Science.gov

Sample records for air sac model

  1. Differential air sac pressures in diving tufted ducks Aythya fuligula.

    PubMed

    Boggs, D F; Butler, P J; Wallace, S E

    1998-09-01

    The air in the respiratory system of diving birds contains a large proportion of the body oxygen stores, but it must be in the lungs for gas exchange with blood to occur. To test the hypothesis that locomotion induces mixing of air sac air with lung air during dives, we measured differential pressures between the interclavicular and posterior thoracic air sacs in five diving tufted ducks Aythya fuligula. The peak differential pressure between posterior thoracic and interclavicular air sacs, 0.49+/-0.13 kPa (mean +/- s.d.), varied substantially during underwater paddling as indicated by gastrocnemius muscle activity. These data support the hypothesis that locomotion, perhaps through associated abdominal muscle activity, intermittently compresses the posterior air sacs more than the anterior ones. The result is differential pressure fluctuations that might induce the movement of air between air sacs and through the lungs during dives. PMID:9716518

  2. Evidence for Avian Intrathoracic Air Sacs in a New Predatory Dinosaur from Argentina

    PubMed Central

    Sereno, Paul C.; Martinez, Ricardo N.; Wilson, Jeffrey A.; Varricchio, David J.; Alcober, Oscar A.; Larsson, Hans C. E.

    2008-01-01

    Background Living birds possess a unique heterogeneous pulmonary system composed of a rigid, dorsally-anchored lung and several compliant air sacs that operate as bellows, driving inspired air through the lung. Evidence from the fossil record for the origin and evolution of this system is extremely limited, because lungs do not fossilize and because the bellow-like air sacs in living birds only rarely penetrate (pneumatize) skeletal bone and thus leave a record of their presence. Methodology/Principal Findings We describe a new predatory dinosaur from Upper Cretaceous rocks in Argentina, Aerosteon riocoloradensis gen. et sp. nov., that exhibits extreme pneumatization of skeletal bone, including pneumatic hollowing of the furcula and ilium. In living birds, these two bones are pneumatized by diverticulae of air sacs (clavicular, abdominal) that are involved in pulmonary ventilation. We also describe several pneumatized gastralia (“stomach ribs”), which suggest that diverticulae of the air sac system were present in surface tissues of the thorax. Conclusions/Significance We present a four-phase model for the evolution of avian air sacs and costosternal-driven lung ventilation based on the known fossil record of theropod dinosaurs and osteological correlates in extant birds: (1) Phase I—Elaboration of paraxial cervical air sacs in basal theropods no later than the earliest Late Triassic. (2) Phase II—Differentiation of avian ventilatory air sacs, including both cranial (clavicular air sac) and caudal (abdominal air sac) divisions, in basal tetanurans during the Jurassic. A heterogeneous respiratory tract with compliant air sacs, in turn, suggests the presence of rigid, dorsally attached lungs with flow-through ventilation. (3) Phase III—Evolution of a primitive costosternal pump in maniraptoriform theropods before the close of the Jurassic. (4) Phase IV—Evolution of an advanced costosternal pump in maniraptoran theropods before the close of the

  3. Acoustic analysis of primate air sacs and their effect on vocalization.

    PubMed

    de Boer, Bart

    2009-12-01

    This paper presents an analysis of the acoustic impedance of primate air sacs and their interaction with the vocal tract. A lumped element model is derived and it is found that the inertance of the neck and the volume of the air sac are relevant, as well as the mass and stiffness of the walls (depending on the tissue). It is also shown that at low frequencies, radiation from the air sac can be non-negligible, even if the mouth is open. It is furthermore shown that an air sac can add one or two low resonances to the resonances of the oral tract, and that it shifts up the oral tract's resonances below approximately 2000 Hz, and shifts them closer together. The theory was verified by acoustic measurements and applied to the red howler monkey (Alouatta seniculus) and the siamang (Symphalangus syndactylus). The theory describes the physical models and the siamang calls correctly, but appears incomplete for the howler monkey vocalizations. The relation between air sacs and the evolution of speech is discussed briefly, and it is proposed that an air sac would reduce the ability to produce distinctive speech, but would enhance the impression of size of the vocalizer. PMID:20000947

  4. Endoscopic examination of snakes by access through an air sac.

    PubMed

    Jekl, V; Knotek, Z

    2006-03-25

    Sixteen boa constrictors (Boa constrictor), three royal pythons (Python regius) and 15 Burmese pythons (Python molurus bivittatus) were examined endoscopically by access through the air sac. The snakes were immobilised in a ventral position using a half-open anaesthetic system with assisted ventilation and a mixture of isoflurane and oxygen. The rigid endoscope was introduced percutaneously and the internal structure of the lungs and the air sac, and the shape, size and external surface of the liver were visible in the cranial direction. In the smaller snakes the bifurcation and caudal part of the trachea could be viewed, provided the endoscope was positioned in a retrograde orientation. The caudal orientation of the endoscope made it possible to view the gall bladder and the size, shape and surface of the spleen. In some cases, the pancreas and the surface of the stomach and colon could be monitored. Endoscopy through the air sac also made it possible to check the major veins in the coelom. The snakes were monitored for at least 30 days after the intervention and no changes in their respiratory function or general health were observed. PMID:16565339

  5. Ventilation patterns of the songbird lung/air sac system during different behaviors

    PubMed Central

    Mackelprang, Rebecca; Goller, Franz

    2013-01-01

    SUMMARY Unidirectional, continuous airflow through the avian lung is achieved through an elaborate air sac system with a sequential, posterior to anterior ventilation pattern. This classical model was established through various approaches spanning passively ventilated systems to mass spectrometry analysis of tracer gas flow into various air sacs during spontaneous breathing in restrained ducks. Information on flow patterns in other bird taxa is missing, and these techniques do not permit direct tests of whether the basic flow pattern can change during different behaviors. Here we use thermistors implanted into various locations of the respiratory system to detect small pulses of tracer gas (helium) to reconstruct airflow patterns in quietly breathing and behaving (calling, wing flapping) songbirds (zebra finch and yellow-headed blackbird). The results illustrate that the basic pattern of airflow in these two species is largely consistent with the model. However, two notable differences emerged. First, some tracer gas arrived in the anterior set of air sacs during the inspiration during which it was inhaled, suggesting a more rapid throughput through the lung than previously assumed. Second, differences in ventilation between the two anterior air sacs emerged during calling and wing flapping, indicating that adjustments in the flow pattern occur during dynamic behaviors. It is unclear whether this modulation in ventilation pattern is passive or active. This technique for studying ventilation patterns during dynamic behaviors proves useful for establishing detailed timing of airflow and modulation of ventilation in the avian respiratory system. PMID:23788706

  6. The influence of locomotion on air-sac pressures in little penguins.

    PubMed

    Boggs, D F; Baudinette, R V; Frappell, P B; Butler, P J

    2001-10-01

    Air-sac pressures have been reported to oscillate with wing beat in flying magpies and with foot paddling in diving ducks. We sought to determine the impact on air-sac pressure of wing beats during swimming and of the step cycle during walking in little penguins (Eudyptula minor). Fluctuations averaged 0.16+/-0.06 kPa in the interclavicular air sacs, but only 0.06+/-0.04 kPa in the posterior thoracic sac, generating a small differential pressure between sacs of 0.06+/-0.02 kPa (means +/- S.E.M., N=4). These fluctuations occurred at approximately 3 Hz and corresponded to wing beats during swimming, indicated by electromyograms from the pectoralis and supracoracoideus muscles. There was no abdominal muscle activity associated with swimming or exhalation, but the abdominal muscles were active with the step cycle in walking penguins, and oscillations in posterior air-sac pressure (0.08+/-0.038 kPa) occurred with steps. We conclude that high-frequency oscillations in differential air-sac pressure enhance access to and utilization of the O(2) stores in the air sacs during a dive. PMID:11707507

  7. Nordic rattle: the hoarse vocalization and the inflatable laryngeal air sac of reindeer (Rangifer tarandus)

    PubMed Central

    Frey, Roland; Gebler, Alban; Fritsch, Guido; Nygrén, Kaarlo; Weissengruber, Gerald E

    2007-01-01

    Laryngeal air sacs have evolved convergently in diverse mammalian lineages including insectivores, bats, rodents, pinnipeds, ungulates and primates, but their precise function has remained elusive. Among cervids, the vocal tract of reindeer has evolved an unpaired inflatable ventrorostral laryngeal air sac. This air sac is not present at birth but emerges during ontogenetic development. It protrudes from the laryngeal vestibulum via a short duct between the epiglottis and the thyroid cartilage. In the female the growth of the air sac stops at the age of 2–3 years, whereas in males it continues to grow up to the age of about 6 years, leading to a pronounced sexual dimorphism of the air sac. In adult females it is of moderate size (about 100 cm3), whereas in adult males it is large (3000–4000 cm3) and becomes asymmetric extending either to the left or to the right side of the neck. In both adult females and males the ventral air sac walls touch the integument. In the adult male the air sac is laterally covered by the mandibular portion of the sternocephalic muscle and the skin. Both sexes of reindeer have a double stylohyoid muscle and a thyroepiglottic muscle. Possibly these muscles assist in inflation of the air sac. Head-and-neck specimens were subjected to macroscopic anatomical dissection, computer tomographic analysis and skeletonization. In addition, isolated larynges were studied for comparison. Acoustic recordings were made during an autumn round-up of semi-domestic reindeer in Finland and in a small zoo herd. Male reindeer adopt a specific posture when emitting their serial hoarse rutting calls. Head and neck are kept low and the throat region is extended. In the ventral neck region, roughly corresponding to the position of the large air sac, there is a mane of longer hairs. Neck swelling and mane spreading during vocalization may act as an optical signal to other males and females. The air sac, as a side branch of the vocal tract, can be considered as

  8. Anisotropic shrinkage of insect air sacs revealed in vivo by X-ray microtomography

    PubMed Central

    Xu, Liang; Chen, Rongchang; Du, Guohao; Yang, Yiming; Wang, Feixiang; Deng, Biao; Xie, Honglan; Xiao, Tiqiao

    2016-01-01

    Air sacs are thought to be the bellows for insect respiration. However, their exact mechanism of action as a bellows remains unclear. A direct way to investigate this problem is in vivo observation of the changes in their three-dimensional structures. Therefore, four-dimensional X-ray phase contrast microtomography is employed to solve this puzzle. Quantitative analysis of three-dimensional image series reveals that the compression of the air sac during respiration in bell crickets exhibits obvious anisotropic characteristics both longitudinally and transversely. Volumetric changes of the tracheal trunks in the prothorax further strengthen the evidence of this finding. As a result, we conclude that the shrinkage and expansion of the insect air sac is anisotropic, contrary to the hypothesis of isotropy, thereby providing new knowledge for further research on the insect respiratory system. PMID:27580585

  9. Anisotropic shrinkage of insect air sacs revealed in vivo by X-ray microtomography.

    PubMed

    Xu, Liang; Chen, Rongchang; Du, Guohao; Yang, Yiming; Wang, Feixiang; Deng, Biao; Xie, Honglan; Xiao, Tiqiao

    2016-01-01

    Air sacs are thought to be the bellows for insect respiration. However, their exact mechanism of action as a bellows remains unclear. A direct way to investigate this problem is in vivo observation of the changes in their three-dimensional structures. Therefore, four-dimensional X-ray phase contrast microtomography is employed to solve this puzzle. Quantitative analysis of three-dimensional image series reveals that the compression of the air sac during respiration in bell crickets exhibits obvious anisotropic characteristics both longitudinally and transversely. Volumetric changes of the tracheal trunks in the prothorax further strengthen the evidence of this finding. As a result, we conclude that the shrinkage and expansion of the insect air sac is anisotropic, contrary to the hypothesis of isotropy, thereby providing new knowledge for further research on the insect respiratory system. PMID:27580585

  10. Postcranial skeletal pneumaticity and air-sacs in the earliest pterosaurs

    PubMed Central

    Butler, Richard J.; Barrett, Paul M.; Gower, David J.

    2009-01-01

    Patterns of postcranial skeletal pneumatization (PSP) indicate that pterosaurs possessed components of a bird-like respiratory system, including a series of ventilatory air-sacs. However, the presence of PSP in the oldest known pterosaurs has not been unambiguously demonstrated by previous studies. Here we provide the first unequivocal documentation of PSP in Late Triassic and earliest Jurassic pterosaurs. This demonstrates that PSP and, by inference, air-sacs were probably present in the common ancestor of almost all known pterosaurs, and has broader implications for the evolution of respiratory systems in bird-line archosaurs, including dinosaurs. PMID:19411265

  11. Motor control of sound frequency in birdsong involves the interaction between air sac pressure and labial tension

    PubMed Central

    Alonso, Rodrigo; Goller, Franz; Mindlin, Gabriel B.

    2014-01-01

    Frequency modulation is a salient acoustic feature of birdsong. Its control is usually attributed to the activity of syringeal muscles, which affect the tension of the labia responsible for sound production. We use experimental and theoretical tools to test the hypothesis that for birds producing tonal sounds such as domestic canaries (Serinus canaria), frequency modulation is determined by both the syringeal tension and the air sac pressure. For different models, we describe the structure of the isofrequency curves, which are sets of parameters leading to sounds presenting the same fundamental frequencies. We show how their shapes determine the relative roles of syringeal tension and air sac pressure in frequency modulation. Finally, we report experiments that allow us to unveil the features of the isofrequency curves. PMID:24730873

  12. Teratogenic effects of amniotic sac puncture: a mouse model.

    PubMed Central

    MacIntyre, D J; Chang, H H; Kaufman, M H

    1995-01-01

    The possibility of an association between chorionic villus sampling (cvs) and limb abnormalities has prompted a review of the relevant experimental data. Although a vascular aetiology is favoured by many at present, the possibility exists that a proportion of cases may be caused by oligohydramnios secondary to inadvertent amniotic sac puncture. A mouse model of amniotic puncture syndrome has been developed to study the craniofacial and limb abnormalities produced by this procedure. Pregnant mice were anaesthetised and a laparotomy performed. One uterine horn was exteriorised, and the amniotic sacs punctured through the wall of the uterus with either a 21 gauge or a 25 gauge needle. The conceptuses in the contralateral uterine horn acted as controls. The mice were all killed on d 19 of pregnancy (day of finding a vaginal plug = d 1 of pregnancy) by cervical dislocation, and the morphological features of the embryos examined in detail. In a preliminary study, amniotic sac puncture was carried out on d 12, 13, 14, 15 or 16 of pregnancy, with either a 21 or a 25 gauge needle. Since the highest rates of palatal defects and limb deformities were observed following amniotic sac puncture using a 21 gauge needle, when this procedure was carried out on either d 13 or 14 of pregnancy, the main study was undertaken using a 21 gauge needle on these two days of pregnancy. Of 102 embryos in which amniotic sac puncture was carried out on d 13, 53% survived to d 19. Of the latter, 35% had a cleft palate, 61% had one or more morphologically abnormal limbs, and 43% had an abnormal tail. When amniotic sac puncture was carried out on d 14 of pregnancy, of 83 embryos subjected to this procedure, 81% survived to d 19. Of the latter, 27% had a cleft palate, 39% had one or more morphologically abnormal limbs, and 19% had an abnormal tail. In the controls, of 86 and 61 embryos isolated respectively from the d 13 and 14 mice, the survival rates were 97 and 90%, respectively. Palatal, limb

  13. Penguin lungs and air sacs: implications for baroprotection, oxygen stores and buoyancy.

    PubMed

    Ponganis, P J; St Leger, J; Scadeng, M

    2015-03-01

    The anatomy and volume of the penguin respiratory system contribute significantly to pulmonary baroprotection, the body O2 store, buoyancy and hence the overall diving physiology of penguins. Therefore, three-dimensional reconstructions from computerized tomographic (CT) scans of live penguins were utilized to measure lung volumes, air sac volumes, tracheobronchial volumes and total body volumes at different inflation pressures in three species with different dive capacities [Adélie (Pygoscelis adeliae), king (Aptenodytes patagonicus) and emperor (A. forsteri) penguins]. Lung volumes scaled to body mass according to published avian allometrics. Air sac volumes at 30 cm H2O (2.94 kPa) inflation pressure, the assumed maximum volume possible prior to deep dives, were two to three times allometric air sac predictions and also two to three times previously determined end-of-dive total air volumes. Although it is unknown whether penguins inhale to such high volumes prior to dives, these values were supported by (a) body density/buoyancy calculations, (b) prior air volume measurements in free-diving ducks and (c) previous suggestions that penguins may exhale air prior to the final portions of deep dives. Based upon air capillary volumes, parabronchial volumes and tracheobronchial volumes estimated from the measured lung/airway volumes and the only available morphometry study of a penguin lung, the presumed maximum air sac volumes resulted in air sac volume to air capillary/parabronchial/tracheobronchial volume ratios that were not large enough to prevent barotrauma to the non-collapsing, rigid air capillaries during the deepest dives of all three species, and during many routine dives of king and emperor penguins. We conclude that volume reduction of airways and lung air spaces, via compression, constriction or blood engorgement, must occur to provide pulmonary baroprotection at depth. It is also possible that relative air capillary and parabronchial volumes are

  14. Impact of new technology weapons on SAC (Strategic Air Command) conventional air operations. Research report

    SciTech Connect

    Bodenheimer, C.E.

    1983-06-01

    Chapter I introduces the issue of conventional-response capability. The point stressed first is that the strategic bomber's primary mission is in support of the single integrated operations plan (SIOP) as a nuclear weapons delivery vehicle. However, as cited by Secretary of Defense Caspar Weinberger, we must have a rapid deployment conventional capability to areas where there are small if any U.S. forces present. The SAC strategic projection force (SPF) is available but with gravity weapons of World War II vintage. New technology can provide answers to the problem by providing highly accurate long-range conventional standoff weapons. Chapter II gives a basic historical perspective on the use of the strategic bomber in past wars. It discusses the development of strategy, weapons, and targets in World War II, Korean War, and Vietnam War. Chapter III presents a very brief look at current US policy, strategy, and guidance. Chapter IV covers the aircraft attrition issue in today's highly lethal defensive environment. Chapter V describes the development of air-to-ground weapons. Chapter VI addresses the potential for the future in the shifting balance of Soviet and US technology. The final chapter makes the point that a decision must be made on weapons-acquisition programs and bomber force structure. New technology-standoff conventional weapons could make AAA and SAM defenses a modern Maginot Line.

  15. Evolution of Newcastle Disease Virus Quasispecies Diversity and Enhanced Virulence after Passage through Chicken Air Sacs

    PubMed Central

    Meng, Chunchun; Qiu, Xusheng; Yu, Shengqing; Li, Chuanfeng; Sun, Yingjie; Chen, Zongyan; Liu, Kaichun; Zhang, Xiangle; Tan, Lei; Song, Cuiping; Liu, Guangqing

    2015-01-01

    ABSTRACT It has been reported that lentogenic Newcastle disease virus (NDV) isolates have the potential to become velogenic after their transmission and circulation in chickens, but the underlying mechanism is unclear. In this study, a highly velogenic NDV variant, JS10-A10, was generated from the duck-origin lentogenic isolate JS10 through 10 consecutive passages in chicken air sacs. The velogenic properties of this selected variant were determined using mean death time (MDT) assays, intracerebral pathogenicity index (ICPI), the intravenous pathogenicity index (IVPI), histopathology, and the analysis of host tissue tropism. In contrast, JS10 remained lentogenic after 20 serial passages in chicken eggs (JS10-E20). The JS10, JS10-A10, and JS10-E20 genomes were sequenced and found to be nearly identical, suggesting that both JS10-A10 and JS10-E20 were directly generated from JS10. To investigate the mechanism for virulence enhancement, the partial genome covering the F0 cleavage site of JS10 and its variants were analyzed using ultradeep pyrosequencing (UDPS) and the proportions of virulence-related genomes in the quasispecies were calculated. Velogenic NDV genomes accumulated as a function of JS10 passaging through chicken air sacs. Our data suggest that lentogenic NDV strains circulating among poultry might be a risk factor to future potential velogenic NDV outbreaks in chickens. IMPORTANCE An avirulent isolate, JS10, was passaged through chicken air sacs and embryos, and the pathogenicity of the variants was assessed. A virulent variant, JS10-A10, was generated from consecutive passage in air sacs. We developed a deep-sequencing approach to detect low-frequency viral variants across the NDV genome. We observed that virulence enhancement of JS10 was due to the selective accumulation of velogenic quasispecies and the concomitant disappearance of lentogenic quasispecies. Our results suggest that because it is difficult to avoid contact between natural waterfowl

  16. Myoblast cytonemes mediate Wg signaling from the wing imaginal disc and Delta-Notch signaling to the air sac primordium

    PubMed Central

    Huang, Hai; Kornberg, Thomas B

    2015-01-01

    The flight muscles, dorsal air sacs, wing blades, and thoracic cuticle of the Drosophila adult function in concert, and their progenitor cells develop together in the wing imaginal disc. The wing disc orchestrates dorsal air sac development by producing decapentaplegic and fibroblast growth factor that travel via specific cytonemes in order to signal to the air sac primordium (ASP). Here, we report that cytonemes also link flight muscle progenitors (myoblasts) to disc cells and to the ASP, enabling myoblasts to relay signaling between the disc and the ASP. Frizzled (Fz)-containing myoblast cytonemes take up Wingless (Wg) from the disc, and Delta (Dl)-containing myoblast cytonemes contribute to Notch activation in the ASP. Wg signaling negatively regulates Dl expression in the myoblasts. These results reveal an essential role for cytonemes in Wg and Notch signaling and for a signal relay system in the myoblasts. DOI: http://dx.doi.org/10.7554/eLife.06114.001 PMID:25951303

  17. Molecular phylogeny and biogeography of air sac catfishes of the Heteropneustes fossilis species complex (Siluriformes: Heteropneustidae).

    PubMed

    Ratmuangkhwang, Sahat; Musikasinthorn, Prachya; Kumazawa, Yoshinori

    2014-10-01

    The air sac catfish, Heteropneustes fossilis (Siluriformes: Heteropneustidae), is widely distributed in freshwaters of the Indian subcontinent and mainland southeast Asia. No comprehensive molecular studies that cover the broad distributional areas have been carried out to date. Here, we conducted molecular phylogenetic analyses using both mitochondrial and nuclear gene sequences to suggest that the Heteropneustes fossilis species complex consists of three clades that may potentially be separate species with distinct geographical distribution (southeast Asia, northeastern India, and southwestern India). The first and second clades are more closely related to each other than they are to the third clade. Within the first clade there is a basal divergence of a subclade consisting of individuals from the Upper Irrawaddy River basin of Myanmar, which share some morphological traits with members of the Indian clades. Our molecular and morphological data are congruent with hypotheses that the Early-Middle Miocene disconnection between the paleo-Tsangpo River and the Irrawaddy River caused the vicariant divergence between southeast Asian and northeastern Indian clades, and that the southeast Asian Heteropneustes originated from the Upper Irrawaddy. PMID:24875251

  18. Detection and Management of Air Sac Trematodes (Szidatitrema Species) in Captive Multispecies Avian Exhibits.

    PubMed

    Delaski, Kristina M; Nelson, Sudona; Dronen, Norman O; Craig, Thomas M; Pond, Joel; Gamble, Kathryn C

    2015-12-01

    From 2 exhibits in a zoological collection, 2 juvenile fairy bluebirds ( Irena puella ) and 1 adult blue-grey tanager (Thraupis episcopus) died within 3 months of one another. The cause of death was attributed to air sac trematodes, which were identified as Szidatitrema species based on morphology of adult trematodes and miracidia isolated from a snail intermediate host. To determine the extent of trematodiasis in the collection, individual exhibits within the same building as the original presenting cases were assessed, with birds representing 27 avian species from 9 orders. Sampling consisted of individual (n = 244) and pooled same-species group (n = 193) fecal examinations, and for some individuals, and tracheal swab (n = 106), resulting in a total of 543 samples. In addition, tracheal swabs were performed on 14 birds for comparative cytology, but no parasites were found. Flukes were positively identified in 4 tracheal swab samples (4%), 37 individual fecal samples (15%), and 52 of the group fecal samples (27%). When results of the swab method were compared with those of fecal examination, fecal testing was significantly associated (P < .001) with positive results. Based on these results, a screening process was instituted of 3- or 4-day combined fecal samples evaluated by both sedimentation and flotation techniques 2 weeks before outgoing shipments or intrazoo transfers of birds housed in exhibits known to have snail populations. Snail control methods also were initiated in all exhibits. Treatment with praziquantel was carried out on a case-by-case basis, and included oral, parenteral, and nebulized administration. Although control measures were expected to manage the infection and reduce distribution of the parasite to other collections, complete eradication of trematodes in the population is unlikely. PMID:26771325

  19. Modeling the Rate-Dependent Durability of Reduced-Ag SAC Interconnects for Area Array Packages Under Torsion Loads

    NASA Astrophysics Data System (ADS)

    Srinivas, Vikram; Menon, Sandeep; Osterman, Michael; Pecht, Michael G.

    2013-08-01

    Solder durability models frequently focus on the applied strain range; however, the rate of applied loading, or strain rate, is also important. In this study, an approach to incorporate strain rate dependency into durability estimation for solder interconnects is examined. Failure data were collected for SAC105 solder ball grid arrays assembled with SAC305 solder that were subjected to displacement-controlled torsion loads. Strain-rate-dependent (Johnson-Cook model) and strain-rate-independent elastic-plastic properties were used to model the solders in finite-element simulation. Test data were then used to extract damage model constants for the reduced-Ag SAC solder. A generalized Coffin-Manson damage model was used to estimate the durability. The mechanical fatigue durability curve for reduced-silver SAC solder was generated and compared with durability curves for SAC305 and Sn-Pb from the literature.

