Science.gov

Sample records for air reveals large-scale

  1. Large-scale impact of anthropogenic mercury during the 1970s revealed by polar firn air

    NASA Astrophysics Data System (ADS)

    Fain, X.; Ferrari, C. P.; Dommergue, A.; Albert, M. R.; Battle, M. O.; Severinghaus, J. P.; Arnaud, L.; Barnola, J.; Cairns, W.; Barbante, C.; Boutron, C.

    2009-12-01

    Mercury (Hg) is an extremely toxic pollutant, and its biogeochemical cycle has been perturbed by anthropogenic emissions during recent centuries. In the atmosphere, gaseous elemental mercury (GEM; Hg°) is the predominant form of mercury (up to 95%). GEM concentrations measured in the interstitial air of the firn (unconsolidated snow) at Summit (central Greenland) enabled reconstruction of the atmospheric history of this species in mid- to high-northern latitudes back to the twentieth century. GEM concentrations increased rapidly after World War II from ~1.5 ng m-3 reaching a maximum of ~3 ng m-3 around 1970 and decreased until stabilizing at ~1.7 ng m-3 around 1995. This reconstruction reproduces real-time measurements available from the Arctic since 1995 and exhibits the same general trend observed in Europe since 1990. Anthropogenic emissions caused a two-fold rise in boreal atmospheric GEM concentrations before the 1970s, which likely contributed to higher deposition of mercury in both industrialized and remotes areas. Once deposited, this toxin becomes available for methylation and, subsequently, the contamination of ecosystems. Implementation of air pollution regulations, however, enabled a large-scale decline in atmospheric mercury levels during the 1980s. Our results suggest that potential increases in emissions in the coming decades could have a similar large-scale impact on atmospheric Hg levels.

  2. Polar firn air reveals large-scale impact of anthropogenic mercury emissions during the 1970s

    PubMed Central

    Faïn, Xavier; Ferrari, Christophe P.; Dommergue, Aurélien; Albert, Mary R.; Battle, Mark; Severinghaus, Jeff; Arnaud, Laurent; Barnola, Jean-Marc; Cairns, Warren; Barbante, Carlo; Boutron, Claude

    2009-01-01

    Mercury (Hg) is an extremely toxic pollutant, and its biogeochemical cycle has been perturbed by anthropogenic emissions during recent centuries. In the atmosphere, gaseous elemental mercury (GEM; Hg°) is the predominant form of mercury (up to 95%). Here we report the evolution of atmospheric levels of GEM in mid- to high-northern latitudes inferred from the interstitial air of firn (perennial snowpack) at Summit, Greenland. GEM concentrations increased rapidly after World War II from ≈1.5 ng m−3 reaching a maximum of ≈3 ng m−3 around 1970 and decreased until stabilizing at ≈1.7 ng m−3 around 1995. This reconstruction reproduces real-time measurements available from the Arctic since 1995 and exhibits the same general trend observed in Europe since 1990. Anthropogenic emissions caused a two-fold rise in boreal atmospheric GEM concentrations before the 1970s, which likely contributed to higher deposition of mercury in both industrialized and remotes areas. Once deposited, this toxin becomes available for methylation and, subsequently, the contamination of ecosystems. Implementation of air pollution regulations, however, enabled a large-scale decline in atmospheric mercury levels during the 1980s. The results shown here suggest that potential increases in emissions in the coming decades could have a similar large-scale impact on atmospheric Hg levels. PMID:19805267

  3. DESIGN OF LARGE-SCALE AIR MONITORING NETWORKS

    EPA Science Inventory

    The potential effects of air pollution on human health have received much attention in recent years. In the U.S. and other countries, there are extensive large-scale monitoring networks designed to collect data to inform the public of exposure risks to air pollution. A major crit...

  4. DESIGN OF LARGE-SCALE AIR MONITORING NETWORKS

    EPA Science Inventory

    The potential effects of air pollution on human health have received much attention in recent years. In the U.S. and other countries, there are extensive large-scale monitoring networks designed to collect data to inform the public of exposure risks to air pollution. A major crit...

  5. The perfect ash-storm: large-scale Pyroclastic Density Current experiments reveal highly mobile, self-fluidising and air-cushioned flow transport regime

    NASA Astrophysics Data System (ADS)

    Lube, G.; Cronin, S. J.; Breard, E.; Valentine, G.; Bursik, M. I.; Hort, M. K.; Freundt, A.

    2013-12-01

    We report on the first systematic series of large-scale Pyroclastic Density Current (PDC) experiments using the New Zealand PDC Generator, a novel international research facility in Physical Volcanology recently commissioned at Massey University. Repeatable highly energetic and hot PDCs are synthesized by the controlled ';eruption column-collapse' of up to 3500 kg of homogenously aerated Taupo ignimbrite material from a 15 m-elevated hopper onto an instrumented inclined flume. At discharge rates between 250-1300 kg/s and low- to moderate gas injection rates (yielding initial solids concentration of 15-70 vol%) channelized gas-particle mixture flows life-scaled to dense PDCs can be generated. The flow fronts of the currents reach velocities of up to 9.5 m/s over their first 12 m of travel and rapidly develop strong vertical density stratification. The PDCs typically form a highly mobile, <60 cm-thick dense and channel-confined underflow, with an overriding dilute and turbulent ash cloud surge that also laterally escapes the flume boundaries. Depending on the PDC starting conditions underflows with 1-45 vol% solids concentration are formed, while the upper surge contains <<1 vol.% solids. A characteristic feature of the underflow is the occurrence of 'ignitive' front breakouts, producing jetted lobes that accelerate outward from the flow front, initially forming a lobe-cleft structure, followed by segregation downslope into multiple flow pulses. Depending on initial solids concentration and discharge rate, stratified, dune-bedded and inversely graded bedforms are created whose thicknesses are remarkably uniform along the medial to distal runout path characterising highly mobile flow runout. Along with high-speed video footage we present time-series data of basal arrays of load- and gas-pore pressure transducers to characterise the mobile dense underflows. Data shows that the PDCs are comprised of a turbulent coarse-grained and air-ingesting front with particle

  6. Landsat 7 Reveals Large-scale Fractal Motion of Clouds

    NASA Technical Reports Server (NTRS)

    2002-01-01

    get carried along within the vortices, but these are soon mixed into the surrounding clouds. Landsat is unique in its ability to image both the small-scale eddies that mix clear and cloudy air, down to the 30 meter pixel size of Landsat, but also having a wide enough field-of-view, 180 km, to reveal the connection of the turbulence to large-scale flows such as the subtropical oceanic gyres. Landsat 7, with its new onboard digital recorder, has extended this capability away from the few Landsat ground stations to remote areas such as Alejandro Island, and thus is gradually providing a global dynamic picture of evolving human-scale phenomena. (For more details on von Karman vortices, refer to http://climate.gsfc.nasa.gov/cahalan) Image and caption courtesy Bob Cahalan, NASA GSFC

  7. Landsat 7 Reveals Large-scale Fractal Motion of Clouds

    NASA Technical Reports Server (NTRS)

    2002-01-01

    get carried along within the vortices, but these are soon mixed into the surrounding clouds. Landsat is unique in its ability to image both the small-scale eddies that mix clear and cloudy air, down to the 30 meter pixel size of Landsat, but also having a wide enough field-of-view, 180 km, to reveal the connection of the turbulence to large-scale flows such as the subtropical oceanic gyres. Landsat 7, with its new onboard digital recorder, has extended this capability away from the few Landsat ground stations to remote areas such as Alejandro Island, and thus is gradually providing a global dynamic picture of evolving human-scale phenomena. (For more details on von Karman vortices, refer to http://climate.gsfc.nasa.gov/cahalan) Image and caption courtesy Bob Cahalan, NASA GSFC

  8. Satellite measurements of large-scale air pollution: Methods

    SciTech Connect

    Kaufman, Y.J.; Fraser, R.S.; Ferrare, R.A. )

    1990-06-20

    A method is presented for simultaneous determination of the aerosol optical thickness ({tau}{sub a}), particle size (r{sub m}, geometric mean mass radius for a lognormal distribution) and the single scattering albedo ({omega}{sub 0}, ratio between scattering and scattering + absorption) from satellite imagery. The method is based on satellite images of the surface (land and water) in the visible and near-IR bands and is applied here to the first two channels of the Advanced Very High Resolution Radiometer (AVHRR) sensor. The aerosol characteristics are obtained from the difference in the upward radiances, detected by the satellite, between a clear and a hazy day. Therefore the method is mainly useful for remote sensing of large-scale air pollution (e.g., smoke from a large fire or concentrated anthropogenic pollution), which introduces dense aerosol into the atmosphere (aerosol optical thickness {ge}0.4) on top of an existing aerosol. The method is very sensitive to the stability of the surface reflectance between the clear day and the hazy day. It also requires accurate satellite calibration (preferably not more than 5% error) and stable calibration with good relative values between the two bands used in the analysis. With these requirements, the aerosol optical thickness can be derived with an error of {Delta}{tau}{sub a} = 0.08-0.15. For an assumed lognormal size distribution, the particle geometrical mean mass radius r{sub m} can be derived (if good calibration is available) with an error of {Delta}r{sub m} = {plus minus}(0.10-0.20){mu}m, and {omega}{sub 0} with {Delta}{omega}{sub 0} = {plus minus}0.03 for {omega}{sub 0} close to 1 and {Delta}{sub omega}{sub 0} = {plus minus}(0.03-0.07) for {omega}{sub 0} about 0.8. The method was applied to AVHRR images of a forest fire smoke.

  9. Large-scale physical activity data reveal worldwide activity inequality.

    PubMed

    Althoff, Tim; Sosič, Rok; Hicks, Jennifer L; King, Abby C; Delp, Scott L; Leskovec, Jure

    2017-07-20

    To be able to curb the global pandemic of physical inactivity and the associated 5.3 million deaths per year, we need to understand the basic principles that govern physical activity. However, there is a lack of large-scale measurements of physical activity patterns across free-living populations worldwide. Here we leverage the wide usage of smartphones with built-in accelerometry to measure physical activity at the global scale. We study a dataset consisting of 68 million days of physical activity for 717,527 people, giving us a window into activity in 111 countries across the globe. We find inequality in how activity is distributed within countries and that this inequality is a better predictor of obesity prevalence in the population than average activity volume. Reduced activity in females contributes to a large portion of the observed activity inequality. Aspects of the built environment, such as the walkability of a city, are associated with a smaller gender gap in activity and lower activity inequality. In more walkable cities, activity is greater throughout the day and throughout the week, across age, gender, and body mass index (BMI) groups, with the greatest increases in activity found for females. Our findings have implications for global public health policy and urban planning and highlight the role of activity inequality and the built environment in improving physical activity and health.

  10. Cloud-based large-scale air traffic flow optimization

    NASA Astrophysics Data System (ADS)

    Cao, Yi

    The ever-increasing traffic demand makes the efficient use of airspace an imperative mission, and this paper presents an effort in response to this call. Firstly, a new aggregate model, called Link Transmission Model (LTM), is proposed, which models the nationwide traffic as a network of flight routes identified by origin-destination pairs. The traversal time of a flight route is assumed to be the mode of distribution of historical flight records, and the mode is estimated by using Kernel Density Estimation. As this simplification abstracts away physical trajectory details, the complexity of modeling is drastically decreased, resulting in efficient traffic forecasting. The predicative capability of LTM is validated against recorded traffic data. Secondly, a nationwide traffic flow optimization problem with airport and en route capacity constraints is formulated based on LTM. The optimization problem aims at alleviating traffic congestions with minimal global delays. This problem is intractable due to millions of variables. A dual decomposition method is applied to decompose the large-scale problem such that the subproblems are solvable. However, the whole problem is still computational expensive to solve since each subproblem is an smaller integer programming problem that pursues integer solutions. Solving an integer programing problem is known to be far more time-consuming than solving its linear relaxation. In addition, sequential execution on a standalone computer leads to linear runtime increase when the problem size increases. To address the computational efficiency problem, a parallel computing framework is designed which accommodates concurrent executions via multithreading programming. The multithreaded version is compared with its monolithic version to show decreased runtime. Finally, an open-source cloud computing framework, Hadoop MapReduce, is employed for better scalability and reliability. This framework is an "off-the-shelf" parallel computing model

  11. Satellite measurements of large-scale air pollution - Methods

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Ferrare, Richard A.; Fraser, Robert S.

    1990-01-01

    A technique for deriving large-scale pollution parameters from NIR and visible satellite remote-sensing images obtained over land or water is described and demonstrated on AVHRR images. The method is based on comparison of the upward radiances on clear and hazy days and permits simultaneous determination of aerosol optical thickness with error Delta tau(a) = 0.08-0.15, particle size with error + or - 100-200 nm, and single-scattering albedo with error + or - 0.03 (for albedos near 1), all assuming accurate and stable satellite calibration and stable surface reflectance between the clear and hazy days. In the analysis of AVHRR images of smoke from a forest fire, good agreement was obtained between satellite and ground-based (sun-photometer) measurements of aerosol optical thickness, but the satellite particle sizes were systematically greater than those measured from the ground. The AVHRR single-scattering albedo agreed well with a Landsat albedo for the same smoke.

  12. Satellite measurements of large-scale air pollution - Methods

    NASA Astrophysics Data System (ADS)

    Kaufman, Yoram J.; Ferrare, Richard A.; Fraser, Robert S.

    1990-06-01

    A technique for deriving large-scale pollution parameters from NIR and visible satellite remote-sensing images obtained over land or water is described and demonstrated on AVHRR images. The method is based on comparison of the upward radiances on clear and hazy days and permits simultaneous determination of aerosol optical thickness with error Delta tau(a) = 0.08-0.15, particle size with error + or - 100-200 nm, and single-scattering albedo with error + or - 0.03 (for albedos near 1), all assuming accurate and stable satellite calibration and stable surface reflectance between the clear and hazy days. In the analysis of AVHRR images of smoke from a forest fire, good agreement was obtained between satellite and ground-based (sun-photometer) measurements of aerosol optical thickness, but the satellite particle sizes were systematically greater than those measured from the ground. The AVHRR single-scattering albedo agreed well with a Landsat albedo for the same smoke.

  13. Satellite measurements of large-scale air pollution - Methods

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Ferrare, Richard A.; Fraser, Robert S.

    1990-01-01

    A technique for deriving large-scale pollution parameters from NIR and visible satellite remote-sensing images obtained over land or water is described and demonstrated on AVHRR images. The method is based on comparison of the upward radiances on clear and hazy days and permits simultaneous determination of aerosol optical thickness with error Delta tau(a) = 0.08-0.15, particle size with error + or - 100-200 nm, and single-scattering albedo with error + or - 0.03 (for albedos near 1), all assuming accurate and stable satellite calibration and stable surface reflectance between the clear and hazy days. In the analysis of AVHRR images of smoke from a forest fire, good agreement was obtained between satellite and ground-based (sun-photometer) measurements of aerosol optical thickness, but the satellite particle sizes were systematically greater than those measured from the ground. The AVHRR single-scattering albedo agreed well with a Landsat albedo for the same smoke.

  14. Influence of large-scale atmospheric circulation on marine air intrusion toward the East Antarctic coast

    NASA Astrophysics Data System (ADS)

    Kurita, Naoyuki; Hirasawa, Naohiko; Koga, Seizi; Matsushita, Junji; Steen-Larsen, Hans Christian; Masson-Delmotte, Valérie; Fujiyoshi, Yasushi

    2016-09-01

    Marine air intrusions into Antarctica play a key role in high-precipitation events. Here we use shipboard observations of water vapor isotopologues between Australia and Syowa on the East Antarctic coast to elucidate the mechanism by which large-scale circulation influences marine air intrusions. The temporal isotopic variations at Syowa reflect the meridional movement of a marine air front. They are also associated with atmospheric circulation anomalies that enhance the southward movement of cyclones over the Southern Ocean. The relationship between large-scale circulation and the movement of the front is explained by northerly winds which, in association with cyclones, move toward the Antarctic coast and push marine air with isotopically enriched moisture into the inland covered by glacial air with depleted isotopic values. Future changes in large-scale circulation may have a significant impact on the frequency and intensity of marine air intrusion into Antarctica.

  15. Comparison of large scale renewable energy projects for the United States air force

    NASA Astrophysics Data System (ADS)

    Hughes, Jeffrey S.

    This thesis focused on the performance of large-scale renewable energy projects for the United States Air Force. As global energy demands continue to rise, the need to find ways to save energy and produce alternative sources of energy will increase. The Federal Government has begun to address the challenge of energy production and energy security in recent years. In order to increase both the energy production and energy security for the Air Force, there is a trend to increase the amount of renewable energy produced on military installations. The goal of this research was to compare the estimated and actual performance of these large-scale on-site renewable energy projects at Air Force installations. The variables considered for this research were the execution methods and the renewable energy sources. The performance of each project was evaluated against factors identified in previous sustainable construction studies. The study found that actual performance of third party owned and operated projects differed from the expected performance by less than the Air Force owned and operated projects, and that performance of renewable energy projects differed from the expected performance by less than high performance buildings from previous studies. The study also found factors that contributed to the gap between the expected and actual performance including optimistic modeling, unusual weather, operational issues and higher than expected maintenance of the projects. The results of this research were an initial step in understanding the actual performance of large-scale renewable energy projects.

  16. Effects of Large-Scale Solar Installations on Dust Mobilization and Air Quality

    NASA Astrophysics Data System (ADS)

    Pratt, J. T.; Singh, D.; Diffenbaugh, N. S.

    2012-12-01

    Large-scale solar projects are increasingly being developed worldwide and many of these installations are located in arid, desert regions. To examine the effects of these projects on regional dust mobilization and air quality, we analyze aerosol product data from NASA's Multi-angle Imaging Spectroradiometer (MISR) at annual and seasonal time intervals near fifteen photovoltaic and solar thermal stations ranging from 5-200 MW (12-4,942 acres) in size. The stations are distributed over eight different countries and were chosen based on size, location and installation date; most of the installations are large-scale, took place in desert climates and were installed between 2006 and 2010. We also consider air quality measurements of particulate matter between 2.5 and 10 micrometers (PM10) from the Environmental Protection Agency (EPA) monitoring sites near and downwind from the project installations in the U.S. We use monthly wind data from the NOAA's National Center for Atmospheric Prediction (NCEP) Global Reanalysis to select the stations downwind from the installations, and then perform statistical analysis on the data to identify any significant changes in these quantities. We find that fourteen of the fifteen regions have lower aerosol product after the start of the installations as well as all six PM10 monitoring stations showing lower particulate matter measurements after construction commenced. Results fail to show any statistically significant differences in aerosol optical index or PM10 measurements before and after the large-scale solar installations. However, many of the large installations are very recent, and there is insufficient data to fully understand the long-term effects on air quality. More data and higher resolution analysis is necessary to better understand the relationship between large-scale solar, dust and air quality.

  17. Progress of large-scale air-sea interaction studies in China

    NASA Astrophysics Data System (ADS)

    Pu, Shuzhen; Zhao, Jinping; Yu, Weidong; Zhao, Yongping; Yang, Bo

    2004-06-01

    This paper summarizes the progress of large-scale air-sea interaction studies that has been achieved in China in the four-year period from July 1998 to July 2002, including seven aspects in the area of the air-sea interaction, namely air-sea interaction related to the tropical Pacific Ocean, monsoon-related air-sea interaction, air-sea interaction in the north Pacific Ocean, air-sea interaction in the Indian Ocean, air-sea interactions in the global oceans, field experiments, and oceanic cruise surveys. However more attention has been paid to the first and the second aspects because a large number of papers in the reference literature for preparing and organizing this paper are concentrated in the tropical Pacific Ocean, such as the ENSO process with its climatic effects and dynamics, and the monsoon-related air-sea interaction. The literature also involves various phenomena with their different time and spatial scales such as intraseasonal, annual, interannual, and interdecadal variabilities in the atmosphere/ocean interaction system, reflecting the contemporary themes in the four-year period at the beginning of an era from the post-TOGA to CLIVAR studies. Apparently, it is a difficult task to summarize the great progress in this area, as it is extracted from a large quantity of literature, although the authors tried very hard.

  18. A Feasibility Study on Operating Large Scale Compressed Air Energy Storage in Porous Formations

    NASA Astrophysics Data System (ADS)

    Wang, B.; Pfeiffer, W. T.; Li, D.; Bauer, S.

    2015-12-01

    Compressed air energy storage (CAES) in porous formations has been considered as one promising option of large scale energy storage for decades. This study, hereby, aims at analyzing the feasibility of operating large scale CAES in porous formations and evaluating the performance of underground porous gas reservoirs. To address these issues quantitatively, a hypothetic CAES scenario with a typical anticline structure in northern Germany was numerically simulated. Because of the rapid growth in photovoltaics, the period of extraction in a daily cycle was set to the early morning and the late afternoon in order to bypass the massive solar energy production around noon. The gas turbine scenario was defined referring to the specifications of the Huntorf CAES power plant. The numerical simulations involved two stages, i.e. initial fill and cyclic operation, and both were carried out using the Eclipse E300 simulator (Schlumberger). Pressure loss in the gas wells was post analyzed using an analytical solution. The exergy concept was applied to evaluate the potential energy amount stored in the specific porous formation. The simulation results show that porous formations prove to be a feasible solution of large scale CAES. The initial fill with shut-in periods determines the spatial distribution of the gas phase and helps to achieve higher gas saturation around the wells, and thus higher deliverability. The performance evaluation shows that the overall exergy flow of stored compressed air is also determined by the permeability, which directly affects the deliverability of the gas reservoir and thus the number of wells required.

  19. Drought Variability in Eastern Part of Romania and its Connection with Large-Scale Air Circulation

    NASA Astrophysics Data System (ADS)

    Barbu, Nicu; Stefan, Sabina; Georgescu, Florinela

    2014-05-01

    Drought is a phenomenon that appears due to precipitation deficit and it is intensified by strong winds, high temperatures, low relative humidity and high insolation; in fact, all these factors lead to increasing of evapotranspiration processes that contribute to soil water deficit. The Standardized Precipitation Evapotranspiration Index (SPEI) take into account all this factors listed above. The temporal variability of the drought in Eastern part of Romania for 50 years, during the period 1961-2010, is investigated. This study is focused on the drought variability related to large scale air circulation. The gridded dataset with spatial resolution of 0.5º lat/lon of SPEI, (https://digital.csic.es/handle/10261/72264) were used to analyze drought periods in connection with large scale air circulation determinate from the two catalogues (GWT - GrossWetter-Typen and WLK - WetterLargenKlassifikation) defined in COST733Action. The GWT catalogue uses at input dataset the sea level pressure and the WLK catalogue uses as input dataset the geopotential field at 925 hPa and 500 hPa, wind at 700 hPa and total water content for entire atmospheric column. In this study we use the GWT catalogue with 18 circulation types and the WLK catalogue with 40 circulation types. The analysis for Barlad Hydrological Basin indicated that the negative values (that means water deficit - drought period) of SPEI are associated with prevailing anticyclonic regime and positive values (that means water excess - rainy period) of SPEI are associated with prevailing cyclonic regime as was expected. In last decade was observed an increase of dry period associated with an increase of anticyclonic activity over Romania. Using GWT18 catalogue the drought are associated with the north-eastern anticyclonic circulation type (NE-A). According to the WLK40 catalogue, the dominant circulation type associated with the drought is north-west-anticyclonic-dry anticyclonic (NW-AAD) type. keywords: drought, SPEI

  20. Characterization of microbial communities in exhaust air treatment systems of large-scale pig housing facilities.

    PubMed

    Haneke, J; Lee, N M; Gaul, T W; Van den Weghe, H F A

    2010-01-01

    Exhaust air treatment has gained importance as an essential factor in intensive livestock areas due to the rising emissions in the environment. Wet filter walls of multi-stage exhaust air treatment systems precipitate gaseous ammonia and dust particles from exhaust air in washing water. Microbial communities in the biomass developed in the washing water of five large-scale exhaust air treatment units of pig housing facilities, were investigated by fluorescence in situ hybridization (FISH) and 16S rDNA sequence analyses. No "standard" nitrifying bacteria were found in the washing water. Instead mainly α-Proteobacteria, aggregating β- and χ-Proteobacteria, a large number of Actinobacteria, as well as individual Planctomycetales and Crenarchaeota were detected after more than twelve months' operation. The main Proteobacteria species present were affiliated to the families Alcaligenaceae, Comamonadaceae and Xanthomonadaceae. Furthermore, we investigated the consumption of inorganic nitrogen compounds in the washing water of one exhaust air treatment unit during a fattening period with and without pH control. Maintaining the pH at 6.0 resulted in a ca. fivefold higher ammonium concentration and a ca. fourfold lower concentration of oxidized nitrogen compounds after the fattening period was finished.

  1. Large-scale flow phenomena in axial compressors: Modeling, analysis, and control with air injectors

    NASA Astrophysics Data System (ADS)

    Hagen, Gregory Scott

    This thesis presents a large scale model of axial compressor flows that is detailed enough to describe the modal and spike stall inception processes, and is also amenable to dynamical systems analysis and control design. The research presented here is based on the model derived by Mezic, which shows that the flows are dominated by the competition between the blade forcing of the compressor and the overall pressure differential created by the compressor. This model describes the modal stall inception process in a similar manner as the Moore-Greitzer model, but also describes the cross sectional flow velocities, and exhibits full span and part span stall. All of these flow patterns described by the model agree with experimental data. Furthermore, the initial model is altered in order to describe the effects of three dimensional spike disturbances, which can destabilize the compressor at otherwise stable operating points. The three dimensional model exhibits flow patterns during spike stall inception that also appear in experiments. The second part of this research focuses on the dynamical systems analysis of, and control design with, the PDE model of the axial flow in the compressor. We show that the axial flow model can be written as a gradient system and illustrate some stability properties of the stalled flow. This also reveals that flows with multiple stall cells correspond to higher energy states in the compressor. The model is derived with air injection actuation, and globally stabilizing distributed controls are designed. We first present a locally optimal controller for the linearized system, and then use Lyapunov analysis to show sufficient conditions for global stability. The concept of sector nonlinearities is applied to the problem of distributed parameter systems, and by analyzing the sector property of the compressor characteristic function, completely decentralized controllers are derived. Finally, the modal decomposition and Lyapunov analysis used in

  2. The application of liquid air energy storage for large scale long duration solutions to grid balancing

    NASA Astrophysics Data System (ADS)

    Brett, Gareth; Barnett, Matthew

    2014-12-01

    Liquid Air Energy Storage (LAES) provides large scale, long duration energy storage at the point of demand in the 5 MW/20 MWh to 100 MW/1,000 MWh range. LAES combines mature components from the industrial gas and electricity industries assembled in a novel process and is one of the few storage technologies that can be delivered at large scale, with no geographical constraints. The system uses no exotic materials or scarce resources and all major components have a proven lifetime of 25+ years. The system can also integrate low grade waste heat to increase power output. Founded in 2005, Highview Power Storage, is a UK based developer of LAES. The company has taken the concept from academic analysis, through laboratory testing, and in 2011 commissioned the world's first fully integrated system at pilot plant scale (300 kW/2.5 MWh) hosted at SSE's (Scottish & Southern Energy) 80 MW Biomass Plant in Greater London which was partly funded by a Department of Energy and Climate Change (DECC) grant. Highview is now working with commercial customers to deploy multi MW commercial reference plants in the UK and abroad.

  3. MtDNA metagenomics reveals large-scale invasion of belowground arthropod communities by introduced species.

    PubMed

    Cicconardi, Francesco; Borges, Paulo A V; Strasberg, Dominique; Oromí, Pedro; López, Heriberto; Pérez-Delgado, Antonio J; Casquet, Juliane; Caujapé-Castells, Juli; Fernández-Palacios, José María; Thébaud, Christophe; Emerson, Brent C

    2017-06-01

    Using a series of standardized sampling plots within forest ecosystems in remote oceanic islands, we reveal fundamental differences between the structuring of aboveground and belowground arthropod biodiversity that are likely due to large-scale species introductions by humans. Species of beetle and spider were sampled almost exclusively from single islands, while soil-dwelling Collembola exhibited more than tenfold higher species sharing among islands. Comparison of Collembola mitochondrial metagenomic data to a database of more than 80 000 Collembola barcode sequences revealed almost 30% of sampled island species are genetically identical, or near identical, to individuals sampled from often very distant geographic regions of the world. Patterns of mtDNA relatedness among Collembola implicate human-mediated species introductions, with minimum estimates for the proportion of introduced species on the sampled islands ranging from 45% to 88%. Our results call for more attention to soil mesofauna to understand the global extent and ecological consequences of species introductions. © 2017 John Wiley & Sons Ltd.

  4. Revealing the Hidden Relationship by Sparse Modules in Complex Networks with a Large-Scale Analysis

    PubMed Central

    Jiao, Qing-Ju; Huang, Yan; Liu, Wei; Wang, Xiao-Fan; Chen, Xiao-Shuang; Shen, Hong-Bin

    2013-01-01

    One of the remarkable features of networks is module that can provide useful insights into not only network organizations but also functional behaviors between their components. Comprehensive efforts have been devoted to investigating cohesive modules in the past decade. However, it is still not clear whether there are important structural characteristics of the nodes that do not belong to any cohesive module. In order to answer this question, we performed a large-scale analysis on 25 complex networks with different types and scales using our recently developed BTS (bintree seeking) algorithm, which is able to detect both cohesive and sparse modules in the network. Our results reveal that the sparse modules composed by the cohesively isolated nodes widely co-exist with the cohesive modules. Detailed analysis shows that both types of modules provide better characterization for the division of a network into functional units than merely cohesive modules, because the sparse modules possibly re-organize the nodes in the so-called cohesive modules, which lack obvious modular significance, into meaningful groups. Compared with cohesive modules, the sizes of sparse ones are generally smaller. Sparse modules are also found to have preferences in social and biological networks than others. PMID:23762457

  5. Large-scale structural transitions in supercoiled DNA revealed by coarse-grained simulations

    NASA Astrophysics Data System (ADS)

    Krajina, Brad; Spakowitz, Andrew

    Topological constraints, such as DNA supercoiling, play an integral role in genomic regulation and organization in living systems. However, physical understanding of the principles that underlie DNA structure and organization at biologically-relevant length-scales remains a formidable challenge. We develop a coarse-grained simulation approach for predicting equilibrium conformations of supercoiled DNA. With this approach, we study the conformational transitions that arise due to supercoiling across the full range of supercoiling densities that are commonly explored by living systems. Simulations of ring DNA molecules with lengths up to the scale of topological domains in the E. coli chromosome (~10 kilobases) reveal large-scale structural transitions elicited by supercoiling, resulting in 3 supercoiling conformational regimes: chiral coils, extended plectonemes, and branched hyper-supercoils. These results capture the non-monotonic relationship of size versus degree of supercoiling observed in experimental sedimentation studies of supercoiled DNA, and our results provide a physical explanation of the structural transitions underlying this behavior.

  6. A fundamental protein property, thermodynamic stability, revealed solely from large-scale measurements of protein function

    PubMed Central

    Araya, Carlos L.; Fowler, Douglas M.; Chen, Wentao; Muniez, Ike; Kelly, Jeffery W.; Fields, Stanley

    2012-01-01

    The ability of a protein to carry out a given function results from fundamental physicochemical properties that include the protein’s structure, mechanism of action, and thermodynamic stability. Traditional approaches to study these properties have typically required the direct measurement of the property of interest, oftentimes a laborious undertaking. Although protein properties can be probed by mutagenesis, this approach has been limited by its low throughput. Recent technological developments have enabled the rapid quantification of a protein’s function, such as binding to a ligand, for numerous variants of that protein. Here, we measure the ability of 47,000 variants of a WW domain to bind to a peptide ligand and use these functional measurements to identify stabilizing mutations without directly assaying stability. Our approach is rooted in the well-established concept that protein function is closely related to stability. Protein function is generally reduced by destabilizing mutations, but this decrease can be rescued by stabilizing mutations. Based on this observation, we introduce partner potentiation, a metric that uses this rescue ability to identify stabilizing mutations, and identify 15 candidate stabilizing mutations in the WW domain. We tested six candidates by thermal denaturation and found two highly stabilizing mutations, one more stabilizing than any previously known mutation. Thus, physicochemical properties such as stability are latent within these large-scale protein functional data and can be revealed by systematic analysis. This approach should allow other protein properties to be discovered. PMID:23035249

  7. Large-scale analysis of chromosomal aberrations in cancer karyotypes reveals two distinct paths to aneuploidy

    PubMed Central

    2011-01-01

    Background Chromosomal aneuploidy, that is to say the gain or loss of chromosomes, is the most common abnormality in cancer. While certain aberrations, most commonly translocations, are known to be strongly associated with specific cancers and contribute to their formation, most aberrations appear to be non-specific and arbitrary, and do not have a clear effect. The understanding of chromosomal aneuploidy and its role in tumorigenesis is a fundamental open problem in cancer biology. Results We report on a systematic study of the characteristics of chromosomal aberrations in cancers, using over 15,000 karyotypes and 62 cancer classes in the Mitelman Database. Remarkably, we discovered a very high co-occurrence rate of chromosome gains with other chromosome gains, and of losses with losses. Gains and losses rarely show significant co-occurrence. This finding was consistent across cancer classes and was confirmed on an independent comparative genomic hybridization dataset of cancer samples. The results of our analysis are available for further investigation via an accompanying website. Conclusions The broad generality and the intricate characteristics of the dichotomy of aneuploidy, ranging across numerous tumor classes, are revealed here rigorously for the first time using statistical analyses of large-scale datasets. Our finding suggests that aneuploid cancer cells may use extra chromosome gain or loss events to restore a balance in their altered protein ratios, needed for maintaining their cellular fitness. PMID:21714908

  8. Evolutionary dynamics of influenza A nucleoprotein (NP) lineages revealed by large-scale sequence analyses.

    PubMed

    Xu, Jianpeng; Christman, Mary C; Donis, Ruben O; Lu, Guoqing

    2011-12-01

    Influenza A viral nucleoprotein (NP) plays a critical role in virus replication and host adaptation, however, the underlying molecular evolutionary dynamics of NP lineages are less well-understood. In this study, large-scale analyses of 5094 NP nucleotide sequences revealed eight distinct evolutionary lineages, including three host-specific lineages (human, classical swine and equine), two cross-host lineages (Eurasian avian-like swine and swine-origin human pandemic H1N1 2009) and three geographically isolated avian lineages (Eurasian, North American and Oceanian). The average nucleotide substitution rate of the NP lineages was estimated to be 2.4 × 10(-3) substitutions per site per year, with the highest value observed in pandemic H1N1 2009 (3.4 × 10(-3)) and the lowest in equine (0.9 × 10(-3)). The estimated time of most recent common ancestor (TMRCA) for each lineage demonstrated that the earliest human lineage was derived around 1906, and the latest pandemic H1N1 2009 lineage dated back to December 17, 2008. A marked time gap was found between the times when the viruses emerged and were first sampled, suggesting the crucial role for long-term surveillance of newly emerging viruses. The selection analyses showed that human lineage had six positive selection sites, whereas pandemic H1N1 2009, classical swine, Eurasian avian and Eurasian swine had only one or two sites. Protein structure analyses revealed several positive selection sites located in epitope regions or host adaptation regions, indicating strong adaptation to host immune system pressures in influenza viruses. Along with previous studies, this study provides new insights into the evolutionary dynamics of influenza A NP lineages. Further lineage analyses of other gene segments will allow better understanding of influenza A virus evolution and assist in the improvement of global influenza surveillance.

  9. Cytology of DNA Replication Reveals Dynamic Plasticity of Large-Scale Chromatin Fibers.

    PubMed

    Deng, Xiang; Zhironkina, Oxana A; Cherepanynets, Varvara D; Strelkova, Olga S; Kireev, Igor I; Belmont, Andrew S

    2016-09-26

    In higher eukaryotic interphase nuclei, the 100- to >1,000-fold linear compaction of chromatin is difficult to reconcile with its function as a template for transcription, replication, and repair. It is challenging to imagine how DNA and RNA polymerases with their associated molecular machinery would move along the DNA template without transient decondensation of observed large-scale chromatin "chromonema" fibers [1]. Transcription or "replication factory" models [2], in which polymerases remain fixed while DNA is reeled through, are similarly difficult to conceptualize without transient decondensation of these chromonema fibers. Here, we show how a dynamic plasticity of chromatin folding within large-scale chromatin fibers allows DNA replication to take place without significant changes in the global large-scale chromatin compaction or shape of these large-scale chromatin fibers. Time-lapse imaging of lac-operator-tagged chromosome regions shows no major change in the overall compaction of these chromosome regions during their DNA replication. Improved pulse-chase labeling of endogenous interphase chromosomes yields a model in which the global compaction and shape of large-Mbp chromatin domains remains largely invariant during DNA replication, with DNA within these domains undergoing significant movements and redistribution as they move into and then out of adjacent replication foci. In contrast to hierarchical folding models, this dynamic plasticity of large-scale chromatin organization explains how localized changes in DNA topology allow DNA replication to take place without an accompanying global unfolding of large-scale chromatin fibers while suggesting a possible mechanism for maintaining epigenetic programming of large-scale chromatin domains throughout DNA replication.

  10. Relationship between climate extremes in Romania and their connection to large-scale air circulation

    NASA Astrophysics Data System (ADS)

    Barbu, Nicu; Ştefan, Sabina

    2015-04-01

    The aim of this paper is to investigate the connection between climate extremes (temperature and precipitation) in Romania and large-scale air circulation. Daily observational data of maximum air temperature and amount of precipitation for the period 1961-2010 were used to compute two seasonal indices associated with temperature and precipitation, quantifying their frequency, as follows: frequency of very warm days (FTmax90 ≥ 90th percentile), frequency of very wet days (FPp90; daily precipitation amount ≥ 90th percentile). Seasonally frequency of circulation types were calculated from daily circulation types determined by using two objective catalogues (GWT - GrossWetter-Typen and WLK - WetterLargenKlassifikation) from the COST733Action. Daily reanalysis data sets (sea level pressure, geopotential height at 925 and 500 hPa, u and v components of wind vector at 700 hPa and precipitable water content for the entire atmospheric column) build up by NCEP/NCAR, with 2.5°/2.5° lat/lon spatial resolution, were used to determine the circulation types. In order to select the optimal domain size related to the FTmax90 and the FPp90, the explained variance (EV) has been used. The EV determines the relation between the variance among circulation types and the total variance of the variable under consideration. This method quantifies the discriminatory power of a classification. The relationships between climate extremes in Romania and large-scale air circulation were investigated by using multiple linear regression model (MLRM), the predictands are FTmax90 and FPp90 and the circulation types were used as predictors. In order to select the independent predictors to build the MLRM the collinearity and multicollinearity analysis were performed. The study period is dividend in two periods: the period 1961-2000 is used to train the MLRM and the period 2001-2010 is used to validate the MLRM. The analytical relationship obtained by using MLRM can be used for future projection

  11. Large-Scale Meta-Analysis of Human Medial Frontal Cortex Reveals Tripartite Functional Organization

    PubMed Central

    Chang, Luke J.; Banich, Marie T.; Wager, Tor D.; Yarkoni, Tal

    2016-01-01

    The functional organization of human medial frontal cortex (MFC) is a subject of intense study. Using fMRI, the MFC has been associated with diverse psychological processes, including motor function, cognitive control, affect, and social cognition. However, there have been few large-scale efforts to comprehensively map specific psychological functions to subregions of medial frontal anatomy. Here we applied a meta-analytic data-driven approach to nearly 10,000 fMRI studies to identify putatively separable regions of MFC and determine which psychological states preferentially recruit their activation. We identified regions at several spatial scales on the basis of meta-analytic coactivation, revealing three broad functional zones along a rostrocaudal axis composed of 2–4 smaller subregions each. Multivariate classification analyses aimed at identifying the psychological functions most strongly predictive of activity in each region revealed a tripartite division within MFC, with each zone displaying a relatively distinct functional signature. The posterior zone was associated preferentially with motor function, the middle zone with cognitive control, pain, and affect, and the anterior with reward, social processing, and episodic memory. Within each zone, the more fine-grained subregions showed distinct, but subtler, variations in psychological function. These results provide hypotheses about the functional organization of medial prefrontal cortex that can be tested explicitly in future studies. SIGNIFICANCE STATEMENT Activation of medial frontal cortex in fMRI studies is associated with a wide range of psychological states ranging from cognitive control to pain. However, this high rate of activation makes it challenging to determine how these various processes are topologically organized across medial frontal anatomy. We conducted a meta-analysis across nearly 10,000 studies to comprehensively map psychological states to discrete subregions in medial frontal cortex

  12. Operational design and pressure response of large-scale compressed air energy storage in porous formations

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Bauer, Sebastian

    2017-04-01

    With the rapid growth of energy production from intermittent renewable sources like wind and solar power plants, large-scale energy storage options are required to compensate for fluctuating power generation on different time scales. Compressed air energy storage (CAES) in porous formations is seen as a promising option for balancing short-term diurnal fluctuations. CAES is a power-to-power energy storage, which converts electricity to mechanical energy, i.e. highly pressurized air, and stores it in the subsurface. This study aims at designing the storage setup and quantifying the pressure response of a large-scale CAES operation in a porous sandstone formation, thus assessing the feasibility of this storage option. For this, numerical modelling of a synthetic site and a synthetic operational cycle is applied. A hypothetic CAES scenario using a typical anticline structure in northern Germany was investigated. The top of the storage formation is at 700 m depth and the thickness is 20 m. The porosity and permeability were assumed to have a homogenous distribution with a value of 0.35 and 500 mD, respectively. According to the specifications of the Huntorf CAES power plant, a gas turbine producing 321 MW power with a minimum inlet pressure of 43 bars at an air mass flowrate of 417 kg/s was assumed. Pressure loss in the gas wells was accounted for using an analytical solution, which defines a minimum bottom hole pressure of 47 bars. Two daily extraction cycles of 6 hours each were set to the early morning and the late afternoon in order to bypass the massive solar energy production around noon. A two-year initial filling of the reservoir with air and ten years of daily cyclic operation were numerically simulated using the Eclipse E300 reservoir simulator. The simulation results show that using 12 wells the storage formation with a permeability of 500 mD can support the required 6-hour continuous power output of 321MW, which corresponds an energy output of 3852 MWh per

  13. Sensitivity of local air quality to the interplay between small- and large-scale circulations: a large-eddy simulation study

    NASA Astrophysics Data System (ADS)

    Wolf-Grosse, Tobias; Esau, Igor; Reuder, Joachim

    2017-06-01

    Street-level urban air pollution is a challenging concern for modern urban societies. Pollution dispersion models assume that the concentrations decrease monotonically with raising wind speed. This convenient assumption breaks down when applied to flows with local recirculations such as those found in topographically complex coastal areas. This study looks at a practically important and sufficiently common case of air pollution in a coastal valley city. Here, the observed concentrations are determined by the interaction between large-scale topographically forced and local-scale breeze-like recirculations. Analysis of a long observational dataset in Bergen, Norway, revealed that the most extreme cases of recurring wintertime air pollution episodes were accompanied by increased large-scale wind speeds above the valley. Contrary to the theoretical assumption and intuitive expectations, the maximum NO2 concentrations were not found for the lowest 10 m ERA-Interim wind speeds but in situations with wind speeds of 3 m s-1. To explain this phenomenon, we investigated empirical relationships between the large-scale forcing and the local wind and air quality parameters. We conducted 16 large-eddy simulation (LES) experiments with the Parallelised Large-Eddy Simulation Model (PALM) for atmospheric and oceanic flows. The LES accounted for the realistic relief and coastal configuration as well as for the large-scale forcing and local surface condition heterogeneity in Bergen. They revealed that emerging local breeze-like circulations strongly enhance the urban ventilation and dispersion of the air pollutants in situations with weak large-scale winds. Slightly stronger large-scale winds, however, can counteract these local recirculations, leading to enhanced surface air stagnation. Furthermore, this study looks at the concrete impact of the relative configuration of warmer water bodies in the city and the major transport corridor. We found that a relatively small local water

  14. Dusty Starbursts within a z=3 Large Scale Structure revealed by ALMA

    NASA Astrophysics Data System (ADS)

    Umehata, Hideki

    The role of the large-scale structure is one of the most important theme in studying galaxy formation and evolution. However, it has been still mystery especially at z>2. On the basis of our ALMA 1.1 mm observations in a z ~ 3 protocluster field, it is suggested that submillimeter galaxies (SMGs) preferentially reside in the densest environment at z ~ 3. Furthermore we find a rich cluster of AGN-host SMGs at the core of the protocluster, combining with Chandra X-ray data. Our results indicate the vigorous star-formation and accelerated super massive black hole (SMBH) growth in the node of the cosmic web.

  15. Revealing Large-Scale Homogeneity and Trace Impurity Sensitivity of GaAs Nanoscale Membranes.

    PubMed

    Yang, Z; Surrente, A; Tutuncuoglu, G; Galkowski, K; Cazaban-Carrazé, M; Amaduzzi, F; Leroux, P; Maude, D K; Fontcuberta I Morral, A; Plochocka, P

    2017-05-10

    III-V nanostructures have the potential to revolutionize optoelectronics and energy harvesting. For this to become a reality, critical issues such as reproducibility and sensitivity to defects should be resolved. By discussing the optical properties of molecular beam epitaxy (MBE) grown GaAs nanomembranes we highlight several features that bring them closer to large scale applications. Uncapped membranes exhibit a very high optical quality, expressed by extremely narrow neutral exciton emission, allowing the resolution of the more complex excitonic structure for the first time. Capping of the membranes with an AlGaAs shell results in a strong increase of emission intensity but also in a shift and broadening of the exciton peak. This is attributed to the existence of impurities in the shell, beyond MBE-grade quality, showing the high sensitivity of these structures to the presence of impurities. Finally, emission properties are identical at the submicron and submillimeter scale, demonstrating the potential of these structures for large scale applications.

  16. Large-scale in vivo femtosecond laser neurosurgery screen reveals small-molecule enhancer of regeneration

    PubMed Central

    Samara, Chrysanthi; Rohde, Christopher B.; Gilleland, Cody L.; Norton, Stephanie; Haggarty, Stephen J.; Yanik, Mehmet Fatih

    2010-01-01

    Discovery of molecular mechanisms and chemical compounds that enhance neuronal regeneration can lead to development of therapeutics to combat nervous system injuries and neurodegenerative diseases. By combining high-throughput microfluidics and femtosecond laser microsurgery, we demonstrate for the first time large-scale in vivo screens for identification of compounds that affect neurite regeneration. We performed thousands of microsurgeries at single-axon precision in the nematode Caenorhabditis elegans at a rate of 20 seconds per animal. Following surgeries, we exposed the animals to a hand-curated library of approximately one hundred small molecules and identified chemicals that significantly alter neurite regeneration. In particular, we found that the PKC kinase inhibitor staurosporine strongly modulates regeneration in a concentration- and neuronal type-specific manner. Two structurally unrelated PKC inhibitors produce similar effects. We further show that regeneration is significantly enhanced by the PKC activator prostratin. PMID:20937901

  17. Large-Scale Mitochondrial DNA Analysis of the Domestic Goat Reveals Six Haplogroups with High Diversity

    PubMed Central

    Naderi, Saeid; Rezaei, Hamid-Reza; Taberlet, Pierre; Zundel, Stéphanie; Rafat, Seyed-Abbas; Naghash, Hamid-Reza; El-Barody, Mohamed A. A.; Ertugrul, Okan; Pompanon, François

    2007-01-01

    Background From the beginning of domestication, the transportation of domestic animals resulted in genetic and demographic processes that explain their present distribution and genetic structure. Thus studying the present genetic diversity helps to better understand the history of domestic species. Methodology/Principal Findings The genetic diversity of domestic goats has been characterized with 2430 individuals from all over the old world, including 946 new individuals from regions poorly studied until now (mainly the Fertile Crescent). These individuals represented 1540 haplotypes for the HVI segment of the mitochondrial DNA (mtDNA) control region. This large-scale study allowed the establishment of a clear nomenclature of the goat maternal haplogroups. Only five of the six previously defined groups of haplotypes were divergent enough to be considered as different haplogroups. Moreover a new mitochondrial group has been localized around the Fertile Crescent. All groups showed very high haplotype diversity. Most of this diversity was distributed among groups and within geographic regions. The weak geographic structure may result from the worldwide distribution of the dominant A haplogroup (more than 90% of the individuals). The large-scale distribution of other haplogroups (except one), may be related to human migration. The recent fragmentation of local goat populations into discrete breeds is not detectable with mitochondrial markers. The estimation of demographic parameters from mismatch analyses showed that all groups had a recent demographic expansion corresponding roughly to the period when domestication took place. But even with a large data set it remains difficult to give relative dates of expansion for different haplogroups because of large confidence intervals. Conclusions/Significance We propose standard criteria for the definition of the different haplogroups based on the result of mismatch analysis and on the use of sequences of reference. Such a

  18. Large-scale sequencing of human influenza reveals the dynamic nature of viral genome evolution.

    PubMed

    Ghedin, Elodie; Sengamalay, Naomi A; Shumway, Martin; Zaborsky, Jennifer; Feldblyum, Tamara; Subbu, Vik; Spiro, David J; Sitz, Jeff; Koo, Hean; Bolotov, Pavel; Dernovoy, Dmitry; Tatusova, Tatiana; Bao, Yiming; St George, Kirsten; Taylor, Jill; Lipman, David J; Fraser, Claire M; Taubenberger, Jeffery K; Salzberg, Steven L

    2005-10-20

    Influenza viruses are remarkably adept at surviving in the human population over a long timescale. The human influenza A virus continues to thrive even among populations with widespread access to vaccines, and continues to be a major cause of morbidity and mortality. The virus mutates from year to year, making the existing vaccines ineffective on a regular basis, and requiring that new strains be chosen for a new vaccine. Less-frequent major changes, known as antigenic shift, create new strains against which the human population has little protective immunity, thereby causing worldwide pandemics. The most recent pandemics include the 1918 'Spanish' flu, one of the most deadly outbreaks in recorded history, which killed 30-50 million people worldwide, the 1957 'Asian' flu, and the 1968 'Hong Kong' flu. Motivated by the need for a better understanding of influenza evolution, we have developed flexible protocols that make it possible to apply large-scale sequencing techniques to the highly variable influenza genome. Here we report the results of sequencing 209 complete genomes of the human influenza A virus, encompassing a total of 2,821,103 nucleotides. In addition to increasing markedly the number of publicly available, complete influenza virus genomes, we have discovered several anomalies in these first 209 genomes that demonstrate the dynamic nature of influenza transmission and evolution. This new, large-scale sequencing effort promises to provide a more comprehensive picture of the evolution of influenza viruses and of their pattern of transmission through human and animal populations. All data from this project are being deposited, without delay, in public archives.

  19. Large-scale transcriptome analysis reveals arabidopsis metabolic pathways are frequently influenced by different pathogens.

    PubMed

    Jiang, Zhenhong; He, Fei; Zhang, Ziding

    2017-07-01

    Through large-scale transcriptional data analyses, we highlighted the importance of plant metabolism in plant immunity and identified 26 metabolic pathways that were frequently influenced by the infection of 14 different pathogens. Reprogramming of plant metabolism is a common phenomenon in plant defense responses. Currently, a large number of transcriptional profiles of infected tissues in Arabidopsis (Arabidopsis thaliana) have been deposited in public databases, which provides a great opportunity to understand the expression patterns of metabolic pathways during plant defense responses at the systems level. Here, we performed a large-scale transcriptome analysis based on 135 previously published expression samples, including 14 different pathogens, to explore the expression pattern of Arabidopsis metabolic pathways. Overall, metabolic genes are significantly changed in expression during plant defense responses. Upregulated metabolic genes are enriched on defense responses, and downregulated genes are enriched on photosynthesis, fatty acid and lipid metabolic processes. Gene set enrichment analysis (GSEA) identifies 26 frequently differentially expressed metabolic pathways (FreDE_Paths) that are differentially expressed in more than 60% of infected samples. These pathways are involved in the generation of energy, fatty acid and lipid metabolism as well as secondary metabolite biosynthesis. Clustering analysis based on the expression levels of these 26 metabolic pathways clearly distinguishes infected and control samples, further suggesting the importance of these metabolic pathways in plant defense responses. By comparing with FreDE_Paths from abiotic stresses, we find that the expression patterns of 26 FreDE_Paths from biotic stresses are more consistent across different infected samples. By investigating the expression correlation between transcriptional factors (TFs) and FreDE_Paths, we identify several notable relationships. Collectively, the current study

  20. Systematic Phenotyping of a Large-Scale Candida glabrata Deletion Collection Reveals Novel Antifungal Tolerance Genes

    PubMed Central

    Hiller, Ekkehard; Istel, Fabian; Tscherner, Michael; Brunke, Sascha; Ames, Lauren; Firon, Arnaud; Green, Brian; Cabral, Vitor; Marcet-Houben, Marina; Jacobsen, Ilse D.; Quintin, Jessica; Seider, Katja; Frohner, Ingrid; Glaser, Walter; Jungwirth, Helmut; Bachellier-Bassi, Sophie; Chauvel, Murielle; Zeidler, Ute; Ferrandon, Dominique; Gabaldón, Toni; Hube, Bernhard; d'Enfert, Christophe; Rupp, Steffen; Cormack, Brendan; Haynes, Ken; Kuchler, Karl

    2014-01-01

    The opportunistic fungal pathogen Candida glabrata is a frequent cause of candidiasis, causing infections ranging from superficial to life-threatening disseminated disease. The inherent tolerance of C. glabrata to azole drugs makes this pathogen a serious clinical threat. To identify novel genes implicated in antifungal drug tolerance, we have constructed a large-scale C. glabrata deletion library consisting of 619 unique, individually bar-coded mutant strains, each lacking one specific gene, all together representing almost 12% of the genome. Functional analysis of this library in a series of phenotypic and fitness assays identified numerous genes required for growth of C. glabrata under normal or specific stress conditions, as well as a number of novel genes involved in tolerance to clinically important antifungal drugs such as azoles and echinocandins. We identified 38 deletion strains displaying strongly increased susceptibility to caspofungin, 28 of which encoding proteins that have not previously been linked to echinocandin tolerance. Our results demonstrate the potential of the C. glabrata mutant collection as a valuable resource in functional genomics studies of this important fungal pathogen of humans, and to facilitate the identification of putative novel antifungal drug target and virulence genes. PMID:24945925

  1. Dynamics of Disagreement: Large-Scale Temporal Network Analysis Reveals Negative Interactions in Online Collaboration

    PubMed Central

    Tsvetkova, Milena; García-Gavilanes, Ruth; Yasseri, Taha

    2016-01-01

    Disagreement and conflict are a fact of social life. However, negative interactions are rarely explicitly declared and recorded and this makes them hard for scientists to study. In an attempt to understand the structural and temporal features of negative interactions in the community, we use complex network methods to analyze patterns in the timing and configuration of reverts of article edits to Wikipedia. We investigate how often and how fast pairs of reverts occur compared to a null model in order to control for patterns that are natural to the content production or are due to the internal rules of Wikipedia. Our results suggest that Wikipedia editors systematically revert the same person, revert back their reverter, and come to defend a reverted editor. We further relate these interactions to the status of the involved editors. Even though the individual reverts might not necessarily be negative social interactions, our analysis points to the existence of certain patterns of negative social dynamics within the community of editors. Some of these patterns have not been previously explored and carry implications for the knowledge collection practice conducted on Wikipedia. Our method can be applied to other large-scale temporal collaboration networks to identify the existence of negative social interactions and other social processes. PMID:27808267

  2. Organization of the pronephric kidney revealed by large-scale gene expression mapping

    PubMed Central

    Raciti, Daniela; Reggiani, Luca; Geffers, Lars; Jiang, Qiuhong; Bacchion, Francesca; Subrizi, Astrid E; Clements, Dave; Tindal, Christopher; Davidson, Duncan R; Kaissling, Brigitte; Brändli, André W

    2008-01-01

    Background The pronephros, the simplest form of a vertebrate excretory organ, has recently become an important model of vertebrate kidney organogenesis. Here, we elucidated the nephron organization of the Xenopus pronephros and determined the similarities in segmentation with the metanephros, the adult kidney of mammals. Results We performed large-scale gene expression mapping of terminal differentiation markers to identify gene expression patterns that define distinct domains of the pronephric kidney. We analyzed the expression of over 240 genes, which included members of the solute carrier, claudin, and aquaporin gene families, as well as selected ion channels. The obtained expression patterns were deposited in the searchable European Renal Genome Project Xenopus Gene Expression Database. We found that 112 genes exhibited highly regionalized expression patterns that were adequate to define the segmental organization of the pronephric nephron. Eight functionally distinct domains were discovered that shared significant analogies in gene expression with the mammalian metanephric nephron. We therefore propose a new nomenclature, which is in line with the mammalian one. The Xenopus pronephric nephron is composed of four basic domains: proximal tubule, intermediate tubule, distal tubule, and connecting tubule. Each tubule may be further subdivided into distinct segments. Finally, we also provide compelling evidence that the expression of key genes underlying inherited renal diseases in humans has been evolutionarily conserved down to the level of the pronephric kidney. Conclusion The present study validates the Xenopus pronephros as a genuine model that may be used to elucidate the molecular basis of nephron segmentation and human renal disease. PMID:18492243

  3. Dynamics of Disagreement: Large-Scale Temporal Network Analysis Reveals Negative Interactions in Online Collaboration

    NASA Astrophysics Data System (ADS)

    Tsvetkova, Milena; García-Gavilanes, Ruth; Yasseri, Taha

    2016-11-01

    Disagreement and conflict are a fact of social life. However, negative interactions are rarely explicitly declared and recorded and this makes them hard for scientists to study. In an attempt to understand the structural and temporal features of negative interactions in the community, we use complex network methods to analyze patterns in the timing and configuration of reverts of article edits to Wikipedia. We investigate how often and how fast pairs of reverts occur compared to a null model in order to control for patterns that are natural to the content production or are due to the internal rules of Wikipedia. Our results suggest that Wikipedia editors systematically revert the same person, revert back their reverter, and come to defend a reverted editor. We further relate these interactions to the status of the involved editors. Even though the individual reverts might not necessarily be negative social interactions, our analysis points to the existence of certain patterns of negative social dynamics within the community of editors. Some of these patterns have not been previously explored and carry implications for the knowledge collection practice conducted on Wikipedia. Our method can be applied to other large-scale temporal collaboration networks to identify the existence of negative social interactions and other social processes.

  4. scMRI Reveals Large-Scale Brain Network Abnormalities in Autism

    PubMed Central

    Zielinski, Brandon A.; Anderson, Jeffrey S.; Froehlich, Alyson L.; Prigge, Molly B. D.; Nielsen, Jared A.; Cooperrider, Jason R.; Cariello, Annahir N.; Fletcher, P. Thomas; Alexander, Andrew L.; Lange, Nicholas; Bigler, Erin D.; Lainhart, Janet E.

    2012-01-01

    Autism is a complex neurological condition characterized by childhood onset of dysfunction in multiple cognitive domains including socio-emotional function, speech and language, and processing of internally versus externally directed stimuli. Although gross brain anatomic differences in autism are well established, recent studies investigating regional differences in brain structure and function have yielded divergent and seemingly contradictory results. How regional abnormalities relate to the autistic phenotype remains unclear. We hypothesized that autism exhibits distinct perturbations in network-level brain architecture, and that cognitive dysfunction may be reflected by abnormal network structure. Network-level anatomic abnormalities in autism have not been previously described. We used structural covariance MRI to investigate network-level differences in gray matter structure within two large-scale networks strongly implicated in autism, the salience network and the default mode network, in autistic subjects and age-, gender-, and IQ-matched controls. We report specific perturbations in brain network architecture in the salience and default-mode networks consistent with clinical manifestations of autism. Extent and distribution of the salience network, involved in social-emotional regulation of environmental stimuli, is restricted in autism. In contrast, posterior elements of the default mode network have increased spatial distribution, suggesting a ‘posteriorization’ of this network. These findings are consistent with a network-based model of autism, and suggest a unifying interpretation of previous work. Moreover, we provide evidence of specific abnormalities in brain network architecture underlying autism that are quantifiable using standard clinical MRI. PMID:23185305

  5. A large scale screen reveals genes that mediate electrotaxis in Dictyostelium discoideum**

    PubMed Central

    Gao, Runchi; Zhao, Siwei; Jiang, Xupin; Sun, Yaohui; Zhao, Sanjun; Gao, Jing; Borleis, Jane; Willard, Stacey; Tang, Ming; Cai, Huaqing; Kamimura, Yoichiro; Huang, Yuesheng; Jiang, Jianxin; Huang, Zunxi; Mogilner, Alex; Pan, Tingrui; Devreotes, Peter N; Zhao, Min

    2015-01-01

    Directional cell migration in an electric field, a phenomenon called galvanotaxis or electrotaxis, occurs in many types of cells, and may play an important role in wound healing and development. Small extracellular electric fields can guide the migration of amoeboid cells, and here, we established a large-scale screening approach to search for mutants with electrotaxis phenotypes from a collection of 563 Dictyostelium discoideum strains with morphological defects. We identified 28 strains that were defective in electrotaxis and 10 strains with a slightly higher directional response. Using plasmid rescue followed by gene disruption, we identified some of the mutated genes, including some previously implicated in chemotaxis. Amongst these we studied PiaA, which encodes a critical component of TORC2, a kinase protein complex that transduces changes in motility by activating the kinase PKB (also known as Akt). Furthermore, we found that electrotaxis was decreased in mutants lacking gefA, rasC, rip3, lst8 or pkbR1, genes that encode other components of the TORC2-PKB pathway. Thus, we have developed a high-throughput screening technique that will be a useful tool to elucidate the molecular mechanisms of electrotaxis. PMID:26012633

  6. Tree Age Distributions Reveal Large-Scale Disturbance-Recovery Cycles in Three Tropical Forests

    PubMed Central

    Vlam, Mart; van der Sleen, Peter; Groenendijk, Peter; Zuidema, Pieter A.

    2017-01-01

    Over the past few decades there has been a growing realization that a large share of apparently ‘virgin’ or ‘old-growth’ tropical forests carries a legacy of past natural or anthropogenic disturbances that have a substantial effect on present-day forest composition, structure and dynamics. Yet, direct evidence of such disturbances is scarce and comparisons of disturbance dynamics across regions even more so. Here we present a tree-ring based reconstruction of disturbance histories from three tropical forest sites in Bolivia, Cameroon, and Thailand. We studied temporal patterns in tree regeneration of shade-intolerant tree species, because establishment of these trees is indicative for canopy disturbance. In three large areas (140–300 ha), stem disks and increment cores were collected for a total of 1154 trees (>5 cm diameter) from 12 tree species to estimate the age of every tree. Using these age estimates we produced population age distributions, which were analyzed for evidence of past disturbance. Our approach allowed us to reconstruct patterns of tree establishment over a period of around 250 years. In Bolivia, we found continuous regeneration rates of three species and a peaked age distribution of a long-lived pioneer species. In both Cameroon and Thailand we found irregular age distributions, indicating strongly reduced regeneration rates over a period of 10–60 years. Past fires, windthrow events or anthropogenic disturbances all provide plausible explanations for the reported variation in tree age across the three sites. Our results support the recent idea that the long-term dynamics of tropical forests are impacted by large-scale disturbance-recovery cycles, similar to those driving temperate forest dynamics. PMID:28105034

  7. Tree Age Distributions Reveal Large-Scale Disturbance-Recovery Cycles in Three Tropical Forests.

    PubMed

    Vlam, Mart; van der Sleen, Peter; Groenendijk, Peter; Zuidema, Pieter A

    2016-01-01

    Over the past few decades there has been a growing realization that a large share of apparently 'virgin' or 'old-growth' tropical forests carries a legacy of past natural or anthropogenic disturbances that have a substantial effect on present-day forest composition, structure and dynamics. Yet, direct evidence of such disturbances is scarce and comparisons of disturbance dynamics across regions even more so. Here we present a tree-ring based reconstruction of disturbance histories from three tropical forest sites in Bolivia, Cameroon, and Thailand. We studied temporal patterns in tree regeneration of shade-intolerant tree species, because establishment of these trees is indicative for canopy disturbance. In three large areas (140-300 ha), stem disks and increment cores were collected for a total of 1154 trees (>5 cm diameter) from 12 tree species to estimate the age of every tree. Using these age estimates we produced population age distributions, which were analyzed for evidence of past disturbance. Our approach allowed us to reconstruct patterns of tree establishment over a period of around 250 years. In Bolivia, we found continuous regeneration rates of three species and a peaked age distribution of a long-lived pioneer species. In both Cameroon and Thailand we found irregular age distributions, indicating strongly reduced regeneration rates over a period of 10-60 years. Past fires, windthrow events or anthropogenic disturbances all provide plausible explanations for the reported variation in tree age across the three sites. Our results support the recent idea that the long-term dynamics of tropical forests are impacted by large-scale disturbance-recovery cycles, similar to those driving temperate forest dynamics.

  8. Large-scale Models Reveal the Two-component Mechanics of Striated Muscle

    PubMed Central

    Jarosch, Robert

    2008-01-01

    This paper provides a comprehensive explanation of striated muscle mechanics and contraction on the basis of filament rotations. Helical proteins, particularly the coiled-coils of tropomyosin, myosin and α-actinin, shorten their H-bonds cooperatively and produce torque and filament rotations when the Coulombic net-charge repulsion of their highly charged side-chains is diminished by interaction with ions. The classical “two-component model” of active muscle differentiated a “contractile component” which stretches the “series elastic component” during force production. The contractile components are the helically shaped thin filaments of muscle that shorten the sarcomeres by clockwise drilling into the myosin cross-bridges with torque decrease (= force-deficit). Muscle stretch means drawing out the thin filament helices off the cross-bridges under passive counterclockwise rotation with torque increase (= stretch activation). Since each thin filament is anchored by four elastic α-actinin Z-filaments (provided with force-regulating sites for Ca2+ binding), the thin filament rotations change the torsional twist of the four Z-filaments as the “series elastic components”. Large scale models simulate the changes of structure and force in the Z-band by the different Z-filament twisting stages A, B, C, D, E, F and G. Stage D corresponds to the isometric state. The basic phenomena of muscle physiology, i. e. latency relaxation, Fenn-effect, the force-velocity relation, the length-tension relation, unexplained energy, shortening heat, the Huxley-Simmons phases, etc. are explained and interpreted with the help of the model experiments. PMID:19330099

  9. Dusty Starbursts within a z=3 Large Scale Structure revealed by ALMA

    NASA Astrophysics Data System (ADS)

    Umehata, Hideki; Tamura, Yoichi; Kohno, Kotaro

    2015-08-01

    We present the results of a series of ALMA observations in the SSA22 field. In this field a remarkable large-scale structure (across ~1 deg) has been found at z=3.09, which makes the field an unique laboratory to investigate galaxy formation and evolution at biased fields in the early universe. First we have conducted a 1.1 mm continuum follow-up of 45 SMGs discovered by the 1.1 mm AzTEC/ASTE survey with ALMA in its Cycle 1 (PI. Umehata). We have achieved 1σ sensitivity of 0.07 - 0.16 mJy/beam and angular resolution of 0.6″ to find 64 discrete sources with S/N ≥ 4.5. Second in ALMA Cycle 2 we have carried out a contiguous 2‧ × 3‧ mapping observation at 1.1 mm (PI. Umehata) achieved by 103 point mosaic. This ‘ALMA deep field’ reaches 1σ sensitivity of 0.066 - 0.070 mJy/beam for an entire field and have angular resolution of 0.5″, which allows us to detect dusty star-forming galaxies with SFRIR ~ 60 M⊙yr-1 (if we assume β=1.5, Tdust=40 K, and Chablier IMF) at z=3.09. On the basis of comparison with the results from general fields, it is suggested that SMGs preferentially reside in the most dense environment at z~3. Furthermore we find a rich cluster of X-ray luminous ALMA sources at the core of the proto-cluster composed of seven objects with spec-z/photo-z = 3.09. Our results indicate that environment can be a key factor on the formation of dusty starbursts and the growth of SMBHs within them.

  10. Experimental study of rotating wind turbine breakdown characteristics in large scale air gaps

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Qu, Lu; Si, Tianjun; Ni, Yang; Xu, Jianwei; Wen, Xishan

    2017-06-01

    When a wind turbine is struck by lightning, its blades are usually rotating. The effect of blade rotation on a turbine’s ability to trigger a lightning strike is unclear. Therefore, an arching electrode was used in a wind turbine lightning discharge test to investigate the difference in lightning triggering ability when blades are rotating and stationary. A negative polarity switching waveform of 250/2500 μs was applied to the arching electrode and the up-and-down method was used to calculate the 50% discharge voltage. Lightning discharge tests of a 1:30 scale wind turbine model with 2, 4, and 6 m air gaps were performed and the discharge process was observed. The experimental results demonstrated that when a 2 m air gap was used, the breakdown voltage increased as the blade speed was increased, but when the gap length was 4 m or longer, the trend was reversed and the breakdown voltage decreased. The analysis revealed that the rotation of the blades changes the charge distribution in the blade-tip region, promotes upward leader development on the blade tip, and decreases the breakdown voltage. Thus, the blade rotation of a wind turbine increases its ability to trigger lightning strikes.

