Seasonal differences of model predictability and the impact of SST in the Pacific

    NASA Astrophysics Data System (ADS)

    Lang, X. M.; Wang, H. J.

    2005-01-01

    Both seasonal potential predictability and the impact of SST in the Pacific on the forecast skill over China are investigated by using a 9-level global atmospheric general circulation model developed at the Institute of Atmospheric Physics under the Chinese Academy of Sciences (IAP9L-ACCM). For each year during 1970 to 1999, the ensemble consists of seven integrations started from consecutive observational daily atmospheric fields and forced by observational monthly SST. For boreal winter, spring and summer, the variance ratios of the SST-forced variability to the total variability and the differences in the spatial correlation coefficients of seasonal mean fields in special years versus normal years are computed respectively. It follows that there are slightly inter-seasonal differences in the model potential predictability in the Tropics. At northern middle and high latitudes, prediction skill is generally low in spring and relatively high either in summer for surface air temperature and middle and upper tropospheric geopotential height or in winter for wind and precipitation. In general, prediction skill rises notably in western China, especially in northwestern China, when SST anomalies (SSTA) in the Ni (n) over tildeo-3 region are significant. Moreover, particular attention should be paid to the SSTA in the North Pacific (NP) if one aims to predict summer climate over the eastern part of China, i.e., northeastern China, North China and southeastern China.

  1. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  2. microRNAs: implications for air pollution research.

    PubMed

    Jardim, Melanie J

    2011-12-01

    The purpose of this review is to provide an update of the current understanding on the role of microRNAs in mediating genetic responses to air pollutants and to contemplate on how these responses ultimately control susceptibility to ambient air pollution. Morbidity and mortality attributable to air pollution continues to be a growing public health concern worldwide. Despite several studies on the health effects of ambient air pollution, underlying molecular mechanisms of susceptibility and disease remain elusive. In the last several years, special attention has been given to the role of epigenetics in mediating, not only genetic and physiological responses to certain environmental insults, but also in regulating underlying susceptibility to environmental stressors. Epigenetic mechanisms control the expression of gene products, both basally and as a response to a perturbation, without affecting the sequence of DNA itself. These mechanisms include structural regulation of the chromatin structure, such as DNA methylation and histone modifications, and post-transcriptional gene regulation, such as microRNA mediated repression of gene expression. microRNAs are small noncoding RNAs that have been quickly established as key regulators of gene expression. As such, miRNAs have been found to control several cellular processes including apoptosis, proliferation and differentiation. More recently, research has emerged suggesting that changes in the expression of some miRNAs may be critical for mediating biological, and ultimately physiological, responses to air pollutants. Although the study of microRNAs, and epigenetics as a whole, has come quite far in the field of cancer, the understanding of how these mechanisms regulate gene-environment interactions to environmental exposures in everyday life is unclear. This article does not necessarily reflect the views and policies of the US EPA.

  3. A Perspective on NASA Ames Air Traffic Management Research

    NASA Technical Reports Server (NTRS)

    Schroeder, Jeffery A.

    2012-01-01

    This paper describes past and present air-traffic-management research at NASA Ames Research Center. The descriptions emerge from the perspective of a technical manager who supervised the majority of this research for the last four years. Past research contributions built a foundation for calculating accurate flight trajectories to enable efficient airspace management in time. That foundation led to two predominant research activities that continue to this day - one in automatically separating aircraft and the other in optimizing traffic flows. Today s national airspace uses many of the applications resulting from research at Ames. These applications include the nationwide deployment of the Traffic Management Advisor, new procedures enabling continuous descent arrivals, cooperation with industry to permit more direct flights to downstream way-points, a surface management system in use by two cargo carriers, and software to evaluate how well flights conform to national traffic management initiatives. The paper concludes with suggestions for prioritized research in the upcoming years. These priorities include: enabling more first-look operational evaluations, improving conflict detection and resolution for climbing or descending aircraft, and focusing additional attention on the underpinning safety critical items such as a reliable datalink.

  4. United States Air Force Graduate Student Research Program. 1989 Program Management Report

    DTIC Science & Technology

    1989-12-01

    research at Air Force laboratories /centers. Each assignment is in a subject area and at an Air Force facility mutually agreed upon by the...housing difficult to find, c) 10 weeks too short for research period. June 20, 1989 Astronautics Laboratory Edwards Air Force Base, California June 21...1989 HRL: Operations Training Division Williams Air Force Base, Arizona June 22, 1989 Weapons Laboratory Kirtland Air

  5. Research in Observations of Oceanic Air/Sea Interaction

    NASA Technical Reports Server (NTRS)

    Long, David G.; Arnold, David V.

    1995-01-01

    The primary purpose of this research has been: (1) to develop an innovative research radar scatterometer system capable of directly measuring both the radar backscatter and the small-scale and large-scale ocean wave field simultaneously and (2) deploy this instrument to collect data to support studies of air/sea interaction. The instrument has been successfully completed and deployed. The system deployment lasted for six months during 1995. Results to date suggest that the data is remarkably useful in air/sea interaction studies. While the data analysis is continuing, two journal and fifteen conference papers have been published. Six papers are currently in review with two additional journal papers scheduled for publication. Three Master's theses on this research have been completed. A Ph.D. student is currently finalizing his dissertation which should be completed by the end of the calendar year. We have received additional 'mainstream' funding from the NASA oceans branch to continue data analysis and instrument operations. We are actively pursuing results from the data expect additional publications to follow. This final report briefly describes the instrument system we developed and results to-date from the deployment. Additional detail is contained in the attached papers selected from the bibliography.

  6. New research on bioregenerative air/water purification systems

    NASA Technical Reports Server (NTRS)

    Johnson, Anne H.; Ellender, R. D.; Watkins, Paul J.

    1991-01-01

    For the past several years, air and water purification systems have been developed and used. This technology is based on the combined activities of plants and microorganisms as they function in a natural environment. More recently, researchers have begun to address the problems associated with indoor air pollution. Various common houseplants are currently being evaluated for their abilities to reduce concentrations of volatile organic compounds (VOCS) such as formaldehyde and benzene. With development of the Space Exploration Initiative, missions will increase in duration, and problems with resupply necessitates implementation of regenerative technology. Aspects of bioregenerative technology have been included in a habitat known as the BioHome. The ultimate goal is to use this technology in conjunction with physicochemical systems for air and water purification within closed systems. This study continued the risk assessment of bioregenerative technology with emphasis on biological hazards. In an effort to evaluate the risk for human infection, analyses were directed at enumeration of fecal streptococci and enteric viruses with the BioHome waste water treatment system.

  7. Airborne mass spectrometers: four decades of atmospheric and space research at the Air Force research laboratory.

    PubMed

    Viggiano, A A; Hunton, D E

    1999-11-01

    Mass spectrometry is a versatile research tool that has proved to be extremely useful for exploring the fundamental nature of the earth's atmosphere and ionosphere and in helping to solve operational problems facing the Air Force and the Department of Defense. In the past 40 years, our research group at the Air Force Research Laboratory has flown quadrupole mass spectrometers of many designs on nearly 100 sounding rockets, nine satellites, three Space Shuttles and many missions of high-altitude research aircraft and balloons. We have also used our instruments in ground-based investigations of rocket and jet engine exhaust, combustion chemistry and microwave breakdown chemistry. This paper is a review of the instrumentation and techniques needed for space research, a summary of the results from many of the experiments, and an introduction to the broad field of atmospheric and space mass spectrometry in general.

  8. R & D GTDS SST: Code Flowcharts and Input

    DTIC Science & Technology

    1995-01-01

    source code now running on a SUN sparc workstation and the mathematical algorithms Leo Early prepared linkage diagrams which will be used here...spherical mean Keplerian used with Brouwer Brouwer Lyddane Brouwer Gordon and Vinti analytic propagators DODS ight parameters Averaged...The rest of the card is for SST Code Time regularized Cowell See TIMREG Card Cowell default Brouwer Brouwer Lyddane SST

  9. Nitrogen Gas Heating and Supply System for SST-1 Tokamak

    NASA Astrophysics Data System (ADS)

    Ziauddin, Khan; Firozkhan, Pathan; Yuvakiran, Paravastu; Siju, George; Gattu, Ramesh; Hima, Bindu; Dilip, C. Raval; Prashant, Thankey; Kalpesh, Dhanani; Subrata, Pradhan

    2013-02-01

    Steady State Tokamak (SST-1) vacuum vessel baking as well as baking of the first wall components of SST-1 are essential to plasma physics experiments. Under a refurbishment spectrum of SST-1, the nitrogen gas heating and supply system has been fully refurbished. The SST-1 vacuum vessel consists of ultra-high vacuum (UHV) compatible eight modules and eight sectors. Rectangular baking channels are embedded on each of them. Similarly, the SST-1 plasma facing components (PFC) are comprised of modular graphite diverters and movable graphite based limiters. The nitrogen gas heating and supply system would bake the plasma facing components at 350°C and the SST-1 vacuum vessel at 150°C over an extended duration so as to remove water vapour and other absorbed gases. An efficient PLC based baking facility has been developed and implemented for monitoring and control purposes. This paper presents functional and operational aspects of a SST-1 nitrogen gas heating and supply system. Some of the experimental results obtained during the baking of SST-1 vacuum modules and sectors are also presented here.

  10. 75 FR 51039 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ... for Air Pollution Measurement Systems, Volume I,'' EPA/600/R-94/038a and ``Quality Assurance Handbook for Air Pollution Measurement Systems, Volume II, Ambient Air Quality Monitoring Program'' EPA-454/B... AGENCY Office of Research and Development; Ambient Air Monitoring Reference and Equivalent...

  11. 76 FR 62402 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ... for Air Pollution Measurement Systems, Volume I,'' EPA/600/R-94/038a and ``Quality Assurance Handbook for Air Pollution Measurement Systems, Volume II, Ambient Air Quality Monitoring Program,'' EPA-454/B... AGENCY Office of Research and Development; Ambient Air Monitoring Reference and Equivalent...

  12. Turbulent statistics in the vicinity of an SST front: A north wind case, FASINEX February 16, 1986

    NASA Technical Reports Server (NTRS)

    Stage, Steven A.; Herbster, Chris

    1990-01-01

    The technique of boxcar variances and covariances is used to examine NCAR Electra data from FASINEX (Frontal Air-Sea Interaction EXperiment). This technique was developed to examine changes in turbulent fluxes near a sea surface temperature (SST) front. The results demonstrate the influence of the SST front on the MABL (Marine Atmospheric Boundary Layer). Data shown are for February 16, 1986, when the winds blew from over cold water to warm. The front directly produced horizontal variability in the turbulence. The front also induced a secondary circulation which further modified the turbulence.

  13. Environmental equity research: review with focus on outdoor air pollution research methods and analytic tools.

    PubMed

    Miao, Qun; Chen, Dongmei; Buzzelli, Michael; Aronson, Kristan J

    2015-01-01

    The objective of this study was to review environmental equity research on outdoor air pollution and, specifically, methods and tools used in research, published in English, with the aim of recommending the best methods and analytic tools. English language publications from 2000 to 2012 were identified in Google Scholar, Ovid MEDLINE, and PubMed. Research methodologies and results were reviewed and potential deficiencies and knowledge gaps identified. The publications show that exposure to outdoor air pollution differs by social factors, but findings are inconsistent in Canada. In terms of study designs, most were small and ecological and therefore prone to the ecological fallacy. Newer tools such as geographic information systems, modeling, and biomarkers offer improved precision in exposure measurement. Higher-quality research using large, individual-based samples and more precise analytic tools are needed to provide better evidence for policy-making to reduce environmental inequities.

  14. Spectra Handling from AIRS and IRIS for Climate Change Research

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Lau, M.; Aumann, H. H.; Yung, Y. L.

    2010-12-01

    Outgoing longwave radiation (OLR) measurements over a long period from satellites provide valuable information for the climate change research. Due to the different coverage, spectral resolution and instrument sensitivities, the data comparisons between different satellites could be problematic and possible artifacts could be easily introduced. In this paper, we have analyzed the data taken by IRIS in 1970 and by AIRS from 2002 to 2010. IRIS (Prabhakara, 1988) was a Fourier transform spectrometer (FTS) and it flew on the NASA Nimbus 4 satellite which was launched in April 1970 into an 1100km altitude sun-synchronous polar orbit. It collected data from the nadir track between 400cm-1 and 1600 cm-1 from April 1970 until January 1971. AIRS (Aumann, 2003) is a grating spectrometer launched on the EOS-Aqua satellite in May 2002 and it measures spectra from 650cm-1 to 2700cm-1. AIRS scans to ±49.5o cross track as the satellite moves forwards taking 90 spectra each with an instantaneous field of view of 1.1o in a row perpendicular to the direction of motion of the satellite. This results in a ground footprint of 13km diameter at nadir. In this paper, we analyzed the spectra between 650 cm-1 and 1350 cm-1 for nadir view footprints in order to match the IRIS’s measurements. Most of the possible sources of error or biases have been carefully handled, these include the errors from the data editing, spatial coverage, missing data (spatial gap), and spectral resolution, spectra frequency shift due to the fields of view, sea surface temperature fluctuations, clear sky determination, and spectra response function symmetry. It is extremely important when comparing spectra in the high slope spectra regions where possible large artifacts could be introduced. We have used a radiative model to simulate the spectra as observed in both IRIS and AIRS by using US Standard Atmospheric Profiles. The tropospheric warming and stratospheric warming are introduced in the model as well. The

  15. The effect of SST and soil moisture anomalies on GLA model simulations of the 1988 U.S. summer drought

    NASA Technical Reports Server (NTRS)

    Atlas, R.; Wolfson, N.; Terry, J.

    1993-01-01

    A series of simulations of the late spring and early summer of 1988 were conducted in order to study the relative importance of different boundary forcings to the Goddard Laboratory for Atmospheres (GLA) model's simulation of the heat wave and drought over the Great Plains of the United States during this time period. Separate 60-day simulations were generated from 10, 20, and 30 May 1988 with a variety of boundary condition datasets. For the control experiment, climatological boundary conditions were used. This was followed by experiments in which either the observed 1988 sea surface temperatures (SST) or derived 1988 soil moisture values, or both, were used in place of the climatological fields. Additional experiments were conducted in which only tropical or midlatitude SST anomalies were used. The impact of the different boundary forcings was evaluated relative to the control simulations of the precipitation and surface air temperature over the Great Plains. It was found that the tropical SST anomalies had a significant effect in reducing precipitation in this area, while the midlatitude anomalies did not. Due to the prescribed climatological soil moistures for the SST experiments, a significant increase in surface temperature did not occur in these simulations. In contrast, the simulations with the anomalous 1988 soil moistures produced both a larger reduction of precipitation and a significant increase in surface temperature over the Great Plains. The simulations with both anomalous SST and soil moisture showed only a slight augmentation of the heat wave and drought relative to the experiments with anomalous soil moisture alone.

  16. Overview of Atmospheric Ionizing Radiation (AIR)

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Maiden, D. L.; Goldhagen, P.; Tai, H.; Shinn, J. L.

    2003-01-01

    The SuperSonic Transport (SST) development program within the US was based at the Langley Research Center as was the Apollo radiation testing facility (Space Radiation Effects Laboratory) with associated radiation research groups. It was natural for the issues of the SST to be first recognized by this unique combination of research programs. With a re-examination of the technologies for commercial supersonic flight and the possible development of a High Speed Civil Transport (HSCT), the remaining issues of the SST required resolution. It was the progress of SST radiation exposure research program founded by T. Foelsche at the Langley Research Center and the identified remaining issues after that project over twenty-five years ago which became the launch point of the current atmospheric ionizing radiation (AIR) research project. Added emphasis to the need for reassessment of atmospheric radiation resulted from the major lowering of the recommended occupational exposure limits, the inclusion of aircrew as radiation workers, and the recognition of civil aircrew as a major source of occupational exposures. Furthermore, the work of Ferenc Hajnal of the Environmental Measurements Laboratory brought greater focus to the uncertainties in the neutron flux at high altitudes. A re-examination of the issues involved was committed at the Langley Research Center and by the National Council on Radiation Protection (NCRP). As a result of the NCRP review, a new flight package was assembled and flown during solar minimum at which time the galactic cosmic radiation is at a maximum (June 1997). The present workshop is the initial analysis of the new data from that flight. The present paper is an overview of the status of knowledge of atmospheric ionizing radiations. We will re-examine the exposures of the world population and examine the context of aircrew exposures with implications for the results of the present research. A condensed version of this report was given at the 1998

  17. Air, Climate, and Energy Strategic Research Action Plan, 2012 - 2016

    EPA Pesticide Factsheets

    As the U.S. Environmental Protection Agency (EPA) moves forward, it is necessary to more fully understand the interplay between air, climate change, and the changing energy landscape to develop innovative and sustainable solutions to improve air quality

  18. INITIAL SINGLE SHELL TANK (SST) SYSTEM PERFORMANCE ASSESSMENT OF THE HANFORD SITE

    SciTech Connect

    JARAYSI, M.N.

    2007-01-08

    The ''Initial Single-Shell Tank System Performance Assessment for the Hanford Site [1] (SST PA) presents the analysis of the long-term impacts of residual wastes assumed to remain after retrieval of tank waste and closure of the SST farms at the US Department of Energy (DOE) Hanford Site. The SST PA supports key elements of the closure process agreed upon in 2004 by DOE, the Washington State Department of Ecology (Ecology), and the US Environmental Protection Agency (EPA). The SST PA element is defined in Appendix I of the ''Hanford Federal Facility Agreement and Consent Order'' (HFFACO) (Ecology et al. 1989) [2], the document that establishes the overall closure process for the SST and double-shell tank (DST) systems. The approach incorporated in the SST PA integrates substantive features of both hazardous and radioactive waste management regulations into a single analysis. The defense-in-depth approach used in this analysis defined two major engineering barriers (a surface barrier and the grouted tank structure) and one natural barrier (the vadose zone) that will be relied on to control waste release into the accessible environment and attain expected performance metrics. The analysis evaluates specific barrier characteristics and other site features that influence contaminant migration by the various pathways. A ''reference'' case and a suite of sensitivity/uncertainty cases are considered. The ''reference case'' evaluates environmental impacts assuming central tendency estimates of site conditions. ''Reference'' case analysis results show residual tank waste impacts on nearby groundwater, air resources; or inadvertent intruders to be well below most important performance objectives. Conversely, past releases to the soil, from previous tank farm operations, are shown to have groundwater impacts that re significantly above most performance objectives. Sensitivity/uncertainty cases examine single and multiple parameter variability along with plausible alternatives

  19. Air Breathing Propulsion Controls and Diagnostics Research at NASA Glenn Under NASA Aeronautics Research Mission Programs

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2015-01-01

    The Intelligent Control and Autonomy Branch (ICA) at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet the goals of the NASA Aeronautics Research Mission Directorate (ARMD) Programs. These efforts are primarily under the various projects under the Advanced Air Vehicles Program (AAVP), Airspace Operations and Safety Program (AOSP) and Transformative Aeronautics Concepts Program (TAC). The ICA Branch is focused on advancing the state-of-the-art of aero-engine control and diagnostics technologies to help improve aviation safety, increase efficiency, and enable operation with reduced emissions. This paper describes the various ICA research efforts under the NASA Aeronautics Research Mission Programs with a summary of motivation, background, technical approach, and recent accomplishments for each of the research tasks.

  20. The ASTRI SST-2M prototype for the Cherenkov Telescope Array: primary mirror characterization by deflectometry

    NASA Astrophysics Data System (ADS)

    Sironi, Giorgia; Canestrari, Rodolfo

    2015-09-01

    In 2014 the ASTRI Collaboration, led by the Italian National Institute for Astrophysics, has constructed an end-to-end prototype of a dual-mirror imaging air Cherenkov telescope, proposed for the small size class of telescopes for the Cherenkov Telescope Array. The prototype, named ASTRI SST-2M, has been installed at the observing station located at Serra La Nave (Italy). In this project the Brera Astronomical Observatory was responsible for the production and the testing of the primary mirror. The ASTRI SST-2M telescope's primary mirror has an aperture of ~ 4 m, a polynomial design, and consists of 18 individual hexagonal facets. These characteristics require the production and testing of panels with a typical size of ~1 m vertex-to-vertex and with an aspheric component of up to several millimetres. The mirror segments were produced assembling a sandwich of thin glass foils bent at room temperature to reach the desired shape. For the characterization of the mirrors we developed an ad-hoc deflectometry facility that works as an inverse Ronchi test in combination with a ray-tracing code. In this contribution we report the results of the deflectometric measurements performed on the primary mirror segments of the ASTRI SST-2M dual mirror telescope. The expected point spread function and the contributions to the degradation of the image quality are studied.

  1. Improving the global SST record: estimates of biases from engine room intake SST using high quality satellite data

    NASA Astrophysics Data System (ADS)

    Carella, Giulia; Kent, Elizabeth C.; Berry, David I.; Morak-Bozzo, Simone; Merchant, Christopher J.

    2016-04-01

    Sea Surface Temperature (SST) is the marine component of the global surface temperature record, a primary metric of climate change. SST observations from ships form one of the longest instrumental records of surface marine climate. However, over the years several different methods of measuring SST have been used, each with different bias characteristics. The estimation of systematic biases in the SST record is critical for climatic decadal predictions, and uncertainties in long-term trends are expected to be dominated by uncertainties in biases introduced by changes of instrumentation and measurement practices. Although the largest systematic errors in SST observations relate to the period before about 1940, where SST measurements were mostly made using buckets, there are also issues with modern data, in particular when the SST reported is the temperature of the engine-room cooling water intake (ERI). Physical models for biases in ERI SSTs have not been developed as the details of the individual setup on each ship are extremely important, and almost always unknown. Existing studies estimate that the typical ERI biases are around 0.2°C and most estimates of the mean bias fall between 0.1°C and 0.3°C, but there is some evidence of much larger differences. However, these analyses provide only broad estimates, being based only on subsamples of the data and ignoring ship-by-ship differences. Here we take advantage of a new, high spatial resolution, gap-filled, daily SST for the period 1992-2010 from the European Space Agency Climate Change Initiative (ESA CCI) for SST dataset version 1.1. In this study, we use a Bayesian statistical model to characterise the uncertainty in reports of ERI SST for individual ships using the ESA CCI SST as a reference. A Bayesian spatial analysis is used to model the differences of the observed SST from the ESA CCI SST for each ship as a constant offset plus a function of the climatological SST. This was found to be an important term

  2. Tu-144LL SST Flying Laboratory Front View with Nose Dropped for Takeoff and Landing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A front view of the Tupolev Tu-144LL supersonic flying laboratory at the Zhukovsky Air Development Center near Moscow, Russia. The plane's nose droops down for take off and landing and is then raised for high-speed flight. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different

  3. Evaluation and selection of SST regression algorithms for JPSS VIIRS

    NASA Astrophysics Data System (ADS)

    Petrenko, Boris; Ignatov, Alexander; Kihai, Yury; Stroup, John; Dash, Prasanjit

    2014-04-01

    Two global level 2 sea surface temperature (SST) products are generated at NOAA from the Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite (VIIRS) sensor data records (L1) with two independent processing systems, the Joint Polar Satellite System (JPSS) Interface Data Processing Segment (IDPS) and the NOAA heritage Advanced Clear-Sky Processor for Oceans (ACSPO). The two systems use different SST retrieval and cloud masking algorithms. Validation against in situ and L4 analyses has shown suboptimal performance of the IDPS product. In this context, existing operational and proposed SST algorithms have been evaluated for their potential implementation in IDPS. This paper documents the evaluation methodology and results. The performance of SST retrievals is characterized with bias and standard deviation with respect to in situ SSTs and sensitivity to true SST. Given three retrieval metrics, all being variable in space and with observational conditions, an additional integral metric is needed to evaluate the overall performance of SST algorithms. Therefore, we introduce the Quality Retrieval Domain (QRD) as a part of the global ocean, where the retrieval characteristics meet predefined specifications. Based on the QRDs analyses for all tested algorithms over a representative range of specifications for accuracy, precision, and sensitivity, we have selected the algorithms developed at the EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI-SAF) for implementation in IDPS and ACSPO. Testing the OSI-SAF algorithms with ACSPO and IDPS products shows the improved consistency between VIIRS SST and Reynolds L4 daily analysis. Further improvement of the IDPS SST product requires adjustment of the VIIRS cloud and ice masks.

  4. Investigation of Sea Surface Temperature (SST) anomalies over Cyprus area

    NASA Astrophysics Data System (ADS)

    Georgiou, Andreas; Akçit, Nuhcan

    2016-08-01

    The temperature of the sea surface has been identified as an important parameter of the natural environment, governing processes that occur in the upper ocean. This paper focuses on the analysis of the Sea Surface Temperature (SST) anomalies at the greater area of Cyprus. For that, SST data derived from MODerate-resolution Imaging Spectroradiometer (MODIS) instrument on board both Aqua and Terra sun synchronous satellites were used. A four year period was chosen as a first approach to address and describe this phenomenon. Geographical Information Systems (GIS) has been used as an integrated platform of analysis and presentation in addition of the support of MATLAB®. The methodology consists of five steps: (i) Collection of MODIS SST imagery, (ii) Development of the digital geo-database; (iii) Model and run the methodology in GIS as a script; (iv) Calculation of SST anomalies; and (v) Visualization of the results. The SST anomaly values have presented a symmetric distribution over the study area with an increase trend through the years of analysis. The calculated monthly and annual average SST anomalies (ASST) make more obvious this trend, with negative and positive SST changes to be distributed over the study area. In terms of seasons, the same increase trend presented during spring, summer, autumn and winter with 2013 to be the year with maximum ASST observed values. Innovative aspects comprise of straightforward integration and modeling of available tools, providing a versatile platform of analysis and semi-automation of the operation. In addition, the fine resolution maps that extracted from the analysis with a wide spatial coverage, allows the detail representation of SST and ASST respectively in the region.

  5. Identifying and Investigating the Late-1960s Interhemispheric SST Shift

    NASA Astrophysics Data System (ADS)

    Friedman, A. R.; Lee, S. Y.; Liu, Y.; Chiang, J. C. H.

    2014-12-01

    The global north-south interhemispheric sea surface temperature (SST) difference experienced a pronounced and rapid decrease in the late 1960s, which has been linked to drying in the Sahel, South Asia, and East Asia. However, some basic questions about the interhemispheric SST shift remain unresolved, including its scale and whether the constituent changes in different basins were coordinated. In this study, we systematically investigate the spatial and temporal behavior of the late-1960s interhemispheric SST shift using ocean surface and subsurface observations. We also evaluate potential mechanisms using control and specific-forcing CMIP5 simulations. Using a regime shift detection technique, we identify the late-1960s shift as the most prominent in the historical observational SST record. We additionally examine the corresponding changes in upper-ocean heat content and salinity associated with the shift. We find that there were coordinated upper-ocean cooling and freshening in the subpolar North Atlantic, the region of the largest-magnitude SST decrease during the interhemispheric shift. These upper-ocean changes correspond to a weakened North Atlantic thermohaline circulation (THC). However, the THC decrease does not fully account for the rapid global interhemispheric SST shift, particularly the warming in the extratropical Southern Hemisphere.

  6. Variability of winter extreme precipitation in Southeast China: contributions of SST anomalies

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Sielmann, Frank; Fraedrich, Klaus; Zhu, Xiuhua; Zhi, Xiefei

    2015-11-01

    Tropical SST anomalies are among the largest drivers of circulation regime changes on interannual time scales due to its characteristic heat capacity decay time scales. The circulation anomalies associated with extreme precipitation and the corresponding atmospheric response to SST anomalies are derived from ECMWF ERA-Interim reanalysis data by employing composite analysis and lagged maximum covariance analysis. Our results show that interannual variability of extreme winter precipitation in Southeast China is in close accordance with the interannual variability of total winter precipitation. Both are associated with similar abnormal circulation regimes, but for extreme precipitation events the circulation anomalies and moisture transport channels are significantly intensified. Two main moisture transport channels are captured: one extends from the North Indian Ocean through India and the Bay of Bengal to South China, and the other from the West Pacific Ocean through Maritime Continent and South China Sea towards South China, which are related to the preceding autumn SST patterns, El Niño and the Indian Ocean dipole (IOD), respectively. El Niño (La Niña) SST anomalies induce anomalous anticyclonic (cyclonic) circulation over Philippine Sea, which is favorable (unfavorable) to warm and humid air transport to South China from the tropical West Pacific by southwesterly (northeasterly) anomalies. Under these circulations, northeasterlies of East Asian Winter Monsoon are weakened (strengthened) resulting in extreme precipitation to be more (less) frequent in Southeast China. During the positive (negative) IOD phase, abundant (reduced) moisture transport to South China from tropical regions through India and Bay of Bengal is observed due to weakened (strengthened) Walker circulations and abnormal anticyclonic (cyclonic) circulation over India, leading to a higher (lower) likelihood for extreme precipitation events in Southeast China. The underlying physical mechanisms

  7. Impact of air-sea coupling on the simulation of tropical cyclones in the North Indian Ocean using a simple 3-D ocean model coupled to ARW

    NASA Astrophysics Data System (ADS)

    Srinivas, C. V.; Mohan, Greeshma M.; Naidu, C. V.; Baskaran, R.; Venkatraman, B.

    2016-08-01

    In this work, the impact of air-sea coupling on tropical cyclone (TC) predictions is studied using a three-dimensional Price-Weller-Pinkel (3DPWP) ocean model coupled to the Advanced Research Weather Research and Forecasting in six tropical storms in the North Indian Ocean, representing different intensities, seasonality, and varied oceanic conditions. A set of numerical experiments are conducted for each cyclone using sea surface temperature (SST) boundary conditions derived from Global Forecast System (GFS) SST, NOAA/National Centers for Environmental Prediction SST, and ocean coupling (3DPWP). Significant differences and improvements are found in the predicted intensity and track in the simulations, in which the cyclones' impact on SST is included. It has been found that while the uncoupled model using GFS SST considerably overestimated the intensity as well as produced large track errors, the ocean coupling substantially improved the track and intensity predictions. The improvements with 3DPWP are because of simulating the ocean-atmosphere feedback in terms of deepening of ocean mixed layer, reduction in enthalpy fluxes, and storm-induced SST cooling as seen in observations. The coupled model could simulate the cold wake in SST, asymmetries in the surface winds, enthalpy fluxes, size, and structure of the storm in better agreement with observations than the uncoupled model. The coupled model reduced the track errors by roughly 0.3-39% and intensity errors by 29-47% at 24-96 h predictions by controlling the northward deviation of storms tracks by SST cooling and associated changes in the dynamics. The vorticity changes associated with horizontal advection and stretching terms affect the tracks of the storms in the three simulations.

  8. [Medical research in the US Armed Forces. (Report 5). The US Air Force and Coast Guard].

    PubMed

    Agapitov, A A; Aleĭnikov, S I; Bolekhan, V N; Ivchenko, E V; Krassiĭ, A B; Nagibovich, O A; Petrov, S V; Rezvantsev, M V; Soldatov, E A; Shalakhin, R A; Sheppli, E V

    2013-02-01

    The present article is the last part of the review dedicated to organization and management of medical research in the US Armed Forces. The first through fourth parts were published in the previous issues of the journal. Specifically this article is dedicated to organization and management of medical research in the US Air Force and Coast Guard. It is shown that in the US Air Force the medical research is conducted in the Air Force Research Laboratory and in the US Coast Guard--in its Research and Development Center. The particular research programs conducted in the above mentioned units are discussed.

  9. United States Air Force Academy Annual Research Report: July 2003 to June 2004

    DTIC Science & Technology

    2004-06-01

    cadets need to be independent learners and critical thinkers. Research at the Air Force Academy has three primary purposes. First, research enhances...disbursements, and trends. Research at the Academy spans a broad range from basic sciences to humanities. Specific projects are spotlighted in the Research...is a major contributor in terms of both funding and technical direction. The ARC also receives funding from other Air Force Research Lab (AFRL

  10. Environmental Assessment, Balloon Launch and Landing Operations, Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico

    DTIC Science & Technology

    2012-06-01

    wetlands are in riparian zones and include oxbow lakes , marshes, cienegas, and bosques. Extreme aridity and seasonally varying precipitation are the...MAJOR RIVERS - LAKE RESERVOIR - TRIBAL LANDS D AFFECTED COUNTY IIBALDUR\\PROJIAFRL_396452\\MAPFILES\\EIS\\FIG2-2_EXCLUSION_ZONE MXD TMCBROOM 2117...ASSESSMENT, BALLOON LAUNCH AND LANDING OPERATIONS, AIR FORCE RESEARCH LABORATORY KIRTLAND AIR FORCE BASE - LAKE RESERVOIR MAJOR RIVERS

  11. Perspective on One Decade of Laser Propulsion Research at Air Force Research Laboratory

    SciTech Connect

    Larson, C. William

    2008-04-28

    The Air Force Laser Propulsion Program spanned nearly 10-years and included about 35-weeks of experimental research with the Pulsed Laser Vulnerability Test System of the High Energy Laser Systems Test Facility at White Sands Missile Range, New Mexico, WSMR/HELSTF/PLVTS. PLVTS is a pulsed CO2 laser that produces up to 10 kW of power in {approx}10 cm{sup 2} spot at wavelength of 10.6 microns. The laser is capable of a pulse repetition rate up to 25 Hz, with pulse durations of about 20 microseconds. During the program basic research was conducted on the production of propulsion thrust from laser energy through heating of air and ablation of various candidate rocket propellant fuels. Flight tests with an ablation fuel (Delrin) and air were accomplished with a model Laser Lightcraft vehicle that was optimized for propulsion by the PLVTS at its maximum power output, 10 kW at 25 Hz, 400 J/pulse. Altitudes exceeding 200-feet were achieved with ablation fuels. The most recent contributions to the technology included development of a mini-thruster standard for testing of chemically enhanced fuels and theoretical calculations on the performance of formulations containing ammonium nitrate and Delrin. Results of these calculations will also be reported here.

  12. Air-sea interactions in sea surface temperature frontal region

    NASA Astrophysics Data System (ADS)

    Pianezze, Joris; Redelsperger, Jean-Luc; Ardhuin, Fabrice; Reynaud, Thierry; Marié, Louis; Bouin, Marie-Noelle; Garnier, Valerie

    2015-04-01

    Representation of air-sea exchanges in coastal, regional and global models represent a challenge firstly due to the small scale of acting turbulent processes comparatively to the resolved scales of these models. Beyond this subgrid parameterization issue, a comprehensive understanding of air-sea interactions at the turbulent process scales is still lacking. Many successful efforts are dedicated to measure the energy and mass exchanges between atmosphere and ocean, including the effect of surface waves. In comparison less efforts are brought to understand the interactions between the atmospheric boundary layer and the oceanic mixing layer. In this regard, we are developing research mainly based on ideal and realistic numerical simulations which resolve very small scales (horizontal resolutions from 1 to 100 meters) in using grid nesting technics and coupled ocean-wave-atmosphere models. As a first step, the impact of marked gradients in sea surface temperatures (SST) on air-sea exchanges has been explored through realistic numerical simulations at 100m horizontal resolution. Results from simulations of a case observed during the FROMVAR experiment will be shown. The talk will mainly focus on the marked impact of SST front on the atmospheric boundary layer (stability and winds), the air-sea exchanges and surface parameters (rugosity, drag coefficient) Results will be also shown on the strong impact on the simulated atmosphere of small scale variability of SST field.

  13. The telescope control of the ASTRI SST-2M prototype for the Cherenkov telescope Array: hardware and software design architecture

    NASA Astrophysics Data System (ADS)

    Antolini, Elisa; Cascone, Enrico; Schwarz, Joseph; Stringhetti, Luca; Tanci, Claudio; Tosti, Gino; Aisa, Damiano; Aisa, Simone; Bagaglia, Marco; Busatta, Andrea; Campeggi, Carlo; Cefala, Marco; Farnesini, Lucio; Giacomel, Stefano; Marchiori, Gianpiero; Marcuzzi, Enrico; Nucciarelli, Giuliano; Piluso, Antonfranco

    2014-07-01

    ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) is a flagship project of the Italian Ministry of Research and led by the Italian National Institute of Astrophysics (INAF). One of its aims is to develop, within the Cherenkov Telescope Array (CTA) framework, an end-to-end small-sized telescope prototype in a dual-mirror configuration (SST-2M) in order to investigate the energy range E ~ 1-100 TeV. A long-term goal of the ASTRI program is the production of an ASTRI/CTA mini-array composed of seven SST-2M telescopes. The prototype, named ASTRI SST-2M, is seen as a standalone system that needs only network and power connections to work. The software system that is being developed to control the prototype is the base for the Mini-Array Software System (MASS), which has the task to make possible the operation of both the ASTRI SST-2M prototype and the ASTRI/CTA mini-array. The scope of this contribution is to give an overview of the hardware and software architecture adopted for the ASTRI SST- 2M prototype, showing how to apply state of the art industrial technologies to telescope control and monitoring systems.

  14. microRNAs: Implications for Air Pollution Research

    EPA Science Inventory

    The purpose of this review is to provide an update of the current understanding on the role of microRNAs in mediating genetic responses to air pollutants and to contemplate on how these responses ultimately control susceptibility to ambient air pollution. Morbidity and mortality ...

  15. United States Air Force Summer Research Program -- 1992 High School Apprenticeship Program (HSAP) Reports. Volume 13. Phillips Laboratory

    DTIC Science & Technology

    1992-01-01

    Research Program Phillips Laboratory I4oJ A*6Iv4 Sponsored by: Air Force Office of Scientific Research Kirtland Air ...UNITED STATES AIR FORCE SUMMER RESEARCH PROGki"A -- 1992 HIGH SCHOOL APPRENTICESHIP PROGRAM (HSAP) REPORTS VOLUME 13 (t PHILLIPS LABORATORY . RESEARCH ...Arlington High School Final Report for: Summer Research Program Geophysics Directorate Phillips Laboratory

  16. 75 FR 22126 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-27

    .... Environmental Protection Agency, Research Triangle Park, North Carolina 27711. Designation of this new... AGENCY Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods: Designation of One New Equivalent Method AGENCY: Environmental Protection Agency. ACTION: Notice of...

  17. Russian Tu-144LL SST Joint NASA Flying Laboratory - Flight November 29, 1996

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The modified Tupolev Tu-144LL supersonic flying laboratory during a test flight from the Zhukovsky Airfield near Moscow, Russia. The 'LL' stands for Letayuschaya Laboratoriya, which means Flying Laboratory. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different engines than were

  18. GUIDELINES FOR INTERPRETING RETINAL PHOTOGRAPHS AND CODING FINDINGS IN THE SUBMACULAR SURGERY TRIALS (SST)

    PubMed Central

    2005-01-01

    Purpose To describe the guidelines followed by the Submacular Surgery Trials (SST) Research Group in the interpretation of color fundus photographs and fluorescein angiograms of subfoveal choroidal neovascular lesions evaluated in the SST and to assist ophthalmologists in applying the results of the SST. Methods Stereoscopic color fundus photographs and fluorescein angiograms of the study eye and nonstudy eye of 1,015 patients with subfoveal choroidal neovascular lesions secondary to age-related macular degeneration, ocular histoplasmosis syndrome, or idiopathic choroidal neovascularization (CNV) were obtained and graded by certified SST fundus photograph readers at the baseline examination in three randomized clinical trials comparing surgery with observation. Adherence to the inclusion and exclusion criteria and ocular features that might affect visual outcome were documented. Stereoscopic color fundus photography and fluorescein angiography were repeated 1 month after randomization for patients assigned to surgery to provide documentation that surgery was performed and to assess compliance with the surgery protocol. Photographs and fluorescein angiograms of both the study eye and the fellow eye in all patients then were obtained 3 months, 6 months, and 12 months after randomization and then annually up to 48 months. The κ statistic was used to evaluate interobserver reliability of photograph gradings. Results Lesion components at baseline included classic CNV, occult CNV, and features contiguous to CNV, including blood, fibrous tissue, hypofluorescence not corresponding to blood, serous detachment of the retinal pigment epithelium, and prior areas of laser photocoagulation. At follow-up, fluorescein leakage from CNV was assessed peripheral to or within the area of the retinal pigment epithelium abnormality after surgery. The lesion at follow-up could include any of the features identified at baseline as well as retinal pigment epithelium abnormalities, such as

  19. CFD simulation research on residential indoor air quality.

    PubMed

    Yang, Li; Ye, Miao; He, Bao-Jie

    2014-02-15

    Nowadays people are excessively depending on air conditioning to create a comfortable indoor environment, but it could cause some health problems in a long run. In this paper, wind velocity field, temperature field and air age field in a bedroom with wall-hanging air conditioning running in summer are analyzed by CFD numerical simulation technology. The results show that wall-hanging air conditioning system can undertake indoor heat load and conduct good indoor thermal comfort. In terms of wind velocity, air speed in activity area where people sit and stand is moderate, most of which cannot feel wind flow and meet the summer indoor wind comfort requirement. However, for air quality, there are local areas without ventilation and toxic gases not discharged in time. Therefore it is necessary to take effective measures to improve air quality. Compared with the traditional measurement method, CFD software has many advantages in simulating indoor environment, so it is hopeful for humans to create a more comfortable, healthy living environment by CFD in the future.

  20. Air Force Research Laboratory (AFRL) research highlights, September--October 1998

    SciTech Connect

    1998-10-01

    New AFOSR-sponsored research shows that exhausts from solid-fueled rocket motors have very limited impact on stratospheric ozone. The research provides the Air Force with hard data to support continued access to space using the existing fleet of rockets and rocket technology. This basic research data allows the Air Force to maintain a strongly proactive environmental stance, and to meet federal guidelines regarding environmental impacts. Long-standing conjecture within the international rocket community suggests that chlorine compounds and alumina particulates produced in solid rocket motor (SRM) exhausts could create localized, temporary ozone toss in rocket plumes following launches. The extent of a local depletion of ozone and its environmental impact depends on details of the composition and chemistry in these plumes. Yet direct measurements of plume composition and plume chemistry in the stratosphere had never been made. Uncertainty about these details left the Air Force and commercial space launch capability potentially vulnerable to questions about the environmental impact of rocket launches. In 1995, APOSR and the Space and Missiles Systems Center Launch Programs Office (SMC/CL) jointly began the Rocket Impacts on Stratospheric Ozone (RISO) program to make the first-ever detailed measurements of rocket exhaust plumes. These measurements were aimed at understanding how the exhaust from large rocket motors effect the Earth`s stratospheric ozone layer. The studies determined: the size distribution of alumina particles in these exhausts, the amount of reactive chlorine in SRM exhaust, and the size and duration of localized ozone toss in the rocket plumes.

  1. Japanese GHRSST activities and the AMSR2 SST Validations

    NASA Astrophysics Data System (ADS)

    Kachi, Misako; Shibata, Akira; Murakami, Hiroshi; Imaoka, Keiji

    2014-05-01

    The Japan Aerospace Exploration Agency (JAXA) developed the Ocean Color and Temperature Scanner (OCTS) as optical imagers to observe sea surface temperature (SST) onboard the Advanced Earth Observing Satellite (ADEOS) operated from 1996 to 1997, the Global Imager (GLI) onboard the Advanced Earth Observing Satellite-II (ADEOS-II) operated from 2002 to 2003, and is developing the Second generation Global Imager (SGLI), which will be carried by the first generation of the Global Change Observation Mission (GCOM) - Climate (GCOM-C1) scheduled to be launched in Japanese Fiscal Year (JFY) of 2016. JAXA also developed a series of passive microwave imagers that has C-band (6.9-GHz/7.2GHz) channel; the Advanced Microwave Scanning Radiometer (AMSR) on board the ADEOS-II satellite; AMSR for EOS (AMSR-E) on board the NASA's EOS Aqua satellite; and the AMSR2 on board the first generation of the GCOM - Water (GCOM-W1) satellite. C-band channels on these instruments are indispensable for retrieving global SST and soil moisture through the clouds. All-weather and frequent measurements enables analyses of rapid changes of SST. The GCOM-W1 satellite was launched on May 18, 2012 (JST) and all AMSR2 standard products including SST have been released to public since May 2013. The AMSR2 SST product is validated by comparing with various buoy SST observations reported through the Global Telecommunication System (GTS) operated by World Meteorological Organization (WMO). Each match-up data will include AMSR2 footprints around buoy stations within radius of 30 km and 2 hours. Root mean square error (RMSE) between the AMSR2 and Buoy SSTs from July 3, 2012 to March 31, 3013 is 0.56 °C and correlation coefficient is 0.998. JAXA is operating the GHRSST server in Japan (http://suzaku.eorc.jaxa.jp/GHRSST/) to distribute SST products in GHRSST Data Specification (GDS) version 2.0 produced in JAXA. Currently, L2P and L3C SST products retrieved from AMSR2, AMSR-E, Windsat on board the Colioris

  2. Cryogenic heat loads analysis from SST-1 plasma experiments

    NASA Astrophysics Data System (ADS)

    Bairagi, N.; Tanna, V. L.; Pradhan, S.

    2017-02-01

    Cryogenic heat load analysis is an important aspect for stable operation of Tokamaks employing large scale superconducting magnets. Steady State Superconducting Tokamak (SST-1) at IPR is equipped with superconducting magnets system (SCMS) comprising sixteen numbers of modified ‘D’ shaped toroidal field (TF) and nine poloidal field (PF) superconducting coils which are wound using NbTi/Cu based cable-in conduit conductor (CICC). SST-1 magnets operation has flexibility to cool either in two-phase with sub-cooling, two-phase without sub-cooling or single phase (supercritical) helium using a dedicated 1.3 kW helium refrigerator cum liquefier (HRL). Here, we report gross heat losses for integrated TF superconducting magnets of SST-1 during the plasma campaign using cryogenic helium supply/return thermodynamic data from cryoplant. Heat loads mainly comprising of steady state as well as transient loads are smoothly absorbed by SST-1 cryogenic helium plant during plasma experiments. The corresponding heat produced in the coils is totally released to the helium flowing through the TF coils, which in turn is dumped into liquid helium stored in main control Dewar. These results are very useful reference for heat loss analysis for TF as well as PF coils and provides database for future operation of SST-1 machine.

  3. Characterisation and quantification of regional diurnal SST cycles from SEVIRI

    NASA Astrophysics Data System (ADS)

    Karagali, I.; Høyer, J. L.

    2014-04-01

    Hourly SST fields from the geostationary Spinning Enhanced Visible and Infrared Imager (SEVIRI) offer a unique opportunity for the characterisation and quantification of the diurnal cycle of SST in the Atlantic Ocean, the Mediterranean Sea and the Northern European Shelf seas. Six years of SST fields from the SEVIRI dataset are validated against the polar orbiting Advanced Along Track Scanning Radiometer (AATSR) archive to identify biases in the SEVIRI data. Identification of the diurnal signal requires a night-time SST field representative of foundation temperatures, i.e. well-mixed conditions and free of any diurnal signal. Such fields are generated from the SEVIRI archive and are validated against pre-dawn SEVIRI SSTs and night-time SSTs from drifting buoys. The overall SEVIRI-AATSR bias is -0.07 K, and the standard deviation is 0.51 K, based on more than 53 × 106 match-ups. The different methodologies tested for the foundation temperature fields reveal variability introduced by averaging night-time SSTs over many days compared to single-day, pre-dawn values. Diurnal warming is most pronounced in the Mediterranean and Baltic Seas while smallest diurnal signals are found in the Tropics. Longer diurnal warming duration is identified in the high latitudes compared to the Tropics. The mean diurnal signal of monthly mean SST can be up to 0.5° in specific regions.

  4. SST dual-mirror telescopes for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Dumas, Delphine; Laporte, Philippe; Sol, Hélène; Pareschi, Giovanni; Canestrari, Rodolfo; Stringhetti, Luca; Catalano, Osvaldo; White, Richard; Greenshaw, Tim; Hinton, Jim; Blake, Simon

    2014-07-01

    The Cherenkov Telescope Array (CTA) is an international collaboration that aims to create the world's foremost very high energy gamma-ray observatory, composed of large, medium and small size telescopes (SST). The SSTs will be the most numerous telescopes on site and will focus on capturing the rarer highest energy photons. Three prototypes of SST are designed and currently under construction; two of them, ASTRI and SST-GATE, have been designed, based on a dual-mirror Schwarzschild-Couder (SC) design which has never been built before for any astronomical observation. The SC optical design allows for a small plate scale, a wide field of view and a lightweight cameras aiming to minimize the cost of SST telescopes in order to increase their number in the array. The aim of this article is to report the progress of the two telescope projects prototyping telescope structures and cameras for the Small Size Telescopes for CTA. After a discussion of the CTA project and its scientific objectives, the performance of the SC design is described, with focus on the specific designs of SST-GATE and ASTRI telescopes. The design of both prototypes and their progress is reported in the current prototyping phase. The designs of Cherenkov cameras, CHEC and ASTRI, to be mounted on these telescopes are discussed and progresses are reported.

  5. Decadal-Interdecadal SST Variability and Regional Climate Teleconnections

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Weng, H.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Dominant modes of decadal and interdecadal SST variability and their impacts on summertime rainfall variability over East Asia and the North America are studied. Two dominant modes of interdecadal SST variability, one associated with El Nino-like warming in the global oceans and one with an east-west seesaw variation in the equatorial Pacific have been identified. The first mode is associated in part with a long-term warming trend in the topical oceans and cooling over the northern Pacific. The second mode suggests an westward shift and strengthening of the Walker circulation from 1960s to the 1980s. Over East Asian, the first SST mode is correlated with reduced rainfall in northern China and excessive rainfall in central China. This SST mode is also associated with the tendency for increased rainfall over the midwest region, and reduced rainfall over the east Coast of the US. The results suggest a teleconnection pattern which links the occurrences of drought and floods over the Asian monsoon and the US summertime time climate. This teleconnection is likely to be associated with decadal variability of the East Asian jetstream, which are affected by strong land surface heating over the Siberian region, as well as El Nino-like SST forcings. The occurrences of major droughts and floods in the East Asian and US continent in recent decades are discussed in light of the above teleconnection patterns.

  6. Epidemiologic evidence for asthma and exposure to air toxics: linkages between occupational, indoor, and community air pollution research.