  20. FGF coordinates air sac development by activation of the EGF ligand Vein through the transcription factor PntP2

    PubMed Central

    Cruz, Josefa; Bota-Rabassedas, Neus; Franch-Marro, Xavier

    2015-01-01

    How several signaling pathways are coordinated to generate complex organs through regulation of tissue growth and patterning is a fundamental question in developmental biology. The larval trachea of Drosophila is composed of differentiated functional cells and groups of imaginal tracheoblasts that build the adult trachea during metamorphosis. Air sac primordium cells (ASP) are tracheal imaginal cells that form the dorsal air sacs that supply oxygen to the flight muscles of the Drosophila adult. The ASP emerges from the tracheal branch that connects to the wing disc by the activation of both Bnl-FGF/Btl and EGFR signaling pathways. Together, these pathways promote cell migration and proliferation. In this study we demonstrate that Vein (vn) is the EGF ligand responsible for the activation of the EGFR pathway in the ASP. We also find that the Bnl-FGF/Btl pathway regulates the expression of vn through the transcription factor PointedP2 (PntP2). Furthermore, we show that the FGF target gene escargot (esg) attenuates EGFR signaling at the tip cells of the developing ASP, reducing their mitotic rate to allow proper migration. Altogether, our results reveal a link between Bnl-FGF/Btl and EGFR signaling and provide novel insight into how the crosstalk of these pathways regulates migration and growth. PMID:26632449

  1. FGF coordinates air sac development by activation of the EGF ligand Vein through the transcription factor PntP2.

    PubMed

    Cruz, Josefa; Bota-Rabassedas, Neus; Franch-Marro, Xavier

    2015-01-01

    How several signaling pathways are coordinated to generate complex organs through regulation of tissue growth and patterning is a fundamental question in developmental biology. The larval trachea of Drosophila is composed of differentiated functional cells and groups of imaginal tracheoblasts that build the adult trachea during metamorphosis. Air sac primordium cells (ASP) are tracheal imaginal cells that form the dorsal air sacs that supply oxygen to the flight muscles of the Drosophila adult. The ASP emerges from the tracheal branch that connects to the wing disc by the activation of both Bnl-FGF/Btl and EGFR signaling pathways. Together, these pathways promote cell migration and proliferation. In this study we demonstrate that Vein (vn) is the EGF ligand responsible for the activation of the EGFR pathway in the ASP. We also find that the Bnl-FGF/Btl pathway regulates the expression of vn through the transcription factor PointedP2 (PntP2). Furthermore, we show that the FGF target gene escargot (esg) attenuates EGFR signaling at the tip cells of the developing ASP, reducing their mitotic rate to allow proper migration. Altogether, our results reveal a link between Bnl-FGF/Btl and EGFR signaling and provide novel insight into how the crosstalk of these pathways regulates migration and growth. PMID:26632449

  2. Highlights of the ecancer/SAC First International Prostate Cancer Symposium, 11-12 March 2016, Buenos Aires, Argentina.

    PubMed

    Villalba, Marcelo Blanco; Bramajo, Marina; Bruno, Mario

    2016-01-01

    The ecancer/SAC First International Prostate Cancer Symposium, held in Buenos Aires, included national, regional, and international experts in the field of prostate cancer. More than 200 professionals from a variety of areas (clinical urologists, pathologists, oncologists, biologists, imaging specialists, radiation therapists, and generalist doctors, among others) attended, and they proposed multidisciplinary management of prostate pathology from the start in concordance with the ideas set forth by the organising committee. A radiotherapy workshop was also held during the symposium, in which new techniques and their possible uses were specifically discussed. In addition to the local doctors, Dr Lilian Faroni (COI Group, Rio de Janeiro, Brazil), Dr Leonardo Carmona (Chilean Head and Neck Institute, Chile), and Dr Anthony Addesa (Jupiter Medical Centre, Florida, USA) also participated in this symposium. PMID:27350786

  3. Highlights of the ecancer/SAC First International Prostate Cancer Symposium, 11–12 March 2016, Buenos Aires, Argentina

    PubMed Central

    Villalba, Marcelo Blanco; Bramajo, Marina; Bruno, Mario

    2016-01-01

    The ecancer/SAC First International Prostate Cancer Symposium, held in Buenos Aires, included national, regional, and international experts in the field of prostate cancer. More than 200 professionals from a variety of areas (clinical urologists, pathologists, oncologists, biologists, imaging specialists, radiation therapists, and generalist doctors, among others) attended, and they proposed multidisciplinary management of prostate pathology from the start in concordance with the ideas set forth by the organising committee. A radiotherapy workshop was also held during the symposium, in which new techniques and their possible uses were specifically discussed. In addition to the local doctors, Dr Lilian Faroni (COI Group, Rio de Janeiro, Brazil), Dr Leonardo Carmona (Chilean Head and Neck Institute, Chile), and Dr Anthony Addesa (Jupiter Medical Centre, Florida, USA) also participated in this symposium. PMID:27350786

  4. Cyclocoelid ( Morishitium sp.) Trematodes from an Air Sac of a Purple Sandpiper, Calidris maritima (Brünnich).

    PubMed

    Shutler, Dave; Mallory, Mark L; Elderkin, Mark; McLaughlin, J Daniel

    2016-06-01

    Like many shorebirds, purple sandpipers ( Calidris maritima [Brünnich] Charadriiformes: Scolopacidae) have experienced population declines in recent years, but causes of these declines have not been established. As part of a larger study to identify causes of these declines, we collected and examined 25 purple sandpipers in coastal Nova Scotia, Canada during March 2013. In the course of dissections to collect tissue samples, we detected a cluster of trematodes in the air sac of 1 bird that were subsequently identified as cyclocoelids belonging to the genus Morishitium Witenberg, 1928, which we believe is the first report of this genus of parasites in this host. Cyclocoelids have been reported from other scolopacids and other shorebird families, but we are unaware of reports of serious pathology arising from these trematodes. Given this and the low prevalence (4%) in our sample, our data cannot ascribe declines in purple sandpiper populations to these trematodes, but our sample is limited both spatially and temporally. PMID:26779884

  5. A Genetic Mosaic Analysis With a Repressible Cell Marker Screen to Identify Genes Involved in Tracheal Cell Migration During Drosophila Air Sac Morphogenesis

    PubMed Central

    Chanut-Delalande, Hélène; Jung, Alain C.; Lin, Li; Baer, Magdalena M.; Bilstein, Andreas; Cabernard, Clemens; Leptin, Maria; Affolter, Markus

    2007-01-01

    Branching morphogenesis of the Drosophila tracheal system relies on the fibroblast growth factor receptor (FGFR) signaling pathway. The Drosophila FGF ligand Branchless (Bnl) and the FGFR Breathless (Btl/FGFR) are required for cell migration during the establishment of the interconnected network of tracheal tubes. However, due to an important maternal contribution of members of the FGFR pathway in the oocyte, a thorough genetic dissection of the role of components of the FGFR signaling cascade in tracheal cell migration is impossible in the embryo. To bypass this shortcoming, we studied tracheal cell migration in the dorsal air sac primordium, a structure that forms during late larval development. Using a mosaic analysis with a repressible cell marker (MARCM) clone approach in mosaic animals, combined with an ethyl methanesulfonate (EMS)-mutagenesis screen of the left arm of the second chromosome, we identified novel genes implicated in cell migration. We screened 1123 mutagenized lines and identified 47 lines displaying tracheal cell migration defects in the air sac primordium. Using complementation analyses based on lethality, mutations in 20 of these lines were genetically mapped to specific genomic areas. Three of the mutants were mapped to either the Mhc or the stam complementation groups. Further experiments confirmed that these genes are required for cell migration in the tracheal air sac primordium. PMID:17603108

  6. Modeling and simulation of blood flow in a sac-type left ventricular assist device.

    PubMed

    Najarian, Siamak; Firouzi, Faramarz; Fatouraee, Nasser; Dargahi, Javad

    2007-01-01

    Left ventricular assist devices (LVADs) are among the most important mechanical artificial hearts in medical equipment industry. Since the need for heart transplantation is on the rise, there is a requirement for implantable LVADs, which can be safely used for long-term purposes. One of the most promising kinds of these devices is the sac-type LVAD (ST-LVAD) that has the ability to generate pulsatile flow. In this study and for the first time, three different models of ST-LVAD are analyzed numerically. In the first model, the motion of the elastic membrane wall is simplified, while in the second model, the motion is assumed to be wavy. The pressure boundary conditions are added to the second model to allocate for the effect of pressure on the flow pattern, and hence, form the third model. The simulation results of the analyzed models show that in this particular type of LVAD, the viscous term of the applied stress from the fluid on the moving wall is negligible, compared with the pressure term. Additionally, it can be concluded that the motion pattern of the moving wall does not affect the blood flow pattern in a great deal. Furthermore, the inclusion of the fluid pressure in the boundary conditions does not have a major influence on the blood flow pattern. PMID:17611298

  7. 60. SAC emblem on side of missile, front lawn, building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    60. SAC emblem on side of missile, front lawn, building 500, looking west - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  8. 13. SAC command center, weather center, underground structure, building 501, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. SAC command center, weather center, underground structure, building 501, undated - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  9. 63. Aerial view of SAC command post construction, looking west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    63. Aerial view of SAC command post construction, looking west - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  10. 67. Aerial view of SAC command post, building 500, looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    67. Aerial view of SAC command post, building 500, looking northeast, undated - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  11. 62. Aerial view of SAC command post, building 500, looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    62. Aerial view of SAC command post, building 500, looking east - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  12. 3. Threequarter view of building 500 looking southeast from SAC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Three-quarter view of building 500 looking southeast from SAC Boulevard - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  13. 68. Aerial view of SAC command post, building 500, looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    68. Aerial view of SAC command post, building 500, looking northeast, spring, 1957 - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  14. Modeling and simulating aircraft stability and control—The SimSAC project

    NASA Astrophysics Data System (ADS)

    Rizzi, Arthur

    2011-11-01

    This paper overviews the SimSAC Project, Simulating Aircraft Stability And Control Characteristics for Use in Conceptual Design. It reports on the three major tasks: development of design software, validating the software on benchmark tests and applying the software to design exercises. CEASIOM, the Computerized Environment for Aircraft Synthesis and Integrated Optimization Methods, is a framework tool that integrates discipline-specific tools for conceptual design. At this early stage of the design it is very useful to be able to predict the flying and handling qualities of this design. In order to do this, the aerodynamic database needs to be computed for the configuration being studied, which then has to be coupled to the stability and control tools to carry out the analysis. The benchmarks for validation are the F12 windtunnel model of a generic long-range airliner and the TCR windtunnel model of a sonic-cruise passenger transport concept. The design, simulate and evaluate (DSE) exercise demonstrates how the software works as a design tool. The exercise begins with a design specification and uses conventional design methods to prescribe a baseline configuration. Then CEASIOM improves upon this baseline by analyzing its flying and handling qualities. Six such exercises are presented.

  15. SAC-SMA a priori parameter differences and their impact on distributed hydrologic model simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Ziya; Koren, Victor; Reed, Seann; Smith, Michael; Zhang, Yu; Moreda, Fekadu; Cosgrove, Brian

    2012-02-01

    SummaryDeriving a priori gridded parameters is an important step in the development and deployment of an operational distributed hydrologic model. Accurate a priori parameters can reduce the manual calibration effort and/or speed up the automatic calibration process, reduce calibration uncertainty, and provide valuable information at ungauged locations. Underpinned by reasonable parameter data sets, distributed hydrologic modeling can help improve water resource and flood and flash flood forecasting capabilities. Initial efforts at the National Weather Service Office of Hydrologic Development (NWS OHD) to derive a priori gridded Sacramento Soil Moisture Accounting (SAC-SMA) model parameters for the conterminous United States (CONUS) were based on a relatively coarse resolution soils property database, the State Soil Geographic Database (STATSGO) (Soil Survey Staff, 2011) and on the assumption of uniform land use and land cover. In an effort to improve the parameters, subsequent work was performed to fully incorporate spatially variable land cover information into the parameter derivation process. Following that, finer-scale soils data (the county-level Soil Survey Geographic Database (SSURGO) ( Soil Survey Staff, 2011a,b), together with the use of variable land cover data, were used to derive a third set of CONUS, a priori gridded parameters. It is anticipated that the second and third parameter sets, which incorporate more physical data, will be more realistic and consistent. Here, we evaluate whether this is actually the case by intercomparing these three sets of a priori parameters along with their associated hydrologic simulations which were generated by applying the National Weather Service Hydrology Laboratory's Research Distributed Hydrologic Model (HL-RDHM) ( Koren et al., 2004) in a continuous fashion with an hourly time step. This model adopts a well-tested conceptual water balance model, SAC-SMA, applied on a regular spatial grid, and links to physically

  16. Endolymphatic sac involvement in bacterial meningitis.

    PubMed

    Møller, Martin Nue; Brandt, Christian; Østergaard, Christian; Caye-Thomasen, Per

    2015-04-01

    The commonest sequelae of bacterial meningitis are related to the inner ear. Little is known about the inner ear immune defense. Evidence suggests that the endolymphatic sac provides some protection against infection. A potential involvement of the endolymphatic sac in bacterial meningitis is largely unaccounted for, and thus the object of the present study. A well-established adult rat model of Streptococcus pneumoniae meningitis was employed. Thirty adult rats were inoculated intrathecally with Streptococcus pneumoniae and received no additional treatment. Six rats were sham-inoculated. The rats were killed when reaching terminal illness or on day 7, followed by light microscopy preparation and PAS-Alcian blue staining. The endolymphatic sac was examined for bacterial invasion and leukocyte infiltration. Neither bacteria nor leukocytes infiltrated the endolymphatic sac during the first days. Bacteria invaded the inner ear through the cochlear aquaduct. On days 5-6, the bacteria invaded the endolymphatic sac through the endolymphatic duct subsequent to invasion of the vestibular endolymphatic compartment. No evidence of direct bacterial invasion of the sac through the meninges was found. Leukocyte infiltration of the sac occurred prior to bacterial invasion. During meningitis, bacteria do not invade the endolymphatic sac through the dura, but solely through the endolymphatic duct, following the invasion of the vestibular system. Leukocyte infiltration of the sac occurs prior to, as well as concurrent with bacterial invasion. The findings support the endolymphatic sac as part of an innate immune defense system protecting the inner ear from infection. PMID:24452771

  17. Modelling Hot Air Balloons.

    ERIC Educational Resources Information Center

    Brimicombe, M. W.

    1991-01-01

    A macroscopic way of modeling hot air balloons using a Newtonian approach is presented. Misleading examples using a car tire and the concept of hot air rising are discussed. Pressure gradient changes in the atmosphere are used to explain how hot air balloons work. (KR)

  18. Effect of forward/inverse model asymmetries over retrieved soil moisture assessed with an OSSE for the Aquarius/SAC-D

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An Observing System Simulation Experiment (OSSE) for the Aquarius/SAC-D mission that includes different models for forward and retrieval processes is presented. This OSSE is implemented to study the errors related to the use of simple retrieval models in passive microwave applications. To this end...

  19. REGULATORY AIR QUALITY MODELS

    EPA Science Inventory

    Appendix W to 40CFR Part 51 (Guideline on Air Quality Models) specifies the models to be used for purposes of permitting, PSD, and SIPs. Through a formal regulatory process this modeling guidance is periodically updated to reflect current science. In the most recent action, thr...

  20. AIR Model Preflight Analysis

    NASA Technical Reports Server (NTRS)

    Tai, H.; Wilson, J. W.; Maiden, D. L.

    2003-01-01

    The atmospheric ionizing radiation (AIR) ER-2 preflight analysis, one of the first attempts to obtain a relatively complete measurement set of the high-altitude radiation level environment, is described in this paper. The primary thrust is to characterize the atmospheric radiation and to define dose levels at high-altitude flight. A secondary thrust is to develop and validate dosimetric techniques and monitoring devices for protecting aircrews. With a few chosen routes, we can measure the experimental results and validate the AIR model predictions. Eventually, as more measurements are made, we gain more understanding about the hazardous radiation environment and acquire more confidence in the prediction models.

  1. Stereoscopic particle image velocimetry analysis of healthy and emphysemic alveolar sac models.

    PubMed

    Berg, Emily J; Robinson, Risa J

    2011-06-01

    Emphysema is a progressive lung disease that involves permanent destruction of the alveolar walls. Fluid mechanics in the pulmonary region and how they are altered with the presence of emphysema are not well understood. Much of our understanding of the flow fields occurring in the healthy pulmonary region is based on idealized geometries, and little attention has been paid to emphysemic geometries. The goal of this research was to utilize actual replica lung geometries to gain a better understanding of the mechanisms that govern fluid motion and particle transport in the most distal regions of the lung and to compare the differences that exist between healthy and emphysematous lungs. Excised human healthy and emphysemic lungs were cast, scanned, graphically reconstructed, and used to fabricate clear, hollow, compliant models. Three dimensional flow fields were obtained experimentally using stereoscopic particle image velocimetry techniques for healthy and emphysematic breathing conditions. Measured alveolar velocities ranged over two orders of magnitude from the duct entrance to the wall in both models. Recirculating flow was not found in either the healthy or the emphysematic model, while the average flow rate was three times larger in emphysema as compared to healthy. Diffusion dominated particle flow, which is characteristic in the pulmonary region of the healthy lung, was not seen for emphysema, except for very small particle sizes. Flow speeds dissipated quickly in the healthy lung (60% reduction in 0.25 mm) but not in the emphysematic lung (only 8% reduction 0.25 mm). Alveolar ventilation per unit volume was 30% smaller in emphysema compared to healthy. Destruction of the alveolar walls in emphysema leads to significant differences in flow fields between the healthy and emphysemic lung. Models based on replica geometry provide a useful means to quantify these differences and could ultimately improve our understanding of disease progression. PMID:21744924

  2. 79. Sac digital network (Sacdin), summary fault indicator at top, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    79. Sac digital network (Sacdin), summary fault indicator at top, south side - Ellsworth Air Force Base, Delta Flight, Launch Control Facility, County Road CS23A, North of Exit 127, Interior, Jackson County, SD

  3. Air modeling: Air dispersion models; regulatory applications and technological advances

    SciTech Connect

    Miller, M.; Liles, R.

    1995-09-01

    Air dispersion models are a useful and practical tool for both industry and regulatory agencies. They serve as tools for engineering, permitting, and regulations development. Their cost effectiveness and ease of implementation compared to ambient monitoring is perhaps their most-appealing trait. Based on the current momentum within the U.S. EPA to develop better models and contain regulatory burdens on industry, it is likely that air dispersion modeling will be a major player in future air regulatory initiatives.

  4. On the robustness of SAC silencing in closed mitosis

    NASA Astrophysics Data System (ADS)

    Ruth, Donovan; Liu, Jian

    Mitosis equally partitions sister chromatids to two daughter cells. This is achieved by properly attaching these chromatids via their kinetochores to microtubules that emanate from the spindle poles. Once the last kinetochore is properly attached, the spindle microtubules pull the sister chromatids apart. Due to the dynamic nature of microtubules, however, kinetochore-microtubule attachment often goes wrong. When this erroneous attachment occurs, it locally activates an ensemble of proteins, called the spindle assembly checkpoint proteins (SAC), which halts the mitotic progression until all the kinetochores are properly attached by spindle microtubules. The timing of SAC silencing thus determines the fidelity of chromosome segregation. We previously established a spatiotemporal model that addresses the robustness of SAC silencing in open mitosis for the first time. Here, we focus on closed mitosis by examining yeast mitosis as a model system. Though much experimental work has been done to study the SAC in cells undergoing closed mitosis, the processes responsible are not well understood. We leverage and extend our previous model to study SAC silencing mechanism in closed mitosis. We show that a robust signal of the SAC protein accumulation at the spindle pole body can be achieved. This signal is a nonlinear increasing function of number of kinetochore-microtubule attachments, and can thus serve as a robust trigger to time the SAC silencing. Together, our mechanism provides a unified framework across species that ensures robust SAC silencing and fidelity of chromosome segregation in mitosis. Intramural research program in NHLBI at NIH.

  5. INEEL AIR MODELING PROTOCOL ext

    SciTech Connect

    C. S. Staley; M. L. Abbott; P. D. Ritter

    2004-12-01

    Various laws stemming from the Clean Air Act of 1970 and the Clean Air Act amendments of 1990 require air emissions modeling. Modeling is used to ensure that air emissions from new projects and from modifications to existing facilities do not exceed certain standards. For radionuclides, any new airborne release must be modeled to show that downwind receptors do not receive exposures exceeding the dose limits and to determine the requirements for emissions monitoring. For criteria and toxic pollutants, emissions usually must first exceed threshold values before modeling of downwind concentrations is required. This document was prepared to provide guidance for performing environmental compliance-driven air modeling of emissions from Idaho National Engineering and Environmental Laboratory facilities. This document assumes that the user has experience in air modeling and dose and risk assessment. It is not intended to be a "cookbook," nor should all recommendations herein be construed as requirements. However, there are certain procedures that are required by law, and these are pointed out. It is also important to understand that air emissions modeling is a constantly evolving process. This document should, therefore, be reviewed periodically and revised as needed. The document is divided into two parts. Part A is the protocol for radiological assessments, and Part B is for nonradiological assessments. This document is an update of and supersedes document INEEL/INT-98-00236, Rev. 0, INEEL Air Modeling Protocol. This updated document incorporates changes in some of the rules, procedures, and air modeling codes that have occurred since the protocol was first published in 1998.

  6. Recent developments in SAC2000

    SciTech Connect

    Goldstein, P.; Dodge, D.; Firpo, M

    1997-07-01

    Before discussing recent developments in SAC2000, I will summarize what SAC2000 is/does. SAC2000 is the rebirth and evolution of Lawrence Livermore National Laboratory`s (LLNL`s) Seismic Analysis Code (SAC) developed during the 1980`s for a variety of geophysical applications. Primary funding for the development of SAC2000 has been through the LLNL as part of the Department of Energy`s (DOE`s) CTBT R&D program. The primary development goals for SAC2000 have been to meet the seismic signal processing and analysis needs of the DOE CTBT R&D teams and the rest of the CTBT R&D community. SAC2000`s strengths include its ability to process a diverse range of data types, its extensive, well documented signal processing capabilities (both on-line and on the web at http://www-ep.es.llnl.gov/tvp/sac.html), its macro language, and its ability to do both branch and interactive processing. Its extensive usage (over 200 institutions worldwide) had also made it much easier for researchers to develop collaborative research projects. SAC2000`s extensive signal processing capabilities include: data inspection, signal correction, and quality control, unary and binary data operations, travel-time analysis, spectral analysis including high-resolution spectral estimation, spectrograms and binary sonograms, and array and three-component analysis. Recent development in SAC2000 include: enhanced compatibility with the CSS3.0 database schema, complete compatibility with the widely used SEED data format instrument responses, map making capabilities via an interface to GMT, a new three component polarization and phase identification tool, an external interface that allows users to define their own commands, and an interface to MATLAB that allows the user to use MATLAB commands and scripts on SAC data from within SAC2000. We have also implemented a number of commands to enhance user efficiency and numerous improvements and enhancements to many individual SAC commands. Current development in SAC

  7. Primary omental yolk sac tumor.

    PubMed

    Lim, Seon Hwa; Kim, Yon Hee; Yim, Ga Won; Nam, Eun Ji; Kim, Young Tae; Kim, Sunghoon

    2013-11-01

    Extra-ovarian yolk sac tumor arising in the omentum is extremely rare. As yolk sac tumor originated from the omentum has been rarely reported, its clinical information is very limited. The authors encountered a case of yolk sac tumor originated from the omentum, and reported the case herein. A 32-year-old woman was presented with developed low abdominal distension for a month. Magnetic resonance imaging findings were suggestive of ovarian malignancy with ascites and peritoneal seeding nodules. Explorative laparotomy was performed and then the findings from frozen biopsy of omentum were suggestive of poorly differentiated tumor though whether it was primary or metastatic was uncertain. Thus, staging laparotomy were performed. Histopathology confirmed that the tumor was a yolk sac tumor of omentum origin. Then, 6 cycles of postoperative adjuvant chemotherapy at intervals of 3 weeks were performed using bleomycin, etoposide, and cisplatin regimen. Four-year outpatient follow-up thereafter showed no relapse. PMID:24396822

  8. A Demonstration of the System Assessment Capability (SAC) Rev. 1 Software for the Hanford Remediation Assessment Project

    SciTech Connect

    Eslinger, Paul W.; Kincaid, Charles T.; Nichols, William E.; Wurstner, Signe K.

    2006-11-06

    The System Assessment Capability (SAC) is a suite of interrelated computer codes that provides the capability to conduct large-scale environmental assessments on the Hanford Site. Developed by Pacific Northwest National Laboratory for the Department of Energy, SAC models the fate and transport of radioactive and chemical contaminants, starting with the inventory of those contaminants in waste sites, simulating transport through the environment, and continuing on through impacts to the environment and humans. Separate modules in the SAC address inventory, release from waste forms, water flow and mass transport in the vadose zone, water flow and mass transport in the groundwater, water flow and mass transport in the Columbia River, air transport, and human and ecological impacts. The SAC supports deterministic analyses as well as stochastic analyses using a Monte Carlo approach, enabling SAC users to examine the effect of uncertainties in a number of key parameters. The initial assessment performed with the SAC software identified a number of areas where both the software and the analysis approach could be improved. Since that time the following six major software upgrades have been made: (1) An air pathway model was added to support all-pathway analyses. (2) Models for releases from glass waste forms, buried graphite reactor cores, and buried naval reactor compartments were added. (3) An air-water dual-phase model was added to more accurately track the movement of volatile contaminants in the vadose zone. (4) The ability to run analyses was extended from 1,000 years to 10,000 years or longer after site closure. (5) The vadose zone flow and transport model was upgraded to support two-dimensional or three-dimensional analyses. (6) The ecological model and human risk models were upgraded so the concentrations of contaminants in food products consumed by humans are produced by the ecological model. This report documents the functions in the SAC software and provides a

  9. Hybrid regional air pollution models

    SciTech Connect

    Drake, R.L.

