Science.gov

Sample records for air revitalization water

  1. Advanced air revitalization system testing

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Hallick, T. M.; Schubert, F. H.

    1983-01-01

    A previously developed experimental air revitalization system was tested cyclically and parametrically. One-button startup without manual interventions; extension by 1350 hours of tests with the system; capability for varying process air carbon dioxide partial pressure and humidity and coolant source for simulation of realistic space vehicle interfaces; dynamic system performance response on the interaction of the electrochemical depolarized carbon dioxide concentrator, the Sabatier carbon dioxide reduction subsystem, and the static feed water electrolysis oxygen generation subsystem, the carbon dioxide concentrator module with unitized core technology for the liquid cooled cell; and a preliminary design for a regenerative air revitalization system for the space station are discussed.

  2. Ames Air Revitalization

    NASA Technical Reports Server (NTRS)

    Huang, Roger Z.

    2015-01-01

    This is an informal presentation presented to the University of Colorado, Boulder Bioastronautics group seminar. It highlights the key focal areas of the Air Revitalization Group research over the past year, including progress on the CO2 Removal and Compression System, testing of CDRA drying bed configurations, and adsorption research.

  3. Modeling of membrane processes for air revitalization and water recovery

    NASA Technical Reports Server (NTRS)

    Lange, Kevin E.; Foerg, Sandra L.; Dall-Bauman, Liese A.

    1992-01-01

    Gas-separation and reverse-osmosis membrane models are being developed in conjunction with membrane testing at NASA JSC. The completed gas-separation membrane model extracts effective component permeabilities from multicomponent test data, and predicts the effects of flow configuration, operating conditions, and membrane dimensions on module performance. Variable feed- and permeate-side pressures are considered. The model has been applied to test data for hollow-fiber membrane modules with simulated cabin-air feeds. Results are presented for a membrane designed for air drying applications. Extracted permeabilities are used to predict the effect of operating conditions on water enrichment in the permeate. A first-order reverse-osmosis model has been applied to test data for spiral wound membrane modules with a simulated hygiene water feed. The model estimates an effective local component rejection coefficient under pseudosteady-state conditions. Results are used to define requirements for a detailed reverse-osmosis model.

  4. Preprototype independent air revitalization subsystem

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Hallick, T. M.; Woods, R. R.

    1982-01-01

    The performance and maturity of a preprototype, three-person capacity, automatically controlled and monitored, self-contained independent air revitalization subsystem were evaluated. The subsystem maintains the cabin partial pressure of oxygen at 22 kPa (3.2 psia) and that of carbon dioxide at 400 Pa (3 mm Hg) over a wide range of cabin air relative humidity conditions. Consumption of water vapor by the water vapor electrolysis module also provides partial humidity control of the cabin environment. During operation, the average carbon dioxide removal efficiency at baseline conditions remained constant throughout the test at 84%. The average electrochemical depolarized concentrator cell voltage at the end of the parametric/endurance test was 0.41 V, representing a very slowly decreasing average cell voltage. The average water vapor electrolysis cell voltage increased only at a rate of 20 mu/h from the initial level of 1.67 V to the final level of 1.69 V at conclusion of the testing.

  5. Electrochemical air revitalization system optimization investigation

    NASA Technical Reports Server (NTRS)

    Woods, R. R.; Schubert, F. H.; Hallick, T. M.

    1975-01-01

    A program to characterize a Breadboard of an Electrochemical Air Revitalization System (BEARS) was successfully completed. The BEARS is composed of three components: (1) a water vapor electrolysis module (WVEM) for O2 production and partial humidity control, (2) an electrochemical depolarized carbon dioxide concentrator module (EDCM) for CO2 control, and (3) a power-sharing controller, designed to utilize the power produced by the EDCM to partially offset the WVEM power requirements. It is concluded from the results of this work that the concept of electrochemical air revitalization with power-sharing is a viable solution to the problem of providing a localized topping force for O2 generation, CO2 removal and partial humidity control aboard manned spacecraft. Continued development of the EARS concept is recommended, applying the operational experience and limits identified during the BEARS program to testing of a one-man capacity system and toward the development of advanced system controls to optimize EARS operation for given interfaces and requirements. Successful completion of this development will produce timely technology necessary to plan future advanced environmental control and life support system programs and experiments.

  6. Advanced air revitalization system modeling and testing

    NASA Technical Reports Server (NTRS)

    Dall-Baumann, Liese; Jeng, Frank; Christian, Steve; Edeer, Marybeth; Lin, Chin

    1990-01-01

    To support manned lunar and Martian exploration, an extensive evaluation of air revitalization subsystems (ARS) is being conducted. The major operations under study include carbon dioxide removal and reduction; oxygen and nitrogen production, storage, and distribution; humidity and temperature control; and trace contaminant control. A comprehensive analysis program based on a generalized block flow model was developed to facilitate the evaluation of various processes and their interaction. ASPEN PLUS was used in modelling carbon dioxide removal and reduction. Several life support test stands were developed to test new and existing technologies for their potential applicability in space. The goal was to identify processes which use compact, lightweight equipment and maximize the recovery of oxygen and water. The carbon dioxide removal test stands include solid amine/vacuum desorption (SAVD), regenerative silver oxide chemisorption, and electrochemical carbon dioxide concentration (EDC). Membrane-based carbon dioxide removal and humidity control, catalytic reduction of carbon dioxide, and catalytic oxidation of trace contaminants were also investigated.

  7. One-man electrochemical air revitalization system evaluation

    NASA Technical Reports Server (NTRS)

    Schbert, F. H.; Marshall, R. D.; Hallick, T. M.; Woods, R. R.

    1976-01-01

    A program to evaluate the performance of a one man capacity, self contained electrochemical air revitalization system was successfully completed. The technology readiness of this concept was demonstrated by characterizing the performance of this one man system over wide ranges in cabin atmospheric conditions. The electrochemical air revitalization system consists of a water vapor electrolysis module to generate oxygen from water vapor in the cabin air, and an electrochemical depolarized carbon dioxide concentrator module to remove carbon dioxide from the cabin air. A control/monitor instrumentation package that uses the electrochemical depolarized concentrator module power generated to partially offset the water vapor electrolysis module power requirements and various structural fluid routing components are also part of the system. The system was designed to meet the one man metabolic oxygen generation and carbon dioxide removal requirements, thereby controlling cabin partial pressure of oxygen at 22 kN/sq m and cabin pressure of carbon dioxide at 400 N/sq m over a wide range in cabin air relative humidity conditions.

  8. An integrated regenerative air revitalization system for spacecraft

    NASA Technical Reports Server (NTRS)

    Noyes, G. P.; Heppner, D. B.; Schubert, F. H.; Quattrone, P. D.

    1982-01-01

    Progress towards development of an air revitalization system (ARS) for spacecraft breathable atmosphere regeneration is assessed, and a preliminary design for a one-person ARS is described. The ARS is considered a necessary component of any permanently manned orbital station, and studies have demonstrated that penalties for expendable air supplies justify an ARS for missions longer than 40 days. CO2 must be removed and O2 returned along with N2, which can be extracted from hydrazine, with the H2 component returning to the operation of the CO2 reduction subsystem. An experimental ARS (ARX-1) features a cabin humidity control unit, a CO2 concentrator, an air-cooled CO2 reduction reactor, an oxygen generator (electrolysis), the hydrazine N2 generator, and a water handling unit. A 120-day test demonstrated one-button startup and 480 hr operation in a normal mode.

  9. Space shuttle revitalization system

    NASA Technical Reports Server (NTRS)

    Quattrone, P. D.

    1985-01-01

    The Space Shuttle air revitalization system is discussed. The sequential steps in loop closure are examined and a schematic outline of the regenerative air revitalization system is presented. Carbon dioxide reduction subsystem concepts are compared. Schemes are drawn for: static feedwater electrolysis cell, solid polymer electrolyte water electrolysis cell, air revitalization system, nitrogen generation reactions, nitrogen subsystem staging, vapor compression distillation subsystem, thermoelectric integrated membrane evaporation subsystem, catalytic distillation water reclamation subsystem, and space shuttle solid waste management system.

  10. Modeling of Revitalization of Atmospheric Water

    NASA Technical Reports Server (NTRS)

    Coker, Robert; Knox, Jim

    2014-01-01

    The Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project was initiated in September of 2011 as part of the Advanced Exploration Systems (AES) program. Under the ARREM project, testing of sub-scale and full-scale systems has been combined with multiphysics computer simulations for evaluation and optimization of subsystem approaches. In particular, this paper describes the testing and modeling of the water desiccant subsystem of the carbon dioxide removal assembly (CDRA). The goal is a full system predictive model of CDRA to guide system optimization and development.

  11. STS-32 OV-102 air revitalization system (ARS) humidity separator problem

    NASA Technical Reports Server (NTRS)

    1990-01-01

    During STS-32, onboard Columbia, Orbiter Vehicle (OV) 102, a leakage problem at environmental control and life support system (ECLSS) air revitalization system (ARS) humidity separator A below the middeck is solved with a plastic bag and a towel. The towel inserted inside a plastic bag absorbed the water that had collected at the separator inlet.

  12. One man electrochemical air revitalization system

    NASA Technical Reports Server (NTRS)

    Huddleston, J. C.; Aylward, J. R.

    1975-01-01

    An integrated water vapor electrolysis (WVE) hydrogen depolarized CO2 concentrator (HDC) system sized for one man support over a wide range of inlet air conditions was designed, fabricated, and tested. Data obtained during 110 days of testing verified that this system can provide the necessary oxygen, CO2 removal, and partial humidity control to support one man (without exceeding a cabin partial pressure of 3.0 mmHg for CO2 and while maintaining a 20% oxygen level), when operated at a WVE current of 50 amperes and an HDC current of 18 amperes. An evaluation to determine the physical properties of tetramethylammonium bicarbonate (TMAC) and hydroxide was made. This provides the necessary electrolyte information for designing an HDC cell using TMAC.

  13. Mathematical model of one-man air revitalization system

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A mathematical model was developed for simulating the steady state performance in electrochemical CO2 concentrators which utilize (NMe4)2 CO3 (aq.) electrolyte. This electrolyte, which accommodates a wide range of air relative humidity, is most suitable for one-man air revitalization systems. The model is based on the solution of coupled nonlinear ordinary differential equations derived from mass transport and rate equations for the processes which take place in the cell. The boundary conditions are obtained by solving the mass and energy transport equations. A shooting method is used to solve the differential equations.

  14. Effects of Humidity Swings on Adsorption Columns for Air Revitalization: Modeling and Experiments

    NASA Technical Reports Server (NTRS)

    LeVan, M. Douglas; Finn, John E.

    1997-01-01

    Air purification systems are necessary to provide clean air in the closed environments aboard spacecraft. Trace contaminants are removed using adsorption. One major factor concerning the removal of trace contaminants is relative humidity. Water can reduce adsorption capacity and, due to constant fluctuations, its presence is difficult to incorporate into adsorption column designs. The purpose of the research was to allow for better design techniques in trace contaminant adsorption systems, especially for feeds with water present. Experiments and mathematical modeling research on effects of humidity swings on adsorption columns for air revitalization were carried out.

  15. Integrated Evaluation of Closed Loop Air Revitalization System Components

    NASA Technical Reports Server (NTRS)

    Murdock, K.

    2010-01-01

    NASA s vision and mission statements include an emphasis on human exploration of space, which requires environmental control and life support technologies. This Contractor Report (CR) describes the development and evaluation of an Air Revitalization System, modeling and simulation of the components, and integrated hardware testing with the goal of better understanding the inherent capabilities and limitations of this closed loop system. Major components integrated and tested included a 4-Bed Modular Sieve, Mechanical Compressor Engineering Development Unit, Temperature Swing Adsorption Compressor, and a Sabatier Engineering and Development Unit. The requisite methodolgy and technical results are contained in this CR.

  16. Development of a Test Facility for Air Revitalization Technology Evaluation

    NASA Technical Reports Server (NTRS)

    Lu, Sao-Dung; Lin, Amy; Campbell, Melissa; Smith, Frederick; Curley, Su

    2007-01-01

    Development of new air revitalization system (ARS) technology can initially be performed in a subscale laboratory environment, but in order to advance the maturity level, the technology must be tested in an end-to-end integrated environment. The Air Revitalization Technology Evaluation Facility (ARTEF) at the NASA Johnson Space Center serves as a ground test bed for evaluating emerging ARS technologies in an environment representative of spacecraft atmospheres. At the center of the ARTEF is a hypobaric chamber which serves as a sealed atmospheric chamber for closed loop testing. A Human Metabolic Simulator (HMS) was custom-built to simulate the consumption of oxygen, and production of carbon dioxide, moisture and heat of up to eight persons. A multitude of gas analyzers and dew point sensors are used to monitor the chamber atmosphere upstream and downstream of a test article. A robust vacuum system is needed to simulate the vacuum of space. A reliable data acquisition and control system is required to connect all the subsystems together. This paper presents the capabilities of the integrated test facility and some of the issues encountered during the integration.

  17. HESTIA Phase I Test Results: The Air Revitalization System

    NASA Technical Reports Server (NTRS)

    Wright, Sarah E.; Hansen, Scott W.

    2016-01-01

    In any human spaceflight mission, a number of Environmental Control & Life Support System (ECLSS) technologies work together to provide the conditions astronauts need to live healthily, productively, and comfortably in space. In a long-duration mission, many of these ECLSS technologies may use materials supplied by In-Situ Resource Utilization (ISRU), introducing more interactions between systems. The Human Exploration Spacecraft Test-bed for Integration & Advancement (HESTIA) Project aims to create a test-bed to evaluate ECLSS and ISRU technologies and how they interact in a high-fidelity, closed-loop, human-rated analog habitat. Air purity and conditioning are essential components within any ECLSS and for HESTIA's first test they were achieved with the Air Revitalization System (ARS) described below. The ARS provided four essential functions to the test-bed chamber: cooling the air, removing humidity from the air, removing trace contaminants, and scrubbing carbon dioxide (CO2) from the air. In this case, the oxygen supply function was provided by ISRU. In the current configuration, the ARS is a collection of different subsystems. A fan circulates the air, while a condensing heat exchanger (CHX) pulls humidity out of the air. A Trace Contaminant Removal System (TCRS) filters the air of potentially harmful contaminants. Lastly, a Reactive Plastic Lithium Hydroxide (RP-LiOH) unit removes CO2 from the breathing air. During the HESTIA Phase I test in September 2015, the ARS and its individual components each functioned as expected, although further analysis is underway. During the Phase I testing and in prior bench-top tests, the energy balance of heat removed by the CHX was not equal to the cooling it received. This indicated possible instrument error and therefore recalibration of the instruments and follow-up testing is planned in 2016 to address the issue. The ARS was tested in conjunction with two other systems: the Human Metabolic Simulator (HMS) and the

  18. Vapor compression distiller and membrane technology for water revitalization.

    PubMed

    Ashida, A; Mitani, K; Ebara, K; Kurokawa, H; Sawada, I; Kashiwagi, H; Tsuji, T; Hayashi, S; Otsubo, K; Nitta, K

    1987-01-01

    Water revitalization for a space station can consist of membrane filtration processes and a distillation process. Water recycling equipment using membrane filtration processes was manufactured for ground testing. It was assembled using commercially available components. Two systems for the distillation are studied; one is an absorption type thermopervaporation cell and the other is a vapor compression distiller. Absorption type thermopervaporation able to easily produce condensed water under zero gravity was investigated experimentally and through simulated calculation. The vapor compression distiller was studied experimentally and it offers significant energy savings for evaporation of water. PMID:11537274

  19. Vapor compression distiller and membrane technology for water revitalization

    NASA Technical Reports Server (NTRS)

    Ashida, A.; Mitani, K.; Ebara, K.; Kurokawa, H.; Sawada, I.; Kashiwagi, H.; Tsuji, T.; Hayashi, S.; Otsubo, K.; Nitta, K.

    1987-01-01

    Water revitalization for a space station can consist of membrane filtration processes and a distillation process. Water recycling equipment using membrane filtration processes was manufactured for ground testing. It was assembled using commercially available components. Two systems for the distillation are studied: one is absorption type thermopervaporation cell and the other is a vapor compression distiller. Absorption type thermopervaporation, able to easily produce condensed water under zero gravity, was investigated experimentally and through simulated calculation. The vapor compression distiller was studied experimentally and it offers significant energy savings for evaporation of water.

  20. Closed-loop Habitation Air Revitalization Model for Regenerative Life Support Systems

    NASA Technical Reports Server (NTRS)

    Hart, Maxwell M.

    1991-01-01

    The primary function of any life support system is to keep the crew alive by providing breathable air, potable water, edible food, and for disposal of waste. In a well-balanced or regenerative life support system, the various components are each using what is available and producing what is needed by other components so that there will always be enough chemicals in the form in which they are needed. Humans are not just users, but also one of the participating parts of the system. If a system could continuously recycle the original chemicals, this would make it virtually a Closed-loop Habitation (CH). Some difficulties in trying to create a miniature version of a CH are briefly discussed. In a miniature CH, a minimal structure must be provided and the difference must be made up by artificial parts such as physicochemical systems that perform the conversions that the Earth can achieve naturally. To study the interactions of these parts, a computer model was designed that simulates a miniature CH with emphasis on the air revitalization part. It is called the Closed-loop Habitation Air Revitalization Model (CHARM).

  1. Dynamic Model of the BIO-Plex Air Revitalization System

    NASA Technical Reports Server (NTRS)

    Finn, Cory; Meyers, Karen; Duffield, Bruce; Luna, Bernadette (Technical Monitor)

    2000-01-01

    The BIO-Plex facility will need to support a variety of life support system designs and operation strategies. These systems will be tested and evaluated in the BIO-Plex facility. An important goal of the life support program is to identify designs that best meet all size and performance constraints for a variety of possible future missions. Integrated human testing is a necessary step in reaching this goal. System modeling and analysis will also play an important role in this endeavor. Currently, simulation studies are being used to estimate air revitalization buffer and storage requirements in order to develop the infrastructure requirements of the BIO-Plex facility. Simulation studies are also being used to verify that the envisioned operation strategy will be able to meet all performance criteria. In this paper, a simulation study is presented for a nominal BIO-Plex scenario with a high-level of crop growth. A general description of the dynamic mass flow model is provided, along with some simulation results. The paper also discusses sizing and operations issues and describes plans for future simulation studies.

  2. Thirsty Walls: A New Paradigm for Air Revitalization in Life Support

    NASA Technical Reports Server (NTRS)

    Graf, John; Brennecke, Joan; Weislogel, Mark

    2015-01-01

    Carbon Dioxide removal systems on submarines are compact and reliable. They use solubility chemistry. They spray a Carbon Dioxide adsorbing chemical directly into the air stream, and allow the liquid to settle. Carbon Dioxide removal systems on ISS are large and need repair. They use adsorption chemistry. They force air through a bed packed with granular zeolite, and heat the bed to desorb the Carbon Dioxide. The thermal cycles cause the zeolite to dust. New advances in additive manufacturing, and a better understanding of uid behavior in microgravity make it possible to expose a liquid directly to air in a microgravity environment. It is now practical to use submarine style solubility chemistry for atmosphere revitalization in space. It is now possible to develop space systems that achieve submarine levels of reliability. New developments in Ionic Liquid research make it possible to match the solubility performance characteristics of MEA used on submarines - with Ionic Liquids that do not release chemical vapors into the air. "Thirsty Walls" provide gentle, passive contact between ventilation air and Air Revitalization functions of temperature control, relative humidity control, and Carbon Dioxide removal. "Thirsty Walls" eliminates the need of large blowers and compressors that need to force air at high velocities through restrictive Air Revitalization hardware.

  3. STS-32 OV-102 air revitalization system (ARS) humidity separator problem

    NASA Technical Reports Server (NTRS)

    1990-01-01

    During STS-32, onboard Columbia, Orbiter Vehicle (OV) 102, a leakage problem at environmental control and life support system (ECLSS) air revitalization system (ARS) humidity separator A below the middeck is documented in this closeup view. Note the many bubbles around the separator. The crew cleared out stowage bags, lithium hydroxide (LiOH) cannisters and other materials to get at the problem. It was eventually repaired.

  4. Air Revitalization System Enables Excursions to the Stratosphere

    NASA Technical Reports Server (NTRS)

    2015-01-01

    Paragon Space Development Corporation, based in Tucson, Arizona has had a long history of collaboration with NASA, including developing a modular air purification system under the Commercial Crew Development Program, designed to support the commercial space sector. Using that device and other NASA technology, startup company World View is now gearing up to take customers on helium balloon rides to the stratosphere.

  5. Air-Cooled Design of a Temperature-Swing Adsorption Compressor for Closed-Loop Air Revitalization Systems

    NASA Technical Reports Server (NTRS)

    Mulloth, Lila M.; Affleck, Dave L.; Rosen, Micha; LeVan, M. Douglas; Wang, Yuan; Cavalcante, Celio L.

    2004-01-01

    The air revitalization system of the International Space Station (ISS) operates in an open loop mode and relies on the resupply of oxygen and other consumables from earth for the life support of astronauts. A compressor is required for delivering the carbon dioxide from a removal assembly to a reduction unit to recover oxygen and thereby closing the air-loop. We have a developed a temperature-swing adsorption compressor (TSAC) for performing these tasks that is energy efficient, quiet, and has no rapidly moving parts. This paper discusses the mechanical design and the results of thermal model validation tests of a TSAC that uses air as the cooling medium.

  6. An Air Revitalization Model (ARM) for Regenerative Life Support Systems (RLSS)

    NASA Technical Reports Server (NTRS)

    Hart, Maxwell M.

    1990-01-01

    The primary objective of the air revitalization model (ARM) is to determine the minimum buffer capacities that would be necessary for long duration space missions. Several observations are supported by the current configuration sizes: the baseline values for each gas and the day to day or month to month fluctuations that are allowed. The baseline values depend on the minimum safety tolerances and the quantities of life support consumables necessary to survive the worst case scenarios within those tolerances. Most, it not all, of these quantities can easily be determined by ARM once these tolerances are set. The day to day fluctuations also require a command decision. It is already apparent from the current configuration of ARM that the tighter these fluctuations are controlled, the more energy used, the more nonregenerable hydrazine consumed, and the larger the required capacities for the various gas generators. All of these relationships could clearly be quantified by one operational ARM.

  7. Multi-Agent Diagnosis and Control of an Air Revitalization System for Life Support in Space

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Kowing, Jeffrey; Nieten, Joseph; Graham, Jeffrey s.; Schreckenghost, Debra; Bonasso, Pete; Fleming, Land D.; MacMahon, Matt; Thronesbery, Carroll

    2000-01-01

    An architecture of interoperating agents has been developed to provide control and fault management for advanced life support systems in space. In this adjustable autonomy architecture, software agents coordinate with human agents and provide support in novel fault management situations. This architecture combines the Livingstone model-based mode identification and reconfiguration (MIR) system with the 3T architecture for autonomous flexible command and control. The MIR software agent performs model-based state identification and diagnosis. MIR identifies novel recovery configurations and the set of commands required for the recovery. The AZT procedural executive and the human operator use the diagnoses and recovery recommendations, and provide command sequencing. User interface extensions have been developed to support human monitoring of both AZT and MIR data and activities. This architecture has been demonstrated performing control and fault management for an oxygen production system for air revitalization in space. The software operates in a dynamic simulation testbed.

  8. Development and Testing of a Temperature-swing Adsorption Compressor for Carbon Dioxide in Closed-loop Air Revitalization Systems

    NASA Technical Reports Server (NTRS)

    Mulloth, Lila M.; Rosen, Micha; Affleck, David; LeVan, M. Douglas; Wang, Yuan

    2005-01-01

    The air revitalization system of the International Space Station (ISS) operates in an open loop mode and relies on the resupply of oxygen and other consumables from earth for the life support of astronauts. A compressor is required for delivering the carbon dioxide from a removal assembly to a reduction unit to recover oxygen and thereby dosing the air-loop. We have developed a temperature-swing adsorption compressor (TSAC) that is energy efficient, quiet, and has no rapidly moving parts for performing these tasks. The TSAC is a solid-state compressor that has the capability to remove CO2 from a low- pressure source, and subsequently store, compress, and deliver at a higher pressure as required by a processor. The TSAC is an ideal interface device for CO2 removal and reduction units in the air revitalization loop of a spacecraft for oxygen recovery. This paper discusses the design and testing of a TSAC for carbon dioxide that has application in the ISS and future spacecraft for closing the air revitalization loop.

  9. Language Revitalization.

    ERIC Educational Resources Information Center

    Hinton, Leanne

    2003-01-01

    Surveys developments in language revitalization and language death. Focusing on indigenous languages, discusses the role and nature of appropriate linguistic documentation, possibilities for bilingual education, and methods of promoting oral fluency and intergenerational transmission in affected languages. (Author/VWL)

  10. International Space Station Atmosphere Control and Supply, Atmosphere Revitalization, and Water Recovery and Management Subsystem - Verification for Node 1

    NASA Technical Reports Server (NTRS)

    Williams, David E.

    2007-01-01

    The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper provides a summary of the nominal operation of the Node 1 ACS, AR, and WRM design and detailed Element Verification methodologies utilized during the Qualification phase for Node 1.

  11. Long-Duration Testing of a Temperature-Swing Adsorption Compressor for Carbon Dioxide for Closed-Loop Air Revitalization Systems

    NASA Technical Reports Server (NTRS)

    Rosen, Micha; Mulloth, Lila; Varghese, Mini

    2005-01-01

    This paper describes the results of long-duration testing of a temperature-swing adsorption compressor that has application in the International Space Station (ISS) and future spacecraft for closing the air revitalization loop. The air revitalization system of the ISS operates in an open loop mode and relies on the resupply of oxygen and other consumables from Earth for the life support of astronauts. A compressor is required for delivering the carbon dioxide from a removal assembly to a reduction unit to recover oxygen and thereby closing the air-loop. The TSAC is a solid-state compressor that has the capability to remove CO2 from a low-pressure source, and subsequently store, compress, and deliver at a higher pressure as required by a processor. The TSAC is an ideal interface device for CO2 removal and reduction units in the air revitalization loop of a spacecraft for oxygen recovery. The TSAC was developed and its operation was successfully verified in integration tests with the flight-like Carbon Dioxide Removal Assembly (CDRA) at Marshall Space Flight Center prior to the long-duration tests. Long-duration tests reveal the impacts of repeated thermal cycling on the compressor components and the adsorbent material.

  12. Simulation Helps Improve Atmosphere Revitalization Systems for Manned Spacecraft

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Coker, RObert

    2014-01-01

    Life support systems for manned spacecraft must provide breathable air and drinkable water for the astronauts. Through the Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project, engineers at NASA are developing atmosphere control devices for the safety of the onboard crew. The atmosphere in a manned spacecraft needs to be regularly revitalized in order to ensure the safety of the astronauts and the success of the space mission. For missions lasting a few months, this means air is continuously dehumidified, water collected for re-use, and carbon dioxide (CO2) ejected. One component of the onboard atmosphere control system is a water-saving device that Jim Knox, aerospace engineer at NASA, is optimizing through the Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project. He is leading a team at the Marshall Space Flight Center (Huntsville, Alabama) that is aiming to make the assembly more cost-effective and efficient by reducing its power usage and maximizing the water saved; their goal is to save 80-90% of the water in the air. They hope to offer flight system developers at NASA an integrated approach to atmosphere revitalization and water collection that will ultimately increase the time and distance space missions can travel.

  13. Modeling of Atmosphere Revitalization

    NASA Technical Reports Server (NTRS)

    Coker, Robert; Knox, James; Kittredge, Kenneth

    2012-01-01

    NASA's AES is pioneering new approaches for future human missions beyond Earth orbit. All spacecraft systems must be minimized with respect to mass, power, and volume. Here, we show work related to improving system efficiency and reliability for water separation systems on crewed vehicles and the initial development of COMSOL simulations in support of the Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project

  14. Air/Water Purification

    NASA Technical Reports Server (NTRS)

    1992-01-01

    After 18 years of research into air/water pollution at Stennis Space Center, Dr. B. C. Wolverton formed his own company, Wolverton Environmental Services, Inc., to provide technology and consultation in air and water treatment. Common houseplants are used to absorb potentially harmful materials from bathrooms and kitchens. The plants are fertilized, air is purified, and wastewater is converted to clean water. More than 100 U.S. communities have adopted Wolverton's earlier water hyacinth and artificial marsh applications. Catfish farmers are currently evaluating the artificial marsh technology as a purification system.

  15. Air and water quality monitor assessment of life support subsystems

    NASA Technical Reports Server (NTRS)

    Whitley, Ken; Carrasquillo, Robyn L.; Holder, D.; Humphries, R.

    1988-01-01

    Preprotype air revitalization and water reclamation subsystems (Mole Sieve, Sabatier, Static Feed Electrolyzer, Trace Contaminant Control, and Thermoelectric Integrated Membrane Evaporative Subsystem) were operated and tested independently and in an integrated arrangement. During each test, water and/or gas samples were taken from each subsystem so that overall subsystem performance could be determined. The overall test design and objectives for both subsystem and integrated subsystem tests were limited, and no effort was made to meet water or gas specifications. The results of chemical analyses for each of the participating subsystems are presented along with other selected samples which were analyzed for physical properties and microbiologicals.

  16. Round table part 2 : Identification of the key technologies and collaboration for air revitalization

    NASA Astrophysics Data System (ADS)

    Lasseur, Christophe; Tikhomirov, Alexander A.; Wheeler, Raymond

    2016-07-01

    The first metabolic needs in terms of urgency is of course oxygen and in terms of contaminants CO2. Over the years, many studies have been performed to recover oxygen from Co2 our from water. Within this part 2 of the roundtable it is proposed to perform a state te of the art of the main activities in the world and to identify overlap and synergies. Recommendation for potential collaboration or exchanges will be discussed.

  17. Revitalization of School Facilities.

    ERIC Educational Resources Information Center

    Coffey, Andrea Barlow

    This study analyzed current practices in the revitalization of school buildings and assimilates data that can be used by school administrators when deciding on revitalization issues. Data from nine revitalized schools since 1985 and a literature review of the elements for planning the revitalization of school facilities indicate that structural…

  18. Integrated Testing of a Carbon Dioxide Removal Assembly and a Temperature-Swing Adsorption Compressor for Closed-Loop Air Revitalization

    NASA Technical Reports Server (NTRS)

    Knox, J. C.; Mulloth, Lila; Frederick, Kenneth; Affleck, Dave

    2003-01-01

    Accumulation and subsequent compression of carbon dioxide that is removed from space cabin are two important processes involved in a closed-loop air revitalization scheme of the International Space Station (ISS). The carbon dioxide removal assembly (CDRA) of ISS currently operates in an open loop mode without a compressor. This paper describes the integrated test results of a flight-like CDRA and a temperature-swing adsorption compressor (TSAC) for carbon dioxide removal and compression. The paper provides details of the TSAC operation at various CO2 loadings and corresponding performance of CDRA.

  19. The Development of Models for Carbon Dioxide Reduction Technologies for Spacecraft Air Revitalization

    NASA Technical Reports Server (NTRS)

    Swickrath, Michael J.; Anderson, Molly

    2012-01-01

    Through the respiration process, humans consume oxygen (O2) while producing carbon dioxide (CO2) and water (H2O) as byproducts. For long term space exploration, CO2 concentration in the atmosphere must be managed to prevent hypercapnia. Moreover, CO2 can be used as a source of oxygen through chemical reduction serving to minimize the amount of oxygen required at launch. Reduction can be achieved through a number of techniques. NASA is currently exploring the Sabatier reaction, the Bosch reaction, and co- electrolysis of CO2 and H2O for this process. Proof-of-concept experiments and prototype units for all three processes have proven capable of returning useful commodities for space exploration. All three techniques have demonstrated the capacity to reduce CO2 in the laboratory, yet there is interest in understanding how all three techniques would perform at a system level within a spacecraft. Consequently, there is an impetus to develop predictive models for these processes that can be readily rescaled and integrated into larger system models. Such analysis tools provide the ability to evaluate each technique on a comparable basis with respect to processing rates. This manuscript describes the current models for the carbon dioxide reduction processes under parallel developmental efforts. Comparison to experimental data is provided were available for verification purposes.

  20. The Development of Models for Carbon Dioxide Reduction Technologies for Spacecraft Air Revitalization

    NASA Technical Reports Server (NTRS)

    Swickrath, Michael J.; Anderson, Molly

    2011-01-01

    Through the respiration process, humans consume oxygen (O2) while producing carbon dioxide (CO2) and water (H2O) as byproducts. For long term space exploration, CO2 concentration in the atmosphere must be managed to prevent hypercapnia. Moreover, CO2 can be used as a source of oxygen through chemical reduction serving to minimize the amount of oxygen required at launch. Reduction can be achieved through a number of techniques. The National Aeronautics and Space Administration (NASA) is currently exploring the Sabatier reaction, the Bosch reaction, and co-electrolysis of CO2 and H2O for this process. Proof-of-concept experiments and prototype units for all three processes have proven capable of returning useful commodities for space exploration. While all three techniques have demonstrated the capacity to reduce CO2 in the laboratory, there is interest in understanding how all three techniques would perform at a system-level within a spacecraft. Consequently, there is an impetus to develop predictive models for these processes that can be readily re-scaled and integrated into larger system models. Such analysis tools provide the ability to evaluate each technique on a comparable basis with respect to processing rates. This manuscript describes the current models for the carbon dioxide reduction processes under parallel developmental e orts. Comparison to experimental data is provided were available for veri cation purposes.

  1. Air Revitalization Using Superoxides

    NASA Technical Reports Server (NTRS)

    Wydeven, Theodore; Wood, Peter C.; Spitze, L. A.

    1988-01-01

    Pellets made from powder mixtures of potassium superoxide, KO2, and calcium superoxide, Ca(O2)2, proven markedly superior to pellets of pure KO2 for adding O2 to and removing CO2 from atmospheric-pressure flow of humidified CO2 in He. Superoxides used extensively to supply O2 and scrub CO2 in variety of ambient-pressure life-support applications, including portable self-contained breathing apparatuses, spacecraft, and undersea submersible craft.

  2. Development of a Next-Generation Membrane-Integrated Adsorption Processor for CO2 Removal and Compression for Closed-Loop Air Revitalization Systems

    NASA Technical Reports Server (NTRS)

    Mulloth, Lila; LeVan, Douglas

    2002-01-01

    The current CO2 removal technology of NASA is very energy intensive and contains many non-optimized subsystems. This paper discusses the concept of a next-generation, membrane integrated, adsorption processor for CO2 removal nd compression in closed-loop air revitalization systems. This processor will use many times less power than NASA's current CO2 removal technology and will be capable of maintaining a lower CO2 concentration in the cabin than that can be achieved by the existing CO2 removal systems. The compact, consolidated, configuration of gas dryer, CO2 separator, and CO2 compressor will allow continuous recycling of humid air in the cabin and supply of compressed CO2 to the reduction unit for oxygen recovery. The device has potential application to the International Space Station and future, long duration, transit, and planetary missions.

  3. Integrated Testing of a 4-Bed Molecular Sieve and a Temperature-Swing Adsorption Compressor for Closed-Loop Air Revitalization

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Mulloth, Lila M.; Affleck, David L.

    2004-01-01

    Accumulation and subsequent compression of carbon dioxide that is removed from space cabin are two important processes involved in a closed-loop air revitalization scheme of the International Space Station (ISS). The 4-Bed Molecular Sieve (4BMS) of ISS currently operates in an open loop mode without a compressor. This paper reports the integrated 4BMS and liquid-cooled TSAC testing conducted during the period of March 3 to April 18, 2003. The TSAC prototype was developed at NASA Ames Research Center (ARC). The 4BMS was modified to a functionally flight-like condition at NASA Marshall Space Flight Center (MSFC). Testing was conducted at MSFC. The paper provides details of the TSAC operation at various CO2 loadings and corresponding performance of CDRA.

  4. Assessment of internal contamination problems associated with bioregenerative air/water purification systems

    NASA Technical Reports Server (NTRS)

    Johnson, Anne H.; Bounds, B. Keith; Gardner, Warren

    1990-01-01

    The emphasis is to characterize the mechanisms of bioregenerative revitalization of air and water as well as to assess the possible risks associated with such a system in a closed environment. Marsh and aquatic plants are utilized for purposes of wastewater treatment as well as possible desalinization and demineralization. Foliage plants are also being screened for their ability to remove toxic organics from ambient air. Preliminary test results indicate that treated wastewater is typically of potable quality with numbers of pathogens such as Salmonella and Shigella significantly reduced by the artificial marsh system. Microbiological analyses of ambient air indicate the presence of bacilli as well as thermophilic actinomycetes.

  5. Water electrolysis system - H2 and O2 generation. [for spacecraft atmosphere revitalization

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Lee, M. K.; Davenport, R. J.; Quattrone, P. D.

    1978-01-01

    An oxygen generation system design based on the static feed water electrolysis concept is described. The system is designed to generate 4.20 kg/d of oxygen to satisfy the metabolic needs of a three-person crew, to compensate for spacecraft leakage, and to provide the oxygen required by the electrochemical depolarized CO2 concentrator. The system has a fixed hardware weight of 75 kg, occupies a volume of 0.11 cu m, and requires only 1.1 kw of electrical power. The static feed electrolysis concept is discussed, and experimental data on the high-performance electrode are presented.

  6. Air-water centrifugal convection

    NASA Astrophysics Data System (ADS)

    Herrada, Miguel; Shtern, Vladimir

    2014-07-01

    A sealed cylindrical container is filled with air and water. The container rotation and the axial gradient of temperature induce the steady axisymmetric meridional circulation of both fluids due to the thermal buoyancy and surface-tension (Marangoni) effects. If the temperature gradient is small, the water circulation is one-cellular while the air circulation can be one- or two-cellular depending on water fraction Wf. The numerical simulations are performed for the cylinder length-to-radius ratio l = 1 and l = 4. The l = 4 results and the analytical solution for l → ∞ agree in the cylinder's middle part. As the temperature gradient increases, the water circulation becomes one-, two-, or three-cellular depending on Wf. The results are of fundamental interest and can be applied for bioreactors.

  7. Designing Indigenous Language Revitalization

    ERIC Educational Resources Information Center

    Hermes, Mary; Bang, Megan; Marin, Ananda

    2012-01-01

    Endangered Indigenous languages have received little attention within the American educational research community. However, within Native American communities, language revitalization is pushing education beyond former iterations of culturally relevant curriculum and has the potential to radically alter how we understand culture and language in…

  8. Energy efficiency in military housing: Monitoring to support revitalization guidebook

    SciTech Connect

    Levins, W.P.; Ternes, M.P.

    1994-11-01

    Oak Ridge National Laboratory is working with the US Army, the US Air Force, and the US Department of Energy to develop a guidebook to be used by architectural and engineering firms in the design phases of military family housing revitalization projects. The purpose of the guidebook is to ensure that energy efficiency is properly addressed in revitalization projects. Monitoring space-heating and cooling energy used in houses both before and after they are revitalized is necessary in order to assess the amount of energy saved by the revitalization process. Three different methods of conducting monitoring experiments are discussed, as well as the methods of data analysis to be used. Houses will be monitored individually using standard gas and electric meters to obtain heating and cooling data for the houses. The authors recommend conducting monitoring programs at Altus Air Force Base, Oklahoma, and Fort Monmouth, New Jersey, because of their project schedules and potential for savings. They do not recommend doing any monitoring at Malmstrom Air Force Base, Montana, because of the relatively small savings that they expect revitalization to accomplish there. They do not recommend seeking out alternative sites for monitoring because of the time required to become familiar with the installation and also because revitalization schedules at alternative sites may be no better than those at the sites they inspected.

  9. Motivation: revitalizing performance.

    PubMed

    Andersen, C

    1996-08-01

    It is difficult for health information managers to maintain their career motivation in times of financial cutbacks, reforms, and changing technologies. Diminished motivation leads to poor job performance, which harms the department's productivity and the manager s job security. Revitalizing performance through improved motivation does not depend on fate. The article explains why motivation diminishes and suggests a plan for recapturing lost motivation. PMID:10159539

  10. Revitalizing the aged brain.

    PubMed

    Desai, Abhilash K

    2011-05-01

    Optimal cognitive and emotional function is vital to independence, productivity, and quality of life. Cognitive impairment without dementia may be seen in 16% to 33% of adults older than 65 years, and is associated with significant emotional distress. Cognitive and emotional well-being are inextricably linked. This article qualifies revitalizing the aged brain, discusses neuroplasticity, and suggests practical neuroplasticity-based strategies to improve the cognitive and emotional well-being of older adults. PMID:21549872

  11. Revitalizing Communities in New Mexico

    ERIC Educational Resources Information Center

    Pitzl, Jerry

    2011-01-01

    The New Mexico Rural Revitalization Initiative (NMRRI), an innovative program to enhance the growth and development of rural communities, involves schools and students as part of a holistic approach. The program requires community members to take responsibility for revitalizing their economy and fosters an entrepreneurial spirit among students.

  12. Environmental Chemistry: Air and Water Pollution.

    ERIC Educational Resources Information Center

    Stoker, H. Stephen; Seager, Spencer L.

    This is a book about air and water pollution whose chapters cover the topics of air pollution--general considerations, carbon monoxide, oxides of nitrogen, hydrocarbons and photochemical oxidants, sulfur oxides, particulates, temperature inversions and the greenhouse effect; and water pollution--general considerations, mercury, lead, detergents,…

  13. Water gun vs air gun: A comparison

    USGS Publications Warehouse

    Hutchinson, D.R.; Detrick, R. S.

    1984-01-01

    The water gun is a relatively new marine seismic sound source that produces an acoustic signal by an implosive rather than explosive mechanism. A comparison of the source characteristics of two different-sized water guns with those of conventional air guns shows the the water gun signature is cleaner and much shorter than that of a comparable-sized air gun: about 60-100 milliseconds (ms) for an 80-in3. (1.31-liter (I)) water gun compared with several hundred ms for an 80-in3. (1.31-1) air gun. The source spectra of water guns are richer in high frequencies (>200 Hz) than are those of air guns, but they also have less energy than those of air guns at low frequencies. A comparison between water gun and air gun reflection profiles in both shallow (Long Island Sound)-and deep (western Bermuda Rise)-water settings suggests that the water gun offers a good compromise between very high resolution, limited penetration systems (e.g. 3.5-kHz profilers and sparkers) and the large volume air guns and tuned air gun arrays generally used where significant penetration is required. ?? 1984 D. Reidel Publishing Company.

  14. Revitalizing Psychiatric Therapeutics

    PubMed Central

    Hyman, Steven E

    2014-01-01

    Despite high prevalence and enormous unmet medical need, the pharmaceutical industry has recently de-emphasized neuropsychiatric disorders as ‘too difficult' a challenge to warrant major investment. Here I describe major obstacles to drug discovery and development including a lack of new molecular targets, shortcomings of current animal models, and the lack of biomarkers for clinical trials. My major focus, however, is on new technologies and scientific approaches to neuropsychiatric disorders that give promise for revitalizing therapeutics and may thus answer industry's concerns. PMID:24317307

  15. Cleaning verification by air/water impingement

    NASA Technical Reports Server (NTRS)

    Jones, Lisa L.; Littlefield, Maria D.; Melton, Gregory S.; Caimi, Raoul E. B.; Thaxton, Eric A.

    1995-01-01

    This paper will discuss how the Kennedy Space Center intends to perform precision cleaning verification by Air/Water Impingement in lieu of chlorofluorocarbon-113 gravimetric nonvolatile residue analysis (NVR). Test results will be given that demonstrate the effectiveness of the Air/Water system. A brief discussion of the Total Carbon method via the use of a high temperature combustion analyzer will also be given. The necessary equipment for impingement will be shown along with other possible applications of this technology.

  16. Development of a Low-Power CO2 Removal and Compression System for Closed-Loop Air Revitalization in Future Spacecraft

    NASA Technical Reports Server (NTRS)

    Mulloth, Lila M.; Rosen, Micha; Affleck, David; LeVan, M. Douglas; Moate, Joe R.

    2005-01-01

    The current CO2 removal technology of NASA is very energy intensive and contains many non-optimized subsystems. This paper discusses the design and prototype development of a two-stage CO2 removal and compression system that will utilize much less power than NASA s current CO2 removal technology. This integrated system contains a Nafion membrane followed by a residual water adsorber that performs the function of the desiccant beds in the four-bed molecular sieve (4BMS) system of the International Space Station (ISS). The membrane and the water adsorber are followed by a two-stage CO2 removal and compression subsystem that satisfies the operations of the CO2 adsorbent beds of the 4BMS aid the interface compressor for the Sabatier reactor connection. The two-stage compressor will utilize the principles of temperature-swing adsorption (TSA) compression technology for CO2 removal and compression. The similarities in operation and cycle times of the CO2 removal (first stage) and compression (second stage) operations will allow thermal coupling of the processes to maximize the efficiency of the system. In addition to the low-power advantage, this processor will maintain a lower CO2 concentration in the cabin than that can be achieved by the existing CO2 removal systems. The compact, consolidated, configuration of membrane gas dryer and CO2 separator and compressor will allow continuous recycling of humid air in the cabin and supply of compressed CO2 to the reduction unit for oxygen recovery. The device has potential application to the International Space Station and future, long duration, transit, and planetary missions.

  17. Air and water cooled modulator

    DOEpatents

    Birx, Daniel L.; Arnold, Phillip A.; Ball, Don G.; Cook, Edward G.

    1995-01-01

    A compact high power magnetic compression apparatus and method for delivering high voltage pulses of short duration at a high repetition rate and high peak power output which does not require the use of environmentally unacceptable fluids such as chlorofluorocarbons either as a dielectric or as a coolant, and which discharges very little waste heat into the surrounding air. A first magnetic switch has cooling channels formed therethrough to facilitate the removal of excess heat. The first magnetic switch is mounted on a printed circuit board. A pulse transformer comprised of a plurality of discrete electrically insulated and magnetically coupled units is also mounted on said printed board and is electrically coupled to the first magnetic switch. The pulse transformer also has cooling means attached thereto for removing heat from the pulse transformer. A second magnetic switch also having cooling means for removing excess heat is electrically coupled to the pulse transformer. Thus, the present invention is able to provide high voltage pulses of short duration at a high repetition rate and high peak power output without the use of environmentally unacceptable fluids and without discharging significant waste heat into the surrounding air.

  18. Air and water cooled modulator

    DOEpatents

    Birx, D.L.; Arnold, P.A.; Ball, D.G.; Cook, E.G.

    1995-09-05

    A compact high power magnetic compression apparatus and method are disclosed for delivering high voltage pulses of short duration at a high repetition rate and high peak power output which does not require the use of environmentally unacceptable fluids such as chlorofluorocarbons either as a dielectric or as a coolant, and which discharges very little waste heat into the surrounding air. A first magnetic switch has cooling channels formed therethrough to facilitate the removal of excess heat. The first magnetic switch is mounted on a printed circuit board. A pulse transformer comprised of a plurality of discrete electrically insulated and magnetically coupled units is also mounted on said printed board and is electrically coupled to the first magnetic switch. The pulse transformer also has cooling means attached thereto for removing heat from the pulse transformer. A second magnetic switch also having cooling means for removing excess heat is electrically coupled to the pulse transformer. Thus, the present invention is able to provide high voltage pulses of short duration at a high repetition rate and high peak power output without the use of environmentally unacceptable fluids and without discharging significant waste heat into the surrounding air. 9 figs.

  19. SMARTE: IMPROVING REVITALIZATION DECISIONS - OCTOBER 3, 2006

    EPA Science Inventory

    SMARTe (Sustainable Management Approaches and Revitalization Tools -electronic) is a web-based decision support tool being developed by the Office of Research and Development (ORD) in partnership with the Office of Brownfields Cleanup and Revitalization (OBCR), the Interstate Tec...

  20. Penguin vision in air and water.

    PubMed

    Howland, H C; Sivak, J G

    1984-01-01

    Refractive states measured by retinoscopy and photorefraction indicate that rockhopper (Eudyptes crestatus), Magellanic (Spheniscus magellanicus) and gentoo (Pygoscelis papua) penguins are approximately emmetropic in air and water. Extensive myopia in air, as predicted by early authors, is nonexistent. Photorefractive measurements of refractive state in water indicate that rockhopper, gentoo, Magellanic and king (Aptenodytes patagonica) penguins can accommodate sufficiently to make up for the loss of refractive power of the cornea. Corneas of rockhopper and Megellanic penguins are flattened relative to the overall size of the eye. This feature minimizes the optical effect of submergence. PMID:6534014

  1. Combined air and water pollution control system

    NASA Technical Reports Server (NTRS)

    Wolverton, Billy C. (Inventor); Jarrell, Lamont (Inventor)

    1990-01-01

    A bioaquatic air pollution control system for controlling both water and atmospheric pollution is disclosed. The pollution control system includes an exhaust for directing polluted gases out of a furnace and a fluid circulating system which circulates fluid, such as waste water, from a source, past the furnace where the fluid flow entrains the pollutants from the furnace. The combined fluid and pollutants are then directed through a rock/plant/microbial filtering system. A suction pump pumps the treated waste water from the filter system past the exhaust to again entrain more pollutants from the furnace where they are combined with the fluid (waste water) and directed to the filter system.

  2. Quenching using air-water mixtures

    SciTech Connect

    Wallis, R.A.; Garwood, R.; Ward, J.; Xia, Q.

    1996-12-31

    With the current trend toward reduced manufacturing cycle time there is considerable interest in minimizing heat treatment related distortion and the residual stresses that are present in components. There is therefore a need to optimize the quenching process for a particular part such that the desired cooling rate, and hence mechanical properties, are obtained while minimizing distortion. This paper describes work aimed at developing a system to provide heat transfer rates between those obtained for oil quenching and fan cooling. Tests are described in which quenching was carried out by spraying water into the stream of air exiting a fan cooling system. Data are also presented for air mist quenching using atomizing nozzles. Comparison of computer predicted cooling rates and residual stress levels in components are presented for oil quenching, fan cooling, fan plus water injection cooling and air-mist cooling.

  3. Integration of air and water quality issues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The environmental sustainability of dairy farms is dependent upon a number of air and water quality issues. Atmospheric emissions include hazardous compounds such as ammonia and hydrogen sulfide along with greenhouse gases and their implications with global climate change. Runoff of sediment, phosph...

  4. Ethylene-air detonation in water spray

    NASA Astrophysics Data System (ADS)

    Jarsalé, G.; Virot, F.; Chinnayya, A.

    2016-07-01

    Detonation experiments are conducted in a 52 mm square channel with an ethylene-air gaseous mixture with dispersed liquid water droplets. The tests were conducted with a fuel-air equivalence ratio ranging from 0.9 to 1.1 at atmospheric pressure. An ultrasonic atomizer generates a polydisperse liquid water spray with droplet diameters of 8.5-12 μm, yielding an effective density of 100-120 g/m3 . Pressure signals from seven transducers and cellular structure are recorded for each test. The detonation structure in the two-phase mixture exhibits a gaseous-like behaviour. The pressure profile in the expansion fan is not affected by the addition of water. A small detonation velocity deficit of up to 5 % was measured. However, the investigation highlights a dramatic increase in the cell size (λ ) associated with the increase in the liquid water mass fraction in the two-phase mixture. The detonation structure evolves from a multi-cell to a half-cell mode. The analysis of the decay of the post-shock pressure fluctuations reveals that the ratio of the hydrodynamic thickness over the cell size (x_{{HT}}/{λ } ) remains quite constant, between 5 and 7. A slight decrease of this ratio is observed as the liquid water mass fraction is increased, or the ethylene-air mixture is made leaner.

  5. Developments in Atmosphere Revitalization Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Kittredge, Kenneth; Xoker, Robert F.; Cummings, Ramona; Gomez, Carlos F.

    2012-01-01

    "NASA's Advanced Exploration Systems (AES) program is pioneering new approaches for rapidly developing prototype systems, demonstrating key capabilities, and validating operational concepts for future human missions beyond Earth orbit" (NASA 2012). These forays beyond the confines of earth's gravity will place unprecedented demands on launch systems. They must not only blast out of earth's gravity well as during the Apollo moon missions, but also launch the supplies needed to sustain a crew over longer periods for exploration missions beyond earth's moon. Thus all spacecraft systems, including those for the separation of metabolic carbon dioxide and water from a crewed vehicle, must be minimized with respect to mass, power, and volume. Emphasis is also placed on system robustness both to minimize replacement parts and ensure crew safety when a quick return to earth is not possible. Current efforts are focused on improving the current state-of-the-art systems utilizing fixed beds of sorbent pellets by evaluating structured sorbents, seeking more robust pelletized sorbents, and examining alternate bed configurations to improve system efficiency and reliability. These development efforts combine testing of sub-scale systems and multi-physics computer simulations to evaluate candidate approaches, select the best performing options, and optimize the configuration of the selected approach, which is then implemented in a full-scale integrated atmosphere revitalization test. This paper describes the development of atmosphere revitalization models and simulations. A companion paper discusses the hardware design and sorbent screening and characterization effort in support of the Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project within the AES program.

  6. Language Acquisition and Language Revitalization

    ERIC Educational Resources Information Center

    O'Grady, William; Hattori, Ryoko

    2016-01-01

    Intergenerational transmission, the ultimate goal of language revitalization efforts, can only be achieved by (re)establishing the conditions under which an imperiled language can be acquired by the community's children. This paper presents a tutorial survey of several key points relating to language acquisition and maintenance in children,…

  7. Rethinking Native American Language Revitalization

    ERIC Educational Resources Information Center

    White, Frederick

    2006-01-01

    As many linguists continue to work with and analyze First Nations/Native American languages, the consensus opinion usually direly predicts the loss of daily use for almost all of the extant Indigenous languages. Tremendous efforts are being expended for renewing, revitalizing, and restoring these languages to everyday use. The model upon which…

  8. Nanoporous Materials in Atmosphere Revitalization. Chapter 1

    NASA Technical Reports Server (NTRS)

    Hernandez-Maldonado, J.; Ishikawa, Yasuyuki; Luna, Bernadette; Junaedi, Christian; Mulloth, Lila; Perry, Jay L.; Raptis, Raphael G.; Roychoudhury, Subir

    2012-01-01

    Atmospheric Revitalization (AR) is the term the National Aeronautics and Space Administration (NASA) uses to encompass the engineered systems that maintain a safe, breathable gaseous atmosphere inside a habitable space cabin. An AR subsystem is a key part of the Environmental Control and Life Support (ECLS) system for habitable space cabins. The ultimate goal for AR subsystem designers is to 'close the loop', that is, to capture gaseous human metabolic products, specifically water vapor (H2O) and Carbon dioxide (CO2), for maximal Oxygen (o2) recovery and to make other useful resources from these products. The AR subsystem also removes trace chemical contaminants from the cabin atmosphere to preserve cabin atmospheric quality, provides O2 and may include instrumentation to monitor cabin atmospheric quality. Long duration crewed space exploration missions require advancements in AR process technologies in order to reduce power consumption and mass and to increase reliability compared to those used for shorter duration missions that are typically limited to Low Earth Orbit. For example, current AR subsystems include separate processors and process air flow loops for removing metabolic CO2 and volatile organic tract contaminants (TCs). Physical adsorbents contained in fixed, packed beds are employed in these processors. Still, isolated pockets of high carbon dioxide have been suggested as a trigger for crew headaches and concern persists about future cabin ammonia (NH3) levels as compared with historical flights. Developers are already focused on certain potential advancements. ECLS systems engineers envision improving the AR subsystem by combining the functions of TC control and CO2 removal into a single regenerable process and moving toward structured sorbents - monoliths - instead of granular material. Monoliths present a lower pressure drop and eliminate particle attrition problems that result from bed containment. New materials and configurations offer promise for

  9. 14 CFR 1260.34 - Clean air and water.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Clean air and water. 1260.34 Section 1260... AGREEMENTS General Provisions § 1260.34 Clean air and water. Clean Air and Water October 2000 (Applicable... the Clean Air Act (42 U.S.C. 1857c-8(c)(1) or the Federal Water Pollution Control Act (33 U.S.C....

  10. 14 CFR 1260.34 - Clean air and water.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Clean air and water. 1260.34 Section 1260... AGREEMENTS General Provisions § 1260.34 Clean air and water. Clean Air and Water October 2000 (Applicable... the Clean Air Act (42 U.S.C. 1857c-8(c)(1) or the Federal Water Pollution Control Act (33 U.S.C....

  11. 14 CFR 1260.34 - Clean air and water.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Clean air and water. 1260.34 Section 1260... AGREEMENTS General Provisions § 1260.34 Clean air and water. Clean Air and Water October 2000 (Applicable... the Clean Air Act (42 U.S.C. 1857c-8(c)(1) or the Federal Water Pollution Control Act (33 U.S.C....

  12. 14 CFR § 1260.34 - Clean air and water.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Clean air and water. § 1260.34 Section Â... AGREEMENTS General Provisions § 1260.34 Clean air and water. Clean Air and Water October 2000 (Applicable... the Clean Air Act (42 U.S.C. 1857c-8(c)(1) or the Federal Water Pollution Control Act (33 U.S.C....