    PubMed Central

    Delfino, Ralph J

    2002-01-01

    Outdoor ambient air pollutant exposures in communities are relevant to the acute exacerbation and possibly the onset of asthma. However, the complexity of pollutant mixtures and etiologic heterogeneity of asthma has made it difficult to identify causal components in those mixtures. Occupational exposures associated with asthma may yield clues to causal components in ambient air pollution because such exposures are often identifiable as single-chemical agents (e.g., metal compounds). However, translating occupational to community exposure-response relationships is limited. Of the air toxics found to cause occupational asthma, only formaldehyde has been frequently investigated in epidemiologic studies of allergic respiratory responses to indoor air, where general consistency can be shown despite lower ambient exposures. The specific volatile organic compounds (VOCs) identified in association with occupational asthma are generally not the same as those in studies showing respiratory effects of VOC mixtures on nonoccupational adult and pediatric asthma. In addition, experimental evidence indicates that airborne polycyclic aromatic hydrocarbon (PAH) exposures linked to diesel exhaust particles (DEPs) have proinflammatory effects on airways, but there is insufficient supporting evidence from the occupational literature of effects of DEPs on asthma or lung function. In contrast, nonoccupational epidemiologic studies have frequently shown associations between allergic responses or asthma with exposures to ambient air pollutant mixtures with PAH components, including black smoke, high home or school traffic density (particularly truck traffic), and environmental tobacco smoke. Other particle-phase and gaseous co-pollutants are likely causal in these associations as well. Epidemiologic research on the relationship of both asthma onset and exacerbation to air pollution is needed to disentangle effects of air toxics from monitored criteria air pollutants such as particle mass

  7. Validation and optimization of SST k-ω turbulence model for pollutant dispersion within a building array

    NASA Astrophysics Data System (ADS)

    Yu, Hesheng; Thé, Jesse

    2016-11-01

    The prediction of the dispersion of air pollutants in urban areas is of great importance to public health, homeland security, and environmental protection. Computational Fluid Dynamics (CFD) emerges as an effective tool for pollutant dispersion modelling. This paper reports and quantitatively validates the shear stress transport (SST) k-ω turbulence closure model and its transitional variant for pollutant dispersion under complex urban environment for the first time. Sensitivity analysis is performed to establish recommendation for the proper use of turbulence models in urban settings. The current SST k-ω simulation is validated rigorously by extensive experimental data using hit rate for velocity components, and the "factor of two" of observations (FAC2) and fractional bias (FB) for concentration field. The simulation results show that current SST k-ω model can predict flow field nicely with an overall hit rate of 0.870, and concentration dispersion with FAC2 = 0.721 and FB = 0.045. The flow simulation of the current SST k-ω model is slightly inferior to that of a detached eddy simulation (DES), but better than that of standard k-ε model. However, the current study is the best among these three model approaches, when validated against measurements of pollutant dispersion in the atmosphere. This work aims to provide recommendation for proper use of CFD to predict pollutant dispersion in urban environment.

  8. Recent researches on the air resistance of spheres

    NASA Technical Reports Server (NTRS)

    Flachsbart, O

    1928-01-01

    The following conclusions on air resistance of spheres are drawn: 1) disturbances in front of the sphere and even single fine wires affect the critical Reynolds Number; 2) disturbances around the sphere increased the drag of the sphere without martially affecting the value of the Reynolds Number(sub crith); 3) great disturbances of the boundary layer of the sphere likewise change R.N.(sub crith); 4) turbulence of the approaching air stream lowers critical R.N.

  9. Operations Research in a New Spanish Air Force Planning System

    DTIC Science & Technology

    1991-06-01

    Until nowadays, when any Air Force felt that a weapon system was obsolete, they studied the potential market , or they built up a system that fulfilled...for a new weapons system which will cover all the requirements. If the weapon system already exists in the national or foreign market , then the system...medium transport. This can be an important factor to be considered but, sometimes, the Spanish Air Force has to look at the for- eign markets for the

  10. Air pollution control system research: An iterative approach to developing affordable systems

    NASA Technical Reports Server (NTRS)

    Watt, Lewis C.; Cannon, Fred S.; Heinsohn, Robert J.; Spaeder, Timothy A.

    1995-01-01

    This paper describes a Strategic Environmental Research and Development Program (SERDP) funded project led jointly by the Marine Corps Multi-Commodity Maintenance Centers, and the Air and Energy Engineering Research Laboratory (AEERL) of the USEPA. The research focuses on paint booth exhaust minimization using recirculation, and on volatile organic compound (VOC) oxidation by the modules of a hybrid air pollution control system. The research team is applying bench, pilot and full scale systems to accomplish the goals of reduced cost and improved effectiveness of air treatment systems for paint booth exhaust.

  11. A Causal-Comparative Analysis of the Effects of a Student Support Team (SST) Intervention Model at a Secondary School

    ERIC Educational Resources Information Center

    Johnson, Mid D.

    2010-01-01

    The purpose of this research was to identify and examine the effectiveness of a "Student Support Team" (SST) intervention model designed to increase the performance of struggling secondary students and to help them achieve prescribed state standards on the mathematics "Texas Assessment of Knowledge and Skills (TAKS)"…

  12. [Structure and functioning of research ethics committees in the Autonomous City of Buenos Aires and Greater Buenos Aires].

    PubMed

    Sabio, María Fernanda; Bortz, Jaime Elías

    2015-06-01

    Given the few existing studies on research ethics committees (RECs) in Argentina, this paper aims to describe the structure and functioning of institutional RECs in the Autonomous City of Buenos Aires and Greater Buenos Aires. A descriptive, qualitative and quantitative research study was carried out using a survey conducted between March and July 2012. The sample was made up of 46 RECs. Forty percent of committee members were doctors and the age and sex distribution met standards. Inadequate numbers of methodologists, community representatives, lawyers and members external to the institution were identified, as well as shortcomings regarding administrative staff, fixed locations for meetings, budgets adequate to expenditures and training in research ethics. Some of those surveyed reported problems in their relationship with the institution and with researchers, in addition to difficulties regarding the time available to perform tasks.

  13. Unmanned air vehicle (UAV) ultra-persitence research

    SciTech Connect

    Dron, S. B.

    2012-03-01

    Sandia National Laboratories and Northrop Grumman Corporation Integrated Systems, Unmanned Systems (NGIS UMS) collaborated to further ultra-persistence technologies for unmanned air vehicles (UAVs). The greatest shortfalls in UAV capabilities have been repeatedly identified as (1) insufficient flight persistence or 'hang time,' (2) marginal electrical power for running higher power avionics and payload systems, and (3) inadequate communications bandwidth and reach. NGIS UMS requested support from Sandia to develop an ultra-persistent propulsion and power system (UP3S) for potential incorporation into next generation UAV systems. The team members tried to determine which energy storage and power generation concepts could most effectively push UAV propulsion and electrical power capabilities to increase UAV sortie duration from days to months while increasing available electrical power at least two-fold. Primary research and development areas that were pursued included these goals: perform general system engineering and integration analyses; develop initial thermal and electrical power estimates; provide mass, volume, dimensional, and balance estimates; conduct preliminary safety assessments; assess logistics support requirements; perform, preliminary assessments of any security and safeguards; evaluate options for removal, replacement, and disposition of materials; generally advance the potential of the UP3S concept. The effort contrasted and compared eight heat sources technologies, three power conversion, two dual cycle propulsion system configurations, and a single electrical power generation scheme. Overall performance, specific power parameters, technical complexities, security, safety, and other operational features were successfully investigated. Large and medium sized UAV systems were envisioned and operational flight profiles were developed for each concept. Heat source creation and support challenges for domestic and expeditionary operations were

  14. Automated Aerodynamic Optimization System for SST Wing-Body Configuration

    NASA Astrophysics Data System (ADS)

    Sasaki, Daisuke; Yang, Guowei; Obayashi, Shigeru

    In this paper, wing-body configurations for a next generation Supersonic Transport are designed by means of Multiobjective Evolutionary Algorithms. SST wing-body configurations are designed to reduce the aerodynamic drag and the sonic boom for supersonic flight. To lower the sonic boom intensity, the present objective function is to satisfy the equivalent area distribution for low sonic boom proposed by Darden. Wing and fuselage is defined by 131 design variables and optimized at the same time. Structured multiblock grids around SST wing-body configuration are generated automatically and an Euler solver is used to evaluate the aerodynamic performance of SST wing-body configuration. Compromised solutions are found as Pareto solutions. Although they have a variety of fuselage configurations, all of them have a similar wing planform due to the imposed constraints. The present results imply that a lifting surface should be distributed innovatively to match Darden’s distribution for low boom.

  15. Influence of SST biases on future climate change projections

    SciTech Connect

    Ashfaq, Moetasim; Skinner, Chris B; Cherkauer, Keith

    2010-01-01

    We use a quantile-based bias correction technique and a multi-member ensemble of the atmospheric component of NCAR CCSM3 (CAM3) simulations to investigate the influence of sea surface temperature (SST) biases on future climate change projections. The simulations, which cover 1977 1999 in the historical period and 2077 2099 in the future (A1B) period, use the CCSM3-generated SSTs as prescribed boundary conditions. Bias correction is applied to the monthly time-series of SSTs so that the simulated changes in SST mean and variability are preserved. Our comparison of CAM3 simulations with and without SST correction shows that the SST biases affect the precipitation distribution in CAM3 over many regions by introducing errors in atmospheric moisture content and upper-level (lower-level) divergence (convergence). Also, bias correction leads to significantly different precipitation and surface temperature changes over many oceanic and terrestrial regions (predominantly in the tropics) in response to the future anthropogenic increases in greenhouse forcing. The differences in the precipitation response from SST bias correction occur both in the mean and the percent change, and are independent of the ocean atmosphere coupling. Many of these differences are comparable to or larger than the spread of future precipitation changes across the CMIP3 ensemble. Such biases can affect the simulated terrestrial feedbacks and thermohaline circulations in coupled climate model integrations through changes in the hydrological cycle and ocean salinity. Moreover, biases in CCSM3-generated SSTs are generally similar to the biases in CMIP3 ensemble mean SSTs, suggesting that other GCMs may display a similar sensitivity of projected climate change to SST errors. These results help to quantify the influence of climate model biases on the simulated climate change, and therefore should inform the effort to further develop approaches for reliable climate change projection.

  16. Observations of SST diurnal variability in the South China Sea

    NASA Astrophysics Data System (ADS)

    Tu, Qianguang; Pan, Delu; Hao, Zengzhou; Chen, Jianyu

    2015-10-01

    In this study, a 3-hourly time resolution gap free sea surface temperature (SST) analysis is generated to resolve the diurnal cycle in the South China Sea (SCS, 0°-25°N, 100°-125°E).It takes advantage of hourly geostationary satellite MTSAT observations and combines three infrared and two microwave polar satellite observations at different local times. First, all the data are classified into eight SST datasets at 3 hour intervals and then remapped to 0.05°resolution grids. A series of critical quality control is done to remove the outliers.Then bias adjustment is applied to the polar satellite observations with reference to the MTSAT data. Finally, the six satellites SST data are blended by using the optimal interpolated algorithm. The 3-hourly blended SST is compared against buoy measurements. It shows a good agreement that the biases do not exceed 0.2 °C and root mean square errors range from 0.5 to 0.65 °C. A typical diurnal cycle similar to sine wave is observed. The minimum SST occurs at around 0600h and warming peak occurring between 1300h and 1500h local solar time and then decrease in the late afternoon, tapering off at night on March 13, 2008 for example. The frequency of diurnal warming events derived from four years of the blended SST provides solid statistics to investigate the seasonal and spatial distributions of the diurnal warming in the SCS. The sea surface diurnal warming tends to appear more easily in spring, especially in the coastal regions than other seasons and the central regions.

  17. Mexico City Air Quality Research Initiative; Volume 5, Strategic evaluation

    SciTech Connect

    1994-03-01

    Members of the Task HI (Strategic Evaluation) team were responsible for the development of a methodology to evaluate policies designed to alleviate air pollution in Mexico City. This methodology utilizes information from various reports that examined ways to reduce pollutant emissions, results from models that calculate the improvement in air quality due to a reduction in pollutant emissions, and the opinions of experts as to the requirements and trade-offs that are involved in developing a program to address the air pollution problem in Mexico City. The methodology combines these data to produce comparisons between different approaches to improving Mexico City`s air quality. These comparisons take into account not only objective factors such as the air quality improvement or cost of the different approaches, but also subjective factors such as public acceptance or political attractiveness of the different approaches. The end result of the process is a ranking of the different approaches and, more importantly, the process provides insights into the implications of implementing a particular approach or policy.

  18. FLAMMABLE GAS DIFFUSION THROUGH SINGLE SHELL TANK (SST) DOMES

    SciTech Connect

    MEACHAM, J.E.

    2003-11-10

    This report quantified potential hydrogen diffusion through Hanford Site Single-Shell tank (SST) domes if the SSTs were hypothetically sealed airtight. Results showed that diffusion would keep headspace flammable gas concentrations below the lower flammability limit in the 241-AX and 241-SX SST. The purpose of this document is to quantify the amount of hydrogen that could diffuse through the domes of the SSTs if they were hypothetically sealed airtight. Diffusion is assumed to be the only mechanism available to reduce flammable gas concentrations. The scope of this report is limited to the 149 SSTs.

  19. Research on the net amount of air traffic network

    NASA Astrophysics Data System (ADS)

    Hu, Jun; Wu, Zhenya

    2013-03-01

    As accurate prediction of traffic flow states could reduce the congestion possibility, the theoretical study of air traffic was how to determinate the next time the state with fluid mechanics based on random condition. Then, a novel depicting method of air traffic flow is proposed, which calculated the change of net amount in flow conservation equation with discrete time loss queuing, further, it could determine the relationship between flow and density. Compared to the existing general algorithm, the threshold of net amount was presented in the method, and it had good adaptability.

  20. The Atmospheric Bridge: The Influence of ENSO Teleconnections on Air-Sea Interaction over the Global Oceans.

    NASA Astrophysics Data System (ADS)

    Alexander, Michael A.; Bladé, Ileana; Newman, Matthew; Lanzante, John R.; Lau, Ngar-Cheung; Scott, James D.

    2002-08-01

    During El Niño-Southern Oscillation (ENSO) events, the atmospheric response to sea surface temperature (SST) anomalies in the equatorial Pacific influences ocean conditions over the remainder of the globe. This connection between ocean basins via the `atmospheric bridge' is reviewed through an examination of previous work augmented by analyses of 50 years of data from the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) reanalysis project and coupled atmospheric general circulation (AGCM)-mixed layer ocean model experiments. Observational and modeling studies have now established a clear link between SST anomalies in the equatorial Pacific with those in the North Pacific, north tropical Atlantic, and Indian Oceans in boreal winter and spring. ENSO-related SST anomalies also appear to be robust in the western North Pacific during summer and in the Indian Ocean during fall. While surface heat fluxes are the key component of the atmospheric bridge driving SST anomalies, Ekman transport also creates SST anomalies in the central North Pacific although the full extent of its impact requires further study. The atmospheric bridge not only influences SSTs on interannual timescales but also affects mixed layer depth (MLD), salinity, the seasonal evolution of upper-ocean temperatures, and North Pacific SST variability at lower frequencies. The model results indicate that a significant fraction of the dominant pattern of low-frequency (>10 yr) SST variability in the North Pacific is associated with tropical forcing. AGCM experiments suggest that the oceanic feedback on the extratropical response to ENSO is complex, but of modest amplitude. Atmosphere-ocean coupling outside of the tropical Pacific slightly modifies the atmospheric circulation anomalies in the Pacific-North America (PNA) region but these modifications appear to depend on the seasonal cycle and air-sea interactions both within and beyond the North Pacific Ocean.

  1. Air Force Research in Aero Propulsion Technology (AFRAPT)

    DTIC Science & Technology

    1990-09-27

    impact on rotordynamic stability. Air (or other gas) flowing through the clearances of labyrinth seals can induce an asymmetric pressure distribution... Rotordynamic Instability, College Station, TX, May 1990. 17 B Ih=o.166 KgIS (baeJ A i6O.137 KgIS el r0.1S@ Kg/S

  2. Role of the bomber in integrated air power. Research report

    SciTech Connect

    Lumpkin, P.R.

    1988-05-01

    The role of bombers and the concept of strategic nuclear deterrence have become dysfunctionally linked. The Air Force fostered this linkage in the post-World War II and Korea era with its reliance on nuclear weapons and strategy of mutually assured destruction. Bombers continue to be a vital component of our nation's strategic nuclear-deterrent forces. However, bombers are not limited to deterring nuclear war. In addition to employing the first nuclear weapons, U.S. war fighting experience shows that bombers have played a crucial role in every major conflict beginning with World War II. Since our experience shows that we have historically employed bombers in a conventional role, the author suggests that we should be prepared to employ them across the spectrum of conflict today. Our experience also clearly shows that bombers have been best employed as an element of integrated air power, rarely as an independent force. Therefore, we should prepare to employ bombers as a member of an integrated air power team. The author also suggests that the concepts of tactical and strategic are ill-defined and serve to divide air power into organizations and forces. The author draws lessons from World War II and Vietnam experiences that could help guide our preparation for future conflicts.

  3. Communication Theory and Research in Air Force Education and Training.

    ERIC Educational Resources Information Center

    Kline, John A.

    The United States Air Force is unique among the armed services in placing all its professional military education (PME) and professional continuing education (PCE) under a single command. Furthermore, most of the schools and courses are in the same geographical location at the Maxwell/Gunter complex in Montgomery, Alabama. There are basic…

  4. Urban air pollution and atmospheric diffusion research in China

    NASA Astrophysics Data System (ADS)

    Ning, Datong; Whitney, Joseph B.; Yap, David

    1987-11-01

    Air pollution has become a serious problem in China as a result of that country's efforts in the last 30 years to become a great industrial power. The burning of coal, which currently provides over 70% of all China's energy needs, is a major source of air pollution. Because Chinese coal is high in sulfur and ash content and because most combustion devices in China have low efficiencies, SO2 and particulate emissions are a serious problem and are comparable to or exceed those found in many countries that are much more industrialized. Although most coal is burned in North China, acid precipitation is most severe in South China because of the lack of buffering loess dust found in the former region. The Chinese government has already taken major steps to mitigate air pollution, such as relocating polluting industries, supplying coal with lower sulfur content, using gas instead of coal for residential heating, and levying fines on industries that exceed pollution standards. Atmospheric environmental impact assessment (AEIA) is also required for all major new projects. This article describes three types of mathematical diffusion models and field and wind-tunnel experiments that are used in such assessments. The Chinese authorities believe that a range of technological, managerial, locational, and behavioral changes must be effected before the air of Chinese cities can be significantly improved.

  5. 75 FR 45627 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-03

    ... AGENCY Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods: Designation of One New Equivalent Method AGENCY: Environmental Protection Agency. ACTION: Notice of the designation of one new equivalent method for monitoring ambient air quality. SUMMARY: Notice is hereby...

  6. Causes of Indoor Air Quality Problems in Schools: Summary of Scientific Research.

    ERIC Educational Resources Information Center

    Bayer, Charlene W.; Crow, Sidney A.; Fischer, John

    Research show that one in five U.S. schools has indoor air quality (IAQ) problems; 36 percent have inadequate heating, ventilation, and air conditioning (HVAC) systems; and there appears to be a correlation between IAQs and the proportion of a school's students coming from low-income households. This report examines the IAQ issue in U.S. public…

  7. INDOOR AIR QUALITY AND FURNITURE PROCUREMENT IN EPA'S NEW RESEARCH TRIANGLE CAMPUS

    EPA Science Inventory

    The paper discusses various aspects of the EPA's new 1.2 million square foot building in Research Triangle Park that pertain to indoor air, with a particular focus on the process EPA used to select furniture to meet its indoor air guidelines. In keeping with its mission of protec...

  8. Value of Bulk Heat Flux Parameterizations for Ocean SST Prediction

    DTIC Science & Technology

    2008-03-01

    Value of bulk heat flux parameterizations for ocean SST prediction Alan J. Wallcraft a,⁎, A. Birol Kara a, Harley E. Hurlburt a, Eric P. Chassignet b...G., Doney, S.C., McWilliams , J.C., 1997. Sensitivity to surface forcing and boundary layer mixing in a global ocean model: annual-mean climatology. J

  9. Characterisation and quantification of regional diurnal SST cycles from SEVIRI

    NASA Astrophysics Data System (ADS)

    Karagali, I.; Høyer, J. L.

    2014-09-01

    Hourly SST (sea surface temperature) fields from the geostationary Spinning Enhanced Visible and Infrared Imager (SEVIRI) offer a unique opportunity for the characterisation and quantification of the diurnal cycle of SST in the Atlantic Ocean, the Mediterranean Sea and the northern European shelf seas. Six years of SST fields from SEVIRI are validated against the Advanced Along-Track Scanning Radiometer (AATSR) Reprocessed for Climate (ARC) data set. The overall SEVIRI-AATSR bias is -0.07 K, and the standard deviation is 0.51 K, based on more than 53 × 106 match-ups. Identification of the diurnal signal requires an SST foundation temperature field representative of well-mixed conditions which typically occur at night-time or under moderate and strong winds. Such fields are generated from the SEVIRI archive and are validated against pre-dawn SEVIRI SSTs and night-time SSTs from drifting buoys. The different methodologies tested for the foundation temperature fields reveal variability introduced by averaging night-time SSTs over many days compared to single-day, pre-dawn values. Diurnal warming is most pronounced in the Mediterranean and Baltic seas while weaker diurnal signals are found in the tropics. Longer diurnal warming duration is identified in the high latitudes compared to the tropics. The maximum monthly mean diurnal signal can be up to 0.5 K in specific regions.

  10. The effect of SST emissions on the earth's ozone layer

    NASA Technical Reports Server (NTRS)

    Whitten, R. C.; Turco, R. P.

    1974-01-01

    The work presented here is directed toward assessment of environmental effects of the supersonic transport (SST). The model used for the purpose includes vertical eddy transport and the photochemistry of the O-H-N system. It is found that the flight altitude has a pronounced effect on ozone depletion. The largest ozone reduction occurs for NO deposition above an altitude of 20 km.

  11. Observational constraints on the response function of Southern Ocean SST to SAM forcing

    NASA Astrophysics Data System (ADS)

    Hausmann, U.; Ferreira, D.; Marshall, J.

    2015-12-01

    Recent coupled model studies of the polar Southern Ocean (SO) revealed an initial (fast) cooling, but longer-term (slow) and equilibrium warming, of sea surface temperature (SST) in response to stratospheric ozone depletion and the concurrent shift of the Southern Annular Mode (SAM) to its positive phase. Yet there is much spread across models in the amplitude and time scale of the equilibration, so that even the sign of the implied recent-decade SST response to ozone depletion is not robust. Here we use the framework of a simple layered model (representing mixed layer, seasonal thermocline and upper permanent thermocline of the SO south of the polar front) combined with observations of the SO, to derive constraints on the equilibrium response of the real-world SO to annually-repeating seasonal SAM forcing. We obtain simple expressions for the equilibrium response in terms of the SAM-induced air-sea fluxes of heat and momentum and the SO horizontal and vertical temperature stratifications. These are then evaluated using satellite observations and atmospheric reanalysis data, as well as in-situ ocean climatologies. Our estimates suggest that, for observed characteristics (mixed layer depths, stratification, phasing of the SAM-forcing in season and space), the well-documented surface-forced fast SO SST cooling is large in comparison to the dynamically-induced subsurface-forced warming, and thus also largely sets the sign and amplitude of the equilibrium response.Exploration of the parameter space of coupled model versus observed ratios of horizontal to vertical stratifications provides a rationale for the discrepant equilibrium responses.

  12. Research on Air Traffic Control Automatic System Software Reliability Based on Markov Chain

    NASA Astrophysics Data System (ADS)

    Wang, Xinglong; Liu, Weixiang

    Ensuring the space of air craft and high efficiency of air traffic are the main job tasks of the air traffic control automatic system. An Air Traffic Control Automatic System (ATCAS) and Markov model is put forward in this paper, which collected the 36 month failure data of ATCAS; A method to predict the s1,s2,s3 of ATCAS is based on Markov chain which predicts and validates the Reliability of ATCTS according to the deriving theory of Reliability. The experimental results show that the method can be used for the future research and proved to be practicable.

  13. Assessment of SMOS Salinity and SST in the Aegean Sea (Greece) and correlations with MODIS SST measurements. Exploring the SSS and SST correlation to 137Cs inventory

    NASA Astrophysics Data System (ADS)

    Sykioti, Olga; Florou, Heleni

    2014-05-01

    A program concept has been developed to utilize sea surface salinity (SSS) and sea surface temperature (SST) information for the inventory of artificial radionuclides, which are conservative and part of the sea salinity. As a pilot study, activity concentrations of 137Cs in the Aegean Sea (Greece) are combined to SMOS and other satellite data so as to develop an innovative tool for the remote radioactivity detection either for routine observations and emergency recordings. The presented first results are a part of an effort to attempt for the integration in space and time of field measurements to the respective satellite observations of salinity variations by model simulations, which might be also applicable for the prediction of the radiological impact of potential accidental events. The presented results involve the first assessment of SMOS SSS and SST measurements over the Aegean Sea. SMOS measurements are averaged over a surface of 40x40 sq km at an average distance of 100 km from the coastline. For this reason, totally thirty nine pixels from SMOS Level 2 data cover part of the Aegean Sea. Two time series are created that include all available measurements spanning December 2011 to current date, from descending and ascending passes, each one representing an acquisition frequency of about three days. The average SSS values in the Aegean Sea are 37-38psu following no distinct seasonal pattern. A general trend of increasing values is observed from north to south. Noise and uncertainty in the measurements are most probably due to land and RFI contamination. High island density is combined with radiofrequency interferences generated by illegal man-made emissions. The latter is a detected common issue in specific areas worldwide, such as the Mediterranean Sea. On the other hand, SST follows a clear typical seasonal variation pattern with maximum values observed in August and minimum ones around March and a general trend of increasing values from north to south

  14. Evaluating Membrane Processes for Air Conditioning; Highlights in Research and Development, NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-06-01

    This NREL Highlight discusses a recent state-of-the-art review of membrane processes for air conditioning that identifies future research opportunities. This highlight is being developed for the June 2015 S&T Alliance Board meeting.

  15. Aluminum-air power cell research and development progress report

    SciTech Connect

    Cooper, J.F.

    1984-12-01

    The wedge-shaped cell design, of the aluminum-air battery being developed, is mechanically simple and capable of full anode utilization and rapid full or partial recharge. To maintain constant interelectrode separation and to collect anodic current, the cell uses tin-coated copper tracks mounted on removable cassettes. Under gravity feed, slabs of aluminum enter the cell at a continuous and constant rate and gradually assume the wedge shape as they dissolve. Voltage losses at this tin-aluminum junction are 7 mV at 2 kA/m/sup 2/. A second-generation wedge cell incorporates air and electrolyte manifolding into individually replaceable air-cathode cassettes. Prototype wedge cells of one design were operated simultaneously with a fluidized-bed crystallizer, which stabilized aluminate concentration and produced a granular aluminum-trihydroxide reaction product. Electrolyte was circulated between the cell and crystallizer, and a hydrocyclone was used to retain particles larger than 0.015 mm within the crystallizer. Air electrodes were tested over simulated vehicle drive systems that include a standby phase in cold, supersaturated electrolyte. Electrodes using advanced sintering and wet-proofing techniques and catalyzed with a nonnoble metal catalyst have been operated over 1500 cycles (a two-year drive life). The fuel costs of aluminum were estimated on the basis of model alloy production and distribution costs, leading to a projected operating cost of 8 to 10 cents per mile, depending on alloy and vehicle drive-train efficiencies. While unalloyed aluminum has a peak electrical energy consumption of 4.5 kWh/kg, the Hall and Alcoa processes consume 11.3 and 8.3 kWh/kg, respectively. The significance of these and other energy-use estimates for the 1990s and beyond is discussed.

  16. Aluminum-air power cell research and development. Progress report

    SciTech Connect

    Cooper, J.F.

    1984-02-22

    An aluminum-air battery is under development with the objective of providing an electric vehicle with the range, acceleration and rapid refueling capability of common automobiles. From tested refuelable cell designs, a wedge-shaped cell was chosen for mechanical simplicity and for its capability of full anode utilization and rapid partial- or full-recharge. The cell uses tin-plated copper tracks to maintain a constant interelectrode separation and to collect anodic current. Rectangular slabs of aluminum enter the cell under gravity feed and gradually assume the wedge shape during dissolution. The feed is constant and continuous and tin/aluminum junction losses are 7 mV at 2 kA/m/sup 2/. A second generation wedge cell has been developed which incorporates air- and electrolyte-manifolding into individually-replaceable air-cathode cassettes. A prototype wedge cell using replaceable cassettes was operated simultaneously with a crystallizer, which stabilized aluminate concentration and produced a granular aluminum-trihydroxide reaction product. Electrolyte was circulated between cell and fluidized-bed crystallizer, and particles of sizes greater than 0.015 mm were retained within the crystallizer using a hydrocyclone. Air electrodes have been tested over simulated vehicle drive cycles. Electrodes using advanced sintering and wet-proofing techniques and catalyzed with a non-noble metal catalyst (CoTMPP) have been operated for over 1400 drive-cycles. Fuel costs of $1.72/kg-Al (installed) were estimated on the basis of model alloy production and distribution costs, leading to a projected operating cost of 8-10 cents/mile, depending on alloy and vehicle drive-train efficiencies. Unalloyed aluminum yields a peak of 4.5 kWh/kg, while an advanced industrial Hall Process and the pilot-plant Alcoa Smelting Process have electrical energy consumptions of 11.3- and 8.3 kWh/kg, respectively.

  17. Environmental Assessment for the Air Force Research Laboratory Security Fence Project, Edwards Air Force Base, California

    DTIC Science & Technology

    2012-11-26

    flanks of the hills are blanketed by Quaternary- aged alluvial fans consisting of water-laid sand and gravel deposits. The valley floor is composed...bedded clay and sand, interfingered with the encroaching alluvial fan deposits. Playa margins have shoreline sand deposits from the wetter middle and...AFRL and are detailed as follows (United States Air Force 2008a):  Alluvial fans in the AFRL and proposed fence project area primarily consist of

  18. Aeronautical Communications Research and Development Needs for Future Air Traffic Management Applications

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.

    2002-01-01

    Continuing growth in regional and global air travel has resulted in increasing traffic congestion in the air and on the ground. In spite of occasional temporary downturns due to economic recessions and catastrophic events, average growth rates of air travel have remained high since the 1960s. The resulting congestion, which constrains expansion of the air transportation industry, inflicts schedule delays and decreases overall system efficiency, creating a pressing need to develop more efficient methods of air traffic management (ATM). New ATM techniques, procedures, air space automation methods, and decision support tools are being researched and developed for deployment in time frames stretching from the next few years to the year 2020 and beyond. As these methods become more advanced and increase in complexity, the requirements for information generation, sharing and transfer among the relevant entities in the ATM system increase dramatically. However, current aeronautical communications systems will be inadequate to meet the future information transfer demands created by these advanced ATM systems. Therefore, the NASA Glenn Research Center is undertaking research programs to develop communication, methods and key technologies that can meet these future requirements. As part of this process, studies, workshops, testing and experimentation, and research and analysis have established a number of research and technology development needs. The purpose of this paper is to outline the critical research and technology needs that have been identified in these activities, and explain how these needs have been determined.

  19. The ASTRI SST-2M prototype for the Cherenkov Telescope Array: prototype technologies goals and strategies for the future SST

    NASA Astrophysics Data System (ADS)

    Marchiori, Gianpietro; Busatta, Andrea; Giacomel, Stefano; Folla, Ivan; Valsecchi, Marco; Canestrari, Rodolfo; Bonnoli, Giacomo; Cascone, Enrico; Conconi, Paolo; Fiorini, Mauro; Giro, Enrico; La Palombara, Nicola; Pareschi, Giovanni; Perri, Luca; Rodeghiero, Gabriele; Sironi, Giorgia; Stringhetti, Luca; Toso, Giorgio; Tosti, Gino; Pellicciari, Carlo

    2014-07-01

    The Cherenkov Telescope Array (CTA) observatory will represent the next generation of Imaging Atmospheric Cherenkov Telescope. Using a combination of large-, medium-, and small-scale telescopes (LST, MST, SST, respectively), it will explore the Very High Energy domain from a few tens of GeVup to about few hundreds of TeV with unprecedented sensitivity, angular resolution and imaging quality. In this framework, the Italian ASTRI program, led by the Italian National Institute of Astrophysics (INAF) developed a 4-meter class telescope, which will adopt an aplanatic, wide-field, double-reflection optical layout in a Schwarzschild- Couder configuration. Within this program INAF assigned to the consortium between Galbiati Group and EIE Group the construction, assembly and tests activities of the prototype named ASTRI SST-2M. On the basis of the lesson learnt from the prototype, other telescopes will be produced, starting from a re-design phase, in order to optimize performances and the overall costs and production schedule for the CTA-SST telescope. This paper will firstly give an overview of the concept for the SST prototype mount structure. In this contest, the technologies adopted for the design, manufacturing and tests of the entire system will be presented. Moreover, a specific focus on the challenges of the prototype and the strategies associated with it will be provided, in order to outline the near future performance goals for this type of Cherenkov telescopes employed for Gamma ray science.

  20. Land Surface Process and Air Quality Research and Applications at MSFC

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale; Khan, Maudood

    2007-01-01

    This viewgraph presentation provides an overview of land surface process and air quality research at MSFC including atmospheric modeling and ongoing research whose objective is to undertake a comprehensive spatiotemporal analysis of the effects of accurate land surface characterization on atmospheric modeling results, and public health applications. Land use maps as well as 10 meter air temperature, surface wind, PBL mean difference heights, NOx, ozone, and O3+NO2 plots as well as spatial growth model outputs are included. Emissions and general air quality modeling are also discussed.

  1. Survey of Training Research in AFOSR: Implications for Manpower and Training Research for the All-Volunteer Air Force.

    ERIC Educational Resources Information Center

    Noble, Clyde E.

    The AFOSR research plan calls for fundamental studies in human learning and performance that would provide the foundations for general laws of learning applicable to Air Force problems. The report describes gaps in research that should be eliminated by investigations in specific fields. Studies of individual and group differences in aptitude and…

  2. Thirty years of research and development of air cushion vehicles

    NASA Astrophysics Data System (ADS)

    Bertelsen, William R.

    This paper describes the conception of the air cushion vehicle (ACV) from experiments with the ground effect of a VTOL aircraft model. Then it describes the evolution of the ultimate ACV drive system through building and testing many models and 16 full-scale ACV to arrive at complete controllability. Adequate control of the frictionless craft, which are without inherent yaw stability, requires control force of the order of magnitude of propulsion. The derived gimbal fans provide such control force in the form of direct thrust, which is instantly available in any of 360 degrees, meterable, instantly cancelable, and reversible.

  3. Understanding Energy Impacts of Oversized Air Conditioners; NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-06-01

    This NREL highlight describes a simulation-based study that analyzes the energy impacts of oversized residential air conditioners. Researchers found that, if parasitic power losses are minimal, there is very little increase in energy use for oversizing an air conditioner. The research demonstrates that new residential air conditioners can be sized primarily based on comfort considerations, because capacity typically has minimal impact on energy efficiency. The results of this research can be useful for contractors and homeowners when choosing a new air conditioner or heat pump during retrofits of existing homes. If the selected unit has a crankcase heater, performing proper load calculations to be sure the new unit is not oversized will help avoid excessive energy use.

  4. Evaluation of ocean data assimilation in CAS-ESM-C: Constraining the SST field

    NASA Astrophysics Data System (ADS)

    Dong, Xiao; Lin, Renping; Zhu, Jiang; Lu, Zeting

    2016-07-01

    A weakly coupled assimilation system, in which SST observations are assimilated into a coupled climate model (CASESM-C) through an ensemble optimal interpolation scheme, was established. This system is a useful tool for historical climate simulation, showing substantial advantages, including maintaining the atmospheric feedback, and keeping the oceanic fields from drifting far away from the observation, among others. During the coupled model integration, the bias of both surface and subsurface oceanic fields in the analysis can be reduced compared to unassimilated fields. Based on 30 model years of output from the system, the climatology and interannual variability of the climate system were evaluated. The results showed that the system can reasonably reproduce the climatological global precipitation and SLP, but it still suffers from the double ITCZ problem. Besides, the ENSO footprint, which is revealed by ENSO-related surface air temperature, geopotential height and precipitation during El Niño evolution, is basically reproduced by the system. The system can also simulate the observed SST-rainfall relationships well on both interannual and intraseasonal timescales in the western North Pacific region, in which atmospheric feedback is crucial for climate simulation.

  5. The effects of remote SST forcings on ENSO dynamics, variability and diversity

    NASA Astrophysics Data System (ADS)

    Dommenget, Dietmar; Yu, Yanshan

    2016-12-01

    Air-sea interactions with remote regions in the tropical Indian and Atlantic, and extra-tropical oceans can influence ENSO features in the tropical Pacific. In this study these effects are explored by using an AGCM coupled with a Slab Ocean and a simple recharge oscillator ENSO model through switched on/off air-sea interaction in respective ocean area. It is shown that the decoupling in different remote regions has different impacts on ENSO dynamics, variability and diversity. The most interesting result is that the air-sea interactions with remote tropical oceans provide a delayed negative feedback to ENSO similar to that of the tropical Pacific Ocean internal wave dynamics. This is caused by the ENSO teleconnections: they lead to a delayed remote warming and cooling, which in turn feedbacks to ENSO effectively giving a delayed negative feedback. The model simulations suggest that this remote delayed feedback may contribute about 40% to the total delayed negative feedback of ENSO. Thus a central element of ENSO dynamics is partly due to interactions with other tropical ocean basins by atmospheric teleconnections. Furthermore, all remote regions effectively provide stochastic forcings for the ENSO variability and therefore increase the ENSO variability. The influence from the remote regions also causes different patterns of sea surface temperature (SST) variability in the tropical Pacific, contributing to the diversity of the ENSO mode. In particular the extra-tropical Pacific regions force SST variability that is different from the equatorial ENSO mode of variability. The influence that the remote regions have on the ENSO dynamics and variability is significantly altered by the interaction between the equatorial recharge oscillator dynamics and the simple thermodynamic slab ocean processes.

  6. Using full-mission simulation for human factors research in air transport operations

    NASA Technical Reports Server (NTRS)

    Orlady, Harry W.; Hennessy, Robert W.; Obermayer, Richard; Vreuls, Donald; Murphy, Miles R.

    1988-01-01

    This study examined state-of-the-art mission oriented simulation and its use in human factors research. Guidelines were developed for doing full-mission human factors research on crew member behavior during simulated air transport operations. The existing literature was reviewed. However, interviews with experienced investigators provided the most useful information. The fundamental scientific and practical issues of behavioral research in a simulation environment are discussed. Guidelines are presented for planning, scenario development, and the execution of behavioral research using full-mission simulation in the context of air transport flight operations . Research is recommended to enhance the validity and productivity of full-mission research by: (1) validating the need for high-fidelity simulation of all major elements in the operational environment, (2) improving methods for conducting full-mission research, and (3) examining part-task research on specific problems through the use of vehicles which contain higher levels of abstraction (and lower fidelity) of the operational environment.

  7. Remotely-sensed sea surface temperatuares (SST) of Northeaster Pacific Coastal Zones

    EPA Science Inventory

    Sea surface temperature (SST) is an important indicator of long-term trends and geographical temperature patterns; however there have been relatively few long-term records of SST in near-coastal habitats. In situ SST measurements are irregular in both space and time. Therefore, w...

  8. Recent Research in Compression Refrigeration Cycle Air Source Heat Pumps.

    NASA Astrophysics Data System (ADS)

    Arai, Akira; Senshu, Takao

    The most important theme for heat pump air conditioners is the improvement of energy saving and comfort. Recently, cycle components, especially compressores and heat exchangers have been improved greatly in their performance and efficiency. As for compressors, large progress in their efficiencies have been made by detailed analysises such as mechanical losses and by the development of a new type compression mechanism. As for heat exchangers, various high heat transfer surfaces have been developed together with the improvement of the production technologies for them. Further, the effect of the capacity-modulated cycle is evaluated quantitatively through the improvements of static and transient cycle simulation technologies. And in order to realize this cffect, the electrically driven expansion valves heve been marketed. This review introduces the trends of these energy-saving technologies as well as comfort improvement studies.

  9. [Application research of data assimilation in air pollution numerical prediction].

    PubMed

    Bai, Xiao-ping; Li, Hong; Fang, Dong; Costabile, Francesca; Liu, Feng-lei

    2008-02-01

    Based on an air pollution modeling system coupling with the non-hydrostatic fifth generation mesoscale meteorological model (MM5) and the regional modeling system for aerosols and deposition (REMSAD), the forecast results of NOx and SO2 in August and September 2002 in Nanjing were assimilated with the optimal interpolation method and the ensemble Kalman filter. The results show that the improvement rates of deviation mean value of NOx and SO2 after assimilated with the optimal interpolation method are 34.20% and 47.53%, and the improvement rates of root mean square errors are 31.95% and 42.04% respectively. It is also demonstrated that the improvement rates of deviation mean value of NOx and SO2 after assimilated with the ensemble Kalman filter with 30 ensemble members are 26.73% and 60.75%, and the improvement rates of root mean square errors are 25.20% and 55.16% respectively. So, the optimal interpolation method and the ensemble Kalman filter both can improve the quality of the initial state from the air pollution numerical prediction model. The comparative experiments on the assimilation performance with the optimal interpolation method and the ensemble Kalman filter with 61 ensemble members were performed, and the experiments demonstrate that the assimilation performance of the ensemble Kalman filter with 61 ensemble members were improved compared with 30 ensemble members, and with the increase of the ensemble members, the improvement to the initial state of NOx and SO2 with the ensemble Kalman filter will be better than the optimal interpolation method.

  10. ASBESTOS EXPOSURE RESEARCH - AIR, SOIL AND BULK MATERIAL SCENARIOS

    EPA Science Inventory

    Presently, asbestos and other mineral fibers are monitored in the workplace and in the environment using several basic analytical techniques, based primarily upon observing the fiber by either optical or electron microscopy. EPA is conducting research to determine which sampling ...

  11. Collaboration with the United Kingdom on Air Quality Research

    EPA Pesticide Factsheets

    To initiate research collaboration among the United States Environmental Protection Agency (EPA), the Unitd Kingdom's (UK) Department for Environment, Food and Rural Affairs (Defra), and the Environment Agency for England and Wales (EA) on exposure science

  12. Breakthrough Air Force Capabilities Spawned By Basic Research

    DTIC Science & Technology

    2007-04-01

    AboutAFOSR/about_history.htm>. 15 Ibid. 16 Ibid. 4 1990s • Titanium Aluminides . AFOSR-sponsored research looked at titanium aluminides , which are...the 1970s, AFOSR sponsored research on ways to increase the strength and fatigue resistance of titanium , aluminum, and nickel alloys used for...Josephson received the Nobel Prize in physics in 1973 for developing the world’s most sensitive magnetometers and fastest, lowest power, switching

  13. Local-Scale Air Quality Modeling in Support of Human Health and Exposure Research (Invited)

    NASA Astrophysics Data System (ADS)

    Isakov, V.

    2010-12-01

    Spatially- and temporally-sparse information on air quality is a key concern for air-pollution-related environmental health studies. Monitor networks are sparse in both space and time, are costly to maintain, and are often designed purposely to avoid detecting highly localized sources. Recent studies have shown that more narrowly defining the geographic domain of the study populations and improvements in the measured/estimated ambient concentrations can lead to stronger associations between air pollution and hospital admissions and mortality records. Traditionally, ambient air quality measurements have been used as a primary input to support human health and exposure research. However, there is increasing evidence that the current ambient monitoring network is not capturing sharp gradients in exposure due to the presence of high concentration levels near, for example, major roadways. Many air pollutants exhibit large concentration gradients near large emitters such as major roadways, factories, ports, etc. To overcome these limitations, researchers are now beginning to use air quality models to support air pollution exposure and health studies. There are many advantages to using air quality models over traditional approaches based on existing ambient measurements alone. First, models can provide spatially- and temporally-resolved concentrations as direct input to exposure and health studies and thus better defining the concentration levels for the population in the geographic domain. Air quality models have a long history of use in air pollution regulations, and supported by regulatory agencies and a large user community. Also, models can provide bidirectional linkages between sources of emissions and ambient concentrations, thus allowing exploration of various mitigation strategies to reduce risk to exposure. In order to provide best estimates of air concentrations to support human health and exposure studies, model estimates should consider local-scale features

  14. Climatic variability between SST and river discharge at Amazon region

    NASA Astrophysics Data System (ADS)

    Silva, M. E.; Silva, E. R. L.

    2012-04-01

    Climatic variability, related both to precipitation and river discharge, has been associated to ocean variability. Authors commonly relate Pacific sea surface temperature (SST) variation to South America (SA) precipitation. Zonal displacement of Walker cell, with intensified subsidence over northern portion of SA, Subtropical Jet strengthening/weakening over extratropical latitudes of SA are, respectively, dynamical reasons scientifically accepted for increasing and depletion of precipitation at the respective areas. Many studies point out the influence of tropical Atlantic SST anomalies in relation to precipitation/river discharge variability over northeast of Brazil. Aliseos variability at tropical Atlantic is also a physic process that contributes to explain precipitation and river flow variability over SA, mainly over the north portion. In this study, we aim to investigate the temporal correlation between SST, mainly from Pacific and Atlantic oceans, and rivers discharge at the Amazon region. Ji-Parana, Madeira and Tapajós river discharge in monthly and annual scale, between 1968 and 2008, were the time series selected to reach the purpose. Time series for river discharge were obtained from Agência Nacional de Águas (ANA, in Portuguese) and, SST data were obtained from CDC/NOAA. Before linear correlation computations between river discharge and SST have been made, seasonal cycle and linear tendency were removed from all original time series. Areas better correlated to river discharge at Amazon region show oceanic patterns apparently associated to PDO (Pacific Decadal Oscillation) and ENSO (El Niño-South Oscillation) variability, with absolute values greater than 0.3 and reaching 0.5 or 0.6. The spatial pattern observed at Pacific basin is similar to that showed by the first mode of PCA (Principal Component Analysis), such seen in many studies (the "horse shoe" pattern). In general, negative correlation values appear far more to the west of Pacific basin

  15. The ASTRI SST-2M prototype: camera design

    NASA Astrophysics Data System (ADS)

    De Caprio, V.; Belluso, M.; Bonanno, G.; Canestrari, R.; Cascone, E.; Catalano, O.; La Rosa, G.; Pareschi, G.; Rodeghiero, G.; Sottile, G.

    2013-09-01

    ASTRI is an Flagship Project led by the Italian National Institute of Astrophysics, INAF, strictly linked to the development of the ambitious Cherenkov Telescope Array, CTA. Primary goal of the ASTRI project is the design, production, installation and calibration of an end-to-end Small Size Telescope prototype, devoted to the investigation of the highest gamma-ray energy band, from a fraction of TeV up to 100 TeV and beyond. The telescope, named ASTRI SST-2M, is mainly characterized by an optical system in dual-mirror configuration and by a modular camera at the curved focal surface composed of a matrix of Silicon Photo-Multipliers photo-sensors. In this paper we present an overview of the mechanical, thermal and electrical concept design of the camera and of the related technological solutions adopted for the ASTRI SST-2M prototype.

  16. FAA/NASA Joint University Program for Air Transportation Research 1994-1995

    NASA Technical Reports Server (NTRS)

    Remer, J. H.

    1998-01-01

    The Joint University Program for Air Transportation Research (JUP) is a coordinated set of three grants co-sponsored by the Federal Aviation Administration (FAA) and the National Aeronautics and Space Administration (NASA). Under JUP, three institutions: the Massachusetts Institute of Technology, Princeton, and Ohio Universities receive research grants and collaborate with FAA and NASA in defining and performing civil aeronautics research in a multitude of areas. Some of these disciplines are artificial intelligence, control theory, atmospheric hazards, navigation, avionics, human factors, flight dynamics, air traffic management, and electronic communications.

  17. Using SST, PDO and SOI for Streamflow Reconstruction

    NASA Astrophysics Data System (ADS)

    Bukhary, S. S.; Kalra, A.; Ahmad, S.

    2015-12-01

    Recurring droughts in southwestern U.S. particularly California, have strained the existing water reserves of the region. Frequency, severity and duration of these recurring drought events may not be captured by the available instrumental records. Thus streamflow reconstruction becomes imperative to identify the historic hydroclimatic extremes of a region and assists in developing better water management strategies, vital for sustainability of water reserves. Tree ring chronologies (TRC) are conventionally used to reconstruct streamflows, since tree rings are representative of climatic information. Studies have shown that sea surface temperature (SST) and climate indices of southern oscillation index (SOI) and pacific decadal oscillation (PDO) influence U.S. streamflow volumes. The purpose of this study was to improve the traditional reconstruction methodology by incorporating the oceanic-atmospheric variables of PDO, SOI, and Pacific Ocean SST, alongwith TRC as predictors in a step-wise linear regression model. The methodology of singular value decomposition was used to identify teleconnected regions of streamflow and SST. The approach was tested on eleven gage stations in Sacramento River Basin (SRB) and San Joaquin River Basin (JRB). The reconstructions were successfully generated from 1800-1980, having an overlap period of 1932-1980. Improved results were exhibited when using the predictor variable of SST along with TRC (calibration r2=0.6-0.91) compared to when using TRC in combination with SOI and PDO (calibration r2=0.51-0.78) or when using TRC by itself (calibration r2=0.51-0.86). For future work, this approach can be replicated for other watersheds by using the oceanic-atmospheric climate variables influencing that region.

  18. Time Series of SST Anomalies Off Western Africa

    DTIC Science & Technology

    2014-09-09

    of South Africa extending west-northwest from the vicinity of the Cape . b) Locations of surface drifting buoys over January-April 2014 superimposed...in the real ocean with accompanying estimates of forecast uncertainty. Assimilative ocean forecast around South Africa are evaluated from January to...GHRSST XV Proceedings Issue 1 Revision 0 2-6 June 2014, Cape Town , SA Date: 9th September 2014 Page 93 of 232 TIME SERIES OF SST ANOMALIES

  19. MIL-STD-1553B system design in SST application

    NASA Astrophysics Data System (ADS)

    Xiong, Ying

    2001-06-01

    In this paper, we will first introduce what is MIL-STD-1553B and why we choose it. Then we will analyze the characteristics and the reliability of this standard. When we use this protocol to implement our SDU system in the SST, we also need to describe the whole system in which the 1553 standard is used. Finally, we will put our most attention on the system design, including hardware interconnection and software program.