    1980-03-01

    This discussion deals with a family of air quality models for predicting and analyzing the fine particulate loading in the atmosphere, for assessing the extent and degree of visibility impairment, and for determining the potential of pollutants for increasing the acidity of soils and water. The major horizontal scales of interest are from 400km to 2000km; and the time scales may vary from several hours, to days, weeks, and a few months or years, depending on the EPA regulations being addressed. First the role air quality models play in the general family of atmospheric simulation models is described. Then, the characteristics of a well-designed, comprehensive air quality model are discussed. Following this, the specific objectives of this workshop are outlined, and their modeling implications are summarized. There are significant modeling differences produced by the choice of the coordinate system, whether it be the fixed Eulerian system, the moving Lagrangian system, or some hybrid of the two. These three systems are briefly discussed, and a list of hybrid models that are currently in use are given. Finally, the PNL regional transport model is outlined and a number of research needs are listed.

  10. AIR TOXICS HUMAN EXPOSURE MODELING

    EPA Science Inventory

    This project aims to improve the scientific basis for the Environmental Protection Agency's (EPA's) assessments of human exposures to air toxics by developing improved human exposure models. The research integrates the major components of the exposure paradigm, i.e., sources, tr...

  11. Community Multiscale Air Quality Model

    EPA Science Inventory

    The U.S. EPA developed the Community Multiscale Air Quality (CMAQ) system to apply a “one atmosphere” multiscale and multi-pollutant modeling approach based mainly on the “first principles” description of the atmosphere. The multiscale capability is supported by the governing di...

  12. Air Conditioner Compressor Performance Model

    SciTech Connect

    Lu, Ning; Xie, YuLong; Huang, Zhenyu

    2008-09-05

    During the past three years, the Western Electricity Coordinating Council (WECC) Load Modeling Task Force (LMTF) has led the effort to develop the new modeling approach. As part of this effort, the Bonneville Power Administration (BPA), Southern California Edison (SCE), and Electric Power Research Institute (EPRI) Solutions tested 27 residential air-conditioning units to assess their response to delayed voltage recovery transients. After completing these tests, different modeling approaches were proposed, among them a performance modeling approach that proved to be one of the three favored for its simplicity and ability to recreate different SVR events satisfactorily. Funded by the California Energy Commission (CEC) under its load modeling project, researchers at Pacific Northwest National Laboratory (PNNL) led the follow-on task to analyze the motor testing data to derive the parameters needed to develop a performance models for the single-phase air-conditioning (SPAC) unit. To derive the performance model, PNNL researchers first used the motor voltage and frequency ramping test data to obtain the real (P) and reactive (Q) power versus voltage (V) and frequency (f) curves. Then, curve fitting was used to develop the P-V, Q-V, P-f, and Q-f relationships for motor running and stalling states. The resulting performance model ignores the dynamic response of the air-conditioning motor. Because the inertia of the air-conditioning motor is very small (H<0.05), the motor reaches from one steady state to another in a few cycles. So, the performance model is a fair representation of the motor behaviors in both running and stalling states.

  13. CM5, a Pre-Swarm Comprehensive Geomagnetic Field Model Derived from Over 12 Yr of CHAMP, Orsted, SAC-C and Observatory Data

    NASA Technical Reports Server (NTRS)

    Sabaka, Terence J.; Olsen, Nils; Tyler, Robert H.; Kuvshinov, Alexey

    2014-01-01

    A comprehensive magnetic field model named CM5 has been derived from CHAMP, Ørsted and SAC-C satellite and observatory hourly-means data from 2000 August to 2013 January using the Swarm Level-2 Comprehensive Inversion (CI) algorithm. Swarm is a recently launched constellation of three satellites to map the Earth's magnetic field. The CI technique includes several interesting features such as the bias mitigation scheme known as Selective Infinite Variance Weighting (SIVW), a new treatment for attitude error in satellite vector measurements, and the inclusion of 3-D conductivity for ionospheric induction. SIVW has allowed for a much improved lithospheric field recovery over CM4 by exploiting CHAMP along-track difference data yielding resolution levels up to spherical harmonic degree 107, and has allowed for the successful extraction of the oceanic M2 tidal magnetic field from quiet, nightside data. The 3-D induction now captures anomalous Solar-quiet features in coastal observatory daily records. CM5 provides a satisfactory, continuous description of the major magnetic fields in the near-Earth region over this time span, and its lithospheric, ionospheric and oceanic M2 tidal constituents may be used as validation tools for future Swarm Level-2 products coming from the CI algorithm and other dedicated product algorithms.

  14. Multi-level security for computer networking: SAC digital network approach

    SciTech Connect

    Griess, W.; Poutre, D.L.

    1983-10-01

    For telecommunications systems simultaneously handling data of different security levels, multilevel secure (MLS) operation permits maximum use of resources by automatically providing protection to users with various clearances and needs-to-know. The strategic air command (SAC) is upgrading the primary record data system used to command and control its strategic forces. The upgrade, called the SAC Digital Network (SACDIN), is designed to provide multilevel security to support users and external interfaces, with allowed accesses ranging from unclassified to top secret. SACDIN implements a security kernel based upon the Bell and Lapadula security model. This study presents an overview of the SACDIN security architecture and describes the basic message flow across the MLS network. 7 references.

  15. Haemangiopericytoma of the lacrimal sac.

    PubMed

    Watanabe, Akihide; Wu, Albert; Sun, Michelle T; Inatani, Masaru; Katori, Nobutada; Selva, Dinesh

    2016-08-01

    Haemangiopericytomas (HPCs) are rare tumours which infrequently occur in the lacrimal sac. Only 8 cases of lacrimal sac HPC have previously been reported. The authors report 2 additional cases presenting clinically with epiphora and a mass. One case recurred 3 times during an 18-year period. The other case did not recur during 51 months of follow-up. The tumours showed immunohistochemical features consistent with a diagnosis of HPC. The authors recommend wide excision for these tumours and careful long-term follow-up to detect recurrence which is not uncommon. PMID:27322416

  16. An observing system simulation experiment (OSSE) for the aquarius/SAC-D soil moisture product: An investigation of forward/retrieval model asymmetries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An Observing System Simulation Experiment (OSSE) for the Aquarius/SAC-D mission is being developed for assessing the accuracy of soil moisture retrieval from passive and active L band remote sensing. This OSSE is able to capture the influence of different error sources: land surface heterogeneity, i...

  17. Cul-de-Sac Kids

    ERIC Educational Resources Information Center

    Hochschild, Thomas R., Jr.

    2013-01-01

    Previous research indicates that adults who live on cul-de-sac streets are more likely to have positive experiences with neighbors than residents of other street types (Brown and Werner, 1985; Hochschild Jr, 2011; Mayo Jr, 1979; Willmott, 1963). The present research ascertains whether street design has an impact on children's neighborhood…

  18. Air pollution modeling and its application III

    SciTech Connect

    De Wispelaere, C.

    1984-01-01

    This book focuses on the Lagrangian modeling of air pollution. Modeling cooling tower and power plant plumes, modeling the dispersion of heavy gases, remote sensing as a tool for air pollution modeling, dispersion modeling including photochemistry, and the evaluation of model performances in practical applications are discussed. Specific topics considered include dispersion in the convective boundary layer, the application of personal computers to Lagrangian modeling, the dynamic interaction of cooling tower and stack plumes, the diffusion of heavy gases, correlation spectrometry as a tool for mesoscale air pollution modeling, Doppler acoustic sounding, tetroon flights, photochemical air quality simulation modeling, acid deposition of photochemical oxidation products, atmospheric diffusion modeling, applications of an integral plume rise model, and the estimation of diffuse hydrocarbon leakages from petrochemical factories. This volume constitutes the proceedings of the Thirteenth International Technical Meeting on Air Pollution Modeling and Its Application held in France in 1982.

  19. SacPox from the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius is a proficient lactonase

    PubMed Central

    2014-01-01

    Background SacPox, an enzyme from the extremophilic crenarchaeal Sulfolobus acidocaldarius (Sac), was isolated by virtue of its phosphotriesterase (or paraoxonase; Pox) activity, i.e. its ability to hydrolyze the neurotoxic organophosphorus insecticides. Later on, SacPox was shown to belong to the Phosphotriesterase-Like Lactonase family that comprises natural lactonases, possibly involved in quorum sensing, and endowed with promiscuous, phosphotriesterase activity. Results Here, we present a comprehensive and broad enzymatic characterization of the natural lactonase and promiscuous organophosphorus hydrolase activities of SacPox, as well as a structural analysis using a model. Conclusion Kinetic experiments show that SacPox is a proficient lactonase, including at room temperature. Moreover, we discuss the observed differences in substrate specificity between SacPox and its closest homologues SsoPox and SisLac together with the possible structural causes for these observations. PMID:24894602

  20. Finite element analysis of stresses developed in the blood sac of a left ventricular assist device.

    PubMed

    Haut Donahue, T L; Dehlin, W; Gillespie, J; Weiss, W J; Rosenberg, G

    2009-05-01

    The goal of this research is to develop a 3D finite element (FE) model of a left ventricular assist device (LVAD) to predict stresses in the blood sac. The hyperelastic stress-strain curves for the segmented poly(ether polyurethane urea) (SPEUU) blood sac were determined in both tension and compression using a servo-hydraulic testing system at various strain rates. Over the range of strain rates studied, the sac was not strain rate sensitive, however the material response was different for tension versus compression. The experimental tension and compression properties were used in a FE model that consisted of the pusher plate, blood sac and pump case. A quasi-static analysis was used to allow for nonlinearities due to contact and material deformation. The 3D FE model showed that blood sac stresses are not adversely affected by the location of the inlet and outlet ports of the device and that over the systolic ejection phase of the simulation the prediction of blood sac stresses from the full 3D model and an axisymmetric model are the same. Minimizing stresses in the blood sac will increase the longevity of the blood sac in vivo. PMID:19131267

  1. Performance Analysis of Wavelength Multiplexed Sac Ocdma Codes in Beat Noise Mitigation in Sac Ocdma Systems

    NASA Astrophysics Data System (ADS)

    Alhassan, A. M.; Badruddin, N.; Saad, N. M.; Aljunid, S. A.

    2013-07-01

    In this paper we investigate the use of wavelength multiplexed spectral amplitude coding (WM SAC) codes in beat noise mitigation in coherent source SAC OCDMA systems. A WM SAC code is a low weight SAC code, where the whole code structure is repeated diagonally (once or more) in the wavelength domain to achieve the same cardinality as a higher weight SAC code. Results show that for highly populated networks, the WM SAC codes provide better performance than SAC codes. However, for small number of active users the situation is reversed. Apart from their promising improvement in performance, these codes are more flexible and impose less complexity on the system design than their SAC counterparts.

  2. Acoustic communication in the Greater Sage-Grouse (Centrocercus urophasianus) an examination into vocal sacs, sound propagation, and signal directionality

    NASA Astrophysics Data System (ADS)

    Dantzker, Marc Steven

    The thesis is an inquiry into the acoustic communication of a very unusual avian species, the Greater Sage-Grouse, Centrocercus urophasianus. One of the most outstanding features of this animal's dynamic mating display is its use of paired air sacs that emerge explosively from an esophageal pouch. My first line of inquiry into this system is a review of the form and function of similar vocal apparatuses, collectively called vocal sacs, in birds. Next, with a combination of mathematical models and field measurements, My collaborator and I investigate the acoustic environment where the Greater Sage-Grouse display. The complexities of this acoustic environment are relevant both to the birds and to the subsequent examinations of the display's properties. Finally, my collaborators and I examine a cryptic component of the acoustic display --- directionality --- which we measured simultaneously from multiple locations around free moving grouse on their mating grounds.

  3. Simulation model air-to-air plate heat exchanger

    SciTech Connect

    Wetter, Michael

    1999-01-01

    A simple simulation model of an air-to-air plate heat exchanger is presented. The model belongs to a collection of simulation models that allows the eflcient computer simulation of heating, ventilation, and air-conditioning (HVAC) systems. The main emphasis of the models is to shorten computation time and to use only input data that are known in the design process of an HVAC system. The target of the models is to describe the behavior of HVAC components in the part-load operation mode, which is becoming increasingly important in energy eficient HVAC systems. The models are intended to be used for yearly energy calculations or load calculations with time steps of about 10 minutes or larger. Short- time dynamic effects, which are of interest for different aspects of control theory, are neglected. The part-load behavior is expressed in terms of the nominal condition and the dimensionless variation of the heat transfer with change of mass flow and temperature. The effectiveness- NTU relations are used to parametrize the convective heat transfer at nominal conditions and to compute the part-load condition. If the heat transfer coefficients on the two exchanger sides are not equal (i. e. due to partial bypassing of air), their ratio can be easily calculated and set as a parameter. The model is static and uses explicit equations only. The explicit model formulation ensures short computation time and numerical stability, which allows using the model with sophisticated engineering methods like automatic system optimization. This paper fully outlines the algorithm description and its simplifications. It is not tailored for any particular simulation program to ensure easy implementation in any simulation program.

  4. Comparative morphology of the marrow sac.

    PubMed

    Bi, L X; Simmons, D J; Hawkins, H K; Cox, R A; Mainous, E G

    2000-12-01

    Electron microscopic techniques have been used to profile the morphologies of marrow sacs in different laboratory species. These structures all comprise a condensed layer of overlapping fibroblast-like stromal cells and apparently confine the medullary and endosteal osteoblast/lining cells to separate histiotypic compartments. There were some variations in the morphology of the sac cells in the different species. In rats, cats, and sheep, scanning electron microscopy (SEM) showed a seamless arrangement of marrow sac cells which resembled a thin, flat simple squamous epithelium; they displayed few intercellular cytoplasmic processes. In the rabbit and pigeon, the sac comprised a more woven, multilayered fabric of broadly elongate flat fibroblast-like cells which displayed numerous intercellular processes. Transmission electron microscopy (TEM) showed that all marrow sac cells were attenuated with elongated nuclei, a few small round mitochondria, and a sparse rough endoplasmic reticulum. In the majority of animals, the sac was one to two cell layers thick. The rabbit and pigeon sacs were multilayered, and never less than three to four cells deep. The cell layers were not closely apposed. Tight or gap junctions were absent at the points of intercellular contact. These morphological results suggest that marrow sacs are common elements of the vertebrate skeleton with species specific morphologies. PMID:11074407

  5. NASA/Air Force Cost Model: NAFCOM

    NASA Technical Reports Server (NTRS)

    Winn, Sharon D.; Hamcher, John W. (Technical Monitor)

    2002-01-01

    The NASA/Air Force Cost Model (NAFCOM) is a parametric estimating tool for space hardware. It is based on historical NASA and Air Force space projects and is primarily used in the very early phases of a development project. NAFCOM can be used at the subsystem or component levels.

  6. COMMUNITY SCALE AIR TOXICS MODELING WITH CMAQ

    EPA Science Inventory

    Consideration and movement for an urban air toxics control strategy is toward a community, exposure and risk-based modeling approach, with emphasis on assessments of areas that experience high air toxic concentration levels, the so-called "hot spots". This strategy will requir...

  7. Solar assisted heat pump on air collectors: A simulation tool

    SciTech Connect

    Karagiorgas, Michalis; Galatis, Kostas; Tsagouri, Manolis; Tsoutsos, Theocharis; Botzios-Valaskakis, Aristotelis

    2010-01-15

    The heating system of the bioclimatic building of the Greek National Centre for Renewable Energy Sources (CRES) comprises two heating plants: the first one includes an air source heat pump, Solar Air Collectors (SACs) and a heat distribution system (comprising a fan coil unit network); the second one is, mainly, a geothermal heat pump unit to cover the ground floor thermal needs. The SAC configuration as well as the fraction of the building heating load covered by the heating plant are assessed in two operation modes; the direct (hot air from the collectors is supplied directly to the heated space) and the indirect mode (warm air from the SAC or its mixture with ambient air is not supplied directly to the heated space but indirectly into the evaporator of the air source heat pump). The technique of the indirect mode of heating aims at maximizing the efficiency of the SAC, saving electrical power consumed by the compressor of the heat pump, and therefore, at optimizing the coefficient of performance (COP) of the heat pump due to the increased intake of ambient thermal energy by means of the SAC. Results are given for three research objectives: assessment of the heat pump efficiency whether in direct or indirect heating mode; Assessment of the overall heating plant efficiency on a daily or hourly basis; Assessment of the credibility of the suggested simulation model TSAGAIR by comparing its results with the TRNSYS ones. (author)

  8. Air Tightness of US Homes: Model Development

    SciTech Connect

    Sherman, Max H.

    2006-05-01

    Air tightness is an important property of building envelopes. It is a key factor in determining infiltration and related wall-performance properties such as indoor air quality, maintainability and moisture balance. Air leakage in U.S. houses consumes roughly 1/3 of the HVAC energy but provides most of the ventilation used to control IAQ. The Lawrence Berkeley National Laboratory has been gathering residential air leakage data from many sources and now has a database of more than 100,000 raw measurements. This paper uses that database to develop a model for estimating air leakage as a function of climate, building age, floor area, building height, floor type, energy-efficiency and low-income designations. The model developed can be used to estimate the leakage distribution of populations of houses.

  9. INDOOR AIR QUALITY MODELING (CHAPTER 58)

    EPA Science Inventory

    The chapter discussses indoor air quality (IAQ) modeling. Such modeling provides a way to investigate many IAQ problems without the expense of large field experiments. Where experiments are planned, IAQ models can be used to help design experiments by providing information on exp...

  10. SACS: Spitzer Archival Cluster Survey

    NASA Astrophysics Data System (ADS)

    Stern, Daniel

    Emerging from the cosmic web, galaxy clusters are the most massive gravitationally bound structures in the universe. Thought to have begun their assembly at z > 2, clusters provide insights into the growth of large-scale structure as well as the physics that drives galaxy evolution. Understanding how and when the most massive galaxies assemble their stellar mass, stop forming stars, and acquire their observed morphologies in these environments remain outstanding questions. The redshift range 1.3 < z < 2 is a key epoch in this respect: elliptical galaxies start to become the dominant population in cluster cores, and star formation in spiral galaxies is being quenched. Until recently, however, this redshift range was essentially unreachable with available instrumentation, with clusters at these redshifts exceedingly challenging to identify from either ground-based optical/nearinfrared imaging or from X-ray surveys. Mid-infrared (MIR) imaging with the IRAC camera on board of the Spitzer Space Telescope has changed the landscape. High-redshift clusters are easily identified in the MIR due to a combination of the unique colors of distant galaxies and a negative k-correction in the 3-5 μm range which makes such galaxies bright. Even 90-sec observations with Spitzer/IRAC, a depth which essentially all extragalactic observations in the archive achieve, is sufficient to robustly detect overdensities of L* galaxies out to z~2. Here we request funding to embark on a ambitious scientific program, the “SACS: Spitzer Archival Cluster Survey”, a comprehensive search for the most distant galaxy clusters in all Spitzer/IRAC extragalactic pointings available in the archive. With the SACS we aim to discover ~2000 of 1.3 < z < 2.5 clusters, thus provide the ultimate catalog for high-redshift MIR selected clusters: a lasting legacy for Spitzer. The study we propose will increase by more than a factor of 10 the number of high-redshift clusters discovered by all previous surveys

  11. Support to Aviation Control Service (SACS): an online service for near-real-time satellite monitoring of volcanic plumes

    NASA Astrophysics Data System (ADS)

    Brenot, H.; Theys, N.; Clarisse, L.; van Geffen, J.; van Gent, J.; Van Roozendael, M.; van der A, R.; Hurtmans, D.; Coheur, P.-F.; Clerbaux, C.; Valks, P.; Hedelt, P.; Prata, F.; Rasson, O.; Sievers, K.; Zehner, C.

    2014-05-01

    Volcanic eruptions emit plumes of ash and gases into the atmosphere, potentially at very high altitudes. Ash-rich plumes are hazardous for airplanes as ash is very abrasive and easily melts inside their engines. With more than 50 active volcanoes per year and the ever-increasing number of commercial flights, the safety of airplanes is a real concern. Satellite measurements are ideal for monitoring global volcanic activity and, in combination with atmospheric dispersion models, to track and forecast volcanic plumes. Here we present the Support to Aviation Control Service (SACS, sacs.aeronomie.be/ecosystem"_target="blank">http://sacs.aeronomie.be/ecosystem), which is a free online service initiated by the European Space Agency (ESA) for the near-real-time (NRT) satellite monitoring of volcanic plumes of SO2 and ash. It combines data from three ultraviolet (UV)-visible and three infrared (IR) spectrometers. The UV-vis sensors are the Ozone Monitoring Instrument (OMI) and the Global Ozone Monitoring Experiment-2 (GOME-2) on-board the two polar orbiting meteorological satellites (MetOp-A & MetOp-B) operated by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT). The IR sensors are the Atmospheric InfraRed Sounder (AIRS) and the Infrared Atmospheric Sounding Interferometer (IASI) on-board MetOp-A & MetOp-B. This new multi-sensor warning system of volcanic emissions is based on the selective detection of SO2 and ash. This system is optimised to avoid false alerts while at the same time limiting the number of notifications in case of large plumes. A successful rate with more than 95% of notifications corresponding to true volcanic activity is obtained by the SACS system.

  12. Modeling monthly mean air temperature for Brazil

    NASA Astrophysics Data System (ADS)

    Alvares, Clayton Alcarde; Stape, José Luiz; Sentelhas, Paulo Cesar; de Moraes Gonçalves, José Leonardo

    2013-08-01

    Air temperature is one of the main weather variables influencing agriculture around the world. Its availability, however, is a concern, mainly in Brazil where the weather stations are more concentrated on the coastal regions of the country. Therefore, the present study had as an objective to develop models for estimating monthly and annual mean air temperature for the Brazilian territory using multiple regression and geographic information system techniques. Temperature data from 2,400 stations distributed across the Brazilian territory were used, 1,800 to develop the equations and 600 for validating them, as well as their geographical coordinates and altitude as independent variables for the models. A total of 39 models were developed, relating the dependent variables maximum, mean, and minimum air temperatures (monthly and annual) to the independent variables latitude, longitude, altitude, and their combinations. All regression models were statistically significant ( α ≤ 0.01). The monthly and annual temperature models presented determination coefficients between 0.54 and 0.96. We obtained an overall spatial correlation higher than 0.9 between the models proposed and the 16 major models already published for some Brazilian regions, considering a total of 3.67 × 108 pixels evaluated. Our national temperature models are recommended to predict air temperature in all Brazilian territories.

  13. ECONOMICS AND PERFORMANCE MODELING (AIR POLLUTION TECHNOLOGY BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    NRMRL's Air Pollution Prevention and Control Division's Air Pollution Technology Branch (APTB) is active in the development, refinement, and maintenance of economic and performance evaluation models that provide agency-wide support for estimating costs for air pollution preventio...

  14. Models of Inflammation: Carrageenan Air Pouch.

    PubMed

    Duarte, Djane B; Vasko, Michael R; Fehrenbacher, Jill C

    2016-01-01

    The subcutaneous air pouch is an in vivo model that can be used to study the components of acute and chronic inflammation, the resolution of the inflammatory response, the oxidative stress response, and potential therapeutic targets for treating inflammation. Injection of irritants into an air pouch in rats or mice induces an inflammatory response that can be quantified by the volume of exudate produced, the infiltration of cells, and the release of inflammatory mediators. The model presented in this unit has been extensively used to identify potential anti-inflammatory drugs. © 2016 by John Wiley & Sons, Inc. PMID:26995549

  15. Uncertainty in Regional Air Quality Modeling

    NASA Astrophysics Data System (ADS)

    Digar, Antara

    Effective pollution mitigation is the key to successful air quality management. Although states invest millions of dollars to predict future air quality, the regulatory modeling and analysis process to inform pollution control strategy remains uncertain. Traditionally deterministic ‘bright-line’ tests are applied to evaluate the sufficiency of a control strategy to attain an air quality standard. A critical part of regulatory attainment demonstration is the prediction of future pollutant levels using photochemical air quality models. However, because models are uncertain, they yield a false sense of precision that pollutant response to emission controls is perfectly known and may eventually mislead the selection of control policies. These uncertainties in turn affect the health impact assessment of air pollution control strategies. This thesis explores beyond the conventional practice of deterministic attainment demonstration and presents novel approaches to yield probabilistic representations of pollutant response to emission controls by accounting for uncertainties in regional air quality planning. Computationally-efficient methods are developed and validated to characterize uncertainty in the prediction of secondary pollutant (ozone and particulate matter) sensitivities to precursor emissions in the presence of uncertainties in model assumptions and input parameters. We also introduce impact factors that enable identification of model inputs and scenarios that strongly influence pollutant concentrations and sensitivity to precursor emissions. We demonstrate how these probabilistic approaches could be applied to determine the likelihood that any control measure will yield regulatory attainment, or could be extended to evaluate probabilistic health benefits of emission controls, considering uncertainties in both air quality models and epidemiological concentration-response relationships. Finally, ground-level observations for pollutant (ozone) and precursor

  16. Air freight demand models: An overview

    NASA Technical Reports Server (NTRS)

    Dajani, J. S.; Bernstein, G. W.

    1978-01-01

    A survey is presented of some of the approaches which have been considered in freight demand estimation. The few existing continuous time computer simulations of aviation systems are reviewed, with a view toward the assessment of this approach as a tool for structuring air freight studies and for relating the different components of the air freight system. The variety of available data types and sources, without which the calibration, validation and the testing of both modal split and simulation models would be impossible are also reviewed.