  11. Cooperativity within proximal phosphorylation sites is revealed from large-scale proteomics data

    PubMed Central

    2010-01-01

    Background Phosphorylation is the most prevalent post-translational modification on eukaryotic proteins. Multisite phosphorylation enables a specific combination of phosphosites to determine the speed, specificity and duration of biological response. Until recent years, the lack of high quality data limited the possibility for analyzing the properties of phosphorylation at the proteome scale and in the context of a wide range of conditions. Thanks to advances of mass spectrometry technologies, thousands of phosphosites from in-vivo experiments were identified and archived in the public domain. Such resource is appropriate to derive an unbiased view on the phosphosites properties in eukaryotes and on their functional relevance. Results We present statistically rigorous tests on the spatial and functional properties of a collection of ~70,000 reported phosphosites. We show that the distribution of phosphosites positioning along the protein tends to occur as dense clusters of Serine/Threonines (pS/pT) and between Serine/Threonines and Tyrosines, but generally not as much between Tyrosines (pY) only. This phenomenon is more ubiquitous than anticipated and is pertinent for most eukaryotic proteins: for proteins with ≥ 2 phosphosites, 54% of all pS/pT sites are within 4 amino acids of another site. We found a strong tendency for clustered pS/pT to be activated by the same kinase. Large-scale analyses of phosphopeptides are thus consistent with a cooperative function within the cluster. Conclusions We present evidence supporting the notion that clusters of pS/pT but generally not pY should be considered as the elementary building blocks in phosphorylation regulation. Indeed, closely positioned sites tend to be activated by the same kinase, a signal that overrides the tendency of a protein to be activated by a single or only few kinases. Within these clusters, coordination and positional dependency is evident. We postulate that cellular regulation takes advantage of such

  12. Large-scale atmospheric circulation forms and their impact on air temperature in Europe and northern Asia

    NASA Astrophysics Data System (ADS)

    Hoy, Andreas; Sepp, Mait; Matschullat, Jörg

    2013-08-01

    Air temperature variations in Europe and northern Asia are strongly affected by atmospheric circulation. A large-scale study of temperature signals is presented, using a newly available global gridded daily temperature dataset. Major types of European Grosswetterlagen (large-scale weather patterns) and the Russian Vangengeim-Girs classification are compared in their spatial applicability to air temperatures within the past 110 years (1901-2010). The consistency of spatial patterns in the three most recent decades (1981-2010) is investigated, and temperature changes are interpreted against the backdrop of changes in character and frequency of circulation patterns. Both classifications largely explain the observed temperature variability. Spatial patterns are large-scale and strong in both regions, especially in winter. Both spatial extent and signal magnitude show a distinct seasonality with maximum values in winter and minimum ones in summer. Spatial patterns show little changes in Europe; yet the ability to explain temperature variability in northern Asia decreased within 1981-2010. European winter warming corresponds to increased maritime and to decreased continental air mass inflow, superimposed on the general warming trend. Northern Asian winter warming is partly explainable by circulation changes in January and February, but to a lesser extend in December. These results may be used to advance input variables of global climate models and to improve their performance in the European-Northern Asian area.

  13. Large-scale transport of a CO-enhanced air mass from Europe to the Middle East

    NASA Technical Reports Server (NTRS)

    Connors, V. S.; Miles, T.; Reichle, H. G., Jr.

    1989-01-01

    On November 14, 1981, the shuttle-borne Measurement of Air Pollution from Satellites (MAPS) experiment observed a carbon monoxide (CO) enhanced air mass in the middle troposphere over the Middle East. The primary source of this polluted air was estimated by constructing adiabatic isentropic trajectories backwards from the MAPS measurement location over a 36 h period. The isentropic diagnostics indicate that CO-enhanced air was transported southeastward over the Mediterranean from an organized synoptic-scale weather regime, albeit of moderate intensity, influencing central Europe on November 12. Examination of the evolving synoptic scale vertical velocity and precipitation patterns during this period, in conjuction with Meteosat visible, infrared, and water vapor imagery, suggests that the presence of this disturbed weather system over Europe may have created upward transport of CO-enhanced air between the boundary-layer and midtropospheric levels, and subsequent entrainment in the large-scale northwesterly jet stream flow over Europe and the Mediterranean.

  14. Large-scale inhomogeneity in sapphire test masses revealed by Rayleigh scattering imaging

    NASA Astrophysics Data System (ADS)

    Yan, Zewu; Ju, Li; Eon, François; Gras, Slawomir; Zhao, Chunnong; Jacob, John; Blair, David G.

    2004-03-01

    Rayleigh scattering in test masses can introduce noise and reduce the sensitivity of laser interferometric gravitational wave detectors. In this paper, we present laser Rayleigh scattering imaging as a technique to investigate sapphire test masses. The system provides three-dimensional Rayleigh scattering mapping of entire test masses and quantitative evaluation of the Rayleigh scattering coefficient. Rayleigh scattering mapping of two sapphire samples reveals point defects as well as inhomogeneous structures in the samples. We present results showing significant non-uniform scattering within two 4.5 kg sapphire test masses manufactured by the heat exchanger method.

  15. Important aspects of Eastern Mediterranean large-scale variability revealed from data of three fixed observatories

    NASA Astrophysics Data System (ADS)

    Bensi, Manuel; Velaoras, Dimitris; Cardin, Vanessa; Perivoliotis, Leonidas; Pethiakis, George

    2015-04-01

    Long-term variations of temperature and salinity observed in the Adriatic and Aegean Seas seem to be regulated by larger-scale circulation modes of the Eastern Mediterranean (EMed) Sea, such as the recently discovered feedback mechanisms, namely the BiOS (Bimodal Oscillating System) and the internal thermohaline pump theories. These theories are the results of interpretation of many years' observations, highlighting possible interactions between two key regions of the EMed. Although repeated oceanographic cruises carried out in the past or planned for the future are a very useful tool for understanding the interaction between the two basins (e.g. alternating dense water formation, salt ingressions), recent long time-series of high frequency (up to 1h) sampling have added valuable information to the interpretation of internal mechanisms for both areas (i.e. mesoscale eddies, evolution of fast internal processes, etc.). During the last 10 years, three deep observatories were deployed and maintained in the Adriatic, Ionian, and Aegean Seas: they are respectively, the E2-M3A, the Pylos, and the E1-M3A. All are part of the largest European network of Fixed Point Open Ocean Observatories (FixO3, http://www.fixo3.eu/). Herein, from the analysis of temperature and salinity, and potential density time series collected at the three sites from the surface down to the intermediate and deep layers, we will discuss the almost perfect anti-correlated behavior between the Adriatic and the Aegean Seas. Our data, collected almost continuously since 2006, reveal that these observatories well represent the thermohaline variability of their own areas. Interestingly, temperature and salinity in the intermediate layer suddenly increased in the South Adriatic from the end of 2011, exactly when they started decreasing in the Aegean Sea. Moreover, Pylos data used together with additional ones (e.g. Absolute dynamic topography, temperature and salinity data from other platforms) collected

  16. Large-scale monitoring of air pollution in remote and ecologically important areas

    Treesearch

    Andrzej Bytnerowicz; Witold Fraczek

    2013-01-01

    New advances in air quality monitoring techniques, such as passive samplers for nitrogenous (N) or sulphurous (S) pollutants and ozone (O3), have allowed for an improved understanding of concentrations of these pollutants in remote areas. Mountains create special problems with regard to the feasibility of establishing and maintaining air pollution monitoring networks,...

  17. Acoustic telemetry reveals large-scale migration patterns of walleye in Lake Huron

    USGS Publications Warehouse

    Hayden, Todd A.; Holbrook, Christopher; Fielder, David G.; Vandergoot, Christopher S.; Bergstedt, Roger A.; Dettmers, John M.; Krueger, Charles C.; Cooke, Steven J.

    2014-01-01

    Fish migration in large freshwater lacustrine systems such as the Laurentian Great Lakes is not well understood. The walleye (Sander vitreus) is an economically and ecologically important native fish species throughout the Great Lakes. In Lake Huron walleye has recently undergone a population expansion as a result of recovery of the primary stock, stemming from changing food web dynamics. During 2011 and 2012, we used acoustic telemetry to document the timing and spatial scale of walleye migration in Lake Huron and Saginaw Bay. Spawning walleye (n = 199) collected from a tributary of Saginaw Bay were implanted with acoustic tags and their migrations were documented using acoustic receivers (n = 140) deployed throughout U.S. nearshore waters of Lake Huron. Three migration pathways were described using multistate mark-recapture models. Models were evaluated using the Akaike Information Criterion. Fish sex did not influence migratory behavior but did affect migration rate and walleye were detected on all acoustic receiver lines. Most (95%) tagged fish migrated downstream from the riverine tagging and release location to Saginaw Bay, and 37% of these fish emigrated from Saginaw Bay into Lake Huron. Remarkably, 8% of walleye that emigrated from Saginaw Bay were detected at the acoustic receiver line located farthest from the release location more than 350 km away. Most (64%) walleye returned to the Saginaw River in 2012, presumably for spawning. Our findings reveal that fish from this stock use virtually the entirety of U.S. nearshore waters of Lake Huron.

  18. Large Scale RNAi Reveals the Requirement of Nuclear Envelope Breakdown for Nuclear Import of Human Papillomaviruses

    PubMed Central

    Snijder, Berend; Samperio Ventayol, Pilar; Kühbacher, Andreas; Becker, Miriam; Day, Patricia M.; Schiller, John T.; Kann, Michael; Pelkmans, Lucas; Helenius, Ari; Schelhaas, Mario

    2014-01-01

    A two-step, high-throughput RNAi silencing screen was used to identify host cell factors required during human papillomavirus type 16 (HPV16) infection. Analysis of validated hits implicated a cluster of mitotic genes and revealed a previously undetermined mechanism for import of the viral DNA (vDNA) into the nucleus. In interphase cells, viruses were endocytosed, routed to the perinuclear area, and uncoated, but the vDNA failed to be imported into the nucleus. Upon nuclear envelope perforation in interphase cells HPV16 infection occured. During mitosis, the vDNA and L2 associated with host cell chromatin on the metaphase plate. Hence, we propose that HPV16 requires nuclear envelope breakdown during mitosis for access of the vDNA to the nucleoplasm. The results accentuate the value of genes found by RNAi screens for investigation of viral infections. The list of cell functions required during HPV16 infection will, moreover, provide a resource for future virus-host cell interaction studies. PMID:24874089

  19. Acoustic Telemetry Reveals Large-Scale Migration Patterns of Walleye in Lake Huron

    PubMed Central

    Hayden, Todd A.; Holbrook, Christopher M.; Fielder, David G.; Vandergoot, Christopher S.; Bergstedt, Roger A.; Dettmers, John M.; Krueger, Charles C.; Cooke, Steven J.

    2014-01-01

    Fish migration in large freshwater lacustrine systems such as the Laurentian Great Lakes is not well understood. The walleye (Sander vitreus) is an economically and ecologically important native fish species throughout the Great Lakes. In Lake Huron walleye has recently undergone a population expansion as a result of recovery of the primary stock, stemming from changing food web dynamics. During 2011 and 2012, we used acoustic telemetry to document the timing and spatial scale of walleye migration in Lake Huron and Saginaw Bay. Spawning walleye (n = 199) collected from a tributary of Saginaw Bay were implanted with acoustic tags and their migrations were documented using acoustic receivers (n = 140) deployed throughout U.S. nearshore waters of Lake Huron. Three migration pathways were described using multistate mark-recapture models. Models were evaluated using the Akaike Information Criterion. Fish sex did not influence migratory behavior but did affect migration rate and walleye were detected on all acoustic receiver lines. Most (95%) tagged fish migrated downstream from the riverine tagging and release location to Saginaw Bay, and 37% of these fish emigrated from Saginaw Bay into Lake Huron. Remarkably, 8% of walleye that emigrated from Saginaw Bay were detected at the acoustic receiver line located farthest from the release location more than 350 km away. Most (64%) walleye returned to the Saginaw River in 2012, presumably for spawning. Our findings reveal that fish from this stock use virtually the entirety of U.S. nearshore waters of Lake Huron. PMID:25506913

  20. Large scale RNAi reveals the requirement of nuclear envelope breakdown for nuclear import of human papillomaviruses.

    PubMed

    Aydin, Inci; Weber, Susanne; Snijder, Berend; Samperio Ventayol, Pilar; Kühbacher, Andreas; Becker, Miriam; Day, Patricia M; Schiller, John T; Kann, Michael; Pelkmans, Lucas; Helenius, Ari; Schelhaas, Mario

    2014-05-01

    A two-step, high-throughput RNAi silencing screen was used to identify host cell factors required during human papillomavirus type 16 (HPV16) infection. Analysis of validated hits implicated a cluster of mitotic genes and revealed a previously undetermined mechanism for import of the viral DNA (vDNA) into the nucleus. In interphase cells, viruses were endocytosed, routed to the perinuclear area, and uncoated, but the vDNA failed to be imported into the nucleus. Upon nuclear envelope perforation in interphase cells HPV16 infection occured. During mitosis, the vDNA and L2 associated with host cell chromatin on the metaphase plate. Hence, we propose that HPV16 requires nuclear envelope breakdown during mitosis for access of the vDNA to the nucleoplasm. The results accentuate the value of genes found by RNAi screens for investigation of viral infections. The list of cell functions required during HPV16 infection will, moreover, provide a resource for future virus-host cell interaction studies.

  1. The Dynamics of Sea Straits Reveals Large-Scale Modes of Variability

    NASA Astrophysics Data System (ADS)

    Rubino, Angelo; Androsov, Alexey; Zanchettin, Davide; Voltzinger, Naum

    2016-04-01

    Using a very high resolution 3D numerical model we investigate the tidal dynamics in the Strait of Messina. We show that different stratifications at the southern boundaries, consistent with observed stratifications in the Ionian approaches to the Strait, yield different mean sea level heights. On this basis we search for long-term variations in sea level heights measured in the tidal stations of Catania, Messina and Marseille, and associate them with the concomitant phase of dominant modes of interannual-to-decadal climate variability in the Euro-Mediterranean sector. We focus on the atmospheric North Atlantic Oscillation (NAO) and on the Adriatic-Ionian Bimodal Oscillating System (BiOS) to illustrate the grand variability in sea level teleconnections during the last four decades. In particular, observations reveal a strong imprint of both NAO and BiOS on all sea level records in the 21st century, when NAO and BiOS are inversely correlated. In the 1990s, a well known period of persistent positive NAO anomalies, the NAO imprint on sea level becomes weaker compared to the most recent period, although it remains clear on decadal trends, while the BiOS shows very weak positive variability. In the 1970s and early 1980s, when the NAO was on a neutral phase with weak variability, the NAO imprint on sea levels is weakest, and sea levels in Marseille and Sicily anticorrelate with each other, in contrast to the positive correlations found during the later periods. Based on these observational evidence, we discuss how our modeling results provide a basis to understand the local dynamics that contributed to determine such observed decadal variability.

  2. EFFECTS OF OXYGEN AND AIR MIXING ON VOID FRACTIONS IN A LARGE SCALE SYSTEM

    SciTech Connect

    Leishear, R; Hector Guerrero, H; Michael Restivo, M

    2008-09-11

    Oxygen and air mixing with spargers was performed in a 30 foot tall by 30 inch diameter column, to investigate mass transfer as air sparged up through the column and removed saturated oxygen from solution. The mixing techniques required to support this research are the focus of this paper. The fluids tested included water, water with an antifoam agent (AFA), and a high, solids content, Bingham plastic, nuclear waste simulant with AFA, referred to as AZ01 simulant, which is non-radioactive. Mixing of fluids in the column was performed using a recirculation system and an air sparger. The re-circulation system consisted of the column, a re-circulating pump, and associated piping. The air sparger was fabricated from a two inch diameter pipe concentrically installed in the column and open near the bottom of the column. The column contents were slowly re-circulated while fluids were mixed with the air sparger. Samples were rheologically tested to ensure effective mixing, as required. Once the fluids were adequately mixed, oxygen was homogeneously added through the re-circulation loop using a sintered metal oxygen sparger followed by a static mixer. Then the air sparger was re-actuated to remove oxygen from solution as air bubbled up through solution. To monitor mixing effectiveness several variables were monitored, which included flow rates, oxygen concentration, differential pressures along the column height, fluid levels, and void fractions, which are defined as the percent of dissolved gas divided by the total volume of gas and liquid. Research showed that mixing was uniform for water and water with AFA, but mixing for the AZ101 fluid was far more complex. Although mixing of AZ101 was uniform throughout most of the column, gas entrapment and settling of solids significantly affected test results. The detailed test results presented here provide some insight into the complexities of mixing and void fractions for different fluids and how the mixing process itself

  3. Reconstruction of air-shower parameters for large-scale radio detectors using the lateral distribution

    NASA Astrophysics Data System (ADS)

    Kostunin, D.; Bezyazeekov, P. A.; Hiller, R.; Schröder, F. G.; Lenok, V.; Levinson, E.

    2016-02-01

    We investigate features of the lateral distribution function (LDF) of the radio signal emitted by cosmic ray air-showers with primary energies Epr > 0.1 EeV and its connection to air-shower parameters such as energy and shower maximum using CoREAS simulations made for the configuration of the Tunka-Rex antenna array. Taking into account all significant contributions to the total radio emission, such as by the geomagnetic effect, the charge excess, and the atmospheric refraction we parameterize the radio LDF. This parameterization is two-dimensional and has several free parameters. The large number of free parameters is not suitable for experiments of sparse arrays operating at low SNR (signal-to-noise ratios). Thus, exploiting symmetries, we decrease the number of free parameters based on the shower geometry and reduce the LDF to a simple one-dimensional function. The remaining parameters can be fit with a small number of points, i.e. as few as the signal from three antennas above detection threshold. Finally, we present a method for the reconstruction of air-shower parameters, in particular, energy and Xmax (shower maximum), which can be reached with a theoretical accuracy of better than 15% and 30 g/cm2, respectively.

  4. Metaproteomics reveals major microbial players and their biodegradation functions in a large-scale aerobic composting plant

    PubMed Central

    Liu, Dongming; Li, Mingxiao; Xi, Beidou; Zhao, Yue; Wei, Zimin; Song, Caihong; Zhu, Chaowei

    2015-01-01

    Composting is an appropriate management alternative for municipal solid waste; however, our knowledge about the microbial regulation of this process is still scare. We employed metaproteomics to elucidate the main biodegradation pathways in municipal solid waste composting system across the main phases in a large-scale composting plant. The investigation of microbial succession revealed that Bacillales, Actinobacteria and Saccharomyces increased significantly with respect to abundance in composting process. The key microbiologic population for cellulose degradation in different composting stages was different. Fungi were found to be the main producers of cellulase in earlier phase. However, the cellulolytic fungal communities were gradually replaced by a purely bacterial one in active phase, which did not support the concept that the thermophilic fungi are active through the thermophilic phase. The effective decomposition of cellulose required the synergy between bacteria and fungi in the curing phase. PMID:25989417

  5. The iBeetle large-scale RNAi screen reveals gene functions for insect development and physiology

    PubMed Central

    Schmitt-Engel, Christian; Schultheis, Dorothea; Schwirz, Jonas; Ströhlein, Nadi; Troelenberg, Nicole; Majumdar, Upalparna; Dao, Van Anh; Grossmann, Daniela; Richter, Tobias; Tech, Maike; Dönitz, Jürgen; Gerischer, Lizzy; Theis, Mirko; Schild, Inga; Trauner, Jochen; Koniszewski, Nikolaus D. B.; Küster, Elke; Kittelmann, Sebastian; Hu, Yonggang; Lehmann, Sabrina; Siemanowski, Janna; Ulrich, Julia; Panfilio, Kristen A.; Schröder, Reinhard; Morgenstern, Burkhard; Stanke, Mario; Buchhholz, Frank; Frasch, Manfred; Roth, Siegfried; Wimmer, Ernst A.; Schoppmeier, Michael; Klingler, Martin; Bucher, Gregor

    2015-01-01

    Genetic screens are powerful tools to identify the genes required for a given biological process. However, for technical reasons, comprehensive screens have been restricted to very few model organisms. Therefore, although deep sequencing is revealing the genes of ever more insect species, the functional studies predominantly focus on candidate genes previously identified in Drosophila, which is biasing research towards conserved gene functions. RNAi screens in other organisms promise to reduce this bias. Here we present the results of the iBeetle screen, a large-scale, unbiased RNAi screen in the red flour beetle, Tribolium castaneum, which identifies gene functions in embryonic and postembryonic development, physiology and cell biology. The utility of Tribolium as a screening platform is demonstrated by the identification of genes involved in insect epithelial adhesion. This work transcends the restrictions of the candidate gene approach and opens fields of research not accessible in Drosophila. PMID:26215380

  6. The iBeetle large-scale RNAi screen reveals gene functions for insect development and physiology.

    PubMed

    Schmitt-Engel, Christian; Schultheis, Dorothea; Schwirz, Jonas; Ströhlein, Nadi; Troelenberg, Nicole; Majumdar, Upalparna; Dao, Van Anh; Grossmann, Daniela; Richter, Tobias; Tech, Maike; Dönitz, Jürgen; Gerischer, Lizzy; Theis, Mirko; Schild, Inga; Trauner, Jochen; Koniszewski, Nikolaus D B; Küster, Elke; Kittelmann, Sebastian; Hu, Yonggang; Lehmann, Sabrina; Siemanowski, Janna; Ulrich, Julia; Panfilio, Kristen A; Schröder, Reinhard; Morgenstern, Burkhard; Stanke, Mario; Buchhholz, Frank; Frasch, Manfred; Roth, Siegfried; Wimmer, Ernst A; Schoppmeier, Michael; Klingler, Martin; Bucher, Gregor

    2015-07-28

    Genetic screens are powerful tools to identify the genes required for a given biological process. However, for technical reasons, comprehensive screens have been restricted to very few model organisms. Therefore, although deep sequencing is revealing the genes of ever more insect species, the functional studies predominantly focus on candidate genes previously identified in Drosophila, which is biasing research towards conserved gene functions. RNAi screens in other organisms promise to reduce this bias. Here we present the results of the iBeetle screen, a large-scale, unbiased RNAi screen in the red flour beetle, Tribolium castaneum, which identifies gene functions in embryonic and postembryonic development, physiology and cell biology. The utility of Tribolium as a screening platform is demonstrated by the identification of genes involved in insect epithelial adhesion. This work transcends the restrictions of the candidate gene approach and opens fields of research not accessible in Drosophila.

  7. Metaproteomics reveals major microbial players and their biodegradation functions in a large-scale aerobic composting plant.

    PubMed

    Liu, Dongming; Li, Mingxiao; Xi, Beidou; Zhao, Yue; Wei, Zimin; Song, Caihong; Zhu, Chaowei

    2015-11-01

    Composting is an appropriate management alternative for municipal solid waste; however, our knowledge about the microbial regulation of this process is still scare. We employed metaproteomics to elucidate the main biodegradation pathways in municipal solid waste composting system across the main phases in a large-scale composting plant. The investigation of microbial succession revealed that Bacillales, Actinobacteria and Saccharomyces increased significantly with respect to abundance in composting process. The key microbiologic population for cellulose degradation in different composting stages was different. Fungi were found to be the main producers of cellulase in earlier phase. However, the cellulolytic fungal communities were gradually replaced by a purely bacterial one in active phase, which did not support the concept that the thermophilic fungi are active through the thermophilic phase. The effective decomposition of cellulose required the synergy between bacteria and fungi in the curing phase.

  8. MALDI imaging mass spectrometry reveals multiple clinically relevant masses in colorectal cancer using large-scale tissue microarrays.

    PubMed

    Hinsch, A; Buchholz, M; Odinga, S; Borkowski, C; Koop, C; Izbicki, J R; Wurlitzer, M; Krech, T; Wilczak, W; Steurer, S; Jacobsen, F; Burandt, E-C; Stahl, P; Simon, R; Sauter, G; Schlüter, H

    2017-03-01

    For identification of clinically relevant masses to predict status, grade, relapse and prognosis of colorectal cancer, we applied Matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS) to a tissue micro array containing formalin-fixed and paraffin-embedded tissue samples from 349 patients. Analysis of our MALDI-IMS data revealed 27 different m/z signals associated with epithelial structures. Comparison of these signals showed significant association with status, grade and Ki-67 labeling index. Fifteen out of 27 IMS signals revealed a significant association with survival. For seven signals (m/z 654, 776, 788, 904, 944, 975 and 1013) the absence and for eight signals (m/z 643, 678, 836, 886, 898, 1095, 1459 and 1477) the presence were associated with decreased life expectancy, including five masses (m/z 788, 836, 904, 944 and 1013) that provided prognostic information independently from the established prognosticators pT and pN. Combination of these five masses resulted in a three-step classifier that provided prognostic information superior to univariate analysis. In addition, a total of 19 masses were associated with tumor stage, grade, metastasis and cell proliferation. Our data demonstrate the suitability of combining IMS and large-scale tissue micro arrays to simultaneously identify and validate clinically useful molecular marker. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Systems Perturbation Analysis of a Large-Scale Signal Transduction Model Reveals Potentially Influential Candidates for Cancer Therapeutics.

    PubMed

    Puniya, Bhanwar Lal; Allen, Laura; Hochfelder, Colleen; Majumder, Mahbubul; Helikar, Tomáš

    2016-01-01

    Dysregulation in signal transduction pathways can lead to a variety of complex disorders, including cancer. Computational approaches such as network analysis are important tools to understand system dynamics as well as to identify critical components that could be further explored as therapeutic targets. Here, we performed perturbation analysis of a large-scale signal transduction model in extracellular environments that stimulate cell death, growth, motility, and quiescence. Each of the model's components was perturbed under both loss-of-function and gain-of-function mutations. Using 1,300 simulations under both types of perturbations across various extracellular conditions, we identified the most and least influential components based on the magnitude of their influence on the rest of the system. Based on the premise that the most influential components might serve as better drug targets, we characterized them for biological functions, housekeeping genes, essential genes, and druggable proteins. The most influential components under all environmental conditions were enriched with several biological processes. The inositol pathway was found as most influential under inactivating perturbations, whereas the kinase and small lung cancer pathways were identified as the most influential under activating perturbations. The most influential components were enriched with essential genes and druggable proteins. Moreover, known cancer drug targets were also classified in influential components based on the affected components in the network. Additionally, the systemic perturbation analysis of the model revealed a network motif of most influential components which affect each other. Furthermore, our analysis predicted novel combinations of cancer drug targets with various effects on other most influential components. We found that the combinatorial perturbation consisting of PI3K inactivation and overactivation of IP3R1 can lead to increased activity levels of apoptosis

  10. 25-Day Period Large-Scale Oscillations in the Argentine Basin Revealed by the TOPEX/POSEIDON Altimeter

    NASA Technical Reports Server (NTRS)

    Fu, L-L.; Cheng, B.; Qiu, B.

    1999-01-01

    The measurement of global sea surface height made by the TOPEX/POSEIDON satellite has provided the first synoptic view of large-scale oceanic variability at the intraseasonal scales from weeks to months.

  11. High prevalence of caprine arthritis encephalitis virus (CAEV) in Taiwan revealed by large-scale serological survey

    PubMed Central

    YANG, Wei-Cheng; CHEN, Hui-Yu; WANG, Chi-Young; PAN, Hung-Yu; WU, Cheng-Wei; HSU, Yun-Hsiu; SU, Jui-Chuan; CHAN, Kun-Wei

    2016-01-01

    In this study, a large-scale serological survey of caprine arthritis encephalitis virus (CAEV) infection was conducted between March 2011 and October 2012. 3,437 goat blood or milk samples were collected from 65 goat farms throughout Taiwan. A commercial ELISA kit was used to detect antibodies against CAEV. The overall seropositive rate was 61.7% (2,120/3,437) in goats and in 98.5% (64/65) of goat farms. These results provide the first large-scale serological evidence for the presence of CAEV infection, indicating that the disease is widespread in Taiwan. PMID:27916786

  12. Multimodal MR-imaging reveals large-scale structural and functional connectivity changes in profound early blindness

    PubMed Central

    Bauer, Corinna M.; Hirsch, Gabriella V.; Zajac, Lauren; Koo, Bang-Bon; Collignon, Olivier

    2017-01-01

    between occipital and frontal and somatosensory-motor areas and between temporal (mainly fusiform and parahippocampus) and parietal, frontal, and other temporal areas. Correlations in white matter connectivity and functional connectivity observed between early blind and sighted controls showed an overall high degree of association. However, comparing the relative changes in white matter and functional connectivity between early blind and sighted controls did not show a significant correlation. In summary, these findings provide complimentary evidence, as well as highlight potential contradictions, regarding the nature of regional and large scale neuroplastic reorganization resulting from early onset blindness. PMID:28328939

  13. Large-Scale Disasters

    NASA Astrophysics Data System (ADS)

    Gad-El-Hak, Mohamed

    "Extreme" events - including climatic events, such as hurricanes, tornadoes, and drought - can cause massive disruption to society, including large death tolls and property damage in the billions of dollars. Events in recent years have shown the importance of being prepared and that countries need to work together to help alleviate the resulting pain and suffering. This volume presents a review of the broad research field of large-scale disasters. It establishes a common framework for predicting, controlling and managing both manmade and natural disasters. There is a particular focus on events caused by weather and climate change. Other topics include air pollution, tsunamis, disaster modeling, the use of remote sensing and the logistics of disaster management. It will appeal to scientists, engineers, first responders and health-care professionals, in addition to graduate students and researchers who have an interest in the prediction, prevention or mitigation of large-scale disasters.

  14. Analysis and experimental study on formation conditions of large-scale barrier-free diffuse atmospheric pressure air plasmas in repetitive pulse mode

    NASA Astrophysics Data System (ADS)

    Li, Lee; Liu, Lun; Liu, Yun-Long; Bin, Yu; Ge, Ya-Feng; Lin, Fo-Chang

    2014-01-01

    Atmospheric air diffuse plasmas have enormous application potential in various fields of science and technology. Without dielectric barrier, generating large-scale air diffuse plasmas is always a challenging issue. This paper discusses and analyses the formation mechanism of cold homogenous plasma. It is proposed that generating stable diffuse atmospheric plasmas in open air should meet the three conditions: high transient power with low average power, excitation in low average E-field with locally high E-field region, and multiple overlapping electron avalanches. Accordingly, an experimental configuration of generating large-scale barrier-free diffuse air plasmas is designed. Based on runaway electron theory, a low duty-ratio, high voltage repetitive nanosecond pulse generator is chosen as a discharge excitation source. Using the wire-electrodes with small curvature radius, the gaps with highly non-uniform E-field are structured. Experimental results show that the volume-scaleable, barrier-free, homogeneous air non-thermal plasmas have been obtained between the gap spacing with the copper-wire electrodes. The area of air cold plasmas has been up to hundreds of square centimeters. The proposed formation conditions of large-scale barrier-free diffuse air plasmas are proved to be reasonable and feasible.

  15. Analysis and experimental study on formation conditions of large-scale barrier-free diffuse atmospheric pressure air plasmas in repetitive pulse mode

    SciTech Connect

    Li, Lee Liu, Lun; Liu, Yun-Long; Bin, Yu; Ge, Ya-Feng; Lin, Fo-Chang

    2014-01-14

    Atmospheric air diffuse plasmas have enormous application potential in various fields of science and technology. Without dielectric barrier, generating large-scale air diffuse plasmas is always a challenging issue. This paper discusses and analyses the formation mechanism of cold homogenous plasma. It is proposed that generating stable diffuse atmospheric plasmas in open air should meet the three conditions: high transient power with low average power, excitation in low average E-field with locally high E-field region, and multiple overlapping electron avalanches. Accordingly, an experimental configuration of generating large-scale barrier-free diffuse air plasmas is designed. Based on runaway electron theory, a low duty-ratio, high voltage repetitive nanosecond pulse generator is chosen as a discharge excitation source. Using the wire-electrodes with small curvature radius, the gaps with highly non-uniform E-field are structured. Experimental results show that the volume-scaleable, barrier-free, homogeneous air non-thermal plasmas have been obtained between the gap spacing with the copper-wire electrodes. The area of air cold plasmas has been up to hundreds of square centimeters. The proposed formation conditions of large-scale barrier-free diffuse air plasmas are proved to be reasonable and feasible.

  16. Genome resequencing in Populus: Revealing large-scale genome variation and implications on specialized-trait genomics

    SciTech Connect

    Muchero, Wellington; Labbe, Jessy L; Priya, Ranjan; DiFazio, Steven P; Tuskan, Gerald A

    2014-01-01

    To date, Populus ranks among a few plant species with a complete genome sequence and other highly developed genomic resources. With the first genome sequence among all tree species, Populus has been adopted as a suitable model organism for genomic studies in trees. However, far from being just a model species, Populus is a key renewable economic resource that plays a significant role in providing raw materials for the biofuel and pulp and paper industries. Therefore, aside from leading frontiers of basic tree molecular biology and ecological research, Populus leads frontiers in addressing global economic challenges related to fuel and fiber production. The latter fact suggests that research aimed at improving quality and quantity of Populus as a raw material will likely drive the pursuit of more targeted and deeper research in order to unlock the economic potential tied in molecular biology processes that drive this tree species. Advances in genome sequence-driven technologies, such as resequencing individual genotypes, which in turn facilitates large scale SNP discovery and identification of large scale polymorphisms are key determinants of future success in these initiatives. In this treatise we discuss implications of genome sequence-enable technologies on Populus genomic and genetic studies of complex and specialized-traits.

  17. Captured metagenomics: large-scale targeting of genes based on 'sequence capture' reveals functional diversity in soils.

    PubMed

    Manoharan, Lokeshwaran; Kushwaha, Sandeep K; Hedlund, Katarina; Ahrén, Dag

    2015-12-01

    Microbial enzyme diversity is a key to understand many ecosystem processes. Whole metagenome sequencing (WMG) obtains information on functional genes, but it is costly and inefficient due to large amount of sequencing that is required. In this study, we have applied a captured metagenomics technique for functional genes in soil microorganisms, as an alternative to WMG. Large-scale targeting of functional genes, coding for enzymes related to organic matter degradation, was applied to two agricultural soil communities through captured metagenomics. Captured metagenomics uses custom-designed, hybridization-based oligonucleotide probes that enrich functional genes of interest in metagenomic libraries where only probe-bound DNA fragments are sequenced. The captured metagenomes were highly enriched with targeted genes while maintaining their target diversity and their taxonomic distribution correlated well with the traditional ribosomal sequencing. The captured metagenomes were highly enriched with genes related to organic matter degradation; at least five times more than similar, publicly available soil WMG projects. This target enrichment technique also preserves the functional representation of the soils, thereby facilitating comparative metagenomics projects. Here, we present the first study that applies the captured metagenomics approach in large scale, and this novel method allows deep investigations of central ecosystem processes by studying functional gene abundances. © The Author 2015. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  18. Captured metagenomics: large-scale targeting of genes based on ‘sequence capture’ reveals functional diversity in soils

    PubMed Central

    Manoharan, Lokeshwaran; Kushwaha, Sandeep K.; Hedlund, Katarina; Ahrén, Dag

    2015-01-01

    Microbial enzyme diversity is a key to understand many ecosystem processes. Whole metagenome sequencing (WMG) obtains information on functional genes, but it is costly and inefficient due to large amount of sequencing that is required. In this study, we have applied a captured metagenomics technique for functional genes in soil microorganisms, as an alternative to WMG. Large-scale targeting of functional genes, coding for enzymes related to organic matter degradation, was applied to two agricultural soil communities through captured metagenomics. Captured metagenomics uses custom-designed, hybridization-based oligonucleotide probes that enrich functional genes of interest in metagenomic libraries where only probe-bound DNA fragments are sequenced. The captured metagenomes were highly enriched with targeted genes while maintaining their target diversity and their taxonomic distribution correlated well with the traditional ribosomal sequencing. The captured metagenomes were highly enriched with genes related to organic matter degradation; at least five times more than similar, publicly available soil WMG projects. This target enrichment technique also preserves the functional representation of the soils, thereby facilitating comparative metagenomics projects. Here, we present the first study that applies the captured metagenomics approach in large scale, and this novel method allows deep investigations of central ecosystem processes by studying functional gene abundances. PMID:26490729

  19. Bursty properties revealed in large-scale brain networks with a point-based method for dynamic functional connectivity

    PubMed Central

    Thompson, William Hedley; Fransson, Peter

    2016-01-01

    The brain is organized into large scale spatial networks that can be detected during periods of rest using fMRI. The brain is also a dynamic organ with activity that changes over time. We developed a method and investigated properties where the connections as a function of time are derived and quantified. The point based method (PBM) presented here derives covariance matrices after clustering individual time points based upon their global spatial pattern. This method achieved increased temporal sensitivity, together with temporal network theory, allowed us to study functional integration between resting-state networks. Our results show that functional integrations between two resting-state networks predominately occurs in bursts of activity. This is followed by varying intermittent periods of less connectivity. The described point-based method of dynamic resting-state functional connectivity allows for a detailed and expanded view on the temporal dynamics of resting-state connectivity that provides novel insights into how neuronal information processing is integrated in the human brain at the level of large-scale networks. PMID:27991540

  20. Modeling the MJO rain rates using parameterized large scale dynamics: vertical structure, radiation, and horizontal advection of dry air

    NASA Astrophysics Data System (ADS)

    Wang, S.; Sobel, A. H.; Nie, J.

    2015-12-01

    Two Madden Julian Oscillation (MJO) events were observed during October and November 2011 in the equatorial Indian Ocean during the DYNAMO field campaign. Precipitation rates and large-scale vertical motion profiles derived from the DYNAMO northern sounding array are simulated in a small-domain cloud-resolving model using parameterized large-scale dynamics. Three parameterizations of large-scale dynamics --- the conventional weak temperature gradient (WTG) approximation, vertical mode based spectral WTG (SWTG), and damped gravity wave coupling (DGW) --- are employed. The target temperature profiles and radiative heating rates are taken from a control simulation in which the large-scale vertical motion is imposed (rather than directly from observations), and the model itself is significantly modified from that used in previous work. These methodological changes lead to significant improvement in the results.Simulations using all three methods, with imposed time -dependent radiation and horizontal moisture advection, capture the time variations in precipitation associated with the two MJO events well. The three methods produce significant differences in the large-scale vertical motion profile, however. WTG produces the most top-heavy and noisy profiles, while DGW's is smoother with a peak in midlevels. SWTG produces a smooth profile, somewhere between WTG and DGW, and in better agreement with observations than either of the others. Numerical experiments without horizontal advection of moisture suggest that that process significantly reduces the precipitation and suppresses the top-heaviness of large-scale vertical motion during the MJO active phases, while experiments in which the effect of cloud on radiation are disabled indicate that cloud-radiative interaction significantly amplifies the MJO. Experiments in which interactive radiation is used produce poorer agreement with observation than those with imposed time-varying radiative heating. Our results highlight the

  1. Organization and evolution of brain lipidome revealed by large-scale analysis of human, chimpanzee, macaque, and mouse tissues.

    PubMed

    Bozek, Katarzyna; Wei, Yuning; Yan, Zheng; Liu, Xiling; Xiong, Jieyi; Sugimoto, Masahiro; Tomita, Masaru; Pääbo, Svante; Sherwood, Chet C; Hof, Patrick R; Ely, John J; Li, Yan; Steinhauser, Dirk; Willmitzer, Lothar; Giavalisco, Patrick; Khaitovich, Philipp

    2015-02-18

    Lipids are prominent components of the nervous system. Here we performed a large-scale mass spectrometry-based analysis of the lipid composition of three brain regions as well as kidney and skeletal muscle of humans, chimpanzees, rhesus macaques, and mice. The human brain shows the most distinct lipid composition: 76% of 5,713 lipid compounds examined in our study are either enriched or depleted in the human brain. Concentration levels of lipids enriched in the brain evolve approximately four times faster among primates compared with lipids characteristic of non-neural tissues and show further acceleration of change in human neocortical regions but not in the cerebellum. Human-specific concentration changes are supported by human-specific expression changes for corresponding enzymes. These results provide the first insights into the role of lipids in human brain evolution. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Natural snowfall reveals large-scale flow structures in the wake of a 2.5-MW wind turbine.

    PubMed

    Hong, Jiarong; Toloui, Mostafa; Chamorro, Leonardo P; Guala, Michele; Howard, Kevin; Riley, Sean; Tucker, James; Sotiropoulos, Fotis

    2014-06-24

    To improve power production and structural reliability of wind turbines, there is a pressing need to understand how turbines interact with the atmospheric boundary layer. However, experimental techniques capable of quantifying or even qualitatively visualizing the large-scale turbulent flow structures around full-scale turbines do not exist today. Here we use snowflakes from a winter snowstorm as flow tracers to obtain velocity fields downwind of a 2.5-MW wind turbine in a sampling area of ~36 × 36 m(2). The spatial and temporal resolutions of the measurements are sufficiently high to quantify the evolution of blade-generated coherent motions, such as the tip and trailing sheet vortices, identify their instability mechanisms and correlate them with turbine operation, control and performance. Our experiment provides an unprecedented in situ characterization of flow structures around utility-scale turbines, and yields significant insights into the Reynolds number similarity issues presented in wind energy applications.

  3. Lichen elemental content bioindicators for air quality in upper Midwest, USA: A model for large-scale monitoring

    Treesearch

    Susan Will-Wolf; Sarah Jovan; Michael C. Amacher

    2017-01-01

    Our development of lichen elemental bioindicators for a United States of America (USA) national monitoring program is a useful model for other large-scale programs. Concentrations of 20 elements were measured, validated, and analyzed for 203 samples of five common lichen species. Collections were made by trained non-specialists near 75 permanent plots and an expert...

  4. A developmental framework for complex plasmodesmata formation revealed by large-scale imaging of the Arabidopsis leaf epidermis.

    PubMed

    Fitzgibbon, Jessica; Beck, Martina; Zhou, Ji; Faulkner, Christine; Robatzek, Silke; Oparka, Karl

    2013-01-01

    Plasmodesmata (PD) form tubular connections that function as intercellular communication channels. They are essential for transporting nutrients and for coordinating development. During cytokinesis, simple PDs are inserted into the developing cell plate, while during wall extension, more complex (branched) forms of PD are laid down. We show that complex PDs are derived from existing simple PDs in a pattern that is accelerated when leaves undergo the sink-source transition. Complex PDs are inserted initially at the three-way junctions between epidermal cells but develop most rapidly in the anisocytic complexes around stomata. For a quantitative analysis of complex PD formation, we established a high-throughput imaging platform and constructed PDQUANT, a custom algorithm that detected cell boundaries and PD numbers in different wall faces. For anticlinal walls, the number of complex PDs increased with increasing cell size, while for periclinal walls, the number of PDs decreased. Complex PD insertion was accelerated by up to threefold in response to salicylic acid treatment and challenges with mannitol. In a single 30-min run, we could derive data for up to 11k PDs from 3k epidermal cells. This facile approach opens the door to a large-scale analysis of the endogenous and exogenous factors that influence PD formation.

  5. A Developmental Framework for Complex Plasmodesmata Formation Revealed by Large-Scale Imaging of the Arabidopsis Leaf Epidermis[W

    PubMed Central

    Fitzgibbon, Jessica; Beck, Martina; Zhou, Ji; Faulkner, Christine; Robatzek, Silke; Oparka, Karl

    2013-01-01

    Plasmodesmata (PD) form tubular connections that function as intercellular communication channels. They are essential for transporting nutrients and for coordinating development. During cytokinesis, simple PDs are inserted into the developing cell plate, while during wall extension, more complex (branched) forms of PD are laid down. We show that complex PDs are derived from existing simple PDs in a pattern that is accelerated when leaves undergo the sink–source transition. Complex PDs are inserted initially at the three-way junctions between epidermal cells but develop most rapidly in the anisocytic complexes around stomata. For a quantitative analysis of complex PD formation, we established a high-throughput imaging platform and constructed PDQUANT, a custom algorithm that detected cell boundaries and PD numbers in different wall faces. For anticlinal walls, the number of complex PDs increased with increasing cell size, while for periclinal walls, the number of PDs decreased. Complex PD insertion was accelerated by up to threefold in response to salicylic acid treatment and challenges with mannitol. In a single 30-min run, we could derive data for up to 11k PDs from 3k epidermal cells. This facile approach opens the door to a large-scale analysis of the endogenous and exogenous factors that influence PD formation. PMID:23371949

  6. Structural Variant Detection by Large-scale Sequencing Reveals New Evolutionary Evidence on Breed Divergence between Chinese and European Pigs

    PubMed Central

    Zhao, Pengju; Li, Junhui; Kang, Huimin; Wang, Haifei; Fan, Ziyao; Yin, Zongjun; Wang, Jiafu; Zhang, Qin; Wang, Zhiquan; Liu, Jian-Feng

    2016-01-01

    In this study, we performed a genome-wide SV detection among the genomes of thirteen pigs from diverse Chinese and European originated breeds by next genetation sequencing, and constrcuted a single-nucleotide resolution map involving 56,930 putative SVs. We firstly identified a SV hotspot spanning 35 Mb region on the X chromosome specifically in the genomes of Chinese originated individuals. Further scrutinizing this region by large-scale sequencing data of extra 111 individuals, we obtained the confirmatory evidence on our initial finding. Moreover, thirty five SV-related genes within the hotspot region, being of importance for reproduction ability, rendered significant different evolution rates between Chinese and European originated breeds. The SV hotspot identified herein offers a novel evidence for assessing phylogenetic relationships, as well as likely explains the genetic difference of corresponding phenotypes and features, among Chinese and European pig breeds. Furthermore, we employed various SVs to infer genetic structure of individuls surveyed. We found SVs can clearly detect the difference of genetic background among individuals. This clues us that genome-wide SVs can capture majority of geneic variation and be applied into cladistic analyses. Characterizing whole genome SVs demonstrated that SVs are significantly enriched/depleted with various genomic features. PMID:26729041

  7. Large-Scale Phylogenomic Analyses Reveal That Two Enigmatic Protist Lineages, Telonemia and Centroheliozoa, Are Related to Photosynthetic Chromalveolates

    PubMed Central

    Burki, Fabien; Inagaki, Yuji; Bråte, Jon; Archibald, John M.; Keeling, Patrick J.; Cavalier-Smith, Thomas; Sakaguchi, Miako; Hashimoto, Tetsuo; Horak, Ales; Kumar, Surendra; Klaveness, Dag; Jakobsen, Kjetill S.; Pawlowski, Jan

    2009-01-01

    Understanding the early evolution and diversification of eukaryotes relies on a fully resolved phylogenetic tree. In recent years, most eukaryotic diversity has been assigned to six putative supergroups, but the evolutionary origin of a few major “orphan” lineages remains elusive. Two ecologically important orphan groups are the heterotrophic Telonemia and Centroheliozoa. Telonemids have been proposed to be related to the photosynthetic cryptomonads or stramenopiles and centrohelids to haptophytes, but molecular phylogenies have failed to provide strong support for any phylogenetic hypothesis. Here, we investigate the origins of Telonema subtilis (a telonemid) and Raphidiophrys contractilis (a centrohelid) by large-scale 454 pyrosequencing of cDNA libraries and including new genomic data from two cryptomonads (Guillardia theta and Plagioselmis nannoplanctica) and a haptophyte (Imantonia rotunda). We demonstrate that 454 sequencing of cDNA libraries is a powerful and fast method of sampling a high proportion of protist genes, which can yield ample information for phylogenomic studies. Our phylogenetic analyses of 127 genes from 72 species indicate that telonemids and centrohelids are members of an emerging major group of eukaryotes also comprising cryptomonads and haptophytes. Furthermore, this group is possibly closely related to the SAR clade comprising stramenopiles (heterokonts), alveolates, and Rhizaria. Our results link two additional heterotrophic lineages to the predominantly photosynthetic chromalveolate supergroup, providing a new framework for interpreting the evolution of eukaryotic cell structures and the diversification of plastids. PMID:20333193

  8. Large-scale phylogenomic analyses reveal that two enigmatic protist lineages, telonemia and centroheliozoa, are related to photosynthetic chromalveolates.

    PubMed

    Burki, Fabien; Inagaki, Yuji; Bråte, Jon; Archibald, John M; Keeling, Patrick J; Cavalier-Smith, Thomas; Sakaguchi, Miako; Hashimoto, Tetsuo; Horak, Ales; Kumar, Surendra; Klaveness, Dag; Jakobsen, Kjetill S; Pawlowski, Jan; Shalchian-Tabrizi, Kamran

    2009-07-27

    Understanding the early evolution and diversification of eukaryotes relies on a fully resolved phylogenetic tree. In recent years, most eukaryotic diversity has been assigned to six putative supergroups, but the evolutionary origin of a few major "orphan" lineages remains elusive. Two ecologically important orphan groups are the heterotrophic Telonemia and Centroheliozoa. Telonemids have been proposed to be related to the photosynthetic cryptomonads or stramenopiles and centrohelids to haptophytes, but molecular phylogenies have failed to provide strong support for any phylogenetic hypothesis. Here, we investigate the origins of Telonema subtilis (a telonemid) and Raphidiophrys contractilis (a centrohelid) by large-scale 454 pyrosequencing of cDNA libraries and including new genomic data from two cryptomonads (Guillardia theta and Plagioselmis nannoplanctica) and a haptophyte (Imantonia rotunda). We demonstrate that 454 sequencing of cDNA libraries is a powerful and fast method of sampling a high proportion of protist genes, which can yield ample information for phylogenomic studies. Our phylogenetic analyses of 127 genes from 72 species indicate that telonemids and centrohelids are members of an emerging major group of eukaryotes also comprising cryptomonads and haptophytes. Furthermore, this group is possibly closely related to the SAR clade comprising stramenopiles (heterokonts), alveolates, and Rhizaria. Our results link two additional heterotrophic lineages to the predominantly photosynthetic chromalveolate supergroup, providing a new framework for interpreting the evolution of eukaryotic cell structures and the diversification of plastids.

  9. Rank Order Coding: a Retinal Information Decoding Strategy Revealed by Large-Scale Multielectrode Array Retinal Recordings.

    PubMed

    Portelli, Geoffrey; Barrett, John M; Hilgen, Gerrit; Masquelier, Timothée; Maccione, Alessandro; Di Marco, Stefano; Berdondini, Luca; Kornprobst, Pierre; Sernagor, Evelyne

    2016-01-01

    How a population of retinal ganglion cells (RGCs) encodes the visual scene remains an open question. Going beyond individual RGC coding strategies, results in salamander suggest that the relative latencies of a RGC pair encode spatial information. Thus, a population code based on this concerted spiking could be a powerful mechanism to transmit visual information rapidly and efficiently. Here, we tested this hypothesis in mouse by recording simultaneous light-evoked responses from hundreds of RGCs, at pan-retinal level, using a new generation of large-scale, high-density multielectrode array consisting of 4096 electrodes. Interestingly, we did not find any RGCs exhibiting a clear latency tuning to the stimuli, suggesting that in mouse, individual RGC pairs may not provide sufficient information. We show that a significant amount of information is encoded synergistically in the concerted spiking of large RGC populations. Thus, the RGC population response described with relative activities, or ranks, provides more relevant information than classical independent spike count- or latency- based codes. In particular, we report for the first time that when considering the relative activities across the whole population, the wave of first stimulus-evoked spikes is an accurate indicator of stimulus content. We show that this coding strategy coexists with classical neural codes, and that it is more efficient and faster. Overall, these novel observations suggest that already at the level of the retina, concerted spiking provides a reliable and fast strategy to rapidly transmit new visual scenes.

  10. Purkinje Cell Degeneration in pcd Mice Reveals Large Scale Chromatin Reorganization and Gene Silencing Linked to Defective DNA Repair*

    PubMed Central

    Baltanás, Fernando C.; Casafont, Iñigo; Lafarga, Vanesa; Weruaga, Eduardo; Alonso, José R.; Berciano, María T.; Lafarga, Miguel

    2011-01-01

    DNA repair protects neurons against spontaneous or disease-associated DNA damage. Dysfunctions of this mechanism underlie a growing list of neurodegenerative disorders. The Purkinje cell (PC) degeneration mutation causes the loss of nna1 expression and is associated with the postnatal degeneration of PCs. This PC degeneration dramatically affects nuclear architecture and provides an excellent model to elucidate the nuclear mechanisms involved in a whole array of neurodegenerative disorders. We used immunocytochemistry for histone variants and components of the DNA damage response, an in situ transcription assay, and in situ hybridization for telomeres to analyze changes in chromatin architecture and function. We demonstrate that the phosphorylation of H2AX, a DNA damage signal, and the trimethylation of the histone H4K20, a repressive mark, in extensive domains of genome are epigenetic hallmarks of chromatin in degenerating PCs. These histone modifications are associated with a large scale reorganization of chromatin, telomere clustering, and heterochromatin-induced gene silencing, all of them key factors in PC degeneration. Furthermore, ataxia telangiectasia mutated and 53BP1, two components of the DNA repair pathway, fail to be concentrated in the damaged chromatin compartments, even though the expression levels of their coding genes were slightly up-regulated. Although the mechanism by which Nna1 loss of function leads to PC neurodegeneration is undefined, the progressive accumulation of DNA damage in chromosome territories irreversibly compromises global gene transcription and seems to trigger PC degeneration and death. PMID:21700704

  11. Analyses of transcriptome sequences reveal multiple ancient large-scale duplication events in the ancestor of Sphagnopsida (Bryophyta).

    PubMed

    Devos, Nicolas; Szövényi, Péter; Weston, David J; Rothfels, Carl J; Johnson, Matthew G; Shaw, A Jonathan

    2016-07-01

    The goal of this research was to investigate whether there has been a whole-genome duplication (WGD) in the ancestry of Sphagnum (peatmoss) or the class Sphagnopsida, and to determine if the timing of any such duplication(s) and patterns of paralog retention could help explain the rapid radiation and current ecological dominance of peatmosses. RNA sequencing (RNA-seq) data were generated for nine taxa in Sphagnopsida (Bryophyta). Analyses of frequency plots for synonymous substitutions per synonymous site (Ks ) between paralogous gene pairs and reconciliation of 578 gene trees were conducted to assess evidence of large-scale or genome-wide duplication events in each transcriptome. Both Ks frequency plots and gene tree-based analyses indicate multiple duplication events in the history of the Sphagnopsida. The most recent WGD event predates divergence of Sphagnum from the two other genera of Sphagnopsida. Duplicate retention is highly variable across species, which might be best explained by local adaptation. Our analyses indicate that the last WGD could have been an important factor underlying the diversification of peatmosses and facilitated their rise to ecological dominance in peatlands. The timing of the duplication events and their significance in the evolutionary history of peat mosses are discussed.

  12. Rank Order Coding: a Retinal Information Decoding Strategy Revealed by Large-Scale Multielectrode Array Retinal Recordings123

    PubMed Central

    Maccione, Alessandro; Di Marco, Stefano; Kornprobst, Pierre

    2016-01-01

    How a population of retinal ganglion cells (RGCs) encodes the visual scene remains an open question. Going beyond individual RGC coding strategies, results in salamander suggest that the relative latencies of a RGC pair encode spatial information. Thus, a population code based on this concerted spiking could be a powerful mechanism to transmit visual information rapidly and efficiently. Here, we tested this hypothesis in mouse by recording simultaneous light-evoked responses from hundreds of RGCs, at pan-retinal level, using a new generation of large-scale, high-density multielectrode array consisting of 4096 electrodes. Interestingly, we did not find any RGCs exhibiting a clear latency tuning to the stimuli, suggesting that in mouse, individual RGC pairs may not provide sufficient information. We show that a significant amount of information is encoded synergistically in the concerted spiking of large RGC populations. Thus, the RGC population response described with relative activities, or ranks, provides more relevant information than classical independent spike count- or latency- based codes. In particular, we report for the first time that when considering the relative activities across the whole population, the wave of first stimulus-evoked spikes is an accurate indicator of stimulus content. We show that this coding strategy coexists with classical neural codes, and that it is more efficient and faster. Overall, these novel observations suggest that already at the level of the retina, concerted spiking provides a reliable and fast strategy to rapidly transmit new visual scenes. PMID:27275008

  13. Targeted Sequencing Reveals Large-Scale Sequence Polymorphism in Maize Candidate Genes for Biomass Production and Composition

    PubMed Central

    Ulpinnis, Chris; Scholz, Uwe; Altmann, Thomas

    2015-01-01

    A major goal of maize genomic research is to identify sequence polymorphisms responsible for phenotypic variation in traits of economic importance. Large-scale detection of sequence variation is critical for linking genes, or genomic regions, to phenotypes. However, due to its size and complexity, it remains expensive to generate whole genome sequences of sufficient coverage for divergent maize lines, even with access to next generation sequencing (NGS) technology. Because methods involving reduction of genome complexity, such as genotyping-by-sequencing (GBS), assess only a limited fraction of sequence variation, targeted sequencing of selected genomic loci offers an attractive alternative. We therefore designed a sequence capture assay to target 29 Mb genomic regions and surveyed a total of 4,648 genes possibly affecting biomass production in 21 diverse inbred maize lines (7 flints, 14 dents). Captured and enriched genomic DNA was sequenced using the 454 NGS platform to 19.6-fold average depth coverage, and a broad evaluation of read alignment and variant calling methods was performed to select optimal procedures for variant discovery. Sequence alignment with the B73 reference and de novo assembly identified 383,145 putative single nucleotide polymorphisms (SNPs), of which 42,685 were non-synonymous alterations and 7,139 caused frameshifts. Presence/absence variation (PAV) of genes was also detected. We found that substantial sequence variation exists among genomic regions targeted in this study, which was particularly evident within coding regions. This diversification has the potential to broaden functional diversity and generate phenotypic variation that may lead to new adaptations and the modification of important agronomic traits. Further, annotated SNPs identified here will serve as useful genetic tools and as candidates in searches for phenotype-altering DNA variation. In summary, we demonstrated that sequencing of captured DNA is a powerful approach for

  14. Targeted Sequencing Reveals Large-Scale Sequence Polymorphism in Maize Candidate Genes for Biomass Production and Composition.

    PubMed

    Muraya, Moses M; Schmutzer, Thomas; Ulpinnis, Chris; Scholz, Uwe; Altmann, Thomas

    2015-01-01

    A major goal of maize genomic research is to identify sequence polymorphisms responsible for phenotypic variation in traits of economic importance. Large-scale detection of sequence variation is critical for linking genes, or genomic regions, to phenotypes. However, due to its size and complexity, it remains expensive to generate whole genome sequences of sufficient coverage for divergent maize lines, even with access to next generation sequencing (NGS) technology. Because methods involving reduction of genome complexity, such as genotyping-by-sequencing (GBS), assess only a limited fraction of sequence variation, targeted sequencing of selected genomic loci offers an attractive alternative. We therefore designed a sequence capture assay to target 29 Mb genomic regions and surveyed a total of 4,648 genes possibly affecting biomass production in 21 diverse inbred maize lines (7 flints, 14 dents). Captured and enriched genomic DNA was sequenced using the 454 NGS platform to 19.6-fold average depth coverage, and a broad evaluation of read alignment and variant calling methods was performed to select optimal procedures for variant discovery. Sequence alignment with the B73 reference and de novo assembly identified 383,145 putative single nucleotide polymorphisms (SNPs), of which 42,685 were non-synonymous alterations and 7,139 caused frameshifts. Presence/absence variation (PAV) of genes was also detected. We found that substantial sequence variation exists among genomic regions targeted in this study, which was particularly evident within coding regions. This diversification has the potential to broaden functional diversity and generate phenotypic variation that may lead to new adaptations and the modification of important agronomic traits. Further, annotated SNPs identified here will serve as useful genetic tools and as candidates in searches for phenotype-altering DNA variation. In summary, we demonstrated that sequencing of captured DNA is a powerful approach for

  15. ChIP-on-chip significance analysis reveals large-scale binding and regulation by human transcription factor oncogenes.

    PubMed

    Margolin, Adam A; Palomero, Teresa; Sumazin, Pavel; Califano, Andrea; Ferrando, Adolfo A; Stolovitzky, Gustavo

    2009-01-06

    ChIP-on-chip has emerged as a powerful tool to dissect the complex network of regulatory interactions between transcription factors and their targets. However, most ChIP-on-chip analysis methods use conservative approaches aimed at minimizing false-positive transcription factor targets. We present a model with improved sensitivity in detecting binding events from ChIP-on-chip data. Its application to human T cells, followed by extensive biochemical validation, reveals that 3 oncogenic transcription factors, NOTCH1, MYC, and HES1, bind to several thousand target gene promoters, up to an order of magnitude increase over conventional analysis methods. Gene expression profiling upon NOTCH1 inhibition shows broad-scale functional regulation across the entire range of predicted target genes, establishing a closer link between occupancy and regulation. Finally, the increased sensitivity reveals a combinatorial regulatory program in which MYC cobinds to virtually all NOTCH1-bound promoters. Overall, these results suggest an unappreciated complexity of transcriptional regulatory networks and highlight the fundamental importance of genome-scale analysis to represent transcriptional programs.

  16. Satellite chlorophyll fluorescence measurements reveal large-scale decoupling of photosynthesis and greenness dynamics in boreal evergreen forests.

    PubMed

    Walther, Sophia; Voigt, Maximilian; Thum, Tea; Gonsamo, Alemu; Zhang, Yongguang; Köhler, Philipp; Jung, Martin; Varlagin, Andrej; Guanter, Luis

    2016-09-01

    Mid-to-high latitude forests play an important role in the terrestrial carbon cycle, but the representation of photosynthesis in boreal forests by current modelling and observational methods is still challenging. In particular, the applicability of existing satellite-based proxies of greenness to indicate photosynthetic activity is hindered by small annual changes in green biomass of the often evergreen tree population and by the confounding effects of background materials such as snow. As an alternative, satellite measurements of sun-induced chlorophyll fluorescence (SIF) can be used as a direct proxy of photosynthetic activity. In this study, the start and end of the photosynthetically active season of the main boreal forests are analysed using spaceborne SIF measurements retrieved from the GOME-2 instrument and compared to that of green biomass, proxied by vegetation indices including the Enhanced Vegetation Index (EVI) derived from MODIS data. We find that photosynthesis and greenness show a similar seasonality in deciduous forests. In high-latitude evergreen needleleaf forests, however, the length of the photosynthetically active period indicated by SIF is up to 6 weeks longer than the green biomass changing period proxied by EVI, with SIF showing a start-of-season of approximately 1 month earlier than EVI. On average, the photosynthetic spring recovery as signalled by SIF occurs as soon as air temperatures exceed the freezing point (2-3 °C) and when the snow on the ground has not yet completely melted. These findings are supported by model data of gross primary production and a number of other studies which evaluated in situ observations of CO2 fluxes, meteorology and the physiological state of the needles. Our results demonstrate the sensitivity of space-based SIF measurements to light-use efficiency of boreal forests and their potential for an unbiased detection of photosynthetic activity even under the challenging conditions interposed by evergreen

  17. X-ray fluorescent microscopy reveals large-scale relocalization and extracellular translocation of cellular copper during angiogenesis.

    SciTech Connect

    Finney, L.; Mandava, S.; Ursos, L.; Zhang, W.; Rodi, D.; Vogt, S.; Legnini, D.; Maser, J.; Ikpatt, F.; Olopade, O. I.; Glesne, D.; Univ. of Chicago

    2007-02-13

    Although copper has been reported to influence numerous proteins known to be important for angiogenesis, the enhanced sensitivity of this developmental process to copper bioavailability has remained an enigma, because copper metalloproteins are prevalent and essential throughout all cells. Recent developments in x-ray optics at third-generation synchrotron sources have provided a resource for highly sensitive visualization and quantitation of metalloproteins in biological samples. Here, we report the application of x-ray fluorescence microscopy (XFM) to in vitro models of angiogenesis and neurogenesis, revealing a surprisingly dramatic spatial relocalization specific to capillary formation of 80-90% of endogenous cellular copper stores from intracellular compartments to the tips of nascent endothelial cell filopodia and across the cell membrane. Although copper chelation had no effect on process formation, an almost complete ablation of network formation was observed. XFM of highly vascularized ductal carcinomas showed copper clustering in putative neoangiogenic areas. This use of XFM for the study of a dynamic developmental process not only sheds light on the copper requirement for endothelial tube formation but highlights the value of synchrotron-based facilities in biological research.

  18. Measuring air-sea gas-exchange velocities in a large-scale annular wind-wave tank

    NASA Astrophysics Data System (ADS)

    Mesarchaki, E.; Kräuter, C.; Krall, K. E.; Bopp, M.; Helleis, F.; Williams, J.; Jähne, B.

    2015-01-01

    In this study we present gas-exchange measurements conducted in a large-scale wind-wave tank. Fourteen chemical species spanning a wide range of solubility (dimensionless solubility, α = 0.4 to 5470) and diffusivity (Schmidt number in water, Scw = 594 to 1194) were examined under various turbulent (u10 = 0.73 to 13.2 m s-1) conditions. Additional experiments were performed under different surfactant modulated (two different concentration levels of Triton X-100) surface states. This paper details the complete methodology, experimental procedure and instrumentation used to derive the total transfer velocity for all examined tracers. The results presented here demonstrate the efficacy of the proposed method, and the derived gas-exchange velocities are shown to be comparable to previous investigations. The gas transfer behaviour is exemplified by contrasting two species at the two solubility extremes, namely nitrous oxide (N2O) and methanol (CH3OH). Interestingly, a strong transfer velocity reduction (up to a factor of 3) was observed for the relatively insoluble N2O under a surfactant covered water surface. In contrast, the surfactant effect for CH3OH, the high solubility tracer, was significantly weaker.

  19. A large-scale analysis of alternative splicing reveals a key role of QKI in lung cancer.

    PubMed

    de Miguel, Fernando J; Pajares, María J; Martínez-Terroba, Elena; Ajona, Daniel; Morales, Xabier; Sharma, Ravi D; Pardo, Francisco J; Rouzaut, Ana; Rubio, Angel; Montuenga, Luis M; Pio, Ruben

    2016-11-01

    Increasing interest has been devoted in recent years to the understanding of alternative splicing in cancer. In this study, we performed a genome-wide analysis to identify cancer-associated splice variants in non-small cell lung cancer. We discovered and validated novel differences in the splicing of genes known to be relevant to lung cancer biology, such as NFIB, ENAH or SPAG9. Gene enrichment analyses revealed an important contribution of alternative splicing to cancer-related molecular functions, especially those involved in cytoskeletal dynamics. Interestingly, a substantial fraction of the altered genes found in our analysis were targets of the protein quaking (QKI), pointing to this factor as one of the most relevant regulators of alternative splicing in non-small cell lung cancer. We also found that ESYT2, one of the QKI targets, is involved in cytoskeletal organization. ESYT2-short variant inhibition in lung cancer cells resulted in a cortical distribution of actin whereas inhibition of the long variant caused an increase of endocytosis, suggesting that the cancer-associated splicing pattern of ESYT2 has a profound impact in the biology of cancer cells. Finally, we show that low nuclear QKI expression in non-small cell lung cancer is an independent prognostic factor for disease-free survival (HR = 2.47; 95% CI = 1.11-5.46, P = 0.026). In conclusion, we identified several splicing variants with functional relevance in lung cancer largely regulated by the splicing factor QKI, a tumor suppressor associated with prognosis in lung cancer.

  20. Large-scale transcriptome comparison reveals distinct gene activations in wheat responding to stripe rust and powdery mildew.

    PubMed

    Zhang, Hong; Yang, Yongzheng; Wang, Changyou; Liu, Min; Li, Hao; Fu, Ying; Wang, Yajuan; Nie, Yingbin; Liu, Xinlun; Ji, Wanquan

    2014-10-15

    Stripe rust (Puccinia striiformis f. sp. tritici; Pst) and powdery mildew (Blumeria graminis f. sp. tritici; Bgt) are important diseases of wheat (Triticum aestivum) worldwide. Similar mechanisms and gene transcripts are assumed to be involved in the host defense response because both pathogens are biotrophic fungi. The main objective of our study was to identify co-regulated mRNAs that show a change in expression pattern after inoculation with Pst or Bgt, and to identify mRNAs specific to the fungal stress response. The transcriptome of the hexaploid wheat line N9134 inoculated with the Chinese Pst race CYR 31 was compared with that of the same line inoculated with Bgt race E09 at 1, 2, and 3 days post-inoculation. Infection by Pst and Bgt affected transcription of 23.8% of all T. aestivum genes. Infection by Bgt triggered a more robust alteration in gene expression in N9134 compared with the response to Pst infection. An array of overlapping gene clusters with distinctive expression patterns provided insight into the regulatory differences in the responses to Bgt and Pst infection. The differentially expressed genes were grouped into seven enriched Kyoto Encyclopedia of Genes and Genomes pathways in Bgt-infected leaves and four pathways in Pst-infected leaves, while only two pathways overlapped. In the plant-pathogen interaction pathway, N9134 activated a higher number of genes and pathways in response to Bgt infection than in response to Pst invasion. Genomic analysis revealed that the wheat genome shared some microbial genetic fragments, which were specifically induced in response to Bgt and Pst infection. Taken together, our findings indicate that the responses of wheat N9134 to infection by Bgt and Pst shows differences in the pathways and genes activated. The mass sequence data for wheat-fungus interaction generated in this study provides a powerful platform for future functional and molecular research on wheat-fungus interactions.

  1. Large-Scale Comparative Genomics Meta-Analysis of Campylobacter jejuni Isolates Reveals Low Level of Genome Plasticity

    PubMed Central

    Taboada, Eduardo N.; Acedillo, Rey R.; Carrillo, Catherine D.; Findlay, Wendy A.; Medeiros, Diane T.; Mykytczuk, Oksana L.; Roberts, Michael J.; Valencia, C. Alexander; Farber, Jeffrey M.; Nash, John H. E.