  20. SST Control by Subsurface Mixing During Indian Ocean Monsoons

    DTIC Science & Technology

    2015-09-30

    time scales, we are using extended time series at a variety of locations to directly measure and assess SST modification by turbulent mixing over the...broad expanse of international waters in the Bay of Bengal on diurnal to seasonal time scales. OBJECTIVES Our specific objectives are to: 1...passage of Cyclone Madi, a very severe cyclone that intensified during the cruise duration. Breakdown of frontal characteristics by time (Fig. 4) suggests

  1. Operational and troubleshooting experiences in the SST-1 cryogenic system

    NASA Astrophysics Data System (ADS)

    Mahesuria, G.; Panchal, P.; Panchal, R.; Patel, R.; Sonara, D.; Gupta, N. C.; Srikanth, G. L. N.; Christian, D.; Garg, A.; Bairagi, N.; Patel, K.; Shah, P.; Nimavat, H.; Sharma, R.; Patel, J. C.; Tank, J.; Tanna, V. L.; Pradhan, S.

    2014-01-01

    Recently, the cooldown and current charging campaign have been carried out towards the demonstration of the first successful plasma discharge in the steady state superconducting Tokomak (SST-1). The SST-1 machine consists of cable-in-conduit wound superconducting toroidal as well as poloidal coils, cooled using 1.3 kW at 4.5 K helium refrigerator -cum- liquefier (HRL) system. The cryo system provides the two-phase helium at 0.13 MPa at 4.5 K as well as forced-flow pressurized helium at 0.4 MPa and in addition to 7 g-s-1 liquefaction capacity required for the current leads and other cold mass at 4.5 K. The entire integrated cold masses having different thermo hydraulic resistances cooled with the SST-1 HRL in optimised process parameters. In order to maintain different levels of temperatures and to facilitate smooth and reliable cooldown, warm-up, normal operations as well as to handle abnormal events such as, quench or utilities failures etc., exergy efficient process are adopted for the helium refrigerator-cum-liquefier (HRL) with an installed equivalent capacity of 1.3 kW at 4.5 K. Using the HRL, the cold mass of about 40 tons is being routinely cooled down from ambient temperature to 4.5 K with an average cooldown rate of 0.75 - 1 K-h-1. Long-term cryogenic stable conditions were obtained within 15 days in the superconducting coils and their connecting feeders. Afterwards, all of the cold mass is warmed-up in a controlled manner to ambient temperature. In this paper, we report the recent operational results of the cryogenic system during the first plasma discharge in SST-1 as well as the troubleshooting experiences of the cryogenic plant related hardware.

  2. Air Force Office of Scientific Research, May/Jun 98 Research Highlights.

    DTIC Science & Technology

    1998-06-01

    quality of airfield pavements, proteins that protect against toxicity, compact laser development , scientist and engineer exchange program and technology transitions that benefit Air Force operations.

  3. HUMAN EXPOSURE AIR MONITORING: EXAMPLES FROM THE NATIONAL EXPOSURE RESEARCH LABORATORY

    EPA Science Inventory

    The US-EPA and North Carolina Central University (NCCU) have a cross-pollination agenda to help share research opportunities between the two institutions. This presentation provides NCCU with an understanding of current air monitoring research the US EPA is involved in and some o...

  4. EPA Awards $700,000+ Grant to Harvard for Research on Climate Impacts on Air Quality

    EPA Pesticide Factsheets

    A US EPA research grant of $719,780 will assist a Harvard researcher for a project to study how climate change will affect changes in dust and smoke on the Earth's surface over the next several decades, which can have significant impacts on air quality.

  5. Review and Implications of Job Satisfaction and Work Motivation Theories for Air Force Research.

    ERIC Educational Resources Information Center

    Tuttle, Thomas C.; Hazel, Joe T.

    The purpose of this report is to: (a) review certain major theories of work motivation, particularly as related to job satisfaction, (b) distill from such theories and other research, implications for an Air Force job satisfaction research program, and (c) provide a comprehensive bibliography of satisfaction/retention studies. The theoretical…

  6. Ranking the strongest ENSO events while incorporating SST uncertainty

    NASA Astrophysics Data System (ADS)

    Huang, Boyin; L'Heureux, Michelle; Hu, Zeng-Zhen; Zhang, Huai-Min

    2016-09-01

    The strength of El Niño-Southern Oscillation (ENSO) is often measured using a single, discrete value of the Niño index. However, this method does not consider the sea surface temperature (SST) uncertainty associated with the observations and data processing. On the basis of the Niño3.4 index and its uncertainty, we find that the strength of the three strongest ENSO events is not separable at 95% confidence level. The monthly peak SST anomalies in the most recent 2015-2016 El Niño is tied with 1997-1998 and 1982-1983 El Niño as the strongest. The three most negative monthly Niño values occur within the 1955-1956, 1973-1974, and 1975-1976 La Niña events, which cannot be discriminated by rank. The histograms of 1000-member ensemble analysis support the conclusion that the strength of the three strongest ENSO events is not separable. These results highlight that the ENSO ranking has to include the SST uncertainty.

  7. Conduction and Utilization of Research: The Relationship Between Air Force Nurses’ Attitudes, Levels of Education, and Rank

    DTIC Science & Technology

    1999-05-01

    Respondents 22 Table 5. Highest Level of Non- Nursing Education of the Air Force Nurse Respondents 23 Table 6. Overall Highest Level of Education...Force Rank (Good Attitude vs Bad Attitude 41 Table 13. Air Force Nurse Respondents’ Attitudes by Highest Level of Nursing Education 44 Table 14. Air...Figure 2. Research Experience of Air Force Nurse Respondents by Highest Level of Nursing Education (Excellent, Fair or Poor Experience 38 Figure 3. Air

  8. Short-haul CTOL aircraft research. [on reduced energy for commercial air transportation

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1978-01-01

    The results of the reduced energy for commercial air transportation studies on air transportation energy efficiency improvement alternatives are reviewed along with subsequent design studies of advanced turboprop powered transport aircraft. The application of this research to short-haul transportation is discussed. The results of several recent turboprop aircraft design are included. The potential fuel savings and cost savings for advanced turboprop aircraft appear substantial, particularly at shorter ranges.

  9. Investigating Team Collaboration of an Air Force Research Event October 2008

    DTIC Science & Technology

    2009-06-01

    Joint Force Commander MARLO Marine Liaison Officer MIO Maritime Interdiction Operations MURI Multidisciplinary University Research...maritime interdiction operations ( MIO ) chat logs from three MIO exercises and air warfare audio transcripts from four different teams. A MIO is an...State University: Team Training Paradigm for Better CID . Retrieved on May 19, 2009 from Hwww.cerici.org Sirak, M. (2006). Air Force to Pick Contractor

  10. Catastrophe Theory in Higher Education Research. AIR Forum 1981 Paper.

    ERIC Educational Resources Information Center

    Staman, E. Michael

    The applicability of catastrophe theory to research in higher education is considered, with several problems that typically appear in the literature presented in a theoretical framework. A catastrophe model is attempted for each. The nature of mathematical modeling and the relationship between modeling continuous systems and discontinuous systems…

  11. Strategies in Retention Research. AIR 1997 Annual Forum Paper.

    ERIC Educational Resources Information Center

    McLaughlin, Gerald W.; Brozovsky, Paul; McLaughlin, Josetta S.

    This paper discusses the role of institutional researchers in changing attitudes within institutions of higher education on the importance of efforts to improve student retention. It describes activities undertaken at Virginia Tech to determine why students voluntarily withdraw from the university in the context of changing attitudes within the…

  12. Impact of new technology weapons on SAC (Strategic Air Command) conventional air operations. Research report

    SciTech Connect

    Bodenheimer, C.E.

    1983-06-01

    Chapter I introduces the issue of conventional-response capability. The point stressed first is that the strategic bomber's primary mission is in support of the single integrated operations plan (SIOP) as a nuclear weapons delivery vehicle. However, as cited by Secretary of Defense Caspar Weinberger, we must have a rapid deployment conventional capability to areas where there are small if any U.S. forces present. The SAC strategic projection force (SPF) is available but with gravity weapons of World War II vintage. New technology can provide answers to the problem by providing highly accurate long-range conventional standoff weapons. Chapter II gives a basic historical perspective on the use of the strategic bomber in past wars. It discusses the development of strategy, weapons, and targets in World War II, Korean War, and Vietnam War. Chapter III presents a very brief look at current US policy, strategy, and guidance. Chapter IV covers the aircraft attrition issue in today's highly lethal defensive environment. Chapter V describes the development of air-to-ground weapons. Chapter VI addresses the potential for the future in the shifting balance of Soviet and US technology. The final chapter makes the point that a decision must be made on weapons-acquisition programs and bomber force structure. New technology-standoff conventional weapons could make AAA and SAM defenses a modern Maginot Line.

  13. North American Tropical Cyclone Landfall and SST: A Statistical Model Study

    NASA Technical Reports Server (NTRS)

    Hall, Timothy; Yonekura, Emmi

    2013-01-01

    A statistical-stochastic model of the complete life cycle of North Atlantic (NA) tropical cyclones (TCs) is used to examine the relationship between climate and landfall rates along the North American Atlantic and Gulf Coasts. The model draws on archived data of TCs throughout the North Atlantic to estimate landfall rates at high geographic resolution as a function of the ENSO state and one of two different measures of sea surface temperature (SST): 1) SST averaged over the NA subtropics and the hurricane season and 2) this SST relative to the seasonal global subtropical mean SST (termed relSST). Here, the authors focus on SST by holding ENSO to a neutral state. Jackknife uncertainty tests are employed to test the significance of SST and relSST landfall relationships. There are more TC and major hurricane landfalls overall in warm years than cold, using either SST or relSST, primarily due to a basinwide increase in the number of storms. The signal along the coast, however, is complex. Some regions have large and significant sensitivity (e.g., an approximate doubling of annual major hurricane landfall probability on Texas from -2 to +2 standard deviations in relSST), while other regions have no significant sensitivity (e.g., the U.S. mid-Atlantic and Northeast coasts). This geographic structure is due to both shifts in the regions of primary TC genesis and shifts in TC propagation.

  14. Role of the oceanic bridge in linking the 18.6 year modulation of tidal mixing and long-term SST change in the North Pacific

    NASA Astrophysics Data System (ADS)

    Osafune, S.; Masuda, S.; Sugiura, N.

    2014-10-01

    The impact of the 18.6 year modulation of tidal mixing on sea surface temperature (SST) in the North Pacific is investigated in a comparative study using an ocean data synthesis system. We show that remote impact through a slow ocean response can make a significant contribution to the observed bidecadal variation in wintertime SST near the center of action of the Pacific Decadal Oscillation in the eastern Pacific. A comparative data synthesis experiment showed that the modified SST variation is amplified by bidecadal variation in the westerly wind. This relationship between SST and wind variations is consistent with an observed air-sea coupled mode in the extratropics, which suggests that a midlatitude air-sea interaction plays an important role in enhancing the climate signal of the 18.6 year modulation. This result supports the hypothesis that the 18.6 year tidal cycle influences long-term variability in climate; thus, knowledge of this cycle could contribute toward improving decadal predictions of climate.

  15. Joint University Program for Air Transportation Research, 1990-1991

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1991-01-01

    The goals of this program are consistent with the interests of both NASA and the FAA in furthering the safety and efficiency of the National Airspace System. Research carried out at the Massachusetts Institute of Technology (MIT), Ohio University, and Princeton University are covered. Topics studied include passive infrared ice detection for helicopters, the cockpit display of hazardous windshear information, fault detection and isolation for multisensor navigation systems, neural networks for aircraft system identification, and intelligent failure tolerant control.

  16. Air Force Research Laboratory Success Stories. A Review of 2001

    DTIC Science & Technology

    2001-01-01

    The Integrated Precision Synthetic Aperture Radar Targeting System 23 Space Vehicles Defense Meteorological Satellite Program CRADA 24 State-of-the...inertia! measurement unit (IMU) calibration and alignment ( MICA ) transfer alignment algorithm benefits any MEMS IMU exhibiting 50-200°/hr gyro drift...innovative transfer alignment algorithm called the MICA algorithm. Researchers designed the MICA algorithm to accurately align the MEMS IMU and

  17. Tu-144LL SST Flying Laboratory Side View of Nose, with a TU-144D on Ramp

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A Tupolev Tu-144D supersonic jetliner is framed by the drooped nose and forward fuselage of the Tu-144LL supersonic flying laboratory at the Zhukovsky Air Development Center near Moscow, Russia, in 1998. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different engines than were used

  18. The Aqua-planet Experiment (APE): Response to Changed Meridional SST Profile

    NASA Technical Reports Server (NTRS)

    Williamson, David L.; Blackburn, Michael; Nakajima, Kensuke; Ohfuchi, Wataru; Takahashi, Yoshiyuki O.; Hayashi, Yoshi-Yuki; Nakamura, Hisashi; Ishiwatari, Masaki; Mcgregor, John L.; Borth, Hartmut; Wirth, Volkmar; Frank, Helmut; Bechtold, Peter; Wedi, Nils P.; Tomita, Hirofumi; Satoh, Masaki; Zhao, Ming; Held, Isaac M.; Suarez, Max J.; Lee, Myong-In; Watanabe, Masahiro; Kimoto, Masahide; Liu, Yimin; Wang, Zaizhi; Molod, Andrew; RajenDran, Kavirajan; Kitoh, Akio; Stratton, Rachel

    2013-01-01

    This paper explores the sensitivity of Atmospheric General Circulation Model (AGCM) simulations to changes in the meridional distribution of sea surface temperature (SST). The simulations are for an aqua-planet, a water covered Earth with no land, orography or sea- ice and with specified zonally symmetric SST. Simulations from 14 AGCMs developed for Numerical Weather Prediction and climate applications are compared. Four experiments are performed to study the sensitivity to the meridional SST profile. These profiles range from one in which the SST gradient continues to the equator to one which is flat approaching the equator, all with the same maximum SST at the equator. The zonal mean circulation of all models shows strong sensitivity to latitudinal distribution of SST. The Hadley circulation weakens and shifts poleward as the SST profile flattens in the tropics. One question of interest is the formation of a double versus a single ITCZ. There is a large variation between models of the strength of the ITCZ and where in the SST experiment sequence they transition from a single to double ITCZ. The SST profiles are defined such that as the equatorial SST gradient flattens, the maximum gradient increases and moves poleward. This leads to a weakening of the mid-latitude jet accompanied by a poleward shift of the jet core. Also considered are tropical wave activity and tropical precipitation frequency distributions. The details of each vary greatly between models, both with a given SST and in the response to the change in SST. One additional experiment is included to examine the sensitivity to an off-equatorial SST maximum. The upward branch of the Hadley circulation follows the SST maximum off the equator. The models that form a single precipitation maximum when the maximum SST is on the equator shift the precipitation maximum off equator and keep it centered over the SST maximum. Those that form a double with minimum on the equatorial maximum SST shift the double

  19. The Conference Proceedings of the 2003 Air Transport Research Society (ATRS) World Conference, Volume 5

    NASA Technical Reports Server (NTRS)

    Bowen, Brent (Editor); Gudmundsson, Sveinn (Editor); Oum, Tae (Editor)

    2003-01-01

    The UNO Aviation Institute Monograph Series began in 1994 as a key component of the education outreach and information transfer missions of the Aviation Institute and the NASA Nebraska Space Grant & EPSCoR Programs. The series is an outlet for aviation materials to be indexed and disseminated through an efficient medium. Publications are welcome in all aspects of aviation. Publication formats may include, but are not limited to, conference proceedings, bibliographies, research reports, manuals, technical reports, and other documents that should be archived and indexed for future reference by the aviation and world wide communities. The Conference proceedings of the 2003 Air Transport Research Society (ATRS) world conference, volume 5 is presented. The topics include: 1) The Temporal Configuration of Airline Networks in Europe; 2) Determination and Applications of Environmental Costs at Different Sized Airports-Aircraft Noise and Engine Emissions; 3) Cost Effective Measures to Reduce CO2 Emissions in the Air Freight Sector; 4) An Assessment of the Sustainability of Air Transport System: Quantification of Indicators; 5) Regulation, Competition and Network Evolution in Aviation; 6) Regulation in the Air: Price and Frequency Cap; 7) Industry Consolidation and Future Airline Network Structures in Europe; 8) Application of Core Theory to the U.S. Airline Industry; 9) Air Freight Transshipment Route Choice Analysis; 10) A Fuzzy Approach of the Competition on Air Transport Market; and 11) Developing Passenger Demand Models for International Aviation from/to Egypt: A Case Study of Cairo Airport and Egyptair.

  20. A Distributed Simulation Facility to Support Human Factors Research in Advanced Air Transportation Technology

    NASA Technical Reports Server (NTRS)

    Amonlirdviman, Keith; Farley, Todd C.; Hansman, R. John, Jr.; Ladik, John F.; Sherer, Dana Z.

    1998-01-01

    A distributed real-time simulation of the civil air traffic environment developed to support human factors research in advanced air transportation technology is presented. The distributed environment is based on a custom simulation architecture designed for simplicity and flexibility in human experiments. Standard Internet protocols are used to create the distributed environment, linking all advanced cockpit simulator, all Air Traffic Control simulator, and a pseudo-aircraft control and simulation management station. The pseudo-aircraft control station also functions as a scenario design tool for coordinating human factors experiments. This station incorporates a pseudo-pilot interface designed to reduce workload for human operators piloting multiple aircraft simultaneously in real time. The application of this distributed simulation facility to support a study of the effect of shared information (via air-ground datalink) on pilot/controller shared situation awareness and re-route negotiation is also presented.

  1. Ocean Surface Temperature Response to Atmosphere-Ocean Interaction of the MJO. A Component of Coupled Air-Wave-Sea Processes in the Subtropics Departmental Research Initiative

    DTIC Science & Technology

    2013-09-30

    LASP/ DYNAMO : • fast response, infrared (IR) imagery to characterize SST signatures including upper-ocean convection, freshwater lenses due to rain...campaign in LASP/ DYNAMO are to address the basic science questions/hypotheses regarding air-sea interaction and tropical convection with its unique...the R/V Revelle for the 2nd, 3rd and 4th legs. DYNAMO Composite Rain Event, All Events 2 u 2..... 0 ..... "iii ·2 ~ -4 -4 -2 0 2 4 6 8 0.5

  2. NASA Langley and NLR Research of Distributed Air/Ground Traffic Management

    NASA Technical Reports Server (NTRS)

    Ballin, Mark G.; Hoekstra, Jacco M.; Wing, David J.; Lohr, Gary W.

    2002-01-01

    Distributed Air/Ground Traffic Management (DAG-TM) is a concept of future air traffic operations that proposes to distribute information, decision-making authority, and responsibility among flight crews, the air traffic service provider, and aeronautical operational control organizations. This paper provides an overview and status of DAG-TM research at NASA Langley Research Center and the National Aerospace Laboratory of The Netherlands. Specific objectives of the research are to evaluate the technical and operational feasibility of the autonomous airborne component of DAG-TM, which is founded on the operational paradigm of free flight. The paper includes an overview of research approaches, the airborne technologies under development, and a summary of experimental investigations and findings to date. Although research is not yet complete, these findings indicate that free flight is feasible and will significantly enhance system capacity and safety. While free flight cannot alone resolve the complex issues faced by those modernizing the global airspace, it should be considered an essential part of a comprehensive air traffic management modernization activity.

  3. Air pollutant interactions with vegetation: research needs in data acquisition and interpretation

    SciTech Connect

    Lindberg, S. E.; McLauglin, S. B.

    1980-01-01

    The objective of this discussion is to consider problems involved in the acquisition, interpretation, and application of data collected in studies of air pollutant interactions with the terrestrial environment. Emphasis will be placed on a critical evaluation of current deficiencies and future research needs by addressing the following questions: (1) which pollutants are either sufficiently toxic, pervasive, or persistent to warrant the expense of monitoring and effects research; (2) what are the interactions of multiple pollutants during deposition and how do these influence toxicity; (3) how de we collect, report, and interpret deposition and air quality data to ensure its maximum utility in assessment of potential regional environmental effects; (4) what processes do we study, and how are they measured to most efficiently describe the relationship between air quality dose and ultimate impacts on terrestrial ecosystems; and (5) how do we integrate site-specific studies into regional estimates of present and potential environmental degradation (or benefit).

  4. A GIS Approach to Wind,SST(Sea Surface Temperature) and CHL(Chlorophyll) variations in the Caspian Sea

    NASA Astrophysics Data System (ADS)

    Mirkhalili, Seyedhamzeh

    2016-07-01

    Chlorophyll is an extremely important bio-molecule, critical in photosynthesis, which allows plants to absorb energy from light. At the base of the ocean food web are single-celled algae and other plant-like organisms known as Phytoplankton. Like plants on land, Phytoplankton use chlorophyll and other light-harvesting pigments to carry out photosynthesis. Where Phytoplankton grow depends on available sunlight, temperature, and nutrient levels. In this research a GIS Approach using ARCGIS software and QuikSCAT satellite data was applied to visualize WIND,SST(Sea Surface Temperature) and CHL(Chlorophyll) variations in the Caspian Sea.Results indicate that increase in chlorophyll concentration in coastal areas is primarily driven by terrestrial nutrients and does not imply that warmer SST will lead to an increase in chlorophyll concentration and consequently Phytoplankton abundance.

  5. The complexities of air pollution regulation: the need for an integrated research and regulatory perspective.

    PubMed

    Nadadur, Srikanth S; Miller, C Andrew; Hopke, Philip K; Gordon, Terry; Vedal, Sverre; Vandenberg, John J; Costa, Daniel L

    2007-12-01

    The Clean Air Act mandates the U.S. Environmental Protection Agency to periodically reassess existing and new science that underlie the regulation of major ambient pollutants -- particulate matter (PM) and tropospheric ozone being most notable. While toxic effects have been ascribed individually to these and other pollutants in the air, it is clear that mixtures of these contaminants have the potential to interact and thereby influence their overall toxic outcomes. It follows that a more comprehensive assessment of the potential health effects of the air pollution complex might better protect human health; however, traditional regulatory drivers and funding constraints have impeded progress to such a goal. Despite difficulties in empirically conducting studies of complex mixtures of air pollutants and acquiring relevant exposure data, there remains a need to develop integrated, interdisciplinary research and analytical strategies to provide more comprehensive (and relevant) assessments of associated health outcomes and risks. The research and assessment communities are endeavoring to dissect this complexity using varied approaches Here we present five interdisciplinary perspectives of this evolving line of thought among researchers and those who use such data in assessment: (1) analyses that coordinate air quality-health analyses utilizing representative polluted U.S. air sheds to apportion source and component-specific health risks; (2) novel approaches to characterize air quality in terms of emission sources and how emission reduction strategies might effectively impact pollutant levels; (3) insights from present-day studies of effects of single ambient pollutants in animal and controlled clinical toxicology studies and how these are evolving to address air pollution; (4) refinements in epidemiologic health assessments that take advantage of the complexities of existent air quality conditions; and (5) new approaches to integrative analyses to establish the

  6. FAA/NASA Joint University Program for Air Transportation Research, 1992-1993

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1994-01-01

    The research conducted during the academic year 1992-1993 under the FAA/NASA sponsored Joint University Program for Air Transportation Research is summarized. The year end review was held at Ohio University, Athens, Ohio, 17-18 June 1993. The Joint University Program is a coordinated set of three grants sponsored by the Federal Aviation Administration and NASA Langley Research Center, one each with the Massachusetts Institute of Technology, Ohio University, and Princeton University. Completed works, status reports, and annotated bibliographies are presented for research topics, which include navigation, guidance, and control theory and practice, aircraft performance, human factors and air traffic management. An overview of the year's activities for each university is also presented.

  7. ReefTemp: An interactive monitoring system for coral bleaching using high-resolution SST and improved stress predictors

    NASA Astrophysics Data System (ADS)

    Maynard, Jeffrey A.; Turner, Peter J.; Anthony, Kenneth R. N.; Baird, Andrew H.; Berkelmans, Ray; Eakin, C. Mark; Johnson, Johanna; Marshall, Paul A.; Packer, Gareck R.; Rea, Anthony; Willis, Bette L.

    2008-03-01

    Anomalously high sea surface temperatures (SST) have led to repeated mass coral bleaching events on a global scale. Existing satellite-based systems used to monitor conditions conducive to bleaching are based on low-resolution (0.5°, ~50 km) SST data. While these systems have served the research and management community well, they have inherent weaknesses that limit their capacity to predict stress on coral reefs at local scales, over which bleaching severity is known to vary dramatically. Here we discuss the development and testing of ReefTemp, a new operational remote sensing application for the Great Barrier Reef that assesses bleaching risk daily using: high-resolution (2 km) SST, regionally validated thermal stress indices, and color-graded legends directly related to past observations of bleaching severity. Given projections of sea temperature rise, ReefTemp is timely as it can accurately predict bleaching severity at a local scale and therefore help to give focus to future research and monitoring efforts.

  8. The Eighth Annual Air Pollution Medical Research Conference, Los Angeles, March 2-4, 1966.

    ERIC Educational Resources Information Center

    Archives of Environmental Health, 1967

    1967-01-01

    Papers read before the Eighth Annual American Medical Association Air Pollution Medical Research Conference, Los Angeles, California, March 2-4, 1966, are presented in this document. Topics deal with basic approaches to the study of the effects of inhaled irritants on the lung; environmental parameters in relation to host responses; biological…

  9. 76 FR 15974 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-22

    ... particulate matter (TSP) (High-Volume Method, 40 CFR Part 50, Appendix B), with a particular extraction and... AGENCY Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods: Designation of Four New Equivalent Methods AGENCY: Environmental Protection Agency. ACTION: Notice of...

  10. STEAM ENHANCED REMEDIATION RESEARCH FOR DNAPL IN FRACTURED ROCK, LORING AIR FORCE BASE, LIMESTONE, MAINE

    EPA Science Inventory

    This report details a research project on Steam Enhanced Remediation (SER) for the recovery of volatile organic compounds from fractured limestone that was carried out at the Quarry at the former Loring Air Force Base in Limestone, Maine. This project was carried out by USEPA, Ma...

  11. Progress in aeronautical research and technology applicable to civil air transports

    NASA Technical Reports Server (NTRS)

    Bower, R. E.

    1981-01-01

    Recent progress in the aeronautical research and technology program being conducted by the United States National Aeronautics and Space Administration is discussed. Emphasis is on computational capability, new testing facilities, drag reduction, turbofan and turboprop propulsion, noise, composite materials, active controls, integrated avionics, cockpit displays, flight management, and operating problems. It is shown that this technology is significantly impacting the efficiency of the new civil air transports. The excitement of emerging research promises even greater benefits to future aircraft developments.

  12. Modeling the surface heat flux response to long-lived SST anomalies in the North Atlantic

    SciTech Connect

    Power, S.B.; Kleeman, R.; Colman, R.A.

    1995-09-01

    An atmospheric general circulation model (AGCM), a simplified atmospheric model (SAM) of surface heat flux, and various idealized analytic models have been used to investigate the atmospheric response over the North Atlantic to SST anomalies, including a general cooling associated with a weakened thermohaline circulation. Latent heating dominates the surface heat flux response, while sensible heating plays an important secondary role. The total heat flux response is weaker than presumed in recent studies using ocean models under highly idealized surface boundary conditions. This implies that stability of the thermohaline circulation to high-latitude freshening in more sophisticated coupled systems (that incorporate either AGCMs or models like SAM) will be increased. All three kinds of atmospheric models exhibit nonrestorative behavior away from the anomaly peak that is primarily associated with the advection of cooled air eastward. This simple picture is complicated in the AGCM by the fact that the winds weaken over the SST anomaly, which helps to moderate the response. Analytic models for atmospheric temperature forced using imposed surface temperature anomalies highlight conditions under which a nonrestorative response can arise. Previous work has shown that the length scale of spatially periodic anomalies partially determines the magnitude of the response in a diffusive atmosphere. Here the authors show that this scale dependence has much wider applicability by considering more localized anomalies and by the inclusion of advective transport processes. The modification of the response by sea ice changes and the absence of any statistically significant change in the basin-averaged hydrological cycle are also discussed. 62 refs., 19 figs.

  13. Global climate sensitivity derived from ~784,000 years of SST data

    NASA Astrophysics Data System (ADS)

    Friedrich, T.; Timmermann, A.; Tigchelaar, M.; Elison Timm, O.; Ganopolski, A.

    2015-12-01

    Global mean temperatures will increase in response to future increasing greenhouse gas concentrations. The magnitude of this warming for a given radiative forcing is still subject of debate. Here we provide estimates for the equilibrium climate sensitivity using paleo-proxy and modeling data from the last eight glacial cycles (~784,000 years). First of all, two reconstructions of globally averaged surface air temperature (SAT) for the last eight glacial cycles are obtained from two independent sources: one mainly based on a transient model simulation, the other one derived from paleo- SST records and SST network/global SAT scaling factors. Both reconstructions exhibit very good agreement in both amplitude and timing of past SAT variations. In the second step, we calculate the radiative forcings associated with greenhouse gas concentrations, dust concentrations, and surface albedo changes for the last 784, 000 years. The equilibrium climate sensitivity is then derived from the ratio of the SAT anomalies and the radiative forcing changes. Our results reveal that this estimate of the Charney climate sensitivity is a function of the background climate with substantially higher values for warmer climates. Warm phases exhibit an equilibrium climate sensitivity of ~3.70 K per CO2-doubling - more than twice the value derived for cold phases (~1.40 K per 2xCO2). We will show that the current CMIP5 ensemble-mean projection of global warming during the 21st century is supported by our estimate of climate sensitivity derived from climate paleo data of the past 784,000 years.

  14. Seasonal dependence of surface wind stress variability on SST and precipitation over the tropical Pacific

    NASA Astrophysics Data System (ADS)

    Yang, Fanglin; Kumar, Arun; Wang, Wanqiu

    The dependence of interannual variability of surface zonal and meridional wind stresses (τx and τy) on sea-surface temperature (SST) and precipitation over the tropical Pacific is examined using observed data. A strong seasonality in the dependence is found. In January, the largest SST and precipitation anomalies are located in the central to eastern and central tropical Pacific respectively. τx anomalies in the southern central tropical Pacific and τy anomalies in the northern tropical Pacific are highly correlated to both the SST and precipitation anomalies. In contrast, during July the largest SST and precipitation anomalies are located at the eastern and western tropical Pacific respectively. East of the dateline, τx anomalies present little dependence on the SST anomalies. West of the dateline, τx anomalies depend strongly on the precipitation anomalies that are not linked to the leading modes of SST.

  15. Extreme subseasonal tropical air-sea interactions and their relation to ocean thermal stratification

    NASA Astrophysics Data System (ADS)

    Lloyd, Ian D.

    2011-12-01

    representation of warm core eddies and the loop current in the Gulf of Mexico, and a new parameterization of the drag coefficient. The 2006--2009 period contains more intense hurricanes (category 4 and 5) and the non-monotonic nature of the SST-intensity response is more similar to observations than in 2005. This result was attributed to weaker ocean thermal stratification in the Gulf of Mexico allowing for greater storm intensification. A very simple Conceptual Hurricane Intensity Model consisting of two coupled equations was formulated to account for the non-monotonic SST-intensity response. Finally, dynamical oceanic changes in the tropical North Atlantic under climate change were examined across a range of climate models. Given the sensitivity of hurricane intensity to stratification, large-scale ocean changes must be understood in order to make robust intensity predictions. The models' mean state contained significant biases, and it is not clear whether these mean state biases are reduced in models with higher resolution. However, climate change projections indicate a robust subsurface warming response in the tropical North Atlantic that could impact hurricane intensity. The non-local air-sea processes that account for water mass biases were highlighted as an area for future research.

  16. Decadal and interannual variability of the Indian Ocean SST

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Lakshmi; Krishnamurthy, V.

    2016-01-01

    The variability of the Indian Ocean on interannual and decadal timescales is investigated in observations, coupled model simulation and model experiment. The Indian Ocean Dipole (IOD) mode was specifically analyzed using a data-adaptive method. This study reveals one decadal mode and two interannual modes in the sea surface temperature (SST) of the IOD. The decadal mode in the IOD is associated with the Pacific Decadal Oscillation (PDO) of the North Pacific SST. The two interannual modes are related to the biennial and canonical components of El Niño-Southern Oscillation (ENSO), consistent with previous studies. This study hypothesizes that the relation between the Indian Ocean and the North Pacific on decadal scale may be through the northerly winds from the western North Pacific. The long simulation of Community Climate System Model version 4 also indicates the presence of IOD modes associated with the decadal PDO and canonical ENSO modes. However, the model fails to simulate the biennial ENSO mode in the Indian Ocean. The relation between the Indian Ocean and North Pacific Ocean is further supported by the regionally de-coupled model experiment.

  17. Performance of Superconducting Current Feeder System for SST-1

    NASA Astrophysics Data System (ADS)

    Garg, A.; Nimavat, H.; Shah, P.; Patel, K.; Sonara, D.; Srikanth, G. L. N.; Bairagi, N.; Christian, D.; Patel, R.; Mahesuria, G.; Panchal, R.; Panchal, P.; Sharma, R.; Purwar, G.; Singh, G. K.; Tanna, V. L.; Pradhan, S.

    2017-02-01

    Superconducting (SC) Current Feeder System (CFS) for SST-1 (Steady state superconducting Tokamak was installed and commissioned in 2012. Since then, it has been operating successfully in successive plasma campaigns. The aim of this system is to transfer electric current from power supply at ambient temperature to SC magnets which are at 4.5 K. It consists of 10 kA vapour cooled current leads, Nb-Ti/Cu bus-bars, liquid nitrogen cooled radiation shield and liquid/vapour helium circuits. This system had been operated reliably in different scenario such as initial cool- down, electric current (ramp-up, ramp down and long-time steady state condition), cold with no current and in quench etc. In addition to this, it has fulfilled the long term operation with SST-1 with current flat top of 4.7 kA for more than 20,000 seconds. This paper highlights operational performance along with results in different aspects.

  18. Auditory and Acoustic Research & Development at Air Force Research Laboratory (AFRL)

    DTIC Science & Technology

    2010-09-01

    Communication Earpiece System (ACCES), high performance active noise reduction earplugs, helmets specifically designed to reduce bone conducted noise... Earpiece System), high performance active noise reduction earplugs, helmets specifically designed to reduce bone conducted noise, tactical hearing...distribution unlimited. ABBREVIATIONS AAM - Advanced Acoustic Model ACCES - Attenuating Custom Communication Earpiece System AFR - Air Force Regulation

  19. Mexico City air quality research initiative. Volume 2, Problem definition, background, and summary of prior research

    SciTech Connect

    Not Available

    1994-06-01

    Air pollution in Mexico City has increased along with the growth of the city, the movement of its population, and the growth of employment created by industry. The main cause of pollution in the city is energy consumption. Therefore, it is necessary to take into account the city`s economic development and its prospects when considering the technological relationships between well-being and energy consumption. Air pollution in the city from dust and other particles suspended in the air is an old problem. However, pollution as we know it today began about 50 years ago with the growth of industry, transportation, and population. The level of well-being attained in Mexico City implies a high energy use that necessarily affects the valley`s natural air quality. However, the pollution has grown so fast that the City must act urgently on three fronts: first, following a comprehensive strategy, transform the economic foundation of the city with nonpolluting activities to replace the old industries, second, halt pollution growth through the development of better technologies; and third, use better fuels, emission controls, and protection of wooded areas.

  20. United States Air Force Research Initiation Program. 1984 Research Reports. Volume 1.

    DTIC Science & Technology

    1986-05-01

    STUDY OF TWO-STAGE LIGHT GAS GUN...8217,’ , ’,’’,,,- _-,. %,’_,’_’_,’ _,"-, ..--. ,’. ’ ,’.. .. w",r..- ... , -,., ... , ,-o. ,.-,.........,,., .....- .. ,... .. ,_.:..., . w ,.,_- PREFACE The work presented in this...Education and the United States Air Force. ’ .% . Professor R. W. Courter and his graduate student, Raymond M. Patin, worked with members of the

  1. A Review of Epidemiological Research on Adverse Neurological Effects of Exposure to Ambient Air Pollution

    PubMed Central

    Xu, Xiaohui; Ha, Sandie Uyen; Basnet, Rakshya

    2016-01-01

    There is a growing body of epidemiological research reporting the neurological effects of ambient air pollution. We examined current evidence, identified the strengths and weaknesses of published epidemiological studies, and suggest future directions for research in this area. Studies were identified through a systematic search of online scientific databases, in addition to a manual search of the reference lists from the identified papers. Despite being a relatively new area of investigation, overall, there is mounting evidence implicating adverse effects of air pollution on neurobehavioral function in both adults and children. Further research is needed to expand our understanding of these relationships, including improvement in the accuracy of exposure assessments; focusing on specific toxicants and their relationships to specific health endpoints, such as neurodevelopmental disorders and neurodegenerative diseases; investigating the combined neurological effects of multiple air pollutants; and further exploration of genetic susceptibility for neurotoxicity of air pollution. In order to achieve these goals collaborative efforts are needed from multidisciplinary teams, including experts in toxicology, biostatistics, geographical science, epidemiology, and neurology. PMID:27547751

  2. Growth-Dependent Calibration of Coral Sr/Ca-SST From Multiple Colonies Provides Potential for Long SST Records from Fossil Corals

    NASA Astrophysics Data System (ADS)

    Goodkin, N. F.

    2005-12-01

    Extended reconstructions of sea surface temperature (SST) are critical to examining long-term climate variability not captured in instrumental records. Coral skeleton, which continuously accretes in annual density bands, preserves unique, multi-century archives of sub-annual resolution SST. Despite the promise of coral proxies, however, SSTs derived from corals are often several degrees cooler than those derived from other archives. Here we present strontium to calcium ratios (Sr/Ca) for four brain corals (Diploria labyrinthiformis) collected from the south shore of Bermuda that are strongly correlated with both instrumental SST (Hydrostation S, 30km southeast) and annual skeletal extension rate. High Sr/Ca ratios correspond with cold SSTs and slow skeletal growth rate, and vice versa. Over a ~25 year calibration period, the four corals have distinct average growth rates (2.57, 2.68, 3.55 and 4.03 mm/yr). For each colony, we provide a quantitative calibration of annual Sr/Ca to annual extension rate and annual SST along the axis of maximum growth and derive an individual growth dependent Sr/Ca-SST calibration equation: Sr/Ca = m*(SST) + n*(annual growth rate)*(SST) + b The slopes and intercepts of the four equations are found to be linearly related to the average growth-rate during the calibration periods of each colony, and a final multi-variant regression is performed to establish one final Sr/Ca-Growth Rate-SST calibration, in the form: Sr/Ca = m*(SST) + n*(annual growth rate)*(SST) + o*(average colony growth rate)*(SST) + b This growth-dependent calibration is shown to be applicable to a fossil coral of the same species in order to reconstruct SSTs at Bermuda for 223 years. A reconstruction excluding the influence of growth yields SSTs that exaggerate both cool and warm periods. SST anomalies near the end of the Little Ice Age (~1850) that are derived using a non-growth dependent calibration are exaggerated by a factor of two relative to those from a growth

  3. Air Enquirer's multi-sensor boxes as a tool for High School Education and Atmospheric Research

    NASA Astrophysics Data System (ADS)

    Morguí, Josep-Anton; Font, Anna; Cañas, Lidia; Vázquez-García, Eusebi; Gini, Andrea; Corominas, Ariadna; Àgueda, Alba; Lobo, Agustin; Ferraz, Carlos; Nofuentes, Manel; Ulldemolins, Delmir; Roca, Alex; Kamnang, Armand; Grossi, Claudia; Curcoll, Roger; Batet, Oscar; Borràs, Silvia; Occhipinti, Paola; Rodó, Xavier

    2016-04-01

    An educational tool was designed with the aim of making more comprehensive the research done on Greenhouse Gases (GHGs) in the ClimaDat Spanish network of atmospheric observation stations (www.climadat.es). This tool is called Air Enquirer and it consist of a multi-sensor box. It is envisaged to build more than two hundred boxes to yield them to the Spanish High Schools through the Education department (www.educaixa.com) of the "Obra Social 'La Caixa'", who funds this research. The starting point for the development of the Air Enquirers was the experience at IC3 (www.ic3.cat) in the CarboSchools+ FP7 project (www.carboschools.cat, www.carboschools.eu). The Air Enquirer's multi-sensor box is based in Arduino's architecture and contains sensors for CO2, temperature, relative humidity, pressure, and both infrared and visible luminance. The Air Enquirer is designed for taking continuous measurements. Every Air Enquirer ensemble of measurements is used to convert values to standard units (water content in ppmv, and CO2 in ppmv_dry). These values are referred to a calibration made with Cavity Ring Down Spectrometry (Picarro®) under different temperature, pressure, humidity and CO2 concentrations. Multiple sets of Air Enquirers are intercalibrated for its use in parallel during the experiments. The different experiments proposed to the students will be outdoor (observational) or indoor (experimental, in the lab) focusing on understanding the biogeochemistry of GHGs in the ecosystems (mainly CO2), the exchange (flux) of gases, the organic matter production, respiration and decomposition processes, the influence of the anthropogenic activities on the gases (and particles) exchanges, and their interaction with the structure and composition of the atmosphere (temperature, water content, cooling and warming processes, radiative forcing, vertical gradients and horizontal patterns). In order to ensure Air Enquirers a high-profile research performance the experimental designs

  4. A review of research progress in air-to-water sound transmission

    NASA Astrophysics Data System (ADS)

    Peng, Zhao-Hui; Zhang, Ling-Shan

    2016-12-01

    International and domestic research progress in theory and experiment and applications of the air-to-water sound transmission are presented in this paper. Four classical numerical methods of calculating the underwater sound field generated by an airborne source, i.e., the ray theory, the wave solution, the normal-mode theory and the wavenumber integration approach, are introduced. Effects of two special conditions, i.e., the moving airborne source or medium and the rough air-water interface, on the air-to-water sound transmission are reviewed. In experimental studies, the depth and range distributions of the underwater sound field created by different kinds of airborne sources in near-field and far-field, the longitudinal horizontal correlation of underwater sound field and application methods for inverse problems are reviewed. Project supported by the National Natural Science Foundation of China (Grant Nos. 11434012 and 11674349).

  5. Nonlinear responses of southern African rainfall to forcing from Atlantic SST in a high-resolution regional climate model

    NASA Astrophysics Data System (ADS)

    Williams, C.; Kniveton, D.; Layberry, R.

    2009-04-01

    It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. In this research, high resolution satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA) are used as a basis for undertaking model experiments using a state-of-the-art regional climate model. The MIRA dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. Once the model's ability to reproduce extremes has been assessed, idealised regions of sea surface temperature (SST) anomalies are used to force the model, with the overall aim of investigating the ways in which SST anomalies influence rainfall extremes over southern Africa. In this paper, results from sensitivity testing of the regional climate model's domain size are briefly presented, before a comparison of simulated daily rainfall from the model with the satellite-derived dataset. Secondly, simulations of current climate and rainfall extremes from the model are compared to the MIRA dataset at daily timescales. Finally, the results from the idealised SST experiments are presented, suggesting highly nonlinear associations between rainfall extremes

  6. Mesoscale SST-wind stress coupling in the Peru-Chile current system: Which mechanisms drive its seasonal variability?

    NASA Astrophysics Data System (ADS)

    Oerder, Vera; Colas, François; Echevin, Vincent; Masson, Sebastien; Hourdin, Christophe; Jullien, Swen; Madec, Gurvan; Lemarié, Florian

    2016-10-01

    Satellite observations and a high-resolution regional ocean-atmosphere coupled model are used to study the air/sea interactions at the oceanic mesoscale in the Peru-Chile upwelling current system. Coupling between mesoscale sea surface temperature (SST) and wind stress (WS) intensity is evidenced and characterized by correlations and regression coefficients. Both the model and the observations display similar spatial and seasonal variability of the coupling characteristics that are stronger off Peru than off Northern Chile, in relation with stronger wind mean speed and steadiness. The coupling is also more intense during winter than during summer in both regions. It is shown that WS intensity anomalies due to SST anomalies are mainly forced by mixing coefficient anomalies and partially compensated by wind shear anomalies. A momentum balance analysis shows that wind speed anomalies are created by stress shear anomalies. Near-surface pressure gradient anomalies have a negligible contribution because of the back-pressure effect related to the air temperature inversion. As mixing coefficients are mainly unchanged between summer and winter, the stronger coupling in winter is due to the enhanced large-scale wind shear that enables a more efficient action of the turbulent stress perturbations. This mechanism is robust as it does not depend on the choice of planetary boundary layer parameterization.

  7. Absolute Thermal SST Measurements over the Deepwater Horizon Oil Spill

    NASA Astrophysics Data System (ADS)

    Good, W. S.; Warden, R.; Kaptchen, P. F.; Finch, T.; Emery, W. J.

    2010-12-01

    Climate monitoring and natural disaster rapid assessment require baseline measurements that can be tracked over time to distinguish anthropogenic versus natural changes to the Earth system. Disasters like the Deepwater Horizon Oil Spill require constant monitoring to assess the potential environmental and economic impacts. Absolute calibration and validation of Earth-observing sensors is needed to allow for comparison of temporally separated data sets and provide accurate information to policy makers. The Ball Experimental Sea Surface Temperature (BESST) radiometer was designed and built by Ball Aerospace to provide a well calibrated measure of sea surface temperature (SST) from an unmanned aerial system (UAS). Currently, emissive skin SST observed by satellite infrared radiometers is validated by shipborne instruments that are expensive to deploy and can only take a few data samples along the ship track to overlap within a single satellite pixel. Implementation on a UAS will allow BESST to map the full footprint of a satellite pixel and perform averaging to remove any local variability due to the difference in footprint size of the instruments. It also enables the capability to study this sub-pixel variability to determine if smaller scale effects need to be accounted for in models to improve forecasting of ocean events. In addition to satellite sensor validation, BESST can distinguish meter scale variations in SST which could be used to remotely monitor and assess thermal pollution in rivers and coastal areas as well as study diurnal and seasonal changes to bodies of water that impact the ocean ecosystem. BESST was recently deployed on a conventional Twin Otter airplane for measurements over the Gulf of Mexico to access the thermal properties of the ocean surface being affected by the oil spill. Results of these measurements will be presented along with ancillary sensor data used to eliminate false signals including UV and Synthetic Aperture Radar (SAR

  8. A USCLVAR Multi-Model Assessment of the Impact of SST Anomalies and Land-Atmosphere Feedbacks on Drought

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried

    2009-01-01

    noteworthy and to some extent unexpected results. These include a seasonal dependence of the precipitation response that is characterized by signal-to-noise ratios that peak in spring, and surface temperature signal-to-noise ratios that are both lower and show less agreement among the models than those found for the precipitation response. Another interesting result concerns what appears to be a substantially different character in the surface temperature response over the U.S. to the Pacific forcing by the only model examined here that was developed for use in numerical weather prediction. The response to the positive SST trend forcing pattern is an overall surface warming over the world's land areas with substantial regional variations that are in part reproduced in runs forced with a globally uniform SST trend forcing. The precipitation response to the trend forcing is weak in all the models. It is hoped that these early results will serve to stimulate further analysis of these simulations, as well as suggest new research on the physical mechanisms contributing to hydroclimatic variability and change throughout the world.

  9. The Influence of Midlatitude Ocean-Atmosphere Coupling on the Low-Frequency Variability of a GCM. Part I: No Tropical SST Forcing*.

    NASA Astrophysics Data System (ADS)

    Bladé, Ileana

    1997-08-01

    This study examines the extent to which the thermodynamic interactions between the midlatitude atmosphere and the underlying oceanic mixed layer contribute to the low-frequency atmospheric variability. A general circulation model, run under perpetual northern winter conditions, is coupled to a motionless constant-depth mixed layer in midlatitudes, while elsewhere the sea surface temperature (SST) is kept fixed; interannual tropical SST forcing is not included. It is found that coupling does not modify the spatial organization of the variability. The influence of coupling is manifested as a slight reddening of the spectrum of 500-mb geopotential height and a significant enhancement of the lower-tropospheric thermal variance over the oceans at very low frequencies by virtue of the mixed-layer adjustment to surface air temperature variations that occurs on those timescales. This adjustment effectively reduces the thermal damping of the atmosphere associated with surface heat fluxes (or negative oceanic feedback), thus increasing the thermal variance and the persistence of circulation anomalies.In studying the covariability between ocean and atmosphere it is found that the dominant mode of natural atmospheric variability is coupled to the leading mode of SST in each ocean, with the atmosphere leading the ocean by about one month. The cross-correlation function between oceanic and atmospheric anomalies is strongly asymmetric about zero lag. The SST structures are consistent with direct forcing by the anomalous heat fluxes implied by the concurrent surface air temperature and wind fluctuations. Additionally, composites based on large amplitude SST anomaly events contain no evidence of direct driving of atmospheric perturbations by these SST anomalies. Thus, in terms of the spatial organization of the covariability and the evolution of the coupled system from one regime to another, large-scale air-sea interaction in the model is characterized by one-way atmospheric

  10. The US Air Force Academy solar energy research project summary report

    NASA Astrophysics Data System (ADS)

    Cornelius, K. A.

    1980-07-01

    This report summarizes the solar energy research which was conducted by the U.S. Air Force Academy from April 1975 to January 1980. This research consisted of investigations on a retrofit space heating system which was installed on a typical Military Family Housing (MFH) unit. This summary uses a lessons learned and designer tips approach in its discussion of the solar system's operation. This discussion is organized around the many areas of solar technology which were investigated during the course of this project. Those major areas were energy conservation effects, solar collectors, thermal storage, control systems, Thermography studies, performance comparison to a design model, and homeowner and maintenance manual development. A thermal performance summary of the solar system is also presented. The report concludes with numerous recommendations regarding policy initiatives which the Air Force should take to foster conversion to solar technology.