  17. A Surprise in the Lacrimal Sac

    PubMed Central

    Yuksel, Nilay; Akcay, Emine; Kilicarslan, Aydan; Ozen, Umut; Ozturk, Faruk

    2016-01-01

    To present a case with recurrent dacryocystitis as an unusual complication of medial orbital wall fracture repair with cartilage tissue graft. A 20-year-old male had facial trauma and underwent surgery to reconstruct right medial orbital wall fracture. During follow–up, he presented with continuous epiphora, mucopurulent discharge from the right eye. A thorough history taking indicated that medial orbital fracture was reconstructed with postauricular cartilage. We planned a standard external dacryocystorhinostomy (DCR). During the creation of lacrimal sac flaps, hard tissue was noted in the lacrimal sac. This tissue was excised and sent for pathological examination. The pathological examination revealed cartilage tissue. There were no further ipsilateral symptoms or complications after DCR. In patients with lacrimal system injury related to orbital wall fracture, iatrogenic foreign bodies in the lacrimal sac should be considered in patients with recurrent dacryocystitis who had reconstructive surgery for facial and orbital trauma. PMID:27555715

  18. SAC-B, Argentine scientific satellite

    NASA Technical Reports Server (NTRS)

    Gulich, J. M.; White, C.

    1994-01-01

    The project and the missions of the Argentine scientific satellite, SAC-B, are summarized. SAC-B is an international cooperative project between NASA and the Secretariat of State of Science and Technology of the Argentine Republic. The objective of SAC-B is to advance the study of solar physics and astrophysics through the examination of solar flares, gamma ray burst sources and the diffuse soft X-ray cosmic background. The scientific payload comprises an instrument to measure the temporal evolution of X-ray emissions from solar flares as well as nonsolar gamma ray bursts, a combined soft X-ray and gamma ray burst detector, a diffuse X-ray background detector, and an energetic neutral atoms detector.

  19. AIR QUALITY MODELING OF AMMONIA: A REGIONAL MODELING PERSPECTIVE

    EPA Science Inventory

    The talk will address the status of modeling of ammonia from a regional modeling perspective, yet the observations and comments should have general applicability. The air quality modeling system components that are central to modeling ammonia will be noted and a perspective on ...

  20. COMPUTATIONAL MODELING ISSUES IN NEXT GENERATION AIR QUALITY MODELS

    EPA Science Inventory

    EPA's Atmospheric Research and Exposure Assessment Laboratory is leading a major effort to advance urban/regional multi-pollutant air quality modeling through development of a third-generation modeling system, Models-3. he Models-3 system is being developed within a high-performa...

  1. Integrated engineering modeling for air breathing rockets

    NASA Astrophysics Data System (ADS)

    Chitilappilly, Lazar T.; Subramanyam, J. D. A.

    An innovative aerodynamic-propulsion-flight integrated modeling is carried out for airbreathing rockets, the propulsion of which has primary dependence on flight conditions. The integrated modeling is highly beneficial for design and analysis of accelerating air breathing rockets characterized by continuously varying flight conditions. The details of the modeling is described; the force accounting, trajectory analysis, solving the flow in the sub-systems (air intake, primary rocket, secondary combustion chamber and secondary nozzle), matching the subsystem flow fields and determining the mode of operation. Operational features are listed of the computer software developed, air breathing integrated design and analysis engineering software. It gives all the propulsion and flight parameters from take-off of the rocket to end of flight and has been instrumental in the design of the research air breathing rocket ABR-200(I). The hundreds of flight performance analyses required for design is possible by the engineering approach adopted for solving the propulsor flow field. The software results are compared with ejector mode and connected pipe mode static tests. The overall validation of the software is achieved by flight tests; the performance predictions have matched exactly with that measured during thee first and second flights of the ABR-200(I).

  2. SAC-C Mission and the Morning Constellation

    NASA Astrophysics Data System (ADS)

    Colomb, F. R.; Alonso, C.; Hofmann, C.; Frulla, L.; Nollmann, I.; Milovich, J.; Kuba, J.; Ares, F.; Kalemkarian, M.

    2002-01-01

    components (ICARE), provided by CNES will permit improvement of risk estimation models for radiation effect on last generation integrated circuit technology. . On June 14th, 2000 CONAE and NASA signed an amendment to the Memorandum of Understanding for the SAC-C mission in order that the SAC-C satellite, were included in a constellation - named "Morning Constellation". It is integrated by USA satellites Landsat 7, EO 1, Terra, and Argentine SAC-C that feature on-board instruments from the United States, Argentina, Denmark, Italy, France, and Japan. The four satellite tracks on the Earth's surface are the same, their orbital height being 705 km and their inclination, 98.21 degrees. They cross the Equator at 10:00, 10:01, 10:15, and 10:30 hours, respectively (local time). Satellites comply with the World Wide Reference System. The Constellation has been working since March 2001 as a single mission and several cooperative activities have been undertaken and will be presented in this paper. Several jointly sponsored technical workshops have been held, and also collaborative spacecraft navigation experiments have been made. One of the objectives of the AM Constellation is the collaboration in the case of emergencies, NASA and CONAE agreed to give preference in those situation in the planification of their satellite acquisitions. From all the possible hazardous events, the most important for the country are fire and floods. In relation to fires, CONAE is presently adapting and developing the algorithms for using MODIS data to generate a fire map product. Additionally research on fire detection is carried out using the data from the HSTC camera. In relation to flooding, CONAE works in cooperation to national institutions providing the data and, in some cases, producing flood extent maps. In particular MMRS data is demonstrating to be very effective due to its spectral and radiometric resolutions, and its large swath which is well suited for extended countries like Argentina.

  3. DESCRIPTION OF ATMOSPHERIC TRANSPORT PROCESSES IN EULERIAN AIR QUALITY MODELS

    EPA Science Inventory

    Key differences among many types of air quality models are the way atmospheric advection and turbulent diffusion processes are treated. Gaussian models use analytical solutions of the advection-diffusion equations. Lagrangian models use a hypothetical air parcel concept effecti...

  4. Phosphoregulatory protein 14-3-3 facilitates SAC1 transport from the endoplasmic reticulum

    PubMed Central

    Bajaj Pahuja, Kanika; Wang, Jinzhi; Blagoveshchenskaya, Anastasia; Lim, Lillian; Madhusudhan, M. S.; Mayinger, Peter; Schekman, Randy

    2015-01-01

    Most secretory cargo proteins in eukaryotes are synthesized in the endoplasmic reticulum and actively exported in membrane-bound vesicles that are formed by the cytosolic coat protein complex II (COPII). COPII proteins are assisted by a variety of cargo-specific adaptor proteins required for the concentration and export of secretory proteins from the endoplasmic reticulum (ER). Adaptor proteins are key regulators of cargo export, and defects in their function may result in disease phenotypes in mammals. Here we report the role of 14-3-3 proteins as a cytosolic adaptor in mediating SAC1 transport in COPII-coated vesicles. Sac1 is a phosphatidyl inositol-4 phosphate (PI4P) lipid phosphatase that undergoes serum dependent translocation between the endoplasmic reticulum and Golgi complex and controls cellular PI4P lipid levels. We developed a cell-free COPII vesicle budding reaction to examine SAC1 exit from the ER that requires COPII and at least one additional cytosolic factor, the 14-3-3 protein. Recombinant 14-3-3 protein stimulates the packaging of SAC1 into COPII vesicles and the sorting subunit of COPII, Sec24, interacts with 14-3-3. We identified a minimal sorting motif of SAC1 that is important for 14-3-3 binding and which controls SAC1 export from the ER. This LS motif is part of a 7-aa stretch, RLSNTSP, which is similar to the consensus 14-3-3 binding sequence. Homology models, based on the SAC1 structure from yeast, predict this region to be in the exposed exterior of the protein. Our data suggest a model in which the 14-3-3 protein mediates SAC1 traffic from the ER through direct interaction with a sorting signal and COPII. PMID:26056309

  5. RESIDENTIAL AIR EXCHANGE RATES FOR USE IN INDOOR AIR AND EXPOSURE MODELING STUDIES

    EPA Science Inventory

    Data on air exchange rates are important inputs to indoor air quality models. ndoor air models, in turn, are incorporated into the structure of total human exposure models. ragmentary data on residential ventilation rates are available in various governmental reports, journal art...

  6. Histopathology after Endolymphatic Sac Surgery for Meniere’s Syndrome

    PubMed Central

    Chung, Jong Woo; Fayad, Jose; Linthicum, Fred; Ishiyama, Akira; Merchant, Saumil N.

    2011-01-01

    Background The putative goal of sac surgery in Meniere’s syndrome is to promote the flow of endolymph from the labyrinth to the endolymphatic sac, and thereby relieving hydrops. There is scant published histopathological data whether sac surgery actually accomplishes this goal. Objective To determine if sac surgery relieves hydrops by examining the histopathologic changes in temporal bones obtained from individuals who had undergone sac surgery during life for Meniere’s syndrome. Methods Temporal bones were examined from 15 patients who had sac surgery. Data was collected on presence and severity of hydrops, histology of the sac, and whether the procedure relieved vertigo. Results The surgery failed to expose the sac in 5 cases; 4 of the 5 had relief from vertigo. The sac was exposed, but the shunt failed to reach the lumen of the sac in 8 cases; 4 of the 8 had relief from vertigo. The shunt was successfully placed within the lumen of the sac in two cases; both cases failed to experience relief from vertigo. Endolymphatic hydrops was present in all 15 cases. Conclusion Endolymphatic sac surgery does not relieve hydrops in patients with Meniere’s syndrome. Yet, sac surgery relieves vertigo in some patients, but the mechanism of such symptomatic relief remains unknown. PMID:21436748

  7. INDOOR AIR QUALITY MODELING (INDOOR ENVIRONMENT MANAGEMENT BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    The Indoor Environment Management Branch of NRMRL's Air Pollution Prevention and Control Division in Research Triangle Park, NC, has developed an indoor air quality (IAQ) model for analyzing the impact of sources, sinks, ventilation, and air cleaners on indoor air quality. Early ...

  8. Surveillance Analysis Computer System (SACS) software requirements specification (SRS)

    SciTech Connect

    Glasscock, J.A.; Flanagan, M.J.

    1995-09-01

    This document is the primary document establishing requirements for the Surveillance Analysis Computer System (SACS) Database, an Impact Level 3Q system. The purpose is to provide the customer and the performing organization with the requirements for the SACS Project.

  9. AIR INGRESS ANALYSIS: COMPUTATIONAL FLUID DYNAMIC MODELS

    SciTech Connect

    Chang H. Oh; Eung S. Kim; Richard Schultz; Hans Gougar; David Petti; Hyung S. Kang

    2010-08-01

    The Idaho National Laboratory (INL), under the auspices of the U.S. Department of Energy, is performing research and development that focuses on key phenomena important during potential scenarios that may occur in very high temperature reactors (VHTRs). Phenomena Identification and Ranking Studies to date have ranked an air ingress event, following on the heels of a VHTR depressurization, as important with regard to core safety. Consequently, the development of advanced air ingress-related models and verification and validation data are a very high priority. Following a loss of coolant and system depressurization incident, air will enter the core of the High Temperature Gas Cooled Reactor through the break, possibly causing oxidation of the in-the core and reflector graphite structure. Simple core and plant models indicate that, under certain circumstances, the oxidation may proceed at an elevated rate with additional heat generated from the oxidation reaction itself. Under postulated conditions of fluid flow and temperature, excessive degradation of the lower plenum graphite can lead to a loss of structural support. Excessive oxidation of core graphite can also lead to the release of fission products into the confinement, which could be detrimental to a reactor safety. Computational fluid dynamic model developed in this study will improve our understanding of this phenomenon. This paper presents two-dimensional and three-dimensional CFD results for the quantitative assessment of the air ingress phenomena. A portion of results of the density-driven stratified flow in the inlet pipe will be compared with results of the experimental results.

  10. VALMET-A valley air pollution model

    SciTech Connect

    Whiteman, C.D.; Allwine, K.J.

    1983-09-01

    Following a thorough analysis of meteorological data obtained from deep valleys of western Colorado, a modular air-pollution model has been developed to simulate the transport and diffusion of pollutants released from an elevated point source in a well-defined mountain valley during the nighttime and morning transition periods. This initial version of the model, named VALMET, operates on a valley cross section at an arbitrary distance down-valley from a continuous point source. The model has been constructed to include parameterizations of the major physical processes that act to disperse pollution during these time periods. The model has not been fully evaluated. Further testing, evaluations, and development of the model are needed. Priorities for further development and testing are provided.

  11. Phenomenological model of nuclear primary air showers

    NASA Technical Reports Server (NTRS)

    Tompkins, D. R., Jr.; Saterlie, S. F.

    1976-01-01

    The development of proton primary air showers is described in terms of a model based on a hadron core plus an electromagnetic cascade. The muon component is neglected. The model uses three parameters: a rate at which hadron core energy is converted into electromagnetic cascade energy and a two-parameter sea-level shower-age function. By assuming an interaction length for the primary nucleus, the model is extended to nuclear primaries. Both models are applied over the energy range from 10 to the 13th power to 10 to the 21st power eV. Both models describe the size and age structure (neglecting muons) from a depth of 342 to 2052 g/sq cm.

  12. A status report on the development of SAC2000: A new seismic analysis code

    SciTech Connect

    Goldstein, P.; Minner, L.

    1995-08-01

    We are developing a new Seismic Analysis Code (SAC2000) that will meet the research needs of the seismic research and treaty monitoring communities. Our first step in this development was to rewrite the original Seismic Analysis Code (SAC) -- a Fortran code that was approximately 140,000 lines long -- in the C programming language. This rewrite has resulted in a much more robust code that is faster, more efficient, and more portable than the original. We have implemented important processing capabilities such as convolution and binary monograms, and we have significantly enhanced several previously existing capabilities. For example, the spectrogram command now produces a correctly registered plot of the input time series and a color image of the output spectrogram. We have also added an image plotting capability with access to 17 predefined color tables or custom color tables. A rewritten version of the readcss command can now be used to access any of the documented css.3.0 database data formats, a capability that is particularly important to the Air Force Technical Applications Center (AFTAC) and the monitoring community. A much less visible, but extremely important contribution is the correction of numerous inconsistencies and errors that have evolved because of piecemeal development and limited maintenance since SAC was first written. We have also incorporated on-line documentation and have made SAC documentation available on the Internet via the world-wide-web at http://www-ep/tvp/sac.html.

  13. An automobile air conditioner design model

    SciTech Connect

    Kyle, D M; Mei, V C; Chen, F C

    1992-12-01

    A computer program has been developed to predict the steady-state performance of vapor compression automobile air conditioners and heat pumps. The code is based on the residential heat pump model developed at the Oak Ridge National Laboratory (ORNL). Most calculations are based on fundamental physical principles, in conjunction with generalized correlations available in the research literature. Automobile air conditioning components that can be specified as input to the program include open and hermetic compressors; finned tube condensers; finned tube and plate-fin style evaporators; thermostatic expansion valves (TXV), capillary tube, and short tube expansion devices; refrigerant mass; and evaporator pressure regulator and all interconnecting tubing. Pressure drop, heat transfer rates, and latent capacity ratio for the new plate-fin evaporator submodel are shown to agree well with laboratory data. The program can be used with a variety of refrigerants, including R-134a.

  14. Experiences in evaluating regional air quality models

    NASA Astrophysics Data System (ADS)

    Liu, Mei-Kao; Greenfield, Stanley M.

    Any area of the world concerned with the health and welfare of its people and the viability of its ecological system must eventually address the question of the control of air pollution. This is true in developed countries as well as countries that are undergoing a considerable degree of industrialization. The control or limitation of the emissions of a pollutant can be very costly. To avoid ineffective or unnecessary control, the nature of the problem must be fully understood and the relationship between source emissions and ambient concentrations must be established. Mathematical models, while admittedly containing large uncertainties, can be used to examine alternatives of emission restrictions for achieving safe ambient concentrations. The focus of this paper is to summarize our experiences with modeling regional air quality in the United States and Western Europe. The following modeling experiences have been used: future SO 2 and sulfate distributions and projected acidic deposition as related to coal development in the northern Great Plains in the U.S.; analysis of regional ozone and sulfate episodes in the northeastern U.S.; analysis of the regional ozone problem in western Europe in support of alternative emission control strategies; analysis of distributions of toxic chemicals in the Southeast Ohio River Valley in support of the design of a monitoring network human exposure. Collectively, these prior modeling analyses can be invaluable in examining a similar problem in other parts of the world as well, such as the Pacific rim in Asia.

  15. Quantitative assessment of gestational sac shape: the gestational sac shape score

    PubMed Central

    Deter, R.L.; Li, J.; Lee, W.; Liu, S.; Romero, R.

    2012-01-01

    Objective To develop a quantitative method for characterizing gestational sac shape. Methods Twenty first-trimester gestational sacs in normal pregnancies were studied with three-dimensional (3D) ultrasonography. The 3D coordinates of surface-point sets were obtained for each sac using 30-, 15- and six-slice sampling. Cubic spline interpolation was used with the 15- and six-slice surface-point samples to generate coordinates for those 30-slice surface points not measured. Interpolated and measured values, the latter from the 30-slice sample, were compared and the percent error calculated. Cubic spline interpolation was used to determine the coordinates of a standard surface-point sample (3660) for each sac in each slice sample. These coordinate data were used to give each sac a standard configuration by moving its center of gravity to the origin, aligning its inertial axes along the coordinate axes and converting its volume to 1.0 mL. In this form, a volume shape descriptor could be generated for each sac that was then transformed into a vector containing only shape information. The 20 shape vectors of each slice sample were subjected to principal components analysis, and principal component scores (PCSs) calculated. The first four PCSs were used to define a gestational sac shape score (GSSS-30, GSSS-15 or GSSS-6) for each sac in a given slice sample. The characteristics of each set of GSSSs were determined and those for the GSSS-15 and GSSS-6 were compared with the GSSS-30 characteristics. Results Cubic spline interpolations were very accurate in most cases, with means close to 0%, and approximately 95% of the errors being less than 10%. GSSS-30 accounted for 67.6% of the shape variance, had a mean of zero and an SD of 1.1, was normally distributed and was not related to menstrual age (R = −0.16, P = 0.51). GSSS-15 and GSSS-6 had essentially the same characteristics. No significant differences between individual GSSS-30 values and those for GSSS-15 or GSSS-6

  16. Air quality modeling`s brave new world

    SciTech Connect

    Appleton, E.L.

    1996-05-01

    Since 1992, EPA has been creating a new generation of software - Models-3 - that is widely regarded as the next-generation air quality modeling system. The system has a modular framework that allows users to integrate a broad variety of air quality models. In the future, users will also be able to plug in economic decision support tools. A prototype version of Models-3 already exists in the Atmospheric Modeling Division of EPA`s National Exposure Research Laboratory in Research Triangle Park. EDSS was developed as a raid prototype of Models-3 under a three-year, $7.8 million cooperative agreement with EPA. An operational version of Models-3 may be in the hands of scientists and state air quality regulators by late 1997. Developers hope the new, more user-friendly system will make it easier to run models and present information to policy makers in graphical ways that are easy to understand. In addition, Models-3 will ultimately become a so-called `comprehensive modeling system` that enables users to simulate pollutants in other media, such as water. EPA also plans to include models that simulate health effects and other pollution consequences. 6 refs.

  17. Air Pollution Data for Model Evaluation and Application

    EPA Science Inventory

    One objective of designing an air pollution monitoring network is to obtain data for evaluating air quality models that are used in the air quality management process and scientific discovery.1.2 A common use is to relate emissions to air quality, including assessing ...

  18. QUANTIFYING SUBGRID POLLUTANT VARIABILITY IN EULERIAN AIR QUALITY MODELS

    EPA Science Inventory

    In order to properly assess human risk due to exposure to hazardous air pollutants or air toxics, detailed information is needed on the location and magnitude of ambient air toxic concentrations. Regional scale Eulerian air quality models are typically limited to relatively coar...

  19. Mathematical Modeling of Photochemical Air Pollution.

    NASA Astrophysics Data System (ADS)

    McRae, Gregory John

    Air pollution is an environmental problem that is both pervasive and difficult to control. An important element of any rational control approach is a reliable means for evaluating the air quality impact of alternative abatement measures. This work presents such a capability, in the form of a mathematical description of the production and transport of photochemical oxidants within an urban airshed. The combined influences of advection, turbulent diffusion, chemical reaction, emissions and surface removal processes are all incorporated into a series of models that are based on the species continuity equations. A delineation of the essential assumptions underlying the formulation of a three-dimensional, a Lagrangian trajectory, a vertically integrated and single cell air quality model is presented. Since each model employs common components and input data the simpler forms can be used for rapid screening calculations and the more complex ones for detailed evaluations. The flow fields, needed for species transport, are constructed using inverse distance weighted polynomial interpolation techniques that map routine monitoring data onto a regular computational mesh. Variational analysis procedures are then employed to adjust the field so that mass is conserved. Initial concentration and mixing height distributions can be established with the same interpolation algorithms. Subgrid scale turbulent transport is characterized by a gradient diffusion hypothesis. Similarity solutions are used to model the surface layer fluxes. Above this layer different treatments of turbulent diffusivity are required to account for variations in atmospheric stability. Convective velocity scaling is utilized to develop eddy diffusivities for unstable conditions. The predicted mixing times are in accord with results obtained during sulfur hexafluoride (SF(,6)) tracer experiments. Conventional models are employed for neutral and stable conditions. A new formulation for gaseous deposition fluxes

  20. Urban air quality simulation with community multi-scale air quality (CMAQ) modeling system

    SciTech Connect

    Byun, D.; Young, J.; Gipson, G.; Schere, K.; Godowitch, J.

    1998-11-01

    In an effort to provide a state-of-the-science air quality modeling capability, US EPA has developed a new comprehensive and flexible Models-3 Community Multi-scale Air Quality (CMAQ) modeling system. The authors demonstrate CMAQ simulations for a high ozone episode in the northeastern US during 12-15 July 1995 and discuss meteorological issues important for modeling of urban air quality.

  1. What is inside the hernia sac?

    PubMed Central

    Virgínia, Ana Araújo; Santos, Cláudia; Contente, Helena; Branco, Cláudia

    2016-01-01

    Most ovarian inguinal hernias occur in children and are frequently associated with congenital genitalia defects. The authors present the case of a multiparous 89-year-old woman, without any genitalia defect, who was brought to the emergency department with an irreducible inguinal hernia. The patient was proposed for emergency surgery during which we encountered an ovary and a fallopian tube inside the hernial sac. An oophorosalpingectomy and a Lichtenstein procedure were carried out and the postoperative period was uneventful. This case shows that, even though it is rare, a hernial sac may contain almost any intra-abdominal organ, including those least frequent such as the appendix, an ovary or the fallopian tubes. PMID:27511751

  2. Aquarius/SAC-D Mission Overview

    NASA Technical Reports Server (NTRS)

    Sen, Amit; Kim, Yunjin; Caruso, Daniel; Lagerloef, Gary; Colomb, Raul; Yueh, Simon; LeVine, David

    2006-01-01

    Aquarius/SAC-D is a cooperative international mission developed between the National Aeronautics and Space Administration (NASA) of United States of America (USA) and the Comision Nacional de Actividades Espaciales (CONAE) of Argentina. The overall mission objective is to contribute to the understanding of the total Earth system and the consequences of the natural and man-made changes in the environment of the planet. Major themes are: ocean surface salinity, water cycle, climate, natural hazards and cryosphere.

  3. Advanced air revitalization system modeling and testing

    NASA Technical Reports Server (NTRS)

    Dall-Baumann, Liese; Jeng, Frank; Christian, Steve; Edeer, Marybeth; Lin, Chin

    1990-01-01

    To support manned lunar and Martian exploration, an extensive evaluation of air revitalization subsystems (ARS) is being conducted. The major operations under study include carbon dioxide removal and reduction; oxygen and nitrogen production, storage, and distribution; humidity and temperature control; and trace contaminant control. A comprehensive analysis program based on a generalized block flow model was developed to facilitate the evaluation of various processes and their interaction. ASPEN PLUS was used in modelling carbon dioxide removal and reduction. Several life support test stands were developed to test new and existing technologies for their potential applicability in space. The goal was to identify processes which use compact, lightweight equipment and maximize the recovery of oxygen and water. The carbon dioxide removal test stands include solid amine/vacuum desorption (SAVD), regenerative silver oxide chemisorption, and electrochemical carbon dioxide concentration (EDC). Membrane-based carbon dioxide removal and humidity control, catalytic reduction of carbon dioxide, and catalytic oxidation of trace contaminants were also investigated.

  4. Air modeling of industrial area in India

    SciTech Connect

    Kumar, A.

    1996-12-31

    With privatization of power sector to fulfill power demand in India, fossil based power projects are proposed at different locations by Indian and foreign companies. As power industry occupies key role in the economic liberalization, the siting and technology for power plant are relevant in the Indian context, and modeling exercise is wanted for the design of stacks and pollution control measures. A case history is included to demonstrate the use of air quality modeling in prediction, and to delineate mitigation measures. Study has been conducted with Gaussian dispersion model to assess the incremental 24 hour maximum Ground Level Concentrations (GLCs) of SO{sub 2}, NO{sub x}, SPM due to proposed power plant. Stack and emission data, wind velocity, wind direction, temperature, mixing height, and stability classes are used as input parameters to the dispersion model. Maximum 24 hour GLCs of SO{sub 2}, NO{sub x}, and SPM are 30, 53, 2.5 {mu}g/m at 2 km east as down wind direction is from west (35%), south-southwest (25%), and west-northwest (15%). Northeast is the most affected quadrant during summer. Plume loopings are assessed from southeast to northeast directions, with maximum concentration in the east with respect to the site. First plume loop is assessed at 2 km distance, and subsequent loops are assessed with less pollutants concentration under atmospheric stability classes (B-E). High concentration of NO{sub x} has been assessed, which may cause hazardous effect like dense fog, particulate droplets, whereas SO{sub 2} concentration may cause acid raining, acid deposition to the surrounding. Proper air pollution control measures are required to minimize NO{sub x} levels.