  13. The shuttle orbiter cabin atmospheric revitalization systems

    NASA Technical Reports Server (NTRS)

    Ward, C. F.; Owens, W. L.

    1975-01-01

    The Orbiter Atmospheric Revitalization Subsystem (ARS) and Pressure Control Subsystem (ARPCS) are designed to provide the flight crew and passengers with a pressurized environment that is both life-supporting and within crew comfort limitations. The ARPCS is a two-gas (oxygen-nitrogen) system that obtains oxygen from the Power Reactant Supply and Distribution (PRSD) subsystem and nitrogen from the nitrogen storage tanks. The ARS includes the water coolant loop; cabin CO2, odor, humidity and temperature control; and avionics cooling. Baseline ARPCS and ARS changes since 1973 include removal of the sublimator from the water coolant loop, an increase in flowrates to accommodate increased loads, elimination of the avionics bay isolation from the cabin, a decision to have an inert vehicle during ferry flight, elimination of coldwall tubing around windows and hatches, and deletion of the cabin heater.

  14. Development and Testing of a Sorbent-Based Atmosphere Revitalization System 2010/2011

    NASA Technical Reports Server (NTRS)

    Miller, Lee A.; Knox, James C.

    2012-01-01

    Spacecraft being developed for future exploration missions incorporate Environmental Control and Life Support Systems (ECLSS) that limit weight, power, and volume thus requiring systems with higher levels of efficiency while maintaining high dependability and robustness. For air revitalization, an approach that meets those goals utilizes a regenerative Vacuum-Swing Adsorption (VSA) system that removes 100% of the CO2 from the cabin atmosphere as well as 100% of the water. A Sorbent Based Atmosphere Revitalization (SBAR) system is a VSA system that utilizes standard commercial adsorbents that have been proven effective and safe in spacecraft including Skylab and the International Space Station. The SBAR system is the subject of a development, test, and evaluation program that is being conducted at NASA s Marshall Space Flight Center. While previous testing had validated that the technology is a viable option, potential improvements to system design and operation were identified. Modifications of the full-scale SBAR test articles and adsorption cycles have been implemented and have shown significant performance gains resulting in a decrease in the consumables required for a mission as well as improved mission safety. Previous testing had utilized single bed test articles, during this period the test facility was enhanced to allow testing on the full 2-bed SBAR system. The test facility simulates a spacecraft ECLSS and allows testing of the SBAR system over the full range of operational conditions using mission simulations that assess the real-time performance of the SBAR system during scenarios that include the metabolic transients associated with extravehicular activity. Although future manned missions are currently being redefined, the atmosphere revitalization requirements for the spacecraft are expected to be quite similar to the Orion and the Altair vehicles and the SBAR test program addressed validation to the defined mission requirements as well as operation

  15. Photodetoxification and purification of water and air

    SciTech Connect

    Anderson, M.; Blake, D.M.

    1996-09-01

    The scope of interest in this section is basic research in photochemistry that can remove barriers to the development of photochemical technologies for the removal of hazardous chemicals from contaminated air or water (photodetoxification). Photochemistry is be broadly interpreted to include direct photochemistry, indirect photochemistry (sensitized and photocatalytic), photochemistry of species adsorbed on inert surfaces, and complementary effects of high energy radiation photons and particles. These may occur in either homogeneous or heterogeneous media. The photon source may span the range from ionizing radiation to the near infrared.

  16. Stable Encapsulated Air Nanobubbles in Water.

    PubMed

    Wang, Yu; Liu, Guojun; Hu, Heng; Li, Terry Yantian; Johri, Amer M; Li, Xiaoyu; Wang, Jian

    2015-11-23

    The dispersion into water of nanocapsules bearing a highly hydrophobic fluorinated internal lining yielded encapsulated air nanobubbles. These bubbles, like their micrometer-sized counterparts (microbubbles), effectively reflected ultrasound. More importantly, the nanobubbles survived under ultrasonication 100-times longer than a commercial microbubble sample that is currently in clinical use. We justify this unprecedented stability theoretically. These nanobubbles, owing to their small size and potential ability to permeate the capillary networks of tissues, may expand the applications of microbubbles in diagnostic ultrasonography and find new applications in ultrasound-regulated drug delivery. PMID:26439669

  17. Lightside Atmospheric Revitalization System

    NASA Technical Reports Server (NTRS)

    Colling, A. K.; Cushman, R. J.; Hultman, M. M.; Nason, J. R.

    1980-01-01

    The system was studied as a replacement to the present baseline LiOH system for extended duration shuttle missions. The system consists of three subsystems: a solid amine water desorbed regenerable carbon dioxide removal system, a water vapor electrolysis oxygen generating system, and a Sabatier reactor carbon dioxide reduction system. The system is designed for use on a solar powered shuttle vehicle. The majority of the system's power requirements are utilized on the Sun side of each orbit, when solar power is available.

  18. NBC detection in air and water

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.; Smith, Steven J.; McMurtry, Gary M.

    2003-01-01

    Participating in a Navy STTR project to develop a system capable of the 'real-time' detection and quanitification of nuclear, biological and chemical (NBC) warfare agents, and of related industrial chemicals including NBC agent synthesis by-products in water and in air immediately above the water's surface. This project uses JPL's Soft Ionization Membrane (SIM) technology which totally ionizes molecules without fragmentation (a process that can markedly improve the sensitivity and specificity of molecule compostition identification), and JPL's Rotating Field Mass Spectrometer (RFMS) technology which has large enough dynamic mass range to enable detection of nuclear materials as well as biological and chemical agents. This Navy project integrates these JPL Environmental Monitoring UnitS (REMUS) an autonomous underwater vehicle (AUV). It is anticipated that the REMUS AUV will be capable of 'real-time' detection and quantification of NBC warefare agents.

  19. 21 CFR 874.1800 - Air or water caloric stimulator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Air or water caloric stimulator. 874.1800 Section 874.1800 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1800 Air or water caloric stimulator. (a) Identification. An air or...

  20. 14 CFR 1260.34 - Clean air and water.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Clean air and water. 1260.34 Section 1260.34... Provisions § 1260.34 Clean air and water. Clean Air and Water October 2000 (Applicable only if the award... (42 U.S.C. 1857c-8(c)(1) or the Federal Water Pollution Control Act (33 U.S.C. 1319(c)), and is...

  1. Food-Growing, Air- And Water-Cleaning Module

    NASA Technical Reports Server (NTRS)

    Sauer, R. L.; Scheld, H. W.; Mafnuson, J. W.

    1988-01-01

    Apparatus produces fresh vegetables and removes pollutants from air. Hydroponic apparatus performs dual function of growing fresh vegetables and purifying air and water. Leafy vegetables rooted in granular growth medium grow in light of fluorescent lamps. Air flowing over leaves supplies carbon dioxide and receives fresh oxygen from them. Adaptable to production of food and cleaning of air and water in closed environments as in underwater research stations and submarines.

  2. Methylglyoxal at the Air-Water Interface

    NASA Astrophysics Data System (ADS)

    Wren, S. N.; Gordon, B. P.; McWilliams, L.; Valley, N. A.; Richmond, G.

    2014-12-01

    Recently, it has been suggested that aqueous-phase processing of atmospheric α-dicarbonyl compounds such as methylglyoxal (MG) could constitute an important source of secondary organic aerosol (SOA). The uptake of MG to aqueous particles is higher than expected due to the fact that its carbonyl moieties can hydrate to form diols, as well as the fact that MG can undergo aldol condensation reactions to form larger oligomers in solution. MG is known to be surface active but an improved description of its surface behaviour is crucial to understanding MG-SOA formation, in addition to understanding its gas-to-particle partitioning and cloud forming potential. Here, we employ a combined experimental and theoretical approach involving vibrational sum frequency generation spectroscopy (VSFS), surface tensiometry, molecular dynamics simulations, and density functional theory calculations to study MG's surface adsorption, in both the presence and absence of salts. We are particularly interested in determining MG's hydration state at the surface. Our experimental results indicate that MG slowly adsorbs to the air-water interface and strongly perturbs the water structure there. This perturbation is enhanced in the presence of NaCl. Together our experimental and theoretical results suggest that singly-hydrated MG is the dominant form of MG at the surface.

  3. Trace Contaminant Testing with the Orion Atmosphere Revitalization Technology

    NASA Technical Reports Server (NTRS)

    Button, Amy B.; Sweterlitsch, Jeffrey J.; Broerman, Craig D.; Campbell, Melissa L.

    2010-01-01

    Every spacecraft atmosphere contains trace contaminants resulting from offgassing by cabin materials and human passengers. An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Orion Atmosphere Revitalization System (ARS). Part of the risk mitigation effort for this new technology is the study of how atmospheric trace contaminants will affect and be affected by the technology. One particular area of concern is ammonia, which, in addition to the normal spacecraft sources, can also be offgassed by the amine-based sorbent. In the spring of 2009, tests were performed at Johnson Space Center (JSC) with typical cabin atmosphere levels of five of the most common trace gases, most of which had not yet been tested with this technology. A subscale sample of the sorbent was exposed to each of the chemicals mixed into a stream of moist, CO2-laden air, and the CO2 adsorption capacity of the sorbent was compared before and after the exposure. After these typical-concentration chemicals were proven to have negligible effect on the subscale sample, tests proceeded on a full-scale test article in a sealed chamber with a suite of eleven contaminants. To isolate the effects of various test rig components, several extended-duration tests were run: without injection or scrubbing, with injection and without scrubbing, with injection of both contaminants and metabolic CO2 and water vapor loads and scrubbing by both the test article and dedicated trace contaminant filters, and with the same injections and scrubbing by only the test article. The high-level results of both the subscale and full-scale tests are examined in this paper.

  4. 21 CFR 874.1800 - Air or water caloric stimulator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1800 Air or water caloric... or water to the ear canal at controlled rates of flow and temperature and that is intended...

  5. 21 CFR 874.1800 - Air or water caloric stimulator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1800 Air or water caloric... or water to the ear canal at controlled rates of flow and temperature and that is intended...

  6. 21 CFR 874.1800 - Air or water caloric stimulator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1800 Air or water caloric... or water to the ear canal at controlled rates of flow and temperature and that is intended...

  7. 21 CFR 874.1800 - Air or water caloric stimulator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1800 Air or water caloric... or water to the ear canal at controlled rates of flow and temperature and that is intended...

  8. Method and apparatus for extracting water from air

    DOEpatents

    Spletzer, Barry L.; Callow, Diane Schafer; Marron, Lisa C.; Salton, Jonathan R.

    2002-01-01

    The present invention provides a method and apparatus for extracting liquid water from moist air using minimal energy input. The method comprises compressing moist air under conditions that foster the condensation of liquid water. The air can be decompressed under conditions that do not foster the vaporization of the condensate. The decompressed, dried air can be exchanged for a fresh charge of moist air and the process repeated. The liquid condensate can be removed for use. The apparatus can comprise a compression chamber having a variable internal volume. An intake port allows moist air into the compression chamber. An exhaust port allows dried air out of the compression chamber. A condensation device fosters condensation at the desired conditions. A condensate removal port allows liquid water to be removed.

  9. Method and apparatus for extracting water from air

    DOEpatents

    Spletzer, Barry L.

    2001-01-01

    The present invention provides a method and apparatus for extracting liquid water from moist air using minimal energy input. The method comprises compressing moist air under conditions that foster the condensation of liquid water (ideally isothermal to a humidity of 1.0, then adiabatic thereafter). The air can be decompressed under conditions that do not foster the vaporization of the condensate. The decompressed, dried air can be exchanged for a fresh charge of moist air and the process repeated. The liquid condensate can be removed for use. The apparatus can comprise a compression chamber having a variable internal volume. An intake port allows moist air into the compression chamber. An exhaust port allows dried air out of the compression chamber. A condensation device fosters condensation at the desired conditions. A condensate removal port allows liquid water to be removed.

  10. Linking Air, Land, and Water Pollution for Effective Environmental Management

    EPA Science Inventory

    Since the passage of the National Environmental Policy Act in 1970, the U.S. Environmental Protection Agency, other federal agencies, and the states have made substantial progress in improving the Nation’s air and water quality. Traditionally, the air, land, and water pollution ...

  11. Thermodynamic and transport properties of air/water mixtures

    NASA Technical Reports Server (NTRS)

    Fessler, T. E.

    1981-01-01

    Subroutine WETAIR calculates properties at nearly 1,500 K and 4,500 atmospheres. Necessary inputs are assigned values of combinations of density, pressure, temperature, and entropy. Interpolation of property tables obtains dry air and water (steam) properties, and simple mixing laws calculate properties of air/water mixture. WETAIR is used to test gas turbine engines and components operating in relatively humid air. Program is written in SFTRAN and FORTRAN.

  12. DIRECTORY OF TECHNICAL ASSISTANCE FOR LAND REVITALIZATION

    EPA Science Inventory

    Information profiles on the various EPA and other Federal programs who offer financial and in-kind assistance for site cleanup activities related to revitalization and reuse. Each profile indicates contact, eligibility, and descriptions of the programs.

  13. Trace Contaminant Testing with the Orion Atmosphere Revitalization Technology

    NASA Technical Reports Server (NTRS)

    Button, Amy Lin; Sweterlitsch, Jeffrey; Broerman, Craig

    2009-01-01

    Every spacecraft atmosphere contains trace contaminants resulting from offgassing by cabin materials and human passengers. An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Orion Atmosphere Revitalization System (ARS). Part of the risk mitigation effort for this new technology is the study of how atmospheric trace contaminants will affect and be affected by the technology. One particular area of concern is ammonia, which, in addition to the normal spacecraft sources, can also be off-gassed by the amine-based sorbent. In the first half of 2009, tests were performed with typical cabin atmosphere levels of five of the most common trace gases, most of which had not yet been tested with this technology. A subscale sample of the sorbent was exposed to each of the chemicals mixed into a stream of moist, CO2-laden air, and the CO2 adsorption capacity of the sorbent was compared before and after the exposure. After these typical-concentration chemicals were proven to have negligible effect on the subscale sample, tests proceeded on a full-scale test article in a sealed chamber with a suite of eleven contaminants. To isolate the effects of various test rig components, several extended-duration tests were run: without injection or scrubbing, with injection and without scrubbing, with injection and scrubbing by both the test article and dedicated trace contaminant filters, and with injection and scrubbing by only the test article. The high-level results of both the subscale and full-scale tests are examined in this paper.

  14. 9. Water Purification System and Instrument Air Receiver Tank, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Water Purification System and Instrument Air Receiver Tank, view to the south. The water purification system is visible in the right foreground of the photograph and the instrument air receiver tank is visible in the right background of the photograph. - Washington Water Power Clark Fork River Cabinet Gorge Hydroelectric Development, Powerhouse, North Bank of Clark Fork River at Cabinet Gorge, Cabinet, Bonner County, ID

  15. 18 CFR 1316.5 - Clean Air and Water Acts.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Conditions and Certifications § 1316.5 Clean Air and Water Acts. When so indicated in TVA contract documents... Acts. 1316.5 Section 1316.5 Conservation of Power and Water Resources TENNESSEE VALLEY AUTHORITY... Water Acts (a) If performance of this contract would involve the use of facilities which have given...

  16. 18 CFR 1316.5 - Clean Air and Water Acts.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Conditions and Certifications § 1316.5 Clean Air and Water Acts. When so indicated in TVA contract documents... Acts. 1316.5 Section 1316.5 Conservation of Power and Water Resources TENNESSEE VALLEY AUTHORITY... Water Acts (a) If performance of this contract would involve the use of facilities which have given...

  17. Forced convection heat transfer to air/water vapor mixtures

    NASA Technical Reports Server (NTRS)

    Richards, D. R.; Florschuetz, L. W.

    1986-01-01

    Heat transfer coefficients were measured using both dry air and air/water vapor mixtures in the same forced convection cooling test rig (jet array impingement configurations) with mass ratios of water vapor to air up to 0.23. The primary objective was to verify by direct experiment that selected existing methods for evaluation of viscosity and thermal conductivity of air/water vapor mixtures could be used with confidence to predict heat transfer coefficients for such mixtures using as a basis heat transfer data for dry air only. The property evaluation methods deemed most appropriate require as a basis a measured property value at one mixture composition in addition to the property values for the pure components.

  18. SMARTE: HELPING COMMUNITIES OVERCOME OBSTACLES TO REVITALIZATION - JUNE 28, 2006

    EPA Science Inventory

    SMARTe (Sustainable Management Approaches and Revitalization Tools -electronic) is a web-based decision support tool being developed by the Office of Research and Development (ORD) in partnership with the Office of Brownfields Cleanup and Revitalization (OBCR), the Interstate Tec...

  19. SMARTE: HELPING COMMUNITIES EVALUATE REUSE OPTIONS AND OVERCOME REVITALIZATION OBSTACLES

    EPA Science Inventory

    SMARTe (Sustainable Management Approaches and Revitalization Tools electronic) is a web-based decision support tool being developed by the Office of Research and Development (ORD) in partnership with the Office of Brownfields and Land Revitalization (OBLR), the Interstate Techn...

  20. Specific features of aluminum nanoparticle water and wet air oxidation

    SciTech Connect

    Lozhkomoev, Aleksandr S. Glazkova, Elena A. Svarovskaya, Natalia V. Bakina, Olga V. Kazantsev, Sergey O. Lerner, Marat I.

    2015-10-27

    The oxidation processes of the electrically exploded aluminum nanopowders in water and in wet air are examined in the paper. The morphology of the intermediate reaction products of aluminum oxidation has been studied using the transmission electron microscopy. It was shown that the aluminum nanopowder water oxidation causes the formation of the hollow spheres with mesoporous boehmite nanosheets coating. The wedge-like bayerite particles are formed during aluminum nanopowder wet air oxidation.

  1. Specific features of aluminum nanoparticle water and wet air oxidation

    NASA Astrophysics Data System (ADS)

    Lozhkomoev, Aleksandr S.; Glazkova, Elena A.; Svarovskaya, Natalia V.; Bakina, Olga V.; Kazantsev, Sergey O.; Lerner, Marat I.

    2015-10-01

    The oxidation processes of the electrically exploded aluminum nanopowders in water and in wet air are examined in the paper. The morphology of the intermediate reaction products of aluminum oxidation has been studied using the transmission electron microscopy. It was shown that the aluminum nanopowder water oxidation causes the formation of the hollow spheres with mesoporous boehmite nanosheets coating. The wedge-like bayerite particles are formed during aluminum nanopowder wet air oxidation.

  2. Cold water aquifer storage. [air conditioning

    NASA Technical Reports Server (NTRS)

    Reddell, D. L.; Davison, R. R.; Harris, W. B.

    1980-01-01

    A working prototype system is described in which water is pumped from an aquifer at 70 F in the winter time, chilled to a temperature of less than 50 F, injected into a ground-water aquifer, stored for a period of several months, pumped back to the surface in the summer time. A total of 8.1 million gallons of chilled water at an average temperature of 48 F were injected. This was followed by a storage period of 100 days. The recovery cycle was completed a year later with a total of 8.1 million gallons recovered. Approximately 20 percent of the chill energy was recovered.

  3. Minimizing the water and air impacts of unconventional energy extraction

    NASA Astrophysics Data System (ADS)

    Jackson, R. B.

    2014-12-01

    Unconventional energy generates income and, done well, can reduce air pollution compared to other fossil fuels and even water use compared to fossil fuels and nuclear energy. Alternatively, it could slow the adoption of renewables and, done poorly, release toxic chemicals into water and air. Based on research to date, some primary threats to water resources come from surface spills, wastewater disposal, and drinking-water contamination through poor well integrity. For air resources, an increase in volatile organic compounds and air toxics locally is a potential health threat, but the switch from coal to natural gas for electricity generation will reduce sulfur, nitrogen, mercury, and particulate pollution regionally. Critical needs for future research include data for 1) estimated ultimate recovery (EUR) of unconventional hydrocarbons; 2) the potential for further reductions of water requirements and chemical toxicity; 3) whether unconventional resource development alters the frequency of well-integrity failures; 4) potential contamination of surface and ground waters from drilling and spills; and 5) the consequences of greenhouse gases and air pollution on ecosystems and human health.

  4. Forced convection heat transfer to air/water vapor mixtures

    NASA Technical Reports Server (NTRS)

    Richards, D. R.; Florschuetz, L. W.

    1984-01-01

    Heat transfer coefficients were measured using both dry and humid air in the same forced convection cooling scheme and were compared using appropriate nondimensional parameters (Nusselt, Prandtl and Reynolds numbers). A forced convection scheme with a complex flow field, two dimensional arrays of circular jets with crossflow, was utilized with humidity ratios (mass ratio of water vapor to air) up to 0.23. The dynamic viscosity, thermal conductivity and specific heat of air, steam and air/steam mixtures are examined. Methods for determining gaseous mixture properties from the properties of their pure components are reviewed as well as methods for determining these properties with good confidence. The need for more experimentally determined property data for humid air is discussed. It is concluded that dimensionless forms of forced convection heat transfer data and empirical correlations based on measurements with dry air may be applied to conditions involving humid air with the same confidence as for the dry air case itself, provided that the thermophysical properties of the humid air mixtures are known with the same confidence as their dry air counterparts.

  5. Interrelationships of petiole air canal architecture, water depth and convective air flow in Nymphaea odorata (Nymphaeaceae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Premise of the study--Nymphaea odorata grows in water up to 2 m deep, producing fewer, larger leaves in deeper water. This species has a convective flow system that moves gases from younger leaves through submerged parts to older leaves, aerating submerged parts. Petiole air canals are in the conv...

  6. Utilizing air purge to reduce water contamination of lube systems

    SciTech Connect

    Sirois, H.J.

    1994-12-31

    Lubrication systems are exposed to contaminants including dirt, process dilutants and water. Water contamination of lubricating oil is commonly experienced by users of machinery such as steam and gas turbines, compressors, pumps, motors, generators and others. Poorly designed or maintained turbomachinery features such as bearing housing seals and shaft packing do not prevent moisture laden air, the primary source of water, from entering the lube system. This paper presents a case history where a mechanical drive steam turbine and boiler feed pump was experiencing severe water contamination of the lube system. Bearing and control system component failures resulted from water induced corrosion. Various systems and approaches for dealing with this contamination are reviewed. Installation of a very simple and cost effective system using low pressure air applied directly to the bearing housing oil seals proved a most effective method for eliminating measurable water contamination of the lubrication system and can be applied to machinery of all types.

  7. Plants Clean Air and Water for Indoor Environments

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Wolverton Environmental Services Inc., founded by longtime government environmental scientist B.C. "Bill" Wolverton, is an environmental consulting firm that gives customers access to the results of his decades of cutting-edge bioremediation research. Findings about how to use plants to improve indoor air quality have been published in dozens of NASA technical papers and in the book, "How to Grow Fresh Air: 50 Houseplants That Purify Your Home or Office." The book has now been translated into 12 languages and has been on the shelves of bookstores for nearly 10 years. A companion book, "Growing Clean Water: Nature's Solution to Water Pollution," explains how plants can clean waste water. Other discoveries include that the more air that is allowed to circulate through the roots of the plants, the more effective they are at cleaning polluted air; and that plants play a psychological role in welfare in that people recover from illness faster in the presence of plants. Wolverton Environmental is also working in partnership with Syracuse University, to engineer systems consisting of modular wicking filters tied into duct work and water supplies, essentially tying plant-based filters into heating, ventilation, and air conditioning (HVAC) systems. Also, the company has recently begun to assess the ability of the EcoPlanter to remove formaldehyde from interior environments. Wolverton Environmental is also in talks with designers of the new Stennis Visitor's Center, who are interested in using its designs for indoor air-quality filters

  8. Methane flux across the air-water interface - Air velocity effects

    NASA Technical Reports Server (NTRS)

    Sebacher, D. I.; Harriss, R. C.; Bartlett, K. B.

    1983-01-01

    Methane loss to the atmosphere from flooded wetlands is influenced by the degree of supersaturation and wind stress at the water surface. Measurements in freshwater ponds in the St. Marks Wildlife Refuge, Florida, demonstrated that for the combined variability of CH4 concentrations in surface water and air velocity over the water surface, CH4 flux varied from 0.01 to 1.22 g/sq m/day. The liquid exchange coefficient for a two-layer model of the gas-liquid interface was calculated as 1.7 cm/h for CH4 at air velocity of zero and as 1.1 + 1.2 v to the 1.96th power cm/h for air velocities from 1.4 to 3.5 m/s and water temperatures of 20 C.

  9. 33 CFR 334.490 - Atlantic Ocean off Georgia Coast; air-to-air and air-to-water gunnery and bombing ranges for...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Atlantic Ocean off Georgia Coast; air-to-air and air-to-water gunnery and bombing ranges for fighter and bombardment aircraft, U.S. Air... ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.490 Atlantic Ocean...

  10. 33 CFR 334.490 - Atlantic Ocean off Georgia Coast; air-to-air and air-to-water gunnery and bombing ranges for...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Atlantic Ocean off Georgia Coast; air-to-air and air-to-water gunnery and bombing ranges for fighter and bombardment aircraft, U.S. Air... ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.490 Atlantic Ocean...

  11. 33 CFR 334.490 - Atlantic Ocean off Georgia Coast; air-to-air and air-to-water gunnery and bombing ranges for...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Atlantic Ocean off Georgia Coast; air-to-air and air-to-water gunnery and bombing ranges for fighter and bombardment aircraft, U.S. Air... ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.490 Atlantic Ocean...

  12. Tribal Languages and the Challenges of Revitalization

    ERIC Educational Resources Information Center

    Sims, Christine P.

    2005-01-01

    Although school- and university-based language programs can help strengthen threatened Indigenous languages, language revitalization at its heart involves reestablishing traditional functions of language use in the context of everyday speaker interactions. The inherent dynamics of Native oral language traditions suggest the limitations of…

  13. Revitalizing the Land Grant University: An Abridgment.

    ERIC Educational Resources Information Center

    Schuh, G. Edward

    The institutional mission orientation of land grant universities and problems faced by these institutions are discussed, along with five tasks involved in redefining and revitalizing the land grant university. A traditional responsibility of land grant universities was to apply science and technology to solve societal problems. Faculty were…

  14. GET SMARTE: DECISION TOOLS TO REVITALIZE BROWNFIELDS

    EPA Science Inventory

    SMARTe (Sustainable Management Approaches and Revitalization Tools-electronic) is an open-source, web-based, decision-support system for developing and evaluating future use scenarios for potentially contaminated sites (i.e., brownfields). It contains resources and analysis tools...

  15. Alternatives for Revitalizing Student Services Programs.

    ERIC Educational Resources Information Center

    Deegan, William L.

    1984-01-01

    Reviews alternatives for revitalizing the programs and management of community college student services. As program development models, considers Miami-Dade Community College's computer-based instructional management system; entrepreneurial fee-based services; and divestment of situational or special-interest services to student groups. In…

  16. Behavior of Water Jet Accompanied with Air Suction

    NASA Astrophysics Data System (ADS)

    Kawakami, Hironobu; Ishido, Tsutomu; Ihara, Akio

    In order to atomize a liquid, the authors have investigated the behavior of air-water jets. In a series of experiments, we have discovered a strange phenomenon that the water jet accompanied with air suction from the free surface has made a periodic radial splash of water drop. The purpose of the present paper is to clear out the origin of this phenomenon and the behavior of water jet accompanied with air suction. The behavior of water jet has been photographed by a digital camera aided with a flashlight and high-speed video camera. Those experiments enable us to find the origin of a periodic radial splash due to a formation of single air bubble at the flow separation region inside the nozzle and due to explosive expansion of the bubble after injected in the free space. In order to analyze the radial splash of water, we have conducted the equation of spherical liquid membrane. The numerical results obtained have been compared with the experimental results and good agreement has been obtained in radial expansion velocity.

  17. Water Tank with Capillary Air/Liquid Separation

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.; Smith, Frederick; Edeen, Gregg; Almlie, Jay C.

    2010-01-01

    A bladderless water tank (see figure) has been developed that contains capillary devices that allow it to be filled and emptied, as needed, in microgravity. When filled with water, the tank shields human occupants of a spacecraft against cosmic radiation. A membrane that is permeable by air but is hydrophobic (neither wettable nor permeable by liquid water) covers one inside surface of the tank. Grooves between the surface and the membrane allow air to flow through vent holes in the surface as the tank is filled or drained. A margin of wettable surface surrounds the edges of the membrane, and all the other inside tank surfaces are also wettable. A fill/drain port is located in one corner of the tank and is covered with a hydrophilic membrane. As filling begins, water runs from the hydrophilic membrane into the corner fillets of the tank walls. Continued filling in the absence of gravity will result in a single contiguous air bubble that will be vented through the hydrophobic membrane. The bubble will be reduced in size until it becomes spherical and smaller than the tank thickness. Draining the tank reverses the process. Air is introduced through the hydrophobic membrane, and liquid continuity is maintained with the fill/drain port through the corner fillets. Even after the tank is emptied, as long as the suction pressure on the hydrophilic membrane does not exceed its bubble point, no air will be drawn into the liquid line.

  18. A novel membrane device for the removal of water vapor and water droplets from air

    NASA Technical Reports Server (NTRS)

    Ray, Rod; Newbold, David D.; Mccray, Scott B.; Friesen, Dwayne T.; Kliss, Mark

    1992-01-01

    One of the key challenges facing NASA engineers is the development of systems for separating liquids and gases in microgravity environments. In this paper, a novel membrane-based phase separator is described. This device, known as a water recovery heat exchanger (WRHEX), overcomes the inherent deficiencies of current phase-separation technology. Specifically, the WRHEX cools and removes water vapor or water droplets from feed-air streams without the use of a vacuum or centrifugal force. As is shown in this paper, only a low-power air blower and a small stream of recirculated cool water is required for WRHEX operation. This paper presents the results of tests using this novel membrane device over a wide range of operating conditions. The data show that the WRHEX produces a dry air stream containing no entrained or liquid water - even when the feed air contains water droplets or mist. An analysis of the operation of the WRHEX is presented.

  19. Economics of water injected air screw compressor systems

    NASA Astrophysics Data System (ADS)

    Venu Madhav, K.; Kovačević, A.

    2015-08-01

    There is a growing need for compressed air free of entrained oil to be used in industry. In many cases it can be supplied by oil flooded screw compressors with multi stage filtration systems, or by oil free screw compressors. However, if water injected screw compressors can be made to operate reliably, they could be more efficient and therefore cheaper to operate. Unfortunately, to date, such machines have proved to be insufficiently reliable and not cost effective. This paper describes an investigation carried out to determine the current limitations of water injected screw compressor systems and how these could be overcome in the 15-315 kW power range and delivery pressures of 6-10 bar. Modern rotor profiles and approach to sealing and cooling allow reasonably inexpensive air end design. The prototype of the water injected screw compressor air system was built and tested for performance and reliability. The water injected compressor system was compared with the oil injected and oil free compressor systems of the equivalent size including the economic analysis based on the lifecycle costs. Based on the obtained results, it was concluded that water injected screw compressor systems could be designed to deliver clean air free of oil contamination with a better user value proposition than the oil injected or oil free screw compressor systems over the considered range of operations.

  20. Water, Air, Earth and Cosmic Radiation

    NASA Astrophysics Data System (ADS)

    Bassez, Marie-Paule

    2015-06-01

    In the context of the origin of life, rocks are considered mainly for catalysis and adsorption-desorption processes. Here it is shown how some rocks evolve in energy and might induce synthesis of molecules of biological interest. Radioactive rocks are a source of thermal energy and water radiolysis producing molecular hydrogen, H2. Mafic and ultramafic rocks evolve in water and dissolved carbon dioxide releasing thermal energy and H2. Peridotites and basalts contain ferromagnesian minerals which transform through exothermic reactions with the generation of heat. These reactions might be triggered by any heating process such as radioactive decay, hydrothermal and subduction zones or post-shock of meteorite impacts. H2 might then be generated from endothermic hydrolyses of the ferromagnesian minerals olivine and pyroxene. In both cases of mafic and radioactive rocks, production of CO might occur through high temperature hydrogenation of CO2. CO, instead of CO2, was proven to be necessary in experiments synthesizing biological-type macromolecules with a gaseous mixture of CO, N2 and H2O. In the geological context, N2 is present in the environment, and the activation source might arise from cosmic radiation and/or radionuclides. Ferromagnesian and radioactive rocks might consequently be a starting point of an hydrothermal chemical evolution towards the abiotic formation of biological molecules. The two usually separate worlds of rocks and life are shown to be connected through molecular and thermodynamic chemical evolution. This concept has been proposed earlier by the author (Bassez J Phys: Condens Matter 15:L353-L361, 2003, 2008a, 2008b; Bassez Orig Life Evol Biosph 39(3-4):223-225, 2009; Bassez et al. 2011; Bassez et al. Orig Life Evol Biosph 42(4):307-316, 2012, Bassez 2013) without thermodynamic details. This concept leads to signatures of prebiotic chemistry such as radionuclides and also iron and magnesium carbonates associated with serpentine and/or talc, which

  1. Water, air, Earth and cosmic radiation.

    PubMed

    Bassez, Marie-Paule

    2015-06-01

    In the context of the origin of life, rocks are considered mainly for catalysis and adsorption-desorption processes. Here it is shown how some rocks evolve in energy and might induce synthesis of molecules of biological interest. Radioactive rocks are a source of thermal energy and water radiolysis producing molecular hydrogen, H2. Mafic and ultramafic rocks evolve in water and dissolved carbon dioxide releasing thermal energy and H2. Peridotites and basalts contain ferromagnesian minerals which transform through exothermic reactions with the generation of heat. These reactions might be triggered by any heating process such as radioactive decay, hydrothermal and subduction zones or post-shock of meteorite impacts. H2 might then be generated from endothermic hydrolyses of the ferromagnesian minerals olivine and pyroxene. In both cases of mafic and radioactive rocks, production of CO might occur through high temperature hydrogenation of CO2. CO, instead of CO2, was proven to be necessary in experiments synthesizing biological-type macromolecules with a gaseous mixture of CO, N2 and H2O. In the geological context, N2 is present in the environment, and the activation source might arise from cosmic radiation and/or radionuclides. Ferromagnesian and radioactive rocks might consequently be a starting point of an hydrothermal chemical evolution towards the abiotic formation of biological molecules. The two usually separate worlds of rocks and life are shown to be connected through molecular and thermodynamic chemical evolution. This concept has been proposed earlier by the author (Bassez J Phys: Condens Matter 15:L353-L361, 2003, 2008a, 2008b; Bassez Orig Life Evol Biosph 39(3-4):223-225, 2009; Bassez et al. 2011; Bassez et al. Orig Life Evol Biosph 42(4):307-316, 2012, Bassez 2013) without thermodynamic details. This concept leads to signatures of prebiotic chemistry such as radionuclides and also iron and magnesium carbonates associated with serpentine and/or talc

  2. Additional Developments in Atmosphere Revitalization Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Coker, Robert F.; Knox, James C.; Cummings, Ramona; Brooks, Thomas; Schunk, Richard G.

    2013-01-01

    NASA's Advanced Exploration Systems (AES) program is developing prototype systems, demonstrating key capabilities, and validating operational concepts for future human missions beyond Earth orbit. These forays beyond the confines of earth's gravity will place unprecedented demands on launch systems. They must launch the supplies needed to sustain a crew over longer periods for exploration missions beyond earth's moon. Thus all spacecraft systems, including those for the separation of metabolic carbon dioxide and water from a crewed vehicle, must be minimized with respect to mass, power, and volume. Emphasis is also placed on system robustness both to minimize replacement parts and ensure crew safety when a quick return to earth is not possible. Current efforts are focused on improving the current state-of-the-art systems utilizing fixed beds of sorbent pellets by evaluating structured sorbents, seeking more robust pelletized sorbents, and examining alternate bed configurations to improve system efficiency and reliability. These development efforts combine testing of sub-scale systems and multi-physics computer simulations to evaluate candidate approaches, select the best performing options, and optimize the configuration of the selected approach. This paper describes the continuing development of atmosphere revitalization models and simulations in support of the Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM)

  3. Additional Developments in Atmosphere Revitalization Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Coker, Robert F.; Knox, James C.; Cummings, Ramona; Brooks, Thomas; Schunk, Richard G.; Gomez, Carlos

    2013-01-01

    NASA's Advanced Exploration Systems (AES) program is developing prototype systems, demonstrating key capabilities, and validating operational concepts for future human missions beyond Earth orbit. These forays beyond the confines of earth's gravity will place unprecedented demands on launch systems. They must launch the supplies needed to sustain a crew over longer periods for exploration missions beyond earth's moon. Thus all spacecraft systems, including those for the separation of metabolic carbon dioxide and water from a crewed vehicle, must be minimized with respect to mass, power, and volume. Emphasis is also placed on system robustness both to minimize replacement parts and ensure crew safety when a quick return to earth is not possible. Current efforts are focused on improving the current state-of-the-art systems utilizing fixed beds of sorbent pellets by evaluating structured sorbents, seeking more robust pelletized sorbents, and examining alternate bed configurations to improve system efficiency and reliability. These development efforts combine testing of sub-scale systems and multi-physics computer simulations to evaluate candidate approaches, select the best performing options, and optimize the configuration of the selected approach. This paper describes the continuing development of atmosphere revitalization models and simulations in support of the Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project within the AES program.

  4. 33 CFR 334.490 - Atlantic Ocean off Georgia Coast; air-to-air and air-to-water gunnery and bombing ranges for...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Atlantic Ocean off Georgia Coast; air-to-air and air-to-water gunnery and bombing ranges for fighter and bombardment aircraft, U.S. Air Force. 334.490 Section 334.490 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE...

  5. Propagation of density disturbances in air-water flow

    NASA Technical Reports Server (NTRS)

    Nassos, G. P.

    1969-01-01

    Study investigated the behavior of density waves propagating vertically in an atmospheric pressure air-water system using a technique based on the correlation between density change and electric resistivity. This information is of interest to industries working with heat transfer systems and fluid power and control systems.

  6. Earth, Air, Fire and Water in Our Elements

    ERIC Educational Resources Information Center

    Lievesley, Tara

    2007-01-01

    The idea that everything is made of the four "elements", earth, air, fire and water, goes back to the ancient Greeks. In this article, the author talks about the origins of ideas about the elements. The author provides an account that attempts to summarise thousands of years of theoretical development of the elements in a thousand words or so.

  7. MONITORING CYCLICAL AIR-WATER ELEMENTAL MERCURY EXCHANGE

    EPA Science Inventory

    Previous experimental work has demonstrated that elemental mercury evasion from natural water displays a diel cycle; evasion rates during the day can be two to three times evasion rates observed at night. A study with polychlorinated biphenyls (PCBS) found that diurnal PCB air/wa...

  8. VOLATILIZATION RATES FROM WATER TO INDOOR AIR PHASE II

    EPA Science Inventory

    Contaminated water can lead to volatilization of chemicals to residential indoor air. Previous research has focused on only one source (shower stalls) and has been limited to chemicals in which gas-phase resistance to mass transfer is of marginal significance. As a result, attemp...

  9. External exposure to radionuclides in air, water, and soil

    SciTech Connect

    Eckerman, K.F.; Ryman, J.C.

    1996-05-01

    Federal Guidance Report No. 12 tabulates dose coefficients for external exposure to photons and electrons emitted by radionuclides distributed in air, water, and soil. The dose coefficients are intended for use by Federal Agencies in calculating the dose equivalent to organs and tissues of the body.

  10. Water and Air Measures That Make 'PureSense'

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Each day, we read about mounting global concerns regarding the ability to sustain supplies of clean water and to reduce air contamination. With water and air serving as life s most vital elements, it is important to know when these environmental necessities may be contaminated, in order to eliminate exposure immediately. The ability to respond requires an understanding of the conditions impacting safety and quality, from source to tap for water, and from outdoor to indoor environments for air. Unfortunately, the "time-to-know" is not immediate with many current technologies, which is a major problem, given the greater likelihood of risky situations in today s world. Accelerating alert and response times requires new tools, methods, and technologies. New solutions are needed to engage in more rapid detection, analysis, and response. This is the focus of a company called PureSense Environmental, Inc., which evolved out of a unique relationship with NASA. The need for real-time management and operations over the quality of water and air, and the urgency to provide new solutions, were reinforced by the events of September 11, 2001. This, and subsequent events, exposed many of the vulnerabilities facing the multiple agencies tasked with working in tandem to protect communities from harmful disaster. Much has been done since September 11 to accelerate responses to environmental contamination. Partnerships were forged across the public and private sectors to explore, test, and use new tools. Methods and technologies were adopted to move more astutely from proof-of-concept to working solutions.

  11. Connecting Water Quality With Air Quality Through Microbial Aerosols

    NASA Astrophysics Data System (ADS)

    Dueker, M. Elias

    Aerosol production from surface waters results in the transfer of aquatic materials (including nutrients and bacteria) to air. These materials can then be transported by onshore winds to land, representing a biogeochemical connection between aquatic and terrestrial systems not normally considered. In urban waterfront environments, this transfer could result in emissions of pathogenic bacteria from contaminated waters. Despite the potential importance of this link, sources, near-shore deposition, identity and viability of microbial aerosols are largely uncharacterized. This dissertation focuses on the environmental and biological mechanisms that define this water-air connection, as a means to build our understanding of the biogeochemical, biogeographical, and public health implications of the transfer of surface water materials to the near-shore environment in both urban and non-urban environments. The effects of tidal height, wind speed and fog on coastal aerosols and microbial content were first quantified on a non-urban coast of Maine, USA. Culture-based, culture-independent, and molecular methods were used to simultaneously sample microbial aerosols while monitoring meteorological parameters. Aerosols at this site displayed clear marine influence and high concentrations of ecologically-relevant nutrients. Coarse aerosol concentrations significantly increased with tidal height, onshore wind speed, and fog presence. Tidal height and fog presence did not significantly influence total microbial aerosol concentrations, but did have a significant effect on culturable microbial aerosol fallout. Molecular analyses of the microbes settling out of near-shore aerosols provided further evidence of local ocean to terrestrial transport of microbes. Aerosol and surface ocean bacterial communities shared species and in general were dominated by organisms previously sampled in marine environments. Fog presence strengthened the microbial connection between water and land through

  12. Estuary Turbulence and Air-Water Carbon Dioxide Exchange

    NASA Astrophysics Data System (ADS)

    Orton, Philip Mark

    The mixing of constituents between estuarine bottom and surface waters or between estuarine surface waters and the atmosphere are two topics of growing interest, in part due to the potentially important role of estuaries in global carbon budgets. These two types of mixing are typically driven by turbulence, and a research project was developed to improve the scientific understanding of atmospheric and tidal controls on estuary turbulence and airwater exchange processes. Highlights of method development and field research on the Hudson River estuary include several deployments of bottom mounted current profilers to quantify the turbulent kinetic energy (TKE) budget, and construction and deployment of an instrumented catamaran that makes autonomous measurements of air-water CO2 exchange (FCO2), water TKE dissipation at 50 cm depth (epsilon50), and other physical properties just above and below the air-water interface. On the Hudson, wind correlates strongly with epsilon50, but surface water speed and airwater heat flux also have moderate correlations with epsilon50. In partially mixed estuaries such as the Hudson, as well as salt wedge estuaries, baroclinic pressure forcing typically causes spring ebb tides to have much stronger upper water column shear than flood tides. The Hudson data are used to show that this shear leads to local shear instability and stronger near-surface turbulence on spring ebbs. Also, buoyancy budget terms are compared to demonstrate how water-to-air heat fluxes can influence stratification and indirectly influence epsilon50. Looking more closely at the role of wind forcing, it is demonstrated that inland propagation of the sea breeze on warm sunny days leads to arrival in phase with peak solar forcing at seaward stations, but several hours later at up-estuary stations. Passage of the sea breeze front raises the air-water CO2 flux by 1-2 orders of magnitude, and drives epsilon50 comparable to spring tide levels in the upper meter of the water

  13. Biphilic Surfaces for Enhanced Water Collection from Humid Air

    NASA Astrophysics Data System (ADS)

    Benkoski, Jason; Gerasopoulos, Konstantinos; Luedeman, William

    Surface wettability plays an important role in water recovery, distillation, dehumidification, and heat transfer. The efficiency of each process depends on the rate of droplet nucleation, droplet growth, and mass transfer. Unfortunately, hydrophilic surfaces are good at nucleation but poor at shedding. Hydrophobic surfaces are the reverse. Many plants and animals overcome this tradeoff through biphilic surfaces with patterned wettability. For example, the Stenocara beetle uses hydrophilic patches on a superhydrophobic background to collect fog from air. Cribellate spiders similarly collect fog on their webs through periodic spindle-knot structures. In this study, we investigate the effects of wettability patterns on the rate of water collection from humid air. The steady state rate of water collection per unit area is measured as a function of undercooling, angle of inclination, water contact angle, hydrophilic patch size, patch spacing, area fraction, and patch height relative to the hydrophobic background. We then model each pattern by comparing the potential and kinetic energy of a droplet as it rolls downwards at a fixed angle. The results indicate that the design rules for collecting fog differ from those for condensation from humid air. The authors gratefully acknowledge the Office of Naval Research for financial support through Grant Number N00014-15-1-2107.

  14. Proton Transfers at the Air-Water Interface

    NASA Astrophysics Data System (ADS)

    Mishra, Himanshu

    Proton transfer reactions at the interface of water with hydrophobic media, such as air or lipids, are ubiquitous on our planet. These reactions orchestrate a host of vital phenomena in the environment including, for example, acidification of clouds, enzymatic catalysis, chemistries of aerosol and atmospheric gases, and bioenergetic transduction. Despite their importance, however, quantitative details underlying these interactions have remained unclear. Deeper insight into these interfacial reactions is also required in addressing challenges in green chemistry, improved water quality, self-assembly of materials, the next generation of micro-nanofluidics, adhesives, coatings, catalysts, and electrodes. This thesis describes experimental and theoretical investigation of proton transfer reactions at the air-water interface as a function of hydration gradients, electrochemical potential, and electrostatics. Since emerging insights hold at the lipid-water interface as well, this work is also expected to aid understanding of complex biological phenomena associated with proton migration across membranes. Based on our current understanding, it is known that the physicochemical properties of the gas-phase water are drastically different from those of bulk water. For example, the gas-phase hydronium ion, H3O +(g), can protonate most (non-alkane) organic species, whereas H 3O+(aq) can neutralize only relatively strong bases. Thus, to be able to understand and engineer water-hydrophobe interfaces, it is imperative to investigate this fluctuating region of molecular thickness wherein the 'function' of chemical species transitions from one phase to another via steep gradients in hydration, dielectric constant, and density. Aqueous interfaces are difficult to approach by current experimental techniques because designing experiments to specifically sample interfacial layers (< 1 nm thick) is an arduous task. While recent advances in surface-specific spectroscopies have provided

  15. Modelling of Air Bubble Rising in Water and Polymeric Solution

    NASA Astrophysics Data System (ADS)

    Hassan, N. M. S.; Khan, M. M. K.; Rasul, M. G.; Subaschandar, N.

    2010-06-01

    This study investigates a Computational Fluid Dynamics (CFD) model for a single air bubble rising in water and xanthan gum solution. The bubble rise characteristics through the stagnant water and 0.05% xanthan gum solution in a vertical cylindrical column is modelled using the CFD code Fluent. Single air bubble rise dispersed into the continuous liquid phase has been considered and modelled for two different bubble sizes. Bubble velocity and vorticity magnitudes were captured through a surface-tracking technique i.e. Volume of Fluid (VOF) method by solving a single set of momentum equations and tracking the volume fraction of each fluid throughout the domain. The simulated results of the bubble flow contours at two different heights of the cylindrical column were validated by the experimental results and literature data. The model developed is capable of predicting the entire flow characteristics of different sizes of bubble inside the liquid column.

  16. Use of Surfactants to Decrease Air-Water Interfacial Tension During Sparging (OKC, OK)

    EPA Science Inventory

    Air sparging is a remediation procedure of injecting air into polluted ground water. The primary intention of air sparging is to promote biodegradation of volatile organic compounds (VOCs) in the groundwater passing through the treatment sector. Sparging treatment efficiency dep...

  17. Use of Surfactants to Decrease Air-Water Interfacial Tension During Sparging

    EPA Science Inventory

    Air sparging is a remediation procedure of injecting air into polluted ground water. The primary intention of air sparging is to promote biodegradation of volatile organic compounds (VOCs) in the groundwater passing through the treatment sector. Sparging treatment efficiency dep...

  18. Air-water analogy and the study of hydraulic models

    NASA Technical Reports Server (NTRS)

    Supino, Giulio

    1953-01-01

    The author first sets forth some observations about the theory of models. Then he established certain general criteria for the construction of dynamically similar models in water and in air, through reference to the perfect fluid equations and to the ones pertaining to viscous flow. It is, in addition, pointed out that there are more cases in which the analogy is possible than is commonly supposed.

  19. Air and water pollution control: a benefit-cost assessment

    SciTech Connect

    Freeman, A.M. III

    1982-01-01

    Freeman attempts to assess the net benefits associated with environmental programs dealing with air and water quality. He concludes that stationary controls have been justified, but that mobile sources and water controls, as presently designed and implemented, have had costs greater than benefits to society. The reviewer notes that the book is more than just a compendium of mechanistic, technical detail; there is rather, far more general information on how economists view environmental problems than suggested by the title. An example is the discussions of the various approaches to valuing environmental benefits.

  20. Bacterial Swimming at Air/Water and Oil/Water Interfaces

    NASA Astrophysics Data System (ADS)

    Morse, Michael; Huang, Athena; Li, Guanglai; Tang, Jay

    2012-02-01

    The microbes inhabiting the planet over billions of years have adapted to diverse physical environments of water, soil, and interfaces between water and either solid or air. Following recent studies on bacterial swimming and accumulation near solid surfaces, we turn our attention to the behavior of Caulobacter crescentus, a singly flagellated bacterium, at water/air and water/oil interfaces. The latter is motivated by relevance to microbial degradation of crude oil in light of the recent oil spill in the Gulf of Mexico. Our ongoing study suggests that Caulobacter swarmer cells tend to get physically trapped at both water/air and water/oil interfaces, accumulating at the surface to a greater degree than boundary confinement properties like that of solid surfaces would predict. At the water/air interface, swimmers move in tight circles at half the speed of swimmers in the bulk fluid. At the water/oil interface, swimming circles are even tighter with further reduced swimming speed. We report experimental data and present preliminary analysis of the findings based on low Reynolds number hydrodynamics, the known surface tension, and surface viscosity at the interface. The analysis will help determine properties of the bacterium such as their surface charge and hydrophobicity.

  1. Tangential stress beneath wind-driven air water interfaces

    NASA Astrophysics Data System (ADS)

    Banner, Michael L.; Peirson, William L.

    1998-06-01

    The detailed structure of the aqueous surface sublayer flow immediately adjacent to the wind-driven air water interface is investigated in a laboratory wind-wave flume using particle image velocimetry (PIV) techniques. The goal is to investigate quantitatively the character of the flow in this crucial, very thin region which is often disrupted by microscale breaking events. In this study, we also examine critically the conclusions of Okuda, Kawai & Toba (1977), who argued that for very short, strongly forced wind-wave conditions, shear stress is the dominant mechanism for transmitting the atmospheric wind stress into the water motion waves and surface drift currents. In strong contrast, other authors have more recently observed very substantial normal stress contributions on the air side. The availability of PIV and associated image technology now permits a timely re-examination of the results of Okuda et al., which have been influential in shaping present perceptions of the physics of this dynamically important region. The PIV technique used in the present study overcomes many of the inherent shortcomings of the hydrogen bubble measurements, and allows reliable determination of the fluid velocity and shear within 200 [mu]m of the instantaneous wind-driven air water interface.

  2. Coaxial injector spray characterization using water/air as simulants

    NASA Technical Reports Server (NTRS)

    Zaller, Michelle M.; Klem, Mark D.

    1991-01-01

    Quantitative information about the atomization of injector sprays is required to improve the accuracy of computational models that predict the performance and stability of liquid propellant rocket engines. An experimental program is being conducted at NASA-Lewis to measure the drop size and velocity distributions in shear coaxial injector sprays. A phase/Doppler interferometer is used to obtain drop size data in water air shear coaxial injector sprays. Droplet sizes and axial component of droplet velocities are measured at different radii for various combinations of water flow rate, air flow rate, injector liquid jet diameter, injector annular gap, and liquid post recess. Sauter mean diameters measured in the spray center 51 mm downstream of the liquid post tip range from 28 to 68 microns, and mean axial drop velocities at the same location range from 37 to 120 m/s. The shear coaxial injector sprays show a high degree of symmetry; the mean drop size and velocity profiles vary with liquid flow rate, post recess, and distance from the injector face. The drop size data can be used to estimate liquid oxygen/hydrogen spray drop sizes by correcting property differences between water-air and liquid oxygen/hydrogen.

  3. New research on bioregenerative air/water purification systems

    NASA Technical Reports Server (NTRS)

    Johnson, Anne H.; Ellender, R. D.; Watkins, Paul J.

    1991-01-01

    For the past several years, air and water purification systems have been developed and used. This technology is based on the combined activities of plants and microorganisms as they function in a natural environment. More recently, researchers have begun to address the problems associated with indoor air pollution. Various common houseplants are currently being evaluated for their abilities to reduce concentrations of volatile organic compounds (VOCS) such as formaldehyde and benzene. With development of the Space Exploration Initiative, missions will increase in duration, and problems with resupply necessitates implementation of regenerative technology. Aspects of bioregenerative technology have been included in a habitat known as the BioHome. The ultimate goal is to use this technology in conjunction with physicochemical systems for air and water purification within closed systems. This study continued the risk assessment of bioregenerative technology with emphasis on biological hazards. In an effort to evaluate the risk for human infection, analyses were directed at enumeration of fecal streptococci and enteric viruses with the BioHome waste water treatment system.

  4. Energy and air emission effects of water supply.

    PubMed

    Stokes, Jennifer R; Horvath, Arpad

    2009-04-15

    Life-cycle air emission effects of supplying water are explored using a hybrid life-cycle assessment For the typically sized U.S. utility analyzed, recycled water is preferable to desalination and comparable to importation. Seawater desalination has an energy and air emission footprint that is 1.5-2.4 times larger than that of imported water. However, some desalination modes fare better; brackish groundwater is 53-66% as environmentally intensive as seawater desalination. The annual water needs (326 m3) of a typical Californian that is met with imported water requires 5.8 GJ of energy and creates 360 kg of CO2 equivalent emissions. With seawater desalination, energy use would increase to 14 GJ and 800 kg of CO2 equivalent emissions. Meeting the water demand of California with desalination would consume 52% of the state's electricity. Supply options were reassessed using alternative electricity mixes, including the average mix of the United States and several renewable sources. Desalination using solar thermal energy has lower greenhouse gas emissions than that of imported and recycled water (using California's electricity mix), but using the U.S. mix increases the environmental footprint by 1.5 times. A comparison with a more energy-intensive international scenario shows that CO2 equivalent emissions for desalination in Dubai are 1.6 times larger than in California. The methods, decision support tool (WEST), and results of this study should persuade decision makers to make informed water policy choices by including energy consumption and material use effects in the decision-making process. PMID:19475934

  5. AirSWOT: An Airborne Platform for Surface Water Monitoring

    NASA Astrophysics Data System (ADS)

    Rodriguez, E.; Moller, D.; Smith, L. C.; Pavelsky, T. M.; Alsdorf, D. E.

    2010-12-01

    The SWOT mission, expected to launch in 2020, will provide global measurements of surface water extent and elevation from which storage change and discharge can be derived. SWOT-like measurements are not routinely used by the hydrology community, and their optimal use and associated errors are areas of active research. The purpose of AirSWOT, a system that has been proposed to NASA’s Instrument Incubator Program, is to provide SWOT-like measurements to the hydrology and ocean community to be used to advance the understanding and use of SWOT data in the pre-launch phase. In the post-launch phase, AirSWOT will be used as the SWOT calibration/validation platform. The AirSWOT payload will consist of Kaspar, a multi-beam Ka-band radar interferometer able to produce elevations over a 5 km swath with centimetric precision. The absolute elevation accuracy of the AirSWOT system will be achieved with a combination of high precision Inertial Motion Units (IMUs), ground calibration points, and advanced calibration techniques utilizing a priori knowledge. It is expected that the accuracy of AirSWOT will exceed or match SWOT’s accuracy requirements. In addition to elevation measurements, the AirSWOT payload will include a near-infrared camera able to provide coincident high-resolution optical imagery of the water bodies imaged by the radar. In its initial hydrology deployments, AirSWOT will investigate four field sites: the Ohio-Mississippi confluence, the lower Atchafalaya River on the Mississippi River Delta, the Yukon River basin near Fairbanks, and the Sacramento River, California. The Ohio-Mississippi confluence is targeted for its large discharge, modest slope, and control structures that modulate Ohio but not Mississippi River slopes and elevations. The lower Atchafalaya River includes low slopes, wetlands with differing vegetation types, and some open lakes. Vegetation includes Cyprus forests, floating macrophytes, and grass marshes, all of which impact radar returns

  6. Revitalizing the Small Town Mainstreet. Hard Times: Communities in Transition.

    ERIC Educational Resources Information Center

    Cook, Edward A.; Bentley, Marion T.