    2004-01-01

    We have used comparative genomic hybridization (CGH) on a full-genome Campylobacter jejuni microarray to examine genome-wide gene conservation patterns among 51 strains isolated from food and clinical sources. These data have been integrated with data from three previous C. jejuni CGH studies to perform a meta-analysis that included 97 strains from the four separate data sets. Although many genes were found to be divergent across multiple strains (n = 350), many genes (n = 249) were uniquely variable in single strains. Thus, the strains in each data set comprise strains with a unique genetic diversity not found in the strains in the other data sets. Despite the large increase in the collective number of variable C. jejuni genes (n = 599) found in the meta-analysis data set, nearly half of these (n = 276) mapped to previously defined variable loci, and it therefore appears that large regions of the C. jejuni genome are genetically stable. A detailed analysis of the microarray data revealed that divergent genes could be differentiated on the basis of the amplitudes of their differential microarray signals. Of 599 variable genes, 122 could be classified as highly divergent on the basis of CGH data. Nearly all highly divergent genes (117 of 122) had divergent neighbors and showed high levels of intraspecies variability. The approach outlined here has enabled us to distinguish global trends of gene conservation in C. jejuni and has enabled us to define this group of genes as a robust set of variable markers that can become the cornerstone of a new generation of genotyping methods that use genome-wide C. jejuni gene variability data. PMID:15472310

  2. Breeding density, fine-scale tracking, and large-scale modeling reveal the regional distribution of four seabird species.

    PubMed

    Wakefield, Ewan D; Owen, Ellie; Baer, Julia; Carroll, Matthew J; Daunt, Francis; Dodd, Stephen G; Green, Jonathan A; Guilford, Tim; Mavor, Roddy A; Miller, Peter I; Newell, Mark A; Newton, Stephen F; Robertson, Gail S; Shoji, Akiko; Soanes, Louise M; Votier, Stephen C; Wanless, Sarah; Bolton, Mark

    2017-10-01

    Population-level estimates of species' distributions can reveal fundamental ecological processes and facilitate conservation. However, these may be difficult to obtain for mobile species, especially colonial central-place foragers (CCPFs; e.g., bats, corvids, social insects), because it is often impractical to determine the provenance of individuals observed beyond breeding sites. Moreover, some CCPFs, especially in the marine realm (e.g., pinnipeds, turtles, and seabirds) are difficult to observe because they range tens to ten thousands of kilometers from their colonies. It is hypothesized that the distribution of CCPFs depends largely on habitat availability and intraspecific competition. Modeling these effects may therefore allow distributions to be estimated from samples of individual spatial usage. Such data can be obtained for an increasing number of species using tracking technology. However, techniques for estimating population-level distributions using the telemetry data are poorly developed. This is of concern because many marine CCPFs, such as seabirds, are threatened by anthropogenic activities. Here, we aim to estimate the distribution at sea of four seabird species, foraging from approximately 5,500 breeding sites in Britain and Ireland. To do so, we GPS-tracked a sample of 230 European Shags Phalacrocorax aristotelis, 464 Black-legged Kittiwakes Rissa tridactyla, 178 Common Murres Uria aalge, and 281 Razorbills Alca torda from 13, 20, 12, and 14 colonies, respectively. Using Poisson point process habitat use models, we show that distribution at sea is dependent on (1) density-dependent competition among sympatric conspecifics (all species) and parapatric conspecifics (Kittiwakes and Murres); (2) habitat accessibility and coastal geometry, such that birds travel further from colonies with limited access to the sea; and (3) regional habitat availability. Using these models, we predict space use by birds from unobserved colonies and thereby map the

  3. Deflagration to detonation transition in JP-10 mist/air mixtures in a large-scale tube.

    PubMed

    Li, Shuzhuan; Liu, Qingming; Chen, Xu; Huang, Jinxiang; Li, Jing

    2017-10-05

    Deflagration to detonation transitions (DDTs) in JP-10 mist/air mixtures have been studied in a horizontal multiphase combustion and explosion tube with inner diameter of 199mm and length of 32.8m. The mist/air mixtures were generated by injecting liquid samples into the experimental tube. Experiments were performed at 298k and 101kPa with equivalence ratio ranged from 0.51 to 2.09. The coupling process of deflagration wave with leading shock wave and low-velocity self-sustained detonation were observed in JP-10 mist/air mixture with a concentration of 142.86g/m(3), and the average velocity of the self-sustained detonation wave is 510m/s, which is as low as 26% of C-J value. The low-velocity detonation in JP-10 mist/air mixture can be explained by the low-volatile property of JP-10 liquid and boundary condition. The leanest and richest critical detonable concentrations were studied. The detonation structure was studied by using pressure sensors array mounted in the wave structure test section. A single-head spin detonation wave front was observed and the cellular structure resulting from the spinning movement of the triple point was analyzed. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Large-scale soil remediation using low temperature thermal volatilization technology at the Chanute Air Force Base

    SciTech Connect

    Davis, H.A.; Silkebakken, D.M.; Ghosh, S.B.; Beardsley, G.P.

    1995-12-31

    Chanute Air Force Base (AFB) in Rantoul, Illinois, was selected for closure by the Round 1 Base Closure Commission, pursuant to the Base Realignment and Closure (BRAC) Act of 1988. As part of the requirements for base closure, Parsons Engineering Science, Inc. was retained by the Air Force Center for Environmental Excellence (AFCEE) to treat petroleum-contaminated soil using low temperature thermal volatilization (LTTV). Using this technology, over 40,000 tons of fuel contaminated soils were successfully treated using one of the largest transportable LTTV treatment units in the world. The soil treatment system, soil management procedures, cost-effectiveness, and limitations of the use of this system are described in this paper.

  5. Large Scale Variability of Mid-Tropospheric Carbon Dioxide as Observed by the Atmospheric Infrared Sounder (AIRS) on the NASA EOS Aqua Platform

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Olsen, Edward T.

    2012-01-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral infrared instrument on the EOS Aqua Spacecraft, launched on May 4, 2002. AIRS has 2378 infrared channels ranging from 3.7 microns to 15.4 microns and a 13.5 km footprint. AIRS, in conjunction with the Advanced Microwave Sounding Unit (AMSU), produces temperature profiles with 1K/km accuracy, water vapor profiles (20%/2km), infrared cloud height and fraction, and trace gas amounts for CO2, CO, SO2, O3 and CH4 in the mid to upper troposphere. AIRS wide swath(cedilla) +/-49.5 deg , enables daily global daily coverage for over 95% of the Earth's surface. AIRS data are used for weather forecasting, validating climate model distribution and processes, and observing long-range transport of greenhouse gases. In this study, we examine the large scale and regional horizontal variability in the AIRS Mid-tropospheric Carbon Dioxide product as a function of season and associate the observed variability with known atmospheric transport processes, and sources and sinks of CO2.

  6. Large Scale Variability of Mid-Tropospheric Carbon Dioxide as Observed by the Atmospheric Infrared Sounder (AIRS) on the NASA EOS Aqua Platform

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Olsen, Edward T.

    2012-01-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral infrared instrument on the EOS Aqua Spacecraft, launched on May 4, 2002. AIRS has 2378 infrared channels ranging from 3.7 microns to 15.4 microns and a 13.5 km footprint. AIRS, in conjunction with the Advanced Microwave Sounding Unit (AMSU), produces temperature profiles with 1K/km accuracy, water vapor profiles (20%/2km), infrared cloud height and fraction, and trace gas amounts for CO2, CO, SO2, O3 and CH4 in the mid to upper troposphere. AIRS wide swath(cedilla) +/-49.5 deg , enables daily global daily coverage for over 95% of the Earth's surface. AIRS data are used for weather forecasting, validating climate model distribution and processes, and observing long-range transport of greenhouse gases. In this study, we examine the large scale and regional horizontal variability in the AIRS Mid-tropospheric Carbon Dioxide product as a function of season and associate the observed variability with known atmospheric transport processes, and sources and sinks of CO2.

  7. Large scale air pollution estimation method combining land use regression and chemical transport modeling in a geostatistical framework.

    PubMed

    Akita, Yasuyuki; Baldasano, Jose M; Beelen, Rob; Cirach, Marta; de Hoogh, Kees; Hoek, Gerard; Nieuwenhuijsen, Mark; Serre, Marc L; de Nazelle, Audrey

    2014-04-15

    In recognition that intraurban exposure gradients may be as large as between-city variations, recent air pollution epidemiologic studies have become increasingly interested in capturing within-city exposure gradients. In addition, because of the rapidly accumulating health data, recent studies also need to handle large study populations distributed over large geographic domains. Even though several modeling approaches have been introduced, a consistent modeling framework capturing within-city exposure variability and applicable to large geographic domains is still missing. To address these needs, we proposed a modeling framework based on the Bayesian Maximum Entropy method that integrates monitoring data and outputs from existing air quality models based on Land Use Regression (LUR) and Chemical Transport Models (CTM). The framework was applied to estimate the yearly average NO2 concentrations over the region of Catalunya in Spain. By jointly accounting for the global scale variability in the concentration from the output of CTM and the intraurban scale variability through LUR model output, the proposed framework outperformed more conventional approaches.

  8. Large-scale proteomic analysis of the grapevine leaf apoplastic fluid reveals mainly stress-related proteins and cell wall modifying enzymes

    PubMed Central

    2013-01-01

    Background The extracellular space or apoplast forms a path through the whole plant and acts as an interface with the environment. The apoplast is composed of plant cell wall and space within which apoplastic fluid provides a means of delivering molecules and facilitates intercellular communications. However, the apoplastic fluid extraction from in planta systems remains challenging and this is particularly true for grapevine (Vitis vinifera L.), a worldwide-cultivated fruit plant. Large-scale proteomic analysis reveals the protein content of the grapevine leaf apoplastic fluid and the free interactive proteome map considerably facilitates the study of the grapevine proteome. Results To obtain a snapshot of the grapevine apoplastic fluid proteome, a vacuum-infiltration-centrifugation method was optimized to collect the apoplastic fluid from non-challenged grapevine leaves. Soluble apoplastic protein patterns were then compared to whole leaf soluble protein profiles by 2D-PAGE analyses. Subsequent MALDI-TOF/TOF mass spectrometry of tryptically digested protein spots was used to identify proteins. This large-scale proteomic analysis established a well-defined proteomic map of whole leaf and leaf apoplastic soluble proteins, with 223 and 177 analyzed spots, respectively. All data arising from proteomic, MS and MS/MS analyses were deposited in the public database world-2DPAGE. Prediction tools revealed a high proportion of (i) classical secreted proteins but also of non-classical secreted proteins namely Leaderless Secreted Proteins (LSPs) in the apoplastic protein content and (ii) proteins potentially involved in stress reactions and/or in cell wall metabolism. Conclusions This approach provides free online interactive reference maps annotating a large number of soluble proteins of the whole leaf and the apoplastic fluid of grapevine leaf. To our knowledge, this is the first detailed proteome study of grapevine apoplastic fluid providing a comprehensive overview of

  9. Large scale dynamic systems

    NASA Technical Reports Server (NTRS)

    Doolin, B. F.

    1975-01-01

    Classes of large scale dynamic systems were discussed in the context of modern control theory. Specific examples discussed were in the technical fields of aeronautics, water resources and electric power.

  10. Generation of large-scale, barrier-free diffuse plasmas in air at atmospheric pressure using array wire electrodes and nanosecond high-voltage pulses

    NASA Astrophysics Data System (ADS)

    Teng, Yun; Li, Lee; Liu, Yun-Long; Liu, Lun; Liu, Minghai

    2014-10-01

    This paper introduces a method to generate large-scale diffuse plasmas by using a repetition nanosecond pulse generator and a parallel array wire-electrode configuration. We investigated barrier-free diffuse plasmas produced in the open air in parallel and cross-parallel array line-line electrode configurations. We found that, when the distance between the wire-electrode pair is small, the discharges were almost extinguished. Also, glow-like diffuse plasmas with little discharge weakening were obtained in an appropriate range of line-line distances and with a cathode-grounding cross-electrode configuration. As an example, we produced a large-scale, stable diffuse plasma with volumes as large as 18 × 15 × 15 cm3, and this discharge region can be further expanded. Additionally, using optical and electrical measurements, we showed that the electron temperature was higher than the gas temperature, which was almost the same as room temperature. Also, an array of electrode configuration with more wire electrodes had helped to prevent the transition from diffuse discharge to arc discharge. Comparing the current waveforms of configurations with 1 cell and 9 cells, we found that adding cells significantly increased the conduction current and the electrical energy delivered in the electrode gaps.

  11. Generation of large-scale, barrier-free diffuse plasmas in air at atmospheric pressure using array wire electrodes and nanosecond high-voltage pulses

    SciTech Connect

    Teng, Yun; Li, Lee Liu, Yun-Long; Liu, Lun; Liu, Minghai

    2014-10-15

    This paper introduces a method to generate large-scale diffuse plasmas by using a repetition nanosecond pulse generator and a parallel array wire-electrode configuration. We investigated barrier-free diffuse plasmas produced in the open air in parallel and cross-parallel array line-line electrode configurations. We found that, when the distance between the wire-electrode pair is small, the discharges were almost extinguished. Also, glow-like diffuse plasmas with little discharge weakening were obtained in an appropriate range of line-line distances and with a cathode-grounding cross-electrode configuration. As an example, we produced a large-scale, stable diffuse plasma with volumes as large as 18 × 15 × 15 cm{sup 3}, and this discharge region can be further expanded. Additionally, using optical and electrical measurements, we showed that the electron temperature was higher than the gas temperature, which was almost the same as room temperature. Also, an array of electrode configuration with more wire electrodes had helped to prevent the transition from diffuse discharge to arc discharge. Comparing the current waveforms of configurations with 1 cell and 9 cells, we found that adding cells significantly increased the conduction current and the electrical energy delivered in the electrode gaps.

  12. A large-scale identification of direct targets of the tomato MADS box transcription factor RIPENING INHIBITOR reveals the regulation of fruit ripening.

    PubMed

    Fujisawa, Masaki; Nakano, Toshitsugu; Shima, Yoko; Ito, Yasuhiro

    2013-02-01

    The fruit ripening developmental program is specific to plants bearing fleshy fruits and dramatically changes fruit characteristics, including color, aroma, and texture. The tomato (Solanum lycopersicum) MADS box transcription factor RIPENING INHIBITOR (RIN), one of the earliest acting ripening regulators, is required for both ethylene-dependent and -independent ripening regulatory pathways. Recent studies have identified two dozen direct RIN targets, but many more RIN targets remain to be identified. Here, we report the large-scale identification of direct RIN targets by chromatin immunoprecipitation coupled with DNA microarray analysis (ChIP-chip) targeting the predicted promoters of tomato genes. Our combined ChIP-chip and transcriptome analysis identified 241 direct RIN target genes that contain a RIN binding site and exhibit RIN-dependent positive or negative regulation during fruit ripening, suggesting that RIN has both activator and repressor roles. Examination of the predicted functions of RIN targets revealed that RIN participates in the regulation of lycopene accumulation, ethylene production, chlorophyll degradation, and many other physiological processes. Analysis of the effect of ethylene using 1-methylcyclopropene revealed that the positively regulated subset of RIN targets includes ethylene-sensitive and -insensitive transcription factors. Intriguingly, ethylene is involved in the upregulation of RIN expression during ripening. These results suggest that tomato fruit ripening is regulated by the interaction between RIN and ethylene signaling.

  13. Sound to Language: Different Cortical Processing for First and Second Languages in Elementary School Children as Revealed by a Large-Scale Study Using fNIRS

    PubMed Central

    Ojima, Shiro; Matsuba-Kurita, Hiroko; Dan, Ippeita; Tsuzuki, Daisuke; Katura, Takusige; Hagiwara, Hiroko

    2011-01-01

    A large-scale study of 484 elementary school children (6–10 years) performing word repetition tasks in their native language (L1-Japanese) and a second language (L2-English) was conducted using functional near-infrared spectroscopy. Three factors presumably associated with cortical activation, language (L1/L2), word frequency (high/low), and hemisphere (left/right), were investigated. L1 words elicited significantly greater brain activation than L2 words, regardless of semantic knowledge, particularly in the superior/middle temporal and inferior parietal regions (angular/supramarginal gyri). The greater L1-elicited activation in these regions suggests that they are phonological loci, reflecting processes tuned to the phonology of the native language, while phonologically unfamiliar L2 words were processed like nonword auditory stimuli. The activation was bilateral in the auditory and superior/middle temporal regions. Hemispheric asymmetry was observed in the inferior frontal region (right dominant), and in the inferior parietal region with interactions: low-frequency words elicited more right-hemispheric activation (particularly in the supramarginal gyrus), while high-frequency words elicited more left-hemispheric activation (particularly in the angular gyrus). The present results reveal the strong involvement of a bilateral language network in children’s brains depending more on right-hemispheric processing while acquiring unfamiliar/low-frequency words. A right-to-left shift in laterality should occur in the inferior parietal region, as lexical knowledge increases irrespective of language. PMID:21350046

  14. A Revised Method of Presenting Wavenumber-Frequency Power Spectrum Diagrams That Reveals the Asymmetric Nature of Tropical Large-scale Waves

    NASA Technical Reports Server (NTRS)

    Chao, Winston C.; Yang, Bo; Fu, Xiouhua

    2007-01-01

    The popular method of presenting wavenumber-frequency power spectrum diagrams for studying tropical large-scale waves in the literature is shown to give an incomplete presentation of these waves. The so-called "convectively-coupled Kelvin (mixed Rossby-gravity) waves" are presented as existing only in the symmetric (antisymmetric) component of the diagrams. This is obviously not consistent with the published composite/regression studies of "convectively-coupled Kelvin waves," which illustrate the asymmetric nature of these waves. The cause of this inconsistency is revealed in this note and a revised method of presenting the power spectrum diagrams is proposed. When this revised method is used, "convectively-coupled Kelvin waves" do show anti-symmetric components, and "convectively-coupled mixed Rossby-gravity waves (also known as Yanai waves)" do show a hint of symmetric components. These results bolster a published proposal that these waves be called "chimeric Kelvin waves," "chimeric mixed Rossby-gravity waves," etc. This revised method of presenting power spectrum diagrams offers a more rigorous means of comparing the General Circulation Models (GCM) output with observations by calling attention to the capability of GCMs in correctly simulating the asymmetric characteristics of the equatorial waves.

  15. Large scale scientific computing

    SciTech Connect

    Deuflhard, P. ); Engquist, B. )

    1987-01-01

    This book presents papers on large scale scientific computing. It includes: Initial value problems of ODE's and parabolic PDE's; Boundary value problems of ODE's and elliptic PDE's; Hyperbolic PDE's; Inverse problems; Optimization and optimal control problems; and Algorithm adaptation on supercomputers.

  16. Large-scale parentage analysis reveals reproductive patterns and heritability of spawn timing in a hatchery population of steelhead (Oncorhynchus mykiss).

    PubMed

    Abadía-Cardoso, Alicia; Anderson, Eric C; Pearse, Devon E; Garza, John Carlos

    2013-09-01

    Understanding life history traits is an important first step in formulating effective conservation and management strategies. The use of artificial propagation and supplementation as such a strategy can have numerous effects on the supplemented natural populations and minimizing life history divergence is crucial in minimizing these effects. Here, we use single nucleotide polymorphism (SNP) genotypes for large-scale parentage analysis and pedigree reconstruction in a hatchery population of steelhead, the anadromous form of rainbow trout. Nearly complete sampling of the broodstock for several consecutive years in two hatchery programmes allowed inference about multiple aspects of life history. Reconstruction of cohort age distribution revealed a strong component of fish that spawn at 2 years of age, in contrast to programme goals and distinct from naturally spawning steelhead in the region, which raises a significant conservation concern. The first estimates of variance in family size for steelhead in this region can be used to calculate effective population size and probabilities of inbreeding, and estimation of iteroparity rate indicates that it is reduced by hatchery production. Finally, correlations between family members in the day of spawning revealed for the first time a strongly heritable component to this important life history trait in steelhead and demonstrated the potential for selection to alter life history traits rapidly in response to changes in environmental conditions. Taken together, these results demonstrate the extraordinary promise of SNP-based pedigree reconstruction for providing biological inference in high-fecundity organisms that is not easily achievable with traditional physical tags. © Published 2013. This article is a U.S. Government work and is in the public domain in the U.S.A.

  17. Large Scale Full-Length cDNA Sequencing Reveals a Unique Genomic Landscape in a Lepidopteran Model Insect, Bombyx mori

    PubMed Central

    Suetsugu, Yoshitaka; Futahashi, Ryo; Kanamori, Hiroyuki; Kadono-Okuda, Keiko; Sasanuma, Shun-ichi; Narukawa, Junko; Ajimura, Masahiro; Jouraku, Akiya; Namiki, Nobukazu; Shimomura, Michihiko; Sezutsu, Hideki; Osanai-Futahashi, Mizuko; Suzuki, Masataka G; Daimon, Takaaki; Shinoda, Tetsuro; Taniai, Kiyoko; Asaoka, Kiyoshi; Niwa, Ryusuke; Kawaoka, Shinpei; Katsuma, Susumu; Tamura, Toshiki; Noda, Hiroaki; Kasahara, Masahiro; Sugano, Sumio; Suzuki, Yutaka; Fujiwara, Haruhiko; Kataoka, Hiroshi; Arunkumar, Kallare P.; Tomar, Archana; Nagaraju, Javaregowda; Goldsmith, Marian R.; Feng, Qili; Xia, Qingyou; Yamamoto, Kimiko; Shimada, Toru; Mita, Kazuei

    2013-01-01

    The establishment of a complete genomic sequence of silkworm, the model species of Lepidoptera, laid a foundation for its functional genomics. A more complete annotation of the genome will benefit functional and comparative studies and accelerate extensive industrial applications for this insect. To realize these goals, we embarked upon a large-scale full-length cDNA collection from 21 full-length cDNA libraries derived from 14 tissues of the domesticated silkworm and performed full sequencing by primer walking for 11,104 full-length cDNAs. The large average intron size was 1904 bp, resulting from a high accumulation of transposons. Using gene models predicted by GLEAN and published mRNAs, we identified 16,823 gene loci on the silkworm genome assembly. Orthology analysis of 153 species, including 11 insects, revealed that among three Lepidoptera including Monarch and Heliconius butterflies, the 403 largest silkworm-specific genes were composed mainly of protective immunity, hormone-related, and characteristic structural proteins. Analysis of testis-/ovary-specific genes revealed distinctive features of sexual dimorphism, including depletion of ovary-specific genes on the Z chromosome in contrast to an enrichment of testis-specific genes. More than 40% of genes expressed in specific tissues mapped in tissue-specific chromosomal clusters. The newly obtained FL-cDNA sequences enabled us to annotate the genome of this lepidopteran model insect more accurately, enhancing genomic and functional studies of Lepidoptera and comparative analyses with other insect orders, and yielding new insights into the evolution and organization of lepidopteran-specific genes. PMID:23821615

  18. Large scale full-length cDNA sequencing reveals a unique genomic landscape in a lepidopteran model insect, Bombyx mori.

    PubMed

    Suetsugu, Yoshitaka; Futahashi, Ryo; Kanamori, Hiroyuki; Kadono-Okuda, Keiko; Sasanuma, Shun-ichi; Narukawa, Junko; Ajimura, Masahiro; Jouraku, Akiya; Namiki, Nobukazu; Shimomura, Michihiko; Sezutsu, Hideki; Osanai-Futahashi, Mizuko; Suzuki, Masataka G; Daimon, Takaaki; Shinoda, Tetsuro; Taniai, Kiyoko; Asaoka, Kiyoshi; Niwa, Ryusuke; Kawaoka, Shinpei; Katsuma, Susumu; Tamura, Toshiki; Noda, Hiroaki; Kasahara, Masahiro; Sugano, Sumio; Suzuki, Yutaka; Fujiwara, Haruhiko; Kataoka, Hiroshi; Arunkumar, Kallare P; Tomar, Archana; Nagaraju, Javaregowda; Goldsmith, Marian R; Feng, Qili; Xia, Qingyou; Yamamoto, Kimiko; Shimada, Toru; Mita, Kazuei

    2013-09-04

    The establishment of a complete genomic sequence of silkworm, the model species of Lepidoptera, laid a foundation for its functional genomics. A more complete annotation of the genome will benefit functional and comparative studies and accelerate extensive industrial applications for this insect. To realize these goals, we embarked upon a large-scale full-length cDNA collection from 21 full-length cDNA libraries derived from 14 tissues of the domesticated silkworm and performed full sequencing by primer walking for 11,104 full-length cDNAs. The large average intron size was 1904 bp, resulting from a high accumulation of transposons. Using gene models predicted by GLEAN and published mRNAs, we identified 16,823 gene loci on the silkworm genome assembly. Orthology analysis of 153 species, including 11 insects, revealed that among three Lepidoptera including Monarch and Heliconius butterflies, the 403 largest silkworm-specific genes were composed mainly of protective immunity, hormone-related, and characteristic structural proteins. Analysis of testis-/ovary-specific genes revealed distinctive features of sexual dimorphism, including depletion of ovary-specific genes on the Z chromosome in contrast to an enrichment of testis-specific genes. More than 40% of genes expressed in specific tissues mapped in tissue-specific chromosomal clusters. The newly obtained FL-cDNA sequences enabled us to annotate the genome of this lepidopteran model insect more accurately, enhancing genomic and functional studies of Lepidoptera and comparative analyses with other insect orders, and yielding new insights into the evolution and organization of lepidopteran-specific genes.

  19. Effects of sex and proficiency in second language processing as revealed by a large-scale fNIRS study of school-aged children.

    PubMed

    Sugiura, Lisa; Ojima, Shiro; Matsuba-Kurita, Hiroko; Dan, Ippeita; Tsuzuki, Daisuke; Katura, Takusige; Hagiwara, Hiroko

    2015-10-01

    Previous neuroimaging studies in adults have revealed that first and second languages (L1/L2) share similar neural substrates, and that proficiency is a major determinant of the neural organization of L2 in the lexical-semantic and syntactic domains. However, little is known about neural substrates of children in the phonological domain, or about sex differences. Here, we conducted a large-scale study (n = 484) of school-aged children using functional near-infrared spectroscopy and a word repetition task, which requires a great extent of phonological processing. We investigated cortical activation during word processing, emphasizing sex differences, to clarify similarities and differences between L1 and L2, and proficiency-related differences during early L2 learning. L1 and L2 shared similar neural substrates with decreased activation in L2 compared to L1 in the posterior superior/middle temporal and angular/supramarginal gyri for both sexes. Significant sex differences were found in cortical activation within language areas during high-frequency word but not during low-frequency word processing. During high-frequency word processing, widely distributed areas including the angular/supramarginal gyri were activated in boys, while more restricted areas, excluding the angular/supramarginal gyri were activated in girls. Significant sex differences were also found in L2 proficiency-related activation: activation significantly increased with proficiency in boys, whereas no proficiency-related differences were found in girls. Importantly, cortical sex differences emerged with proficiency. Based on previous research, the present results indicate that sex differences are acquired or enlarged during language development through different cognitive strategies between sexes, possibly reflecting their different memory functions.

  20. Structural dynamics and cation interactions of DNA quadruplex molecules containing mixed guanine/cytosine quartets revealed by large-scale MD simulations.

    PubMed

    Spacková, N; Berger, I; Sponer, J

    2001-04-11

    Large-scale molecular dynamics (MD) simulations have been utilized to study G-DNA quadruplex molecules containing mixed GCGC and all-guanine GGGG quartet layers. Incorporation of mixed GCGC quartets into G-DNA stems substantially enhances their sequence variability. The mixed quadruplexes form rigid assemblies that require integral monovalent cations for their stabilization. The interaction of cations with the all-guanine quartets is the leading contribution for the stability of the four-stranded assemblies, while the mixed quartets are rather tolerated within the structure. The simulations predict that two cations are preferred to stabilize a four-layer quadruplex stem composed of two GCGC and two all-guanine quartets. The distribution of cations in the structure is influenced by the position of the GCGC quartets within the quadruplex, the presence and arrangement of thymidine loops connecting the guanine/cytosine stretches forming the stems, and the cation type present (Na(+) or K(+)). The simulations identify multiple nanosecond-scale stable arrangements of the thymidine loops present in the molecules investigated. In these thymidine loops, several structured pockets are identified capable of temporarily coordinating cations. However, no stable association of cations to a loop has been observed. The simulations reveal several paths through the thymidine loop regions that can be followed by the cations when exchanging between the central ion channel in the quadruplex stem and the surrounding solvent. We have carried out 20 independent simulations while the length of simulations reaches a total of 90 ns, rendering this study one of the most extensive MD investigations carried out on nucleic acids so far. The trajectories provide a largely converged characterization of the structural dynamics of these four-stranded G-DNA molecules.

  1. Large-scale phosphotyrosine proteomic profiling of rat renal collecting duct epithelium reveals predominance of proteins involved in cell polarity determination.

    PubMed

    Zhao, Boyang; Knepper, Mark A; Chou, Chung-Lin; Pisitkun, Trairak

    2012-01-01

    Although extensive phosphoproteomic information is available for renal epithelial cells, previous emphasis has been on phosphorylation of serines and threonines with little focus on tyrosine phosphorylation. Here we have carried out large-scale identification of phosphotyrosine sites in pervanadate-treated native inner medullary collecting ducts of rat, with a view towards identification of physiological processes in epithelial cells that are potentially regulated by tyrosine phosphorylation. The method combined antibody-based affinity purification of tyrosine phosphorylated peptides coupled with immobilized metal ion chromatography to enrich tyrosine phosphopeptides, which were identified by LC-MS/MS. A total of 418 unique tyrosine phosphorylation sites in 273 proteins were identified. A large fraction of these sites have not been previously reported on standard phosphoproteomic databases. All results are accessible via an online database: http://helixweb.nih.gov/ESBL/Database/iPY/. Analysis of surrounding sequences revealed four overrepresented motifs: [D/E]xxY*, Y*xxP, DY*, and Y*E, where the asterisk symbol indicates the site of phosphorylation. These motifs plus contextual information, integrated using the NetworKIN tool, suggest that the protein tyrosine kinases involved include members of the insulin- and ephrin-receptor kinase families. Analysis of the gene ontology (GO) terms and KEGG pathways whose protein elements are overrepresented in our data set point to structures involved in epithelial cell-cell and cell-matrix interactions ("adherens junction," "tight junction," and "focal adhesion") and to components of the actin cytoskeleton as major sites of tyrosine phosphorylation in these cells. In general, these findings mesh well with evidence that tyrosine phosphorylation plays a key role in epithelial polarity determination.

  2. Large Scale Nonlinear Programming.

    DTIC Science & Technology

    1978-06-15

    KEY WORDS (Conhinu. as, t.n.t.. aid. if nic••iary aid ld.ntify by block n,a,b.r) L. In,~~~ IP!CIE LARGE SCALE OPTIMIZATION APPLICATIONS OF NONLINEAR ... NONLINEAR PROGRAMMING by Garth P. McCormick 1. Introduction The general mathematical programming ( optimization ) problem can be stated in the following form...because the difficulty in solving a general nonlinear optimization problem has a~ much to do with the nature of the functions involved as it does with the

  3. Rock-avalanche dynamics revealed by large-scale field mapping and seismic signals at a highly mobile avalanche in the West Salt Creek valley, western Colorado

    USGS Publications Warehouse

    Coe, Jeffrey A.; Baum, Rex L.; Allstadt, Kate; Kochevar, Bernard; Schmitt, Robert G.; Morgan, Matthew L.; White, Jonathan L.; Stratton, Benjamin T.; Hayashi, Timothy A.; Kean, Jason W.

    2016-01-01

    On 25 May 2014, a rain-on-snow–induced rock avalanche occurred in the West Salt Creek valley on the northern flank of Grand Mesa in western Colorado (United States). The avalanche mobilized from a preexisting rock slide in the Green River Formation and traveled 4.6 km down the confined valley, killing three people. The avalanche was rare for the contiguous United States because of its large size (54.5 Mm3) and high mobility (height/length = 0.14). To understand the avalanche failure sequence, mechanisms, and mobility, we conducted a forensic analysis using large-scale (1:1000) structural mapping and seismic data. We used high-resolution, unmanned aircraft system imagery as a base for field mapping, and analyzed seismic data from 22 broadband stations (distances < 656 km from the rock-slide source area) and one short-period network. We inverted broadband data to derive a time series of forces that the avalanche exerted on the earth and tracked these forces using curves in the avalanche path. Our results revealed that the rock avalanche was a cascade of landslide events, rather than a single massive failure. The sequence began with an early morning landslide/debris flow that started ∼10 h before the main avalanche. The main avalanche lasted ∼3.5 min and traveled at average velocities ranging from 15 to 36 m/s. For at least two hours after the avalanche ceased movement, a central, hummock-rich core continued to move slowly. Since 25 May 2014, numerous shallow landslides, rock slides, and rock falls have created new structures and modified avalanche topography. Mobility of the main avalanche and central core was likely enhanced by valley floor material that liquefied from undrained loading by the overriding avalanche. Although the base was likely at least partially liquefied, our mapping indicates that the overriding avalanche internally deformed predominantly by sliding along discrete shear surfaces in material that was nearly dry and had substantial frictional

  4. Multi-modal analysis of functional connectivity and cerebral blood flow reveals shared and unique effects of propofol in large-scale brain networks.

    PubMed

    Qiu, Maolin; Scheinost, Dustin; Ramani, Ramachandran; Constable, R Todd

    2017-03-01

    Anesthesia-induced changes in functional connectivity and cerebral blow flow (CBF) in large-scale brain networks have emerged as key markers of reduced consciousness. However, studies of functional connectivity disagree on which large-scale networks are altered or preserved during anesthesia, making it difficult to find a consensus amount studies. Additionally, pharmacological alterations in CBF could amplify or occlude changes in connectivity due to the shared variance between CBF and connectivity. Here, we used data-driven connectivity methods and multi-modal imaging to investigate shared and unique neural correlates of reduced consciousness for connectivity in large-scale brain networks. Rs-fMRI and CBF data were collected from the same subjects during an awake and deep sedation condition induced by propofol. We measured whole-brain connectivity using the intrinsic connectivity distribution (ICD), a method not reliant on pre-defined seed regions, networks of interest, or connectivity thresholds. The shared and unique variance between connectivity and CBF were investigated. Finally, to account for shared variance, we present a novel extension to ICD that incorporates cerebral blood flow (CBF) as a scaling factor in the calculation of global connectivity, labeled CBF-adjusted ICD). We observed altered connectivity in multiple large-scale brain networks including the default mode (DMN), salience, visual, and motor networks and reduced CBF in the DMN, frontoparietal network, and thalamus. Regional connectivity and CBF were significantly correlated during both the awake and propofol condition. Nevertheless changes in connectivity and CBF between the awake and deep sedation condition were only significantly correlated in a subsystem of the DMN, suggesting that, while there is significant shared variance between the modalities, changes due to propofol are relatively unique. Similar, but less significant, results were observed in the CBF-adjusted ICD analysis, providing

  5. Large scale tracking algorithms

    SciTech Connect

    Hansen, Ross L.; Love, Joshua Alan; Melgaard, David Kennett; Karelitz, David B.; Pitts, Todd Alan; Zollweg, Joshua David; Anderson, Dylan Z.; Nandy, Prabal; Whitlow, Gary L.; Bender, Daniel A.; Byrne, Raymond Harry

    2015-01-01

    Low signal-to-noise data processing algorithms for improved detection, tracking, discrimination and situational threat assessment are a key research challenge. As sensor technologies progress, the number of pixels will increase signi cantly. This will result in increased resolution, which could improve object discrimination, but unfortunately, will also result in a significant increase in the number of potential targets to track. Many tracking techniques, like multi-hypothesis trackers, suffer from a combinatorial explosion as the number of potential targets increase. As the resolution increases, the phenomenology applied towards detection algorithms also changes. For low resolution sensors, "blob" tracking is the norm. For higher resolution data, additional information may be employed in the detection and classfication steps. The most challenging scenarios are those where the targets cannot be fully resolved, yet must be tracked and distinguished for neighboring closely spaced objects. Tracking vehicles in an urban environment is an example of such a challenging scenario. This report evaluates several potential tracking algorithms for large-scale tracking in an urban environment.

  6. Large scale traffic simulations

    SciTech Connect

    Nagel, K.; Barrett, C.L. |; Rickert, M. |

    1997-04-01

    Large scale microscopic (i.e. vehicle-based) traffic simulations pose high demands on computational speed in at least two application areas: (i) real-time traffic forecasting, and (ii) long-term planning applications (where repeated {open_quotes}looping{close_quotes} between the microsimulation and the simulated planning of individual person`s behavior is necessary). As a rough number, a real-time simulation of an area such as Los Angeles (ca. 1 million travellers) will need a computational speed of much higher than 1 million {open_quotes}particle{close_quotes} (= vehicle) updates per second. This paper reviews how this problem is approached in different projects and how these approaches are dependent both on the specific questions and on the prospective user community. The approaches reach from highly parallel and vectorizable, single-bit implementations on parallel supercomputers for Statistical Physics questions, via more realistic implementations on coupled workstations, to more complicated driving dynamics implemented again on parallel supercomputers. 45 refs., 9 figs., 1 tab.

  7. Cooking practices, air quality, and the acceptability of advanced cookstoves in Haryana, India: an exploratory study to inform large-scale interventions.

    PubMed

    Mukhopadhyay, Rupak; Sambandam, Sankar; Pillarisetti, Ajay; Jack, Darby; Mukhopadhyay, Krishnendu; Balakrishnan, Kalpana; Vaswani, Mayur; Bates, Michael N; Kinney, Patrick L; Arora, Narendra; Smith, Kirk R

    2012-09-05

    In India, approximately 66% of households rely on dung or woody biomass as fuels for cooking. These fuels are burned under inefficient conditions, leading to household air pollution (HAP) and exposure to smoke containing toxic substances. Large-scale intervention efforts need to be informed by careful piloting to address multiple methodological and sociocultural issues. This exploratory study provides preliminary data for such an exercise from Palwal District, Haryana, India. Traditional cooking practices were assessed through semi-structured interviews in participating households. Philips and Oorja, two brands of commercially available advanced cookstoves with small blowers to improve combustion, were deployed in these households. Concentrations of particulate matter (PM) with a diameter <2.5 μm (PM2.5) and carbon monoxide (CO) related to traditional stove use were measured using real-time and integrated personal, microenvironmental samplers for optimizing protocols to evaluate exposure reduction. Qualitative data on acceptability of advanced stoves and objective measures of stove usage were also collected. Twenty-eight of the thirty-two participating households had outdoor primary cooking spaces. Twenty households had liquefied petroleum gas (LPG) but preferred traditional stoves as the cost of LPG was higher and because meals cooked on traditional stoves were perceived to taste better. Kitchen area concentrations and kitchen personal concentrations assessed during cooking events were very high, with respective mean PM2.5 concentrations of 468 and 718 µg/m3. Twenty-four hour outdoor concentrations averaged 400 µg/m3. Twenty-four hour personal CO concentrations ranged between 0.82 and 5.27 ppm. The Philips stove was used more often and for more hours than the Oorja. The high PM and CO concentrations reinforce the need for interventions that reduce HAP exposure in the aforementioned community. Of the two stoves tested, participants expressed satisfaction with

  8. Cooking practices, air quality, and the acceptability of advanced cookstoves in Haryana, India: an exploratory study to inform large-scale interventions

    PubMed Central

    Mukhopadhyay, Rupak; Sambandam, Sankar; Pillarisetti, Ajay; Jack, Darby; Mukhopadhyay, Krishnendu; Balakrishnan, Kalpana; Vaswani, Mayur; Bates, Michael N.; Kinney, Patrick L.; Arora, Narendra; Smith, Kirk R.

    2012-01-01

    Background In India, approximately 66% of households rely on dung or woody biomass as fuels for cooking. These fuels are burned under inefficient conditions, leading to household air pollution (HAP) and exposure to smoke containing toxic substances. Large-scale intervention efforts need to be informed by careful piloting to address multiple methodological and sociocultural issues. This exploratory study provides preliminary data for such an exercise from Palwal District, Haryana, India. Methods Traditional cooking practices were assessed through semi-structured interviews in participating households. Philips and Oorja, two brands of commercially available advanced cookstoves with small blowers to improve combustion, were deployed in these households. Concentrations of particulate matter (PM) with a diameter <2.5 μm (PM2.5) and carbon monoxide (CO) related to traditional stove use were measured using real-time and integrated personal, microenvironmental samplers for optimizing protocols to evaluate exposure reduction. Qualitative data on acceptability of advanced stoves and objective measures of stove usage were also collected. Results Twenty-eight of the thirty-two participating households had outdoor primary cooking spaces. Twenty households had liquefied petroleum gas (LPG) but preferred traditional stoves as the cost of LPG was higher and because meals cooked on traditional stoves were perceived to taste better. Kitchen area concentrations and kitchen personal concentrations assessed during cooking events were very high, with respective mean PM2.5 concentrations of 468 and 718 µg/m3. Twenty-four hour outdoor concentrations averaged 400 µg/m3. Twenty-four hour personal CO concentrations ranged between 0.82 and 5.27 ppm. The Philips stove was used more often and for more hours than the Oorja. Conclusions The high PM and CO concentrations reinforce the need for interventions that reduce HAP exposure in the aforementioned community. Of the two stoves tested

  9. Cooking practices, air quality, and the acceptability of advanced cookstoves in Haryana, India: an exploratory study to inform large-scale interventions.

    PubMed

    Mukhopadhyay, Rupak; Sambandam, Sankar; Pillarisetti, Ajay; Jack, Darby; Mukhopadhyay, Krishnendu; Balakrishnan, Kalpana; Vaswani, Mayur; Bates, Michael N; Kinney, PatrickL; Arora, Narendra; Smith, KirkR

    2012-01-01

    In India, approximately 66% of households rely on dung or woody biomass as fuels for cooking. These fuels are burned under inefficient conditions, leading to household air pollution (HAP) and exposure to smoke containing toxic substances. Large-scale intervention efforts need to be informed by careful piloting to address multiple methodological and sociocultural issues. This exploratory study provides preliminary data for such an exercise from Palwal District, Haryana, India. Traditional cooking practices were assessed through semi-structured interviews in participating households. Philips and Oorja, two brands of commercially available advanced cookstoves with small blowers to improve combustion, were deployed in these households. Concentrations of particulate matter (PM) with a diameter <2.5 μm (PM2.5) and carbon monoxide (CO) related to traditional stove use were measured using real-time and integrated personal, microenvironmental samplers for optimizing protocols to evaluate exposure reduction. Qualitative data on acceptability of advanced stoves and objective measures of stove usage were also collected. Twenty-eight of the thirty-two participating households had outdoor primary cooking spaces. Twenty households had liquefied petroleum gas (LPG) but preferred traditional stoves as the cost of LPG was higher and because meals cooked on traditional stoves were perceived to taste better. Kitchen area concentrations and kitchen personal concentrations assessed during cooking events were very high, with respective mean PM2.5 concentrations of 468 and 718 µg/m(3). Twenty-four hour outdoor concentrations averaged 400 µg/m(3). Twenty-four hour personal CO concentrations ranged between 0.82 and 5.27 ppm. The Philips stove was used more often and for more hours than the Oorja. The high PM and CO concentrations reinforce the need for interventions that reduce HAP exposure in the aforementioned community. Of the two stoves tested, participants expressed satisfaction

  10. A large-scale phylogeny of Synodontis (Mochokidae, Siluriformes) reveals the influence of geological events on continental diversity during the Cenozoic.

    PubMed

    Pinton, Aurélie; Agnèse, Jean-François; Paugy, Didier; Otero, Olga

    2013-03-01

    To explain the spatial variability of fish taxa at a large scale, two alternative proposals are usually evoked. In recent years, the debate has centred on the relative roles of present and historical processes in shaping biodiversity patterns. In Africa, attempts to understand the processes that determine the large scale distribution of fishes and exploration of historical contingencies have been under-investigated given that most of the phylogenetic studies focus on the history of the Great Lakes. Here, we explore phylogeographic events in the evolutionary history of Synodontis (Mohokidae, Siluriformes) over Africa during the Cenozoic focusing on the putative role of historical processes. We discuss how known geological events together with hydrographical changes contributed to shape Synodontis biogeographical history. Synodontis was chosen on the basis of its high diversity and distribution in Africa: it consists of approximately 120 species that are widely distributed in all hydrographic basins except the Maghreb and South Africa. We propose the most comprehensive phylogeny of this catfish genus. Our results provide support for the 'hydrogeological' hypothesis, which proposes that palaeohydrological changes linked with the geological context may have been the cause of diversification of freshwater fish deep in the Tertiary. More precisely, the two main geological structures that participated to shape the hydrographical network in Africa, namely the Central African Shear zone and the East African rift system, appear as strong drivers of Synodontis diversification and evolution. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Mid-Holocene cluster of large-scale landslides revealed in the Southwestern Alps by 36Cl dating. Insight on an Alpine-scale landslide activity

    NASA Astrophysics Data System (ADS)

    Zerathe, Swann; Lebourg, Thomas; Braucher, Régis; Bourlès, Didier

    2014-04-01

    Although it is generally assumed that the internal structure of a slope (e.g. lithology and rock mass properties, inherited faults and heterogeneities, etc.) is preponderant for the progressive development of large-scale landslides, the ability to identify triggering factors responsible for final slope failures such as glacial debuttressing, seismic activities or climatic changes, especially when considering landslide cluster at an orogen-scale, is still debated. Highlighting in this study the spatial and temporal concordant clustering of deep-seated slope failures in the external Southwestern Alps, we discuss and review the possible causes for such wide-spread slope instabilities at both local and larger (Alpine) scale. High resolution field mapping coupled with electrical resistivity tomography first allows establishing an inventory of large landslides in the Southwestern Alps, determining their structural model, precising their depth limit (100-200 m) as well as the involved rock volumes (>107 m3). We show that they developed in the same geostructural context of thick mudstone layers overlain by faulted limestone and followed a block-spread model of deformation that could evolve in rock-collapse events. Cosmic ray exposure dating (CRE), using both 36Cl and 10Be in coexisting limestone and chert, respectively, has been carried out from the main scarps of six Deep Seated Landslides (DSL) and leads to landslide-failure CRE ages ranging from 3.7 to 4.7 ka. They highlighted: (i) mainly single and fast ruptures and (ii) a possible concomitant initiation with a main peak of activity between 3.3 and 5.1 ka, centered at ca 4.2 ka. Because this region was not affected by historical glaciations events, landslide triggering by glacial unloading can be excluded. The presented data combined with field observations preferentially suggest that these failures were climatically driven and were most likely controlled by high pressure changes in the karstic medium. In effect, the

  12. Volunteer Conservation Action Data Reveals Large-Scale and Long-Term Negative Population Trends of a Widespread Amphibian, the Common Toad (Bufo bufo)

    PubMed Central

    Petrovan, Silviu O.

    2016-01-01

    Rare and threatened species are the most frequent focus of conservation science and action. With the ongoing shift from single-species conservation towards the preservation of ecosystem services, there is a greater need to understand abundance trends of common species because declines in common species can disproportionately impact ecosystems function. We used volunteer-collected data in two European countries, the United Kingdom (UK) and Switzerland, since the 1970s to assess national and regional trends for one of Europe’s most abundant amphibian species, the common toad (Bufo bufo). Millions of toads were moved by volunteers across roads during this period in an effort to protect them from road traffic. For Switzerland, we additionally estimated trends for the common frog (Rana temporaria), a similarly widespread and common amphibian species. We used state-space models to account for variability in detection and effort and included only populations with at least 5 years of data; 153 populations for the UK and 141 for Switzerland. Common toads declined continuously in each decade in both countries since the 1980s. Given the declines, this common species almost qualifies for International Union for the Conservation of Nature (IUCN) red-listing over this period despite volunteer conservation efforts. Reasons for the declines and wider impacts remain unknown. By contrast, common frog populations were stable or increasing in Switzerland, although there was evidence of declines after 2003. “Toads on Roads” schemes are vital citizen conservation action projects, and the data from such projects can be used for large scale trend estimations of widespread amphibians. We highlight the need for increased research into the status of common amphibian species in addition to conservation efforts focusing on rare and threatened species. PMID:27706154

  13. A large-scale genetic analysis reveals a strong contribution of the HLA class II region to giant cell arteritis susceptibility.

    PubMed

    Carmona, F David; Mackie, Sarah L; Martín, Jose-Ezequiel; Taylor, John C; Vaglio, Augusto; Eyre, Stephen; Bossini-Castillo, Lara; Castañeda, Santos; Cid, Maria C; Hernández-Rodríguez, José; Prieto-González, Sergio; Solans, Roser; Ramentol-Sintas, Marc; González-Escribano, M Francisca; Ortiz-Fernández, Lourdes; Morado, Inmaculada C; Narváez, Javier; Miranda-Filloy, José A; Beretta, Lorenzo; Lunardi, Claudio; Cimmino, Marco A; Gianfreda, Davide; Santilli, Daniele; Ramirez, Giuseppe A; Soriano, Alessandra; Muratore, Francesco; Pazzola, Giulia; Addimanda, Olga; Wijmenga, Cisca; Witte, Torsten; Schirmer, Jan H; Moosig, Frank; Schönau, Verena; Franke, Andre; Palm, Øyvind; Molberg, Øyvind; Diamantopoulos, Andreas P; Carette, Simon; Cuthbertson, David; Forbess, Lindsy J; Hoffman, Gary S; Khalidi, Nader A; Koening, Curry L; Langford, Carol A; McAlear, Carol A; Moreland, Larry; Monach, Paul A; Pagnoux, Christian; Seo, Philip; Spiera, Robert; Sreih, Antoine G; Warrington, Kenneth J; Ytterberg, Steven R; Gregersen, Peter K; Pease, Colin T; Gough, Andrew; Green, Michael; Hordon, Lesley; Jarrett, Stephen; Watts, Richard; Levy, Sarah; Patel, Yusuf; Kamath, Sanjeet; Dasgupta, Bhaskar; Worthington, Jane; Koeleman, Bobby P C; de Bakker, Paul I W; Barrett, Jennifer H; Salvarani, Carlo; Merkel, Peter A; González-Gay, Miguel A; Morgan, Ann W; Martín, Javier

    2015-04-02

    We conducted a large-scale genetic analysis on giant cell arteritis (GCA), a polygenic immune-mediated vasculitis. A case-control cohort, comprising 1,651 case subjects with GCA and 15,306 unrelated control subjects from six different countries of European ancestry, was genotyped by the Immunochip array. We also imputed HLA data with a previously validated imputation method to perform a more comprehensive analysis of this genomic region. The strongest association signals were observed in the HLA region, with rs477515 representing the highest peak (p = 4.05 × 10(-40), OR = 1.73). A multivariate model including class II amino acids of HLA-DRβ1 and HLA-DQα1 and one class I amino acid of HLA-B explained most of the HLA association with GCA, consistent with previously reported associations of classical HLA alleles like HLA-DRB1(∗)04. An omnibus test on polymorphic amino acid positions highlighted DRβ1 13 (p = 4.08 × 10(-43)) and HLA-DQα1 47 (p = 4.02 × 10(-46)), 56, and 76 (both p = 1.84 × 10(-45)) as relevant positions for disease susceptibility. Outside the HLA region, the most significant loci included PTPN22 (rs2476601, p = 1.73 × 10(-6), OR = 1.38), LRRC32 (rs10160518, p = 4.39 × 10(-6), OR = 1.20), and REL (rs115674477, p = 1.10 × 10(-5), OR = 1.63). Our study provides evidence of a strong contribution of HLA class I and II molecules to susceptibility to GCA. In the non-HLA region, we confirmed a key role for the functional PTPN22 rs2476601 variant and proposed other putative risk loci for GCA involved in Th1, Th17, and Treg cell function.

  14. A novel method of consensus pan-chromosome assembly and large-scale comparative analysis reveal the highly flexible pan-genome of Acinetobacter baumannii.

    PubMed

    Chan, Agnes P; Sutton, Granger; DePew, Jessica; Krishnakumar, Radha; Choi, Yongwook; Huang, Xiao-Zhe; Beck, Erin; Harkins, Derek M; Kim, Maria; Lesho, Emil P; Nikolich, Mikeljon P; Fouts, Derrick E

    2015-07-21

    Infections by pan-drug resistant Acinetobacter baumannii plague military and civilian healthcare systems. Previous A. baumannii pan-genomic studies used modest sample sizes of low diversity and comparisons to a single reference genome, limiting our understanding of gene order and content. A consensus representation of multiple genomes will provide a better framework for comparison. A large-scale comparative study will identify genomic determinants associated with their diversity and adaptation as a successful pathogen. We determine draft-level genomic sequence of 50 diverse military isolates and conduct the largest bacterial pan-genome analysis of 249 genomes. The pan-genome of A. baumannii is open when the input genomes are normalized for diversity with 1867 core proteins and a paralog-collapsed pan-genome size of 11,694 proteins. We developed a novel graph-based algorithm and use it to assemble the first consensus pan-chromosome, identifying both the order and orientation of core genes and flexible genomic regions. Comparative genome analyses demonstrate the existence of novel resistance islands and isolates with increased numbers of resistance island insertions over time, from single insertions in the 1950s to triple insertions in 2011. Gene clusters responsible for carbon utilization, siderophore production, and pilus assembly demonstrate frequent gain or loss among isolates. The highly variable and dynamic nature of the A. baumannii genome may be the result of its success in rapidly adapting to both abiotic and biotic environments through the gain and loss of gene clusters controlling fitness. Importantly, some archaic adaptation mechanisms appear to have reemerged among recent isolates.

  15. Volunteer Conservation Action Data Reveals Large-Scale and Long-Term Negative Population Trends of a Widespread Amphibian, the Common Toad (Bufo bufo).

    PubMed

    Petrovan, Silviu O; Schmidt, Benedikt R

    2016-01-01

    Rare and threatened species are the most frequent focus of conservation science and action. With the ongoing shift from single-species conservation towards the preservation of ecosystem services, there is a greater need to understand abundance trends of common species because declines in common species can disproportionately impact ecosystems function. We used volunteer-collected data in two European countries, the United Kingdom (UK) and Switzerland, since the 1970s to assess national and regional trends for one of Europe's most abundant amphibian species, the common toad (Bufo bufo). Millions of toads were moved by volunteers across roads during this period in an effort to protect them from road traffic. For Switzerland, we additionally estimated trends for the common frog (Rana temporaria), a similarly widespread and common amphibian species. We used state-space models to account for variability in detection and effort and included only populations with at least 5 years of data; 153 populations for the UK and 141 for Switzerland. Common toads declined continuously in each decade in both countries since the 1980s. Given the declines, this common species almost qualifies for International Union for the Conservation of Nature (IUCN) red-listing over this period despite volunteer conservation efforts. Reasons for the declines and wider impacts remain unknown. By contrast, common frog populations were stable or increasing in Switzerland, although there was evidence of declines after 2003. "Toads on Roads" schemes are vital citizen conservation action projects, and the data from such projects can be used for large scale trend estimations of widespread amphibians. We highlight the need for increased research into the status of common amphibian species in addition to conservation efforts focusing on rare and threatened species.

  16. Characteristics of aerosol types during large-scale transport of air pollution over the Yellow Sea region and at Cheongwon, Korea, in 2008.

    PubMed

    Kim, Hak-Sung; Chung, Yong-Seung; Lee, Sun-Gu

    2012-04-01

    Episodes of large-scale transport of airborne dust and anthropogenic pollutant particles from different sources in the East Asian continent in 2008 were identified by National Oceanic and Atmospheric Administration satellite RGB (red, green, and blue)-composite images and the mass concentrations of ground level particulate matter. These particles were divided into dust, sea salt, smoke plume, and sulfate by an aerosol classification algorithm. To analyze the aerosol size distribution during large-scale transport of atmospheric aerosols, aerosol optical depth (AOD) and fine aerosol weighting (FW) of moderate imaging spectroradiometer aerosol products were used over the East Asian region. Six episodes of massive airborne dust particles, originating from sandstorms in northern China, Mongolia, and the Loess Plateau of China, were observed at Cheongwon. Classified dust aerosol types were distributed on a large-scale over the Yellow Sea region. The average PM10 and PM2.5 ratio to the total mass concentration TSP were 70% and 15%, respectively. However, the mass concentration of PM2.5 among TSP increased to as high as 23% in an episode where dust traveled in by way of an industrial area in eastern China. In the other five episodes of anthropogenic pollutant particles that flowed into the Korean Peninsula from eastern China, the anthropogenic pollutant particles were largely detected in the form of smoke over the Yellow Sea region. The average PM10 and PM2.5 ratios to TSP were 82% and 65%, respectively. The ratio of PM2.5 mass concentrations among TSP varied significantly depending on the origin and pathway of the airborne dust particles. The average AOD for the large-scale transport of anthropogenic pollutant particles in the East Asian region was measured to be 0.42 ± 0.17, which is higher in terms of the rate against atmospheric aerosols as compared with the AOD (0.36 ± 0.13) for airborne dust particles with sandstorms. In particular, the region ranging from eastern

  17. One-step synthesis of large-scale graphene film doped with gold nanoparticles at liquid-air interface for electrochemistry and Raman detection applications.

    PubMed

    Zhang, Panpan; Huang, Ying; Lu, Xin; Zhang, Siyu; Li, Jingfeng; Wei, Gang; Su, Zhiqiang

    2014-07-29

    We demonstrated a facile one-step synthesis strategy for the preparation of a large-scale reduced graphene oxide multilayered film doped with gold nanoparticles (RGO/AuNP film) and applied this film as functional nanomaterials for electrochemistry and Raman detection applications. The related applications of the fabricated RGO/AuNP film in electrochemical nonenzymatic H2O2 biosensor, electrochemical oxygen reduction reaction (ORR), and surface-enhanced Raman scattering (SERS) detection were investigated. Electrochemical data indicate that the H2O2 biosensor fabricated by RGO/AuNP film shows a wide linear range, low limitation of detection, high selectivity, and long-term stability. In addition, it was proved that the created RGO/AuNP film also exhibits excellent ORR electrochemical catalysis performance. The created RGO/AuNP film, when serving as SERS biodetection platform, presents outstanding performances in detecting 4-aminothiophenol with an enhancement factor of approximately 5.6 × 10(5) as well as 2-thiouracil sensing with a low concentration to 1 μM. It is expected that this facile strategy for fabricating large-scale graphene film doped with metallic nanoparticles will spark inspirations in preparing functional nanomaterials and further extend their applications in drug delivery, wastewater purification, and bioenergy.

  18. A Large-Scale Genetic Analysis Reveals a Strong Contribution of the HLA Class II Region to Giant Cell Arteritis Susceptibility

    PubMed Central

    Carmona, F. David; Mackie, Sarah L.; Martín, Jose-Ezequiel; Taylor, John C.; Vaglio, Augusto; Eyre, Stephen; Bossini-Castillo, Lara; Castañeda, Santos; Cid, Maria C.; Hernández-Rodríguez, José; Prieto-González, Sergio; Solans, Roser; Ramentol-Sintas, Marc; González-Escribano, M. Francisca; Ortiz-Fernández, Lourdes; Morado, Inmaculada C.; Narváez, Javier; Miranda-Filloy, José A.; Martínez-Berriochoa, Agustín; Unzurrunzaga, Ainhoa; Hidalgo-Conde, Ana; Madroñero-Vuelta, Ana B.; Fernández-Nebro, Antonio; Ordóñez-Cañizares, M. Carmen; Escalante, Begoña; Marí-Alfonso, Begoña; Sopeña, Bernardo; Magro, César; Raya, Enrique; Grau, Elena; Román, José A.; de Miguel, Eugenio; López-Longo, F. Javier; Martínez, Lina; Gómez-Vaquero, Carmen; Fernández-Gutiérrez, Benjamín; Rodríguez-Rodríguez, Luis; Díaz-López, J. Bernardino; Caminal-Montero, Luis; Martínez-Zapico, Aleida; Monfort, Jordi; Tío, Laura; Sánchez-Martín, Julio; Alegre-Sancho, Juan J.; Sáez-Comet, Luis; Pérez-Conesa, Mercedes; Corbera-Bellalta, Marc; García-Villanueva, M. Jesús; Fernández-Contreras, M. Encarnación; Sanchez-Pernaute, Olga; Blanco, Ricardo; Ortego-Centeno, Norberto; Ríos-Fernández, Raquel; Callejas, José L.; Fanlo-Mateo, Patricia; Martínez-Taboada, Víctor M.; Beretta, Lorenzo; Lunardi, Claudio; Cimmino, Marco A.; Gianfreda, Davide; Santilli, Daniele; Ramirez, Giuseppe A.; Soriano, Alessandra; Muratore, Francesco; Pazzola, Giulia; Addimanda, Olga; Wijmenga, Cisca; Witte, Torsten; Schirmer, Jan H.; Moosig, Frank; Schönau, Verena; Franke, Andre; Palm, Øyvind; Molberg, Øyvind; Diamantopoulos, Andreas P.; Carette, Simon; Cuthbertson, David; Forbess, Lindsy J.; Hoffman, Gary S.; Khalidi, Nader A.; Koening, Curry L.; Langford, Carol A.; McAlear, Carol A.; Moreland, Larry; Monach, Paul A.; Pagnoux, Christian; Seo, Philip; Spiera, Robert; Sreih, Antoine G.; Warrington, Kenneth J.; Ytterberg, Steven R.; Gregersen, Peter K.; Pease, Colin T.; Gough, Andrew; Green, Michael; Hordon, Lesley; Jarrett, Stephen; Watts, Richard; Levy, Sarah; Patel, Yusuf; Kamath, Sanjeet; Dasgupta, Bhaskar; Worthington, Jane; Koeleman, Bobby P.C.; de Bakker, Paul I.W.; Barrett, Jennifer H.; Salvarani, Carlo; Merkel, Peter A.; González-Gay, Miguel A.; Morgan, Ann W.; Martín, Javier

    2015-01-01

    We conducted a large-scale genetic analysis on giant cell arteritis (GCA), a polygenic immune-mediated vasculitis. A case-control cohort, comprising 1,651 case subjects with GCA and 15,306 unrelated control subjects from six different countries of European ancestry, was genotyped by the Immunochip array. We also imputed HLA data with a previously validated imputation method to perform a more comprehensive analysis of this genomic region. The strongest association signals were observed in the HLA region, with rs477515 representing the highest peak (p = 4.05 × 10−40, OR = 1.73). A multivariate model including class II amino acids of HLA-DRβ1 and HLA-DQα1 and one class I amino acid of HLA-B explained most of the HLA association with GCA, consistent with previously reported associations of classical HLA alleles like HLA-DRB1∗04. An omnibus test on polymorphic amino acid positions highlighted DRβ1 13 (p = 4.08 × 10−43) and HLA-DQα1 47 (p = 4.02 × 10−46), 56, and 76 (both p = 1.84 × 10−45) as relevant positions for disease susceptibility. Outside the HLA region, the most significant loci included PTPN22 (rs2476601, p = 1.73 × 10−6, OR = 1.38), LRRC32 (rs10160518, p = 4.39 × 10−6, OR = 1.20), and REL (rs115674477, p = 1.10 × 10−5, OR = 1.63). Our study provides evidence of a strong contribution of HLA class I and II molecules to susceptibility to GCA. In the non-HLA region, we confirmed a key role for the functional PTPN22 rs2476601 variant and proposed other putative risk loci for GCA involved in Th1, Th17, and Treg cell function. PMID:25817017

  19. Large Scale Comparative Proteomics of a Chloroplast Clp Protease Mutant Reveals Folding Stress, Altered Protein Homeostasis, and Feedback Regulation of Metabolism*

    PubMed Central

    Zybailov, Boris; Friso, Giulia; Kim, Jitae; Rudella, Andrea; Rodríguez, Verenice Ramírez; Asakura, Yukari; Sun, Qi; van Wijk, Klaas J.

    2009-01-01

    The clpr2-1 mutant is delayed in development due to reduction of the chloroplast ClpPR protease complex. To understand the role of Clp proteases in plastid biogenesis and homeostasis, leaf proteomes of young seedlings of clpr2-1 and wild type were compared using large scale mass spectrometry-based quantification using an LTQ-Orbitrap and spectral counting with significance determined by G-tests. Virtually only chloroplast-localized proteins were significantly affected, indicating that the molecular phenotype was confined to the chloroplast. A comparative chloroplast stromal proteome analysis of fully developed plants was used to complement the data set. Chloroplast unfoldase ClpB3 was strongly up-regulated in both young and mature leaves, suggesting widespread and persistent protein folding stress. The importance of ClpB3 in the clp2-1 mutant was demonstrated by the observation that a CLPR2 and CLPB3 double mutant was seedling-lethal. The observed up-regulation of chloroplast chaperones and protein sorting components further illustrated destabilization of protein homeostasis. Delayed rRNA processing and up-regulation of a chloroplast DEAD box RNA helicase and polynucleotide phosphorylase, but no significant change in accumulation of ribosomal subunits, suggested a bottleneck in ribosome assembly or RNA metabolism. Strong up-regulation of a chloroplast translational regulator TypA/BipA GTPase suggested a specific response in plastid gene expression to the distorted homeostasis. The stromal proteases PreP1,2 were up-regulated, likely constituting compensation for reduced Clp protease activity and possibly shared substrates between the ClpP and PreP protease systems. The thylakoid photosynthetic apparatus was decreased in the seedlings, whereas several structural thylakoid-associated plastoglobular proteins were strongly up-regulated. Two thylakoid-associated reductases involved in isoprenoid and chlorophyll synthesis were up-regulated reflecting feedback from rate

  20. Large scale analysis of co-existing post-translational modifications in histone tails reveals global fine structure of cross-talk.

    PubMed

    Schwämmle, Veit; Aspalter, Claudia-Maria; Sidoli, Simone; Jensen, Ole N

    2014-07-01

    Mass spectrometry (MS) is a powerful analytical method for the identification and quantification of co-existing post-translational modifications in histone proteins. One of the most important challenges in current chromatin biology is to characterize the relationships between co-existing histone marks, the order and hierarchy of their deposition, and their distinct biological functions. We developed the database CrossTalkDB to organize observed and reported co-existing histone marks as revealed by MS experiments of histone proteins and their derived peptides. Statistical assessment revealed sample-specific patterns for the co-frequency of histone post-translational modifications. We implemented a new method to identify positive and negative interplay between pairs of methylation and acetylation marks in proteins. Many of the detected features were conserved between different cell types or exist across species, thereby revealing general rules for cross-talk between histone marks. The observed features are in accordance with previously reported examples of cross-talk. We observed novel types of interplay among acetylated residues, revealing positive cross-talk between nearby acetylated sites but negative cross-talk for distant ones, and for discrete methylation states at Lys-9, Lys-27, and Lys-36 of histone H3, suggesting a more differentiated functional role of methylation beyond the general expectation of enhanced activity at higher methylation states.

  1. Large-Scale Air Mass Characteristics Observed Over the Remote Tropical Pacific Ocean During March-April 1999: Results from PEM-Tropics B Field Experiment

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Fenn, Marta A.; Butler, Carolyn F.; Grant, William B.; Ismail, Syed; Ferrare, Richard A.; Kooi, Susan A.; Brackett, Vincent G.; Clayton, Marian B.; Avery, Melody A.

    2001-01-01

    Eighteen long-range flights over the Pacific Ocean between 38 S to 20 N and 166 E to 90 W were made by the NASA DC-8 aircraft during the NASA Pacific Exploratory Mission (PEM) Tropics B conducted from March 6 to April 18, 1999. Two lidar systems were flown on the DC-8 to remotely measure vertical profiles of ozone (O3), water vapor (H2O), aerosols, and clouds from near the surface to the upper troposphere along their flight track. In situ measurements of a wide range of gases and aerosols were made on the DC-8 for comprehensive characterization of the air and for correlation with the lidar remote measurements. The transition from northeasterly flow of Northern Hemispheric (NH) air on the northern side of the Intertropical Convergence Zone (ITCZ) to generally easterly flow of Southern Hemispheric (SH) air south of the ITCZ was accompanied by a significant decrease in O3, carbon monoxide, hydrocarbons, and aerosols and an increase in H2O. Trajectory analyses indicate that air north of the ITCZ came from Asia and/or the United States, while the air south of the ITCZ had a long residence time over the Pacific, perhaps originating over South America several weeks earlier. Air south of the South Pacific Convergence Zone (SPCZ) came rapidly from the west originating over Australia or Africa. This air had enhanced O3 and aerosols and an associated decrease in H2O. Average latitudinal and longitudinal distributions of O3 and H2O were constructed from the remote and in situ O3 and H2O data, and these distributions are compared with results from PEM-Tropics A conducted in August-October 1996. During PEM-Tropics B, low O3 air was found in the SH across the entire Pacific Basin at low latitudes. This was in strong contrast to the photochemically enhanced O3 levels found across the central and eastern Pacific low latitudes during PEM-Tropics A. Nine air mass types were identified for PEM-Tropics B based on their O3, aerosols, clouds, and potential vorticity characteristics. The

  2. Two distinct mtDNA lineages of the blue crab reveal large-scale population structure in its native Atlantic distribution

    NASA Astrophysics Data System (ADS)

    Alaniz Rodrigues, Marcos; Dumont, Luiz Felipe Cestari; dos Santos, Cléverson Rannieri Meira; D'Incao, Fernando; Weiss, Steven; Froufe, Elsa

    2017-10-01

    For the first time, a molecular approach was used to evaluate the phylogenetic structure of the disjunct native American distribution of the blue crab Callinectes sapidus. Population structure was investigated by sequencing 648bp of the Cytochrome oxidase subunit 1 (COI), in a total of 138 sequences stemming from individual samples from both the northern and southern hemispheres of the Western Atlantic distribution of the species. A Bayesian approach was used to construct a phylogenetic tree for all samples, and a 95% confidence parsimony network was created to depict the relationship among haplotypes. Results revealed two highly distinct lineages, one containing all samples from the United States and some from Brazil (lineage 1) and the second restricted to Brazil (lineage 2). In addition, gene flow (at least for females) was detected among estuaries at local scales and there is evidence for shared haplotypes in the south. Furthermore, the findings of this investigation support the contemporary introduction of haplotypes that have apparently spread from the south to the north Atlantic.