  5. CONCENTRATIONS OF TOXIC AIR POLLUTANTS IN THE U.S. SIMULATED BY AN AIR QUALITY MODEL

    EPA Science Inventory

    As part of the US National Air Toxics Assessment, we have applied the Community Multiscale Air Quality Model, CMAQ, to study the concentrations of twenty gas-phase, toxic, hazardous air pollutants (HAPs) in the atmosphere over the continental United States. We modified the Carbo...

  6. INTEGRATED AIR POLLUTION CONTROL SYSTEM (IAPCS) COST MODEL (AIR POLLUTION TECHNOLOGY BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    The Air Pollution Technology Branch's (APPCD, NRMRL) Integrated Air Pollution Control System Cost Model is a compiled model written in FORTRAN and C language that is designed to be used on an IBM or compatible PC with 640K or lower RAM and at least 1.5 Mb of hard drive space. It ...

  7. Exposure Modeling of Residential Air Exchange Rates for NEXUS Participants.

    EPA Science Inventory

    Due to cost and participant burden of personal measurements, air pollution health studies often estimate exposures using local ambient air monitors. Since outdoor levels do not necessarily reflect personal exposures, we developed the Exposure Model for Individuals (EMI) to improv...

  8. Exposure Modeling of Residential Air Exchange Rates for NEXUS Participants

    EPA Science Inventory

    Due to cost and participant burden of personal measurements, air pollution health studies often estimate exposures using local ambient air monitors. Since outdoor levels do not necessarily reflect personal exposures, we developed the Exposure Model for Individuals (EMI) to improv...

  9. AIR QUALITY MODELING OF PM AND AIR TOXICS AT NEIGHBORHOOD SCALES

    EPA Science Inventory

    The current interest in fine particles and toxics pollutants provide an impetus for extending air quality modeling capability towards improving exposure modeling and assessments. Human exposure models require information on concentration derived from interpolation of observati...

  10. AIR QUALITY MODELING FOR THE TWENTY-FIRST CENTURY

    EPA Science Inventory

    This presentation describes recent and evolving advances in the science of numerical air quality simulation modeling. Emphasis is placed on new developments in particulate matter modeling and atmospheric chemistry, diagnostic modeling tools, and integrated modeling systems. New...

  11. NIRATAM-NATO infrared air target model

    NASA Astrophysics Data System (ADS)

    Noah, Meg A.; Kristl, Joseph; Schroeder, John W.; Sandford, B. P.

    1991-08-01

    NIRATAM (the NATO Infrared Air Target Model) was developed by the NATO AC 243, Panel IV, Research Study Group 6 (RSG-6). RSG-6 is composed of representatives from Denmark, France, Germany, Italy, the Netherlands, the United Kingdom, the United States of America, and Canada (as an observer). NIRATAM is based on theoretical studies, field measurements, and infrared data analysis performed over many years. The model encompasses all the major signature components required to simulate the infrared signature of an aircraft and the atmosphere. The vehicle fuselage, facet, model includes radiation due to aerodynamic heating, internal heat sources, reflected sky, earth, and solar radiation. Plume combustion gas emissions are calculated for H(subscript 2)O, CO(subscript 2), CO, and other gases as well as solid particles. Lowtran 7 is used for the atmospheric transmission and radiance. The software generates graphical outputs of the target wireframe, plume flowfield, atmospheric transmission, total signature, and plume signature. Imagery data can be used for system development and evaluation. NIRATAM can be used for many applications such as measurement planning, data analysis, systems design, and aircraft development. Ontar has agreed to assist the RSG-6 by being the NIRATAM distribution center in the United States for users approved by the national representatives. Arrangements have also been made to distribute a user-friendly NIRATAM interface. This paper describes the model, presents results, makes comparisons with measured field data, and describes the availability and procedure for obtaining the software.

  12. DESIGN REQUIREMENTS FOR MULTISCALE AIR QUALITY MODELS

    EPA Science Inventory

    Society (as mandated by the clean Air Act) requires that we protect our environment and minimize human exposure to harmful air pollutants with National Ambient Air Quality Standards (NAAQS). e al:o seek to minimize the economic costs of the necessary pollution control to meet the...

  13. New development of the yolk sac theory in diabetic embryopathy: molecular mechanism and link to structural birth defects.

    PubMed

    Dong, Daoyin; Reece, E Albert; Lin, Xue; Wu, Yanqing; AriasVillela, Natalia; Yang, Peixin

    2016-02-01

    Maternal diabetes mellitus is a significant risk factor for structural birth defects, including congenital heart defects and neural tube defects. With the rising prevalence of type 2 diabetes mellitus and obesity in women of childbearing age, diabetes mellitus-induced birth defects have become an increasingly significant public health problem. Maternal diabetes mellitus in vivo and high glucose in vitro induce yolk sac injuries by damaging the morphologic condition of cells and altering the dynamics of organelles. The yolk sac vascular system is the first system to develop during embryogenesis; therefore, it is the most sensitive to hyperglycemia. The consequences of yolk sac injuries include impairment of nutrient transportation because of vasculopathy. Although the functional relationship between yolk sac vasculopathy and structural birth defects has not yet been established, a recent study reveals that the quality of yolk sac vasculature is related inversely to embryonic malformation rates. Studies in animal models have uncovered key molecular intermediates of diabetic yolk sac vasculopathy, which include hypoxia-inducible factor-1α, apoptosis signal-regulating kinase 1, and its inhibitor thioredoxin-1, c-Jun-N-terminal kinases, nitric oxide, and nitric oxide synthase. Yolk sac vasculopathy is also associated with abnormalities in arachidonic acid and myo-inositol. Dietary supplementation with fatty acids that restore lipid levels in the yolk sac lead to a reduction in diabetes mellitus-induced malformations. Although the role of the human yolk in embryogenesis is less extensive than in rodents, nevertheless, human embryonic vasculogenesis is affected negatively by maternal diabetes mellitus. Mechanistic studies have identified potential therapeutic targets for future intervention against yolk sac vasculopathy, birth defects, and other complications associated with diabetic pregnancies. PMID:26432466

  14. Evaluating NOx emission inventories for regulatory air quality modeling using satellite and air quality model data

    NASA Astrophysics Data System (ADS)

    Kemball-Cook, Susan; Yarwood, Greg; Johnson, Jeremiah; Dornblaser, Bright; Estes, Mark

    2015-09-01

    The purpose of this study was to assess the accuracy of NOx emissions in the Texas Commission on Environmental Quality's (TCEQ) State Implementation Plan (SIP) modeling inventories of the southeastern U.S. We used retrieved satellite tropospheric NO2 columns from the Ozone Monitoring Instrument (OMI) together with NO2 columns from the Comprehensive Air Quality Model with Extensions (CAMx) to make top-down NOx emissions estimates using the mass balance method. Two different top-down NOx emissions estimates were developed using the KNMI DOMINO v2.0 and NASA SP2 retrievals of OMI NO2 columns. Differences in the top-down NOx emissions estimates made with these two operational products derived from the same OMI radiance data were sufficiently large that they could not be used to constrain the TCEQ NOx emissions in the southeast. The fact that the two available operational NO2 column retrievals give such different top-down NOx emissions results is important because these retrievals are increasingly being used to diagnose air quality problems and to inform efforts to solve them. These results reflect the fact that NO2 column retrievals are a blend of measurements and modeled data and should be used with caution in analyses that will inform policy development. This study illustrates both benefits and challenges of using satellite NO2 data for air quality management applications. Comparison with OMI NO2 columns pointed the way toward improvements in the CAMx simulation of the upper troposphere, but further refinement of both regional air quality models and the NO2 column retrievals is needed before the mass balance and other emission inversion methods can be used to successfully constrain NOx emission inventories used in U.S. regulatory modeling.

  15. Primary Nasopharngeal Yolk Sac Tumor: A Case Report

    PubMed Central

    Arumugam, Dhanalakshmi; Chidambaram, Lalitha; Boj, Sudha; Marudasalam, Sumathi

    2016-01-01

    Yolk sac tumour also known as primitive endodermal tumour is the most common malignant germ cell tumour (GCT) in the paediatric age group. Most common sites of involvement are ovaries and testes, but rarely can occur in the extragonadal sites. In the head and neck region, yolk sac tumours have been reported in the nasopharynx, sinonasal tract, orbit, ear and parotid gland. Nasopharynx is an uncommon site for yolk sac tumour and very few cases of nasopharngeal pure yolk sac tumour have been reported so far. Yolk sac tumours are highly malignant and have a poor prognosis. This is a case of pure GCT in a three-year-old female child who presented with a rapidly growing nasopharyngeal mass. Histopathological examination followed by immunohistochemistry and serum AFP study clinched the diagnosis of yolk sac tumour. The tumour responded well to chemotherapy as evidenced by decrease in serum AFP levels. PMID:27437234

  16. Primary Nasopharngeal Yolk Sac Tumor: A Case Report.

    PubMed

    Arumugam, Dhanalakshmi; Thandavarayan, Pavithra; Chidambaram, Lalitha; Boj, Sudha; Marudasalam, Sumathi

    2016-05-01

    Yolk sac tumour also known as primitive endodermal tumour is the most common malignant germ cell tumour (GCT) in the paediatric age group. Most common sites of involvement are ovaries and testes, but rarely can occur in the extragonadal sites. In the head and neck region, yolk sac tumours have been reported in the nasopharynx, sinonasal tract, orbit, ear and parotid gland. Nasopharynx is an uncommon site for yolk sac tumour and very few cases of nasopharngeal pure yolk sac tumour have been reported so far. Yolk sac tumours are highly malignant and have a poor prognosis. This is a case of pure GCT in a three-year-old female child who presented with a rapidly growing nasopharyngeal mass. Histopathological examination followed by immunohistochemistry and serum AFP study clinched the diagnosis of yolk sac tumour. The tumour responded well to chemotherapy as evidenced by decrease in serum AFP levels. PMID:27437234

  17. Good manufacturing practice for modelling air pollution: Quality criteria for computer models to calculate air pollution

    NASA Astrophysics Data System (ADS)

    Dekker, C. M.; Sliggers, C. J.

    To spur on quality assurance for models that calculate air pollution, quality criteria for such models have been formulated. By satisfying these criteria the developers of these models and producers of the software packages in this field can assure and account for the quality of their products. In this way critics and users of such (computer) models can gain a clear understanding of the quality of the model. Quality criteria have been formulated for the development of mathematical models, for their programming—including user-friendliness, and for the after-sales service, which is part of the distribution of such software packages. The criteria have been introduced into national and international frameworks to obtain standardization.

  18. Impact of inherent meteorology uncertainty on air quality model predictions

    EPA Science Inventory

    It is well established that there are a number of different classifications and sources of uncertainties in environmental modeling systems. Air quality models rely on two key inputs, namely, meteorology and emissions. When using air quality models for decision making, it is impor...

  19. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  20. Plant-derived SAC domain of PAR-4 (Prostate Apoptosis Response 4) exhibits growth inhibitory effects in prostate cancer cells

    PubMed Central

    Sarkar, Shayan; Jain, Sumeet; Rai, Vineeta; Sahoo, Dipak K.; Raha, Sumita; Suklabaidya, Sujit; Senapati, Shantibhusan; Rangnekar, Vivek M.; Maiti, Indu B.; Dey, Nrisingha

    2015-01-01

    The gene Par-4 (Prostate Apoptosis Response 4) was originally identified in prostate cancer cells undergoing apoptosis and its product Par-4 showed cancer specific pro-apoptotic activity. Particularly, the SAC domain of Par-4 (SAC-Par-4) selectively kills cancer cells leaving normal cells unaffected. The therapeutic significance of bioactive SAC-Par-4 is enormous in cancer biology; however, its large scale production is still a matter of concern. Here we report the production of SAC-Par-4-GFP fusion protein coupled to translational enhancer sequence (5′ AMV) and apoplast signal peptide (aTP) in transgenic Nicotiana tabacum cv. Samsun NN plants under the control of a unique recombinant promoter M24. Transgene integration was confirmed by genomic DNA PCR, Southern and Northern blotting, Real-time PCR, and Nuclear run-on assays. Results of Western blot analysis and ELISA confirmed expression of recombinant SAC-Par-4-GFP protein and it was as high as 0.15% of total soluble protein. In addition, we found that targeting of plant recombinant SAC-Par-4-GFP to the apoplast and endoplasmic reticulum (ER) was essential for the stability of plant recombinant protein in comparison to the bacterial derived SAC-Par-4. Deglycosylation analysis demonstrated that ER-targeted SAC-Par-4-GFP-SEKDEL undergoes O-linked glycosylation unlike apoplast-targeted SAC-Par-4-GFP. Furthermore, various in vitro studies like mammalian cells proliferation assay (MTT), apoptosis induction assays, and NF-κB suppression suggested the cytotoxic and apoptotic properties of plant-derived SAC-Par-4-GFP against multiple prostate cancer cell lines. Additionally, pre-treatment of MAT-LyLu prostate cancer cells with purified SAC-Par-4-GFP significantly delayed the onset of tumor in a syngeneic rat prostate cancer model. Taken altogether, we proclaim that plant made SAC-Par-4 may become a useful alternate therapy for effectively alleviating cancer in the new era. PMID:26500666

  1. Progressive myoclonus epilepsy associated with SACS gene mutations.

    PubMed

    Nascimento, Fábio A; Canafoglia, Laura; Aljaafari, Danah; Muona, Mikko; Lehesjoki, Anna-Elina; Berkovic, Samuel F; Franceschetti, Silvana; Andrade, Danielle M

    2016-08-01

    Pathogenic variants in the SACS gene (OMIM #604490) cause autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS). ARSACS is a neurodegenerative early-onset progressive disorder, originally described in French Canadians, but later observed elsewhere.(1) Whole-exome sequencing of a large group of patients with unclassified progressive myoclonus epilepsies (PMEs) identified 2 patients bearing SACS gene mutations.(2) We detail the PME clinical features associated with SACS mutations and suggest the inclusion of the SACS gene in diagnostic screening of PMEs. PMID:27433545

  2. Whisker Formation on SAC305 Soldered Assemblies

    NASA Astrophysics Data System (ADS)

    Meschter, S.; Snugovsky, P.; Bagheri, Z.; Kosiba, E.; Romansky, M.; Kennedy, J.; Snugovsky, L.; Perovic, D.

    2014-11-01

    This article describes the results of a whisker formation study on SAC305 assemblies, evaluating the effects of lead-frame materials and cleanliness in different environments: low-stress simulated power cycling (50-85°C thermal cycling), thermal shock (-55°C to 85°C), and high temperature/high humidity (85°C/85% RH). Cleaned and contaminated small outline transistors, large leaded quad flat packs (QFP), plastic leaded chip carrier packages, and solder balls with and without rare earth elements (REE) were soldered to custom designed test boards with Sn3Ag0.5Cu (SAC305) solder. After assembly, all the boards were cleaned, and half of them were recontaminated (1.56 µg/cm2 Cl-). Whisker length, diameter, and density were measured. Detailed metallurgical analysis on components before assembly and on solder joints before and after testing was performed. It was found that whiskers grow from solder joint fillets, where the thickness is less than 25 µm, unless REE was present. The influence of lead-frame and solder ball material, microstructure, cleanliness, and environment on whisker characteristics is discussed. This article provides detailed metallurgical observations and select whisker length data obtained during this multiyear testing program.

  3. AIR TOXICS MODELING RESEARCH PROGRAM: AN OVERVIEW

    EPA Science Inventory

    This product is a Microsoft Powerpoint slide presentation which was given at the joint EPA Region 3 - Mid-Atlantic Regional Air Management Association (MARAMA) Air Toxic Summit in Philadelphia, Pennsylvania held from October 18, 2005 through October 20, 2005. The slide presentat...

  4. VALMET: a valley air pollution model. Final report. Revision 1

    SciTech Connect

    Whiteman, C.D.; Allwine, K.J.

    1985-04-01

    An air quality model is described for predicting air pollution concentrations in deep mountain valleys arising from nocturnal down-valley transport and diffusion of an elevated pollutant plume, and the fumigation of the plume on the valley floor and sidewalls after sunrise. Included is a technical description of the model, a discussion of the model's applications, the required model inputs, sample calculations and model outputs, and a full listing of the FORTRAN computer program. 55 refs., 27 figs., 6 tabs.

  5. Hydrodynamic modeling of semi-planing hulls with air cavities

    NASA Astrophysics Data System (ADS)

    Matveev, Konstantin I.

    2015-05-01

    High-speed heavy loaded monohull ships can benefit from application of drag-reducing air cavities under stepped hull bottoms. The subject of this paper is the steady hydrodynamic modeling of semi-planing air-cavity hulls. The current method is based on a linearized potential-flow theory for surface flows. The mathematical model description and parametric calculation results for a selected configuration with pressurized and open air cavities are presented.

  6. Hydrodynamic modeling of semi-planing hulls with air cavities

    NASA Astrophysics Data System (ADS)

    Matveev, Konstantin I.

    2015-09-01

    High-speed heavy loaded monohull ships can benefit from application of drag-reducing air cavities under stepped hull bottoms. The subject of this paper is the steady hydrodynamic modeling of semi-planing air-cavity hulls. The current method is based on a linearized potential-flow theory for surface flows. The mathematical model description and parametric calculation results for a selected configuration with pressurized and open air cavities are presented.

  7. An observing system simulation experiment (OSSE) for the aquarius/SAC-D soil moisture product

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An Observing System Simulation Experiment for the Aquarius/SAC-D mission has been developed for assessing the accuracy of soil moisture retrievals from passive L-band remote sensing. The implementation of the OSSE is based on: a 1-km land surface model over the Red-Arkansas River Basin, a forward mi...

  8. Modeling human judgments of urban visual air quality

    NASA Astrophysics Data System (ADS)

    Middleton, Paulette; Stewart, Thomas R.; Dennis, Robin L.

    The overall approach to establishing a complete predictive model link between pollutant emissions and human judgments of urban visual air quality (UVAQ) is presented. The field study design and data analysis procedures developed for analyzing the human components of visual air quality assessment are outlined. The air quality simulation model which relates pollutant emissions to human judgments of visual cues which comprise visual air quality judgments is described. Measured and modeled cues are compared for five typical visual air quality days in the winter of 1981 for Denver, Colorado. The comparisons suggest that the perceptual cue model, based on dispersion and radiative transfer theory, does not adequately predict human judgments of UVAQ cues. Analysis of the limits of predictability of the human judgments and the predictive capability of the model components indicates that the greatest improvements toward achieving a predictive UVAQ model lie in a reformulation of the theoretical descriptions of visual cues.

  9. What is Air? A Standard Model for Combustion Simulations

    SciTech Connect

    Cloutman, L D

    2001-08-01

    Most combustion devices utilize air as the oxidizer. Thus, reactive flow simulations of these devices require the specification of the composition of air as part of the physicochemical input. A mixture of only oxygen and nitrogen often is used, although in reality air is a more complex mixture of somewhat variable composition. We summarize some useful parameters describing a standard model of dry air. Then we consider modifications to include water vapor for creating the desired level of humidity. The ''minor'' constituents of air, especially argon and water vapor, can affect the composition by as much as about 5 percent in the mole fractions.

  10. THE ATMOSPHERIC MODEL EVALUATION TOOL (AMET); AIR QUALITY MODULE

    EPA Science Inventory

    This presentation reviews the development of the Atmospheric Model Evaluation Tool (AMET) air quality module. The AMET tool is being developed to aid in the model evaluation. This presentation focuses on the air quality evaluation portion of AMET. Presented are examples of the...

  11. 77 FR 4808 - Conference on Air Quality Modeling

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-31

    ... when we issued supplement B. We republished the Guideline in August 1996 (61 FR 41838) to adopt the CFR... AGENCY Conference on Air Quality Modeling AGENCY: U.S. Environmental Protection Agency (EPA). ACTION: Notice of conference. SUMMARY: The EPA will be hosting the Tenth Conference on Air Quality Modeling...

  12. COMMUNITY MULTISCALE AIR QUALITY MODELING SYSTEM (ONE ATMOSPHERE)

    EPA Science Inventory

    This task supports ORD's strategy by providing responsive technical support of EPA's mission and provides credible state of the art air quality models and guidance. This research effort is to develop and improve the Community Multiscale Air Quality (CMAQ) modeling system, a mu...

  13. The contrast model method for the thermodynamical calculation of air-air wet heat exchanger

    NASA Astrophysics Data System (ADS)

    Yuan, Xiugan; Mei, Fang

    1989-02-01

    The 'contrast model' method thermodynamic calculation of air-air crossflow wet heat exchangers with initial air condensation is presented. Contrast-model equations are derived from the actual heat exchanger equations as well as imaginary ones; it is then possible to proceed to a proof that the enthalpy efficiency of the contrast model equations is similar to the temperature efficiency of the dry heat exchanger. Conditions are noted under which it becomes possible to unify thermodynamic calculations for wet and dry heat exchangers.

  14. DEVELOPMENT AND ANALYSIS OF AIR QUALITY MODELING SIMULATIONS FOR HAZARDOUS AIR POLLUTANTS

    EPA Science Inventory

    The concentrations of five hazardous air pollutants were simulated using the Community Multi Scale Air Quality (CMAQ) modeling system. Annual simulations were performed over the continental United States for the entire year of 2001 to support human exposure estimates. Results a...

  15. A review of air exchange rate models for air pollution exposure assessments.

    PubMed

    Breen, Michael S; Schultz, Bradley D; Sohn, Michael D; Long, Thomas; Langstaff, John; Williams, Ronald; Isaacs, Kristin; Meng, Qing Yu; Stallings, Casson; Smith, Luther

    2014-11-01

    A critical aspect of air pollution exposure assessments is estimation of the air exchange rate (AER) for various buildings where people spend their time. The AER, which is the rate of exchange of indoor air with outdoor air, is an important determinant for entry of outdoor air pollutants and for removal of indoor-emitted air pollutants. This paper presents an overview and critical analysis of the scientific literature on empirical and physically based AER models for residential and commercial buildings; the models highlighted here are feasible for exposure assessments as extensive inputs are not required. Models are included for the three types of airflows that can occur across building envelopes: leakage, natural ventilation, and mechanical ventilation. Guidance is provided to select the preferable AER model based on available data, desired temporal resolution, types of airflows, and types of buildings included in the exposure assessment. For exposure assessments with some limited building leakage or AER measurements, strategies are described to reduce AER model uncertainty. This review will facilitate the selection of AER models in support of air pollution exposure assessments. PMID:23715084

  16. Bayesian Analysis of a Reduced-Form Air Quality Model

    EPA Science Inventory

    Numerical air quality models are being used for assessing emission control strategies for improving ambient pollution levels across the globe. This paper applies probabilistic modeling to evaluate the effectiveness of emission reduction scenarios aimed at lowering ground-level oz...

  17. REFINED PHOTOLYSIS RATES FOR ADVANCED AIR QUALITY MODELING SYSTEM

    EPA Science Inventory

    Accurate modeling of photochemistry is critical and fundamental to reducing the uncertainty in air quality model predictions. lmost all chemical reactions in the atmosphere are initiated by the photodissociation of a number of trace gases. irect measure of this photodissociation ...

  18. INTERCOMPARISON OF ALTERNATIVE VEGETATION DATABASES FOR REGIONAL AIR QUALITY MODELING

    EPA Science Inventory

    Vegetation cover data are used to characterize several regional air quality modeling processes, including the calculation of heat, moisture, and momentum fluxes with the Mesoscale Meteorological Model (MM5) and the estimate of biogenic volatile organic compound and nitric oxide...

  19. Laparoscopic management of hydatid cyst in the lesser sac

    PubMed Central

    Sahoo, Manash Ranjan; Kumar, Saurabh; Panda, Srikanta; Shameel, P. Ahammed

    2016-01-01

    Hydatid cyst is a disease caused by Echinococcus granulosus. Various anatomical location of hydatid cyst has been described in literature. Liver is the most common site of hydatid cyst and lungs are the second most common site. Hydatid cyst of lesser sac is a rare entity. Here we present a rare case report of laparoscopic management of hydatid cyst in lesser sac. PMID:27073313

  20. Pituitary carcinoma with endolymphatic sac metastasis.

    PubMed

    Balili, Irida; Sullivan, Steven; Mckeever, Paul; Barkan, Ariel

    2014-06-01

    Pituitary carcinoma is characterized by the presence of a metastatic lesion(s) in a location non-contiguous with the original pituitary tumor. The mechanism(s) of malignant transformation are not known. A 15 year-old male was diagnosed in 1982 with a pituitary macroadenoma and acromegaly (random GH 67 ng/ml and no suppression by oral glucose). His prolactin was normal between 18 and 23 ng/ml. Transcranial resection in July 1983 was followed by radiation therapy. The tumor was immunopositive for GH and prolactin. The proliferation MIB-1 index was 0-1%. With aqueous Octreotide 100 mcg 4× daily both GH and IGF-1 became normal. The patient was lost to follow-up and was treated by his local physician. In 2001, his IGF-1 level was 1271 ng/ml, and his random GH was 1.8-2.4 ng/ml by ILMA despite progressive increase in the dose of Sandostatin LAR to 140 mg/month in divided doses. Prolactin remained normal or minimally increased between 15 and 25 ng/ml. In 2009 he was diagnosed with the tumor in the location of left endolymphatic sac. Histological examination showed low grade pituitary carcinoma strongly immunopositive for prolactin but negative for GH. MIB-1 antibody labeled 0-5% cells. In 2012 endoscopic resection of the pituitary tumor remnant was attempted. Immunohistochemical stains were strongly immunopositive for both prolactin and GH, similar to his original pituitary tumor. The MIB-1 proliferation index was low from 0 to 1%. To our knowledge this is the first case of pituitary carcinoma in the endolymphatic sac region. The dichotomy between the cell population of the pituitary lesion (GH/prolactin producing) and the metastasis (purely prolactin-producing) may suggest that the metastatic pituitary lesion derived from a clone distinct from the original one. PMID:23645293

  1. Transcript profiles of maize embryo sacs and preliminary identification of genes involved in the embryo sac–pollen tube interaction

    PubMed Central

    Wang, Shuai Shuai; Wang, Fang; Tan, Su Jian; Wang, Ming Xiu; Sui, Na; Zhang, Xian Sheng

    2014-01-01

    The embryo sac, the female gametophyte of flowering plants, plays important roles in the pollination and fertilization process. Maize (Zea mays L.) is a model monocot, but little is known about the interactions between its embryo sac and the pollen tube. In this study, we compared the transcript profiles of mature embryo sacs, mature embryo sacs 14–16 h after pollination, and mature nucelli. Comparing the transcript profiles of the embryo sacs before and after the entry of the pollen tube, we identified 3467 differentially expressed transcripts (3382 differentially expressed genes; DEGs). The DEGs were grouped into 22 functional categories. Among the DEGs, 221 genes were induced upon the entry of the pollen tube, and many of them encoded proteins involved in RNA binding, processing, and transcription, signaling, miscellaneous enzyme family processes, and lipid metabolism processes. Genes in the DEG dataset were grouped into 17 classes in a gene ontology enrichment analysis. The DEGs included many genes encoding proteins involved in protein amino acid phosphorylation and protein ubiquitination, implying that these processes might play important roles in the embryo sac–pollen tube interaction. Additionally, our analyses indicate that the expression of 112 genes encoding cysteine-rich proteins (CRPs) is induced during pollination and fertilization. The CRPs likely regulate pollen tube guidance and embryo sac development. These results provide important information on the genes involved in the embryo sac–pollen tube interaction in maize. PMID:25566277

  2. Modeling, Monitoring and Fault Diagnosis of Spacecraft Air Contaminants

    NASA Technical Reports Server (NTRS)

    Ramirez, W. Fred; Skliar, Mikhail; Narayan, Anand; Morgenthaler, George W.; Smith, Gerald J.