    Presenting a base of general information that local business people and government officials involved with downtown revitalization should be familiar with in order to understand the range of options available and factors that will influence the outcomes of any revitalization program, the paper summarizes current theories, trends, studies, and…

  7. Revitalization - an organizational program for the individual

    SciTech Connect

    Brewer, J.M.

    1983-07-01

    Progressive devitalization is a malady that afflicts many workers resulting in tremendous costs to organizations. This malady has long been recognized by management but little has been done to treat it. A new approach to the problem has been insitituted at Lawrence Livermore National Laboratory, in the form of a group program called Revitalization. Early results have been very encouraging. The program will continue to be designed and improved in the hope of bringing more productivity to the organization and self-esteem to the individual.

  8. 78 FR 37713 - Safety Zone; Chicago Air and Water Show; Lake Michigan; Chicago, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-24

    ... SECURITY Coast Guard 33 CFR Part 165 Safety Zone; Chicago Air and Water Show; Lake Michigan; Chicago, IL... enforce the safety zone on Lake Michigan near Chicago, Illinois for the Chicago Air and Water Show. This... Chicago Air and Water Show. During the aforementioned periods, the Coast Guard will enforce...

  9. 78 FR 37710 - Safety Zone; Milwaukee Air and Water Show; Lake Michigan; Milwaukee, WI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-24

    ... SECURITY Coast Guard 33 CFR Part 165 Safety Zone; Milwaukee Air and Water Show; Lake Michigan; Milwaukee... will enforce the safety zone on Lake Michigan in Milwaukee, Wisconsin for the Milwaukee Air and Water... 2013 Milwaukee Air and Water Show. During the aforementioned periods, the Coast Guard will...

  10. 14 CFR 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Clean Air-Water Pollution Control Acts. 1274... AGREEMENTS WITH COMMERCIAL FIRMS Other Provisions and Special Conditions § 1274.926 Clean Air-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative agreement or...

  11. Air/water oxydesulfurization of coal: laboratory investigation

    SciTech Connect

    Warzinski, R. P.; Friedman, S.; Ruether, J. A.; LaCount, R. B.

    1980-08-01

    Air/water oxidative desulfurization has been demonstrated in autoclave experiments at the Pittsburgh Energy Technology Center for various coals representative of the major US coal basins. This experimentation has shown that the reaction proceeds effectively for pulverized coals at temperatures of 150 to 200/sup 0/C with air at a total system pressure of 500 to 1500 psig. Above 200/sup 0/C, the loss of coal and product heating value increases due to oxidative consumption of carbon and hydrogen. The pyritic sulfur solubilization reactions are typically complete (95 percent removal) within 15 to 40 minutes at temperature; however, significant apparent organic sulfur removal requires residence times of up to 60 minutes at the higher temperatures. The principal products of the reaction are sulfuric acid, which can be neutralized with limestone, and iron oxide. Under certain conditions, especially for high pyritic sulfur coals, the precipitation of sulfur-containing compounds from the products of the pyrite reaction may cause anomalous variations in the sulfur form data. The influence of various parameters on the efficiency of sulfur removal from coal by air/water oxydesulfurization has been studied.

  12. New Mechanistic Pathways for Criegee-Water Chemistry at the Air/Water Interface.

    PubMed

    Zhu, Chongqin; Kumar, Manoj; Zhong, Jie; Li, Lei; Francisco, Joseph S; Zeng, Xiao Cheng

    2016-09-01

    Understanding Criegee chemistry has become one of central topics in atmospheric research recently. The reaction of Criegee intermediates with gas-phase water clusters has been widely viewed as a key Criegee reaction in the troposphere. However, the effect of aerosols or clouds on Criegee chemistry has received little attention. In this work, we have investigated the reaction between the smallest Criegee intermediate, CH2OO, and water clusters in the gas phase, as well as at the air/water surface using ab initio quantum chemical calculations and adaptive buffered force quantum mechanics/molecular mechanics (QM/MM) dynamics simulations. Our simulation results show that the typical time scale for the reaction of CH2OO with water at the air/water interface is on the order of a few picoseconds, 2-3 orders of magnitude shorter than that in the gas phase. Importantly, the adbf-QM/MM dynamics simulations suggest several reaction pathways for the CH2OO + water reaction at the air/water interface, including the loop-structure-mediated mechanism and the stepwise mechanism. Contrary to the conventional gas-phase CH2OO reaction, the loop-structure is not a prerequisite for the stepwise mechanism. For the latter, a water molecule and the CH2OO at the air/water interface, upon their interaction, can result in the formation of (H3O)(+) and (OH)CH2(OO)(-). Thereafter, a hydrogen bond can be formed between (H3O)(+) and the terminal oxygen atom of (OH)CH2(OO)(-), leading to direct proton transfer and the formation of α-hydroxy methylperoxide, HOCH2OOH. The mechanistic insights obtained from this simulation study should motivate future experimental studies of the effect of water clouds on Criegee chemistry. PMID:27509207

  13. Revitalization of Basic Business Education at All Instructional Levels. National Business Education Yearbook, No. 20.

    ERIC Educational Resources Information Center

    Jones, Eugene, Ed.

    This yearbook, consisting of 15 papers, deals with the revitalization of basic business education at all levels of instruction. The focus of the papers is on revitalizing basic business education in general, revitalizing the subject areas of basic business eudcation, revitalizing business education through instructional strategies, and…

  14. Hurricane Isabel, Amount of Atmospheric Water Vapor Observed By AIRS

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site] Figure 1

    These false-color images show the amount of atmospheric water vapor observed by AIRS two weeks prior to the passage of Hurricane Isabel, and then when it was a Category 5 storm. The region shown includes parts of South America and the West Indies. Puerto Rico is the large island below the upper left corner.

    Total water vapor represents the depth of a layer if all the water vapor in the atmosphere were to condense and fall to the surface. The color bar on the right sides of the plots give the thickness of this layer in millimeters (mm). The first image, from August 28, shows typical tropical water vapor amounts over the ocean: between roughly 25 and 50 mm, or 1 to 2 inches. The highest values of roughly 80 mm, seen as a red blob over South America, corresponds to intense thunderstorms. Thunderstorms pull in water vapor from surrounding regions and concentrate it, with much of it then falling as rain.

    Figure 1 shows total water during the passage of Hurricane Isabel on September 13. The storm is apparent: the ring of moderate values surrounding a very strong maximum of 100 mm. Total water of more than 80 mm is unusual, and these values correspond to the intense thunderstorms contained within Isabel. The thunderstorms--and the large values of total water--are fed by evaporation from the ocean in the hurricane's high winds. The water vapor near the center of the storm does not remain there long, since hurricane rain rates as high 50 mm (2 inches) per hour imply rapid cycling of the water we observe. Away from the storm the amount of total water vapor is rather low, associated with fair weather where air that ascended near the storm's eye returns to earth, having dropped its moisture as rain. Also seen in the second images are two small regions of about 70 mm of total water over south America. These are yet more thunderstorms, though likely much more benign than those in Isabel.

    The

  15. Air-water partitioning of 222Rn and its dependence on water temperature and salinity.

    PubMed

    Schubert, Michael; Paschke, Albrecht; Lieberman, Eric; Burnett, William C

    2012-04-01

    Radon is useful as a tracer of certain geophysical processes in marine and aquatic environments. Recent applications include detection of groundwater discharges into surface waters and assessment of air/sea gas piston velocities. Much of the research performed in the past decade has relied on continuous measurements made in the field using a radon stripping unit connected to a radon-in-air detection system. This approach assumes that chemical equilibrium is attained between the water and gas phases and that the resulting air activity can be multiplied by a partition coefficient to obtain the corresponding radon-in-water activity. We report here the results of a series of laboratory experiments that describes the dependence of the partition coefficient upon both water temperature and salinity. Our results show that the temperature dependence for freshwater closely matches results that were previously available. The salinity effect, however, has largely been ignored and our results show that this can result in an overestimation of radon concentrations, especially in cooler, more saline waters. Related overestimates in typical situations range between 10 (warmer less saline waters) and 20% (cooler, more saline waters). PMID:22385122

  16. Inactivation of the biofilm by the air plasma containing water

    NASA Astrophysics Data System (ADS)

    Suganuma, Ryota; Yasuoka, Koichi; Yasuoka Takeuchi lab Team

    2014-10-01

    Biofilms are caused by environmental degradation in food factory and medical facilities. Inactivation of biofilm has the method of making it react to chemicals including chlorine, hydrogen peroxide, and ozone. Although inactivation by chemicals has the problem that hazardous property of a residual substance and hydrogen peroxide have slow reaction velocity. We achieved advanced oxidation process (AOP) with air plasma. Hydrogen peroxide and ozone, which were used for the formation of OH radicals in our experiment, were able to be generated selectively by adjusting the amount of water supplied to the plasma. We inactivated Pseudomonas aeruginosa biofilm in five minutes with OH radicals generated by using hydrogen peroxide and ozone.

  17. Nano- and microstructure of air/oil/water interfaces.

    PubMed

    McGillivray, Duncan J; Mata, Jitendra P; White, John W; Zank, Johann

    2009-04-01

    We report the creation of air/oil/water interfaces with variable-thickness oil films using polyisobutylene-based (PIB) surfactants cospread with long-chain paraffinic alkanes on clean water surfaces. The resultant stable oil layers are readily measurable with simple surface techniques, exhibit physical densities the same as expected for bulk oils, and are up to approximately 100 A thick above the water surface as determined using X-ray reflectometry. This provides a ready system for studying the competition of surfactants at the oil/water interface. Results from the competition of a nonionic polyamide surfactant or an anionic sodium dodecyl sulfate with the PIB surfactant are reported. However, this smooth oil layer does not account for the total volume of spread oil nor is the increase in thickness proportional to the film compression. Brewster angle microscopy (BAM) reveals surfactant and oil structures on the scale of 1 to 10 microm at the interface. At low surface pressure (pi < 24 mN m(-1)) large, approximately 10 microm inhomogeneities are observed. Beyond a phase transition observed at pi approximately = 24 mN m(-1), a structure with a spongy appearance and a microscale texture develops. These structures have implications for understanding the microstructure at the oil/water interface in emulsions. PMID:19714829

  18. Rigid-plug elastic-water model for transient pipe flow with entrapped air pocket

    SciTech Connect

    Zhou, Ling; Liu, Prof. Deyou; Karney, Professor Byran W.; Zhang, Qin Fen; OU, CHANGQI

    2011-01-01

    Pressure transients in a rapidly filling pipe with an entrapped air pocket are investigated analytically. A rigid-plug elastic water model is developed by applying elastic water hammer to the majority of the water column while applying rigid water analysis to a small portion near the air-water interface, which avoids effectively the interpolation error of previous approaches. Moreover, another two simplified models are introduced respectively based on constant water length and by neglecting water elasticity. Verification of the three models is confirmed by experimental results. Calculations show that the simplification of constant water length is feasible for small air pockets. The complete rigid water model is appropriate for cases with large initial air volume. The rigid-plug elastic model can predict all the essential features for the entire range of initial air fraction considered in this study, and it is the effective model for analysis of pressure transients of entrapped air.

  19. Deformation of a water shell during free fall in air

    NASA Astrophysics Data System (ADS)

    Nakoryakov, V. E.; Kuznetsov, G. V.; Strizhak, P. A.

    2016-04-01

    The basic regularities of the change in the shape and sizes (the initial volume is 0.05-0.5 L) of a water shell are singled out in its deformation during free fall in air from a height of 3 m. The 3D recording of the basic stages of deformation (flattening of the shell, nucleation, growth, and destruction of bubbles, formation of the droplet cloud) is carried out using high-speed (up to 105 frames per second) Phantom V411 and Phantom Miro M310 video cameras and the program complex Tema Automotive (with the function of continuous tracking). The physical model of destruction of large water bodies is formulated at free fall with the formation of the droplet cloud.

  20. Microrheology Using Optical Tweezers at the Air-Water Interface

    NASA Astrophysics Data System (ADS)

    Boatwright, Thomas; Levine, Alex; Dennin, Michael

    2010-11-01

    Microrheological techniques have been used successfully to determine mechanical properties of materials important in cellular structure. Also critical to cellular mechanical functions are biological membranes. Many aspects of biological membranes can be modeled using Langmuir monolayers, which are single layers surfactants at the air-water interface. The macroscopic mechanical properties of Langmuir monolayers have been extensively characterized. In contrast to macroscopic measurements, we report on experimental methods for studying the rheological properties of Langmuir monolayers on the micron scale. A water immersion optical tweezers system is used to trap ˜1 micron diameter beads in a monolayer. The passive motion of the trapped beads is recorded at high frequency and the complex shear modulus is calculated. Preliminary microrheological data of a fatty acid monolayer showing dependence on surface pressure will be presented. Experimental obstacles will also be discussed.

  1. Proton Transfers at the Air-Water Interface

    NASA Astrophysics Data System (ADS)

    Mishra, Himanshu

    Proton transfer reactions at the interface of water with hydrophobic media, such as air or lipids, are ubiquitous on our planet. These reactions orchestrate a host of vital phenomena in the environment including, for example, acidification of clouds, enzymatic catalysis, chemistries of aerosol and atmospheric gases, and bioenergetic transduction. Despite their importance, however, quantitative details underlying these interactions have remained unclear. Deeper insight into these interfacial reactions is also required in addressing challenges in green chemistry, improved water quality, self-assembly of materials, the next generation of micro-nanofluidics, adhesives, coatings, catalysts, and electrodes. This thesis describes experimental and theoretical investigation of proton transfer reactions at the air-water interface as a function of hydration gradients, electrochemical potential, and electrostatics. Since emerging insights hold at the lipid-water interface as well, this work is also expected to aid understanding of complex biological phenomena associated with proton migration across membranes. Based on our current understanding, it is known that the physicochemical properties of the gas-phase water are drastically different from those of bulk water. For example, the gas-phase hydronium ion, H3O +(g), can protonate most (non-alkane) organic species, whereas H 3O+(aq) can neutralize only relatively strong bases. Thus, to be able to understand and engineer water-hydrophobe interfaces, it is imperative to investigate this fluctuating region of molecular thickness wherein the 'function' of chemical species transitions from one phase to another via steep gradients in hydration, dielectric constant, and density. Aqueous interfaces are difficult to approach by current experimental techniques because designing experiments to specifically sample interfacial layers (< 1 nm thick) is an arduous task. While recent advances in surface-specific spectroscopies have provided

  2. Simulation model finned water-air-coil withoutcondensation

    SciTech Connect

    Wetter, Michael

    1999-01-01

    A simple simulation model of a finned water-to- air coil without condensation is presented. The model belongs to a collection of simulation models that allows eficient computer simulation of heating, ventilation, and air-conditioning (HVAC) systems. The main emphasis of the models is short computation time and use of input data that are known in the design process of an HVAC system. The target of the models is to describe the behavior of HVAC components in the part load operation mode, which is becoming increasingly important for energy efficient HVAC systems. The models are intended to be used for yearly energy calculation or load calculation with time steps of about 10 minutes or larger. Short-time dynamic effects, which are of interest for different aspects of control performance, are neglected. The part load behavior of the coil is expressed in terms of the nominal condition and the dimensionless variation of the heat transfer with change of mass flow and temperature on the water side and the air side. The effectiveness- NTU relations are used to parametrize the convective heat transfer at nominal conditions and to compute the part load conditions. Geometrical data for the coil are not required, The calculation of the convective heat transfer coefficients at nominal conditions is based on the ratio of the air side heat transfer coefficients multiplied by the fin eficiency and divided by the water side heat transfer coefficient. In this approach, the only geometrical information required are the cross section areas, which are needed to calculate the~uid velocities. The formulas for estimating this ratio are presented. For simplicity the model ignores condensation. The model is static and uses only explicit equations. The explicit formulation ensures short computation time and numerical stability. This allows using the model with sophisticated engineering methods such as automatic system optimization. The paper fully outlines the algorithm description and its

  3. Surfactin at the Water/Air Interface and in Solution.

    PubMed

    Iglesias-Fernández, Javier; Darré, Leonardo; Kohlmeyer, Axel; Thomas, Robert K; Shen, Hsin-Hui; Domene, Carmen

    2015-10-13

    The lipopeptide surfactin produced by certain strains of Bacillus subtillis is a potent biosurfactant with high amphiphilicity and a strong tendency for self-aggregation. Surfactin possesses a number of valuable biological properties such as antiviral, antibacterial, antifungal, and hemolytic activities. Owing to these properties, in addition to the general advantages of biosurfactants over synthetic surfactants, surfactin has potential biotechnological and biomedical applications. Here, the aggregation properties of surfactin in solution together with its behavior at the water/air interface were studied using classical molecular dynamics simulations (MD) at three different pH values. Validation of the MD structural data was performed by comparing neutron reflectivity and volume fraction profiles computed from the simulations with their experimental counterparts. Analysis of the MD trajectories supported conclusions about the distribution, conformations, and interactions of surfactin in solution and at the water-air interface. Considering altogether, the work presented provides atomistic models for the rationalization of some of the structural and dynamic characteristics as well as the modes of action of surfactin at different pH values. PMID:26393968

  4. Patterns and properties of polarized light in air and water

    PubMed Central

    Cronin, Thomas W.; Marshall, Justin

    2011-01-01

    Natural sources of light are at best weakly polarized, but polarization of light is common in natural scenes in the atmosphere, on the surface of the Earth, and underwater. We review the current state of knowledge concerning how polarization and polarization patterns are formed in nature, emphasizing linearly polarized light. Scattering of sunlight or moonlight in the sky often forms a strongly polarized, stable and predictable pattern used by many animals for orientation and navigation throughout the day, at twilight, and on moonlit nights. By contrast, polarization of light in water, while visible in most directions of view, is generally much weaker. In air, the surfaces of natural objects often reflect partially polarized light, but such reflections are rarer underwater, and multiple-path scattering degrades such polarization within metres. Because polarization in both air and water is produced by scattering, visibility through such media can be enhanced using straightforward polarization-based methods of image recovery, and some living visual systems may use similar methods to improve vision in haze or underwater. Although circularly polarized light is rare in nature, it is produced by the surfaces of some animals, where it may be used in specialized systems of communication. PMID:21282165

  5. Environmental application of nanotechnology: air, soil, and water.

    PubMed

    Ibrahim, Rusul Khaleel; Hayyan, Maan; AlSaadi, Mohammed Abdulhakim; Hayyan, Adeeb; Ibrahim, Shaliza

    2016-07-01

    Global deterioration of water, soil, and atmosphere by the release of toxic chemicals from the ongoing anthropogenic activities is becoming a serious problem throughout the world. This poses numerous issues relevant to ecosystem and human health that intensify the application challenges of conventional treatment technologies. Therefore, this review sheds the light on the recent progresses in nanotechnology and its vital role to encompass the imperative demand to monitor and treat the emerging hazardous wastes with lower cost, less energy, as well as higher efficiency. Essentially, the key aspects of this account are to briefly outline the advantages of nanotechnology over conventional treatment technologies and to relevantly highlight the treatment applications of some nanomaterials (e.g., carbon-based nanoparticles, antibacterial nanoparticles, and metal oxide nanoparticles) in the following environments: (1) air (treatment of greenhouse gases, volatile organic compounds, and bioaerosols via adsorption, photocatalytic degradation, thermal decomposition, and air filtration processes), (2) soil (application of nanomaterials as amendment agents for phytoremediation processes and utilization of stabilizers to enhance their performance), and (3) water (removal of organic pollutants, heavy metals, pathogens through adsorption, membrane processes, photocatalysis, and disinfection processes). PMID:27074929

  6. Use of Air2Air Technology to Recover Fresh-Water from the Normal Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants

    SciTech Connect

    Ken Mortensen

    2009-06-30

    This program was undertaken to build and operate the first Air2Air{trademark} Water Conservation Cooling Tower at a power plant, giving a validated basis and capability for water conservation by this method. Air2Air{trademark} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10%-25% annually, depending on the cooling tower location (climate).

  7. Reduced Pressure Cabin Testing of the Orion Atmosphere Revitalization Technology

    NASA Technical Reports Server (NTRS)

    Button, Amy B.; Sweterlitsch, Jeffrey J.

    2013-01-01

    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by United Technologies Corp. Aerospace Systems (UTAS, formerly Hamilton Sundstrand) and baselined for the Atmosphere Revitalization System for moderate duration missions of the Orion Multipurpose Crew Vehicle (MPCV). In previous years at this conference, reports were presented on extensive Johnson Space Center testing of this technology in a sea-level pressure environment with simulated and actual human metabolic loads in both open and closed-loop configurations. In 2011, the technology was tested in an open cabin-loop configuration at ambient and two sub-ambient pressures to compare the performance of the system to the results of previous tests at ambient pressure. The testing used a human metabolic simulator with a different type of water vapor generation than previously used, which added some unique challenges in the data analysis. This paper summarizes the results of: baseline and some matrix testing at all three cabin pressures, increased vacuum regeneration line pressure testing with a high metabolic load, a set of tests studying CO2 and water vapor co-adsorption effects relative to model-predicted performance, and validation tests of flight project computer model predictions with specific operating conditions.

  8. Reduced Pressure Cabin Testing of the Orion Atmosphere Revitalization Technology

    NASA Technical Reports Server (NTRS)

    Button, Amy; Sweterlisch, Jeffery J.

    2013-01-01

    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Atmosphere Revitalization System for moderate duration missions of the Orion Multipurpose Crew Vehicle. In previous years at this conference, reports were presented on extensive Johnson Space Center testing of this technology in a sea-level pressure environment with simulated and actual human metabolic loads in both open and closed-loop configurations. In 2011, the technology was tested in an open cabin-loop configuration at ambient and two sub-ambient pressures to compare the performance of the system to the results of previous tests at ambient pressure. The testing used a human metabolic simulator with a different type of water vapor generation than previously used, which added some unique challenges in the data analysis. This paper summarizes the results of: baseline and some matrix testing at all three cabin pressures, increased vacuum regeneration line pressure with a high metabolic load, a set of tests studying CO2 and water vapor co-adsorption effects relative to model-predicted performance, and validation tests of flight program computer model predictions with specific operating conditions.

  9. Shuttle Orbiter Atmospheric Revitalization Pressure Control Subsystem

    NASA Technical Reports Server (NTRS)

    Walleshauser, J. J.; Ord, G. R.; Prince, R. N.

    1982-01-01

    The Atmospheric Revitalization Pressure Control Subsystem (ARPCS) provides oxygen partial pressure and total pressure control for the habitable atmosphere of the Shuttle for either a one atmosphere environment or an emergency 8 PSIA mode. It consists of a Supply Panel, Control Panel, Cabin Pressure Relief Valves and Electronic Controllers. The panels control and monitor the oxygen and nitrogen supplies. The cabin pressure relief valves protect the habitable environment from overpressurization. Electronic controllers provide proper mixing of the two gases. This paper describes the ARPCS, addresses the changes in hardware that have occurred since the inception of the program; the performance of this subsystem during STS-1 and STS-2; and discusses future operation modes.

  10. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  11. [Virus adsorption from batch experiments as influenced by air-water interface].

    PubMed

    Zhang, Hui; Zhao, Bing-zi; Zhang, Jia-bao; Zhang, Cong-zhi; Wang, Qiu-ying; Chen, Ji

    2007-12-01

    The presence of air-water interface in batch sorption experiments may result in inaccurate estimation of virus adsorption onto various soils. A batch sorption experiment was conducted to compare the adsorption results of MS2 in different soils under presence/absence of air-water interface. Soils with sterilization/nonterilization treatment were used. Virus recovery efficiency in a blank experiment (no soil) was also evaluated as affected by different amount of air-water interface. The presence of air-water interface altered the results of virus adsorption in different soils with different extent, with Sandy fluvo-aquic soil being the most considerably affected, followed by Red loam soil, and the least being Red clay soil, probably because of different soil properties associated with virus adsorption/inactivation. Soil sterilization resulted in more significant difference of virus adsorption onto the Sandy fluvo-aquic soil between the presence and absence of air-water interface, while a reduced difference was observed in the Red loam soil. The presence of air-water interface significantly decreased virus recovery efficiency, with the values being decreased with increase in the amount of air-water interface. Soil particles likely prohibit viruses from reaching the air-water interface or alter the forces at the solid-water-air interface so that the results from the blank experiment did not truly represent results from control blank, which probably resulted in adsorption difference between presence and absence of the air-water interface. PMID:18290440

  12. Static feed water electrolysis module

    NASA Technical Reports Server (NTRS)

    Powell, J. D.; Schubert, F. H.; Jensen, F. C.

    1974-01-01

    An advanced static feed water electrolysis module (SFWEM) and associated instrumentation for generating breathable O2 was developed. The system also generates a H2 byproduct for use in an air revitalization system for O2 recovery from metabolic CO2. Special attention was given to: (1) eliminating water feed compartment degassing, (2) eliminating need for zero gravity condenser/separators, (3) increasing current density capability, and (4) providing a self contained module so that operation is independent of laboratory instrumentation and complicated startup/shutdown procedures.

  13. SMARTE: IMPROVING REVITALIZATION DECISIONS - PRESENTATION FOR ETV INTERNATIONAL FORUM

    EPA Science Inventory

    SMARTe (Sustainable Management Approaches and Revitalization Tools - electronic) is an open-source, web-based, decision-support system for developing and evaluating alternative reuse scenarios for potentially contaminated sites (e.g., brownfields). It is being developed collabora...

  14. Update: Partnership for the Revitalization of National Wind Tunnel Force Measurement Technology Capability

    NASA Technical Reports Server (NTRS)

    Rhew, Ray D.

    2010-01-01

    NASA's Aeronautics Test Program (ATP) chartered a team to examine the issues and risks associated with the lack of funding and focus on force measurement over the past several years, focusing specifically on strain-gage balances. NASA partnered with the U.S. Air Force's Arnold Engineering Development Center (AEDC) to exploit their combined capabilities and take a national level government view of the problem and established the National Force Measurement Technology Capability (NFMTC) project. This paper provides an update on the team's status for revitalizing the government's balance capability with respect to designing, fabricating, calibrating, and using the these critical measurement devices.

  15. Microscopic dynamics of nanoparticle monolayers at air-water interface.

    PubMed

    Bhattacharya, R; Basu, J K

    2013-04-15

    We present results of surface mechanical and particle tracking measurements of nanoparticles trapped at the air-water interface as a function of their areal density. We monitor both the surface pressure (Π) and isothermal compression modulus (ϵ) as well as the dynamics of nanoparticle clusters, using fluorescence confocal microscopy while they are compressed to very high density near the two dimensional close packing density Φ∼0.82. We observe non-monotonic variation in both ϵ and the dynamic heterogeneity, characterized by the dynamical susceptibility χ4 with Φ, in such high density monolayers. We provide insight into the underlying nature of such transitions in close packed high density nanoparticle monolayers in terms of the morphology and flexibility of these soft colloidal particles. We discuss the significance our results in the context of related studies on two dimensional granular or colloidal systems. PMID:23411354

  16. Entrapment of ciliates at the water-air interface.

    PubMed

    Ferracci, Jonathan; Ueno, Hironori; Numayama-Tsuruta, Keiko; Imai, Yohsuke; Yamaguchi, Takami; Ishikawa, Takuji

    2013-01-01

    The importance of water-air interfaces (WAI) on microorganism activities has been recognized by many researchers. In this paper, we report a novel phenomenon: the entrapment of ciliates Tetrahymena at the WAI. We first characterized the behavior of cells at the interface and showed that the cells' swimming velocity was considerably reduced at the WAI. To verify the possible causes of the entrapment, we investigated the effects of positive chemotaxis for oxygen, negative geotaxis and surface properties. Even though the taxes were still effective, the entrapment phenomenon was not dependent on the physiological conditions, but was instead affected by the physical properties at the interface. This knowledge is useful for a better understanding of the physiology of microorganisms at interfaces in nature and in industry. PMID:24130692

  17. LaRC 20-Year Center Revitalization Plan

    NASA Technical Reports Server (NTRS)

    Mangum, Cathy H.; Harris, Charles E.; Allen, Cheryl L.; Craft, Stephen J.; Hope, Drew J.; Kegelman, Jerome T.; Mastaler, Michael D; Weiser, Erik S.

    2012-01-01

    LaRC has developed a 20-Year Center Revitalization Plan. The objective of this plan is to assure that the center infrastructure is sustainable for the long-term and that the center will have the essential facilities and laboratories to execute the future NASA mission. The plan was developed by a centerwide team, VITAL, and was approved by the Center Leadership Council (CLC) in March 2012. The revitalization plan will be implemented through the Center Master Planning process.

  18. First Human Testing of the Orion Atmosphere Revitalization Technology

    NASA Technical Reports Server (NTRS)

    Lin, Amy; Sweterlitsch, Jeffrey

    2008-01-01

    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Orion Atmosphere Revitalization System (ARS). In two previous years at this conference, reports were presented on extensive Johnson Space Center (JSC) testing of the technology in a representative environment with simulated human metabolic loads. The next step in developmental testing at JSC was to replace the simulated humans with real humans; this testing was conducted in the spring of 2008. This first instance of human testing of a new Orion ARS technology included several cases in a sealed Orione-quivalent free volume and three cases using emergency breathing masks connected directly to the ARS loop. Significant test results presented in this paper include comparisons between the standard metabolic rates for CO2 and water vapor production published in Orion requirements documents and real-world rate ranges observed with human test subjects. Also included are qualitative assessments of process flow rate and closed-loop pressure-cycling tolerability while using the emergency masks. Recommendations for modifications to the Orion ARS design and operation, based on the test results, conclude the paper.

  19. First Human Testing of the Orion Atmosphere Revitalization Technology

    NASA Technical Reports Server (NTRS)

    Lin, Amy; Sweterlitsch, Jeffrey

    2009-01-01

    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Orion Atmosphere Revitalization System (ARS). In two previous years at this conference, reports were presented on extensive Johnson Space Center (JSC) testing of the technology in a representative environment with simulated human metabolic loads. The next step in developmental testing at JSC was to replace the simulated humans with real humans; this testing was conducted in the spring of 2008. This first instance of human testing of a new Orion ARS technology included several cases in a sealed Orion-equivalent free volume and three cases using emergency breathing masks connected directly to the ARS loop. Significant test results presented in this paper include comparisons between the standard metabolic rates for CO2 and water vapor production published in Orion requirements documents and real-world rate ranges observed with human test subjects. Also included are qualitative assessments of process flow rate and closed-loop pressure-cycling tolerability while using the emergency masks. Recommendations for modifications to the Orion ARS design and operation, based on the test results, conclude the paper.

  20. 15 CFR 923.45 - Air and water pollution control requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Air and water pollution control....45 Air and water pollution control requirements. The program must incorporate, by reference or otherwise, all requirements established by the Federal Water Pollution Control Act, as amended (Clean...

  1. 15 CFR 923.45 - Air and water pollution control requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Air and water pollution control....45 Air and water pollution control requirements. The program must incorporate, by reference or otherwise, all requirements established by the Federal Water Pollution Control Act, as amended (Clean...

  2. 45 CFR 2543.86 - Clean Air Act and the Federal Water Pollution Control Act.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 4 2014-10-01 2014-10-01 false Clean Air Act and the Federal Water Pollution... Water Pollution Control Act. Contracts and subgrants of amounts in excess of $100,000 shall contain a... regulations issued pursuant to the Clean Air Act (42 U.S.C. 7401 et seq.) and the Federal Water...

  3. 45 CFR 2543.86 - Clean Air Act and the Federal Water Pollution Control Act.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 4 2012-10-01 2012-10-01 false Clean Air Act and the Federal Water Pollution... Water Pollution Control Act. Contracts and subgrants of amounts in excess of $100,000 shall contain a... regulations issued pursuant to the Clean Air Act (42 U.S.C. 7401 et seq.) and the Federal Water...

  4. 15 CFR 923.45 - Air and water pollution control requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Air and water pollution control....45 Air and water pollution control requirements. The program must incorporate, by reference or otherwise, all requirements established by the Federal Water Pollution Control Act, as amended (Clean...

  5. 15 CFR 923.45 - Air and water pollution control requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Air and water pollution control....45 Air and water pollution control requirements. The program must incorporate, by reference or otherwise, all requirements established by the Federal Water Pollution Control Act, as amended (Clean...

  6. 14 CFR 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Clean Air-Water Pollution Control Acts...-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative... Violating Facilities” published pursuant to 40 CFR 15.20. By acceptance of a cooperative agreement in...

  7. 45 CFR 2543.86 - Clean Air Act and the Federal Water Pollution Control Act.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 4 2013-10-01 2013-10-01 false Clean Air Act and the Federal Water Pollution... Water Pollution Control Act. Contracts and subgrants of amounts in excess of $100,000 shall contain a... regulations issued pursuant to the Clean Air Act (42 U.S.C. 7401 et seq.) and the Federal Water...

  8. 14 CFR § 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Clean Air-Water Pollution Control Acts. Â...-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative... Violating Facilities” published pursuant to 40 CFR 15.20. By acceptance of a cooperative agreement in...

  9. 14 CFR 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Clean Air-Water Pollution Control Acts...-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative... Violating Facilities” published pursuant to 40 CFR 15.20. By acceptance of a cooperative agreement in...

  10. 15 CFR 923.45 - Air and water pollution control requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Air and water pollution control....45 Air and water pollution control requirements. The program must incorporate, by reference or otherwise, all requirements established by the Federal Water Pollution Control Act, as amended (Clean...

  11. 45 CFR 2543.86 - Clean Air Act and the Federal Water Pollution Control Act.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Clean Air Act and the Federal Water Pollution... Water Pollution Control Act. Contracts and subgrants of amounts in excess of $100,000 shall contain a... regulations issued pursuant to the Clean Air Act (42 U.S.C. 7401 et seq.) and the Federal Water...

  12. Relay cropping for improved air and water quality.

    PubMed

    Schepers, James S; Francis, Dennis D; Shanahan, John F

    2005-01-01

    Using plants to extract excess nitrate from soil is important in protecting against eutrophication of standing water, hypoxic conditions in lakes and oceans, or elevated nitrate concentrations in domestic water supplies Global climate change issues have raised new concerns about nitrogen (N) management as it relates to crop production even though there may not be an immediate threat to water quality. Carbon dioxide (CO2) emissions are frequently considered the primary cause of global climate change, but under anaerobic conditions, animals can contribute by expelling methane (CH4) as do soil microbes. In terms of the potential for global climate change, CH4 is approximately 25 times more harmful than CO2. This differential effect is minuscule compared to when nitrous oxide (N2O) is released into the atmosphere because it is approximately 300 times more harmful than CO2. N2O losses from soil have been positively correlated with residual N (nitrate, NO3-) concentrations in soil. It stands to reason that phytoremediation via nitrate scavenger crops is one approach to help protect air quality, as well as soil and water quality. Winter wheat was inserted into a seed corn/soybean rotation to utilize soil nitrate and thereby reduce the potential for nitrate leaching and N2O emissions. The net effect of the 2001-2003 relay cropping sequence was to produce three crops in two years, scavenge 130 kg N/ha from the root zone, produce an extra 2 Mg residue/ha, and increase producer profitability by approximately 250 dollars/ha. PMID:15948582

  13. The Effect of Rain on Air-Water Gas Exchange

    NASA Technical Reports Server (NTRS)

    Ho, David T.; Bliven, Larry F.; Wanninkhof, Rik; Schlosser, Peter

    1997-01-01

    The relationship between gas transfer velocity and rain rate was investigated at NASA's Rain-Sea Interaction Facility (RSIF) using several SF, evasion experiments. During each experiment, a water tank below the rain simulator was supersaturated with SF6, a synthetic gas, and the gas transfer velocities were calculated from the measured decrease in SF6 concentration with time. The results from experiments with IS different rain rates (7 to 10 mm/h) and 1 of 2 drop sizes (2.8 or 4.2 mm diameter) confirm a significant and systematic enhancement of air-water gas exchange by rainfall. The gas transfer velocities derived from our experiment were related to the kinetic energy flux calculated from the rain rate and drop size. The relationship obtained for mono-dropsize rain at the RSIF was extrapolated to natural rain using the kinetic energy flux of natural rain calculated from the Marshall-Palmer raindrop size distribution. Results of laboratory experiments at RSIF were compared to field observations made during a tropical rainstorm in Miami, Florida and show good agreement between laboratory and field data.

  14. Non-thermal plasma for air and water remediation.

    PubMed

    Hashim, Siti Aiasah; Samsudin, Farah Nadia Dayana Binti; Wong, Chiow San; Abu Bakar, Khomsaton; Yap, Seong Ling; Mohd Zin, Mohd Faiz

    2016-09-01

    A modular typed dielectric barrier discharge (DBD) device is designed and tested for air and water remediation. The module is made of a number of DBD tubes that can be arranged in series or parallel. Each of the DBD tubes comprises inner electrode enclosed with dielectric barrier and arranged as such to provide a gap for the passage of gases. Non-thermal plasma generated in the gap effectively creates gaseous chemical reactions. Its efficacy in the remediation of gas stream containing high NOx, similar to diesel emission and wastewater containing latex, are presented. A six tubes DBD module has successfully removed more than 80% of nitric oxide from the gas stream. In another arrangement, oxygen was fed into a two tubes DBD to generate ozone for treatment of wastewater. Samples of wastewater were collected from a treatment pond of a rubber vulcanization pilot plant. The water pollution load was evaluated by the chemical oxygen demand (COD) and biological oxygen demand (BOD5) values. Preliminary results showed some improvement (about 13%) on the COD after treatment and at the same time had increased the BOD5 by 42%. This results in higher BOD5/COD ratio after ozonation which indicate better biodegradability of the wastewater. PMID:27056469

  15. ISSUES IN SIMULATING ELEMENTAL MERCURY AIR/WATER EXCHANGE AND AQUEOUS MONOMETHYLMERCURY SPECIATION

    EPA Science Inventory

    This presentation focuses on two areas relevant to assessing the global fate and bioavailability of mercury: elemental mercury air/water exchange and aqueous environmental monomethylmercury speciation.

  16. Air-Water Gas Exchange in Wetland Water Columns Due To Wind and Thermal Convection

    NASA Astrophysics Data System (ADS)

    Poindexter, C.; Variano, E. A.

    2011-12-01

    The goal of this work is to provide a parameterization of the air-water gas transfer rate in wetlands, and do so in terms of easily measured environmental variables. This parameterization is intended to support biogeochemical modeling in wetlands by providing an interfacial flux of key importance. Our approach uses laboratory experiments describe the oxygen transfer across an air-water interface in a model wetland. The oxygen transfer is sensitive to the externally imposed wind, vegetation characteristics, and vertical thermal convection. We vary these systematically, determining the gas transfer (or "piston") velocity that describes interfacial gas flux. We measure velocity vector fields near the air-water interface using particle image velocimetry, and use these measurements to help explain the mechanisms behind the measured trends in oxygen transfer. The explanatory power of these measurements includes the relationship between plant geometry and surface divergence. We explore the potential impact of our results on wetland modeling and management, for issues such as carbon sequestration and methane emission.

  17. Surface, Water, and Air Biocharacterization (SWAB) Flight Experiment

    NASA Technical Reports Server (NTRS)

    Castro, V. A.; Ott, C. M.; Pierson, D. L.

    2012-01-01

    The determination of risk from infectious disease during spaceflight missions is composed of several factors including both the concentration and characteristics of the microorganisms to which the crew are exposed. Thus, having a good understanding of the microbial ecology aboard spacecraft provides the necessary information to mitigate health risks to the crew. While preventive measures are taken to minimize the presence of pathogens on spacecraft, medically significant organisms have been isolated from both the Mir and International Space Station (ISS). Historically, the method for isolation and identification of microorganisms from spacecraft environmental samples depended upon their growth on culture media. Unfortunately, only a fraction of the organisms may grow on a specific culture medium, potentially omitting those microorganisms whose nutritional and physical requirements for growth are not met. To address this bias in our understanding of the ISS environment, the Surface, Water, and Air Biocharacterization (SWAB) Flight Experiment was designed to investigate and develop monitoring technology to provide better microbial characterization. For the SWAB flight experiment, we hypothesized that environmental analysis using non-culture-based technologies would reveal microorganisms, allergens, and microbial toxins not previously reported in spacecraft, allowing for a more complete health assessment. Key findings during this experiment included: a) Generally, advanced molecular techniques were able to reveal a few organisms not recovered using culture-based methods; however, there is no indication that current monitoring is "missing" any medically significant bacteria or fungi. b) Molecular techniques have tremendous potential for microbial monitoring, however, sample preparation and data analysis present challenges for spaceflight hardware. c) Analytical results indicate that some molecular techniques, such as denaturing gradient gel electrophoresis (DGGE), can

  18. Space Suit Environment Testing of the Orion Atmosphere Revitalization Technology

    NASA Technical Reports Server (NTRS)

    Lin, Amy; Sweterlitsch, Jeffrey; Cox, Marlon

    2009-01-01

    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Orion Atmosphere Revitalization System (ARS). In two previous years at this conference, reports were presented on extensive Johnson Space Center (JSC) testing of this technology in a sea-level pressure environment with simulated human metabolic loads. Another paper at this year s conference discusses similar testing with real human metabolic loads, including some closed-loop testing with emergency breathing masks. The Orion ARS is designed to also support extravehicular activity operations from a depressurized cabin. The next step in developmental testing at JSC was, therefore, to test this ARS technology in a typical closed space suit loop environment with low-pressure pure oxygen inside the process loop and vacuum outside the loop. This was the first instance of low-pressure oxygen loop testing of a new Orion ARS technology, and was conducted with simulated human metabolic loads in December 2008. The test investigated pressure drops through two different styles of prototype suit umbilical connectors and general swing-bed performance with both umbilical configurations as well as with a short jumper line installed in place of the umbilicals. Other interesting results include observations on the thermal effects of swing-bed operation in a vacuum environment and a recommendation of cycle time to maintain acceptable atmospheric CO2 and moisture levels.

  19. 2009 Continued Testing of the Orion Atmosphere Revitalization Technology

    NASA Technical Reports Server (NTRS)

    Button, Amy B.; Swerterlitsch, Jeffrey J.

    2010-01-01

    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Orion Atmosphere Revitalization System (ARS). In three previous years at this conference, reports were presented on extensive Johnson Space Center (JSC) testing of this technology in a sea-level pressure environment, with simulated and real human metabolic loads, in both open and closed-loop configurations. The test article design was iterated a third time before the latest series of such tests, which was performed in the first half of 2009. The new design incorporates a canister configuration modification for overall unit compactness and reduced pressure drop, as well as a new process flow control valve that incorporates both compressed gas purge and dual-end vacuum desorption capabilities. This newest test article is very similar to the flight article designs. Baseline tests of the new unit were performed to compare its performance to that of the previous test articles. Testing of compressed gas purge operations helped refine launchpad operating condition recommendations developed in earlier testing. Operating conditions used in flight program computer models were tested to validate the model projections. Specific operating conditions that were recommended by the JSC test team based on past test results were also tested for validation. The effects of vacuum regeneration line pressure on resulting cabin conditions was studied for high metabolic load periods, and a maximum pressure is recommended

  20. Space Suit Environment Testing of the Orion Atmosphere Revitalization Technology

    NASA Technical Reports Server (NTRS)

    Button, Amy B.; Sweterlitsch, Jeffrey J.; Cox, Marlon R.

    2010-01-01

    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Orion Atmosphere Revitalization System (ARS). In three previous years at this conference, reports were presented on extensive Johnson Space Center (JSC) testing of this technology. That testing was performed in a sea-level pressure environment with both simulated and real human metabolic loads, and in both open and closed-loop configurations. The Orion ARS is designed to also support space-suited operations in a depressurized cabin, so the next step in developmental testing at JSC was to test the ARS technology in a typical closed space suit-loop environment with low-pressure oxygen inside the process loop and vacuum outside the loop. This was the first instance of low-pressure, high-oxygen, closed-loop testing of the Orion ARS technology, and it was conducted with simulated human metabolic loads in March 2009. The test investigated pressure drops and flow balancing through two different styles of prototype suit umbilical connectors. General swing-bed performance was tested with both umbilical configurations, as well as with a short jumper line installed in place of the umbilicals. Other interesting results include observations on the thermal effects of swing-bed operation in a vacuum environment and a recommendation of cycle time to maintain acceptable suit atmospheric CO2 and moisture levels.

  1. Wind driven vertical transport in a vegetated, wetland water column with air-water gas exchange

    NASA Astrophysics Data System (ADS)

    Poindexter, C.; Variano, E. A.

    2010-12-01

    Flow around arrays of cylinders at low and intermediate Reynolds numbers has been studied numerically, analytically and experimentally. Early results demonstrated that at flow around randomly oriented cylinders exhibits reduced turbulent length scales and reduced diffusivity when compared to similarly forced, unimpeded flows (Nepf 1999). While horizontal dispersion in flows through cylinder arrays has received considerable research attention, the case of vertical dispersion of reactive constituents has not. This case is relevant to the vertical transfer of dissolved gases in wetlands with emergent vegetation. We present results showing that the presence of vegetation can significantly enhance vertical transport, including gas transfer across the air-water interface. Specifically, we study a wind-sheared air-water interface in which randomly arrayed cylinders represent emergent vegetation. Wind is one of several processes that may govern physical dispersion of dissolved gases in wetlands. Wind represents the dominant force for gas transfer across the air-water interface in the ocean. Empirical relationships between wind and the gas transfer coefficient, k, have been used to estimate spatial variability of CO2 exchange across the worlds’ oceans. Because wetlands with emergent vegetation are different from oceans, different model of wind effects is needed. We investigated the vertical transport of dissolved oxygen in a scaled wetland model built inside a laboratory tank equipped with an open-ended wind tunnel. Plastic tubing immersed in water to a depth of approximately 40 cm represented emergent vegetation of cylindrical form such as hard-stem bulrush (Schoenoplectus acutus). After partially removing the oxygen from the tank water via reaction with sodium sulfite, we used an optical probe to measure dissolved oxygen at mid-depth as the tank water re-equilibrated with the air above. We used dissolved oxygen time-series for a range of mean wind speeds to estimate the

  2. Effects of Cabin Upsets on Adsorption Columns for Air Revitalization

    NASA Technical Reports Server (NTRS)

    LeVan, Douglas

    1999-01-01

    The National Aeronautics and Space Administration (NASA) utilizes adsorption technology as part of contaminant removal systems designed for long term missions. A variety of trace contaminants can be effectively removed from gas streams by adsorption onto activated carbon. An activated carbon adsorption column meets NASA's requirements of a lightweight and efficient means of controlling trace contaminant levels aboard spacecraft and space stations. The activated carbon bed is part of the Trace Contaminant Control System (TCCS) which is utilized to purify the cabin atmosphere. TCCS designs oversize the adsorption columns to account for irregular fluctuations in cabin atmospheric conditions. Variations in the cabin atmosphere include changes in contaminant concentrations, temperature, and relative humidity. Excessively large deviations from typical conditions can result from unusual crew activity, equipment malfunctions, or even fires. The research carried out under this award focussed in detail on the effects of cabin upsets on the performance of activated carbon adsorption columns. Both experiments and modeling were performed with an emphasis on the roll of a change in relative humidity on adsorption of trace contaminants. A flow through fixed-bed apparatus was constructed at the NASA Ames Research Center, and experiments were performed there. Modeling work was performed at the University of Virginia.

  3. Effects of Cabin Upsets on Adsorption Columns for Air Revitalization

    NASA Technical Reports Server (NTRS)

    LeVan, M. Douglas

    1999-01-01

    The National Aeronautics and Space Administration (NASA) utilizes adsorption technology as part of contaminant removal systems designed for long term missions. A variety of trace contaminants can be effectively removed from gas streams by adsorption onto activated carbon. An activated carbon adsorption column meets NASA's requirements of a lightweight and efficient means of controlling trace contaminant levels aboard spacecraft and space stations. The activated carbon bed is part of the Trace Contaminant Control System (TCCS) which is utilized to purify the cabin atmosphere. TCCS designs oversize the adsorption columns to account for irregular fluctuations in cabin atmospheric conditions. Variations in the cabin atmosphere include changes in contaminant concentrations, temperature, and relative humidity. Excessively large deviations from typical conditions can result from unusual crew activity, equipment malfunctions, or even fires. The research carried out under this award focussed in detail on the effects of cabin upsets on the performance of activated carbon adsorption columns. Both experiments and modeling were performed with an emphasis on the roll of a change in relative humidity on adsorption of trace contaminants. A flow through fixed-bed apparatus was constructed at the NASA Ames Research Center, and experiments were performed there by W. Scot Appel under the direction of Dr. John E. Finn. Modeling work was performed at the University of Virginia and at Vanderbilt University by W. Scot Appel under the direction of M. Douglas LeVan. All three participants collaborated in all of the various phases of the research. The most comprehensive document describing the research is the Ph.D. dissertation of W. Scot Appel. Results have been published in several papers and presented in talks at technical conferences. All documents have been transmitted to Dr. John E. Finn.

  4. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    SciTech Connect

    Not Available

    1992-03-01

    This report contains information related to the sampling and chemical analysis of ground water at the Wright-Patterson Air Force Base. It is part of a field investigation of ground water contamination.

  5. Bromine and heavy halide chemistry at the air/water and air/ice interfaces: a computational approach

    NASA Astrophysics Data System (ADS)

    Gladich, I.; Shepson, P. B.; Szleifer, I.; Carignano, M.

    2010-12-01

    The air-water and air-ice interfaces are critically important surfaces, with respect to the physical and chemical properties of the Earth's atmosphere. In particular chloride, bromide and iodide ions are strongly involved in the reactions occurring at aerosol surfaces that are hydrated and at the air-ice interface in the polar boundary layer. Unfortunately, experimental access to these interfaces are quite problematic and the computational approach, based on molecular dynamic simulations and quantum mechanic calculations, is an interesting alternative approach. In this work, molecular dynamic (MD) simulations are used to study the halide enhancements at the air-water interface in the case of a dilute mixture of iodide, bromide and chloride ions. The MD results show how the air- water halide enhancement is different in the case of mixtures from the case of binary solutions (i.e. anions plus counter-positive ions) and how the presence of these halides at the interfaces depends from their relative concentrations in solution. In detail, heavy halides are strongly enhanced at the interfaces even if they are minor constituents in the bulk. Furthermore the enhancement of the larger halide ions, like bromide, at the surface is greater if lighter halides, like chloride, are in greater excess in the bulk. The applications of this last result on some real system, like sea-water, and the importance of bromide ions in the polar chemistry of ozone depletion events suggest a combined approach, MD and quantum mechanism (QM) calculation, to investigate the ozonation reaction of bromide (Br-+O3 → BrO-+O2 ) in the ice-QLL and in bulk water. The study of the reaction constants suggests how the different environments can affect the kinetics of such reaction. These results can help to understand the complex chemistry occurring at the air-water interface of hydrated aerosol and at the air-ice interface in the polar boundary layer.

  6. Improvement to Air2Air Technology to Reduce Fresh-Water Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants

    SciTech Connect

    Ken Mortensen

    2011-12-31

    This program was undertaken to enhance the manufacturability, constructability, and cost of the Air2Air{TM} Water Conservation and Plume Abatement Cooling Tower, giving a validated cost basis and capability. Air2Air{TM} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10% - 25% annually, depending on the cooling tower location (climate). This program improved the efficiency and cost of the Air2Air{TM} Water Conservation Cooling Tower capability, and led to the first commercial sale of the product, as described.

  7. Air-water oxygen exchange in a large whitewater river

    USGS Publications Warehouse

    Hall, Robert O.; Kennedy, Theodore A.; Rosi-Marshall, Emma J.

    2012-01-01

    Air-water gas exchange governs fluxes of gas into and out of aquatic ecosystems. Knowing this flux is necessary to calculate gas budgets (i.e., O2) to estimate whole-ecosystem metabolism and basin-scale carbon budgets. Empirical data on rates of gas exchange for streams, estuaries, and oceans are readily available. However, there are few data from large rivers and no data from whitewater rapids. We measured gas transfer velocity in the Colorado River, Grand Canyon, as decline in O2 saturation deficit, 7 times in a 28-km segment spanning 7 rapids. The O2 saturation deficit exists because of hypolimnetic discharge from Glen Canyon Dam, located 25 km upriver from Lees Ferry. Gas transfer velocity (k600) increased with slope of the immediate reach. k600 was -1 in flat reaches, while k600 for the steepest rapid ranged 3600-7700 cm h-1, an extremely high value of k600. Using the rate of gas exchange per unit length of water surface elevation (Kdrop, m-1), segment-integrated k600 varied between 74 and 101 cm h-1. Using Kdrop we scaled k600 to the remainder of the Colorado River in Grand Canyon. At the scale corresponding to the segment length where 80% of the O2 exchanged with the atmosphere (mean length = 26.1 km), k600 varied 4.5-fold between 56 and 272 cm h-1 with a mean of 113 cm h-1. Gas transfer velocity for the Colorado River was higher than those from other aquatic ecosystems because of large rapids. Our approach of scaling k600 based on Kdrop allows comparing gas transfer velocity across rivers with spatially heterogeneous morphology.

  8. Performance of Silica Gel in the Role of Residual Air Drying

    NASA Technical Reports Server (NTRS)

    Jan, Darrell L.; Hogan, John A.; Koss, Brian; Palmer, Gary H.; Richardson, Justine; Linggi, Paul

    2014-01-01

    Removal of carbon dioxide (CO2) is a necessary step in air revitalization and is often accomplished with sorbent materials. Since moisture competes with CO2 in sorbent materials, it is necessary to remove the water first. This is typically accomplished in two stages: bulk removal and residual drying. Silica gel is used as the bulk drying material in the Carbon Dioxide Removal Assembly (CDRA) in operation on ISS. There has been some speculation that silica gel may also be capable of serving as the residual drying material. This paper will describe test apparatus and procedures for determining the performance of silica gel in residual air drying.

  9. The effect of the partial pressure of water vapor on the surface tension of the liquid water-air interface.

    PubMed

    Pérez-Díaz, José L; Álvarez-Valenzuela, Marco A; García-Prada, Juan C

    2012-09-01

    Precise measurements of the surface tension of water in air vs. humidity at 5, 10, 15, and 20 °C are shown. For constant temperature, surface tension decreases linearly for increasing humidity in air. These experimental data are in good agreement with a simple model based on Newton's laws here proposed. It is assumed that evaporating molecules of water are ejected from liquid to gas with a mean normal component of the speed of "ejection" greater than zero. A high humidity in the air reduces the net flow of evaporating water molecules lowering the effective surface tension on the drop. Therefore, just steam in air acts as an effective surfactant for the water-air interface. It can partially substitute chemical surfactants helping to reduce their environmental impact. PMID:22717083

  10. Gas and liquid measurements in air-water bubbly flows

    SciTech Connect

    Zhou, X.; Doup, B.; Sun, X.

    2012-07-01

    Local measurements of gas- and liquid-phase flow parameters are conducted in an air-water two-phase flow loop. The test section is a vertical pipe with an inner diameter of 50 mm and a height of 3.2 m. The measurements are performed at z/D = 10. The gas-phase measurements are performed using a four-sensor conductivity probe. The data taken from this probe are processed using a signal processing program to yield radial profiles of the void fraction, bubble velocity, and interfacial area concentration. The velocity measurements of the liquid-phase are performed using a state-of-the-art Particle Image Velocimetry (PIV) system. The raw PIV images are acquired using fluorescent particles and an optical filtration device. Image processing is used to remove noise in the raw PIV images. The statistical cross correlation is introduced to determine the axial velocity field and turbulence intensity of the liquid-phase. Measurements are currently being performed at z/D = 32 to provide a more complete data set. These data can be used for computational fluid dynamic model development and validation. (authors)

  11. Environmental monitoring of chromium in air, soil, and water.

    PubMed

    Vitale, R J; Mussoline, G R; Rinehimer, K A

    1997-08-01

    Historical uses of chromium have resulted in its widespread release into the environment. In recent years, a significant amount of research has evaluated the impact of chromium on human health and the environment. Additionally, numerous analytical methods have been developed to identify and quantitate chromium in environmental media in response to various state and federal mandates such as CERCLA, RCRA, CWA, CAA, and SWDA. Due to the significant toxicity differences between trivalent [Cr(III)] and hexavalent [Cr(VI)] chromium, it is essential that chromium be quantified in these two distinct valence states to assess the potential risks to exposure to each in environmental media. Speciation is equally important because of their marked differences in environmental behavior. As the knowledge of risks associated with each valence state has grown and regulatory requirements have evolved, methods to accurately quantitate these species at ever-decreasing concentrations within environmental media have also evolved. This paper addresses the challenges of chromium species quantitation and some of the most relevant current methods used for environmental monitoring, including ASTM Method D5281 for air, SW-846 Methods 3060A, 7196A and 7199 for soils, sediments, and waste, and U.S. EPA Method 218.6 for water. PMID:9380841

  12. Motion of Air Bubbles in Water Subjected to Microgravity Accelerations

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard; Kelly, Eric M.; Hrovat, Kenneth; Nelson, Emily S.; Pettit, Donald R.