  11. Fates of endocytosed somatostatin sst2 receptors and associated agonists.

    PubMed Central

    Koenig, J A; Kaur, R; Dodgeon, I; Edwardson, J M; Humphrey, P P

    1998-01-01

    Somatostatin agonists are rapidly and efficiently internalized with the somatostatin sst2 receptor. The fate of internalized agonists and receptors is of critical importance because the rate of ligand recycling back to the cell surface can limit the amount of radioligand accumulated inside the cells, whereas receptor recycling might be of vital importance in providing the cell surface with dephosphorylated, resensitized receptors. Furthermore the accumulation of radioisotope-conjugated somatostatin agonists inside cancer cells resulting from receptor-mediated internalization has been used as a treatment for cancers that overexpress somatostatin receptors. In the present study, radio-iodinated agonists at the sst2 somatostatin receptor were employed to allow quantitative analysis of the fate of endocytosed agonist. After endocytosis, recycling back to the cell surface was the main pathway for both 125I-labelled somatostatin-14 (SRIF-14) and the more stable agonist 125I-labelled cyclo(N-Me-Ala-Tyr-d-Trp-Lys-Abu-Phe) (BIM-23027; Abu stands for aminobutyric acid), accounting for 75-85% of internalized ligand when re-endocytosis of radioligand was prevented. We have shown that there is a dynamic cycling of both somatostatin agonist ligands and receptors between the cell surface and internal compartments both during agonist treatment and after surface-bound agonist has been removed, unless steps are taken to prevent the re-activation of receptors by recycled agonist. Internalization leads to increased degradation of 125I-labelled SRIF-14 but not 125I-labelled BIM-23027. The concentration of recycled agonist accumulating in the extracellular medium was sufficient to re-activate the receptor, as measured both by the inhibition of forskolin-stimulated adenylate cyclase and the recovery of surface receptor number after internalization. PMID:9820803

  12. Supersonic Cruise Research 1979, part 2. [airframe structures and materials, systems integration, economic analysis

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Advances in airframe structure and materials technology for supersonic cruise aircraft are reported with emphasis on titanium and composite structures. The operation of the Concorde is examined as a baseline for projections into the future. A market survey of U.S. passenger attitudes and preferences, the impact of advanced air transport technology and the integration of systems for the advanced SST and for a smaller research/business jet vehicle are also discussed.

  13. Future Directions of Supersonic Combustion Research: Air Force/NASA Workshop on Supersonic Combustion

    NASA Technical Reports Server (NTRS)

    Tishkoff, Julian M.; Drummond, J. Philip; Edwards, Tim; Nejad, Abdollah S.

    1997-01-01

    The Air Force Office of Scientific Research, the Air Force Wright Laboratory Aero Propulsion and Power Directorate, and the NASA Langley Research Center held a joint supersonic combustion workshop on 14-16 May 1996. The intent of this meeting was to: (1) examine the current state-of-the-art in hydrocarbon and/or hydrogen fueled scramjet research; (2) define the future direction and needs of basic research in support of scramjet technology; and (3) when appropriate, help transition basic research findings to solve the needs of developmental engineering programs in the area of supersonic combustion and fuels. A series of topical sessions were planned. Opening presentations were designed to focus and encourage group discussion and scientific exchange. The last half-day of the workshop was set aside for group discussion of the issues that were raised during the meeting for defining future research opportunities and directions. The following text attempts to summarize the discussions that took place at the workshop.

  14. United States Air Force Summer Faculty Research Program (1984). Program Management Report. Volume 3

    DTIC Science & Technology

    1984-12-01

    Medical College V Research Location: School of Aerospace Medicine Clinical Sciences Division Neurosciences Branch Brooks Air Force Base, Texas USAF...to continue investigations begun in the summer of 1983. Project supervision was by Dr. John Taboada, Neurosciences Branch of the Clinical Sciences...agen- cies utilize DES to encrypt privacy data. Unfortunately DES has not been, nor does it appear that it will be, certified by NSA for classified data

  15. An Analysis of the Cost Estimating Process in Air Force Research and Development Laboratories.

    DTIC Science & Technology

    1981-09-01

    4. TITLE (and Subtitle) S. TYPE Of REPORT & PERIOO COvEREO AN ANALYSIS OF THE COST ESTIMATING PROCESS IN AIR FORCE RESEARCH AND DEVELOPMENT Master’s...final typed thesis. Her efficiency and professionalism was unexcelled. Finally, very special thanks go to my children, Chris and Brian, and especially my...42 3-6 Computer Costs - Estimating Methods. . 44 3-7 Type of Work Unit Versus Estimating Methods Used ... ............. .47 3-8 Cost Variance Between

  16. Air Breathing Propulsion Controls and Diagnostics Research at NASA Glenn Under NASA Aeronautics Research Mission Programs

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2014-01-01

    The Intelligent Control and Autonomy Branch (ICA) at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet the goals of the NASA Aeronautics Research Mission Directorate (ARMD) Programs. These efforts are primarily under the various projects under the Fundamental Aeronautics Program (FAP) and the Aviation Safety Program (ASP). The ICA Branch is focused on advancing the state-of-the-art of aero-engine control and diagnostics technologies to help improve aviation safety, increase efficiency, and enable operation with reduced emissions. This paper describes the various ICA research efforts under the NASA Aeronautics Research Mission Programs with a summary of motivation, background, technical approach, and recent accomplishments for each of the research tasks.

  17. Error Estimation in an Optimal Interpolation Scheme for High Spatial and Temporal Resolution SST Analyses

    NASA Technical Reports Server (NTRS)

    Rigney, Matt; Jedlovec, Gary; LaFontaine, Frank; Shafer, Jaclyn

    2010-01-01

    Heat and moisture exchange between ocean surface and atmosphere plays an integral role in short-term, regional NWP. Current SST products lack both spatial and temporal resolution to accurately capture small-scale features that affect heat and moisture flux. NASA satellite is used to produce high spatial and temporal resolution SST analysis using an OI technique.

  18. Comparison of Profiling Microwave Radiometer, Aircraft, and Radiosonde Measurements From the Alliance Icing Research Study (AIRS)

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.

    2001-01-01

    Measurements from a profiling microwave radiometer are compared to measurements from a research aircraft and radiosondes. Data compared is temperature, water vapor, and liquid water profiles. Data was gathered at the Alliance Icing Research Study (AIRS) at Mirabel Airport outside Montreal, Canada during December 1999 and January 2000. All radiometer measurements were found to lose accuracy when the radome was wet. When the radome was not wetted, the radiometer was seen to indicate an inverted distribution of liquid water within a cloud. When the radiometer measurements were made at 15 deg. instead of the standard zenith, the measurements were less accurate.

  19. Research Reactor Preparations for the Air Shipment of Highly Enriched Uranium from Romania

    SciTech Connect

    K. J. Allen; I. Bolshinsky; L. L. Biro; M. E. Budu; N. V. Zamfir; M. Dragusin; C. Paunoiu; M. Ciocanescu

    2010-03-01

    In June 2009 two air shipments transported both unirradiated (fresh) and irradiated (spent) Russian-origin highly enriched uranium (HEU) nuclear fuel from two research reactors in Romania to the Russian Federation for conversion to low enriched uranium. The Institute for Nuclear Research at Pitesti (SCN Pitesti) shipped 30.1 kg of HEU fresh fuel pellets to Dimitrovgrad, Russia and the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH) shipped 23.7 kilograms of HEU spent fuel assemblies from the VVR S research reactor at Magurele, Romania, to Chelyabinsk, Russia. Both HEU shipments were coordinated by the Russian Research Reactor Fuel Return Program (RRRFR) as part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), were managed in Romania by the National Commission for Nuclear Activities Control (CNCAN), and were conducted in cooperation with the Russian Federation State Corporation Rosatom and the International Atomic Energy Agency. Both shipments were transported by truck to and from respective commercial airports in Romania and the Russian Federation and stored at secure nuclear facilities in Russia until the material is converted into low enriched uranium. These shipments resulted in Romania becoming the 3rd country under the RRRFR program and the 14th country under the GTRI program to remove all HEU. This paper describes the research reactor preparations and license approvals that were necessary to safely and securely complete these air shipments of nuclear fuel.

  20. Effect of Radiative Cooling on Cloud-SST Relationship within the Tropical Pacific Region

    NASA Technical Reports Server (NTRS)

    Sui, Chung-Hsiung; Ho, Chang-Hoi; Chou, Ming-Dah; Lau, Ka-Ming; Li, Xiao-Fan; Einaudi, Franco (Technical Monitor)

    2000-01-01

    A recent analysis found a negative correlation between the area-mean cloud amount and the corresponding mean Sea Surface Temperature (SST) within the cloudy areas. The SST-cloud relation becomes more evident when the SST contrast between warm pool and surrounding cold pool (DSST) in the tropical Pacific is stronger than normal. The above feature is related to the finding that the strength of subsidence over the cold pool is limited by radiative cooling because of its small variability. As a result, the area of radiatively-driven subsidence must expand in response to enhanced low-boundary forcing due to SST warming or enhanced basin-scale DSST. This leads to more cloud free regions and less cloudy regions. The increased ratio of cloud-free areas to cloudy areas leads to more high SST areas (>29.50C) due to enhanced solar radiation.

  1. Precipitation projections in the tropical Pacific are sensitive to different types of SST bias adjustment

    NASA Astrophysics Data System (ADS)

    Brown, Jaclyn N.; Matear, Richard J.; Brown, Josephine R.; Katzfey, Jack

    2015-12-01

    Many coupled climate models suffer from large sea surface temperature (SST) biases in the tropical Pacific, and for this reason studies have used a combination of observed SSTs and model-generated SST warming patterns to obtain climate projections. However, the existence of biases in the present-day coupled model SSTs implies that SST future warming patterns may also be biased. Models with large biases in tropical Pacific SST simulate warming that does not align with the observed cold tongue, producing a dynamically unrealistic pattern when added to observed SSTs. We demonstrate that projections of precipitation are highly sensitive to the warming pattern of SSTs by using idealized annually forced atmospheric model experiments. Simple bias adjustment of the warming pattern is applied, leading to precipitation changes that are around 60% weaker in the Western Tropical Pacific. Sensitivity of precipitation to small changes in the SST may explain the large discrepancies in Coupled Model Intercomparison Project Phase 5 precipitation projections in this region.

  2. Research into acetone removal from air by biofiltration using a biofilter with straight structure plates

    PubMed Central

    Baltrėnas, Pranas; Zagorskis, Alvydas; Misevičius, Antonas

    2015-01-01

    The biological air treatment method is based on the biological destruction of organic compounds using certain cultures of microorganisms. This method is simple and may be applied in many branches of industry. The main element of biological air treatment devices is a filter charge. Tests were carried out using a new-generation laboratory air purifier with a plate structure. This purifier is called biofilter. The biofilter has a special system for packing material humidification which does not require additional energy inputs. In order to extend the packing material's durability, it was composed of thermally treated birch fibre. Pollutant (acetone) biodegradation occurred on thermally treated wood fibre in this research. According to the performed tests and the received results, the process of biodestruction was highly efficient. When acetone was passed through biofilter's packing material at 0.08 m s−1 rate, the efficiency of the biofiltration process was from 70% up to 90%. The species of bacteria capable of removing acetone vapour from the air, i.e. Bacillus (B. cereus, B. subtilis), Pseudomonas (P. aeruginosa, P. putida), Stapylococcus (S. aureus) and Rhodococcus sp., was identified in this study during the process of biofiltration. Their amount in the biological packing material changed from 1.6 × 107 to 3.7 × 1011 CFU g−1. PMID:26019659

  3. FAA/NASA Joint University Program for Air Transportation Research: 1993-1994

    NASA Technical Reports Server (NTRS)

    Hueschen, Richard M. (Compiler)

    1995-01-01

    This report summarizes the research conducted during the academic year 1993-1994 under the NASA/FAA sponsored Joint University Program for Air Transportation Research. The year end review was held at Ohio University, Athens, Ohio, July 14-15, 1994. The Joint University Program is a coordinated set of three grants sponsored by NASA Langley Research Center and the Federal Aviation Administration, one each with the Massachusetts Institute of Technology (NGL-22-009-640), Ohio University (NGR-36-009-017), and Princeton University (NGL-31-001-252). Completed works, status reports, and annotated bibliographies are presented for research topics which include navigation, guidance and control theory and practice, aircraft performance, human factors, and expert systems concepts applied to aircraft and airport operations. An overview of the year's activities for each university is also presented.

  4. Atmospheric and oceanographic research review, 1978. [global weather, ocean/air interactions, and climate

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Research activities related to global weather, ocean/air interactions, and climate are reported. The global weather research is aimed at improving the assimilation of satellite-derived data in weather forecast models, developing analysis/forecast models that can more fully utilize satellite data, and developing new measures of forecast skill to properly assess the impact of satellite data on weather forecasting. The oceanographic research goal is to understand and model the processes that determine the general circulation of the oceans, focusing on those processes that affect sea surface temperature and oceanic heat storage, which are the oceanographic variables with the greatest influence on climate. The climate research objective is to support the development and effective utilization of space-acquired data systems in climate forecast models and to conduct sensitivity studies to determine the affect of lower boundary conditions on climate and predictability studies to determine which global climate features can be modeled either deterministically or statistically.

  5. SST algorithms in ACSPO reanalysis of AVHRR GAC data from 2002-2013

    NASA Astrophysics Data System (ADS)

    Petrenko, B.; Ignatov, A.; Kihai, Y.; Zhou, X.; Stroup, J.

    2014-05-01

    In response to a request from the NOAA Coral Reef Watch Program, NOAA SST Team initiated reprocessing of 4 km resolution GAC data from AVHRRs flown onboard NOAA and MetOp satellites. The objective is to create a longterm Level 2 Advanced Clear-Sky Processor for Oceans (ACSPO) SST product, consistent with NOAA operations. ACSPO-Reanalysis (RAN) is used as input in the NOAA geo-polar blended Level 4 SST and potentially other Level 4 SST products. In the first stage of reprocessing (reanalysis 1, or RAN1), data from NOAA-15, -16, -17, -18, -19, and Metop-A and -B, from 2002-present have been processed with ACSPO v2.20, and matched up with quality controlled in situ data from in situ Quality Monitor (iQuam) version 1. The ~12 years time series of matchups were used to develop and explore the SST retrieval algorithms, with emphasis on minimizing spatial biases in retrieved SSTs, close reproduction of the magnitudes of true SST variations, and maximizing temporal, spatial and inter-platform stability of retrieval metrics. Two types of SST algorithms were considered: conventional SST regressions, and recently developed incremental regressions. The conventional equations were adopted in the EUMETSAT OSI-SAF formulation, which, according to our previous analyses, provide relatively small regional biases and well-balanced combination of precision and sensitivity, in its class. Incremental regression equations were specifically elaborated to automatically correct for model minus observation biases, always present when RTM simulations are employed. Improved temporal stability was achieved by recalculation of SST coefficients from matchups on a daily basis, with a +/-45 day window around the current date. This presentation describes the candidate SST algorithms considered for the next round of ACSPO reanalysis, RAN2.

  6. EOF analysis of long-term reconstructed AVHRR Pathfinder SST in the South China Sea

    NASA Astrophysics Data System (ADS)

    Huynh, Hong-Ngu T.; Alvera-Azcárate, Aida; Barth, Alexander; Beckers, Jean-Marie

    2014-05-01

    Sea surface temperature (SST) is one of the key variables often used to investigate ocean dynamics, ocean-atmosphere interaction, and climate change. For recent decades, the AVHRR Pathfinder SST, measured by infrared sensors, has been widely used because of its high resolution and long time-series. The disadvantage of the AVHRR Pathfinder SST is high percentage of missing data due to cloud coverage. This becomes more serious in the South China Sea (SCS) because it is located in the tropical region, frequently covered by clouds. In this study, we used the Data INterpolating Empirical Orthogonal Functions (DINEOF) method to reconstruct daily night-time 4 km AVHRR Pathfinder SST spanning from 1989 to 2009 for the whole SCS. In order to better understand the spatial and temporal variability of the SCS SST, an EOF analysis of the reconstructed field is performed in association with surface wind. The first SST mode, accounting for 69% of the variance, presents the cooling (warming) of the basin due to the solar inclination through seasons, water exchange, topography, and monsoon-induced cyclonic circulation. The second SST mode, explaining 24.8% of the variance, shows the advection of cold and warm water from two opposite directions along the southwest-northeast diagonal of the basin. The second SST mode is affected by the atmospheric anticyclone (cyclone) located over the Philippine Sea. Comparing both SST modes with Nino3.0 index, it shows that the interannual variability of the SCS SST is influenced by the moderate and strong ENSO events with a lag of 5-6 months. Moreover, the analysis of the high-resolution reconstructed dataset reveals some oceanic features that could not be captured in the previous EOF analyses.

  7. MoSST DAS: The First Working Geomagnetic Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Kuang, Weijia; Wei, Zigang; Tangborn, Andrew

    2011-01-01

    The Earth possesses an internal magnetic field (geomagnetic field) generated by convection in the outer core (geodynamo). Previous efforts have been focused along two distinct paths: (1) numerical geodynamo modeling to understand the origin of the geomagnetic field, and the mechanisms of geomagnetic secular variations (SV); and (2) geomagnetic field modeling to map the spatial/temporal variations of the field from geomagnetic data, and to derive core properties, e.g. inversion of core flow near the core-mantle boundary (CMB). Geomagnetic data assimilation is a new approach emerged over the past 5 years: surface observations are assimilated with geodynamo models for better understanding of the core dynamical state, and accurately prediction of SV. In collaboration with several geomagnetic research groups, we have developed the first working geomagnetic data assimilation system, Modular, Scalable, Self-consistent, and Three-dimensional (MoSST) DAS, that includes the MoSST numerical dynamo model; 7000 years of geomagnetic field maps from several field models utilizing satellite and ground observatory data, historical magnetic records and archeo/paleo magnetic data; and an ensemble based optimal interpolation (01) assimilation algorithm. With this system, we have demonstrated clearly that the assimilated core dynamical state is substantially different from those of pure geodynamo simulations. Ensemble assimilation runs also show the convergence of the assimilated solutions inside the core, suggesting that the simulation state is pulled closer to the truth via data assimilation. The forecasts from this system are also very accurate: the 5-year forecast of the geomagnetic field agrees very well with the observations; and the 5-year secular variation forecast is more accurate than the IGRF SV forecast models in the past. Using geomagnetic records up to 2009, we have made an SV forecast for the period from 2010-2015, and is a candidate SV model for IGRF-11.

  8. Experience with helium leak and thermal shocks test of SST-1 cryo components

    NASA Astrophysics Data System (ADS)

    Sharma, Rajiv; Nimavat, Hiren; Srikanth, G. L. N.; Bairagi, Nitin; Shah, Pankil; Tanna, V. L.; Pradhan, S.

    2012-11-01

    A steady state superconducting Tokamak SST-1 is presently under its assembly stage at the Institute for Plasma Research. The SST-1 machine is a family of Superconducting SC coils for both Toroidal field and Poloidal Field. An ultra high vacuum compatible vacuum vessel, placed in the bore of the TF coils, houses the plasma facing components. A high vacuum cryostat encloses all the SC coils and the vacuum vessel. Liquid Nitrogen (LN2) cooled thermal shield between the vacuum vessel & SC coils as well as between cryostat and the SC coils. There are number of crucial cryogenic components as Electrical isolators, 80 K thermal shield, Cryogenic flexible hose etc., which have to be passed the performance validation tests as part of fulfillment of the stringent QA/QC before incorporated in the main assembly. The individual leak tests of components at RT as well as after thermal cycle from 300 K to 77 K ensure us to make final overall leak proof system. These components include, Large numbers of Electrical Isolators for Helium as well as LN2 services, Flexible Bellows and Hoses for Helium as well as LN2 services, Thermal shock tests of large numbers of 80 K Bubble shields In order to validate the helium leak tightness of these components, we have used the calibrated mass spectrometer leak detector (MSLD) at 300 K, 77 K and 4.2. Since it is very difficult to locate the leaks, which are appearing at rather lower temperatures e.g. less than 20 K, We have invented different approaches to resolve the issue of such leaks. This paper, in general describes the design of cryogenic flexible hose, assembly, couplings for leak testing, test method and techniques of thermal cycles test at 77 K inflow conditions and leak testing aspects of different cryogenic components. The test results, the problems encountered and its solutions techniques are discussed.

  9. The Conference Proceedings of the 1998 Air Transport Research Group (ATRG) of the WCTR Society. Volume 1

    NASA Technical Reports Server (NTRS)

    Oum, Tae Hoon (Editor); Bowen, Brent D. (Editor)

    1998-01-01

    This report (Volume 1) is comprised of 5 sessions of the Air Transport Research Group (ATRG) Conference held in Antwerp, Belgium, July 1998. The sessions contain 3-4 papers (presentations) each. The session numbers and their respective headings are: (1) Airline alliances; (2) Airline Competition and Market Structure; (4) Liberalization, Open Skies, and Policy Issues; (5) Yield Management and Other Models; and (11) Air Traffic Control (ATC) and Air Navigational Systems (ANS).

  10. IMPACT OF AN OZONE GENERATOR AIR CLEANER ON STYRENE CONCENTRATIONS IN AN INDOOR AIR QUALITY RESEARCH CHAMBER

    EPA Science Inventory

    The paper gives results of an investigation of the impact of an ozone generator air cleaner on vapor-phase styrene concentrations in a full-scale indoor air quality test chamber. The time history of the concentrations of styrene and ozone is well predicted by a simulation model u...

  11. Air Traffic Management Technology Demostration: 1 Research and Procedural Testing of Routes

    NASA Technical Reports Server (NTRS)

    Wilson, Sara R.; Kibler, Jennifer L.; Hubbs, Clay E.; Smail, James W.

    2015-01-01

    NASA's Air Traffic Management Technology Demonstration-1 (ATD-1) will operationally demonstrate the feasibility of efficient arrival operations combining ground-based and airborne NASA technologies. The ATD-1 integrated system consists of the Traffic Management Advisor with Terminal Metering which generates precise time-based schedules to the runway and merge points; Controller Managed Spacing decision support tools which provide controllers with speed advisories and other information needed to meet the schedule; and Flight deck-based Interval Management avionics and procedures which allow flight crews to adjust their speed to achieve precise relative spacing. Initial studies identified air-ground challenges related to the integration of these three scheduling and spacing technologies, and NASA's airborne spacing algorithm was modified to address some of these challenges. The Research and Procedural Testing of Routes human-in-the-loop experiment was then conducted to assess the performance of the new spacing algorithm. The results of this experiment indicate that the algorithm performed as designed, and the pilot participants found the airborne spacing concept, air-ground procedures, and crew interface to be acceptable. However, the researchers concluded that the data revealed issues with the frequency of speed changes and speed reversals.

  12. Ambient air pollution and lung disease in China: health effects, study design approaches and future research.

    PubMed

    Mandel, Jeffrey H; Wendt, Christine; Lo, Charles; Zhou, Guangbiao; Hertz, Marshall; Ramachandran, Gurumurthy

    2015-09-01

    Ambient air pollution in China has worsened following dramatic increases in industrialization, automobile use and energy consumption. Particularly bothersome is the increase in the PM2.5 fraction of pollutants. This fraction has been associated with increasing rates of cardio-respiratory disease in China and elsewhere. Ambient pollutant levels have been described in many of China's cities and are comparable to previous levels in southern California. Lung cancer mortality in China has increased since the 1970s and has been higher in men and in urban areas, the exact explanation for which has not been determined. The estimation of individual risk for Chinese citizens living in areas of air pollution will require further research. Occupational cohort and case-control designs each have unique attributes that could make them helpful to use in this setting. Other important future research considerations include detailed exposure assessment and the possible use of biomarkers as a means to better understand and manage the threat posed by air pollution in China.

  13. Emerging research on real-time air pollution sensing with the United States Environmental Protection Agency, Office of Research and Development

    EPA Science Inventory

    Abstract: Air pollution research ranges broadly at the US EPA and includes the characterization of pollutant emissions from a wide array of sources, studying post-emission transport and transformation in the atmosphere, and evaluating the linkages between air pollution and advers...

  14. EMERGING TECHNOLOGY BULLETIN: VOLATILE ORGANIC COMPOUND REMOVAL FROM AIR STREAMS BY MEMBRANES SEPARATION MEMBRANE TECHNOLOGY AND RESEARCH, INC.

    EPA Science Inventory

    This membrane separation technology developed by Membrane Technology and Research (MTR), Incorporated, is designed to remove volatile organic compounds (VOCs) from contaminated air streams. In the process, organic vapor-laden air contacts one side of a membrane that is permeable ...

  15. Development of Unmanned Airborne System (UAS) instrumentation for air-sea-ice interaction research

    NASA Astrophysics Data System (ADS)

    Reineman, B. D.; Lenain, L.; Melville, W. K.

    2011-12-01

    We have developed Unmanned Airborne System (UAS) instrumentation packages to directly measure air-sea momentum transfer, as well as latent, sensible, and radiative heat fluxes, topography, and surface wave kinematics. Two UAS (BAE Manta C1s) flying in vertical formation over the ocean will allow the direct measurement of air-sea fluxes within the marine atmospheric boundary layer, and, with onboard high-resolution video and laser altimetry, simultaneous observation of sea surface kinematics and sea-ice topography. The low altitude required for accurate air-sea or air-ice flux measurements is below the typical safety limit of manned research aircraft; however, with advancements in laser altimeters, small-aircraft flight control, and real-time Differential GPS, it now is within the capability of the UAS platform. Fast response turbulence, hygrometer, and temperature probes in the lower UAS permit surface layer flux measurements, and short and long wave radiometers in the upper UAS allow the determination of net radiation, surface temperature, and albedo. Engineering test flights of the two UAS over land were performed in January 2011 at Camp Roberts, CA. The tests demonstrated the capability of the systems to measure vertical profiles of georeferenced wind, temperature, and moisture content, as well as momentum flux and sensible, latent, and radiative heat fluxes. UAS-derived fluxes from low-altitude (20 -- 30 m) flights are in agreement with fluxes measured by a nearby tower-mounted sonic anemometer-based eddy covariance system. We present a description of the instrumentation, a summary of results from flight tests, and discuss potential applications of these instrumented platforms for air-sea-ice interaction studies.

  16. Forest models: their development and potential applications for air pollution effects research

    SciTech Connect

    Shugart, H.H.; McLaughlin, S.B.; West, D.C.

    1980-01-01

    As research tools for evaluating the effects of chronic air pollution stress, forest simulation models offer one means of integrating forest growth and development data with generalized indices of pollution stress. This approach permits consideration of both the competitive interactions of trees in the forest stand and the influences of the stage of stand development on sensitivity of component species. A review of forest growth models, including tree, stand, and gap models, is provided as a means of evaluating relative strengths, weaknesses, and limits of applicability of representative examples of each type. Data from recent simulations with a gap model of eastern deciduous forest responses to air pollution stress are presented to emphasize the potential importance of competition in modifying individual species' responses in a forest stand. Recent developments in dendroecology are discussed as a potential mechanism for model validation and extended application.

  17. Air Breathing Propulsion Controls and Diagnostics Research at NASA Glenn Under NASA Aeronautics Research Mission Programs

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2014-01-01

    This lecture will provide an overview of the aircraft turbine engine control research at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the current state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. The traditional engine control problem has been to provide a means to safely transition the engine from one steady-state operating point to another based on the pilot throttle inputs. With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects in partnership with other organizations within GRC and across NASA, other government agencies, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research Mission. The second part of the lecture provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges and the key progress to date are summarized. The technologies to be discussed include system level engine control concepts, gas path diagnostics, active component control, and distributed engine control architecture. The lecture will end with a futuristic perspective of how the various current technology developments will lead to an Intelligent and Autonomous Propulsion System requiring none to very minimum pilot interface

  18. OVERVIEW OF HANFORD SINGLE SHELL TANK (SST) STRUCTURAL INTEGRITY - 12123

    SciTech Connect

    RAST RS; RINKER MW; WASHENFELDER DJ; JOHNSON JB

    2012-01-25

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration. Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford SSTs. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford SSTs is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS{reg_sign} The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford SSTs has concluded that the tanks are structurally sound and meet current industry standards. Analyses of the remaining Hanford SSTs are scheduled for FY2013. Hanford SSTs are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of the concrete tank domes, looking for cracks and

  19. Indoor Air Pollution in Developing Countries: Research and Implementation Needs for Improvements in Global Public Health

    PubMed Central

    Gall, Elliott T.; Carter, Ellison M.; Matt Earnest, C.

    2013-01-01

    Exposure to indoor air pollution (IAP) from the burning of solid fuels for cooking, heating, and lighting accounts for a significant portion of the global burden of death and disease, and disproportionately affects women and children in developing regions. Clean cookstove campaigns recently received more attention and investment, but their successes might hinge on greater integration of the public health community with a variety of other disciplines. To help guide public health research in alleviating this important global environmental health burden, we synthesized previous research on IAP in developing countries, summarized successes and challenges of previous cookstove implementation programs, and provided key research and implementation needs from structured discussions at a recent symposium. PMID:23409891

  20. Notification: Preliminary Research on the Office of Air and Radiation’s Timekeeping Practices and Compliance With Regulations and Policies

    EPA Pesticide Factsheets

    Project #OA-FY17-0090, December 29, 2016. The EPA OIG plans to begin preliminary research on the Office of Air and Radiation’s timekeeping practices and compliance with federal regulations and related EPA policies and procedures.

  1. Diagnosing southeast tropical Atlantic SST and ocean circulation biases in the CMIP5 ensemble

    NASA Astrophysics Data System (ADS)

    Xu, Zhao; Chang, Ping; Richter, Ingo; Kim, Who; Tang, Guanglin

    2014-12-01

    Warm sea-surface temperature (SST) biases in the southeastern tropical Atlantic (SETA), which is defined by a region from 5°E to the west coast of southern Africa and from 10°S to 30°S, are a common problem in many current and previous generation climate models. The Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble provides a useful framework to tackle the complex issues concerning causes of the SST bias. In this study, we tested a number of previously proposed mechanisms responsible for the SETA SST bias and found the following results. First, the multi-model ensemble mean shows a positive shortwave radiation bias of ~20 W m-2, consistent with models' deficiency in simulating low-level clouds. This shortwave radiation error, however, is overwhelmed by larger errors in the simulated surface turbulent heat and longwave radiation fluxes, resulting in excessive heat loss from the ocean. The result holds for atmosphere-only model simulations from the same multi-model ensemble, where the effect of SST biases on surface heat fluxes is removed, and is not sensitive to whether the analysis region is chosen to coincide with the maximum warm SST bias along the coast or with the main SETA stratocumulus deck away from the coast. This combined with the fact that there is no statistically significant relationship between simulated SST biases and surface heat flux biases among CMIP5 models suggests that the shortwave radiation bias caused by poorly simulated low-level clouds is not the leading cause of the warm SST bias. Second, the majority of CMIP5 models underestimate upwelling strength along the Benguela coast, which is linked to the unrealistically weak alongshore wind stress simulated by the models. However, a correlation analysis between the model simulated vertical velocities and SST biases does not reveal a statistically significant relationship between the two, suggesting that the deficient coastal upwelling in the models is not simply related to the

  2. Data Fusion of SST from HY-2A Satellite Radiometer in China Sea and its Adjacent Waters

    NASA Astrophysics Data System (ADS)

    Li, Xiaohui; Yang, Jingsong; Zheng, Gang; Han, Guoqi; Ren, Lin; Wang, Juan

    2016-08-01

    This paper focuses on using data fusion method to solve the problem that the global sea is not seamlessly covered by the along-track sea surface temperature (SST) data of scanning microwave radiometer on board Haiyang-2A (HY-2A), which is the first ocean dynamic environment satellite of China launched on 16th August 2011. The procedure includes following steps. Firstly, the HY-2A SST data within 200 km of the coastline were identified and removed, the outliers of the HY-2A SST data and the background SST data were also identified and removed. Secondly, the HY-2A SST data were gridded, filtered and corrected. The background SST data were only filtered. Finally, the HY-2A SST data were merged into background SST data by the inverse distance weighted method. Next, the above procedure was tested in the ocean area on the southeast of China. The global 1-km sea surface temperature (G1SST) data were used as the reference data. The results of the procedure with and without the second step were made comparisons, and the results implied that the application of median filter and third-order polynomial curve fitting in the second step could help to improve performance of the merged SST data. The along-track SST data of HY-2A can be merged into OSTIA SST data successfully by the above procedure, and the gaps between tracks were filled up.

  3. Pheromonal regulation and sequence of the Saccharomyces cerevisiae SST2 gene: a model for desensitization to pheromone.

    PubMed Central

    Dietzel, C; Kurjan, J

    1987-01-01

    Strains of both haploid mating types containing sst2 mutations are altered in response to pheromone; MATa sst2 cells are supersensitive to alpha-factor, and MAT alpha sst2 cells are supersensitive to a-factor. This phenotype suggests that SST2 encodes a component of the pheromone response pathway that is common to both mating types. We have cloned the SST2 gene by isolation of multicopy plasmids that complement the sst2-1 mutation. One such plasmid contained a 4.5-kilobase HindIII fragment that was able to complement the sst2-1 mutation in high or low copy number, integrated at the SST2 locus, and resulted in an sst2 phenotype when disrupted, indicating that this fragment contained the SST2 gene. We identified the functional region of the complementing DNA fragment by transposon mutagenesis. Sequencing of this fragment identified an open reading frame encoding 698 amino acids at a position that correlated well with the functional region. Expression of an Sst2-beta-galactosidase fusion was haploid specific and induced by exposure to pheromone. We discuss a model in which induction of the SST2 product results in inhibition of a component of the pheromone response pathway, resulting in desensitization to pheromone. PMID:2830483

  4. Ion cyclotron resonance heating in SST-1 tokamak

    SciTech Connect

    Bora, D.; Mukherjee, A.; Singh, J. P.; Gangopadhyay, S.; Kumar, Sunil; Singh RF Group, Raj

    1999-09-20

    Multimegawatt ion cyclotron resonance heating (ICRH) system is being developed for the steady state superconducting takamak SST-1 (1), which would form an important heating scheme during non-inductive steady state operation. 1.5 MW of RF power at different frequencies between 22-92 MHz is to be delivered to the plasma for pulse lengths of upto 1000 s. Water cooled antenna, interface and 9 inch Tx-line will ensure safe operation for long pulse operation. Three stages of matching would ensure maximum power coupling to the plasma. Power would be coupled to the plasma through two sets of antennae consisting of two strips in antenna box positioned 180 degree opposite to each other with capability of handling 0.8 MW/m{sup 2} heat load. Electromagnetic stress analysis of the antenna assembly shows that maximum 1.37 kNm torque would be exerted during plasma disruption operating at 3.0 T, 220 kA plasma current. Impurity generation by ICRH antennae is not so severe.

  5. Design of multipulse Thomson scattering diagnostic for SST-1 tokamak.

    PubMed

    Kumar, Ajai; Chavda, Chhaya; Saxena, Y C; Singh, Ranjeet; Thakar, Aruna; Thomas, Jinto; Patel, Kiran; Pandya, Kaushal; Bedakihale, Vijay

    2007-04-01

    A multipulse Nd:YAG (Yttrium aluminum garnet) Thomson scattering (TS) system is designed and developed for measuring electron temperature (T(e)) and density (n(e)) profiles of SST-1 tokamak. The system operates at vertical, divertor, and horizontal (midplane) regions of plasma and measures the electron temperature of 20 eV to 1.5 keV and density of 10(18)-10(19) m(-3). Six Nd:YAG lasers synchronized with external control is used to get three different temporal resolutions (30 Hz, 180 Hz, and 1 kHz). The entire system is laboratory tested for the stability of alignment and performance over a distance of 30 m. Different imaging lens assemblies are designed to image the scattered photons from each of the scattering region to an array of optical fibers. A low cost and compact five-channel interference filter polychromator is designed, fabricated, and tested for its image quality and the filter transmission characteristics. Detection system with an avalanche photodiode and required signal conditioning electronics is developed for detecting the scattered photons. A data acquisition and control module operating on PXI bus is developed for the real time data acquisition and system control. A detailed description of design and testing of TS subsystems is presented in this article.

  6. Air-Quality Data from NARSTO (North American Research Strategy for Tropospheric Ozone)

    DOE Data Explorer

    NARSTO is a public/private partnership dedicated to improving management of air quality in North America. It was established on February 13, 1995 when representatives of Canada, the United States, and Mexico signed the NARSTO Charter in a ceremony at the White House. The Department of Energy is one of the charter members providing funding. The central programmatic goal of NARSTO is to provide data and information for use in the determination of workable, efficient, and effective strategies for local and regional ozone and fine particle management. Since its founding, NARSTO has completed three major scientific Assessments of critical air quality management issues. NARSTO maintains the Quality Systems Science Center and the NARSTO Data Archive for storing data from NARSTO Affiliated Research Activities and making these data available to the scientific community. NARSTO also facilitates activities, such as the Reactivity Research Working Group, which provide critical reviews of the state of the science in areas of interest to air quality policy makers. In January 1997, the U.S. Department of Energy's Environmental Sciences Division announced their sponsorship of the NARSTO Quality Systems Science Center (QSSC). The QSSC is located at the Oak Ridge National Laboratory within the Carbon Dioxide Information Analysis Center (CDIAC). Quality Assurance and Data Management assistance and guidelines are provided by the QSCC, along with access to data files. The permanent data archive is maintained by the NASA EOSDIS Distributed Active Archive Center at the Langley Research Center. The archived data can be reached by a link from the QSSC.(Specialized Interface) See also the NARSTO web site at http://www.narsto.org/

  7. Regime shift of the South China Sea SST in the late 1990s

    NASA Astrophysics Data System (ADS)

    Thompson, Bijoy; Tkalich, Pavel; Malanotte-Rizzoli, Paola

    2017-03-01

    Decadal variability of the South China Sea (SCS) sea surface temperature (SST) during 1982-2014 is investigated using observations and ocean reanalysis datasets. The SCS SST shows an abrupt transition from a cold-to-warm regime in the late 1990s. Based on the long-term SST variability two epochs are defined, 1982-1996 and 2000-2014 as cold and warm regimes respectively, spanning on either side of the 1997-1999 SCS warming. Despite the occurrence of strong El Nino induced warming events, the SST anomalies tend to be negative in the cold regime. Conversely during the warm regime, the positive SST anomalies have dominated over the La Nina driven cooling events. The cold (warm) SST regime is marked by net heat gain (loss) by the SCS. The long-term variations of net surface heat flux are mainly driven by the latent heat flux anomalies while the short wave flux plays a secondary role. Low-frequency variability of the South China Sea throughflow (SCSTF) appears to be closely related to the SCS SST regime shift. The SCSTF shows reversing trends during the cold and warm epochs. The weakened SCSTF in the warm regime has promoted the SCS warming by limiting the outward flow of warm water from the SCS. Meanwhile, enhanced SCSTF during the cold regime acts as a cooling mechanism and lead to persistent negative SST anomalies. The change in trend of the SCSTF and SST regime shift coincides with the switching of pacific decadal oscillation from a warm to cold phase in the late 1990s.

  8. Near real time SST retrievals from Himawari-8 at NOAA using ACSPO system

    NASA Astrophysics Data System (ADS)

    Kramar, M.; Ignatov, A.; Petrenko, B.; Kihai, Y.; Dash, P.

    2016-05-01

    Japanese Himawari-8 (H8) satellite was launched on October 7, 2014 and placed into a geostationary orbit at ~ 140.7°E. The Advanced Himawari Imager (AHI) onboard H8 provides full-disk (FD) observations every 10 minutes, in 16 solar reflectance and thermal infrared (IR) bands, with spatial resolution at nadir of 0.5-1 km and 2 km, respectively. The NOAA Advanced Clear-Sky Processor for Ocean (ACSPO) SST system, previously used with several polar-orbiting sensors, was adapted to process the AHI data. The AHI SST product is routinely validated against quality controlled in situ SSTs available from the NOAA in situ SST Quality monitor (iQuam). The product performance is monitored in the NOAA SST Quality Monitor (SQUAM) system. Typical validation statistics show a bias within +/-0.2 K and standard deviation of 0.4-0.6 K. The ACSPO H8 SST is also compared with the NOAA heritage SST produced at OSPO from the Multifunctional Transport Satellite (MTSAT-2; renamed Himawari-7, or H7 after launch) and with another H8 SST produced by JAXA (Japan Aerospace Exploration Agency). This paper describes the ACSPO AHI SST processing and results of validation and comparisons. Work is underway to generate a reduced volume ACSPO AHI SST product L2C (collated in time; e.g., 1-hr instead of current 10-min) and/or L3C (additionally gridded in space). ACSPO AHI processing chain will be applied to the data of the Advanced Baseline Imager (ABI), which will be flown onboard the next generation US geostationary satellite, GOES-R, scheduled for launch in October 2016.

  9. Air pollution control system research: An iterative approach to developing affordable systems

    SciTech Connect

    Watt, L.C.; Cannon, F.S.; Heinsohn, R.J.; Spaeder, T.A.; Darvin, C.H.

    1993-12-31

    The research will be accomplished on lab scale, pilot scale, and production air pollution control systems (APCS). The production system, to be installed at Marine Corps Logistics Base (MCLB) Barstow, CA, will treat the exhaust from three paint booths which will be modified to recirculate a large percentage of their exhaust. These recirculation systems are, themselves, a critical element in the overall R and D effort. The goal of the program is to conduct an R and D effort which will improve and demonstrate a combination of technologies intended to make VOC treatment both effective and affordable. The US Marine Corps, the other services and industry will each benefit.

  10. Some possibilities of using gas mixtures other than air in aerodynamic research

    NASA Technical Reports Server (NTRS)

    Chapman, Dean R

    1956-01-01

    A study is made of the advantages that can be realized in compressible-flow research by employing a substitute heavy gas in place of air. The present report is based on the idea that by properly mixing a heavy monatomic gas with a suitable heavy polyatomic gas, it is possible to obtain a heavy gas mixture which has the correct ratio of specific heats and which is nontoxic, nonflammable, thermally stable, chemically inert, and comprised of commercially available components. Calculations were made of wind-tunnel characteristics for 63 gas pairs comprising 21 different polyatomic gases properly mixed with each of three monatomic gases (argon, krypton, and zenon).

  11. PLANNING OF HEALTH EFFECTS RESEARCH ON HAZARDOUS AIR POLLUTANTS AND APPLICATION TO RISK ASSESSMENT PROBLEMS

    EPA Science Inventory

    The Clean Air Act Amendment of 1990 designated a set of compounds as hazardous air pollutants or "air toxics" which may be released into the air from a variety of sources including stationary, mobile and indoor air sources. Determination of the risks to human health from exposur...

  12. Research on measurement-device-independent quantum key distribution based on an air-water channel

    NASA Astrophysics Data System (ADS)

    Zhou, Yuan-yuan; Zhou, Xue-jun; Xu, Hua-bin; Cheng, Kang

    2016-11-01

    A measurement-device-independent quantum key distribution (MDI-QKD) method with an air-water channel is researched. In this method, the underwater vehicle and satellite are the legitimate parties, and the third party is at the airwater interface in order to simplify the unilateral quantum channel to water or air. Considering the condition that both unilateral transmission distance and transmission loss coefficient are unequal, a perfect model of the asymmetric channel is built. The influence of asymmetric channel on system loss tolerance and secure transmission distance is analyzed. The simulation results show that with the increase of the channel's asymmetric degree, the system loss tolerance will descend, one transmission distance will be reduced while the other will be increased. When the asymmetric coefficient of channel is between 0.068 and 0.171, MDI-QKD can satisfy the demand of QKD with an air-water channel, namely the underwater transmission distance and atmospheric transmission distance are not less than 60 m and 12 km, respectively.

  13. Land, sea, and air unmanned systems research and development at SPAWAR Systems Center Pacific

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoa G.; Laird, Robin; Kogut, Greg; Andrews, John; Fletcher, Barbara; Webber, Todd; Arrieta, Rich; Everett, H. R.

    2009-05-01

    The Space and Naval Warfare (SPAWAR) Systems Center Pacific (SSC Pacific) has a long and extensive history in unmanned systems research and development, starting with undersea applications in the 1960s and expanding into ground and air systems in the 1980s. In the ground domain, we are addressing force-protection scenarios using large unmanned ground vehicles (UGVs) and fixed sensors, and simultaneously pursuing tactical and explosive ordnance disposal (EOD) operations with small man-portable robots. Technology thrusts include improving robotic intelligence and functionality, autonomous navigation and world modeling in urban environments, extended operational range of small teleoperated UGVs, enhanced human-robot interaction, and incorporation of remotely operated weapon systems. On the sea surface, we are pushing the envelope on dynamic obstacle avoidance while conforming to established nautical rules-of-the-road. In the air, we are addressing cooperative behaviors between UGVs and small vertical-takeoff- and-landing unmanned air vehicles (UAVs). Underwater applications involve very shallow water mine countermeasures, ship hull inspection, oceanographic data collection, and deep ocean access. Specific technology thrusts include fiber-optic communications, adaptive mission controllers, advanced navigation techniques, and concepts of operations (CONOPs) development. This paper provides a review of recent accomplishments and current status of a number of projects in these areas.

  14. SAMPLE AOR CALCULATION USING ANSYS FULL PARAMETRIC MODEL FOR TANK SST-SX

    SciTech Connect

    JULYK, L.J.; MACKEY, T.C.

    2003-06-19

    This document documents the ANSYS parametric 360-degree model for single-shell tank SX and provides sample calculation for analysis-of-record mechanical load conditions. The purpose of this calculation is to develop a parametric full model for the single shell tank (SST) SX to deal with asymmetry loading conditions and provide a sample analysis of the SST-SX tank based on analysis of record (AOR) loads. The SST-SX model is based on buyer-supplied as-built drawings and information for the AOR for SSTs, encompassing the existing tank load conditions, and evaluates stresses and deformations throughout the tank and surrounding soil mass.

  15. SAMPLE AOR CALCULATION USING ANSYS SLICE PARAMETRIC MODEL FOR TANK SST-SX

    SciTech Connect

    JULYK, L.J.; MACKEY, T.C.

    2003-06-19

    This document documents the ANSYS slice parametric model for single-shell tank SX and provides sample calculation for analysis-of-record mechanical load conditions. The purpose of this calculation is to develop a parametric model for the single shell tank (SST) SX, and provide a sample analysis of the SST-SX tank based on analysis of record (AOR) loads. The SST-SX model is based on buyer-supplied as-built drawings and information for the AOR for SSTs, encompassing the existing tank load conditions, and evaluates stresses and deformations throughout the tank and surrounding soil mass.

  16. SAMPLE AOR CALCULATION USING ANSYS AXISYMMETRIC PARAMETRIC MODEL FOR TANK SST-S

    SciTech Connect

    JULYK, L.J.; MACKEY, T.C.

    2003-06-19

    This document documents the ANSYS axisymmetric parametric model for single-shell tank S and provides sample calculation for analysis-of-record mechanical load conditions. The purpose of this calculation is to develop a parametric model for single shell tank (SST) S, and provide a sample analysis of SST-S tank based on analysis of record (AOR) loads. The SST-S model is based on buyer-supplied as-built drawings and information for the AOR for SSTs, encompassing the existing tank load conditions, and evaluates stresses and deformations throughout the tank and surrounding soil mass.

  17. SAMPLE AOR CALCULATION USING ANSYS SLICE PARAMETRIC MODEL FOR TANK SST-BX

    SciTech Connect

    JULYK, L.J.; MACKEY, T.C.

    2003-06-19

    This document documents the ANSYS slice parametric model for single-shell tank BX and provides sample calculation for analysis-of-record mechanical load conditions. The purpose of this calculation is to develop a parametric model for the single shell tank (SST) BX, and provide a sample analysis of the SST-BX tank based on analysis of record (AOR) loads. The SST-BX model is based on buyer-supplied as-built drawings and information for the AOR for SSTs, encompassing the existing tank load conditions, and evaluates stresses and deformations throughout the tank and surrounding soil mass.

  18. SAMPLE AOR CALCULATION USING ANSYS AXISYMMETRIC PARAMETRIC MODEL FOR TANK SST-AX

    SciTech Connect

    JULYK, L.J.; MACKEY, T.C.

    2003-06-19

    This document documents the ANSYS axisymmetric parametric model for single-shell tank AX and provides sample calculation for analysis-of-record mechanical load conditions. The purpose of this calculation is to develop a parametric model for single shell tank (SST) AX, and provide a sample analysis of SST-AX tank based on analysis of record (AOR) loads. The SST-AX model is based on buyer-supplied as-built drawings and information for the AOR for SSTs, encompassing the existing tank load conditions, and evaluates stresses and deformations throughout the tank and surrounding soil mass.

  19. SAMPLE AOR CALCULATION USING ANSYS SLICE PARAMETRIC MODEL FOR TANK SST-S

    SciTech Connect

    JULYK, L.J.; MACKEY, T.C.

    2003-06-19

    This document documents the ANSYS slice parametric model for single-shell tank S and provides sample calculation for analysis-of-record mechanical load conditions. The purpose of this calculation is to develop a parametric model for the single shell tank (SST) S, and provide a sample analysis of the SST-S tank based on analysis of record (AOR) loads. The SST-S model is based on buyer-supplied as-built drawings and information for the AOR for SSTs, encompassing the existing tank load conditions, and evaluates stresses and deformations throughout the tank and surrounding soil mass.

  20. SAMPLE AOR CALCULATION USING ANSYS SLICE PARAMETRIC MODEL FOR TANK SST-AX

    SciTech Connect

    JULYK, L.J.; MACKEY, T.C.

    2003-06-19

    This document documents the ANSYS slice parametric model for single-shell tank AX and provides sample calculation for analysis-of-record mechanical load conditions. The purpose of this calculation is to develop a parametric model for the single shell tank (SST) AX, and provide a sample analysis of the SST-AX tank based on analysis of record (AOR) loads. The SST-AX model is based on buyer-supplied as-built drawings and information for the AOR for SSTs, encompassing the existing tank load conditions, and evaluates stresses and deformations throughout the tank and surrounding soil mass.

  1. SAMPLE AOR CALCULATION USING ANSYS AXISYMMETRIC PARAMETRIC MODEL FOR TANK SST-SX

    SciTech Connect

    JULYK, L.J.; MACKEY, T.C.

    2003-06-19

    This document documents the ANSYS axisymmetric parametric model for single-shell tank SX and provides sample calculation for analysis-of-record mechanical load conditions. The purpose of this calculation is to develop a parametric model for single shell tank (SST) SX, and provide a sample analysis of the SST-SX tank based on analysis of record (AOR) loads. The SST-SX model is based on buyer-supplied as-built drawings and information for the AOR for SSTs, encompassing the existing tank load conditions, and evaluates stresses and deformations throughout the tank and surrounding soil mass.

  2. SAMPLE AOR CALCULATION USING ANSYS AXISYMMETRIC PARAMETRIC MODEL FOR TANK SST-A

    SciTech Connect

    JULYK, L.J.; MACKEY, T.C.