  3. Drastic Compensation of Electronic and Solvation Effects on ATP Hydrolysis Revealed through Large-Scale QM/MM Simulations Combined with a Theory of Solutions.

    PubMed

    Takahashi, Hideaki; Umino, Satoru; Miki, Yuji; Ishizuka, Ryosuke; Maeda, Shu; Morita, Akihiro; Suzuki, Makoto; Matubayasi, Nobuyuki

    2017-03-16

    Hydrolysis of adenosine triphosphate (ATP) is the "energy source" for a variety of biochemical processes. In the present work, we address key features of ATP hydrolysis: the relatively moderate value (about -10 kcal/mol) of the standard free energy, ΔGhyd, of reaction and the insensitivity of ΔGhyd to the number of excess electrons on ATP. We conducted quantum mechanical/molecular mechanical simulation combined with the energy-representation theory of solutions to analyze the electronic-state and solvation contributions to ΔGhyd. It was revealed that the electronic-state contribution in ΔGhyd is largely negative (favorable) upon hydrolysis, due to the reduction of electrostatic repulsion accompanying the breakage of the P-O bond. In contrast, the solvation effect was found to be strongly more favorable on the reactant side. Thus, we showed that a drastic compensation of the two opposite effects takes place, leading to the modest value of ΔGhyd at each number of excess electrons examined. The computational analyses were also conducted for pyrophosphate ions (PPi), and the parallelism between the ATP and PPi hydrolyses was confirmed. Classical molecular dynamics simulation was further carried out to discuss the effect of the solvent environment; the insensitivity of ΔGhyd to the number of excess electrons was seen to hold in solvent water and ethanol.

  4. Large scale integration of drug-target information reveals poly-pharmacological drug action mechanisms in tumor cell line growth inhibition assays

    PubMed Central

    Knight, Richard A.; Gostev, Mikhail; Ilisavskii, Sergei; Willis, Anne E.; Melino, Gerry; Antonov, Alexey V.

    2014-01-01

    Understanding therapeutic mechanisms of drug anticancer cytotoxicity represents a key challenge in preclinical testing. Here we have performed a meta-analysis of publicly available tumor cell line growth inhibition assays (~ 70 assays from 6 independent experimental groups covering ~ 500 000 molecules) with the primary goal of understanding molecular therapeutic mechanisms of cancer cytotoxicity. To implement this we have collected currently available information on protein targets for molecules that were tested in the assays. We used a statistical methodology to identify protein targets overrepresented among molecules exhibiting cancer cytotoxicity with the particular focus of identifying overrepresented patterns consisting of several proteins (i.e. proteins “A” and “B” and “C”). Our analysis demonstrates that targeting individual proteins can result in a significant increase (up to 50-fold) of the observed odds for a molecule to be an efficient inhibitor of tumour cell line growth. However, further insight into potential molecular mechanisms reveals a multi-target mode of action: targeting a pattern of several proteins drastically increases the observed odds (up to 500-fold) for a molecule to be tumour cytotoxic. In contrast, molecules targeting only one protein but not targeting an additional set of proteins tend to be nontoxic. Our findings support a poly-pharmacology drug discovery paradigm, demonstrating that anticancer cytotoxicity is a product, in most cases, of multi-target mode of drug action PMID:24553133

  5. OMICS in ecology: systems level analyses of Halobacterium salinarum reveal large-scale temperature-mediated changes and a requirement of CctA for thermotolerance.

    PubMed

    Weng, Rueyhung Roc; Shu, Hung-Wei; Chin, See-Wen; Kao, Yuchieh; Chen, Ting-Wen; Liao, Chen-Chung; Tsay, Yeou-Guang; Ng, Wailap Victor

    2014-01-01

    Halobacterium salinarum is an extremely halophilic archaeon that inhabits high-salinity aqueous environments in which the temperature can range widely, both daily and seasonally. An OMICS analysis of the 37°C and 49°C proteomes and transcriptomes for revealing the biomodules affected by temperature is reported here. Analysis of those genes/proteins displaying dramatic changes provided a clue to the coordinated changes in the expression of genes within five arCOG biological clusters. When proteins that exhibited minor changes in their spectral counts and insignificant p values were also examined, the apparent influence of the elevated temperatures on conserved chaperones, metabolism, translation, and other biomodules became more obvious. For instance, increases in all eight conserved chaperones and three arginine deiminase pathway enzymes and reductions in most tricarboxylic acid (TCA) cycle enzymes and ribosomal proteins suggest that complex system responses occurred as the temperature changed. When the requirement for the four proteins that showed the greatest induction at 49°C was analyzed, only CctA (chaperonin subunit α), but not Hsp5, DpsA, or VNG1187G, was essential for thermotolerance. Environmental stimuli and other perturbations may induce many minor gene expression changes. Simultaneous analysis of the genes exhibiting dramatic or minor changes in expression may facilitate the detection of systems level responses.

  6. OMICS in Ecology: Systems Level Analyses of Halobacterium salinarum Reveal Large-scale Temperature-Mediated Changes and a Requirement of CctA for Thermotolerance

    PubMed Central

    Weng, Rueyhung Roc; Shu, Hung-Wei; Chin, See-Wen; Kao, Yuchieh; Chen, Ting-Wen; Liao, Chen-Chung; Tsay, Yeou-Guang

    2014-01-01

    Abstract Halobacterium salinarum is an extremely halophilic archaeon that inhabits high-salinity aqueous environments in which the temperature can range widely, both daily and seasonally. An OMICS analysis of the 37°C and 49°C proteomes and transcriptomes for revealing the biomodules affected by temperature is reported here. Analysis of those genes/proteins displaying dramatic changes provided a clue to the coordinated changes in the expression of genes within five arCOG biological clusters. When proteins that exhibited minor changes in their spectral counts and insignificant p values were also examined, the apparent influence of the elevated temperatures on conserved chaperones, metabolism, translation, and other biomodules became more obvious. For instance, increases in all eight conserved chaperones and three arginine deiminase pathway enzymes and reductions in most tricarboxylic acid (TCA) cycle enzymes and ribosomal proteins suggest that complex system responses occurred as the temperature changed. When the requirement for the four proteins that showed the greatest induction at 49°C was analyzed, only CctA (chaperonin subunit α), but not Hsp5, DpsA, or VNG1187G, was essential for thermotolerance. Environmental stimuli and other perturbations may induce many minor gene expression changes. Simultaneous analysis of the genes exhibiting dramatic or minor changes in expression may facilitate the detection of systems level responses. PMID:24147786

  7. Mitochondrial DNA analysis reveals cryptic large-scale invasion of non-native genotypes of common carp (Cyprinus carpio) in Japan.

    PubMed

    Mabuchi, K; Senou, H; Nishida, M

    2008-02-01

    Wild common carp (Cyprinus carpio) are probably suffering from biological invasions of conspecific domesticated strains. However, such invasions may be largely camouflaged by morphological similarities between introduced and native strains. We conducted a large survey of mitochondrial DNA sequences (complete D-loop region) from 11 localities in Japan. From a total of 166 individuals, 28 haplotypes were determined to fit into six divergent clades. One of the six clades included 19 closely related haplotypes with moderate nucleotide differences; however, the remaining five clades each included either a single haplotype or two almost identical haplotypes. Phylogenetic analysis together with the previously published Eurasian haplotypes further demonstrated that the 'monotypic' clades were sisters to various Eurasian lineages, whereas the 19 related haplotypes formed a monophyletic group apart from the whole Eurasian clade. Given their monophyly and genetic diversity, the 19 related haplotypes were thought to originate from the Japanese native strain. Conversely, their phylogenetic affinities to Eurasian lineages and unnaturally low genetic diversities caused the haplotypes of the five monotypic clades to be considered as domesticated strains introduced from Eurasia. These hypotheses were supported by further evidences; i.e. the probable non-native haplotypes were frequently found from Japanese domesticated strains, and the probable native population structure was rescued when the probable non-native haplotypes were excluded from the analyses. This study revealed that almost half or more of the haplotypes in all of the locations studied originated from domesticated strains introduced from Eurasia.

  8. Crystal structures of yeast beta-alanine synthase complexes reveal the mode of substrate binding and large scale domain closure movements.

    PubMed

    Lundgren, Stina; Andersen, Birgit; Piskur, Jure; Dobritzsch, Doreen

    2007-12-07

    Beta-alanine synthase is the final enzyme of the reductive pyrimidine catabolic pathway, which is responsible for the breakdown of uracil and thymine in higher organisms. The fold of the homodimeric enzyme from the yeast Saccharomyces kluyveri identifies it as a member of the AcyI/M20 family of metallopeptidases. Its subunit consists of a catalytic domain harboring a di-zinc center and a smaller dimerization domain. The present site-directed mutagenesis studies identify Glu(159) and Arg(322) as crucial for catalysis and His(262) and His(397) as functionally important but not essential. We determined the crystal structures of wild-type beta-alanine synthase in complex with the reaction product beta-alanine, and of the mutant E159A with the substrate N-carbamyl-beta-alanine, revealing the closed state of a dimeric AcyI/M20 metallopeptidase-like enzyme. Subunit closure is achieved by a approximately 30 degrees rigid body domain rotation, which completes the active site by integration of substrate binding residues that belong to the dimerization domain of the same or the partner subunit. Substrate binding is achieved via a salt bridge, a number of hydrogen bonds, and coordination to one of the zinc ions of the di-metal center.

  9. Molecular approach to annelid regeneration: cDNA subtraction cloning reveals various novel genes that are upregulated during the large-scale regeneration of the oligochaete, Enchytraeus japonensis.

    PubMed

    Myohara, Maroko; Niva, Cintia Carla; Lee, Jae Min

    2006-08-01

    To identify genes specifically activated during annelid regeneration, suppression subtractive hybridization was performed with cDNAs from regenerating and intact Enchytraeus japonensis, a terrestrial oligochaete that can regenerate a complete organism from small body fragments within 4-5 days. Filter array screening subsequently revealed that about 38% of the forward-subtracted cDNA clones contained genes that were upregulated during regeneration. Two hundred seventy-nine of these clones were sequenced and found to contain 165 different sequences (79 known and 86 unknown). Nine clones were fully sequenced and four of these sequences were matched to known genes for glutamine synthetase, glucosidase 1, retinal protein 4, and phosphoribosylaminoimidazole carboxylase, respectively. The remaining five clones encoded an unknown open-reading frame. The expression levels of these genes were highest during blastema formation. Our present results, therefore, demonstrate the great potential of annelids as a new experimental subject for the exploration of unknown genes that play critical roles in animal regeneration.

  10. Large-scale cortical networks and cognition.

    PubMed

    Bressler, S L

    1995-03-01

    The well-known parcellation of the mammalian cerebral cortex into a large number of functionally distinct cytoarchitectonic areas presents a problem for understanding the complex cortical integrative functions that underlie cognition. How do cortical areas having unique individual functional properties cooperate to accomplish these complex operations? Do neurons distributed throughout the cerebral cortex act together in large-scale functional assemblages? This review examines the substantial body of evidence supporting the view that complex integrative functions are carried out by large-scale networks of cortical areas. Pathway tracing studies in non-human primates have revealed widely distributed networks of interconnected cortical areas, providing an anatomical substrate for large-scale parallel processing of information in the cerebral cortex. Functional coactivation of multiple cortical areas has been demonstrated by neurophysiological studies in non-human primates and several different cognitive functions have been shown to depend on multiple distributed areas by human neuropsychological studies. Electrophysiological studies on interareal synchronization have provided evidence that active neurons in different cortical areas may become not only coactive, but also functionally interdependent. The computational advantages of synchronization between cortical areas in large-scale networks have been elucidated by studies using artificial neural network models. Recent observations of time-varying multi-areal cortical synchronization suggest that the functional topology of a large-scale cortical network is dynamically reorganized during visuomotor behavior.

  11. Large Scale Screening of Digeneans for Neorickettsia Endosymbionts Using Real-Time PCR Reveals New Neorickettsia Genotypes, Host Associations and Geographic Records

    PubMed Central

    Greiman, Stephen E.; Tkach, Vasyl V.; Pulis, Eric; Fayton, Thomas J.; Curran, Stephen S.

    2014-01-01

    Digeneans are endoparasitic flatworms with complex life cycles including one or two intermediate hosts (first of which is always a mollusk) and a vertebrate definitive host. Digeneans may harbor intracellular endosymbiotic bacteria belonging to the genus Neorickettsia (order Rickettsiales, family Anaplasmataceae). Some Neorickettsia are able to invade cells of the digenean's vertebrate host and are known to cause diseases of wildlife and humans. In this study we report the results of screening 771 digenean samples for Neorickettsia collected from various vertebrates in terrestrial, freshwater, brackish, and marine habitats in the United States, China and Australia. Neorickettsia were detected using a newly designed real-time PCR protocol targeting a 152 bp fragment of the heat shock protein coding gene, GroEL, and verified with nested PCR and sequencing of a 1371 bp long region of 16S rRNA. Eight isolates of Neorickettsia have been obtained. Sequence comparison and phylogenetic analysis demonstrated that 7 of these isolates, provisionally named Neorickettsia sp. 1–7 (obtained from allocreadiid Crepidostomum affine, haploporids Saccocoelioides beauforti and Saccocoelioides lizae, faustulid Bacciger sprenti, deropegid Deropegus aspina, a lecithodendriid, and a pleurogenid) represent new genotypes and one (obtained from Metagonimoides oregonensis) was identical to a published sequence of Neorickettsia known as SF agent. All digenean species reported in this study represent new host records. Three of the 6 digenean families (Haploporidae, Pleurogenidae, and Faustulidae) are also reported for the first time as hosts of Neorickettsia. We have detected Neorickettsia in digeneans from China and Australia for the first time based on PCR and sequencing evidence. Our findings suggest that further surveys from broader geographic regions and wider selection of digenean taxa are likely to reveal new Neorickettsia lineages as well as new digenean host associations. PMID

  12. Large-scale mitochondrial DNA analysis in Southeast Asia reveals evolutionary effects of cultural isolation in the multi-ethnic population of Myanmar

    PubMed Central

    2014-01-01

    Background Myanmar is the largest country in mainland Southeast Asia with a population of 55 million people subdivided into more than 100 ethnic groups. Ruled by changing kingdoms and dynasties and lying on the trade route between India and China, Myanmar was influenced by numerous cultures. Since its independence from British occupation, tensions between the ruling Bamar and ethnic minorities increased. Results Our aim was to search for genetic footprints of Myanmar’s geographic, historic and sociocultural characteristics and to contribute to the picture of human colonization by describing and dating of new mitochondrial DNA (mtDNA) haplogroups. Therefore, we sequenced the mtDNA control region of 327 unrelated donors and the complete mitochondrial genome of 44 selected individuals according to highest quality standards. Conclusion Phylogenetic analyses of the entire mtDNA genomes uncovered eight new haplogroups and three unclassified basal M-lineages. The multi-ethnic population and the complex history of Myanmar were reflected in its mtDNA heterogeneity. Population genetic analyses of Burmese control region sequences combined with population data from neighboring countries revealed that the Myanmar haplogroup distribution showed a typical Southeast Asian pattern, but also Northeast Asian and Indian influences. The population structure of the extraordinarily diverse Bamar differed from that of the Karen people who displayed signs of genetic isolation. Migration analyses indicated a considerable genetic exchange with an overall positive migration balance from Myanmar to neighboring countries. Age estimates of the newly described haplogroups point to the existence of evolutionary windows where climatic and cultural changes gave rise to mitochondrial haplogroup diversification in Asia. PMID:24467713

  13. Association analyses of large-scale glycan microarray data reveal novel host-specific substructures in influenza A virus binding glycans

    NASA Astrophysics Data System (ADS)

    Zhao, Nan; Martin, Brigitte E.; Yang, Chun-Kai; Luo, Feng; Wan, Xiu-Feng

    2015-10-01

    Influenza A viruses can infect a wide variety of animal species and, occasionally, humans. Infection occurs through the binding formed by viral surface glycoprotein hemagglutinin and certain types of glycan receptors on host cell membranes. Studies have shown that the α2,3-linked sialic acid motif (SA2,3Gal) in avian, equine, and canine species; the α2,6-linked sialic acid motif (SA2,6Gal) in humans; and SA2,3Gal and SA2,6Gal in swine are responsible for the corresponding host tropisms. However, more detailed and refined substructures that determine host tropisms are still not clear. Thus, in this study, we applied association mining on a set of glycan microarray data for 211 influenza viruses from five host groups: humans, swine, canine, migratory waterfowl, and terrestrial birds. The results suggest that besides Neu5Acα2-6Galβ, human-origin viruses could bind glycans with Neu5Acα2-8Neu5Acα2-8Neu5Ac and Neu5Gcα2-6Galβ1-4GlcNAc substructures; Galβ and GlcNAcβ terminal substructures, without sialic acid branches, were associated with the binding of human-, swine-, and avian-origin viruses; sulfated Neu5Acα2-3 substructures were associated with the binding of human- and swine-origin viruses. Finally, through three-dimensional structure characterization, we revealed that the role of glycan chain shapes is more important than that of torsion angles or of overall structural similarities in virus host tropisms.

  14. Association analyses of large-scale glycan microarray data reveal novel host-specific substructures in influenza A virus binding glycans

    PubMed Central

    Zhao, Nan; Martin, Brigitte E.; Yang, Chun-Kai; Luo, Feng; Wan, Xiu-Feng

    2015-01-01

    Influenza A viruses can infect a wide variety of animal species and, occasionally, humans. Infection occurs through the binding formed by viral surface glycoprotein hemagglutinin and certain types of glycan receptors on host cell membranes. Studies have shown that the α2,3-linked sialic acid motif (SA2,3Gal) in avian, equine, and canine species; the α2,6-linked sialic acid motif (SA2,6Gal) in humans; and SA2,3Gal and SA2,6Gal in swine are responsible for the corresponding host tropisms. However, more detailed and refined substructures that determine host tropisms are still not clear. Thus, in this study, we applied association mining on a set of glycan microarray data for 211 influenza viruses from five host groups: humans, swine, canine, migratory waterfowl, and terrestrial birds. The results suggest that besides Neu5Acα2–6Galβ, human-origin viruses could bind glycans with Neu5Acα2–8Neu5Acα2–8Neu5Ac and Neu5Gcα2–6Galβ1–4GlcNAc substructures; Galβ and GlcNAcβ terminal substructures, without sialic acid branches, were associated with the binding of human-, swine-, and avian-origin viruses; sulfated Neu5Acα2–3 substructures were associated with the binding of human- and swine-origin viruses. Finally, through three-dimensional structure characterization, we revealed that the role of glycan chain shapes is more important than that of torsion angles or of overall structural similarities in virus host tropisms. PMID:26508590

  15. The research and realization of multi-platform real-time message-oriented middleware in large-scale air traffic control system

    NASA Astrophysics Data System (ADS)

    Liang, Haijun; Ren, Jialong; Song, Tao

    2017-05-01

    Operating requirement of air traffic control system, the multi-platform real-time message-oriented middleware was studied and realized, which is composed of CDCC and CDCS. The former provides application process interface, while the latter realizes data synchronism of CDCC and data exchange. MQM, as one important part of it, provides message queue management and, encrypt and compress data during transmitting procedure. The practical system application verifies that the middleware can simplify the development of air traffic control system, enhance its stability, improve its systematic function and make it convenient for maintenance and reuse.

  16. Recent Suicidal Ideation and Suicide Attempts in a Large-Scale Survey of the U.S. Air Force: Prevalences and Demographic Risk Factors

    ERIC Educational Resources Information Center

    Snarr, Jeffery D.; Heyman, Richard E.; Slep, Amy M. Smith

    2010-01-01

    One-year prevalences of self-reported noteworthy suicidal ideation and nonfatal suicide attempts were assessed in a large sample of U.S. Air Force active duty members (N = 52,780). Participants completed the 2006 Community Assessment, which was conducted online. Over 3% of male and 5.5% of female participants reported having experienced noteworthy…

  17. Recent Suicidal Ideation and Suicide Attempts in a Large-Scale Survey of the U.S. Air Force: Prevalences and Demographic Risk Factors

    ERIC Educational Resources Information Center

    Snarr, Jeffery D.; Heyman, Richard E.; Slep, Amy M. Smith

    2010-01-01

    One-year prevalences of self-reported noteworthy suicidal ideation and nonfatal suicide attempts were assessed in a large sample of U.S. Air Force active duty members (N = 52,780). Participants completed the 2006 Community Assessment, which was conducted online. Over 3% of male and 5.5% of female participants reported having experienced noteworthy…

  18. Large-scale generic test stand for testing of multiple configurations of air filters utilizing a range of particle size distributions.

    PubMed

    Giffin, Paxton K; Parsons, Michael S; Unz, Ronald J; Waggoner, Charles A

    2012-05-01

    The Institute for Clean Energy Technology (ICET) at Mississippi State University has developed a test stand capable of lifecycle testing of high efficiency particulate air filters and other filters specified in American Society of Mechanical Engineers Code on Nuclear Air and Gas Treatment (AG-1) filters. The test stand is currently equipped to test AG-1 Section FK radial flow filters, and expansion is currently underway to increase testing capabilities for other types of AG-1 filters. The test stand is capable of producing differential pressures of 12.45 kPa (50 in. w.c.) at volumetric air flow rates up to 113.3 m(3)/min (4000 CFM). Testing is performed at elevated and ambient conditions for temperature and relative humidity. Current testing utilizes three challenge aerosols: carbon black, alumina, and Arizona road dust (A1-Ultrafine). Each aerosol has a different mass median diameter to test loading over a wide range of particles sizes. The test stand is designed to monitor and maintain relative humidity and temperature to required specifications. Instrumentation is implemented on the upstream and downstream sections of the test stand as well as on the filter housing itself. Representative data are presented herein illustrating the test stand's capabilities. Digital images of the filter pack collected during and after testing is displayed after the representative data are discussed. In conclusion, the ICET test stand with AG-1 filter testing capabilities has been developed and hurdles such as test parameter stability and design flexibility overcome.

  19. Large-scale generic test stand for testing of multiple configurations of air filters utilizing a range of particle size distributions

    NASA Astrophysics Data System (ADS)

    Giffin, Paxton K.; Parsons, Michael S.; Unz, Ronald J.; Waggoner, Charles A.

    2012-05-01

    The Institute for Clean Energy Technology (ICET) at Mississippi State University has developed a test stand capable of lifecycle testing of high efficiency particulate air filters and other filters specified in American Society of Mechanical Engineers Code on Nuclear Air and Gas Treatment (AG-1) filters. The test stand is currently equipped to test AG-1 Section FK radial flow filters, and expansion is currently underway to increase testing capabilities for other types of AG-1 filters. The test stand is capable of producing differential pressures of 12.45 kPa (50 in. w.c.) at volumetric air flow rates up to 113.3 m3/min (4000 CFM). Testing is performed at elevated and ambient conditions for temperature and relative humidity. Current testing utilizes three challenge aerosols: carbon black, alumina, and Arizona road dust (A1-Ultrafine). Each aerosol has a different mass median diameter to test loading over a wide range of particles sizes. The test stand is designed to monitor and maintain relative humidity and temperature to required specifications. Instrumentation is implemented on the upstream and downstream sections of the test stand as well as on the filter housing itself. Representative data are presented herein illustrating the test stand's capabilities. Digital images of the filter pack collected during and after testing is displayed after the representative data are discussed. In conclusion, the ICET test stand with AG-1 filter testing capabilities has been developed and hurdles such as test parameter stability and design flexibility overcome.

  20. Large-scale multimedia modeling applications

    SciTech Connect

    Droppo, J.G. Jr.; Buck, J.W.; Whelan, G.; Strenge, D.L.; Castleton, K.J.; Gelston, G.M.

    1995-08-01

    Over the past decade, the US Department of Energy (DOE) and other agencies have faced increasing scrutiny for a wide range of environmental issues related to past and current practices. A number of large-scale applications have been undertaken that required analysis of large numbers of potential environmental issues over a wide range of environmental conditions and contaminants. Several of these applications, referred to here as large-scale applications, have addressed long-term public health risks using a holistic approach for assessing impacts from potential waterborne and airborne transport pathways. Multimedia models such as the Multimedia Environmental Pollutant Assessment System (MEPAS) were designed for use in such applications. MEPAS integrates radioactive and hazardous contaminants impact computations for major exposure routes via air, surface water, ground water, and overland flow transport. A number of large-scale applications of MEPAS have been conducted to assess various endpoints for environmental and human health impacts. These applications are described in terms of lessons learned in the development of an effective approach for large-scale applications.

  1. Large-scale structural optimization

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, J.

    1983-01-01

    Problems encountered by aerospace designers in attempting to optimize whole aircraft are discussed, along with possible solutions. Large scale optimization, as opposed to component-by-component optimization, is hindered by computational costs, software inflexibility, concentration on a single, rather than trade-off, design methodology and the incompatibility of large-scale optimization with single program, single computer methods. The software problem can be approached by placing the full analysis outside of the optimization loop. Full analysis is then performed only periodically. Problem-dependent software can be removed from the generic code using a systems programming technique, and then embody the definitions of design variables, objective function and design constraints. Trade-off algorithms can be used at the design points to obtain quantitative answers. Finally, decomposing the large-scale problem into independent subproblems allows systematic optimization of the problems by an organization of people and machines.

  2. Large-scale circuit simulation

    NASA Astrophysics Data System (ADS)

    Wei, Y. P.

    1982-12-01

    The simulation of VLSI (Very Large Scale Integration) circuits falls beyond the capabilities of conventional circuit simulators like SPICE. On the other hand, conventional logic simulators can only give the results of logic levels 1 and 0 with the attendent loss of detail in the waveforms. The aim of developing large-scale circuit simulation is to bridge the gap between conventional circuit simulation and logic simulation. This research is to investigate new approaches for fast and relatively accurate time-domain simulation of MOS (Metal Oxide Semiconductors), LSI (Large Scale Integration) and VLSI circuits. New techniques and new algorithms are studied in the following areas: (1) analysis sequencing (2) nonlinear iteration (3) modified Gauss-Seidel method (4) latency criteria and timestep control scheme. The developed methods have been implemented into a simulation program PREMOS which could be used as a design verification tool for MOS circuits.

  3. Large Scale Dynamos in Stars

    NASA Astrophysics Data System (ADS)

    Vishniac, Ethan T.

    2015-01-01

    We show that a differentially rotating conducting fluid automatically creates a magnetic helicity flux with components along the rotation axis and in the direction of the local vorticity. This drives a rapid growth in the local density of current helicity, which in turn drives a large scale dynamo. The dynamo growth rate derived from this process is not constant, but depends inversely on the large scale magnetic field strength. This dynamo saturates when buoyant losses of magnetic flux compete with the large scale dynamo, providing a simple prediction for magnetic field strength as a function of Rossby number in stars. Increasing anisotropy in the turbulence produces a decreasing magnetic helicity flux, which explains the flattening of the B/Rossby number relation at low Rossby numbers. We also show that the kinetic helicity is always a subdominant effect. There is no kinematic dynamo in real stars.

  4. A spatio-temporal screening tool for outlier detection in long term / large scale air quality observation time series and monitoring networks

    NASA Astrophysics Data System (ADS)

    Kracht, Oliver; Reuter, Hannes I.; Gerboles, Michel

    2013-04-01

    We present a consolidated screening tool for the detection of outliers in air quality monitoring data, which considers both attribute values and spatio-temporal relationships. Furthermore, an application example of warnings on abnormal values in time series of PM10 datasets in AirBase is presented. Spatial or temporal outliers in air quality datasets represent stations or individual measurements which differ significantly from other recordings within their spatio-temporal neighbourhood. Such abnormal values can be identified as being extreme compared to their neighbours, even though they do not necessarily require to differ significantly from the statistical distribution of the entire population. The identification of such outliers can be of interest as the basis of data quality control systems when several contributors report their measurements to the collection of larger datasets. Beyond this, it can also provide a simple solution to investigate the accuracy of station classifications. Seen from another viewpoint, it can be used as a tool to detect irregular air pollution emission events (e.g. the influence of fires, wind erosion events, or other accidental situations). The presented procedure for outlier detection was designed based on already existing literature. Specifically, we adapted the "Smooth Spatial Attribute Method" that was first developed for the identification of outlier values in networks of traffic sensors [1]. Since a free and extensible simulation platform was considered important, all codes were prototyped in the R environment which is available under the GNU General Public License [2]. Our algorithms are based on the definition of a neighbourhood for each air quality measurement, corresponding to a spatio-temporal domain limited by time (e.g., +/- 2 days) and distance (e.g., +/- 1 spherical degrees) around the location of ambient air monitoring stations. The objective of the method is that within such a given spatio-temporal domain, in which

  5. Very Large Scale Integration (VLSI).

    ERIC Educational Resources Information Center

    Yeaman, Andrew R. J.

    Very Large Scale Integration (VLSI), the state-of-the-art production techniques for computer chips, promises such powerful, inexpensive computing that, in the future, people will be able to communicate with computer devices in natural language or even speech. However, before full-scale VLSI implementation can occur, certain salient factors must be…

  6. Galaxy clustering on large scales.

    PubMed Central

    Efstathiou, G

    1993-01-01

    I describe some recent observations of large-scale structure in the galaxy distribution. The best constraints come from two-dimensional galaxy surveys and studies of angular correlation functions. Results from galaxy redshift surveys are much less precise but are consistent with the angular correlations, provided the distortions in mapping between real-space and redshift-space are relatively weak. The galaxy two-point correlation function, rich-cluster two-point correlation function, and galaxy-cluster cross-correlation function are all well described on large scales ( greater, similar 20h-1 Mpc, where the Hubble constant, H0 = 100h km.s-1.Mpc; 1 pc = 3.09 x 10(16) m) by the power spectrum of an initially scale-invariant, adiabatic, cold-dark-matter Universe with Gamma = Omegah approximately 0.2. I discuss how this fits in with the Cosmic Background Explorer (COBE) satellite detection of large-scale anisotropies in the microwave background radiation and other measures of large-scale structure in the Universe. PMID:11607400

  7. FLAME facility: The effect of obstacles and transverse venting on flame acceleration and transition on detonation for hydrogen-air mixtures at large scale

    SciTech Connect

    Sherman, M.P.; Tieszen, S.R.; Benedick, W.B.

    1989-04-01

    This report describes research on flame acceleration and deflagration-to-detonation transition (DDT) for hydrogen-air mixtures carried out in the FLAME facility, and describes its relevance to nuclear reactor safety. Flame acceleration and DDT can generate high peak pressures that may cause failure of containment. FLAME is a large rectangular channel 30.5 m long, 2.44 m high, and 1.83 m wide. It is closed on the ignition end and open on the far end. The three test variables were hydrogen mole fraction (12--30%), degree of transverse venting (by moving steel top plates---0%, 13%, and 50%), and the absence or presence of certain obstacles in the channel (zero or 33% blockage ratio). The most important variable was the hydrogen mole fraction. The presence of the obstacles tested greatly increased the flame speeds, overpressures, and tendency for DDT compared to similar tests without obstacles. Different obstacle configurations could have greater or lesser effects on flame acceleration and DDT. Large degrees of transverse venting reduced the flame speeds, overpressures, and possibility of DDT. For small degrees of transverse venting (13% top venting), the flame speeds and overpressures were higher than for no transverse venting with reactive mixtures (>18% H/sub 2/), but they were lower with leaner mixtures. The effect of the turbulence generated by the flow out the vents on increasing flame speed can be larger than the effect of venting gas out of the channel and hence reducing the overpressure. With no obstacles and 50% top venting, the flame speeds and overpressures were low, and there was no DDT. For all other cases, DDT was observed above some threshold hydrogen concentration. DDT was obtained at 15% H/sub 2/ with obstacles and no transverse venting. 67 refs., 62 figs.

  8. Application of bioreactor system for large-scale production of Eleutherococcus sessiliflorus somatic embryos in an air-lift bioreactor and production of eleutherosides.

    PubMed

    Shohael, A M; Chakrabarty, D; Yu, K W; Hahn, E J; Paek, K Y

    2005-11-04

    Embryogenic callus was induced from leaf explants of Eleutherococcus sessiliflorus cultured on Murashige and Skoog (MS) basal medium supplemented with 1 mg l(-1) 2,4-dichlorophenoxyacetic acid (2,4-D), while no plant growth regulators were needed for embryo maturation. The addition of 1 mg l(-1) 2,4-D was needed to maintain the embryogenic culture by preventing embryo maturation. Optimal embryo germination and plantlet development was achieved on MS medium with 4 mg l(-1) gibberellic acid (GA(3)). Low-strength MS medium (1/2 and 1/3 strength) was more effective than full-strength MS for the production of normal plantlets with well-developed shoots and roots. The plants were successfully transferred to soil. Embryogenic callus was used to establish a suspension culture for subsequent production of somatic embryos in bioreactor. By inoculating 10 g of embryogenic cells (fresh weight) into a 3l balloon type bubble bioreactor (BTBB) containing 2l MS medium without plant growth regulators, 121.8 g mature somatic embryos at different developmental stages were harvested and could be separated by filtration. Cotyledonary somatic embryos were germinated, and these converted into plantlets following transfer to a 3l BTBB containing 2l MS medium with 4 mg l(-1) GA3. HPLC analysis revealed that the total eleutherosides were significantly higher in leaves of field grown plants as compared to different stages of somatic embryo. However, the content of eleutheroside B was highest in germinated embryos. Germinated embryos also had higher contents of eleutheroside E and eleutheroside E1 as compared to other developmental stages. This result indicates that an efficient protocol for the mass production of E. sessiliflorus biomass can be achieved by bioreactor culture of somatic embryos and can be used as a source of medicinal raw materials.

  9. Cosmology with Large Scale Structure

    NASA Astrophysics Data System (ADS)

    Ho, Shirley; Cuesta, A.; Ross, A.; Seo, H.; DePutter, R.; Padmanabhan, N.; White, M.; Myers, A.; Bovy, J.; Blanton, M.; Hernandez, C.; Mena, O.; Percival, W.; Prada, F.; Ross, N. P.; Saito, S.; Schneider, D.; Skibba, R.; Smith, K.; Slosar, A.; Strauss, M.; Verde, L.; Weinberg, D.; Bachall, N.; Brinkmann, J.; da Costa, L. A.

    2012-01-01

    The Sloan Digital Sky Survey I-III surveyed 14,000 square degrees, and delivered over a trillion pixels of imaging data. I present cosmological results from this unprecedented data set which contains over a million galaxies distributed between redshift of 0.45 to 0.70. With such a large volume of data set, high precision cosmological constraints can be obtained given a careful control and understanding of observational systematics. I present a novel treatment of observational systematics and its application to the clustering signals from the data set. I will present cosmological constraints on dark components of the Universe and tightest constraints of the non-gaussianity of early Universe to date utilizing Large Scale Structure.

  10. Large scale biomimetic membrane arrays.

    PubMed

    Hansen, Jesper S; Perry, Mark; Vogel, Jörg; Groth, Jesper S; Vissing, Thomas; Larsen, Marianne S; Geschke, Oliver; Emneús, Jenny; Bohr, Henrik; Nielsen, Claus H

    2009-10-01

    To establish planar biomimetic membranes across large scale partition aperture arrays, we created a disposable single-use horizontal chamber design that supports combined optical-electrical measurements. Functional lipid bilayers could easily and efficiently be established across CO(2) laser micro-structured 8 x 8 aperture partition arrays with average aperture diameters of 301 +/- 5 microm. We addressed the electro-physical properties of the lipid bilayers established across the micro-structured scaffold arrays by controllable reconstitution of biotechnological and physiological relevant membrane peptides and proteins. Next, we tested the scalability of the biomimetic membrane design by establishing lipid bilayers in rectangular 24 x 24 and hexagonal 24 x 27 aperture arrays, respectively. The results presented show that the design is suitable for further developments of sensitive biosensor assays, and furthermore demonstrate that the design can conveniently be scaled up to support planar lipid bilayers in large square-centimeter partition arrays.

  11. Large-scale Fractal Motion of Clouds

    NASA Image and Video Library

    2017-09-27

    waters surrounding the island.) The “swallowed” gulps of clear island air get carried along within the vortices, but these are soon mixed into the surrounding clouds. Landsat is unique in its ability to image both the small-scale eddies that mix clear and cloudy air, down to the 30 meter pixel size of Landsat, but also having a wide enough field-of-view, 180 km, to reveal the connection of the turbulence to large-scale flows such as the subtropical oceanic gyres. Landsat 7, with its new onboard digital recorder, has extended this capability away from the few Landsat ground stations to remote areas such as Alejandro Island, and thus is gradually providing a global dynamic picture of evolving human-scale phenomena. For more details on von Karman vortices, refer to climate.gsfc.nasa.gov/~cahalan. Image and caption courtesy Bob Cahalan, NASA GSFC Instrument: Landsat 7 - ETM+ Credit: NASA/GSFC/Landsat NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  12. Executive Semantic Processing Is Underpinned by a Large-scale Neural Network: Revealing the Contribution of Left Prefrontal, Posterior Temporal, and Parietal Cortex to Controlled Retrieval and Selection Using TMS

    PubMed Central

    Whitney, Carin; Kirk, Marie; O’Sullivan, Jamie; Ralph, Matthew A. Lambon; Jefferies, Elizabeth

    2013-01-01

    To understand the meanings of words and objects, we need to have knowledge about these items themselves plus executive mechanisms that compute and manipulate semantic information in a task-appropriate way. The neural basis for semantic control remains controversial. Neuroimaging studies have focused on the role of the left inferior frontal gyrus (LIFG), whereas neuropsychological research suggests that damage to a widely distributed network elicits impairments of semantic control. There is also debate about the relationship between semantic and executive control more widely. We used TMS in healthy human volunteers to create “virtual lesions” in structures typically damaged in patients with semantic control deficits: LIFG, left posterior middle temporal gyrus (pMTG), and intraparietal sulcus (IPS). The influence of TMS on tasks varying in semantic and nonsemantic control demands was examined for each region within this hypothesized network to gain insights into (i) their functional specialization (i.e., involvement in semantic representation, controlled retrieval, or selection) and (ii) their domain dependence (i.e., semantic or cognitive control). The results revealed that LIFG and pMTG jointly support both the controlled retrieval and selection of semantic knowledge. IPS specifically participates in semantic selection and responds to manipulations of nonsemantic control demands. These observations are consistent with a large-scale semantic control network, as predicted by lesion data, that draws on semantic-specific (LIFG and pMTG) and domain-independent executive components (IPS). PMID:21861680

  13. Domain regulation of imprinting cluster in Kip2/Lit1 subdomain on mouse chromosome 7F4/F5: large-scale DNA methylation analysis reveals that DMR-Lit1 is a putative imprinting control region.

    PubMed

    Yatsuki, Hitomi; Joh, Keiichiro; Higashimoto, Ken; Soejima, Hidenobu; Arai, Yuji; Wang, Youdong; Hatada, Izuho; Obata, Yayoi; Morisaki, Hiroko; Zhang, Zhongming; Nakagawachi, Tetsuji; Satoh, Yuji; Mukai, Tsunehiro

    2002-12-01

    Mouse chromosome 7F4/F5, where the imprinting domain is located, is syntenic to human 11p15.5, the locus for Beckwith-Wiedemann syndrome. The domain is thought to consist of the two subdomains Kip2 (p57(kip2))/Lit1 and Igf2/H19. Because DNA methylation is believed to be a key factor in genomic imprinting, we performed large-scale DNA methylation analysis to identify the cis-element crucial for the regulation of the Kip2/Lit1 subdomain. Ten CpG islands (CGIs) were found, and these were located at the promoter sites, upstream of genes, and within intergenic regions. Bisulphite sequencing revealed that CGIs 4, 5, 8, and 10 were differentially methylated regions (DMRs). CGIs 4, 5, and 10 were methylated paternally in somatic tissues but not in germ cells. CGI8 was methylated in oocyte and maternally in somatic tissues during development. Parental-specific DNase I hypersensitive sites (HSSs) were found near CGI8. These data indicate that CGI8, called DMR-Lit1, is not only the region for gametic methylation but might also be the imprinting control region (ICR) of the subdomain.

  14. Challenges for Large Scale Simulations

    NASA Astrophysics Data System (ADS)

    Troyer, Matthias

    2010-03-01

    With computational approaches becoming ubiquitous the growing impact of large scale computing on research influences both theoretical and experimental work. I will review a few examples in condensed matter physics and quantum optics, including the impact of computer simulations in the search for supersolidity, thermometry in ultracold quantum gases, and the challenging search for novel phases in strongly correlated electron systems. While only a decade ago such simulations needed the fastest supercomputers, many simulations can now be performed on small workstation clusters or even a laptop: what was previously restricted to a few experts can now potentially be used by many. Only part of the gain in computational capabilities is due to Moore's law and improvement in hardware. Equally impressive is the performance gain due to new algorithms - as I will illustrate using some recently developed algorithms. At the same time modern peta-scale supercomputers offer unprecedented computational power and allow us to tackle new problems and address questions that were impossible to solve numerically only a few years ago. While there is a roadmap for future hardware developments to exascale and beyond, the main challenges are on the algorithmic and software infrastructure side. Among the problems that face the computational physicist are: the development of new algorithms that scale to thousands of cores and beyond, a software infrastructure that lifts code development to a higher level and speeds up the development of new simulation programs for large scale computing machines, tools to analyze the large volume of data obtained from such simulations, and as an emerging field provenance-aware software that aims for reproducibility of the complete computational workflow from model parameters to the final figures. Interdisciplinary collaborations and collective efforts will be required, in contrast to the cottage-industry culture currently present in many areas of computational

  15. Large-scale PACS implementation.

    PubMed

    Carrino, J A; Unkel, P J; Miller, I D; Bowser, C L; Freckleton, M W; Johnson, T G

    1998-08-01

    The transition to filmless radiology is a much more formidable task than making the request for proposal to purchase a (Picture Archiving and Communications System) PACS. The Department of Defense and the Veterans Administration have been pioneers in the transformation of medical diagnostic imaging to the electronic environment. Many civilian sites are expected to implement large-scale PACS in the next five to ten years. This presentation will related the empirical insights gleaned at our institution from a large-scale PACS implementation. Our PACS integration was introduced into a fully operational department (not a new hospital) in which work flow had to continue with minimal impact. Impediments to user acceptance will be addressed. The critical components of this enormous task will be discussed. The topics covered during this session will include issues such as phased implementation, DICOM (digital imaging and communications in medicine) standard-based interaction of devices, hospital information system (HIS)/radiology information system (RIS) interface, user approval, networking, workstation deployment and backup procedures. The presentation will make specific suggestions regarding the implementation team, operating instructions, quality control (QC), training and education. The concept of identifying key functional areas is relevant to transitioning the facility to be entirely on line. Special attention must be paid to specific functional areas such as the operating rooms and trauma rooms where the clinical requirements may not match the PACS capabilities. The printing of films may be necessary for certain circumstances. The integration of teleradiology and remote clinics into a PACS is a salient topic with respect to the overall role of the radiologists providing rapid consultation. A Web-based server allows a clinician to review images and reports on a desk-top (personal) computer and thus reduce the number of dedicated PACS review workstations. This session

  16. Large scale cluster computing workshop

    SciTech Connect

    Dane Skow; Alan Silverman

    2002-12-23

    Recent revolutions in computer hardware and software technologies have paved the way for the large-scale deployment of clusters of commodity computers to address problems heretofore the domain of tightly coupled SMP processors. Near term projects within High Energy Physics and other computing communities will deploy clusters of scale 1000s of processors and be used by 100s to 1000s of independent users. This will expand the reach in both dimensions by an order of magnitude from the current successful production facilities. The goals of this workshop were: (1) to determine what tools exist which can scale up to the cluster sizes foreseen for the next generation of HENP experiments (several thousand nodes) and by implication to identify areas where some investment of money or effort is likely to be needed. (2) To compare and record experimences gained with such tools. (3) To produce a practical guide to all stages of planning, installing, building and operating a large computing cluster in HENP. (4) To identify and connect groups with similar interest within HENP and the larger clustering community.

  17. Large-Scale Sequence Comparison.

    PubMed

    Lal, Devi; Verma, Mansi

    2017-01-01

    There are millions of sequences deposited in genomic databases, and it is an important task to categorize them according to their structural and functional roles. Sequence comparison is a prerequisite for proper categorization of both DNA and protein sequences, and helps in assigning a putative or hypothetical structure and function to a given sequence. There are various methods available for comparing sequences, alignment being first and foremost for sequences with a small number of base pairs as well as for large-scale genome comparison. Various tools are available for performing pairwise large sequence comparison. The best known tools either perform global alignment or generate local alignments between the two sequences. In this chapter we first provide basic information regarding sequence comparison. This is followed by the description of the PAM and BLOSUM matrices that form the basis of sequence comparison. We also give a practical overview of currently available methods such as BLAST and FASTA, followed by a description and overview of tools available for genome comparison including LAGAN, MumMER, BLASTZ, and AVID.

  18. Large Scale Homing in Honeybees

    PubMed Central

    Pahl, Mario; Zhu, Hong; Tautz, Jürgen; Zhang, Shaowu

    2011-01-01

    Honeybee foragers frequently fly several kilometres to and from vital resources, and communicate those locations to their nest mates by a symbolic dance language. Research has shown that they achieve this feat by memorizing landmarks and the skyline panorama, using the sun and polarized skylight as compasses and by integrating their outbound flight paths. In order to investigate the capacity of the honeybees' homing abilities, we artificially displaced foragers to novel release spots at various distances up to 13 km in the four cardinal directions. Returning bees were individually registered by a radio frequency identification (RFID) system at the hive entrance. We found that homing rate, homing speed and the maximum homing distance depend on the release direction. Bees released in the east were more likely to find their way back home, and returned faster than bees released in any other direction, due to the familiarity of global landmarks seen from the hive. Our findings suggest that such large scale homing is facilitated by global landmarks acting as beacons, and possibly the entire skyline panorama. PMID:21602920

  19. Large Scale Magnetostrictive Valve Actuator

    NASA Technical Reports Server (NTRS)

    Richard, James A.; Holleman, Elizabeth; Eddleman, David

    2008-01-01

    Marshall Space Flight Center's Valves, Actuators and Ducts Design and Development Branch developed a large scale magnetostrictive valve actuator. The potential advantages of this technology are faster, more efficient valve actuators that consume less power and provide precise position control and deliver higher flow rates than conventional solenoid valves. Magnetostrictive materials change dimensions when a magnetic field is applied; this property is referred to as magnetostriction. Magnetostriction is caused by the alignment of the magnetic domains in the material s crystalline structure and the applied magnetic field lines. Typically, the material changes shape by elongating in the axial direction and constricting in the radial direction, resulting in no net change in volume. All hardware and testing is complete. This paper will discuss: the potential applications of the technology; overview of the as built actuator design; discuss problems that were uncovered during the development testing; review test data and evaluate weaknesses of the design; and discuss areas for improvement for future work. This actuator holds promises of a low power, high load, proportionally controlled actuator for valves requiring 440 to 1500 newtons load.

  20. Methane emissions on large scales

    NASA Astrophysics Data System (ADS)

    Beswick, K. M.; Simpson, T. W.; Fowler, D.; Choularton, T. W.; Gallagher, M. W.; Hargreaves, K. J.; Sutton, M. A.; Kaye, A.

    with previous results from the area, indicating that this method of data analysis provided good estimates of large scale methane emissions.

  1. Large Scale Nanolaminate Deformable Mirror

    SciTech Connect

    Papavasiliou, A; Olivier, S; Barbee, T; Miles, R; Chang, K

    2005-11-30

    This work concerns the development of a technology that uses Nanolaminate foils to form light-weight, deformable mirrors that are scalable over a wide range of mirror sizes. While MEMS-based deformable mirrors and spatial light modulators have considerably reduced the cost and increased the capabilities of adaptive optic systems, there has not been a way to utilize the advantages of lithography and batch-fabrication to produce large-scale deformable mirrors. This technology is made scalable by using fabrication techniques and lithography that are not limited to the sizes of conventional MEMS devices. Like many MEMS devices, these mirrors use parallel plate electrostatic actuators. This technology replicates that functionality by suspending a horizontal piece of nanolaminate foil over an electrode by electroplated nickel posts. This actuator is attached, with another post, to another nanolaminate foil that acts as the mirror surface. Most MEMS devices are produced with integrated circuit lithography techniques that are capable of very small line widths, but are not scalable to large sizes. This technology is very tolerant of lithography errors and can use coarser, printed circuit board lithography techniques that can be scaled to very large sizes. These mirrors use small, lithographically defined actuators and thin nanolaminate foils allowing them to produce deformations over a large area while minimizing weight. This paper will describe a staged program to develop this technology. First-principles models were developed to determine design parameters. Three stages of fabrication will be described starting with a 3 x 3 device using conventional metal foils and epoxy to a 10-across all-metal device with nanolaminate mirror surfaces.

  2. Large-Scale Information Systems

    SciTech Connect

    D. M. Nicol; H. R. Ammerlahn; M. E. Goldsby; M. M. Johnson; D. E. Rhodes; A. S. Yoshimura

    2000-12-01

    Large enterprises are ever more dependent on their Large-Scale Information Systems (LSLS), computer systems that are distinguished architecturally by distributed components--data sources, networks, computing engines, simulations, human-in-the-loop control and remote access stations. These systems provide such capabilities as workflow, data fusion and distributed database access. The Nuclear Weapons Complex (NWC) contains many examples of LSIS components, a fact that motivates this research. However, most LSIS in use grew up from collections of separate subsystems that were not designed to be components of an integrated system. For this reason, they are often difficult to analyze and control. The problem is made more difficult by the size of a typical system, its diversity of information sources, and the institutional complexities associated with its geographic distribution across the enterprise. Moreover, there is no integrated approach for analyzing or managing such systems. Indeed, integrated development of LSIS is an active area of academic research. This work developed such an approach by simulating the various components of the LSIS and allowing the simulated components to interact with real LSIS subsystems. This research demonstrated two benefits. First, applying it to a particular LSIS provided a thorough understanding of the interfaces between the system's components. Second, it demonstrated how more rapid and detailed answers could be obtained to questions significant to the enterprise by interacting with the relevant LSIS subsystems through simulated components designed with those questions in mind. In a final, added phase of the project, investigations were made on extending this research to wireless communication networks in support of telemetry applications.

  3. Conifer defence against insects: microarray gene expression profiling of Sitka spruce (Picea sitchensis) induced by mechanical wounding or feeding by spruce budworms (Choristoneura occidentalis) or white pine weevils (Pissodes strobi) reveals large-scale changes of the host transcriptome.

    PubMed

    Ralph, Steven G; Yueh, Hesther; Friedmann, Michael; Aeschliman, Dana; Zeznik, Jeffrey A; Nelson, Colleen C; Butterfield, Yaron S N; Kirkpatrick, Robert; Liu, Jerry; Jones, Steven J M; Marra, Marco A; Douglas, Carl J; Ritland, Kermit; Bohlmann, Jörg

    2006-08-01

    defence. Refined expression analysis using gene-specific primers and real-time PCR for selected transcripts was in agreement with microarray results for most genes tested. This study provides the first large-scale survey of insect-induced defence transcripts in a gymnosperm and provides a platform for functional investigation of plant-insect interactions in spruce. Induction of spruce genes of octadecanoid and ethylene signalling, terpenoid biosynthesis, and phenolic secondary metabolism are discussed in more detail.

  4. Jovian large-scale stratospheric circulation

    NASA Technical Reports Server (NTRS)

    West, R. A.; Friedson, A. J.; Appleby, J. F.

    1992-01-01

    An attempt is made to diagnose the annual-average mean meridional residual Jovian large-scale stratospheric circulation from observations of the temperature and reflected sunlight that reveal the morphology of the aerosol heating. The annual mean solar heating, total radiative flux divergence, mass stream function, and Eliassen-Palm flux divergence are shown. The stratospheric radiative flux divergence is dominated the high latitudes by aerosol absorption. Between the 270 and 100 mbar pressure levels, where there is no aerosol heating in the model, the structure of the circulation at low- to midlatitudes is governed by the meridional variation of infrared cooling in association with the variation of zonal mean temperatures observed by IRIS. The principal features of the vertical velocity profile found by Gierasch et al. (1986) are recovered in the present calculation.

  5. Large-Scale Reform Comes of Age

    ERIC Educational Resources Information Center

    Fullan, Michael

    2009-01-01

    This article reviews the history of large-scale education reform and makes the case that large-scale or whole system reform policies and strategies are becoming increasingly evident. The review briefly addresses the pre 1997 period concluding that while the pressure for reform was mounting that there were very few examples of deliberate or…

  6. Automating large-scale reactor systems

    SciTech Connect

    Kisner, R.A.

    1985-01-01

    This paper conveys a philosophy for developing automated large-scale control systems that behave in an integrated, intelligent, flexible manner. Methods for operating large-scale systems under varying degrees of equipment degradation are discussed, and a design approach that separates the effort into phases is suggested. 5 refs., 1 fig.

  7. A study of MLFMA for large-scale scattering problems

    NASA Astrophysics Data System (ADS)

    Hastriter, Michael Larkin

    This research is centered in computational electromagnetics with a focus on solving large-scale problems accurately in a timely fashion using first principle physics. Error control of the translation operator in 3-D is shown. A parallel implementation of the multilevel fast multipole algorithm (MLFMA) was studied as far as parallel efficiency and scaling. The large-scale scattering program (LSSP), based on the ScaleME library, was used to solve ultra-large-scale problems including a 200lambda sphere with 20 million unknowns. As these large-scale problems were solved, techniques were developed to accurately estimate the memory requirements. Careful memory management is needed in order to solve these massive problems. The study of MLFMA in large-scale problems revealed significant errors that stemmed from inconsistencies in constants used by different parts of the algorithm. These were fixed to produce the most accurate data possible for large-scale surface scattering problems. Data was calculated on a missile-like target using both high frequency methods and MLFMA. This data was compared and analyzed to determine possible strategies to increase data acquisition speed and accuracy through multiple computation method hybridization.

  8. Large scale mechanical metamaterials as seismic shields

    NASA Astrophysics Data System (ADS)

    Miniaci, Marco; Krushynska, Anastasiia; Bosia, Federico; Pugno, Nicola M.

    2016-08-01

    Earthquakes represent one of the most catastrophic natural events affecting mankind. At present, a universally accepted risk mitigation strategy for seismic events remains to be proposed. Most approaches are based on vibration isolation of structures rather than on the remote shielding of incoming waves. In this work, we propose a novel approach to the problem and discuss the feasibility of a passive isolation strategy for seismic waves based on large-scale mechanical metamaterials, including for the first time numerical analysis of both surface and guided waves, soil dissipation effects, and adopting a full 3D simulations. The study focuses on realistic structures that can be effective in frequency ranges of interest for seismic waves, and optimal design criteria are provided, exploring different metamaterial configurations, combining phononic crystals and locally resonant structures and different ranges of mechanical properties. Dispersion analysis and full-scale 3D transient wave transmission simulations are carried out on finite size systems to assess the seismic wave amplitude attenuation in realistic conditions. Results reveal that both surface and bulk seismic waves can be considerably attenuated, making this strategy viable for the protection of civil structures against seismic risk. The proposed remote shielding approach could open up new perspectives in the field of seismology and in related areas of low-frequency vibration damping or blast protection.

  9. Large Scale Metal Additive Techniques Review

    SciTech Connect

    Nycz, Andrzej; Adediran, Adeola I; Noakes, Mark W; Love, Lonnie J

    2016-01-01

    In recent years additive manufacturing made long strides toward becoming a main stream production technology. Particularly strong progress has been made in large-scale polymer deposition. However, large scale metal additive has not yet reached parity with large scale polymer. This paper is a review study of the metal additive techniques in the context of building large structures. Current commercial devices are capable of printing metal parts on the order of several cubic feet compared to hundreds of cubic feet for the polymer side. In order to follow the polymer progress path several factors are considered: potential to scale, economy, environment friendliness, material properties, feedstock availability, robustness of the process, quality and accuracy, potential for defects, and post processing as well as potential applications. This paper focuses on current state of art of large scale metal additive technology with a focus on expanding the geometric limits.

  10. Large-scale regions of antimatter

    SciTech Connect

    Grobov, A. V. Rubin, S. G.

    2015-07-15

    Amodified mechanism of the formation of large-scale antimatter regions is proposed. Antimatter appears owing to fluctuations of a complex scalar field that carries a baryon charge in the inflation era.

  11. The Large -scale Distribution of Galaxies

    NASA Astrophysics Data System (ADS)

    Flin, Piotr

    A review of the Large-scale structure of the Universe is given. A connection is made with the titanic work by Johannes Kepler in many areas of astronomy and cosmology. A special concern is made to spatial distribution of Galaxies, voids and walls (cellular structure of the Universe). Finaly, the author is concluding that the large scale structure of the Universe can be observed in much greater scale that it was thought twenty years ago.

  12. Global Wildfire Forecasts Using Large Scale Climate Indices

    NASA Astrophysics Data System (ADS)

    Shen, Huizhong; Tao, Shu

    2016-04-01

    Using weather readings, fire early warning can provided forecast 4-6 hour in advance to minimize fire loss. The benefit would be dramatically enhanced if relatively accurate long-term projection can be also provided. Here we present a novel method for predicting global fire season severity (FSS) at least three months in advance using multiple large-scale climate indices (CIs). The predictive ability is proven effective for various geographic locations and resolution. Globally, as well as in most continents, the El Niño Southern Oscillation (ENSO) is the dominant driving force controlling interannual FSS variability, whereas other CIs also play indispensable roles. We found that a moderate El Niño event is responsible for 465 (272-658 as interquartile range) Tg carbon release and an annual increase of 29,500 (24,500-34,800) deaths from inhalation exposure to air pollutants. Southeast Asia accounts for half of the deaths. Both intercorrelation and interaction of WPs and CIs are revealed, suggesting possible climate-induced modification of fire responses to weather conditions. Our models can benefit fire management in response to climate change.

  13. Large-scale velocity structures in turbulent thermal convection.

    PubMed

    Qiu, X L; Tong, P

    2001-09-01

    A systematic study of large-scale velocity structures in turbulent thermal convection is carried out in three different aspect-ratio cells filled with water. Laser Doppler velocimetry is used to measure the velocity profiles and statistics over varying Rayleigh numbers Ra and at various spatial positions across the whole convection cell. Large velocity fluctuations are found both in the central region and near the cell boundary. Despite the large velocity fluctuations, the flow field still maintains a large-scale quasi-two-dimensional structure, which rotates in a coherent manner. This coherent single-roll structure scales with Ra and can be divided into three regions in the rotation plane: (1) a thin viscous boundary layer, (2) a fully mixed central core region with a constant mean velocity gradient, and (3) an intermediate plume-dominated buffer region. The experiment reveals a unique driving mechanism for the large-scale coherent rotation in turbulent convection.

  14. Large-scale integration of small molecule-induced genome-wide transcriptional responses, Kinome-wide binding affinities and cell-growth inhibition profiles reveal global trends characterizing systems-level drug action.

    PubMed

    Vidović, Dušica; Koleti, Amar; Schürer, Stephan C

    2014-01-01

    The Library of Integrated Network-based Cellular Signatures (LINCS) project is a large-scale coordinated effort to build a comprehensive systems biology reference resource. The goals of the program include the generation of a very large multidimensional data matrix and informatics and computational tools to integrate, analyze, and make the data readily accessible. LINCS data include genome-wide transcriptional signatures, biochemical protein binding profiles, cellular phenotypic response profiles and various other datasets for a wide range of cell model systems and molecular and genetic perturbations. Here we present a partial survey of this data facilitated by data standards and in particular a robust compound standardization workflow; we integrated several types of LINCS signatures and analyzed the results with a focus on mechanism of action (MoA) and chemical compounds. We illustrate how kinase targets can be related to disease models and relevant drugs. We identified some fundamental trends that appear to link Kinome binding profiles and transcriptional signatures to chemical information and biochemical binding profiles to transcriptional responses independent of chemical similarity. To fill gaps in the datasets we developed and applied predictive models. The results can be interpreted at the systems level as demonstrated based on a large number of signaling pathways. We can identify clear global relationships, suggesting robustness of cellular responses to chemical perturbation. Overall, the results suggest that chemical similarity is a useful measure at the systems level, which would support phenotypic drug optimization efforts. With this study we demonstrate the potential of such integrated analysis approaches and suggest prioritizing further experiments to fill the gaps in the current data.

  15. Survey on large scale system control methods

    NASA Technical Reports Server (NTRS)

    Mercadal, Mathieu

    1987-01-01

    The problem inherent to large scale systems such as power network, communication network and economic or ecological systems were studied. The increase in size and flexibility of future spacecraft has put those dynamical systems into the category of large scale systems, and tools specific to the class of large systems are being sought to design control systems that can guarantee more stability and better performance. Among several survey papers, reference was found to a thorough investigation on decentralized control methods. Especially helpful was the classification made of the different existing approaches to deal with large scale systems. A very similar classification is used, even though the papers surveyed are somehow different from the ones reviewed in other papers. Special attention is brought to the applicability of the existing methods to controlling large mechanical systems like large space structures. Some recent developments are added to this survey.

  16. Large-scale nanophotonic phased array.

    PubMed

    Sun, Jie; Timurdogan, Erman; Yaacobi, Ami; Hosseini, Ehsan Shah; Watts, Michael R

    2013-01-10

    Electromagnetic phased arrays at radio frequencies are well known and have enabled applications ranging from communications to radar, broadcasting and astronomy. The ability to generate arbitrary radiation patterns with large-scale phased arrays has long been pursued. Although it is extremely expensive and cumbersome to deploy large-scale radiofrequency phased arrays, optical phased arrays have a unique advantage in that the much shorter optical wavelength holds promise for large-scale integration. However, the short optical wavelength also imposes stringent requirements on fabrication. As a consequence, although optical phased arrays have been studied with various platforms and recently with chip-scale nanophotonics, all of the demonstrations so far are restricted to one-dimensional or small-scale two-dimensional arrays. Here we report the demonstration of a large-scale two-dimensional nanophotonic phased array (NPA), in which 64 × 64 (4,096) optical nanoantennas are densely integrated on a silicon chip within a footprint of 576 μm × 576 μm with all of the nanoantennas precisely balanced in power and aligned in phase to generate a designed, sophisticated radiation pattern in the far field. We also show that active phase tunability can be realized in the proposed NPA by demonstrating dynamic beam steering and shaping with an 8 × 8 array. This work demonstrates that a robust design, together with state-of-the-art complementary metal-oxide-semiconductor technology, allows large-scale NPAs to be implemented on compact and inexpensive nanophotonic chips. In turn, this enables arbitrary radiation pattern generation using NPAs and therefore extends the functionalities of phased arrays beyond conventional beam focusing and steering, opening up possibilities for large-scale deployment in applications such as communication, laser detection and ranging, three-dimensional holography and biomedical sciences, to name just a few.

  17. The large-scale distribution of galaxies

    NASA Technical Reports Server (NTRS)

    Geller, Margaret J.

    1989-01-01

    The spatial distribution of galaxies in the universe is characterized on the basis of the six completed strips of the Harvard-Smithsonian Center for Astrophysics redshift-survey extension. The design of the survey is briefly reviewed, and the results are presented graphically. Vast low-density voids similar to the void in Bootes are found, almost completely surrounded by thin sheets of galaxies. Also discussed are the implications of the results for the survey sampling problem, the two-point correlation function of the galaxy distribution, the possibility of detecting large-scale coherent flows, theoretical models of large-scale structure, and the identification of groups and clusters of galaxies.

  18. Large-scale assembly of colloidal particles

    NASA Astrophysics Data System (ADS)

    Yang, Hongta

    This study reports a simple, roll-to-roll compatible coating technology for producing three-dimensional highly ordered colloidal crystal-polymer composites, colloidal crystals, and macroporous polymer membranes. A vertically beveled doctor blade is utilized to shear align silica microsphere-monomer suspensions to form large-area composites in a single step. The polymer matrix and the silica microspheres can be selectively removed to create colloidal crystals and self-standing macroporous polymer membranes. The thickness of the shear-aligned crystal is correlated with the viscosity of the colloidal suspension and the coating speed, and the correlations can be qualitatively explained by adapting the mechanisms developed for conventional doctor blade coating. Five important research topics related to the application of large-scale three-dimensional highly ordered macroporous films by doctor blade coating are covered in this study. The first topic describes the invention in large area and low cost color reflective displays. This invention is inspired by the heat pipe technology. The self-standing macroporous polymer films exhibit brilliant colors which originate from the Bragg diffractive of visible light form the three-dimensional highly ordered air cavities. The colors can be easily changed by tuning the size of the air cavities to cover the whole visible spectrum. When the air cavities are filled with a solvent which has the same refractive index as that of the polymer, the macroporous polymer films become completely transparent due to the index matching. When the solvent trapped in the cavities is evaporated by in-situ heating, the sample color changes back to brilliant color. This process is highly reversible and reproducible for thousands of cycles. The second topic reports the achievement of rapid and reversible vapor detection by using 3-D macroporous photonic crystals. Capillary condensation of a condensable vapor in the interconnected macropores leads to the

  19. Large scale features and energetics of the hybrid subtropical low `Duck' over the Tasman Sea

    NASA Astrophysics Data System (ADS)

    Pezza, Alexandre Bernardes; Garde, Luke Andrew; Veiga, José Augusto Paixão; Simmonds, Ian

    2014-01-01

    New aspects of the genesis and partial tropical transition of a rare hybrid subtropical cyclone on the eastern Australian coast are presented. The `Duck' (March 2001) attracted more recent attention due to its underlying genesis mechanisms being remarkably similar to the first South Atlantic hurricane (March 2004). Here we put this cyclone in climate perspective, showing that it belongs to a class within the 1 % lowest frequency percentile in the Southern Hemisphere as a function of its thermal evolution. A large scale analysis reveals a combined influence from an existing tropical cyclone and a persistent mid-latitude block. A Lagrangian tracer showed that the upper level air parcels arriving at the cyclone's center had been modified by the blocking. Lorenz energetics is used to identify connections with both tropical and extratropical processes, and reveal how these create the large scale environment conducive to the development of the vortex. The results reveal that the blocking exerted the most important influence, with a strong peak in barotropic generation of kinetic energy over a large area traversed by the air parcels just before genesis. A secondary peak also coincided with the first time the cyclone developed an upper level warm core, but with insufficient amplitude to allow for a full tropical transition. The applications of this technique are numerous and promising, particularly on the use of global climate models to infer changes in environmental parameters associated with severe storms.

  20. Management of large-scale technology

    NASA Technical Reports Server (NTRS)

    Levine, A.

    1985-01-01

    Two major themes are addressed in this assessment of the management of large-scale NASA programs: (1) how a high technology agency was a decade marked by a rapid expansion of funds and manpower in the first half and almost as rapid contraction in the second; and (2) how NASA combined central planning and control with decentralized project execution.

  1. Evaluating Large-Scale Interactive Radio Programmes

    ERIC Educational Resources Information Center

    Potter, Charles; Naidoo, Gordon

    2009-01-01

    This article focuses on the challenges involved in conducting evaluations of interactive radio programmes in South Africa with large numbers of schools, teachers, and learners. It focuses on the role such large-scale evaluation has played during the South African radio learning programme's development stage, as well as during its subsequent…

  2. Evaluating Large-Scale Interactive Radio Programmes

    ERIC Educational Resources Information Center

    Potter, Charles; Naidoo, Gordon

    2009-01-01

    This article focuses on the challenges involved in conducting evaluations of interactive radio programmes in South Africa with large numbers of schools, teachers, and learners. It focuses on the role such large-scale evaluation has played during the South African radio learning programme's development stage, as well as during its subsequent…

  3. Large-scale Intermittency In A Topographically Perturbed Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Cava, D.; Schipa, S.; Giostra, U.

    Flow perturbation due to complex topography has been investigated. Analysed data were collected upstream and at the top of a steep ridge, Inexpressible Island, Antarc- tica. The comparison between spectra relative to wind velocity data collected upstream and at the obstacle top highlights the non-equilibrium of large eddies on the ridge. According to the rapid distortion theory, the normalised spectra at the summit of the obstacle display a spectral lag effect. Moreover, the topographic perturbation produces low-frequency secondary spectral maxima in all wind velocity components. Time se- ries of the wind velocity fluctuations and of the instantaneous momentum flux clearly reveal large-scale burst-like structures. The intermittent character of the large scale perturbation has been investigated using an Adaptive Multiresolution data filter based on the wavelet transform theory. This technique allows us to determine the occur- rence and the duration of the intermittent events. The quadrant analysis of the wavelet coefficients evidences the leading role of the sweeps (i.e. motions of high-speed air towards the surface) in transporting momentum flux at frequencies characteristics of large-scale topographic perturbation.

  4. Large scale dynamics of protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Béthune, William

    2017-08-01

    Planets form in the gaseous and dusty disks orbiting young stars. These protoplanetary disks are dispersed in a few million years, being accreted onto the central star or evaporated into the interstellar medium. To explain the observed accretion rates, it is commonly assumed that matter is transported through the disk by turbulence, although the mechanism sustaining turbulence is uncertain. On the other side, irradiation by the central star could heat up the disk surface and trigger a photoevaporative wind, but thermal effects cannot account for the observed acceleration and collimation of the wind into a narrow jet perpendicular to the disk plane. Both issues can be solved if the disk is sensitive to magnetic fields. Weak fields lead to the magnetorotational instability, whose outcome is a state of sustained turbulence. Strong fields can slow down the disk, causing it to accrete while launching a collimated wind. However, the coupling between the disk and the neutral gas is done via electric charges, each of which is outnumbered by several billion neutral molecules. The imperfect coupling between the magnetic field and the neutral gas is described in terms of "non-ideal" effects, introducing new dynamical behaviors. This thesis is devoted to the transport processes happening inside weakly ionized and weakly magnetized accretion disks; the role of microphysical effects on the large-scale dynamics of the disk is of primary importance. As a first step, I exclude the wind and examine the impact of non-ideal effects on the turbulent properties near the disk midplane. I show that the flow can spontaneously organize itself if the ionization fraction is low enough; in this case, accretion is halted and the disk exhibits axisymmetric structures, with possible consequences on planetary formation. As a second step, I study the launching of disk winds via a global model of stratified disk embedded in a warm atmosphere. This model is the first to compute non-ideal effects from

  5. Condition Monitoring of Large-Scale Facilities

    NASA Technical Reports Server (NTRS)

    Hall, David L.