    2006-01-01

    The International Space Station (ISS) serves as a platform for microgravity research for the foreseeable future. A microgravity environment is one in which the effects of gravity are drastically reduced which then allows physical experiments to be conducted without the over powering effects of gravity. During his 6-month stay on the ISS, astronaut Donald R. Pettit performed many informal/impromptu science experiments with available equipment. One such experiment focused on the motion of air bubbles in a rectangular container nearly filled with de-ionized water. Bubbles were introduced by shaking and then the container was secured in place for several hours while motion of the bubbles was recorded using time-lapse photography. This paper shows correlation between bubble motion and quasi-steady acceleration levels during one such experiment operation. The quasi-steady acceleration vectors were measured by the Microgravity Acceleration Measurement System (MAMS). Essentially linear motion was observed in the condition considered here. Dr. Pettit also created other conditions which produced linear and circulating motion, which are the subjects of further study. Initial observations of this bubble motion agree with calculations from many microgravity physical science experiments conducted on shuttle microgravity science missions. Many crystal-growth furnaces involve heavy metals and high temperatures in which undesired acceleration-driven convection during solidification can adversely affect the crystal. Presented in this paper will be results showing correlation between bubble motion and the quasi-steady acceleration vector.

  13. Motion of Air Bubbles in Water Subjected to Microgravity Accelerations

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard; Kelly, Eric M.; Hrovar, Kenneth; Nelson, Emily S.; Pettit, Donald R.

    2004-01-01

    The International Space Station (ISS) serves as a platform for microgravity research for the foreseeable future. A microgravity environment is one in which the effects of gravity are drastically reduced which then allows physical experiments to be conducted without the overpowering effects of gravity. During his six month stay on the ISS, astronaut Donald R Pettit performed many informal/impromptu science experiments with available equipment. One such experiment focused on the motion of air bubbles in a rectangular container nearly filled with de-ionized water. Bubbles were introduced by shaking and the container was secured in place for several hours while motion of the bubbles were recorded using time-lapse photography. This paper shows correlation between bubble motion and quasi-steady acceleration levels during one such experiment operation. The quasi-steady acceleration vectors were measured by the Microgravity Acceleration Measurement System. Essentially linear motion was observed in the condition considered here. Dr. Pettit also created other conditions which produced linear and circulating motion, which are the subjects of further study. Initial observations of this bubble motion agree with calculations from many microgravity physical science experiments conducted on Shuttle microgravity science missions. Many crystal-growth furnaces involve heavy metals and high temperatures in which undesired acceleration-driven convection during solidification can adversely affect the crystal. Presented in this paper will be results showing correlation between bubble motion and the quasi-steady acceleration vector.

  14. CO2 Removal and Atmosphere Revitalization Systems for Next Generation Space Flight

    NASA Technical Reports Server (NTRS)

    Luna, Bernadette; Mulloth, Lila M.; Varghese, Mini M.; Hogan, John Andrew

    2010-01-01

    Removal of metabolic CO2 from breathing air is a vital process for life support in all crewed space missions. A CO2 removal processor called the Low Power CO2 Removal (LPCOR) system is being developed in the Bioengineering Branch at NASA Ames Research Center. LPCOR utilizes advanced adsorption and membrane gas separation processes to achieve substantial power and mass reduction when compared to the state-of-the-art carbon dioxide removal assembly (CORA) of the US segment of the International Space Station (ISS). LPCOR is an attractive alternative for use in commercial spacecraft for short-duration missions and can easily be adapted for closed-loop life support applications. NASA envisions a next-generation closed-loop atmosphere revitalization system that integrates advanced CO2 removal, O2 recovery, and trace contaminant control processes to improve overall system efficiency. LPCOR will serve as the front end to such a system. LPCOR is a reliable air revitalization technology that can serve both the near-term and long-term human space flight needs of NASA and its commercial partners.

  15. Three-dimensional freezing of flowing water in a tube cooled by air flow

    NASA Astrophysics Data System (ADS)

    Sugawara, M.; Komatsu, Y.; Beer, H.

    2015-05-01

    The 3-D freezing of flowing water in a copper tube cooled by air flow is investigated by means of a numerical analysis. The air flows normal to the tube axis. Several parameters as inlet water mean velocity w m , inlet water temperature T iℓ t , air flow temperature T a and air flow velocity u a are selected in the calculations to adapt it to a winter season actually encountered. The numerical results present the development of the ice layer mean thickness and its 3-D morphologies as well as the critical ice layer thickness in the tube choked by the ice layer.

  16. Acoustic wave propagation in air-bubble curtains in water. Part 1. History and theory

    SciTech Connect

    Domenico, S.N.

    1982-03-01

    Air bubbles in water increase the compressibility several orders of magnitude above that in bubble-free water, thereby greatly reducing the velocity and increasing attenuation of acoustic waves. Currently, air bubble curtains are used to prevent damage of submerged structures (e.g., dams) by shock waves from submarine explosives. Also, air-bubble curtains are used to reduce damage to water-filler tanks in which metals are formed by explosives. Published results of laboratory experiments confirm theoretic velocity and attenuation functions and demonstrate that these quantities are dependent principally upon frequency, bubble size, and fractional volume of air. 31 references.

  17. 77 FR 49349 - Safety Zone; Chicago Air and Water Show, Lake Michigan, Chicago, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-16

    ... DHS Department of Homeland Security FR Federal Register NPRM Notice of Proposed Rulemaking A... CFR Part 165 RIN 1625-AA00 Safety Zone; Chicago Air and Water Show, Lake Michigan, Chicago, IL AGENCY... deviation to the Chicago Air and Water Show safety zone on Lake Michigan near Lincoln Park. This action...

  18. 75 FR 32664 - Safety Zone; Milwaukee Air and Water Show, Lake Michigan, Milwaukee, WI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-09

    ..., Milwaukee, Wisconsin in the Federal Register (75 FR 19307). The Coast Guard received 0 comments on this... determined that the Milwaukee Air and Water show does pose significant risks to public safety and property... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Milwaukee Air and Water Show, Lake...

  19. 14 CFR 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Clean Air-Water Pollution Control Acts. 1274.926 Section 1274.926 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION COOPERATIVE AGREEMENTS WITH COMMERCIAL FIRMS Other Provisions and Special Conditions § 1274.926 Clean Air-Water Pollution Control Acts. Clean...

  20. Planning for Small Town Revitalization: Economic Development Invigorates the Columbia Basin.

    ERIC Educational Resources Information Center

    Winchell, Dick G.

    1991-01-01

    Describes rural revitalization efforts for small towns in central Washington. Planning analysis by Eastern Washington University faculty and students emphasizes community participation. Details revitalization of the town of Wilbur from planning stages to final outcomes. Describes overall project results. (KS)

  1. Effects of water-contaminated air on blowoff limits of opposed jet hydrogen-air diffusion flames

    NASA Technical Reports Server (NTRS)

    Pellett, Gerald L.; Jentzen, Marilyn E.; Wilson, Lloyd G.; Northam, G. Burton

    1988-01-01

    The effects of water-contaminated air on the extinction and flame restoration of the central portion of N2-diluted H2 versus air counterflow diffusion flames are investigated using a coaxial tubular opposed jet burner. The results show that the replacement of N2 contaminant in air by water on a mole for mole basis decreases the maximum sustainable H2 mass flow, just prior to extinction, of the flame. This result contrasts strongly with the analogous substitution of water for N2 in a relatively hot premixed H2-O2-N2 flame, which was shown by Koroll and Mulpuru (1986) to lead to a significant, kinetically controlled increase in laminar burning velocity.

  2. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single Family Homes (Revised)

    SciTech Connect

    Cummings, J.; Withers, C.; Martin, E.; Moyer, N.

    2012-10-01

    This document focuses on managing the driving forces which move air and moisture across the building envelope. While other previously published Measure Guidelines focus on elimination of air pathways, the ultimate goal of this Measure Guideline is to manage drivers which cause air flow and water vapor transport across the building envelope (and also within the home), control air infiltration, keep relative humidity (RH) within acceptable limits, avoid combustion safety problems, improve occupant comfort, and reduce house energy use.

  3. [Experimental research on combined water and air backwashing reactor technology for biological activated carbon].

    PubMed

    Xie, Zhi-Gang; Qiu, Xue-Min; Zhao, Yan-Ling

    2012-01-01

    To proper control the backwashing process of biological activated carbon (BAC) reactor and improve the overall operation performance, the evaluative indexes such as backwashing wastewater turbidity, organic pollutants removal rate of pre and post-backwashing, and the variation of biomass and biological activity in carbon column are used to compare and analyze the effect of three different combined water and air backwashing methods on the operation of BAC reactor. The result shows that intermittent combined water and air backwashing method is most suitable to BAC reactor. The biological activaty obviously increases by 62.5% after intermittent combined water and air backwashing process. While, the biological activaty using the backwashing method of air plus water and the backwashing method of water and air compounded plus water washing increases by 55.6%, 38.5%, respectively. After backwashing 308h, the reactor recovered to its normal function after intermittent combined water and air backwashing process with the removal rate of UV254 reaching to 60.0%. The fulvic-like fluorescence peak of backwashing water are very weak, and are characterized by low-excitation wavelength tryptophan like (peak S) and high excitation wavelength of tryptophan (peak T), which are caused by the microbial debris washed down. The three-dimensional fluorescence spectra also show that microbial fragments are easy to be washed clean with intermittent combined water and air backwashing. PMID:22452199

  4. Functional Performance of an Enabling Atmosphere Revitalization Subsystem Architecture for Deep Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.; Abney, Morgan B.; Frederick, Kenneth R.; Greenwood, Zachary W.; Kayatin, Matthew J.; Newton, Robert L.; Parrish, Keith J.; Roman, Monsi C.; Takada, Kevin C.; Miller, Lee A.; Scott, Joseph P.; Stanley, Christine M.

    2013-01-01

    A subsystem architecture derived from the International Space Station's (ISS) Atmosphere Revitalization Subsystem (ARS) has been functionally demonstrated. This ISS-derived architecture features re-arranged unit operations for trace contaminant control and carbon dioxide removal functions, a methane purification component as a precursor to enhance resource recovery over ISS capability, operational modifications to a water electrolysis-based oxygen generation assembly, and an alternative major atmospheric constituent monitoring concept. Results from this functional demonstration are summarized and compared to the performance observed during ground-based testing conducted on an ISS-like subsystem architecture. Considerations for further subsystem architecture and process technology development are discussed.

  5. Influence of water depth on the sound generated by air-bubble vibration in the water musical instrument

    NASA Astrophysics Data System (ADS)

    Ohuchi, Yoshito; Nakazono, Yoichi

    2014-06-01

    We have developed a water musical instrument that generates sound by the falling of water drops within resonance tubes. The instrument can give people who hear it the healing effect inherent in the sound of water. The sound produced by falling water drops arises from air- bubble vibrations. To investigate the impact of water depth on the air-bubble vibrations, we conducted experiments at varying values of water pressure and nozzle shape. We found that air-bubble vibration frequency does not change at a water depth of 50 mm or greater. Between 35 and 40 mm, however, the frequency decreases. At water depths of 30 mm or below, the air-bubble vibration frequency increases. In our tests, we varied the nozzle diameter from 2 to 4 mm. In addition, we discovered that the time taken for air-bubble vibration to start after the water drops start falling is constant at water depths of 40 mm or greater, but slower at depths below 40 mm.

  6. Pulse laser ablation at water-air interface

    NASA Astrophysics Data System (ADS)

    Utsunomiya, Yuji; Kajiwara, Takashi; Nishiyama, Takashi; Nagayama, Kunihito; Kubota, Shiro

    2010-06-01

    We studied a new pulse laser ablation phenomenon on a liquid surface layer, which is caused by the difference between the refractive indices of the two materials involved. The present study was motivated by our previous study, which showed that laser ablation can occur at the interface between a transparent material and a gas or liquid medium when the laser pulse is focused through the transparent material. In this case, the ablation threshold fluence is reduced remarkably. In the present study, experiments were conducted in water and air in order to confirm this phenomenon for a combination of two fluid media with different refractive indices. This phenomenon was observed in detail by pulse laser shadowgraphy. A high-resolution film was used to record the phenomenon with a Nd:YAG pulse laser with 10-ns duration as a light source. The laser ablation phenomenon on the liquid surface layer caused by a focused Nd:YAG laser pulse with 1064-nm wavelength was found to be followed by the splashing of the liquid surface, inducing a liquid jet with many ligaments. The liquid jet extension velocity was around 1000 m/s in a typical case. The liquid jet decelerated drastically due to rapid atomization at the tips of the ligaments. The liquid jet phenomenon was found to depend on the pulse laser parameters such as the laser fluence on the liquid surface, laser energy, and laser beam pattern. The threshold laser fluence for the generation of a liquid jet was 20 J/cm2. By increasing the incident laser energy with a fixed laser fluence, the laser focused area increased, which eventually led to an increase in the size of the plasma column. The larger the laser energy, the larger the jet size and the longer the temporal behavior. The laser beam pattern was found to have significant effects on the liquid jet’s velocity, shape, and history.

  7. Characterization of predominantly hydrophobic poly(styrene)-poly(ethylene oxide) copolymers at air/water and cyclohexane/water interfaces

    SciTech Connect

    Gragson, D.E.; Jensen, J.M.; Baker, S.M.

    1999-09-14

    Interfacial tension measurements are employed to explore the spreading behavior of predominantly hydrophobic poly(styrene)--poly(ethylene oxide), PS-PEO, diblock copolymers at air/water and cyclohexane/water interfaces. Two copolymers with 7%- and 15.5%-PEO are examined in this study. The former is expected to have a PS block limiting area in air roughly equal to the limiting PEO pancake area, whereas the latter is expected to have a limiting PS block area in air approximately 3 times smaller than the limiting PEO pancake area. At the air/water interface, the 7%-PEO copolymer does not spread well, which is attributed to interference from the hydrophobic PS block. In contrast, the 7%-PEO copolymer spreads well at the cyclohexane/water interface, producing an isotherm with a terminating mean molecular area 3 times smaller than that obtained at the air/water interface. The 15.5%-PEO copolymer spreads well at both the air/water ad cyclohexane/water interfaces due to less interference from the smaller hydrophobic PS block. These observations are compared to compression isotherms, and the results are discussed in terms of the solvating nature of the adjacent cyclohexane phase for the PS block.

  8. Effects of air and water temperatures on resting metabolism of auklets and other diving birds.

    PubMed

    Richman, Samantha E; Lovvorn, James R

    2011-01-01

    For small aquatic endotherms, heat loss while floating on water can be a dominant energy cost, and requires accurate estimation in energetics models for different species. We measured resting metabolic rate (RMR) in air and on water for a small diving bird, the Cassin's auklet (Ptychoramphus aleuticus), and compared these results to published data for other diving birds of diverse taxa and sizes. For 8 Cassin's auklets (~165 g), the lower critical temperature was higher on water (21 °C) than in air (16 °C). Lowest values of RMR (W kg⁻¹) averaged 19% higher on water (12.14 ± 3.14 SD) than in air (10.22 ± 1.43). At lower temperatures, RMR averaged 25% higher on water than in air, increasing with similar slope. RMR was higher on water than in air for alcids, cormorants, and small penguins but not for diving ducks, which appear exceptionally resistant to heat loss in water. Changes in RMR (W) with body mass either in air or on water were mostly linear over the 5- to 20-fold body mass ranges of alcids, diving ducks, and penguins, while cormorants showed no relationship of RMR with mass. The often large energetic effects of time spent floating on water can differ substantially among major taxa of diving birds, so that relevant estimates are critical to understanding their patterns of daily energy use. PMID:21527823

  9. Monolayers at air-water interfaces: from origins-of-life to nanotechnology.

    PubMed

    Ariga, Katsuhiko; Hill, Jonathan P

    2011-08-01

    The air-water interface presents several interesting features, namely a) a molecularly flat environment, b) a boundary region between two phases with different dielectric constants, c) permits or promotes dynamic interactions within the interface region, and d) a point of interaction between hydrophobic compounds and aqueous molecules. Accordingly, Langmuir monolayers at the air-water interface have several unique characteristics and properties, which require investigation. In this review-type personal account, typical examples of molecular recognition and molecular patterning at air-water interfaces are first introduced, followed by descriptions of specific and unusual properties of monolayers on water. In addition, two examples of our own results concerning Langmuir monolayers are explained. We have selected examples from two apparently unrelated research areas, these being the origin of life and future nanotechnology, in order to emphasize the diverse scientific contribution of research on monolayers at the air-water interface. PMID:21739568

  10. WETAIR: A computer code for calculating thermodynamic and transport properties of air-water mixtures

    NASA Technical Reports Server (NTRS)

    Fessler, T. E.

    1979-01-01

    A computer program subroutine, WETAIR, was developed to calculate the thermodynamic and transport properties of air water mixtures. It determines the thermodynamic state from assigned values of temperature and density, pressure and density, temperature and pressure, pressure and entropy, or pressure and enthalpy. The WETAIR calculates the properties of dry air and water (steam) by interpolating to obtain values from property tables. Then it uses simple mixing laws to calculate the properties of air water mixtures. Properties of mixtures with water contents below 40 percent (by mass) can be calculated at temperatures from 273.2 to 1497 K and pressures to 450 MN/sq m. Dry air properties can be calculated at temperatures as low as 150 K. Water properties can be calculated at temperatures to 1747 K and pressures to 100 MN/sq m. The WETAIR is available in both SFTRAN and FORTRAN.

  11. Predicting Air-Water Geysers and Their Implications on Reducing Combined Sewer Overflows

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Leon, A.; Apte, S.

    2014-12-01

    An air-water geyser in a closed conduit system is characterized by an explosive jetting of a mixture of air and water through drop-shafts. In this study, three scenarios of geysers are numerically simulated using a 3D computational fluid dynamics (CFD) model. The three tested scenarios are comprised of a drop shaft that is closed at its bottom and partially or fully open at the top. Initially, the lower section of the drop shaft is filled with pressurized air, the middle section with stagnant water and the upper section with air at atmospheric pressure. The pressure and volume of the pressurized air, and hence the stored energy, is different for all three test cases. The volume of the stagnant water and the air at atmospheric pressure are kept constant in the tests. The numerical simulations aim to identify the correlation between dimensionless energy stored in the pressurized air pocket and dimensionless maximum pressure reached at the outlet. This dimensionless correlation could be used to determine the energy threshold that does not produce air-water geyser, which in turn could be used in the design of combined sewer systems for minimizing geysers.

  12. PILOT STUDY FOR REMOVAL OF ARSENIC FROM DRINKING WATER AT THE FALLON, NEVADA NAVAL AIR STATION

    EPA Science Inventory

    The report presents the results of pilot plant testing of two treatment methods capable of removing arsenic from drinking water; activated alumina and ion exchange. Using the Naval Air Station (NAS) drinking water (raw water arsenic concentration = 0.080 - 0.116 mg/l) for evaluat...

  13. Use Of The Operational Air Quality Monitor (AQM) For In-Flight Water Testing Project

    NASA Technical Reports Server (NTRS)

    Macatangay, Ariel

    2014-01-01

    A primary requirement for manned spaceflight is Environmental Health which ensures air and water contaminants, acoustic profiles, microbial flora, and radiation exposures within the cabin are maintained to levels needed for crew health and for vehicle system functionality. The reliance on ground analyses of returned samples is a limitation in the current environmental monitoring strategy that will prevent future Exploration missions beyond low-Earth orbit. This proposal attempts to address this shortcoming by advancing in-flight analyses of water and air. Ground analysis of in-flight, air and water samples typically employ vapor-phase analysis by gas chromatography-mass spectrometry (GC-MS) to identify and quantify organic compounds present in the samples. We envision the use of newly-developed direct ionization approaches as the most viable avenue leading towards an integrated analytical platform for the monitoring of water, air, and, potentially bio-samples in the cabin environment. Development of an in-flight instrument capable of analyzing air and water samples would be the logical next step to meeting the environmental monitoring needs of Exploration missions. Currently, the Air Quality Monitor (AQM) on-board ISS provides this specific information for a number of target compounds in the air. However, there is a significant subset of common target compounds between air and water. Naturally, the following question arises, "Can the AQM be used for both air and water quality monitoring?" Previous directorate-level IR&D funding led to the development of a water sample introduction method for mass spectrometry using electrothermal vaporization (ETV). This project will focus on the integration of the ETV with a ground-based AQM. The capabilities of this integrated platform will be evaluated using a subset of toxicologically important compounds.

  14. Influence of tap water quality and household water use activities on indoor air and internal dose levels of trihalomethanes.

    PubMed

    Nuckols, John R; Ashley, David L; Lyu, Christopher; Gordon, Sydney M; Hinckley, Alison F; Singer, Philip

    2005-07-01

    Individual exposure to trihalomethanes (THMs) in tap water can occur through ingestion, inhalation, or dermal exposure. Studies indicate that activities associated with inhaled or dermal exposure routes result in a greater increase in blood THM concentration than does ingestion. We measured blood and exhaled air concentrations of THM as biomarkers of exposure to participants conducting 14 common household water use activities, including ingestion of hot and cold tap water beverages, showering, clothes washing, hand washing, bathing, dish washing, and indirect shower exposure. We conducted our study at a single residence in each of two water utility service areas, one with relatively high and the other low total THM in the residence tap water. To maintain a consistent exposure environment for seven participants, we controlled water use activities, exposure time, air exchange, water flow and temperature, and nonstudy THM sources to the indoor air. We collected reference samples for water supply and air (pre-water use activity), as well as tap water and ambient air samples. We collected blood samples before and after each activity and exhaled breath samples at baseline and post-activity. All hot water use activities yielded a 2-fold increase in blood or breath THM concentrations for at least one individual. The greatest observed increase in blood and exhaled breath THM concentration in any participant was due to showering (direct and indirect), bathing, and hand dishwashing. Average increase in blood THM concentration ranged from 57 to 358 pg/mL due to these activities. More research is needed to determine whether acute and frequent exposures to THM at these concentrations have public health implications. Further research is also needed in designing epidemiologic studies that minimize data collection burden yet maximize accuracy in classification of dermal and inhalation THM exposure during hot water use activities. PMID:16002374

  15. Characterization of AIRS temperature and water vapor measurement capability using correlative observations

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Eldering, Annmarie; Lee, Sung-Yung

    2005-01-01

    In this presentation we address several fundamental issues in the measurement of temperature and water vapor by AIRS: accuracy, precision, vertical resolution and biases as a function of cloud amount. We use two correlative data sources. First we compare AIRS total water vapor with that from the Advanced microwave Sounding Radiometer for EOS (AMSR-E) instrument, also onboard the Aqua spacecraft. AMSRE uses a mature methodology with a heritage including the operational Special Sensor Microwave Imager (SSM/I) instruments. AIRS and AMSR-E observations are collocated and simultaneous, providing a very large data set for comparison: about 200,000 over-ocean matches daily. We show small cloud-dependent biases between AIRS and AMSR-E total water vapor for several oceanic regions. Our second correlative data source is several hundred dedicated radiosondes launched during AIRS overpasses.

  16. Reshaping Curricula: Revitalization Programs at Three Land Grant Universities.

    ERIC Educational Resources Information Center

    Lunde, Joyce Povlacs; And Others

    This volume contains 25 papers describing large curriculum revitalization projects from 1986 through 1991 at the University of Wisconsin-Madison, the University of Minnesota, and the University of Nebraska-Lincoln. The papers are: "A Theoretical Context for Designing Curricula in the Agricultural and Life Sciences" (Robert G. Kranz, Jr.);…

  17. "Like Life Itself": Narrative and the Revitalization of Educational Practice.

    ERIC Educational Resources Information Center

    Hopkins, Richard L.

    This paper describes the efforts to use contemporary ideas about narrative to rethink educational practice at the level of "root metaphor," (Stephen Pepper) and argue that "narrative schooling" might revitalize the actual processes of schooling. There is a concern that, especially at the secondary level, public schools are experience-averse in all…

  18. The Green Book of Language Revitalization in Practice.

    ERIC Educational Resources Information Center

    Hinton, Leanne, Ed.; Hale, Ken, Ed.

    Essays in this book include the following: "Language Revitalization: An Overview" (Leanne Hinton); "Diversity in Local Language Maintenance and Restoration: A Reason for Optimism" (Anna Ash, Jessie Little Doe Fermino, Ken Hale); "Federal Language Policy and Indigenous Languages in the United States" (Leanne Hinton); "...To Help Assure the Survival…

  19. Education Empowerment Zones: Revitalizing Ohios Cities through School Choice.

    ERIC Educational Resources Information Center

    Hall, Joshua C.; Staley, Samuel R.; Hisrich, Matthew S.; Barry, Aengus L.

    This study proposes the creation of Education Empowerment Zones (EEZs) in Ohio's major cities as part of a strategy to reestablish the competitive advantage of the inner city. Combining community schools and an expanded education voucher available to the middle class, EEZs could lead revitalizing efforts by enticing middle-income families with…

  20. Daghida: Cold Lake First Nation Works towards Dene Language Revitalization.

    ERIC Educational Resources Information Center

    Blair, Heather; Rice, Sally; Wood, Valerie; Janvier, John

    A partnership between Cold Lake First Nations and the University of Alberta, the Daghida Project, aims to revitalize Dene Suline--the local dialect of the Dene language--and the culture that depends upon it. Residential schools had a devastating effect on the Dene language and way of life, disrupting normal linguistic and cultural transmission…

  1. Revitalizing Rural America: A Cooperative Extension System Response.

    ERIC Educational Resources Information Center

    Bradley, Doug

    The survival of rural American farms and communities is dependent upon expansion of income and employment opportunities in rural areas. Recognizing the growing challenge for local leaders and the contribution that educational assistance can make, the Cooperative Extension System has identified Revitalizing Rural America as a priority program for…

  2. Ojibwe Language Revitalization, Multimedia Technology, and Family Language Learning

    ERIC Educational Resources Information Center

    Hermes, Mary; King, Kendall A.

    2013-01-01

    Although Indigenous language loss and revitalization are not new topics of academic work nor new areas of community activism (e.g., King, 2001; Grenoble & Whaley, 2006), increased attention has been paid in recent years to the ways that new technology can support efforts to teach and renew endangered languages such as Ojibwe. However, much of the…

  3. Literacy for Revitalization in the SADCC Countries of Southern Africa.

    ERIC Educational Resources Information Center

    Bhola, H. S.

    The role of literacy in the revitalization of societies is particularly meaningful in the context of the Southern African Development Coordination Conference (SADCC), a group of nine countries (Angola, Botswana, Lesotho, Malawi, Mozambique, Swaziland, Tanzania, Zambia, and Zimbabwe) surrounding or surrounded by the Republic of South Africa (RSA).…

  4. Critical Culturally Sustaining/Revitalizing Pedagogy and Indigenous Education Sovereignty

    ERIC Educational Resources Information Center

    McCarty, Teresa L.; Lee, Tiffany S.

    2014-01-01

    In this article, Teresa L. McCarty and Tiffany S. Lee present critical culturally sustaining/revitalizing pedagogy as a necessary concept to understand and guide educational practices for Native American learners. Premising their discussion on the fundamental role of tribal sovereignty in Native American schooling, the authors underscore and…

  5. Urban Revitalization and Entrepreneurial Strategies. Digest Number 97-8.

    ERIC Educational Resources Information Center

    Schuyler, Gwyer

    Urban revitalization is an economic and social strategy that has been necessitated by decreased interest in both residence and commercialization within major cities. Urban business environments are confronted with many unique socioeconomic challenges, including discrimination against residents, negative stereotypes of urban areas, and inaccurate…

  6. Language Revitalization and Language Pedagogy: New Teaching and Learning Strategies

    ERIC Educational Resources Information Center

    Hinton, Leanne

    2011-01-01

    Language learning and teaching of endangered languages have many features and needs that are quite different from the teaching of world languages. Groups whose languages are endangered try to turn language loss around; many new language teaching and learning strategies are emerging, to suit the special needs and goals of language revitalization.…

  7. Cultivating Common Ground: Cultural Revitalization in Anishinaabe and Anthropological Discourse

    ERIC Educational Resources Information Center

    Willow, Anna J.

    2010-01-01

    In this article, the author explores some of the most prominent ways that cultural revitalization has been contemplated within Anishinaabe and anthropological arenas of discourse. She draws reflexively on her own personal positionality and academic theoretical background as well as on her observations of how Anishinaabe anti-clear-cutting…

  8. GET SMARTE: DECISION TOOLS TO REVITALIZE COMMUNITIES (MAY 2006)

    EPA Science Inventory

    SMARTe (Sustainable Management Approaches and Revitalization Tools-electronic) is an open-source, web-based, decision-support system for developing and evaluating future use scenarios for potentially contaminated sites (i.e., brownfields). It contains resources and analysis tools...

  9. SMARTE: IMPROVING REVITALIZATION DECISIONS - PRESENTATION IN NRMRL SEMINAR SERIES

    EPA Science Inventory

    SMARTe (Sustainable Management Approaches and Revitalization Tools-electribuc) is an open-source, web-based, decision-support system for developing and evaluating alternative reuse scenarios for potentially contaminated sites (e.g., brownfields). It is being developed collaborati...

  10. Toward a New Era: Alternatives for Revitalizing Student Services Programs.

    ERIC Educational Resources Information Center

    Deegan, William L.

    Alternatives for revitalizing the programs and management of student services in community colleges are reviewed in this paper. First, alternatives related to student services programs are considered, including: (1) the increased use of computer-assisted counseling to integrate student services more fully with mainstream academic activities; (2)…

  11. 75 FR 11560 - Notice of Lodging of Consent Decree Under the Clean Water Act and Clean Air Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-11

    ... of Lodging of Consent Decree Under the Clean Water Act and Clean Air Act Notice is hereby given that... violations of the Clean Water Act, 33 U.S.C. 1251 et seq., and the Clean Air Act, 42 U.S.C. 7401 et seq. at... of water effluent controls, the rerouting of air emissions through control devices, and...

  12. A Comprehensive Analysis of AIRS Near Surface Air Temperature and Water Vapor Over Land and Tropical Ocean

    NASA Astrophysics Data System (ADS)

    Dang, H. V. T.; Lambrigtsen, B.; Manning, E. M.; Fetzer, E. J.; Wong, S.; Teixeira, J.

    2015-12-01

    Version 6 (V6) of the Atmospheric Infrared Sounder's (AIRS) combined infrared and microwave (IR+MW) retrieval of near surface air temperature (NSAT) and water vapor (NSWV) is validated over the United States with the densely populated MESONET data. MESONET data is a collection of surface/near surface meteorological data from many federal and state agencies. The ones used for this analysis are measured from instruments maintained by the National Weather Service (NWS), the Federal Aviation Administration (FAA), and the Interagency Remote Automatic Weather Stations (RAWS), resulting in a little more than four thousand locations throughout the US. Over the Tropical oceans, NSAT and NSWV are compared to a network of moored buoys from the Tropical Atmosphere Ocean/Triangle Trans-Ocean Buoy Network (TAO/TRITON), and the Pilot Research Moored Array in the Tropical Atlantic (PIRATA). With the analysis of AIRS surface and near surface products over ocean, we glean information on how retrieval of NSAT and NSWV over land can be improved and why it needs some adjustments. We also compare AIRS initial guess of near surface products that are trained on fifty days of ECMWF along with AIRS calibrated radiances, to ECMWF analysis data. The comparison is done to show the differing characteristics of AIRS initial guesses from ECMWF.

  13. Air Stripping Designs and Reactive Water Purification Processes for the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Boul, Peter J.; Lange, Kevin; Conger, Bruce; Anderson, Molly

    2010-01-01

    Air stripping designs are considered to reduce the presence of volatile organic compounds in the purified water. Components of the wastewater streams are ranked by Henry's Law Constant and the suitability of air stripping in the purification of wastewater in terms of component removal is evaluated. Distillation processes are modeled in tandem with air stripping to demonstrate the potential effectiveness and utility of these methods in recycling wastewater on the Moon. Scaling factors for distillation and air stripping columns are presented to account for the difference in the lunar gravitation environment. Commercially available distillation and air stripping units which are considered suitable for Exploration Life Support are presented. The advantages to the various designs are summarized with respect to water purity levels, power consumption, and processing rates. An evaluation of reactive distillation and air stripping is presented with regards to the reduction of volatile organic compounds in the contaminated water and air. Among the methods presented, an architecture is presented for the evaluation of the simultaneous oxidation of organics in air and water. These and other designs are presented in light of potential improvements in power consumptions and air and water purities for architectures which include catalytic activity integrated into the water processor. In particular, catalytic oxidation of organics may be useful as a tool to remove contaminants that more traditional distillation and/or air stripping columns may not remove. A review of the current leading edge at the commercial level and at the research frontier in catalytically active materials is presented. Themes and directions from the engineering developments in catalyst design are presented conceptually in light of developments in the nanoscale chemistry of a variety of catalyst materials.

  14. Method and apparatus for extracting water from air using a desiccant

    DOEpatents

    Spletzer, Barry L.; Callow, Diane Schafer

    2003-01-01

    The present invention provides a method and apparatus for extracting liquid water from moist air using minimal energy input. The method can be considered as four phases: (1) adsorbing water from air into a desiccant, (2) isolating the water-laden desiccant from the air source, (3) desorbing water as vapor from the desiccant into a chamber, and (4) isolating the desiccant from the chamber, and compressing the vapor in the chamber to form liquid condensate. The liquid condensate can be removed for use. Careful design of the dead volumes and pressure balances can minimize the energy required. The dried air can be exchanged for fresh moist air and the process repeated. An apparatus comprises a first chamber in fluid communication with a desiccant, and having ports to intake moist air and exhaust dried air. The apparatus also comprises a second chamber in fluid communication with the desiccant. The second chamber allows variable internal pressure, and has a port for removal of liquid condensate. Each chamber can be configured to be isolated or in communication with the desiccant. The first chamber can be configured to be isolated or in communication with a course of moist air. Various arrangements of valves, pistons, and chambers are described.

  15. It's Alive!: Students Observe Air-Water Interface Samples Rich with Organisms

    ERIC Educational Resources Information Center

    Avant, Thomas

    2002-01-01

    This article describes an experiment, designed by Cindy Henk, manager of the Socolofsky Microscopy Center at Louisiana State University (LSU), that involved collecting and viewing microorganisms in the air-water interface. The experiment was participated by Leesville High School microbiology students. The students found that the air-water…

  16. Driving Students and Parents to Cleaner Air: An Interview with Michelle Waters

    ERIC Educational Resources Information Center

    Curriculum Review, 2006

    2006-01-01

    After spending three years as a kindergarten teacher and one as a reading specialist, Michelle Waters recently became the education outreach coordinator for the Georgia-based Clean Air Campaign. In that role, she has helped roll out a comprehensive Better Air Schools initiative to 20 Atlanta-area elementary schools. The program includes a…

  17. The transfer of carbon fibers through a commercial aircraft water separator and air cleaner

    NASA Technical Reports Server (NTRS)

    Meyers, J. A.

    1979-01-01

    The fraction of carbon fibers passing through a water separator and an air filter was determined in order to estimate the proportion of fibers outside a closed aircraft that are transmitted to the electronics through the air conditioning system. When both devices were used together and only fibers 3 mm or larger were considered, a transfer function of .001 was obtained.

  18. 75 FR 19307 - Safety Zone; Milwaukee Air and Water Show, Milwaukee, Lake Michigan, Milwaukee, WI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-14

    ... public dockets in the January 17, 2008, issue of the Federal Register (73 FR 3316). Public Meeting We do... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Milwaukee Air and Water Show, Milwaukee... ensure the safety of the public and vessels from the hazards associated with the Milwaukee Air and...

  19. Sensory descriptive Profiles of Air and Water Chilled Broiler Breast Fillets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Air chilled chicken products are gaining popularity in the USA. It has been claimed that air chilling (AC) results in improved tenderness and flavor of broiler meat compared with water chilling (WC). However, there was lack of published sensory study results to support the claims. The objective of...

  20. The Clean Air and Clean Water Acts: The "Fifth" and "Eighth" Most Significant Events.

    ERIC Educational Resources Information Center

    Knight, Laurel A.

    1991-01-01

    The history and impact of this federal legislation are discussed. An assessment of the progress of federal legislation in these areas is presented. Key issues for federal legislation regarding water and air quality are identified. (CW)

  1. SURVIVAL OF 'DAPHNIA', CRAYFISH, AND STONEFLIES IN AIR-SUPERSATURATED WATER

    EPA Science Inventory

    Daphnia magna, the crayfish Pacifastacus leniusculus, and nymphs of the stoneflies, Acroneuria californica, A. pacifica, and Pteronarcys californica were tested in the laboratory to determine their survival in different concentrations of air-supersaturated water. The mean 96-h LC...

  2. A CRITICAL ASSESSMENT OF ELEMENTAL MERCURY AIR/WATER EXCHANGE PARTNERS

    EPA Science Inventory

    Although evasion of elemental mercury from aquatic systems can significantly deplete net mercury accumulation resulting from atmospheric deposition, the current ability to model elemental mercury air/water exchange is limited by uncertainties in our understanding of all gaseous a...

  3. Boundary layer flow of air over water on a flat plate

    NASA Technical Reports Server (NTRS)

    Nelson, John; Alving, Amy E.; Joseph, Daniel D.

    1993-01-01

    A non-similar boundary layer theory for air blowing over a water layer on a flat plate is formulated and studied as a two-fluid problem in which the position of the interface is unknown. The problem is considered at large Reynolds number (based on x), away from the leading edge. A simple non-similar analytic solution of the problem is derived for which the interface height is proportional to x(sub 1/4) and the water and air flow satisfy the Blasius boundary layer equations, with a linear profile in the water and a Blasius profile in the air. Numerical studies of the initial value problem suggests that this asymptotic, non-similar air-water boundary layer solution is a global attractor for all initial conditions.

  4. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    SciTech Connect

    Not Available

    1991-10-01

    This report presents information concerning field procedures employed during the monitoring, well construction, well purging, sampling, and well logging at the Wright-Patterson Air Force Base. Activities were conducted in an effort to evaluate ground water contamination.

  5. Fluidized bed heat exchanger with water cooled air distributor and dust hopper

    DOEpatents

    Jukkola, Walfred W.; Leon, Albert M.; Van Dyk, Jr., Garritt C.; McCoy, Daniel E.; Fisher, Barry L.; Saiers, Timothy L.; Karstetter, Marlin E.

    1981-11-24

    A fluidized bed heat exchanger is provided in which air is passed through a bed of particulate material containing fuel. A steam-water natural circulation system is provided for heat exchange and the housing of the heat exchanger has a water-wall type construction. Vertical in-bed heat exchange tubes are provided and the air distributor is water-cooled. A water-cooled dust hopper is provided in the housing to collect particulates from the combustion gases and separate the combustion zone from a volume within said housing in which convection heat exchange tubes are provided to extract heat from the exiting combustion gases.

  6. A theoretical remark about waves on a static water surface beneath a layer of moving air

    NASA Astrophysics Data System (ADS)

    Kida, T.; Hayashi, R.; Yasutomi, Z.

    1990-12-01

    Grundy and Tuck (1987) treat the problem of large-amplitude waves on an air-water interface where the air is a steady nonuniform flow and the water is stationary. Both periodic nonlinear Stokes-like waves far downstream and a configuration of the water surface from the edge region of a hovercraft were computed. However, there is no work that treats the existence of such Stokes-like waves theoretically. The present work aims to prove the existence of such solutions in the case where the cushion pressure is low, that is, the depression at the upstream stagnation point from the mean water level is small.

  7. Water permeability of primary mouse keratinocyte cultures grown at the air-liquid interface

    SciTech Connect

    Cumpstone, M.B.; Kennedy, A.H.; Harmon, C.S.; Potts, R.O.

    1989-04-01

    In order to study the development of the epidermal permeability barrier in vitro, tritiated water (HTO) flux was measured across murine keratinocytes cultured at the air-liquid interface. Using a micro-diffusion technique, it was shown that air-liquid cultures form areas where the water diffusion is comparable to that of intact neonatal mouse skin. When water permeability is measured over a large area of the culture surface, however, significantly higher flux is obtained. These results show that under the culture conditions used, areas of water barrier comparable to intact neonatal mouse skin coexist with regions of less complete barrier formation.

  8. The behavior of NaOH at the air-water interface, a computational study

    SciTech Connect

    Wick, Collin D.; Dang, Liem X.

    2010-07-14

    Molecular dynamics simulations with a polarizable multi-state empirical valence bond model were carried out to investigate NaOH dissociation and pairing in water bulk and at the air-water interface. It was found that NaOH readily dissociates in the bulk, and the effect of the air-water interface on NaOH dissociation is fairly minor. Also, NaOH complexes were found to be strongly repelled from the air-water interface, which is consistent with surface tension measurements. At the same time, a very strong preference for the hydroxide anion to be oriented towards the air was found that persisted a few angstroms towards the liquid from the Gibbs dividing surface of the air-water interface. This was due to a preference for the hydroxide anion to have its hydrogen pointing towards the air, and the fact that the sodium ion was more likely to be found near the hydroxide oxygen than hydrogen. As a consequence, the simulation results show that surfaces of NaOH solutions should be negatively charged, in agreement with experimental observations, but also that the hydroxide has little surface affinity. This provides the possibility that the surface of water can be devoid of hydroxide anions, but still have a strong negative charge. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  9. Surface tension of ab initio liquid water at the water-air interface

    NASA Astrophysics Data System (ADS)

    Nagata, Yuki; Ohto, Tatsuhiko; Bonn, Mischa; Kühne, Thomas D.

    2016-05-01

    We report calculations on the surface tension of the water-air interface using ab initio molecular dynamics (AIMD) simulations. We investigate the influence of the cell size on surface tension of water from force field molecular dynamics simulations. We find that the calculated surface tension increases with increasing simulation cell size, thereby illustrating that a correction for finite size effects is essential for small systems that are customary in AIMD simulations. Moreover, AIMD simulations reveal that the use of a double-ζ basis set overestimates the experimentally measured surface tension due to the Pulay stress while more accurate triple and quadruple-ζ basis sets give converged results. We further demonstrate that van der Waals corrections critically affect the surface tension. AIMD simulations without the van der Waals correction substantially underestimate the surface tension while the van der Waals correction with the Grimme's D2 technique results in a value for the surface tension that is too high. The Grimme's D3 van der Waals correction provides a surface tension close to the experimental value. Whereas the specific choices for the van der Waals correction and basis sets critically affect the calculated surface tension, the surface tension is remarkably insensitive to the details of the exchange and correlation functionals, which highlights the impact of long-range interactions on the surface tension. Our simulated values provide important benchmarks, both for improving van der Waals corrections and AIMD simulations of aqueous interfaces.

  10. International Space Station Common Cabin Air Assembly Water Separator On-Orbit Operation, Failure, and Redesign

    NASA Technical Reports Server (NTRS)

    Balistreri, Steven F., Jr.; Shaw, Laura A.; Laliberte, Yvon

    2010-01-01

    The ability to control the temperature and humidity of an environment or habitat is critical for human survival. These factors are important to maintaining human health and comfort, as well as maintaining mechanical and electrical equipment in good working order to support the human and to accomplish mission objectives. The temperature and humidity of the International Space Station (ISS) United States On-orbit Segment (USOS) cabin air is controlled by the Common Cabin Air Assembly (CCAA). The CCAA consists of a fan, a condensing heat exchanger (CHX), an air/water separator, temperature and liquid sensors, and electrical controlling hardware and software. The Water Separator (WS) pulls in air and water from the CHX, and centrifugally separates the mixture, sending the water to the condensate bus and the air back into the CHX outlet airstream. Two distinct early failures of the CCAA Water Separator in the Quest Airlock forced operational changes and brought about the re-design of the Water Separator to improve the useful life via modification kits. The on-orbit operational environment of the Airlock presented challenges that were not foreseen with the original design of the Water Separator. Operational changes were instituted to prolong the life of the third installed WS, while waiting for newly designed Water Separators to be delivered on-orbit. The modification kit design involved several different components of the Water Separator, including the innovative use of a fabrication technique to build the impellers used in Water Separators out of titanium instead of aluminum. The technique allowed for the cost effective production of the low quantity build. This paper will describe the failures of the Water Separators in the Quest Airlock, the operational constraints that were implemented to prolong the life of the installed Water Separators throughout the USOS, and the innovative re-design of the CCAA Water Separator.

  11. Two-phase air-water stratified flow measurement using ultrasonic techniques

    SciTech Connect

    Fan, Shiwei; Yan, Tinghu; Yeung, Hoi

    2014-04-11

    In this paper, a time resolved ultrasound system was developed for investigating two-phase air-water stratified flow. The hardware of the system includes a pulsed wave transducer, a pulser/receiver, and a digital oscilloscope. The time domain cross correlation method is used to calculate the velocity profile along ultrasonic beam. The system is able to provide velocities with spatial resolution of around 1mm and the temporal resolution of 200μs. Experiments were carried out on single phase water flow and two-phase air-water stratified flow. For single phase water flow, the flow rates from ultrasound system were compared with those from electromagnetic flow (EM) meter, which showed good agreement. Then, the experiments were conducted on two-phase air-water stratified flow and the results were given. Compared with liquid height measurement from conductance probe, it indicated that the measured velocities were explainable.

  12. Theoretical study of vibrational energy transfer of free OH groups at the water-air interface

    NASA Astrophysics Data System (ADS)

    Zheng, Renhui; Wei, Wenmei; Sun, Yuanyuan; Song, Kai; Shi, Qiang

    2016-04-01

    Recent experimental studies have shown that the vibrational dynamics of free OH groups at the water-air interface is significantly different from that in bulk water. In this work, by performing molecular dynamics simulations and mixed quantum/classical calculations, we investigate different vibrational energy transfer pathways of free OH groups at the water-air interface. The calculated intramolecular vibrational energy transfer rate constant and the free OH bond reorientation time scale agree well with the experiment. It is also found that, due to the small intermolecular vibrational couplings, the intermolecular vibrational energy transfer pathway that is very important in bulk water plays a much less significant role in the vibrational energy relaxation of the free OH groups at the water-air interface.

  13. Fracture toughness of Alloy 600 and EN82H weld in air and water

    SciTech Connect

    Mills, W.J.; Brown, C.M.

    1999-06-01

    The fracture toughness of Alloy 600 and its weld, EN82H, was characterized in 54 C to 338 C air and hydrogenated water. Elastic-plastic J{sub IC} testing was performed due to the inherent high toughness of these materials. Alloy 600 exhibited excellent fracture toughness under all test conditions. While EN82H welds displayed excellent toughness in air and high temperature water, a dramatic toughness degradation occurred in water at temperatures below 149 C. Comparison of the cracking response in low temperature water with that for hydrogen-precharged specimens tested in air demonstrated that the loss in toughness is due to a hydrogen-induced intergranular cracking mechanism. At loading rates about approx. 1000 MPa {radical}m/h, the toughness in low temperature water is improved because there is insufficient time for hydrogen to embrittle grain boundaries. Electron fractographic examinations were performed to correlate macroscopic properties with key microstructural features and operative fracture mechanisms.

  14. Theoretical study of vibrational energy transfer of free OH groups at the water-air interface.

    PubMed

    Zheng, Renhui; Wei, Wenmei; Sun, Yuanyuan; Song, Kai; Shi, Qiang

    2016-04-14

    Recent experimental studies have shown that the vibrational dynamics of free OH groups at the water-air interface is significantly different from that in bulk water. In this work, by performing molecular dynamics simulations and mixed quantum/classical calculations, we investigate different vibrational energy transfer pathways of free OH groups at the water-air interface. The calculated intramolecular vibrational energy transfer rate constant and the free OH bond reorientation time scale agree well with the experiment. It is also found that, due to the small intermolecular vibrational couplings, the intermolecular vibrational energy transfer pathway that is very important in bulk water plays a much less significant role in the vibrational energy relaxation of the free OH groups at the water-air interface. PMID:27083739

  15. Major Upgrades to the AIRS Version-6 Water Vapor Profile Methodology

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John; Iredell, Lena

    2015-01-01

    This research is a continuation of part of what was shown at the last AIRS Science Team Meeting and the AIRS 2015 NetMeeting. AIRS Version 6 was finalized in late 2012 and is now operational. Version 6 contained many significant improvements in retrieval methodology compared to Version 5. Version 6 retrieval methodology used for the water vapor profile q(p) and ozone profile O3(p) retrievals is basically unchanged from Version 5, or even from Version 4. Subsequent research has made significant improvements in both water vapor and O3 profiles compared to Version 6.

  16. Potable water recovery for spacecraft application by electrolytic pretreatment/air evaporation

    NASA Technical Reports Server (NTRS)

    Wells, G. W.

    1975-01-01

    A process for the recovery of potable water from urine using electrolytic pretreatment followed by distillation in a closed-cycle air evaporator has been developed and tested. Both the electrolytic pretreatment unit and the air evaporation unit are six-person, flight-concept prototype, automated units. Significantly extended wick lifetimes have been achieved in the air evaporation unit using electrolytically pretreated, as opposed to chemically pretreated, urine feed. Parametric test data are presented on product water quality, wick life, process power, maintenance requirements, and expendable requirements.

  17. X-ray microtomography determination of air-water interfacial area-water saturation relationships in sandy porous media.

    PubMed

    Costanza-Robinson, Molly S; Harrold, Katherine H; Lieb-Lappen, Ross M

    2008-04-15

    In this work, total smooth air-water interfacial areas were measured for a series of nine natural and model sandy porous media as a function of water saturation using synchrotron X-ray microtomography. Interfacial areas decreased linearly with water satuation, while the estimated maximum interfacial area compared favorably to the media geometric surface areas. Importantly, relative interfacial area (i.e., normalized by geometric surface area) versus water saturation plots for all media collapsed into a single linear cluster (r2 = 0.93), suggesting that geometric surface area is an important, and perhaps sufficient, descriptor of sandy media that governs total smooth interfacial area-water saturation relationships. Measured relationships were used to develop an empirical model for estimating interfacial area-water saturation relationships for sandy porous media. Model-based interfacial area estimates for independent media were generally slightly higher than interfacial areas measured using aqueous-phase interfacial tracer methods, which may indicate that microtomography captures regions of the air-water interface that are not accessible to aqueous-phase interfacial tracers. The empirical model presented here requires only average particle diameter and porosity as input parameters and can be used to readily estimate air-water interfacial area-water saturation relationships for sandy porous media. PMID:18497149

  18. Reducing Water/Hull Drag By Injecting Air Into Grooves

    NASA Technical Reports Server (NTRS)

    Reed, Jason C.; Bushnell, Dennis M.; Weinstein, Leonard M.

    1991-01-01

    Proposed technique for reduction of friction drag on hydrodynamic body involves use of grooves and combinations of surfactants to control motion of layer on surface of such body. Surface contains many rows of side-by-side, evenly spaced, longitudinal grooves. Dimensions of grooves and sharpnesses of tips in specific case depends on conditions of flow about vessel. Requires much less air than does microbubble-injection method.

  19. Oxygen and Air Nanobubble Water Solution Promote the Growth of Plants, Fishes, and Mice

    PubMed Central

    Ebina, Kosuke; Shi, Kenrin; Hirao, Makoto; Hashimoto, Jun; Kawato, Yoshitaka; Kaneshiro, Shoichi; Morimoto, Tokimitsu; Koizumi, Kota; Yoshikawa, Hideki

    2013-01-01

    Nanobubbles (<200 nm in diameter) have several unique properties such as long lifetime in liquid owing to its negatively charged surface, and its high gas solubility into the liquid owing to its high internal pressure. They are used in variety of fields including diagnostic aids and drug delivery, while there are no reports assessing their effects on the growth of lives. Nanobubbles of air or oxygen gas were generated using a nanobubble aerator (BUVITAS; Ligaric Company Limited, Osaka, Japan). Brassica campestris were cultured hydroponically for 4 weeks within air-nanobubble water or within normal water. Sweetfish (for 3 weeks) and rainbow trout (for 6 weeks) were kept either within air-nanobubble water or within normal water. Finally, 5 week-old male DBA1/J mice were bred with normal free-chaw and free-drinking either of oxygen-nanobubble water or of normal water for 12 weeks. Oxygen-nanobubble significantly increased the dissolved oxygen concentration of water as well as concentration/size of nanobubbles which were relatively stable for 70 days. Air-nanobubble water significantly promoted the height (19.1 vs. 16.7 cm; P<0.05), length of leaves (24.4 vs. 22.4 cm; P<0.01), and aerial fresh weight (27.3 vs. 20.3 g; P<0.01) of Brassica campestris compared to normal water. Total weight of sweetfish increased from 3.0 to 6.4 kg in normal water, whereas it increased from 3.0 to 10.2 kg in air-nanobubble water. In addition, total weight of rainbow trout increased from 50.0 to 129.5 kg in normal water, whereas it increased from 50.0 to 148.0 kg in air-nanobubble water. Free oral intake of oxygen-nanobubble water significantly promoted the weight (23.5 vs. 21.8 g; P<0.01) and the length (17.0 vs. 16.1 cm; P<0.001) of mice compared to that of normal water. We have demonstrated for the first time that oxygen and air-nanobubble water may be potentially effective tools for the growth of lives. PMID:23755221

  20. Oxygen and air nanobubble water solution promote the growth of plants, fishes, and mice.

    PubMed

    Ebina, Kosuke; Shi, Kenrin; Hirao, Makoto; Hashimoto, Jun; Kawato, Yoshitaka; Kaneshiro, Shoichi; Morimoto, Tokimitsu; Koizumi, Kota; Yoshikawa, Hideki

    2013-01-01

    Nanobubbles (<200 nm in diameter) have several unique properties such as long lifetime in liquid owing to its negatively charged surface, and its high gas solubility into the liquid owing to its high internal pressure. They are used in variety of fields including diagnostic aids and drug delivery, while there are no reports assessing their effects on the growth of lives. Nanobubbles of air or oxygen gas were generated using a nanobubble aerator (BUVITAS; Ligaric Company Limited, Osaka, Japan). Brassica campestris were cultured hydroponically for 4 weeks within air-nanobubble water or within normal water. Sweetfish (for 3 weeks) and rainbow trout (for 6 weeks) were kept either within air-nanobubble water or within normal water. Finally, 5 week-old male DBA1/J mice were bred with normal free-chaw and free-drinking either of oxygen-nanobubble water or of normal water for 12 weeks. Oxygen-nanobubble significantly increased the dissolved oxygen concentration of water as well as concentration/size of nanobubbles which were relatively stable for 70 days. Air-nanobubble water significantly promoted the height (19.1 vs. 16.7 cm; P<0.05), length of leaves (24.4 vs. 22.4 cm; P<0.01), and aerial fresh weight (27.3 vs. 20.3 g; P<0.01) of Brassica campestris compared to normal water. Total weight of sweetfish increased from 3.0 to 6.4 kg in normal water, whereas it increased from 3.0 to 10.2 kg in air-nanobubble water. In addition, total weight of rainbow trout increased from 50.0 to 129.5 kg in normal water, whereas it increased from 50.0 to 148.0 kg in air-nanobubble water. Free oral intake of oxygen-nanobubble water significantly promoted the weight (23.5 vs. 21.8 g; P<0.01) and the length (17.0 vs. 16.1 cm; P<0.001) of mice compared to that of normal water. We have demonstrated for the first time that oxygen and air-nanobubble water may be potentially effective tools for the growth of lives. PMID:23755221

  1. Critical air/water blow-down in safety valves at low qualities.

    PubMed

    Moncalvo, D; Friedel, L

    2011-02-28

    Critical air/water blow-downs in safety valves for qualities from 0.01 to 0.113 and mass flow rates from 1.5 up to 4.3 kg/s have been observed in our test facility. These critical blow-downs are characterized by a large void fraction and by an intense mixing of the phases both in the valve body and in the outlet pipe. A qualitative estimation of the flow pattern in the outlet pipe using the map of Taitel and Dukler suggests that these air/water flows are intermittent flows--presumably slug flows--evolving to annular flows for qualities above 0.1. Intermittent flows are also predicted for critical air/water and air/glycerine flows taken from the literature for the same safety valve at slightly larger relieving pressures. PMID:21227579

  2. Experimental study on bi-phase flow Air-Oil in Water Emulsion

    NASA Astrophysics Data System (ADS)

    Arnone, Davide; Poesio, Pietro

    2015-11-01

    Bi-phase slug flow oil-in-water emulsion [5%-20%] and air through a horizontal pipe (inner diameter 22mm) is experimentally studied. A test with water and air has been performed as comparison. First we create and analyze the flow pattern map to identify slug flow liquid and air inlet conditions. Flow maps are similar for all the used liquid. A video analysis procedure using an high speed camera has been created to obtain all the characteristics of unit slugs: slug velocity, slug length, bubble velocity, bubbles length and slug frequency. We compare translational velocity and frequency with models finding a good agreement. We calculate the pdfs of the lengths to find the correlations between mean values and STD on different air and liquid superficial velocities. We also perform pressure measurements along the pipe. We conclude that the percentage of oil-in- water has no influence on results in terms of velocity, lengths, frequency and pressure drop.