    2003-06-19

    This document documents the ANSYS axisymmetric parametric model for single-shell tank A and provides sample calculation for analysis-of-record mechanical load conditions. The purpose of this calculation is to develop a parametric model for single shell tank (SST) A, and provide a sample analysis of SST-A tank based on analysis of record (AOR) loads. The SST-A model is based on buyer-supplied as-built drawings and information for the AOR for SSTs, encompassing the existing tank load conditions, and evaluates stresses and deformations throughout the tank and surrounding soil mass.

  3. The effect of advanced technology on the second-generation SST

    NASA Technical Reports Server (NTRS)

    Coen, P. G.

    1986-01-01

    Technological developments that promise to substantially increase the efficiency of next-generation subsonic commercial aircraft, together with additional developments in supersonic aircraft aerodynamics, structures and propulsion systems, are presently evaluated in order to project the extent of performance and economic improvement obtainable for a future SST by comparison to the Concorde SST. It is demonstrated that the second-generation SST projected will double passenger-carrying capacity from 100 for the Concorde to 200, despite reducing takeoff gross weight from 400,000 to 321,000 lbs and extending range by some 2000 nm.

  4. Mississippi State University Center for Air Sea Technology FY95 Research Program

    NASA Technical Reports Server (NTRS)

    Yeske, Lanny; Corbin, James H.

    1995-01-01

    The Mississippi State University (MSU) Center for Air Sea Technology (CAST) evolved from the Institute for Naval Oceanography's (INO) Experimental Center for Mesoscale Ocean Prediction (ECMOP) which was started in 1989. MSU CAST subsequently began operation on 1 October 1992 under an Office of Naval Research (ONR) two-year grant which ended on 30 September 1994. In FY95 MSU CAST was successful in obtaining five additional research grants from ONR, as well as several other research contracts from the Naval Oceanographic Office via NASA, the Naval Research Laboratory, the Army Corps of Engineers, and private industry. In the past, MSU CAST technical research and development has produced tools, systems, techniques, and procedures that improve efficiency and overcome deficiency for both the operational and research communities residing with the Department of Defense, private industry, and university ocean modeling community. We continued this effort with the following thrust areas: to develop advanced methodologies and tools for model evaluation, validation and visualization, both oceanographic and atmospheric; to develop a system-level capability for conducting temporally and ; spatially scaled ocean simulations driven by or are responsive to ocean models, and take into consideration coupling to atmospheric models; to continue the existing oceanographic/atmospheric data management task with emphasis on distributed databases in a network environment, with database optimization and standardization, including use of Mosaic and World Wide Web (WWW) access; and to implement a high performance parallel computing technology for CAST ocean models

  5. Benchmarking, Research, Development, and Support for ORNL Automated Image and Signature Retrieval (AIR/ASR) Technologies

    SciTech Connect

    Tobin, K.W.

    2004-06-01

    This report describes the results of a Cooperative Research and Development Agreement (CRADA) with Applied Materials, Inc. (AMAT) of Santa Clara, California. This project encompassed the continued development and integration of the ORNL Automated Image Retrieval (AIR) technology, and an extension of the technology denoted Automated Signature Retrieval (ASR), and other related technologies with the Defect Source Identification (DSI) software system that was under development by AMAT at the time this work was performed. In the semiconductor manufacturing environment, defect imagery is used to diagnose problems in the manufacturing line, train yield management engineers, and examine historical data for trends. Image management in semiconductor data systems is a growing cause of concern in the industry as fabricators are now collecting up to 20,000 images each week. In response to this concern, researchers at the Oak Ridge National Laboratory (ORNL) developed a semiconductor-specific content-based image retrieval method and system, also known as AIR. The system uses an image-based query-by-example method to locate and retrieve similar imagery from a database of digital imagery using visual image characteristics. The query method is based on a unique architecture that takes advantage of the statistical, morphological, and structural characteristics of image data, generated by inspection equipment in industrial applications. The system improves the manufacturing process by allowing rapid access to historical records of similar events so that errant process equipment can be isolated and corrective actions can be quickly taken to improve yield. The combined ORNL and AMAT technology is referred to hereafter as DSI-AIR and DSI-ASR.

  6. Visual Steering and Verification of Mass Spectrometry Data Factorization in Air Quality Research.

    PubMed

    Engel, D; Greff, K; Garth, C; Bein, K; Wexler, A; Hamann, B; Hagen, H

    2012-12-01

    The study of aerosol composition for air quality research involves the analysis of high-dimensional single particle mass spectrometry data. We describe, apply, and evaluate a novel interactive visual framework for dimensionality reduction of such data. Our framework is based on non-negative matrix factorization with specifically defined regularization terms that aid in resolving mass spectrum ambiguity. Thereby, visualization assumes a key role in providing insight into and allowing to actively control a heretofore elusive data processing step, and thus enabling rapid analysis meaningful to domain scientists. In extending existing black box schemes, we explore design choices for visualizing, interacting with, and steering the factorization process to produce physically meaningful results. A domain-expert evaluation of our system performed by the air quality research experts involved in this effort has shown that our method and prototype admits the finding of unambiguous and physically correct lower-dimensional basis transformations of mass spectrometry data at significantly increased speed and a higher degree of ease.

  7. Air-bearing-based satellite attitude dynamics simulator for control software research and development

    NASA Astrophysics Data System (ADS)

    Agrawal, Brij N.; Rasmussen, Richard E.

    2001-08-01

    A Satellite Attitude Dynamics Simulator (SADS) has been developed to facilitate the research and development of spacecraft flight attitude control software at the Naval Postgraduate School in Monterey, CA. The simulator provides a real-time 3 degree of freedom (3DOF) synthetic spacecraft hardware-in-the-loop environment, that includes realistic angular motions, sensor-effector delays, and control torque profiles. Control software, entered into a notebook PC mounted on the equipment platform, is input as high level object oriented code, allowing rapid code development and thorough post-test analysis. Three flight-like reaction wheels and eight cold-gas thrusters that are mounted to the SADS equipment platform provide motion simulation torque. The equipment platform is suspended in air by a spherical segment air bearing. This virtually frictionless suspension allows free rotation of the equipment platform about any rotation axis. Three separate sets of sensors, three single-axis rate gyros, a three-axis magnetometer, and a two-axis sun sensor monitor SADS platform motion. This paper discusses the SADS design, and the practical uses of this simulator for satellite attitude control system software research and development.

  8. The development of emissions estimates for the Arizona Hazardous Air Pollution Research Program

    SciTech Connect

    Dickson, R.J.; Wolf, M.E.; Morrison, B.J.

    1996-12-31

    A series of emissions inventories have been developed to support the Arizona Hazardous Air Pollution (HAP) Research Program. This paper summarizes both the methodology and results of this inventory effort. To meet the objectives of the HAP Research Program, emissions inventories were prepared for four different geographic regions. Both Phoenix and Tucson were selected to represent urban-scale environments. The town of Payson was selected as a mountain community with residential wood combustion emissions, while Casa Grande was selected for its agricultural emissions, primarily pesticides. The emissions databases developed for these four regions consist of gridded and hourly emission files that were used in a three dimensional air quality grid model. The inventory databases contain HAP emissions for point, area, and mobile sources (both on-road motor vehicles and nonroad mobile sources). The overall area and mobile source inventory consists of over 150 individual source categories. Future year emission projections were prepared to simulate growth, as well as planned local, state, and federal control requirements that will influence HAP emissions in the four regions. Results of the inventory indicate that mobile sources are the dominant source category in all four regions, although semivolatile organic emissions from residential wood combustion and pesticides are important components of the Payson and Casa Grande inventories, respectively. Although significant growth and economic expansion is predicted for each region, overall emissions of the key HAP species are expected to decline.

  9. Tobacco Research in the Military: Reflections on 20 Years of Research in the United States Air Force.

    PubMed

    Talcott, G Wayne; Ebbert, Jon O; Klesges, Robert C; Linde, Brittany D; Seals, Robert W; Krukowski, Rebecca A; Grieser, Emily A; Oh, John Y; Martin-Zona, Denise M

    2015-08-01

    The U.S. military is one of the world's largest employers. Approximately 30% of active duty military personnel smoke cigarettes and more than 14% use smokeless tobacco. The military has historically supported tobacco use and more recently is attempting to combat its use. Through 20 years of collaborative research with the United States Air Force, we have learned that smoking bans are effective, recruits who have never previously smoked cigarettes initiate tobacco use, smokeless tobacco serves as a gateway for smoking initiation, smoking is associated with discharge, smoking adds significant proximal training costs, tobacco use increases during deployment, and tobacco quitline counseling with a provision of medication is effective. Our findings may provide groundwork for future tobacco control efforts in the U.S. military.

  10. The Air Force Health Study Data and Specimens as a Resource for Researchers.

    PubMed

    Styka, Anne N; Butler, David A

    2015-10-01

    The Air Force Health Study (AFHS) is perhaps the most thorough longitudinal examination of both the health of military personnel and the health effects of herbicide exposure ever conducted. Data were collected through comprehensive physical examinations, questionnaires, and other records at six time points over a 20-year period; 2,758 subjects participated in at least one examination cycle. Data collected during physical examinations included indices of health status overall and specific endpoints for each organ system. Questionnaire data included sociodemographic information, marital and fertility history, health habits, recreation activities, toxic substances exposure, and military experience. Biospecimens were collected at each examination cycle; serum was collected at all six examinations while other biospecimens, such as semen and whole blood, were collected at one time. More than 200 clinical laboratory tests and measures were performed, with more than 60 of these measured at all six cycles. The vast amount of electronic data and the more than 91,000 unaliquoted biospecimens contained in the repository offer unique opportunities for new research on understanding determinants of health. The Institute of Medicine is the custodian of the AFHS materials and conducted a pilot research program to facilitate new research using the materials. An expert committee issued requests for proposals, created a Web-based form for submissions, reviewed and evaluated potential research studies, and made data and biospecimens available to qualified researchers. This article summarizes the experience of this initiative.

  11. Internetwork Chromospheric Bright Grains Observed With IRIS and SST

    NASA Astrophysics Data System (ADS)

    Martínez-Sykora, Juan; Rouppe van der Voort, Luc; Carlsson, Mats; De Pontieu, Bart; Pereira, Tiago M. D.; Boerner, Paul; Hurlburt, Neal; Kleint, Lucia; Lemen, James; Tarbell, Ted D.; Title, Alan; Wuelser, Jean-Pierre; Hansteen, Viggo H.; Golub, Leon; McKillop, Sean; Reeves, Kathy K.; Saar, Steven; Testa, Paola; Tian, Hui; Jaeggli, Sarah; Kankelborg, Charles

    2015-04-01

    The Interface Region Imaging Spectrograph (IRIS) reveals small-scale rapid brightenings in the form of bright grains all over coronal holes and the quiet Sun. These bright grains are seen with the IRIS 1330, 1400, and 2796 Å slit-jaw filters. We combine coordinated observations with IRIS and from the ground with the Swedish 1 m Solar Telescope (SST) which allows us to have chromospheric (Ca ii 8542 Å, Ca ii H 3968 Å, Hα, and Mg ii k 2796 Å) and transition region (C ii 1334 Å, Si iv 1403 Å) spectral imaging, and single-wavelength Stokes maps in Fe i 6302 Å at high spatial (0\\buildrel{\\prime\\prime}\\over{.} 33), temporal, and spectral resolution. We conclude that the IRIS slit-jaw grains are the counterpart of so-called acoustic grains, i.e., resulting from chromospheric acoustic waves in a non-magnetic environment. We compare slit-jaw images (SJIs) with spectra from the IRIS spectrograph. We conclude that the grain intensity in the 2796 Å slit-jaw filter comes from both the Mg ii k core and wings. The signal in the C ii and Si iv lines is too weak to explain the presence of grains in the 1300 and 1400 Å SJIs and we conclude that the grain signal in these passbands comes mostly from the continuum. Although weak, the characteristic shock signatures of acoustic grains can often be detected in IRIS C ii spectra. For some grains, a spectral signature can be found in IRIS Si iv. This suggests that upward propagating acoustic waves sometimes reach all the way up to the transition region.

  12. Sea surface temperature anomalies, planetary waves, and air-sea feedback in the middle latitudes

    NASA Technical Reports Server (NTRS)

    Frankignoul, C.

    1985-01-01

    Current analytical models for large-scale air-sea interactions in the middle latitudes are reviewed in terms of known sea-surface temperature (SST) anomalies. The scales and strength of different atmospheric forcing mechanisms are discussed, along with the damping and feedback processes controlling the evolution of the SST. Difficulties with effective SST modeling are described in terms of the techniques and results of case studies, numerical simulations of mixed-layer variability and statistical modeling. The relationship between SST and diabatic heating anomalies is considered and a linear model is developed for the response of the stationary atmosphere to the air-sea feedback. The results obtained with linear wave models are compared with the linear model results. Finally, sample data are presented from experiments with general circulation models into which specific SST anomaly data for the middle latitudes were introduced.

  13. Single Shell Tank (SST) Retrieval Sequence & Double Shell Tank (DST) Space Evaluation

    SciTech Connect

    HOHL, T.M.

    2001-09-20

    This document describes the baseline single-shell tank (SST) waste retrieval sequence for the River Protection Project updated for Fiscal Year 2002. The double-shell tank (DST) space evaluation presents projected DST needs for Hanford for additional DSTs.

  14. Single Shell Tank (SST) Retrieval Sequence & Double Shell Tank (DST) Space Evaluation

    SciTech Connect

    STRODE, J.N.

    2002-09-23

    This document describes the baseline single-shell tank (SST) waste retrieval sequence for the River Protection Project updated for Fiscal Year 2002. The double-shell tank (DST) space evaluation presents projected DST needs for Hanford for additional DSTs.

  15. Single Shell Tank (SST) Retrieval Sequence and Double Shell Tank (DST) Space Evaluation

    SciTech Connect

    KIRCH, N.W.

    2003-09-23

    This document describes the baseline single-shell tank (SST) waste retrieval sequence for the River Protection Project updated for Fiscal Year 2002. The double-shell tank (DST) space evaluation presents projected DST needs for Hanford for additional DSTs.

  16. Truncated somatostatin receptor variant sst5TMD4 confers aggressive features (proliferation, invasion and reduced octreotide response) to somatotropinomas

    PubMed Central

    Luque, Raúl M.; Ibáñez-Costa, Alejandro; Neto, Leonardo Vieira; Taboada, Giselle F.; Hormaechea-Agulla, Daniel; Kasuki, Leandro; Venegas-Moreno, Eva; Moreno-Carazo, Alberto; Gálvez, María Ángeles; Soto-Moreno, Alfonso; Kineman, Rhonda D.; Culler, Michael D.; Gahete, Manuel D.; Gadelha, Mônica R.; Castaño, Justo P.

    2015-01-01

    The GH/IGF1 response of somatotropinomas to somatostatin analogues (SSA) is associated with their pattern of somatostatin receptor (sst1–sst5) expression. Recently, we demonstrated that expression of a truncated sst5-variant (sst5TMD4) can influence the secretory response of somatotropinomas to SSA-therapy; however, its potential relationship with aggressive features (e.g. invasion/proliferation) is still unknown. Here, we show that sst5TMD4 is present in 50% of non-functioning pituitary-adenomas (NFPA) (n = 30) and 89% of somatotropinomas (n = 36), its expression levels being highest in somatotropinomas > > NFPAs > > > normal pituitaries (negligible expression; n = 8). In somatotropinomas, sst5TMD4 mRNA and protein levels correlated positively, and its expression was directly associated with tumor invasiveness (cavernous/sphenoid sinus), and inversely correlated with age and GH/IGF1 reduction after 3–6 months with octreotide-LAR therapy. GNAS+ somatotropinomas expressed lower sst5TMD4 levels. ROC analysis revealed sst5TMD4 expression as the only marker, within all sst-subtypes, capable to predict tumor invasiveness in somatotropinomas. sst5TMD4 overexpression increased cell viability in cultured somatotropinoma (n = 5). Hence, presence of sst5TMD4 associates with increased aggressive features and worse prognosis in somatotropinomas, thereby providing a potentially useful tool to refine somatotropinoma diagnosis, predict outcome of clinical response to SSA-therapy and develop new therapeutic targets. PMID:25637790

  17. Pre- analysis assessment of Sea Surface Temperature (SST) products in the region of Malaysian coastal water

    NASA Astrophysics Data System (ADS)

    Aziz, M. A. H.; Omar, K. M.; Din, A. H. M.; Reba, M. N. M.

    2016-06-01

    This paper presents the pre-analysis of validation between the acquisition satellite data and in situ data. To carry out this assessment, Sea Surface Temperature (SST) data are acquired to be regressed with SST In situ. With the launch of the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite with a sensor on the Terra spacecraft, data sets of the global distribution of sea surface temperature are retrieved, and need to be validated and analyzed. Radar Altimeter Database System (RADS) also has an archived data of Optimal Interpolation SST (OISST) that can be retrieved based on satellite track of altimeter. The aim of this paper is to present intercomparison study between pixel based (MODIS SST) and point based (RADS SST). The value of root mean square error (rmse) is computed to see the performance of the data product. It is an assessment and evaluation to see the performance for both data. The objective of this paper is to evaluate Malaysian coastal area through validation with in situ data. To achieve the objective, we perform pre-analysis study of the MODIS products and RADS SST to see the performance of both data in terms of spatial value during seasonal changes. However, the scope of this analysis covers only on the spatial MODIS pixel value and the OISST point value during the southwest monsoon daytime. From the result, RADS SST/RADS show higher root mean square error (rmse) at 0.731/0.677 (before calibration) and 0.6951/0.476 (after calibration). From the rmse result, we could deduce that the RADS SST has random error arising from the fact that the interpolated points are based on the track.

  18. Psychometric Properties of the Persian Version of the Simple Shoulder Test (SST) Questionnaire

    PubMed Central

    Ebrahimzadeh, Mohammad H.; Vahedi, Ehsan; Baradaran, Aslan; Birjandinejad, Ali; Seyyed-Hoseinian, Seyyed-Hadi; Bagheri, Farshid; Kachooei, Amir Reza

    2016-01-01

    Background: To validate the Persian version of the simple shoulder test in patients with shoulder joint problems. Methods: Following Beaton`s guideline, translation and back translation was conducted. We reached to a consensus on the Persian version of SST. To test the face validity in a pilot study, the Persian SST was administered to 20 individuals with shoulder joint conditions. We enrolled 148 consecutive patients with shoulder problem to fill the Persian SST, shoulder specific measure including Oxford shoulder score (OSS) and two general measures including DASH and SF-36. To measure the test-retest reliability, 42 patients were randomly asked to fill the Persian-SST for the second time after one week. Cronbach’s alpha coefficient was used to demonstrate internal consistency over the 12 items of Persian-SST. Results: ICC for the total questionnaire was 0.61 showing good and acceptable test-retest reliability. ICC for individual items ranged from 0.32 to 0.79. The total Cronbach’s alpha was 0.84 showing good internal consistency over the 12 items of the Persian-SST. Validity testing showed strong correlation between SST and OSS and DASH. The correlation with OSS was positive while with DASH scores was negative. The correlation was also good to strong with all physical and most mental subscales of the SF-36. Correlation coefficient was higher with DASH and OSS in compare to SF-36. Conclusion: Persian version of SST found to be valid and reliable instrument for shoulder joint pain and function assessment in Iranian population. PMID:27847855

  19. SST Control by Subsurface Mixing during Indian Ocean Monsoons: 1-yr Pilot Project

    DTIC Science & Technology

    2013-09-30

    public release; distribution is unlimited. SST Control by Subsurface Mixing during Indian Ocean Monsoons : 1-yr Pilot Project Emily Shroyer and James...observational basis and physical interpretation for new mixing parameterizations that will contribute to improved monsoon predictions in this sensitive...4. TITLE AND SUBTITLE SST Control by Subsurface Mixing during Indian Ocean Monsoons : 1-yr Pilot Project 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  20. Evaluation of Assimilative SST Forecasts in the Okinawa Trough and Gulf of Mexico

    DTIC Science & Technology

    2012-12-06

    shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number...the background. The experimental case additionally assimilated SST from AMSR–E while the control did not. Results in Table 1 indicate that inclusion...introduction of GOES into the standard AVHRR– centric input stream of satellite observations. The control case assimilates NOAA AVHRR SST (GAC and LAC), a

  1. The Met Office's new operational analysis system for diurnally varying skin-SST

    NASA Astrophysics Data System (ADS)

    While, James; Mao, Chongyuan; Martin, Matthew; Good, Simon; Sykes, Peter

    2016-04-01

    Diurnal variations in skin Sea Surface Temperature (skin SST), which can be as large as several degrees, play an important role in determining the heat flux between the ocean and atmosphere. As such, since February 2015 the Met Office, as part of the Copernicus Marine Environment Monitoring Service (CMEMS), has been producing an operational analysis of the diurnal cycle of skin SST. This product consists of three components: an underlying 'foundation' SST (based on the OSTIA analysis), a warm layer where solar heating is important, and a cool skin where cooling due to long wave radiation dominates. A major development in this system is the use of a 4D-Var data assimilation technique with multiple outer-loops to improve estimates of the warm layer. Observations assimilated come from the SEVIRI, GOES-W, MTSAT2, and NOAA-AVHRR infra-red satellite instruments. Through their assimilation, the observations act to update the applied heat and wind flux such that the diurnal cycle in the warm layer is improved. In this presentation we describe the analysis system and how it produces a skin SST product. Particular attention is paid to the data assimilation aspects and on the observation processing. We also present results from a three month validation period showing that the system is well able to reproduce a drifter based climatology of the diurnal cycle in SST. A direct validation of our diurnal SST output against near surface Argo data is also given.

  2. Atmospheric Response to Zonal Variations in Midlatitude SST: Transient and Stationary Eddies and Their Feedback(.

    NASA Astrophysics Data System (ADS)

    Inatsu, Masaru; Mukougawa, Hitoshi; Xie, Shang-Ping

    2003-10-01

    Midwinter storm track response to zonal variations in midlatitude sea surface temperatures (SSTs) has been investigated using an atmospheric general circulation model under aquaplanet and perpetual-January conditions. Zonal wavenumber-1 SST variations with a meridionally confined structure are placed at various latitudes. Having these SST variations centered at 30°N leads to a zonally localized storm track, while the storm track becomes nearly zonally uniform when the same SST forcing is moved farther north at 40° and 50°N. Large (small) baroclinic energy conversion north of the warm (cold) SST anomaly near the axis of the storm track (near 40°N) is responsible for the large (small) storm growth. The equatorward transfer of eddy kinetic energy by the ageostrophic motion and the mechanical damping are important to diminish the storm track activity in the zonal direction.Significant stationary eddies form in the upper troposphere, with a ridge (trough) northeast of the warm (cold) SST anomaly at 30°N. Heat and vorticity budget analyses indicate that zonally localized condensational heating in the storm track is the major cause for these stationary eddies, which in turn exert a positive feedback to maintain the localized storm track by strengthening the vertical shear near the surface. These results indicate an active role of synoptic eddies in inducing deep, tropospheric-scale response to midlatitude SST variations. Finally, the application of the model results to the real atmosphere is discussed.

  3. The control, monitor, and alarm system for the ICT equipment of the ASTRI SST-2M telescope prototype for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Gianotti, Fulvio; Fioretti, Valentina; Tanci, Claudio; Conforti, Vito; Tacchini, Alessandro; Leto, Giuseppe; Gallozzi, Stefano; Bulgarelli, Andrea; Trifoglio, Massimo; Malaguti, Giuseppe; Zoli, Andrea

    2014-07-01

    ASTRI is an Italian flagship project whose first goal is the realization of an end-to-end telescope prototype, named ASTRI SST-2M, for the Cherenkov Telescope Array (CTA). The prototype will be installed in Italy during Fall 2014. A second goal will be the realization of the ASTRI/CTA mini-array which will be composed of seven SST-2M telescopes placed at the CTA Southern Site. The Information and Communication Technology (ICT) equipment necessary to drive the infrastructure for the ASTRI SST-2M prototype is being designed as a complete and stand-alone computer center. The design goal is to obtain basic ICT equipment that might be scaled, with a low level of redundancy, for the ASTRI/CTA mini-array, taking into account the necessary control, monitor and alarm system requirements. The ICT equipment envisaged at the Serra La Nave observing station in Italy, where the ASTRI SST-2M telescope prototype will operate, includes computers, servers and workstations, network devices, an uninterruptable power supply system, and air conditioning systems. Suitable hardware and software tools will allow the parameters related to the behavior and health of each item of equipment to be controlled and monitored. This paper presents the proposed architecture and technical solutions that integrate the ICT equipment in the framework of the Observatory Control System package of the ASTRI/CTA Mini- Array Software System, MASS, to allow their local and remote control and monitoring. An end-toend test case using an Internet Protocol thermometer is reported in detail.

  4. The Symposium Proceedings of the 1998 Air Transport Research Group (ATRG). Volume 2

    NASA Technical Reports Server (NTRS)

    Reynolds-Feighan, Aisling (Editor); Bowen, Brent D. (Editor)

    1998-01-01

    The Air Transport Research Group of the World Conference on Transportation Research (WCTR) Society was formally launched as a special interest group at the 7th Triennial WCTR in Sydney, Australia in 1995. Since then, our membership base has expanded rapidly, and now includes over 400 active transportation researchers, policy-makers, industry executives, major corporations and research institutes from 28 countries. It became a tradition that the ATRG would hold an international conference at least once a year. In 1998, the ATRG organized a consecutive stream of 14 aviation sessions at the 8th Triennial WCTR Conference (July 12-17: Antwerp). Again, on 19-21 July, 1998, the ATRG Symposium was organized and executed very successfully by Dr. Aisling Reynolds-Feighan of the University College of Dublin. The Aviation Institute at the University of Nebraska at Omaha has published the Proceedings of the 1998 ATRG Dublin Symposium (being co-edited by Dr. Aisling Reynolds-Feighan and Professor Brent Bowen), and the Proceedings of the 1998 WCTR-ATRG Conference (being co-edited by Professors Tae H. Oum and Brent Bowen).

  5. AirSTAR Hardware and Software Design for Beyond Visual Range Flight Research

    NASA Technical Reports Server (NTRS)

    Laughter, Sean; Cox, David

    2016-01-01

    The National Aeronautics and Space Administration (NASA) Airborne Subscale Transport Aircraft Research (AirSTAR) Unmanned Aerial System (UAS) is a facility developed to study the flight dynamics of vehicles in emergency conditions, in support of aviation safety research. The system was upgraded to have its operational range significantly expanded, going beyond the line of sight of a ground-based pilot. A redesign of the airborne flight hardware was undertaken, as well as significant changes to the software base, in order to provide appropriate autonomous behavior in response to a number of potential failures and hazards. Ground hardware and system monitors were also upgraded to include redundant communication links, including ADS-B based position displays and an independent flight termination system. The design included both custom and commercially available avionics, combined to allow flexibility in flight experiment design while still benefiting from tested configurations in reversionary flight modes. A similar hierarchy was employed in the software architecture, to allow research codes to be tested, with a fallback to more thoroughly validated flight controls. As a remotely piloted facility, ground systems were also developed to ensure the flight modes and system state were communicated to ground operations personnel in real-time. Presented in this paper is a general overview of the concept of operations for beyond visual range flight, and a detailed review of the airborne hardware and software design. This discussion is held in the context of the safety and procedural requirements that drove many of the design decisions for the AirSTAR UAS Beyond Visual Range capability.

  6. Free Air CO2 Enrichment (FACE) Research Data from the Nevada Desert FACE Facility (NDFF)

    DOE Data Explorer

    DOE has conducted trace gas enrichment experiments since the mid 1990s. The FACE Data Management System is a central repository and archive for Free-Air Carbon Dioxide Enrichment (FACE) data, as well as for the related open-top chamber (OTC) experiments. FACE Data Management System is located at the Carbon Dioxide Information Analysis Center (CDIAC). While the data from the various FACE sites, each one a unique user facility, are centralized at CDIAC, each of the FACE sites presents its own view of its activities and information. For that reason, DOE Data Explorer users are advised to see both the central repository at http://public.ornl.gov/face/index.shtml and the individual home pages of each site. NDFF whole-ecosystem manipulation is a flagship experiment of the Terrestrial Carbon Process (TCP) research program of the US Dept. of Energy. It is also a core project of the International Geosphere-Biosphere Program (IGBP) and a contribution to the US Global Change Research Program. The NDFF was developed in conjunction with the National Science Foundation (NSF) and DOE-EPSCoR programs. FACE (Free-Air-Carbon dioxide-Enrichment) technology allows researchers to elevate the carbon dioxide level in large study plots while minimizing ecosystem disturbance. At the NDFF the concentration of CO2 was elevated by 50 percent above the present atmospheric levels in three plots in the Mojave Desert ecosystem, while six other plots remained at the current level. This experimental design provided a large area in which integrated teams of scientists could describe and quantify processes regulating carbon, nutrient, and water balances in desert ecosystems.

  7. The Detroit Exposure and Aerosol Research Study (DEARS) - Article in National Ambient Air Quality Status and Trends through 2007

    EPA Science Inventory

    A research study that the U.S. Environmental Protection Agency conducted in Detroit, Michigan, named the Detroit Exposure and Aerosol Research Study (DEARS), will help develop data that improves our understanding of human exposure to various air pollutants in our environment.

  8. Sikorsky UH-60 (USA 82-23748 NASA-748) Air-loads research aircraft - Blackhawk helicopter with

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Sikorsky UH-60 (USA 82-23748 NASA-748) Air-loads research aircraft - Blackhawk helicopter with MUX-Bucket in flight Note: Used in publication in Flight Research at Ames; 57 Years of Development and Validation of Aeronautical Technology NASA SP-1998-3300 fig. 135

  9. The Conference Proceedings of the 1997 Air Transport Research Group (ATRG) of the WCTR Society. Volume 1

    NASA Technical Reports Server (NTRS)

    Own, Tae Hoon (Editor); Bowen, Brent D. (Editor)

    1997-01-01

    The Aviation Institute University of Nebraska at Omaha (UNO) Monograph series has published the Conference Proceedings of the 1997 Air Transport Research Group (ATRG) of the World Conference on Transportation Research Society (WCTR) volume 1, number 3. The topics included in this document are: 1) Industrial Reform and Air Transport Development in China; 2) The Economic Effects of Airline Deregulation and the Open-Sky Policy of Korea; 3) The Economic Effects of Airline Deregulation and the Open-Sky Policy of Korea; 4) "Open Skies" in India-Is the policy succeeding? 5) The Japanese Domestic Air Fares under the Regulatory Regime: What will be expected after the revision of current charging system? 6) The Competitive Position of Airline Networks; and 7) Air Transport and Regional Economic Development in the European Union.

  10. NASA Langley's Formal Methods Research in Support of the Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Munoz, Cesar A.

    2008-01-01

    This talk will provide a brief introduction to the formal methods developed at NASA Langley and the National Institute for Aerospace (NIA) for air traffic management applications. NASA Langley's formal methods research supports the Interagency Joint Planning and Development Office (JPDO) effort to define and develop the 2025 Next Generation Air Transportation System (NGATS). The JPDO was created by the passage of the Vision 100 Century of Aviation Reauthorization Act in Dec 2003. The NGATS vision calls for a major transformation of the nation s air transportation system that will enable growth to 3 times the traffic of the current system. The transformation will require an unprecedented level of safety-critical automation used in complex procedural operations based on 4-dimensional (4D) trajectories that enable dynamic reconfiguration of airspace scalable to geographic and temporal demand. The goal of our formal methods research is to provide verification methods that can be used to insure the safety of the NGATS system. Our work has focused on the safety assessment of concepts of operation and fundamental algorithms for conflict detection and resolution (CD&R) and self- spacing in the terminal area. Formal analysis of a concept of operations is a novel area of application of formal methods. Here one must establish that a system concept involving aircraft, pilots, and ground resources is safe. The formal analysis of algorithms is a more traditional endeavor. However, the formal analysis of ATM algorithms involves reasoning about the interaction of algorithmic logic and aircraft trajectories defined over an airspace. These trajectories are described using 2D and 3D vectors and are often constrained by trigonometric relations. Thus, in many cases it has been necessary to unload the full power of an advanced theorem prover. The verification challenge is to establish that the safety-critical algorithms produce valid solutions that are guaranteed to maintain separation

  11. Investigating Indoor Air Quality Using a Community-based Participatory Research Model

    NASA Astrophysics Data System (ADS)

    Collier, A. M.; Ware, G. E.; Iwasaki, P. G.; Main, D.; Billingsley, L. R.; Pandya, R.; Hannigan, M.

    2015-12-01

    Our project seeks to expand scientific knowledge of air pollutant screening methods while also gathering data a community group can use to improve local health outcomes. Working with Taking Neighborhood Health to Heart (TNH2H), a Denver-based neighborhood group with significant experience doing community-based participatory research (CBPR) related to improving individual and community health, we designed a project to help residents test their homes for two contaminants of interest: radon and perchloroethylene. Radon is naturally occurring and commonly found across Colorado. Perchloroethylene contamination has been discovered in other parts of Denver and residents of Northeast Denver would like to learn more about its possible presence in their neighborhood. Additionally while radon is simple to test for, the same cannot be said for perchloroethylene. This project provides an opportunity to pilot a low-cost sampling method for perchloroethylene, apply TNH2H's CBPR model to an environmental health issue, adapt it for the geosciences, and engage the community in education around air quality issues. Data collected during the project will be shared with participating homes and the larger community. Community members will also participate in understanding and interpreting the data, and together community members and scientists will plan possible next steps, which may involve conducting further research, taking community action, or recommending changes in policy and practice. Beyond the local impacts, we are testing an air quality sampling method that could make sampling more accessible to a broader range of communities. We are also learning more about how communities and scientists can best work together and what additional resources can help facilitate and ensure successful implementation of these types of projects. Our partner, the Thriving Earth Exchange, will use what we learn to facilitate scientist-community partnerships like this in other communities around the

  12. Repair of Corrosion in Air Supply Piping at the NASA Glenn Research Center's 1 by 1 Foot Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Henry, Michael

    2000-01-01

    During a test at the NASA Glenn Research Center's 1 x 1 Supersonic Wing Tunnel, it was discovered that particles entrained in the air flow were damaging the pressure sensitive paint on a test article. An investigation found the source of the entrained particles to be rust on the internal surfaces of the air supply piping. To remedy the situation, the air supply line components made from carbon steel were either refurbished or replaced with new stainless steel components. The refurbishment process included various combinations of chemical cleaning, bead blasting, painting and plating.

  13. Overview of Hanford Single Shell Tank (SST) Structural Integrity

    SciTech Connect

    Rast, Richard S.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2013-11-14

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project (SSTIP) in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration, Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford Single-Shell Tanks. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS. The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford Single-Shell Tanks has concluded that the tanks are structurally sound and meet current industry standards. Analysis of the remaining Hanford Single-Shell Tanks is scheduled for FY2014. Hanford Single-Shell Tanks are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of

  14. Australian Air Breathing Propulsion Research for Hypersonic, Beamed Energy-Propelled Vehicles

    NASA Astrophysics Data System (ADS)

    Froning, David

    2010-05-01

    A three year laser-propelled vehicle analysis and design investigation has been begun in June, 2009 by Faculty and graduate students at the University of Adelaide under a Grant/Cooperative Agreement Award to the University of Adelaide by the Asian Office of Aerospace Research and Development (AOARD). The major objectives of thsis investigation are: (a) development of hypersonic, air breathing "lightcraft" with innovative air inlets that enable acceptable airflow capture and combustion, and acceptable cowl-lip heating rates during hot, high-speed, high angle-of-attack hypersonic flight; (b) yest of the most promising lightcraft and inlet design in the high power laser beam that is part of the shock tunnel facility at CTO Instituto in Brazil; and (c) plan a series of laser guided and propelled flights that achieve supersonic or higher speed at the Woomera Test Facility (WTF) in South Australia—using the existing WTF launching and tracking facilities and sponsor-provided laser pointing and tracking and illumination systems.

  15. Pseudo Aircraft Systems - A multi-aircraft simulation system for air traffic control research

    NASA Technical Reports Server (NTRS)

    Weske, Reid A.; Danek, George L.

    1993-01-01

    Pseudo Aircraft Systems (PAS) is a computerized flight dynamics and piloting system designed to provide a high fidelity multi-aircraft real-time simulation environment to support Air Traffic Control research. PAS is composed of three major software components that run on a network of computer workstations. Functionality is distributed among these components to allow the system to execute fast enough to support real-time operation. PAS workstations are linked by an Ethernet Local Area Network, and standard UNIX socket protocol is used for data transfer. Each component of PAS is controlled and operated using a custom designed Graphical User Interface. Each of these is composed of multiple windows, and many of the windows and sub-windows are used in several of the components. Aircraft models and piloting logic are sophisticated and realistic and provide complex maneuvering and navigational capabilities. PAS will continually be enhanced with new features and improved capabilities to support ongoing and future Air Traffic Control system development.

  16. Reflective and antireflective coatings for the optical chain of the ASTRI SST-2M prototype

    NASA Astrophysics Data System (ADS)

    Bonnoli, Giacomo; Canestrari, Rodolfo; Catalano, Osvaldo; Pareschi, Giovanni; Perri, Luca; Stringhetti, Luca

    2013-09-01

    ASTRI is a Flagship Project of the Italian Ministry of Education, University and Research, led by the Italian National Institute of Astrophysics, INAF. One of the main aims of the ASTRI Project is the design, construction and on-field verification of a dual mirror (2M) end-to-end prototype for the Small Size Telescope (SST) envisaged to become part of the Cherenkov Telescope Array. The ASTRI SST-2M prototype is designed according to the Schwarzschild-Couder optical scheme, and adopts a camera based on Silicon Photo Multipliers (SiPM); it will be assembled at the INAF astronomical site of Serra La Nave on mount Etna (Catania, Italy) in the second half of 2014, and will start scientific validation phase soon after. With its 4m wide primary dish, the telescope will be sensitive to multi-TeV Very High Energy (VHE) gamma rays up to 100 TeV and above, with a point spread function of ~2 arcminutes and a wide (semiaperture 4.8°) corrected field of view. The peculiarities of the optical design and of the SiPM bandpass pushed towards specifically optimized choices in terms of reflective coatings for both the primary and the secondary mirror. Fully dielectric multi-layer coatings have been developed and tested as an option for the primary mirror, aiming to filter out the large Night Sky Background contamination at wavelengths λ>~700 nm. On the other hand, for the large monolithic secondary mirror a simpler design with quartz-overcoated aluminium has been optimized for incidences far from normality. The conformation of the ASTRI camera in turn pushed towards the design of a reimaging system based on thin pyramidal light guides, that could be optionally integrated in the focal surface, aiming to increase the fill factor. An anti-reflective coating optimized for a wide range of incident angles faraway from normality was specifically developed to enhance the UV-optical transparency of these elements. The issues, strategy, simulations and experimental results are thoroughly

  17. Expanding AirSTAR Capability for Flight Research in an Existing Avionics Design

    NASA Technical Reports Server (NTRS)

    Laughter, Sean A.

    2012-01-01

    The NASA Airborne Subscale Transport Aircraft Research (AirSTAR) project is an Unmanned Aerial Systems (UAS) test bed for experimental flight control laws and vehicle dynamics research. During its development, the test bed has gone through a number of system permutations, each meant to add functionality to the concept of operations of the system. This enabled the build-up of not only the system itself, but also the support infrastructure and processes necessary to support flight operations. These permutations were grouped into project phases and the move from Phase-III to Phase-IV was marked by a significant increase in research capability and necessary safety systems due to the integration of an Internal Pilot into the control system chain already established for the External Pilot. The major system changes in Phase-IV operations necessitated a new safety and failsafe system to properly integrate both the Internal and External Pilots and to meet acceptable project safety margins. This work involved retrofitting an existing data system into the evolved concept of operations. Moving from the first Phase-IV aircraft to the dynamically scaled aircraft further involved restructuring the system to better guard against electromagnetic interference (EMI), and the entire avionics wiring harness was redesigned in order to facilitate better maintenance and access to onboard electronics. This retrofit and harness re-design will be explored and how it integrates with the evolved Phase-IV operations.

  18. Return glider radiosonde for in situ upper-air research measurements

    NASA Astrophysics Data System (ADS)

    Kräuchi, Andreas; Philipona, Rolf

    2016-06-01

    Upper-air balloon soundings for weather predictions have been made since the beginning of the 20th century. New radiosonde instruments for in situ humidity-, radiation- and gas-profile measurements in the troposphere and the lower stratosphere, were introduced in recent years for atmospheric research and climate monitoring, but such instruments are often expensive and it is desired they be reused on multiple flights. Recovering instruments that freely descend with parachutes is time consuming, sometimes difficult and even dangerous. Here, we introduce the return glider radiosonde (RGR), which enables flying and retrieving valuable in situ upper-air instruments. The RGR is lifted with weather balloons similar to traditional radiosondes to a preset altitude, at which time a release mechanism cuts the tether string, and a built-in autopilot flies the glider autonomously back to the launch site or a desired preprogrammed location. Once the RGR reaches the landing coordinates it circles down and releases a parachute 100 m above ground for landing. The motivation for this project was to measure radiation profiles throughout the atmosphere with the same instrument multiple times and with a rapid turn-around time. The paper describes technical aspects of the return glider radiosonde and the built-in radiation instruments and shows test flights up to 24 km altitude that are analyzed in terms of flight performance and maximal distances covered. Several successive flights measuring radiation profiles demonstrate the reliability and the operational readiness of the RGR, allowing new ways for atmospheric in situ research and monitoring with payloads up to several kg depending on the specific size of the glider.

  19. The Role of SST and Large-Scale Dynamical Motions on the Onset and Shutdown of the Super Greenhouse Effect

    NASA Astrophysics Data System (ADS)

    O'Brien, T. A.; Kashinath, K.; Collins, W.

    2015-12-01

    Over warm tropical oceans the increase in greenhouse trapping with increasing SST is faster than that of the surface emission, resulting in a decrease in outgoing longwave radiation at the top of the atmosphere (OLR) when SST increases, also known as the super greenhouse effect (SGE). If SGE is directly linked to SST changes, there are profound implications for positive climate feedbacks in the tropics. However, a number of studies in the last 20 years have provided compelling evidence that the OLR-SST relationship is coincidental rather than causal. These studies suggested that the onset of SGE is dominated by the large-scale dynamics, and that the apparent OLR-SST relationships disappear when individual large-scale regimes are considered. We show that these conclusions are contingent on the quality of the datasets used in the analysis, and that modern satellite observations and reanalyses support a strong relationship between SGE and SST. We find that the SGE occurs across all dynamical regimes, suggesting that this may be related primarily to SST rather than large-scale dynamics. We also find that the discontinuity in the relationship between OLR and SST at high SST (29.5 C), i.e. the shutdown of SGE, also occurs across almost all dynamical regimes, suggesting that this behavior may also be strongly linked to SST. Collectively, these results suggest that the SGE may actually be controlled by SST. Work is ongoing to understand the robustness of this new result to other datasets, to understand whether SST is truly the controlling variable, and to understand the mechanism by which OLR could decrease with increasing SST even under strongly subsiding conditions.

  20. The International Agency for Research on Cancer (IARC) evaluation of the carcinogenicity of outdoor air pollution: focus on China.

    PubMed

    Loomis, Dana; Huang, Wei; Chen, Guosheng

    2014-04-01

    The International Agency for Research on Cancer (IARC) has classified outdoor air pollution and the particulate matter (PM) in outdoor air pollution as carcinogenic to humans, as based on sufficient evidence of carcinogenicity in humans and experimental animals and strong support by mechanistic studies. The data with important contributions to the evaluation are reviewed, highlighting the data with particular relevance to China, and implications of the evaluation with respect to China are discussed. The air pollution levels in Chinese cities are among the highest observed in the world today and frequently exceed health-based national and international guidelines. Data from high-quality epidemiologic studies in Asia, Europe, and North America consistently show positive associations between lung cancer and PM exposure and other indicators of air pollution, which persist after adjustment for important lung cancer risk factors, such as tobacco smoking. Epidemiologic data from China are limited but nevertheless indicate an increased risk of lung cancer associated with several air pollutants. Excess cancer risk is also observed in experimental animals exposed to polluted outdoor air or extracted PM. The exposure of several species to outdoor air pollution is associated with markers of genetic damage that have been linked to increased cancer risk in humans. Numerous studies from China, especially genetic biomarker studies in exposed populations, support that the polluted air in China is genotoxic and carcinogenic to humans. The evaluation by IARC indicates both the need for further research into the cancer risks associated with exposure to air pollution in China and the urgent need to act to reduce exposure to the population.

  1. Pasireotide and octreotide antiproliferative effects and sst2 trafficking in human pancreatic neuroendocrine tumor cultures.

    PubMed

    Mohamed, Amira; Blanchard, Marie-Pierre; Albertelli, Manuela; Barbieri, Federica; Brue, Thierry; Niccoli, Patricia; Delpero, Jean-Robert; Monges, Genevieve; Garcia, Stephane; Ferone, Diego; Florio, Tullio; Enjalbert, Alain; Moutardier, Vincent; Schonbrunn, Agnes; Gerard, Corinne; Barlier, Anne; Saveanu, Alexandru

    2014-10-01

    Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) raise difficult therapeutic problems despite the emergence of targeted therapies. Somatostatin analogs (SSA) remain pivotal therapeutic drugs. However, the tachyphylaxis and the limited antitumoral effects observed with the classical somatostatin 2 (sst2) agonists (octreotide and lanreotide) led to the development of new SSA, such as the pan sst receptor agonist pasireotide. Our aim was to compare the effects of pasireotide and octreotide on cell survival, chromogranin A (CgA) secretion, and sst2 phosphorylation/trafficking in pancreatic NET (pNET) primary cells from 15 tumors. We established and characterized the primary cultures of human pancreatic tumors (pNETs) as powerful preclinical models for understanding the biological effects of SSA. At clinically relevant concentrations (1-10 nM), pasireotide was at least as efficient as octreotide in inhibiting CgA secretion and cell viability through caspase-dependent apoptosis during short treatments, irrespective of the expression levels of the different sst receptors or the WHO grade of the parental tumor. Interestingly, unlike octreotide, which induces a rapid and persistent partial internalization of sst2 associated with its phosphorylation on Ser341/343, pasireotide did not phosphorylate sst2 and induced a rapid and transient internalization of the receptor followed by a persistent recycling at the cell surface. These results provide the first evidence, to our knowledge, of striking differences in the dynamics of sst2 trafficking in pNET cells treated with the two SSAs, but with similar efficiency in the control of CgA secretion and cell viability.

  2. Meteorological Processes Affecting Air Quality – Research and Model Development Needs

    EPA Science Inventory

    Meteorology modeling is an important component of air quality modeling systems that defines the physical and dynamical environment for atmospheric chemistry. The meteorology models used for air quality applications are based on numerical weather prediction models that were devel...

  3. AIRS Sea Surface Temperature and Pacific Decadal Oscillation

    NASA Astrophysics Data System (ADS)

    Chen, L. L.

    2015-12-01

    Atmospheric Infrared Sounder (AIRS) has been providing necessary measurements for long term atmospheric and surface processes aboard NASA' s Aqua polar orbiter since May 2002. Here, we use time series of AIRS sea surface temperature (SST) anomalies to show the time evolution of Pacific Decadal Oscillation (PDO) in the Gulf of Alaska (lon:-144.5, lat:54.5) from 2003 to 2014. PDO is connected to the first mode of North Pacific SST variability and is tele-connected to ENSO in the tropics. Further analysis of AIRS data can provide clarification of Pacific climate variability.

  4. Summer Internships for Students through the Air Force Research Laboratory’s Scholars Program

    NASA Astrophysics Data System (ADS)

    Barnaby, David A.; Hwang, Eunsook; McCullough, Julie A.

    2017-01-01

    Did you know that the Air Force Research Laboratory (AFRL) has sponsored a summer research program for students for the last 15 years? The AFRL Scholars Program hires high school, undergraduate, and graduate students as payed interns for 12-18 weeks each summer to work on space science and astronomy projects at one of four AFRL locations. By now, more than 1200 students from 34 states have participated. Like advisors in other summertime astrophysics research programs, the AFRL mentors benefit from extra staff for their research efforts at no cost (the Scholars are funded centrally within AFRL). Likewise, the students benefit from summer pay, job experience in a science lab, university housing, and comradery with students from other states. Pay is based on the intern’s academic level with the range being $395/week for high school up to $1115/week for recent Ph.Ds. Benefits not available from other programs include a secret clearance, socializing with a cohort exceeding 100 peers, and exposure to a pathway to a professional science career outside academia. Benefits to AFRL include persuading young people to choose science-technical-engineering-math (STEM) degrees, and roughly 89% of participants show increased interest in STEM courses following their internship.In this poster, we present the advantages to college students (and their mentors) to participating. We outline the topic areas, 60% of which are related to space science and astronomy. We quantify the range of participants’ scholastic level and majors, as well as the impact the program has on stimulating STEM careers and sight stories of students going onto rewarding careers in AFRL. To be eligible, an applicant must be a U.S. citizen, at least 16 years old, available to work a 40-hour business week, agree to a background check, and be enrolled at the time of application. To apply for the summer 2017 program, start at http://afrlscholars.usra.edu.

  5. Somatostatin receptor subtypes sst1 and sst2 elicit opposite effects on the response to glutamate of mouse hypothalamic neurones: an electrophysiological and single cell RT-PCR study.

    PubMed

    Lanneau, C; Viollet, C; Faivre-Bauman, A; Loudes, C; Kordon, C; Epelbaum, J; Gardette, R

    1998-01-01

    We have previously shown that somatostatin can either enhance or decrease AMPA/kainate receptor-mediated responses to glutamate in mouse-dissociated hypothalamic neurones grown in vitro. To investigate whether this effect is due to differential activation of somatostatin (SRIF) receptor subtypes, we compared modulation of the response to glutamate by SRIF with that induced by CH-275 and octreotide, two selective agonists of sst1 and sst2/sst5 receptors, respectively. Somatostatin either significantly decreased (49%) or increased (30%) peak currents induced by glutamate, and was ineffective in the remaining cells. Only the decreased response was obtained with octreotide, whereas only increased responses were elicited by CH-275 (47 and 35% of the tested cells, respectively). Mean amplitude variations under somatostatin or octreotide on the one hand, and under somatostatin or CH-275 on the other hand, were equivalent. Pertussis toxin pretreatment significantly decreased the number of cells inhibited by somatostatin or octreotide, but had no effect on the frequency of neurones showing increased sensitivity to glutamate during somatostatin or CH-275 application. About half of the neurones tested by single cell reverse transcriptase polymerase chain reaction (RT-PCR) expressed only one sst receptor (sst1 in 26% and sst2 in 22% of studied cells). Out of the remaining neurones, 34% displayed neither sst1 nor sst2 mRNAs, whereas 18% showed a simultaneous expression of both mRNA subtypes. Expression of sst1 or sst2 mRNA subtypes matched totally with the effects of somatostatin on sensitivity to glutamate in 79% of the neurones processed for PCR after recordings. These data show that pertussis toxin-insensitive activation of the sst1 receptor subtype mediates somatostatin-induced increase in sensitivity to glutamate, whereas decrease in the response to glutamate is linked to pertussis toxin-sensitive activation of the sst2 receptor subtype.