    1996-01-01

    Progress and results in the development of an integrated air quality modeling, monitoring, fault detection, and isolation system are presented. The focus was on development of distributed models of the air contaminants transport, the study of air quality monitoring techniques based on the model of transport process and on-line contaminant concentration measurements, and sensor placement. Different approaches to the modeling of spacecraft air contamination are discussed, and a three-dimensional distributed parameter air contaminant dispersion model applicable to both laminar and turbulent transport is proposed. A two-dimensional approximation of a full scale transport model is also proposed based on the spatial averaging of the three dimensional model over the least important space coordinate. A computer implementation of the transport model is considered and a detailed development of two- and three-dimensional models illustrated by contaminant transport simulation results is presented. The use of a well established Kalman filtering approach is suggested as a method for generating on-line contaminant concentration estimates based on both real time measurements and the model of contaminant transport process. It is shown that high computational requirements of the traditional Kalman filter can render difficult its real-time implementation for high-dimensional transport model and a novel implicit Kalman filtering algorithm is proposed which is shown to lead to an order of magnitude faster computer implementation in the case of air quality monitoring.

  3. Eight Year Climatologies from Observational (AIRS) and Model (MERRA) Data

    NASA Technical Reports Server (NTRS)

    Hearty, Thomas; Savtchenko, Andrey; Won, Young-In; Theobalk, Mike; Vollmer, Bruce; Manning, Evan; Smith, Peter; Ostrenga, Dana; Leptoukh, Greg

    2010-01-01

    We examine climatologies derived from eight years of temperature, water vapor, cloud, and trace gas observations made by the Atmospheric Infrared Sounder (AIRS) instrument flying on the Aqua satellite and compare them to similar climatologies constructed with data from a global assimilation model, the Modern Era Retrospective-Analysis for Research and Applications (MERRA). We use the AIRS climatologies to examine anomalies and trends in the AIRS data record. Since sampling can be an issue for infrared satellites in low earth orbit, we also use the MERRA data to examine the AIRS sampling biases. By sampling the MERRA data at the AIRS space-time locations both with and without the AIRS quality control we estimate the sampling bias of the AIRS climatology and the atmospheric conditions where AIRS has a lower sampling rate. While the AIRS temperature and water vapor sampling biases are small at low latitudes, they can be more than a few degrees in temperature or 10 percent in water vapor at higher latitudes. The largest sampling biases are over desert. The AIRS and MERRA data are available from the Goddard Earth Sciences Data and Information Services Center (GES DISC). The AIRS climatologies we used are available for analysis with the GIOVANNI data exploration tool. (see, http://disc.gsfc.nasa.gov).

  4. MODELED MESOSCALE METEOROLOGICAL FIELDS WITH FOUR-DIMENSIONAL DATA ASSIMILATION IN REGIONAL SCALE AIR QUALITY MODELS

    EPA Science Inventory

    This paper addresses the need to increase the temporal and spatial resolution of meteorological data currently used in air quality simulation models, AQSMs. ransport and diffusion parameters including mixing heights and stability used in regulatory air quality dispersion models a...

  5. Improving Air-Conditioner and Heat Pump Modeling (Presentation)

    SciTech Connect

    Winkler, J.

    2012-03-01

    A new approach to modeling residential air conditioners and heat pumps allows users to model systems by specifying only the more readily-available SEER/EER/HSPF-type metrics. Manufacturer data was used to generate full sets of model inputs for over 450 heat pumps and air conditioners. A sensitivity analysis identified which inputs can be safely defaulted 'behind-the-scenes' without negatively impacting the reliability of energy simulations.

  6. Guideline on air-quality models (revised). Supplement A

    SciTech Connect

    Not Available

    1987-07-01

    This guideline recommends air quality modeling techniques that may be applied to air-pollution-control strategy evaluations and new source reviews, including prevention of significant deterioration. It is intended for use by EPA Regional Offices in judging the adequacy of modeling analyses performed by EPA, by State and local agencies, and by industry and its consultants. It also identifies modeling techniques and data bases that EPA considers acceptable. The guideline makes specific recommendations concerning air-quality models, data bases, and general requirements for concentration estimates. This is Supplement A to the guideline. It contains: (1) addition of a specific version of the Rough Terrain Diffusion Model (RTDM) as a screening model; (2) modification of the downwash algorithm in the Industrial Source Complex (ISC) model; (3) addition of the Offshore and Coastal Dispersion (OCD) model to Appendix A; and, (4) addition of the AVACTA II model to Appendix B.

  7. Correlated model for indoor and outdoor air pollutants

    SciTech Connect

    Chen, L.; Lee, J.S.; Cheng, K.S.

    1998-12-31

    This study tries to correlate outdoor concentration of air pollutants with indoor data statistically and physically by means of on-site measurement. The authors measured concentrations of THC, NMHC, NO{sub x}, SO{sub 2} and O{sub 3} at two residential sites where were closed to a fossil industry area. An air sampling system was designed to alternately sample air from different locations, therefore they can obtain semi-simultaneously indoor and outdoor concentration of air pollutants. Four measurements were taken during a year period. The measured data were analyzed by means of statistical regression and were used to calibrate indoor decay constants in a mass balance physical model. The results of statistical regression show that indoor concentration of air pollutant is highly correlated with outdoor concentration and indoor concentration at one hour earlier rather than outdoor climate parameters such as wind speed, temperature and humidity. The results explained that outdoor concentration actually included factors of outdoor climate parameters implicitly. In physical model, they calibrated the indoor concentration decay constants in an indoor/outdoor mass conservation equation at various air exchange rates under different seasons and day/night conditions. The established statistical and physical models can be used to estimate indoor air quality from monitored or calculated outdoor data. With the proposed correlation models it becomes convenient to perform the overall indoor and outdoor air pollutants exposure and risk assessment.

  8. Recent Advances in WRF Modeling for Air Quality Applications

    EPA Science Inventory

    The USEPA uses WRF in conjunction with the Community Multiscale Air Quality (CMAQ) for air quality regulation and research. Over the years we have added physics options and geophysical datasets to the WRF system to enhance model capabilities especially for extended retrospective...

  9. Modeling the exit velocity of a compressed air cannon

    NASA Astrophysics Data System (ADS)

    Rohrbach, Z. J.; Buresh, T. R.; Madsen, M. J.

    2012-01-01

    The use of compressed air cannons in an undergraduate laboratory provides a way to illustrate the connection between diverse physics concepts, such as conservation of momentum, the work-kinetic energy theorem, gas expansion, air drag, and elementary Newtonian mechanics. However, it is not clear whether the expansion of the gas in the cannon is an adiabatic or an isothermal process. We built an air cannon that utilizes a diaphragm valve to release the pressurized gas and found that neither process accurately predicts the exit velocity of our projectile. We discuss a model based on the flow of air through the valve, which is in much better agreement with our data.

  10. Dispersion modeling of selected PAHs in urban air: A new approach combining dispersion model with GIS and passive air sampling

    NASA Astrophysics Data System (ADS)

    Sáňka, Ondřej; Melymuk, Lisa; Čupr, Pavel; Dvorská, Alice; Klánová, Jana

    2014-10-01

    This study introduces a new combined air concentration measurement and modeling approach that we propose can be useful in medium and long term air quality assessment. A dispersion study was carried out for four high molecular weight polycyclic aromatic hydrocarbons (PAHs) in an urban area with industrial, traffic and domestic heating sources. A geographic information system (GIS) was used both for processing of input data as well as visualization of the modeling results. The outcomes of the dispersion model were compared to the results of passive air sampling (PAS). Despite discrepancies between measured and modeled concentrations, an approach combining the two techniques is promising for future air quality assessment. Differences between measured and modeled concentrations, in particular when measured values exceed the modeled concentrations, are indicative of undocumented, sporadic pollutant sources. Thus, these differences can also be useful for assessing and refining emission inventories.

  11. Primitive Fitting Based on the Efficient multiBaySAC Algorithm

    PubMed Central

    Kang, Zhizhong; Li, Zhen

    2015-01-01

    Although RANSAC is proven to be robust, the original RANSAC algorithm selects hypothesis sets at random, generating numerous iterations and high computational costs because many hypothesis sets are contaminated with outliers. This paper presents a conditional sampling method, multiBaySAC (Bayes SAmple Consensus), that fuses the BaySAC algorithm with candidate model parameters statistical testing for unorganized 3D point clouds to fit multiple primitives. This paper first presents a statistical testing algorithm for a candidate model parameter histogram to detect potential primitives. As the detected initial primitives were optimized using a parallel strategy rather than a sequential one, every data point in the multiBaySAC algorithm was assigned to multiple prior inlier probabilities for initial multiple primitives. Each prior inlier probability determined the probability that a point belongs to the corresponding primitive. We then implemented in parallel a conditional sampling method: BaySAC. With each iteration of the hypothesis testing process, hypothesis sets with the highest inlier probabilities were selected and verified for the existence of multiple primitives, revealing the fitting for multiple primitives. Moreover, the updated version of the initial probability was implemented based on a memorable form of Bayes’ Theorem, which describes the relationship between prior and posterior probabilities of a data point by determining whether the hypothesis set to which a data point belongs is correct. The proposed approach was tested using real and synthetic point clouds. The results show that the proposed multiBaySAC algorithm can achieve a high computational efficiency (averaging 34% higher than the efficiency of the sequential RANSAC method) and fitting accuracy (exhibiting good performance in the intersection of two primitives), whereas the sequential RANSAC framework clearly suffers from over- and under-segmentation problems. Future work will aim at further

  12. Residential air exchange rates for use in indoor air and exposure modeling studies.

    PubMed

    Pandian, M D; Ott, W R; Behar, J V

    1993-01-01

    Data on air exchange rates are important inputs to indoor air quality models. Indoor air models, in turn, are incorporated into the structure of total human exposure models. Fragmentary data on residential ventilation rates are available in various governmental reports, journal articles, and contractor reports. Most of the published papers present data on only a few homes to answer very specialized questions, and none of these publications summarize the ventilation rates of a large population of homes across the United States. Brookhaven National Laboratory (BNL) has conducted more than 4000 residential perfluorocarbon tracer (PFT) measurements and brought them together into a large data base from about 100 studies in the United States and elsewhere. This paper analyzes the BNL PFT data base to generate frequency distributions and summary statistics for different regions of the United States, different seasons, and different levels within the homes. The data analyses suggest that residential ventilation rates are similar in the northeastern and northwestern states but higher in the southwestern states. Winter and fall ventilation rates are similar, but the rates are slightly higher in spring, and much higher in summer. Multi-level residences have higher air exchange rates than single-level residences. Although the BNL data are not a representative sample of homes in the United States, these analyses give insight into the range of air exchange rates found in the United States under a great variety of conditions and are intended for use by developers of models of indoor air quality and total human exposure. PMID:8173341

  13. A Physically Based Model for Air-Lift Pumping

    NASA Astrophysics Data System (ADS)

    FrançOis, Odile; Gilmore, Tyler; Pinto, Michael J.; Gorelick, Steven M.

    1996-08-01

    A predictive, physically based model for pumping water from a well using air injection (air-lift pumping) was developed for the range of flow rates that we explored in a series of laboratory experiments. The goal was to determine the air flow rate required to pump a specific flow rate of water in a given well, designed for in-well air stripping of volatile organic compounds from an aquifer. The model was validated against original laboratory data as well as data from the literature. A laboratory air-lift system was constructed that consisted of a 70-foot-long (21-m-long) pipe, 5.5 inches (14 cm) inside diameter, in which an air line of 1.3 inches (3.3 cm) outside diameter was placed with its bottom at different elevations above the base of the long pipe. Experiments were conducted for different levels of submergence, with water-pumping rates ranging from 5 to 70 gallons/min (0.32-4.4 L/s), and air flow ranging from 7 to 38 standard cubic feet/min (0.2-1.1 m3 STP/min). The theoretical approach adopted in the model was based on an analysis of the system as a one-dimensional two-phase flow problem. The expression for the pressure gradient includes inertial energy terms, friction, and gas expansion versus elevation. Data analysis revealed that application of the usual drift-flux model to estimate the air void fraction is not adequate for the observed flow patterns: either slug or churn flow. We propose a modified drift-flux model that accurately predicts air-lift pumping requirements for a range of conditions representative of in-well air-stripping operations.

  14. Modeling air quality over China: Results from the Panda project

    NASA Astrophysics Data System (ADS)

    Katinka Petersen, Anna; Bouarar, Idir; Brasseur, Guy; Granier, Claire; Xie, Ying; Wang, Lili; Wang, Xuemei

    2015-04-01

    China faces strong air pollution problems related to rapid economic development in the past decade and increasing demand for energy. Air quality monitoring stations often report high levels of particle matter and ozone all over the country. Knowing its long-term health impacts, air pollution became then a pressing problem not only in China but also in other Asian countries. The PANDA project is a result of cooperation between scientists from Europe and China who joined their efforts for a better understanding of the processes controlling air pollution in China, improve methods for monitoring air quality and elaborate indicators in support of European and Chinese policies. A modeling system of air pollution is being setup within the PANDA project and include advanced global (MACC, EMEP) and regional (WRF-Chem, EMEP) meteorological and chemical models to analyze and monitor air quality in China. The poster describes the accomplishments obtained within the first year of the project. Model simulations for January and July 2010 are evaluated with satellite measurements (SCIAMACHY NO2 and MOPITT CO) and in-situ data (O3, CO, NOx, PM10 and PM2.5) observed at several surface stations in China. Using the WRF-Chem model, we investigate the sensitivity of the model performance to emissions (MACCity, HTAPv2), horizontal resolution (60km, 20km) and choice of initial and boundary conditions.

  15. [Ovarian yolk sac tumour: general review].

    PubMed

    Even, Caroline; Lhommé, Catherine; Duvillard, Pierre; Morice, Philippe; Balleyguier, Corinne; Pautier, Patricia; Troalen, Frédéric; de La Motte Rouge, Thibault

    2011-08-01

    Ovarian yolk sac tumour (OYST) is a very rare malignancy arising most often in young women. Preoperative clinical, biological (alpha-foetoprotein) and radiological findings should help to establish the diagnosis of OYST, in order to propose adequate surgical treatment. The aim of surgery is to remove the primary tumour, to obtain an accurate histological diagnosis and to assess the disease extent. In young women, fertility-sparing surgery should be performed, in order to preserve the possibility of pregnancy later on. Chemotherapy has substantially modified the prognosis of these tumours, and practically all patients will be cured. The overall 5-year survival rate is 94% when patients are treated with BEP chemotherapy. Depending on the clinical situation, two to four cycles of the BEP regimen should be administered after surgery. Identification of prognostic factors may help to propose risk-adapted treatment in order to increase the cure rate in patients with a poor prognosis and to decrease toxicity in patients with a low risk of relapse. Fertility preservation represents a major objective in women treated for OYSTs. PMID:21708513

  16. Incorporating principal component analysis into air quality model evaluation

    EPA Science Inventory

    The efficacy of standard air quality model evaluation techniques is becoming compromised as the simulation periods continue to lengthen in response to ever increasing computing capacity. Accordingly, the purpose of this paper is to demonstrate a statistical approach called Princi...

  17. SYSTEMATIC SENSITIVITY ANALYSIS OF AIR QUALITY SIMULATION MODELS

    EPA Science Inventory

    This report reviews and assesses systematic sensitivity and uncertainty analysis methods for applications to air quality simulation models. The discussion of the candidate methods presents their basic variables, mathematical foundations, user motivations and preferences, computer...

  18. A FEDERATED PARTNERSHIP FOR URBAN METEOROLOGICAL AND AIR QUALITY MODELING

    EPA Science Inventory

    Recently, applications of urban meteorological and air quality models have been performed at resolutions on the order of km grid sizes. This necessitated development and incorporation of high resolution landcover data and additional boundary layer parameters that serve to descri...

  19. Transdifferentiation of mouse visceral yolk sac cells into parietal yolk sac cells in vitro.

    PubMed

    Yagi, Shinomi; Tagawa, Yoh-Ichi; Shiojiri, Nobuyoshi

    2016-02-19

    The mouse embryonic yolk sac is an extraembryonic membrane that consists of a visceral yolk sac (VYS) and parietal yolk sac (PYS), and functions in hematopoietic-circulation in the fetal stage. The present study was undertaken to examine the normal development of both murine VYS and PYS tissues using various molecular markers, and to establish a novel VYS cell culture system in vitro for analyzing differentiation potentials of VYS cells. RT-PCR and immunohistochemical analyses of gene expression in VYS and PYS tissues during development revealed several useful markers for their identification: HNF1β, HNF4α, Cdh1 (E-cadherin), Krt8 and Krt18 for VYS epithelial cells, and Stra6, Snail1, Thbd and vimentin for PYS cells. PYS cells exhibited mesenchymal characteristics in gene expression and morphology. When VYS cells at 11.5 days of gestation were cultured in vitro for 7 days, the number of HNF1β-, HNF4α-, E-cadherin- and cytokeratin-positive VYS epithelial cells was significantly reduced and, instead, Stra6-and vimentin-positive PYS-like cells increased with culture. RT-PCR analyses also demonstrated that gene expression of VYS markers decreased, whereas that of PYS markers increased in the primary culture of VYS cells. These data indicate that VYS epithelial cells rapidly transdifferentiate into PYS cells having mesenchymal characteristics in vitro, which may provide a culture system suitable for studying molecular mechanisms of VYS transdifferentiation into PYS cells and also epithelial-mesenchymal transition. PMID:26820538

  20. Control of asthma triggers in indoor air with air cleaners: a modeling analysis

    PubMed Central

    Myatt, Theodore A; Minegishi, Taeko; Allen, Joseph G; MacIntosh, David L

    2008-01-01

    Background Reducing exposure to environmental agents indoors shown to increase asthma symptoms or lead to asthma exacerbations is an important component of a strategy to manage asthma for individuals. Numerous investigations have demonstrated that portable air cleaning devices can reduce concentrations of asthma triggers in indoor air; however, their benefits for breathing problems have not always been reproducible. The potential exposure benefits of whole house high efficiency in-duct air cleaners for sensitive subpopulations have yet to be evaluated. Methods We used an indoor air quality modeling system (CONTAM) developed by NIST to examine peak and time-integrated concentrations of common asthma triggers present in indoor air over a year as a function of natural ventilation, portable air cleaners, and forced air ventilation equipped with conventional and high efficiency filtration systems. Emission rates for asthma triggers were based on experimental studies published in the scientific literature. Results Forced air systems with high efficiency filtration were found to provide the best control of asthma triggers: 30–55% lower cat allergen levels, 90–99% lower risk of respiratory infection through the inhalation route of exposure, 90–98% lower environmental tobacco smoke (ETS) levels, and 50–75% lower fungal spore levels than the other ventilation/filtration systems considered. These results indicate that the use of high efficiency in-duct air cleaners provide an effective means of controlling allergen levels not only in a single room, like a portable air cleaner, but the whole house. Conclusion These findings are useful for evaluating potential benefits of high efficiency in-duct filtration systems for controlling exposure to asthma triggers indoors and for the design of trials of environmental interventions intended to evaluate their utility in practice. PMID:18684328

  1. Validation of a novel air toxic risk model with air monitoring.

    PubMed

    Pratt, Gregory C; Dymond, Mary; Ellickson, Kristie; Thé, Jesse

    2012-01-01

    Three modeling systems were used to estimate human health risks from air pollution: two versions of MNRiskS (for Minnesota Risk Screening), and the USEPA National Air Toxics Assessment (NATA). MNRiskS is a unique cumulative risk modeling system used to assess risks from multiple air toxics, sources, and pathways on a local to a state-wide scale. In addition, ambient outdoor air monitoring data were available for estimation of risks and comparison with the modeled estimates of air concentrations. Highest air concentrations and estimated risks were generally found in the Minneapolis-St. Paul metropolitan area and lowest risks in undeveloped rural areas. Emissions from mobile and area (nonpoint) sources created greater estimated risks than emissions from point sources. Highest cancer risks were via ingestion pathway exposures to dioxins and related compounds. Diesel particles, acrolein, and formaldehyde created the highest estimated inhalation health impacts. Model-estimated air concentrations were generally highest for NATA and lowest for the AERMOD version of MNRiskS. This validation study showed reasonable agreement between available measurements and model predictions, although results varied among pollutants, and predictions were often lower than measurements. The results increased confidence in identifying pollutants, pathways, geographic areas, sources, and receptors of potential concern, and thus provide a basis for informing pollution reduction strategies and focusing efforts on specific pollutants (diesel particles, acrolein, and formaldehyde), geographic areas (urban centers), and source categories (nonpoint sources). The results heighten concerns about risks from food chain exposures to dioxins and PAHs. Risk estimates were sensitive to variations in methodologies for treating emissions, dispersion, deposition, exposure, and toxicity. PMID:21651597

  2. Dispersion modeling of air pollutants in the atmosphere: a review

    NASA Astrophysics Data System (ADS)

    Leelőssy, Ádám; Molnár, Ferenc; Izsák, Ferenc; Havasi, Ágnes; Lagzi, István; Mészáros, Róbert

    2014-09-01

    Modeling of dispersion of air pollutants in the atmosphere is one of the most important and challenging scientific problems. There are several natural and anthropogenic events where passive or chemically active compounds are emitted into the atmosphere. The effect of these chemical species can have serious impacts on our environment and human health. Modeling the dispersion of air pollutants can predict this effect. Therefore, development of various model strategies is a key element for the governmental and scientific communities. We provide here a brief review on the mathematical modeling of the dispersion of air pollutants in the atmosphere. We discuss the advantages and drawbacks of several model tools and strategies, namely Gaussian, Lagrangian, Eulerian and CFD models. We especially focus on several recent advances in this multidisciplinary research field, like parallel computing using graphical processing units, or adaptive mesh refinement.

  3. APPLICATIONS OF DECISION THEORY TECHNIQUES IN AIR POLLUTION MODELING

    EPA Science Inventory

    The study applies methods of operations research to two basic areas of air pollution modeling: (1) the generation of wind fields for use in models of regional scale transport, diffusion and chemistry; and (2) the application of models in studies of optimal pollution control strat...

  4. Modelling of air pollution impacts from power stations in Kuwait

    SciTech Connect

    Al-Ajmi, D.N.; Abdal, Y. )

    1987-01-01

    Kuwait is undergoing rapid development with fast growth of both urban and industrial areas. The environmental impact of such activities is already noticeable. Conditions are therefore favorable for the use of air pollution models to supply adequate tools for effective air quality management in Kuwait. The Industrial Source Complex Long Term (ISCLT) dispersion model was developed by the U.S. Environmental Protection Agency in response to the need for comprehensive analytical techniques that can be used to evaluate the air quality impact of emissions from industrial sources. This model was used to predict the air quality impact of SO{sub 2} emissions from the Doha East and West Power Stations in Kuwait. The meteorological and emissions data and the seasonal and annual SO{sub 2} concentrations emitted from the power stations are described.

  5. Scale Issues in Air Quality Modeling

    EPA Science Inventory

    This presentation reviews past model evaluation studies investigating the impact of horizontal grid spacing on model performance. It also presents several examples of using a spectral decomposition technique to separate the forcings from processes operating on different time scal...

  6. Modelling heat and mass transfer in a membrane-based air-to-air enthalpy exchanger

    NASA Astrophysics Data System (ADS)

    Dugaria, S.; Moro, L.; Del, D., Col

    2015-11-01

    The diffusion of total energy recovery systems could lead to a significant reduction in the energy demand for building air-conditioning. With these devices, sensible heat and humidity can be recovered in winter from the exhaust airstream, while, in summer, the incoming air stream can be cooled and dehumidified by transferring the excess heat and moisture to the exhaust air stream. Membrane based enthalpy exchangers are composed by different channels separated by semi-permeable membranes. The membrane allows moisture transfer under vapour pressure difference, or water concentration difference, between the two sides and, at the same time, it is ideally impermeable to air and other contaminants present in exhaust air. Heat transfer between the airstreams occurs through the membrane due to the temperature gradient. The aim of this work is to develop a detailed model of the coupled heat and mass transfer mechanisms through the membrane between the two airstreams. After a review of the most relevant models published in the scientific literature, the governing equations are presented and some simplifying assumptions are analysed and discussed. As a result, a steady-state, two-dimensional finite difference numerical model is setup. The developed model is able to predict temperature and humidity evolution inside the channels. Sensible and latent heat transfer rate, as well as moisture transfer rate, are determined. A sensitive analysis is conducted in order to determine the more influential parameters on the thermal and vapour transfer.