  3. Validating AIRS upper atmosphere water vapor retrievals using aircraft and balloon in situ measurements

    NASA Astrophysics Data System (ADS)

    Hagan, D. E.; Webster, C. R.; Farmer, C. B.; May, R. D.; Herman, R. L.; Weinstock, E. M.; Christensen, L. E.; Lait, L. R.; Newman, P. A.

    2004-11-01

    This paper provides an initial assessment of the accuracy of the Atmospheric Infrared Sounder (AIRS) water vapor retrievals from 500 to 100 mbar. AIRS satellite measurements are compared with accurate aircraft (NASA WB57) and balloon in situ water vapor measurements obtained during the NASA Pre-Aura Validation Experiment (Pre-AVE) in Costa Rica during Jan. 2004. AIRS retrieval (each pressure level of a single footprint) of water vapor amount agrees with the in situ measurements to ~25% or better if matched closely in time (1 hr) and space (50-100 km). Both AIRS and in situ measurements observe similar significant variation in moisture amount over a two-day period, associated with large-scale changes in weather patterns.

  4. Using advanced oxidation treatment for biofilm inactivation by varying water vapor content in air plasma

    NASA Astrophysics Data System (ADS)

    Ryota, Suganuma; Koichi, Yasuoka

    2015-09-01

    Biofilms are caused by environmental degradation in food factories and medical facilities. The inactivation of biofilms involves making them react with chemicals including chlorine, hydrogen peroxide, and ozone, although inactivation using chemicals has a potential problem because of the hazardous properties of the residual substance and hydrogen peroxide, which have slow reaction velocity. We successfully performed an advanced oxidation process (AOP) using air plasma. Hydrogen peroxide and ozone, which were used for the formation of OH radicals in our experiment, were generated by varying the amount of water vapor supplied to the plasma. By varying the content of the water included in the air, the main product was changed from air plasma. When we increased the water content in the air, hydrogen peroxide was produced, while ozone peroxide was produced when we decreased the water content in the air. By varying the amount of water vapor, we realized a 99.9% reduction in the amount of bacteria in the biofilm when we discharged humidified air only. This work was supported by JSPS KAKENHI Grant Number 25630104.

  5. Air-cooled condensers eliminate plant water use

    SciTech Connect

    Wurtz, W.; Peltier, R.

    2008-09-15

    River or ocean water has been the mainstay for condensing turbine exhaust steam since the first steam turbine began generating electricity. A primary challenge facing today's plant developers, especially in drought-prone regions, is incorporating processes that reduce plant water use and consumption. One solution is to shed the conventional mindset that once-through cooling is the only option and adopt dry cooling technologies that reduce plant water use from a flood to a few sips. A case study at the Astoria Energy plant, New York City is described. 14 figs.

  6. 78 FR 17229 - Notice of Lodging of Proposed Consent Decree Amendment Under the Clean Air Act; the Clean Water...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-20

    ... of Lodging of Proposed Consent Decree Amendment Under the Clean Air Act; the Clean Water Act; the Resource Conservation and Recovery Act; the Missouri Air Conservation Law; the Missouri Clean Water Law and..., the Clean Water Act, the Missouri Clean Water Law, the Resource Conservation and Recovery......

  7. Dry under water: comparative morphology and functional aspects of air-retaining insect surfaces.

    PubMed

    Balmert, Alexander; Florian Bohn, Holger; Ditsche-Kuru, Petra; Barthlott, Wilhelm

    2011-04-01

    Superhydrophobic surfaces prevent certain body parts of semiaquatic and aquatic insects from getting wet while submerged in water. The air layer on these surfaces can serve the insects as a physical gill. Using scanning electron microscopy, we investigated the morphology of air-retaining surfaces in five insect species with different levels of adaptation to aquatic habitats. We found surfaces with either large and sparse hairs (setae), small and dense hairs (microtrichia), or hierarchically structured surfaces with both types of hairs. The structural parameters and air-film persistence of these surfaces were compared. Air-film persistence varied between 2 days in the beetle Galerucella nymphaea possessing only sparse setae and more than 120 days in the bugs Notonecta glauca and Ilyocoris cimicoides possessing dense microtrichia (up to 6.6 × 10(6) microtrichia per millimeter square). From our results, we conclude that the density of the surface structures is the most important factor that affects the persistence of air films. Combinations of setae and microtrichia are not decisive for the overall persistence of the air film but might provide a thick air store for a short time and a thin but mechanically more stable air film for a long time. Thus, we assume that a dense cover of microtrichia acts as a "backup system" preventing wetting of the body surface in case the air-water interface is pressed toward the surface. Our findings might be beneficial for the development of biomimetic surfaces for long-term air retention and drag reduction under water. In addition, the biological functions of the different air retention capabilities are discussed. PMID:21290417

  8. Air-Liquid Interfaces: II. Water Structure and Salts

    NASA Astrophysics Data System (ADS)

    Allen, Heather; Gopalakrishnan, Sandhya; Ma, Gang; Liu, Dingfang; Levering, Lori

    2004-03-01

    Aqueous salt solutions were investigated using scanning sum frequency generation (SFG), a highly surface-selective spectroscopy, and ATR-IR and Raman spectroscopies. Water surface structure was investigated for NaF, NaCl, NaBr and NaI aqueous solutions and surface data indicate a significantly disturbed hydrogen bonding environment from that of neat water. The spectra strongly suggest the presence of bromide and iodide anions in the interfacial region in addition to an increase in interfacial depth; yet the surfaces of the sodium fluoride and chloride salt solutions do not show evidence of surface water perturbation. Ammonium chloride and sulfate, and sodium sulfate aqueous solutions were also investigated. Surface water structure varied considerably between the three salt solutions. Electric double layer effects are indicated.

  9. 20 Years of Air-Water Gas Exchange Observations for Pesticides in the Western Arctic Ocean.

    PubMed

    Jantunen, Liisa M; Wong, Fiona; Gawor, Anya; Kylin, Henrik; Helm, Paul A; Stern, Gary A; Strachan, William M J; Burniston, Deborah A; Bidleman, Terry F

    2015-12-01

    The Arctic has been contaminated by legacy organochlorine pesticides (OCPs) and currently used pesticides (CUPs) through atmospheric transport and oceanic currents. Here we report the time trends and air-water exchange of OCPs and CUPs from research expeditions conducted between 1993 and 2013. Compounds determined in both air and water were trans- and cis-chlordanes (TC, CC), trans- and cis-nonachlors (TN, CN), heptachlor exo-epoxide (HEPX), dieldrin (DIEL), chlorobornanes (ΣCHBs and toxaphene), dacthal (DAC), endosulfans and metabolite endosulfan sulfate (ENDO-I, ENDO-II, and ENDO SUL), chlorothalonil (CHT), chlorpyrifos (CPF), and trifluralin (TFN). Pentachloronitrobenzene (PCNB and quintozene) and its soil metabolite pentachlorothianisole (PCTA) were also found in air. Concentrations of most OCPs declined in surface water, whereas some CUPs increased (ENDO-I, CHT, and TFN) or showed no significant change (CPF and DAC), and most compounds declined in air. Chlordane compound fractions TC/(TC + CC) and TC/(TC + CC + TN) decreased in water and air, while CC/(TC + CC + TN) increased. TN/(TC + CC + TN) also increased in air and slightly, but not significantly, in water. These changes suggest selective removal of more labile TC and/or a shift in chlordane sources. Water-air fugacity ratios indicated net volatilization (FR > 1.0) or near equilibrium (FR not significantly different from 1.0) for most OCPs but net deposition (FR < 1.0) for ΣCHBs. Net deposition was shown for ENDO-I on all expeditions, while the net exchange direction of other CUPs varied. Understanding the processes and current state of air-surface exchange helps to interpret environmental exposure and evaluate the effectiveness of international protocols and provides insights for the environmental fate of new and emerging chemicals. PMID:26196214

  10. EFFECTS OF AIR-SUPERSATURATED WATER ON ADULT SOCKEYE SALMON (ONCORHYNCHUS NERKA)

    EPA Science Inventory

    Adult sockeye salmon (Oncorhynchus nerka) were exposed to air supersaturated water in the laboratory from July 8 to August 13, 1974, approximately the same time period that they are exposed to supersaturated water during their movement through the lower and middle sections of the...

  11. AIR LAND WATER ANALYSIS SYSTEM (ALEAS): A MULTI-MEDIA MODEL FOR TOXIC SUBSTANCES

    EPA Science Inventory

    The Air Land Water Analysis System (ALWAS) is a multi-media environmental model for describing the atmospheric dispersion of toxicants, the surface runoff of deposited toxicants, and the subsequent fate of these materials in surface water bodies. ALWAS dipicts the spatial and tem...

  12. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    SciTech Connect

    Not Available

    1992-03-01

    This report presents information related to the sampling of ground water at the Wright-Patterson Air Force Base. It is part of an investigation into possible ground water contamination. Information concerns well drilling/construction; x-ray diffraction and sampling; soil boring logs; and chain-of-custody records.

  13. Calibration of Dissolved Noble Gas Mass Spectrometric Measurements by an Air-Water Equilibration System

    NASA Astrophysics Data System (ADS)

    Hillegonds, Darren; Matsumoto, Takuya; Jaklitsch, Manfred; Han, Liang-Feng; Klaus, Philipp; Wassenaar, Leonard; Aggarwal, Pradeep

    2013-04-01

    Precise measurements by mass spectrometry of dissolved noble gases (He, Ar, Ne, Kr, Xe) in water samples require careful calibration against laboratory standards with known concentrations. Currently, air pipettes are used for day-to-day calibrations, making estimation of overall analytical uncertainties for dissolved noble gas measurements in water difficult. Air equilibrated water (AEW) is often used as a matrix-equivalent laboratory standard for dissolved gases in groundwater, because of the well-known and constant fractions of noble gases in the atmosphere. AEW standards, however, are only useful if the temperature and pressure of the gas-water equilibrium can be controlled and measured precisely (i.e., to better than 0.5%); contamination and partial sample degassing must also be prevented during sampling. Here we present the details of a new custom air-water equilibration system which consists of an insulated 600 liter tank filled with deionized water, held isothermally at a precise target temperature (<0.05 °C) through the use of a heat exchanger. The temperature and total dissolved gas of the water in the tank are monitored continually, as are atmospheric pressure and air temperature in the laboratory. Different noble gas concentration standards can be reliably produced by accurately controlling the water temperature of the equilibration system. Equilibration characteristics and reproducibility of this system for production of copper tubes containing known amounts of noble gases will be presented.

  14. Evaluation of Vertically Resolved Water Winds from AIRS using Hurricane Katrina

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Dobkowski, Edwin C.; Gregorich, David T.

    2005-01-01

    The knowledge of wind velocity as a function of altitude is key to weather forecast improvements. The ability of hyperspectral sounders in principle to measure vertically resolved water winds, which has long been recognized, has been tested with Atmospheric Infrared Sounder (AIRS) data. AIRS retrievals of total column water above 300 mb have been correlated with the radiosonde upper-tropospheric wind velocity and moisture data. The excellent correlation is illustrated with results obtained from hurricane Katrina and from the western United States. AIRS is a hyperspectral infrared sounder in low Earth orbit. It was launched in May 2002. We illustrate the use of AIRS data for the measurement of upper tropospheric water by using the 2387/cm CO2 R-branch channel and the 1551/cm water vapor channel. The 2387/cm channel measures the temperature at 300 mb totally independent of water vapor. The weighting function of the 1551/cm channel peaks at 300 mb only under moist conditions; the peak shifts downward (higher temperature) for less water and upward (lower temperature) for more water. The difference between the brightness temperatures bt2387 and bt1551 cancels the local several degree weather related variability of the temperature and measures the component due to the water vapor at 300 mb.

  15. RELATIONSHIP BETWEEN WATER TEMPERATURES AND AIR TEMPERATURES FOR CENTRAL US STREAMS

    EPA Science Inventory

    An analysis of the relationship between air and stream water temperature records for 11 rivers located in the central United States was conducted. he reliability of commonly available water temperature records was shown to be of unequal quality. imple linear relationships between...

  16. The patterns and implications of diurnal variations in d-excess of plant water, shallow soil water and air moisture

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Wang, L.; Xiao, H.; Cheng, G.; Ruan, Y.; Zhou, M.; Wang, F.

    2014-04-01

    Deuterium excess (d-excess) of air moisture is traditionally considered as a conservative tracer of oceanic evaporation conditions. Recent studies challenge this view and emphasize the importance of vegetation activity in controlling the dynamics of air moisture d-excess. However direct field observations supporting the role of vegetation in d-excess variations is not well documented. In this study, we quantified d-excess of air moisture, leaf and xylem water of multiple dominant species as well as shallow soil water (5 and 10 cm) at hourly interval during three extensive field campaigns at two climatically different locations within the Heihe River Basin. The results showed that with the increase of temperature (T) and decrease of relative humidity (RH), the δD-δ18O plots of leaf water, xylem water and shallow soil water deviated gradually from their corresponding local meteoric water line. There were significant differences in d-excess values among different water pools at all the study sites. The most positive d-excess values were found in air moisture (9.3‰) and the most negative d-excess values (-85.6‰) were found in leaf water. The d-excess values of air moisture (dmoisture) and leaf water (dleaf) during the sunny days, and shallow soil water (dsoil) during the first sunny day after rain event showed strong diurnal patterns. There were significantly positive relationships between dleaf and RH and negative relationships between dmoisture and RH. The correlations of dleaf and dmoisture with T were opposite to their relationships with RH. In addition, we found the opposite diurnal variations for dleaf and dmoisture during the sunny day, and for dleaf during the sunny days, and shallow soil water dsoil and dmoisture during the first sunny day after rain event. Significant negative relationships were found between dleaf and dmoisture in all the sites during the sunny day. Our results provide direct evidence that dmoisture of the surface air at continental

  17. Comparison of Upper Tropospheric Water Vapor from AIRS and Cryogenic Frostpoint Hygrometers

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Vomel, Holger

    2004-01-01

    Upper tropospheric water vapor (UTWV) from the Atmospheric Infrared Sounder (AIRS) experiment on NASA's Aqua spacecraft has the potential of addressing several important climate questions. The specified AIRS system measurement uncertainty for water vapor is 20 percent absolute averaged over 2 km layers. Cryogenic frostpoint hygrometers (CFH) are balloon-borne water vapor sensors responsive from the surface into the lower stratosphere. Several dozen coincident, collocated CFH profiles have been obtained for AlRS validation. The combination of CFH sensitivity and sample size offers a statistically compelling picture of AIRS UTWV measurement capability. We present a comparison between CFH observations and AlRS retrievals. We focus on the altitude range from the middle troposphere up to heights at the limits of AlRS sensitivity to water vapor, believed to be around 100-1 50 hPa.

  18. Enforcement under the 1990 CAAA: Hot air or hot water?

    SciTech Connect

    Hanisch, J.

    1998-06-01

    The 1990 Clean Air Act Amendments (CAAA) have caused varying degrees of anxiety in facility and environmental managers. How worried should they be? One area of special concern is Title VII, Provisions Relating to Enforcement, which has led to field citations, new civil penalties, provisions for citizen suits and, of most concern, the new criminal provision. The CAAA include strong new enforcement authority, which allows the US Environmental Protection Agency (EPA) to take swift and strong action against violators. The Agency can issue tickets up to $5,000 per violation, penalties up to $25,000 per day for administrative penalties and $250,000 and up to five years in prison for criminal violations. Sources that maintain compliance with air pollution regulations and maintain accurate records and documentation have nothing to fear from these new regulations. However, sources that violate federal requirements, falsify records or knowingly create risks to the environment or human health can look forward to aggressive enforcement by EPA. This article briefly discusses the new provisions, whom they affect, how one may be able to minimize the potential liabilities and what to do if the EPA begins an enforcement action.

  19. The temperature of inspired air influences respiratory water loss in young lambs.

    PubMed

    Riesenfeld, T; Hammarlund, K; Norsted, T; Sedin, G

    1994-01-01

    The temperature of inspired air influences respiratory water loss (RWL) in young lambs. Water loss from the airways, oxygen consumption and carbon dioxide production were measured using an open flow-through system with a mass spectrometer, specially equipped with a water channel, for gas analysis. Measurements were made in 9 newborn lambs at 3 different inspired air temperatures keeping all other environmental factors stable, including the ambient air temperature. The water content of the inspired air was also kept constant. RWL was found to be 9.9 +/- 3.9 (SD) mg/kg/min when the temperature of the inspired air was 30 degrees C and its humidity 30%. At 40 degrees C this loss increased to 11.5 +/- 3.6 mg/kg/min, and at about 60 degrees C it increased further to 26.0 +/- 8.2 mg/kg/min. The oxygen consumption was 10.0 +/- 0.8 (SD) ml/kg/min at 30 degrees C and 10.4 +/- 2.0 ml/kg/min at 60 degrees C, a change which is not significant. Thus RWL is influenced by the temperature of the inspired air, with greater loss at higher temperatures. PMID:8054401

  20. Performance Evaluation of the Operational Air Quality Monitor for Water Testing Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Wallace, William T.; Limero, Thomas F.; Gazda, Daniel B.; Macatangay, Ariel V.; Dwivedi, Prabha; Fernandez, Facundo M.

    2014-01-01

    In the history of manned spaceflight, environmental monitoring has relied heavily on archival sampling. For short missions, this type of sample collection was sufficient; returned samples provided a snapshot of the presence of chemical and biological contaminants in the spacecraft air and water. However, with the construction of the International Space Station (ISS) and the subsequent extension of mission durations, soon to be up to one year, the need for enhanced, real-time environmental monitoring became more pressing. The past several years have seen the implementation of several real-time monitors aboard the ISS, complemented with reduced archival sampling. The station air is currently monitored for volatile organic compounds (VOCs) using gas chromatography-differential mobility spectrometry (Air Quality Monitor [AQM]). The water on ISS is analyzed to measure total organic carbon and biocide concentrations using the Total Organic Carbon Analyzer (TOCA) and the Colorimetric Water Quality Monitoring Kit (CWQMK), respectively. The current air and water monitors provide important data, but the number and size of the different instruments makes them impractical for future exploration missions. It is apparent that there is still a need for improvements in environmental monitoring capabilities. One such improvement could be realized by modifying a single instrument to analyze both air and water. As the AQM currently provides quantitative, compound-specific information for target compounds present in air samples, and many of the compounds are also targets for water quality monitoring, this instrument provides a logical starting point to evaluate the feasibility of this approach. In this presentation, we will discuss our recent studies aimed at determining an appropriate method for introducing VOCs from water samples into the gas phase and our current work, in which an electro-thermal vaporization unit has been interfaced with the AQM to analyze target analytes at the

  1. Water from air: an overlooked source of moisture in arid and semiarid regions.

    PubMed

    McHugh, Theresa A; Morrissey, Ember M; Reed, Sasha C; Hungate, Bruce A; Schwartz, Egbert

    2015-01-01

    Water drives the functioning of Earth's arid and semiarid lands. Drylands can obtain water from sources other than precipitation, yet little is known about how non-rainfall water inputs influence dryland communities and their activity. In particular, water vapor adsorption--movement of atmospheric water vapor into soil when soil air is drier than the overlying air--likely occurs often in drylands, yet its effects on ecosystem processes are not known. By adding (18)O-enriched water vapor to the atmosphere of a closed system, we documented the conversion of water vapor to soil liquid water across a temperature range typical of arid ecosystems. This phenomenon rapidly increased soil moisture and stimulated microbial carbon (C) cycling, and the flux of water vapor to soil had a stronger impact than temperature on microbial activity. In a semiarid grassland, we also observed that non-rainfall water inputs stimulated microbial activity and C cycling. Together these data suggest that, during rain-free periods, atmospheric moisture in drylands may significantly contribute to variation in soil water content, thereby influencing ecosystem processes. The simple physical process of adsorption of water vapor to soil particles, forming liquid water, represents an overlooked but potentially important contributor to C cycling in drylands. PMID:26345615

  2. Water from air: an overlooked source of moisture in arid and semiarid regions

    PubMed Central

    McHugh, Theresa A.; Morrissey, Ember M.; Reed, Sasha C.; Hungate, Bruce A.; Schwartz, Egbert

    2015-01-01

    Water drives the functioning of Earth’s arid and semiarid lands. Drylands can obtain water from sources other than precipitation, yet little is known about how non-rainfall water inputs influence dryland communities and their activity. In particular, water vapor adsorption – movement of atmospheric water vapor into soil when soil air is drier than the overlying air – likely occurs often in drylands, yet its effects on ecosystem processes are not known. By adding 18O-enriched water vapor to the atmosphere of a closed system, we documented the conversion of water vapor to soil liquid water across a temperature range typical of arid ecosystems. This phenomenon rapidly increased soil moisture and stimulated microbial carbon (C) cycling, and the flux of water vapor to soil had a stronger impact than temperature on microbial activity. In a semiarid grassland, we also observed that non-rainfall water inputs stimulated microbial activity and C cycling. Together these data suggest that, during rain-free periods, atmospheric moisture in drylands may significantly contribute to variation in soil water content, thereby influencing ecosystem processes. The simple physical process of adsorption of water vapor to soil particles, forming liquid water, represents an overlooked but potentially important contributor to C cycling in drylands. PMID:26345615

  3. Water from air: An overlooked source of moisture in arid and semiarid regions

    USGS Publications Warehouse

    McHugh, Theresa; Morrissey, Ember M; Reed, Sasha C.; Hungate, Bruce A.; Schwartz, Egbert

    2015-01-01

    Water drives the functioning of Earth’s arid and semiarid lands. Drylands can obtain water from sources other than precipitation, yet little is known about how non-rainfall water inputs influence dryland communities and their activity. In particular, water vapor adsorption – movement of atmospheric water vapor into soil when soil air is drier than the overlying air – likely occurs often in drylands, yet its effects on ecosystem processes are not known. By adding 18O-enriched water vapor to the atmosphere of a closed system, we documented the conversion of water vapor to soil liquid water across a temperature range typical of arid ecosystems. This phenomenon rapidly increased soil moisture and stimulated microbial carbon (C) cycling, and the flux of water vapor to soil had a stronger impact than temperature on microbial activity. In a semiarid grassland, we also observed that non-rainfall water inputs stimulated microbial activity and C cycling. Together these data suggest that, during rain-free periods, atmospheric moisture in drylands may significantly contribute to variation in soil water content, thereby influencing ecosystem processes. The simple physical process of adsorption of water vapor to soil particles, forming liquid water, represents an overlooked but potentially important contributor to C cycling in drylands.

  4. Air Systems Provide Life Support to Miners

    NASA Technical Reports Server (NTRS)

    2014-01-01

    Through a Space Act Agreement with Johnson Space Center, Paragon Space Development Corporation, of Tucson, Arizona, developed the Commercial Crew Transport-Air Revitalization System, designed to provide clean air for crewmembers on short-duration space flights. The technology is now being used to help save miners' lives in the event of an underground disaster.

  5. DOE Asset Revitalization: Sustainability and Waste Management Aspects - 12120

    SciTech Connect

    Robinson, Sharon M.

    2012-07-01

    In February 2011 Secretary of Energy Steven Chu established a Task Force on Asset Revitalization to facilitate a discussion among the Department of Energy (DOE), communities around DOE sites, non-profits, tribal governments, the private sector, and other stakeholders to identify reuse approaches as environmental cleanup efforts at DOE sites reach completion. The Task Force was charged with exploring opportunities to reuse DOE site assets for beneficial purposes and making recommendations to the Under Secretaries of Energy, Science, and Nuclear Security on the formation of an Asset Revitalization Initiative (ARI). The ARI is a Department-wide effort to advance the beneficial reuse of the DOE's unique and diverse mix of assets including land, facilities, infrastructure, equipment, technologies, natural resources, and a highly skilled workforce. The ARI will encourage collaboration between the public and private sectors in order to achieve energy and environmental goals as well as to stimulate and diversify regional economies. The recommendations of the ARI Task Force are summarized below, focusing on the sustainability and waste management aspects. DOE's ongoing completion of cleanup efforts and modernization efforts is creating opportunities to transition under-used or excess assets to future beneficial use. The FY 2011 DOE ARI Task Force determined that DOE's assets could be reused for beneficial purposes such as clean energy production, industrial manufacturing, recreational and conversation use, and other economic development initiatives. Asset revitalization has the potential to both help achieve DOE's energy and environmental goals and diversify regional economies where the sites are located, including providing the support needed to implement large-scale projects that achieve green sustainability goals. Asset revitalization efforts could be accelerated by effectively incorporating future use plans into environmental management and remediation efforts. (authors)

  6. Algorithm Of Revitalization Programme Design For Housing Estates

    NASA Astrophysics Data System (ADS)

    Ostańska, Anna

    2015-09-01

    Demographic problems, obsolescence of existing buildings, unstable economy, as well as misunderstanding of the mechanism that turn city quarters into areas in need for intervention result in the implementation of improvement measures that prove inadequate. The paper puts forward an algorithm of revitalization program for housing developments and presents its implementation. It also showed the effects of periodically run (10 years) three-way diagnostic tests in correlation with the concept of settlement management.

  7. 18 CFR 1316.5 - Clean Air and Water Acts.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... meaning set forth in 40 CFR 15.4. (b) TVA will not award a contract to any offeror whose performance would... is exempt at the time of contract award from the provisions of 40 CFR part 15 as set forth therein... Water Acts (a) If performance of this contract would involve the use of facilities which have given...

  8. 18 CFR 1316.5 - Clean Air and Water Acts.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... meaning set forth in 40 CFR 15.4. (b) TVA will not award a contract to any offeror whose performance would... is exempt at the time of contract award from the provisions of 40 CFR part 15 as set forth therein... Water Acts (a) If performance of this contract would involve the use of facilities which have given...

  9. ANALYSIS OF SUPERSATUATED AIR IN NATURAL WATERS AND RESERVOIRS

    EPA Science Inventory

    This report provides a state of the art summary and evaluation of the methods for the determination of total gas in water samples. The hollow fiber, the hollow tube, and the flat membrane probes were evaluated. A flat surface probe was developed that has a low dead space, high pe...

  10. Finch, Pruyn cleans air and water while increasing steam production

    SciTech Connect

    Reason, J.; Bauer, P.; Makansi, J.

    1981-11-01

    It is shown how a paper manufacturing company in Glens Falls, NY, employs primary and secondary water-treatment plants, chemical recovery from SO/sub 2/ -laden flue gas, a bark boiler, and waste-liquor boilers to balance the conflicting demands of a changing market, increasing power needs, stringent, pollution regulations, higher fuel costs, and limited production space.

  11. Micro-machining of silicon wafer in air and under water

    NASA Astrophysics Data System (ADS)

    Wee, L. M.; Ng, E. Y. K.; Prathama, A. H.; Zheng, H.

    2011-02-01

    Laser ablation micro-machining tests are conducted on silicon wafer, both in air and under flowing water stream, with the use of 355 nm-X AVIA laser. Effects of laser pulse frequency, power level, scan velocity and focal plane position on the associated laser spatter deposition (in air), irradiated areas (under flowing water film) and taper are investigated. It shows that low frequency, i.e. 30-40 kHz, and high peak power result in smaller spatter and irradiated areas, and the hole taper decreases with increase in pulse frequency. Increase in the laser fluence broadens both the areas and increases the hole taper. Both areas enlarge with the increase of scanning velocity of more than 3 mm s -1. The scan velocity has no effect on hole taper in air environment but inconsistent hole taper is obtained under flowing water stream. Furthermore, moving the focal plane position below the workpiece surface contributes relatively smaller areas of spatter deposition, irradiation and taper in comparison to zero focal plane position. Finally, the differences between laser ablation in air and under water are identified. The reduction in the spatter deposition and irradiated areas around the perimeter of the ablated hole and a smaller taper with the use of laser trepan drilling method in air and under water machining are investigated in this paper.

  12. Reactive Distillation and Air Stripping Processes for Water Recycling and Trace Contaminant Control

    NASA Technical Reports Server (NTRS)

    Boul, Peter J.; Lange, Kevin E.; Conger, Bruce; Anderson, Molly

    2009-01-01

    Reactive distillation designs are considered to reduce the presence of volatile organic compounds in the purified water. Reactive distillation integrates a reactor with a distillation column. A review of the literature in this field has revealed a variety of functional reactive columns in industry. Wastewater may be purified by a combination of a reactor and a distiller (e.g., the EWRS or VPCAR concepts) or, in principle, through a design which integrates the reactor with the distiller. A review of the literature in reactive distillation has identified some different designs in such combinations of reactor and distiller. An evaluation of reactive distillation and reactive air stripping is presented with regards to the reduction of volatile organic compounds in the contaminated water and air. Among the methods presented, an architecture is presented for the evaluation of the simultaneous oxidation of organics in air and water. These and other designs are presented in light of potential improvements in power consumptions and air and water purities for architectures which include catalytic activity integrated into the water processor. In particular, catalytic oxidation of organics may be useful as a tool to remove contaminants that more traditional distillation and/or air stripping columns may not remove. A review of the current leading edge at the commercial level and at the research frontier in catalytically active materials is presented. Themes and directions from the engineering developments in catalyst design are presented conceptually in light of developments in the nanoscale chemistry of a variety of catalyst materials.

  13. Bifurcations of a creeping air-water flow in a conical container

    NASA Astrophysics Data System (ADS)

    Balci, Adnan; Brøns, Morten; Herrada, Miguel A.; Shtern, Vladimir N.

    2016-04-01

    This numerical study describes the eddy emergence and transformations in a slow steady axisymmetric air-water flow, driven by a rotating top disk in a vertical conical container. As water height Hw and cone half-angle β vary, numerous flow metamorphoses occur. They are investigated for β =30°, 45°, and 60°. For small Hw , the air flow is multi-cellular with clockwise meridional circulation near the disk. The air flow becomes one cellular as Hw exceeds a threshold depending on β . For all β , the water flow has an unbounded number of eddies whose size and strength diminish as the cone apex is approached. As the water level becomes close to the disk, the outmost water eddy with clockwise meridional circulation expands, reaches the interface, and induces a thin layer with anticlockwise circulation in the air. Then this layer expands and occupies the entire air domain. The physical reasons for the flow transformations are provided. The results are of fundamental interest and can be relevant for aerial bioreactors.

  14. Air-Water Exchange of Legacy and Emerging Organic Pollutants across the Great Lakes

    NASA Astrophysics Data System (ADS)

    Lohmann, R.; Ruge, Z.; Khairy, M.; Muir, D.; Helm, P.

    2014-12-01

    Organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) are transported to great water bodies via long-range atmospheric transport and released from the surface water as air concentrations continue to diminish. As the largest fresh water bodies in North America, the Great Lakes have both the potential to accumulate and serve as a secondary source of persistent bioaccumulative toxins. OCP and PCB concentrations were sampled at 30+ sites across Lake Superior, Ontario and Erie in the summer of 2011. Polyethylene passive samplers (PEs) were simultaneously deployed in surface water and near surface atmosphere to determine air-water gaseous exchange of OCPs and PCBs. In Lake Superior, surface water and atmospheric concentrations were dominated by α-HCH (average 250 pg/L and 4.2 pg/m3, respectively), followed by HCB (average 17 pg/L and 89 pg/m3, respectively). Air-water exchange varied greatly between sites and individual OCPs, however α-endosulfan was consistently deposited into the surface water (average 19 pg/m2/day). PCBs in the air and water were characterized by penta- and hexachlorobiphenyls with distribution along the coast correlated with proximity to developed areas. Air-water exchange gradients generally yielded net volatilization of PCBs out of Lake Superior. Gaseous concentrations of hexachlorobenzene, dieldrin and chlordanes were significantly higher (p < 0.05) at Lake Erie than Lake Ontario. A multiple linear regression that incorporated meteorological, landuse and population data was used to explain variability in the atmospheric concentrations. Results indicated that landuse (urban and/or cropland) greatly explained the variability in the data. Freely dissolved concentrations of OCPs (water quality guidelines for the protection of human health from the consumption of fish. Spatial distributions of

  15. Laboratory study of air sparging of TCE-contaminated saturated soils and ground water

    SciTech Connect

    Adams, J.A.; Reddy, K.R.

    1999-06-30

    Air sparging has proven to be an effective remediation technique for treating saturated soils and ground water contaminated by volatile organic compounds (VOCs). Since little is known about the system variables and mass transfer mechanisms important to air sparging, several researchers have recently performed laboratory investigations to study such issues. This paper presents the results of column experiments performed to investigate the behavior of dense nonaqueous phase liquids (DNAPLs), specifically trichloroethylene (TCE), during air sparging. The specific objectives of the study were (1) to compare the removal of dissolved TCE with the removal of dissolved light nonaqueous phase liquids (LNAPLs), such as benzene or toluene; (2) to determine the effect of injected air-flow rate on dissolved TCE removal; (3) to determine the effect of initial dissolved TCE concentration on removal efficiency; and (4) to determine the differences in removal between dissolved and pure-chase TCE. The test results showed that (1) the removal of dissolved TCE was similar to that of dissolved LNAPL; (2) increased air-injection rates led to increased TCE removal at lower ranges of air injection, but further increases at higher ranges of air injection did not increase the rate of removal, indicating a threshold removal rate had been reached; (3) increased initial concentration of dissolved TCE resulted in similar rates of removal; and (4) the removal pf pure-phase TCE was difficult using a low air-injection rate, but higher air-injection rates led to easier removal.

  16. Superhydrophobic surfaces of the water bug Notonecta glauca: a model for friction reduction and air retention.

    PubMed

    Ditsche-Kuru, Petra; Schneider, Erik S; Melskotte, Jan-Erik; Brede, Martin; Leder, Alfred; Barthlott, Wilhelm

    2011-01-01

    Superhydrophobic surfaces of plants and animals are of great interest for biomimetic applications. Whereas the self-cleaning properties of superhydrophobic surfaces have been extensively investigated, their ability to retain an air film while submerged under water has not, in the past, received much attention. Nevertheless, air retaining surfaces are of great economic and ecological interest because an air film can reduce friction of solid bodies sliding through the water. This opens perspectives for biomimetic applications such as low friction fluid transport or friction reduction on ship hulls. For such applications the durability of the air film is most important. While the air film on most superhydrophobic surfaces usually lasts no longer than a few days, a few semi-aquatic plants and insects are able to hold an air film over a longer time period. Currently, we found high air film persistence under hydrostatic conditions for the elytra of the backswimmer Notonecta glauca which we therefore have chosen for further investigations. In this study, we compare the micro- and nanostructure of selected body parts (sternites, upper side of elytra, underside of elytra) in reference to their air retaining properties. Our investigations demonstrate outstanding air film persistence of the upper side of the elytra of Notonecta glauca under hydrostatic and hydrodynamic conditions. This hierarchically structured surface was able to hold a complete air film under hydrostatic conditions for longer than 130 days while on other body parts with simple structures the air film showed gaps (underside of elytra) or even vanished completely after a few days (sternites). Moreover, the upper side of the elytra was able to keep an air film up to flow velocities of 5 m/s. Obviously the complex surface structure with tiny dense microtrichia and two types of larger specially shaped setae is relevant for this outstanding ability. Besides high air film persistence, the observation of a

  17. Air Evaporation closed cycle water recovery technology - Advanced energy saving designs

    NASA Technical Reports Server (NTRS)

    Morasko, Gwyndolyn; Putnam, David F.; Bagdigian, Robert

    1986-01-01

    The Air Evaporation water recovery system is a visible candidate for Space Station application. A four-man Air Evaporation open cycle system has been successfully demonstrated for waste water recovery in manned chamber tests. The design improvements described in this paper greatly enhance the system operation and energy efficiency of the air evaporation process. A state-of-the-art wick feed design which results in reduced logistics requirements is presented. In addition, several design concepts that incorporate regenerative features to minimize the energy input to the system are discussed. These include a recuperative heat exchanger, a heat pump for energy transfer to the air heater, and solar collectors for evaporative heat. The addition of the energy recovery devices will result in an energy reduction of more than 80 percent over the systems used in earlier manned chamber tests.

  18. Portable RF-Sensor System for the Monitoring of Air Pollution and Water Contamination

    PubMed Central

    Kang, Joonhee; Kim, Jin Young

    2012-01-01

    Monitoring air pollution including the contents of VOC, O3, NO2, and dusts has attracted a lot of interest in addition to the monitoring of water contamination because it affects directly to the quality of living conditions. Most of the current air pollution monitoring stations use the expensive and bulky instruments and are only installed in the very limited area. To bring the information of the air and water quality to the public in real time, it is important to construct portable monitoring systems and distribute them close to our everyday living places. In this work, we have constructed a low-cost portable RF sensor system by using 400 MHz transceiver to achieve this goal. Accuracy of the measurement was comparable to the ones used in the expensive and bulky commercial air pollution forecast systems. PMID:22928151

  19. Hydrogeology, simulated ground-water flow, and ground-water quality, Wright-Patterson Air Force Base, Ohio

    USGS Publications Warehouse

    Dumouchelle, D.H.; Schalk, C.W.; Rowe, G.L.; De Roche, J.T.

    1993-01-01

    Ground water is the primary source of water in the Wright-Patterson Air Force Base area. The aquifer consists of glacial sands and gravels that fill a buried bedrock-valley system. Consolidated rocks in the area consist of poorly permeable Ordovician shale of the Richmondian stage, in the upland areas, the Brassfield Limestone of Silurian age. The valleys are filled with glacial sediments of Wisconsinan age consisting of clay-rich tills and coarse-grained outwash deposits. Estimates of hydraulic conductivity of the shales based on results of displacement/recovery tests range from 0.0016 to 12 feet per day; estimates for the glacial sediments range from less than 1 foot per day to more than 1,000 feet per day. Ground water flow from the uplands towards the valleys and the major rivers in the region, the Great Miami and the Mad Rivers. Hydraulic-head data indicate that ground water flows between the bedrock and unconsolidated deposits. Data from a gain/loss study of the Mad River System and hydrographs from nearby wells reveal that the reach of the river next to Wright-Patterson Air Force Base is a ground-water discharge area. A steady-state, three-dimensional ground-water-flow model was developed to simulate ground-water flow in the region. The model contains three layers and encompasses about 100 square miles centered on Wright-Patterson Air Force Base. Ground water enters the modeled area primarily by river leakage and underflow at the model boundary. Ground water exits the modeled area primarily by flow through the valleys at the model boundaries and through production wells. A model sensitivity analysis involving systematic changes in values of hydrologic parameters in the model indicates that the model is most sensitive to decreases in riverbed conductance and vertical conductance between the upper two layers. The analysis also indicates that the contribution of water to the buried-valley aquifer from the bedrock that forms the valley walls is about 2 to 4

  20. The adsorption onto fibrous activated carbon applications to water and air treatments

    SciTech Connect

    Le Cloirec, P.; Brasquet, C.; Subrenat, E.

    1996-12-31

    The adsorption of polluted fluids is performed by fiber activated carbon (FAC). The adsorption is carried out in a batch or dynamic reactor. Classic models are applied and kinetic constants are calculated. Results showed that the performances of FAC are significantly higher than that of granular activated carbon (GAC) in terms of adsorption velocity and selectivity. The breakthrough curves obtained with FAC adsorbers are particularly steep, suggesting a smaller mass transfer resistance than GAC. The adsorption zone in the FAC bed is about 3.4 mm and is not really dependent on the water flow rate within the studied range. Applications are developed in water and air treatments. Examples are given in the micropollutants removal of an aqueous solution. Air loaded with VOC or/and odorous molecules is treated by fibers. Regeneration of this material is performed by heating by joule effects or electromagnetic induction. Theses original approaches to water or air treatment processes are successfully put to use.

  1. The adsorption onto fibrous activated carbon - applications to water and air treatments

    SciTech Connect

    Le Cloirec, P.; Subrenat, E.

    1996-10-01

    The adsorption of polluted fluids is performed by fiber activated carbon (FAC). The adsorption is carried out in a batch or dynamic reactor. Classic model`s are applied and kinetic constants are calculated. Results showed that the performances of FAC are significantly higher than that of granular activated carbon (GAC) in terms of adsorption velocity. and selectivity. The breakthrough curves obtained with FAC adsorbers are particularly steep, suggesting a smaller mass transfer resistance than GAC. The adsorption zone in the FAC bed is about 3.4 mm and is not really dependent on the water flow rare within the studied range. Applications are developed in water and air treatments. Examples are given in the micropollutants removal of an aqueous solution. Air loaded with VOC or/and odorous molecules is treated by fibers. Regeneration of this material is performed by heating by joule effects or electromagnetic induction. These original approaches to water or air treatment processes are successfully put to use.

  2. Leaf photosynthetic and water-relations responses for 'Valencia' orange trees exposed to oxidant air pollution

    SciTech Connect

    Olszyk, D.M.; Takemoto, B.K.; Poe, M.

    1991-01-01

    Leaf responses were measured to test a hypothesis that reduced photosynthetic capacity and/or altered water relations were associated with reductions in yield for 'Valencia' orange trees (Citrus sinensis (L.), Osbeck) exposed to ambient oxidant air pollution. Exposures were continuous for 4 years to three levels of oxidants (in charcoal-filtered, half-filtered, and non-filtered air). Oxidants had no effect on net leaf photosynthetic rates or on photosynthetic pigment concentrations. A single set of measurements indicated that oxidants increased leaf starch concentrations (24%) prior to flowering, suggesting a change in photosynthate allocation. Leaves exposed to oxidants had small, but consistent, changes in water relations over the summer growing season, compared to trees growing in filtered air. Other changes included decreased stomatal conductance (12%) and transpiration (9%) rates, and increased water pressure potentials (5%). While all responses were subtle, their cumulative impact over 4 years indicated that 'Valencia' orange trees were subject to increased ambient oxidant stress.

  3. Vision of the Humboldt penguin (Spheniscus humboldti) in air and water.

    PubMed

    Sivak, J; Howland, H C; McGill-Harelstad, P

    1987-01-22

    Refractive states measured by retinoscopy and photorefraction indicate that the eyes of the Humboldt penguin, Spheniscus humboldti, are approximately emmetropic in air and water. Extensive myopia in air, as predicted by earlier authors and by a recent anatomical study, is non-existent. Photorefractive measurements of the refractive state, in water, of the Humboldt penguin indicate that it can accommodate sufficiently to make up the loss of the refractive power of the cornea. The cornea of the Humboldt penguin is flattened relative to the overall size of the eye. In all these respects (corneal flattening, and accommodation in air and water) the eyes of Humboldt penguins are like those of gentoo, (Pygoscelis papua), rockhopper (Eudyptes crestatus), Magellanic (Spheniscus magellanicus), and king penguins (Aptenodytes patagonica). PMID:2881308

  4. Microorganism levels in air near spray irrigation of municipal waste water: The Lubbock Infection Surveillance Study

    SciTech Connect

    Camann, D.E.; Moore, B.E.; Harding, H.J.; Sorber, C.A.

    1988-01-01

    The Lubbock Infection Surveillance Study (LISS) investigated possible adverse effects on human health from slow-rate land application of municipal wastewater. Extensive air sampling was conducted to characterize the irrigation site as a source of infectious microbial aerosols. Spray irrigation of poor-quality waste water received directly from the treatment plant significantly elevated air densities of fecal coliforms, fecal streptococci, mycobacteria, and coliphage above ambient background levels for at least 200 m downwind. Enteroviruses were repeatedly recovered at 44 to 60 m downwind at a higher level (geometric mean = 0.05 pfu/m3) than observed at other waste water aerosol sites in the U.S. and in Israel. Waste water storage in reservoirs reduced downwind air densities of indicator organisms by two orders of magnitude.

  5. Ground-water conditions at Beale Air Force Base and vicinity, California

    USGS Publications Warehouse

    Page, R.W.

    1980-01-01

    Ground-water conditions were studied in a 168-square-mile area between the Sierra Nevada and the Feather River in Yuba County, Calif. The area is in the eastern part of the Sacramento Valley and includes most of Beale Air Force Base. Source, occurrence, movement, and chemical quality of the ground water were evaluated. Ground water occurs in sedimentary and volcanic rocks of Tertiary and Quaternary age. The base of the freshwater is in the undifferentiated sedimentary rocks of Oligocene and Eocene age, that contain water of high dissolved-solids concentration. The ground water occurs under unconfined and partly confined conditions. At Beale Air Force Base it is at times partly confined. Recharge is principally from the rivers. Pumpage in the study area was estimated to be 129,000 acre-feet in 1975. In the 1960's, water levels in most parts of the study area declined less rapidly than in earlier years or became fairly stable. In the 1970's, water levels at Beale Air Force Base declined only slightly. Spacing of wells on the base and rates of pumping are such that excessive pumping interference is avoided. Water quality at the base and throughout the study area is generally good. Dissolved-solids concentrations are 700 to 900 milligrams per liter in the undifferentiated sedimentary rocks beneath the base well field. (USGS)

  6. Demonstration of adaptive optics for mitigating laser propagation through a random air-water interface

    NASA Astrophysics Data System (ADS)

    Land, Phillip; Majumdar, Arun K.

    2016-05-01

    This paper describes a new concept of mitigating signal distortions caused by random air-water interface using an adaptive optics (AO) system. This is the first time the concept of using an AO for mitigating the effects of distortions caused mainly by a random air-water interface is presented. We have demonstrated the feasibility of correcting the distortions using AO in a laboratory water tank for investigating the propagation effects of a laser beam through an airwater interface. The AO system consisting of a fast steering mirror, deformable mirror, and a Shack-Hartmann Wavefront Sensor for mitigating surface water distortions has a unique way of stabilizing and aiming a laser onto an object underneath the water. Essentially the AO system mathematically takes the complex conjugate of the random phase caused by air-water interface allowing the laser beam to penetrate through the water by cancelling with the complex conjugates. The results show the improvement of a number of metrics including Strehl ratio, a measure of the quality of optical image formation for diffraction limited optical system. These are the first results demonstrating the feasibility of developing a new sensor system such as Laser Doppler Vibrometer (LDV) utilizing AO for mitigating surface water distortions.

  7. The interaction of water mists and premixed propane-air flames under low-gravity conditions

    NASA Astrophysics Data System (ADS)

    Abbud-Madrid, Angel; Riedel, Edward P.; McKinnon, J. Thomas

    1999-01-01

    A preliminary investigation of the effect of water mists on premixed flame propagation in a cylindrical tube under low-gravity conditions has been conducted to define the scientific and technical objectives of the experiments to be performed on the Space Shuttle and International Space Station microgravity environments. The inhibiting characteristics of water mists in propagating flames of propane-air mixtures at various equivalence ratios are studied. The effects of droplet size and concentration on the laminar flame speed are used as the measure of fire suppression efficacy. Flame speed and propagation behavior are monitored by a video camera. Reduced gravity is obtained with an aircraft flying parabolic trajectories. Measurements and qualitative observations from the low-gravity experiments clearly show the effect of water mist on flame speed abatement, flame shape, and radiant emission. For lean propane-air mixtures, the flame speed increases at first with low water-mist concentrations and then decreases below its dry value when higher water-mist volumes are introduced in the tube. This phenomenon may be due in part to the heating of the unburned mixture ahead of the flame as a result of radiation absorption by the water droplets. For rich propane-air mixtures, similar behavior of flame speed vs. water concentration is encountered but in this case is mostly due to the formation of cellular flames. At high water loads both lean and rich flames exhibit extinction before reaching the end of the tube.

  8. Using aliphatic alcohols as gaseous tracers in determination of water contents and air-water interfacial areas in unsaturated sands

    NASA Astrophysics Data System (ADS)

    Sung, Menghau; Chen, Bi-Hsiang

    2011-11-01

    A new type of gaseous tracer utilizing nontoxic aliphatic alcohols for the determination of water content and air-water interfacial area is tested on unsaturated sands of low water content. Alcohol vapors are generated at room temperature and passed through the experimental sand column. Breakthrough curves (BTCs) of these vapors are obtained by monitoring their effluent concentrations using GC-FID. The retardation factor with respect to each vapor transport process is obtained by optimizing BTCs data using the CXTFIT program in the reverse problem mode. The water content and the interfacial area are subsequently calculated from their retardation factors by both equilibrium and nonequilibrium transport models. Experimental results indicate that the pentanol tracer is feasible in the determination of water content at conditions when the degree of water saturation is low. In the determination of air-water interfacial area, decanol is selected due to its interfacial adsorption characteristics. By comparing to interfacial areas from theoretical predictions as well as other conventional tarcer methods, the ones determined from the decanol tracer tests are found to be close to the true interfacial areas when the water content is low.

  9. 33 CFR 334.330 - Atlantic Ocean and connecting waters in vicinity of Myrtle Island, Va.; Air Force practice...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Atlantic Ocean and connecting waters in vicinity of Myrtle Island, Va.; Air Force practice bombing, rocket firing, and gunnery range... waters in vicinity of Myrtle Island, Va.; Air Force practice bombing, rocket firing, and gunnery...

  10. 33 CFR 334.330 - Atlantic Ocean and connecting waters in vicinity of Myrtle Island, Va.; Air Force practice...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Atlantic Ocean and connecting waters in vicinity of Myrtle Island, Va.; Air Force practice bombing, rocket firing, and gunnery range... waters in vicinity of Myrtle Island, Va.; Air Force practice bombing, rocket firing, and gunnery...

  11. Optimizing the air flotation water treatment process. Final report, May 1997

    SciTech Connect

    Barnett, B.

    1998-09-01

    The injection water for the Nelson Project is a combination of produced and make-up water, typical of many Eastern Kansas operations. The make-up water is a low-salinity salt water from the Arbuckle Formation and contains dissolved minerals and sulfides. The produced water contains suspended oil, suspended clay and silt particles, along with a combination of other dissolved minerals. The combination of the two waters causes several undesirable reactions. The suspended solids load contained in the combined waters would plug a 75-micron plant bag filter within one day. Wellhead filters of 75-micron size were also being used on the injection wells. The poor water quality resulted in severe loss of injectivity and frequent wellbore cleaning of the injection wells. Various mechanical and graded-bed filtration methods were considered for cleaning the water. These methods were rejected due to the lack of field equipment and service availability. A number of vendors did not even respond to the author`s request. The air flotation process was selected as offering the best hope for a long-term solution. The objective of this work is to: increase the cost effectiveness of the process through optimizing process design factors and operational parameters. A vastly modified air flotation system is the principal tool for accomplishing the project objective. The air flotation unit, as received from manufacturer Separation Specialist, was primarily designed to remove oil from produced water. The additional requirement for solids removal necessitated major physical changes in the unit. Problems encountered with the air flotation unit and specific modifications are detailed in the body of the report.

  12. Laboratory scale studies on mitigation of high 222Rn concentrations in air and water

    NASA Astrophysics Data System (ADS)

    Mamoon, A.; Gomma, M. A.; Sohsah, M.

    2004-01-01

    In view of the occasional occurrence of high 222Rn concentrations in air and water under certain circumstances, and in view of the potential health hazards of increased levels of 222Rn in respirable air and in potable water, mitigation of such high 222Rn concentration has become of primary concern. To facilitate the study of the efficiency of the various 222Rn mitigating factors simple laboratory systems were used. Altered alkali granite was used as radon source to enrich air and a piece of pitchblende was used as radon source to enrich water samples. Both enriched media will then be subjected to the mitigation treatments. Charcoal canister technique along with gamma spectrometry were used to measure 222Rn concentrations in air before and after the different mitigating treatments. These were: use of ventilation, radon barriers such as geo-membranes and aluminum sheet, and sealant such as epoxy and vinyl tape. Regarding high levels of 222Rn in air ventilation was the most efficient mitigating factor. Standard liquid scintillation counting was used to measure 222Rn concentrations in water before and after the different mitigation treatments. These were: use of aeration, activated charcoal and heating. Regarding high levels of 222Rn in water, aeration using bubblers and large volume of air was most effective in removing radon from water in a short time. However all the mitigating factors proved effective, in different degrees in decreasing 222Rn concentrations in the respective media. The result from these studies are in general agreement with reports in the literature. It can be concluded then that the different 222Rn mitigating factors can be tested and compared effectively under controlled conditions using simple laboratory scale systems.

  13. Interaction of Charged Colloidal Particles at the Air-Water Interface.

    PubMed

    Girotto, Matheus; Dos Santos, Alexandre P; Levin, Yan

    2016-07-01

    We study, using Monte Carlo simulations, the interaction between charged colloidal particles confined to the air-water interface. The dependence of force on ionic strength and counterion valence is explored. For 1:1 electrolyte, we find that the electrostatic interaction at the interface is very close to the one observed in the bulk. On the other hand, for salts with multivalent counterions, an interface produces an enhanced attraction between like charged colloids. Finally, we explore the effect of induced surface charge at the air-water interface on the interaction between colloidal particles. PMID:26551757

  14. Pulmonary epithelial permeability after inhaling saline, distilled water ''fog'' and cold air

    SciTech Connect

    Borland, C.; Chamberlain, A.; Barber, B.; Higenbottam, T.

    1985-03-01

    It is recognized that hyperventilation of cold air and the inhalation of fine mists of distilled water provoke significant bronchoconstriction in the asthmatic individual, yet little is known as to how these provocations affect the structural integrity of the alveolar epithelial membrane. In 11 normal subjects, the following effects have been studied: cold air hyperventilation for three minutes, inhalation of 80 L of ultrasonically nebulized distilled water ''fog,'' and 80 L of isotonic saline ''fog'' on the half time clearance (T1/2) from the alveoli of technetium 99m diethylene triamine pentaacetate (DTPA), inhaled as an aerosol. The DTPA T1/2 provided a measurement of pulmonary epithelial permeability.

  15. Experimentally probing the libration of interfacial water: the rotational potential of water is stiffer at the air/water interface than in bulk liquid.

    PubMed

    Tong, Yujin; Kampfrath, Tobias; Campen, R Kramer

    2016-07-21

    Most properties of liquid water are determined by its hydrogen-bond network. Because forming an aqueous interface requires termination of this network, one might expect the molecular level properties of interfacial water to markedly differ from water in bulk. Intriguingly, much prior experimental and theoretical work has found that, from the perspective of their time-averaged structure and picosecond structural dynamics, hydrogen-bonded OH groups at an air/water interface behave the same as hydrogen-bonded OH groups in bulk liquid water. Here we report the first experimental observation of interfacial water's libration (i.e. frustrated rotation) using the laser-based technique vibrational sum frequency spectroscopy. We find this mode has a frequency of 834 cm(-1), ≈165 cm(-1) higher than in bulk liquid water at the same temperature and similar to bulk ice. Because libration frequency is proportional to the stiffness of water's rotational potential, this increase suggests that one effect of terminating bulk water's hydrogen bonding network at the air/water interface is retarding rotation of water around intact hydrogen bonds. Because in bulk liquid water the libration plays a key role in stabilizing reaction intermediates and dissipating excess vibrational energy, we expect the ability to probe this mode in interfacial water to open new perspectives on the kinetics of heterogeneous reactions at aqueous interfaces. PMID:27339861

  16. Understanding the structure of hydrophobic surfactants at the air/water interface from molecular level.

    PubMed

    Zhang, Li; Liu, Zhipei; Ren, Tao; Wu, Pan; Shen, Jia-Wei; Zhang, Wei; Wang, Xinping

    2014-11-25

    Understanding the behavior of fluorocarbon surfactants at the air/water interface is crucial for many applications, such as lubricants, paints, cosmetics, and fire-fighting foams. In this study, molecular dynamics (MD) simulations were employed to investigate the microscopic properties of non-ionic fluorocarbon surfactants at the air/water interface. Several properties, including the distribution of head groups, the distribution probability of the tilt angle between hydrophobic tails with respect to the xy plane, and the order parameter of surfactants, were computed to probe the structure of hydrophobic surfactants at the air/water interface. The effects of the monomer structure on interfacial phenomena of non-ionic surfactants were investigated as well. It is observed that the structure of fluorocarbon surfactants at the air/water interface is more ordered than that of hydrocarbons, which is dominated by the van der Waals interaction between surfactants and water molecules. However, replacing one or two CF2 with one or two CH2 group does not significantly influence the interfacial structure, suggesting that hydrocarbons may be promising alternatives to perfluorinated surfactants. PMID:25358083

  17. Hydrodynamics of a self-propelled camphor boat at the air-water interface

    NASA Astrophysics Data System (ADS)

    Akella, Sathish; Singh, Dhiraj; Singh, Ravi; Bandi, Mahesh

    2015-11-01

    A camphor tablet, when placed at the air-water interface undergoes sublimation and camphor vapour spreads radially outwards across the surface due to Marangoni forces. This steady camphor influx from tablet onto the air-water interface is balanced by the camphor outflux due to evaporation. When spontaneous fluctuations in evaporation break the axial symmetry of Marangoni force acting radially outwards, the camphor tablet is propelled like a boat along the water surface. We report experiments on the hydrodynamics of a self-propelled camphor boat at air-water interfaces. We observe three different modes of motion, namely continuous, harmonic and periodic, due to the volatile nature of camphor. We explain these modes in terms of ratio of two time-scales: the time-scale over which viscous forces are dominant over the Marangoni forces (τη) and the time-scale over which Marangoni forces are dominant over the viscous forces (τσ). The continuous, harmonic and periodic motions are observed when τη /τσ ~ 1 , τη /τσ >= 1 and τη /τσ >> 1 respectively. Experimentally, the ratio of the time scales is varied by changing the interfacial tension of the air-water interface using Sodium Dodecyl Sulfate. This work was supported by the Collective Interactions Unit, OIST Graduate University.