  6. U.S. Air Force Research Technology Area Plan, FY 1989

    DTIC Science & Technology

    1988-09-01

    a knowledge base that permits the production, storage and controlled use of antimatter as a future source of energy. o. Provide advanced propulsion ...Air Force Weapons Laboratory (AFWL) Air Force Wright Aeronautical Laboratories (AFWAL) Aero Propulsion Laboratory (AFWAL/PO) Avionics Laboratory...High Energy Density Propellants and other advanced propulsion concepts - Civil and environmental engineering to enhance air base operations - Vertical

  7. Causes of Indoor Air Quality Problems in Schools: Summary of Scientific Research. Revised Edition.

    ERIC Educational Resources Information Center

    Bayer, Charlene W.; Crow, Sidney A.; Fischer, John

    Understanding the primary causes of indoor air quality (IAQ) problems and how controllable factors--proper heating, ventilation and air-conditioning (HVAC) system design, allocation of adequate outdoor air, proper filtration, effective humidity control, and routine maintenance--can avert problems may help all building owners, operators, and…

  8. The Mg - SST relationship in mollusc shells: is there a rule? Examples from three tropical species

    NASA Astrophysics Data System (ADS)

    Lazareth, C. E.; Guzmán, N.; Lecornec, F.; Cabioch, G.; Ortlieb, L.

    2009-04-01

    The geochemistry of mollusc shells is currently viewed as a powerful tool for paleoenvironmental reconstructions. Indeed, molluscs are ubiquitous animals, with a worldly geographical and environmental distribution, providing various environmental records. Moreover, mollusc shells are abundantly found in fossil and archaeological settings. In the paleoclimatic reconstructions, the sea-surface temperatures (SST) are a key parameter. If shell stable oxygen isotope signatures can provide accurate SST records, this proxy is also influenced by the water isotopic composition. To find another tracer which would depend on the SST solely, the relationship between Mg content changes in mollusc shell and SST has been investigated for a few years. Nevertheless, if the reliability of shell Mg as SST tracer has been proven in some species, this is clearly not a "universal" and definitive rule. To reconstruct the past tropical SSTs, Mg calibration studies were undertaken on Concholepas concholepas (gastropod, South America), Protothaca thaca (bivalve, South America) and Tridacna squamosa (bivalve, New Caledonia). The very high-resolution (infra-daily) analyses of the C. concholepas gastropod revealed a significant metabolism control, at the nyctemeral scale, on the Mg incorporation into the calcite shell layer. Over a two months period, the Mg fluctuations in C. concholepas shell do not match with the SST instrumental measurements. Mg content changes along the aragonitic shell growth axis of several living P. thaca from a same Peruvian site are significantly different indicating no relationship between Mg and SST. The Mg variations measured in a Chilean P. thaca shell are, surprisingly, similar to variations of the instrumental SST. Unless this quite reliable relationship between P. thaca shell and SST is confirmed, and that the inter-site difference in Mg response to environmental forcing is understood, P. thaca shell Mg cannot be used as SST proxy. Lastly, a preliminary work

  9. Homologous upregulation of sst2 somatostatin receptor expression in the rat arcuate nucleus in vivo.

    PubMed

    Tannenbaum, G S; Turner, J; Guo, F; Videau, C; Epelbaum, J; Beaudet, A

    2001-07-01

    In vitro studies using various cell systems have provided conflicting results regarding homologous regulation of somatostatin (SRIH) receptors, and information on whether SRIH regulates the expression of its own receptors in vivo is lacking. In the present study we examined, by in situ hybridization, the effects of pretreatment with the sst2-preferring SRIH analog, octreotide, in vivo, on mRNA levels of two SRIH receptor subtypes, sst1 and sst2, in rat brain and pituitary. (125)I-[DTrp(8)]-SRIH binding was also measured in these regions. Three hours after the iv injection of 50 microg octreotide to conscious adult male rats, there was a 46% increase (p < 0.01) in the labeling density of sst2 mRNA-expressing cells in the hypothalamic arcuate nucleus compared to normal saline-pretreated controls, but not in any of the other brain regions examined. Computer-assisted image analysis revealed that 3 h exposure to octreotide significantly (p < 0.01) augmented both the number and labeling density of sst2 mRNA-expressing cells in the arcuate nucleus, compared to those in saline-treated controls. By contrast, within the anterior pituitary gland, in vivo exposure to octreotide did not affect the expression of sst2 mRNA. No changes in sst1 mRNA-expressing cells were observed after octreotide treatment in any of the regions measured, indicating that the observed effects were homologous, i.e. specific of the receptor subtype stimulated. Octreotide pretreatment was also without effect on the density of (125)I-[DTrp(8)]-SRIH binding in either the arcuate nucleus or pituitary. These results demonstrate, for the first time, that SRIH preexposure in vivo upregulates the expression of a subtype of its own receptors, sst2, within the central nervous system. They further suggest that pretreatment with SRIH in vivo does not cause sst2 receptor desensitization in arcuate nucleus and pituitary. Such homologous regulatory mechanisms may play an important role in the neuroendocrine control

  10. Causes of Indoor Air Quality Problems in Schools: Summary of Scientific Research

    SciTech Connect

    Bayer, C.W.

    2001-02-22

    chemical sensitivity versus bioaerosols (aerosolized microbes), or the contribution of the microorganisms to the chemical sensitivities, is not yet understood. If the inhabitants of a building exhibit similar symptoms of a clearly defined disease with a nature and time of onset that can be related to building occupancy, the disease is generally referred to as ''building-related illness.'' Once the SBS has been allowed to elevate to this level, buildings are typically evacuated and the costs associated with disruption of the building occupants, identification of the source of the problem, and eventual remediation can be significant. Understanding the primary causes of IAQ problems and how controllable factors--proper HVAC system design, allocation of adequate outdoor air, proper filtration, effective humidity control, and routine maintenance--can avert the problems may help all building owners, operators, and occupants to be more productive (Arens and Baughman 1996). This paper provides a comprehensive summary of IAQ research that has been conducted in various types of facilities. However, it focuses primarily on school facilities because, for numerous reasons that will become evident, they are far more susceptible to developing IAQ problems than most other types of facilities; and the occupants, children, are more significantly affected than adults (EPA 1998).

  11. Research Data Alliance's Interest Group on "Weather, Climate and Air Quality"

    NASA Astrophysics Data System (ADS)

    Bretonnière, Pierre-Antoine; Benincasa, Francesco

    2016-04-01

    Research Data Alliance's Interest Group on "Weather, Climate and Air Quality" More than ever in the history of Earth sciences, scientists are confronted with the problem of dealing with huge amounts of data that grow continuously at a rate that becomes a challenge to process and analyse them using conventional methods. Data come from many different and widely distributed sources, ranging from satellite platforms and in-situ sensors to model simulations, and with different degrees of openness. How can Earth scientists deal with this diversity and big volume and extract useful information to understand and predict the relevant processes? The Research Data Alliance (RDA, https://rd-alliance.org/), an organization that promotes and develops new data policies, data standards and focuses on the development of new technical solutions applicable in many distinct areas of sciences, recently entered in its third phase. In this framework, an Interest Group (IG) comprised of community experts that are committed to directly or indirectly enable and facilitate data sharing, exchange, or interoperability in the fields of weather, climate and air quality has been created recently. Its aim is to explore and discuss the challenges for the use and efficient analysis of large and diverse datasets of relevance for these fields taking advantage of the knowledge generated and exchanged in RDA. At the same time, this IG intends to be a meeting point between members of the aforementioned communities to share experiences and propose new solutions to overcome the forthcoming challenges. Based on the collaboration between several research meteorological and European climate institutes, but also taking into account the input from the private (from the renewable energies, satellites and agriculture sectors for example) and public sectors, this IG will suggest practical and applicable solutions for Big Data issues, both at technological and policy level, encountered by these communities. We

  12. Time-Resolved Optical Measurements of Fuel-Air Mixedness in Windowless High Speed Research Combustors

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet

    1998-01-01

    Fuel distribution measurements in gas turbine combustors are needed from both pollution and fuel-efficiency standpoints. In addition to providing valuable data for performance testing and engine development, measurements of fuel distributions uniquely complement predictive numerical simulations. Although equally important as spatial distribution, the temporal distribution of the fuel is an often overlooked aspect of combustor design and development. This is due partly to the difficulties in applying time-resolved diagnostic techniques to the high-pressure, high-temperature environments inside gas turbine engines. Time-resolved measurements of the fuel-to-air ratio (F/A) can give researchers critical insights into combustor dynamics and acoustics. Beginning in early 1998, a windowless technique that uses fiber-optic, line-of-sight, infrared laser light absorption to measure the time-resolved fluctuations of the F/A (refs. 1 and 2) will be used within the premixer section of a lean-premixed, prevaporized (LPP) combustor in NASA Lewis Research Center's CE-5 facility. The fiber-optic F/A sensor will permit optical access while eliminating the need for film-cooled windows, which perturb the flow. More importantly, the real-time data from the fiber-optic F/A sensor will provide unique information for the active feedback control of combustor dynamics. This will be a prototype for an airborne sensor control system.

  13. Weather Research and Forecasting Model Wind Sensitivity Study at Edwards Air Force Base, CA

    NASA Technical Reports Server (NTRS)

    Watson, Leela R.; Bauman, William H., III; Hoeth, Brian

    2009-01-01

    This abstract describes work that will be done by the Applied Meteorology Unit (AMU) in assessing the success of different model configurations in predicting "wind cycling" cases at Edwards Air Force Base, CA (EAFB), in which the wind speeds and directions oscillate among towers near the EAFB runway. The Weather Research and Forecasting (WRF) model allows users to choose among two dynamical cores - the Advanced Research WRF (ARW) and the Non-hydrostatic Mesoscale Model (NMM). There are also data assimilation analysis packages available for the initialization of the WRF model - the Local Analysis and Prediction System (LAPS) and the Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS). Having a series of initialization options and WRF cores, as well as many options within each core, creates challenges for local forecasters, such as determining which configuration options are best to address specific forecast concerns. The goal of this project is to assess the different configurations available and determine which configuration will best predict surface wind speed and direction at EAFB.

  14. Weather Research and Forecasting Model Wind Sensitivity Study at Edwards Air Force Base, CA

    NASA Technical Reports Server (NTRS)

    Watson, Leela R.; Bauman, William H., III

    2008-01-01

    NASA prefers to land the space shuttle at Kennedy Space Center (KSC). When weather conditions violate Flight Rules at KSC, NASA will usually divert the shuttle landing to Edwards Air Force Base (EAFB) in Southern California. But forecasting surface winds at EAFB is a challenge for the Spaceflight Meteorology Group (SMG) forecasters due to the complex terrain that surrounds EAFB, One particular phenomena identified by SMG is that makes it difficult to forecast the EAFB surface winds is called "wind cycling". This occurs when wind speeds and directions oscillate among towers near the EAFB runway leading to a challenging deorbit bum forecast for shuttle landings. The large-scale numerical weather prediction models cannot properly resolve the wind field due to their coarse horizontal resolutions, so a properly tuned high-resolution mesoscale model is needed. The Weather Research and Forecasting (WRF) model meets this requirement. The AMU assessed the different WRF model options to determine which configuration best predicted surface wind speed and direction at EAFB, To do so, the AMU compared the WRF model performance using two hot start initializations with the Advanced Research WRF and Non-hydrostatic Mesoscale Model dynamical cores and compared model performance while varying the physics options.

  15. Air Force Research Laboratory Spacecraft Cryocooler Endurance Evaluation Facility Closing Report

    NASA Astrophysics Data System (ADS)

    Armstrong, J.; Martin, K. W.; Fraser, T.

    2015-12-01

    The Air Force Research Laboratory (AFRL) Spacecraft Component Thermal Research Group has been devoted to evaluating lifetime performance of space cryocooler technology for over twenty years. Long-life data is essential for confirming design lifetimes for space cryocoolers. Continuous operation in a simulated space environment is the only accepted method to test for degradation. AFRL has provided raw data and detailed evaluations to cryocooler developers for advancing the technology, correcting discovered deficiencies, and improving cryocooler designs. At AFRL, units of varying design and refrigeration cycles were instrumented in state-of-the-art experiment stands to provide spacelike conditions and were equipped with software data acquisition to track critical cryocooler operating parameters. This data allowed an assessment of the technology's ability to meet the desired lifetime and documented any long-term changes in performance. This paper will outline a final report of the various flight cryocoolers tested in our laboratory. The data summarized includes the seven cryocoolers tested during 2014-2015. These seven coolers have a combined total of 433,326 hours (49.5 years) of operation.

  16. "Air Toxics under the Big Sky": Examining the Effectiveness of Authentic Scientific Research on High School Students' Science Skills and Interest

    ERIC Educational Resources Information Center

    Ward, Tony J.; Delaloye, Naomi; Adams, Earle Raymond; Ware, Desirae; Vanek, Diana; Knuth, Randy; Hester, Carolyn Laurie; Marra, Nancy Noel; Holian, Andrij

    2016-01-01

    "Air Toxics Under the Big Sky" is an environmental science outreach/education program that incorporates the Next Generation Science Standards (NGSS) 8 Practices with the goal of promoting knowledge and understanding of authentic scientific research in high school classrooms through air quality research. This research explored: (1)…

  17. Modelling air pollution for epidemiologic research--Part I: A novel approach combining land use regression and air dispersion.

    PubMed

    Mölter, A; Lindley, S; de Vocht, F; Simpson, A; Agius, R

    2010-11-01

    A common limitation of epidemiological studies on health effects of air pollution is the quality of exposure data available for study participants. Exposure data derived from urban monitoring networks is usually not adequately representative of the spatial variation of pollutants, while personal monitoring campaigns are often not feasible, due to time and cost restrictions. Therefore, many studies now rely on empirical modelling techniques, such as land use regression (LUR), to estimate pollution exposure. However, LUR still requires a quantity of specifically measured data to develop a model, which is usually derived from a dedicated monitoring campaign. A dedicated air dispersion modelling exercise is also possible but is similarly resource and data intensive. This study adopted a novel approach to LUR, which utilised existing data from an air dispersion model rather than monitored data. There are several advantages to such an approach such as a larger number of sites to develop the LUR model compared to monitored data. Furthermore, through this approach the LUR model can be adapted to predict temporal variation as well as spatial variation. The aim of this study was to develop two LUR models for an epidemiologic study based in Greater Manchester by using modelled NO(2) and PM(10) concentrations as dependent variables, and traffic intensity, emissions, land use and physical geography as potential predictor variables. The LUR models were validated through a set aside "validation" dataset and data from monitoring stations. The final models for PM(10) and NO(2) comprised nine and eight predictor variables respectively and had determination coefficients (R²) of 0.71 (PM(10): Adj. R²=0.70, F=54.89, p<0.001, NO(2): Adj. R²=0.70, F=62.04, p<0.001). Validation of the models using the validation data and measured data showed that the R² decreases compared to the final models, except for NO(2) validation in the measured data (validation data: PM(10): R²=0.33, NO(2

  18. Spring Indian Ocean-western Pacific SST contrast and the East Asian summer rainfall anomaly

    NASA Astrophysics Data System (ADS)

    Cao, Jie; Lu, Riyu; Hu, Jinming; Wang, Hai

    2013-11-01

    After studying the relationship between SST in the tropical Indian Ocean (TIO), tropical western Pacific (TWP), and tropical eastern Pacific (TEP) and East Asian summer rainfall (EASR), using data provided by NOAA/OAR/ESRL PSD and the National Climate Center of China for the period 1979-2008, an index, SSTDI, was defined to describe the SST difference between the TIO and TWP. In comparison with the winter ENSO, the spring SST contrast between the TIO and TWP was found to be more significantly associated with summer rainfall in East Asia, especially along the EASR band and in Northeast China. This spring SST contrast can persist into summer, resulting in a more significant meridional teleconnection pattern of lower-tropospheric circulation anomalies over the western North Pacific and East Asia. These circulation anomalies are dynamically consistent with the summer rainfall anomaly along the EASR band. When the SSTDI is higher (lower) than normal, the EASR over the Yangtze River valley, Korea, and central and southern Japan is heavier (less) than normal. The present results suggest that this spring SST contrast can be used as a new and better predictor of EASR anomalies.

  19. Methylation of serum SST gene is an independent prognostic marker in colorectal cancer

    PubMed Central

    Liu, Yanqun; Chew, Min Hoe; Tham, Chee Kian; Tang, Choong Leong; Ong, Simon YK; Zhao, Yi

    2016-01-01

    There is an increasing demand for accurate prognostication for colorectal cancer (CRC). This study sought to assess prognostic potentials of methylation targets in the serum of CRC patients. A total of 165 CRC patients were enrolled in this prospective study. Promoter methylation levels of seven genes in pre-operative sera and matched tumor tissues were evaluated by quantitative methylation-specific PCR. Kaplan-Meier test, and univariate and multivariate Cox proportional hazards regression models were used for survival analyses. After a median follow-up of 56 months, 43 patients (28.7%) experienced tumor recurrence. In univariate survival analyses, serum methylation levels of SST and MAL were significantly predictive of cancer-specific death (P<0.005 for both). The former was also a significant predictor for tumor recurrence (P=0.007). Independent prognostic effects of serum methylation levels of SST were revealed by multivariate Cox regression model (P=0.031 and P=0.003 for cancer death and recurrence, respectively). When focusing on stage II and III patients, prognostication with serum methylated SST remained significant. Methylated SST detected in all serum samples can be traced back to the matched primary tumor tissues. We believe that methylated SST detected in the pre-operative sera of CRC patients appear to be a novel promising prognostic marker and probably can be auxiliary to tumor staging system and serum carcinoembryonic antigen towards better risk stratification. PMID:27725914

  20. The single mirror small size telescope (SST-1M) of the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Aguilar, J. A.; Bilnik, W.; Borkowski, J.; Cadoux, F.; Christov, A.; della Volpe, D.; Favre, Y.; Heller, M.; Kasperek, J.; Lyard, E.; Marszałek, A.; Moderski, R.; Montaruli, T.; Porcelli, A.; Prandini, E.; Rajda, P.; Rameez, M.; Schioppa, E., Jr.; Troyano Pujadas, I.; Zietara, K.; Blocki, J.; Bogacz, L.; Bulik, T.; Frankowski, A.; Grudzinska, M.; Idźkowski, B.; Jamrozy, M.; Janiak, M.; Lalik, K.; Mach, E.; Mandat, D.; Michałowski, J.; Neronov, A.; Niemiec, J.; Ostrowski, M.; Paśko, P.; Pech, M.; Schovanek, P.; Seweryn, K.; Skowron, K.; Sliusar, V.; Stawarz, L.; Stodulska, M.; Stodulski, M.; Toscano, S.; Walter, R.; WiÈ©cek, M.; Zagdański, A.

    2016-07-01

    The Small Size Telescope with Single Mirror (SST-1M) is one of the proposed types of Small Size Telescopes (SST) for the Cherenkov Telescope Array (CTA). The CTA south array will be composed of about 100 telescopes, out of which about 70 are of SST class, which are optimized for the detection of gamma rays in the energy range from 5 TeV to 300 TeV. The SST-1M implements a Davies-Cotton optics with a 4 m dish diameter with a field of view of 9°. The Cherenkov light produced in atmospheric showers is focused onto a 88 cm wide hexagonal photo-detection plane, composed of 1296 custom designed large area hexagonal silicon photomultipliers (SiPM) and a fully digital readout and trigger system. The SST-1M camera has been designed to provide high performance in a robust as well as compact and lightweight design. In this contribution, we review the different steps that led to the realization of the telescope prototype and its innovative camera.

  1. Empirical prediction of Indian summer monsoon rainfall with different lead periods based on global SST anomalies

    NASA Astrophysics Data System (ADS)

    Pai, D. S.; Rajeevan, M.

    2006-02-01

    The main objective of this study was to develop empirical models with different seasonal lead time periods for the long range prediction of seasonal (June to September) Indian summer monsoon rainfall (ISMR). For this purpose, 13 predictors having significant and stable relationships with ISMR were derived by the correlation analysis of global grid point seasonal Sea-Surface Temperature (SST) anomalies and the tendency in the SST anomalies. The time lags of the seasonal SST anomalies were varied from 1 season to 4 years behind the reference monsoon season. The basic SST data set used was the monthly NOAA Extended Reconstructed Global SST (ERSST) data at 2° × 2° spatial grid for the period 1951 2003. The time lags of the 13 predictors derived from various areas of all three tropical ocean basins (Indian, Pacific and Atlantic Oceans) varied from 1 season to 3 years. Based on these inter-correlated predictors, 3 predictor sub sets A, B and C were formed with prediction lead time periods of 0, 1 and 2 seasons, respectively, from the beginning of the monsoon season. The selected principal components (PCs) of these predictor sets were used as the input parameters for the models A, B and C, respectively. The model development period was 1955 1984. The correct model size was derived using all-possible regressions procedure and Mallow’s “Cp” statistics.

  2. Effects of agriculture upon the air quality and climate: research, policy, and regulations.

    PubMed

    Aneja, Viney P; Schlesinger, William H; Erisman, Jan Willem

    2009-06-15

    Scientific assessments of agricultural air quality, including estimates of emissions and potential sequestration of greenhouse gases, are an important emerging area of environmental science that offers significant challenges to policy and regulatory authorities. Improvements are needed in measurements, modeling, emission controls, and farm operation management. Controlling emissions of gases and particulate matter from agriculture is notoriously difficult as this sector affects the most basic need of humans, i.e., food. Current policies combine an inadequate science covering a very disparate range of activities in a complex industry with social and political overlays. Moreover, agricultural emissions derive from both area and point sources. In the United States, agricultural emissions play an important role in several atmospherically mediated processes of environmental and public health concerns. These atmospheric processes affect local and regional environmental quality, including odor, particulate matter (PM) exposure, eutrophication, acidification, exposure to toxics, climate, and pathogens. Agricultural emissions also contribute to the global problems caused by greenhouse gas emissions. Agricultural emissions are variable in space and time and in how they interact within the various processes and media affected. Most important in the U.S. are ammonia (where agriculture accounts for approximately 90% of total emissions), reduced sulfur (unquantified), PM25 (approximately 16%), PM110 (approximately 18%), methane (approximately 29%), nitrous oxide (approximately 72%), and odor and emissions of pathogens (both unquantified). Agriculture also consumes fossil fuels for fertilizer production and farm operations, thus emitting carbon dioxide (CO2), oxides of nitrogen (NO(x)), sulfur oxides (SO(x)), and particulates. Current research priorities include the quantification of point and nonpoint sources, the biosphere-atmosphere exchange of ammonia, reduced sulfur

  3. Policy Implications of Air Quality Research and Co-benefit to Climate Change

    NASA Astrophysics Data System (ADS)

    Fernandez, A.

    2007-05-01

    In recent decades air pollution has become one of the most important problems of megacities and large urban centers. Photochemical smog induced from motorization, industrial activities, power generation, and solvents, has now become the main source of concern for air quality. Air pollution has serious impacts on public health and ecosystems, causes urban and regional haze, and has the potential to contribute significantly to climate change. While an integrated approach is required to address air pollution problems to achieve and sustain improvements, policy strategies must be based on a solid understanding of the pollutant emissions and atmospheric processes that lead to unacceptable levels of air quality. This talk will address the air pollution problems in the Mexico City Metropolitan Area and other large urban centers in Mexico, and the strategies undertaken by the Mexican authorities to improve air quality and reduce greenhouse gas emissions.

  4. Simulation Based Low-Cost Composite Process Development at the US Air Force Research Laboratory

    NASA Technical Reports Server (NTRS)

    Rice, Brian P.; Lee, C. William; Curliss, David B.

    2003-01-01

    Low-cost composite research in the US Air Force Research Laboratory, Materials and Manufacturing Directorate, Organic Matrix Composites Branch has focused on the theme of affordable performance. Practically, this means that we use a very broad view when considering the affordability of composites. Factors such as material costs, labor costs, recurring and nonrecurring manufacturing costs are balanced against performance to arrive at the relative affordability vs. performance measure of merit. The research efforts discussed here are two projects focused on affordable processing of composites. The first topic is the use of a neural network scheme to model cure reaction kinetics, then utilize the kinetics coupled with simple heat transport models to predict, in real-time, future exotherms and control them. The neural network scheme is demonstrated to be very robust and a much more efficient method that mechanistic cure modeling approach. This enables very practical low-cost processing of thick composite parts. The second project is liquid composite molding (LCM) process simulation. LCM processing of large 3D integrated composite parts has been demonstrated to be a very cost effective way to produce large integrated aerospace components specific examples of LCM processes are resin transfer molding (RTM), vacuum assisted resin transfer molding (VARTM), and other similar approaches. LCM process simulation is a critical part of developing an LCM process approach. Flow simulation enables the development of the most robust approach to introducing resin into complex preforms. Furthermore, LCM simulation can be used in conjunction with flow front sensors to control the LCM process in real-time to account for preform or resin variability.

  5. DOTA-Derivatives of Octreotide Dicarba-Analogs with High Affinity for Somatostatin sst2,5 Receptors.

    PubMed

    Pratesi, Alessandro; Ginanneschi, Mauro; Lumini, Marco; Papini, Anna M; Novellino, Ettore; Brancaccio, Diego; Carotenuto, Alfonso

    2017-01-01

    In vivo somatostatin receptor scintigraphy is a valuable method for the visualization of human endocrine tumors and their metastases. In fact, peptide ligands of somatostatin receptors (sst's) conjugated with chelating agents are in clinical use. We have recently developed octreotide dicarba-analogs, which show interesting binding profiles at sst's. In this context, it was mandatory to explore the possibility that our analogs could maintain their activity also upon conjugation with DOTA. In this paper, we report and discuss the synthesis, binding affinity and conformational preferences of three DOTA-conjugated dicarba-analogs of octreotide. Interestingly, two conjugated analogs exhibited nanomolar affinities on sst2 and sst5 somatostatin receptor subtypes.

  6. Networking Multiple Autonomous Air and Ocean Vehicles for Oceanographic Research and Monitoring

    NASA Astrophysics Data System (ADS)

    McGillivary, P. A.; Borges de Sousa, J.; Rajan, K.

    2013-12-01

    Autonomous underwater and surface vessels (AUVs and ASVs) are coming into wider use as components of oceanographic research, including ocean observing systems. Unmanned airborne vehicles (UAVs) are now available at modest cost, allowing multiple UAVs to be deployed with multiple AUVs and ASVs. For optimal use good communication and coordination among vehicles is essential. We report on the use of multiple AUVs networked in communication with multiple UAVs. The UAVs are augmented by inferential reasoning software developed at MBARI that allows UAVs to recognize oceanographic fronts and change their navigation and control. This in turn allows UAVs to automatically to map frontal features, as well as to direct AUVs and ASVs to proceed to such features and conduct sampling via onboard sensors to provide validation for airborne mapping. ASVs can also act as data nodes for communication between UAVs and AUVs, as well as collecting data from onboard sensors, while AUVs can sample the water column vertically. This allows more accurate estimation of phytoplankton biomass and productivity, and can be used in conjunction with UAV sampling to determine air-sea flux of gases (e.g. CO2, CH4, DMS) affecting carbon budgets and atmospheric composition. In particular we describe tests in July 2013 conducted off Sesimbra, Portugal in conjunction with the Portuguese Navy by the University of Porto and MBARI with the goal of tracking large fish in the upper water column with coordinated air/surface/underwater measurements. A thermal gradient was observed in the infrared by a low flying UAV, which was used to dispatch an AUV to obtain ground truth to demonstrate the event-response capabilities using such autonomous platforms. Additional field studies in the future will facilitate integration of multiple unmanned systems into research vessel operations. The strength of hardware and software tools described in this study is to permit fundamental oceanographic measurements of both ocean

  7. A simulation for gravity fine structure recovery from high-low GRAVSAT SST data

    NASA Technical Reports Server (NTRS)

    Estes, R. H.; Lancaster, E. R.

    1976-01-01

    Covariance error analysis techniques were applied to investigate estimation strategies for the high-low SST mission for accurate local recovery of gravitational fine structure, considering the aliasing effects of unsolved for parameters. Surface density blocks of 5 deg x 5 deg and 2 1/2 deg x 2 1/2 deg resolution were utilized to represent the high order geopotential with the drag-free GRAVSAT configured in a nearly circular polar orbit at 250 km. altitude. GEOPAUSE and geosynchronous satellites were considered as high relay spacecraft. It is demonstrated that knowledge of gravitational fine structure can be significantly improved at 5 deg x 5 deg resolution using SST data from a high-low configuration with reasonably accurate orbits for the low GRAVSAT. The gravity fine structure recoverability of the high-low SST mission is compared with the low-low configuration and shown to be superior.

  8. Two Distinct Roles of Atlantic SSTs in ENSO Variability: North Tropical Atlantic SST and Atlantic Nino

    NASA Technical Reports Server (NTRS)

    Ham, Yoo-Geun; Kug, Jong-Seong; Park, Jong-Yeon

    2013-01-01

    Two distinct roles of the Atlantic sea surface temperatures (SSTs), namely, the North Tropical Atlantic (NTA) SST and the Atlantic Nino, on the El Nino-Southern Oscillation (ENSO) variability are investigated using the observational data from 1980 to 2010 and coupled model experiments. It appears that the NTA SST and the Atlantic Nino can be used as two independent predictors for predicting the development of ENSO events in the following season. Furthermore, they are likely to be linked to different types of El Nino events. Specifically, the NTA SST cooling during February, March, and April contributes to the central Pacific warming at the subsequent winter season, while the negative Atlantic Nino event during June, July, and August contributes to enhancing the eastern Pacific warming. The coupled model experiments support these results. With the aid of a lagged inverse relationship, the statistical forecast using two Atlantic indices can successfully predict various ENSO indices.

  9. Coupling between SST and wind speed over mesoscale eddies in the South China Sea

    NASA Astrophysics Data System (ADS)

    Sun, Shuangwen; Fang, Yue; Liu, Baochao; ᅟ, Tana

    2016-11-01

    The coupling between sea surface temperature (SST) and sea surface wind speed over mesoscale eddies in the South China Sea (SCS) was studied using satellite measurements. Positive correlations between SST anomalies (SSTA) and wind speed anomalies were found over both cyclonic and anticyclonic eddies. In contrast to the open oceans, the spatial patterns of the coupling over mesoscale eddies in the SCS depend largely on the seasonal variations of the background SST gradient, wind speed, and wind directional steadiness. In summer, the maximum SSTA location coincides with the center of eddy-induced sea surface height anomalies. In winter, the eddy-induced SSTA show a clear dipole pattern. The spatial patterns of wind speed anomalies over eddies are similar to those of the SSTA in both seasons. Wind speed anomalies are linearly correlated with SSTA over anticyclonic and cyclonic eddies. The coupling coefficients between SSTA and wind speed anomalies in the SCS are comparable to those in the open oceans.

  10. Application and comparison of SST model in numerical simulation of the axial compressors

    NASA Astrophysics Data System (ADS)

    Yin, Song; Jin, Donghai; Gui, Xingmin; Zhu, Fang

    2010-08-01

    The shear-stress transport (SST) turbulence model is incorporated into Navier-Stokes equations to simulate a turbomachinery flowfield. A staggered finite volume method is used to make the mean flow equations and turbulence model equations strongly coupled and enhance the stability of the numerical computation. The implicit treatment of the source terms is applied to the SST model. A steady state solution is obtained using five-stage Runge-Kutta time-stepping scheme with local time stepping and residual smoothing to accelerate convergence. The wall distance d, a key parameter in the SST model, is solved by a partial differential equation. The validations of the code are conducted on rotor 37, wp11 at design and off-design conditions by comparison with measurements and the Spalart-Allmaras (SA) turbulence model. The flow within the tip is calculated with a multi-block grid.

  11. Future research needs associated with the assessment of potential human health risks from exposure to toxic ambient air pollutants.

    PubMed Central

    Möller, L; Schuetzle, D; Autrup, H

    1994-01-01

    This paper presents key conclusions and future research needs from a Workshop on the Risk Assessment of Urban Air, Emissions, Exposure, Risk Identification, and Quantification, which was held in Stockholm during June 1992 by 41 participants from 13 countries. Research is recommended in the areas of identification and quantification of toxics in source emissions and ambient air, atmospheric transport and chemistry, exposure level assessment, the development of improved in vitro bioassays, biomarker development, the development of more accurate epidemiological methodologies, and risk quantification techniques. Studies are described that will be necessary to assess and reduce the level of uncertainties associated with each step of the risk assessment process. International collaborative research efforts between industry and government organizations are recommended as the most effective way to carry out this research. PMID:7529703

  12. The Design of Research Laboratories. Part I: A General Assessment. Part II: Air Conditioning and Conditioned Rooms.

    ERIC Educational Resources Information Center

    Legget, R. F.; Hutcheon, N. B.

    Design factors in the planning of research laboratories are described which include--(1) location, (2) future expansion, (3) internal flexibility, (4) provision of services, (5) laboratory furnishing, (6) internal traffic, (7) space requirements, and (8) building costs. A second part discusses air-conditioning and conditioned rooms--(1)…

  13. SPATIAL AND TEMPORAL VARIABILITY OF MOBILE SOURCE AIR TOXICS IN THE DETROIT EXPOSURE AND AEROSOL RESEARCH STUDY

    EPA Science Inventory

    Data from the first two years of the Detroit Exposure and Aerosol Research Study (DEARS) were evaluated to determine spatial and temporal characteristics in concentrations of mobile source air toxics (MSATs). Outdoor concentrations of MSATs were significantly higher in samples co...

  14. Methodological and Ethical Dilemmas Encountered during Field Research of Family Violence Experienced by Adolescent Women in Buenos Aires

    ERIC Educational Resources Information Center

    Luxardo, Natalia; Colombo, Graciela; Iglesias, Gabriela

    2011-01-01

    The purpose of this article is to examine some obstacles and dilemmas related to methodological strategies and ethical considerations that arose during the fieldwork of research focused on family violence during the stages of pregnancy and childbirth in adolescent females in Buenos Aires during 2007. From this study, we are able to contribute some…

  15. Current research in NRMRL on the mitigation of near-road air pollution by vegetative and structural barriers

    EPA Science Inventory

    Numerous research studies published in scientific literature have shown that people living, working, and going to school near large roads experience increased adverse health effects. In addition, studies show that air pollution is worse in close proximity to major roadways (e.g....

  16. The Conference Proceedings of the 1997 Air Transport Research Group (ATRG) of the WCTR Society. Volume 1

    NASA Technical Reports Server (NTRS)

    Oum, Tae Hoon (Editor); Bowen, Brent D. (Editor)

    1997-01-01

    The UNO Aviation Institute has published the 1997 Proceedings of the Air Transport Research Group of the World Conference on Transportation Research (WCTR) Society. Items published in this three volume, seven monograph series were presented at the triennial ATRG Conference held at the University of British Columbia, June 25-27, 1997. A wide variety of policy issues are discussed including the following: open- skies agreements, liberalization, globalization, airline competition, airport performance, pricing, hubs, and safety, among others.

  17. Corals record persistent multidecadal SST variability in the Atlantic Warm Pool since 1775 AD

    NASA Astrophysics Data System (ADS)

    VáSquez-Bedoya, Luis Fernando; Cohen, Anne L.; Oppo, Delia W.; Blanchon, Paul

    2012-09-01

    Accurate low-latitude sea surface temperature (SST) records that predate the instrumental era are needed to put recent warming in the context of natural climate variability and to evaluate the persistence of lower frequency climate variability prior to the instrumental era and the possible influence of anthropogenic climate change on this variability. Here we present a 235-year-long SST reconstruction based on annual growth rates (linear extension) of three colonies of the Atlantic coralSiderastrea sidereasampled at two sites on the northeastern Yucatan Peninsula, Mexico, located within the Atlantic Warm Pool (AWP). AWP SSTs vary in concert the Atlantic Multidecadal Oscillation (AMO), a basin-wide, quasiperiodic (˜60-80 years) oscillation of North Atlantic SSTs. We demonstrate that the annual linear growth rates of all three coral colonies are significantly inversely correlated with SST. We calibrate annual linear growth rates to SST between 1900 and 1960 AD. The linear correlation coefficient over the calibration period is r = -0.77 and -0.66 over the instrumental record (1860-2008 AD). We apply our calibration to annual linear growth rates to extend the SST record to 1775 AD and show that multidecadal SST variability has been a persistent feature of the AWP, and likely, of the North Atlantic over this time period. Our results imply that tropical Atlantic SSTs remained within 1°C of modern values during the past 225 years, consistent with a previous reconstruction based on coral growth rates and with most estimates based on the Mg/Ca of planktonic foraminifera from marine sediments.

  18. Seasonal patterns of SST diurnal variation over the Tropical Warm Pool region

    NASA Astrophysics Data System (ADS)

    Zhang, Haifeng; Beggs, Helen; Wang, Xiao Hua; Kiss, Andrew E.; Griffin, Christopher

    2016-11-01

    Five year (2010-2014) Advanced Very High Resolution Radiometer (AVHRR) sea surface temperature (SST) data produced by the Australian Bureau of Meteorology have been validated against drifting buoy data and then used to study the seasonal patterns of the SST diurnal variation (DV) events over the Tropical Warm Pool region (TWP, 25°S-15°N, 90°E-170°E). The in situ validation results illustrate the overall good quality of the AVHRR SST data set, although an average 0.19 K underestimation of the daytime measurements has been observed. The nighttime observations are in good agreement with in situ buoys with an average bias of 0.03 and a 0.30 K standard deviation of the biases. This SST data set is then used to characterize the SST DV seasonal patterns, together with wind speeds, daily maximum solar shortwave insolation (SSImax), and latent heat flux (LHF). A double-peak seasonal pattern of SST DV is observed over the study region: the strongest DVs are found in March and October and the weakest in June. Sensitivity tests of DV to wind, SSImax, and LHF are conducted. The results indicate (1) different morning and early afternoon winds (7 A.M. to 2 P.M. local time, LT) affect DV by as much as 0.73 K when the half-daily (defined as 2 A.M. to 2 P.M. LT in this study) average winds are fixed between 2 and 3 m s-1; (2) SSImax levels regulate DV less significantly (<0.68 K) under fixed winds; and (3) LHF effects on DV are relatively weak (<0.35 K).

  19. SST and OLR relationship during Indian summer monsoon: a coupled climate modelling perspective

    NASA Astrophysics Data System (ADS)

    Chaudhari, Hemantkumar S.; Hazra, Anupam; Pokhrel, Samir; Chakrabarty, Chandrima; Saha, Subodh Kumar; Sreenivas, P.

    2017-03-01

    The study mainly investigates sea surface temperature (SST) and outgoing longwave radiation (OLR) relationships in coupled climate model. To support the analysis, high-level cloud and OLR relationship is also investigated. High-level cloud and OLR relationship depicts significant negative correlation over the entire monsoon regime. Coupled climate model is able to produce the same. SST and OLR relationship in observation also depicts significant negative relationship, in particular, over the Equatorial Eastern Indian Ocean (EIO) region. Climate Forecast System version 2 (CFSv2) is able to portray the negative relationship over EIO region; however, it is underestimated as compared to observation. Significant negative correlations elucidate that local SSTs regulate the convection and further it initiates Bjerknes feedback in the central Indian Ocean. It connotes that SST anomalies during monsoon period tend to be determined by oceanic forcing. The heat content of the coastal Bay of Bengal shows highest response to EIO SST by a lag of 1 month. It suggests that the coastal region of the Bay of Bengal is marked by coastally trapped Kelvin waves, which might have come from EIO at a time lag of 1 month. Sea surface height anomalies, depth at 20 °C isotherms and depth at 26 isotherms also supports the above hypothesis. Composite analysis based on EIO index and coupled climate model sensitivity experiments also suggest that the coastal Bay of Bengal region is marked by coastally trapped Kelvin waves, which are propagated from EIO at a time lag of 1 month. Thus, SST and OLR relationship pinpoints that the Bay of Bengal OLR (convection) is governed by local ocean-atmospheric coupling, which is influenced by the delayed response from EIO brought forward through oceanic planetary waves at a lag of 1 month. These results have utmost predictive value for seasonal and extended range forecasting. Thus, OLR and SST relationship can constitute a pivotal role in investigating the

  20. Observed Local Soil Moisture-Atmosphere Feedbacks within the Context of Remote SST Anomalies: Lessons From Recent Droughts

    NASA Astrophysics Data System (ADS)

    Tawfik, A. B.; Dirmeyer, P.; Lawrence, D. M.

    2015-12-01

    The existence and possible transition from positive to negative soil moisture-atmosphere feedbacks is explored in this presentation using collocated flux tower measurements (Ameriflux) and atmospheric profiles from reanalysis. The focus is on the series of physical processes that lead to these local feedbacks connecting remote sea surface temperature changes (SST anomalies) to local soil moisture and boundary layer responses. Seasonal and Agricultural droughts are particularly useful test beds for examining these feedback processes because they are typically characterized by prolonged stretches of rain-free days followed by some termination condition. To quantify the full process-chain across these distinct spatial scales, complimentary information from several well-established land-atmosphere coupling metrics are used including, but not limited to, Mixing Diagram approaches, Soil Moisture Memory, and the Heated Condensation Framework. Preliminary analysis shows that there may be transitions from negative and positive soil moisture-atmosphere feedbacks as droughts develop. This is largely instigated by persistent atmospheric forcing that initially promotes increased surface latent heat flux, which limits boundary layer depth and dry air entrainment. However, if stagnant synoptic conditions continue eventually soil moisture is depleted to the point of shutting off surface latent heat flux producing deep boundary layers and increased dry air entrainment thus deepening drought stress. A package of standardized Fortran 90 modules called the Coupling Metrics Toolkit (CoMeT; https://github.com/abtawfik/coupling-metrics) used to calculate these land-atmosphere coupling metrics is also briefly presented.

  1. SAMPLE AOR CALCULATION USING ANSYS SLICE PARAMETRIC MODEL FOR TANK SST-A

    SciTech Connect

    JULYK, L.J.; MACKEY, T.C.

    2003-06-19

    This document documents the ANSYS slice parametric model for single-shell tank A and provides sample calculation for analysis-of-record mechanical load conditions. The purpose of this calculation is to develop a parametric model for the single shell tank (S) A, and provide a sample analysis of the SST-S tank based on analysis of record (AOR) loads. The SST-A model is based on buyer-supplied as-built drawings and information for the AOR for SSTs, encompassing the existing tank load conditions, and evaluates stresses and deformations throughout the tank and surrounding soil mass.

  2. Synchronous tropical South China Sea SST change and Greenland warming during deglaciation.

    PubMed

    Kienast, M; Steinke, S; Stattegger, K; Calvert, S E

    2001-03-16

    The tropical ocean plays a major role in global climate. It is therefore crucial to establish the precise phase between tropical and high-latitude climate variability during past abrupt climate events in order to gain insight into the mechanisms of global climate change. Here we present alkenone sea surface temperature (SST) records from the tropical South China Sea that show an abrupt temperature increase of at least 1 degrees C at the end of the last glacial period. Within the recognized dating uncertainties, this SST increase is synchronous with the Bølling warming observed at 14.6 thousand years ago in the Greenland Ice Sheet Project 2 ice core.

  3. United States Air Force 1993 Summer Research Program. Volume 10: Wright Laboratory

    NASA Astrophysics Data System (ADS)

    The paper outlines two main tasks assigned during my employment as a graduate student research associate at the Wright Laboratory, Wright Paterson Air Force Base. Upon arrival at the Wright Laboratories, I was to investigate a method of signal processing, different from the common Fourier transform, in that inherent mathematical properties of the signal space were exploited in retrieving the spectrum of the signal. The two alternative signal processing methods investigated are the MUSIC and Minimum-Norm procedures for high resolution signal processing. The results of the investigation are included with a general comment section regarding the performance of the algorithms. The second main task assigned was the investigation of angle of arrival (AOA) calculation. Traditionally, methods such as beamforming have been used to estimate AOA using arrays of sensors and sophisticated signal processing algorithms. We are curious as to whether the AOA can be measured using only two sensors and FFT processing measuring of the phase difference of the signal at two adjacent sensors. Results of this study are presented with general comments as to the validity of the measuring paradigm.

  4. Spacecraft environmental interactions: A joint Air Force and NASA research and technology program

    NASA Technical Reports Server (NTRS)

    Pike, C. P.; Purvis, C. K.; Hudson, W. R.

    1985-01-01

    A joint Air Force/NASA comprehensive research and technology program on spacecraft environmental interactions to develop technology to control interactions between large spacecraft systems and the charged-particle environment of space is described. This technology will support NASA/Department of Defense operations of the shuttle/IUS, shuttle/Centaur, and the force application and surveillance and detection missions, planning for transatmospheric vehicles and the NASA space station, and the AFSC military space system technology model. The program consists of combined contractual and in-house efforts aimed at understanding spacecraft environmental interaction phenomena and relating results of ground-based tests to space conditions. A concerted effort is being made to identify project-related environmental interactions of concern. The basic properties of materials are being investigated to develop or modify the materials as needed. A group simulation investigation is evaluating basic plasma interaction phenomena to provide inputs to the analytical modeling investigation. Systems performance is being evaluated by both groundbased tests and analysis.

  5. Progress of in-air microbeam system at the Wakasa Wan Energy Research Center

    NASA Astrophysics Data System (ADS)

    Yasuda, K.; Nomachi, M.; Sugaya, Y.; Yamamoto, H.; Komatsu, H.

    2011-10-01

    Modifications of an in-air microbeam system at the Wakasa Wan Energy Research Center designed to improve its performance are described. In the previous setup, a silicon nitride membrane (area: 1 × 1 mm2; thickness: 100 nm) was used for the beam exit window and the distance between the window and the sample was restricted to ⩾1.7 mm. Due to this restriction, the beam spot size obtained using the previous setup was 13 × 13 μm2. To reduce the beam spot size, the beam exit window was replaced by a silicon nitride membrane (area: 3 (horizontal) × 2 (vertical) mm2; thickness: 200 nm). In this setup, the sample can be moved as close as 0.7 mm to the window, enabling a beam spot size of 7 × 6 μm2 to be achieved. An additional Si-PIN X-ray detector was installed to estimate the relative number of beam particles. It detects X-rays from the beam exit window. The number of the X-rays from the beam exit window (which is proportional to the number of beam particles) is used for quantitative analysis and for online monitoring of the beam current. This system has the potential to be used for simultaneous particle-induced X-ray emission (PIXE) and particle-induced gamma-ray emission (PIGE) measurements and for studying dental medicine.

  6. Estimating Air Chemical Emissions from Research Activities Using Stack Measurement Data

    SciTech Connect

    Ballinger, Marcel Y.; Duchsherer, Cheryl J.; Woodruff, Rodger K.; Larson, Timothy V.

    2013-02-15

    Current methods of estimating air emissions from research and development (R&D) activities use a wide range of release fractions or emission factors with bases ranging from empirical to semi-empirical. Although considered conservative, the uncertainties and confidence levels of the existing methods have not been reported. Chemical emissions were estimated from sampling data taken from four research facilities over ten years. The approach was to use a Monte Carlo technique to create distributions of annual emission estimates for target compounds detected in source test samples. Distributions were created for each year and building sampled for compounds with sufficient detection frequency to qualify for the analysis. The results using the Monte Carlo technique without applying a filter to remove negative emission values showed almost all distributions spanning zero, and forty percent of the distributions having a negative mean. This indicates that emissions are so low as to be indistinguishable from building background. Application of a filter to allow only positive values in the distribution provided a more realistic value for emissions and increased the distribution mean by an average of sixteen percent. Release fractions were calculated by dividing the emission estimates by a building chemical inventory quantity. Two variations were used for this quantity: chemical usage, and chemical usage plus one-half standing inventory. Filters were applied so that only release fraction values from zero to one were included in the resulting distributions. Release fractions had a wide range among chemicals and among data sets for different buildings and/or years for a given chemical. Regressions of release fractions to molecular weight and vapor pressure showed weak correlations. Similarly, regressions of mean emissions to chemical usage, chemical inventory, molecular weight and vapor pressure also gave weak correlations. These results highlight the difficulties in estimating

  7. The truncated isoform of somatostatin receptor5 (sst5TMD4) is associated with poorly differentiated thyroid cancer.

    PubMed

    Puig-Domingo, Manel; Luque, Raúl M; Reverter, Jordi L; López-Sánchez, Laura M; Gahete, Manuel D; Culler, Michael D; Díaz-Soto, Gonzalo; Lomeña, Francisco; Squarcia, Mattia; Mate, José Luis; Mora, Mireia; Fernández-Cruz, Laureano; Vidal, Oscar; Alastrué, Antonio; Balibrea, Jose; Halperin, Irene; Mauricio, Dídac; Castaño, Justo P

    2014-01-01

    Somatostatin receptors (ssts) are expressed in thyroid cancer cells, but their biological significance is not well understood. The aim of this study was to assess ssts in well differentiated (WDTC) and poorly differentiated thyroid cancer (PDTC) by means of imaging and molecular tools and its relationship with the efficacy of somatostatin analog treatment. Thirty-nine cases of thyroid carcinoma were evaluated (20 PDTC and 19 WDTC). Depreotide scintigraphy and mRNA levels of sst-subtypes, including the truncated variant sst5TMD4, were carried out. Depreotide scans were positive in the recurrent tumor in the neck in 6 of 11 (54%) PDTC, and in those with lung metastases in 5/11 cases (45.4%); sst5TMD4 was present in 18/20 (90%) of PDTC, being the most densely expressed sst-subtype, with a 20-fold increase in relation to sst2. In WDTC, sst2 was the most represented, while sst5TMD4 was not found; sst2 was significantly increased in PDTC in comparison to WDTC. Five depreotide positive PDTC received octreotide for 3-6 months in a pilot study with no changes in the size of the lesions in 3 of them, and a significant increase in the pulmonary and cervical lesions in the other 2. All PDTC patients treated with octreotide showed high expression of sst5TMD4. ROC curve analysis demonstrated that only sst5TMD4 discriminates between PDTC and WDTC. We conclude that sst5TMD4 is overexpressed in PDTC and may be involved in the lack of response to somatostatin analogue treatment.