  7. Stretch induced endothelin-1 secretion by adult rat astrocytes involves calcium influx via stretch-activated ion channels (SACs)

    SciTech Connect

    Ostrow, Lyle W.; Suchyna, Thomas M.; Sachs, Frederick

    2011-06-24

    Highlights: {yields} Endothelin-1 expression by adult rat astrocytes correlates with cell proliferation. {yields} Stretch-induced ET-1 is inhibited by GsMtx-4, a specific inhibitor of Ca{sup 2+} permeant SACs. {yields} The less specific SAC inhibitor streptomycin also inhibits ET-1 secretion. {yields} Stretch-induced ET-1 production depends on a calcium influx. {yields} SAC pharmacology may provide a new class of therapeutic agents for CNS pathology. -- Abstract: The expression of endothelins (ETs) and ET-receptors is often upregulated in brain pathology. ET-1, a potent vasoconstrictor, also inhibits the expression of astrocyte glutamate transporters and is mitogenic for astrocytes, glioma cells, neurons, and brain capillary endothelia. We have previously shown that mechanical stress stimulates ET-1 production by adult rat astrocytes. We now show in adult astrocytes that ET-1 production is driven by calcium influx through stretch-activated ion channels (SACs) and the ET-1 production correlates with cell proliferation. Mechanical stimulation using biaxial stretch (<20%) of a rubber substrate increased ET-1 secretion, and 4 {mu}M GsMTx-4 (a specific inhibitor of SACs) inhibited secretion by 30%. GsMTx-4 did not alter basal ET-1 levels in the absence of stretch. Decreasing the calcium influx by lowering extracellular calcium also inhibited stretch-induced ET-1 secretion without effecting ET-1 secretion in unstretched controls. Furthermore, inhibiting SACs with the less specific inhibitor streptomycin also inhibited stretch-induced ET-1 secretion. The data can be explained with a simple model in which ET-1 secretion depends on an internal Ca{sup 2+} threshold. This coupling of mechanical stress to the astrocyte endothelin system through SACs has treatment implications, since all pathology deforms the surrounding parenchyma.

  8. A diagnostic model for studying daytime urban air quality trends

    NASA Technical Reports Server (NTRS)

    Brewer, D. A.; Remsberg, E. E.; Woodbury, G. E.

    1981-01-01

    A single cell Eulerian photochemical air quality simulation model was developed and validated for selected days of the 1976 St. Louis Regional Air Pollution Study (RAPS) data sets; parameterizations of variables in the model and validation studies using the model are discussed. Good agreement was obtained between measured and modeled concentrations of NO, CO, and NO2 for all days simulated. The maximum concentration of O3 was also predicted well. Predicted species concentrations were relatively insensitive to small variations in CO and NOx emissions and to the concentrations of species which are entrained as the mixed layer rises.

  9. Giant prosthetic reinforcement of the visceral sac.

    PubMed

    Wantz, G E

    1989-11-01

    One hundred and seventy-nine patients with 237 hernias of the groin who were at high risk for recurrence after classic hernioplasty were operated upon; the procedure of giant prosthetic reinforcement of the visceral sac (GPRVS) was used. The patients in this series had predominantly recurrent and re-recurrent hernias. However, a few were obese with bilateral primary direct hernias and some had associated connective tissue disorders, such as Marfan and Ehlers-Danlos syndromes. GPRVS eliminates hernias of the groin by rendering the peritoneum inextensible by placing, in the preperitoneal space, a large prosthesis that extends far beyond the borders of the myopectineal orifice. The myopectineal orifice is the weak spot at which all hernias of the groin begin and is bounded by the rectus, oblique abdominal and iliopsoas muscles and the pectin of the pubis. In bilateral GPRVS, the peritoneum of both groins is reinforced with a single prosthesis inserted in the preperitoneal space through the midline. In unilateral GPRVS, the mesh envelops the peritoneum of a single groin. This simplifies the operation and makes it suitable for surgical centers that perform outpatient operations. The prosthesis with the best physical characteristics for GPRVS is Mersilene (polyester fiber). Unsutured prostheses of polypropylene and Teflon (polytetrafluoroethylene) may not adhere at the far edges, leading to a failure and recurrence. The over-all recurrence rate in this series of problem hernias was 3.7 per cent, which is extremely good. However, the rate becomes outstanding if recurrences resulting from meshes unsuitable for GPRVS are excluded. PMID:2814751

  10. Giant dacryocystomucopyocele in an adult: a review of lacrimal sac enlargements with clinical and histopathologic differential diagnoses.

    PubMed

    Perry, Lynn J P; Jakobiec, Frederick A; Zakka, Fouad R; Rubin, Peter A D

    2012-09-01

    Dacryocystocele is an umbrella term that refers to any diffuse, centrifugal enlargement of the lacrimal sac that results from combined proximal and distal obstructions in the tear drainage system. In adults, the presence of mucus in the cyst's contents leads to the modified term of dacryocystomucocele. If infection supervenes, which almost always occurs in protracted cases and adds the clinical dimension of a dacryocystitis, then a dacryocystomucopyocele is created. Dacryocystocele and its congeners are much rarer in adults than in children. We describe a 95-year-old woman with an acquired, enormous dacryocystomucopyocele, larger than any previously reported, that developed over 25 years and produced globe displacement with an associated conspicuous enlargement of the nasolacrimal duct. The aspirated sac fluid was mucopurulent and harbored low-virulence bacterial organisms of the Prevotella and Petosteptococcus species. In infants, dacryocystoceles are transitory as the result of spontaneously reversible factors. In adults, secondary proximal irreversible fibrotic strictures or bony changes around the nasolacrimal duct typically arise from chronic inflammation or low grade infection. Other possible causations of duct obstruction, in addition to florid mucosal edema, include encroachment on the duct by enlarged contiguous ethmoid air cells; a sinus mucocele or sinusitis; idiopathic, post-traumatic or dysplastic bony remodeling of the wall of the duct; and a neoplasm-all of which require some form of surgical intervention, typically dacryocystorhinostomy. The differential diagnosis of medial canthal swellings centered on the lacrimal sac spans malformations, diverticula, dermoid/epidermoid cysts, sac inflammations/infections causing swelling without generalized sac enlargement, encephaloceles and primary epithelial tumors, as well as extrinsic tumors impinging on the sac. PMID:22784678

  11. Air Leakage of U.S. Homes: Model Prediction

    SciTech Connect

    Sherman, Max H.; McWilliams, Jennifer A.

    2007-01-01

    Air tightness is an important property of building envelopes. It is a key factor in determining infiltration and related wall-performance properties such as indoor air quality, maintainability and moisture balance. Air leakage in U.S. houses consumes roughly 1/3 of the HVAC energy but provides most of the ventilation used to control IAQ. The Lawrence Berkeley National Laboratory has been gathering residential air leakage data from many sources and now has a database of more than 100,000 raw measurements. This paper uses a model developed from that database in conjunction with US Census Bureau data for estimating air leakage as a function of location throughout the US.

  12. INTEGRATING DISPERSION MODELING, RECEPTOR MODELING AND AIR MONITORING TO APPORTION INCINERATOR IMPACTS FOR EXPOSURE ASSESSMENT

    EPA Science Inventory

    An approach combining air quality measurements, GIS, receptor and dispersion modeling to apportion the impact of incinerator sources to individuals living in surrounding neighborhoods was presented. his technique wall applied to a Health and Clean Air Study investigating the resp...

  13. Automatic segmentation and classification of gestational sac based on mean sac diameter using medical ultrasound image

    NASA Astrophysics Data System (ADS)

    Khazendar, Shan; Farren, Jessica; Al-Assam, Hisham; Sayasneh, Ahmed; Du, Hongbo; Bourne, Tom; Jassim, Sabah A.

    2014-05-01

    Ultrasound is an effective multipurpose imaging modality that has been widely used for monitoring and diagnosing early pregnancy events. Technology developments coupled with wide public acceptance has made ultrasound an ideal tool for better understanding and diagnosing of early pregnancy. The first measurable signs of an early pregnancy are the geometric characteristics of the Gestational Sac (GS). Currently, the size of the GS is manually estimated from ultrasound images. The manual measurement involves multiple subjective decisions, in which dimensions are taken in three planes to establish what is known as Mean Sac Diameter (MSD). The manual measurement results in inter- and intra-observer variations, which may lead to difficulties in diagnosis. This paper proposes a fully automated diagnosis solution to accurately identify miscarriage cases in the first trimester of pregnancy based on automatic quantification of the MSD. Our study shows a strong positive correlation between the manual and the automatic MSD estimations. Our experimental results based on a dataset of 68 ultrasound images illustrate the effectiveness of the proposed scheme in identifying early miscarriage cases with classification accuracies comparable with those of domain experts using K nearest neighbor classifier on automatically estimated MSDs.

  14. A physically based analytical spatial air temperature and humidity model

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Endreny, Theodore A.; Nowak, David J.

    2013-09-01

    Spatial variation of urban surface air temperature and humidity influences human thermal comfort, the settling rate of atmospheric pollutants, and plant physiology and growth. Given the lack of observations, we developed a Physically based Analytical Spatial Air Temperature and Humidity (PASATH) model. The PASATH model calculates spatial solar radiation and heat storage based on semiempirical functions and generates spatially distributed estimates based on inputs of topography, land cover, and the weather data measured at a reference site. The model assumes that for all grids under the same mesoscale climate, grid air temperature and humidity are modified by local variation in absorbed solar radiation and the partitioning of sensible and latent heat. The model uses a reference grid site for time series meteorological data and the air temperature and humidity of any other grid can be obtained by solving the heat flux network equations. PASATH was coupled with the USDA iTree-Hydro water balance model to obtain evapotranspiration terms and run from 20 to 29 August 2010 at a 360 m by 360 m grid scale and hourly time step across a 285 km2 watershed including the urban area of Syracuse, NY. PASATH predictions were tested at nine urban weather stations representing variability in urban topography and land cover. The PASATH model predictive efficiency R2 ranged from 0.81 to 0.99 for air temperature and 0.77 to 0.97 for dew point temperature. PASATH is expected to have broad applications on environmental and ecological models.

  15. Impact of inherent meteorology uncertainty on air quality model predictions

    NASA Astrophysics Data System (ADS)

    Gilliam, Robert C.; Hogrefe, Christian; Godowitch, James M.; Napelenok, Sergey; Mathur, Rohit; Rao, S. Trivikrama

    2015-12-01

    It is well established that there are a number of different classifications and sources of uncertainties in environmental modeling systems. Air quality models rely on two key inputs, namely, meteorology and emissions. When using air quality models for decision making, it is important to understand how uncertainties in these inputs affect the simulated concentrations. Ensembles are one method to explore how uncertainty in meteorology affects air pollution concentrations. Most studies explore this uncertainty by running different meteorological models or the same model with different physics options and in some cases combinations of different meteorological and air quality models. While these have been shown to be useful techniques in some cases, we present a technique that leverages the initial condition perturbations of a weather forecast ensemble, namely, the Short-Range Ensemble Forecast system to drive the four-dimensional data assimilation in the Weather Research and Forecasting (WRF)-Community Multiscale Air Quality (CMAQ) model with a key focus being the response of ozone chemistry and transport. Results confirm that a sizable spread in WRF solutions, including common weather variables of temperature, wind, boundary layer depth, clouds, and radiation, can cause a relatively large range of ozone-mixing ratios. Pollutant transport can be altered by hundreds of kilometers over several days. Ozone-mixing ratios of the ensemble can vary as much as 10-20 ppb or 20-30% in areas that typically have higher pollution levels.

  16. The ASAC Air Carrier Investment Model (Third Generation)

    NASA Technical Reports Server (NTRS)

    Wingrove, Earl R., III; Gaier, Eric M.; Santmire, Tara E.

    1998-01-01

    To meet its objective of assisting the U.S. aviation industry with the technological challenges of the future, NASA must identify research areas that have the greatest potential for improving the operation of the air transportation system. To accomplish this, NASA is building an Aviation System Analysis Capability (ASAC). The ASAC differs from previous NASA modeling efforts in that the economic behavior of buyers and sellers in the air transportation and aviation industries is central to its conception. To link the economics of flight with the technology of flight, ASAC requires a parametrically based model with extensions that link airline operations and investments in aircraft with aircraft characteristics. This model also must provide a mechanism for incorporating air travel demand and profitability factors into the airlines' investment decisions. Finally, the model must be flexible and capable of being incorporated into a wide-ranging suite of economic and technical models flat are envisioned for ASAC.

  17. Modeling and simulation of metal-air batteries

    NASA Astrophysics Data System (ADS)

    Bevara, Vamsci Venkat

    Understanding of the transport phenomena in Li-air batteries is crucial for improving the performance and design of Li-air batteries. In this dissertation, the basic transport equations that govern the operation of Li-air batteries are derived by starting from the underlying mass and charge transport properties of the chemical species involved in the operation of the battery. Then, two approaches are presented to solve the transport equations. In the first approach, we use first-order approximations to derive a compact model for the discharge voltage of Li-air batteries with organic electrolyte. The model considers oxygen transport and volume change in the cathode, and Butler-Volmer kinetics at the anode and cathode electrodes, and is particularly useful to the fast prediction of the discharge voltage and specific capacities of Li-air batteries. In the second approach, we propose a finite-element model in which the basic transport equations are discretized over a finite space-time mesh and solved numerically to predict the battery characteristics under different discharge conditions and for different geometrical and physical parameters. Then, the transport equations are reexamined and improved to account for different pore microstructures, pore size distribution effects, and electron transport mechanisms through the discharge product. The different microstructures are simulated numerically and the performance of Li-air batteries is analyzed in each case. A novel hybrid model is introduced to explain the perceived transition from one microstructure to another.

  18. The ASAC Air Carrier Investment Model (Second Generation)

    NASA Technical Reports Server (NTRS)

    Wingrove, Earl R., III; Johnson, Jesse P.; Sickles, Robin C.; Good, David H.

    1997-01-01

    To meet its objective of assisting the U.S. aviation industry with the technological challenges of the future, NASA must identify research areas that have the greatest potential for improving the operation of the air transportation system. To accomplish this, NASA is building an Aviation System Analysis Capability (ASAC). The ASAC differs from previous NASA modeling efforts in that the economic behavior of buyers and sellers in the air transportation and aviation industries is central to its conception. To link the economics of flight with the technology of flight, ASAC requires a parametrically based mode with extensions that link airline operations and investments in aircraft with aircraft characteristics. This model also must provide a mechanism for incorporating air travel demand and profitability factors into the airlines' investment decisions. Finally, the model must be flexible and capable of being incorporated into a wide-ranging suite of economic and technical models that are envisioned for ASAC. We describe a second-generation Air Carrier Investment Model that meets these requirements. The enhanced model incorporates econometric results from the supply and demand curves faced by U.S.-scheduled passenger air carriers. It uses detailed information about their fleets in 1995 to make predictions about future aircraft purchases. It enables analysts with the ability to project revenue passenger-miles flown, airline industry employment, airline operating profit margins, numbers and types of aircraft in the fleet, and changes in aircraft manufacturing employment under various user-defined scenarios.

  19. Developing of a New Atmospheric Ionizing Radiation (AIR) Model

    NASA Technical Reports Server (NTRS)

    Clem, John M.; deAngelis, Giovanni; Goldhagen, Paul; Wilson, John W.

    2003-01-01

    As a result of the research leading to the 1998 AIR workshop and the subsequent analysis, the neutron issues posed by Foelsche et al. and further analyzed by Hajnal have been adequately resolved. We are now engaged in developing a new atmospheric ionizing radiation (AIR) model for use in epidemiological studies and air transportation safety assessment. A team was formed to examine a promising code using the basic FLUKA software but with modifications to allow multiple charged ion breakup effects. A limited dataset of the ER-2 measurements and other cosmic ray data will be used to evaluate the use of this code.

  20. Analytical model for contaminant mass removal by air sparging

    SciTech Connect

    Rabideau, A.J.; Blayden, J.M.

    1998-12-31

    An analytical model was developed to predict the removal of volatile organic compounds (VOCs) from ground water by air sparging (AS). The model treats the air sparging zone as a completely mixed reactor subject to the removal of dissolved contaminants by volatilization, advection, and first-order decay. Nonequilibrium desorption is approximated as a first-order mass transfer process. The model reproduces the tailing and rebound behavior often observed at AS sites, and would normally require the estimation of three site-specific parameters. Dimensional analysis demonstrates that predicting tailing can be interpreted in terms of kinetic desorption or diffusion of aqueous phase contaminants into discrete air channels. Related work is ongoing to test the model against field data.

  1. Meteorological and air pollution modeling for an urban airport

    NASA Technical Reports Server (NTRS)

    Swan, P. R.; Lee, I. Y.

    1980-01-01

    Results are presented of numerical experiments modeling meteorology, multiple pollutant sources, and nonlinear photochemical reactions for the case of an airport in a large urban area with complex terrain. A planetary boundary-layer model which predicts the mixing depth and generates wind, moisture, and temperature fields was used; it utilizes only surface and synoptic boundary conditions as input data. A version of the Hecht-Seinfeld-Dodge chemical kinetics model is integrated with a new, rapid numerical technique; both the San Francisco Bay Area Air Quality Management District source inventory and the San Jose Airport aircraft inventory are utilized. The air quality model results are presented in contour plots; the combined results illustrate that the highly nonlinear interactions which are present require that the chemistry and meteorology be considered simultaneously to make a valid assessment of the effects of individual sources on regional air quality.

  2. Air Quality Modeling in Support of the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS)

    EPA Science Inventory

    A major challenge in traffic-related air pollution exposure studies is the lack of information regarding pollutant exposure characterization. Air quality modeling can provide spatially and temporally varying exposure estimates for examining relationships between traffic-related a...

  3. INDOOR AIR QUALITY MODEL VERSION 1.0 DOCUMENTATION

    EPA Science Inventory

    The report presents a multiroom model for estimating the impact of various sources on indoor air quality (IAQ). The model is written for use on IBM-PC and compatible microcomputers. It is easy to use with a menu-driven user interface. Data are entered using a fill-in-a-form inter...

  4. A PHOTOCHEMICAL BOX MODEL FOR URBAN AIR QUALITY SIMULATION

    EPA Science Inventory

    A simple 'box-approach' to air quality simulation modeling has been developed in conjunction with a newly formulated photochemical kinetic mechanism to produce an easily applied Photochemical Box Model (PBM). This approach represents an urban area as a single cell 20 km in both l...

  5. FUNDAMENTAL MASS TRANSFER MODELS FOR INDOOR AIR POLLUTION SOURCES

    EPA Science Inventory

    The paper discusses a simple, fundamental mass transfer model, based on Fick's Law of Diffusion, for indoor air pollution wet sorbent-based sources. (Note: Models are needed to predict emissions from indoor sources. hile empirical approaches based on dynamic chamber data are usef...

  6. APPCD - INTEGRATED AIR POLLUTION CONTROL SYSTEM (IAPCS)COST MODEL

    EPA Science Inventory

    The Integrated Air Pollution Control System (IAPCS)Cost Model is a compiled model written in FORTRAN and C language which is designed to be used on an IBM or compatible PC with 640K or lower RAM and at least 1.5 Mb of hard drive space. It was developed over the past several years...

  7. AIR POLLUTION MODELS AS DESCRIPTORS OF CAUSE-EFFECT RELATIONSHIPS

    EPA Science Inventory

    The problem of air pollution modeling is treated beginning from a philosophical standpoint, in which a model is viewed as a universal statement and a complementary set of singular statements from which specific cause-effect relationships are deduced; proceeding to the formulation...

  8. RELMAP: A REGIONAL LAGRANGIAN MODEL OF AIR POLLUTION - USER'S GUIDE

    EPA Science Inventory

    The regional Lagrangian Model of Air Pollution (RELMAP) is a mass conserving, Lagrangian model that simulates ambient concentrations and wet and dry depositions of SO2, SO4=, and fine and coarse particulate matter over the eastern United States and southeastern Canada (default do...

  9. Air Quality Modeling of Traffic-related Air Pollutants for the NEXUS Study

    EPA Science Inventory

    The paper presents the results of the model applications to estimate exposure metrics in support of an epidemiologic study in Detroit, Michigan. A major challenge in traffic-related air pollution exposure studies is the lack of information regarding pollutant exposure characteriz...

  10. Assessing The Policy Relevance of Regional Air Quality Models

    NASA Astrophysics Data System (ADS)

    Holloway, T.

    This work presents a framework for discussing the policy relevance of models, and regional air quality models in particular. We define four criteria: 1) The scientific status of the model; 2) Its ability to address primary environmental concerns; 3) The position of modeled environmental issues on the political agenda; and 4) The role of scientific input into the policy process. This framework is applied to current work simulating the transport of nitric acid in Asia with the ATMOS-N model, to past studies on air pollution transport in Europe with the EMEP model, and to future applications of the United States Environmental Protection Agency (US EPA) Models-3. The Lagrangian EMEP model provided critical input to the development of the 1994 Oslo and 1999 Gothenburg Protocols to the Convention on Long-Range Transbound- ary Air Pollution, as well as to the development of EU directives, via its role as a component of the RAINS integrated assessment model. Our work simulating reactive nitrogen in Asia follows the European example in part, with the choice of ATMOS-N, a regional Lagrangian model to calculate source-receptor relationships for the RAINS- Asia integrated assessment model. However, given differences between ATMOS-N and the EMEP model, as well as differences between the scientific and political cli- mates facing Europe ten years ago and Asia today, the role of these two models in the policy process is very different. We characterize the different aspects of policy relevance between these models using our framework, and consider how the current generation US EPA air quality model compares, in light of its Eulerian structure, dif- ferent objectives, and the policy context of the US.

  11. CFD Modeling For Urban Air Quality Studies

    SciTech Connect

    Lee, R L; Lucas, L J; Humphreys, T D; Chan, S T

    2003-10-27

    The computational fluid dynamics (CFD) approach has been increasingly applied to many atmospheric applications, including flow over buildings and complex terrain, and dispersion of hazardous releases. However there has been much less activity on the coupling of CFD with atmospheric chemistry. Most of the atmospheric chemistry applications have been focused on the modeling of chemistry on larger spatial scales, such as global or urban airshed scale. However, the increased attentions to terrorism threats have stimulated the need of much more detailed simulations involving chemical releases within urban areas. This motivated us to develop a new CFD/coupled-chemistry capability as part of our modeling effort.

  12. Intraoperative Sac Pressure Measurement During Endovascular Abdominal Aortic Aneurysm Repair

    SciTech Connect

    Ishibashi, Hiroyuki; Ishiguchi, Tsuneo; Ohta, Takashi; Sugimoto, Ikuo; Iwata, Hirohide; Yamada, Tetsuya; Tadakoshi, Masao; Hida, Noriyuki; Orimoto, Yuki; Kamei, Seiji

    2010-10-15

    PurposeIntraoperative sac pressure was measured during endovascular abdominal aortic aneurysm repair (EVAR) to evaluate the clinical significance of sac pressure measurement.MethodsA microcatheter was placed in an aneurysm sac from the contralateral femoral artery, and sac pressure was measured during EVAR procedures in 47 patients. Aortic blood pressure was measured as a control by a catheter from the left brachial artery.ResultsThe systolic sac pressure index (SPI) was 0.87 {+-} 0.10 after main-body deployment, 0.63 {+-} 0.12 after leg deployment (P < 0.01), and 0.56 {+-} 0.12 after completion of the procedure (P < 0.01). Pulse pressure was 55 {+-} 21 mmHg, 23 {+-} 15 mmHg (P < 0.01), and 16 {+-} 12 mmHg (P < 0.01), respectively. SPI showed no significant differences between the Zenith and Excluder stent grafts (0.56 {+-} 0.13 vs. 0.54 {+-} 0.10, NS). Type I endoleak was found in seven patients (15%), and the SPI decreased from 0.62 {+-} 0.10 to 0.55 {+-} 0.10 (P = 0.10) after fixing procedures. Type II endoleak was found in 12 patients (26%) by completion angiography. The SPI showed no difference between type II endoleak positive and negative (0.58 {+-} 0.12 vs. 0.55 {+-} 0.12, NS). There were no significant differences between the final SPI of abdominal aortic aneurysms in which the diameter decreased in the follow-up and that of abdominal aortic aneurysms in which the diameter did not change (0.53 {+-} 0.12 vs. 0.57 {+-} 0.12, NS).ConclusionsSac pressure measurement was useful for instant hemodynamic evaluation of the EVAR procedure, especially in type I endoleaks. However, on the basis of this small study, the SPI cannot be used to reliably predict sac growth or regression.