  18. Coupling of phytoplankton uptake and air-water exchange of persistent organic pollutants

    SciTech Connect

    Dachs, J.; Eisenreich, S.J.; Baker, J.E.; Ko, F.C.; Jeremiason, J.D.

    1999-10-15

    A dynamic model that couples air-water exchange and phytoplankton uptake of persistent organic pollutants has been developed and then applied to PCB data from a small experimental lake. A sensitivity analysis of the model, taking into account the influence of physical environmental conditions such as temperature, wind speed, and mixing depth as well as plankton-related parameters such as biomass and growth rate was carried out for a number of PCBs with different physical-chemical properties. The results indicate that air-water exchange dynamics are influenced not only by physical parameters but also by phytoplankton biomass and growth rate. New phytoplankton production results in substantially longer times to reach equilibrium. Phytoplankton uptake-induced depletion of the dissolved phase concentration maintains air and water phases out of equilibrium. Furthermore, PCBs in phytoplankton also take longer times to reach equilibrium with the dissolved water phase when the latter is supported by diffusive air-water exchange. However, both model analysis and model application to the Experimental Lakes Area of northwestern Ontario (Canada) suggest that the gas phase supports the concentrations of persistent organic pollutants, such as PCBs, in atmospherically driven aquatic environments.

  19. Air - water temperature relationships in the trout streams of southeastern Minnesota’s carbonate - sandstone landscape

    USGS Publications Warehouse

    Krider, Lori A.; Magner, Joseph A.; Perry, Jim; Vondracek, Bruce C.; Ferrington, Leonard C., Jr.

    2013-01-01

    Carbonate-sandstone geology in southeastern Minnesota creates a heterogeneous landscape of springs, seeps, and sinkholes that supply groundwater into streams. Air temperatures are effective predictors of water temperature in surface-water dominated streams. However, no published work investigates the relationship between air and water temperatures in groundwater-fed streams (GWFS) across watersheds. We used simple linear regressions to examine weekly air-water temperature relationships for 40 GWFS in southeastern Minnesota. A 40-stream, composite linear regression model has a slope of 0.38, an intercept of 6.63, and R2 of 0.83. The regression models for GWFS have lower slopes and higher intercepts in comparison to surface-water dominated streams. Regression models for streams with high R2 values offer promise for use as predictive tools for future climate conditions. Climate change is expected to alter the thermal regime of groundwater-fed systems, but will do so at a slower rate than surface-water dominated systems. A regression model of intercept vs. slope can be used to identify streams for which water temperatures are more meteorologically than groundwater controlled, and thus more vulnerable to climate change. Such relationships can be used to guide restoration vs. management strategies to protect trout streams.

  20. Performance Evaluation of the Operational Air Quality Monitor for Water Testing Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Wallace, William T.; Limero, Thomas F.; Gazda, Daniel B.; Minton, John M.; Macatangay, Ariel V.; Dwivedi, Prabha; Fernandez, Facundo M.

    2014-01-01

    Real-time environmental monitoring on ISS is necessary to provide data in a timely fashion and to help ensure astronaut health. Current real-time water TOC monitoring provides high-quality trending information, but compound-specific data is needed. The combination of ETV with the AQM showed that compounds of interest could be liberated from water and analyzed in the same manner as air sampling. Calibration of the AQM using water samples allowed for the quantitative analysis of ISS archival samples. Some calibration issues remain, but the excellent accuracy of DMSD indicates that ETV holds promise for as a sample introduction method for water analysis in spaceflight.

  1. Investigation of ground-water pollution at Air Force Plant Number 4, Fort Worth Texas

    SciTech Connect

    Not Available

    1986-10-01

    Beginning in December 1982, an extensive investigation was conducted to determine the presence and extent of industrial chemical pollution at Air Force Plant No. 4. A major portion of this work was devoted to the testing of ground water flowing within the overburden. In addition, 16 wells were drilled to monitor for polluted ground water in the upper and middle zones of the Paluxy Formation. Paluxy ground water was monitored; trichloroethylene, 1,2-trans-dichloroethylene, and lesser amounts of other chlorinated hydrocarbons, and the existence of abnormally high water levels in the upper zone of the Paluxy Formation in well P-8(U) were discovered.

  2. Research on the water hammer protection of the long distance water supply project with the combined action of the air vessel and over-pressure relief valve

    NASA Astrophysics Data System (ADS)

    Li, D. D.; Jiang, J.; Zhao, Z.; Yi, W. S.; Lan, G.

    2013-12-01

    We take a concrete pumping station as an example in this paper. Through the calculation of water hammer protection with a specific pumping station water supply project, and the analysis of the principle, mathematical models and boundary conditions of air vessel and over-pressure relief valve we show that the air vessel can protect the water conveyance system and reduce the transient pressure damage due to various causes. Over-pressure relief valve can effectively reduce the water hammer because the water column re-bridge suddenly stops the pump and prevents pipeline burst. The paper indicates that the combination set of air vessel and over-pressure relief valve can greatly reduce the quantity of the air valve and can eliminate the water hammer phenomenon in the pipeline system due to the vaporization and water column separation and re-bridge. The conclusion could provide a reference for the water hammer protection of long-distance water supply system.

  3. Fluorescence light microscopy of pulmonary surfactant at the air-water interface of an air bubble of adjustable size.

    PubMed

    Knebel, D; Sieber, M; Reichelt, R; Galla, H-J; Amrein, M

    2002-07-01

    The structural dynamics of pulmonary surfactant was studied by epifluorescence light microscopy at the air-water interface of a bubble as a model close to nature for an alveolus. Small unilamellar vesicles of dipalmitoylphosphatidylcholine, dipalmitoylphosphatidylglycerol, a small amount of a fluorescent dipalmitoylphosphatidylcholine-analog, and surfactant-associated protein C were injected into the buffer solution. They aggregated to large clusters in the presence of Ca(2+) and adsorbed from these units to the interface. This gave rise to an interfacial film that eventually became fully condensed with dark, polygonal domains in a fluorescent matrix. When now the bubble size was increased or decreased, respectively, the film expanded or contracted. Upon expansion of the bubble, the dark areas became larger to the debit of the bright matrix and reversed upon contraction. We were able to observe single domains during the whole process. The film remained condensed, even when the interface was increased to twice its original size. From comparison with scanning force microscopy directly at the air-water interface, the fluorescent areas proved to be lipid bilayers associated with the (dark) monolayer. In the lung, such multilayer phase acts as a reservoir that guarantees a full molecular coverage of the alveolar interface during the breathing cycle and provides mechanical stability to the film. PMID:12080141

  4. Freshwater Ecosystems: Revitalizing Educational Programs in Limnology

    NASA Astrophysics Data System (ADS)

    Melack, John M.

    Limnology, the integrative science of inland aquatic ecosystems, is making fundamental scientific advances and playing a critical role in management of inland water while suffering from fragmentation and lack of identity at North American universities. Educational programs at undergraduate and graduate levels require substantial improvement. In light of such concerns, the U.S. National Research Council commissioned a study on the nature and future of the academic teaching of limnology in North America. As is expected from such endeavors, the committee's report, published to high professional standards, combines scholarly background on the development of limnology with recommendations for actions. University professors and graduate students teaching limnology and related fields, as well as managers of water resources, will find the committee's report valuable.

  5. Measuring Air-Water Interfacial Area via the Interfacial Partitioning Tracer Test Method

    NASA Astrophysics Data System (ADS)

    El Ouni, A.; Zhong, H.; Mainhagu, J.; Araujo, J. B.; Brusseau, M. L.

    2012-12-01

    Interfacial partitioning tracer tests (IPTT) are one method available for measuring air-water interfacial area (Aa-w). Two variations of the aqueous IPTT method are compared. One involves the standard approach comprising tracer injection under steady unsaturated-flow conditions with a uniform water-saturation distribution within the column. The other involves tracer injection under steady saturated-flowconditions in the presence of trapped residual air. Sodium dodecylbezenesulfonate (SDBS) and pentafluorobenzoic acid (PFBA) were used as the partitioning andnonreactive tracers, respectively. A sandy soil with a median grain diameter of 0.234 mm was used as the porous medium. Initial water saturation, Sw,was approximately 80%. Water saturation was monitored gravimetrically during the experiments. The results of the experiments will be assessed and compared to those of prior studies.

  6. Large Field of View PIV Measurements of Air Entrainment by SLS SMAT Water Sound Suppression System

    NASA Astrophysics Data System (ADS)

    Stegmeir, Matthew; Pothos, Stamatios; Bissell, Dan

    2015-11-01

    Water-based sound suppressions systems have been used to reduce the acoustic impact of space vehicle launches. Water flows at a high rate during launch in order to suppress Engine Generated Acoustics and other potentially damaging sources of noise. For the Space Shuttle, peak flow rates exceeded 900,000 gallons per minute. Such large water flow rates have the potential to induce substantial entrainment of the surrounding air, affecting the launch conditions and generating airflow around the launch vehicle. Validation testing is necessary to quantify this impact for future space launch systems. In this study, PIV measurements were performed to map the flow field above the SMAT sub-scale launch vehicle scaled launch stand. Air entrainment effects generated by a water-based sound suppression system were studied. Mean and fluctuating fluid velocities were mapped up to 1m above the test stand deck and compared to simulation results. Measurements performed with NASA MSFC.

  7. Radon removal from flowing air by a water scrubber

    SciTech Connect

    Blue, T.E.; Jarzemba, M.S.; Fentiman, A.W.; Denison, J.E.

    1994-12-31

    As part of a process that is being developed to vitrify tailings from Belgian Congo ore that is stored in large silos at a former U.S. Department of Energy uranium-processing facility in southwestern Ohio, process off-gas is produced that contains large concentrations of radon gas (on the order of hundreds of thousands of picocuries per litre). To meet U.S. Environmental Protection Agency restrictions, the process off-gas must be stripped of its radon content before it is vented to the atmosphere. It is appropriate to consider a charcoal bed as part of an off-gas treatment system for the removal of radon at the vitrification facility. However, a difficulty arises in incorporating a charcoal bed into an off-gas treatment system at a vitrification facility. That difficulty is that the capability of the charcoal bed to capture and retain radon gas decreases with increasing bed temperature. Thus, it may be necessary to include a water scrubber in the off-gas treatment system to cool the process off-gas before it is passed through the charcoal bed.

  8. Influence of entrapped air pockets on hydraulic transients in water pipelines

    SciTech Connect

    Zhou, Ling; Liu, Prof. Deyou; Karney, Professor Byran W.; Zhang, Qin Fen

    2011-01-01

    The pressure variations associated with a filling undulating pipeline containing an entrapped air pocket are investigated both experimentally and numerically. The influence of entrapped air on abnormal transient pressures is often ambiguous since the compressibility of the air pocket permits the liquid flow to accelerate but also partly cushions the system, with the balance of these tendencies being associated with the initial void fraction of the air pocket. Earlier experimental research involved systems with an initial void fraction greater than 5.8%; this paper focuses on initial void fractions ranging from 0% to 10%, in order to more completely characterize the transient response. Experimental results show that the maximum pressure increases and then decreases as the initial void fraction decreases. A simplified model is developed by neglecting the liquid inertia and energy loss of a short water column near the air-water interface. Comparisons of the calculated and observed results show the model is able to accurately predict peak pressures as a function of void fraction and filling conditions. Rigid water column models, however, perform poorly with small void fractions.

  9. Estimation Accuracy of air Temperature and Water Vapor Amount Above Vegetation Canopy Using MODIS Satellite Data

    NASA Astrophysics Data System (ADS)

    Tomosada, M.

    2005-12-01

    Estimation accuracy of the air temperature and water vapor amount above vegetation canopy using MODIS satellite data is indicated at AGU fall meeting. The air temperature and water vapor amount which are satisfied the multilayer energy budget model from the ground surface to the atmosphere are estimated. Energy budget models are described the fluxes of sensible heat and latent heat exchange for the ground surface and the vegetated surface. Used MODIS satellite data is the vegetated surface albedo which is calculated from visible and near infrared band data, the vegetated surface temperature, NDVI (Normalized Difference Vegetation Index), LAI (Leaf Area Index). Estimation accuracy of air temperature and water vapor amount above vegetation canopy is evaluated comparing with the value which is measured on a flux research tower in Tomakomai northern forest of Japan. Meteorological parameters such as temperature, wind speed, water vapor amount, global solar radiation are measured on a flux tower from the ground to atmosphere. Well, MODIS satellite observes at day and night, and it snows in Tomakomai in winter. Therefore, estimation accuracy is evaluated dividing on at daytime, night, snowfall day, and not snowfall day. There is the investigation of the undeveloped region such as dense forest and sea in one of feature of satellite observation. Since there is almost no meteorological observatory at the undeveloped region so far, it is hard to get the meteorological parameters. Besides, it is the one of the subject of satellite observation to get the amount of physical parameter. Although the amount of physical parameter such as surface temperature and concentration of chlorophyll-a are estimated by satellite, air temperature and amount of water vapor above vegetation canopy have not been estimated by satellite. Therefore, the estimation of air temperature and water vapor amount above vegetation canopy using satellite data is significant. Further, a highly accurate

  10. Water soluble graphene as electrolyte additive in magnesium-air battery system

    NASA Astrophysics Data System (ADS)

    Mayilvel Dinesh, M.; Saminathan, K.; Selvam, M.; Srither, S. R.; Rajendran, V.; Kaler, Karan V. I. S.

    2015-02-01

    Magnesium-air (Mg-air) batteries are an important energy source used to power electronic equipment and automobiles. Metal-air batteries give more energy density due to surplus air involved in reduction reaction at air cathode. In this study, the scope of improvements in the efficiency of Metal-air batteries is investigated through addition of water soluble graphene (WSG) as inhibitor in NaCl electrolyte. The discharge performance, corrosion behaviour and electrochemical impedance are studied for (i) the conventional Mg-air battery using 3.5% NaCl and (ii) Mg-air battery with WSG-based 3.5% NaCl electrolyte. X-ray diffraction analysis for WSG is carried out and it shows the crystalline nature of WSG by an intense sharp peak at 26.3°. Scanning electron microscope study is also performed and shows the flake-like structure of WSG denoted by thin layers of carbon. The immersion of WSG in 3.5% NaCl electrolyte increased the current density from 13.24 to 19.33 mA cm-2. Meanwhile, the WSG-based Mg-air battery was found to hold specific discharge capacity of 1030.71 mAh g-1, which was higher than that obtained in 3.5% NaCl electrolyte (i.e., 822.85 mAh g-1). The WSG-based Mg-air battery shows good self-discharge capacity and higher electrochemical activity during discharge.

  11. Water soluble graphene as electrolyte additive in magnesium-air battery system

    NASA Astrophysics Data System (ADS)

    Saminathan, K.; Mayilvel Dinesh, M.; Selvam, M.; Srither, S. R.; Rajendran, V.; Kaler, Karan V. I. S.

    2015-02-01

    Magnesium-air (Mg-air) batteries are an important energy source used to power electronic equipment and automobiles. Metal-air batteries give more energy density due to surplus air involved in reduction reaction at air cathode. In this study, the scope of improvements in the efficiency of Metal-air batteries is investigated through addition of water soluble graphene (WSG) as inhibitor in NaCl electrolyte. The discharge performance, corrosion behaviour and electrochemical impedance are studied for (i) the conventional Mg-air battery using 3.5% NaCl and (ii) Mg-air battery with WSG-based 3.5% NaCl electrolyte. X-ray diffraction analysis for WSG is carried out and it shows the crystalline nature of WSG by an intense sharp peak at 26.3°. Scanning electron microscope study is also performed and shows the flake-like structure of WSG denoted by thin layers of carbon. The immersion of WSG in 3.5% NaCl electrolyte increased the current density from 13.24 to 19.33 mA cm-2. Meanwhile, the WSG-based Mg-air battery was found to hold specific discharge capacity of 1030.71 mAh g-1, which was higher than that obtained in 3.5% NaCl electrolyte (i.e., 822.85 mAh g-1). The WSG-based Mg-air battery shows good self-discharge capacity and higher electrochemical activity during discharge.

  12. Rotationally resolved water dimer spectra in atmospheric air and pure water vapour in the 188-258 GHz range.

    PubMed

    Serov, E A; Koshelev, M A; Odintsova, T A; Parshin, V V; Tretyakov, M Yu

    2014-12-21

    New experimental results regarding "warm" water dimer spectra under equilibrium conditions are presented. An almost equidistant series of six peaks corresponding to the merged individual lines of the bound dimer with consecutive rotational quantum numbers is studied in the 188-258 GHz frequency range in water vapour over a broad range of pressures and temperatures relevant to the Earth's atmosphere. The series is a continuation of the sequence detected earlier at lower frequencies at room temperature. The signal-to-noise ratio of the observed spectra allowed investigating their evolution, when water vapour was diluted by atmospheric air with partial pressure from 0 up to 540 Torr. Analysis of the obtained spectra permitted determining the dimerization constant as well as the hydrogen bond dissociation energy and the dimer spectral parameters, including the average coefficient of collisional broadening of individual lines by water vapour and air. The manifestation of metastable states of the dimer in the observed spectra is assessed. The contribution of three possible pair states of water molecules to the second virial coefficient is evaluated over the broad range of temperatures. The work supports the significant role of the water dimer in atmospheric absorption and related processes. PMID:25363156

  13. EFFECTS OF AIR-SUPERSATURATED WATER ON SURVIVAL OF PACIFIC SALMON AND STEELHEAD SMOLTS

    EPA Science Inventory

    Coho (Oncorhynchus kisutch) and sockeye (O. nerka) salmon smolts and steelhead trout (Salmo gairdneri) smolts were exposed to several concentrations of air-supersaturated water in the laboratory from March through June, 1974, the normal fish migration period in the Columbia River...

  14. Lead in umbilical blood, indoor air, tap water, and gasoline in Boston.

    PubMed

    Rabinowitz, M; Needleman, H; Burley, M; Finch, H; Rees, J

    1984-01-01

    A strong statistical correlation was found among the monthly averages of lead concentrations in umbilical cord blood (about 500 births/month), indoor air (12 sites/month), and gasoline lead sales between March, 1980 and April, 1981 in Boston. Tap water lead (24/month) variations did not correlate with blood lead in this population. PMID:6497447

  15. Action for Environmental Quality. Standards and Enforcement for Air and Water Pollution Control.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    The U.S. Environmental Protection Agency (EPA) is responsible for setting and enforcing environmental quality standards for the nation. With the Clean Air Act of 1970 (P.L. 91-604) and the Water Pollution Control Act of 1972 (P.L. 92-500), the first truly nationwide control programs were established. This booklet is designed to inform the public…

  16. Air-water Gas Exchange Rates on a Large Impounded River Measured Using Floating Domes (Poster)

    EPA Science Inventory

    Mass balance models of dissolved gases in rivers typically serve as the basis for whole-system estimates of greenhouse gas emission rates. An important component of these models is the exchange of dissolved gases between air and water. Controls on gas exchange rates (K) have be...

  17. Air and Water Transportation Occupations. Reprinted from the Occupational Outlook Handbook, 1978-79 Edition.

    ERIC Educational Resources Information Center

    Bureau of Labor Statistics (DOL), Washington, DC.

    Focusing on air and water transportation occupations, this document is one in a series of forty-one reprints from the Occupational Outlook Handbook providing current information and employment projections for individual occupations and industries through 1985. The specific occupations covered in this document include civil aviation workers, air…

  18. Young Scientists Explore Air, Land, and Water Life. Book 3 Primary Level.

    ERIC Educational Resources Information Center

    Penn, Linda

    Designed to present interesting facts about science and to heighten the curiosity of primary age students, this book contains activities about the natural world and numerous black and white illustrations. The activities focus on familiar animals that are found in the air, on land, and in the water. A duckling named Little Mac Mallard introduces…

  19. Effect of the Entrapped air on Water Flow in Heterogeneous Soil: Experimental Set- up

    NASA Astrophysics Data System (ADS)

    Snehota, M.; Sobotkova, M.; Cislerova, M.

    2008-12-01

    Temporal variations of steady state water flow rates were observed in laboratory infiltration experiments done on a sample of compacted sand and on an undisturbed soil sample (Eutric Cambisol). These variations are found to be in relation with entrapped air content. Infiltration-outflow experiments consisted of a series of ponded infiltration runs with seepage face boundary condition at the lower end of columns. The amount of the entrapped was derived from continuous weighing of the sample. The initial water contents were different for each run, which led to different amount of the air trapped in the soil during the first stages of infiltrations. The results of the experiments done on undisturbed soil showed that the flux rates and water contents varied during quasi-steady state. This finding contradicts the standard theory. The fluctuations of the water content during the steady state flow can be ascribed to the variations in volume of the entrapped air. Similarly, shape of the bromide breakthrough curve, which were performed simultaneously during the quasi-steady state varied for undisturbed soil. The same behaviour was not observed in the sample of homogeneous sand. Computer tomography was used to characterize the structure of the undisturbed soil sample with focus on potential preferential flow pathways, which are likely to host the entrapped air. To formulate more general conclusions, an extended series of infiltration outflow and bromide breakthrough experiments is in progress. This research has been supported by research project GACR 103/08/1552 and MSMT CEZ MSM 6840770002.

  20. Why Do Objects Cool More Rapidly in Water than in Still Air?

    ERIC Educational Resources Information Center

    Bohren, Craig F.

    2011-01-01

    An Internet search for why objects, especially humans, cool more rapidly in water than in air, both at the same temperature, and by how much, yields off-the-cuff answers unsupported by experiment or analysis. To answer these questions in depth requires a smattering of engineering heat transfer, including radiative transfer, and the different…

  1. Water and entrapped air redistribution in heterogeneous sand sample: Quantitative neutron imaging of the process

    NASA Astrophysics Data System (ADS)

    Snehota, Michal; Jelinkova, Vladimira; Sobotkova, Martina; Sacha, Jan; Vontobel, Peter; Hovind, Jan

    2015-02-01

    Saturated flow in soil with the occurrence of preferential flow often exhibits temporal changes of saturated hydraulic conductivity even during the time scale of a single infiltration event. These effects, observed in a number of experiments done mainly on heterogeneous soils, are often attributed to the changing distribution of water and air in the sample. We have measured the variation of the flow rates during the steady state stage of the constant head ponded infiltration experiment conducted on a packed sample composed of three different grades of sand. The experiment was monitored by quantitative neutron imaging, which provided information about the spatial distribution of water in the sample. Measurements were taken during (i) the initial stages of infiltration by neutron radiography and (ii) during the steady state flow by neutron tomography. A gradual decrease of the hydraulic conductivity has been observed during the first 4 h of the infiltration event. A series of neutron tomography images taken during the quasi-steady state stage showed the trapping of air bubbles in coarser sand. Furthermore, the water content in the coarse sand decreased even more while the water content in the embedded fine sand blocks gradually increased. The experimental results support the hypothesis that the effect of the gradual hydraulic conductivity decrease is caused by entrapped air redistribution and the build up of bubbles in preferential pathways. The trapped air thus restricts the preferential flow pathways and causes lower hydraulic conductivity.

  2. THE EFFECT OF SALINITY ON RATES OF ELEMENTAL MERCURY AIR/WATER EXCHANGE

    EPA Science Inventory

    The U.S. EPA laboratory in Athens, Georgia i spursuing the goal of developing a model for describing toxicant vapor phase air/water exchange under all relevant environmental conditions. To date, the two-layer exchange model (suitable for low wind speed conditions) has been modif...

  3. SURVIVAL AND ADULT EMERGENCE OF AQUATIC INSECTS IN AIR-SUPERSATURATED WATER

    EPA Science Inventory

    Mayflies Timpanoga hecuba, caddisflies Dicosmoecus gilvipes, mosquitoes Culex peus and midges Cricotopus sp. were tested in the laboratory to determine the effects of air-supersaturated water on survival and adult emergence. The acute 96-hour LC50 value (lethal concentration whic...

  4. Surface Coordination of Black Phosphorus for Robust Air and Water Stability.

    PubMed

    Zhao, Yuetao; Wang, Huaiyu; Huang, Hao; Xiao, Quanlan; Xu, Yanhua; Guo, Zhinan; Xie, Hanhan; Shao, Jundong; Sun, Zhengbo; Han, Weijia; Yu, Xue-Feng; Li, Penghui; Chu, Paul K

    2016-04-11

    A titanium sulfonate ligand is synthesized for surface coordination of black phosphorus (BP). In contrast to serious degradation observed from the bare BP, the BP after surface coordination exhibits excellent stability during dispersion in water and exposure to air for a long period of time, thereby significantly extending the lifetime and spurring broader application of BP. PMID:26968443

  5. Spatial Distribution and Air-Water Exchange of Organic Flame Retardants in the Lower Great Lakes.

    PubMed

    McDonough, Carrie A; Puggioni, Gavino; Helm, Paul A; Muir, Derek; Lohmann, Rainer

    2016-09-01

    Organic flame retardants (OFRs) such as polybrominated diphenyl ethers (PBDEs) and novel halogenated flame retardants (NHFRs) are ubiquitous, persistent, and bioaccumulative contaminants that have been used in consumer goods to slow combustion. In this study, polyethylene passive samplers (PEs) were deployed throughout the lower Great Lakes (Lake Erie and Lake Ontario) to measure OFRs in air and water, calculate air-water exchange fluxes, and investigate spatial trends. Dissolved Σ12BDE was greatest in Lake Ontario near Toronto (18 pg/L), whereas gaseous Σ12BDE was greatest on the southern shoreline of Lake Erie (11 pg/m(3)). NHFRs were generally below detection limits. Air-water exchange was dominated by absorption of BDEs 47 and 99, ranging from -964 pg/m(2)/day to -30 pg/m(2)/day. Σ12BDE in air and water was significantly correlated with surrounding population density, suggesting that phased-out PBDEs continued to be emitted from population centers along the Great Lakes shoreline in 2012. Correlation with dissolved Σ12BDE was strongest when considering population within 25 km while correlation with gaseous Σ12BDE was strongest when using population within 3 km to the south of each site. Bayesian kriging was used to predict dissolved Σ12BDE over the lakes, illustrating the utility of relatively highly spatially resolved measurements in identifying potential hot spots for future study. PMID:27458653

  6. LEAF PHOTOSYNTHETIC AND WATER RELATIONS RESPONSES FOR "VALENCIA" ORANGE TREES EXPOSED TO OXIDANT AIR POLLUTION

    EPA Science Inventory

    Leaf responses were measured to test a hypothesis that reduced photosynthetic capacity and/or altered water relations were associated with reductions in yield for "Valencia" orange trees exposed to ambient oxidant air pollution. xposures were continuous for four years to three le...

  7. 45 CFR 2543.86 - Clean Air Act and the Federal Water Pollution Control Act.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 4 2011-10-01 2011-10-01 false Clean Air Act and the Federal Water Pollution Control Act. 2543.86 Section 2543.86 Public Welfare Regulations Relating to Public Welfare (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE GRANTS AND AGREEMENTS WITH INSTITUTIONS OF HIGHER EDUCATION, HOSPITALS, AND OTHER...

  8. Learning Needs Analysis of Collaborative E-Classes in Semi-Formal Settings: The REVIT Example

    ERIC Educational Resources Information Center

    Mavroudi, Anna; Hadzilacos, Thanasis

    2013-01-01

    Analysis, the first phase of the typical instructional design process, is often downplayed. This paper focuses on the analysis concerning a series of e-courses for collaborative adult education in semi-formal settings by reporting and generalizing results from the REVIT project. REVIT, an EU-funded research project, offered custom e-courses to…

  9. Indigenous Languages of Southeast Australia, Revitalization and the Role of Education

    ERIC Educational Resources Information Center

    Walsh, Michael

    2005-01-01

    The Indigenous languages of southeast Australia have often been written off as a hopeless cause in current debates about language revitalization. In this paper we question this pessimism and report on some of the progress that has been made in recent years. It will be shown that revitalization is not only possible but contributes to the strength…

  10. Inspecting the Unexpected: Language Status and Corpus Shifts as Aspects of Quichua Language Revitalization.

    ERIC Educational Resources Information Center

    King, Kendall A.

    1999-01-01

    Drawing from the study of efforts to revitalize Quichua in the Southern Ecuadorian Highlands, this article describes what may be some of the common language corpus and language status transformations that threatened languages undergo during the process of language revitalization. (Author/VWL)

  11. Launching or Revitalizing a Teaching Center: Principles and Portraits of Practice

    ERIC Educational Resources Information Center

    Gray, Tara; Shadle, Susan E.

    2009-01-01

    Some teaching centers flounder while others flourish. This paper provides concrete suggestions for launching or revitalizing a teaching center, drawn from the experiences of these authors and from principles in the literature. Two center directors worked to apply the principles in the literature to their newly launched or revitalized centers. One…

  12. 77 FR 16251 - Announcement of Funding Awards, HOPE VI Revitalization Grant Program, Fiscal Year 2010

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-20

    ... URBAN DEVELOPMENT Announcement of Funding Awards, HOPE VI Revitalization Grant Program, Fiscal Year 2010... funding awards. SUMMARY: In accordance with Section 102(a)(4)(C) of the Department of Housing and Urban..., contact Ms. Susan Wilson, Director, Office of Urban Revitalization, Office of Public and Indian...

  13. From Documenting to Revitalizing an Endangered Language: Where Do Applied Linguists Fit?

    ERIC Educational Resources Information Center

    Penfield, Susan D.; Tucker, Benjamin V.

    2011-01-01

    This paper explores the distance between documenting and revitalizing endangered languages and indicates critical points at which applied linguistics can play a role. We look at language documentation, language revitalization and their relationship. We then provide some examples from our own work. We see the lack of applied linguistics as a…

  14. The Project Approach: The Revitalization of Stump Creek. Paper Number One.

    ERIC Educational Resources Information Center

    Institute on Man and Science, Rensselaerville, NY.

    The objective of the Project to Revitalize Stump Creek was to design and implement a comprehensive approach to community revitalization. A key aspect of the plan was transfer of ownership to town residents. The town, location and locale, and selection process were described in this report. The project activities occurred in 7 separate phases:…

  15. Rethinking Community-Based Indigenous Language Revitalization Using Cultural-Historical Activity Theory

    ERIC Educational Resources Information Center

    Lin, Man-Chiu Amay; Yudaw, Bowtung

    2013-01-01

    This article suggests a theoretical framework for re-examining the complex relationship of language, literacy, and cultural practices, across multiple generations in the context of community-based Indigenous language revitalization. In the scholarship of Indigenous language revitalization and education, researchers have shifted from viewing…

  16. Objectives at the Crossroads: Critical Theory and Self-Determination in Indigenous Language Revitalization

    ERIC Educational Resources Information Center

    Albury, Nathan John

    2015-01-01

    Indigenous language revitalization is a popular focus of critical theorists. From the perspective of sociolinguists, critical theory interrogates language policies to name and shame inequalities and propose solutions to correct injustices and emancipate the disadvantaged. From a broader perspective, language revitalization policy also resides…

  17. 75 FR 71137 - Announcement of Funding Awards for the HOPE VI Revitalization Grant Program for Fiscal Year 2009

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-22

    ... URBAN DEVELOPMENT Announcement of Funding Awards for the HOPE VI Revitalization Grant Program for Fiscal... Funding Availability (NOFA) for the HOPE VI Revitalization grant program. This announcement contains the... concerning the HOPE VI Revitalization grant awards, contact the Ms. Leigh van Rij, Office of Public...

  18. Presence and absence of a water film between moving air bubbles and a plate

    NASA Astrophysics Data System (ADS)

    Remenyik, Carl J.

    1990-01-01

    The thickness of water films between an inclined Lucite plate submerged in water and air bubbles moving beneath it was measured with a small impedance probe. The instrument was calibrated with a laser interferometer built for this purpose. The bubbles released beneath the plate varied in size from 10 cc to 100 cc. At a plate inclination angle of 0.98°, and in tap water, an uninterrupted water film covered most of the bubbles. Some bubbles, however, dewetted the plate, and the water film covered only a forward part of the bubble. When the film was uninterrupted, its thickness was very uniform from front to rear. When the bubble dewetted the plate, a large forward section of the film had the same uniform thickness, but this was followed by a hump on the film the rear slope of which ended at the plate surface. For some of the experiments, the surface tension of the water was reduced by admixing a detergent. In these experiments, dewetting was not observed. In a second set of experiments, a hand held transparent container filled with water and a 1.3 cm3 air bubble was used to observe visually the behavior of the moving bubble and its associated water film.

  19. Dust Control with Use of Air-Water Spraying System / Redukcja Zapylenia Powietrza Z Wykorzystaniem Zraszania Powietrzno-Wodnego

    NASA Astrophysics Data System (ADS)

    Prostański, Dariusz

    2012-12-01

    Results from testing the dust control efficiency, when using air-water spraying system in comparison to the typical water spraying system are presented in the paper. The tests were carried out in conditions of longwall mining and at the places of run-of-mine transportation. Also the results of stand tests of different types of nozzles both for air-water and for water spaying systems carried out at KOMAG's laboratory and in real conditions are presented. The benefits resulting from air-water spraying system have been determined.

  20. Challenges in the development of the orbiter atmosphere revitalization subsystem

    NASA Technical Reports Server (NTRS)

    Prince, R. N.; Swider, J.; Wojnarowski, J.; Decrisantis, A.; Ord, G. R.; Walleshauser, J. J.; Gibb, J. W.

    1985-01-01

    The space shuttle orbiter atmospheric revitalization subsystem provides thermal and contaminant control as well as total- and oxygen partial-pressure control of the environment within the orbiter crew cabin. Challenges that occurred during the development of this subsystem for the space shuttle orbiter are described. The design of the rotating hardware elements of the system (pumps, fans, etc.) required significant development to meet the requirements of long service life, maintainability, and high cycle-fatigue life. As a result, a stringent development program, particularly in the areas of bearing life and heat dissipation, was required. Another area requiring significant development was cabin humidity control and condensate collection.

  1. Trade Spaces in Crewed Spacecraft Atmosphere Revitalization System Development

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.; Bagdigian, Robert M.; Carrasquillo, Robyn L.

    2010-01-01

    Developing the technological response to realizing an efficient atmosphere revitalization system for future crewed spacecraft and space habitats requires identifying and describing functional trade spaces. Mission concepts and requirements dictate the necessary functions; however, the combination and sequence of those functions possess significant flexibility. Us-ing a closed loop environmental control and life support (ECLS) system architecture as a starting basis, a functional unit operations approach is developed to identify trade spaces. Generalized technological responses to each trade space are discussed. Key performance parameters that apply to functional areas are described.

  2. 27 CFR 30.66 - Table 6, showing respective volumes of alcohol and water and the specific gravity in both air and...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... respective volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor... volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor. This... gallon of water in air by the specific gravity in air of the spirits—8.32823 by 0.88862—the product...

  3. 27 CFR 30.66 - Table 6, showing respective volumes of alcohol and water and the specific gravity in both air and...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... respective volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor... volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor. This... gallon of water in air by the specific gravity in air of the spirits—8.32823 by 0.88862—the product...

  4. 27 CFR 30.66 - Table 6, showing respective volumes of alcohol and water and the specific gravity in both air and...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... respective volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor... volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor. This... gallon of water in air by the specific gravity in air of the spirits—8.32823 by 0.88862—the product...

  5. 27 CFR 30.66 - Table 6, showing respective volumes of alcohol and water and the specific gravity in both air and...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... respective volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor... volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor. This... gallon of water in air by the specific gravity in air of the spirits—8.32823 by 0.88862—the product...

  6. 27 CFR 30.66 - Table 6, showing respective volumes of alcohol and water and the specific gravity in both air and...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... respective volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor... volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor. This... gallon of water in air by the specific gravity in air of the spirits—8.32823 by 0.88862—the product...

  7. Water and Air Redistribution within a Dual Permeability Porous System Investigated Using Neutron Imaging

    NASA Astrophysics Data System (ADS)

    Sacha, Jan; Jelinkova, Vladimira; Snehota, Michal; Vontobel, Peter; Hovind, Jan; Cislerova, Milena

    A ponded infiltration experiment was conducted under simultaneous imaging to investigate variations in quasi-saturated hydraulic conductivity a process frequently observed in infiltration experiments in soils with wide grain -size distribution. An artificially prepared heterogeneous sample composed of coarse quartz sand (representing pathways of preferential flow) and fine porous ceramic (representing soil matrix) was investigated. The sample was 34.5 mm high and 29.0 mm in diameter. Sequences of neutron radiography images (RI) of pixel size 0.045 × 0.045 mm were taken at one angle during particular transient phases of the flow process. During quasi-steady state flow stages of the experiment radiography images were acquired in range of angles 0-180° in 0.9° step and. 3D neutron tomograms (TI) were then developed. Using the data a quantitative evaluation of the spatial and temporal distribution of water content within the sample was conducted. For every RI and TI the amount of water in particular pixels and voxels, respectively, was calculated by subtracting the image of dry sample. The accuracy of the water content estimates derived from the images was checked by comparing them to the corresponding gravimetrically determined water content data. Heavy water with equilibrium air saturation was introduced into the sample during two recurrent infiltrations. Thirty five hours later, during second infiltration, the inflow was switched to degassed heavy water in order to remove residual air present in the sample. During the first twelve hours of first infiltration run flow rate through the sample decreased from 3.7 cm/hour to 1.0 cm/hour at the end of the "steady state flow" stage. The flow rate in second run decreased from 3.6 cm/hour to 1.6 cm/hour. Comparison of the tomogram of the sample at the beginning and one taken at the end of the steady state flow stage in each run shows an increase of water content in the porous ceramic, while the water content in the coarse

  8. Pollutant transfer through air and water pathways in an urban environment

    SciTech Connect

    Brown, M.; Burian, S.; McPherson, T.; Streit, G.; Costigan, K.; Greene, B.

    1998-12-31

    The authors are attempting to simulate the transport and fate of pollutants through air and water pathways in an urban environment. This cross-disciplinary study involves linking together models of mesoscale meteorology, air pollution chemistry and deposition, urban runoff and stormwater transport, water quality, and wetland chemistry and biology. The authors are focusing on the transport and fate of nitrogen species because (1) they track through both air and water pathways, (2) the physics, chemistry, and biology of the complete cycle is not well understood, and (3) they have important health, local ecosystem, and global climate implications. The authors will apply their linked modeling system to the Los Angeles basin, following the fate of nitrates from their beginning as nitrate-precursors produced by auto emissions and industrial processes, tracking their dispersion and chemistry as they are transported by regional winds and eventually wet or dry deposit on the ground, tracing their path as they are entrained into surface water runoff during rain events and carried into the stormwater system, and then evaluating their impact on receiving water bodies such as wetlands where biologically-mediated chemical reactions take place. In this paper, the authors wish to give an overview of the project and at the conference show preliminary results.

  9. Passive cathodic water/air management device for micro-direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Peng, Hsien-Chih; Chen, Po-Hon; Chen, Hung-Wen; Chieng, Ching-Chang; Yeh, Tsung-Kuang; Pan, Chin; Tseng, Fan-Gang

    A high efficient passive water/air management device (WAMD) is proposed and successfully demonstrated in this paper. The apparatus consists of cornered micro-channels and air-breathing windows with hydrophobicity arrangement to regulate liquids and gases to flow on their predetermined pathways. A high performance water/air separation with water removal rate of about 5.1 μl s -1 cm -2 is demonstrated. The performance of the proposed WAMD is sufficient to manage a cathode-generated water flux of 0.26 μl s -1 cm -2 in the micro-direct methanol fuel cells (μDMFCs) which are operated at 100 mW cm -2 or 400 mA cm -2. Furthermore, the condensed vapors can also be collected and recirculated with the existing micro-channels which act as a passive water recycling system for μDMFCs. The durability testing shows that the fuel cells equipped with WAMD exhibit improved stability and higher current density.

  10. Role of water and discharge mode on modulating properties in an atmospheric air MHCD jet

    NASA Astrophysics Data System (ADS)

    Liu, Kun; Wang, Chenying; Lei, Juzhang; Hu, Huimin; Zheng, Peichao; He, Wei

    2016-04-01

    A portable micro hollow cathode discharge (MHCD) device was designed in this paper to generate water-air plasma jet. The results showed that MHCD jet pattern was changed from self-pulsing discharge mode to DC mode with the increasing of voltage, and the critical voltage value of discharge mode increased with the rise of gas flow. In order to study the influences of discharge mode and water content on MHCD jet, the electrical characteristics and radicals were all measured in different conditions. We found that the length of jet decreased and temperature increased with raising water-air ratio, and during self-pulsing discharge mode, •OH content was extremely low because of the low energy of electron, but level of NO was raised with gradually increasing applied voltage. In DC mode, the results showed there was least NO content, on the other hand •OH content increased with rise of voltage and water-air ratio. O existed in both discharge modes and the effect of water content on the O production was complex. Contribution to the Topical Issue "Recent Breakthroughs in Microplasma Science and Technology", edited by Kurt Becker, Jose Lopez, David Staack, Klaus-Dieter Weltmann and Wei Dong Zhu.

  11. Current-use pesticides in inland lake waters, precipitation, and air from Ontario, Canada.

    PubMed

    Kurt-Karakus, Perihan Binnur; Teixeira, Camilla; Small, Jeff; Muir, Derek; Bidleman, Terry F

    2011-07-01

    Concentrations of current-use pesticides (CUPs) in water, zooplankton, precipitation, and air samples as well as stereoisomer fractions (SF; herbicidally active/total stereoisomers) of metolachlor were determined in water samples collected from 10 remote inland lakes in Ontario, Canada, between 2003 and 2005. The most frequently detected chemicals in lake water, precipitation, and air were α-endosulfan, atrazine, metolachlor, chlorpyrifos, chlorothalonil, and trifluralin, and α-endosulfan and chlorpyrifos were the chemicals detected frequently in zooplankton. Air concentrations of these CUPs were within the range of previously reported values for background sites in the Great Lakes basin. High detection frequency of CUPs in lake water and precipitation was attributed to high usage amounts, but some CUPs such as ametryn and disulfoton that were not used in Ontario were also detected. Mean bioaccumulation factors (wet wt) in zooplankton for endosulfan ranged from 160 to 590 and from 20 to 60 for chlorpyrifos. The overall median SF of metolachlor in precipitation samples (0.846) was similar to that of the commercial S-metolachlor (0.882). However, the median SF of metolachlor in water from all sampled inland lakes (0.806) was significantly lower compared with Ontario rivers (0.873) but higher compared with previous measurements in the Great Lakes (0.710). Lakes with smaller watershed areas showed higher SFs, supporting the hypothesis of stereoselective processing of deposited metolachlor within the watersheds, followed by transport to the lakes. PMID:21472774

  12. Experimental Studies of the Acoustic Properties of a Finite Elastic Pipe Filled with Water/air

    NASA Astrophysics Data System (ADS)

    Feng, L.

    1996-02-01

    Vibration of, and sound power radiated from, a water/air-filled steel pipe are measured and analyzed. Two types of pipe terminal are employed in the experiments: embedded in sand boxes or without any absorption treatment. Comparisons are made between experiments and theoretical analysis. The measured wavenumbers agree well with those predicted as do modal responses are sound power of the air-filled pipe. For the water-filled steel pipe used in the test (inner diameter 150 mm), measured modal responses and sound power at high frequencies (higher than 4·5 kHz) are much lower than expected for the lossless model. Influences of pipe terminals on the coupling between the water and pipe are also examined.

  13. Sea breeze forcing of estuary turbulence and air-water CO2 exchange

    NASA Astrophysics Data System (ADS)

    Orton, Philip M.; McGillis, Wade R.; Zappa, Christopher J.

    2010-07-01

    The sea breeze is often a dominant meteorological feature at the coastline, but little is known about its estuarine impacts. Measurements at an anchored catamaran and meteorological stations along the Hudson River and New York Bay estuarine system are used to illustrate some basic characteristics and impacts of the feature. The sea breeze propagates inland, arriving in phase with peak solar forcing at seaward stations, but several hours later at up-estuary stations. Passage of the sea breeze front raises the water-to-air CO2 flux by 1-2 orders of magnitude, and drives turbulence comparable to spring tide levels in the upper meter of the water column, where most primary productivity occurs in this highly turbid system. Modeling and observational studies often use remotely-measured winds to compute air-water fluxes (e.g., momentum, CO2), and this leads to a factor of two flux error on sea breeze days during the study.

  14. The measurement of water vapour transfer rate through clothing system with air gap between layers

    NASA Astrophysics Data System (ADS)

    Oh, Ae-Gyeong

    2008-02-01

    The experiments described in this paper are designed to test the water vapour transfer rates through outdoor clothing system with air gap between layers under conditions more closely actual wear. It was adopted distance of 5 mm to ensure no disturbance of the air gap thickness between layers throughout the measurement period with all fabrics. The results have indicated that the water vapour transfer rates of clothing system decrease very slightly with time, it is shown that they approached nearly equilibrium state throughout the experiment. It is revealed that the water vapour transfer rates of the clothing system were ordered into groups determined by the type of waterproof breathable fabric as a shell layer being ordered.

  15. Effects of saline-water flow rate and air speed on leakage current in RTV coatings

    SciTech Connect

    Kim, S.H.; Hackam, R.

    1995-10-01

    Room temperature vulcanizing (RTV) silicone rubber is increasingly being used to coat porcelain and glass insulators in order to improve their electrical performance in the presence of pollution and moisture. A study of the dependence of leakage current, pulse current count and total charge flowing across the surface of RTV on the flow rate of the saline water and on the compressed air pressure used to create the salt-fog is reported. The fog was directed at the insulating rods either from one or two sides. The RTV was fabricated from polydimethylsiloxane polymer, a filler of alumina trihydrate (ATH), a polymerization catalyst and fumed silica reinforcer, all dispersed in 1,1,1-trichloroethane solvent. The saline water flow rate was varied in the range 0.4 to 2.0 l/min. The compressed air pressure at the input of the fog nozzles was varied from 0.20 to 0.63 MPa. The air speed at the surface of the insulating rods was found to depend linearly on the air pressure measured at the inlet to the nozzles and varied in the range 3 to 14 km/hr. The leakage current increased with increasing flow rate and increasing air speed. This is attributed to the increased loss of hydrophobicity with a larger quantity of saline fog and a larger impact velocities of fog droplets interacting with the surface of the RTV coating.

  16. Evaluation of ground-water flow by particle tracking, Wright-Patterson Air Force Base, Ohio

    USGS Publications Warehouse

    Cunningham, W.L.; Sheets, R.A.; Schalk, C.W.

    1994-01-01

    The U.S. Geological Survey (USGS) and Wright-Patterson Air Force Base (WPAFB) began a Basewide Monitoring Program (BMP) in 1992. The purpose of the BMP was to establish a long-term ground-water and surface- water sampling network in order to (1) characterize current ground-water and surface-water quality; (2) describe water-quality changes as water enters, flows across, and exits Base boundaries; (3) conduct statistical analyses of water quality; and (4) estimate the effect of WPAFB on regional water quality. As part of the BMP, the USGS conducted ground-water particle-tracking analyses based on a ground-water-flow model produced during a previous USGS study. This report briefly describes the previous USGS study, the inherent assumptions of particle-tracking analyses, and information on the regional ground-water-flow field as inferred from particle pathlines. Pathlines for particles placed at the Base boundary and particles placed within identified Installation Restoration Program sites are described.

  17. 78 FR 70960 - Notice of Lodging of Consent Decree Under the Clean Air Act, Clean Water Act, and the Resource...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-27

    ... of Lodging of Consent Decree Under the Clean Air Act, Clean Water Act, and the Resource Conservation and Recovery Act On November 20, 2013, the Department of Justice lodged a proposed consent decree with... the United States and the State of Illinois under the Clean Air Act, the Clean Water Act, the...

  18. Waste water/storm water characterization survey, Willow Grove Air Reserve Facility, Pennsylvania. Final report, 15-26 Jul 91

    SciTech Connect

    McCoy, R.P.

    1992-03-01

    A wastewater characterization survey was conducted at Willow Grove Air Reserve Facility from 15-26 July 1991 by personnel from the Water Quality Function of Armstrong Laboratory. Quantitative data were also collected after a rain event to assess the quality of the water in the storm water holding pond. Sampling of the oil/water separators was also performed and recommendations were made concerning good management practices to implement to maintain the separators. Slight contamination of the wastewater discharged from the Facility was found, indicating the base is using good shop practices to minimize the disposal of industrial wastes through the sanitary sewer system. Results of the storm water sampling showed that the quality of the water in the holding pond was not greatly impacted by storm water runoff from the industrial areas on the Facility. A recommendation was made to install a pollution control device on the drain at the Bulk Fuels Storage Area. One oil/water separator was found to contain oil that had hazardous waste characteristics. All others had oil that was suitable for energy recovery.

  19. Photosensitized Formation of Secondary Organic Aerosols above the Air/Water Interface.

    PubMed

    Bernard, F; Ciuraru, R; Boréave, A; George, C

    2016-08-16

    In this study, we evaluated photosensitized chemistry at the air-sea interface as a source of secondary organic aerosols (SOA). Our results show that, in addition to biogenic emissions, abiotic processes could also be important in the marine boundary layer. Photosensitized production of marine secondary organic aerosol was studied in a custom-built multiphase atmospheric simulation chamber. The experimental chamber contained water, humic acid (1-10 mg L(-1)) as a proxy for dissolved organic matter, and nonanoic acid (0.1-10 mM), a fatty acid proxy which formed an organic film at the air-water interface. Dark secondary reaction with ozone after illumination resulted in SOA particle concentrations in excess of 1000 cm(-3), illustrating the production of unsaturated compounds by chemical reactions at the air-water interface. SOA numbers via photosensitization alone and in the absence of ozone did not exceed background levels. From these results, we derived a dependence of SOA numbers on nonanoic acid surface coverage and dissolved organic matter concentration. We present a discussion on the potential role of the air-sea interface in the production of atmospheric organic aerosol from photosensitized origins. PMID:27434860

  20. Treatability test of a stacked-tray air stripper for VOC in water

    SciTech Connect

    Pico, T., LLNL

    1998-04-01

    A common strategy for hydraulic containment and mass removal at VOC contaminated sites is `pump and treat (P&T)`. In P&T operations, contaminated ground water is pumped from wells, treated above ground, and discharged. Many P&T remediation systems at VOC sites rely on air stripping technology because VOCs are easily transferred to the vapor phase. In stacked-tray air strippers, contaminated water is aerated while it flows down through a series of trays. System operations at LLNL are strictly regulated by the California and federal Environmental Protection Agencies (Cal/EPA and EPA), the Bay Area Air Quality Management District (BAAQMD), the California Regional Water Quality Control Board (RWQCB) and the Department of Toxic Substances Control (DTSC). These agencies set discharge limits, require performance monitoring, and assess penalties for non-compliance. National laboratories are also subject to scrutiny by the public and other government agencies. This extensive oversight makes it necessary to accurately predict field treatment performance at new extraction locations to ensure compliance with all requirements prior to facility activation. This paper presents treatability test results for a stacked- tray air stripper conducted at LLNL and compares them to the vendor`s modeling software results.

  1. Impact of subjacent rocks at the water and air regime of the depleted peat deposits

    NASA Astrophysics Data System (ADS)

    Rakovich, V. A.

    2009-04-01

    At the depleted peat deposits (after peat extraction), where the residual layer of peat with the thickness of about 0,5 meters is laid at the well water permeable rocks, vegetation typical for dry conditions is developed in case of good drainage conditions; birch trees, willow, alder-trees and buckthorn prevail in this vegetation. Water and air regime is characterized here by good aeration with prevailing of oxidative processes. If water regime is regulated, these depleted peat areas are suitable for agricultural and forest lands; however, necessity of transformation of these depleted lands into forest and agricultural lands must be ecologically and economically justified. If the residual layer of peat with the thickness of 0,05-0,3 m is based at the sapropel or peat sapropel, contrast amphibiotic water and air regime with strong fluctuation of oxidative and restoration process depending on the weather conditions is formed; this regime is formed without artificial increase of the ground waters level. This does not allow bog vegetation or vegetation typical for dry conditions to develop. Thus, within 20 and more years after completion of peat extraction, such areas are not covered by vegetation in spite of favorable agro-chemical qualities of peat layer and favorable for vegetation chemical composition of soil and ground waters. Depleted peat deposits, that are based at the sapropel, are not suitable for agricultural use, because agricultural vegetation requires stable water and air regime with good aeration and oxidative and restoration potential within 400-750 mV. Contrast amphibiotic water and air regime of the depleted peat deposits that are based at sapropel excludes possibility to use them as agricultural lands. Because of this reason, areas with residual peat layer that are based at sapropel are not suitable for forest planting. Due to periodic increase of ground waters level, rot systems of the plants can not penetrate into the required depth, and mechanical

  2. Definition of water droplets "strain cycles" in air times dependences on their sizes and movement velocities

    NASA Astrophysics Data System (ADS)

    Volkov, Roman; Zhdanova, Alena; Zabelin, Maxim; Kuznetsov, Geniy; Strizhak, Pavel

    2014-08-01

    Experimental investigation of water droplets deformation regularities during their motion in the air by the action of gravitational forces was executed. Characteristic sizes of droplets were varied in the range from 3 mm to 6 mm. Velocities of droplets movement attained to 5 m/s. The cross-correlation system of video registration was used. More than ten characteristic "strain cycles" of droplets during the 1 m distance motion by them thought the air were established. Characteristic of droplets forms, periods, dimensions and ranges were determined for all "strain cycles". "Strain cycle" times dependences on velocity and sizes of droplets were established.

  3. Steady-state response of a charcoal bed to radon in flowing air with water vapor

    SciTech Connect

    Blue, T.E.; Jarzemba, M.S.; Fentiman, A.W.

    1995-06-01

    Previously we have developed a mathematical model of radon adsorption in active air with water vapor on small U.S. Environmental Protection Agency charcoal canisters that are used for environmental measurements of radon. The purpose of this paper is to extend this mathematical model to describe the adsorption of radon by large charcoal beds with radon-laden air flowing through them. The resulting model equations are solved analytically to predict the steady-state adsorption of radon by such beds. 14 refs., 3 figs.

  4. (Environmental investigation of ground water contamination at Wright- Patterson Air Force Base, Ohio)

    SciTech Connect

    Not Available

    1991-10-01

    This Health and Safety Plan (HSP) was developed for the Environmental Investigation of Ground-water Contamination Investigation at Wright-Patterson Air Force Base near Dayton, Ohio, based on the projected scope of work for the Phase 1, Task 4 Field Investigation. The HSP describes hazards that may be encountered during the investigation, assesses the hazards, and indicates what type of personal protective equipment is to be used for each task performed. The HSP also addresses the medical monitoring program, decontamination procedures, air monitoring, training, site control, accident prevention, and emergency response.

  5. European Society of Endodontology position statement: Revitalization procedures.

    PubMed

    Galler, K M; Krastl, G; Simon, S; Van Gorp, G; Meschi, N; Vahedi, B; Lambrechts, P

    2016-08-01

    This position statement represents a consensus of an expert committee convened by the European Society of Endodontology (ESE) on revitalization procedures. The statement is based on current clinical and scientific evidence as well as the expertise of the committee. The goal is to provide suitably trained dentists with a protocol including procedural details for the treatment of immature teeth with pulp necrosis as well as a patient consent form. Revitalization is a biologically based treatment as an alternative to apexification in properly selected cases. Previously published review articles provide more detailed background information and the basis for this position statement (Journal of Endodontics, 39, 2013, S30; Journal of Endodontics, 39, 2013, 319; Journal of Endodontics, 40, 2014, 1045; Dental Traumatology, 31, 2015, 267; International Endodontic Journal, 2015, doi: 10.1111/iej.12606). As controlled clinical trials are lacking and new evidence is still emerging, this position statement will be updated at appropriate intervals. This might lead to changes to the protocol provided here. PMID:26990236

  6. Revitalization of the NASA Langley Research Center's Infrastructure

    NASA Technical Reports Server (NTRS)

    Weiser, Erik S.; Mastaler, Michael D.; Craft, Stephen J.; Kegelman, Jerome T.; Hope, Drew J.; Mangum, Cathy H.