  8. Intercolony Sr/Ca variability in Palmyra Island corals: Implications for paleo-SST reconstructions

    NASA Astrophysics Data System (ADS)

    Sayani, H. R.; Cobb, K.; Cohen, A. L.; Druffel, E. R.; Monteleone, B. D.

    2011-12-01

    The ratio of strontium to calcium (Sr/Ca) in coral skeletons is widely used to construct continuous, highly-resolved records of past sea-surface temperature (SST) variability. Typically, paleo-SST estimates are derived using Sr/Ca-SST functions created by regressing Sr/Ca from a single modern coral against instrumental SST. However, several studies have found that while coral Sr/Ca may strongly covary with SST, the absolute Sr/Ca values in corals growing on the same reef often differ significantly. As such, the uncertainties associated with coral-derived paleo-SST estimates based on the calibration approach outlined above are poorly constrained. To assess reproducibility of coral Sr/Ca and extent of intercolony variability at Palmyra Island (6°N, 162°W; Cobb et al., 2003; Nurhati et al., 2011), we measure mm- and μm-scale Sr/Ca in four overlapping modern Porites cores. Conventional mm-scale Sr/Ca records from these modern cores are well correlated with each other (R = 0.65 to 0.68) and with SST (R = -0.73 to -0.85), but the absolute Sr/Ca values of these records exhibit baseline offsets of ×0.11mmol/mol (1σ). Secondary ion mass spectrometry (SIMS) is used to generate 2-3 year long, weekly-resolved, Sr/Ca records from 3 overlapping modern coral segments. While the SIMS Sr/Ca analyses from each core exhibit relatively large point-to-point variations of ~0.17mmol/mol (1σ), compared to ~0.06mmol/mol (1σ) in mm-scale Sr/Ca, their monthly-scale variability resolves the annual SST cycles observed at Palmyra reasonably well (R = -0.46 to -0.64). Furthermore, the intercolony offsets observed in mm-scale Sr/Ca records are reproduced in the SIMS Sr/Ca records. These large offsets imply that paleo-SST estimates derived from a single fossil coral Sr/Ca dataset would be associated with uncertainties of ×1.4°C (1σ). We build a coral Sr/Ca 'stack' for Palmyra Island using Sr/Ca records from the 4 modern cores. This composite Sr/Ca record is more strongly correlated with

  9. Intercolony Sr/Ca variability in Palmyra Island corals: Implications for paleo-SST reconstructions

    NASA Astrophysics Data System (ADS)

    Sayani, H. R.; Cobb, K.; Cohen, A. L.; Druffel, E. R.; Monteleone, B. D.

    2013-12-01

    The ratio of strontium to calcium (Sr/Ca) in coral skeletons is widely used to construct continuous, highly-resolved records of past sea-surface temperature (SST) variability. Typically, paleo-SST estimates are derived using Sr/Ca-SST functions created by regressing Sr/Ca from a single modern coral against instrumental SST. However, several studies have found that while coral Sr/Ca may strongly covary with SST, the absolute Sr/Ca values in corals growing on the same reef often differ significantly. As such, the uncertainties associated with coral-derived paleo-SST estimates based on the calibration approach outlined above are poorly constrained. To assess reproducibility of coral Sr/Ca and extent of intercolony variability at Palmyra Island (6°N, 162°W; Cobb et al., 2003; Nurhati et al., 2011), we measure mm- and μm-scale Sr/Ca in four overlapping modern Porites cores. Conventional mm-scale Sr/Ca records from these modern cores are well correlated with each other (R = 0.65 to 0.68) and with SST (R = -0.73 to -0.85), but the absolute Sr/Ca values of these records exhibit baseline offsets of ×0.11mmol/mol (1σ). Secondary ion mass spectrometry (SIMS) is used to generate 2-3 year long, weekly-resolved, Sr/Ca records from 3 overlapping modern coral segments. While the SIMS Sr/Ca analyses from each core exhibit relatively large point-to-point variations of ~0.17mmol/mol (1σ), compared to ~0.06mmol/mol (1σ) in mm-scale Sr/Ca, their monthly-scale variability resolves the annual SST cycles observed at Palmyra reasonably well (R = -0.46 to -0.64). Furthermore, the intercolony offsets observed in mm-scale Sr/Ca records are reproduced in the SIMS Sr/Ca records. These large offsets imply that paleo-SST estimates derived from a single fossil coral Sr/Ca dataset would be associated with uncertainties of ×1.4°C (1σ). We build a coral Sr/Ca 'stack' for Palmyra Island using Sr/Ca records from the 4 modern cores. This composite Sr/Ca record is more strongly correlated with

  10. GREEN REACTION CHEMISTRIES PERFORMED IN THE SST REACTOR

    EPA Science Inventory


    The U. S. Environmental Protection Agency (USEPA) and Kreido Laboratories have established a Cooperative Research and Development Agreement (CRADA) collaboration, to develop and commercialize green and sustainable chemistries in the area of industrial chemical synthesis. Uti...

  11. Healthier Schools: A Review of State Policies for Improving Indoor Air Quality. Research Report.

    ERIC Educational Resources Information Center

    Bernstein, Tobie

    Existing indoor air quality (IAQ) policies for schools reflect the variety of institutional, political, social, and economic contexts that exist within individual states. The purpose of this report is to provide a better understanding of the types of policy strategies used by states in addressing general indoor air quality problems. The policies…

  12. Research report on the physiological effects of air ions and their significance as environmental factors

    NASA Technical Reports Server (NTRS)

    Varga, A.

    1978-01-01

    The series of experiments performed have shown that small air ions generated artificially using radioactive materials produced physiological effects in all test subjects, which are described. These results show that the air ions were important climatic factors in the production of comfortable and healthy room climates.

  13. Temperature and Humidity Independent Control Research on Ground Source Heat Pump Air Conditioning System

    NASA Astrophysics Data System (ADS)

    Chen, G.; Wang, L. L.

    Taking green demonstration center building air conditioning system as an example, this paper presents the temperature and humidity independent control system combined with ground source heat pump system, emphasis on the design of dry terminal device system, fresh air system and ground source heat pump system.

  14. IMPACTS OF AIR POLLUTION AND CLIMATE CHANGE ON FOREST ECOSYSTEMS - EMERGING RESEARCH NEEDS

    EPA Science Inventory

    Outcomes from the 22nd meeting for Specialists in Air Pollution Effects on Forest Ecosystems "Forests under Anthropogenic Pressure - Effects of Air Pollution, Climate Change and Urban Development", September 10-16, 2006, Riverside, CA, USA are summarized. Tropospheric ozone is st...

  15. EPA RESEARCH HIGHLIGHTS -- MODELS-3/CMAQ OFFERS COMPREHENSIVE APPROACH TO AIR QUALITY MODELING

    EPA Science Inventory

    Regional and global coordinated efforts are needed to address air quality problems that are growing in complexity and scope. Models-3 CMAQ contains a community multi-scale air quality modeling system for simulating urban to regional scale pollution problems relating to troposphe...

  16. Air-sea coupling in the Hawaiian Archipelago

    NASA Astrophysics Data System (ADS)

    Souza, J. M.; Powell, B.; Mattheus, D.

    2014-12-01

    A coupled numerical model is used to investigate the ocean-atmosphere interaction in the lee of the Hawaiian archipelago. The wind curl generated by the island blocking of the trade winds is known to give rise to ocean eddies; however, the impact of the sea surface temperature (SST) and velocity fronts associated with these eddies on the atmosphere is less understood. The main coupling mechanisms are: (i) changes in the near-surface stability and surface stress, (ii) vertical transfer of momentum from higher atmospheric levels to the ocean surface due to an increase of the turbulence in the boundary layer, (iii) secondary circulations associated with perturbations in the surface atmospheric pressure over the SST fronts, and (iv) the impact of the oceanic eddy currents on the net momentum transferred between the atmosphere and the ocean. To assess the relative contribution from each process, a coupled simulation between the Regional Ocean Modeling System (ROMS) and the Weather Research and Forecasting (WRF) models is conducted for the main Hawaiian Islands. The impact of the coupling, the perturbation of the mean wind pattern, and the different spatial scales involved in the air-sea exchanges of momentum and heat are explored.

  17. The ASTRI SST-2M telescope prototype for the Cherenkov Telescope Array: camera DAQ software architecture

    NASA Astrophysics Data System (ADS)

    Conforti, Vito; Trifoglio, Massimo; Bulgarelli, Andrea; Gianotti, Fulvio; Fioretti, Valentina; Tacchini, Alessandro; Zoli, Andrea; Malaguti, Giuseppe; Capalbi, Milvia; Catalano, Osvaldo

    2014-07-01

    ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) is a Flagship Project financed by the Italian Ministry of Education, University and Research, and led by INAF, the Italian National Institute of Astrophysics. Within this framework, INAF is currently developing an end-to-end prototype of a Small Size dual-mirror Telescope. In a second phase the ASTRI project foresees the installation of the first elements of the array at CTA southern site, a mini-array of 7 telescopes. The ASTRI Camera DAQ Software is aimed at the Camera data acquisition, storage and display during Camera development as well as during commissioning and operations on the ASTRI SST-2M telescope prototype that will operate at the INAF observing station located at Serra La Nave on the Mount Etna (Sicily). The Camera DAQ configuration and operations will be sequenced either through local operator commands or through remote commands received from the Instrument Controller System that commands and controls the Camera. The Camera DAQ software will acquire data packets through a direct one-way socket connection with the Camera Back End Electronics. In near real time, the data will be stored in both raw and FITS format. The DAQ Quick Look component will allow the operator to display in near real time the Camera data packets. We are developing the DAQ software adopting the iterative and incremental model in order to maximize the software reuse and to implement a system which is easily adaptable to changes. This contribution presents the Camera DAQ Software architecture with particular emphasis on its potential reuse for the ASTRI/CTA mini-array.

  18. Kinetic analysis and molecular modeling of the inhibition mechanism of roneparstat (SST0001) on human heparanase.

    PubMed

    Pala, Daniele; Rivara, Silvia; Mor, Marco; Milazzo, Ferdinando Maria; Roscilli, Giuseppe; Pavoni, Emiliano; Giannini, Giuseppe

    2016-06-01

    Heparanase is a β-d-glucuronidase which cleaves heparan sulfate chains in the extracellular matrix and on cellular membranes. A dysregulated heparanase activity is intimately associated with cell invasion, tumor metastasis and angiogenesis, making heparanase an attractive target for the development of anticancer therapies. SST0001 (roneparstat; Sigma-Tau Research Switzerland S.A.) is a non-anticoagulant 100% N-acetylated and glycol-split heparin acting as a potent heparanase inhibitor, currently in phase I in advanced multiple myeloma. Herein, the kinetics of heparanase inhibition by roneparstat is reported. The analysis of dose-inhibition curves confirmed the high potency of roneparstat (IC50 ≈ 3 nM) and showed, at higher concentrations, a Hill coefficient consistent with the engagement of two molecules of inhibitor. A homology model of human heparanase GS3 construct was built and used for docking experiments with inhibitor fragments. The model has high structural similarity with the recently reported crystal structure of human heparanase. Different interaction schemes are proposed, which support the hypothesis of a complex binding mechanism involving the recruitment of one or multiple roneparstat chains, depending on its concentration. In particular, docking solutions were obtained in which (i) a single roneparstat molecule interacts with both heparin-binding domains (HBDs) of heparanase or (ii) two fragments of roneparstat interact with either HBD-1 or HBD-2, consistent with the possibility of different inhibitor:enzyme binding stoichiometries. This study provides unique insights into the mode of action of roneparstat as well as clues of its interaction with heparanase at a molecular level, which could be exploited to design novel potential inhibitor molecules.

  19. Kinetic analysis and molecular modeling of the inhibition mechanism of roneparstat (SST0001) on human heparanase

    PubMed Central

    Pala, Daniele; Rivara, Silvia; Mor, Marco; Milazzo, Ferdinando Maria; Roscilli, Giuseppe; Pavoni, Emiliano; Giannini, Giuseppe

    2016-01-01

    Heparanase is a β-d-glucuronidase which cleaves heparan sulfate chains in the extracellular matrix and on cellular membranes. A dysregulated heparanase activity is intimately associated with cell invasion, tumor metastasis and angiogenesis, making heparanase an attractive target for the development of anticancer therapies. SST0001 (roneparstat; Sigma-Tau Research Switzerland S.A.) is a non-anticoagulant 100% N-acetylated and glycol-split heparin acting as a potent heparanase inhibitor, currently in phase I in advanced multiple myeloma. Herein, the kinetics of heparanase inhibition by roneparstat is reported. The analysis of dose-inhibition curves confirmed the high potency of roneparstat (IC50 ≈ 3 nM) and showed, at higher concentrations, a Hill coefficient consistent with the engagement of two molecules of inhibitor. A homology model of human heparanase GS3 construct was built and used for docking experiments with inhibitor fragments. The model has high structural similarity with the recently reported crystal structure of human heparanase. Different interaction schemes are proposed, which support the hypothesis of a complex binding mechanism involving the recruitment of one or multiple roneparstat chains, depending on its concentration. In particular, docking solutions were obtained in which (i) a single roneparstat molecule interacts with both heparin-binding domains (HBDs) of heparanase or (ii) two fragments of roneparstat interact with either HBD-1 or HBD-2, consistent with the possibility of different inhibitor:enzyme binding stoichiometries. This study provides unique insights into the mode of action of roneparstat as well as clues of its interaction with heparanase at a molecular level, which could be exploited to design novel potential inhibitor molecules. PMID:26762172

  20. Air pollution control technology for municipal solid waste-to-energy conversion facilities: capabilities and research needs

    SciTech Connect

    Lynch, J F; Young, J C

    1980-09-01

    Three major categories of waste-to-energy conversion processes in full-scale operation or advanced demonstration stages in the US are co-combustion, mass incineration, and pyrolysis. These methods are described and some information on US conversion facilities is tabulated. Conclusions and recommendations dealing with the operation, performance, and research needs for these facilities are given. Section II identifies research needs concerning air pollution aspects of the waste-to-energy processes and reviews significant operating and research findings for the co-combustion, mass incinceration, and pyrolysis waste-to-energy systems.

  1. A comparison of Argo nominal surface and near-surface temperature for validation of AMSR-E SST

    NASA Astrophysics Data System (ADS)

    Liu, Zenghong; Chen, Xingrong; Sun, Chaohui; Wu, Xiaofen; Lu, Shaolei

    2016-06-01

    Satellite SST (sea surface temperature) from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) is compared with in situ temperature observations from Argo profiling floats over the global oceans to evaluate the advantages of Argo NST (near-surface temperature: water temperature less than 1 m from the surface). By comparing Argo nominal surface temperature (~5 m) with its NST, a diurnal cycle caused by daytime warming and nighttime cooling was found, along with a maximum warming of 0.08±0.36°C during 14:00-15:00 local time. Further comparisons between Argo 5-m temperature/Argo NST and AMSR-E SST retrievals related to wind speed, columnar water vapor, and columnar cloud water indicate warming biases at low wind speed (<5 m/s) and columnar water vapor >28 mm during daytime. The warming tendency is more remarkable for AMSR-E SST/Argo 5-m temperature compared with AMSR-E SST/Argo NST, owing to the effect of diurnal warming. This effect of diurnal warming events should be excluded before validation for microwave SST retrievals. Both AMSR-E nighttime SST/Argo 5-m temperature and nighttime SST/Argo NST show generally good agreement, independent of wind speed and columnar water vapor. From our analysis, Argo NST data demonstrated their advantages for validation of satellite-retrieved SST.

  2. Orbitally-resolved SST Changes during the EOT: Results from IODP 342 Expedition

    NASA Astrophysics Data System (ADS)

    Liu, Z.; He, Y.; Wilson, P. A.; Pagani, M.

    2014-12-01

    Sea surface temperature (SST) changes during the Eocene-Oligocene climate transition were characterized by substantial cooling at high latitudes and less cooling in low latitudes, with little information from mid-latitudes so far. Taking advantage of the newly retrieved drift sediments from the IODP 342 Expedition, we aim to reconstruct SST changes at the mid-latitude Newfoundland region, at an unprecedented orbital resolution from Site U1411. During the period investigated, 32-36 Ma, the alkenone UK'37 values range from 0.65 to 0.95, with values all greater than 0.80 before the transition and lower values (<0.80) occurring approximately at the eccentricity minimum nodes after the transition. No immediate cooling associated with Oi-1 glaciation was observed. During the Oligocene, SSTs during warm epochs (corresponding to eccentricity maxima) were not significantly cooler than before. Overall, SST fluctuations appear to be modulated by orbital changes throughout the record, although more apparent due to larger amplitude of SST variability after the transition. We thus hypothesize that the mid-latitude Newfoundland region was largely bathed by low-latitude warm waters during the transition and that polar waters (fronts) reached to the region occasionally at periods of eccentricity minimum nodes during the Oligocene.

  3. Operational experience with the supercritical helium during the TF coils tests campaign of SST-1

    NASA Astrophysics Data System (ADS)

    Panchal, Rohitkumar Natvarlal; Patel, Rakesh; Tank, Jignesh; Mahesuria, Gaurang; Sonara, Dashrath; Tanna, Vipul; Patel, Jayant; Srikanth, G. L. N.; Singh, Manoj; Patel, Ketan; Christian, Dikens; Garg, Atul; Bairagi, Nitn; Gupta, Manoj Kumar; Nimavat, Hiren; Shah, Pankil; Sharma, Rajiv; Pradhan, Subrata

    2012-06-01

    Under the 'SST-1 mission mandate' recently, all the sixteen Steady State Superconducting Tokamak (SST-1) Toroidal Field (TF) magnets have been successfully tested at their nominal currents of 10000 A in cold under supercritical helium (SHe) flow conditions. The TF magnets test campaign have begun in an experimental cryostat since June 2010 with the SST-1 Helium cryogenics facility, which is a 1.3 kW at 4.5 K helium refrigerator-cum-liquefier (HRL) system. The HRL provides ~300 g-s-1supercritical helium (SHe) with cold circulator (CC) as well as ~ 60 g-s-1 without cold circulator to fulfill the forced flow cooling requirements of SST- 1 magnets. In case of single TF coil tests, we can adjust HRL process parameters such that an adequate amount of required supercritical helium is available without the cold circulator. In this paper, the complete process is describing the Process Flow Diagram (PFD) of 1.3 kW at 4.5 K HRL, techniques to generate supercritical helium without using the cold-circulator and the results of the cooldown, steady state characteristics and experience of supercritical helium operations during the TF coils test campaign have been discussed.

  4. Current understanding ofI sperm-storage tubule (SST) function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unlike most mammals, birds do not need to synchronize copulation with ovulation. Hens are endowed with tubular structures, the sperm-storage tubules (SST), in their oviducts which the sperm enter and survive for weeks after mating or artificial insemination. Sperm are slowly but continually releas...

  5. SST-forced interdecadal deepening of the winter India-Burma trough since the 1950s

    NASA Astrophysics Data System (ADS)

    Lu, Bo; Ren, Hong-Li

    2016-03-01

    The winter India-Burma Trough (IBT) has undergone a pronounced interdecadal deepening since the 1950s, which led to the significant rainfall increasing over the eastern Indochina Peninsula and south China. To better understand such an observed IBT change, this study examines the responses of the IBT to the upstream subtropical jet, historical anthropogenic forcing, and tropical sea surface temperature (SST). Results show that the SST warming that occurs in the eastern tropical Indian Ocean (ETIO) is the primary cause of the observed interdecadal IBT deepening. The remarkable SST warming leads to a reduction of sea level pressure (SLP) over ETIO by diabatic heating. In association with the change of zonal SLP gradient, the westerly wind anomalies are observed. The northern flank of the westerlies further induces a cyclonic Rossby wave response over the Bay of Bengal. As a result, the winter IBT is intensified. This attribution can be supported by the simulations of atmosphere general circulation models forced by historical SST, in which the observed IBT changes are well simulated on both interdecadal and interannual time scales.

  6. SST dual-mirror telescope for Cherenkov Telescope Array: an innovative mirror manufacturing process

    NASA Astrophysics Data System (ADS)

    Dumas, Delphine; Huet, Jean-Michel; Dournaux, Jean-Laurent; Laporte, Philippe; Rulten, Cameron; Schmoll, Jurgen; Sol, Hélène; Sayède, Frédéric; Micolon, Patrice; Glicenstein, Jean-François; Peyaud, Bernard

    2014-07-01

    The Observatoire de Paris is constructing a prototype Small-Sized Telescope (SST) for the Cherenkov Telescope Array (CTA), named SST-GATE, based on the dual-mirror Schwarzschild-Couder optical design. Considering the mirrors size and its specific curvature and the optical requirements for the Cherenkov imaging telescope, a non-conventional process has been used for designing and manufacturing the mirrors of the SST-GATE prototype. Based on machining, polishing and coating of aluminium bulk samples, this process has been validated by simulation and tests that will be detailed in this paper after a discussion on the Schwarzschild-Couder optical design which so far has never been used to design ground based telescopes. Even if the SST-GATE is a prototype for small size telescopes of the CTA array, the primary mirror of the telescope is 4 meters diameter, and it has to be segmented. Due to the dual-mirror configuration, the alignment is a complex task that needs a well defined and precise process that will be discussed in this paper.

  7. Examination of Arabian Sea SST biases in the HiGEM high resolution coupled climate model and the CMIP3 multi-model dataset

    NASA Astrophysics Data System (ADS)

    Marathayil, Deepthi; Shaffrey, Len; Turner, Andrew; Slingo, Julia

    2010-05-01

    The Arabian Sea region undergoes a pronounced seasonal cycle relating to upwelling, mixing and monsoon dynamics. Any variations in high temperatures of the region may affect the availability of moisture supply to the Indian summer monsoon. Seasonal analysis has been performed for various ocean and atmosphere data from a present day control run in the Indian Ocean region of the HiGEM High Resolution Global Environment Model. When compared with observed and reanalysis datasets such as HadISST, SODA reanalysis and ARGO floats for SST and ocean potential temperature, we find a significant cold bias of around 2°C in HiGEM boreal winter SST. This bias persists through springtime in the northern Arabian Sea, potentially to the detriment of the subsequent Indian summer monsoon which is deficient in this model. Meridional cross-sections of ocean potential temperature and salinity along 65°E also reveal the existence of a deeper mixed layer extending to 300m with highly saline water in the same area. Near-surface winds in HiGEM reveal very strong northeasterly wind biases during boreal winter, which may be the result of a strong north-south air temperature gradient. Compared to estimates from CRU and ERA40, a large cold bias of more than 8°C is observed in HiGEM surface air temperature over northern India during the same season. We suspect that the cold SST bias in the northern Arabian Sea is due to coupling with the strong wind and evaporation biases in HiGEM. Seasonal analysis of modelled latent heat flux in comparison with NOCS (National Oceanographic Centre Southampton) data also suggests that the evaporation rate in HiGEM is too strong over the northern Arabian Sea during winter. Similar analysis was also carried out for the 20th century simulations from the CMIP3 multi-model dataset. Most of the models show a similar cold bias in the Arabian Sea SST and in northern Indian air temperature during boreal winter. However the mixed layer depth biases show wide variations

  8. Exposure information in environmental health research: Current opportunities and future directions for particulate matter, ozone, and toxic air pollutants

    SciTech Connect

    McKone, Thomas E.; Ryan, P. Barry; Ozkaynak, Haluk

    2007-02-01

    Understanding and quantifying outdoor and indoor sources of human exposure are essential but often not adequately addressed in health-effects studies for air pollution. Air pollution epidemiology, risk assessment, health tracking and accountability assessments are examples of health-effects studies that require but often lack adequate exposure information. Recent advances in exposure modeling along with better information on time-activity and exposure factors data provide us with unique opportunities to improve the assignment of exposures for both future and ongoing studies linking air pollution to health impacts. In September 2006, scientists from the US Environmental Protection Agency (EPA) and the Centers for Disease Control and Prevention (CDC) along with scientists from the academic community and state health departments convened a symposium on air pollution exposure and health in order to identify, evaluate, and improve current approaches for linking air pollution exposures to disease. This manuscript presents the key issues, challenges and recommendations identified by the exposure working group, who used cases studies of particulate matter, ozone, and toxic air pollutant exposure to evaluate health-effects for air pollution. One of the over-arching lessons of this workshop is that obtaining better exposure information for these different health-effects studies requires both goal-setting for what is needed and mapping out the transition pathway from current capabilities to meeting these goals. Meeting our long-term goals requires definition of incremental steps that provide useful information for the interim and move us toward our long-term goals. Another over-arching theme among the three different pollutants and the different health study approaches is the need for integration among alternate exposure assessment approaches. For example, different groups may advocate exposure indicators, biomonitoring, mapping methods (GIS), modeling, environmental media

  9. Exposure information in environmental health research: current opportunities and future directions for particulate matter, ozone, and toxic air pollutants.

    PubMed

    McKone, Thomas E; Ryan, P Barry; Ozkaynak, Halûk

    2009-01-01

    Understanding and quantifying outdoor and indoor sources of human exposure are essential but often not adequately addressed in health effect studies for air pollution. Air pollution epidemiology, risk assessment, health tracking, and accountability assessments are examples of health effect studies that require but often lack adequate exposure information. Recent advances in exposure modeling along with better information on time-activity and exposure factor data provide us with unique opportunities to improve the assignment of exposures for both future and ongoing studies linking air pollution to health impacts. In September 2006, scientists from the US Environmental Protection Agency and the Centers for Disease Control and Prevention along with scientists from the academic community and state health departments convened a symposium on air pollution exposure and health to identify, evaluate, and improve current approaches for linking air pollution exposures to disease. This manuscript presents the key issues, challenges, and recommendations identified by the exposure working group, who used case studies of particulate matter, ozone, and toxic air-pollutant exposure to evaluate health effects for air pollution. One of the overarching lessons of this workshop is that obtaining better exposure information for these different health effect studies requires both goal setting for what is needed and mapping out the transition pathway from current capabilities for meeting these goals. Meeting our long-term goals requires definition of incremental steps that provide useful information for the interim and move us toward our long-term goals. Another overarching theme among the three different pollutants and the different health study approaches is the need for integration among alternate exposure-assessment approaches. For example, different groups may advocate exposure indicators, biomonitoring, mapping methods (GIS), modeling, environmental media monitoring, and/or personal

  10. [Experimental research on combined water and air backwashing reactor technology for biological activated carbon].

    PubMed

    Xie, Zhi-Gang; Qiu, Xue-Min; Zhao, Yan-Ling

    2012-01-01

    To proper control the backwashing process of biological activated carbon (BAC) reactor and improve the overall operation performance, the evaluative indexes such as backwashing wastewater turbidity, organic pollutants removal rate of pre and post-backwashing, and the variation of biomass and biological activity in carbon column are used to compare and analyze the effect of three different combined water and air backwashing methods on the operation of BAC reactor. The result shows that intermittent combined water and air backwashing method is most suitable to BAC reactor. The biological activaty obviously increases by 62.5% after intermittent combined water and air backwashing process. While, the biological activaty using the backwashing method of air plus water and the backwashing method of water and air compounded plus water washing increases by 55.6%, 38.5%, respectively. After backwashing 308h, the reactor recovered to its normal function after intermittent combined water and air backwashing process with the removal rate of UV254 reaching to 60.0%. The fulvic-like fluorescence peak of backwashing water are very weak, and are characterized by low-excitation wavelength tryptophan like (peak S) and high excitation wavelength of tryptophan (peak T), which are caused by the microbial debris washed down. The three-dimensional fluorescence spectra also show that microbial fragments are easy to be washed clean with intermittent combined water and air backwashing.

  11. Air Force Research Laboratory Sensors Directorate Communications Branch History from 1960-2011

    DTIC Science & Technology

    2011-12-01

    was formed as part of the Air Force Avionics Laboratory in 1960 up until the present date. It covers the highlights of the Branch’s activities, but is...GHz) airborne terminals which could operate with a variety of data rates up to 274 Mbps. The ABIT operational scenario consists of the Air-to-Air (A...Paramax developed the ADM hardware and delivered it to WPAFB in 1991 for installation into the flight test aircraft. The 4950th Test Wing installed

  12. The new truncated somatostatin receptor variant sst5TMD4 is associated to poor prognosis in breast cancer and increases malignancy in MCF-7 cells.

    PubMed

    Durán-Prado, M; Gahete, M D; Hergueta-Redondo, M; Martínez-Fuentes, A J; Córdoba-Chacón, J; Palacios, J; Gracia-Navarro, F; Moreno-Bueno, G; Malagón, M M; Luque, R M; Castaño, J P

    2012-04-19

    Somatostatin receptors (sst1-5) are present in different types of tumors, where they inhibit key cellular processes such as proliferation and invasion. Although ssts are densely expressed in breast cancer, especially sst2, their role and therapeutic potential remain uncertain. Recently, we identified a new truncated sst5 variant, sst5TMD4, which is related to the abnormal response of certain pituitary tumors to treatment with somatostatin analogs. Here, we investigated the possible role of sst5TMD4 in breast cancer. This study revealed that sst5TMD4 is absent in normal mammary gland, but is abundant in a subset of poorly differentiated human breast tumors, where its expression correlated to that of sst2. Moreover, in the MCF-7 breast cancer model cell, sst5TMD4 expression increased malignancy features such as invasion and proliferation abilities (both in cell cultures and nude mice). This was likely mediated by sst5TMD4-induced increase in phosphorylated extracellular signal-regulated kinases 1 and 2 and p-Akt levels, and cyclin D3 and Arp2/3 complex expression, which also led to mesenchymal-like phenotype. Interestingly, sst5TMD4 interacts physically with sst2 and thereby alters its signaling, enabling disruption of sst2 inhibitory feedback and providing a plausible basis for our findings. These results suggest that sst5TMD4 could be involved in the pathophysiology of certain types of breast tumors.

  13. Seamless Meteorology-Chemistry Modelling: Status and Relevance for Numerical Weather Prediction, Air Quality and Climate Research

    NASA Astrophysics Data System (ADS)

    Baklanov, Alexander; EuMetChem Team

    2015-04-01

    Online coupled meteorology atmospheric chemistry models have undergone a rapid evolution in recent years. Although mainly developed by the air quality modelling community, these models are also of interest for numerical weather prediction and climate modelling as they can consider not only the effects of meteorology on air quality, but also the potentially important effects of atmospheric composition on weather. Two ways of online coupling can be distinguished: online integrated and online access coupling. Online integrated models simulate meteorology and chemistry over the same grid in one model using one main timestep for integration. Online access models use independent meteorology and chemistry modules that might even have different grids, but exchange meteorology and chemistry data on a regular and frequent basis. This paper is an overall outcome of the European COST Action ES1004: European Framework for Online Integrated Air Quality and Meteorology Modelling (EuMetChem) and conclusions from the recently organized Symposium on Coupled Chemistry-Meteorology/Climate Modelling: Status and Relevance for Numerical Weather Prediction, Air Quality and Climate Research. It offers a review of the current research status of online coupled meteorology and atmospheric chemistry modelling, a survey of processes relevant to the interactions between atmospheric physics, dynamics and composition; and highlights selected scientific issues and emerging challenges that require proper consideration to improve the reliability and usability of these models for the three scientific communities: air quality, numerical meteorology modelling (including weather prediction) and climate modelling. It presents a synthesis of scientific progress and provides recommendations for future research directions and priorities in the development, application and evaluation of online coupled models.

  14. The Role of Tigris Euphrates Discharge on Coastal SST in the Arabian Gulf

    NASA Astrophysics Data System (ADS)

    Becker, R.; Sanders, J.

    2013-12-01

    The Tigris-Euphrates (T-E) river system provides most of the freshwater recharge into the Arabian/Persian Gulf, through the Shatt el-Arab, into the northern Gulf. Over the past decades, increased dam storage for irrigation and hydropower throughout the region has modified the characteristics of this flow. As a result, flow into the Iraqi Marshes has been reduced by at least half, with reduction in both peak and overall flow, and a corresponding decrease in flow through the Shatt el-Arab. This change in flow characteristics is observable in the waters on the Northern Gulf and in Kuwait bay. AVHRR Pathfinder v5.0 8 day data was assembled for the time period 1985-2010. Time series were extracted for sea surface temperature (SST) for locations in the Northern and Central Gulf and Kuwait Bay. These were compared with regional precipitation and GRACE water equivalent thickness variations in the upper and lower T-E basin, and published flow estimates. Results were used to examine 1) the overall impact of discharge on SST in the coastal area affected by T-E watershed discharge; 2) the impact of reduced flow years due to damming and drought years on the differences between coastal and bay SST and central Gulf SST. Annual peak flow in the period Dec-April was found to provide a lowering of coastal SST by more than 1C compared with more well mixed water in the central Gulf. This effect was not seen to be less than half during drought years (e.g. 2006-2008). Climate models predict end of century scenarios of precipitation similar to those seen during 2007-2008. The impact of this lower discharge from the Shatt el-Arab combined with predicted regional warming may result in habitat changes in coastal waters in the Northern Gulf.

  15. The mini-array of ASTRI SST-2M telescopes, precursors for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Pareschi, Giovanni; Bonnoli, Giacomo; Vercellone, Stefano; ASTRI Collaboration; CTA Consortium

    2016-05-01

    In the framework of the Cherenkov Telescope Array (CTA) Observatory, the Italian National Institute of Astrophysics (INAF) has recently inaugurated in Sicily (Italy), at the Serra La Nave astronomical site on the slopes of Mount Etna, a large field of view (FoV, ~ 9.6°) dual-mirror prototype (ASTRI SST-2M) of the CTA small size class of telescopes (SST). The CTA plans to install about 70 SST in the southern site to allow the study of the gamma rays from a few TeV up to hundreds of TeV. The ASTRI SST-2M telescope prototype has been developed following an end-to-end approach, since it includes the entire system of structure, mirrors optics (primary and secondary mirrors), camera, and control/acquisition software. A remarkable performance improvement could come from the operation of the ASTRI mini-array, led by INAF in synergy with the Universidade de Sao Paulo (Brazil) and the North-West University (South Africa). The ASTRI mini-array will be composed of nine ASTRI SST-2M units and it is proposed as a precursor and initial seed of the CTA to be installed at the final CTA southern site. Apart from the assessment of a number of technological aspects related to the CTA, the ASTRI mini-array will, if compared for instance to H.E.S.S., extend the point source sensitivity up to ~ 100 TeV, also improving it above 5-10 TeV. Moreover, the unprecedented width of the FoV, with its homogeneous acceptance and angular resolution, will significantly contribute to the achievement of original results during the early CTA science phase.

  16. Mount control system of the ASTRI SST-2M prototype for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Antolini, Elisa; Tosti, Gino; Tanci, Claudio; Bagaglia, Marco; Canestrari, Rodolfo; Cascone, Enrico; Gambini, Giorgio; Nucciarelli, Giuliano; Pareschi, Giovanni; Scuderi, Salvo; Stringhetti, Luca; Busatta, Andrea; Giacomel, Stefano; Marchiori, Gianpietro; Manfrin, Cristiana; Marcuzzi, Enrico; Di Michele, Daniele; Grigolon, Carlo; Guarise, Paolo

    2016-08-01

    The ASTRI SST-2M telescope is an end-to-end prototype proposed for the Small Size class of Telescopes (SST) of the future Cherenkov Telescope Array (CTA). The prototype is installed in Italy at the INAF observing station located at Serra La Nave on Mount Etna (Sicily) and it was inaugurated in September 2014. This paper presents the software and hardware architecture and development of the system dedicated to the control of the mount, health, safety and monitoring systems of the ASTRI SST-2M telescope prototype. The mount control system installed on the ASTRI SST-2M telescope prototype makes use of standard and widely deployed industrial hardware and software. State of the art of the control and automation industries was selected in order to fulfill the mount related functional and safety requirements with assembly compactness, high reliability, and reduced maintenance. The software package was implemented with the Beckhoff TwinCAT version 3 environment for the software Programmable Logical Controller (PLC), while the control electronics have been chosen in order to maximize the homogeneity and the real time performance of the system. The integration with the high level controller (Telescope Control System) has been carried out by choosing the open platform communications Unified Architecture (UA) protocol, supporting rich data model while offering compatibility with the PLC platform. In this contribution we show how the ASTRI approach for the design and implementation of the mount control system has made the ASTRI SST-2M prototype a standalone intelligent machine, able to fulfill requirements and easy to be integrated in an array configuration such as the future ASTRI mini-array proposed to be installed at the southern site of the Cherenkov Telescope Array (CTA).

  17. Assessment of Global Forecast Ocean Assimilation Model (FOAM) using new satellite SST data

    NASA Astrophysics Data System (ADS)

    Ascione Kenov, Isabella; Sykes, Peter; Fiedler, Emma; McConnell, Niall; Ryan, Andrew; Maksymczuk, Jan

    2016-04-01

    There is an increased demand for accurate ocean weather information for applications in the field of marine safety and navigation, water quality, offshore commercial operations, monitoring of oil spills and pollutants, among others. The Met Office, UK, provides ocean forecasts to customers from governmental, commercial and ecological sectors using the Global Forecast Ocean Assimilation Model (FOAM), an operational modelling system which covers the global ocean and runs daily, using the NEMO (Nucleus for European Modelling of the Ocean) ocean model with horizontal resolution of 1/4° and 75 vertical levels. The system assimilates salinity and temperature profiles, sea surface temperature (SST), sea surface height (SSH), and sea ice concentration observations on a daily basis. In this study, the FOAM system is updated to assimilate Advanced Microwave Scanning Radiometer 2 (AMSR2) and the Spinning Enhanced Visible and Infrared Imager (SEVIRI) SST data. Model results from one month trials are assessed against observations using verification tools which provide a quantitative description of model performance and error, based on statistical metrics, including mean error, root mean square error (RMSE), correlation coefficient, and Taylor diagrams. A series of hindcast experiments is used to run the FOAM system with AMSR2 and SEVIRI SST data, using a control run for comparison. Results show that all trials perform well on the global ocean and that largest SST mean errors were found in the Southern hemisphere. The geographic distribution of the model error for SST and temperature profiles are discussed using statistical metrics evaluated over sub-regions of the global ocean.

  18. Understanding future regional hydroclimate change: the relative roles of direct radiative forcing and SST warming

    NASA Astrophysics Data System (ADS)

    Li, X.; Ting, M.

    2015-12-01

    Future hydroclimate projections from state-of-the-art climate models show large uncertainty and model discrepancy, particularly over the monsoon regions. It is important to understand the different physical pathways by which greenhouse gases (GHGs) may impact regional hydroclimate and distinguish those from the uncertainty caused by low model skill. The response to rising GHGs can be through both direct radiative effect and indirect effect via sea surface temperature (SST) warming, the relative importance of the two may result in discrepancies in conclusions. We assess the regional hydroclimate responses to greenhouse warming using output from coupled general circulation models (GCMs) in the Coupled Model Intercomparison Project - Phase 5 (CMIP5) and idealized experiments from the Atmosphere Model Intercomparison Project (AMIP). The direct radiative response to rising CO2 is quantified by quadrupling the CO2 concentration with prescribed SST, whereas the indirect response to SST warming is quantified by a 4K uniform warming of SST with fixed CO2 concentration. We show that over the monsoon regions, the summertime precipitation response associated with direct radiative forcing and that with indirect SST effect largely opposes each other. This competing effect may contribute to an overall weak response and model discrepancy in the CMIP5 coupled simulations. The physical mechanisms causing the monsoon rainfall changes are examined using the moisture budget analysis. The mean moisture flux convergence term is separated into thermodynamic and dynamic components, involving changes in moisture and circulation, respectively. The differing monsoon rainfall response is mainly due to the opposing effect of the dynamic contribution to the mean moisture convergence, thus related to atmospheric circulation change. We further address possible changes in the seasonal cycle for the different monsoon regions.

  19. Interactions Between the Thermohaline Circulation and Tropical Atlantic SST in a Coupled General Circulation Model

    NASA Technical Reports Server (NTRS)

    Miller, Ron; Jiang, Xing-Jian; Travis, Larry (Technical Monitor)

    2001-01-01

    Tropical Atlantic SST shows a (statistically well-defined) decadal time scale in a 104-year simulation of unforced variability by a coupled general circulation model (CGCM). The SST anomalies superficially resemble observed Tropical Atlantic variability (TAV), and are associated with changes in the atmospheric circulation. Brazilian rainfall is modulated with a decadal time scale, along with the strength of the Atlantic trade winds, which are associated with variations in evaporation and the net surface heat flux. However, in contrast to observed tropical Atlantic variability, the trade winds damp the associated anomalies in ocean temperature, indicating a negative feedback. Tropical SST anomalies in the CGCM, though opposed by the surface heat flux, are advected in from the Southern Hemisphere mid-latitudes. These variations modulate the strength of the thermohaline circulation (THC): warm, salty anomalies at the equator sink drawing cold, fresh mid-latitude water. Upon reaching the equator, the latter inhibit vertical overturning and advection from higher latitudes, which allows warm, salty anomalies to reform, returning the cycle to its original state. Thus, the cycle results from advection of density anomalies and the effect of these anomalies upon the rate of vertical overturning and surface advection. This decadal modulation of Tropical Atlantic SST and the thermohaline circulation is correlated with ocean heat transport to the Northern Hemisphere high latitudes and Norwegian Sea SST. Because of the central role of equatorial convection, we question whether this mechanism is present in the current climate, although we speculate that it may have operated in palaeo times, depending upon the stability of the tropical water column.

  20. Persistent Multidecadal SST Variability Since 1775 AD Recorded in Multiple Corals from the Yucatan Peninsula

    NASA Astrophysics Data System (ADS)

    Fernando Vásquez-Bedoya, L.; Blanchon, P.; Oppo, D.; Cohen, A. L.

    2011-12-01

    Observational and modeling studies have shown that long term North Atlantic basin-averaged sea surface temperatures (SSTs) combine a CO2-forced global warming trend with a multi-decadal oscillation (the Atlantic Multidecadal Oscillation or AMO) that likely arose from internal variability. The AMO can mitigate or amplify regional climate change, and will likely play a significant role in modulating the projected 21st century North Atlantic SST increase. Numerical models have proven incapable of predicting future phase shifts in AMO in a deterministic manner and probability-based projections are hampered by the short duration of the instrumental record (130-150 years), which captures just 2 multidecadal oscillations. Longer records of past AMO behavior could help improve probability-based projections. In the absence of instrumental data (or direct observations) such records must be generated from proxy climate archives. Here we report SST reconstructions based on coral annual growth rates (linear extension) from multiple long-lived colonies of Siderastrea sideraea collected live at two sites on the Yucatan Peninsula, Mexican Caribbean. Yucatan is geographically well placed to capture AMO variability: instrumental SSTs over the last 150 years show a strong positive correlation with the AMO Index (R=0.68). We demonstrate that the annual linear growth rates of three coral colonies are significantly inversely correlated with SST, and the correlation is strongest on decadal timescales. We use annual linear growth rates to extend the SST record to 1775 AD. Finally, our marine-based record of multidecadal variability compare favorably with recently published records of paleo-AMO based on terrestrial proxies. Our results provide strong motivation for extending growth-based proxy records of Atlantic SST further back in time using a combination of longer-lived S. siderea at select locations, and deceased colonies that can be independently dated by Uranium-series to extend the

  1. Large-scale changes of the temperature frontal zones and regional features in heat transfer patterns based on SST data

    NASA Astrophysics Data System (ADS)

    Kartushinsky, A.; Shishkin, A.

    The intensity of heat transfer by currents influences on the location of energetically active zones in the ocean In such zones the hydrological parameter gradients increase which reveals the structure of frontal zones SST data isn t enough to determine the location of such zones In our work we calculate according to AVHRR MCSST data the temperature gradients in the ocean that show the large-scale changes of the temperature frontal zones TFZ for the 1982 -- 1986 average monthly and 1990 -- 2001 average weekly periods To study how the temperature frontal zones are connected with the regional heat patterns we use the data concerned with the space-time variability of SST gradients for separate Pacific regions In our case the focus is placed on the investigation of the connection between the formation of the El Ni v n o-Southern Oscillation South-East Pacific and the variability of the heat transfer near the shores of North-West Pacific For the investigation of the main factors influencing on the heat redistribution in the ocean and of the reasons for the large-scale changes in the TFZ structure we use a two-dimensional horizontal numerical model of heat transfer The model takes into consideration the current speed turbulent diffusion and solar radiation Besides the results were obtained concerning heat transformation in several regions of North and South Atlantic which had been caused by the large-scale changes in the TFZ structure The research results and model experiments allow to identify the time scale of the temperature field

  2. EPA Research Funding Aims to Improve Understanding of Climate Change Impacts on Indoor Air Quality

    EPA Pesticide Factsheets

    Harvard College is one of only nine institutions that will share nearly $8 million from the US Environmental Protection Agency to study how climate change affects indoor air quality and the resulting health effects.

  3. Rapid evolution of air pollution sensor technology for research and consumer product applications

    EPA Science Inventory

    Outdoor air pollution measurement approaches have historically been conducted using stationary shelters that require significant space, power, and expertise to operate. The cost and logistical requirements to conduct monitoring have limited the number of locations with continuou...

  4. The Role of Unmanned Aerial Systems-Sensors in Air Quality Research

    EPA Science Inventory

    The use of unmanned aerial systems (UASs) and miniaturized sensors for a variety of scientific and security purposes has rapidly increased. UASs include aerostats (tethered balloons) and remotely controlled, unmanned aerial vehicles (UAVs) including lighter-than-air vessels, fix...

  5. The Conference Proceedings of the 2003 Air Transport Research Society (ATRS) World Conference, Volume 3

    NASA Technical Reports Server (NTRS)

    Bowen, Brent (Editor); Gudmundsson, Sveinn (Editor); Oum, Tae (Editor)

    2003-01-01

    Volume 3 of the 2003 Air Transport Reserch Society (ATRS) World Conference includes papers on topics relevant to airline operations worldwide. Specific topics include: European Union and civil aviation regimens;simulating decision making in airline operations, passenger points of view on convenient airports; route monopolies and nonlinear pricing; cooperation among airports in Europe; fleet modernizaiton in Brazil;the effects of deregulation on the growth of air transportation in Europe and the United States.

  6. Biomarker as a Research Tool in Linking Exposure to Air Particles and Respiratory Health

    PubMed Central

    2015-01-01

    Some of the environmental toxicants from air pollution include particulate matter (PM10), fine particulate matter (PM2.5), and ultrafine particles (UFP). Both short- and long-term exposure could result in various degrees of respiratory health outcomes among exposed persons, which rely on the individuals' health status. Methods. In this paper, we highlight a review of the studies that have used biomarkers to understand the association between air particles exposure and the development of respiratory problems resulting from the damage in the respiratory system. Data from previous epidemiological studies relevant to the application of biomarkers in respiratory system damage reported from exposure to air particles are also summarized. Results. Based on these analyses, the findings agree with the hypothesis that biomarkers are relevant in linking harmful air particles concentrations to increased respiratory health effects. Biomarkers are used in epidemiological studies to provide an understanding of the mechanisms that follow airborne particles exposure in the airway. However, application of biomarkers in epidemiological studies of health effects caused by air particles in both environmental and occupational health is inchoate. Conclusion. Biomarkers unravel the complexity of the connection between exposure to air particles and respiratory health. PMID:25984536

  7. United States Air Force Summer Research Program 1991. Graduate Student Research Program (GSRP) Reports. Volume 6. Armstrong Laboratory, Wilford Hall Medical Center

    DTIC Science & Technology

    1992-01-09

    ANALYSIS Differences between groups and pre/ post detraining to baroreceptor stimulation and LBNP tolerance ,vill be determined using ANOVA and ANCOVA...objectives are to permit graduate students to participate in research under the direction of a faculty member at an Air Force la~cratory; stimulate ...10 system. They imp’ mented a spinal injury function and baseline response criteria using a three dimensional head-spine model for head mounted

  8. United States Air Force Research on Airfield Pavement Repairs Using Precast Portland Cement Concrete (PCC) Slabs (BRIEFING SLIDES)

    DTIC Science & Technology

    2008-08-28

    AFRL-RX-TY-TP-2008-4582 POSTPRINT UNITED STATES AIR FORCE RESEARCH ON AIRFIELD PAVEMENT REPAIRS USING PRECAST PORTLAND CEMENT CONCRETE ...pavement Portland cement concrete (PCC) slab repairs using precast PCC slab panels. AFRL is leading the technology development by critically reviewing the...technology transfer activities including, but not limited to, training, reports and preparation of ETLs. 2 The use of precast concrete slabs for repair of

  9. On the use of a coupled ocean-atmosphere-wave model during an extreme cold air outbreak over the Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Ricchi, Antonio; Miglietta, Mario Marcello; Falco, Pier Paolo; Benetazzo, Alvise; Bonaldo, Davide; Bergamasco, Andrea; Sclavo, Mauro; Carniel, Sandro

    2016-05-01

    An intense cold air outbreak affected the northern Adriatic Sea during winter 2012, determining an exceptional persistence of northeasterly Bora wind over the basin, which lasted for about 3 weeks. The cold air coming from the Balkans produced icing in the Venice lagoon and very intense snowfall in the Apennines Mountains and even near the coasts. In order to understand the importance and role of air-sea interactions for the evolution of the atmospheric fields, simulations with the Weather Research and Forecasting (WRF) model encompassing the whole period have been performed using sea surface temperature (SST) fields with an increasing level of complexity. Starting from a large-scale static sea temperature, the SST in the initial and boundary conditions has been progressively made more realistic. First, a more refined field, retrieved from a satellite radiometer was used; then, the same field was updated every 6 h. Next, the effect of including a simplified 1D ocean model reproducing the Oceanic Mixed Layer (OML) evolution has been tested. Finally, the potential improvements coming from a coupled description of atmosphere-ocean and atmosphere-ocean-waves interactions have been explored within the Coupled Ocean-Atmosphere-Wave Sediment Transport (COAWST) modeling system. Results highlight that the energy exchange between air and sea does not significantly impact the atmospheric fields, in particular 10 m wind and 2 m temperature, also because of the geography of the basin and the predominance of synoptic-scale flow in intense events of Bora, in the northern Adriatic. However, when sensible and latent heat fluxes, which are dependent on atmospheric and oceanic variables, are analyzed, the more realistic representation of SST drastically improves the model performances.