    1999-01-01

    This document provides a summary of the research conducted for the NASA Ames Research Center under grant NAG2-1182 (Condition-Based Monitoring of Large-Scale Facilities). The information includes copies of view graphs presented at NASA Ames in the final Workshop (held during December of 1998), as well as a copy of a technical report provided to the COTR (Dr. Anne Patterson-Hine) subsequent to the workshop. The material describes the experimental design, collection of data, and analysis results associated with monitoring the health of large-scale facilities. In addition to this material, a copy of the Pennsylvania State University Applied Research Laboratory data fusion visual programming tool kit was also provided to NASA Ames researchers.

  6. Large-scale Advanced Propfan (LAP) program

    NASA Technical Reports Server (NTRS)

    Sagerser, D. A.; Ludemann, S. G.

    1985-01-01

    The propfan is an advanced propeller concept which maintains the high efficiencies traditionally associated with conventional propellers at the higher aircraft cruise speeds associated with jet transports. The large-scale advanced propfan (LAP) program extends the research done on 2 ft diameter propfan models to a 9 ft diameter article. The program includes design, fabrication, and testing of both an eight bladed, 9 ft diameter propfan, designated SR-7L, and a 2 ft diameter aeroelastically scaled model, SR-7A. The LAP program is complemented by the propfan test assessment (PTA) program, which takes the large-scale propfan and mates it with a gas generator and gearbox to form a propfan propulsion system and then flight tests this system on the wing of a Gulfstream 2 testbed aircraft.

  7. Large-scale fibre-array multiplexing

    SciTech Connect

    Cheremiskin, I V; Chekhlova, T K

    2001-05-31

    The possibility of creating a fibre multiplexer/demultiplexer with large-scale multiplexing without any basic restrictions on the number of channels and the spectral spacing between them is shown. The operating capacity of a fibre multiplexer based on a four-fibre array ensuring a spectral spacing of 0.7 pm ({approx} 10 GHz) between channels is demonstrated. (laser applications and other topics in quantum electronics)

  8. Modeling Human Behavior at a Large Scale

    DTIC Science & Technology

    2012-01-01

    Discerning intentions in dynamic human action. Trends in Cognitive Sciences , 5(4):171 – 178, 2001. Shirli Bar-David, Israel Bar-David, Paul C. Cross, Sadie...Limits of predictability in human mobility. Science , 327(5968):1018, 2010. S.A. Stouffer. Intervening opportunities: a theory relating mobility and...Modeling Human Behavior at a Large Scale by Adam Sadilek Submitted in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy

  9. Large-Scale Aerosol Modeling and Analysis

    DTIC Science & Technology

    2008-09-30

    aerosol species up to six days in advance anywhere on the globe. NAAPS and COAMPS are particularly useful for forecasts of dust storms in areas...impact cloud processes globally. With increasing dust storms due to climate change and land use changes in desert regions, the impact of the...bacteria in large-scale dust storms is expected to significantly impact warm ice cloud formation, human health, and ecosystems globally. In Niemi et al

  10. Large-scale instabilities of helical flows

    NASA Astrophysics Data System (ADS)

    Cameron, Alexandre; Alexakis, Alexandros; Brachet, Marc-Étienne

    2016-10-01

    Large-scale hydrodynamic instabilities of periodic helical flows of a given wave number K are investigated using three-dimensional Floquet numerical computations. In the Floquet formalism the unstable field is expanded in modes of different spacial periodicity. This allows us (i) to clearly distinguish large from small scale instabilities and (ii) to study modes of wave number q of arbitrarily large-scale separation q ≪K . Different flows are examined including flows that exhibit small-scale turbulence. The growth rate σ of the most unstable mode is measured as a function of the scale separation q /K ≪1 and the Reynolds number Re. It is shown that the growth rate follows the scaling σ ∝q if an AKA effect [Frisch et al., Physica D: Nonlinear Phenomena 28, 382 (1987), 10.1016/0167-2789(87)90026-1] is present or a negative eddy viscosity scaling σ ∝q2 in its absence. This holds both for the Re≪1 regime where previously derived asymptotic results are verified but also for Re=O (1 ) that is beyond their range of validity. Furthermore, for values of Re above a critical value ReSc beyond which small-scale instabilities are present, the growth rate becomes independent of q and the energy of the perturbation at large scales decreases with scale separation. The nonlinear behavior of these large-scale instabilities is also examined in the nonlinear regime where the largest scales of the system are found to be the most dominant energetically. These results are interpreted by low-order models.

  11. Economically viable large-scale hydrogen liquefaction

    NASA Astrophysics Data System (ADS)

    Cardella, U.; Decker, L.; Klein, H.

    2017-02-01

    The liquid hydrogen demand, particularly driven by clean energy applications, will rise in the near future. As industrial large scale liquefiers will play a major role within the hydrogen supply chain, production capacity will have to increase by a multiple of today’s typical sizes. The main goal is to reduce the total cost of ownership for these plants by increasing energy efficiency with innovative and simple process designs, optimized in capital expenditure. New concepts must ensure a manageable plant complexity and flexible operability. In the phase of process development and selection, a dimensioning of key equipment for large scale liquefiers, such as turbines and compressors as well as heat exchangers, must be performed iteratively to ensure technological feasibility and maturity. Further critical aspects related to hydrogen liquefaction, e.g. fluid properties, ortho-para hydrogen conversion, and coldbox configuration, must be analysed in detail. This paper provides an overview on the approach, challenges and preliminary results in the development of efficient as well as economically viable concepts for large-scale hydrogen liquefaction.

  12. Large-Scale Visual Data Analysis

    NASA Astrophysics Data System (ADS)

    Johnson, Chris

    2014-04-01

    Modern high performance computers have speeds measured in petaflops and handle data set sizes measured in terabytes and petabytes. Although these machines offer enormous potential for solving very large-scale realistic computational problems, their effectiveness will hinge upon the ability of human experts to interact with their simulation results and extract useful information. One of the greatest scientific challenges of the 21st century is to effectively understand and make use of the vast amount of information being produced. Visual data analysis will be among our most most important tools in helping to understand such large-scale information. Our research at the Scientific Computing and Imaging (SCI) Institute at the University of Utah has focused on innovative, scalable techniques for large-scale 3D visual data analysis. In this talk, I will present state- of-the-art visualization techniques, including scalable visualization algorithms and software, cluster-based visualization methods and innovate visualization techniques applied to problems in computational science, engineering, and medicine. I will conclude with an outline for a future high performance visualization research challenges and opportunities.

  13. Large-scale neuromorphic computing systems

    NASA Astrophysics Data System (ADS)

    Furber, Steve

    2016-10-01

    Neuromorphic computing covers a diverse range of approaches to information processing all of which demonstrate some degree of neurobiological inspiration that differentiates them from mainstream conventional computing systems. The philosophy behind neuromorphic computing has its origins in the seminal work carried out by Carver Mead at Caltech in the late 1980s. This early work influenced others to carry developments forward, and advances in VLSI technology supported steady growth in the scale and capability of neuromorphic devices. Recently, a number of large-scale neuromorphic projects have emerged, taking the approach to unprecedented scales and capabilities. These large-scale projects are associated with major new funding initiatives for brain-related research, creating a sense that the time and circumstances are right for progress in our understanding of information processing in the brain. In this review we present a brief history of neuromorphic engineering then focus on some of the principal current large-scale projects, their main features, how their approaches are complementary and distinct, their advantages and drawbacks, and highlight the sorts of capabilities that each can deliver to neural modellers.

  14. Equivalent common path method in large-scale laser comparator

    NASA Astrophysics Data System (ADS)

    He, Mingzhao; Li, Jianshuang; Miao, Dongjing

    2015-02-01

    Large-scale laser comparator is main standard device that providing accurate, reliable and traceable measurements for high precision large-scale line and 3D measurement instruments. It mainly composed of guide rail, motion control system, environmental parameters monitoring system and displacement measurement system. In the laser comparator, the main error sources are temperature distribution, straightness of guide rail and pitch and yaw of measuring carriage. To minimize the measurement uncertainty, an equivalent common optical path scheme is proposed and implemented. Three laser interferometers are adjusted to parallel with the guide rail. The displacement in an arbitrary virtual optical path is calculated using three displacements without the knowledge of carriage orientations at start and end positions. The orientation of air floating carriage is calculated with displacements of three optical path and position of three retroreflectors which are precisely measured by Laser Tracker. A 4th laser interferometer is used in the virtual optical path as reference to verify this compensation method. This paper analyzes the effect of rail straightness on the displacement measurement. The proposed method, through experimental verification, can improve the measurement uncertainty of large-scale laser comparator.

  15. Large-Scale Fusion of Gray Matter and Resting-State Functional MRI Reveals Common and Distinct Biological Markers across the Psychosis Spectrum in the B-SNIP Cohort.

    PubMed

    Wang, Zheng; Meda, Shashwath A; Keshavan, Matcheri S; Tamminga, Carol A; Sweeney, John A; Clementz, Brett A; Schretlen, David J; Calhoun, Vince D; Lui, Su; Pearlson, Godfrey D

    2015-01-01

    To investigate whether aberrant interactions between brain structure and function present similarly or differently across probands with psychotic illnesses [schizophrenia (SZ), schizoaffective disorder (SAD), and bipolar I disorder with psychosis (BP)] and whether these deficits are shared with their first-degree non-psychotic relatives. A total of 1199 subjects were assessed, including 220 SZ, 147 SAD, 180 psychotic BP, 150 first-degree relatives of SZ, 126 SAD relatives, 134 BP relatives, and 242 healthy controls (1). All subjects underwent structural MRI (sMRI) and resting-state functional MRI (rs-fMRI) scanning. Joint-independent component analysis (jICA) was used to fuse sMRI gray matter and rs-fMRI amplitude of low-frequency fluctuations data to identify the relationship between the two modalities. jICA revealed two significantly fused components. The association between functional brain alteration in a prefrontal-striatal-thalamic-cerebellar network and structural abnormalities in the default mode network was found to be common across psychotic diagnoses and correlated with cognitive function, social function, and schizo-bipolar scale scores. The fused alteration in the temporal lobe was unique to SZ and SAD. The above effects were not seen in any relative group (including those with cluster-A personality). Using a multivariate-fused approach involving two widely used imaging markers, we demonstrate both shared and distinct biological traits across the psychosis spectrum. Furthermore, our results suggest that the above traits are psychosis biomarkers rather than endophenotypes.

  16. Large-Scale Compton Imaging for Wide-Area Surveillance

    SciTech Connect

    Lange, D J; Manini, H A; Wright, D M

    2006-03-01

    We study the performance of a large-scale Compton imaging detector placed in a low-flying aircraft, used to search wide areas for rad/nuc threat sources. In this paper we investigate the performance potential of equipping aerial platforms with gamma-ray detectors that have photon sensitivity up to a few MeV. We simulate the detector performance, and present receiver operating characteristics (ROC) curves for a benchmark scenario using a {sup 137}Cs source. The analysis uses a realistic environmental background energy spectrum and includes air attenuation.

  17. Large-scale sodium spray fire code validation (SOFICOV) test

    SciTech Connect

    Jeppson, D.W.; Muhlestein, L.D.

    1985-01-01

    A large-scale, sodium, spray fire code validation test was performed in the HEDL 850-m/sup 3/ Containment System Test Facility (CSTF) as part of the Sodium Spray Fire Code Validation (SOFICOV) program. Six hundred fifty eight kilograms of sodium spray was sprayed in an air atmosphere for a period of 2400 s. The sodium spray droplet sizes and spray pattern distribution were estimated. The containment atmosphere temperature and pressure response, containment wall temperature response and sodium reaction rate with oxygen were measured. These results are compared to post-test predictions using SPRAY and NACOM computer codes.

  18. Large scale meteorological influence during the Geysers 1979 field experiment

    SciTech Connect

    Barr, S.

    1980-01-01

    A series of meteorological field measurements conducted during July 1979 near Cobb Mountain in Northern California reveals evidence of several scales of atmospheric circulation consistent with the climatic pattern of the area. The scales of influence are reflected in the structure of wind and temperature in vertically stratified layers at a given observation site. Large scale synoptic gradient flow dominates the wind field above about twice the height of the topographic ridge. Below that there is a mixture of effects with evidence of a diurnal sea breeze influence and a sublayer of katabatic winds. The July observations demonstrate that weak migratory circulations in the large scale synoptic meteorological pattern have a significant influence on the day-to-day gradient winds and must be accounted for in planning meteorological programs including tracer experiments.

  19. Experimental Simulations of Large-Scale Collisions

    NASA Technical Reports Server (NTRS)

    Housen, Kevin R.

    2002-01-01

    This report summarizes research on the effects of target porosity on the mechanics of impact cratering. Impact experiments conducted on a centrifuge provide direct simulations of large-scale cratering on porous asteroids. The experiments show that large craters in porous materials form mostly by compaction, with essentially no deposition of material into the ejecta blanket that is a signature of cratering in less-porous materials. The ratio of ejecta mass to crater mass is shown to decrease with increasing crater size or target porosity. These results are consistent with the observation that large closely-packed craters on asteroid Mathilde appear to have formed without degradation to earlier craters.

  20. What is a large-scale dynamo?

    NASA Astrophysics Data System (ADS)

    Nigro, G.; Pongkitiwanichakul, P.; Cattaneo, F.; Tobias, S. M.

    2017-01-01

    We consider kinematic dynamo action in a sheared helical flow at moderate to high values of the magnetic Reynolds number (Rm). We find exponentially growing solutions which, for large enough shear, take the form of a coherent part embedded in incoherent fluctuations. We argue that at large Rm large-scale dynamo action should be identified by the presence of structures coherent in time, rather than those at large spatial scales. We further argue that although the growth rate is determined by small-scale processes, the period of the coherent structures is set by mean-field considerations.

  1. Large-scale brightenings associated with flares

    NASA Technical Reports Server (NTRS)

    Mandrini, Cristina H.; Machado, Marcos E.

    1992-01-01

    It is shown that large-scale brightenings (LSBs) associated with solar flares, similar to the 'giant arches' discovered by Svestka et al. (1982) in images obtained by the SSM HXIS hours after the onset of two-ribbon flares, can also occur in association with confined flares in complex active regions. For these events, a clear link between the LSB and the underlying flare is clearly evident from the active-region magnetic field topology. The implications of these findings are discussed within the framework of the interacting loops of flares and the giant arch phenomenology.

  2. Large scale phononic metamaterials for seismic isolation

    SciTech Connect

    Aravantinos-Zafiris, N.; Sigalas, M. M.

    2015-08-14

    In this work, we numerically examine structures that could be characterized as large scale phononic metamaterials. These novel structures could have band gaps in the frequency spectrum of seismic waves when their dimensions are chosen appropriately, thus raising the belief that they could be serious candidates for seismic isolation structures. Different and easy to fabricate structures were examined made from construction materials such as concrete and steel. The well-known finite difference time domain method is used in our calculations in order to calculate the band structures of the proposed metamaterials.

  3. Large-scale planar lightwave circuits

    NASA Astrophysics Data System (ADS)

    Bidnyk, Serge; Zhang, Hua; Pearson, Matt; Balakrishnan, Ashok

    2011-01-01

    By leveraging advanced wafer processing and flip-chip bonding techniques, we have succeeded in hybrid integrating a myriad of active optical components, including photodetectors and laser diodes, with our planar lightwave circuit (PLC) platform. We have combined hybrid integration of active components with monolithic integration of other critical functions, such as diffraction gratings, on-chip mirrors, mode-converters, and thermo-optic elements. Further process development has led to the integration of polarization controlling functionality. Most recently, all these technological advancements have been combined to create large-scale planar lightwave circuits that comprise hundreds of optical elements integrated on chips less than a square inch in size.

  4. Large-Scale PV Integration Study

    SciTech Connect

    Lu, Shuai; Etingov, Pavel V.; Diao, Ruisheng; Ma, Jian; Samaan, Nader A.; Makarov, Yuri V.; Guo, Xinxin; Hafen, Ryan P.; Jin, Chunlian; Kirkham, Harold; Shlatz, Eugene; Frantzis, Lisa; McClive, Timothy; Karlson, Gregory; Acharya, Dhruv; Ellis, Abraham; Stein, Joshua; Hansen, Clifford; Chadliev, Vladimir; Smart, Michael; Salgo, Richard; Sorensen, Rahn; Allen, Barbara; Idelchik, Boris

    2011-07-29

    This research effort evaluates the impact of large-scale photovoltaic (PV) and distributed generation (DG) output on NV Energy’s electric grid system in southern Nevada. It analyzes the ability of NV Energy’s generation to accommodate increasing amounts of utility-scale PV and DG, and the resulting cost of integrating variable renewable resources. The study was jointly funded by the United States Department of Energy and NV Energy, and conducted by a project team comprised of industry experts and research scientists from Navigant Consulting Inc., Sandia National Laboratories, Pacific Northwest National Laboratory and NV Energy.

  5. Colloquium: Large scale simulations on GPU clusters

    NASA Astrophysics Data System (ADS)

    Bernaschi, Massimo; Bisson, Mauro; Fatica, Massimiliano

    2015-06-01

    Graphics processing units (GPU) are currently used as a cost-effective platform for computer simulations and big-data processing. Large scale applications require that multiple GPUs work together but the efficiency obtained with cluster of GPUs is, at times, sub-optimal because the GPU features are not exploited at their best. We describe how it is possible to achieve an excellent efficiency for applications in statistical mechanics, particle dynamics and networks analysis by using suitable memory access patterns and mechanisms like CUDA streams, profiling tools, etc. Similar concepts and techniques may be applied also to other problems like the solution of Partial Differential Equations.

  6. Neutrinos and large-scale structure

    SciTech Connect

    Eisenstein, Daniel J.

    2015-07-15

    I review the use of cosmological large-scale structure to measure properties of neutrinos and other relic populations of light relativistic particles. With experiments to measure the anisotropies of the cosmic microwave anisotropies and the clustering of matter at low redshift, we now have securely measured a relativistic background with density appropriate to the cosmic neutrino background. Our limits on the mass of the neutrino continue to shrink. Experiments coming in the next decade will greatly improve the available precision on searches for the energy density of novel relativistic backgrounds and the mass of neutrinos.

  7. Large-scale Heterogeneous Network Data Analysis

    DTIC Science & Technology

    2012-07-31

    Data for Multi-Player Influence Maximization on Social Networks.” KDD 2012 (Demo).  Po-Tzu Chang , Yen-Chieh Huang, Cheng-Lun Yang, Shou-De Lin, Pu...Jen Cheng. “Learning-Based Time-Sensitive Re-Ranking for Web Search.” SIGIR 2012 (poster)  Hung -Che Lai, Cheng-Te Li, Yi-Chen Lo, and Shou-De Lin...Exploiting and Evaluating MapReduce for Large-Scale Graph Mining.” ASONAM 2012 (Full, 16% acceptance ratio).  Hsun-Ping Hsieh , Cheng-Te Li, and Shou

  8. Internationalization Measures in Large Scale Research Projects

    NASA Astrophysics Data System (ADS)

    Soeding, Emanuel; Smith, Nancy

    2017-04-01

    Internationalization measures in Large Scale Research Projects Large scale research projects (LSRP) often serve as flagships used by universities or research institutions to demonstrate their performance and capability to stakeholders and other interested parties. As the global competition among universities for the recruitment of the brightest brains has increased, effective internationalization measures have become hot topics for universities and LSRP alike. Nevertheless, most projects and universities are challenged with little experience on how to conduct these measures and make internationalization an cost efficient and useful activity. Furthermore, those undertakings permanently have to be justified with the Project PIs as important, valuable tools to improve the capacity of the project and the research location. There are a variety of measures, suited to support universities in international recruitment. These include e.g. institutional partnerships, research marketing, a welcome culture, support for science mobility and an effective alumni strategy. These activities, although often conducted by different university entities, are interlocked and can be very powerful measures if interfaced in an effective way. On this poster we display a number of internationalization measures for various target groups, identify interfaces between project management, university administration, researchers and international partners to work together, exchange information and improve processes in order to be able to recruit, support and keep the brightest heads to your project.

  9. Local gravity and large-scale structure

    NASA Technical Reports Server (NTRS)

    Juszkiewicz, Roman; Vittorio, Nicola; Wyse, Rosemary F. G.

    1990-01-01

    The magnitude and direction of the observed dipole anisotropy of the galaxy distribution can in principle constrain the amount of large-scale power present in the spectrum of primordial density fluctuations. This paper confronts the data, provided by a recent redshift survey of galaxies detected by the IRAS satellite, with the predictions of two cosmological models with very different levels of large-scale power: the biased Cold Dark Matter dominated model (CDM) and a baryon-dominated model (BDM) with isocurvature initial conditions. Model predictions are investigated for the Local Group peculiar velocity, v(R), induced by mass inhomogeneities distributed out to a given radius, R, for R less than about 10,000 km/s. Several convergence measures for v(R) are developed, which can become powerful cosmological tests when deep enough samples become available. For the present data sets, the CDM and BDM predictions are indistinguishable at the 2 sigma level and both are consistent with observations. A promising discriminant between cosmological models is the misalignment angle between v(R) and the apex of the dipole anisotropy of the microwave background.

  10. Large-scale Intelligent Transporation Systems simulation

    SciTech Connect

    Ewing, T.; Canfield, T.; Hannebutte, U.; Levine, D.; Tentner, A.

    1995-06-01

    A prototype computer system has been developed which defines a high-level architecture for a large-scale, comprehensive, scalable simulation of an Intelligent Transportation System (ITS) capable of running on massively parallel computers and distributed (networked) computer systems. The prototype includes the modelling of instrumented ``smart`` vehicles with in-vehicle navigation units capable of optimal route planning and Traffic Management Centers (TMC). The TMC has probe vehicle tracking capabilities (display position and attributes of instrumented vehicles), and can provide 2-way interaction with traffic to provide advisories and link times. Both the in-vehicle navigation module and the TMC feature detailed graphical user interfaces to support human-factors studies. The prototype has been developed on a distributed system of networked UNIX computers but is designed to run on ANL`s IBM SP-X parallel computer system for large scale problems. A novel feature of our design is that vehicles will be represented by autonomus computer processes, each with a behavior model which performs independent route selection and reacts to external traffic events much like real vehicles. With this approach, one will be able to take advantage of emerging massively parallel processor (MPP) systems.

  11. Local gravity and large-scale structure

    NASA Technical Reports Server (NTRS)

    Juszkiewicz, Roman; Vittorio, Nicola; Wyse, Rosemary F. G.

    1990-01-01

    The magnitude and direction of the observed dipole anisotropy of the galaxy distribution can in principle constrain the amount of large-scale power present in the spectrum of primordial density fluctuations. This paper confronts the data, provided by a recent redshift survey of galaxies detected by the IRAS satellite, with the predictions of two cosmological models with very different levels of large-scale power: the biased Cold Dark Matter dominated model (CDM) and a baryon-dominated model (BDM) with isocurvature initial conditions. Model predictions are investigated for the Local Group peculiar velocity, v(R), induced by mass inhomogeneities distributed out to a given radius, R, for R less than about 10,000 km/s. Several convergence measures for v(R) are developed, which can become powerful cosmological tests when deep enough samples become available. For the present data sets, the CDM and BDM predictions are indistinguishable at the 2 sigma level and both are consistent with observations. A promising discriminant between cosmological models is the misalignment angle between v(R) and the apex of the dipole anisotropy of the microwave background.

  12. Large-scale Globally Propagating Coronal Waves.

    PubMed

    Warmuth, Alexander

    Large-scale, globally propagating wave-like disturbances have been observed in the solar chromosphere and by inference in the corona since the 1960s. However, detailed analysis of these phenomena has only been conducted since the late 1990s. This was prompted by the availability of high-cadence coronal imaging data from numerous spaced-based instruments, which routinely show spectacular globally propagating bright fronts. Coronal waves, as these perturbations are usually referred to, have now been observed in a wide range of spectral channels, yielding a wealth of information. Many findings have supported the "classical" interpretation of the disturbances: fast-mode MHD waves or shocks that are propagating in the solar corona. However, observations that seemed inconsistent with this picture have stimulated the development of alternative models in which "pseudo waves" are generated by magnetic reconfiguration in the framework of an expanding coronal mass ejection. This has resulted in a vigorous debate on the physical nature of these disturbances. This review focuses on demonstrating how the numerous observational findings of the last one and a half decades can be used to constrain our models of large-scale coronal waves, and how a coherent physical understanding of these disturbances is finally emerging.

  13. Global food insecurity. Treatment of major food crops with elevated carbon dioxide or ozone under large-scale fully open-air conditions suggests recent models may have overestimated future yields

    PubMed Central

    Long, Stephen P; Ainsworth, Elizabeth A; Leakey, Andrew D.B; Morgan, Patrick B

    2005-01-01

    Predictions of yield for the globe's major grain and legume arable crops suggest that, with a moderate temperature increase, production may increase in the temperate zone, but decline in the tropics. In total, global food supply may show little change. This security comes from inclusion of the direct effect of rising carbon dioxide (CO2) concentration, [CO2], which significantly stimulates yield by decreasing photorespiration in C3 crops and transpiration in all crops. Evidence for a large response to [CO2] is largely based on studies made within chambers at small scales, which would be considered unacceptable for standard agronomic trials of new cultivars or agrochemicals. Yet, predictions of the globe's future food security are based on such inadequate information. Free-Air Concentration Enrichment (FACE) technology now allows investigation of the effects of rising [CO2] and ozone on field crops under fully open-air conditions at an agronomic scale. Experiments with rice, wheat, maize and soybean show smaller increases in yield than anticipated from studies in chambers. Experiments with increased ozone show large yield losses (20%), which are not accounted for in projections of global food security. These findings suggest that current projections of global food security are overoptimistic. The fertilization effect of CO2 is less than that used in many models, while rising ozone will cause large yield losses in the Northern Hemisphere. Unfortunately, FACE studies have been limited in geographical extent and interactive effects of CO2, ozone and temperature have yet to be studied. Without more extensive study of the effects of these changes at an agronomic scale in the open air, our ever-more sophisticated models will continue to have feet of clay. PMID:16433090

  14. Effect of indoor air pollution from biomass and solid fuel combustion on prevalence of self-reported asthma among adult men and women in India: findings from a nationwide large-scale cross-sectional survey.

    PubMed

    Agrawal, Sutapa

    2012-05-01

    Increasing prevalence of asthma in developing countries has been a significant challenge for public health in recent decades. A number of studies have suggested that ambient air pollution can trigger asthma attacks. Biomass and solid fuels are a major source of indoor air pollution, but in developing countries the health effects of indoor air pollution are poorly understood. In this study we examined the effect of cooking smoke produced by biomass and solid fuel combustion on the reported prevalence of asthma among adult men and women in India. The analysis is based on 99,574 women and 56,742 men aged between 20 and 49 years included in India's third National Family Health Survey conducted in 2005-2006. Effects of exposure to cooking smoke, determined by the type of fuel used for cooking such as biomass and solid fuels versus cleaner fuels, on the reported prevalence of asthma were estimated using multivariate logistic regression. Since the effects of cooking smoke are likely to be confounded with effects of tobacco smoking, age, and other such factors, the analysis was carried out after statistically controlling for such factors. The results indicate that adult women living in households using biomass and solid fuels have a significantly higher risk of asthma than those living in households using cleaner fuels (OR: 1.26; 95%CI: 1.06-1.49; p = .010), even after controlling for the effects of a number of potentially confounding factors. Interestingly, this effect was not found among men (OR: 0.98; 95%CI: 0.77-1.24; p = .846). However, tobacco smoking was associated with higher asthma prevalence among both women (OR: 1.72; 95%CI: 1.34-2.21; p < .0001) and men (OR: 1.35; 95%CI: 1.49-2.25; p < .0001). Combined effects of biomass and solid fuel use and tobacco smoke on the risk of asthma were greater and more significant in women (OR: 2.16; 95%CI: 1.58-2.94; p < .0001) than they were in men (OR: 1.34; 95%CI: 1.04-1.72; p = .024). The findings have important program and

  15. Biohazards Assessment in Large-Scale Zonal Centrifugation

    PubMed Central

    Baldwin, C. L.; Lemp, J. F.; Barbeito, M. S.

    1975-01-01

    A study was conducted to determine the biohazards associated with use of the large-scale zonal centrifuge for purification of moderate risk oncogenic viruses. To safely and conveniently assess the hazard, coliphage T3 was substituted for the virus in a typical processing procedure performed in a National Cancer Institute contract laboratory. Risk of personnel exposure was found to be minimal during optimal operation but definite potential for virus release from a number of centrifuge components during mechanical malfunction was shown by assay of surface, liquid, and air samples collected during the processing. High concentration of phage was detected in the turbine air exhaust and the seal coolant system when faulty seals were employed. The simulant virus was also found on both centrifuge chamber interior and rotor surfaces. Images PMID:1124921

  16. Biohazards assessment in large-scale zonal centrifugation.

    PubMed

    Baldwin, C L; Lemp, J F; Barbeito, M S

    1975-04-01

    A study was conducted to determine the biohazards associated with use of the large-scale zonal centrifuge for purification of moderate risk oncogenic viruses. To safely and conveniently assess the hazard, coliphage T3 was substituted for the virus in a typical processing procedure performed in a National Cancer Institute contract laboratory. Risk of personnel exposure was found to be minimal during optimal operation but definite potential for virus release from a number of centrifuge components during mechanical malfunction was shown by assay of surface, liquid, and air samples collected during the processing. High concentration of phage was detected in the turbine air exhaust and the seal coolant system when faulty seals were employed. The simulant virus was also found on both the centrifuge chamber interior and rotor surfaces.

  17. Efficient, large scale separation of coal macerals

    SciTech Connect

    Dyrkacz, G.R.; Bloomquist, C.A.A.

    1988-01-01

    The authors believe that the separation of macerals by continuous flow centrifugation offers a simple technique for the large scale separation of macerals. With relatively little cost (/approximately/ $10K), it provides an opportunity for obtaining quite pure maceral fractions. Although they have not completely worked out all the nuances of this separation system, they believe that the problems they have indicated can be minimized to pose only minor inconvenience. It cannot be said that this system completely bypasses the disagreeable tedium or time involved in separating macerals, nor will it by itself overcome the mental inertia required to make maceral separation an accepted necessary fact in fundamental coal science. However, they find their particular brand of continuous flow centrifugation is considerably faster than sink/float separation, can provide a good quality product with even one separation cycle, and permits the handling of more material than a conventional sink/float centrifuge separation.

  18. Primer design for large scale sequencing.

    PubMed Central

    Haas, S; Vingron, M; Poustka, A; Wiemann, S

    1998-01-01

    We have developed PRIDE, a primer design program that automatically designs primers in single contigs or whole sequencing projects to extend the already known sequence and to double strand single-stranded regions. The program is fully integrated into the Staden package (GAP4) and accessible with a graphical user interface. PRIDE uses a fuzzy logic-based system to calculate primer qualities. The computational performance of PRIDE is enhanced by using suffix trees to store the huge amount of data being produced. A test set of 110 sequencing primers and 11 PCR primer pairs has been designed on genomic templates, cDNAs and sequences containing repetitive elements to analyze PRIDE's success rate. The high performance of PRIDE, combined with its minimal requirement of user interaction and its fast algorithm, make this program useful for the large scale design of primers, especially in large sequencing projects. PMID:9611248

  19. Grid sensitivity capability for large scale structures

    NASA Technical Reports Server (NTRS)

    Nagendra, Gopal K.; Wallerstein, David V.

    1989-01-01

    The considerations and the resultant approach used to implement design sensitivity capability for grids into a large scale, general purpose finite element system (MSC/NASTRAN) are presented. The design variables are grid perturbations with a rather general linking capability. Moreover, shape and sizing variables may be linked together. The design is general enough to facilitate geometric modeling techniques for generating design variable linking schemes in an easy and straightforward manner. Test cases have been run and validated by comparison with the overall finite difference method. The linking of a design sensitivity capability for shape variables in MSC/NASTRAN with an optimizer would give designers a powerful, automated tool to carry out practical optimization design of real life, complicated structures.

  20. Large-Scale Organization of Glycosylation Networks

    NASA Astrophysics Data System (ADS)

    Kim, Pan-Jun; Lee, Dong-Yup; Jeong, Hawoong

    2009-03-01

    Glycosylation is a highly complex process to produce a diverse repertoire of cellular glycans that are frequently attached to proteins and lipids. Glycans participate in fundamental biological processes including molecular trafficking and clearance, cell proliferation and apoptosis, developmental biology, immune response, and pathogenesis. N-linked glycans found on proteins are formed by sequential attachments of monosaccharides with the help of a relatively small number of enzymes. Many of these enzymes can accept multiple N-linked glycans as substrates, thus generating a large number of glycan intermediates and their intermingled pathways. Motivated by the quantitative methods developed in complex network research, we investigate the large-scale organization of such N-glycosylation pathways in a mammalian cell. The uncovered results give the experimentally-testable predictions for glycosylation process, and can be applied to the engineering of therapeutic glycoproteins.

  1. Large-scale optimization of neuron arbors

    NASA Astrophysics Data System (ADS)

    Cherniak, Christopher; Changizi, Mark; Won Kang, Du

    1999-05-01

    At the global as well as local scales, some of the geometry of types of neuron arbors-both dendrites and axons-appears to be self-organizing: Their morphogenesis behaves like flowing water, that is, fluid dynamically; waterflow in branching networks in turn acts like a tree composed of cords under tension, that is, vector mechanically. Branch diameters and angles and junction sites conform significantly to this model. The result is that such neuron tree samples globally minimize their total volume-rather than, for example, surface area or branch length. In addition, the arbors perform well at generating the cheapest topology interconnecting their terminals: their large-scale layouts are among the best of all such possible connecting patterns, approaching 5% of optimum. This model also applies comparably to arterial and river networks.

  2. Engineering management of large scale systems

    NASA Technical Reports Server (NTRS)

    Sanders, Serita; Gill, Tepper L.; Paul, Arthur S.

    1989-01-01

    The organization of high technology and engineering problem solving, has given rise to an emerging concept. Reasoning principles for integrating traditional engineering problem solving with system theory, management sciences, behavioral decision theory, and planning and design approaches can be incorporated into a methodological approach to solving problems with a long range perspective. Long range planning has a great potential to improve productivity by using a systematic and organized approach. Thus, efficiency and cost effectiveness are the driving forces in promoting the organization of engineering problems. Aspects of systems engineering that provide an understanding of management of large scale systems are broadly covered here. Due to the focus and application of research, other significant factors (e.g., human behavior, decision making, etc.) are not emphasized but are considered.

  3. Large scale cryogenic fluid systems testing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    NASA Lewis Research Center's Cryogenic Fluid Systems Branch (CFSB) within the Space Propulsion Technology Division (SPTD) has the ultimate goal of enabling the long term storage and in-space fueling/resupply operations for spacecraft and reusable vehicles in support of space exploration. Using analytical modeling, ground based testing, and on-orbit experimentation, the CFSB is studying three primary categories of fluid technology: storage, supply, and transfer. The CFSB is also investigating fluid handling, advanced instrumentation, and tank structures and materials. Ground based testing of large-scale systems is done using liquid hydrogen as a test fluid at the Cryogenic Propellant Tank Facility (K-site) at Lewis' Plum Brook Station in Sandusky, Ohio. A general overview of tests involving liquid transfer, thermal control, pressure control, and pressurization is given.

  4. Large scale preparation of pure phycobiliproteins.

    PubMed

    Padgett, M P; Krogmann, D W

    1987-01-01

    This paper describes simple procedures for the purification of large amounts of phycocyanin and allophycocyanin from the cyanobacterium Microcystis aeruginosa. A homogeneous natural bloom of this organism provided hundreds of kilograms of cells. Large samples of cells were broken by freezing and thawing. Repeated extraction of the broken cells with distilled water released phycocyanin first, then allophycocyanin, and provides supporting evidence for the current models of phycobilisome structure. The very low ionic strength of the aqueous extracts allowed allophycocyanin release in a particulate form so that this protein could be easily concentrated by centrifugation. Other proteins in the extract were enriched and concentrated by large scale membrane filtration. The biliproteins were purified to homogeneity by chromatography on DEAE cellulose. Purity was established by HPLC and by N-terminal amino acid sequence analysis. The proteins were examined for stability at various pHs and exposures to visible light.

  5. Primer design for large scale sequencing.

    PubMed

    Haas, S; Vingron, M; Poustka, A; Wiemann, S

    1998-06-15

    We have developed PRIDE, a primer design program that automatically designs primers in single contigs or whole sequencing projects to extend the already known sequence and to double strand single-stranded regions. The program is fully integrated into the Staden package (GAP4) and accessible with a graphical user interface. PRIDE uses a fuzzy logic-based system to calculate primer qualities. The computational performance of PRIDE is enhanced by using suffix trees to store the huge amount of data being produced. A test set of 110 sequencing primers and 11 PCR primer pairs has been designed on genomic templates, cDNAs and sequences containing repetitive elements to analyze PRIDE's success rate. The high performance of PRIDE, combined with its minimal requirement of user interaction and its fast algorithm, make this program useful for the large scale design of primers, especially in large sequencing projects.

  6. Large-scale synthesis of peptides.

    PubMed

    Andersson, L; Blomberg, L; Flegel, M; Lepsa, L; Nilsson, B; Verlander, M

    2000-01-01

    Recent advances in the areas of formulation and delivery have rekindled the interest of the pharmaceutical community in peptides as drug candidates, which, in turn, has provided a challenge to the peptide industry to develop efficient methods for the manufacture of relatively complex peptides on scales of up to metric tons per year. This article focuses on chemical synthesis approaches for peptides, and presents an overview of the methods available and in use currently, together with a discussion of scale-up strategies. Examples of the different methods are discussed, together with solutions to some specific problems encountered during scale-up development. Finally, an overview is presented of issues common to all manufacturing methods, i.e., methods used for the large-scale purification and isolation of final bulk products and regulatory considerations to be addressed during scale-up of processes to commercial levels. Copyright 2000 John Wiley & Sons, Inc. Biopolymers (Pept Sci) 55: 227-250, 2000

  7. Large Scale Quantum Simulations of Nuclear Pasta

    NASA Astrophysics Data System (ADS)

    Fattoyev, Farrukh J.; Horowitz, Charles J.; Schuetrumpf, Bastian

    2016-03-01

    Complex and exotic nuclear geometries collectively referred to as ``nuclear pasta'' are expected to naturally exist in the crust of neutron stars and in supernovae matter. Using a set of self-consistent microscopic nuclear energy density functionals we present the first results of large scale quantum simulations of pasta phases at baryon densities 0 . 03 < ρ < 0 . 10 fm-3, proton fractions 0 . 05

  8. Large-scale parametric survival analysis.

    PubMed

    Mittal, Sushil; Madigan, David; Cheng, Jerry Q; Burd, Randall S

    2013-10-15

    Survival analysis has been a topic of active statistical research in the past few decades with applications spread across several areas. Traditional applications usually consider data with only a small numbers of predictors with a few hundreds or thousands of observations. Recent advances in data acquisition techniques and computation power have led to considerable interest in analyzing very-high-dimensional data where the number of predictor variables and the number of observations range between 10(4) and 10(6). In this paper, we present a tool for performing large-scale regularized parametric survival analysis using a variant of the cyclic coordinate descent method. Through our experiments on two real data sets, we show that application of regularized models to high-dimensional data avoids overfitting and can provide improved predictive performance and calibration over corresponding low-dimensional models.

  9. Large-Scale Parametric Survival Analysis†

    PubMed Central

    Mittal, Sushil; Madigan, David; Cheng, Jerry; Burd, Randall S.

    2013-01-01

    Survival analysis has been a topic of active statistical research in the past few decades with applications spread across several areas. Traditional applications usually consider data with only small numbers of predictors with a few hundreds or thousands of observations. Recent advances in data acquisition techniques and computation power has led to considerable interest in analyzing very high-dimensional data where the number of predictor variables and the number of observations range between 104 – 106. In this paper, we present a tool for performing large-scale regularized parametric survival analysis using a variant of cyclic coordinate descent method. Through our experiments on two real data sets, we show that application of regularized models to high-dimensional data avoids overfitting and can provide improved predictive performance and calibration over corresponding low-dimensional models. PMID:23625862

  10. Large scale study of tooth enamel

    SciTech Connect

    Bodart, F.; Deconninck, G.; Martin, M.Th.

    1981-04-01

    Human tooth enamel contains traces of foreign elements. The presence of these elements is related to the history and the environment of the human body and can be considered as the signature of perturbations which occur during the growth of a tooth. A map of the distribution of these traces on a large scale sample of the population will constitute a reference for further investigations of environmental effects. One hundred eighty samples of teeth were first analysed using PIXE, backscattering and nuclear reaction techniques. The results were analysed using statistical methods. Correlations between O, F, Na, P, Ca, Mn, Fe, Cu, Zn, Pb and Sr were observed and cluster analysis was in progress. The techniques described in the present work have been developed in order to establish a method for the exploration of very large samples of the Belgian population.

  11. The challenge of large-scale structure

    NASA Astrophysics Data System (ADS)

    Gregory, S. A.

    1996-03-01

    The tasks that I have assumed for myself in this presentation include three separate parts. The first, appropriate to the particular setting of this meeting, is to review the basic work of the founding of this field; the appropriateness comes from the fact that W. G. Tifft made immense contributions that are not often realized by the astronomical community. The second task is to outline the general tone of the observational evidence for large scale structures. (Here, in particular, I cannot claim to be complete. I beg forgiveness from any workers who are left out by my oversight for lack of space and time.) The third task is to point out some of the major aspects of the field that may represent the clues by which some brilliant sleuth will ultimately figure out how galaxies formed.

  12. Modeling the Internet's large-scale topology

    PubMed Central

    Yook, Soon-Hyung; Jeong, Hawoong; Barabási, Albert-László

    2002-01-01

    Network generators that capture the Internet's large-scale topology are crucial for the development of efficient routing protocols and modeling Internet traffic. Our ability to design realistic generators is limited by the incomplete understanding of the fundamental driving forces that affect the Internet's evolution. By combining several independent databases capturing the time evolution, topology, and physical layout of the Internet, we identify the universal mechanisms that shape the Internet's router and autonomous system level topology. We find that the physical layout of nodes form a fractal set, determined by population density patterns around the globe. The placement of links is driven by competition between preferential attachment and linear distance dependence, a marked departure from the currently used exponential laws. The universal parameters that we extract significantly restrict the class of potentially correct Internet models and indicate that the networks created by all available topology generators are fundamentally different from the current Internet. PMID:12368484

  13. Large-scale sequential quadratic programming algorithms

    SciTech Connect

    Eldersveld, S.K.

    1992-09-01

    The problem addressed is the general nonlinear programming problem: finding a local minimizer for a nonlinear function subject to a mixture of nonlinear equality and inequality constraints. The methods studied are in the class of sequential quadratic programming (SQP) algorithms, which have previously proved successful for problems of moderate size. Our goal is to devise an SQP algorithm that is applicable to large-scale optimization problems, using sparse data structures and storing less curvature information but maintaining the property of superlinear convergence. The main features are: 1. The use of a quasi-Newton approximation to the reduced Hessian of the Lagrangian function. Only an estimate of the reduced Hessian matrix is required by our algorithm. The impact of not having available the full Hessian approximation is studied and alternative estimates are constructed. 2. The use of a transformation matrix Q. This allows the QP gradient to be computed easily when only the reduced Hessian approximation is maintained. 3. The use of a reduced-gradient form of the basis for the null space of the working set. This choice of basis is more practical than an orthogonal null-space basis for large-scale problems. The continuity condition for this choice is proven. 4. The use of incomplete solutions of quadratic programming subproblems. Certain iterates generated by an active-set method for the QP subproblem are used in place of the QP minimizer to define the search direction for the nonlinear problem. An implementation of the new algorithm has been obtained by modifying the code MINOS. Results and comparisons with MINOS and NPSOL are given for the new algorithm on a set of 92 test problems.

  14. Supporting large-scale computational science

    SciTech Connect

    Musick, R., LLNL

    1998-02-19

    Business needs have driven the development of commercial database systems since their inception. As a result, there has been a strong focus on supporting many users, minimizing the potential corruption or loss of data, and maximizing performance metrics like transactions per second, or TPC-C and TPC-D results. It turns out that these optimizations have little to do with the needs of the scientific community, and in particular have little impact on improving the management and use of large-scale high-dimensional data. At the same time, there is an unanswered need in the scientific community for many of the benefits offered by a robust DBMS. For example, tying an ad-hoc query language such as SQL together with a visualization toolkit would be a powerful enhancement to current capabilities. Unfortunately, there has been little emphasis or discussion in the VLDB community on this mismatch over the last decade. The goal of the paper is to identify the specific issues that need to be resolved before large-scale scientific applications can make use of DBMS products. This topic is addressed in the context of an evaluation of commercial DBMS technology applied to the exploration of data generated by the Department of Energy`s Accelerated Strategic Computing Initiative (ASCI). The paper describes the data being generated for ASCI as well as current capabilities for interacting with and exploring this data. The attraction of applying standard DBMS technology to this domain is discussed, as well as the technical and business issues that currently make this an infeasible solution.

  15. Improving Recent Large-Scale Pulsar Surveys

    NASA Astrophysics Data System (ADS)

    Cardoso, Rogerio Fernando; Ransom, S.

    2011-01-01

    Pulsars are unique in that they act as celestial laboratories for precise tests of gravity and other extreme physics (Kramer 2004). There are approximately 2000 known pulsars today, which is less than ten percent of pulsars in the Milky Way according to theoretical models (Lorimer 2004). Out of these 2000 known pulsars, approximately ten percent are known millisecond pulsars, objects used for their period stability for detailed physics tests and searches for gravitational radiation (Lorimer 2008). As the field and instrumentation progress, pulsar astronomers attempt to overcome observational biases and detect new pulsars, consequently discovering new millisecond pulsars. We attempt to improve large scale pulsar surveys by examining three recent pulsar surveys. The first, the Green Bank Telescope 350MHz Drift Scan, a low frequency isotropic survey of the northern sky, has yielded a large number of candidates that were visually inspected and identified, resulting in over 34.000 thousands candidates viewed, dozens of detections of known pulsars, and the discovery of a new low-flux pulsar, PSRJ1911+22. The second, the PALFA survey, is a high frequency survey of the galactic plane with the Arecibo telescope. We created a processing pipeline for the PALFA survey at the National Radio Astronomy Observatory in Charlottesville- VA, in addition to making needed modifications upon advice from the PALFA consortium. The third survey examined is a new GBT 820MHz survey devoted to find new millisecond pulsars by observing the target-rich environment of unidentified sources in the FERMI LAT catalogue. By approaching these three pulsar surveys at different stages, we seek to improve the success rates of large scale surveys, and hence the possibility for ground-breaking work in both basic physics and astrophysics.

  16. Introducing Large-Scale Innovation in Schools

    NASA Astrophysics Data System (ADS)

    Sotiriou, Sofoklis; Riviou, Katherina; Cherouvis, Stephanos; Chelioti, Eleni; Bogner, Franz X.

    2016-08-01

    Education reform initiatives tend to promise higher effectiveness in classrooms especially when emphasis is given to e-learning and digital resources. Practical changes in classroom realities or school organization, however, are lacking. A major European initiative entitled Open Discovery Space (ODS) examined the challenge of modernizing school education via a large-scale implementation of an open-scale methodology in using technology-supported innovation. The present paper describes this innovation scheme which involved schools and teachers all over Europe, embedded technology-enhanced learning into wider school environments and provided training to teachers. Our implementation scheme consisted of three phases: (1) stimulating interest, (2) incorporating the innovation into school settings and (3) accelerating the implementation of the innovation. The scheme's impact was monitored for a school year using five indicators: leadership and vision building, ICT in the curriculum, development of ICT culture, professional development support, and school resources and infrastructure. Based on about 400 schools, our study produced four results: (1) The growth in digital maturity was substantial, even for previously high scoring schools. This was even more important for indicators such as vision and leadership" and "professional development." (2) The evolution of networking is presented graphically, showing the gradual growth of connections achieved. (3) These communities became core nodes, involving numerous teachers in sharing educational content and experiences: One out of three registered users (36 %) has shared his/her educational resources in at least one community. (4) Satisfaction scores ranged from 76 % (offer of useful support through teacher academies) to 87 % (good environment to exchange best practices). Initiatives such as ODS add substantial value to schools on a large scale.

  17. Supporting large-scale computational science

    SciTech Connect

    Musick, R

    1998-10-01

    A study has been carried out to determine the feasibility of using commercial database management systems (DBMSs) to support large-scale computational science. Conventional wisdom in the past has been that DBMSs are too slow for such data. Several events over the past few years have muddied the clarity of this mindset: 1. 2. 3. 4. Several commercial DBMS systems have demonstrated storage and ad-hoc quer access to Terabyte data sets. Several large-scale science teams, such as EOSDIS [NAS91], high energy physics [MM97] and human genome [Kin93] have adopted (or make frequent use of) commercial DBMS systems as the central part of their data management scheme. Several major DBMS vendors have introduced their first object-relational products (ORDBMSs), which have the potential to support large, array-oriented data. In some cases, performance is a moot issue. This is true in particular if the performance of legacy applications is not reduced while new, albeit slow, capabilities are added to the system. The basic assessment is still that DBMSs do not scale to large computational data. However, many of the reasons have changed, and there is an expiration date attached to that prognosis. This document expands on this conclusion, identifies the advantages and disadvantages of various commercial approaches, and describes the studies carried out in exploring this area. The document is meant to be brief, technical and informative, rather than a motivational pitch. The conclusions within are very likely to become outdated within the next 5-7 years, as market forces will have a significant impact on the state of the art in scientific data management over the next decade.

  18. Voids in the Large-Scale Structure

    NASA Astrophysics Data System (ADS)

    El-Ad, Hagai; Piran, Tsvi

    1997-12-01

    Voids are the most prominent feature of the large-scale structure of the universe. Still, their incorporation into quantitative analysis of it has been relatively recent, owing essentially to the lack of an objective tool to identify the voids and to quantify them. To overcome this, we present here the VOID FINDER algorithm, a novel tool for objectively quantifying voids in the galaxy distribution. The algorithm first classifies galaxies as either wall galaxies or field galaxies. Then, it identifies voids in the wall-galaxy distribution. Voids are defined as continuous volumes that do not contain any wall galaxies. The voids must be thicker than an adjustable limit, which is refined in successive iterations. In this way, we identify the same regions that would be recognized as voids by the eye. Small breaches in the walls are ignored, avoiding artificial connections between neighboring voids. We test the algorithm using Voronoi tesselations. By appropriate scaling of the parameters with the selection function, we apply it to two redshift surveys, the dense SSRS2 and the full-sky IRAS 1.2 Jy. Both surveys show similar properties: ~50% of the volume is filled by voids. The voids have a scale of at least 40 h-1 Mpc and an average -0.9 underdensity. Faint galaxies do not fill the voids, but they do populate them more than bright ones. These results suggest that both optically and IRAS-selected galaxies delineate the same large-scale structure. Comparison with the recovered mass distribution further suggests that the observed voids in the galaxy distribution correspond well to underdense regions in the mass distribution. This confirms the gravitational origin of the voids.

  19. Large-Scale Hybrid Motor Testing. Chapter 10

    NASA Technical Reports Server (NTRS)

    Story, George

    2006-01-01

    Hybrid rocket motors can be successfully demonstrated at a small scale virtually anywhere. There have been many suitcase sized portable test stands assembled for demonstration of hybrids. They show the safety of hybrid rockets to the audiences. These small show motors and small laboratory scale motors can give comparative burn rate data for development of different fuel/oxidizer combinations, however questions that are always asked when hybrids are mentioned for large scale applications are - how do they scale and has it been shown in a large motor? To answer those questions, large scale motor testing is required to verify the hybrid motor at its true size. The necessity to conduct large-scale hybrid rocket motor tests to validate the burn rate from the small motors to application size has been documented in several place^'^^.^. Comparison of small scale hybrid data to that of larger scale data indicates that the fuel burn rate goes down with increasing port size, even with the same oxidizer flux. This trend holds for conventional hybrid motors with forward oxidizer injection and HTPB based fuels. While the reason this is occurring would make a great paper or study or thesis, it is not thoroughly understood at this time. Potential causes include the fact that since hybrid combustion is boundary layer driven, the larger port sizes reduce the interaction (radiation, mixing and heat transfer) from the core region of the port. This chapter focuses on some of the large, prototype sized testing of hybrid motors. The largest motors tested have been AMROC s 250K-lbf thrust motor at Edwards Air Force Base and the Hybrid Propulsion Demonstration Program s 250K-lbf thrust motor at Stennis Space Center. Numerous smaller tests were performed to support the burn rate, stability and scaling concepts that went into the development of those large motors.

  20. Northern East Asian Monsoon Precipitation Revealed by Air Mass Variability and Its Prediction

    NASA Astrophysics Data System (ADS)

    Son, J. H.; Seo, K. H.

    2015-12-01

    This work provides a new perspective on the major factors controlling the East Asian summer monsoon (EASM) in July, and a promising physical-statistical forecasting of the EASM ahead of summer. Dominant modes of the EASM are revealed from the variability of large-scale air masses discerned by equivalent potential temperature, and are found to be dynamically connected with the anomalous sea surface temperatures (SSTs) over the three major oceans of the world and their counterparts of prevailing atmospheric oscillation or teleconnection patterns. Precipitation over Northeast Asia (NEA) during July is enhanced by the tropical central Indian Ocean warming and central Pacific El Niño-related SST warming, the northwestern Pacific cooling off the coast of NEA, and the North Atlantic Ocean warming. Using these factors and data from the preceding spring seasons, the authors build a multiple linear regression model for seasonal forecasting. The cross-validated correlation skill predicted for the period 1994 to 2012 is up to 0.84, which far exceeds the skill level of contemporary climate models.

  1. Statistical Measures of Large-Scale Structure

    NASA Astrophysics Data System (ADS)

    Vogeley, Michael; Geller, Margaret; Huchra, John; Park, Changbom; Gott, J. Richard

    1993-12-01

    \\inv Mpc} To quantify clustering in the large-scale distribution of galaxies and to test theories for the formation of structure in the universe, we apply statistical measures to the CfA Redshift Survey. This survey is complete to m_{B(0)}=15.5 over two contiguous regions which cover one-quarter of the sky and include ~ 11,000 galaxies. The salient features of these data are voids with diameter 30-50\\hmpc and coherent dense structures with a scale ~ 100\\hmpc. Comparison with N-body simulations rules out the ``standard" CDM model (Omega =1, b=1.5, sigma_8 =1) at the 99% confidence level because this model has insufficient power on scales lambda >30\\hmpc. An unbiased open universe CDM model (Omega h =0.2) and a biased CDM model with non-zero cosmological constant (Omega h =0.24, lambda_0 =0.6) match the observed power spectrum. The amplitude of the power spectrum depends on the luminosity of galaxies in the sample; bright (L>L(*) ) galaxies are more strongly clustered than faint galaxies. The paucity of bright galaxies in low-density regions may explain this dependence. To measure the topology of large-scale structure, we compute the genus of isodensity surfaces of the smoothed density field. On scales in the ``non-linear" regime, <= 10\\hmpc, the high- and low-density regions are multiply-connected over a broad range of density threshold, as in a filamentary net. On smoothing scales >10\\hmpc, the topology is consistent with statistics of a Gaussian random field. Simulations of CDM models fail to produce the observed coherence of structure on non-linear scales (>95% confidence level). The underdensity probability (the frequency of regions with density contrast delta rho //lineρ=-0.8) depends strongly on the luminosity of galaxies; underdense regions are significantly more common (>2sigma ) in bright (L>L(*) ) galaxy samples than in samples which include fainter galaxies.

  2. Cooling biogeophysical effect of large-scale tropical deforestation in three Earth System models

    NASA Astrophysics Data System (ADS)

    Brovkin, V.; Pugh, T.; Robertson, E.; Bathiany, S.; Jones, C.; Arneth, A.

    2015-12-01

    Vegetation cover in the tropics is limited by moisture availability. Since transpiration from forests is generally greater than from grasslands, the sensitivity of precipitation in the Amazon to large-scale deforestation has long been seen as a critical parameter of climate-vegetation interactions. Most Amazon deforestation experiments to date have been performed with interactive land-atmosphere models but prescribed sea surface temperatures (SSTs). They reveal a strong reduction in evapotranspiration and precipitation, and an increase in global air surface temperature due to reduced latent heat flux. We performed large-scale tropical deforestation experiments with three Earth system models (ESMs) including interactive ocean models, which participated in the FP7 project EMBRACE. In response to tropical deforestation, all models simulate a significant reduction in tropical precipitation, similar to the experiments with prescribed SSTs. However, all three models suggest that the response of global temperature to the deforestation is a cooling or no change, differing from the result of a global warming in prescribed SSTs runs. Presumably, changes in the hydrological cycle and in the water vapor feedback due to deforestation operate in the direction of a global cooling. In addition, one of the models simulates a local cooling over the deforested tropical region. This is opposite to the local warming in the other models. This suggests that the balance between warming due to latent heat flux decrease and cooling due to albedo increase is rather subtle and model-dependent. Last but not least, we suggest using large-scale deforestation as a standard biogeophysical experiment for model intercomparison within the CMIP6 framework.

  3. Large-scale forcing on lightning in Portugal

    NASA Astrophysics Data System (ADS)

    Santos, J. A.; Sousa, J.; Reis, M. A.; Leite, S. M.; Correia, S.; Fraga, H.; Fragoso, M.

    2012-04-01

    An overview of the large-scale atmospheric forcing on the occurrence of cloud-to-ground lightning activity over Portugal is presented here. A dataset generated by a network of nine sensors, maintained by the Portuguese Meteorological Institute (four sensors) and by Spanish Meteorological Agency (five sensors), with available data over the 2003-2009 time period (7 years) is used for this purpose. For the same time period, a state-of-the-art high-resolution reanalysis dataset in a 1.0° latitude × 1.0° longitude grid (Modern Era Retrospective - Analysis for Research and Applications; MERRA300) is also considered in order to assess the atmospheric large-scale features over the target region. Three lightning regimes of the atmospheric general circulation within the Euro-Atlantic sector can be clearly detected. These regimes are characterized according to their underlying dynamical conditions (sea surface pressure, 500 hPa geopotential height and air temperature, streamlines of the 10 m wind vectors, and best 4-layer lifted index at 500 hPa). The spatial distribution of lighting activity in Portugal (patterns of the density of the atmospheric electrical discharges) is also analyzed for each regime separately. Considerations regarding seasonality, flash polarity and daily cycles in the lighting activity are also given for each lightning regime.

  4. Management of large-scale multimedia conferencing

    NASA Astrophysics Data System (ADS)

    Cidon, Israel; Nachum, Youval

    1998-12-01

    The goal of this work is to explore management strategies and algorithms for large-scale multimedia conferencing over a communication network. Since the use of multimedia conferencing is still limited, the management of such systems has not yet been studied in depth. A well organized and human friendly multimedia conference management should utilize efficiently and fairly its limited resources as well as take into account the requirements of the conference participants. The ability of the management to enforce fair policies and to quickly take into account the participants preferences may even lead to a conference environment that is more pleasant and more effective than a similar face to face meeting. We suggest several principles for defining and solving resource sharing problems in this context. The conference resources which are addressed in this paper are the bandwidth (conference network capacity), time (participants' scheduling) and limitations of audio and visual equipment. The participants' requirements for these resources are defined and translated in terms of Quality of Service requirements and the fairness criteria.

  5. Large-scale wind turbine structures

    NASA Technical Reports Server (NTRS)

    Spera, David A.

    1988-01-01

    The purpose of this presentation is to show how structural technology was applied in the design of modern wind turbines, which were recently brought to an advanced stage of development as sources of renewable power. Wind turbine structures present many difficult problems because they are relatively slender and flexible; subject to vibration and aeroelastic instabilities; acted upon by loads which are often nondeterministic; operated continuously with little maintenance in all weather; and dominated by life-cycle cost considerations. Progress in horizontal-axis wind turbines (HAWT) development was paced by progress in the understanding of structural loads, modeling of structural dynamic response, and designing of innovative structural response. During the past 15 years a series of large HAWTs was developed. This has culminated in the recent completion of the world's largest operating wind turbine, the 3.2 MW Mod-5B power plane installed on the island of Oahu, Hawaii. Some of the applications of structures technology to wind turbine will be illustrated by referring to the Mod-5B design. First, a video overview will be presented to provide familiarization with the Mod-5B project and the important components of the wind turbine system. Next, the structural requirements for large-scale wind turbines will be discussed, emphasizing the difficult fatigue-life requirements. Finally, the procedures used to design the structure will be presented, including the use of the fracture mechanics approach for determining allowable fatigue stresses.

  6. Large-scale tides in general relativity

    NASA Astrophysics Data System (ADS)

    Ip, Hiu Yan; Schmidt, Fabian

    2017-02-01

    Density perturbations in cosmology, i.e. spherically symmetric adiabatic perturbations of a Friedmann-Lemaȋtre-Robertson-Walker (FLRW) spacetime, are locally exactly equivalent to a different FLRW solution, as long as their wavelength is much larger than the sound horizon of all fluid components. This fact is known as the "separate universe" paradigm. However, no such relation is known for anisotropic adiabatic perturbations, which correspond to an FLRW spacetime with large-scale tidal fields. Here, we provide a closed, fully relativistic set of evolutionary equations for the nonlinear evolution of such modes, based on the conformal Fermi (CFC) frame. We show explicitly that the tidal effects are encoded by the Weyl tensor, and are hence entirely different from an anisotropic Bianchi I spacetime, where the anisotropy is sourced by the Ricci tensor. In order to close the system, certain higher derivative terms have to be dropped. We show that this approximation is equivalent to the local tidal approximation of Hui and Bertschinger [1]. We also show that this very simple set of equations matches the exact evolution of the density field at second order, but fails at third and higher order. This provides a useful, easy-to-use framework for computing the fully relativistic growth of structure at second order.

  7. Food appropriation through large scale land acquisitions

    NASA Astrophysics Data System (ADS)

    Rulli, Maria Cristina; D'Odorico, Paolo

    2014-05-01

    The increasing demand for agricultural products and the uncertainty of international food markets has recently drawn the attention of governments and agribusiness firms toward investments in productive agricultural land, mostly in the developing world. The targeted countries are typically located in regions that have remained only marginally utilized because of lack of modern technology. It is expected that in the long run large scale land acquisitions (LSLAs) for commercial farming will bring the technology required to close the existing crops yield gaps. While the extent of the acquired land and the associated appropriation of freshwater resources have been investigated in detail, the amount of food this land can produce and the number of people it could feed still need to be quantified. Here we use a unique dataset of land deals to provide a global quantitative assessment of the rates of crop and food appropriation potentially associated with LSLAs. We show how up to 300-550 million people could be fed by crops grown in the acquired land, should these investments in agriculture improve crop production and close the yield gap. In contrast, about 190-370 million people could be supported by this land without closing of the yield gap. These numbers raise some concern because the food produced in the acquired land is typically exported to other regions, while the target countries exhibit high levels of malnourishment. Conversely, if used for domestic consumption, the crops harvested in the acquired land could ensure food security to the local populations.

  8. Large scale structure of the sun's corona

    NASA Astrophysics Data System (ADS)

    Kundu, Mukul R.

    Results concerning the large-scale structure of the solar corona obtained by observations at meter-decameter wavelengths are reviewed. Coronal holes observed on the disk at multiple frequencies show the radial and azimuthal geometry of the hole. At the base of the hole there is good correspondence to the chromospheric signature in He I 10,830 A, but at greater heights the hole may show departures from symmetry. Two-dimensional imaging of weak-type III bursts simultaneously with the HAO SMM coronagraph/polarimeter measurements indicate that these bursts occur along elongated features emanating from the quiet sun, corresponding in position angle to the bright coronal streamers. It is shown that the densest regions of streamers and the regions of maximum intensity of type II bursts coincide closely. Non-flare-associated type II/type IV bursts associated with coronal streamer disruption events are studied along with correlated type II burst emissions originating from distant centers on the sun.

  9. Large-scale carbon fiber tests

    NASA Technical Reports Server (NTRS)

    Pride, R. A.

    1980-01-01

    A realistic release of carbon fibers was established by burning a minimum of 45 kg of carbon fiber composite aircraft structural components in each of five large scale, outdoor aviation jet fuel fire tests. This release was quantified by several independent assessments with various instruments developed specifically for these tests. The most likely values for the mass of single carbon fibers released ranged from 0.2 percent of the initial mass of carbon fiber for the source tests (zero wind velocity) to a maximum of 0.6 percent of the initial carbon fiber mass for dissemination tests (5 to 6 m/s wind velocity). Mean fiber lengths for fibers greater than 1 mm in length ranged from 2.5 to 3.5 mm. Mean diameters ranged from 3.6 to 5.3 micrometers which was indicative of significant oxidation. Footprints of downwind dissemination of the fire released fibers were measured to 19.1 km from the fire.

  10. Large-scale clustering of cosmic voids

    NASA Astrophysics Data System (ADS)

    Chan, Kwan Chuen; Hamaus, Nico; Desjacques, Vincent

    2014-11-01

    We study the clustering of voids using N -body simulations and simple theoretical models. The excursion-set formalism describes fairly well the abundance of voids identified with the watershed algorithm, although the void formation threshold required is quite different from the spherical collapse value. The void cross bias bc is measured and its large-scale value is found to be consistent with the peak background split results. A simple fitting formula for bc is found. We model the void auto-power spectrum taking into account the void biasing and exclusion effect. A good fit to the simulation data is obtained for voids with radii ≳30 Mpc h-1 , especially when the void biasing model is extended to 1-loop order. However, the best-fit bias parameters do not agree well with the peak-background results. Being able to fit the void auto-power spectrum is particularly important not only because it is the direct observable in galaxy surveys, but also our method enables us to treat the bias parameters as nuisance parameters, which are sensitive to the techniques used to identify voids.

  11. Large-scale autostereoscopic outdoor display

    NASA Astrophysics Data System (ADS)

    Reitterer, Jörg; Fidler, Franz; Saint Julien-Wallsee, Ferdinand; Schmid, Gerhard; Gartner, Wolfgang; Leeb, Walter; Schmid, Ulrich

    2013-03-01

    State-of-the-art autostereoscopic displays are often limited in size, effective brightness, number of 3D viewing zones, and maximum 3D viewing distances, all of which are mandatory requirements for large-scale outdoor displays. Conventional autostereoscopic indoor concepts like lenticular lenses or parallax barriers cannot simply be adapted for these screens due to the inherent loss of effective resolution and brightness, which would reduce both image quality and sunlight readability. We have developed a modular autostereoscopic multi-view laser display concept with sunlight readable effective brightness, theoretically up to several thousand 3D viewing zones, and maximum 3D viewing distances of up to 60 meters. For proof-of-concept purposes a prototype display with two pixels was realized. Due to various manufacturing tolerances each individual pixel has slightly different optical properties, and hence the 3D image quality of the display has to be calculated stochastically. In this paper we present the corresponding stochastic model, we evaluate the simulation and measurement results of the prototype display, and we calculate the achievable autostereoscopic image quality to be expected for our concept.

  12. Large Scale EOF Analysis of Climate Data

    NASA Astrophysics Data System (ADS)

    Prabhat, M.; Gittens, A.; Kashinath, K.; Cavanaugh, N. R.; Mahoney, M.

    2016-12-01

    We present a distributed approach towards extracting EOFs from 3D climate data. We implement the method in Apache Spark, and process multi-TB sized datasets on O(1000-10,000) cores. We apply this method to latitude-weighted ocean temperature data from CSFR, a 2.2 terabyte-sized data set comprising ocean and subsurface reanalysis measurements collected at 41 levels in the ocean, at 6 hour intervals over 31 years. We extract the first 100 EOFs of this full data set and compare to the EOFs computed simply on the surface temperature field. Our analyses provide evidence of Kelvin and Rossy waves and components of large-scale modes of oscillation including the ENSO and PDO that are not visible in the usual SST EOFs. Further, they provide information on the the most influential parts of the ocean, such as the thermocline, that exist below the surface. Work is ongoing to understand the factors determining the depth-varying spatial patterns observed in the EOFs. We will experiment with weighting schemes to appropriately account for the differing depths of the observations. We also plan to apply the same distributed approach to analysis of analysis of 3D atmospheric climatic data sets, including multiple variables. Because the atmosphere changes on a quicker time-scale than the ocean, we expect that the results will demonstrate an even greater advantage to computing 3D EOFs in lieu of 2D EOFs.

  13. Numerical Modeling for Large Scale Hydrothermal System

    NASA Astrophysics Data System (ADS)

    Sohrabi, Reza; Jansen, Gunnar; Malvoisin, Benjamin; Mazzini, Adriano; Miller, Stephen A.