    2012-01-01

    The NASA Langley Research Center (Langley) was founded in 1917 as the nation's first civilian aeronautical research facility and NASA's first field center. For nearly 100 years, Langley has made significant contributions to the Aeronautics, Space Exploration, and Earth Science missions through research, technology, and engineering core competencies in aerosciences, materials, structures, the characterization of earth and planetary atmospheres and, more recently, in technologies associated with entry, descent, and landing. An unfortunate but inevitable outcome of this rich history is an aging infrastructure where the longest serving building is close to 80 years old and the average building age is 44 years old. In the current environment, the continued operation and maintenance of this aging and often inefficient infrastructure presents a real challenge to Center leadership in the trade space of sustaining infrastructure versus not investing in future capabilities. To address this issue, the Center has developed a forward looking revitalization strategy that ties future core competencies and technical capabilities to the Center Master Facility Plan to maintain a viable Center well into the future. This paper documents Langley's revitalization strategy which integrates the Center's missions, the Langley 2050 vision, the Center Master Facility Plan, and the New Town repair-by-replacement program through the leadership of the Vibrant Transformation to Advance Langley (ViTAL) Team.

  7. URBAN REVITALIZATION AND SEATTLE CRIME, 1982–2000

    PubMed Central

    Kreager, Derek A.; Lyons, Christopher J.; Hays, Zachary R.

    2014-01-01

    This study examines the relationship between crime and processes of urban revitalization, or gentrification. Drawing on recent urban demography research, we hypothesize that gentrification progressed rapidly in many American cities over the last decade of the 20th century, and that these changes had implications for area crime rates. Criminological theories hold competing hypotheses for the connections between gentrification and crime, and quantitative studies of this link remain infrequent and limited. Using two measures of gentrification and longitudinal tract-level demographic and crime data for the city of Seattle, we find that many of Seattle’s downtown tracts underwent rapid revitalization during the 1990’s, and that these areas 1) saw reductions in crime relative to similar tracts that did not gentrify, and 2) were areas with higher-than-average crime at the beginning of the decade. Moreover, using a within-tract longitudinal design, we find that yearly housing investments in the 1980’s showed a modest positive association with crime change, while yearly investments in the 1990’s showed the opposite pattern. Our findings suggest a curvilinear gentrification-crime relationship, whereby gentrification in its earlier stages is associated with small increases in crime, but gentrification in its more consolidated form is associated with modest crime declines. Implications of these results for criminological theory, urban development, and broader crime patterns are discussed. PMID:25505350

  8. Fisk-based criteria to support validation of detection methods for drinking water and air.

    SciTech Connect

    MacDonell, M.; Bhattacharyya, M.; Finster, M.; Williams, M.; Picel, K.; Chang, Y.-S.; Peterson, J.; Adeshina, F.; Sonich-Mullin, C.; Environmental Science Division; EPA

    2009-02-18

    This report was prepared to support the validation of analytical methods for threat contaminants under the U.S. Environmental Protection Agency (EPA) National Homeland Security Research Center (NHSRC) program. It is designed to serve as a resource for certain applications of benchmark and fate information for homeland security threat contaminants. The report identifies risk-based criteria from existing health benchmarks for drinking water and air for potential use as validation targets. The focus is on benchmarks for chronic public exposures. The priority sources are standard EPA concentration limits for drinking water and air, along with oral and inhalation toxicity values. Many contaminants identified as homeland security threats to drinking water or air would convert to other chemicals within minutes to hours of being released. For this reason, a fate analysis has been performed to identify potential transformation products and removal half-lives in air and water so appropriate forms can be targeted for detection over time. The risk-based criteria presented in this report to frame method validation are expected to be lower than actual operational targets based on realistic exposures following a release. Note that many target criteria provided in this report are taken from available benchmarks without assessing the underlying toxicological details. That is, although the relevance of the chemical form and analogues are evaluated, the toxicological interpretations and extrapolations conducted by the authoring organizations are not. It is also important to emphasize that such targets in the current analysis are not health-based advisory levels to guide homeland security responses. This integrated evaluation of chronic public benchmarks and contaminant fate has identified more than 200 risk-based criteria as method validation targets across numerous contaminants and fate products in drinking water and air combined. The gap in directly applicable values is

  9. Hydrodynamics of a fixed camphor boat at the air-water interface

    NASA Astrophysics Data System (ADS)

    Singh, Dhiraj; Akella, Sathish; Singh, Ravi; Mandre, Shreyas; Bandi, Mahesh

    2015-11-01

    A camphor tablet, when introduced at the air-water interface undergoes sublimation and the camphor vapour spreads radially outwards across the surface. This radial spreading of camphor is due to Marangoni forces setup by the camphor concentration gradient. We report experiments on the hydrodynamics of this process for a camphor tablet held fixed at the air-water interface. During the initial transient, the time-dependent spread radius R (t) of camphor scales algebraically with time t (R (t) ~t 1 / 2) in agreement with empirical scalings reported for spreading of volatile oils on water surface. But unlike surfactants, the camphor stops spreading when the influx of camphor from the tablet onto the air-water interface is balanced by the outflux of camphor due to evaporation, and a steady-state condition is reached. The spreading camphor however, shears the underlying fluid and sets up bulk convective flow. We explain the coupled steady-state dynamics between the interfacial camphor spreading and bulk convective flow with a boundary layer approximation, supported by experimental evidence. This work was supported by the Collective Interactions Unit, OIST Graduate University.

  10. A self-consistent field study of a hydrocarbon droplet at the air-water interface.

    PubMed

    Hilz, Emilia; Leermakers, Frans A M; Vermeer, Arnoldus W P

    2012-04-14

    A molecularly detailed self-consistent field (SCF) approach is applied to describe a sessile hydrocarbon droplet placed at the air-water interface. Predictions of the contact angle for macroscopic droplets follow from using Neumann's equation, wherein the macroscopic interfacial tensions are computed from one-gradient calculations for flat interfaces. A two-gradient cylindrical coordinate system with mirror-like boundary conditions is used to analyse the three dimensional shape of the nano-scale oil droplet at the air-water interface. These small droplets have a finite value of the Laplace pressure and concomitant line tension. It has been calculated that the oil-water and oil-vapour interfacial tensions are curvature dependent and increase slightly with increasing interfacial curvature. In contrast, the line tension tends to decrease with curvature. In all cases there is only a weak influence of the line tension on the droplet shape. We therefore argue that the nano-scale droplets, which are described in the SCF approach, are representative for macroscopic droplets and that the method can be used to efficiently generate accurate information on the spreading of oil droplets at the air-water interface in molecularly more complex situations. As an example, non-ionic surfactants have been included in the system to illustrate how a molecularly more complex situation will change the wetting properties of the sessile drop. This short forecast is aimed to outline and to stress the potential of the method. PMID:22395192

  11. Sources of Atmospheric Pollutants Impacting Air and Water Quality in the Lake Tahoe Basin

    NASA Astrophysics Data System (ADS)

    Gertler, A. W.; Cahill, T. A.; Gillies, J.; Kuhns, H.

    2008-12-01

    Starting in the second half of the 20th century, decline in Lake Tahoe's water clarity and degradation in the basin's air quality have become major concerns due to its unique scenic features. Gaseous and particulate nitrogen (N) and particulate phosphorus (P) loading via direct atmospheric deposition and sediment transport to the lake have also been implicated as responsible for its eutrophication and decline in water clarity. Estimates suggest that atmospheric N deposition contributes 55% of the total N loading to the lake, while atmospheric P deposition contributes 15% of the total P loading. In order to improve both air quality and, as a consequence, water quality, it is necessary to develop an understanding of the sources of the atmospheric pollutants. Once this is accomplished, it is possible to implement cost-effective strategies to reduce this impact. This paper summarizes the findings of a series of studies performed to determine the levels and sources of ambient air pollutants in the basin. Projects have included the development of a Tahoe-specific emissions inventory, long-term measurements of road dust resuspension, modeling to determine the fraction of pollutants coming from in-basin vs. out-of-basin sources, particulate source apportionment, and estimates of nitric acid deposition. These studies found that the pollutants most closely connected to the decline in water quality come largely from within basin sources, as opposed to those coming from the Central Valley and upwind urban areas of California. These results indicate regulators need to control pollutant emissions within the Tahoe basin in order to reduce the impact of atmospheric pollutants on both air and water quality.

  12. Air and Water System (AWS) Design and Technology Selection for the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Jones, Harry; Kliss, Mark

    2005-01-01

    This paper considers technology selection for the crew air and water recycling systems to be used in long duration human space exploration. The specific objectives are to identify the most probable air and water technologies for the vision for space exploration and to identify the alternate technologies that might be developed. The approach is to conduct a preliminary first cut systems engineering analysis, beginning with the Air and Water System (AWS) requirements and the system mass balance, and then define the functional architecture, review the International Space Station (ISS) technologies, and discuss alternate technologies. The life support requirements for air and water are well known. The results of the mass flow and mass balance analysis help define the system architectural concept. The AWS includes five subsystems: Oxygen Supply, Condensate Purification, Urine Purification, Hygiene Water Purification, and Clothes Wash Purification. AWS technologies have been evaluated in the life support design for ISS node 3, and in earlier space station design studies, in proposals for the upgrade or evolution of the space station, and in studies of potential lunar or Mars missions. The leading candidate technologies for the vision for space exploration are those planned for Node 3 of the ISS. The ISS life support was designed to utilize Space Station Freedom (SSF) hardware to the maximum extent possible. The SSF final technology selection process, criteria, and results are discussed. Would it be cost-effective for the vision for space exploration to develop alternate technology? This paper will examine this and other questions associated with AWS design and technology selection.

  13. Hydrogeologic framework and ground-water resources at Seymour Johnson Air Force Base, North Carolina

    USGS Publications Warehouse

    Cardinell, A.P.; Howe, S.S.

    1997-01-01

    A preliminary hydrogeologic framework of the Seymour Johnson Air Force Base was constructed from published data, available well data, and reports from Air Base files, City of Goldsboro and Wayne County records, and North Carolina Geological Survey files. Borehole geophysical logs were run in selected wells; and the surficial, Black Creek, and upper Cape Fear aquifers were mapped. Results indicate that the surficial aquifer appears to have the greatest lateral variability of clay units and aquifer material of the three aquifers. A surficial aquifer water-level surface map, constructed from selected monitoring wells screened exclusively in the surficial aquifer, indicates the general direction of ground-water movement in this mostly unconfined aquifer is toward the Neuse River and Stoney Creek. However, water-level gradient data from a few sites in the surficial aquifer did not reflect this trend, and there are insufficient hydrologic and hydrogeologic data to determine the cause of these few anamalous measurements. The Black Creek aquifer underlies the surficial aquifer and is believed to underlie most of Wayne County, including the Air Base where the aquifer and overlying confining unit are estimated from well log data to be as much as 100 feet thick. The Black Creek confining unit ranges in thickness from less than 8 feet to more than 20 feet. There are currently no accessible wells screened exclusively in the Black Creek aquifer from which to measure water levels. The upper Cape Fear aquifer and confining unit are generally found at depths greater than 80 feet below land surface at the Air Base, and are estimated to be as much as 70 feet thick. Hydrologic and hydrogeologic data are insufficient to determine localized surficial aquifer hydrogeology, ground-water movement at several sites, or hydraulic head differences between the three aquifers.

  14. Propensity of Hydrated Excess Protons and Hydroxide Anions for the Air-Water Interface.

    PubMed

    Tse, Ying-Lung Steve; Chen, Chen; Lindberg, Gerrick E; Kumar, Revati; Voth, Gregory A

    2015-10-01

    Significant effort has been undertaken to better understand the molecular details governing the propensity of ions for the air-water interface. Facilitated by computationally efficient reactive molecular dynamics simulations, new and statistically conclusive molecular-scale results on the affinity of the hydrated excess proton and hydroxide anion for the air-water interface are presented. These simulations capture the dynamic bond breaking and formation processes (charge defect delocalization) that are important for correctly describing the solvation and transport of these complex species. The excess proton is found to be attracted to the interface, which is correlated with a favorable enthalpic contribution and consistent with reducing the disruption in the hydrogen bond network caused by the ion complex. However, a recent refinement of the underlying reactive potential energy function for the hydrated excess proton shows the interfacial attraction to be weaker, albeit nonzero, a result that is consistent with the experimental surface tension measurements. The influence of a weak hydrogen bond donated from water to the protonated oxygen, recently found to play an important role in excess hydrated proton transport in bulk water, is seen to also be important for this study. In contrast, the hydroxide ion is found to be repelled from the air-water interface. This repulsion is characterized by a reduction of the energetically favorable ion-water interactions, which creates an enthalpic penalty as the ion approaches the interface. Finally, we find that the fluctuation in the coordination number around water sheds new light on the observed entropic trends for both ions. PMID:26366480

  15. Free Energies of Cavity and Noncavity Hydrated Electrons Near the Instantaneous Air/Water Interface.

    PubMed

    Casey, Jennifer R; Schwartz, Benjamin J; Glover, William J

    2016-08-18

    The properties of the hydrated electron at the air/water interface are computed for both a cavity and a noncavity model using mixed quantum/classical molecular dynamics simulation. We take advantage of our recently developed formalism for umbrella sampling with a restrained quantum expectation value to calculate free-energy profiles of the hydrated electron's position relative to the water surface. We show that it is critical to use an instantaneous description of the air/water interface rather than the Gibbs' dividing surface to obtain accurate potentials of mean force. We find that noncavity electrons, which prefer to encompass several water molecules, avoid the interface where water molecules are scarce. In contrast, cavity models of the hydrated electron, which prefer to expel water, have a local free-energy minimum near the interface. When the cavity electron occupies this minimum, its absorption spectrum is quite red-shifted, its binding energy is significantly lowered, and its dynamics speed up quite a bit compared with the bulk, features that have not been found by experiment. The surface activity of the electron therefore serves as a useful test of cavity versus noncavity electron solvation. PMID:27479028

  16. Drinking water, diet, indoor air: Comparison of the contribution to environmental micropollutants exposure.

    PubMed

    Enault, Jérôme; Robert, Samuel; Schlosser, Olivier; de Thé, Catherine; Loret, Jean-François

    2015-11-01

    This study collated 254,441 analytical results from drinking water quality monitoring in order to compare levels of exposure of the French adult population from drinking water with that from total diet for 37 pesticides, 11 mineral elements, 11 polycyclic aromatic hydrocarbons (PAH), 6 non dioxin-like polychlorobiphenyls (NDL PCB), 5 ether polybromodiphenyl ethers (BDE), 2 perfluorinated compounds. It also compares levels of exposure from drinking water with that from inhalation of indoor air for 9 volatile organic compounds (VOC) and 3 phthalates. The vast majority of the water analysis results showed values below the limits of quantification and this comparison was primarily made on the basis of a highly pessimistic scenario consisting in considering the data below the limits of quantification as being equal to the limits of quantification. With this conservative scenario, it can be seen that tap water makes a minor but potentially non-negligible contribution for a few micropollutants, by comparison with diet and air. It also shows that exposure through drinking water remains below the toxicity reference values for these substances. Apart from a few extreme values reflecting exceptional local situations, the concentrations measured for the minority of positive samples (below the 95th percentile value) suggest a very low risk for human health. Lower limits of quantification would however be of use in better estimating the safety margin with regard to the toxicity reference values, in particular for BDE, PAH and NDL PCB. PMID:26094108

  17. Air, water, and surface bacterial contamination in a university-hospital autopsy room.

    PubMed

    Maujean, Géraldine; Malicier, Daniel; Fanton, Laurent

    2012-03-01

    Today, little is known about the bacteriological environment of the autopsy room and its potential interest for medico-legal practices. Seven hundred fifty microbiological samples were taken from surface (n = 660), air (n = 48), and water (n = 42) to evaluate it in a French University Forensic Department. Median bacterial counts were compared before and during autopsy for air samples, and before and after autopsy for surface samples, using Wilcoxon matched pairs signed ranks test. Bacterial identification relied on traditional phenotypic methods. Bacterial counts in the air were low before autopsy, increased significantly during procedure, and seemed more linked to the number of people in the room than to an important production of aerosol-containing bacteria. Despite cleaning, human fecal flora was omnipresent on surfaces, which revealed insufficient disinfection. Bacteriological sampling is an easy way to monitor cleaning practices in postmortem rooms, but chiefly a way to improve the reliability of medico-legal proofs of infectious deaths. PMID:22309163

  18. Contact resonance atomic force microscopy imaging in air and water using photothermal excitation

    NASA Astrophysics Data System (ADS)

    Kocun, Marta; Labuda, Aleksander; Gannepalli, Anil; Proksch, Roger

    2015-08-01

    Contact Resonance Force Microscopy (CR-FM) is a leading atomic force microscopy technique for measuring viscoelastic nano-mechanical properties. Conventional piezo-excited CR-FM measurements have been limited to imaging in air, since the "forest of peaks" frequency response associated with acoustic excitation methods effectively masks the true cantilever resonance. Using photothermal excitation results in clean contact, resonance spectra that closely match the ideal frequency response of the cantilever, allowing unambiguous and simple resonance frequency and quality factor measurements in air and liquids alike. This extends the capabilities of CR-FM to biologically relevant and other soft samples in liquid environments. We demonstrate CR-FM in air and water on both stiff silicon/titanium samples and softer polystyrene-polyethylene-polypropylene polymer samples with the quantitative moduli having very good agreement between expected and measured values.

  19. Contact resonance atomic force microscopy imaging in air and water using photothermal excitation

    SciTech Connect

    Kocun, Marta; Labuda, Aleksander; Gannepalli, Anil; Proksch, Roger

    2015-08-15

    Contact Resonance Force Microscopy (CR-FM) is a leading atomic force microscopy technique for measuring viscoelastic nano-mechanical properties. Conventional piezo-excited CR-FM measurements have been limited to imaging in air, since the “forest of peaks” frequency response associated with acoustic excitation methods effectively masks the true cantilever resonance. Using photothermal excitation results in clean contact, resonance spectra that closely match the ideal frequency response of the cantilever, allowing unambiguous and simple resonance frequency and quality factor measurements in air and liquids alike. This extends the capabilities of CR-FM to biologically relevant and other soft samples in liquid environments. We demonstrate CR-FM in air and water on both stiff silicon/titanium samples and softer polystyrene-polyethylene-polypropylene polymer samples with the quantitative moduli having very good agreement between expected and measured values.

  20. Application of a laser Doppler vibrometer for air-water to subsurface signature detection

    NASA Astrophysics Data System (ADS)

    Land, Phillip; Roeder, James; Robinson, Dennis; Majumdar, Arun

    2015-05-01

    There is much interest in detecting a target and optical communications from an airborne platform to a platform submerged under water. Accurate detection and communications between underwater and aerial platforms would increase the capabilities of surface, subsurface, and air, manned and unmanned vehicles engaged in oversea and undersea activities. The technique introduced in this paper involves a Laser Doppler Vibrometer (LDV) for acousto-optic sensing for detecting acoustic information propagated towards the water surface from a submerged platform inside a 12 gallon water tank. The LDV probes and penetrates the water surface from an aerial platform to detect air-water surface interface vibrations caused by an amplifier to a speaker generating a signal generated from underneath the water surface (varied water depth from 1" to 8"), ranging between 50Hz to 5kHz. As a comparison tool, a hydrophone was used simultaneously inside the water tank for recording the acoustic signature of the signal generated between 50Hz to 5kHz. For a signal generated by a submerged platform, the LDV can detect the signal. The LDV detects the signal via surface perturbations caused by the impinging acoustic pressure field; proving a technique of transmitting/sending information/messages from a submerged platform acoustically to the surface of the water and optically receiving the information/message using the LDV, via the Doppler Effect, allowing the LDV to become a high sensitivity optical-acoustic device. The technique developed has much potential usage in commercial oceanography applications. The present work is focused on the reception of acoustic information from an object located underwater.

  1. Gas exchange rates across the sediment-water and air-water interfaces in south San Francisco Bay

    USGS Publications Warehouse

    Hartman, Blayne; Hammond, Douglas E.

    1984-01-01

    Radon 222 concentrations in the water and sedimentary columns and radon exchange rates across the sediment-water and air-water interfaces have been measured in a section of south San Francisco Bay. Two independent methods have been used to determine sediment-water exchange rates, and the annual averages of these methods agree within the uncertainty of the determinations, about 20%. The annual average of benthic fluxes from shoal areas is nearly a factor of 2 greater than fluxes from the channel areas. Fluxes from the shoal and channel areas exceed those expected from simple molecular diffusion by factors of 4 and 2, respectively, apparently due to macrofaunal irrigation. Values of the gas transfer coefficient for radon exchange across the air-water interface were determined by constructing a radon mass balance for the water column and by direct measurement using floating chambers. The chamber method appears to yield results which are too high. Transfer coefficients computed using the mass balance method range from 0.4 m/day to 1.8 m/day, with a 6-year average of 1.0 m/day. Gas exchange is linearly dependent upon wind speed over a wind speed range of 3.2–6.4 m/s, but shows no dependence upon current velocity. Gas transfer coefficients predicted from an empirical relationship between gas exchange rates and wind speed observed in lakes and the oceans are within 30% of the coefficients determined from the radon mass balance and are considerably more accurate than coefficients predicted from theoretical gas exchange models.

  2. Rapid monitoring of soil, water, and air dusts by direct large-area alpha spectrometry.

    PubMed

    Sill, C W

    1995-07-01

    During retrieval and disposition of wastes containing transuranium elements, continuous monitoring of the air, water, and soil for alpha emitters was required to ensure that safety limits were not exceeded and that the waste itself was not disturbed unknowingly. Direct measurements by alpha spectrometry were particularly promising because of their potential speed, sensitivity, and their ability to identify transuranium radionuclides under field conditions. Soil samples or settled dusts were finely ground, suspended in 80% ethanol, sprayed onto circular stainless steel pans, and dried on a hotplate. Water samples were mounted directly by spraying. Air dusts were collected with a high-volume air sampler on 20- by 25-cm membrane filters. The samples were then analyzed directly in a large pressurized gridded ionization chamber without further sample preparation. The lower limits of detection for 10-min counting times were 1.5 Bq g-1 (40 pCi g-1) for 100-mg soil samples, and 4 x 10(-2) Bq m-3 (10(-12) microCi mL-1) for a 10-min air sample taken at 0.4 m3 min-1 (14 cubic feet per minute) and counted without waiting for decay of radon progeny. PMID:7790211

  3. Air- and Dustborne Mycoflora in Houses Free of Water Damage and Fungal Growth

    PubMed Central

    Horner, W. Elliott; Worthan, Anthony G.; Morey, Philip R.

    2004-01-01

    Typically, studies on indoor fungal growth in buildings focus on structures with known or suspected water damage, moisture, and/or indoor fungal growth problems. Reference information on types of culturable fungi and total fungal levels are generally not available for buildings without these problems. This study assessed 50 detached single-family homes in metropolitan Atlanta, Ga., to establish a baseline of “normal and typical” types and concentrations of airborne and dustborne fungi in urban homes which were predetermined not to have noteworthy moisture problems or indoor fungal growth. Each home was visually examined, and samples of indoor and outdoor air and of indoor settled dust were taken in winter and summer. The results showed that rankings by prevalence and abundance of the types of airborne and dustborne fungi did not differ from winter to summer, nor did these rankings differ when air samples taken indoors were compared with those taken outdoors. Water indicator fungi were essentially absent from both air and dust samples. The air and dust data sets were also examined specifically for the proportions of colonies from ecological groupings such as leaf surface fungi and soil fungi. In the analysis of dust for culturable fungal colonies, leaf surface fungi constituted a considerable portion (>20%) of the total colonies in at least 85% of the samples. Thus, replicate dust samples with less than 20% of colonies from leaf surface fungi are unlikely to be from buildings free of moisture or mold growth problems. PMID:15528497

  4. Thermometric measurements of the molecular sublayer at the air-water interface

    NASA Astrophysics Data System (ADS)

    Ward, B.; Donelan, M. A.

    2006-04-01

    A series of measurements was conducted in the Air-Sea Interaction Saltwater Tank (ASIST) to study the response of the air-water interfacial molecular sublayer under various heat flux and wind speed conditions. In-situ gradients were measured with a platinum-plated tungsten wire microthermometer, which resolved the temperature of the thermally conductive sublayer. Air-sea heat flux was controlled by changing the air-water temperature difference (ΔTAW) and the wind speed, and measurements were made for three ΔTAW regimes over a range of wind speeds. A function was fitted to the measured temperature profiles as a way of extracting the boundary layer thickness in a consistent fashion, from which the λ coefficient after Saunders (1967) was computed. This dataset returned a mean λ coefficient of 2.4 +/- 0.5, which was generally lower than previous studies, and was found to be independent of wind speed in the range of 1 to 9 ms-1.

  5. Detailed simulations of air-water interaction phenomena in ocean waves

    NASA Astrophysics Data System (ADS)

    Iafrati, A.; Durante, D.

    2012-04-01

    In the present contribution the flow induced in air by ocean waves is investigated. The air-water interaction problem is of obvious interest in the context of wind generated waves. However, the flow induced in the lower atmosphere layer by ocean waves has also important effects on the exchange processes between atmosphere and ocean and in some circumstances it influences weather conditions on large scales. The problem is studied numerically by a two-dimensional Navier-Stokes solver which models the flow in air and water as that of a single incompressible fluid with density and viscosity expressed as a smooth function of the distance from the interface. The free surface is captured as the zero level set of the distance function. The distance from the interface is reinitialized every time step, so that the thickness of the transition region remains constant in time. The method is applied to two problems characterized by quite different length scales and steepnesses. In both cases the limits associated to the numerical approach and possible effects on the results are discussed. The first application is an attempt of investigating the role played by the flow in air on the dissipation rate of swells. The interest for such problem stems from some studies according to which the flow in air has an important effect on the dissipation of the steepest swells (Ardhuin et al, 2009). Motivated by the above findings, numerical simulations are performed in order to investigate the characteristics of the flow induced in air by swell with wavelengths in a range 50 to 300 m. Results are presented in terms of vorticity field in air with quantitative analyses of the vertical flux of horizontal momentum and of the viscous dissipation in the air phase. The thickness of the air layer which is influenced by the passage of the swell is also given. The second study analyzes the flow induced in air by the evolution of modulated wave trains. In this case the fundamental wavelength is 0.6 m

  6. Smart nanogels at the air/water interface: structural studies by neutron reflectivity.

    PubMed

    Zielińska, Katarzyna; Sun, Huihui; Campbell, Richard A; Zarbakhsh, Ali; Resmini, Marina

    2016-03-01

    The development of effective transdermal drug delivery systems based on nanosized polymers requires a better understanding of the behaviour of such nanomaterials at interfaces. N-Isopropylacrylamide-based nanogels synthesized with different percentages of N,N'-methylenebisacrylamide as cross-linker, ranging from 10 to 30%, were characterized at physiological temperature at the air/water interface, using neutron reflectivity (NR), with isotopic contrast variation, and surface tension measurements; this allowed us to resolve the adsorbed amount and the volume fraction of nanogels at the interface. A large conformational change for the nanogels results in strong deformations at the interface. As the percentage of cross-linker incorporated in the nanogels becomes higher, more rigid matrices are obtained, although less deformed, and the amount of adsorbed nanogels is increased. The data provide the first experimental evidence of structural changes of nanogels as a function of the degree of cross-linking at the air/water interface. PMID:26697736

  7. Structure of phospholipid monolayers containing poly(ethylene glycol) lipids at the air-water interface

    SciTech Connect

    Majewski, J.; Smith, G.S.; Kuhl, T.L.; Israelachvili, J.N.; Gerstenberg, M.C.

    1997-04-17

    The density distribution of a lipid monolayer at the air-water interface mixed with varying amounts of lipid with poly(ethylene glycol)polymer headgroups (polymer-lipid or PEG-lipid) was measured using neutron reflectometry. The structure of the monolayer at the interface was greatly perturbed by the presence of the bulky polymer-lipid headgroups resulting in a large increase in the thickness of the headgroup region normal to the interface and a systematic roughening of the interface with increasing polymer-lipid content. These results show how bulky hydrophilic moieties cause significant deformations and out-of-place protrusions of phospholipid monolayers and presumably bilayers, vesicles and biological membranes. In terms of polymer physics, very short polymer chains tethered to the air-water interface follow scaling behavior with a mushroom to brush transition with increasing polymer grafting density. 34 refs., 9 figs., 1 tab.

  8. Evaluating the relative air permeability of porous media from their water retention curves

    NASA Astrophysics Data System (ADS)

    Assouline, S.; Tuli, A.; Hopmans, J. W.

    2016-05-01

    Accurate modeling of water and air flow in porous media requires the definition of the relevant hydraulic properties, namely, the water retention curve (WRC) and the relative hydraulic conductivity function (RHC), as well as the definition of the relative air permeability function (RAP). Capitalizing on the approach developed previously to represent the RHC, a new model allowing the prediction of RAP based on information resulting from the WRC is proposed. The power value ηa in the model is a decreasing exponential function of the coefficient of variation, ɛ, characterizing the pore size distribution of the porous medium, and derived from its WRC. The model was calibrated using data from 22 disturbed and undisturbed soil samples and was validated using data from eight soil types ranging from quartz sand to silty clay loam. The proposed model provided accurate prediction of the soil RAP and performed in some cases (sandy loam and silty clay loam soils) better than available alternative models.

  9. A criterion for the onset of slugging in horizontal stratified air-water countercurrent flow

    SciTech Connect

    Chun, Moon-Hyun; Lee, Byung-Ryung; Kim, Yang-Seok

    1995-09-01

    This paper presents an experimental and theoretical investigation of wave height and transition criterion from wavy to slug flow in horizontal air-water countercurrent stratified flow conditions. A theoretical formula for the wave height in a stratified wavy flow regime has been developed using the concept of total energy balance over a wave crest to consider the shear stress acting on the interface of two fluids. From the limiting condition of the formula for the wave height, a necessary criterion for transition from a stratified wavy flow to a slug flow has been derived. A series of experiments have been conducted changing the non-dimensional water depth and the flow rates of air in a horizontal pipe and a duct. Comparisons between the measured data and the predictions of the present theory show that the agreement is within {plus_minus}8%.

  10. LASE Measurements of Water Vapor, Aerosol, and Cloud Distributions in Saharan Air Layers and Tropical Disturbances

    NASA Technical Reports Server (NTRS)

    Ismail, Syed; Ferrare, Richard A.; Browell, Edward V.; Kooi, Susan A.; Dunion, Jason P.; Heymsfield, Gerry; Notari, Anthony; Butler, Carolyn F.; Burton, Sharon; Fenn, Marta; Krishnamurti, T. N.; Chen, Gao; Anderson, Bruce

    2010-01-01

    LASE (Lidar Atmospheric Sensing Experiment) on-board the NASA DC-8 measured high resolution profiles of water vapor and aerosols, and cloud distributions in 14 flights over the eastern North Atlantic during the NAMMA (NASA African Monsoon Multidisciplinary Analyses) field experiment. These measurements were used to study African easterly waves (AEWs), tropical cyclones (TCs), and the Saharan Air Layer(s) (SAL). Interactions between the SAL and tropical air were observed during the early stages of the TC development. These LASE measurements represent the first simultaneous water vapor and aerosol lidar measurements to study the SAL and its impact on AEWs and TCs. Examples of profile measurements of aerosol scattering ratios, aerosol extinction coefficients, aerosol optical thickness, water vapor mixing ratios, RH, and temperature are presented to illustrate their characteristics in SAL, convection, and clear air regions. LASE data suggest that the SAL suppresses low-altitude convection at the convection-SAL interface region. Mid-level convection associated with the AEW and transport are likely responsible for high water vapor content observed in the southern regions of the SAL on August 20, 2008. This interaction is responsible for the transfer of about 7 x 10(exp 15) J latent heat energy within a day to the SAL. Measurements of lidar extinction-to-backscatter ratios in the range 36+/-5 to 45+/-5 are within the range of measurements from other lidar measurements of dust. LASE aerosol extinction and water vapor profiles are validated by comparison with onboard in situ aerosol measurements and GPS dropsonde water vapor soundings, respectively.

  11. Bibliography of work on the photocatalytic removal of hazardous compounds from water and air

    SciTech Connect

    Blake, D.M.

    1994-05-01

    This is a bibliography of information in the open literature on work that has been done to date on the photocatalytic oxidation of compounds, principally organic compounds. The goal of the listing is removing hazardous oompounds from water or air. It contains lists of substances and literature citations. The bibliography includes information obtained through the middle of 1993 and some selected references for the balance of that year.

  12. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single-Family Homes

    SciTech Connect

    Cummings, James; Withers, Charles; Martin, Eric; Moyer, Neil

    2012-10-01

    This report is a revision of an earlier report titled: Measure Guideline: Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single-Family Homes. Revisions include: Information in the text box on page 1 was revised to reflect the most accurate information regarding classifications as referenced in the 2012 International Residential Code. “Measure Guideline” was dropped from the title of the report. An addition was made to the reference list.

  13. Smart nanogels at the air/water interface: structural studies by neutron reflectivity

    NASA Astrophysics Data System (ADS)

    Zielińska, Katarzyna; Sun, Huihui; Campbell, Richard A.; Zarbakhsh, Ali; Resmini, Marina

    2016-02-01

    The development of effective transdermal drug delivery systems based on nanosized polymers requires a better understanding of the behaviour of such nanomaterials at interfaces. N-Isopropylacrylamide-based nanogels synthesized with different percentages of N,N'-methylenebisacrylamide as cross-linker, ranging from 10 to 30%, were characterized at physiological temperature at the air/water interface, using neutron reflectivity (NR), with isotopic contrast variation, and surface tension measurements; this allowed us to resolve the adsorbed amount and the volume fraction of nanogels at the interface. A large conformational change for the nanogels results in strong deformations at the interface. As the percentage of cross-linker incorporated in the nanogels becomes higher, more rigid matrices are obtained, although less deformed, and the amount of adsorbed nanogels is increased. The data provide the first experimental evidence of structural changes of nanogels as a function of the degree of cross-linking at the air/water interface.The development of effective transdermal drug delivery systems based on nanosized polymers requires a better understanding of the behaviour of such nanomaterials at interfaces. N-Isopropylacrylamide-based nanogels synthesized with different percentages of N,N'-methylenebisacrylamide as cross-linker, ranging from 10 to 30%, were characterized at physiological temperature at the air/water interface, using neutron reflectivity (NR), with isotopic contrast variation, and surface tension measurements; this allowed us to resolve the adsorbed amount and the volume fraction of nanogels at the interface. A large conformational change for the nanogels results in strong deformations at the interface. As the percentage of cross-linker incorporated in the nanogels becomes higher, more rigid matrices are obtained, although less deformed, and the amount of adsorbed nanogels is increased. The data provide the first experimental evidence of structural changes

  14. Physicochemical Study of Viral Nanoparticles at the Air/Water Interface.

    PubMed

    Torres-Salgado, Jose F; Comas-Garcia, Mauricio; Villagrana-Escareño, Maria V; Durán-Meza, Ana L; Ruiz-García, Jaime; Cadena-Nava, Ruben D

    2016-07-01

    The assembly of most single-stranded RNA (ssRNA) viruses into icosahedral nucleocapsids is a spontaneous process driven by protein-protein and RNA-protein interactions. The precise nature of these interactions results in the assembly of extremely monodisperse and structurally indistinguishable nucleocapsids. In this work, by using a ssRNA plant virus (cowpea chlorotic mottle virus [CCMV]) as a charged nanoparticle we show that the diffusion of these nanoparticles from the bulk solution to the air/water interface is an irreversible adsorption process. By using the Langmuir technique, we measured the diffusion and adsorption of viral nucleocapsids at the air/water interface at different pH conditions. The pH changes, and therefore in the net surface charge of the virions, have a great influence in the diffusion rate from the bulk solution to the air/water interface. Moreover, assembly of mesoscopic and microscopic viral aggregates at this interface depends on the net surface charge of the virions and the surface pressure. By using Brewster's angle microscopy we characterized these structures at the interface. Most common structures observed were clusters of virions and soap-frothlike micron-size structures. Furthermore, the CCMV films were compressed to form monolayers and multilayers from moderate to high surface pressures, respectively. After transferring the films from the air/water interface onto mica by using the Langmuir-Blodgett technique, their morphology was characterized by atomic force microscopy. These viral monolayers showed closed-packing nano- and microscopic arrangements. PMID:26999022

  15. Rheology and microrheology of materials at the air-water interface

    NASA Astrophysics Data System (ADS)

    Walder, Robert Benjamin

    2008-10-01

    The study of materials at the air-water interface is an important area of research in soft condensed matter physics. Films at the air-water interface have been a system of interest to physics, chemistry and biology for the last 20 years. The unique properties of these surface films provide ideal models for 2-d films, surface chemistry and provide a platform for creating 2 dimensional analogue materials to cellular membranes. Measurements of the surface rheology of cross-linked F-actin networks associated with a lipid monolayer at the air-water interface of a Langmuir monolayer have been performed. The rheological measurements are made using a Couette cell. These data demonstrate that the network has a finite elastic modulus that grows as a function of the cross-linking concentration. We also note that under steady-state flow the system behaves as a power law fluid in which the effective viscosity decreases with imposed shear. A Langmuir monolayer trough that is equipped for simultaneous microrheology and standard rheology measurements has been constructed. The central elements are the trough itself with a full range of optical tools accessing the air-water interface from below the trough and a portable knife-edge torsion pendulum that can access the interface from above. The ability to simultaneously measure the mechanical response of Langmuir monolayers on very different length scales is an important step for our understanding of the mechanical response of two-dimensional viscoelastic networks. The optical tweezer microrheometer is used to study the micromechanical properties of Langmuir monolayers. Microrheology measurements are made a variety of surface pressures that correspond to different ordered phases of the monolayer. The complex shear modulus shows an order of magnitude increase for the liquid condensed phase of DPPC compared to the liquid expanded phase.

  16. Sensitivity of Hollow Fiber Spacesuit Water Membrane Evaporator Systems to Potable Water Constituents, Contaminants and Air Bubbles

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Trevino, Luis A.; Fritts, Sharon; Tsioulos, Gus

    2008-01-01

    The Spacesuit Water Membrane Evaporator (SWME) is the baseline heat rejection technology selected for development for the Constellation lunar suit. The first SWME prototype, designed, built, and tested at Johnson Space Center in 1999 used a Teflon hydrophobic porous membrane sheet shaped into an annulus to provide cooling to the coolant loop through water evaporation to the vacuum of space. This present study describes the test methodology and planning and compares the test performance of three commercially available hollow fiber materials as alternatives to the sheet membrane prototype for SWME, in particular, a porous hydrophobic polypropylene, and two variants that employ ion exchange through non-porous hydrophilic modified Nafion. Contamination tests will be performed to probe for sensitivities of the candidate SWME elements to ordinary constituents that are expected to be found in the potable water provided by the vehicle, the target feedwater source. Some of the impurities in potable water are volatile, such as the organics, while others, such as the metals and inorganic ions are nonvolatile. The non-volatile constituents will concentrate in the SWME as evaporated water from the loop is replaced by the feedwater. At some point in the SWME mission lifecycle as the concentrations of the non-volatiles increase, the solubility limits of one or more of the constituents may be reached. The resulting presence of precipitate in the coolant water may begin to plug pores and tube channels and affect the SWME performance. Sensitivity to macroparticles, lunar dust simulant, and air bubbles will also be investigated.

  17. Why Do Objects Cool More Rapidly in Water Than in Still Air?

    NASA Astrophysics Data System (ADS)

    Bohren, Craig F.

    2011-12-01

    An Internet search for why objects, especially humans, cool more rapidly in water than in air, both at the same temperature, and by how much, yields off-the-cuff answers unsupported by experiment or analysis. To answer these questions in depth requires a smattering of engineering heat transfer, including radiative transfer, and the different thermophysical properties of the two fluids. The correct ratio for humans is closer to 2 than to 10, and if this were not so, swimming in cool water could be fatal.

  18. Tracer study of oxygen and hydrogen uptake by Mg alloys in air with water vapor

    DOE PAGESBeta

    Brady, M. P.; Fayek, M.; Meyer, H. M.; Leonard, D. N.; Elsentriecy, H. H.; Unocic, K. A.; Anovitz, L. M.; Cakmak, E.; Keiser, J. R.; Song, G. L.; et al

    2015-05-15

    We studied the pure oxidation of Mg, Mg–3Al–1Zn (AZ31B), and Mg–1Zn–0.25Zr–<0.5Nd (ZE10A) at 85 °C in humid air using sequential exposures with H218O and D216O for water vapor. Incorporation of 18O in the hydroxide/oxide films indicated that oxygen from water vapor participated in the reaction. Moreover, penetration of hydrogen into the underlying metal was observed, particularly for the Zr- and Nd-containing ZE10A. Isotopic tracer profiles suggested a complex mixed inward/outward film growth mechanism.

  19. Design of a Shuttle air and water prefilter for reduced gravity operation

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.; Ouellette, Fred A.

    1992-01-01

    The first design concept of the Space Shuttle humidity separator prefilter, developed to remove debris from the air/water stream which flows from the cabin condensing heat exchanger to the humidity separator, was flown on STS-40 in June 1991. This paper discusses the design of the first prefilter (which was found not to pass water at a constant rate, resulting in a tendency to slug the humidity separator) and explains the on-orbit performance of the prefilter. The redesigned prefilter (made using the results of the flight test of the first prefilter) is described, with particular attention given to the features which would allow successful reduced gravity operation.

  20. Bio-Decontamination of Water and Surfaces by DC Discharges in Atmospheric Air

    NASA Astrophysics Data System (ADS)

    Machala, Zdenko; Tarabová, Barbora; Pelach, Michal; Šipoldová, Zuzana; Hensel, Karol; Janda, Mário; Šikurová, Libuša

    Two types of DC-driven atmospheric air discharges, including a streamer corona and a transient spark with short high current pulses of limited energy, were employed for bio-decontamination of water and various surfaces (agar plates, plastic foils, human teeth) contaminated by bacteria or spores (Salmonella typhimurium, Bacillus cereus). Both discharges generate cold non-equilibrium plasma. The discharges combined with the electro-spraying of the treated water through the needle electrode lead to fast and efficient bio-decontamination. Experiments comparing direct and indirect plasma effects, oxidation stress measurements in the cell membranes, and chemical changes induced in the treated water enable assessment of the plasma agents being responsible for microbial inactivation. Radicals and reactive oxygen species seem to be dominant biocidal agents, although deeper understanding of the plasma-induced water chemistry and of the temporal evolution of the bio-inactivation processes is needed.

  1. Fracture toughness of Alloy 690 and EN52 weld in air and water

    SciTech Connect

    Brown, C.M.; Mills, W.J.

    1999-06-01

    The effect of low and high temperature water with high hydrogen on the fracture toughness of Alloy 690 and its weld, EN52, was characterized using elastic-plastic J{sub IC} methodology. While both materials display excellent fracture resistance in air and elevated temperature (>93 C) water, a dramatic degradation in toughness is observed in 54 C water. The loss of toughness is associated with a hydrogen-induced intergranular cracking mechanism where hydrogen is picked up from the water. Comparison of the cracking behavior in low temperature water with that for hydrogen-precharged specimens tested in air indicates that the critical local hydrogen content required to cause low temperature embrittlement is on the order of 120 to 160 ppm. Loading rate studies show that the cracking resistance is significantly improved at rates above ca. 1000 MPa{radical}m/h because there is insufficient time to produce grain boundary embrittlement. Electron fractographic examinations were performed to correlate cracking behavior with microstructural features and operative fracture mechanics.

  2. Direct numerical simulation of a turbulent stably stratified air flow above a wavy water surface

    NASA Astrophysics Data System (ADS)

    Druzhinin, O. A.; Troitskaya, Yu. I.; Zilitinkevich, S. S.

    2016-01-01

    The influence of the roughness of the underlaying water surface on turbulence is studied in a stably stratified boundary layer (SSBL). Direct numerical simulation (DNS) is conducted at various Reynolds (Re) and Richardson (Ri) numbers and the wave steepness ka. It is shown that, at constant Re, the stationary turbulent regime is set in at Ri below the threshold value Ri c depending on Re. At Ri > Ri c , in the absence of turbulent fluctuations near the wave water surface, three-dimensional quasiperiodical structures are identified and their threshold of origin depends on the steepness of the surface wave on the water surface. This regime is called a wave pumping regime. The formation of three-dimensional structures is explained by the development of parametric instability of the disturbances induced by the surface water in the air flow. The DNS results are quite consistent with prediction of the theoretical model of the SSBL flow, in which solutions for the disturbances of the fields of velocity and temperature in the wave pumping regime are found to be a solution of a two-dimensional linearized system with the heterogeneous boundary condition, which is caused by the presence of the surface wave. In addition to the turbulent fluctuations, the three-dimensional structures in the wave pumping regime provide for the transfer of impulse and heat, i.e., the increase in the roughness of the water-air boundary caused by the presence of waves intensifies the exchange in the SSBL.

  3. Spectral changes in conifers subjected to air pollution and water stress: Experimental studies

    NASA Technical Reports Server (NTRS)

    Westman, Walter E.; Price, Curtis V.

    1988-01-01

    The roles of leaf anatomy, moisture and pigment content, and number of leaf layers on spectral reflectance in healthy, pollution-stressed, and water-stressed conifer needles were examined experimentally. Jeffrey pine (Pinus jeffreyi) and giant sequoia (Sequoiadendron gigantea) were exposed to ozone and acid mist treatments in fumigation chambers; red pine (Pinus resinosa) needles were artificially dried. Infrared reflectance from stacked needles rose with free water loss. In an air-drying experiment, cell volume reductions induced by loss of turgor caused near-infrared reflectance (TM band 4) to drop after most free water was lost. Under acid mist fumigation, stunting of tissue development similarly reduced band 4 reflectance. Both artificial drying and pollutant fumigation caused a blue shift of the red edge of spectral reflectance curves in conifers, attributable to chlorophyll denaturation. Thematic mapper band ratio 4/3 fell and 5/4 rose with increasing pollution stress on artificial drying. Loss of water by air-drying, freeze-drying, or oven-drying enhanced spectral features, due in part to greater scattering and reduced water absorption. Grinding of the leaf tissue further enhanced the spectral features by increasing reflecting surfaces and path length. In a leaf-stacking experiment, an asymptote in visible and infrared reflectance was reached at 7-8 needle layers of red pine.

  4. Enzyme incorporated microfluidic device for in-situ glucose detection in water-in-air microdroplets.

    PubMed

    Piao, Yunxian; Han, Dong Ju; Azad, Mohammad Reza; Park, Minsu; Seo, Tae Seok

    2015-03-15

    Droplet generating microfluidic systems can provide miniaturized bioanalytical tools by using the homogenous and high-throughput droplets as nanoreactors. In this study, we demonstrated a sensitive and in-situ glucose monitoring system using water-in-air droplets in an enzyme incorporated microfluidic device. A thin film structure of a glucose oxidase (GOx) enzyme immobilized hydrogel was constructed in the middle of the microfluidic channel, and nanoliter scaled water-in-air droplets which contain a glucose sample, horseradish peroxidase (HRP), and an Amplex Red substrate were generated by flow focusing of water phase with air. Once the droplets passed through the enzyme trapped hydrogel, the droplets temporarily halted and a GOx mediated catalytic reaction with glucose proceeded, resulting in producing fluorescent resorufin products in the droplets. With optimized conditions such as the thickness of a hydrogel film and the size and flowing rate of droplets, fluorescence intensities of the released droplets linearly increased in proportional to the glucose concentration up to 3mM, and the limit of detection was calculated as 6.64µM. A spiked glucose in a real urine sample was also successfully analyzed, and the functionality of the proposed enzyme immobilized microfluidic chip was maintained for at least two weeks without loss of enzymatic activity and detection sensitivity. Thus, our methodology suggests a novel droplet based glucose sensing chip which can monitor glucose in a real-time and high-throughput manner. PMID:25461161

  5. Environmental health in China: challenges to achieving clean air and safe water

    PubMed Central

    Zhang, Junfeng (Jim); Mauzerall, Denise L.; Zhu, Tong; Liang, Song; Ezzati, Majid; Remais, Justin

    2014-01-01

    The health effects of environmental risks, especially those of air and water pollution, remain a major source of morbidity and mortality in China. Biomass fuel and coal are routinely burned for cooking and heating in almost all rural and many urban households resulting in severe indoor air pollution that contributes greatly to the burden of disease. Many communities lack access to safe drinking water and santiation, and thus the risk of waterborne disease in many regions remains high. At the same time, China is rapidly industrializing with associated increases in energy use and industrial waste. While economic growth resulting from industrialization has improved health and quality of life indicators in China, it has also increased the incidence of environmental disasters and the release of chemical toxins into the environment, with severe impacts on health. Air quality in China's cities is among the worst in the world and industrial water pollution has become a widespread health hazard. Moreover, emissions of climate-warming greenhouse gases from energy use are rapidly increasing. Global climate change will inevitably intensify China's environmental health problems, with potentially catastrophic outcomes from major shifts in temperature and precipitation. Facing the overlap of traditional, modern, and emerging environmental problems, China has committed substantial resources to environmental improvement. China has the opportunity to both address its national environmental health challenges and to assume a central role in the international effort to improve the global environment. PMID:20346817

  6. Velocity and temperature field characteristics of water and air during natural convection heating in cans.

    PubMed

    Erdogdu, Ferruh; Tutar, Mustafa

    2011-01-01

    Presence of headspace during canning is required since an adequate amount allows forming vacuum during the process. Sealing technology may not totally eliminate all entrapped gases, and headspace might affect heat transfer. Not much attention has been given to solve this problem in computational studies, and cans, for example, were mostly assumed to be fully filled with product. Therefore, the objective of this study was to determine velocity and temperature evolution of water and air in cans during heating to evaluate the relevance of headspace in the transport mechanism. For this purpose, canned water samples with a certain headspace were used, and required governing continuity, energy, and momentum equations were solved using a finite volume approach coupled with a volume of fluid element model. Simulation results correlated well with experimental results validating faster heating effects of headspace rather than insulation effects as reported in the literature. The organized velocity motions along the air-water interface were also shown. Practical Application: Canning is a universal and economic method for processing of food products, and presence of adequate headspace is required to form vacuum during sealing of the cans. Since sealing technology may not totally eliminate the entrapped gases, mainly air, headspace might affect heating rates in cans. This study demonstrated the increased heating rates in the presence of headspace in contrast with some studies in the literature. By applying the effect of headspace, required processing time for thermally processed foods can be reduced leading to more rapid processes and lower energy consumptions. PMID:21535663

  7. Enhanced separation of water quality parameters in the DAF (Dissolved Air Flotation) system using ozone.

    PubMed

    Lee, Byoung-Ho; Song, Won-Chul; Kim, Hye-Young; Kim, Jeong-Hyeon

    2007-01-01

    Dissolved Air Flotation (DAF) has been used in water and wastewater treatment because it has an excellent separation capability. It was found that the separation capability of the DAF system could be even more enhanced by ozone. Ozone was applied as a substitute for air in the DAF system, so that the system was named as the DOF (Dissolved Ozone Flotation) system. Ozone not only enhances coagulation as is well known, but also provides larger micro-bubble volume because the solubility of ozone in water is much higher than that of air. Ozone enhanced the separation rate of SS by 13.6%, and turbidity by 21% in the DOF system compared to the DAF system. T-P was also removed 7.7% more in the DOF system. 41.5% of color and 7.4% of COD(Cr) were enhanced in their removal rate. Coliform and heterotrophic bacteria were removed 54% and 57.3% more in the DOF system. Separation capability of the DOF system was greatly enhanced for most of the water quality parameters because ozone provides strong oxidation power with large volume of micro-bubbles. PMID:18048988

  8. Flexible endoscopes: structure and function--the air and water system.

    PubMed

    Holland, P; Shoop, N

    2000-01-01

    Flexible endoscopes are complex medical instruments that are easily damaged. To maintain the flexible endoscope in optimum working condition, the user must have a thorough understanding of the structure and function of the instrument. This series of articles will present an in-depth look at the care and handling of these expensive devices. The flexible endoscope is constructed of several systems that operate simultaneously to produce a highly technical, yet effective diagnostic and therapeutic medical device. These systems include the air and water system, the suction and operating channel system, the mechanical system, the endoscopic retrograde cholangiopancreatography (ERCP) elevator system, the optical system, and the electrical system. This first article in a series will focus on the air and water system of the endoscope. A review of the internal and external structure of the flexible endoscope and the functions of the air and water system, including infection control issues, potential problems and evaluation, and prevention of minor problems to avoid expensive repairs, will be addressed. PMID:11854970

  9. Thermodynamic and dynamic characteristics of hydroxypropylmethylcellulose adsorbed films at the air-water interface.

    PubMed

    Pérez, Oscar E; Sánchez, Cecilio Carrera; Rodríguez Patino, Juan M; Pilosof, Ana M R

    2006-01-01

    Surface pressure isotherms and structural and surface dilatational properties of three hydroxypropylmethycelluloses (HPMCs, called E4M, E50LV, and F4M) adsorbed films at the air-water interface were determined. In this work we present evidence that HPMC molecules are able to diffuse and saturate the air-water interface at very low concentrations in the bulk phase. As bulk concentration increased, structural changes at a molecular level occurred at the interface. These changes corresponded to transition from an expanded structure (structure I) to a condensed one (structure II). When the surface concentration of HPMC was high enough, the collapse of the monolayer was observed. The three HPMCs formed very elastic films at the air-water interface, even at low surface pressures. E4M showed features that make it unique. For instance it showed the highest surface activity, mainly at low bulk concentrations (<10(-4) wt %). The differences observed in surface activity may be attributed to differences in the hydroxypropyl molar substitution and molecular weight of HPMC. All three HPMCs formed films of similar viscoelasticity and elastic dilatational modulus, which can be accounted for by their similar degree of methyl substitution. PMID:16398540

  10. Ammonia as a respiratory gas in water and air-breathing fishes.

    PubMed

    Randall, David J; Ip, Yuen K

    2006-11-01

    Ammonia is produced in the liver and excreted as NH(3) by diffusion across the gills. Elevated ammonia results in an increase in gill ventilation, perhaps via stimulation of gill oxygen chemo-receptors. Acidification of the water around the fish by carbon dioxide and acid excretion enhances ammonia excretion and constitutes "environmental ammonia detoxification". Fish have difficulties in excreting ammonia in alkaline water or high concentrations of environmental ammonia, or when out of water. The mudskipper, Periphthalmodon schlosseri, is capable of active NH(4)(+) transport, maintaining low internal levels of ammonia. To prevent a back flux of NH(3), these air-breathing fish can increase gill acid excretion and reduce the membrane NH(3) permeability by modifying the phospholipid and cholesterol compositions of their skin. Several air-breathing fish species can excrete ammonia into air through NH(3) volatilization. Some fish detoxify ammonia to glutamine or urea. The brains of some fish can tolerate much higher levels of ammonia than other animals. Studies of these fish may offer insights into the nature of ammonia toxicity in general. PMID:16731054

  11. Anisotropic orientational motion of molecular adsorbates at the air-water interface

    SciTech Connect

    Zimdars, D.; Dadap, J.I.; Eisenthal, K.B.; Heinz, T.F.

    1999-04-29

    The ultrafast orientational motions of coumarin 314 (C314) adsorbed at the air/water interface were investigated by time-resolved surface second harmonic generation (TRSHG). The theory and method of using TRSHG to detect both out-of-plane and in-plane orientational motions are discussed. The interfacial solute motions were found to be anisotropic, with differing out-of-plane and in-plane reorientation time constants. This report presents the first direct observation of in-plane orientational motion of a molecule (C314) at the air/water interface using TRSHG. The in-plane reorientation time constant is 600 {+-} 40 ps. The out-of-plane reorientation time constant is 350 {+-} 20 ps. The out-of-plane orientational motion of C314 is similar to the previous results on rhodamine 6G at the air/water interface which indicated increased interfacial friction compared with bulk aqueous solution. The surface reorientation times are 2--3 times slower than the bulk isotropic orientational diffusion time.

  12. Microstructure of Hairy-Rod Polymers at the Air-Water Interface

    NASA Astrophysics Data System (ADS)

    Chien, B. T.; Riou, S. A.; Su, Z.; Hsu, S. L.

    1997-03-01

    To better understand the role of long flexible side groups on the microstructure of "hairy-rod" polymer thin films, a series of poly(γ-methyl-L-glutamate-co-γ-n-octadecyl-L- glutamate) of varying degree copolymerization has been investigated at the air-water interface by external reflectance infrared spectroscopy. Coupled with a Langmuir trough, the microstructure of the monolayer films was charaterized directly at the air-water interface as a function of varying surface packing density. The conformational order of the n-octadecyl side groups was subsequently shown to vary strongly as a function of n-octadecyl side group content as well as surface packing density. When conformationally disordered, the n-octadecyl side groups could be likened to that of a Rsolvent-likeS matrix for the rigid- rod main chains in the plane of the interface. By controlling the conformational order and therefore the Rsolvent-likeS character of the n-octadecyl side groups, it was possible to control an in-plane orientation of the rigid-rod main chains relative to that of the compression axis of the Langmuir trough. The orientation of the n- octadecyl side groups out of the plane of the air-water interface was also determined.