  10. Summer Research Program - 1997 Summer Faculty Research Program Volume 6 Arnold Engineering Development Center United States Air Force Academy Air Logistics Centers

    DTIC Science & Technology

    1997-12-01

    Looking Radar Signal Procesing a Literature Review DR Milton L Cone WL/AACF 5- 13 Embry-Riddle Aeronautical University , Prescott , AZ Scheduling in the...Dayton , OH Develop an Explosive Simulated Testing Apparatus for Impact Physics Research at Wright Laboratory DR James S Marsh WL/MNSI 5- 46...compute the flow in the defined portion of the arc heater. Heat addition was used to simulate the joule heating process inside the arc heater. The Solver A

  11. Mexico City air quality research initiative, volume 3, modeling and simulation

    SciTech Connect

    Mauzy, A.

    1994-06-01

    The objective of the modeling and simulation task was to develop, test, and apply an appropriate set of models that could translate emission changes into air quality changes. Specifically, we wanted to develop models that could describe how existing measurements of ozone (O{sub 3}), carbon monoxide (CO), and sulfur dioxide (SO{sub 2}) would be expected to change if their emissions were changed. The modeling must be able to address the effects of difference in weather conditions and changes in land use as well as the effects of changes in emission levels. It must also be able to address the effects of changes in the nature and distribution of the emissions as well as changes in the total emissions. A second objective was to provide an understanding of the conditions that lead to poor air quality in Mexico City. We know in a general sense that Mexico City`s poor air quality is the result of large quantities of emissions in a confined area that is subject to light winds, but we did not know much about many aspects of the problem. For example, is the air quality on a given day primarily the result of emissions on that day...or is there an important carryover from previous nights and days? With a good understanding of the important meteorological circumstances that lead to poor air quality, we learn what it take duce an accurate forecast of impending quality so that we can determine the advisability of emergency measures.

  12. Updating Sea Spray Aerosol Emissions in the Community Multiscale Air Quality Model

    NASA Astrophysics Data System (ADS)

    Gantt, B.; Bash, J. O.; Kelly, J.

    2014-12-01

    Sea spray aerosols (SSA) impact the particle mass concentration and gas-particle partitioning in coastal environments, with implications for human and ecosystem health. In this study, the Community Multiscale Air Quality (CMAQ) model is updated to enhance fine mode SSA emissions, include sea surface temperature (SST) dependency, and revise surf zone emissions. Based on evaluation with several regional and national observational datasets in the continental U.S., the updated emissions generally improve surface concentrations predictions of primary aerosols composed of sea-salt and secondary aerosols affected by sea-salt chemistry in coastal and near-coastal sites. Specifically, the updated emissions lead to better predictions of the magnitude and coastal-to-inland gradient of sodium, chloride, and nitrate concentrations at Bay Regional Atmospheric Chemistry Experiment (BRACE) sites near Tampa, FL. Including SST-dependency to the SSA emission parameterization leads to increased sodium concentrations in the southeast U.S. and decreased concentrations along the Pacific coast and northeastern U.S., bringing predictions into closer agreement with observations at most Interagency Monitoring of Protected Visual Environments (IMPROVE) and Chemical Speciation Network (CSN) sites. Model comparison with California Research at the Nexus of Air Quality and Climate Change (CalNex) observations will also be discussed, with particular focus on the South Coast Air Basin where clean marine air mixes with anthropogenic pollution in a complex environment. These SSA emission updates enable more realistic simulation of chemical processes in coastal environments, both in clean marine air masses and mixtures of clean marine and polluted conditions.

  13. AIR SHIPMENT OF SPENT NUCLEAR FUEL FROM THE BUDAPEST RESEARCH REACTOR

    SciTech Connect

    Dewes, J.

    2014-02-24

    The shipment of spent nuclear fuel is usually done by a combination of rail, road or sea, as the high activity of the SNF needs heavy shielding. Air shipment has advantages, e.g. it is much faster than any other shipment and therefore minimizes the transit time as well as attention of the public. Up to now only very few and very special SNF shipments were done by air, as the available container (TUK6) had a very limited capacity. Recently Sosny developed a Type C overpack, the TUK-145/C, compliant with IAEA Standard TS-R-1 for the VPVR/M type Skoda container. The TUK-145/C was first used in Vietnam in July 2013 for a single cask. In October and November 2013 a total of six casks were successfully shipped from Hungary in three air shipments using the TUK-145/C. The present paper describes the details of these shipments and formulates the lessons learned.

  14. Introduction of correlative light and airSEMTM microscopy imaging for tissue research under ambient conditions

    PubMed Central

    Solomonov, Inna; Talmi-Frank, Dalit; Milstein, Yonat; Addadi, Sefi; Aloshin, Anna; Sagi, Irit

    2014-01-01

    A complete fingerprint of a tissue sample requires a detailed description of its cellular and extracellular components while minimizing artifacts. We introduce the application of a novel scanning electron microscope (airSEMTM) in conjunction with light microscopy for functional analysis of tissue preparations at nanometric resolution (<10 nm) and under ambient conditions. Our metal-staining protocols enable easy and detailed visualization of tissues and their extracellular scaffolds. A multimodality imaging setup, featuring airSEMTM and a light microscope on the same platform, provides a convenient and easy-to-use system for obtaining structural and functional correlative data. The airSEMTM imaging station complements other existing imaging solutions and shows great potential for studies of complex biological systems. PMID:25100357

  15. Enhanced Influence of the Tropical Atlantic SST on the Western North Pacific Subtropical High after late 1970s

    NASA Astrophysics Data System (ADS)

    Hong, C. C.

    2015-12-01

    The western North Pacific subtropical high (WNPSH) in boreal summer shows a remarkable enhancement after the late 1970s. Whereas the sea surface temperature (SST) in the North Indian Ocean (NIO) and the equatorial eastern Pacific (EEP) had been noted to have remarkable local or remote effects on enhancing the WNPSH, the influence of the Atlantic SST, so far, is hardly explored. This article reports a new finding: enhanced relationship between the tropical Atlantic (TA)-SST and the WNPSH after the late 1970s. Regression study suggests that the warm TA-SST produced a zonally overturning circulation anomaly, with descending over the central equatorial Pacific and ascending over the tropical Atlantic/eastern Pacific. The anomalous descending over the central equatorial Pacific likely induced low-level anticyclonic anomaly to the west and therefore enhanced the WNPSH. One implication of this new finding is for predictability. The well-known "spring predictability barrier" (i.e., the influence of El Niño and Southern Oscillation (ENSO) falls dramatically during boreal spring) does not apply to the TA-SST/WNPSH relationship. Conversely, the TA-SST shows consistently high correlation starting from boreal spring when the ENSO influence continues declining. The TA-SST pushes the predictability of the WNPSH in boreal summer approximately one season earlier to boreal spring.

  16. Suppressing the noise in SST retrieved from satellite infrared measurements by smoothing the differential terms in regression equations

    NASA Astrophysics Data System (ADS)

    Petrenko, B.; Ignatov, A.; Kihai, Y.

    2015-05-01

    Multichannel regression algorithms are widely used in retrievals of sea surface temperature (SST) from infrared brightness temperatures (BTs) observed from satellites. The SST equations typically include terms dependent on the difference between BTs observed in spectral bands with different atmospheric absorption. Such terms do account for variations in the variable atmospheric attenuation, but may introduce additional noise in the retrieved SST due to amplification of the radiometric noise. Some processing systems (e.g., the EUMETSAT OSI-SAF) incorporate noise suppression algorithms, based on spatial smoothing of the differential terms in the SST equations. A similar algorithm is being tested for the potential use in the NOAA Advanced Clear-Sky Processor for Oceans (ACSPO). The ACSPO smoothing algorithm aims to preserve natural variations in SST field, while minimizing distortions in the original SST imagery, at a minimal processing time. This presentation describes the ACSPO smoothing algorithm and results of its evaluation with the SST imagery, and with the in situ matchups for NOAA and Metop AVHRRs, Terra and Aqua MODISs, and SNPP/JPSS VIIRS.

  17. Aeorodynamic characteristics of an air-exchanger system for the 40- by 80-foot wind tunnel at Ames Research Center

    NASA Technical Reports Server (NTRS)

    Rossow, V. J.; Schmidt, G. I.; Meyn, L. A.; Ortner, K. R.; Holmes, R. E.

    1986-01-01

    A 1/50-scale model of the 40- by 80-Foot Wind Tunnel at Ames Research Center was used to study various air-exchange configurations. System components were tested throughout a range of parameters, and approximate analytical relationships were derived to explain the observed characteristics. It is found that the efficiency of the air exchanger could be increased (1) by adding a shaped wall to smoothly turn the incoming air downstream, (2) by changing to a contoured door at the inlet to control the flow rate, and (3) by increasing the size of the exhaust opening. The static pressures inside the circuit then remain within the design limits at the higher tunnel speeds if the air-exchange rate is about 5% or more. Since the model is much smaller than the full-scale facility, it is not possible to completely duplicate the tunnel, and it will be necessary to measure such characteristics as flow rate and tunnel pressures during implementation of the remodeled facility. The aerodynamic loads estimated for the inlet door and for nearby walls are also presented.

  18. AirLab: a cloud-based platform to manage and share antibody-based single-cell research.

    PubMed

    Catena, Raúl; Özcan, Alaz; Jacobs, Andrea; Chevrier, Stephane; Bodenmiller, Bernd

    2016-06-29

    Single-cell analysis technologies are essential tools in research and clinical diagnostics. These methods include flow cytometry, mass cytometry, and other microfluidics-based technologies. Most laboratories that employ these methods maintain large repositories of antibodies. These ever-growing collections of antibodies, their multiple conjugates, and the large amounts of data generated in assays using specific antibodies and conditions makes a dedicated software solution necessary. We have developed AirLab, a cloud-based tool with web and mobile interfaces, for the organization of these data. AirLab streamlines the processes of antibody purchase, organization, and storage, antibody panel creation, results logging, and antibody validation data sharing and distribution. Furthermore, AirLab enables inventory of other laboratory stocks, such as primers or clinical samples, through user-controlled customization. Thus, AirLab is a mobile-powered and flexible tool that harnesses the capabilities of mobile tools and cloud-based technology to facilitate inventory and sharing of antibody and sample collections and associated validation data.

  19. The role of micronutrients in the response to ambient air pollutants: Potential mechanisms and suggestions for research design.

    PubMed

    Miller, Colette N; Rayalam, Srujana

    2017-01-01

    People living in regions of low socioeconomic status are thought to be prone to higher exposures to environmental pollutants, poor nutrition, and numerous preventable diseases and infections. Poverty correlates with pollution and malnutrition; however, limited studies examined their interrelationship. The well-studied, deleterious health effects attributed to environmental pollutants and poor nutrition may act in combination with produce more severe adverse health outcomes than any one factor alone. Deficiencies in specific nutrients render the body more susceptible to injury which may influence the pathways that serve as the mechanistic responses to ambient air pollutants. This review (1) explores specific micronutrients that are of global concern, (2) explains how these nutrients may impact the body's response to ambient air pollution, and (3) provides guidance on designing animal models of nutritional deficiency. It is likely that those individuals who reside in regions of high ambient air pollution are similarly malnourished. Therefore, it is important that research identifies specific nutrients of concern and their impact in identified regions of high ambient air pollution.

  20. Legal and security requirements for the air transportation of cyanotoxins and toxigenic cyanobacterial cells for legitimate research and analytical purposes.

    PubMed

    Metcalf, J S; Meriluoto, J A O; Codd, G A

    2006-05-25

    Cyanotoxins are now recognised by international and national health and environment agencies as significant health hazards. These toxins, and the cells which produce them, are also vulnerable to exploitation for illegitimate purposes. Cyanotoxins are increasingly being subjected to national and international guidelines and regulations governing their production, storage, packaging and transportation. In all of these respects, cyanotoxins are coming under the types of controls imposed on a wide range of chemicals and other biotoxins of microbial, plant and animal origin. These controls apply whether cyanotoxins are supplied on a commercial basis, or stored and transported in non-commercial research collaborations and programmes. Included are requirements concerning the transportation of these toxins as documented by the United Nations, the International Air Transport Association (IATA) and national government regulations. The transportation regulations for "dangerous goods", which by definition include cyanotoxins, cover air mail, air freight, and goods checked in and carried on flights. Substances include those of determined toxicity and others of suspected or undetermined toxicity, covering purified cyanotoxins, cyanotoxin-producing laboratory strains and environmental samples of cyanobacteria. Implications of the regulations for the packaging and air-transport of dangerous goods, as they apply to cyanotoxins and toxigenic cyanobacteria, are discussed.

  1. Design and construction of cage environments for air ion and electric field research

    NASA Astrophysics Data System (ADS)

    Yost, M. G.; Kellogg, E. W.

    1987-06-01

    This report describes the design and construction of cage environments suitable for chronic exposures of large groups of mice to air ions and electric fields. These environments provide defined and reproducible ion densities, ion flux, DC electric fields, sound levels, air temperature and air quality. When used during a 2 year study, these cage environments served as a durable and reliable continuous exposure system. Three environmental chambers (cubicles) housed a total of 12 cages and provided control of air temperature, air purity and lighting. Exposure cages had grounded metal exterior walls, a plexiglass door and interior walls lined with formica. An internal isolated field plate supplemented with guard wires, energized with ca 1000 VDC, created about a 2 kV/m electric field at the grounded cage floor. Air ions resulted from the beta emission of sealed tritium foils mounted on the field plate. Cages provided high ion (1.3×105 ions/cc), low ion (1.6×103 ions/cc) and field only (ion depleted < 50 ions/cc) conditions for both polarities with similar electric fields in ionized and field only cages. Detailed mapping of the floor level ion flux using 100 cm2 flat probes gave average fluxes of 880 fA cm-2 in high ion cages and 10 fA cm-2 in low ion cages. Whole body currents measured using live anesthethized mice in high ion cages averaged 104±63 pA. Both ion flux and whole body currents remained constant over time, indicating no charge accumulation on body fur or cage wall surfaces in this exposure system.

  2. A review of Air Force high efficiency cascaded multiple bandgap solar cell research and development

    NASA Technical Reports Server (NTRS)

    Rahilly, W. P.

    1979-01-01

    At the time of their conception, the cell stack systems to be discussed represent the best semiconductor materials combinations to achieve Air Force program goals. These systems are investigated thoroughly and the most promising systems, from the standpoint of high efficiency, are taken for further development with large area emphasized (at least 4 sq cm). The emphasis in the Air Force cascaded cell program is placed on eventual nonconcentrator application. This use of the final cell design considerably relieves the low resistance requirements for the tunnel junction. In a high concentration application the voltage drop across the tunnel junction can be a very serious problem.

  3. The Symposium Proceedings of the 1998 Air Transport Research Group (ATRG). Volume 3

    NASA Technical Reports Server (NTRS)

    Reynolds-Feighan, Aisling (Editor); Bowen, Brent D. (Editor)

    1998-01-01

    Contents include the following: airline deregulation in Australia: a medium term assessment; why can't Japan deregulate the airline industry and open the sky immediately?; toward a market-oriented air transport system?: present developments in Russian civil aviation performance and policy; the asian economic crisis and its implications for aviation policy in asia pacific: industry outlook approaching the next millennium; a tale of two airlines: the post privatization performance of two caribbean airlines: the role of capital productivity in British Airways' financial recovery; airline privatization: does it matter?; airfright demand: responding to new developments in logistics; and air cargo business relationships.

  4. Impacts of SST Warming in tropical Indian Ocean on CMIP5 model-projected summer rainfall changes over Central Asia

    NASA Astrophysics Data System (ADS)

    Zhao, Yong; Zhang, Huqiang

    2016-05-01

    Based on the historical and RCP8.5 experiments from 25 Coupled Model Intercomparison Project phase 5 (CMIP5) models, the impacts of sea surface temperature (SST) warming in the tropical Indian Ocean (IO) on the projected change in summer rainfall over Central Asia (CA) are investigated. The analysis is designed to answer three questions: (1) Can CMIP5 models reproduce the observed influence of the IO sea surface temperatures (SSTs) on the CA rainfall variations and the associated dynamical processes? (2) How well do the models agree on their projected rainfall changes over CA under warmed climate? (3) How much of the uncertainty in such rainfall projections is due to different impacts of IO SSTs in these models? The historical experiments show that in most models summer rainfall over CA are positively correlated to the SSTs in the IO. Furthermore, for models with higher rainfall-SSTs correlations, the dynamical processes accountable for such impacts are much closer to what have been revealed in observational data: warmer SSTs tend to favor the development of anti-cyclonic circulation patterns at low troposphere over north and northwest of the Arabian Sea and the Bay of Bengal. These anomalous circulation patterns correspond to significantly enhanced southerly flow which carries warm and moisture air mass from the IO region up to the northeast. At the same time, there is a cyclonic flow over the central and eastern part of the CA which further brings the tropical moisture into the CA and provides essential moist conditions for its rainfall generation. In the second half of twenty-first century, although all the 25 models simulate warmed SSTs, significant uncertainty exists in their projected rainfall changes over CA: half of them suggest summer rainfall increases, but the other half project rainfall decreases. However, when we select seven models out of the 25 based on their skills in capturing the dynamical processes as observed, then the model projected changes

  5. Relation between Ocean SST Dipoles and Downwind Continental Croplands Assessed for Early Management Using Satellite-based Photosynthesis Models

    NASA Astrophysics Data System (ADS)

    Kaneko, Daijiro

    2015-04-01

    Crop-monitoring systems with the unit of carbon-dioxide sequestration for environmental issues related to climate adaptation to global warming have been improved using satellite-based photosynthesis and meteorological conditions. Early management of crop status is desirable for grain production, stockbreeding, and bio-energy providing that the seasonal climate forecasting is sufficiently accurate. Incorrect seasonal forecasting of crop production can damage global social activities if the recognized conditions are unsatisfied. One cause of poor forecasting related to the atmospheric dynamics at the Earth surface, which reflect the energy budget through land surface, especially the oceans and atmosphere. Recognition of the relation between SST anomalies (e.g. ENSO, Atlantic Niño, Indian dipoles, and Ningaloo Niño) and crop production, as expressed precisely by photosynthesis or the sequestrated-carbon rate, is necessary to elucidate the mechanisms related to poor production. Solar radiation, surface air temperature, and water stress all directly affect grain vegetation photosynthesis. All affect stomata opening, which is related to the water balance or definition by the ratio of the Penman potential evaporation and actual transpiration. Regarding stomata, present data and reanalysis data give overestimated values of stomata opening because they are extended from wet models in forests rather than semi-arid regions commonly associated with wheat, maize, and soybean. This study applies a complementary model based on energy conservation for semi-arid zones instead of the conventional Penman-Monteith method. Partitioning of the integrated Net PSN enables precise estimation of crop yields by modifying the semi-closed stomata opening. Partitioning predicts production more accurately using the cropland distribution already classified using satellite data. Seasonal crop forecasting should include near-real-time monitoring using satellite-based process crop models to avoid

  6. Research and demonstration to improve air quality for the U.S. animal feeding operations in the 21st century - a critical review.

    PubMed

    Ni, Ji-Qin

    2015-05-01

    There was an increasing interest in reducing production and emission of air pollutants to improve air quality for animal feeding operations (AFOs) in the U.S. in the 21st century. Research was focused on identification, quantification, characterization, and modeling of air pollutions; effects of emissions; and methodologies and technologies for scientific research and pollution control. Mitigation effects were on pre-excretion, pre-release, pre-emission, and post-emission. More emphasis was given on reducing pollutant emissions than improving indoor air quality. Research and demonstrations were generally continuation and improvement of previous efforts. Most demonstrated technologies were still in a limited scale of application. Future efforts are needed in many fundamental and applied research areas. Advancement in instrumentation, computer technology, and biological sciences and genetic engineering is critical to bring major changes in this area. Development in research and demonstration will depend on the actual political, economic, and environmental situations.

  7. Integrating research on wildland fires and air quality: needs and recommendations

    EPA Science Inventory

    A summary is presented that integrates general information on the causes and effects of wildland fires and emissions with various ecological impacts of forest fires and air pollution in forests and other ecosystems. We also synthesize information on the regional effects of wildl...

  8. Contributions to Climate Research Using the AIRS Science Team Version-5 Products

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Molnar, Gyula; Iredell, Lena

    2011-01-01

    This paper compares recent spatial anomaly time series of OLR (Outgoing Longwave Radiation) and OLRCLR (Clear Sky OLR) as determined using CERES and AIRS observations over the time period September 2002 through June 2010. We find excellent agreement in OLR anomaly time series of both data sets in almost every detail, down to the 1 x 1 spatial grid point level. This extremely close agreement of OLR anomaly time series derived from observations by two different instruments implies that both sets of results must be highly stable. This agreement also validates to some extent the anomaly time series of the AIRS derived products used in the computation of the AIRS OLR product. The paper then examines anomaly time series of AIRS derived products over the extended time period September 2002 through April 2011. We show that OLR anomalies during this period are closely in phase with those of an El Nino index, and that recent global and tropical mean decreases in OLR and OLR(sub CLR) are a result of a transition from an El Nino condition at the beginning of the data record to La Nina conditions toward the end of the data period. This relationship can be explained by temporal changes of the distribution of mid-tropospheric water vapor and cloud cover in two spatial regions that are in direct response to El Nino/La Nina activity which occurs outside these spatial regions

  9. The Advanced Guided Weapon Testbed (AGWT) at the Air Force Research Laboratory Munitions Directorate

    DTIC Science & Technology

    2010-08-01

    Performance Fighter Twin Turbine Helicopter Supersonic Cruise Missile Boosting Theater Target Deploying Post-Boost Vehicle Strategic Reentry Vehicle...High Performance Fighter Twin Turbine Helicopter Supersonic Cruise Missile Figure 17. Air breathing and ballistic missile RTC outputs in various...radiation and convection heat loads. It also models external source effects, including solar reflection, earth shine, and plume impingement. Over the

  10. Evaluation of cloudy data as stable references for climate research using AIRS and IRIS data

    NASA Astrophysics Data System (ADS)

    Aumann, Hartmut H.; Jiang, Yibo; Elliott, Denis A.

    2011-10-01

    We explore the use cloudy data, including Deep Convective Clouds (DCC) in the tropical oceans for the evaluation of the absolute calibration accuracy and stability of infrared radiometers. For the evaluation of cloudy data we use random nadir samples. We illustrate the method with Atmospheric Infrared Sounder (AIRS) data and data from the Infrared Interferometric Spectrometer (IRIS) in the tropical oceans. AIRS is on the EOS Aqua satellite, which was launched in May 2002 and is expected to continue to produce high quality data until 2015. Two copies of IRIS flew on Nimbus satellites between April 1970 and January 1971. Based on inconsistencies between AIRS and IRIS data, the absolute accuracy of the IRIS data is about 1K, including a significant day/night bias. Part of the observed radiometric bias may have been introduced by quality control, which senses a temperature and spatial uniformity dependent degradation of instrument performance. The observed biases are larger than the 0.5K accuracy claimed in the literature. This absolute calibration uncertainty has to be taken into account in the analysis of changes in the more than 30 year time span between IRIS and AIRS, before they can be attributed to changes in the clouds or the climate. The method described in this paper can be applied retrospectively to any infrared radiometer like HIRS, AVHRR and GOES. It has the capability to exposes instrument artifacts, which are not apparent from the routine quality control of the data.

  11. Research Opportunities for Cancer Associated with Indoor Air Pollution from Solid-Fuel Combustion

    EPA Science Inventory

    Background: Indoor air pollution (IAP) derived largely from the use of solid fuels for cooking and heating affects about 3 billion people worldwide, resulting in substantial adverse health outcomes, including cancer. Women and children from developing countries are the most expos...

  12. STATUS OF RESEARCH ON AIR QUALITY: MERCURY, TRACE ELEMENTS, AND PARTICULATE MATTER. (R827649)

    EPA Science Inventory

    The Air Quality Conference reviewed the state of science and policy on the pollutants mercury, trace elements, and particulate matter (PM) in the environment. Critical issues dealing with impacts on health and ecosystems, emission prevention and control, measurement methods, a...

  13. The Role of Unmanned Aerial Systems/Sensors in Air Quality Research

    EPA Science Inventory

    The use of unmanned aerial systems (UASs) for a variety of scientific and security purposes has rapidly increased. UASs include aerostats (tethered balloons) and remotely controlled, unmanned aerial vehicles (UAVs) including lighter-than-air vessels, fixed wing airplanes, and he...

  14. An inventory of aeronautical ground research facilities. Volume 2: Air breathing engine test facilities

    NASA Technical Reports Server (NTRS)

    Pirrello, C. J.; Hardin, R. D.; Heckart, M. V.; Brown, K. R.

    1971-01-01

    The inventory covers free jet and direct connect altitude cells, sea level static thrust stands, sea level test cells with ram air, and propulsion wind tunnels. Free jet altitude cells and propulsion wind tunnels are used for evaluation of complete inlet-engine-exhaust nozzle propulsion systems under simulated flight conditions. These facilities are similar in principal of operation and differ primarily in test section concept. The propulsion wind tunnel provides a closed test section and restrains the flow around the test specimen while the free jet is allowed to expand freely. A chamber of large diameter about the free jet is provided in which desired operating pressure levels may be maintained. Sea level test cells with ram air provide controlled, conditioned air directly to the engine face for performance evaluation at low altitude flight conditions. Direct connect altitude cells provide a means of performance evaluation at simulated conditions of Mach number and altitude with air supplied to the flight altitude conditions. Sea level static thrust stands simply provide an instrumented engine mounting for measuring thrust at zero airspeed. While all of these facilities are used for integrated engine testing, a few provide engine component test capability.

  15. CHOOSING A CHEMICAL MECHANISM FOR REGULATORY AND RESEARCH AIR QUALITY MODELING APPLICATIONS

    EPA Science Inventory

    There are numerous, different chemical mechanisms currently available for use in air quality models, and new mechanisms and versions of mechanisms are continually being developed. The development of Morphecule-type mechanisms will add a near-infinite number of additional mecha...

  16. 75 FR 9894 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-04

    ... in Ambient Air TSP by Hot Plate Acid Extraction and ICP-MS Analysis.'' In this method, total...), extracted on a hot plate with 3M HNO 3 according to 40 CFR Appendix G to part 50, EPA Reference Method for... Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) based on EPA SW-846 Method 6020A. The application for...

  17. Science and Technology: The Making of the Air Force Research Laboratory

    DTIC Science & Technology

    2000-01-01

    Jr. . . . . . . . . . . . . . . 110 Blaise Durante . . . . . . . . . . . . . . . . . . . . . . 122 Ms. Wendy...of the Air Force, gave her perspective on the single lab. Also, Mr. Blaise Du ran te , who briefed Secretary Widnall on the final single-lab proposal...which reported di- rectly to General Viccellio. Russo also routinely interacted with Blaise Durante , deputy ass is tant secretary for manage

  18. DigiCam: fully digital compact camera for SST-1M telescope

    NASA Astrophysics Data System (ADS)

    Aguilar, J. A.; Bilnik, W.; Bogacz, L.; Bulik, T.; Christov, A.; della Volpe, D.; Dyrda, M.; Frankowski, A.; Grudzinska, M.; Grygorczuk, J.; Heller, M.; Idźkowski, B.; Janiak, M.; Jamrozy, M.; Karczewski, M.; Kasperek, J.; Lyard, E.; Marszałek, A.; Michałowski, J.; Moderski, R.; Montaruli, T.; Neronov, A.; Nicolau-Kukliński, J.; Niemiec, J.; Ostrowski, M.; Paśko, P.; Płatos, Ł.; Prandini, E.; Pruchniewicz, R.; Rafalski, J.; Rajda, P. J.; Rameez, M.; Rataj, M.; Rupiński, M.; Rutkowski, K.; Seweryn, K.; Sidz, M.; Stawarz, Ł.; Stodulska, M.; Stodulski, M.; Tokarz, M.; Toscano, S.; Troyano Pujadas, I.; Walter, R.; Wawer, P.; Wawrzaszek, R.; Wiśniewski, L.; Zietara, K.; Ziółkowski, P.; Żychowski, P.

    2014-08-01

    The single mirror Small Size Telescopes (SST-1M), being built by a sub-consortium of Polish and Swiss Institutions of the CTA Consortium, will be equipped with a fully digital camera with a compact photodetector plane based on silicon photomultipliers. The internal trigger signal transmission overhead will be kept at low level by introducing a high level of integration. It will be achieved by massively deploying state-of-the-art multi-gigabit transceivers, beginning from the ADC flash converters, through the internal data and trigger signals transmission over backplanes and cables, to the camera's server 10Gb/s Ethernet links. Such approach will allow fitting the size and weight of the camera exactly to the SST-1M needs, still retaining the flexibility of a fully digital design. Such solution has low power consumption, high reliability and long lifetime. The concept of the camera will be described, along with some construction details and performance results.

  19. Development of warm SST errors in the southern tropical Atlantic in CMIP5 decadal hindcasts

    NASA Astrophysics Data System (ADS)

    Toniazzo, Thomas; Woolnough, Steve

    2014-12-01

    SST errors in the tropical Atlantic are large and systematic in current coupled general-circulation models. We analyse the growth of these errors in the region of the south-eastern tropical Atlantic in initialised decadal hindcasts integrations for three of the models participating in the Coupled Model Inter-comparison Project 5. A variety of causes for the initial bias development are identified, but a crucial involvement is found, in all cases considered, of ocean-atmosphere coupling for their maintenance. These involve an oceanic "bridge" between the Equator and the Benguela-Angola coastal seas which communicates sub-surface ocean anomalies and constitutes a coupling between SSTs in the south-eastern tropical Atlantic and the winds over the Equator. The resulting coupling between SSTs, winds and precipitation represents a positive feedback for warm SST errors in the south-eastern tropical Atlantic.

  20. Global Ocean Nowcast/Forecast SST's from Multi-model Ensembles

    NASA Astrophysics Data System (ADS)

    Mehra, A.; Spindler, T.

    2013-12-01

    Multiple global SST nowcasts/forecasts are now available from various ocean operational systems (OOS). It can also be safely assumed that these systems have complementary predictive skills. There is also now well-documented literature that shows combining multiple forecasts using simple combinations can help substantially increase accuracy (or reduce error) of such forecasts (Clemen, 1989, Galmarini et al., 2004). Daily global nowcast SST fields from five different OOS (HYCOM, FOAM, CFS, RTOFS & MERCATOR) are used for investigation of ensemble techniques. The employed techniques include weighted means, clustering algorithms (Hartigan, 1975; Arthur and Vassilivitski, 2006) and operational consensus forecasts (Woodcock & Engel, 2005). Preliminary results are presented and discussed along with their limitations. Other alternatives to building ensembles including forecasts from prior run cycles of the same OOS will also be considered.

  1. Institutional Research: What Should We Expect? Defining and Exceeding Campus Expectations. AIR 1995 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Clagett, Craig A.; Kerr, Helen S.

    Expectations and roles of institutional researchers in higher education institutions are considered, as well as the question of what a research office should expect from its institution. A performance monitoring system for the assessment and continuous improvement of institutional research is also proposed. Ways that institutional research can be…

  2. Air Sensor Toolbox

    EPA Pesticide Factsheets

    Air Sensor Toolbox provides information to citizen scientists, researchers and developers interested in learning more about new lower-cost compact air sensor technologies and tools for measuring air quality.

  3. Next-generation air monitoring – an overview of EPA research to develop real-time instrumentation packages for stationary and mobile monitoring

    EPA Science Inventory

    Abstract. Air pollution measurement technology is advancing rapidly towards small-scale, real-time, wireless detectors, with a potential to significantly change the landscape of air pollution monitoring. The U.S. EPA Office of Research and Development is evaluating and developi...

  4. AIR 1981-82. Forum 1981 Proceedings: Toward 2001: The IR Perspective (Minneapolis, Minnesota, May 17-20). The Association for Institutional Research Directory, 1981-82.

    ERIC Educational Resources Information Center

    Association for Institutional Research.

    Proceedings of the 1981 Association for Institutional Research (AIR) Forum and the 1981-82 AIR Directory are presented in a single volume. General session addresses and authors from the forum are as follows: "Some Possible Revolutions by 2001" (Michael Marien); "Information, the Non-Depletive Resource" (John W. Lacey);…

  5. Performance of Mixed Layer Models in Simulating SST in the Equatorial Pacific Ocean

    DTIC Science & Technology

    2008-02-23

    the SST drop (,,7’C) occurring in the eastern equatorial Pacific Antarctic for computational efficiency. Hereinafter, the [Harrison and Vecchi, 2001...based Special Sensor Microwave/Imager (SSM/1) clearly HYCOM simulations introduces some error ( z50 W m2) relative to the shortwave radiation measured by...Thi6baux, J., E. Rogers, W. Wang, and B. Katz (2003), A new high-resolu- tion blended real-time global sea surface temperature analysis, Bull. Am. E

  6. GCM Hindcasts for SST Forced Climate Variability over Agriculturally Intensive Regions

    NASA Technical Reports Server (NTRS)

    Druyan, Leonard M.; Shah, Kathryn P.; Chandler, Mark A.; Rind, David

    1998-01-01

    The ability to forecast seasonal climate is of great practical interest. One of the most obvious benefits would be agriculture, for which various preparations (planting, machinery, irrigation, manpower) would be enabled. The expectation of being able to make such forecasts far enough in advance (on the order of 9 months) hinges on components of the system with the longest persistence or predictability. The mixed results of El Nino forecasts has raised the hope that tropical Pacific sea surface temperatures (SST) fall into this category. For agriculturally-relevant forecasts to be made, and utilized, requires several conditions. The SST in the regions that affect agricultural areas must be forecast successfully, many months in advance. The climate response to such sea surface temperatures must then be ascertained, either through the use of historical empirical studies or models (e.g., GCMS). For practical applications, the agricultural production must be strongly influenced by climate, and farmers on either the local level or through commercial concerns must be able to adjust to using such forecasts. In a continuing series of papers, we will explore each of these components. This article concerns the question of utilizing SST to forecast the climate in several regions of agricultural production. We optimize the possibility of doing so successfully by using observed SST in a hindcast mode (i.e., a perfect forecast), and we also use the globally observed values (rather than just those from the tropical Pacific, for which predictability has been shown). This then is the ideal situation; in subsequent papers we will explore degrading the results by using only tropical Pacific SSTs, and then using only

  7. Reconciling coral-based reconstructions of tropical Pacific SST and salinity

    NASA Astrophysics Data System (ADS)

    Thompson, D. M.; Cole, J. E.; Tudhope, A. W.

    2012-12-01

    Large uncertainties remain in the response of the tropical Pacific to future climate change, in part due to the disagreement among historical observations and climate models regarding changes over the 20th century. Extending the instrumental record, high-resolution coral proxy records improve our understanding of low-frequency climate variability and trends within the tropical Indo-Pacific. In particular, paired records of δ18O and Sr/Ca from annually banded corals provide detailed reconstructions of past temperature and salinity variability. However, the network of paired δ18O and Sr/Ca records remains sparse, and a lack of local temperature data for calibration of the Sr/Ca thermometer adds considerable uncertainty to the resulting salinity reconstructions. Here we present new temperature and salinity reconstructions from Onotoa Atoll (2°S, 175°E), Maiana Atoll (1°N, 173°E), and Jarvis Island (0.4°S, 160°W) and compare these reconstructions with other published records from the Indo-Pacific. We find that the reconstructed salinity trends are very heterogeneous and sensitive to the assumptions of Sr/Ca-SST calibrations, which vary greatly among published records. We tested the sensitivity of the Sr/Ca-SST slope to the regression method used (simple linear vs. reduced major axis), time period covered, temporal resolution (monthly to annual), removal of the seasonal cycle, and SST dataset used. Using a unified approach, we attempt to reconcile the wide range of slopes for the Sr/Ca-SST calibration and 20th-century salinity trends, and discuss implications for changes in mean state and ENSO variability within the basin.

  8. Justification for using scale models for impact response evaluation of the SST Transportation System

    SciTech Connect

    Berry, R.E.

    1990-12-01

    The validity of scale model impact evaluation of the SST Transportation System is acceptable based on Dimensional Analysis (Buckingham Pi Theorem) and the work of numerous programs that have evaluated the agreement among dimensional analysis, several different reduced-size models and full-scale impact test data. Excellent accuracy has been demonstrated between scale models and full-scale impact data when collected in conformance with the Buckingham Pi Theorem. 20 refs., 4 figs.

  9. How changes in the mean east-west equatorial SST gradient affect ENSO

    NASA Astrophysics Data System (ADS)

    Manucharyan, G. E.; Fedorov, A. V.

    2012-12-01

    Using a comprehensive coupled climate model (CESM), we study the dependence of ENSO characteristics on the background state of the tropical Pacific, specifically the mean east-west SST gradient along the equator (ΔT). In a suite of numerical experiments, we modify upper-ocean vertical mixing in the extra-tropics, poleward of 15°N/S, which allows us to vary the supply of cold water feeding equatorial upwelling and controlling temperatures in the eastern equatorial Pacific. The latter factor modifies the zonal SST gradient and related characteristics of the coupled ocean-atmosphere system in the equatorial band, including the atmospheric Walker circulation and the east-west tilt of the ocean thermocline. The imposed changes in the extra-tropics do not affect ENSO dynamics directly, but only through changes in the background state of the coupled system in the equatorial band. In particular, when in the coupled model ΔT is reduced from 5° to 1°C, the period of the simulated ENSO increases from 3 to 5 years, whereas its amplitude decreases by a factor of 4. Despite such a strong reduction in amplitude, the spectral peak associated with ENSO remains statistically significant. Further we show that changes in the tropical background state influence ENSO through two main mechanisms: reduction in the effective coupling between wind and SST anomalies and an increase in the damping of SST anomalies by surface heat fluxes. Ultimately, estimating the magnitude of changes in the mean state of the tropical Pacific necessary to alter ENSO and assessing the relevant physical mechanisms, this study has direct implications for the ongoing debates on how El Niño might change with global warming or in past climates.

  10. Uncertainty in detecting trend: a new criterion and its applications to global SST

    NASA Astrophysics Data System (ADS)

    Lian, Tao

    2016-12-01

    In most parts of the global ocean, the magnitude of the long-term linear trend in sea surface temperature (SST) is much smaller than the amplitude of multi-scale internal variation. One can thus use a specific period in a much longer record to arbitrarily determine the sign of long-term trend, which is statistically significant, in regional SST. This could lead to a controversial conclusion on how global SST responded to the anthropogenic forcing in the recent history. In this study, the uncertainty in the linear trend due to multi-scale internal variation is theoretically investigated. It is found that the "estimated" trend will not change its sign only when its magnitude is greater than a theoretical threshold that scales the influence from the multi-scale internal variation. Otherwise, the sign of the "estimated" trend may depend on the period used. The new criterion is found to be superior over the existing methods when the de-trended time series is dominated by the oscillatory term. Applying this new criterion to a global SST reconstruction from 1881 to 2013 reveals that the influences from multi-scale internal variation on the sign of "estimated" linear trend cannot be excluded in most parts of the Pacific, the southern Indian Ocean and the northern Atlantic; therefore, the warming or/and cooling trends found in these regions cannot be interpreted as the consequences of anthropogenic forcing. It's also suggested that the recent hiatus can be explained by combined uncertainty from internal variations at the interannual and decadal time scales.

  11. Process optimization of helium cryo plant operation for SST-1 superconducting magnet system

    NASA Astrophysics Data System (ADS)

    Panchal, P.; Panchal, R.; Patel, R.; Mahesuriya, G.; Sonara, D.; Srikanth G, L. N.; Garg, A.; Christian, D.; Bairagi, N.; Sharma, R.; Patel, K.; Shah, P.; Nimavat, H.; Purwar, G.; Patel, J.; Tanna, V.; Pradhan, S.

    2017-02-01

    Several plasma discharge campaigns have been carried out in steady state superconducting tokamak (SST-1). SST-1 has toroidal field (TF) and poloidal field (PF) superconducting magnet system (SCMS). The TF coils system is cooled to 4.5 - 4.8 K at 1.5 – 1.7 bar(a) under two phase flow condition using 1.3 kW helium cryo plant. Experience revealed that the PF coils demand higher pressure heads even at lower temperatures in comparison to TF coils because of its longer hydraulic path lengths. Thermal run away are observed within PF coils because of single common control valve for all PF coils in distribution system having non-uniform lengths. Thus it is routine practice to stop the cooling of PF path and continue only TF cooling at SCMS inlet temperature of ∼ 14 K. In order to achieve uniform cool down, different control logic is adopted to make cryo stable system. In adopted control logic, the SCMS are cooled down to 80 K at constant inlet pressure of 9 bar(a). After authorization of turbine A/B, the SCMS inlet pressure is gradually controlled by refrigeration J-T valve to achieve stable operation window for cryo system. This paper presents process optimization for cryo plant operation for SST-1 SCMS.

  12. Reconstruction of ocean velocities from the synergy between SSH and SST measurements

    NASA Astrophysics Data System (ADS)

    Isern-Fontanet, Jordi; Turiel, Antonio

    2013-04-01

    Recent advances in our understanding of the dynamics in the upper layers of the ocean have allowed us to develop methodologies to recover high resolution velocities from surface measurements such as Sea Surface Heights (SSH) and Sea Surface Temperatures (SST). These methods are based on the combined use of advanced signal processing techniques, such as wavelet analysis and singularity analysis, with dynamical approaches such as the Surface Quasi-Geostrophic (SQG) equations. Within the SQG framework, SSH and SST are closely related, which can be exploited to develop a synergetic approach that combines existing satellite measurements of these fields that can be used to recover subsurface buoyancy anomaly, surface and subsurface horizontal velocities and vertical velocities in the upper 300-500 m. Sentinel-3 satellite will follow its predecessors, ERS-1/2 and Envisat, and will provide simultaneous measurements of SST (SLSTR instrument) and SSH (SRAL and auxiliary instruments) that can be combined to produce high resolution surface currents. To test the feasibility of this approach for Sentinel-3 satellites we have reconstructed surface currents from AATSR and RA data provided by Envisat and compared results against independent SSH measurements provided Jason-1/2 platforms.

  13. Structural variation in genesis and landfall locations of North Atlantic tropical cyclones related to SST

    NASA Astrophysics Data System (ADS)

    Rumpf, Jonas; Weindl, Helga; Faust, Eberhard; Schmidt, Volker

    2010-05-01

    The influence of sea surface temperature (SST) on the locations of the genesis and of landfall of tropical cyclones in the North Atlantic is analyzed. For that purpose, these locations are calculated from HURDAT and split into two disjoint subsets according to whether SST in the North Atlantic was above or below average in the year the corresponding storms occurred. Landfalls are investigated separately for the groups of cyclones categorized as tropical storms, minor hurricanes, or major hurricanes at the moment of landfall. The locations are considered realizations of inhomogeneous Poisson point processes, and the corresponding density functions are estimated with kernel estimation methods. In this way, any spatial structure inherent in the data is taken into account. These density functions are then compared with Monte Carlo methods from spatial statistics, which allows the detection of areas of statistically significant differences in the two sets with high and low SST, respectively. Results show many such areas, which is of relevance for the insurance industry and mathematical modelling of cyclones, as well as for decision support during the preparation for natural disasters.

  14. Role of Tropical Atlantic SST Variability as a Modulator of El Nino Teleconnections

    NASA Technical Reports Server (NTRS)

    Ham, Yoo-Geun; Sung, Mi-Kyung; An, Soon-II; Schubert, Siegfried D.; Kug, Jong-Seong

    2014-01-01

    The present study suggests that the off-equatorial North Atlantic (NATL) SST warming plays a significant role in modulating El Niño teleconnection and its impact on the North Atlantic and European regions. The El Niño events accompanied by NATL SST warming exhibit south-north dipole pattern over the Western Europe to Atlantic, while the ENSO teleconnection pattern without NATL warming exhibits a Rossby wave-like pattern confined over the North Pacific and western Atlantic. Especially, the El Niño events with NATL warming show positive (negative) geopotential-height anomalies over the North Atlantic (Western Europe) which resemble the negative phase of the NAO. Consistently, it is shown using a simple statistical model that NATL SSTA in addition to the tropical Pacific SSTA leads to better prediction on regional climate variation over the North Atlantic and European regions. This role of NATL SST on ENSO teleconnection is also validated and discussed in a long term simulation of coupled global circulation model (CGCM).

  15. The ASTRI SST-2M prototype for the Cherenkov Telescope Array: opto-mechanical performance

    NASA Astrophysics Data System (ADS)

    Canestrari, Rodolfo; Giro, Enrico; Sironi, Giorgia; Antolini, Elisa; Fugazza, Dino; Scuderi, Salvatore; Tosti, Gino; Tanci, Claudio; Russo, Federico; Gardiol, Daniele; Fermino, Carlos Eduardo; Stringhetti, Luca; Pareschi, Giovanni; Marchiori, G.; Busatta, A.; Marcuzzi, E.; Folla, I.

    2016-08-01

    ASTRI SST-2M is an end-to-end telescope prototype developed by the Italian National Institute of Astrophysics (INAF) in the framework of the Cherenkov Telescope Array (CTA). The CTA observatory, with a combination of large-, medium-, and small-sized telescopes (LST, MST and SST, respectively), will represent the next generation of imaging atmospheric Cherenkov telescopes. It will explore the very high-energy domain from a few tens of GeV up to few hundreds of TeV. The ASTRI SST-2M telescope structure and mirrors have been installed at the INAF observing station at Serra La Nave, on Mt. Etna (Sicily, Italy) in September 2014. Its performance verification phase began in autumn 2015. Part of the scheduled activities foresees the study and characterization of the optical and opto-mechanical performance of the telescope prototype. In this contribution we report the results achieved in terms of kinematic model analysis, mirrors reflectivity evolution, telescopes positioning, flexures and pointing model and the thermal behavior.

  16. Presence of sst5TMD4, a truncated splice variant of the somatostatin receptor subtype 5, is associated to features of increased aggressiveness in pancreatic neuroendocrine tumors

    PubMed Central

    Gahete, Manuel D.; Serrano-Somavilla, Ana; Villa-Osaba, Alicia; Adrados, Magdalena; Ibáñez-Costa, Alejandro; Martín-Pérez, Elena; Culler, Michael D.

    2016-01-01

    Purpose Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are rare and heterogeneous tumors, and their biological behavior is not well known. We studied the presence and potential functional roles of somatostatin receptors (sst1-5), focusing particularly on the truncated variants (sst5TMD4, sst5TMD5) and on their relationships with the angiogenic system (Ang/Tie-2 and VEGF) in human GEP-NETs. Experimental Design We evaluated 42 tumor tissue samples (26 primary/16 metastatic) from 26 patients with GEP-NETs, and 30 non-tumoral tissues (26 from adjacent non-tumor regions and 4 from normal controls) from a single center. Expression of sst1-5, sst5TMD4, sst5TMD5, Ang1-2, Tie-2 and VEGF was analyzed using real-time qPCR, immunofluorescence and immunohistochemistry. Expression levels were associated with tumor characteristics and clinical outcomes. Functional role of sst5TMD4 was analyzed in GEP-NET cell lines. Results sst1 exhibited the highest expression in GEP-NET, whilst sst2 was the most frequently observed sst-subtype (90.2%). Expression levels of sst1, sst2, sst3, sst5TMD4, and sst5TMD5 were significantly higher in tumor tissues compared to their adjacent non-tumoral tissue. Lymph-node metastases expressed higher levels of sst5TMD4 than in its corresponding primary tumor tissue. sst5TMD4 was also significantly higher in intestinal tumor tissues from patients with residual disease of intestinal origin compared to those with non-residual disease. Functional assays demonstrated that the presence of sst5TMD4 was associated to enhanced malignant features in GEP-NET cells. Angiogenic markers correlated positively with sst5TMD4, which was confirmed by immunohistochemical/fluorescence studies. Conclusions sst5TMD4 is overexpressed in GEP-NETs and is associated to enhanced aggressiveness, suggesting its potential value as biomarker and target in GEP-NETs. PMID:26673010

  17. Three Northwest Institutions Receive Funding from EPA for Research to Better Understand the Effects of Climate Change on Indoor Air Quality

    EPA Pesticide Factsheets

    (Seattle - July 28, 2015) On July 21, the U.S. Environmental Protection Agency announced its continued commitment to improving America's indoor air quality by providing almost $8 million to fund nine institutions, including three in the Northwest, research

  18. Research on inert gas narcosis and air velocity effects on metabolic performance

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The effects of air velocity on metabolic performance are studied by using high forced airflow in a closed environment as a mechanism to control the concentration of volatile animal wastes. Air velocities between 100 and 200 ft/min are without significant effects on the metabolism of rats. At velocities of 200 ft/min and above, oxygen consumption and CO2 production as well as food consumption increase. In most instances, the changes are on the order of 5-10%. At the same time, the RQ for the animals increases slightly and generally correlates well with oxygen consumption and CO2 production. Experiments on the nature of inert gas narcosis show that halothane and methoxyflurane are rather potent inhibitors of the NADH:O2 oxidoreductase system in rats. These experiments suggest that the mechanism of inert gas narcosis is not mandatorily related to a membrane surface phenomenon.

  19. Progress report on Bertelsen research and development of an air cushion crawler all-terrain vehicle

    NASA Astrophysics Data System (ADS)

    Bertelsen, W. R.

    1987-06-01

    The ACV is an exceptional amphibian but it is not, nor is any other existing craft, an all-terrain vehicle (ATV). Using the best elements of the ACV in an air-cushion crawler tractor, a true ATV can be attained. A conventional crawler drive train will propel two tracks as pressurized, propulsive pontoons. The key to a successful ATV is in perfecting efficient, durable, sliding seals to allow the belt to move in its orbit around the track unit and maintain its internal pressure. After deriving the adequate seal, a 12 inch wide x 86 inch long endless rubber belt was fitted bilateral seals and slide plates with internal guide wheels fore and aft with a 21 inch wheel base. From this approximately one-quarter scale model, full-scale air track crawlers, true ATVs, of any size and capacity can be produced.

  20. United States Air Force Graduate Student Research Program. 1989 Program Technical Report. Volume 1

    DTIC Science & Technology

    1989-12-01

    97601 (503) 882-6321 Kerry Christopher Degree: BS West Florida, Univ. of Specialty: Physical Science 11000 University Parkway Assigned: Flight Dynamics...DYNAMICS LABORATORY (FDL) (Wright-Patterson Air Force Base) 1. John Baker 4. Bryan Foos 2. Kerry Christopher 5. Genevieve Huston 3. Nancy Faulkner 6...Schemes for Accelerated Kerry Christopher Crazing Tests and X3D - A Finite Element Analysis Code 60 Neural Networks and their Role in Nancy Faulkner