    2017-04-01

    Moderate-to-high enthalpy systems are driven by multiphase and multicomponent processes, fluid and rock mechanics, and heat transport processes, all of which present challenges in developing realistic numerical models of the underlying physics. The objective of this work is to present an approach, and some initial results, for modeling and understanding dynamics of the birth of large scale hydrothermal systems. Numerical modeling of such complex systems must take into account a variety of coupled thermal, hydraulic, mechanical and chemical processes, which is numerically challenging. To provide first estimates of the behavior of this deep complex systems, geological structures must be constrained, and the fluid dynamics, mechanics and the heat transport need to be investigated in three dimensions. Modeling these processes numerically at adequate resolution and reasonable computation times requires a suite of tools that we are developing and/or utilizing to investigate such systems. Our long-term goal is to develop 3D numerical models, based on a geological models, which couples mechanics with the hydraulics and thermal processes driving hydrothermal system. Our first results from the Lusi hydrothermal system in East Java, Indonesia provide a basis for more sophisticated studies, eventually in 3D, and we introduce a workflow necessary to achieve these objectives. Future work focuses with the aim and parallelization suitable for High Performance Computing (HPC). Such developments are necessary to achieve high-resolution simulations to more fully understand the complex dynamics of hydrothermal systems.

  14. Large scale digital atlases in neuroscience

    NASA Astrophysics Data System (ADS)

    Hawrylycz, M.; Feng, D.; Lau, C.; Kuan, C.; Miller, J.; Dang, C.; Ng, L.

    2014-03-01

    Imaging in neuroscience has revolutionized our current understanding of brain structure, architecture and increasingly its function. Many characteristics of morphology, cell type, and neuronal circuitry have been elucidated through methods of neuroimaging. Combining this data in a meaningful, standardized, and accessible manner is the scope and goal of the digital brain atlas. Digital brain atlases are used today in neuroscience to characterize the spatial organization of neuronal structures, for planning and guidance during neurosurgery, and as a reference for interpreting other data modalities such as gene expression and connectivity data. The field of digital atlases is extensive and in addition to atlases of the human includes high quality brain atlases of the mouse, rat, rhesus macaque, and other model organisms. Using techniques based on histology, structural and functional magnetic resonance imaging as well as gene expression data, modern digital atlases use probabilistic and multimodal techniques, as well as sophisticated visualization software to form an integrated product. Toward this goal, brain atlases form a common coordinate framework for summarizing, accessing, and organizing this knowledge and will undoubtedly remain a key technology in neuroscience in the future. Since the development of its flagship project of a genome wide image-based atlas of the mouse brain, the Allen Institute for Brain Science has used imaging as a primary data modality for many of its large scale atlas projects. We present an overview of Allen Institute digital atlases in neuroscience, with a focus on the challenges and opportunities for image processing and computation.

  15. Relationship of surface O3 to large-scale circulation patterns during two recent winters

    NASA Astrophysics Data System (ADS)

    Mao, Huiting; Talbot, Robert

    2004-03-01

    We demonstrate a direct connection between large-scale circulation patterns and surface O3 using atmospheric observations obtained during winters 2002 and 2003. Measurements at two rural sites in the northeastern U.S. revealed that median mixing ratios of O3 in winter 2003 were increased by up to 80% compared to 2002, and greatly exceeded previous spring annual maximums. To explain this we propose that strong meridional flows in winter 2003 frequently transported O3-rich mid-tropospheric air masses from high latitudes to the northeastern U.S. while cooling regional climate 4.4°C below normal. Our measurements also show that an exceptionally elevated spring O3 maximum occurred in 2003. The impact from this winter enhancement on the levels of O3 and other species during the following months will be largely driven by actual climatic conditions.

  16. Climate variability rather than overstocking causes recent large scale cover changes of Tibetan pastures

    PubMed Central

    Lehnert, L. W.; Wesche, K.; Trachte, K.; Reudenbach, C.; Bendix, J.

    2016-01-01

    The Tibetan Plateau (TP) is a globally important “water tower” that provides water for nearly 40% of the world’s population. This supply function is claimed to be threatened by pasture degradation on the TP and the associated loss of water regulation functions. However, neither potential large scale degradation changes nor their drivers are known. Here, we analyse trends in a high-resolution dataset of grassland cover to determine the interactions among vegetation dynamics, climate change and human impacts on the TP. The results reveal that vegetation changes have regionally different triggers: While the vegetation cover has increased since the year 2000 in the north-eastern part of the TP due to an increase in precipitation, it has declined in the central and western parts of the TP due to rising air temperature and declining precipitation. Increasing livestock numbers as a result of land use changes exacerbated the negative trends but were not their exclusive driver. Thus, we conclude that climate variability instead of overgrazing has been the primary cause for large scale vegetation cover changes on the TP since the new millennium. Since areas of positive and negative changes are almost equal in extent, pasture degradation is not generally proceeding. PMID:27073126

  17. Climate variability rather than overstocking causes recent large scale cover changes of Tibetan pastures

    NASA Astrophysics Data System (ADS)

    Lehnert, L. W.; Wesche, K.; Trachte, K.; Reudenbach, C.; Bendix, J.

    2016-04-01

    The Tibetan Plateau (TP) is a globally important “water tower” that provides water for nearly 40% of the world’s population. This supply function is claimed to be threatened by pasture degradation on the TP and the associated loss of water regulation functions. However, neither potential large scale degradation changes nor their drivers are known. Here, we analyse trends in a high-resolution dataset of grassland cover to determine the interactions among vegetation dynamics, climate change and human impacts on the TP. The results reveal that vegetation changes have regionally different triggers: While the vegetation cover has increased since the year 2000 in the north-eastern part of the TP due to an increase in precipitation, it has declined in the central and western parts of the TP due to rising air temperature and declining precipitation. Increasing livestock numbers as a result of land use changes exacerbated the negative trends but were not their exclusive driver. Thus, we conclude that climate variability instead of overgrazing has been the primary cause for large scale vegetation cover changes on the TP since the new millennium. Since areas of positive and negative changes are almost equal in extent, pasture degradation is not generally proceeding.

  18. Climate variability rather than overstocking causes recent large scale cover changes of Tibetan pastures.

    PubMed

    Lehnert, L W; Wesche, K; Trachte, K; Reudenbach, C; Bendix, J

    2016-04-13

    The Tibetan Plateau (TP) is a globally important "water tower" that provides water for nearly 40% of the world's population. This supply function is claimed to be threatened by pasture degradation on the TP and the associated loss of water regulation functions. However, neither potential large scale degradation changes nor their drivers are known. Here, we analyse trends in a high-resolution dataset of grassland cover to determine the interactions among vegetation dynamics, climate change and human impacts on the TP. The results reveal that vegetation changes have regionally different triggers: While the vegetation cover has increased since the year 2000 in the north-eastern part of the TP due to an increase in precipitation, it has declined in the central and western parts of the TP due to rising air temperature and declining precipitation. Increasing livestock numbers as a result of land use changes exacerbated the negative trends but were not their exclusive driver. Thus, we conclude that climate variability instead of overgrazing has been the primary cause for large scale vegetation cover changes on the TP since the new millennium. Since areas of positive and negative changes are almost equal in extent, pasture degradation is not generally proceeding.

  19. Development of Large-Scale Functional Brain Networks in Children

    PubMed Central

    Supekar, Kaustubh; Musen, Mark; Menon, Vinod

    2009-01-01

    The ontogeny of large-scale functional organization of the human brain is not well understood. Here we use network analysis of intrinsic functional connectivity to characterize the organization of brain networks in 23 children (ages 7–9 y) and 22 young-adults (ages 19–22 y). Comparison of network properties, including path-length, clustering-coefficient, hierarchy, and regional connectivity, revealed that although children and young-adults' brains have similar “small-world” organization at the global level, they differ significantly in hierarchical organization and interregional connectivity. We found that subcortical areas were more strongly connected with primary sensory, association, and paralimbic areas in children, whereas young-adults showed stronger cortico-cortical connectivity between paralimbic, limbic, and association areas. Further, combined analysis of functional connectivity with wiring distance measures derived from white-matter fiber tracking revealed that the development of large-scale brain networks is characterized by weakening of short-range functional connectivity and strengthening of long-range functional connectivity. Importantly, our findings show that the dynamic process of over-connectivity followed by pruning, which rewires connectivity at the neuronal level, also operates at the systems level, helping to reconfigure and rebalance subcortical and paralimbic connectivity in the developing brain. Our study demonstrates the usefulness of network analysis of brain connectivity to elucidate key principles underlying functional brain maturation, paving the way for novel studies of disrupted brain connectivity in neurodevelopmental disorders such as autism. PMID:19621066

  20. Sensitivity technologies for large scale simulation.

    SciTech Connect

    Collis, Samuel Scott; Bartlett, Roscoe Ainsworth; Smith, Thomas Michael; Heinkenschloss, Matthias; Wilcox, Lucas C.; Hill, Judith C.; Ghattas, Omar; Berggren, Martin Olof; Akcelik, Volkan; Ober, Curtis Curry; van Bloemen Waanders, Bart Gustaaf; Keiter, Eric Richard

    2005-01-01

    Sensitivity analysis is critically important to numerous analysis algorithms, including large scale optimization, uncertainty quantification,reduced order modeling, and error estimation. Our research focused on developing tools, algorithms and standard interfaces to facilitate the implementation of sensitivity type analysis into existing code and equally important, the work was focused on ways to increase the visibility of sensitivity analysis. We attempt to accomplish the first objective through the development of hybrid automatic differentiation tools, standard linear algebra interfaces for numerical algorithms, time domain decomposition algorithms and two level Newton methods. We attempt to accomplish the second goal by presenting the results of several case studies in which direct sensitivities and adjoint methods have been effectively applied, in addition to an investigation of h-p adaptivity using adjoint based a posteriori error estimation. A mathematical overview is provided of direct sensitivities and adjoint methods for both steady state and transient simulations. Two case studies are presented to demonstrate the utility of these methods. A direct sensitivity method is implemented to solve a source inversion problem for steady state internal flows subject to convection diffusion. Real time performance is achieved using novel decomposition into offline and online calculations. Adjoint methods are used to reconstruct initial conditions of a contamination event in an external flow. We demonstrate an adjoint based transient solution. In addition, we investigated time domain decomposition algorithms in an attempt to improve the efficiency of transient simulations. Because derivative calculations are at the root of sensitivity calculations, we have developed hybrid automatic differentiation methods and implemented this approach for shape optimization for gas dynamics using the Euler equations. The hybrid automatic differentiation method was applied to a first

  1. Large-scale coherent structures as drivers of combustion instability

    SciTech Connect

    Schadow, K.C.; Gutmark, E.; Parr, T.P.; Parr, D.M.; Wilson, K.J.

    1987-06-01

    The role of flow coherent structures as drivers of combustion instabilities in a dump combustor was studied. Results of nonreacting tests in air and water flows as well as combustion experiments in a diffusion flame and dump combustor are discussed to provide insight into the generation process of large-scale structures in the combustor flow and their interaction with the combustion process. It is shown that the flow structures, or vortices, are formed by interaction between the flow instabilities and the chamber acoustic resonance. When these vortices dominate the reacting flow, the combustion is confined to their cores, leading to periodic heat release, which may result in the driving of high amplitude pressure oscillations. These oscillations are typical to the occurrence of combustion instabilities for certain operating conditions. The basic understanding of the interaction between flow dynamics and the combustion process opens up the possibility for rational control of combustion-induced pressure oscillations. 42 references.

  2. Large Scale Flame Spread Environmental Characterization Testing

    NASA Technical Reports Server (NTRS)

    Clayman, Lauren K.; Olson, Sandra L.; Gokoghi, Suleyman A.; Brooker, John E.; Ferkul, Paul V.; Kacher, Henry F.

    2013-01-01

    Under the Advanced Exploration Systems (AES) Spacecraft Fire Safety Demonstration Project (SFSDP), as a risk mitigation activity in support of the development of a large-scale fire demonstration experiment in microgravity, flame-spread tests were conducted in normal gravity on thin, cellulose-based fuels in a sealed chamber. The primary objective of the tests was to measure pressure rise in a chamber as sample material, burning direction (upward/downward), total heat release, heat release rate, and heat loss mechanisms were varied between tests. A Design of Experiments (DOE) method was imposed to produce an array of tests from a fixed set of constraints and a coupled response model was developed. Supplementary tests were run without experimental design to additionally vary select parameters such as initial chamber pressure. The starting chamber pressure for each test was set below atmospheric to prevent chamber overpressure. Bottom ignition, or upward propagating burns, produced rapid acceleratory turbulent flame spread. Pressure rise in the chamber increases as the amount of fuel burned increases mainly because of the larger amount of heat generation and, to a much smaller extent, due to the increase in gaseous number of moles. Top ignition, or downward propagating burns, produced a steady flame spread with a very small flat flame across the burning edge. Steady-state pressure is achieved during downward flame spread as the pressure rises and plateaus. This indicates that the heat generation by the flame matches the heat loss to surroundings during the longer, slower downward burns. One heat loss mechanism included mounting a heat exchanger directly above the burning sample in the path of the plume to act as a heat sink and more efficiently dissipate the heat due to the combustion event. This proved an effective means for chamber overpressure mitigation for those tests producing the most total heat release and thusly was determined to be a feasible mitigation

  3. Creation of the dam for the No. 2 Kambaratinskaya HPP by large-scale blasting: analysis of planning experience and lessons learned

    SciTech Connect

    Shuifer, M. I.; Argal, E. S.

    2012-05-15

    Results of complex instrument observations and video taping during large-scale blasts detonated for creation of the dam at the No. 2 Kambaratinskaya HPP on the Naryn River in the Kyrgyz Republic are analyzed. Tests of the energy effectiveness of the explosives are evaluated, characteristics of LSB manifestations in seismic and air waves are revealed, and the shaping and movement of the rock mass are examined. A methodological analysis of the planning and production of the LSB is given.

  4. Synchronization of coupled large-scale Boolean networks

    SciTech Connect

    Li, Fangfei

    2014-03-15

    This paper investigates the complete synchronization and partial synchronization of two large-scale Boolean networks. First, the aggregation algorithm towards large-scale Boolean network is reviewed. Second, the aggregation algorithm is applied to study the complete synchronization and partial synchronization of large-scale Boolean networks. Finally, an illustrative example is presented to show the efficiency of the proposed results.

  5. The School Principal's Role in Large-Scale Assessment

    ERIC Educational Resources Information Center

    Newton, Paul; Tunison, Scott; Viczko, Melody

    2010-01-01

    This paper reports on an interpretive study in which 25 elementary principals were asked about their assessment knowledge, the use of large-scale assessments in their schools, and principals' perceptions on their roles with respect to large-scale assessments. Principals in this study suggested that the current context of large-scale assessment and…

  6. Synchronization of coupled large-scale Boolean networks

    NASA Astrophysics Data System (ADS)

    Li, Fangfei

    2014-03-01

    This paper investigates the complete synchronization and partial synchronization of two large-scale Boolean networks. First, the aggregation algorithm towards large-scale Boolean network is reviewed. Second, the aggregation algorithm is applied to study the complete synchronization and partial synchronization of large-scale Boolean networks. Finally, an illustrative example is presented to show the efficiency of the proposed results.

  7. Hierarchical features of large-scale cortical connectivity

    NASA Astrophysics Data System (ADS)

    da F. Costa, L.; Sporns, O.

    2005-12-01

    The analysis of complex networks has revealed patterns of organization in a variety of natural and artificial systems, including neuronal networks of the brain at multiple scales. In this paper, we describe a novel analysis of the large-scale connectivity between regions of the mammalian cerebral cortex, utilizing a set of hierarchical measurements proposed recently. We examine previously identified functional clusters of brain regions in macaque visual cortex and cat cortex and find significant differences between such clusters in terms of several hierarchical measures, revealing differences in how these clusters are embedded in the overall cortical architecture. For example, the ventral cluster of visual cortex maintains structurally more segregated, less divergent connections than the dorsal cluster, which may point to functionally different roles of their constituent brain regions.

  8. Safety aspects of large-scale combustion of hydrogen

    SciTech Connect

    Edeskuty, F.J.; Haugh, J.J.; Thompson, R.T.

    1986-01-01

    Recent hydrogen-safety investigations have studied the possible large-scale effects from phenomena such as the accumulation of combustible hydrogen-air mixtures in large, confined volumes. Of particular interest are safe methods for the disposal of the hydrogen and the pressures which can arise from its confined combustion. Consequently, tests of the confined combustion of hydrogen-air mixtures were conducted in a 2100 m/sup 3/ volume. These tests show that continuous combustion, as the hydrogen is generated, is a safe method for its disposal. It also has been seen that, for hydrogen concentrations up to 13 vol %, it is possible to predict maximum pressures that can occur upon ignition of premixed hydrogen-air atmospheres. In addition information has been obtained concerning the survivability of the equipment that is needed to recover from an accident involving hydrogen combustion. An accident that involved the inadvertent mixing of hydrogen and oxygen gases in a tube trailer gave evidence that under the proper conditions hydrogen combustion can transit to a detonation. If detonation occurs the pressures which can be experienced are much higher although short in duration.

  9. Large-Scale Spacecraft Fire Safety Tests

    NASA Technical Reports Server (NTRS)

    Urban, David; Ruff, Gary A.; Ferkul, Paul V.; Olson, Sandra; Fernandez-Pello, A. Carlos; T'ien, James S.; Torero, Jose L.; Cowlard, Adam J.; Rouvreau, Sebastien; Minster, Olivier; hide

    2014-01-01

    An international collaborative program is underway to address open issues in spacecraft fire safety. Because of limited access to long-term low-gravity conditions and the small volume generally allotted for these experiments, there have been relatively few experiments that directly study spacecraft fire safety under low-gravity conditions. Furthermore, none of these experiments have studied sample sizes and environment conditions typical of those expected in a spacecraft fire. The major constraint has been the size of the sample, with prior experiments limited to samples of the order of 10 cm in length and width or smaller. This lack of experimental data forces spacecraft designers to base their designs and safety precautions on 1-g understanding of flame spread, fire detection, and suppression. However, low-gravity combustion research has demonstrated substantial differences in flame behavior in low-gravity. This, combined with the differences caused by the confined spacecraft environment, necessitates practical scale spacecraft fire safety research to mitigate risks for future space missions. To address this issue, a large-scale spacecraft fire experiment is under development by NASA and an international team of investigators. This poster presents the objectives, status, and concept of this collaborative international project (Saffire). The project plan is to conduct fire safety experiments on three sequential flights of an unmanned ISS re-supply spacecraft (the Orbital Cygnus vehicle) after they have completed their delivery of cargo to the ISS and have begun their return journeys to earth. On two flights (Saffire-1 and Saffire-3), the experiment will consist of a flame spread test involving a meter-scale sample ignited in the pressurized volume of the spacecraft and allowed to burn to completion while measurements are made. On one of the flights (Saffire-2), 9 smaller (5 x 30 cm) samples will be tested to evaluate NASAs material flammability screening tests

  10. Large scale simulations of Brownian suspensions

    NASA Astrophysics Data System (ADS)

    Viera, Marc Nathaniel

    Particle suspensions occur in a wide variety of natural and engineering materials. Some examples are colloids, polymers, paints, and slurries. These materials exhibit complex behavior owing to the forces which act among the particles and are transmitted through the fluid medium. Depending on the application, particle sizes range from large macroscopic molecules of 100mum to smaller colloidal particles in the range of 10nm to 1mum. Particles of this size interact though interparticle forces such as electrostatic and van der Waals, as well as hydrodynamic forces transmitted through the fluid medium. Additionally, the particles are subjected to random thermal fluctuations in the fluid giving rise to Brownian motion. The central objective of our research is to develop efficient numerical algorithms for the large scale dynamic simulation of particle suspensions. While previous methods have incurred a computational cost of O(N3), where N is the number of particles, we have developed a novel algorithm capable of solving this problem in O(N ln N) operations. This has allowed us to perform dynamic simulations with up to 64,000 particles and Monte Carlo realizations of up to 1 million particles. Our algorithm follows a Stokesian dynamics formulation by evaluating many-body hydrodynamic interactions using a far-field multipole expansion combined with a near-field lubrication correction. The breakthrough O(N ln N) scaling is obtained by employing a Particle-Mesh-Ewald (PME) approach whereby near-field interactions are evaluated directly and far-field interactions are evaluated using a grid based velocity computed with FFT's. This approach is readily extended to include the effects of Brownian motion. For interacting particles, the fluctuation-dissipation theorem requires that the individual Brownian forces satisfy a correlation based on the N body resistance tensor R. The accurate modeling of these forces requires the computation of a matrix square root R 1/2 for matrices up

  11. Natamycin content and quality evaluation of yoghurt from small- and large-scale brands in Turkey.

    PubMed

    Dervisoglu, Muhammet; Gul, Osman; Aydemir, Oguz; Yazici, Fehmi; Kahyaoglu, Talip

    2014-01-01

    In this study, the presence of natamycin and quality parameters of yoghurt samples manufactured by small- and large-scale dairy firms in Turkey were investigated. Physicochemical and microbiological results revealed that, except Lactobacillus bulgaricus and Streptococcus thermophilus counts, the majority of the yoghurts manufactured by small-scale dairy firms were found to be out of the limits. Natamycin was detected in 31 and 2 yoghurt samples from small- and large-scale brands, respectively. The levels of natamycin in small-scale brand yoghurts were higher than those in large-scale brand yoghurts. Of the analysed samples, 42.3% did not comply with the Turkish Food Codex.

  12. Very large-scale motions in a turbulent pipe flow

    NASA Astrophysics Data System (ADS)

    Lee, Jae Hwa; Jang, Seong Jae; Sung, Hyung Jin

    2011-11-01

    Direct numerical simulation of a turbulent pipe flow with ReD=35000 was performed to investigate the spatially coherent structures associated with very large-scale motions. The corresponding friction Reynolds number, based on pipe radius R, is R+=934, and the computational domain length is 30 R. The computed mean flow statistics agree well with previous DNS data at ReD=44000 and 24000. Inspection of the instantaneous fields and two-point correlation of the streamwise velocity fluctuations showed that the very long meandering motions exceeding 25R exist in logarithmic and wake regions, and the streamwise length scale is almost linearly increased up to y/R ~0.3, while the structures in the turbulent boundary layer only reach up to the edge of the log-layer. Time-resolved instantaneous fields revealed that the hairpin packet-like structures grow with continuous stretching along the streamwise direction and create the very large-scale structures with meandering in the spanwise direction, consistent with the previous conceptual model of Kim & Adrian (1999). This work was supported by the Creative Research Initiatives of NRF/MEST of Korea (No. 2011-0000423).

  13. Large-scale network-level processes during entrainment.

    PubMed

    Lithari, Chrysa; Sánchez-García, Carolina; Ruhnau, Philipp; Weisz, Nathan

    2016-03-15

    Visual rhythmic stimulation evokes a robust power increase exactly at the stimulation frequency, the so-called steady-state response (SSR). Localization of visual SSRs normally shows a very focal modulation of power in visual cortex and led to the treatment and interpretation of SSRs as a local phenomenon. Given the brain network dynamics, we hypothesized that SSRs have additional large-scale effects on the brain functional network that can be revealed by means of graph theory. We used rhythmic visual stimulation at a range of frequencies (4-30 Hz), recorded MEG and investigated source level connectivity across the whole brain. Using graph theoretical measures we observed a frequency-unspecific reduction of global density in the alpha band "disconnecting" visual cortex from the rest of the network. Also, a frequency-specific increase of connectivity between occipital cortex and precuneus was found at the stimulation frequency that exhibited the highest resonance (30 Hz). In conclusion, we showed that SSRs dynamically re-organized the brain functional network. These large-scale effects should be taken into account not only when attempting to explain the nature of SSRs, but also when used in various experimental designs. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Large-scale structure of randomly jammed spheres

    NASA Astrophysics Data System (ADS)

    Ikeda, Atsushi; Berthier, Ludovic; Parisi, Giorgio

    2017-05-01

    We numerically analyze the density field of three-dimensional randomly jammed packings of monodisperse soft frictionless spherical particles, paying special attention to fluctuations occurring at large length scales. We study in detail the two-point static structure factor at low wave vectors in Fourier space. We also analyze the nature of the density field in real space by studying the large-distance behavior of the two-point pair correlation function, of density fluctuations in subsystems of increasing sizes, and of the direct correlation function. We show that such real space analysis can be greatly improved by introducing a coarse-grained density field to disentangle genuine large-scale correlations from purely local effects. Our results confirm that both Fourier and real space signatures of vanishing density fluctuations at large scale are absent, indicating that randomly jammed packings are not hyperuniform. In addition, we establish that the pair correlation function displays a surprisingly complex structure at large distances, which is however not compatible with the long-range negative correlation of hyperuniform systems but fully compatible with an analytic form for the structure factor. This implies that the direct correlation function is short ranged, as we also demonstrate directly. Our results reveal that density fluctuations in jammed packings do not follow the behavior expected for random hyperuniform materials, but display instead a more complex behavior.

  15. A study of synthetic large scales in turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Duvvuri, Subrahmanyam; Luhar, Mitul; Barnard, Casey; Sheplak, Mark; McKeon, Beverley

    2013-11-01

    Synthetic spanwise-constant spatio-temporal disturbances are excited in a turbulent boundary layer through a spatially impulsive patch of dynamic wall-roughness. The downstream flow response is studied through hot wire anemometry, pressure measurements at the wall and direct measurements of wall-shear-stress made using a novel micro-machined capacitive floating element sensor. These measurements are phase-locked to the input perturbation to recover the synthetic large-scale motion and characterize its structure and wall signature. The phase relationship between the synthetic large scale and small scale activity provides further insights into the apparent amplitude modulation effect between them, and the dynamics of wall-bounded turbulent flows in general. Results from these experiments will be discussed in the context of the critical-layer behavior revealed by the resolvent analysis of McKeon & Sharma (J Fluid Mech, 2010), and compared with similar earlier work by Jacobi & McKeon (J Fluid Mech, 2011). Model predictions are shown to be in broad agreement with experiments. The support of AFOSR grant #FA 9550-12-1-0469, Resnick Institute Graduate Research Fellowship (S.D.) and Sandia Graduate Fellowship (C.B.) are gratefully acknowledged.

  16. Large-scale Stratospheric Transport Processes

    NASA Technical Reports Server (NTRS)

    Plumb, R. Alan

    2003-01-01

    The PI has undertaken a theoretical analysis of the existence and nature of compact tracer-tracer relationships of the kind observed in the stratosphere, augmented with three-dimensional model simulations of stratospheric tracers (the latter being an extension of modeling work the group did during the SOLVE experiment). This work achieves a rigorous theoretical basis for the existence and shape of these relationships, as well as a quantitative theory of their width and evolution, in terms of the joint tracer-tracer PDF distribution. A paper on this work is almost complete and will soon be submitted to Rev. Geophys. We have analyzed lower stratospheric water in simulations with an isentropic-coordinate version of the MATCH transport model which we recently helped to develop. The three-dimensional structure of lower stratospheric water, in particular, attracted our attention: dry air is, below about 400K potential temperature, localized in the regions of the west Pacific and equatorial South America. We have been analyzing air trajectories to determine how air passes through the tropopause cold trap. This work is now being completed, and a paper will be submitted to Geophys. Res. Lett. before the end of summer. We are continuing to perform experiments with the 'MATCH' CTM, in both sigma- and entropy-coordinate forms. We earlier found (in collaboration with Dr Natalie Mahowald, and as part of an NSF-funded project) that switching to isentropic coordinates made a substantial improvement to the simulation of the age of stratospheric air. We are now running experiments with near-tropopause sources in both versions of the model, to see if and to what extent the simulation of stratosphere-troposphere transport is dependent on the model coordinate. Personnel Research is supervised by the PI, Prof. Alan Plumb. Mr William Heres conducts the tracer modeling work and performs other modeling tasks. Two graduate students, Ms Irene Lee and Mr Michael Ring, have been participating

  17. Population generation for large-scale simulation

    NASA Astrophysics Data System (ADS)

    Hannon, Andrew C.; King, Gary; Morrison, Clayton; Galstyan, Aram; Cohen, Paul

    2005-05-01

    Computer simulation is used to research phenomena ranging from the structure of the space-time continuum to population genetics and future combat.1-3 Multi-agent simulations in particular are now commonplace in many fields.4, 5 By modeling populations whose complex behavior emerges from individual interactions, these simulations help to answer questions about effects where closed form solutions are difficult to solve or impossible to derive.6 To be useful, simulations must accurately model the relevant aspects of the underlying domain. In multi-agent simulation, this means that the modeling must include both the agents and their relationships. Typically, each agent can be modeled as a set of attributes drawn from various distributions (e.g., height, morale, intelligence and so forth). Though these can interact - for example, agent height is related to agent weight - they are usually independent. Modeling relations between agents, on the other hand, adds a new layer of complexity, and tools from graph theory and social network analysis are finding increasing application.7, 8 Recognizing the role and proper use of these techniques, however, remains the subject of ongoing research. We recently encountered these complexities while building large scale social simulations.9-11 One of these, the Hats Simulator, is designed to be a lightweight proxy for intelligence analysis problems. Hats models a "society in a box" consisting of many simple agents, called hats. Hats gets its name from the classic spaghetti western, in which the heroes and villains are known by the color of the hats they wear. The Hats society also has its heroes and villains, but the challenge is to identify which color hat they should be wearing based on how they behave. There are three types of hats: benign hats, known terrorists, and covert terrorists. Covert terrorists look just like benign hats but act like terrorists. Population structure can make covert hat identification significantly more

  18. The galaxy distribution and the large-scale structure of the universe

    NASA Technical Reports Server (NTRS)

    Geller, M. J.; Kurtz, M. J.; De Lapparent, V.

    1986-01-01

    Data related to the large-scale galaxy distribution are discussed. The galaxy counts of Shane-Wirtanen (1967) are analyzed; the effects of residual systematic errors on the galaxy distribution measurements are considered. The analysis reveals that the Shane-Wirtanen data are not applicable to the study of large-scale structure. A model which is capable of measuring galaxy correlation functions on scales greater than about 10 Mpc is evaluated.

  19. Training pilots to visualize large-scale spatial relationships in a stereoscopic display

    NASA Astrophysics Data System (ADS)

    Mowafy, Lyn; Thurman, Richard A.

    1993-09-01

    In flying air intercepts, a fighter pilot must plan most tactical maneuvers well before acquiring visual contact. Success depends on one's ability to create an accurate mental model of dynamic 3D spatial relationships from 2D information displays. This paper describes an Air Force training program for visualizing large- scale dynamic spatial relationships. It employs a low-cost, portable system in which the helmet-mounted stereoscopic display reveals the unobservable spatial relationships in a virtual world. We also describe recent research which evaluated the training effectiveness of this interactive three-dimensional display technology. Three display formats have been tested for their impact on the pilot's ability to encode, retain and recall functionally relevant spatial information: (1) a set of 2D orthographic plan views, (2) a flat panel 3D perspective rendering and, (3) the 3D virtual environment. Trainees flew specified air intercepts and reviewed the flights in one of the display formats. Experts' trajectories were provided for comparison. After training, flight performance was tested on a new set of scenarios. Differences in pilots' performances under the three formats suggest how virtual environment displays can aid people learning to visualize 3D spatial relationships from 2D information.

  20. Sheltering in buildings from large-scale outdoor releases

    SciTech Connect

    Chan, W.R.; Price, P.N.; Gadgil, A.J.

    2004-06-01

    Intentional or accidental large-scale airborne toxic release (e.g. terrorist attacks or industrial accidents) can cause severe harm to nearby communities. Under these circumstances, taking shelter in buildings can be an effective emergency response strategy. Some examples where shelter-in-place was successful at preventing injuries and casualties have been documented [1, 2]. As public education and preparedness are vital to ensure the success of an emergency response, many agencies have prepared documents advising the public on what to do during and after sheltering [3, 4, 5]. In this document, we will focus on the role buildings play in providing protection to occupants. The conclusions to this article are: (1) Under most circumstances, shelter-in-place is an effective response against large-scale outdoor releases. This is particularly true for release of short duration (a few hours or less) and chemicals that exhibit non-linear dose-response characteristics. (2) The building envelope not only restricts the outdoor-indoor air exchange, but can also filter some biological or even chemical agents. Once indoors, the toxic materials can deposit or sorb onto indoor surfaces. All these processes contribute to the effectiveness of shelter-in-place. (3) Tightening of building envelope and improved filtration can enhance the protection offered by buildings. Common mechanical ventilation system present in most commercial buildings, however, should be turned off and dampers closed when sheltering from an outdoor release. (4) After the passing of the outdoor plume, some residuals will remain indoors. It is therefore important to terminate shelter-in-place to minimize exposure to the toxic materials.

  1. In situ vitrification large-scale operational acceptance test analysis

    SciTech Connect

    Buelt, J.L.; Carter, J.G.

    1986-05-01

    A thermal treatment process is currently under study to provide possible enhancement of in-place stabilization of transuranic and chemically contaminated soil sites. The process is known as in situ vitrification (ISV). In situ vitrification is a remedial action process that destroys solid and liquid organic contaminants and incorporates radionuclides into a glass-like material that renders contaminants substantially less mobile and less likely to impact the environment. A large-scale operational acceptance test (LSOAT) was recently completed in which more than 180 t of vitrified soil were produced in each of three adjacent settings. The LSOAT demonstrated that the process conforms to the functional design criteria necessary for the large-scale radioactive test (LSRT) to be conducted following verification of the performance capabilities of the process. The energy requirements and vitrified block size, shape, and mass are sufficiently equivalent to those predicted by the ISV mathematical model to confirm its usefulness as a predictive tool. The LSOAT demonstrated an electrode replacement technique, which can be used if an electrode fails, and techniques have been identified to minimize air oxidation, thereby extending electrode life. A statistical analysis was employed during the LSOAT to identify graphite collars and an insulative surface as successful cold cap subsidence techniques. The LSOAT also showed that even under worst-case conditions, the off-gas system exceeds the flow requirements necessary to maintain a negative pressure on the hood covering the area being vitrified. The retention of simulated radionuclides and chemicals in the soil and off-gas system exceeds requirements so that projected emissions are one to two orders of magnitude below the maximum permissible concentrations of contaminants at the stack.

  2. Large-scale and global features of complex genomic signals

    NASA Astrophysics Data System (ADS)

    Cristea, Paul D.

    2003-10-01

    The paper briefly reviews the methodology of the symbolic nucleic sequence conversion into genomic signals and presents large scale and global features of the resulting genomic signals. Whole chromosomes or whole genomes are converted into complex signals and phase analysis is performed. The phase, cumulated phase and unwrapped phase of genomic signals are studied as tools for revealing important features of to the first and second order statistics of nucleotide distribution along DNA strands. It is shown that the unwrapped phase displays an almost linear variation along whole chromosomes. The property holds for all the investigated genomes, being shared by both prokaryotes and eukaryotes, while the magnitude and sign of the unwrapped phase slope is specific for each taxon and chromosome. The comparison between the behavior of the cumulated phase and of the unwrapped phase across the putative origins and termini of the replichores suggests a model of the 'patchy' structure of the chromosomes.

  3. Successful Physician Training Program for Large Scale EMR Implementation

    PubMed Central

    Stevens, L.A.; Mailes, E.S.; Goad, B.A.; Longhurst, C.A.

    2015-01-01

    Summary End-user training is an essential element of electronic medical record (EMR) implementation and frequently suffers from minimal institutional investment. In addition, discussion of successful EMR training programs for physicians is limited in the literature. The authors describe a successful physician-training program at Stanford Children’s Health as part of a large scale EMR implementation. Evaluations of classroom training, obtained at the conclusion of each class, revealed high physician satisfaction with the program. Free-text comments from learners focused on duration and timing of training, the learning environment, quality of the instructors, and specificity of training to their role or department. Based upon participant feedback and institutional experience, best practice recommendations, including physician engagement, curricular design, and assessment of proficiency and recognition, are suggested for future provider EMR training programs. The authors strongly recommend the creation of coursework to group providers by common workflow. PMID:25848415

  4. Unfolding large-scale online collaborative human dynamics

    PubMed Central

    Zha, Yilong; Zhou, Tao; Zhou, Changsong

    2016-01-01

    Large-scale interacting human activities underlie all social and economic phenomena, but quantitative understanding of regular patterns and mechanism is very challenging and still rare. Self-organized online collaborative activities with a precise record of event timing provide unprecedented opportunity. Our empirical analysis of the history of millions of updates in Wikipedia shows a universal double–power-law distribution of time intervals between consecutive updates of an article. We then propose a generic model to unfold collaborative human activities into three modules: (i) individual behavior characterized by Poissonian initiation of an action, (ii) human interaction captured by a cascading response to previous actions with a power-law waiting time, and (iii) population growth due to the increasing number of interacting individuals. This unfolding allows us to obtain an analytical formula that is fully supported by the universal patterns in empirical data. Our modeling approaches reveal “simplicity” beyond complex interacting human activities. PMID:27911766

  5. The large scale dust distribution in the inner galaxy

    NASA Technical Reports Server (NTRS)

    Hauser, M. G.; Dwek, E.; Gezari, D.; Silverberg, R.; Kelsall, T.; Stier, M.; Cheung, L.

    1983-01-01

    Initial results are presented from a new large-scale survey of the first quadrant of the galactic plane at wavelengths of 160, 260, and 300 microns. The submillimeter wavelength emission, interpreted as thermal radiation by dust grains, reveals an optically thin disk of angular width about 0.09 deg (FWHM) with a mean dust temperature of 23 K and significant variation of the dust mass column density. Comparison of the dust column density with the gas column density inferred from CO survey data shows a striking spatial correlation. The mean luminosity per hydrogen atom is found to be 2.5 x 10 to the -30th W/H, implying a radiant energy density in the vicinity of the dust an order of magnitude larger than in the solar neighborhood. The data favor dust in molecular clouds as the dominant submillimeter radiation source.

  6. Design boundaries of large-scale falling particle receivers

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Soo; Kumar, Apurv; Corsi, Clotilde

    2017-06-01

    A free falling particle receiver has been studied to investigate the design boundary of large-scale falling particle receivers. Preliminary receiver geometry and condition of falling particle curtain were scoped according to the nominal receiver capacity (135 MWth), receiver outlet temperature (800 °C) and temperature difference (147 °C) recommended by the research program. Particle volume fraction and solar energy absorptivity were analyzed for two particle sizes (280 µm and 697 µm) in different flow range. The results were then converted to part load efficiency of the receiver. Ray tracing with a scoped receiver design provided the amount of spillage and overall performance of the receiver which comprises multiple cavities with different solar energy inputs. The study revealed and quantified some inherent problems in designing falling particle receivers such as, transmission energy loss caused by low solar energy absorption, efficiency decrease in part load operation, and uneven temperature distribution across falling particle curtain.

  7. Large-scale treeline changes recorded in Siberia

    NASA Astrophysics Data System (ADS)

    Esper, Jan; Schweingruber, Fritz H.

    2004-03-01

    Analysis of a multi-species network of western Siberian ecotone sites revealed pulses of tree invasion into genuine treeless tundra environments in the 1940s and 1950s and after the early 1970s. In addition, increases in radial stem growth synchronous to the late 20th century treeline change are observed. Both treeline changes and growth increases correspond with decadal-scale periods of temperature that are warmer than in any other period since observations started, suggesting - even if indirect - the sensitivity of large-scale treeline changes to this climatic forcing. The mid 20th century recruitment period reported here for the western Siberian network is compared with local findings from Europe and North America suggesting a circumpolar trend perhaps related to climate warming patterns. For western Siberia, the presence of relict stumps, nevertheless, indicates that this present colonization is reoccupying sites that had tree cover earlier in the last millennium.

  8. Multitree Algorithms for Large-Scale Astrostatistics

    NASA Astrophysics Data System (ADS)

    March, William B.; Ozakin, Arkadas; Lee, Dongryeol; Riegel, Ryan; Gray, Alexander G.

    2012-03-01

    this number every week, resulting in billions of objects. At such scales, even linear-time analysis operations present challenges, particularly since statistical analyses are inherently interactive processes, requiring that computations complete within some reasonable human attention span. The quadratic (or worse) runtimes of straightforward implementations become quickly unbearable. Examples of applications. These analysis subroutines occur ubiquitously in astrostatistical work. We list just a few examples. The need to cross-match objects across different catalogs has led to various algorithms, which at some point perform an AllNN computation. 2-point and higher-order spatial correlations for the basis of spatial statistics, and are utilized in astronomy to compare the spatial structures of two datasets, such as an observed sample and a theoretical sample, for example, forming the basis for two-sample hypothesis testing. Friends-of-friends clustering is often used to identify halos in data from astrophysical simulations. Minimum spanning tree properties have also been proposed as statistics of large-scale structure. Comparison of the distributions of different kinds of objects requires accurate density estimation, for which KDE is the overall statistical method of choice. The prediction of redshifts from optical data requires accurate regression, for which kernel regression is a powerful method. The identification of objects of various types in astronomy, such as stars versus galaxies, requires accurate classification, for which KDA is a powerful method. Overview. In this chapter, we will briefly sketch the main ideas behind recent fast algorithms which achieve, for example, linear runtimes for pairwise-distance problems, or similarly dramatic reductions in computational growth. In some cases, the runtime orders for these algorithms are mathematically provable statements, while in others we have only conjectures backed by experimental observations for the time being

  9. Research on human reliability of large-scale chemical production system

    NASA Astrophysics Data System (ADS)

    Miao, Yongchun; Kang, Rongxue

    2017-05-01

    Based on the elaboration of the theoretical basis of large-scale chemical production system and human reliability analysis(HRA), this paper builds the evaluation model of human reliability for large-scale production system by using analytic hierarchy process and fuzzy evaluation method, and deeply understands the importance and the internal mechanism of the human reliability elements in large-scale chemical production system. Moreover, with the specific production system to construct and analyze the model, this paper reveals the correlation between human reliability and the production system, and verifies the validity of the model. The results show that a large-scale chemical production system has a membership degree of 0.360, and its human reliability belongs to the moderate level.

  10. The role of large-scale, extratropical dynamics in climate change

    SciTech Connect

    Shepherd, T.G.

    1994-02-01

    The climate modeling community has focused recently on improving our understanding of certain processes, such as cloud feedbacks and ocean circulation, that are deemed critical to climate-change prediction. Although attention to such processes is warranted, emphasis on these areas has diminished a general appreciation of the role played by the large-scale dynamics of the extratropical atmosphere. Lack of interest in extratropical dynamics may reflect the assumption that these dynamical processes are a non-problem as far as climate modeling is concerned, since general circulation models (GCMs) calculate motions on this scale from first principles. Nevertheless, serious shortcomings in our ability to understand and simulate large-scale dynamics exist. Partly due to a paucity of standard GCM diagnostic calculations of large-scale motions and their transports of heat, momentum, potential vorticity, and moisture, a comprehensive understanding of the role of large-scale dynamics in GCM climate simulations has not been developed. Uncertainties remain in our understanding and simulation of large-scale extratropical dynamics and their interaction with other climatic processes, such as cloud feedbacks, large-scale ocean circulation, moist convection, air-sea interaction and land-surface processes. To address some of these issues, the 17th Stanstead Seminar was convened at Bishop`s University in Lennoxville, Quebec. The purpose of the Seminar was to promote discussion of the role of large-scale extratropical dynamics in global climate change. Abstracts of the talks are included in this volume. On the basis of these talks, several key issues emerged concerning large-scale extratropical dynamics and their climatic role. Individual records are indexed separately for the database.

  11. Probing large-scale structure with radio observations

    NASA Astrophysics Data System (ADS)

    Brown, Shea D.

    This thesis focuses on detecting magnetized relativistic plasma in the intergalactic medium (IGM) of filamentary large-scale structure (LSS) by observing synchrotron emission emitted by structure formation shocks. Little is known about the IGM beyond the largest clusters of galaxies, and synchrotron emission holds enormous promise as a means of probing magnetic fields and relativistic particle populations in these low density regions. I'll first report on observations taken at the Very Large Array and the Westerbork Synthesis Radio Telescope of the diffuse radio source 0809+39. I use these observations to demonstrate that 0809+39 is likely the first "radio relic" discovered that is not associated with a rich |"X-ray emitting cluster of galaxies. I then demonstrate that an unconventional reprocessing of the NVSS polarization survey can reveal structures on scales from 15' to hundreds of degrees, far larger than the nominal shortest-baseline scale. This yields hundreds of new diffuse sources as well as the identification of a new nearby galactic loop . These observations also highlight the major obstacle that diffuse galactic foreground emission poses for any search for large-scale, low surface- brightness extragalactic emission. I therefore explore the cross-correlation of diffuse radio emission with optical tracers of LSS as a means of statistically detecting the presence of magnetic fields in the low-density regions of the cosmic web. This initial study with the Bonn 1.4 GHz radio survey yields an upper limit of 0.2 mG for large-scale filament magnetic fields. Finally, I report on new Green Bank Telescope and Westerbork Synthesis Radio Telescope observations of the famous Coma cluster of galaxies. Major findings include an extension to the Coma cluster radio relic source 1253+275 which makes its total extent ~2 Mpc, as well as a sharp edge, or "front", on the Western side of the radio halo which shows a strong correlation with merger activity associated with an

  12. Interaction of a cumulus cloud ensemble with the large-scale environment

    NASA Technical Reports Server (NTRS)

    Arakawa, A.; Schubert, W.

    1973-01-01

    Large-scale modification of the environment by cumulus clouds is discussed in terms of entrainment, detrainment, evaporation, and subsidence. Drying, warming, and condensation by vertical displacement of air are considered as well as budget equations for mass, static energy, water vapor, and liquid water.

  13. GAS MIXING ANALYSIS IN A LARGE-SCALED SALTSTONE FACILITY

    SciTech Connect

    Lee, S

    2008-05-28

    Computational fluid dynamics (CFD) methods have been used to estimate the flow patterns mainly driven by temperature gradients inside vapor space in a large-scaled Saltstone vault facility at Savannah River site (SRS). The purpose of this work is to examine the gas motions inside the vapor space under the current vault configurations by taking a three-dimensional transient momentum-energy coupled approach for the vapor space domain of the vault. The modeling calculations were based on prototypic vault geometry and expected normal operating conditions as defined by Waste Solidification Engineering. The modeling analysis was focused on the air flow patterns near the ventilated corner zones of the vapor space inside the Saltstone vault. The turbulence behavior and natural convection mechanism used in the present model were benchmarked against the literature information and theoretical results. The verified model was applied to the Saltstone vault geometry for the transient assessment of the air flow patterns inside the vapor space of the vault region using the potential operating conditions. The baseline model considered two cases for the estimations of the flow patterns within the vapor space. One is the reference nominal case. The other is for the negative temperature gradient between the roof inner and top grout surface temperatures intended for the potential bounding condition. The flow patterns of the vapor space calculated by the CFD model demonstrate that the ambient air comes into the vapor space of the vault through the lower-end ventilation hole, and it gets heated up by the Benard-cell type circulation before leaving the vault via the higher-end ventilation hole. The calculated results are consistent with the literature information. Detailed results and the cases considered in the calculations will be discussed here.

  14. Biomimetic gas sensors for large-scale drying of wood particles

    NASA Astrophysics Data System (ADS)

    Paczkowski, Sebastian; Sauerwald, Tilman; Weiß, Alexander; Bauer, Marco; Kohl, Dieter; Schütz, Stefan

    2011-04-01

    The sensitivity and selectivity of insect antennae are evolutionary tuned to specific needs of the insect. The Australian pyrophilic beetle Merimna atrata needs freshly heated wood to bring up its offspring and, consequently, shows a very high sensitivity to volatiles specific for wood-fires and heated wood. Volatile organic compounds released by wood particles heated at different temperatures were collected. Parallel trace analytical examination and antennal responses of the pyrophilic beetles to volatiles released by the wood reveal a highly differentiated detection system of these insects for early and late products of wood fires. This enabled a selection of marker compounds used by insects since several million years for the discrimination of different stages of wood fires. In the industrial production of engineered wood such as particle boards, wooden particles are dried in large-scale high temperature dryers. Air temperatures between 150-600°C are essential for the required material flow in the particle board production. Despite the resulting energy-efficiency of high temperature drying, high temperatures are avoided because of the increased risk of spontaneous combustion. Losses in productivity caused by fire have a strong impact on the whole production system. In order to raise the drying temperature without risking a fire, it is important to develop a monitoring system that will reliably detect early fire stages by their characteristic volatile pattern. Thus, perception filters and evaluation algorithms of pyrophilic insects can provide blue prints for biomimetic gas sensors for large-scale drying of wood particles. Especially tungsten oxide sensor elements exhibit a high sensitivity to some of the key substances. Their high sensitivity and selectivity to terpenes and aldehydes in combination with high sensitivity and selectivity of tin oxide sensor elements to hydroxylated and phenolic compounds, both showing low cross-reactivity with water and carbon

  15. Using Web-Based Testing for Large-Scale Assessment.

    ERIC Educational Resources Information Center

    Hamilton, Laura S.; Klein, Stephen P.; Lorie, William

    This paper describes an approach to large-scale assessment that uses tests that are delivered to students over the Internet and that are tailored (adapted) to each student's own level of proficiency. A brief background on large-scale assessment is followed by a description of this new technology and an example. Issues that need to be investigated…

  16. SALSA - a Sectional Aerosol module for Large Scale Applications

    NASA Astrophysics Data System (ADS)

    Kokkola, H.; Korhonen, H.; Lehtinen, K. E. J.; Makkonen, R.; Asmi, A.; Järvenoja, S.; Anttila, T.; Partanen, A.-I.; Kulmala, M.; Järvinen, H.; Laaksonen, A.; Kerminen, V.-M.

    2007-12-01

    The sectional aerosol module SALSA is introduced. The model has been designed to be implemented in large scale climate models, which require both accuracy and computational efficiency. We have used multiple methods to reduce the computational burden of different aerosol processes to optimize the model performance without losing physical features relevant to problematics of climate importance. The optimizations include limiting the chemical compounds and physical processes available in different size sections of aerosol particles; division of the size distribution into size sections using size sections of variable width depending on the sensitivity of microphysical processing to the particles sizes; the total amount of size sections to describe the size distribution is kept to the minimum; furthermore, only the relevant microphysical processes affecting each size section are calculated. The ability of the module to describe different microphysical processes was evaluated against explicit microphysical models and several microphysical models used in air quality models. The results from the current module show good consistency when compared to more explicit models. Also, the module was used to simulate a new particle formation event typical in highly polluted conditions with comparable results to a more explicit model setup.

  17. SALSA - a Sectional Aerosol module for Large Scale Applications

    NASA Astrophysics Data System (ADS)

    Kokkola, H.; Korhonen, H.; Lehtinen, K. E. J.; Makkonen, R.; Asmi, A.; Järvenoja, S.; Anttila, T.; Partanen, A.-I.; Kulmala, M.; Järvinen, H.; Laaksonen, A.; Kerminen, V.-M.

    2008-05-01

    The sectional aerosol module SALSA is introduced. The model has been designed to be implemented in large scale climate models, which require both accuracy and computational efficiency. We have used multiple methods to reduce the computational burden of different aerosol processes to optimize the model performance without losing physical features relevant to problematics of climate importance. The optimizations include limiting the chemical compounds and physical processes available in different size sections of aerosol particles; division of the size distribution into size sections using size sections of variable width depending on the sensitivity of microphysical processing to the particles sizes; the total amount of size sections to describe the size distribution is kept to the minimum; furthermore, only the relevant microphysical processes affecting each size section are calculated. The ability of the module to describe different microphysical processes was evaluated against explicit microphysical models and several microphysical models used in air quality models. The results from the current module show good consistency when compared to more explicit models. Also, the module was used to simulate a new particle formation event typical in highly polluted conditions with comparable results to more explicit model setup.

  18. Identification of large-scale hydraulic conductivity trends and the influence of trends on contaminant transport

    NASA Astrophysics Data System (ADS)

    Eggleston, Jack; Rojstaczer, Stuart

    1998-09-01

    We examine the identification of large-scale spatial trends in hydraulic conductivity and the influence of these trends on contaminant transport. Using three different trend identification methods, polynomial regression and Kaiman filtering, which fit smooth functions, and hydrofacies delineation, which constructs a geologic model, we try to identify the hydraulic conductivity patterns controlling solute transport in a heavily sampled heterogeneous aquifer on Columbus Air Force Base, Mississippi. Even with >2400 hydraulic conductivity measurements, unambiguous determination of large-scale trends is not possible. None of the estimated hydraulic conductivity trends gives transport simulations that reproduce the observed non-Gaussian transport behavior. Hydrofacies delineation and Kalman filtering give the best results. While the influence of the identified large-scale trends on advective transpo) hydraulic conductivity structures.

  19. Distribution probability of large-scale landslides in central Nepal

    NASA Astrophysics Data System (ADS)

    Timilsina, Manita; Bhandary, Netra P.; Dahal, Ranjan Kumar; Yatabe, Ryuichi

    2014-12-01

    Large-scale landslides in the Himalaya are defined as huge, deep-seated landslide masses that occurred in the geological past. They are widely distributed in the Nepal Himalaya. The steep topography and high local relief provide high potential for such failures, whereas the dynamic geology and adverse climatic conditions play a key role in the occurrence and reactivation of such landslides. The major geoscientific problems related with such large-scale landslides are 1) difficulties in their identification and delineation, 2) sources of small-scale failures, and 3) reactivation. Only a few scientific publications have been published concerning large-scale landslides in Nepal. In this context, the identification and quantification of large-scale landslides and their potential distribution are crucial. Therefore, this study explores the distribution of large-scale landslides in the Lesser Himalaya. It provides simple guidelines to identify large-scale landslides based on their typical characteristics and using a 3D schematic diagram. Based on the spatial distribution of landslides, geomorphological/geological parameters and logistic regression, an equation of large-scale landslide distribution is also derived. The equation is validated by applying it to another area. For the new area, the area under the receiver operating curve of the landslide distribution probability in the new area is 0.699, and a distribution probability value could explain > 65% of existing landslides. Therefore, the regression equation can be applied to areas of the Lesser Himalaya of central Nepal with similar geological and geomorphological conditions.

  20. Large-scale epitaxial growth kinetics of graphene: A kinetic Monte Carlo study

    SciTech Connect

    Jiang, Huijun; Hou, Zhonghuai

    2015-08-28

    Epitaxial growth via chemical vapor deposition is considered to be the most promising way towards synthesizing large area graphene with high quality. However, it remains a big theoretical challenge to reveal growth kinetics with atomically energetic and large-scale spatial information included. Here, we propose a minimal kinetic Monte Carlo model to address such an issue on an active catalyst surface with graphene/substrate lattice mismatch, which facilitates us to perform large scale simulations of the growth kinetics over two dimensional surface with growth fronts of complex shapes. A geometry-determined large-scale growth mechanism is revealed, where the rate-dominating event is found to be C{sub 1}-attachment for concave growth-front segments and C{sub 5}-attachment for others. This growth mechanism leads to an interesting time-resolved growth behavior which is well consistent with that observed in a recent scanning tunneling microscopy experiment.

  1. Organised convection embedded in a large-scale flow

    NASA Astrophysics Data System (ADS)

    Naumann, Ann Kristin; Stevens, Bjorn; Hohenegger, Cathy

    2017-04-01

    In idealised simulations of radiative convective equilibrium, convection aggregates spontaneously from randomly distributed convective cells into organized mesoscale convection despite homogeneous boundary conditions. Although these simulations apply very idealised setups, the process of self-aggregation is thought to be relevant for the development of tropical convective systems. One feature that idealised simulations usually neglect is the occurrence of a large-scale background flow. In the tropics, organised convection is embedded in a large-scale circulation system, which advects convection in along-wind direction and alters near surface convergence in the convective areas. A large-scale flow also modifies the surface fluxes, which are expected to be enhanced upwind of the convective area if a large-scale flow is applied. Convective clusters that are embedded in a large-scale flow therefore experience an asymmetric component of the surface fluxes, which influences the development and the pathway of a convective cluster. In this study, we use numerical simulations with explicit convection and add a large-scale flow to the established setup of radiative convective equilibrium. We then analyse how aggregated convection evolves when being exposed to wind forcing. The simulations suggest that convective line structures are more prevalent if a large-scale flow is present and that convective clusters move considerably slower than advection by the large-scale flow would suggest. We also study the asymmetric component of convective aggregation due to enhanced surface fluxes, and discuss the pathway and speed of convective clusters as a function of the large-scale wind speed.

  2. Bio-Inspired Wooden Actuators for Large Scale Applications

    PubMed Central

    Rüggeberg, Markus; Burgert, Ingo

    2015-01-01

    Implementing programmable actuation into materials and structures is a major topic in the field of smart materials. In particular the bilayer principle has been employed to develop actuators that respond to various kinds of stimuli. A multitude of small scale applications down to micrometer size have been developed, but up-scaling remains challenging due to either limitations in mechanical stiffness of the material or in the manufacturing processes. Here, we demonstrate the actuation of wooden bilayers in response to changes in relative humidity, making use of the high material stiffness and a good machinability to reach large scale actuation and application. Amplitude and response time of the actuation were measured and can be predicted and controlled by adapting the geometry and the constitution of the bilayers. Field tests in full weathering conditions revealed long-term stability of the actuation. The potential of the concept is shown by a first demonstrator. With the sensor and actuator intrinsically incorporated in the wooden bilayers, the daily change in relative humidity is exploited for an autonomous and solar powered movement of a tracker for solar modules. PMID:25835386

  3. Episodic memory in aspects of large-scale brain networks

    PubMed Central

    Jeong, Woorim; Chung, Chun Kee; Kim, June Sic

    2015-01-01

    Understanding human episodic memory in aspects of large-scale brain networks has become one of the central themes in neuroscience over the last decade. Traditionally, episodic memory was regarded as mostly relying on medial temporal lobe (MTL) structures. However, recent studies have suggested involvement of more widely distributed cortical network and the importance of its interactive roles in the memory process. Both direct and indirect neuro-modulations of the memory network have been tried in experimental treatments of memory disorders. In this review, we focus on the functional organization of the MTL and other neocortical areas in episodic memory. Task-related neuroimaging studies together with lesion studies suggested that specific sub-regions of the MTL are responsible for specific components of memory. However, recent studies have emphasized that connectivity within MTL structures and even their network dynamics with other cortical areas are essential in the memory process. Resting-state functional network studies also have revealed that memory function is subserved by not only the MTL system but also a distributed network, particularly the default-mode network (DMN). Furthermore, researchers have begun to investigate memory networks throughout the entire brain not restricted to the specific resting-state network (RSN). Altered patterns of functional connectivity (FC) among distributed brain regions were observed in patients with memory impairments. Recently, studies have shown that brain stimulation may impact memory through modulating functional networks, carrying future implications of a novel interventional therapy for memory impairment. PMID:26321939

  4. Simulation and experiment for large scale space structure

    NASA Astrophysics Data System (ADS)

    Sun, Hongbo; Zhou, Jian; Zha, Zuoliang

    2013-04-01

    The future space structures are relatively large, flimsy, and lightweight. As a result, they are more easily affected or distortion by space environments compared to other space structures. This study examines the structural integrity of a large scale space structure. A new design of transient temperature field analysis method of the developable reflector on orbit environment is presented, which simulates physical characteristic of developable antenna reflector with a high precision. The different kinds of analysis denote that different thermal elastic characteristics of different materials. The three-dimension multi-physics coupling transient thermal distortion equations for the antenna are founded based on the Galerkins method. For a reflector on geosynchronous orbit, the transient temperature field results from this method are compared with these from NASA. It follows from the analysis that the precision of this method is high. An experimental system is established to verify the control mechanism with IEBIS and thermal sensor technique. The shape control experiments are finished by measuring and analyzing developable tube. Results reveal that the temperature levels of the developable antenna reflector alternate greatly in the orbital period, which is about ±120° when considering solar flux ,earth radiating flux and albedo scattering flux.

  5. Bio-inspired wooden actuators for large scale applications.

    PubMed

    Rüggeberg, Markus; Burgert, Ingo

    2015-01-01

    Implementing programmable actuation into materials and structures is a major topic in the field of smart materials. In particular the bilayer principle has been employed to develop actuators that respond to various kinds of stimuli. A multitude of small scale applications down to micrometer size have been developed, but up-scaling remains challenging due to either limitations in mechanical stiffness of the material or in the manufacturing processes. Here, we demonstrate the actuation of wooden bilayers in response to changes in relative humidity, making use of the high material stiffness and a good machinability to reach large scale actuation and application. Amplitude and response time of the actuation were measured and can be predicted and controlled by adapting the geometry and the constitution of the bilayers. Field tests in full weathering conditions revealed long-term stability of the actuation. The potential of the concept is shown by a first demonstrator. With the sensor and actuator intrinsically incorporated in the wooden bilayers, the daily change in relative humidity is exploited for an autonomous and solar powered movement of a tracker for solar modules.

  6. Silver nanoparticles: Large scale solvothermal synthesis and optical properties

    SciTech Connect

    Wani, Irshad A.; Khatoon, Sarvari; Ganguly, Aparna; Ahmed, Jahangeer; Ganguli, Ashok K.; Ahmad, Tokeer

    2010-08-15

    Silver nanoparticles have been successfully synthesized by a simple and modified solvothermal method at large scale using ethanol as the refluxing solvent and NaBH{sub 4} as reducing agent. The nanopowder was investigated by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), UV-visible and BET surface area studies. XRD studies reveal the monophasic nature of these highly crystalline silver nanoparticles. Transmission electron microscopic studies show the monodisperse and highly uniform nanoparticles of silver of the particle size of 5 nm, however, the size is found to be 7 nm using dynamic light scattering which is in good agreement with the TEM and X-ray line broadening studies. The surface area was found to be 34.5 m{sup 2}/g. UV-visible studies show the absorption band at {approx}425 nm due to surface plasmon resonance. The percentage yield of silver nanoparticles was found to be as high as 98.5%.

  7. Analyzing large-scale proteomics projects with latent semantic indexing.

    PubMed

    Klie, Sebastian; Martens, Lennart; Vizcaíno, Juan Antonio; Côté, Richard; Jones, Phil; Apweiler, Rolf; Hinneburg, Alexander; Hermjakob, Henning

    2008-01-01

    Since the advent of public data repositories for proteomics data, readily accessible results from high-throughput experiments have been accumulating steadily. Several large-scale projects in particular have contributed substantially to the amount of identifications available to the community. Despite the considerable body of information amassed, very few successful analyses have been performed and published on this data, leveling off the ultimate value of these projects far below their potential. A prominent reason published proteomics data is seldom reanalyzed lies in the heterogeneous nature of the original sample collection and the subsequent data recording and processing. To illustrate that at least part of this heterogeneity can be compensated for, we here apply a latent semantic analysis to the data contributed by the Human Proteome Organization's Plasma Proteome Project (HUPO PPP). Interestingly, despite the broad spectrum of instruments and methodologies applied in the HUPO PPP, our analysis reveals several obvious patterns that can be used to formulate concrete recommendations for optimizing proteomics project planning as well as the choice of technologies used in future experiments. It is clear from these results that the analysis of large bodies of publicly available proteomics data by noise-tolerant algorithms such as the latent semantic analysis holds great promise and is currently underexploited.

  8. Needs, opportunities, and options for large scale systems research

    SciTech Connect

    Thompson, G.L.

    1984-10-01

    The Office of Energy Research was recently asked to perform a study of Large Scale Systems in order to facilitate the development of a true large systems theory. It was decided to ask experts in the fields of electrical engineering, chemical engineering and manufacturing/operations research for their ideas concerning large scale systems research. The author was asked to distribute a questionnaire among these experts to find out their opinions concerning recent accomplishments and future research directions in large scale systems research. He was also requested to convene a conference which included three experts in each area as panel members to discuss the general area of large scale systems research. The conference was held on March 26--27, 1984 in Pittsburgh with nine panel members, and 15 other attendees. The present report is a summary of the ideas presented and the recommendations proposed by the attendees.

  9. Modified gravity and large scale flows, a review

    NASA Astrophysics Data System (ADS)

    Mould, Jeremy

    2017-02-01

    Large scale flows have been a challenging feature of cosmography ever since galaxy scaling relations came on the scene 40 years ago. The next generation of surveys will offer a serious test of the standard cosmology.

  10. Learning networks for sustainable, large-scale improvement.

    PubMed

    McCannon, C Joseph; Perla, Rocco J

    2009-05-01

    Large-scale improvement efforts known as improvement networks offer structured opportunities for exchange of information and insights into the adaptation of clinical protocols to a variety of settings.

  11. Amplification of large-scale magnetic field in nonhelical magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Kumar, Rohit; Verma, Mahendra K.

    2017-09-01

    It is typically assumed that the kinetic and magnetic helicities play a crucial role in the growth of large-scale dynamo. In this paper, we demonstrate that helicity is not essential for the amplification of large-scale magnetic field. For this purpose, we perform nonhelical magnetohydrodynamic (MHD) simulation, and show that the large-scale magnetic field can grow in nonhelical MHD when random external forcing is employed at scale 1/10 the box size. The energy fluxes and shell-to-shell transfer rates computed using the numerical data show that the large-scale magnetic energy grows due to the energy transfers from the velocity field at the forcing scales.

  12. An Adaptive Multiscale Finite Element Method for Large Scale Simulations

    DTIC Science & Technology

    2015-09-28

    the method . Using the above definitions , the weak statement of the non-linear local problem at the kth 4 DISTRIBUTION A: Distribution approved for...AFRL-AFOSR-VA-TR-2015-0305 An Adaptive Multiscale Finite Element Method for Large Scale Simulations Carlos Duarte UNIVERSITY OF ILLINOIS CHAMPAIGN...14-07-2015 4. TITLE AND SUBTITLE An Adaptive Multiscale Generalized Finite Element Method for Large Scale Simulations 5a.  CONTRACT NUMBER 5b

  13. Large-scale studies of marked birds in North America

    USGS Publications Warehouse

    Tautin, J.; Metras, L.; Smith, G.

    1999-01-01

    The first large-scale, co-operative, studies of marked birds in North America were attempted in the 1950s. Operation Recovery, which linked numerous ringing stations along the east coast in a study of autumn migration of passerines, and the Preseason Duck Ringing Programme in prairie states and provinces, conclusively demonstrated the feasibility of large-scale projects. The subsequent development of powerful analytical models and computing capabilities expanded the quantitative potential for further large-scale projects. Monitoring Avian Productivity and Survivorship, and Adaptive Harvest Management are current examples of truly large-scale programmes. Their exemplary success and the availability of versatile analytical tools are driving changes in the North American bird ringing programme. Both the US and Canadian ringing offices are modifying operations to collect more and better data to facilitate large-scale studies and promote a more project-oriented ringing programme. New large-scale programmes such as the Cornell Nest Box Network are on the horizon.

  14. Reynolds stress spectral contribution to the large scale motions in turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Hommema, Scott E.; Guala, Michele; Adrian, Ronald J.

    2003-11-01

    The importance of large-scale (and very-large-scale) structures has been investigated by Kim & Adrian (1999) but their contribution to the Reynolds stress has not been thoroughly addressed in the literature. In this work, the role of large-scale and very-large-scale motions in the energetics of turbulent pipe flow is investigated through the spectral analyisis of two components thermal anemometry measurements at three different Reynolds numbers (Re_τ = 3815 , 5884 and 7959) and interpreted in the context of the hairpin-vortex-packet model of wall turbulence (Adrian, Meinhart & Tomkins, 2000) Particular attention is dedicated to the cumulative energy fraction of the uv co-spectra, which revealed that half of the energy is associated with structures larger than two times the diameter of the pipe. The estimate of the vertical derivative of the velocity co-spectra, allowed also to shed some light on the contributions of the different scale motions to the Reynolds stress production. Adrian, R.J., Meinhart, C.D., Tomkins, C.D. 2000, Vortex organization in the outer layer region of the boundary layer. J. Fluid Mech., vol 422, 1-54. Kim, K.J., Adrian, R. J., 1999, Very large scale motion in the outer layer. Phys. Fluids, vol. 11(2), 417-422.

  15. Coupling of Cloud Processes with the Large-Scale Atmospheric Circulation in Extratropical Cyclonic Systems

    NASA Astrophysics Data System (ADS)

    Wong, S.; Naud, C. M.; Kahn, B. H.; Fetzer, E. J.; Wang, T.

    2016-12-01

    Different sectors in extratropical cyclonic systems (ETCs) exhibit a wide range of large-scale dynamical conditions and provide an excellent test bed for studying coupling between cloud processes and large-scale circulation. Large-scale atmospheric water budgets diagnosed from the Modern-Era Retrospective analysis for Research and Applications Version 2 (MERRA-2) and cloud properties (cloud top pressure and optical depth, cloud effective radii and thermodynamic phases) from both the Moderate Resolution Imaging Spectroradiometer (MODIS) and Atmospheric Infrared Sounder (AIRS) will be composited around Northern Hemispheric ETCs over ocean according to their stages of development. Flexible coordinate systems are used to construct the composites so that the cyclone center is at the origin and both surface warm and cold fronts are in fixed directions. Cloud structures represented by cloud top pressure versus cloud optical depth joint histograms as well as cloud top effective radii are connected to atmospheric water budgets related to large-scale convergence and moisture advection for different sectors of ETCs in the varying stages of their development. In this way, cloud macroscopic and microscopic properties are linked together with atmospheric water budgets to large-scale dynamical conditions in different sectors of ETCs, including the warm conveyer belts across the warm fronts, the warm sectors, cold frontal rain bands, and the post-frontal sector. As a feedback mechanism, latent heat release in the warm conveyer belts plays an essential role in ETC propagation and development by inducing positive anomalies in low-level vorticity tendencies in the regime of strong large-scale convergence and moisture advection.

  16. Large-scale turbulence simulation on the Navier-Stokes Computer

    NASA Technical Reports Server (NTRS)

    Hayder, M. E.; Flannery, W. S.; Littman, M. G.; Nosenchuck, D. M.; Orszag, S. A.