  13. Air- and water-resistant noble metal coated ferromagnetic cobalt nanorods.

    PubMed

    Lentijo-Mozo, Sergio; Tan, Reasmey P; Garcia-Marcelot, Cécile; Altantzis, Thomas; Fazzini, Pier-Francesco; Hungria, Teresa; Cormary, Benoit; Gallagher, James R; Miller, Jeffrey T; Martinez, Herve; Schrittwieser, Stefan; Schotter, Joerg; Respaud, Marc; Bals, Sara; Van Tendeloo, Gustaaf; Gatel, Christophe; Soulantica, Katerina

    2015-03-24

    Cobalt nanorods possess ideal magnetic properties for applications requiring magnetically hard nanoparticles. However, their exploitation is undermined by their sensitivity toward oxygen and water, which deteriorates their magnetic properties. The development of a continuous metal shell inert to oxidation could render them stable, opening perspectives not only for already identified applications but also for uses in which contact with air and/or aqueous media is inevitable. However, the direct growth of a conformal noble metal shell on magnetic metals is a challenge. Here, we show that prior treatment of Co nanorods with a tin coordination compound is the crucial step that enables the subsequent growth of a continuous noble metal shell on their surface, rendering them air- and water-resistant, while conserving the monocrystallity, metallicity and the magnetic properties of the Co core. Thus, the as-synthesized core-shell ferromagnetic nanorods combine high magnetization and strong uniaxial magnetic anisotropy, even after exposure to air and water, and hold promise for successful implementation in in vitro biodiagnostics requiring probes of high magnetization and anisotropic shape. PMID:25734760

  14. Protein adsorption at the electrified air-water interface: implications on foam stability.

    PubMed

    Engelhardt, Kathrin; Rumpel, Armin; Walter, Johannes; Dombrowski, Jannika; Kulozik, Ulrich; Braunschweig, Björn; Peukert, Wolfgang

    2012-05-22

    The surface chemistry of ions, water molecules, and proteins as well as their ability to form stable networks in foams can influence and control macroscopic properties such as taste and texture of dairy products considerably. Despite the significant relevance of protein adsorption at liquid interfaces, a molecular level understanding on the arrangement of proteins at interfaces and their interactions has been elusive. Therefore, we have addressed the adsorption of the model protein bovine serum albumin (BSA) at the air-water interface with vibrational sum-frequency generation (SFG) and ellipsometry. SFG provides specific information on the composition and average orientation of molecules at interfaces, while complementary information on the thickness of the adsorbed layer can be obtained with ellipsometry. Adsorption of charged BSA proteins at the water surface leads to an electrified interface, pH dependent charging, and electric field-induced polar ordering of interfacial H(2)O and BSA. Varying the bulk pH of protein solutions changes the intensities of the protein related vibrational bands substantially, while dramatic changes in vibrational bands of interfacial H(2)O are simultaneously observed. These observations have allowed us to determine the isoelectric point of BSA directly at the electrolyte-air interface for the first time. BSA covered air-water interfaces with a pH near the isoelectric point form an amorphous network of possibly agglomerated BSA proteins. Finally, we provide a direct correlation of the molecular structure of BSA interfaces with foam stability and new information on the link between microscopic properties of BSA at water surfaces and macroscopic properties such as the stability of protein foams. PMID:22530646

  15. Parameterisation for National Scale Modelling of Macronutrient Emissions to Water and Air

    NASA Astrophysics Data System (ADS)

    Trodahl, M.; Jackson, B. M.

    2013-12-01

    Globally, increases in emissions to atmosphere and water associated with the biogeochemical cycling of carbon, nitrogen and phosphorous are concerning. While the sources of these emissions are varied, agricultural and other primary production land uses have been identified as both major contributors to some emissions, and potential sinks. Specifically targeted solutions are being sought to reduce emissions and increase storage in these areas. LUCI (the Land Utilisation and Capability Indicator) is a GIS framework developed to consider the impacts of land use on various ecosystem services in a holistic and spatially explicit manner. It is designed to work at a variety of scales, from sub-field to catchment, using readily available national data that can be supplemented with local knowledge. Current tools available with the framework include flood mitigation, habitat connectivity, erosion and sediment delivery, agricultural productivity, carbon sequestration, and water quality. At present LUCI models emissions of N and P to water using an export coefficient approach linked to land use, land management and soils, and models emissions to air of carbon dioxide only; methane and nitrous oxide are not currently considered. This study aims to refine the representation in LUCI of N and P emissions to water and develop preliminary approaches for representing methane and nitrous oxide emissions to air. The ultimate aim is the provision of a set of model representations and associated parameters that can better represent emissions to air and water and suggest spatially explicit solutions that will not undermine, and may benefit, enterprise and/or community economic assets. The physical processes associated with emissions are being investigated and categorised based on land management, soil and climate regimes for two case study countries - Wales and New Zealand. Preliminary parameters, associated modelled results and potential future refinements are presented and discussed.

  16. Influence of eutrophication on air-water exchange, vertical fluxes, and phytoplankton concentrations of persistent organic pollutants

    SciTech Connect

    Dachs, J.; Eisenreich, S.J.; Hoff, R.M.

    2000-03-15

    The influence of eutrophication on the biogeochemical cycles of persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) is largely unknown. In this paper, the application of a dynamic air-water-phytoplankton exchange model to Lake Ontario is used as a framework to study the influence of eutrophication on air-water exchange, vertical fluxes, and phytoplankton concentrations of POPs. The results of these simulations demonstrate that air-water exchange controls phytoplankton concentrations in remote aquatic environments with little influence from land-based sources of pollutants and supports levels in even historically contaminated systems. Furthermore, eutrophication or high biomass leads to a disequilibrium between the gas and dissolved phase, enhanced air-water exchange, and vertical sinking fluxes of PCBs. Increasing biomass also depletes the water concentrations leading to lower than equilibrium PCB concentrations in phytoplankton. Implications to future trends in PCB pollution in Lake Ontario are also discussed.

  17. Plants + microbes: Innovative food crop systems that also clean air and water

    NASA Astrophysics Data System (ADS)

    Nelson, Mark; Wolverton, B. C.

    The limitations that will govern bioregenerative life support applications in space, especially volume and weight, make multi-purpose systems advantageous. This paper outlines two systems which utilize plants and associated microbial communities of root or growth medium to both produce food crops and clean air and water. Underlying these approaches are the large numbers and metabolic diversity of microbes associated with roots and found in either soil or other suitable growth media. It is known that most biogeochemical cycles have a microbial link, and the ability of microbes to metabolize virtually all trace gases, whether of technogenic or biogenic origin, have long been established. Wetland plants and soil/media also been extensively researched for their ability to purify wastewaters of all kinds of potential water pollutants, from nutrients like N and P, to heavy metals and a range of complex industrial pollutants. There is a growing body of research on the ability of higher plants to purify air and water. Associated benefits of these approaches is that by utilizing natural ecological processes, the cleansing of air and water can be done with little or no energy inputs. Soil and root microorganisms respond to changing pollutant types by an increase of the types of organisms with the capacity to use these compounds. Thus living systems have an extraordinary adaptive capacity as long as the starting populations are sufficiently diverse. It is known that tightly sealed environments, from office buildings to spacecraft, can have hundreds or even thousands of potential air pollutants, depending on the materials and machines enclosed. Human waste products carry a plethora of microbes can are readily used in the process of converting its organic load to forms that can be utilized by green plants. Having endogenous means of responding to changing air and water quality conditions represents safety factors which operate without the need for human direction. We will

  18. Plants + soil/wetland microbes: Food crop systems that also clean air and water

    NASA Astrophysics Data System (ADS)

    Nelson, Mark; Wolverton, B. C.

    2011-02-01

    The limitations that will govern bioregenerative life support applications in space, especially volume and weight, make multi-purpose systems advantageous. This paper outlines two systems which utilize plants and associated microbial communities of root or growth medium to both produce food crops and clean air and water. Underlying these approaches are the large numbers and metabolic diversity of microbes associated with roots and found in either soil or other suitable growth media. Biogeochemical cycles have microbial links and the ability of microbes to metabolize virtually all trace gases, whether of technogenic or biogenic origin, has long been established. Wetland plants and the rootzone microbes of wetland soils/media also been extensively researched for their ability to purify wastewaters of a great number of potential water pollutants, from nutrients like N and P, to heavy metals and a range of complex industrial pollutants. There is a growing body of research on the ability of higher plants to purify air and water. Associated benefits of these approaches is that by utilizing natural ecological processes, the cleansing of air and water can be done with little or no energy inputs. Soil and rootzone microorganisms respond to changing pollutant types by an increase of the types of organisms with the capacity to use these compounds. Thus living systems have an adaptive capacity as long as the starting populations are sufficiently diverse. Tightly sealed environments, from office buildings to spacecraft, can have hundreds or even thousands of potential air pollutants, depending on the materials and equipment enclosed. Human waste products carry a plethora of microbes which are readily used in the process of converting its organic load to forms that can be utilized by green plants. Having endogenous means of responding to changing air and water quality conditions represents safety factors as these systems operate without the need for human intervention. We review

  19. Stable isotope composition of waters in the Great Basin, United States 1. Air-mass trajectories

    USGS Publications Warehouse

    Friedman, I.; Harris, J.M.; Smith, G.I.; Johnson, C.A.

    2002-01-01

    Isentropic trajectories, calculated using the NOAA/Climate Monitoring and Diagnostics Laboratory's isentropic transport model, were used to determine air-parcel origins and the influence of air mass trajectories on the isotopic composition of precipitation events that occurred between October 1991 and September 1993 at Cedar City, Utah, and Winnemucca, Nevada. Examination of trajectories that trace the position of air parcels backward in time for 10 days indicated five distinct regions of water vapor origin: (1) Gulf of Alaska and North Pacific, (2) central Pacific, (3) tropical Pacific, (4) Gulf of Mexico, and (5) continental land mass. Deuterium (??D) and oxygen-18 (??18O) analyses were made of precipitation representing 99% of all Cedar City events. Similar analyses were made on precipitation representing 66% of the precipitation falling at Winnemucca during the same period. The average isotopic composition of precipitation derived from each water vapor source was determined. More than half of the precipitation that fell at both sites during the study period originated in the tropical Pacific and traveled northeast to the Great Basin; only a small proportion traversed the Sierra Nevada. The isotopic composition of precipitation is determined by air-mass origin and its track to the collection station, mechanism of droplet formation, reequilibration within clouds, and evaporation during its passage from cloud to ground. The Rayleigh distillation model can explain the changes in isotopic composition of precipitation as an air mass is cooled pseudo-adiabatically during uplift. However, the complicated processes that take place in the rapidly convecting environment of cumulonimbus and other clouds that are common in the Great Basin, especially in summer, require modification of this model because raindrops that form in the lower portion of those clouds undergo isotopic change as they are elevated to upper levels of the clouds from where they eventually drop to the

  20. Stable isotope composition of waters in the Great Basin, United States 1. Air-mass trajectories

    NASA Astrophysics Data System (ADS)

    Friedman, Irving; Harris, Joyce M.; Smith, George I.; Johnson, Craig A.

    2002-10-01

    Isentropic trajectories, calculated using the NOAA/Climate Monitoring and Diagnostics Laboratory's isentropic transport model, were used to determine air-parcel origins and the influence of air mass trajectories on the isotopic composition of precipitation events that occurred between October 1991 and September 1993 at Cedar City, Utah, and Winnemucca, Nevada. Examination of trajectories that trace the position of air parcels backward in time for 10 days indicated five distinct regions of water vapor origin: (1) Gulf of Alaska and North Pacific, (2) central Pacific, (3) tropical Pacific, (4) Gulf of Mexico, and (5) continental land mass. Deuterium (δD) and oxygen-18 (δ18O) analyses were made of precipitation representing 99% of all Cedar City events. Similar analyses were made on precipitation representing 66% of the precipitation falling at Winnemucca during the same period. The average isotopic composition of precipitation derived from each water vapor source was determined. More than half of the precipitation that fell at both sites during the study period originated in the tropical Pacific and traveled northeast to the Great Basin; only a small proportion traversed the Sierra Nevada. The isotopic composition of precipitation is determined by air-mass origin and its track to the collection station, mechanism of droplet formation, reequilibration within clouds, and evaporation during its passage from cloud to ground. The Rayleigh distillation model can explain the changes in isotopic composition of precipitation as an air mass is cooled pseudo-adiabatically during uplift. However, the complicated processes that take place in the rapidly convecting environment of cumulonimbus and other clouds that are common in the Great Basin, especially in summer, require modification of this model because raindrops that form in the lower portion of those clouds undergo isotopic change as they are elevated to upper levels of the clouds from where they eventually drop to the

  1. Effect of CO{sub 2} air mixtures on the pH of air-stripped water at Treatment Facility D

    SciTech Connect

    Krauter, P.W.; Harrar, J.E.; Orloff, S.P.

    1998-01-01

    A small-scale model of the air stripping tanks at TFD was constructed and tested to determine the effect of carbon dioxide additions, to the stripper air, on system water pH. The objective was to determine whether this technique could be used to control and minimize CaCO{sub 3} scale formation. It was found that a concentration of 0.7 vol. % CO{sub 2} is required to maintain the water at its original, influent pH value of 7.4, but lower concentrations may be effective in controlling scale. There is also a possibility of reducing CO{sub 2} consumption by recycling the CO{sub 2}-rich air. The use of CO{sub 2} injection at Site 300 water treatment is reviewed.

  2. Workers' Housing Estates In Postindustrial Cities - Modernization Or Revitalization?

    NASA Astrophysics Data System (ADS)

    Gaweł, Dariusz

    2015-09-01

    The article presents a part of the results on the physiognomy of a postindustrial city under conditions of economic transformation in Poland. The study area encompasses industrial centers located in the region of the Central Industrial District (Centralny Okręg Przemysłowy - COP) in the Świętokrzystkie and Mazowieckie voivodeships (districts). The specific urban structure of the industrial city and unemployment among its inhabitants resulting from ownership transformations generate various problems. The workers' neighborhoods and colonies, which sprouted up so quickly at the beginning of the XX century, were a supply base for the rapidly developing industrial centers. Their clear urban structure and cultural potential they possess predispose them to developing necessary repair programs. Thus, the article draws attention to this form of settlement on the one hand, and on the other characterizes the activities assumed by gminas (municipalities) in the scope of modernizing and revitalizing these areas.

  3. A method of revitalizing Sampson's theory of the Galilean satellites

    NASA Technical Reports Server (NTRS)

    Lieske, J. H.

    1974-01-01

    A method is developed by which Sampson's theory of motion of Jupiter's Galilean satellites can be revitalized by use of algebraic manipulation software on a digital computer. The technique seeks (1) to remove algebraic errors existing in the current Sampson theory, (2) to introduce some neglected effects due to solar interactions and the 3-7 commensurability between the outer two satellites, (3) to allow for nonzero amplitude and phase of the libration, (4) to allow future revision of the arbitrary constants of integration, (5) to express the final results as analytic functions of variations in the numerous arbitrary constants of integration and arbitrary parameters, and (6) to provide analytic partial derivatives by means of which the numerical values of coefficients in the expressions for the coordinates can be adjusted. The level of precision desired is one arc second (Jovicentric) for the coordinates (2, 3.3, 5.2, and 9.1 km, respectively, for satellites I through IV).

  4. Atmosphere Revitalization Technology Development for Crewed Space Exploration

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.; Carrasquillo, Robyn L.; Harris, Danny W.

    2006-01-01

    As space exploration objectives extend human presence beyond low Earth orbit, the solutions to technological challenges presented by supporting human life in the hostile space environment must build upon experience gained during past and present crewed space exploration programs. These programs and the cabin atmosphere revitalization process technologies and systems developed for them represent the National Aeronautics and Space Administration s (NASA) past and present operational knowledge base for maintaining a safe, comfortable environment for the crew. The contributions of these programs to the NASA s technological and operational working knowledge base as well as key strengths and weaknesses to be overcome are discussed. Areas for technological development to address challenges inherent with the Vision for Space Exploration (VSE) are presented and a plan for their development employing unit operations principles is summarized

  5. Precision cleaning verification of fluid components by air/water impingement and total carbon analysis

    NASA Technical Reports Server (NTRS)

    Barile, Ronald G.; Fogarty, Chris; Cantrell, Chris; Melton, Gregory S.

    1994-01-01

    NASA personnel at Kennedy Space Center's Material Science Laboratory have developed new environmentally sound precision cleaning and verification techniques for systems and components found at the center. This technology is required to replace existing methods traditionally employing CFC-113. The new patent-pending technique of precision cleaning verification is for large components of cryogenic fluid systems. These are stainless steel, sand cast valve bodies with internal surface areas ranging from 0.2 to 0.9 sq m. Extrapolation of this technique to components of even larger sizes (by orders of magnitude) is planned. Currently, the verification process is completely manual. In the new technique, a high velocity, low volume water stream impacts the part to be verified. This process is referred to as Breathing Air/Water Impingement and forms the basis for the Impingement Verification System (IVS). The system is unique in that a gas stream is used to accelerate the water droplets to high speeds. Water is injected into the gas stream in a small, continuous amount. The air/water mixture is then passed through a converging/diverging nozzle where the gas is accelerated to supersonic velocities. These droplets impart sufficient energy to the precision cleaned surface to place non-volatile residue (NVR) contaminants into suspension in the water. The sample water is collected and its NVR level is determined by total organic carbon (TOC) analysis at 880 C. The TOC, in ppm carbon, is used to establish the NVR level. A correlation between the present gravimetric CFC113 NVR and the IVS NVR is found from experimental sensitivity factors measured for various contaminants. The sensitivity has the units of ppm of carbon per mg/sq ft of contaminant. In this paper, the equipment is described and data are presented showing the development of the sensitivity factors from a test set including four NVRs impinged from witness plates of 0.05 to 0.75 sq m.

  6. Precision Cleaning Verification of Fluid Components by Air/Water Impingement and Total Carbon Analysis

    NASA Technical Reports Server (NTRS)

    Barile, Ronald G.; Fogarty, Chris; Cantrell, Chris; Melton, Gregory S.

    1995-01-01

    NASA personnel at Kennedy Space Center's Material Science Laboratory have developed new environmentally sound precision cleaning and verification techniques for systems and components found at the center. This technology is required to replace existing methods traditionally employing CFC-113. The new patent-pending technique of precision cleaning verification is for large components of cryogenic fluid systems. These are stainless steel, sand cast valve bodies with internal surface areas ranging from 0.2 to 0.9 m(exp 2). Extrapolation of this technique to components of even larger sizes (by orders of magnitude) is planned. Currently, the verification process is completely manual. In the new technique, a high velocity, low volume water stream impacts the part to be verified. This process is referred to as Breathing Air/Water Impingement and forms the basis for the Impingement Verification System (IVS). The system is unique in that a gas stream is used to accelerate the water droplets to high speeds. Water is injected into the gas stream in a small, continuous amount. The air/water mixture is then passed through a converging-diverging nozzle where the gas is accelerated to supersonic velocities. These droplets impart sufficient energy to the precision cleaned surface to place non-volatile residue (NVR) contaminants into suspension in the water. The sample water is collected and its NVR level is determined by total organic carbon (TOC) analysis at 880 C. The TOC, in ppm carbon, is used to establish the NVR level. A correlation between the present gravimetric CFC-113 NVR and the IVS NVR is found from experimental sensitivity factors measured for various contaminants. The sensitivity has the units of ppm of carbon per mg-ft(exp 2) of contaminant. In this paper, the equipment is described and data are presented showing the development of the sensitivity factors from a test set including four NVR's impinged from witness plates of 0.05 to 0.75 m(exp 2).

  7. Net ion fluxes in the facultative air-breather Hoplosternum littorale (tamoata) and the obligate air-breather Arapaima gigas (pirarucu) exposed to different Amazonian waters.

    PubMed

    Baldisserotto, Bernardo; Copatti, Carlos E; Gomes, Levy C; Chagas, Edsandra C; Brinn, Richard P; Roubach, Rodrigo

    2008-12-01

    Fishes that live in the Amazon environment may be exposed to several kinds of water: black water (BW), acidic black water (pH 3.5) (ABW) and white water (WW), among others. The aim of the present study was to analyze net ion fluxes in the facultative air-breather Hoplosternum littorale (tamoata) and the obligate air-breather Arapaima gigas (pirarucu) exposed to different types of water. Fishes were acclimated in well water and later placed in individual chambers containing one type of water for ion flux measurements. After 4 h, the water in the chambers was replaced by a different type of water. The transfer of both species to ABW (independent of previous water exposure) increased net ion loss. Tamoatas transferred from ABW to BW or WW presented a net ion influx, but pirarucus showed only small changes on net ion efflux. These results allow us to conclude that tamoatas and pirarucus present differences in terms of ion regulation but that the general aspects of the ion flux are similar: (1) exposure to ABW led to net ion loss; (2) transfer from BW to WW or vice-versa induced only minor changes on net ion fluxes. These observations demonstrate that any osmoregulatory difficulties encountered by either species during changes between these latter two waters can be easily overcome. PMID:18958598

  8. Ground-water hydrology and water quality of the southern high plains aquifer, Melrose Air Force Range, Cannon Air Force Base, Curry and Roosevelt Counties, New Mexico, 2002-03

    USGS Publications Warehouse

    Langman, Jeff B.; Gebhardt, Fredrick E.; Falk, Sarah E.

    2004-01-01

    In cooperation with the U.S. Air Force, the U.S. Geological Survey characterized the ground-water hydrology and water quality at Melrose Air Force Range in east-central New Mexico. The purpose of the study was to provide baseline data to Cannon Air Force Base resource managers to make informed decisions concerning actions that may affect the ground-water system. Five periods of water-level measurements and four periods of water-quality sample collection were completed at Melrose Air Force Range during 2002 and 2003. The water-level measurements and water-quality samples were collected from a 29-well monitoring network that included wells in the Impact Area and leased lands of Melrose Air Force Range managed by Cannon Air Force Base personnel. The purpose of this report is to provide a broad overview of ground-water flow and ground-water quality in the Southern High Plains aquifer in the Ogallala Formation at Melrose Air Force Range. Results of the ground-water characterization of the Southern High Plains aquifer indicated a local flow system in the unconfined aquifer flowing northeastward from a topographic high, the Mesa (located in the southwestern part of the Range), toward a regional flow system in the unconfined aquifer that flows southeastward through the Portales Valley. Ground water was less than 55 years old across the Range; ground water was younger (less than 25 years) near the Mesa and ephemeral channels and older (25 years to 55 years) in the Portales Valley. Results of water-quality analysis indicated three areas of different water types: near the Mesa and ephemeral channels, in the Impact Area of the Range, and in the Portales Valley. Within the Southern High Plains aquifer, a sodium/chloride-dominated ground water was found in the center of the Impact Area of the Range with water-quality characteristics similar to ground water from the underlying Chinle Formation. This sodium/chloride-dominated ground water of the unconfined aquifer in the Impact

  9. Seasonal dynamics of water and air chemistry in an indoor chlorinated swimming pool.

    PubMed

    Zare Afifi, Mehrnaz; Blatchley, Ernest R

    2015-01-01

    Although swimming is known to be beneficial in terms of cardiovascular health, as well as for some forms of rehabilitation, swimming is also known to present risks to human health, largely in the form of exposure to microbial pathogens and disinfection byproducts (DBPs). Relatively little information is available in the literature to characterize the seasonal dynamics of air and water chemistry in indoor chlorinated swimming pools. To address this issue, water samples were collected five days per week from an indoor chlorinated swimming pool facility at a high school during the academic year and once per week during summer over a fourteen-month period. The samples were analyzed for free and combined chlorine, urea, volatile DBPs, pH, temperature and total alkalinity. Membrane Introduction Mass Spectrometry (MIMS) was used to identify and measure the concentrations of eleven aqueous-phase volatile DBPs. Variability in the concentrations of these DBPs was observed. Factors that influenced variability included bather loading and mixing by swimmers. These compounds have the ability to adversely affect water and air quality and human health. A large fraction of the existing literature regarding swimming pool air quality has focused on trichloramine (NCl₃). For this work, gas-phase NCl₃ was analyzed by an air sparging-DPD/KI method. The results showed that gas-phase NCl₃ concentration is influenced by bather loading and liquid-phase NCl₃ concentration. Urea is the dominant organic-N compound in human urine and sweat, and is known to be an important precursor for producing NCl₃ in swimming pools. Results of daily measurements of urea indicated a link between bather load and urea concentration in the pool. PMID:25462781

  10. Revitalizing primary health care--another utopian goal?

    PubMed

    Marahatta, Sujan B

    2010-01-01

    The quest for greater efficiency, fairness and responsiveness to the expectation of the people that system serve have brought about three generations of health system reforms in the twentieth century. The first generation saw the founding of national health care systems and extension to middle income nations of social insurance systems in the 1940s and 1950s. By the late 1960s the rising costs of hospital based care, its usage by better off, inaccessibility by the poor and rural population of even the most basic services heralded second generation reforms promoting primary health care as a means of achieving the affordable universal coverage. It included the best public health strategy that is prevention and the highest ethical principle of public health that is equity. It was expected the best system for reaching households with essential and affordable care, and the best route towards universal coverage. The primary health care approach though adopted universally did not materialize its notion of translating ethos of Health for All by 2000. Overall, primary health care movement by the end of 20th century became lifeless. Since the Declaration of Alma-Ata, fundamental changes have occurred affecting health service delivery, such as economic development and financing approaches, globalization of trade and knowledge, and the shift to privatization. This is the time to develop a new vision, taking into consideration the many changes affecting global health and the strategic developments in health of recent years. With this recognition, the third generation of reforms now underway in many countries is driven by the idea of responding more to demand, assuring access for the poor and emphasizing financing rather than just provision within the public sector. The key concern is: how to translate ethos of revitalizing in the reality. Otherwise the revitalizing concept will turn into utopian goal so like HFA by 2000 strategy. PMID:22610741

  11. The revitalization of the Public Health Service Commissioned Corps.

    PubMed Central

    Koop, C E; Ginzburg, H M

    1989-01-01

    The Public Health Service (PHS) is the second oldest uniformed service of the United States; its tradition commenced with the establishment of the Marine Hospital Service in 1798. Congress, in 1889, established the United States Public Health Service Commissioned Corps under the aegis of the Treasury. The Corps was created as a uniformed nonmilitary service with a distinct uniform, insignia, and with titles, pay, and retirement protocols that corresponded to those of the uniformed military services (the Armed Forces). Initially the health care system of the country, and Commissioned Corps members, were concerned with infectious and vitamin-deficiency diseases; more recently the nation's medical community has focused on cardiovascular diseases, cancer, and AIDS. A comprehensive revitalization of the Commissioned Corps began in April 1987. The intent was to restore the Commissioned Corps to its traditional leadership role as a cadre of mobile, compassionate experts ensuring the nation's health. The revitalization activities have been successful. The Commissioned Corps has approximately 5,500 active duty officers. The Surgeon General directed the development of career tracks for 11 categories of commissioned officers to increase the opportunities for professional development within the PHS and thus increase retention and professional growth. The theme for the 1989 celebration of the centennial of the Commissioned Corps is "a century of service with distinction." A hundred years from now, at the bicentennial of the Commissioned Corps, the current Surgeon General would like it to be said that the Public Health Service has had "two centuries of service with distinction." Images p106-a p107-a p107-b p108-a p109-a PMID:2495543

  12. 75 FR 42130 - Notice of Lodging of Consent Decree Under the Clean Air Act; Clean Water Act; Resource...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-20

    ... of Lodging of Consent Decree Under the Clean Air Act; Clean Water Act; Resource Conservation and Recovery Act; Safe Drinking Water Act; Toxic Substances Control Act; and the Reporting Requirements of the...''); Clean Water Act, 33 U.S.C. 1311 to 1387 (``CWA''); Resource Conservation and Recovery Act (``RCRA''),...

  13. 75 FR 63506 - Notice of Lodging of Consent Decree Under the Clean Air Act; the Clean Water Act; the Resource...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-15

    ... Missouri Hazardous Waste Management Law, Sec. Sec. 260.350-260.434, RSMo; the Clean Water Act, 33 U.S.C. 1251- 1387; the Missouri Clean Water Law, Chapter 644, RSMo; the Emergency Planning and Community Right... of Lodging of Consent Decree Under the Clean Air Act; the Clean Water Act; the Resource...

  14. A case study of dissolved air flotation for seasonal high turbidity water in Korea.

    PubMed

    Kwon, S B; Ahn, H W; Ahn, C J; Wang, C K

    2004-01-01

    A DAF (Dissolved-Air-Flotation) process has been designed considering raw water quality characteristics in Korea. Although direct filtration is usually operated, DAF is operated when freshwater algae blooms occur or raw water turbidity becomes high. Pre-sedimentation is operated in case when the raw water turbidity is very high due to rainstorms. A main feature of this plant is that the operation mode can be changed (controlled) based on the characteristics of the raw water to optimize the effluent quality and the operation costs. Treatment capacity (surface loading rate) and efficiency of DAF was found to be better than the conventional sedimentation process. Moreover, low-density particles (algae and alum flocs) are easily separated while the removal of them by sedimentation is more difficult. One of the main concerns for DAF operation is a high raw water turbidity. DAF is not adequate for raw water, which is more turbid than 100 NTU. In order to avoid this problem, pre-sedimentation basins are installed in the DAF plant to decrease the turbidity of the DAF inflow. For simulation of the actual operation, bench and full-scale tests were performed for highly turbid water conditions. Consequently, it is suggested that pre-sedimentation with optimum coagulation prior to DAF is the appropriate treatment scheme. PMID:15686028

  15. Gas Engine-Driven Heat Pump Chiller for Air-Conditioning and Hot Water Supply Systems

    NASA Astrophysics Data System (ADS)

    Fujita, Toshihiko; Mita, Nobuhiro; Moriyama, Tadashi; Hoshino, Norimasa; Kimura, Yoshihisa

    In Part 1 of this study, the performance characteristics of a 457kW gas engine-driven heat pump (GHP) chiller have been obtained from a simulation model analysis for both cooling and heating modes and it has been found that the part-load characteristics of the GHP chiller are fairly well. On the back of Part 1, a computer simulation program has been developed for the evaluation of GHP chiller systems to compare with the other types of heat source systems for air-conditioning and hot water supply applications. The simulation program can be used to estimate annual energy consumption, annual CO2 emission, etc. of the systems with the data of monthly and hourly thermal loads on various buildings, outdoor air conditions, and characteristics of various components comprising the systems. By applying this to some cases of medium-scale hotel, office, shop, and hospital buildings, it has been found that the GHP chiller systems have advantages particularly in the cases of hotels and hospitals where a lot of hot water demand exists. It has also been found that the combination of a GHP chiller and a direct-fired absorption water chiller boiler (hot and chilled water generator) appears promising.

  16. Equatorial range limits of an intertidal ectotherm are more linked to water than air temperature.

    PubMed

    Seabra, Rui; Wethey, David S; Santos, António M; Gomes, Filipa; Lima, Fernando P

    2016-10-01

    As climate change is expected to impose increasing thermal stress on intertidal organisms, understanding the mechanisms by which body temperatures translate into major biogeographic patterns is of paramount importance. We exposed individuals of the limpet Patella vulgata Linnaeus, 1758, to realistic experimental treatments aimed at disentangling the contribution of water and air temperature for the buildup of thermal stress. Treatments were designed based on temperature data collected at the microhabitat level, from 15 shores along the Atlantic European coast spanning nearly 20° of latitude. Cardiac activity data indicated that thermal stress levels in P. vulgata are directly linked to elevated water temperature, while high air temperature is only stressful if water temperature is also high. In addition, the analysis of the link between population densities and thermal regimes at the studied locations suggests that the occurrence of elevated water temperature may represent a threshold P. vulgata is unable to tolerate. By combining projected temperatures with the temperature threshold identified, we show that climate change will likely result in the westward expansion of the historical distribution gap in the Bay of Biscay (southwest France), and northward contraction of the southern range limit in south Portugal. These findings suggest that even a minor relaxing of the upwelling off northwest Iberia could lead to a dramatic increase in thermal stress, with major consequences for the structure and functioning of the intertidal communities along Iberian rocky shores. PMID:27109165

  17. Effect of Particulate Contaminants on the Development of Biofilms at Air/Water Interfaces.

    PubMed

    Zhang, Zhenhuan; Christopher, Gordon

    2016-03-22

    The development of biofilms at air/water or oil/water interfaces has important ramifications on several applications, but it has received less attention than biofilm formation on solid surfaces. A key difference between the growth of biofilms on solid surfaces versus liquid interfaces is the range of complicated boundary conditions the liquid interface can create that may affect bacteria, as they adsorb onto and grow on the interface. This situation is exacerbated by the existence of complex interfaces in which interfacially adsorbed components can even more greatly affect interfacial boundary conditions. In this work, we present evidence as to how particle-laden interfaces impact biofilm growth at an air/water interface. We find that particles can enhance the rate of growth and final strength of biofilms at liquid interfaces by providing sites of increased adhesive strength for bacteria. The increased adhesion stems from creating localized areas of hydrophobicity that protrude in the water phase and provide sites where bacteria preferentially adhere. This mechanism is found to be primarily controlled by particle composition, with particle size providing a secondary effect. This increased adhesion through interfacial conditions creates biofilms with properties similar to those observed when adhesion is increased through biological means. Because of the generally understood ubiquity of increased bacteria attachment to hydrophobic surfaces, this result has general applicability to pellicle formation for many pellicle-forming bacteria. PMID:26943272

  18. Monte Carlo simulations on the water-to-air stopping power ratio for carbon ion dosimetry

    SciTech Connect

    Henkner, Katrin; Bassler, Niels; Sobolevsky, Nikolai; Jaekel, Oliver

    2009-04-15

    Many papers discussed the I value for water given by the ICRU, concluding that a value of about 80{+-}2 eV instead of 67.2 eV would reproduce measured ion depth-dose curves. A change in the I value for water would have an effect on the stopping power and, hence, on the water-to-air stopping power ratio, which is important in clinical dosimetry of proton and ion beams. For energies ranging from 50 to 330 MeV/u and for one spread out Bragg peak, the authors compare the impact of the I value on the water-to-air stopping power ratio. The authors calculate ratios from different ICRU stopping power tables and ICRU reports. The stopping power ratio is calculated via track-length dose calculation with SHIELD-HIT07. In the calculations, the stopping power ratio is reduced to a value of 1.119 in the plateau region as compared to the cited value of 1.13 in IAEA TRS-398. At low energies the stopping power ratio increases by up to 6% in the last few tenths of a mm toward the Bragg peak. For a spread out Bragg peak of 13.5 mm width at 130 mm depth, the stopping power ratio increases by about 1% toward the distal end.

  19. Seasonal air-water exchange fluxes of polychlorinated biphenyls in the Hudson River Estuary.

    PubMed

    Yan, Shu; Rodenburg, Lisa A; Dachs, Jordi; Eisenreich, Steven J

    2008-03-01

    Polychlorinated biphenyls (PCBs) were measured in the air and water over the Hudson River Estuary during six intensive field campaigns from December 1999 to April 2001. Over-water gas-phase SigmaPCB concentrations averaged 1100 pg/m3 and varied with temperature. Dissolved-phase SigmaPCB concentrations averaged 1100 pg/L and displayed no seasonal trend. Uncertainty analysis of the results suggests that PCBs with 5 or fewer chlorines exhibited net volatilization. The direction of net air/water exchange could not be determined for PCBs with 6 or more chlorines. Instantaneous net fluxes of SigmaPCBs ranged from +0.2 to +630 ng m(-2) d(-1). Annual fluxes of SigmaPCBs were predicted from modeled gas-phase concentrations, measured dissolved-phase concentrations, daily surface water temperatures and wind speeds. The net volatilization flux was +62 microg m(-2) yr(-1), corresponding to an annual loss of +28 kg/yr of SigmaPCBs from the Hudson River Estuary for the year of 2000. PMID:17854962

  20. Dynamics of air gap formation around roots with changing soil water content.

    NASA Astrophysics Data System (ADS)

    Vetterlein, D.; Carminati, A.; Weller, U.; Oswald, S.; Vogel, H.-J.

    2009-04-01

    Most models regarding uptake of water and nutrients from soil assume intimate contact between roots and soil. However, it is known for a long time that roots may shrink under drought conditions. Due to the opaque nature of soil this process could not be observed in situ until recently. Combining tomography of the entire sample (field of view of 16 x 16 cm, pixel side 0.32 mm) with local tomography of the soil region around roots (field of view of 5 x 5 cm, pixel side 0.09 mm), the high spatial resolution required to image root shrinkage and formation of air-filled gaps around roots could be achieved. Applying this technique and combining it with microtensiometer measurements, measurements of plant gas exchange and microscopic assessment of root anatomy, a more detailed study was conducted to elucidate at which soil matric potential roots start to shrink in a sandy soil and which are the consequences for plant water relations. For Lupinus albus grown in a sandy soil tomography of the entire root system and of the interface between taproot and soil was conducted from day 11 to day 31 covering two drying cycles. Soil matric potential decreased from -36 hPa at day 11 after planting to -72, -251, -429 hPa, on day 17, 19, 20 after planting. On day 20 an air gap started to occur around the tap root and extended further on day 21 with matric potential below -429 hPa (equivalent to 5 v/v % soil moisture). From day 11 to day 21 stomatal conductivity decreased from 467 to 84 mmol m-2 s-1, likewise transpiration rate decreased and plants showed strong wilting symptoms on day 21. Plants were watered by capillary rise on day 21 and recovered completely within a day with stomatal conductivity increasing to 647 mmol m-2 s-1. During a second drying cycle, which was shorter as plants continuously increased in size, air gap formed again at the same matric potential. Plant stomatal conductance and transpiration decreased in a similar fashion with decreasing matric potential and

  1. Partnership for the Revitalization of National Wind Tunnel Force Measurement Capability

    NASA Technical Reports Server (NTRS)

    Rhew, Ray D.; Skelley, Marcus L.; Woike, Mark R.; Bader, Jon B.; Marshall, Timothy J.

    2009-01-01

    Lack of funding and lack of focus on research over the past several years, coupled with force measurement capabilities being decentralized and distributed across the National Aeronautics and Space Administration (NASA) research centers, has resulted in a significant erosion of (1) capability and infrastructure to produce and calibrate force measurement systems; (2) NASA s working knowledge of those systems; and (3) the quantity of high-quality, full-capability force measurement systems available for use in aeronautics testing. Simultaneously, and at proportional rates, the capability of industry to design, manufacture, and calibrate these test instruments has been eroding primarily because of a lack of investment by the aeronautics community. Technical expertise in this technology area is a core competency in aeronautics testing; it is highly specialized and experience-based, and it represents a niche market for only a few small precision instrument shops in the United States. With this backdrop, NASA s Aeronautics Test Program (ATP) chartered a team to examine the issues and risks associated with the problem, focusing specifically on strain- gage balances. The team partnered with the U.S. Air Force s Arnold Engineering Development Center (AEDC) to exploit their combined capabilities and take a national level government view of the problem. This paper describes the team s approach, its findings, and its recommendations, and the current status for revitalizing the government s balance capability with respect to designing, fabricating, calibrating, and using the instruments.

  2. Bacterial Growth on Distant Naphthalene Diffusing through Water, Air, and Water-Saturated and Nonsaturated Porous Media

    PubMed Central

    Harms, H.

    1996-01-01

    The influence of substrate diffusion on bacterial growth was investigated. Crystalline naphthalene was supplied as the substrate at various distances in the range of centimeters from naphthalene-degrading organisms separated from the substrate by agar-solidified mineral medium. Within 2 weeks, the cells grew to final numbers which were negatively correlated with the distance from the substrate. A mathematical model that combined (i) Monod growth kinetics extended by a term for culture maintenance and (ii) substrate diffusion could explain the observed growth curves. The model could also predict growth on naphthalene that was separated from the bacteria by air. In addition, the bacteria were grown on distant naphthalene that had to diffuse to the cells through water-saturated and unsaturated porous media. The growth of the bacteria could be used to calculate the effective diffusivity of naphthalene in the three-phase system. Diffusion of naphthalene in the pore space containing 80% air was roughly 1 order of magnitude faster than in medium containing only 20% air because of the high Henry's law coefficient of naphthalene. It is proposed that the effective diffusivities of the substrates and the spatial distribution of substrates and bacteria are the main determinants of final cell numbers and, consequently, final degradation rates. PMID:16535349

  3. Summary of research and development effort on air and water cooling of gas turbine blades

    SciTech Connect

    Fraas, A.P.

    1980-03-01

    The review on air- and water-cooled gas turbines from the 1904 Lemale-Armengaud water-cooled gas turbine, the 1948 to 1952 NACA work, and the program at GE indicates that the potential of air cooling has been largely exploited in reaching temperatures of 1100/sup 0/C (approx. 2000/sup 0/F) in utility service and that further increases in turbine inlet temperature may be obtained with water cooling. The local heat flux in the first-stage turbine rotor with water cooling is very high, yielding high-temperature gradients and severe thermal stresses. Analyses and tests indicate that by employing a blade with an outer cladding of an approx. 1-mm-thick oxidation-resistant high-nickel alloy, a sublayer of a high-thermal-conductivity, high-strength, copper alloy containing closely spaced cooling passages approx. 2 mm in ID to minimize thermal gradients, and a central high-strength alloy structural spar, it appears possible to operate a water-cooled gas turbine with an inlet gas temperature of 1370/sup 0/C. The cooling-water passages must be lined with an iron-chrome-nickel alloy must be bent 90/sup 0/ to extend in a neatly spaced array through the platform at the base of the blade. The complex geometry of the blade design presents truly formidable fabrication problems. The water flow rate to each of many thousands of coolant passages must be metered and held to within rather close limits because the heat flux is so high that a local flow interruption of only a few seconds would lead to a serious failure.Heat losses to the cooling water will run approx. 10% of the heat from the fuel. By recoverying this waste heat for feedwater heating in a command cycle, these heat losses will give a degradation in the power plant output of approx. 5% relative to what might be obtained if no cooling were required. However, the associated power loss is less than half that to be expected with an elegant air cooling system.

  4. Quantifying water and air redistribution in heterogeneous sand sample by neutron imaging

    NASA Astrophysics Data System (ADS)

    Šácha, Jan; Sobotková, Martina; Jelínková, Vladimíra; Sněhota, Michal; Vontobel, Peter; Hovind, Jan

    2014-05-01

    Significant temporal variation of quasi saturated hydraulic conductivity (Kqs) has been observed to date in number of infiltration experiments conducted mainly on heterogeneous soil of Cambisol. The change of quasi-saturated hydraulic conductivity cannot be precisely described by existing models. The Kqs variations has been recently attributed to a changing distribution of the entrapped air and water within the sample. It is expected that air is moved to the preferential pathway and acts as a barrier there. To support this assumption a ponded infiltration experiment was conducted on a soil sample packed into the quartz glass column of inner diameter of 34 mm. The sample composition represents simplified heterogeneity of the natural soil but also allow the easy quantitative water content determination in individual subdomains of the sample. The matrix formed by a fine sand was surrounded with regions of coarse sand representing preferential flow pathways. The Kqs was determined from the known hydraulic gradient and measured volume flux. The experiment was monitored by neutron radiography. Volume of water in the sample calculated from neutron projections matched very well with actually infiltrated volume in the sample during first 40 second after beginning of infiltration. From the acquired radiographic images the 3D tomography images were reconstructed to obtain the spatial distribution of the water content within the sample. Difference between water volume calculated from radiography and tomography images was no more than 5%. While the total amount of water determined by NR within the sample during the quasi steady state flow remains practically constant (27.9 cm3 at the beginning and 28.6 cm3 on the end of infiltration) the water content in the coarse fraction decreases (from 0.333 to 0.324) and the water content in the fine fraction increases (from 0.414 to 0.436) in 5 hours. Similarly to previous experiments performed on natural Cambisols, the results support

  5. Near-surface physics during convection affecting air-water gas transfer

    NASA Astrophysics Data System (ADS)

    Fredriksson, S. T.; Arneborg, L.; Nilsson, H.; Handler, R. A.

    2016-05-01

    The gas flux at the water surface is affected by physical processes including turbulence from wind shear, microscale wave breaking, large-scale breaking, and convection due to heat loss at the surface. The main route in the parameterizations of the gas flux has been to use the wind speed as a proxy for the gas flux velocity, indirectly taking into account the dependency of the wind shear and the wave processes. The interest in the contributions from convection processes has increased as the gas flux from inland waters (with typically lower wind and sheltered conditions) now is believed to play a substantial role in the air-water gas flux budget. The gas flux is enhanced by convection through the mixing of the mixed layer as well as by decreasing the diffusive boundary layer thickness. The direct numerical simulations performed in this study are shown to be a valuable tool to enhance the understanding of this flow configuration often present in nature.

  6. "Ene" Reactions of Singlet Oxygen at the Air-Water Interface.

    PubMed

    Malek, Belaid; Fang, William; Abramova, Inna; Walalawela, Niluksha; Ghogare, Ashwini A; Greer, Alexander

    2016-08-01

    Prenylsurfactants [(CH3)2C═CH(CH2)nSO3(-) Na(+) (n = 4, 6, or 8)] were designed to probe the "ene" reaction mechanism of singlet oxygen at the air-water interface. Increasing the number of carbon atoms in the hydrophobic chain caused an increase in the regioselectivity for a secondary rather than tertiary surfactant hydroperoxide, arguing for an orthogonal alkene on water. The use of water, deuterium oxide, and H2O/D2O mixtures helped to distinguish mechanistic alternatives to homogeneous solution conditions that include dewetting of the π bond and an unsymmetrical perepoxide transition state in the hydroperoxide-forming step. The prenylsurfactants and a photoreactor technique allowed a certain degree of interfacial control of the hydroperoxidation reaction on a liquid support, where the oxidant (airborne (1)O2) is delivered as a gas. PMID:27385423

  7. Water desalination by air-gap membrane distillation using meltblown polypropylene nanofiber membrane

    NASA Astrophysics Data System (ADS)

    Rosalam, S.; Chiam, C. K.; Widyaparamitha, S.; Chang, Y. W.; Lee, C. A.

    2016-06-01

    This paper presents a study of air gap membrane distillation (AGMD) using meltblown polypropylene (PP) nanofiber membrane to produce fresh water via desalination process. PP nanofiber membranes with the effective area 0.17 m2 are tested with NaCl solutions (0.5 - 4.0 wt.%) and seawater as the feed solutions (9400 - 64800 μS/cm) in a tubular membrane module. Results show that the flux decreases with increasing the membrane thickness from 547 to 784 μm. The flux increases with the feed flow rate and temperature difference across the membrane. The feed concentration affects the flux insignificantly. The AGMD system can reject the salts at least 96%. Water vapor permeation rate is relatively higher than solute permeation rate resulting in the conductivity value of permeate decreases when the corresponding flux increases. The AGMD system produces the fresh water (200 - 1520 μS/cm) that is suitable for drinking, fisheries or irrigation.

  8. [Air Microbial Pollution and Health Risk of Urban Black Odorous Water].

    PubMed

    Liu, Jian-fu; Chen, Jing-xiong; Gu, Shi-you

    2016-04-15

    Aiming at the possihle air microhial pollution of urhan hlack odorous water the contamination characteristics of hacteria, fungi and total microhe as well as health risks of different types of population within certain distance from the urhan hlack odorous water were studied. The results showed that hacteria and fungi pollution was primary within offshore 200 m; under near calm condition, there was an aggregation phenomenon of microorganisms within offshore 20 m; the concentrations of hacteria, fungi and total microhe were the highest in the morning, the middle at noon, and the lowest in the afternoon; within offshore 200 m, the width of hlack odorous water was significantly correlated with the concentrations of hacteria, fungi and total microorganisms; the microhial health risk of residents mainly existed in the offshore 100 m range; at the same offshore distance, the short-term exposure health risk to children was the greatest, followed hy women, men to a minimum. PMID:27548945

  9. Underground Prototype Water Cherenkov Muon Detector with the Tibet Air Shower Array

    SciTech Connect

    Amenomori, M.; Nanjo, H.; Bi, X. J.; Ding, L. K.; Feng, Zhaoyang; He, H. H.; Hu, H. B.; Lu, H.; Lu, S. L.; Ren, J. R.; Tan, Y. H.; Wang, B.; Wang, H.; Wang, Y.; Wu, H. R.; Zhang, H. M.; Zhang, J. L.; Zhang, Y.; Chen, D.; Kawata, K.

    2008-12-24

    We are planning to build a 10,000 m{sup 2} water-Cherenkov-type muon detector (MD) array under the Tibet air shower (AS) array. The Tibet AS+MD array will have the sensitivity to detect gamma rays in the 100 TeV region by an order of the magnitude better than any other previous existing detectors in the world. In the late fall of 2007, a prototype water Cherenkov muon detector of approximately 100 m{sup 2} was constructed under the existing Tibet AS array. The preliminary data analysis is in good agreement with our MC simulation. We are now ready for further expanding the underground water Cherenkov muon detector.

  10. Air-sea heat exchange, an element of the water cycle

    NASA Technical Reports Server (NTRS)

    Chahine, M. T.

    1984-01-01

    The distribution and variation of water vapor, clouds and precipitation are examined. Principal driving forces for these distributions are energy exchange and evaporation at the air-sea interface, which are also important elements of air-sea interaction studies. The overall aim of air-sea interaction studies is to quantitatively determine mass, momentum and energy fluxes, with the goal of understanding the mechanisms controlling them. The results of general circulation simulations indicate that the atmosphere in mid-latitudes responds to changes in the oceanic surface conditions in the tropics. This correlation reflects the strong interaction between tropical and mid-latitude conditions caused by the transport of heat and momentum from the tropics. Studies of air-sea exchanges involve a large number of physica, chemical and dynamical processes including heat flux, radiation, sea-surface temperature, precipitation, winds and ocean currents. The fluxes of latent heat are studied and the potential use of satellite data in determining them evaluated. Alternative ways of inferring heat fluxes will be considered.

  11. Mechanism of influence water vapor on combustion characteristics of propane-air mixture

    NASA Astrophysics Data System (ADS)

    Larionov, V. M.; Mitrofanov, G. A.; Sachovskii, A. V.; Kozar, N. K.

    2016-01-01

    The article discusses the results of an experimental study of the effect of water vapor at the flame temperature. Propane-butane mixture with air is burning on a modified Bunsen burner. Steam temperature was varied from 180 to 260 degrees. Combustion parameters changed by steam temperature and its proportion in the mixture with the fuel. The fuel-air mixture is burned in the excess air ratio of 0.1. It has been established that the injection of steam changes the characteristics of combustion fuel-air mixture and increase the combustion temperature. The concentration of CO in the combustion products is substantially reduced. Raising the temperature in the combustion zone is associated with increased enthalpy of the fuel by the added steam enthalpy. Reducing the concentration of CO is caused by decrease in the average temperature in the combustion zone by applying steam. Concentration of active hydrogen radicals and oxygen increases in the combustion zone. That has a positive effect on the process of combustion.

  12. Multimedia Technology and Indigenous Language Revitalization: Practical Educational Tools and Applications Used within Native Communities

    ERIC Educational Resources Information Center

    Galla, Candace Kaleimamoowahinekapu

    2010-01-01

    This dissertation reports findings from a study documenting the use of multimedia technology among Indigenous language communities to assist language learners, speakers, instructors, and institutions learn about multimedia technologies that have contributed to Indigenous language revitalization, education, documentation, preservation, and…

  13. Root Maturation in Teeth Treated by Unsuccessful Revitalization: 2 Case Reports.

    PubMed

    Žižka, Radovan; Buchta, Tomáš; Voborná, Iva; Harvan, Luboš; Šedý, Jiří

    2016-05-01

    This article deals with the unusual course of failed revascularization/revitalization cases. Up to this date the evidence of success and failure rates of revascularization/revitalization treatment is scarce. These case reports present "unsuccessful" revascularization/revitalization treatment of permanent immature teeth with apical periodontitis. Although the teeth were treated by protocol suggested by the American Association of Endodontists and the symptoms disappeared, maturation of teeth continued, and periapical lesion was reduced, the teeth went symptomatic during the follow-up. Subsequently, regular root canal treatment was performed. Despite chronic infection that was probably left inside the root canal after a disinfection protocol, the secondary aims of the treatment were achieved even when the primary ones were not. The possible causes of failures of revascularization/revitalization treatment and their prevention are discussed. PMID:26960577

  14. 78 FR 4426 - Notice of Proposed Information Collection: Comment Request; Revitalization Area Designation and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... URBAN DEVELOPMENT Notice of Proposed Information Collection: Comment Request; Revitalization Area... public comments on the subject proposal. The Department accepts requests from local governments or...: Colette Pollard., Reports Management Officer, QDAM, Department of Housing and Urban Development,...

  15. 75 FR 22816 - Disease, Disability, and Injury Prevention and Control Special Emphasis Panel: Revitalizing Core...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-30

    ... HUMAN SERVICES Centers for Disease Control and Prevention Disease, Disability, and Injury Prevention and Control Special Emphasis Panel: Revitalizing Core Environmental Health Programs Through the Environmental...), the Centers for Disease Control and Prevention (CDC), announces the aforementioned meeting: Times...

  16. Concept Of Revitalization Of Selected Military Facilities Of Dragoons Barracks In Olsztyn

    NASA Astrophysics Data System (ADS)

    Zagroba, Marek

    2015-12-01

    Revitalization is a complex program to restore the functioning of the neglected urban areas in terms of spatial, economic and social. Revitalization activities on post-military facilities are stopping negative phenomena, such as degradation of space, social pathology or lack of proper functioning of the area, adapted to modern needs. The object of the work is to present some aspects with the revitalization of former military facilities in the area of the Artyleryjska Street in Olsztyn. The presented design concept aims to revitalize a neglected area of the barracks, which will enable the activation site and include it in the city urban space. The method adopted in this work is the architectural project of adapting selected post-military facilities for new functions, affecting the economic development and social integration of people.

  17. SMARTE: HELPING COMMUNITIES OVERCOME OBSTACLES TO REVITALIZATION (04/23/07)

    EPA Science Inventory

    Sustainable Management Approaches and Revitalization Tools - electronic (SMARTe), is an open-source, web-based, decision support system for developing and evaluating future reuse scenarios for potentially contaminated land. SMARTe contains information and analysis tools for all a...

  18. GET SMARTE: A DECISION SUPPORT SYSTEM TO REVITALIZE COMMUNITIES - CABERNET 2007

    EPA Science Inventory

    Sustainable Management Approaches and Revitalization Tools - electronic (SMARTe), is an open-source, web-based, decision support system for developing and evaluating future reuse scenarios for potentially contaminated land. SMARTe contains information and analysis tools for all a...

  19. Formation, disruption and mechanical properties of a rigid hydrophobin film at an air-water interface

    NASA Astrophysics Data System (ADS)

    Walker, Lynn; Kirby, Stephanie; Anna, Shelley; CMU Team

    Hydrophobins are small, globular proteins with distinct hydrophilic and hydrophobic regions that make them extremely surface active. The behavior of hydrophobins at surfaces has raised interest in their potential industrial applications, including use in surface coatings, food foams and emulsions, and as dispersants. Practical use of hydrophobins requires an improved understanding of the interfacial behavior of these proteins, both individually and in the presence of surfactants. Cerato-ulmin (CU) is a hydrophobin that has been shown to strongly stabilize air bubbles and oil droplets through the formation of a persistent protein film at the interface. In this work, we characterize the adsorption behavior of CU at air/water interfaces by measuring the surface tension and interfacial rheology as a function of adsorption time. CU is found to strongly, irreversibly adsorb at air/water interfaces; the magnitude of the dilatational modulus increases with adsorption time and surface pressure, until the CU eventually forms a rigid film. The persistence of this film is tested through the addition of SDS, a strong surfactant, to the bulk. SDS is found to co-adsorb to interfaces pre-coated with a CU film. At high concentrations, the addition of SDS significantly decreases the dilatational modulus, indicating disruption and displacement of CU. These results lend insight into the complex interfacial interactions between hydrophobins and surfactants. Funding from GoMRI.

  20. Novel methods for measuring air-water interfacial area in unsaturated porous media.

    PubMed

    Brusseau, Mark L; El Ouni, Asma; Araujo, Juliana B; Zhong, Hua

    2015-05-01

    Interfacial partitioning tracer tests (IPTT) are used to measure air-water interfacial area for unsaturated porous media. The standard IPTT method involves conducting tests wherein an aqueous surfactant solution is introduced into a packed column under unsaturated flow conditions. Surfactant-induced drainage has been observed to occur for this method in some cases, which can complicate data analysis and impart uncertainty to the measured values. Two novel alternative approaches for conducting IPTTs are presented herein that are designed in part to prevent surfactant-induced drainage. The two methods are termed the dual-surfactant IPTT (IPTT-DS) and the residual-air IPTT (IPTT-RA). The two methods were used to measure air-water interfacial areas for two natural porous media. System monitoring during the tests revealed no measurable surfactant-induced drainage. The measured interfacial areas compared well to those obtained with the standard IPTT method conducted in such a manner that surfactant-induced drainage was prevented. PMID:25732632