    1988-01-01

    Analytical techniques for turbulent air or water flow over vehicles and for the development of active control methods are described, with a focus on simulations being implemented on the Navier-Stokes Computer (NSC) at Princeton University. Consideration is given to the general NSC architecture (the central control, memory, and processing units; the switching network; and the prototype NSC), the algorithm for large-scale MHD turbulence (Orszag and Tang, 1979), and the pipeline configurations. Extensive diagrams and flow charts are provided.

  17. EINSTEIN'S SIGNATURE IN COSMOLOGICAL LARGE-SCALE STRUCTURE

    SciTech Connect

    Bruni, Marco; Hidalgo, Juan Carlos; Wands, David

    2014-10-10

    We show how the nonlinearity of general relativity generates a characteristic nonGaussian signal in cosmological large-scale structure that we calculate at all perturbative orders in a large-scale limit. Newtonian gravity and general relativity provide complementary theoretical frameworks for modeling large-scale structure in ΛCDM cosmology; a relativistic approach is essential to determine initial conditions, which can then be used in Newtonian simulations studying the nonlinear evolution of the matter density. Most inflationary models in the very early universe predict an almost Gaussian distribution for the primordial metric perturbation, ζ. However, we argue that it is the Ricci curvature of comoving-orthogonal spatial hypersurfaces, R, that drives structure formation at large scales. We show how the nonlinear relation between the spatial curvature, R, and the metric perturbation, ζ, translates into a specific nonGaussian contribution to the initial comoving matter density that we calculate for the simple case of an initially Gaussian ζ. Our analysis shows the nonlinear signature of Einstein's gravity in large-scale structure.

  18. Recursive architecture for large-scale adaptive system

    NASA Astrophysics Data System (ADS)

    Hanahara, Kazuyuki; Sugiyama, Yoshihiko

    1994-09-01

    'Large scale' is one of major trends in the research and development of recent engineering, especially in the field of aerospace structural system. This term expresses the large scale of an artifact in general, however, it also implies the large number of the components which make up the artifact in usual. Considering a large scale system which is especially used in remote space or deep-sea, such a system should be adaptive as well as robust by itself, because its control as well as maintenance by human operators are not easy due to the remoteness. An approach to realizing this large scale, adaptive and robust system is to build the system as an assemblage of components which are respectively adaptive by themselves. In this case, the robustness of the system can be achieved by using a large number of such components and suitable adaptation as well as maintenance strategies. Such a system gathers many research's interest and their studies such as decentralized motion control, configurating algorithm and characteristics of structural elements are reported. In this article, a recursive architecture concept is developed and discussed towards the realization of large scale system which consists of a number of uniform adaptive components. We propose an adaptation strategy based on the architecture and its implementation by means of hierarchically connected processing units. The robustness and the restoration from degeneration of the processing unit are also discussed. Two- and three-dimensional adaptive truss structures are conceptually designed based on the recursive architecture.

  19. The Influence of Large-scale Environments on Galaxy Properties

    NASA Astrophysics Data System (ADS)

    Wei, Yu-qing; Wang, Lei; Dai, Cai-ping

    2017-07-01

    The star formation properties of galaxies and their dependence on environments play an important role for understanding the formation and evolution of galaxies. Using the galaxy sample of the Sloan Digital Sky Survey (SDSS), different research groups have studied the physical properties of galaxies and their large-scale environments. Here, using the filament catalog from Tempel et al. and the galaxy catalog of large-scale structure classification from Wang et al., and taking the influence of the galaxy morphology, high/low local density environment, and central (satellite) galaxy into consideration, we have found that the properties of galaxies are correlated with their residential large-scale environments: the SSFR (specific star formation rate) and SFR (star formation rate) strongly depend on the large-scale environment for spiral galaxies and satellite galaxies, but this dependence is very weak for elliptical galaxies and central galaxies, and the influence of large-scale environments on galaxies in low density region is more sensitive than that in high density region. The above conclusions remain valid even for the galaxies with the same mass. In addition, the SSFR distributions derived from the catalogs of Tempel et al. and Wang et al. are not entirely consistent.

  20. Large Scale Computing and Storage Requirements for Nuclear Physics Research

    SciTech Connect

    Gerber, Richard A.; Wasserman, Harvey J.

    2012-03-02

    IThe National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,000 users and hosting some 550 projects that involve nearly 700 codes for a wide variety of scientific disciplines. In addition to large-scale computing resources NERSC provides critical staff support and expertise to help scientists make the most efficient use of these resources to advance the scientific mission of the Office of Science. In May 2011, NERSC, DOE’s Office of Advanced Scientific Computing Research (ASCR) and DOE’s Office of Nuclear Physics (NP) held a workshop to characterize HPC requirements for NP research over the next three to five years. The effort is part of NERSC’s continuing involvement in anticipating future user needs and deploying necessary resources to meet these demands. The workshop revealed several key requirements, in addition to achieving its goal of characterizing NP computing. The key requirements include: 1. Larger allocations of computational resources at NERSC; 2. Visualization and analytics support; and 3. Support at NERSC for the unique needs of experimental nuclear physicists. This report expands upon these key points and adds others. The results are based upon representative samples, called “case studies,” of the needs of science teams within NP. The case studies were prepared by NP workshop participants and contain a summary of science goals, methods of solution, current and future computing requirements, and special software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, “multi-core” environment that is expected to dominate HPC architectures over the next few years. The report also includes a section with NERSC responses to the workshop findings. NERSC has many initiatives already underway that address key workshop findings and all of the action items are aligned with NERSC strategic plans.

  1. APoc: large-scale identification of similar protein pockets

    PubMed Central

    Gao, Mu; Skolnick, Jeffrey

    2013-01-01

    Motivation: Most proteins interact with small-molecule ligands such as metabolites or drug compounds. Over the past several decades, many of these interactions have been captured in high-resolution atomic structures. From a geometric point of view, most interaction sites for grasping these small-molecule ligands, as revealed in these structures, form concave shapes, or ‘pockets’, on the protein’s surface. An efficient method for comparing these pockets could greatly assist the classification of ligand-binding sites, prediction of protein molecular function and design of novel drug compounds. Results: We introduce a computational method, APoc (Alignment of Pockets), for the large-scale, sequence order-independent, structural comparison of protein pockets. A scoring function, the Pocket Similarity Score (PS-score), is derived to measure the level of similarity between pockets. Statistical models are used to estimate the significance of the PS-score based on millions of comparisons of randomly related pockets. APoc is a general robust method that may be applied to pockets identified by various approaches, such as ligand-binding sites as observed in experimental complex structures, or predicted pockets identified by a pocket-detection method. Finally, we curate large benchmark datasets to evaluate the performance of APoc and present interesting examples to demonstrate the usefulness of the method. We also demonstrate that APoc has better performance than the geometric hashing-based method SiteEngine. Availability and implementation: The APoc software package including the source code is freely available at http://cssb.biology.gatech.edu/APoc. Contact: skolnick@gatech.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23335017

  2. Developments in large-scale coastal flood hazard mapping

    NASA Astrophysics Data System (ADS)

    Vousdoukas, Michalis I.; Voukouvalas, Evangelos; Mentaschi, Lorenzo; Dottori, Francesco; Giardino, Alessio; Bouziotas, Dimitrios; Bianchi, Alessandra; Salamon, Peter; Feyen, Luc

    2016-08-01

    Coastal flooding related to marine extreme events has severe socioeconomic impacts, and even though the latter are projected to increase under the changing climate, there is a clear deficit of information and predictive capacity related to coastal flood mapping. The present contribution reports on efforts towards a new methodology for mapping coastal flood hazard at European scale, combining (i) the contribution of waves to the total water level; (ii) improved inundation modeling; and (iii) an open, physics-based framework which can be constantly upgraded, whenever new and more accurate data become available. Four inundation approaches of gradually increasing complexity and computational costs were evaluated in terms of their applicability to large-scale coastal flooding mapping: static inundation (SM); a semi-dynamic method, considering the water volume discharge over the dykes (VD); the flood intensity index approach (Iw); and the model LISFLOOD-FP (LFP). A validation test performed against observed flood extents during the Xynthia storm event showed that SM and VD can lead to an overestimation of flood extents by 232 and 209 %, while Iw and LFP showed satisfactory predictive skill. Application at pan-European scale for the present-day 100-year event confirmed that static approaches can overestimate flood extents by 56 % compared to LFP; however, Iw can deliver results of reasonable accuracy in cases when reduced computational costs are a priority. Moreover, omitting the wave contribution in the extreme total water level (TWL) can result in a ˜ 60 % underestimation of the flooded area. The present findings have implications for impact assessment studies, since combination of the estimated inundation maps with population exposure maps revealed differences in the estimated number of people affected within the 20-70 % range.

  3. The Internet As a Large-Scale Complex System

    NASA Astrophysics Data System (ADS)

    Park, Kihong; Willinger, Walter

    2005-06-01

    The Internet may be viewed as a "complex system" with diverse features and many components that can give rise to unexpected emergent phenomena, revealing much about its own engineering. This book brings together chapter contributions from a workshop held at the Santa Fe Institute in March 2001. This volume captures a snapshot of some features of the Internet that may be fruitfully approached using a complex systems perspective, meaning using interdisciplinary tools and methods to tackle the subject area. The Internet penetrates the socioeconomic fabric of everyday life; a broader and deeper grasp of the Internet may be needed to meet the challenges facing the future. The resulting empirical data have already proven to be invaluable for gaining novel insights into the network's spatio-temporal dynamics, and can be expected to become even more important when tryin to explain the Internet's complex and emergent behavior in terms of elementary networking-based mechanisms. The discoveries of fractal or self-similar network traffic traces, power-law behavior in network topology and World Wide Web connectivity are instances of unsuspected, emergent system traits. Another important factor at the heart of fair, efficient, and stable sharing of network resources is user behavior. Network systems, when habited by selfish or greedy users, take on the traits of a noncooperative multi-party game, and their stability and efficiency are integral to understanding the overall system and its dynamics. Lastly, fault-tolerance and robustness of large-scale network systems can exhibit spatial and temporal correlations whose effective analysis and management may benefit from rescaling techniques applied in certain physical and biological systems. The present book will bring together several of the leading workers involved in the analysis of complex systems with the future development of the Internet.

  4. Temperature dependence of large-scale water retention curves: Acase study

    SciTech Connect

    Liu, Hui-Hai; Bodvarsson, G.S.; Dane, J.H.

    2001-10-26

    A local-scale model for temperature-dependence of water-retention curves may be applicable to large scales. Consideration of this temperature dependence is important for modeling unsaturated flow and transport in the subsurface in numerous cases. Although significant progress has been made in understanding and modeling this temperature effect, almost all the previous studies have been limited to small scales (on the order of several centimeters). Numerical experiments were used to investigate the possibility of extending a local-scale model for the temperature-dependence of water retention curves to large scales (on the order of meters). Temperature effects on large-scale hydraulic properties are of interest in many practical applications. Numerical experiment results indicate that the local-scale model can indeed be applicable to large-scale problems for special porous media with high air entry values. A typical porous medium of this kind is the porous tuff matrix in the unsaturated zone of Yucca Mountain, Nevada, the proposed geologic disposal site for national high-level nuclear wastes. Whether this finding can approximately hold for general cases needs to be investigated in future studies.

  5. Toward Improved Support for Loosely Coupled Large Scale Simulation Workflows

    SciTech Connect

    Boehm, Swen; Elwasif, Wael R; Naughton, III, Thomas J; Vallee, Geoffroy R

    2014-01-01

    High-performance computing (HPC) workloads are increasingly leveraging loosely coupled large scale simula- tions. Unfortunately, most large-scale HPC platforms, including Cray/ALPS environments, are designed for the execution of long-running jobs based on coarse-grained launch capabilities (e.g., one MPI rank per core on all allocated compute nodes). This assumption limits capability-class workload campaigns that require large numbers of discrete or loosely coupled simulations, and where time-to-solution is an untenable pacing issue. This paper describes the challenges related to the support of fine-grained launch capabilities that are necessary for the execution of loosely coupled large scale simulations on Cray/ALPS platforms. More precisely, we present the details of an enhanced runtime system to support this use case, and report on initial results from early testing on systems at Oak Ridge National Laboratory.

  6. Seismic safety in conducting large-scale blasts

    NASA Astrophysics Data System (ADS)

    Mashukov, I. V.; Chaplygin, V. V.; Domanov, V. P.; Semin, A. A.; Klimkin, M. A.

    2017-09-01

    In mining enterprises to prepare hard rocks for excavation a drilling and blasting method is used. With the approach of mining operations to settlements the negative effect of large-scale blasts increases. To assess the level of seismic impact of large-scale blasts the scientific staff of Siberian State Industrial University carried out expertise for coal mines and iron ore enterprises. Determination of the magnitude of surface seismic vibrations caused by mass explosions was performed using seismic receivers, an analog-digital converter with recording on a laptop. The registration results of surface seismic vibrations during production of more than 280 large-scale blasts at 17 mining enterprises in 22 settlements are presented. The maximum velocity values of the Earth’s surface vibrations are determined. The safety evaluation of seismic effect was carried out according to the permissible value of vibration velocity. For cases with exceedance of permissible values recommendations were developed to reduce the level of seismic impact.

  7. PKI security in large-scale healthcare networks.

    PubMed

    Mantas, Georgios; Lymberopoulos, Dimitrios; Komninos, Nikos

    2012-06-01

    During the past few years a lot of PKI (Public Key Infrastructures) infrastructures have been proposed for healthcare networks in order to ensure secure communication services and exchange of data among healthcare professionals. However, there is a plethora of challenges in these healthcare PKI infrastructures. Especially, there are a lot of challenges for PKI infrastructures deployed over large-scale healthcare networks. In this paper, we propose a PKI infrastructure to ensure security in a large-scale Internet-based healthcare network connecting a wide spectrum of healthcare units geographically distributed within a wide region. Furthermore, the proposed PKI infrastructure facilitates the trust issues that arise in a large-scale healthcare network including multi-domain PKI infrastructures.

  8. Acoustic Studies of the Large Scale Ocean Circulation

    NASA Technical Reports Server (NTRS)

    Menemenlis, Dimitris

    1999-01-01

    Detailed knowledge of ocean circulation and its transport properties is prerequisite to an understanding of the earth's climate and of important biological and chemical cycles. Results from two recent experiments, THETIS-2 in the Western Mediterranean and ATOC in the North Pacific, illustrate the use of ocean acoustic tomography for studies of the large scale circulation. The attraction of acoustic tomography is its ability to sample and average the large-scale oceanic thermal structure, synoptically, along several sections, and at regular intervals. In both studies, the acoustic data are compared to, and then combined with, general circulation models, meteorological analyses, satellite altimetry, and direct measurements from ships. Both studies provide complete regional descriptions of the time-evolving, three-dimensional, large scale circulation, albeit with large uncertainties. The studies raise serious issues about existing ocean observing capability and provide guidelines for future efforts.

  9. Large-scale simulations of complex physical systems

    NASA Astrophysics Data System (ADS)

    Belić, A.

    2007-04-01

    Scientific computing has become a tool as vital as experimentation and theory for dealing with scientific challenges of the twenty-first century. Large scale simulations and modelling serve as heuristic tools in a broad problem-solving process. High-performance computing facilities make possible the first step in this process - a view of new and previously inaccessible domains in science and the building up of intuition regarding the new phenomenology. The final goal of this process is to translate this newly found intuition into better algorithms and new analytical results. In this presentation we give an outline of the research themes pursued at the Scientific Computing Laboratory of the Institute of Physics in Belgrade regarding large-scale simulations of complex classical and quantum physical systems, and present recent results obtained in the large-scale simulations of granular materials and path integrals.

  10. Large-scale simulations of complex physical systems

    SciTech Connect

    Belic, A.

    2007-04-23

    Scientific computing has become a tool as vital as experimentation and theory for dealing with scientific challenges of the twenty-first century. Large scale simulations and modelling serve as heuristic tools in a broad problem-solving process. High-performance computing facilities make possible the first step in this process - a view of new and previously inaccessible domains in science and the building up of intuition regarding the new phenomenology. The final goal of this process is to translate this newly found intuition into better algorithms and new analytical results.In this presentation we give an outline of the research themes pursued at the Scientific Computing Laboratory of the Institute of Physics in Belgrade regarding large-scale simulations of complex classical and quantum physical systems, and present recent results obtained in the large-scale simulations of granular materials and path integrals.

  11. A relativistic signature in large-scale structure

    NASA Astrophysics Data System (ADS)

    Bartolo, Nicola; Bertacca, Daniele; Bruni, Marco; Koyama, Kazuya; Maartens, Roy; Matarrese, Sabino; Sasaki, Misao; Verde, Licia; Wands, David

    2016-09-01

    In General Relativity, the constraint equation relating metric and density perturbations is inherently nonlinear, leading to an effective non-Gaussianity in the dark matter density field on large scales-even if the primordial metric perturbation is Gaussian. Intrinsic non-Gaussianity in the large-scale dark matter overdensity in GR is real and physical. However, the variance smoothed on a local physical scale is not correlated with the large-scale curvature perturbation, so that there is no relativistic signature in the galaxy bias when using the simplest model of bias. It is an open question whether the observable mass proxies such as luminosity or weak lensing correspond directly to the physical mass in the simple halo bias model. If not, there may be observables that encode this relativistic signature.

  12. Magnetic Helicity and Large Scale Magnetic Fields: A Primer

    NASA Astrophysics Data System (ADS)

    Blackman, Eric G.

    2015-05-01

    Magnetic fields of laboratory, planetary, stellar, and galactic plasmas commonly exhibit significant order on large temporal or spatial scales compared to the otherwise random motions within the hosting system. Such ordered fields can be measured in the case of planets, stars, and galaxies, or inferred indirectly by the action of their dynamical influence, such as jets. Whether large scale fields are amplified in situ or a remnant from previous stages of an object's history is often debated for objects without a definitive magnetic activity cycle. Magnetic helicity, a measure of twist and linkage of magnetic field lines, is a unifying tool for understanding large scale field evolution for both mechanisms of origin. Its importance stems from its two basic properties: (1) magnetic helicity is typically better conserved than magnetic energy; and (2) the magnetic energy associated with a fixed amount of magnetic helicity is minimized when the system relaxes this helical structure to the largest scale available. Here I discuss how magnetic helicity has come to help us understand the saturation of and sustenance of large scale dynamos, the need for either local or global helicity fluxes to avoid dynamo quenching, and the associated observational consequences. I also discuss how magnetic helicity acts as a hindrance to turbulent diffusion of large scale fields, and thus a helper for fossil remnant large scale field origin models in some contexts. I briefly discuss the connection between large scale fields and accretion disk theory as well. The goal here is to provide a conceptual primer to help the reader efficiently penetrate the literature.

  13. Large Scale Processes and Extreme Floods in Brazil

    NASA Astrophysics Data System (ADS)

    Ribeiro Lima, C. H.; AghaKouchak, A.; Lall, U.

    2016-12-01

    Persistent large scale anomalies in the atmospheric circulation and ocean state have been associated with heavy rainfall and extreme floods in water basins of different sizes across the world. Such studies have emerged in the last years as a new tool to improve the traditional, stationary based approach in flood frequency analysis and flood prediction. Here we seek to advance previous studies by evaluating the dominance of large scale processes (e.g. atmospheric rivers/moisture transport) over local processes (e.g. local convection) in producing floods. We consider flood-prone regions in Brazil as case studies and the role of large scale climate processes in generating extreme floods in such regions is explored by means of observed streamflow, reanalysis data and machine learning methods. The dynamics of the large scale atmospheric circulation in the days prior to the flood events are evaluated based on the vertically integrated moisture flux and its divergence field, which are interpreted in a low-dimensional space as obtained by machine learning techniques, particularly supervised kernel principal component analysis. In such reduced dimensional space, clusters are obtained in order to better understand the role of regional moisture recycling or teleconnected moisture in producing floods of a given magnitude. The convective available potential energy (CAPE) is also used as a measure of local convection activities. We investigate for individual sites the exceedance probability in which large scale atmospheric fluxes dominate the flood process. Finally, we analyze regional patterns of floods and how the scaling law of floods with drainage area responds to changes in the climate forcing mechanisms (e.g. local vs large scale).

  14. A large-scale perspective on stress-induced alterations in resting-state networks

    NASA Astrophysics Data System (ADS)

    Maron-Katz, Adi; Vaisvaser, Sharon; Lin, Tamar; Hendler, Talma; Shamir, Ron

    2016-02-01

    Stress is known to induce large-scale neural modulations. However, its neural effect once the stressor is removed and how it relates to subjective experience are not fully understood. Here we used a statistically sound data-driven approach to investigate alterations in large-scale resting-state functional connectivity (rsFC) induced by acute social stress. We compared rsfMRI profiles of 57 healthy male subjects before and after stress induction. Using a parcellation-based univariate statistical analysis, we identified a large-scale rsFC change, involving 490 parcel-pairs. Aiming to characterize this change, we employed statistical enrichment analysis, identifying anatomic structures that were significantly interconnected by these pairs. This analysis revealed strengthening of thalamo-cortical connectivity and weakening of cross-hemispheral parieto-temporal connectivity. These alterations were further found to be associated with change in subjective stress reports. Integrating report-based information on stress sustainment 20 minutes post induction, revealed a single significant rsFC change between the right amygdala and the precuneus, which inversely correlated with the level of subjective recovery. Our study demonstrates the value of enrichment analysis for exploring large-scale network reorganization patterns, and provides new insight on stress-induced neural modulations and their relation to subjective experience.

  15. [Issues of large scale tissue culture of medicinal plant].

    PubMed

    Lv, Dong-Mei; Yuan, Yuan; Zhan, Zhi-Lai

    2014-09-01

    In order to increase the yield and quality of the medicinal plant and enhance the competitive power of industry of medicinal plant in our country, this paper analyzed the status, problem and countermeasure of the tissue culture of medicinal plant on large scale. Although the biotechnology is one of the most efficient and promising means in production of medicinal plant, it still has problems such as stability of the material, safety of the transgenic medicinal plant and optimization of cultured condition. Establishing perfect evaluation system according to the characteristic of the medicinal plant is the key measures to assure the sustainable development of the tissue culture of medicinal plant on large scale.

  16. The CLASSgal code for relativistic cosmological large scale structure

    NASA Astrophysics Data System (ADS)

    Di Dio, Enea; Montanari, Francesco; Lesgourgues, Julien; Durrer, Ruth

    2013-11-01

    We present accurate and efficient computations of large scale structure observables, obtained with a modified version of the CLASS code which is made publicly available. This code includes all relativistic corrections and computes both the power spectrum Cl(z1,z2) and the corresponding correlation function ξ(θ,z1,z2) of the matter density and the galaxy number fluctuations in linear perturbation theory. For Gaussian initial perturbations, these quantities contain the full information encoded in the large scale matter distribution at the level of linear perturbation theory. We illustrate the usefulness of our code for cosmological parameter estimation through a few simple examples.

  17. Corridors Increase Plant Species Richness at Large Scales

    SciTech Connect

    Damschen, Ellen I.; Haddad, Nick M.; Orrock,John L.; Tewksbury, Joshua J.; Levey, Douglas J.

    2006-09-01

    Habitat fragmentation is one of the largest threats to biodiversity. Landscape corridors, which are hypothesized to reduce the negative consequences of fragmentation, have become common features of ecological management plans worldwide. Despite their popularity, there is little evidence documenting the effectiveness of corridors in preserving biodiversity at large scales. Using a large-scale replicated experiment, we showed that habitat patches connected by corridors retain more native plant species than do isolated patches, that this difference increases over time, and that corridors do not promote invasion by exotic species. Our results support the use of corridors in biodiversity conservation.

  18. Large-Scale Graph Processing Analysis using Supercomputer Cluster

    NASA Astrophysics Data System (ADS)

    Vildario, Alfrido; Fitriyani; Nugraha Nurkahfi, Galih

    2017-01-01

    Graph implementation is widely use in various sector such as automotive, traffic, image processing and many more. They produce graph in large-scale dimension, cause the processing need long computational time and high specification resources. This research addressed the analysis of implementation large-scale graph using supercomputer cluster. We impelemented graph processing by using Breadth-First Search (BFS) algorithm with single destination shortest path problem. Parallel BFS implementation with Message Passing Interface (MPI) used supercomputer cluster at High Performance Computing Laboratory Computational Science Telkom University and Stanford Large Network Dataset Collection. The result showed that the implementation give the speed up averages more than 30 times and eficiency almost 90%.

  19. Survey of decentralized control methods. [for large scale dynamic systems

    NASA Technical Reports Server (NTRS)

    Athans, M.

    1975-01-01

    An overview is presented of the types of problems that are being considered by control theorists in the area of dynamic large scale systems with emphasis on decentralized control strategies. Approaches that deal directly with decentralized decision making for large scale systems are discussed. It is shown that future advances in decentralized system theory are intimately connected with advances in the stochastic control problem with nonclassical information pattern. The basic assumptions and mathematical tools associated with the latter are summarized, and recommendations concerning future research are presented.

  20. Clearing and Labeling Techniques for Large-Scale Biological Tissues

    PubMed Central

    Seo, Jinyoung; Choe, Minjin; Kim, Sung-Yon

    2016-01-01

    Clearing and labeling techniques for large-scale biological tissues enable simultaneous extraction of molecular and structural information with minimal disassembly of the sample, facilitating the integration of molecular, cellular and systems biology across different scales. Recent years have witnessed an explosive increase in the number of such methods and their applications, reflecting heightened interest in organ-wide clearing and labeling across many fields of biology and medicine. In this review, we provide an overview and comparison of existing clearing and labeling techniques and discuss challenges and opportunities in the investigations of large-scale biological systems. PMID:27239813

  1. The Evolution of Baryons in Cosmic Large Scale Structure

    NASA Astrophysics Data System (ADS)

    Snedden, Ali; Arielle Phillips, Lara; Mathews, Grant James; Coughlin, Jared; Suh, In-Saeng; Bhattacharya, Aparna

    2015-01-01

    The environments of galaxies play a critical role in their formation and evolution. We study these environments using cosmological simulations with star formation and supernova feedback included. From these simulations, we parse the large scale structure into clusters, filaments and voids using a segmentation algorithm adapted from medical imaging. We trace the star formation history, gas phase and metal evolution of the baryons in the intergalactic medium as function of structure. We find that our algorithm reproduces the baryon fraction in the intracluster medium and that the majority of star formation occurs in cold, dense filaments. We present the consequences this large scale environment has for galactic halos and galaxy evolution.

  2. Large scale purification of RNA nanoparticles by preparative ultracentrifugation.

    PubMed

    Jasinski, Daniel L; Schwartz, Chad T; Haque, Farzin; Guo, Peixuan

    2015-01-01

    Purification of large quantities of supramolecular RNA complexes is of paramount importance due to the large quantities of RNA needed and the purity requirements for in vitro and in vivo assays. Purification is generally carried out by liquid chromatography (HPLC), polyacrylamide gel electrophoresis (PAGE), or agarose gel electrophoresis (AGE). Here, we describe an efficient method for the large-scale purification of RNA prepared by in vitro transcription using T7 RNA polymerase by cesium chloride (CsCl) equilibrium density gradient ultracentrifugation and the large-scale purification of RNA nanoparticles by sucrose gradient rate-zonal ultracentrifugation or cushioned sucrose gradient rate-zonal ultracentrifugation.

  3. Modulational instability, wave breaking, and formation of large-scale dipoles in the atmosphere.

    PubMed

    Iafrati, A; Babanin, A; Onorato, M

    2013-05-03

    We use direct numerical simulation of the Navier-Stokes equations for a two-phase flow (water and air) to study the dynamics of the modulational instability of free surface waves and its contribution to the interaction between the ocean and atmosphere. If the steepness of the initial wave exceeds a threshold value, we observe wave-breaking events and the formation of large-scale dipole structures in the air. Because of the multiple steepening and breaking of the waves under unstable wave packets, a train of dipoles is released in the atmosphere; those dipoles propagate at a height comparable with the wavelength. The amount of energy dissipated by the breaker in water and air is considered, and contrary to expectations, we observe that the energy dissipation in air is greater than that in water. The possible consequences on the wave modeling and on the exchange of aerosols and gases between air and water are discussed.

  4. Results of Large-Scale Spacecraft Flammability Tests

    NASA Technical Reports Server (NTRS)

    Ferkul, Paul; Olson, Sandra; Urban, David L.; Ruff, Gary A.; Easton, John; T'ien, James S.; Liao, Ta-Ting T.; Fernandez-Pello, A. Carlos; Torero, Jose L.; Eigenbrand, Christian; hide

    2017-01-01

    For the first time, a large-scale fire was intentionally set inside a spacecraft while in orbit. Testing in low gravity aboard spacecraft had been limited to samples of modest size: for thin fuels the longest samples burned were around 15 cm in length and thick fuel samples have been even smaller. This is despite the fact that fire is a catastrophic hazard for spaceflight and the spread and growth of a fire, combined with its interactions with the vehicle cannot be expected to scale linearly. While every type of occupied structure on earth has been the subject of full scale fire testing, this had never been attempted in space owing to the complexity, cost, risk and absence of a safe location. Thus, there is a gap in knowledge of fire behavior in spacecraft. The recent utilization of large, unmanned, resupply craft has provided the needed capability: a habitable but unoccupied spacecraft in low earth orbit. One such vehicle was used to study the flame spread over a 94 x 40.6 cm thin charring solid (fiberglasscotton fabric). The sample was an order of magnitude larger than anything studied to date in microgravity and was of sufficient scale that it consumed 1.5 of the available oxygen. The experiment which is called Saffire consisted of two tests, forward or concurrent flame spread (with the direction of flow) and opposed flame spread (against the direction of flow). The average forced air speed was 20 cms. For the concurrent flame spread test, the flame size remained constrained after the ignition transient, which is not the case in 1-g. These results were qualitatively different from those on earth where an upward-spreading flame on a sample of this size accelerates and grows. In addition, a curious effect of the chamber size is noted. Compared to previous microgravity work in smaller tunnels, the flame in the larger tunnel spread more slowly, even for a wider sample. This is attributed to the effect of flow acceleration in the smaller tunnels as a result of hot

  5. The Large-Scale Structure of Scientific Method

    ERIC Educational Resources Information Center

    Kosso, Peter

    2009-01-01

    The standard textbook description of the nature of science describes the proposal, testing, and acceptance of a theoretical idea almost entirely in isolation from other theories. The resulting model of science is a kind of piecemeal empiricism that misses the important network structure of scientific knowledge. Only the large-scale description of…

  6. A bibliographical surveys of large-scale systems

    NASA Technical Reports Server (NTRS)

    Corliss, W. R.

    1970-01-01

    A limited, partly annotated bibliography was prepared on the subject of large-scale system control. Approximately 400 references are divided into thirteen application areas, such as large societal systems and large communication systems. A first-author index is provided.

  7. Mixing Metaphors: Building Infrastructure for Large Scale School Turnaround

    ERIC Educational Resources Information Center

    Peurach, Donald J.; Neumerski, Christine M.

    2015-01-01

    The purpose of this analysis is to increase understanding of the possibilities and challenges of building educational infrastructure--the basic, foundational structures, systems, and resources--to support large-scale school turnaround. Building educational infrastructure often exceeds the capacity of schools, districts, and state education…

  8. Firebrands and spotting ignition in large-scale fires

    Treesearch

    Eunmo Koo; Patrick J. Pagni; David R. Weise; John P. Woycheese

    2010-01-01

    Spotting ignition by lofted firebrands is a significant mechanism of fire spread, as observed in many largescale fires. The role of firebrands in fire propagation and the important parameters involved in spot fire development are studied. Historical large-scale fires, including wind-driven urban and wildland conflagrations and post-earthquake fires are given as...

  9. Large Scale Survey Data in Career Development Research

    ERIC Educational Resources Information Center

    Diemer, Matthew A.

    2008-01-01

    Large scale survey datasets have been underutilized but offer numerous advantages for career development scholars, as they contain numerous career development constructs with large and diverse samples that are followed longitudinally. Constructs such as work salience, vocational expectations, educational expectations, work satisfaction, and…

  10. Measurement, Sampling, and Equating Errors in Large-Scale Assessments

    ERIC Educational Resources Information Center

    Wu, Margaret

    2010-01-01

    In large-scale assessments, such as state-wide testing programs, national sample-based assessments, and international comparative studies, there are many steps involved in the measurement and reporting of student achievement. There are always sources of inaccuracies in each of the steps. It is of interest to identify the source and magnitude of…

  11. US National Large-scale City Orthoimage Standard Initiative

    USGS Publications Warehouse

    Zhou, G.; Song, C.; Benjamin, S.; Schickler, W.

    2003-01-01

    The early procedures and algorithms for National digital orthophoto generation in National Digital Orthophoto Program (NDOP) were based on earlier USGS mapping operations, such as field control, aerotriangulation (derived in the early 1920's), the quarter-quadrangle-centered (3.75 minutes of longitude and latitude in geographic extent), 1:40,000 aerial photographs, and 2.5 D digital elevation models. However, large-scale city orthophotos using early procedures have disclosed many shortcomings, e.g., ghost image, occlusion, shadow. Thus, to provide the technical base (algorithms, procedure) and experience needed for city large-scale digital orthophoto creation is essential for the near future national large-scale digital orthophoto deployment and the revision of the Standards for National Large-scale City Digital Orthophoto in National Digital Orthophoto Program (NDOP). This paper will report our initial research results as follows: (1) High-precision 3D city DSM generation through LIDAR data processing, (2) Spatial objects/features extraction through surface material information and high-accuracy 3D DSM data, (3) 3D city model development, (4) Algorithm development for generation of DTM-based orthophoto, and DBM-based orthophoto, (5) True orthophoto generation by merging DBM-based orthophoto and DTM-based orthophoto, and (6) Automatic mosaic by optimizing and combining imagery from many perspectives.

  12. Large-Scale Environmental Influences on Aquatic Animal Health

    EPA Science Inventory

    In the latter portion of the 20th century, North America experienced numerous large-scale mortality events affecting a broad diversity of aquatic animals. Short-term forensic investigations of these events have sometimes characterized a causative agent or condition, but have rare...

  13. Developing and Understanding Methods for Large-Scale Nonlinear Optimization

    DTIC Science & Technology

    2006-07-24

    algorithms for large-scale uncon- strained and constrained optimization problems, including limited-memory methods for problems with -2- many thousands...34Published in peer-reviewed journals" E. Eskow, B. Bader, R. Byrd, S. Crivelli, T. Head-Gordon, V. Lamberti and R. Schnabel, "An optimization approach to the

  14. Probabilistic Cuing in Large-Scale Environmental Search

    ERIC Educational Resources Information Center

    Smith, Alastair D.; Hood, Bruce M.; Gilchrist, Iain D.

    2010-01-01

    Finding an object in our environment is an important human ability that also represents a critical component of human foraging behavior. One type of information that aids efficient large-scale search is the likelihood of the object being in one location over another. In this study we investigated the conditions under which individuals respond to…

  15. Feasibility of large-scale aquatic microcosms. Final report

    SciTech Connect

    Pease, T.; Wyman, R.L.; Logan, D.T.; Logan, C.M.; Lispi, D.R.

    1982-02-01

    Microcosms have been used to study a number of fundamental ecological principles and more recently to investigate the effects of man-made perturbations on ecosystems. In this report the feasibility of using large-scale microcosms to access aquatic impacts of power generating facilities is evaluated. Aquatic problems of concern to utilities are outlined, and various research approaches, including large and small microcosms, bioassays, and other laboratory experiments, are discussed. An extensive critical review and synthesis of the literature on recent microcosm research, which includes a comparison of the factors influencing physical, chemical, and biological processes in small vs large microcosms and in microcosms vs nature, led the authors to conclude that large-scale microcosms offer several advantages over other study techniques for particular types of problems. A hypothetical large-scale facility simulating a lake ecosystem is presented to illustrate the size, cost, and complexity of such facilities. The rationale for designing a lake-simulating large-scale microcosm is presented.

  16. Assuring Quality in Large-Scale Online Course Development

    ERIC Educational Resources Information Center

    Parscal, Tina; Riemer, Deborah

    2010-01-01

    Student demand for online education requires colleges and universities to rapidly expand the number of courses and programs offered online while maintaining high quality. This paper outlines two universities respective processes to assure quality in large-scale online programs that integrate instructional design, eBook custom publishing, Quality…

  17. Improving the Utility of Large-Scale Assessments in Canada

    ERIC Educational Resources Information Center

    Rogers, W. Todd

    2014-01-01

    Principals and teachers do not use large-scale assessment results because the lack of distinct and reliable subtests prevents identifying strengths and weaknesses of students and instruction, the results arrive too late to be used, and principals and teachers need assistance to use the results to improve instruction so as to improve student…

  18. Research directions in large scale systems and decentralized control

    NASA Technical Reports Server (NTRS)

    Tenney, R. R.

    1980-01-01

    Control theory provides a well established framework for dealing with automatic decision problems and a set of techniques for automatic decision making which exploit special structure, but it does not deal well with complexity. The potential exists for combining control theoretic and knowledge based concepts into a unified approach. The elements of control theory are diagrammed, including modern control and large scale systems.

  19. Efficient On-Demand Operations in Large-Scale Infrastructures

    ERIC Educational Resources Information Center

    Ko, Steven Y.

    2009-01-01

    In large-scale distributed infrastructures such as clouds, Grids, peer-to-peer systems, and wide-area testbeds, users and administrators typically desire to perform "on-demand operations" that deal with the most up-to-date state of the infrastructure. However, the scale and dynamism present in the operating environment make it challenging to…

  20. Ecosystem resilience despite large-scale altered hydro climatic conditions

    USDA-ARS?s Scientific Manuscript database

    Climate change is predicted to increase both drought frequency and duration, and when coupled with substantial warming, will establish a new hydroclimatological paradigm for many regions. Large-scale, warm droughts have recently impacted North America, Africa, Europe, Amazonia, and Australia result...

  1. The Large-Scale Structure of Scientific Method

    ERIC Educational Resources Information Center

    Kosso, Peter

    2009-01-01

    The standard textbook description of the nature of science describes the proposal, testing, and acceptance of a theoretical idea almost entirely in isolation from other theories. The resulting model of science is a kind of piecemeal empiricism that misses the important network structure of scientific knowledge. Only the large-scale description of…

  2. Large-Scale Assessments and Educational Policies in Italy

    ERIC Educational Resources Information Center

    Damiani, Valeria

    2016-01-01

    Despite Italy's extensive participation in most large-scale assessments, their actual influence on Italian educational policies is less easy to identify. The present contribution aims at highlighting and explaining reasons for the weak and often inconsistent relationship between international surveys and policy-making processes in Italy.…

  3. Large-Scale Innovation and Change in UK Higher Education

    ERIC Educational Resources Information Center

    Brown, Stephen

    2013-01-01

    This paper reflects on challenges universities face as they respond to change. It reviews current theories and models of change management, discusses why universities are particularly difficult environments in which to achieve large scale, lasting change and reports on a recent attempt by the UK JISC to enable a range of UK universities to employ…

  4. Current Scientific Issues in Large Scale Atmospheric Dynamics

    NASA Technical Reports Server (NTRS)

    Miller, T. L. (Compiler)

    1986-01-01

    Topics in large scale atmospheric dynamics are discussed. Aspects of atmospheric blocking, the influence of transient baroclinic eddies on planetary-scale waves, cyclogenesis, the effects of orography on planetary scale flow, small scale frontal structure, and simulations of gravity waves in frontal zones are discussed.

  5. Large-Scale Assessments and Educational Policies in Italy

    ERIC Educational Resources Information Center

    Damiani, Valeria

    2016-01-01

    Despite Italy's extensive participation in most large-scale assessments, their actual influence on Italian educational policies is less easy to identify. The present contribution aims at highlighting and explaining reasons for the weak and often inconsistent relationship between international surveys and policy-making processes in Italy.…

  6. Large scale fire whirls: Can their formation be predicted?

    Treesearch

    J. Forthofer; Bret Butler

    2010-01-01

    Large scale fire whirls have not traditionally been recognized as a frequent phenomenon on wildland fires. However, there are anecdotal data suggesting that they can and do occur with some regularity. This paper presents a brief summary of this information and an analysis of the causal factors leading to their formation.

  7. Large-Scale Environmental Influences on Aquatic Animal Health

    EPA Science Inventory

    In the latter portion of the 20th century, North America experienced numerous large-scale mortality events affecting a broad diversity of aquatic animals. Short-term forensic investigations of these events have sometimes characterized a causative agent or condition, but have rare...

  8. International Large-Scale Assessments: What Uses, What Consequences?

    ERIC Educational Resources Information Center

    Johansson, Stefan

    2016-01-01

    Background: International large-scale assessments (ILSAs) are a much-debated phenomenon in education. Increasingly, their outcomes attract considerable media attention and influence educational policies in many jurisdictions worldwide. The relevance, uses and consequences of these assessments are often the focus of research scrutiny. Whilst some…

  9. Extracting Useful Semantic Information from Large Scale Corpora of Text

    ERIC Educational Resources Information Center

    Mendoza, Ray Padilla, Jr.

    2012-01-01

    Extracting and representing semantic information from large scale corpora is at the crux of computer-assisted knowledge generation. Semantic information depends on collocation extraction methods, mathematical models used to represent distributional information, and weighting functions which transform the space. This dissertation provides a…

  10. Large-Scale Innovation and Change in UK Higher Education

    ERIC Educational Resources Information Center

    Brown, Stephen

    2013-01-01

    This paper reflects on challenges universities face as they respond to change. It reviews current theories and models of change management, discusses why universities are particularly difficult environments in which to achieve large scale, lasting change and reports on a recent attempt by the UK JISC to enable a range of UK universities to employ…

  11. Mixing Metaphors: Building Infrastructure for Large Scale School Turnaround

    ERIC Educational Resources Information Center

    Peurach, Donald J.; Neumerski, Christine M.

    2015-01-01

    The purpose of this analysis is to increase understanding of the possibilities and challenges of building educational infrastructure--the basic, foundational structures, systems, and resources--to support large-scale school turnaround. Building educational infrastructure often exceeds the capacity of schools, districts, and state education…

  12. Individual Skill Differences and Large-Scale Environmental Learning

    ERIC Educational Resources Information Center

    Fields, Alexa W.; Shelton, Amy L.

    2006-01-01

    Spatial skills are known to vary widely among normal individuals. This project was designed to address whether these individual differences are differentially related to large-scale environmental learning from route (ground-level) and survey (aerial) perspectives. Participants learned two virtual environments (route and survey) with limited…

  13. Newton Methods for Large Scale Problems in Machine Learning

    ERIC Educational Resources Information Center

    Hansen, Samantha Leigh

    2014-01-01

    The focus of this thesis is on practical ways of designing optimization algorithms for minimizing large-scale nonlinear functions with applications in machine learning. Chapter 1 introduces the overarching ideas in the thesis. Chapters 2 and 3 are geared towards supervised machine learning applications that involve minimizing a sum of loss…

  14. Large-Scale Machine Learning for Classification and Search

    ERIC Educational Resources Information Center

    Liu, Wei

    2012-01-01

    With the rapid development of the Internet, nowadays tremendous amounts of data including images and videos, up to millions or billions, can be collected for training machine learning models. Inspired by this trend, this thesis is dedicated to developing large-scale machine learning techniques for the purpose of making classification and nearest…

  15. Global smoothing and continuation for large-scale molecular optimization

    SciTech Connect

    More, J.J.; Wu, Zhijun

    1995-10-01

    We discuss the formulation of optimization problems that arise in the study of distance geometry, ionic systems, and molecular clusters. We show that continuation techniques based on global smoothing are applicable to these molecular optimization problems, and we outline the issues that must be resolved in the solution of large-scale molecular optimization problems.

  16. Large-scale Eucalyptus energy farms and power cogeneration

    Treesearch

    Robert C. Noroña

    1983-01-01

    A thorough evaluation of all factors possibly affecting a large-scale planting of eucalyptus is foremost in determining the cost effectiveness of the planned operation. Seven basic areas of concern must be analyzed:1. Species Selection 2. Site Preparation 3. Planting 4. Weed Control 5....

  17. Probabilistic Cuing in Large-Scale Environmental Search

    ERIC Educational Resources Information Center

    Smith, Alastair D.; Hood, Bruce M.; Gilchrist, Iain D.

    2010-01-01

    Finding an object in our environment is an important human ability that also represents a critical component of human foraging behavior. One type of information that aids efficient large-scale search is the likelihood of the object being in one location over another. In this study we investigated the conditions under which individuals respond to…

  18. Lessons from Large-Scale Renewable Energy Integration Studies: Preprint

    SciTech Connect

    Bird, L.; Milligan, M.

    2012-06-01

    In general, large-scale integration studies in Europe and the United States find that high penetrations of renewable generation are technically feasible with operational changes and increased access to transmission. This paper describes other key findings such as the need for fast markets, large balancing areas, system flexibility, and the use of advanced forecasting.

  19. The large scale microwave background anisotropy in decaying particle cosmology

    SciTech Connect

    Panek, M.

    1987-06-01

    We investigate the large-scale anisotropy of the microwave background radiation in cosmological models with decaying particles. The observed value of the quadrupole moment combined with other constraints gives an upper limit on the redshift of the decay z/sub d/ < 3-5. 12 refs., 2 figs.

  20. Large-scale search for dark-matter axions

    SciTech Connect

    Kinion, D; van Bibber, K

    2000-08-30

    We review the status of two ongoing large-scale searches for axions which may constitute the dark matter of our Milky Way halo. The experiments are based on the microwave cavity technique proposed by Sikivie, and marks a ''second-generation'' to the original experiments performed by the Rochester-Brookhaven-Fermilab collaboration, and the University of Florida group.

  1. Resilience of Florida Keys coral communities following large scale disturbances

    EPA Science Inventory

    The decline of coral reefs in the Caribbean over the last 40 years has been attributed to multiple chronic stressors and episodic large-scale disturbances. This study assessed the resilience of coral communities in two different regions of the Florida Keys reef system between 199...

  2. Large Scale Survey Data in Career Development Research

    ERIC Educational Resources Information Center

    Diemer, Matthew A.

    2008-01-01

    Large scale survey datasets have been underutilized but offer numerous advantages for career development scholars, as they contain numerous career development constructs with large and diverse samples that are followed longitudinally. Constructs such as work salience, vocational expectations, educational expectations, work satisfaction, and…

  3. The Role of Plausible Values in Large-Scale Surveys

    ERIC Educational Resources Information Center

    Wu, Margaret

    2005-01-01

    In large-scale assessment programs such as NAEP, TIMSS and PISA, students' achievement data sets provided for secondary analysts contain so-called "plausible values." Plausible values are multiple imputations of the unobservable latent achievement for each student. In this article it has been shown how plausible values are used to: (1)…

  4. Large-scale silicon optical switches for optical interconnection

    NASA Astrophysics Data System (ADS)

    Qiao, Lei; Tang, Weijie; Chu, Tao

    2016-11-01

    Large-scale optical switches are greatly demanded in building optical interconnections in data centers and high performance computers (HPCs). Silicon optical switches have advantages of being compact and CMOS process compatible, which can be easily monolithically integrated. However, there are difficulties to construct large ports silicon optical switches. One of them is the non-uniformity of the switch units in large scale silicon optical switches, which arises from the fabrication error and causes confusion in finding the unit optimum operation points. In this paper, we proposed a method to detect the optimum operating point in large scale switch with limited build-in power monitors. We also propose methods for improving the unbalanced crosstalk of cross/bar states in silicon electro-optical MZI switches and insertion losses. Our recent progress in large scale silicon optical switches, including 64 × 64 thermal-optical and 32 × 32 electro-optical switches will be introduced. To the best our knowledge, both of them are the largest scale silicon optical switches in their sections, respectively. The switches were fabricated on 340-nm SOI substrates with CMOS 180- nm processes. The crosstalk of the 32 × 32 electro-optic switch was -19.2dB to -25.1 dB, while the value of the 64 × 64 thermal-optic switch was -30 dB to -48.3 dB.

  5. Assuring Quality in Large-Scale Online Course Development

    ERIC Educational Resources Information Center

    Parscal, Tina; Riemer, Deborah

    2010-01-01

    Student demand for online education requires colleges and universities to rapidly expand the number of courses and programs offered online while maintaining high quality. This paper outlines two universities respective processes to assure quality in large-scale online programs that integrate instructional design, eBook custom publishing, Quality…

  6. Computational Complexity, Efficiency and Accountability in Large Scale Teleprocessing Systems.

    DTIC Science & Technology

    1980-12-01

    COMPLEXITY, EFFICIENCY AND ACCOUNTABILITY IN LARGE SCALE TELEPROCESSING SYSTEMS DAAG29-78-C-0036 STANFORD UNIVERSITY JOHN T. GILL MARTIN E. BELLMAN...solve but easy to check. Ve have also suggested howy sucb random tapes can be simulated by determin- istically generating "pseudorandom" numbers by a

  7. Large-Scale Assessment and English Language Learners with Disabilities

    ERIC Educational Resources Information Center

    Liu, Kristin K.; Ward, Jenna M.; Thurlow, Martha L.; Christensen, Laurene L.

    2017-01-01

    This article highlights a set of principles and guidelines, developed by a diverse group of specialists in the field, for appropriately including English language learners (ELLs) with disabilities in large-scale assessments. ELLs with disabilities make up roughly 9% of the rapidly increasing ELL population nationwide. In spite of the small overall…

  8. Large-scale silviculture experiments of western Oregon and Washington.

    Treesearch

    Nathan J. Poage; Paul D. Anderson

    2007-01-01

    We review 12 large-scale silviculture experiments (LSSEs) in western Washington and Oregon with which the Pacific Northwest Research Station of the USDA Forest Service is substantially involved. We compiled and arrayed information about the LSSEs as a series of matrices in a relational database, which is included on the compact disc published with this report and...

  9. Newton Methods for Large Scale Problems in Machine Learning

    ERIC Educational Resources Information Center

    Hansen, Samantha Leigh

    2014-01-01

    The focus of this thesis is on practical ways of designing optimization algorithms for minimizing large-scale nonlinear functions with applications in machine learning. Chapter 1 introduces the overarching ideas in the thesis. Chapters 2 and 3 are geared towards supervised machine learning applications that involve minimizing a sum of loss…

  10. Efficient On-Demand Operations in Large-Scale Infrastructures

    ERIC Educational Resources Information Center

    Ko, Steven Y.

    2009-01-01

    In large-scale distributed infrastructures such as clouds, Grids, peer-to-peer systems, and wide-area testbeds, users and administrators typically desire to perform "on-demand operations" that deal with the most up-to-date state of the infrastructure. However, the scale and dynamism present in the operating environment make it challenging to…

  11. Large-Scale Machine Learning for Classification and Search

    ERIC Educational Resources Information Center

    Liu, Wei

    2012-01-01

    With the rapid development of the Internet, nowadays tremendous amounts of data including images and videos, up to millions or billions, can be collected for training machine learning models. Inspired by this trend, this thesis is dedicated to developing large-scale machine learning techniques for the purpose of making classification and nearest…

  12. Moon-based Earth Observation for Large Scale Geoscience Phenomena

    NASA Astrophysics Data System (ADS)

    Guo, Huadong; Liu, Guang; Ding, Yixing

    2016-07-01

    The capability of Earth observation for large-global-scale natural phenomena needs to be improved and new observing platform are expected. We have studied the concept of Moon as an Earth observation in these years. Comparing with manmade satellite platform, Moon-based Earth observation can obtain multi-spherical, full-band, active and passive information,which is of following advantages: large observation range, variable view angle, long-term continuous observation, extra-long life cycle, with the characteristics of longevity ,consistency, integrity, stability and uniqueness. Moon-based Earth observation is suitable for monitoring the large scale geoscience phenomena including large scale atmosphere change, large scale ocean change,large scale land surface dynamic change,solid earth dynamic change,etc. For the purpose of establishing a Moon-based Earth observation platform, we already have a plan to study the five aspects as follows: mechanism and models of moon-based observing earth sciences macroscopic phenomena; sensors' parameters optimization and methods of moon-based Earth observation; site selection and environment of moon-based Earth observation; Moon-based Earth observation platform; and Moon-based Earth observation fundamental scientific framework.

  13. Large-scale societal changes and intentionality - an uneasy marriage.

    PubMed

    Bodor, Péter; Fokas, Nikos

    2014-08-01

    Our commentary focuses on juxtaposing the proposed science of intentional change with facts and concepts pertaining to the level of large populations or changes on a worldwide scale. Although we find a unified evolutionary theory promising, we think that long-term and large-scale, scientifically guided - that is, intentional - social change is not only impossible, but also undesirable.

  14. Large-scale screening by the automated Wassermann reaction

    PubMed Central

    Wagstaff, W.; Firth, R.; Booth, J. R.; Bowley, C. C.

    1969-01-01

    In view of the drawbacks in the use of the Kahn test for large-scale screening of blood donors, mainly those of human error through work overload and fatiguability, an attempt was made to adapt an existing automated complement-fixation technique for this purpose. This paper reports the successful results of that adaptation. PMID:5776559

  15. International Large-Scale Assessments: What Uses, What Consequences?

    ERIC Educational Resources Information Center

    Johansson, Stefan

    2016-01-01

    Background: International large-scale assessments (ILSAs) are a much-debated phenomenon in education. Increasingly, their outcomes attract considerable media attention and influence educational policies in many jurisdictions worldwide. The relevance, uses and consequences of these assessments are often the focus of research scrutiny. Whilst some…

  16. Cosmic strings and the large-scale structure

    NASA Technical Reports Server (NTRS)

    Stebbins, Albert

    1988-01-01

    A possible problem for cosmic string models of galaxy formation is presented. If very large voids are common and if loop fragmentation is not much more efficient than presently believed, then it may be impossible for string scenarios to produce the observed large-scale structure with Omega sub 0 = 1 and without strong environmental biasing.

  17. Extracting Useful Semantic Information from Large Scale Corpora of Text

    ERIC Educational Resources Information Center

    Mendoza, Ray Padilla, Jr.

    2012-01-01

    Extracting and representing semantic information from large scale corpora is at the crux of computer-assisted knowledge generation. Semantic information depends on collocation extraction methods, mathematical models used to represent distributional information, and weighting functions which transform the space. This dissertation provides a…

  18. Large scale structure of the sun's radio corona

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.

    1986-01-01

    Results of studies of large scale structures of the corona at long radio wavelengths are presented, using data obtained with the multifrequency radioheliograph of the Clark Lake Radio Observatory. It is shown that features corresponding to coronal streamers and coronal holes are readily apparent in the Clark Lake maps.

  19. Resilience of Florida Keys coral communities following large scale disturbances

    EPA Science Inventory

    The decline of coral reefs in the Caribbean over the last 40 years has been attributed to multiple chronic stressors and episodic large-scale disturbances. This study assessed the resilience of coral communities in two different regions of the Florida Keys reef system between 199...

  20. Topological Properties of Some Integrated Circuits for Very Large Scale Integration Chip Designs

    NASA Astrophysics Data System (ADS)

    Swanson, S.; Lanzerotti, M.; Vernizzi, G.; Kujawski, J.; Weatherwax, A.

    2015-03-01

    This talk presents topological properties of integrated circuits for Very Large Scale Integration chip designs. These circuits can be implemented in very large scale integrated circuits, such as those in high performance microprocessors. Prior work considered basic combinational logic functions and produced a mathematical framework based on algebraic topology for integrated circuits composed of logic gates. Prior work also produced an historically-equivalent interpretation of Mr. E. F. Rent's work for today's complex circuitry in modern high performance microprocessors, where a heuristic linear relationship was observed between the number of connections and number of logic gates. This talk will examine topological properties and connectivity of more complex functionally-equivalent integrated circuits. The views expressed in this article are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense or the U.S. Government.

  1. The influence of large-scale wind power on global climate

    PubMed Central

    Keith, David W.; DeCarolis, Joseph F.; Denkenberger, David C.; Lenschow, Donald H.; Malyshev, Sergey L.; Pacala, Stephen; Rasch, Philip J.

    2004-01-01

    Large-scale use of wind power can alter local and global climate by extracting kinetic energy and altering turbulent transport in the atmospheric boundary layer. We report climate-model simulations that address the possible climatic impacts of wind power at regional to global scales by using two general circulation models and several parameterizations of the interaction of wind turbines with the boundary layer. We find that very large amounts of wind power can produce nonnegligible climatic change at continental scales. Although large-scale effects are observed, wind power has a negligible effect on global-mean surface temperature, and it would deliver enormous global benefits by reducing emissions of CO2 and air pollutants. Our results may enable a comparison between the climate impacts due to wind power and the reduction in climatic impacts achieved by the substitution of wind for fossil fuels. PMID:15536131

  2. The influence of large-scale wind power on global climate.

    PubMed

    Keith, David W; Decarolis, Joseph F; Denkenberger, David C; Lenschow, Donald H; Malyshev, Sergey L; Pacala, Stephen; Rasch, Philip J

    2004-11-16

    Large-scale use of wind power can alter local and global climate by extracting kinetic energy and altering turbulent transport in the atmospheric boundary layer. We report climate-model simulations that address the possible climatic impacts of wind power at regional to global scales by using two general circulation models and several parameterizations of the interaction of wind turbines with the boundary layer. We find that very large amounts of wind power can produce nonnegligible climatic change at continental scales. Although large-scale effects are observed, wind power has a negligible effect on global-mean surface temperature, and it would deliver enormous global benefits by reducing emissions of CO(2) and air pollutants. Our results may enable a comparison between the climate impacts due to wind power and the reduction in climatic impacts achieved by the substitution of wind for fossil fuels.

  3. Interaction of a cumulus cloud ensemble with the large-scale environment. I

    NASA Technical Reports Server (NTRS)

    Arakawa, A.; Schuber, W. H.

    1974-01-01

    A theory of the interaction of a cumulus cloud ensemble with the large-scale environment is developed. In this theory, the large-scale environment is divided into the subcloud mixed layer and the region above. The time changes of the environment are governed by the heat and moisture budget equations for the subcloud mixed layer and for the region above, and by a prognostic equation for the depth of the mixed layer. In the environment above the mixed layer, the cumulus convection affects the temperature and moisture fields through cumulus-induced subsidence and detrainment of saturated air containing liquid water which evaporates in the environment. In the subcloud mixed layer, the cumulus convection does not act directly on the temperature and moisture fields, but it affects the depth of the mixed layer through cumulus-induced subsidence.

  4. A novel computational approach towards the certification of large-scale boson sampling

    NASA Astrophysics Data System (ADS)

    Huh, Joonsuk

    Recent proposals of boson sampling and the corresponding experiments exhibit the possible disproof of extended Church-Turning Thesis. Furthermore, the application of boson sampling to molecular computation has been suggested theoretically. Till now, however, only small-scale experiments with a few photons have been successfully performed. The boson sampling experiments of 20-30 photons are expected to reveal the computational superiority of the quantum device. A novel theoretical proposal for the large-scale boson sampling using microwave photons is highly promising due to the deterministic photon sources and the scalability. Therefore, the certification protocol of large-scale boson sampling experiments should be presented to complete the exciting story. We propose, in this presentation, a computational protocol towards the certification of large-scale boson sampling. The correlations of paired photon modes and the time-dependent characteristic functional with its Fourier component can show the fingerprint of large-scale boson sampling. This work was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(NRF-2015R1A6A3A04059773), the ICT R&D program of MSIP/IITP [2015-019, Fundamental Research Toward Secure Quantum Communication] and Mueunjae Institute for Chemistry (MIC) postdoctoral fellowship.

  5. Generation of large-scale equatorial F-region plasma depletions during geomagnetic storms: A review

    NASA Astrophysics Data System (ADS)

    Sahai, Y.; Fagundes, P.; Bittencourt, J.; Pimenta, A.

    All-sky imaging observations of the F-region OI 630 nm nightglow emission allow us to visualize large - scale equatorial plasma depletions, generally known as transequatorial plasma bubbles. These quasi north south direction aligned- ionospheric plasma depletions are o tical signatures of strong range type equatorialp spread-F. An extensive data base of the OI 630 nm emission all-sky imaging- observations has been obtained at Cachoeira Paulista (22.7o S, 45.0 o W; dip latitude ~16o S), Brazil, between the years 1987 and 2000. An analysis of these observations revealed that normally large-scale ionospheric plasma depletions do not occur during the months of May to August (southern winter) in the Brazilian sector. However, large-scale ionospheric plasma depletions during thes e months have been observed on several occasions in association with geomagnetic storms. In this paper, a detailed analysis of the events when large - scale ionospheric plasma depletions were initiated and evolved during magnetic disturbances will be present ed and discussed.

  6. Large-scale urbanization effects on eastern Asian summer monsoon circulation and climate

    NASA Astrophysics Data System (ADS)

    Chen, Haishan; Zhang, Ye; Yu, Miao; Hua, Wenjian; Sun, Shanlei; Li, Xing; Gao, Chujie

    2016-07-01

    Impacts of large-scale urbanization over eastern China on East Asian summer monsoon circulation and climate are investigated by comparing three 25-year climate simulations with and without incorporating modified land cover maps reflecting two different idealized large-scale urbanization scenarios. The global atmospheric general circulation model CAM4.0 that includes an urban canopy parameterization scheme is employed in this study. The large-scale urbanization over eastern China leads to a significant warming over most of the expanded urban areas, characterized by an increase of 3 K for surface skin temperature, 2.25 K for surface air temperature, significant warming of both daily minimum and daily maximum air temperatures, and 0.4 K for the averaged urban-rural temperature difference. The urbanization is also accompanied by an increase in surface sensible heat flux, a decrease of the net surface shortwave and long-wave radiation, and an enhanced surface thermal heating to the atmosphere in most Eastern Asia areas. It is noted that the responses of the East Asian summer monsoon circulation exhibits an evident month-to-month variation. Across eastern China, the summer monsoon in early summer is strengthened by the large-scale urbanization, but weakened (intensified) over southern (northern) part of East Asia in late summer. Meanwhile, early summer precipitation is intensified in northern and northeastern China and suppressed in south of ~35°N, but late summer precipitation is evidently suppressed over northeast China, the Korean Peninsula and Japan with enhancements in southern China, the South China Sea, and the oceanic region south and southeast of the Taiwan Island. This study highlights the evidently distinct month-to-month responses of the monsoon system to the large-scale urbanization, which might be attributed to different basic states, internal feedbacks (cloud, rainfall) as well as a dynamic adjustment of the atmosphere. Further investigation is required

  7. Large Scale Computing and Storage Requirements for High Energy Physics

    SciTech Connect

    Gerber, Richard A.; Wasserman, Harvey

    2010-11-24

    The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility for the Department of Energy's Office of Science, providing high-performance computing (HPC) resources to more than 3,000 researchers working on about 400 projects. NERSC provides large-scale computing resources and, crucially, the support and expertise needed for scientists to make effective use of them. In November 2009, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR), and DOE's Office of High Energy Physics (HEP) held a workshop to characterize the HPC resources needed at NERSC to support HEP research through the next three to five years. The effort is part of NERSC's legacy of anticipating users needs and deploying resources to meet those demands. The workshop revealed several key points, in addition to achieving its goal of collecting and characterizing computing requirements. The chief findings: (1) Science teams need access to a significant increase in computational resources to meet their research goals; (2) Research teams need to be able to read, write, transfer, store online, archive, analyze, and share huge volumes of data; (3) Science teams need guidance and support to implement their codes on future architectures; and (4) Projects need predictable, rapid turnaround of their computational jobs to meet mission-critical time constraints. This report expands upon these key points and includes others. It also presents a number of case studies as representative of the research conducted within HEP. Workshop participants were asked to codify their requirements in this case study format, summarizing their science goals, methods of solution, current and three-to-five year computing requirements, and software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, multi-core environment that is expected to dominate HPC architectures over the next few years. The report includes

  8. A first large-scale flood inundation forecasting model

    SciTech Connect

    Schumann, Guy J-P; Neal, Jeffrey C.; Voisin, Nathalie; Andreadis, Konstantinos M.; Pappenberger, Florian; Phanthuwongpakdee, Kay; Hall, Amanda C.; Bates, Paul D.

    2013-11-04

    At present continental to global scale flood forecasting focusses on predicting at a point discharge, with little attention to the detail and accuracy of local scale inundation predictions. Yet, inundation is actually the variable of interest and all flood impacts are inherently local in nature. This paper proposes a first large scale flood inundation ensemble forecasting model that uses best available data and modeling approaches in data scarce areas and at continental scales. The model was built for the Lower Zambezi River in southeast Africa to demonstrate current flood inundation forecasting capabilities in large data-scarce regions. The inundation model domain has a surface area of approximately 170k km2. ECMWF meteorological data were used to force the VIC (Variable Infiltration Capacity) macro-scale hydrological model which simulated and routed daily flows to the input boundary locations of the 2-D hydrodynamic model. Efficient hydrodynamic modeling over large areas still requires model grid resolutions that are typically larger than the width of many river channels that play a key a role in flood wave propagation. We therefore employed a novel sub-grid channel scheme to describe the river network in detail whilst at the same time representing the floodplain at an appropriate and efficient scale. The modeling system was first calibrated using water levels on the main channel from the ICESat (Ice, Cloud, and land Elevation Satellite) laser altimeter and then applied to predict the February 2007 Mozambique floods. Model evaluation showed that simulated flood edge cells were within a distance of about 1 km (one model resolution) compared to an observed flood edge of the event. Our study highlights that physically plausible parameter values and satisfactory performance can be achieved at spatial scales ranging from tens to several hundreds of thousands of km2 and at model grid resolutions up to several km2. However, initial model test runs in forecast mode

  9. Evaluation of variational principle based model for LDPE large scale film blowing process

    NASA Astrophysics Data System (ADS)

    Kolarik, Roman; Zatloukal, Martin

    2013-04-01

    In this work, variational principle based film blowing model combined with Pearson and Petrie formulation, considering non-isothermal processing conditions and novel generalized Newtonian model allowing to capture steady shear and uniaxial extensional viscosities has been validated by using experimentally determined bubble shape and velocity profile for LDPE sample on large scale film blowing line. It has been revealed that the minute change in the flow activation energy can significantly influence the film stretching level.

  10. Electron drift in a large scale solid xenon

    SciTech Connect

    Yoo, J.; Jaskierny, W. F.

    2015-08-21

    A study of charge drift in a large scale optically transparent solid xenon is reported. A pulsed high power xenon light source is used to liberate electrons from a photocathode. The drift speeds of the electrons are measured using a 8.7 cm long electrode in both the liquid and solid phase of xenon. In the liquid phase (163 K), the drift speed is 0.193 ± 0.003 cm/μs while the drift speed in the solid phase (157 K) is 0.397 ± 0.006 cm/μs at 900 V/cm over 8.0 cm of uniform electric fields. Furthermore, it is demonstrated that a factor two faster electron drift speed in solid phase xenon compared to that in liquid in a large scale solid xenon.

  11. Electron drift in a large scale solid xenon

    DOE PAGES

    Yoo, J.; Jaskierny, W. F.

    2015-08-21

    A study of charge drift in a large scale optically transparent solid xenon is reported. A pulsed high power xenon light source is used to liberate electrons from a photocathode. The drift speeds of the electrons are measured using a 8.7 cm long electrode in both the liquid and solid phase of xenon. In the liquid phase (163 K), the drift speed is 0.193 ± 0.003 cm/μs while the drift speed in the solid phase (157 K) is 0.397 ± 0.006 cm/μs at 900 V/cm over 8.0 cm of uniform electric fields. Furthermore, it is demonstrated that a factor twomore » faster electron drift speed in solid phase xenon compared to that in liquid in a large scale solid xenon.« less

  12. GAIA: A WINDOW TO LARGE-SCALE MOTIONS

    SciTech Connect

    Nusser, Adi; Branchini, Enzo; Davis, Marc E-mail: branchin@fis.uniroma3.it

    2012-08-10

    Using redshifts as a proxy for galaxy distances, estimates of the two-dimensional (2D) transverse peculiar velocities of distant galaxies could be obtained from future measurements of proper motions. We provide the mathematical framework for analyzing 2D transverse motions and show that they offer several advantages over traditional probes of large-scale motions. They are completely independent of any intrinsic relations between galaxy properties; hence, they are essentially free of selection biases. They are free from homogeneous and inhomogeneous Malmquist biases that typically plague distance indicator catalogs. They provide additional information to traditional probes that yield line-of-sight peculiar velocities only. Further, because of their 2D nature, fundamental questions regarding vorticity of large-scale flows can be addressed. Gaia, for example, is expected to provide proper motions of at least bright galaxies with high central surface brightness, making proper motions a likely contender for traditional probes based on current and future distance indicator measurements.

  13. The Large Scale Synthesis of Aligned Plate Nanostructures

    PubMed Central

    Zhou, Yang; Nash, Philip; Liu, Tian; Zhao, Naiqin; Zhu, Shengli

    2016-01-01

    We propose a novel technique for the large-scale synthesis of aligned-plate nanostructures that are self-assembled and self-supporting. The synthesis technique involves developing nanoscale two-phase microstructures through discontinuous precipitation followed by selective etching to remove one of the phases. The method may be applied to any alloy system in which the discontinuous precipitation transformation goes to completion. The resulting structure may have many applications in catalysis, filtering and thermal management depending on the phase selection and added functionality through chemical reaction with the retained phase. The synthesis technique is demonstrated using the discontinuous precipitation of a γ′ phase, (Ni, Co)3Al, followed by selective dissolution of the γ matrix phase. The production of the nanostructure requires heat treatments on the order of minutes and can be performed on a large scale making this synthesis technique of great economic potential. PMID:27439672

  14. Lagrangian space consistency relation for large scale structure

    SciTech Connect

    Horn, Bart; Hui, Lam; Xiao, Xiao E-mail: lh399@columbia.edu

    2015-09-01

    Consistency relations, which relate the squeezed limit of an (N+1)-point correlation function to an N-point function, are non-perturbative symmetry statements that hold even if the associated high momentum modes are deep in the nonlinear regime and astrophysically complex. Recently, Kehagias and Riotto and Peloso and Pietroni discovered a consistency relation applicable to large scale structure. We show that this can be recast into a simple physical statement in Lagrangian space: that the squeezed correlation function (suitably normalized) vanishes. This holds regardless of whether the correlation observables are at the same time or not, and regardless of whether multiple-streaming is present. The simplicity of this statement suggests that an analytic understanding of large scale structure in the nonlinear regime may be particularly promising in Lagrangian space.

  15. The workshop on iterative methods for large scale nonlinear problems

    SciTech Connect

    Walker, H.F.; Pernice, M.

    1995-12-01

    The aim of the workshop was to bring together researchers working on large scale applications with numerical specialists of various kinds. Applications that were addressed included reactive flows (combustion and other chemically reacting flows, tokamak modeling), porous media flows, cardiac modeling, chemical vapor deposition, image restoration, macromolecular modeling, and population dynamics. Numerical areas included Newton iterative (truncated Newton) methods, Krylov subspace methods, domain decomposition and other preconditioning methods, large scale optimization and optimal control, and parallel implementations and software. This report offers a brief summary of workshop activities and information about the participants. Interested readers are encouraged to look into an online proceedings available at http://www.usi.utah.edu/logan.proceedings. In this, the material offered here is augmented with hypertext abstracts that include links to locations such as speakers` home pages, PostScript copies of talks and papers, cross-references to related talks, and other information about topics addresses at the workshop.

  16. Large Scale Deformation of the Western US Cordillera

    NASA Technical Reports Server (NTRS)

    Bennett, Richard A.

    2001-01-01

    Destructive earthquakes occur throughout the western US Cordillera (WUSC), not just within the San Andreas fault zone. But because we do not understand the present-day large-scale deformations of the crust throughout the WUSC, our ability to assess the potential for seismic hazards in this region remains severely limited. To address this problem, we are using a large collection of Global Positioning System (GPS) networks which spans the WUSC to precisely quantify present-day large-scale crustal deformations in a single uniform reference frame. Our work can roughly be divided into an analysis of the GPS observations to infer the deformation field across and within the entire plate boundary zone and an investigation of the implications of this deformation field regarding plate boundary dynamics.

  17. Large-scale linear nonparallel support vector machine solver.

    PubMed

    Tian, Yingjie; Ping, Yuan

    2014-02-01

    Twin support vector machines (TWSVMs), as the representative nonparallel hyperplane classifiers, have shown the effectiveness over standard SVMs from some aspects. However, they still have some serious defects restricting their further study and real applications: (1) They have to compute and store the inverse matrices before training, it is intractable for many applications where data appear with a huge number of instances as well as features; (2) TWSVMs lost the sparseness by using a quadratic loss function making the proximal hyperplane close enough to the class itself. This paper proposes a Sparse Linear Nonparallel Support Vector Machine, termed as L1-NPSVM, to deal with large-scale data based on an efficient solver-dual coordinate descent (DCD) method. Both theoretical analysis and experiments indicate that our method is not only suitable for large scale problems, but also performs as good as TWSVMs and SVMs.

  18. Instrumentation Development for Large Scale Hypersonic Inflatable Aerodynamic Decelerator Characterization

    NASA Technical Reports Server (NTRS)

    Swanson, Gregory T.; Cassell, Alan M.

    2011-01-01

    Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology is currently being considered for multiple atmospheric entry applications as the limitations of traditional entry vehicles have been reached. The Inflatable Re-entry Vehicle Experiment (IRVE) has successfully demonstrated this technology as a viable candidate with a 3.0 m diameter vehicle sub-orbital flight. To further this technology, large scale HIADs (6.0 8.5 m) must be developed and tested. To characterize the performance of large scale HIAD technology new instrumentation concepts must be developed to accommodate the flexible nature inflatable aeroshell. Many of the concepts that are under consideration for the HIAD FY12 subsonic wind tunnel test series are discussed below.

  19. Long gradient mode and large-scale structure observables

    NASA Astrophysics Data System (ADS)

    Allahyari, Alireza; Firouzjaee, Javad T.

    2017-03-01

    We extend the study of long-mode perturbations to other large-scale observables such as cosmic rulers, galaxy-number counts, and halo bias. The long mode is a pure gradient mode that is still outside an observer's horizon. We insist that gradient-mode effects on observables vanish. It is also crucial that the expressions for observables are relativistic. This allows us to show that the effects of a gradient mode on the large-scale observables vanish identically in a relativistic framework. To study the potential modulation effect of the gradient mode on halo bias, we derive a consistency condition to the first order in gradient expansion. We find that the matter variance at a fixed physical scale is not modulated by the long gradient mode perturbations when the consistency condition holds. This shows that the contribution of long gradient modes to bias vanishes in this framework.

  20. LARGE SCALE PURIFICATION OF PROTEINASES FROM CLOSTRIDIUM HISTOLYTICUM FILTRATES

    PubMed Central

    Conklin, David A.; Webster, Marion E.; Altieri, Patricia L.; Berman, Sanford; Lowenthal, Joseph P.; Gochenour, Raymond B.

    1961-01-01

    Conklin, David A. (Walter Reed Army Institute of Research, Washington, D. C.), Marion E. Webster, Patricia L. Altieri, Sanford Berman, Joseph P. Lowenthal, and Raymond B. Gochenour. Large scale purification of proteinases from Clostridium histolyticum filtrates. J. Bacteriol. 82:589–594. 1961.—A method for the large scale preparation and partial purification of Clostridium histolyticum proteinases by fractional precipitation with ammonium sulfate is described. Conditions for adequate separation and purification of the δ-proteinase and the gelatinase were obtained. Collagenase, on the other hand, was found distributed in four to five fractions and little increase in purity was achieved as compared to the crude ammonium sulfate precipitates. PMID:13880849

  1. Prototype Vector Machine for Large Scale Semi-Supervised Learning

    SciTech Connect

    Zhang, Kai; Kwok, James T.; Parvin, Bahram

    2009-04-29

    Practicaldataminingrarelyfalls exactlyinto the supervisedlearning scenario. Rather, the growing amount of unlabeled data poses a big challenge to large-scale semi-supervised learning (SSL). We note that the computationalintensivenessofgraph-based SSLarises largely from the manifold or graph regularization, which in turn lead to large models that are dificult to handle. To alleviate this, we proposed the prototype vector machine (PVM), a highlyscalable,graph-based algorithm for large-scale SSL. Our key innovation is the use of"prototypes vectors" for effcient approximation on both the graph-based regularizer and model representation. The choice of prototypes are grounded upon two important criteria: they not only perform effective low-rank approximation of the kernel matrix, but also span a model suffering the minimum information loss compared with the complete model. We demonstrate encouraging performance and appealing scaling properties of the PVM on a number of machine learning benchmark data sets.

  2. The Large Scale Synthesis of Aligned Plate Nanostructures

    NASA Astrophysics Data System (ADS)

    Zhou, Yang; Nash, Philip; Liu, Tian; Zhao, Naiqin; Zhu, Shengli

    2016-07-01

    We propose a novel technique for the large-scale synthesis of aligned-plate nanostructures that are self-assembled and self-supporting. The synthesis technique involves developing nanoscale two-phase microstructures through discontinuous precipitation followed by selective etching to remove one of the phases. The method may be applied to any alloy system in which the discontinuous precipitation transformation goes to completion. The resulting structure may have many applications in catalysis, filtering and thermal management depending on the phase selection and added functionality through chemical reaction with the retained phase. The synthesis technique is demonstrated using the discontinuous precipitation of a γ‧ phase, (Ni, Co)3Al, followed by selective dissolution of the γ matrix phase. The production of the nanostructure requires heat treatments on the order of minutes and can be performed on a large scale making this synthesis technique of great economic potential.

  3. Comparative study of large-scale nonlinear optimization methods

    SciTech Connect

    Alemzadeh, S.A.

    1987-01-01

    Solving large-scale nonlinear optimization problems has been one of the active research areas for the last twenty years. Several heuristic algorithms with codes have been developed and implemented since 1966. This study explores the motivation and basic mathematical ideas leading to the development of MINOS-1.0, GRG-2,and MINOS-5.0 algorithms and their codes. The reliability, accuracy, and complexity of the algorithms and software depend upon their use of the gradient, Jacobian, and the Hessian. MINOS-1.0 and GRG-2 incorporate all of the input and output features, while MINOS-1.0 is not able to handle the nonlinearly constrained problems, and GRG-2 is not able to handle large-scale problems, MINOS-5.0 is a robust and an efficient software that incorporates all input, output features.

  4. LARGE-SCALE MOTIONS IN THE PERSEUS GALAXY CLUSTER

    SciTech Connect

    Simionescu, A.; Werner, N.; Urban, O.; Allen, S. W.; Fabian, A. C.; Sanders, J. S.; Mantz, A.; Nulsen, P. E. J.; Takei, Y.

    2012-10-01

    By combining large-scale mosaics of ROSAT PSPC, XMM-Newton, and Suzaku X-ray observations, we present evidence for large-scale motions in the intracluster medium of the nearby, X-ray bright Perseus Cluster. These motions are suggested by several alternating and interleaved X-ray bright, low-temperature, low-entropy arcs located along the east-west axis, at radii ranging from {approx}10 kpc to over a Mpc. Thermodynamic features qualitatively similar to these have previously been observed in the centers of cool-core clusters, and were successfully modeled as a consequence of the gas sloshing/swirling motions induced by minor mergers. Our observations indicate that such sloshing/swirling can extend out to larger radii than previously thought, on scales approaching the virial radius.

  5. The CLASSgal code for relativistic cosmological large scale structure

    SciTech Connect

    Dio, Enea Di; Montanari, Francesco; Durrer, Ruth; Lesgourgues, Julien E-mail: Francesco.Montanari@unige.ch E-mail: Ruth.Durrer@unige.ch

    2013-11-01

    We present accurate and efficient computations of large scale structure observables, obtained with a modified version of the CLASS code which is made publicly available. This code includes all relativistic corrections and computes both the power spectrum C{sub ℓ}(z{sub 1},z{sub 2}) and the corresponding correlation function ξ(θ,z{sub 1},z{sub 2}) of the matter density and the galaxy number fluctuations in linear perturbation theory. For Gaussian initial perturbations, these quantities contain the full information encoded in the large scale matter distribution at the level of linear perturbation theory. We illustrate the usefulness of our code for cosmological parameter estimation through a few simple examples.

  6. Large-Scale Optimization for Bayesian Inference in Complex Systems

    SciTech Connect

    Willcox, Karen; Marzouk, Youssef

    2013-11-12

    The SAGUARO (Scalable Algorithms for Groundwater Uncertainty Analysis and Robust Optimization) Project focused on the development of scalable numerical algorithms for large-scale Bayesian inversion in complex systems that capitalize on advances in large-scale simulation-based optimization and inversion methods. The project was a collaborative effort among MIT, the University of Texas at Austin, Georgia Institute of Technology, and Sandia National Laboratories. The research was directed in three complementary areas: efficient approximations of the Hessian operator, reductions in complexity of forward simulations via stochastic spectral approximations and model reduction, and employing large-scale optimization concepts to accelerate sampling. The MIT--Sandia component of the SAGUARO Project addressed the intractability of conventional sampling methods for large-scale statistical inverse problems by devising reduced-order models that are faithful to the full-order model over a wide range of parameter values; sampling then employs the reduced model rather than the full model, resulting in very large computational savings. Results indicate little effect on the computed posterior distribution. On the other hand, in the Texas--Georgia Tech component of the project, we retain the full-order model, but exploit inverse problem structure (adjoint-based gradients and partial Hessian information of the parameter-to-observation map) to implicitly extract lower dimensional information on the posterior distribution; this greatly speeds up sampling methods, so that fewer sampling points are needed. We can think of these two approaches as ``reduce then sample'' and ``sample then reduce.'' In fact, these two approaches are complementary, and can be used in conjunction with each other. Moreover, they both exploit deterministic inverse problem structure, in the form of adjoint-based gradient and Hessian information of the underlying parameter-to-observation map, to achieve their

  7. Turbulent amplification of large-scale magnetic fields

    NASA Technical Reports Server (NTRS)

    Montgomery, D.; Chen, H.

    1984-01-01

    Previously-introduced methods for analytically estimating the effects of small-scale turbulent fluctuations on large-scale dynamics are extended to fully three-dimensional magnetohydrodynamics. The problem becomes algebraically tractable in the presence of sufficiently large spectral gaps. The calculation generalizes 'alpha dynamo' calculations, except that the velocity fluctuations and magnetic fluctuations are treated on an independent and equal footing. Earlier expressions for the 'alpha coefficients' of turbulent magnetic field amplification are recovered as a special case.

  8. Concurrent Programming Using Actors: Exploiting Large-Scale Parallelism,

    DTIC Science & Technology

    1985-10-07

    ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK* Artificial Inteligence Laboratory AREA Is WORK UNIT NUMBERS 545 Technology Square...D-R162 422 CONCURRENT PROGRMMIZNG USING f"OS XL?ITP TEH l’ LARGE-SCALE PARALLELISH(U) NASI AC E Al CAMBRIDGE ARTIFICIAL INTELLIGENCE L. G AGHA ET AL...RESOLUTION TEST CHART N~ATIONAL BUREAU OF STANDA.RDS - -96 A -E. __ _ __ __’ .,*- - -- •. - MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL

  9. Host Immunity via Mutable Virtualized Large-Scale Network Containers

    DTIC Science & Technology

    2016-07-25

    migrate to different IP addresses multiple 6mes. We implement a virtual machine based system prototype and evaluate it using state-of-the-a1t scanning...entire !Pv4 address space within 5 Host Immunity via Mutable Virtualized Large-Scale Network Containers 45 minutes from a single machine . Second, when...that the attacker will be trapped into one decoy instead of the real server. We implement a virtual machine (VM)-based prototype that integrates

  10. Developing and Understanding Methods for Large Scale Nonlinear Optimization

    DTIC Science & Technology

    2001-12-01

    development of new algorithms for large-scale uncon- strained and constrained optimization problems, including limited-memory methods for problems with...analysis of tensor and SQP methods for singular con- strained optimization", to appear in SIAM Journal on Optimization. Published in peer-reviewed...Mathematica, Vol III, Journal der Deutschen Mathematiker-Vereinigung, 1998. S. Crivelli, B. Bader, R. Byrd, E. Eskow, V. Lamberti , R.Schnabel and T

  11. Wiggly cosmic strings, neutrinos and large-scale structure

    NASA Astrophysics Data System (ADS)

    Vachaspati, Tanmay

    1993-04-01

    We discuss the cosmic string scenario of large-scale structure formation in light of the result that the strings are not smooth but instead have a lot of sub-structure or wiggles on them. It appears from the results of Albrecht and Stebbins that the scenario works best if the universe is dominated by massive neutrinos or some other form of hot dark matter. Some unique features of the scenario, such as the generation of primordial magnetic fields, are also described.

  12. Analysis plan for 1985 large-scale tests. Technical report

    SciTech Connect

    McMullan, F.W.

    1983-01-01

    The purpose of this effort is to assist DNA in planning for large-scale (upwards of 5000 tons) detonations of conventional explosives in the 1985 and beyond time frame. Primary research objectives were to investigate potential means to increase blast duration and peak pressures. This report identifies and analyzes several candidate explosives. It examines several charge designs and identifies advantages and disadvantages of each. Other factors including terrain and multiburst techniques are addressed as are test site considerations.

  13. Multimodel Design of Large Scale Systems with Multiple Decision Makers.

    DTIC Science & Technology

    1982-08-01

    virtue. 5- , Lead me from darkneu to light. - Lead me from death to eternal Life. ( Vedic Payer) p. I, MULTIMODEL DESIGN OF LARGE SCALE SYSTEMS WITH...guidance during the course of *: this research . He would also like to thank Professors W. R. Perkins, P. V. Kokotovic, T. Basar, and T. N. Trick for...thesis concludes with Chapter 7 where we summarize the results obtained, outline the main contributions, and indicate directions for future research . 7- I

  14. Critical Problems in Very Large Scale Computer Systems

    DTIC Science & Technology

    1990-03-31

    MAY I i9cu( CRITICAL PROBLEMS IN VERY LARGE SCALE COMPUTER SYSTEMS Semiannual Technical Report for the Period October 1, 1989 to...suitability for supporting popular models of parallel computation . During the reporting period they have developed an interface definition. A simulator has...queries in computational geometry . Range queries are a fundamental problem in computational geometry with applications to computer graphics and

  15. Supporting large scale applications on networks of workstations

    NASA Technical Reports Server (NTRS)

    Cooper, Robert; Birman, Kenneth P.

    1989-01-01

    Distributed applications on networks of workstations are an increasingly common way to satisfy computing needs. However, existing mechanisms for distributed programming exhibit poor performance and reliability as application size increases. Extension of the ISIS distributed programming system to support large scale distributed applications by providing hierarchical process groups is discussed. Incorporation of hierarchy in the program structure and exploitation of this to limit the communication and storage required in any one component of the distributed system is examined.

  16. Large Scale Airflow Perturbations and Resultant Dune Dynamics

    NASA Astrophysics Data System (ADS)

    Smith, Alexander B.; Jackson, Derek W. T.; Cooper, J. Andrew G.; Beyers, Meiring

    2017-04-01

    Large-scale atmospheric turbulence can have a large impact on the regional wind regime effecting dune environments. Depending on the incident angle of mesoscale airflow, local topographic steering can also alter wind conditions and subsequent aeolian dynamics. This research analyses the influence of large-scale airflow perturbations occurring at the Maspalomas dunefield located on the southern coast of Gran Canaria, Spain. These perturbations in turn significantly influence the morphometry and migration rates of barchan dunes, monitored at the study site through time. The main meteorological station on Gran Canaria records highly uni-modal NNE wind conditions; however, simultaneously measured winds are highly variable around the island, showing a high degree of steering. Large Eddy Simulations (LES) were used to identify large-scale airflow perturbations around the island of Gran Canaria during NNE, N, and NNW incident flow directions. Results indicate that approaching surface airflow bifurcates around the island's coastline before converging at the lee coast. Winds in areas located around the islands lateral coast are controlled by these diverging flow patterns, whereas lee-side areas are influenced primarily by the islands upwind canyon topography leading to highly turbulent flow. Characteristic turbulent eddies show a complex wind environment at Maspalomas with winds diverging-converging up to 180° between the eastern and western sections of the dunefield. Multi-directional flow conditions lead to highly altered dune dynamics including the production of temporary slip faces on the stoss slopes, rapid reduction in crest height and slope length, and development of bi-crested dunes. This indicates a distinct bi-modality of airflow conditions that control the geomorphic evolution of the dunefield. Variability in wind conditions is not evident in the long-term meteorological records on the island, indicating the significance of large scale atmospheric steering on

  17. A Holistic Management Architecture for Large-Scale Adaptive Networks

    DTIC Science & Technology

    2007-09-01

    MANAGEMENT ARCHITECTURE FOR LARGE-SCALE ADAPTIVE NETWORKS by Michael R. Clement September 2007 Thesis Advisor: Alex Bordetsky Second Reader...TECHNOLOGY MANAGEMENT from the NAVAL POSTGRADUATE SCHOOL September 2007 Author: Michael R. Clement Approved by: Dr. Alex ...achieve in life is by His will. Ad Majorem Dei Gloriam. To my parents, my family, and Caitlin: For supporting me, listening to me when I got

  18. A Cloud Computing Platform for Large-Scale Forensic Computing

    NASA Astrophysics Data System (ADS)

    Roussev, Vassil; Wang, Liqiang; Richard, Golden; Marziale, Lodovico

    The timely processing of massive digital forensic collections demands the use of large-scale distributed computing resources and the flexibility to customize the processing performed on the collections. This paper describes MPI MapReduce (MMR), an open implementation of the MapReduce processing model that outperforms traditional forensic computing techniques. MMR provides linear scaling for CPU-intensive processing and super-linear scaling for indexing-related workloads.

  19. Large-Scale Weather Disturbances in Mars’ Southern Extratropics

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Jeffery L.; Kahre, Melinda A.

    2015-11-01

    Between late autumn and early spring, Mars’ middle and high latitudes within its atmosphere support strong mean thermal gradients between the tropics and poles. Observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that this strong baroclinicity supports intense, large-scale eastward traveling weather systems (i.e., transient synoptic-period waves). These extratropical weather disturbances are key components of the global circulation. Such wave-like disturbances act as agents in the transport of heat and momentum, and generalized scalar/tracer quantities (e.g., atmospheric dust, water-vapor and ice clouds). The character of large-scale, traveling extratropical synoptic-period disturbances in Mars' southern hemisphere during late winter through early spring is investigated using a moderately high-resolution Mars global climate model (Mars GCM). This Mars GCM imposes interactively lifted and radiatively active dust based on a threshold value of the surface stress. The model exhibits a reasonable "dust cycle" (i.e., globally averaged, a dustier atmosphere during southern spring and summer occurs). Compared to their northern-hemisphere counterparts, southern synoptic-period weather disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are far less intense. Influences of the zonally asymmetric (i.e., east-west varying) topography on southern large-scale weather are examined. Simulations that adapt Mars’ full topography compared to simulations that utilize synthetic topographies emulating key large-scale features of the southern middle latitudes indicate that Mars’ transient barotropic/baroclinic eddies are highly influenced by the great impact basins of this hemisphere (e.g., Argyre and Hellas). The occurrence of a southern storm zone in late winter and early spring appears to be anchored to the western hemisphere via orographic influences from the Tharsis highlands, and the Argyre

  20. The large-scale anisotropy with the PAMELA calorimeter

    NASA Astrophysics Data System (ADS)

    Karelin, A.; Adriani, O.; Barbarino, G.; Bazilevskaya, G.; Bellotti, R.; Boezio, M.; Bogomolov, E.; Bongi, M.; Bonvicini, V.; Bottai, S.; Bruno, A.; Cafagna, F.; Campana, D.; Carbone, R.; Carlson, P.; Casolino, M.; Castellini, G.; De Donato, C.; De Santis, C.; De Simone, N.; Di Felice, V.; Formato, V.; Galper, A.; Koldashov, S.; Koldobskiy, S.; Krut'kov, S.; Kvashnin, A.; Leonov, A.; Malakhov, V.; Marcelli, L.; Martucci, M.; Mayorov, A.; Menn, W.; Mergé, M.; Mikhailov, V.; Mocchiutti, E.; Monaco, A.; Mori, N.; Munini, R.; Osteria, G.; Palma, F.; Panico, B.; Papini, P.; Pearce, M.; Picozza, P.; Ricci, M.; Ricciarini, S.; Sarkar, R.; Simon, M.; Scotti, V.; Sparvoli, R.; Spillantini, P.; Stozhkov, Y.; Vacchi, A.; Vannuccini, E.; Vasilyev, G.; Voronov, S.; Yurkin, Y.; Zampa, G.; Zampa, N.

    2015-10-01

    The large-scale anisotropy (or the so-called star-diurnal wave) has been studied using the calorimeter of the space-born experiment PAMELA. The cosmic ray anisotropy has been obtained for the Southern and Northern hemispheres simultaneously in the equatorial coordinate system for the time period 2006-2014. The dipole amplitude and phase have been measured for energies 1-20 TeV n-1.

  1. Space transportation booster engine thrust chamber technology, large scale injector

    NASA Technical Reports Server (NTRS)

    Schneider, J. A.

    1993-01-01

    The objective of the Large Scale Injector (LSI) program was to deliver a 21 inch diameter, 600,000 lbf thrust class injector to NASA/MSFC for hot fire testing. The hot fire test program would demonstrate the feasibility and integrity of the full scale injector, including combustion stability, chamber wall compatibility (thermal management), and injector performance. The 21 inch diameter injector was delivered in September of 1991.

  2. Large Scale Density Estimation of Blue and Fin Whales (LSD)

    DTIC Science & Technology

    2014-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Large Scale Density Estimation of Blue and Fin Whales ...estimating blue and fin whale density that is effective over large spatial scales and is designed to cope with spatial variation in animal density utilizing...a density estimation methodology for quantifying blue and fin whale abundance from passive acoustic data recorded on sparse hydrophone arrays in the

  3. Relic vector field and CMB large scale anomalies

    SciTech Connect

    Chen, Xingang; Wang, Yi E-mail: yw366@cam.ac.uk

    2014-10-01

    We study the most general effects of relic vector fields on the inflationary background and density perturbations. Such effects are observable if the number of inflationary e-folds is close to the minimum requirement to solve the horizon problem. We show that this can potentially explain two CMB large scale anomalies: the quadrupole-octopole alignment and the quadrupole power suppression. We discuss its effect on the parity anomaly. We also provide analytical template for more detailed data comparison.

  4. Large-scale controls on convective extreme precipitation

    NASA Astrophysics Data System (ADS)

    Loriaux, Jessica M.; Lenderink, Geert; Pier Siebesma, A.

    2017-04-01

    The influence of large-scale conditions on extreme precipitation is not yet understood well enough. We will present the results of Loriaux et al. (2017), in which we investigate the role of large-scale dynamics and environmental conditions on precipitation and on the precipitation response to climate change. To this end, we have set up a composite LES case for convective precipitation using strong large-scale forcing based on idealized profiles for the highest 10 percentiles of peak intensities over the Netherlands, as described by Loriaux et al. (2016). In this setting, we have performed sensitivity analyses for atmospheric stability, large-scale moisture convergence, and relative humidity, and compared present-day climate to a warmer future climate. The results suggest that amplification of the moisture convergence and destabilization of the atmosphere both lead to an increase in precipitation, but due to different effects; Atmospheric stability mainly influences the precipitation intensity, while the moisture convergence mainly controls the precipitation area fraction. Extreme precipitation intensities show qualitatively similar sensitivities to atmospheric stability and moisture convergence. Precipitation increases with RH due to an increase in area fraction, despite a decrease in intensity. The precipitation response to the climate perturbation shows a stronger response for the precipitation intensity than the overall precipitation, with no clear dependency of changes in atmospheric stability, moisture convergence and relative humidity. The difference in response between the precipitation intensity and overall precipitation is caused by a decrease in the precipitation area fraction from present-day to future climate. In other words, our climate perturbation indicates that with warming, it will rain more intensely but in less places. Loriaux, J.M., G. Lenderink, and A.P. Siebesma, 2016, doi: 10.1002/2015JD024274 Loriaux, J.M., G. Lenderink, and A.P. Siebesma

  5. On a Game of Large-Scale Projects Competition

    NASA Astrophysics Data System (ADS)

    Nikonov, Oleg I.; Medvedeva, Marina A.

    2009-09-01

    The paper is devoted to game-theoretical control problems motivated by economic decision making situations arising in realization of large-scale projects, such as designing and putting into operations the new gas or oil pipelines. A non-cooperative two player game is considered with payoff functions of special type for which standard existence theorems and algorithms for searching Nash equilibrium solutions are not applicable. The paper is based on and develops the results obtained in [1]-[5].

  6. Measuring large scale space perception in literary texts

    NASA Astrophysics Data System (ADS)

    Rossi, Paolo

    2007-07-01

    A center and radius of “perception” (in the sense of environmental cognition) can be formally associated with a written text and operationally defined. Simple algorithms for their computation are presented, and indicators for anisotropy in large scale space perception are introduced. The relevance of these notions for the analysis of literary and historical records is briefly discussed and illustrated with an example taken from medieval historiography.

  7. Semantic Concept Discovery for Large Scale Zero Shot Event Detection

    DTIC Science & Technology

    2015-07-25

    NO. 0704-0188 3. DATES COVERED (From - To) - UU UU UU UU 18-08-2015 Approved for public release; distribution is unlimited. Semantic Concept Discovery ...Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 zero shot event detection, semantic concept discovery REPORT DOCUMENTATION PAGE 11...Mellon University 5000 Forbes Avenue Pittsburgh, PA 15213 -3815 ABSTRACT Semantic Concept Discovery for Large-Scale Zero-Shot Event Detection Report

  8. Large-scale Alfvén vortices

    SciTech Connect

    Onishchenko, O. G.; Horton, W.; Scullion, E.; Fedun, V.

    2015-12-15

    The new type of large-scale vortex structures of dispersionless Alfvén waves in collisionless plasma is investigated. It is shown that Alfvén waves can propagate in the form of Alfvén vortices of finite characteristic radius and characterised by magnetic flux ropes carrying orbital angular momentum. The structure of the toroidal and radial velocity, fluid and magnetic field vorticity, the longitudinal electric current in the plane orthogonal to the external magnetic field are discussed.

  9. The Phoenix series large scale LNG pool fire experiments.

    SciTech Connect

    Simpson, Richard B.; Jensen, Richard Pearson; Demosthenous, Byron; Luketa, Anay Josephine; Ricks, Allen Joseph; Hightower, Marion Michael; Blanchat, Thomas K.; Helmick, Paul H.; Tieszen, Sheldon Robert; Deola, Regina Anne; Mercier, Jeffrey Alan; Suo-Anttila, Jill Marie; Miller, Timothy J.

    2010-12-01

    The increasing demand for natural gas could increase the number and frequency of Liquefied Natural Gas (LNG) tanker deliveries to ports across the United States. Because of the increasing number of shipments and the number of possible new facilities, concerns about the potential safety of the public and property from an accidental, and even more importantly intentional spills, have increased. While improvements have been made over the past decade in assessing hazards from LNG spills, the existing experimental data is much smaller in size and scale than many postulated large accidental and intentional spills. Since the physics and hazards from a fire change with fire size, there are concerns about the adequacy of current hazard prediction techniques for large LNG spills and fires. To address these concerns, Congress funded the Department of Energy (DOE) in 2008 to conduct a series of laboratory and large-scale LNG pool fire experiments at Sandia National Laboratories (Sandia) in Albuquerque, New Mexico. This report presents the test data and results of both sets of fire experiments. A series of five reduced-scale (gas burner) tests (yielding 27 sets of data) were conducted in 2007 and 2008 at Sandia's Thermal Test Complex (TTC) to assess flame height to fire diameter ratios as a function of nondimensional heat release rates for extrapolation to large-scale LNG fires. The large-scale LNG pool fire experiments were conducted in a 120 m diameter pond specially designed and constructed in Sandia's Area III large-scale test complex. Two fire tests of LNG spills of 21 and 81 m in diameter were conducted in 2009 to improve the understanding of flame height, smoke production, and burn rate and therefore the physics and hazards of large LNG spills and fires.

  10. Large-scale quantization from local correlations in space plasmas

    NASA Astrophysics Data System (ADS)

    Livadiotis, George; McComas, David J.

    2014-05-01

    This study examines the large-scale quantization that can characterize the phase space of certain physical systems. Plasmas are such systems where large-scale quantization, ħ*, is caused by Debye shielding that structures correlations between particles. The value of ħ* is constant—some 12 orders of magnitude larger than the Planck constant—across a wide range of space plasmas, from the solar wind in the inner heliosphere to the distant plasma in the inner heliosheath and the local interstellar medium. This paper develops the foundation and advances the understanding of the concept of plasma quantization; in particular, we (i) show the analogy of plasma to Planck quantization, (ii) show the key points of plasma quantization, (iii) construct some basic quantum mechanical concepts for the large-scale plasma quantization, (iv) investigate the correlation between plasma parameters that implies plasma quantization, when it is approximated by a relation between the magnetosonic energy and the plasma frequency, (v) analyze typical space plasmas throughout the heliosphere and show the constancy of plasma quantization over many orders of magnitude in plasma parameters, (vi) analyze Advanced Composition Explorer (ACE) solar wind measurements to develop another measurement of the value of ħ*, and (vii) apply plasma quantization to derive unknown plasma parameters when some key observable is missing.

  11. Large-scale investigation of genomic markers for severe periodontitis.

    PubMed

    Suzuki, Asami; Ji, Guijin; Numabe, Yukihiro; Ishii, Keisuke; Muramatsu, Masaaki; Kamoi, Kyuichi

    2004-09-01

    The purpose of the present study was to investigate the genomic markers for periodontitis, using large-scale single-nucleotide polymorphism (SNP) association studies comparing healthy volunteers and patients with periodontitis. Genomic DNA was obtained from 19 healthy volunteers and 22 patients with severe periodontitis, all of whom were Japanese. The subjects were genotyped at 637 SNPs in 244 genes on a large scale, using the TaqMan polymerase chain reaction (PCR) system. Statistically significant differences in allele and genotype frequencies were analyzed with Fisher's exact test. We found statistically significant differences (P < 0.01) between the healthy volunteers and patients with severe periodontitis in the following genes; gonadotropin-releasing hormone 1 (GNRH1), phosphatidylinositol 3-kinase regulatory 1 (PIK3R1), dipeptidylpeptidase 4 (DPP4), fibrinogen-like 2 (FGL2), and calcitonin receptor (CALCR). These results suggest that SNPs in the GNRH1, PIK3R1, DPP4, FGL2, and CALCR genes are genomic markers for severe periodontitis. Our findings indicate the necessity of analyzing SNPs in genes on a large scale (i.e., genome-wide approach), to identify genomic markers for periodontitis.

  12. Geospatial Optimization of Siting Large-Scale Solar Projects

    SciTech Connect

    Macknick, J.; Quinby, T.; Caulfield, E.; Gerritsen, M.; Diffendorfer, J.; Haines, S.

    2014-03-01

    Recent policy and economic conditions have encouraged a renewed interest in developing large-scale solar projects in the U.S. Southwest. However, siting large-scale solar projects is complex. In addition to the quality of the solar resource, solar developers must take into consideration many environmental, social, and economic factors when evaluating a potential site. This report describes a proof-of-concept, Web-based Geographical Information Systems (GIS) tool that evaluates multiple user-defined criteria in an optimization algorithm to inform discussions and decisions regarding the locations of utility-scale solar projects. Existing siting recommendations for large-scale solar projects from governmental and non-governmental organizations are not consistent with each other, are often not transparent in methods, and do not take into consideration the differing priorities of stakeholders. The siting assistance GIS tool we have developed improves upon the existing siting guidelines by being user-driven, transparent, interactive, capable of incorporating multiple criteria, and flexible. This work provides the foundation for a dynamic siting assistance tool that can greatly facilitate siting decisions among multiple stakeholders.

  13. Large-scale data mining pilot project in human genome

    SciTech Connect

    Musick, R.; Fidelis, R.; Slezak, T.

    1997-05-01

    This whitepaper briefly describes a new, aggressive effort in large- scale data Livermore National Labs. The implications of `large- scale` will be clarified Section. In the short term, this effort will focus on several @ssion-critical questions of Genome project. We will adapt current data mining techniques to the Genome domain, to quantify the accuracy of inference results, and lay the groundwork for a more extensive effort in large-scale data mining. A major aspect of the approach is that we will be fully-staffed data warehousing effort in the human Genome area. The long term goal is strong applications- oriented research program in large-@e data mining. The tools, skill set gained will be directly applicable to a wide spectrum of tasks involving a for large spatial and multidimensional data. This includes applications in ensuring non-proliferation, stockpile stewardship, enabling Global Ecology (Materials Database Industrial Ecology), advancing the Biosciences (Human Genome Project), and supporting data for others (Battlefield Management, Health Care).

  14. A model of plasma heating by large-scale flow

    NASA Astrophysics Data System (ADS)

    Pongkitiwanichakul, P.; Cattaneo, F.; Boldyrev, S.; Mason, J.; Perez, J. C.

    2015-12-01

    In this work, we study the process of energy dissipation triggered by a slow large-scale motion of a magnetized conducting fluid. Our consideration is motivated by the problem of heating the solar corona, which is believed to be governed by fast reconnection events set off by the slow motion of magnetic field lines anchored in the photospheric plasma. To elucidate the physics governing the disruption of the imposed laminar motion and the energy transfer to small scales, we propose a simplified model where the large-scale motion of magnetic field lines is prescribed not at the footpoints but rather imposed volumetrically. As a result, the problem can be treated numerically with an efficient, highly accurate spectral method, allowing us to use a resolution and statistical ensemble exceeding those of the previous work. We find that, even though the large-scale deformations are slow, they eventually lead to reconnection events that drive a turbulent state at smaller scales. The small-scale turbulence displays many of the universal features of field-guided magnetohydrodynamic turbulence like a well-developed inertial range spectrum. Based on these observations, we construct a phenomenological model that gives the scalings of the amplitude of the fluctuations and the energy-dissipation rate as functions of the input parameters. We find good agreement between the numerical results and the predictions of the model.

  15. Large-scale biodiversity patterns in freshwater phytoplankton.

    PubMed

    Stomp, Maayke; Huisman, Jef; Mittelbach, Gary G; Litchman, Elena; Klausmeier, Christopher A

    2011-11-01

    Our planet shows striking gradients in the species richness of plants and animals, from high biodiversity in the tropics to low biodiversity in polar and high-mountain regions. Recently, similar patterns have been described for some groups of microorganisms, but the large-scale biogeographical distribution of freshwater phytoplankton diversity is still largely unknown. We examined the species diversity of freshwater phytoplankton sampled from 540 lakes and reservoirs distributed across the continental United States and found strong latitudinal, longitudinal, and altitudinal gradients in phytoplankton biodiversity, demonstrating that microorganisms can show substantial geographic variation in biodiversity. Detailed analysis using structural equation models indicated that these large-scale biodiversity gradients in freshwater phytoplankton diversity were mainly driven by local environmental factors, although there were residual direct effects of latitude, longitude, and altitude as well. Specifically, we found that phytoplankton species richness was an increasing saturating function of lake chlorophyll a concentration, increased with lake surface area and possibly increased with water temperature, resembling effects of productivity, habitat area, and temperature on diversity patterns commonly observed for macroorganisms. In turn, these local environmental factors varied along latitudinal, longitudinal, and altitudinal gradients. These results imply that changes in land use or climate that affect these local environmental factors are likely to have major impacts on large-scale biodiversity patterns of freshwater phytoplankton.

  16. Homogenization of Large-Scale Movement Models in Ecology

    USGS Publications Warehouse

    Garlick, M.J.; Powell, J.A.; Hooten, M.B.; McFarlane, L.R.

    2011-01-01

    A difficulty in using diffusion models to predict large scale animal population dispersal is that individuals move differently based on local information (as opposed to gradients) in differing habitat types. This can be accommodated by using ecological diffusion. However, real environments are often spatially complex, limiting application of a direct approach. Homogenization for partial differential equations has long been applied to Fickian diffusion (in which average individual movement is organized along gradients of habitat and population density). We derive a homogenization procedure for ecological diffusion and apply it to a simple model for chronic wasting disease in mule deer. Homogenization allows us to determine the impact of small scale (10-100 m) habitat variability on large scale (10-100 km) movement. The procedure generates asymptotic equations for solutions on the large scale with parameters defined by small-scale variation. The simplicity of this homogenization procedure is striking when compared to the multi-dimensional homogenization procedure for Fickian diffusion,and the method will be equally straightforward for more complex models. ?? 2010 Society for Mathematical Biology.

  17. Channel capacity of next generation large scale MIMO systems

    NASA Astrophysics Data System (ADS)

    Alshammari, A.; Albdran, S.; Matin, M.

    2016-09-01

    Information rate that can be transferred over a given bandwidth is limited by the information theory. Capacity depends on many factors such as the signal to noise ratio (SNR), channel state information (CSI) and the spatial correlation in the propagation environment. It is very important to increase spectral efficiency in order to meet the growing demand for wireless services. Thus, Multiple input multiple output (MIMO) technology has been developed and applied in most of the wireless standards and it has been very successful in increasing capacity and reliability. As the demand is still increasing, attention now is shifting towards large scale multiple input multiple output (MIMO) which has a potential of bringing orders of magnitude of improvement in spectral and energy efficiency. It has been shown that users channels decorrelate after increasing the number of antennas. As a result, inter-user interference can be avoided since energy can be focused on precise directions. This paper investigates the limits of channel capacity for large scale MIMO. We study the relation between spectral efficiency and the number of antenna N. We use time division duplex (TDD) system in order to obtain CSI using training sequence in the uplink. The same CSI is used for the downlink because the channel is reciprocal. Spectral efficiency is measured for channel model that account for small scale fading while ignoring the effect of large scale fading. It is shown the spectral efficiency can be improved significantly when compared to single antenna systems in ideal circumstances.

  18. Sparse approximation through boosting for learning large scale kernel machines.

    PubMed

    Sun, Ping; Yao, Xin

    2010-06-01

    Recently, sparse approximation has become a preferred method for learning large scale kernel machines. This technique attempts to represent the solution with only a subset of original data points also known as basis vectors, which are usually chosen one by one with a forward selection procedure based on some selection criteria. The computational complexity of several resultant algorithms scales as O(NM(2)) in time and O(NM) in memory, where N is the number of training points and M is the number of basis vectors as well as the steps of forward selection. For some large scale data sets, to obtain a better solution, we are sometimes required to include more basis vectors, which means that M is not trivial in this situation. However, the limited computational resource (e.g., memory) prevents us from including too many vectors. To handle this dilemma, we propose to add an ensemble of basis vectors instead of only one at each forward step. The proposed method, closely related to gradient boosting, could decrease the required number M of forward steps significantly and thus a large fraction of computational cost is saved. Numerical experiments on three large scale regression tasks and a classification problem demonstrate the effectiveness of the proposed approach.

  19. Dispersal Mutualism Incorporated into Large-Scale, Infrequent Disturbances.

    PubMed

    Parker, V Thomas

    2015-01-01

    Because of their influence on succession and other community interactions, large-scale, infrequent natural disturbances also should play a major role in mutualistic interactions. Using field data and experiments, I test whether mutualisms have been incorporated into large-scale wildfire by whether the outcomes of a mutualism depend on disturbance. In this study a seed dispersal mutualism is shown to depend on infrequent, large-scale disturbances. A dominant shrubland plant (Arctostaphylos species) produces seeds that make up a persistent soil seed bank and requires fire to germinate. In post-fire stands, I show that seedlings emerging from rodent caches dominate sites experiencing higher fire intensity. Field experiments show that rodents (Perimyscus californicus, P. boylii) do cache Arctostaphylos fruit and bury most seed caches to a sufficient depth to survive a killing heat pulse that a fire might drive into the soil. While the rodent dispersal and caching behavior itself has not changed compared to other habitats, the environmental transformation caused by wildfire converts the caching burial of seed from a dispersal process to a plant fire adaptive trait, and provides the context for stimulating subsequent life history evolution in the plant host.

  20. Line segment extraction for large scale unorganized point clouds

    NASA Astrophysics Data System (ADS)

    Lin, Yangbin; Wang, Cheng; Cheng, Jun; Chen, Bili; Jia, Fukai; Chen, Zhonggui; Li, Jonathan

    2015-04-01

    Line segment detection in images is already a well-investigated topic, although it has received considerably less attention in 3D point clouds. Benefiting from current LiDAR devices, large-scale point clouds are becoming increasingly common. Most human-made objects have flat surfaces. Line segments that occur where pairs of planes intersect give important information regarding the geometric content of point clouds, which is especially useful for automatic building reconstruction and segmentation. This paper proposes a novel method that is capable of accurately extracting plane intersection line segments from large-scale raw scan points. The 3D line-support region, namely, a point set near a straight linear structure, is extracted simultaneously. The 3D line-support region is fitted by our Line-Segment-Half-Planes (LSHP) structure, which provides a geometric constraint for a line segment, making the line segment more reliable and accurate. We demonstrate our method on the point clouds of large-scale, complex, real-world scenes acquired by LiDAR devices. We also demonstrate the application of 3D line-support regions and their LSHP structures on urban scene abstraction.

  1. [A large-scale accident in Alpine terrain].

    PubMed

    Wildner, M; Paal, P

    2015-02-01

    Due to the geographical conditions, large-scale accidents amounting to mass casualty incidents (MCI) in Alpine terrain regularly present rescue teams with huge challenges. Using an example incident, specific conditions and typical problems associated with such a situation are presented. The first rescue team members to arrive have the elementary tasks of qualified triage and communication to the control room, which is required to dispatch the necessary additional support. Only with a clear "concept", to which all have to adhere, can the subsequent chaos phase be limited. In this respect, a time factor confounded by adverse weather conditions or darkness represents enormous pressure. Additional hazards are frostbite and hypothermia. If priorities can be established in terms of urgency, then treatment and procedure algorithms have proven successful. For evacuation of causalities, a helicopter should be strived for. Due to the low density of hospitals in Alpine regions, it is often necessary to distribute the patients over a wide area. Rescue operations in Alpine terrain have to be performed according to the particular conditions and require rescue teams to have specific knowledge and expertise. The possibility of a large-scale accident should be considered when planning events. With respect to optimization of rescue measures, regular training and exercises are rational, as is the analysis of previous large-scale Alpine accidents.

  2. Large scale structure in universes dominated by cold dark matter

    NASA Technical Reports Server (NTRS)

    Bond, J. Richard

    1986-01-01

    The theory of Gaussian random density field peaks is applied to a numerical study of the large-scale structure developing from adiabatic fluctuations in models of biased galaxy formation in universes with Omega = 1, h = 0.5 dominated by cold dark matter (CDM). The angular anisotropy of the cross-correlation function demonstrates that the far-field regions of cluster-scale peaks are asymmetric, as recent observations indicate. These regions will generate pancakes or filaments upon collapse. One-dimensional singularities in the large-scale bulk flow should arise in these CDM models, appearing as pancakes in position space. They are too rare to explain the CfA bubble walls, but pancakes that are just turning around now are sufficiently abundant and would appear to be thin walls normal to the line of sight in redshift space. Large scale streaming velocities are significantly smaller than recent observations indicate. To explain the reported 700 km/s coherent motions, mass must be significantly more clustered than galaxies with a biasing factor of less than 0.4 and a nonlinear redshift at cluster scales greater than one for both massive neutrino and cold models.

  3. Learning Short Binary Codes for Large-scale Image Retrieval.

    PubMed

    Liu, Li; Yu, Mengyang; Shao, Ling

    2017-03-01

    Large-scale visual information retrieval has become an active research area in this big data era. Recently, hashing/binary coding algorithms prove to be effective for scalable retrieval applications. Most existing hashing methods require relatively long binary codes (i.e., over hundreds of bits, sometimes even thousands of bits) to achieve reasonable retrieval accuracies. However, for some realistic and unique applications, such as on wearable or mobile devices, only short binary codes can be used for efficient image retrieval due to the limitation of computational resources or bandwidth on these devices. In this paper, we propose a novel unsupervised hashing approach called min-cost ranking (MCR) specifically for learning powerful short binary codes (i.e., usually the code length shorter than 100 b) for scalable image retrieval tasks. By exploring the discriminative ability of each dimension of data, MCR can generate one bit binary code for each dimension and simultaneously rank the discriminative separability of each bit according to the proposed cost function. Only top-ranked bits with minimum cost-values are then selected and grouped together to compose the final salient binary codes. Extensive experimental results on large-scale retrieval demonstrate that MCR can achieve comparative performance as the state-of-the-art hashing algorithms but with significantly shorter codes, leading to much faster large-scale retrieval.

  4. Robust regression for large-scale neuroimaging studies.

    PubMed

    Fritsch, Virgile; Da Mota, Benoit; Loth, Eva; Varoquaux, Gaël; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun L W; Brühl, Rüdiger; Butzek, Brigitte; Conrod, Patricia; Flor, Herta; Garavan, Hugh; Lemaitre, Hervé; Mann, Karl; Nees, Frauke; Paus, Tomas; Schad, Daniel J; Schümann, Gunter; Frouin, Vincent; Poline, Jean-Baptiste; Thirion, Bertrand

    2015-05-01

    Multi-subject datasets used in neuroimaging group studies have a complex structure, as they exhibit non-stationary statistical properties across regions and display various artifacts. While studies with small sample sizes can rarely be shown to deviate from standard hypotheses (such as the normality of the residuals) due to the poor sensitivity of normality tests with low degrees of freedom, large-scale studies (e.g. >100 subjects) exhibit more obvious deviations from these hypotheses and call for more refined models for statistical inference. Here, we demonstrate the benefits of robust regression as a tool for analyzing large neuroimaging cohorts. First, we use an analytic test based on robust parameter estimates; based on simulations, this procedure is shown to provide an accurate statistical control without resorting to permutations. Second, we show that robust regression yields more detections than standard algorithms using as an example an imaging genetics study with 392 subjects. Third, we show that robust regression can avoid false positives in a large-scale analysis of brain-behavior relationships with over 1500 subjects. Finally we embed robust regression in the Randomized Parcellation Based Inference (RPBI) method and demonstrate that this combination further improves the sensitivity of tests carried out across the whole brain. Altogether, our results show that robust procedures provide important advantages in large-scale neuroimaging group studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Reliability assessment for components of large scale photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Ahadi, Amir; Ghadimi, Noradin; Mirabbasi, Davar

    2014-10-01

    Photovoltaic (PV) systems have significantly shifted from independent power generation systems to a large-scale grid-connected generation systems in recent years. The power output of PV systems is affected by the reliability of various components in the system. This study proposes an analytical approach to evaluate the reliability of large-scale, grid-connected PV systems. The fault tree method with an exponential probability distribution function is used to analyze the components of large-scale PV systems. The system is considered in the various sequential and parallel fault combinations in order to find all realistic ways in which the top or undesired events can occur. Additionally, it can identify areas that the planned maintenance should focus on. By monitoring the critical components of a PV system, it is possible not only to improve the reliability of the system, but also to optimize the maintenance costs. The latter is achieved by informing the operators about the system component's status. This approach can be used to ensure secure operation of the system by its flexibility in monitoring system applications. The implementation demonstrates that the proposed method is effective and efficient and can conveniently incorporate more system maintenance plans and diagnostic strategies.

  6. Impact of Large-scale Geological Architectures On Recharge

    NASA Astrophysics Data System (ADS)

    Troldborg, L.; Refsgaard, J. C.; Engesgaard, P.; Jensen, K. H.

    Geological and hydrogeological data constitutes the basis for assessment of ground- water flow pattern and recharge zones. The accessibility and applicability of hard ge- ological data is often a major obstacle in deriving plausible conceptual models. Nev- ertheless focus is often on parameter uncertainty caused by the effect of geological heterogeneity due to lack of hard geological data, thus neglecting the possibility of alternative conceptualizations of the large-scale geological architecture. For a catchment in the eastern part of Denmark we have constructed different geologi- cal models based on different conceptualization of the major geological trends and fa- cies architecture. The geological models are equally plausible in a conceptually sense and they are all calibrated to well head and river flow measurements. Comparison of differences in recharge zones and subsequently well protection zones emphasize the importance of assessing large-scale geological architecture in hydrological modeling on regional scale in a non-deterministic way. Geostatistical modeling carried out in a transitional probability framework shows the possibility of assessing multiple re- alizations of large-scale geological architecture from a combination of soft and hard geological information.

  7. Alteration of Large-Scale Chromatin Structure by Estrogen Receptor

    PubMed Central

    Nye, Anne C.; Rajendran, Ramji R.; Stenoien, David L.; Mancini, Michael A.; Katzenellenbogen, Benita S.; Belmont, Andrew S.

    2002-01-01

    The estrogen receptor (ER), a member of the nuclear hormone receptor superfamily important in human physiology and disease, recruits coactivators which modify local chromatin structure. Here we describe effects of ER on large-scale chromatin structure as visualized in live cells. We targeted ER to gene-amplified chromosome arms containing large numbers of lac operator sites either directly, through a lac repressor-ER fusion protein (lac rep-ER), or indirectly, by fusing lac repressor with the ER interaction domain of the coactivator steroid receptor coactivator 1. Significant decondensation of large-scale chromatin structure, comparable to that produced by the ∼150-fold-stronger viral protein 16 (VP16) transcriptional activator, was produced by ER in the absence of estradiol using both approaches. Addition of estradiol induced a partial reversal of this unfolding by green fluorescent protein-lac rep-ER but not by wild-type ER recruited by a lac repressor-SRC570-780 fusion protein. The chromatin decondensation activity did not require transcriptional activation by ER nor did it require ligand-induced coactivator interactions, and unfolding did not correlate with histone hyperacetylation. Ligand-induced coactivator interactions with helix 12 of ER were necessary for the partial refolding of chromatin in response to estradiol using the lac rep-ER tethering system. This work demonstrates that when tethered or recruited to DNA, ER possesses a novel large-scale chromatin unfolding activity. PMID:11971975

  8. Multiresolution comparison of precipitation datasets for large-scale models

    NASA Astrophysics Data System (ADS)

    Chun, K. P.; Sapriza Azuri, G.; Davison, B.; DeBeer, C. M.; Wheater, H. S.

    2014-12-01

    Gridded precipitation datasets are crucial for driving large-scale models which are related to weather forecast and climate research. However, the quality of precipitation products is usually validated individually. Comparisons between gridded precipitation products along with ground observations provide another avenue for investigating how the precipitation uncertainty would affect the performance of large-scale models. In this study, using data from a set of precipitation gauges over British Columbia and Alberta, we evaluate several widely used North America gridded products including the Canadian Gridded Precipitation Anomalies (CANGRD), the National Center for Environmental Prediction (NCEP) reanalysis, the Water and Global Change (WATCH) project, the thin plate spline smoothing algorithms (ANUSPLIN) and Canadian Precipitation Analysis (CaPA). Based on verification criteria for various temporal and spatial scales, results provide an assessment of possible applications for various precipitation datasets. For long-term climate variation studies (~100 years), CANGRD, NCEP, WATCH and ANUSPLIN have different comparative advantages in terms of their resolution and accuracy. For synoptic and mesoscale precipitation patterns, CaPA provides appealing performance of spatial coherence. In addition to the products comparison, various downscaling methods are also surveyed to explore new verification and bias-reduction methods for improving gridded precipitation outputs for large-scale models.

  9. Dispersal Mutualism Incorporated into Large-Scale, Infrequent Disturbances

    PubMed Central

    Parker, V. Thomas

    2015-01-01

    Because of their influence on succession and other community interactions, large-scale, infrequent natural disturbances also should play a major role in mutualistic interactions. Using field data and experiments, I test whether mutualisms have been incorporated into large-scale wildfire by whether the outcomes of a mutualism depend on disturbance. In this study a seed dispersal mutualism is shown to depend on infrequent, large-scale disturbances. A dominant shrubland plant (Arctostaphylos species) produces seeds that make up a persistent soil seed bank and requires fire to germinate. In post-fire stands, I show that seedlings emerging from rodent caches dominate sites experiencing higher fire intensity. Field experiments show that rodents (Perimyscus californicus, P. boylii) do cache Arctostaphylos fruit and bury most seed caches to a sufficient depth to survive a killing heat pulse that a fire might drive into the soil. While the rodent dispersal and caching behavior itself has not changed compared to other habitats, the environmental transformation caused by wildfire converts the caching burial of seed from a dispersal process to a plant fire adaptive trait, and provides the context for stimulating subsequent life history evolution in the plant host. PMID:26151560

  10. Large-scale flow generation by inhomogeneous helicity.

    PubMed

    Yokoi, N; Brandenburg, A

    2016-03-01

    The effect of kinetic helicity (velocity-vorticity correlation) on turbulent momentum transport is investigated. The turbulent kinetic helicity (pseudoscalar) enters the Reynolds stress (mirror-symmetric tensor) expression in the form of a helicity gradient as the coupling coefficient for the mean vorticity and/or the angular velocity (axial vector), which suggests the possibility of mean-flow generation in the presence of inhomogeneous helicity. This inhomogeneous helicity effect, which was previously confirmed at the level of a turbulence- or closure-model simulation, is examined with the aid of direct numerical simulations of rotating turbulence with nonuniform helicity sustained by an external forcing. The numerical simulations show that the spatial distribution of the Reynolds stress is in agreement with the helicity-related term coupled with the angular velocity, and that a large-scale flow is generated in the direction of angular velocity. Such a large-scale flow is not induced in the case of homogeneous turbulent helicity. This result confirms the validity of the inhomogeneous helicity effect in large-scale flow generation and suggests that a vortex dynamo is possible even in incompressible turbulence where there is no baroclinicity effect.

  11. Large-scale flow experiments for managing river systems

    USGS Publications Warehouse

    Konrad, Christopher P.; Olden, Julian D.; Lytle, David A.; Melis, Theodore S.; Schmidt, John C.; Bray, Erin N.; Freeman, Mary C.; Gido, Keith B.; Hemphill, Nina P.; Kennard, Mark J.; McMullen, Laura E.; Mims, Meryl C.; Pyron, Mark; Robinson, Christopher T.; Williams, John G.

    2011-01-01

    Experimental manipulations of streamflow have been used globally in recent decades to mitigate the impacts of dam operations on river systems. Rivers are challenging subjects for experimentation, because they are open systems that cannot be isolated from their social context. We identify principles to address the challenges of conducting effective large-scale flow experiments. Flow experiments have both scientific and social value when they help to resolve specific questions about the ecological action of flow with a clear nexus to water policies and decisions. Water managers must integrate new information into operating policies for large-scale experiments to be effective. Modeling and monitoring can be integrated with experiments to analyze long-term ecological responses. Experimental design should include spatially extensive observations and well-defined, repeated treatments. Large-scale flow manipulations are only a part of dam operations that affect river systems. Scientists can ensure that experimental manipulations continue to be a valuable approach for the scientifically based management of river systems.

  12. Foundational perspectives on causality in large-scale brain networks.

    PubMed

    Mannino, Michael; Bressler, Steven L

    2015-12-01

    A profusion of recent work in cognitive neuroscience has been concerned with the endeavor to uncover causal influences in large-scale brain networks. However, despite the fact that many papers give a nod to the important theoretical challenges posed by the concept of causality, this explosion of research has generally not been accompanied by a rigorous conceptual analysis of the nature of causality in the brain. This review provides both a descriptive and prescriptive account of the nature of causality as found within and between large-scale brain networks. In short, it seeks to clarify the concept of causality in large-scale brain networks both philosophically and scientifically. This is accomplished by briefly reviewing the rich philosophical history of work on causality, especially focusing on contributions by David Hume, Immanuel Kant, Bertrand Russell, and Christopher Hitchcock. We go on to discuss the impact that various interpretations of modern physics have had on our understanding of causality. Throughout all this, a central focus is the distinction between theories of deterministic causality (DC), whereby causes uniquely determine their effects, and probabilistic causality (PC), whereby causes change the probability of occurrence of their effects. We argue that, given the topological complexity of its large-scale connectivity, the brain should be considered as a complex system and its causal influences treated as probabilistic in nature. We conclude that PC is well suited for explaining causality in the brain for three reasons: (1) brain causality is often mutual; (2) connectional convergence dictates that only rarely is the activity of one neuronal population uniquely determined by another one; and (3) the causal influences exerted between neuronal populations may not have observable effects. A number of different techniques are currently available to characterize causal influence in the brain. Typically, these techniques quantify the statistical

  13. Robust large-scale parallel nonlinear solvers for simulations.

    SciTech Connect

    Bader, Brett William; Pawlowski, Roger Patrick; Kolda, Tamara Gibson

    2005-11-01

    This report documents research to develop robust and efficient solution techniques for solving large-scale systems of nonlinear equations. The most widely used method for solving systems of nonlinear equations is Newton's method. While much research has been devoted to augmenting Newton-based solvers (usually with globalization techniques), little has been devoted to exploring the application of different models. Our research has been directed at evaluating techniques using different models than Newton's method: a lower order model, Broyden's method, and a higher order model, the tensor method. We have developed large-scale versions of each of these models and have demonstrated their use in important applications at Sandia. Broyden's method replaces the Jacobian with an approximation, allowing codes that cannot evaluate a Jacobian or have an inaccurate Jacobian to converge to a solution. Limited-memory methods, which have been successful in optimization, allow us to extend this approach to large-scale problems. We compare the robustness and efficiency of Newton's method, modified Newton's method, Jacobian-free Newton-Krylov method, and our limited-memory Broyden method. Comparisons are carried out for large-scale applications of fluid flow simulations and electronic circuit simulations. Results show that, in cases where the Jacobian was inaccurate or could not be computed, Broyden's method converged in some cases where Newton's method failed to converge. We identify conditions where Broyden's method can be more efficient than Newton's method. We also present modifications to a large-scale tensor method, originally proposed by Bouaricha, for greater efficiency, better robustness, and wider applicability. Tensor methods are an alternative to Newton-based methods and are based on computing a step based on a local quadratic model rather than a linear model. The advantage of Bouaricha's method is that it can use any existing linear solver, which makes it simple to write

  14. New probes of Cosmic Microwave Background large-scale anomalies

    NASA Astrophysics Data System (ADS)

    Aiola, Simone

    Fifty years of Cosmic Microwave Background (CMB) data played a crucial role in constraining the parameters of the LambdaCDM model, where Dark Energy, Dark Matter, and Inflation are the three most important pillars not yet understood. Inflation prescribes an isotropic universe on large scales, and it generates spatially-correlated density fluctuations over the whole Hubble volume. CMB temperature fluctuations on scales bigger than a degree in the sky, affected by modes on super-horizon scale at the time of recombination, are a clean snapshot of the universe after inflation. In addition, the accelerated expansion of the universe, driven by Dark Energy, leaves a hardly detectable imprint in the large-scale temperature sky at late times. Such fundamental predictions have been tested with current CMB data and found to be in tension with what we expect from our simple LambdaCDM model. Is this tension just a random fluke or a fundamental issue with the present model? In this thesis, we present a new framework to probe the lack of large-scale correlations in the temperature sky using CMB polarization data. Our analysis shows that if a suppression in the CMB polarization correlations is detected, it will provide compelling evidence for new physics on super-horizon scale. To further analyze the statistical properties of the CMB temperature sky, we constrain the degree of statistical anisotropy of the CMB in the context of the observed large-scale dipole power asymmetry. We find evidence for a scale-dependent dipolar modulation at 2.5sigma. To isolate late-time signals from the primordial ones, we test the anomalously high Integrated Sachs-Wolfe effect signal generated by superstructures in the universe. We find that the detected signal is in tension with the expectations from LambdaCDM at the 2.5sigma level, which is somewhat smaller than what has been previously argued. To conclude, we describe the current status of CMB observations on small scales, highlighting the

  15. Foundational perspectives on causality in large-scale brain networks

    NASA Astrophysics Data System (ADS)

    Mannino, Michael; Bressler, Steven L.

    2015-12-01

    A profusion of recent work in cognitive neuroscience has been concerned with the endeavor to uncover causal influences in large-scale brain networks. However, despite the fact that many papers give a nod to the important theoretical challenges posed by the concept of causality, this explosion of research has generally not been accompanied by a rigorous conceptual analysis of the nature of causality in the brain. This review provides both a descriptive and prescriptive account of the nature of causality as found within and between large-scale brain networks. In short, it seeks to clarify the concept of causality in large-scale brain networks both philosophically and scientifically. This is accomplished by briefly reviewing the rich philosophical history of work on causality, especially focusing on contributions by David Hume, Immanuel Kant, Bertrand Russell, and Christopher Hitchcock. We go on to discuss the impact that various interpretations of modern physics have had on our understanding of causality. Throughout all this, a central focus is the distinction between theories of deterministic causality (DC), whereby causes uniquely determine their effects, and probabilistic causality (PC), whereby causes change the probability of occurrence of their effects. We argue that, given the topological complexity of its large-scale connectivity, the brain should be considered as a complex system and its causal influences treated as probabilistic in nature. We conclude that PC is well suited for explaining causality in the brain for three reasons: (1) brain causality is often mutual; (2) connectional convergence dictates that only rarely is the activity of one neuronal population uniquely determined by another one; and (3) the causal influences exerted between neuronal populations may not have observable effects. A number of different techniques are currently available to characterize causal influence in the brain. Typically, these techniques quantify the statistical

  16. Combined impacts of land cover changes and large-scale forcing on Southern California summer daily maximum temperatures

    NASA Astrophysics Data System (ADS)

    Sequera, Pedro; González, Jorge E.; McDonald, Kyle; Bornstein, Robert; Comarazamy, Daniel

    2015-09-01

    California near-surface air temperatures are influenced by large-scale, regional and local factors. In that sense, a numerical model experiment was carried out to analyze the contribution of large-scale (changes in atmospheric and oceanic conditions) and regional (increased urbanization) factors on the observed California South Coast Air Basin regional summer daily maximum temperature warming pattern from 1950 to 2013. The simulations were performed with past (1950-1954) and present (2009-2013) land cover and climate conditions. The past land cover was derived from historical digital maps, and the present land cover was updated with high-resolution airborne remote sensing data. Results show that both factors contribute to the total change in daily maximum temperatures. Changes due to large-scale climate conditions dominate in coastal (due to warming sea surface temperatures) and nonurban regions, while changes due to urbanization have an impact mainly in urban areas, especially inland where large-scale warming weakens. Increased urbanization has also reduced sea-breeze intensity due to changes in surface roughness. The model was able to reproduce the regional observed warming pattern, as it incorporates urban heat island effects, otherwise underestimated by large-scale climate change only.

  17. Evolution of Large-Scale Circulation during TOGA COARE: Model Intercomparison and Basic Features.

    NASA Astrophysics Data System (ADS)

    Lau, K.-M.; Sheu, P. J.; Schubert, S.; Ledvina, D.; Weng, H.

    1996-05-01

    An intercomparison study of the evolution of large-scale circulation features during TOGA COARE has been carried out using data from three 4D assimilation systems: the National Meteorological Center (NMC, currently known as the National Center for Environmental Prediction), the Navy Fleet Numerical Oceanography Center, and the NASA Goddard Space Flight Center. Results show that the preliminary assimilation products, though somewhat crude, can provide important information concerning the evolution of the large-scale atmospheric circulation over the tropical western Pacific during TOGA COARE. Large-scale features such as sea level pressure, rotational wind field, and temperature are highly consistent among models. However, the rainfall and wind divergence distributions show poor agreement among models, even though some useful information can still be derived. All three models shows a continuous background rain over the Intensive Flux Area (IFA), even during periods with suppressed convection, in contrast to the radar-estimated rainfall that is more episodic. This may reflect a generic deficiency in the oversimplified representation of large-scale rain in all three models.Based on the comparative model diagnostics, a consistent picture of large-scale evolution and multiscale interaction during TOGA COARF emerges. The propagation of the Madden and Julian Oscillation (MJO) from the equatorial Indian Ocean region into the western Pacific foreshadows the establishment of westerly wind events over the COARE region. The genesis and maintenance of the westerly wind (WW) events during TOGA COARE are related to the establishment of a large-scale east-west pressure dipole between the Maritime Continent and the equatorial central Pacific. This pressure dipole could be identified in part with the ascending (low pressure) and descending (high pressure) branches of the MJO and in part with the fluctuations of the austral summer monsoon.Accompanying the development of WW over the

  18. Large-scale fires and time trends of PCDDS/DFs in sediments.

    PubMed

    Sakai, S; Deguchi, S; Takatsuki, H; Uchibo, A

    2001-01-01

    Drastic increases in PCDDs/DFs concentrations were identified in the uppermost layers of a sediment core sample taken from the coastal area of Kobe City. As large-scale fires caused by the Great Hanshin-Awaji earthquake were deemed to be a possible cause, we performed additional sampling of sediment cores and surface sediment samples, estimating the total amount of PCDDs/DFs released from fires and presuming the load to sediments by individual transport routes, such as air and water, using an air diffusion model to investigate the influence of fires. The total amount of PCDDs/DFs released from fires was estimated at 2000 g-total PCDDs/DFs, 22 g-TEQ. Increases in PCDDs/DFs generated in fires were principally transported through water rather than air. If 20% of the total PCDDs/DFs formed in fires had entered water, it would correspond to the entire increase of PCDDs/DFs concentration in sediment cores.

  19. Dynamics of large-scale instabilities in conductors electrically exploded in strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Datsko, I. M.; Chaikovsky, S. A.; Labetskaya, N. A.; Oreshkin, V. I.; Ratakhin, N. A.

    2014-11-01

    The growth of large-scale instabilities during the propagation of a nonlinear magnetic diffusion wave through a conductor was studied experimentally. The experiment was carried out using the MIG terawatt pulsed power generator at a peak current up to 2.5 MA with 100 ns rise time. It was observed that instabilities with a wavelength of 150 μm developed on the surface of the conductor hollow part within 160 ns after the onset of current flow, whereas the surface of the solid rod remained almost unperturbed. A system of equations describing the propagation of a nonlinear diffusion wave through a conductor and the growth of thermal instabilities has been solved numerically. It has been revealed that the development of large- scale instabilities is obviously related to the propagation of a nonlinear magnetic diffusion wave.

  20. Energetics and Structural Characterization of the large-scale Functional Motion of Adenylate Kinase

    NASA Astrophysics Data System (ADS)

    Formoso, Elena; Limongelli, Vittorio; Parrinello, Michele

    2015-02-01

    Adenylate Kinase (AK) is a signal transducing protein that regulates cellular energy homeostasis balancing between different conformations. An alteration of its activity can lead to severe pathologies such as heart failure, cancer and neurodegenerative diseases. A comprehensive elucidation of the large-scale conformational motions that rule the functional mechanism of this enzyme is of great value to guide rationally the development of new medications. Here using a metadynamics-based computational protocol we elucidate the thermodynamics and structural properties underlying the AK functional transitions. The free energy estimation of the conformational motions of the enzyme allows characterizing the sequence of events that regulate its action. We reveal the atomistic details of the most relevant enzyme states, identifying residues such as Arg119 and Lys13, which play a key role during the conformational transitions and represent druggable spots to design enzyme inhibitors. Our study offers tools that open new areas of investigation on large-scale motion in proteins.