  13. Spatial air pollution modelling for a West-African town.

    PubMed

    Gebreab, Sirak Zenebe; Vienneau, Danielle; Feigenwinter, Christian; Bâ, Hâmpaté; Cissé, Guéladio; Tsai, Ming-Yi

    2015-01-01

    Land use regression (LUR) modelling is a common approach used in European and Northern American epidemiological studies to assess urban and traffic related air pollution exposures. Studies applying LUR in Africa are lacking. A need exists to understand if this approach holds for an African setting, where urban features, pollutant exposures and data availability differ considerably from other continents. We developed a parsimonious regression model based on 48-hour nitrogen dioxide (NO2) concentrations measured at 40 sites in Kaédi, a medium sized West-African town, and variables generated in a geographic information system (GIS). Road variables and settlement land use characteristics were found to be important predictors of 48-hour NO2 concentration in the model. About 68% of concentration variability in the town was explained by the model. The model was internally validated by leave-one-out cross-validation and it was found to perform moderately well. Furthermore, its parameters were robust to sampling variation. We applied the model at 100 m pixels to create a map describing the broad spatial pattern of NO2 across Kaédi. In this research, we demonstrated the potential for LUR as a valid, cost-effective approach for air pollution modelling and mapping in an African town. If the methodology were to be adopted by environmental and public health authorities in these regions, it could provide a quick assessment of the local air pollution burden and potentially support air pollution policies and guidelines. PMID:26618306

  14. Mathematical model of an air-filled alpha stirling refrigerator

    NASA Astrophysics Data System (ADS)

    McFarlane, Patrick; Semperlotti, Fabio; Sen, Mihir

    2013-10-01

    This work develops a mathematical model for an alpha Stirling refrigerator with air as the working fluid and will be useful in optimizing the mechanical design of these machines. Two pistons cyclically compress and expand air while moving sinusoidally in separate chambers connected by a regenerator, thus creating a temperature difference across the system. A complete non-linear mathematical model of the machine, including air thermodynamics, and heat transfer from the walls, as well as heat transfer and fluid resistance in the regenerator, is developed. Non-dimensional groups are derived, and the mathematical model is numerically solved. The heat transfer and work are found for both chambers, and the coefficient of performance of each chamber is calculated. Important design parameters are varied and their effect on refrigerator performance determined. This sensitivity analysis, which shows what the significant parameters are, is a useful tool for the design of practical Stirling refrigeration systems.

  15. An inexact fuzzy-chance-constrained air quality management model.

    PubMed

    Xu, Ye; Huang, Guohe; Qin, Xiaosheng

    2010-07-01

    Regional air pollution is a major concern for almost every country because it not only directly relates to economic development, but also poses significant threats to environment and public health. In this study, an inexact fuzzy-chance-constrained air quality management model (IFAMM) was developed for regional air quality management under uncertainty. IFAMM was formulated through integrating interval linear programming (ILP) within a fuzzy-chance-constrained programming (FCCP) framework and could deal with uncertainties expressed as not only possibilistic distributions but also discrete intervals in air quality management systems. Moreover, the constraints with fuzzy variables could be satisfied at different confidence levels such that various solutions with different risk and cost considerations could be obtained. The developed model was applied to a hypothetical case of regional air quality management. Six abatement technologies and sulfur dioxide (SO2) emission trading under uncertainty were taken into consideration. The results demonstrated that IFAMM could help decision-makers generate cost-effective air quality management patterns, gain in-depth insights into effects of the uncertainties, and analyze tradeoffs between system economy and reliability. The results also implied that the trading scheme could achieve lower total abatement cost than a nontrading one. PMID:20681428

  16. Joint space-time geostatistical model for air quality surveillance

    NASA Astrophysics Data System (ADS)

    Russo, A.; Soares, A.; Pereira, M. J.

    2009-04-01

    Air pollution and peoples' generalized concern about air quality are, nowadays, considered to be a global problem. Although the introduction of rigid air pollution regulations has reduced pollution from industry and power stations, the growing number of cars on the road poses a new pollution problem. Considering the characteristics of the atmospheric circulation and also the residence times of certain pollutants in the atmosphere, a generalized and growing interest on air quality issues led to research intensification and publication of several articles with quite different levels of scientific depth. As most natural phenomena, air quality can be seen as a space-time process, where space-time relationships have usually quite different characteristics and levels of uncertainty. As a result, the simultaneous integration of space and time is not an easy task to perform. This problem is overcome by a variety of methodologies. The use of stochastic models and neural networks to characterize space-time dispersion of air quality is becoming a common practice. The main objective of this work is to produce an air quality model which allows forecasting critical concentration episodes of a certain pollutant by means of a hybrid approach, based on the combined use of neural network models and stochastic simulations. A stochastic simulation of the spatial component with a space-time trend model is proposed to characterize critical situations, taking into account data from the past and a space-time trend from the recent past. To identify near future critical episodes, predicted values from neural networks are used at each monitoring station. In this paper, we describe the design of a hybrid forecasting tool for ambient NO2 concentrations in Lisbon, Portugal.

  17. Development of a distributed air pollutant dry deposition modeling framework.

    PubMed

    Hirabayashi, Satoshi; Kroll, Charles N; Nowak, David J

    2012-12-01

    A distributed air pollutant dry deposition modeling system was developed with a geographic information system (GIS) to enhance the functionality of i-Tree Eco (i-Tree, 2011). With the developed system, temperature, leaf area index (LAI) and air pollutant concentration in a spatially distributed form can be estimated, and based on these and other input variables, dry deposition of carbon monoxide (CO), nitrogen dioxide (NO(2)), sulfur dioxide (SO(2)), and particulate matter less than 10 microns (PM10) to trees can be spatially quantified. Employing nationally available road network, traffic volume, air pollutant emission/measurement and meteorological data, the developed system provides a framework for the U.S. city managers to identify spatial patterns of urban forest and locate potential areas for future urban forest planting and protection to improve air quality. To exhibit the usability of the framework, a case study was performed for July and August of 2005 in Baltimore, MD. PMID:22858662

  18. Modeling of Magnetron Argon Plasma Issuing into Ambient Air

    NASA Astrophysics Data System (ADS)

    Li, Lin-Cun; Xia, Wei-Dong

    2008-01-01

    A mathematical model is presented to describe the heat transfer and fluid flow in a magnetron plasma torch, by means of a commercial computational fluid dynamics (CFD) code fluent. Specific calculations are presented for a gas-mixing system (i.e., an argon plasma discharging into an air environment), operating in a laminar mode. Numerical results show that an external axial magnetic field (AMF) may have a significant effect on the behavior of an arc plasma, i.e., the AMF will impel the plasma to retract axially and expand radially. In addition, the use of an AMF induces a strong air indraft at the torch spout, and the air mixing with the argon gas results in a marked increase in arc voltage. An increment in the amount of the oncoming argon gas restrains the quantity of the air indraft, and this should be responsible for a lower arc voltage in such an AMF torch when a larger gas inflow is used.

  19. Modeling the Environmental Impact of Air Traffic Operations

    NASA Technical Reports Server (NTRS)

    Chen, Neil

    2011-01-01

    There is increased interest to understand and mitigate the impacts of air traffic on the climate, since greenhouse gases, nitrogen oxides, and contrails generated by air traffic can have adverse impacts on the climate. The models described in this presentation are useful for quantifying these impacts and for studying alternative environmentally aware operational concepts. These models have been developed by leveraging and building upon existing simulation and optimization techniques developed for the design of efficient traffic flow management strategies. Specific enhancements to the existing simulation and optimization techniques include new models that simulate aircraft fuel flow, emissions and contrails. To ensure that these new models are beneficial to the larger climate research community, the outputs of these new models are compatible with existing global climate modeling tools like the FAA's Aviation Environmental Design Tool.

  20. Modeling of membrane processes for air revitalization and water recovery

    NASA Technical Reports Server (NTRS)

    Lange, Kevin E.; Foerg, Sandra L.; Dall-Bauman, Liese A.

    1992-01-01

    Gas-separation and reverse-osmosis membrane models are being developed in conjunction with membrane testing at NASA JSC. The completed gas-separation membrane model extracts effective component permeabilities from multicomponent test data, and predicts the effects of flow configuration, operating conditions, and membrane dimensions on module performance. Variable feed- and permeate-side pressures are considered. The model has been applied to test data for hollow-fiber membrane modules with simulated cabin-air feeds. Results are presented for a membrane designed for air drying applications. Extracted permeabilities are used to predict the effect of operating conditions on water enrichment in the permeate. A first-order reverse-osmosis model has been applied to test data for spiral wound membrane modules with a simulated hygiene water feed. The model estimates an effective local component rejection coefficient under pseudosteady-state conditions. Results are used to define requirements for a detailed reverse-osmosis model.

  1. Mathematical model of one-man air revitalization system

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A mathematical model was developed for simulating the steady state performance in electrochemical CO2 concentrators which utilize (NMe4)2 CO3 (aq.) electrolyte. This electrolyte, which accommodates a wide range of air relative humidity, is most suitable for one-man air revitalization systems. The model is based on the solution of coupled nonlinear ordinary differential equations derived from mass transport and rate equations for the processes which take place in the cell. The boundary conditions are obtained by solving the mass and energy transport equations. A shooting method is used to solve the differential equations.

  2. The anuran vocal sac: a tool for multimodal signalling

    PubMed Central

    Starnberger, Iris; Preininger, Doris; Hödl, Walter

    2014-01-01

    Although in anurans the predominant mode of intra- and intersexual communication is vocalization, modalities used in addition to or instead of acoustic signals range from seismic and visual to chemical. In some cases, signals of more than one modality are produced through or by the anuran vocal sac. However, its role beyond acoustics has been neglected for some time and nonacoustic cues such as vocal sac movement have traditionally been seen as an epiphenomenon of sound production. The diversity in vocal sac coloration and shape found in different species is striking and recently its visual properties have been given a more important role in signalling. Chemosignals seem to be the dominant communication mode in newts, salamanders and caecilians and certainly play a role in the aquatic life phase of anurans, but airborne chemical signalling has received less attention. There is, however, increasing evidence that at least some terrestrial anuran species integrate acoustic, visual and chemical cues in species recognition and mate choice and a few secondarily mute anuran species seem to fully rely on volatile chemical cues produced in glands on the vocal sac. Within vertebrates, frogs in particular are suitable organisms for investigating multimodal communication by means of experiments, since they are tolerant of disturbance by observers and can be easily manipulated under natural conditions. Thus, the anuran vocal sac might be of great interest not only to herpetologists, but also to behavioural biologists studying communication systems. PMID:25389375

  3. The anuran vocal sac: a tool for multimodal signalling.

    PubMed

    Starnberger, Iris; Preininger, Doris; Hödl, Walter

    2014-11-01

    Although in anurans the predominant mode of intra- and intersexual communication is vocalization, modalities used in addition to or instead of acoustic signals range from seismic and visual to chemical. In some cases, signals of more than one modality are produced through or by the anuran vocal sac. However, its role beyond acoustics has been neglected for some time and nonacoustic cues such as vocal sac movement have traditionally been seen as an epiphenomenon of sound production. The diversity in vocal sac coloration and shape found in different species is striking and recently its visual properties have been given a more important role in signalling. Chemosignals seem to be the dominant communication mode in newts, salamanders and caecilians and certainly play a role in the aquatic life phase of anurans, but airborne chemical signalling has received less attention. There is, however, increasing evidence that at least some terrestrial anuran species integrate acoustic, visual and chemical cues in species recognition and mate choice and a few secondarily mute anuran species seem to fully rely on volatile chemical cues produced in glands on the vocal sac. Within vertebrates, frogs in particular are suitable organisms for investigating multimodal communication by means of experiments, since they are tolerant of disturbance by observers and can be easily manipulated under natural conditions. Thus, the anuran vocal sac might be of great interest not only to herpetologists, but also to behavioural biologists studying communication systems. PMID:25389375

  4. Modeling Air Stripping of Ammonia in an Agitated Vessel

    SciTech Connect

    Kofi, Adu-Wusu; Martino, Christopher J.; Wilmarth, William R.; Bennett, William M.; Peters, Robert s.

    2005-11-29

    A model has been developed to predict the rate of removal of ammonia (NH{sub 3}) from solution in a sparged agitated vessel. The model is first-order with respect to liquid-phase concentration of NH{sub 3}. The rate constant for the first-order equation is a function of parameters related to the vessel/impeller characteristics, the air/liquid properties as well as the process conditions. However, the vessel/impeller characteristics, the air/liquid properties, and the process conditions reduce the rate constant dependence to only three parameters, namely, the air sparge rate, the liquid volume or batch size, and the Henry's law constant of NH{sub 3} for the liquid or solution. Thus, the rate of removal is not mass-transfer limited. High air sparge rates, high temperatures, and low liquid volumes or batch sizes increase the rate of removal of NH{sub 3} from solution. The Henry's law constant effect is somewhat reflected in the temperature since Henry's law constant increases with increasing temperature. Data obtained from actual air stripping operation agree fairly well with the model predictions.

  5. Economic damages of ozone air pollution to crops using combined air quality and GIS modelling

    NASA Astrophysics Data System (ADS)

    Vlachokostas, Ch.; Nastis, S. A.; Achillas, Ch.; Kalogeropoulos, K.; Karmiris, I.; Moussiopoulos, N.; Chourdakis, E.; Banias, G.; Limperi, N.

    2010-09-01

    This study aims at presenting a combined air quality and GIS modelling methodological approach in order to estimate crop damages from photochemical air pollution, depict their spatial resolution and assess the order of magnitude regarding the corresponding economic damages. The analysis is conducted within the Greater Thessaloniki Area, Greece, a Mediterranean territory which is characterised by high levels of photochemical air pollution and considerable agricultural activity. Ozone concentration fields for 2002 and for specific emission reduction scenarios for the year 2010 were estimated with the Ozone Fine Structure model in the area under consideration. Total economic damage to crops turns out to be significant and estimated to be approximately 43 M€ for the reference year. Production of cotton presents the highest economic loss, which is over 16 M€, followed by table tomato (9 M€), rice (4.2 M€), wheat (4 M€) and oilseed rape (2.8 M€) cultivations. Losses are not spread uniformly among farmers and the major losses occur in areas with valuable ozone-sensitive crops. The results are very useful for highlighting the magnitude of the total economic impacts of photochemical air pollution to the area's agricultural sector and can potentially be used for comparison with studies worldwide. Furthermore, spatial analysis of the economic damage could be of importance for governmental authorities and decision makers since it provides an indicative insight, especially if the economic instruments such as financial incentives or state subsidies to farmers are considered.

  6. Uncertainty, ensembles and air quality dispersion modeling: applications and challenges

    NASA Astrophysics Data System (ADS)

    Dabberdt, Walter F.; Miller, Erik

    The past two decades have seen significant advances in mesoscale meteorological modeling research and applications, such as the development of sophisticated and now widely used advanced mesoscale prognostic models, large eddy simulation models, four-dimensional data assimilation, adjoint models, adaptive and targeted observational strategies, and ensemble and probabilistic forecasts. Some of these advances are now being applied to urban air quality modeling and applications. Looking forward, it is anticipated that the high-priority air quality issues for the near-to-intermediate future will likely include: (1) routine operational forecasting of adverse air quality episodes; (2) real-time high-level support to emergency response activities; and (3) quantification of model uncertainty. Special attention is focused here on the quantification of model uncertainty through the use of ensemble simulations. Application to emergency-response dispersion modeling is illustrated using an actual event that involved the accidental release of the toxic chemical oleum. Both surface footprints of mass concentration and the associated probability distributions at individual receptors are seen to provide valuable quantitative indicators of the range of expected concentrations and their associated uncertainty.

  7. Meteorological Processes Affecting Air Quality – Research and Model Development Needs

    EPA Science Inventory

    Meteorology modeling is an important component of air quality modeling systems that defines the physical and dynamical environment for atmospheric chemistry. The meteorology models used for air quality applications are based on numerical weather prediction models that were devel...

  8. Fast frequency hopping codes applied to SAC optical CDMA network

    NASA Astrophysics Data System (ADS)

    Tseng, Shin-Pin

    2015-06-01

    This study designed a fast frequency hopping (FFH) code family suitable for application in spectral-amplitude-coding (SAC) optical code-division multiple-access (CDMA) networks. The FFH code family can effectively suppress the effects of multiuser interference and had its origin in the frequency hopping code family. Additional codes were developed as secure codewords for enhancing the security of the network. In considering the system cost and flexibility, simple optical encoders/decoders using fiber Bragg gratings (FBGs) and a set of optical securers using two arrayed-waveguide grating (AWG) demultiplexers (DeMUXs) were also constructed. Based on a Gaussian approximation, expressions for evaluating the bit error rate (BER) and spectral efficiency (SE) of SAC optical CDMA networks are presented. The results indicated that the proposed SAC optical CDMA network exhibited favorable performance.

  9. SAC-C mission, an example of international cooperation

    NASA Astrophysics Data System (ADS)

    Colomb, F. R.; Alonso, C.; Hofmann, C.; Nollmann, I.

    2004-01-01

    The SAC-C is an international Earth observing satellite mission developed as a partnership between CONAE and NASA, with additional support in instrumentation and satellite development from the Danish DSRI, the Italian ASI, the French CNES and the Brazilian INPE. The SAC-C satellite was successfully launched by a Delta II rocket on November 21, 2000, from Vandenberg AFB, California, USA. The purpose of this mission is to carry out observations which bear interest both for the USA and Argentina, thus contributing effectively to NASA's Earth Science Program and to CONAE's National Space Program. The inclusion of SAC-C in the "morning constellation", jointly with NASA satellites Landsat 7, EO 1 and Terra, is another example of an important international cooperation which strengthens the output of any single mission.

  10. Aquarius and the Aquarius/SAC-D Mission

    NASA Technical Reports Server (NTRS)

    LeVine, D. M.; Lagerloef, G. S. E.; Torrusio, S.

    2010-01-01

    Aquarius is a combination L-band radiometer and scatterometer designed to map the salinity field at the ocean surface from space. It will be flown on the Aquarius/SAC-D mission, a partnership between the USA space agency (NASA) and Argentine space agency (CONAE). The mission is composed of two parts: (a) The Aquarius instrument being developed as part of NASA.s Earth System Science Pathfinder (ESSP) program; and (b) SAC-D the fourth spacecraft service platform in the CONAE Satellite de Aplicaciones Cientificas (SAC) program. The primary focus of the mission is to monitor the seasonal and interannual variations of the salinity field in the open ocean. The mission also meets the needs of the Argentine space program for monitoring the environment and for hazard detection and includes several instruments related to these goals.

  11. Modeling, Monitoring and Fault Diagnosis of Spacecraft Air Contaminants

    NASA Technical Reports Server (NTRS)

    Ramirez, W. Fred; Skliar, Mikhail; Narayan, Anand; Morgenthaler, George W.; Smith, Gerald J.

    1998-01-01

    Control of air contaminants is a crucial factor in the safety considerations of crewed space flight. Indoor air quality needs to be closely monitored during long range missions such as a Mars mission, and also on large complex space structures such as the International Space Station. This work mainly pertains to the detection and simulation of air contaminants in the space station, though much of the work is easily extended to buildings, and issues of ventilation systems. Here we propose a method with which to track the presence of contaminants using an accurate physical model, and also develop a robust procedure that would raise alarms when certain tolerance levels are exceeded. A part of this research concerns the modeling of air flow inside a spacecraft, and the consequent dispersal pattern of contaminants. Our objective is to also monitor the contaminants on-line, so we develop a state estimation procedure that makes use of the measurements from a sensor system and determines an optimal estimate of the contamination in the system as a function of time and space. The real-time optimal estimates in turn are used to detect faults in the system and also offer diagnoses as to their sources. This work is concerned with the monitoring of air contaminants aboard future generation spacecraft and seeks to satisfy NASA's requirements as outlined in their Strategic Plan document (Technology Development Requirements, 1996).

  12. Modeling Airborne Beryllium Concentrations From Open Air Dynamic Testing

    NASA Astrophysics Data System (ADS)

    Becker, N. M.

    2003-12-01

    A heightened awareness of airborne beryllium contamination from industrial activities was reestablished during the late 1980's and early 1990's when it became recognized that Chronic Beryllium Disease (CBD) had not been eradicated, and that the Occupational Health and Safety Administration standards for occupational air exposure to beryllium may not be sufficiently protective. This was in response to the observed CBD increase in multiple industrial settings where beryllium was manufactured and/or machined, thus producing beryllium particulates which are then available for redistribution by airborne transport. Sampling and modeling design activities were expanded at Los Alamos National Laboratory in New Mexico to evaluate potential airborne beryllium exposure to workers who might be exposed during dynamic testing activities associated with nuclear weapons Stockpile Stewardship. Herein is presented the results of multiple types of collected air measurements that were designed to characterize the production and dispersion of beryllium used in components whose performance is evaluated during high explosive detonation at open air firing sites. Data from fallout, high volume air, medium volume air, adhesive film, particle size impactor, and fine-particulate counting techniques will be presented, integrated, and applied in dispersion modeling to assess potential onsite and offsite personal exposures resulting from dynamic testing activities involving beryllium.

  13. Scale Issues in Air Quality Modeling Policy Support

    EPA Science Inventory

    This study examines the issues relating to the use of regional photochemical air quality models for evaluating their performance in reproducing the spatio-temporal features embedded in the observations and for designing emission control strategies needed to achieve compliance wit...

  14. QUEST FOR AN ADVANCED REGIONAL AIR QUALITY MODEL

    EPA Science Inventory

    Organizations interested in advancing the science and technology of regional air quality modeling on the "grand challenge" scale have joined to form CAMRAQ. hey plan to leverage their research finds by collaborating on the development and evaluation of CMSs so ambitious in scope ...

  15. ANALYTICAL DIFFUSION MODEL FOR LONG DISTANCE TRANSPORT OF AIR POLLUTANTS

    EPA Science Inventory

    A steady-state two-dimensional diffusion model suitable for predicting ambient air pollutant concentrations averaged over a long time period (e.g., month, season, or year) and resulting from the transport of pollutants for distances greater than about 100 km from the source is de...

  16. AQMEII: A New International Initiative on Air Quality Model Evaluation

    EPA Science Inventory

    We provide a conceptual view of the process of evaluating regional-scale three-dimensional numerical photochemical air quality modeling system, based on an examination of existing approached to the evaluation of such systems as they are currently used in a variety of application....

  17. The analysis of a generic air-to-air missile simulation model

    NASA Technical Reports Server (NTRS)

    Kaplan, Joseph A.; Chappell, Alan R.; Mcmanus, John W.

    1994-01-01

    A generic missile model was developed to evaluate the benefits of using a dynamic missile fly-out simulation system versus a static missile launch envelope system for air-to-air combat simulation. This paper examines the performance of a launch envelope model and a missile fly-out model. The launch envelope model bases its probability of killing the target aircraft on the target aircraft's position at the launch time of the weapon. The benefits gained from a launch envelope model are the simplicity of implementation and the minimal computational overhead required. A missile fly-out model takes into account the physical characteristics of the missile as it simulates the guidance, propulsion, and movement of the missile. The missile's probability of kill is based on the missile miss distance (or the minimum distance between the missile and the target aircraft). The problems associated with this method of modeling are a larger computational overhead, the additional complexity required to determine the missile miss distance, and the additional complexity of determining the reason(s) the missile missed the target. This paper evaluates the two methods and compares the results of running each method on a comprehensive set of test conditions.

  18. InMAP: a new model for air pollution interventions

    NASA Astrophysics Data System (ADS)

    Tessum, C. W.; Hill, J. D.; Marshall, J. D.

    2015-10-01

    Mechanistic air pollution models are essential tools in air quality management. Widespread use of such models is hindered, however, by the extensive expertise or computational resources needed to run most models. Here, we present InMAP (Intervention Model for Air Pollution), which offers an alternative to comprehensive air quality models for estimating the air pollution health impacts of emission reductions and other potential interventions. InMAP estimates annual-average changes in primary and secondary fine particle (PM2.5) concentrations - the air pollution outcome generally causing the largest monetized health damages - attributable to annual changes in precursor emissions. InMAP leverages pre-processed physical and chemical information from the output of a state-of-the-science chemical transport model (WRF-Chem) within an Eulerian modeling framework, to perform simulations that are several orders of magnitude less computationally intensive than comprehensive model simulations. InMAP uses a variable resolution grid that focuses on human exposures by employing higher spatial resolution in urban areas and lower spatial resolution in rural and remote locations and in the upper atmosphere; and by directly calculating steady-state, annual average concentrations. In comparisons run here, InMAP recreates WRF-Chem predictions of changes in total PM2.5 concentrations with population-weighted mean fractional error (MFE) and bias (MFB) < 10 % and population-weighted R2 ~ 0.99. Among individual PM2.5 species, the best predictive performance is for primary PM2.5 (MFE: 16 %; MFB: 13 %) and the worst predictive performance is for particulate nitrate (MFE: 119 %; MFB: 106 %). Potential uses of InMAP include studying exposure, health, and environmental justice impacts of potential shifts in emissions for annual-average PM2.5. Features planned for future model releases include a larger spatial domain, more temporal information, and the ability to predict ground-level ozone (O3

  19. Modeling air pollution in the Tracking and Analysis Framework (TAF)

    SciTech Connect

    Shannon, J.D.

    1998-12-31

    The Tracking and Analysis Framework (TAF) is a set of interactive computer models for integrated assessment of the Acid Rain Provisions (Title IV) of the 1990 Clean Air Act Amendments. TAF is designed to execute in minutes on a personal computer, thereby making it feasible for a researcher or policy analyst to examine quickly the effects of alternate modeling assumptions or policy scenarios. Because the development of TAF involves researchers in many different disciplines, TAF has been given a modular structure. In most cases, the modules contain reduced-form models that are based on more complete models exercised off-line. The structure of TAF as of December 1996 is shown. Both the Atmospheric Pathways Module produce estimates for regional air pollution variables.

  20. Modelling of Air Bubble Rising in Water and Polymeric Solution

    NASA Astrophysics Data System (ADS)

    Hassan, N. M. S.; Khan, M. M. K.; Rasul, M. G.; Subaschandar, N.

    2010-06-01

    This study investigates a Computational Fluid Dynamics (CFD) model for a single air bubble rising in water and xanthan gum solution. The bubble rise characteristics through the stagnant water and 0.05% xanthan gum solution in a vertical cylindrical column is modelled using the CFD code Fluent. Single air bubble rise dispersed into the continuous liquid phase has been considered and modelled for two different bubble sizes. Bubble velocity and vorticity magnitudes were captured through a surface-tracking technique i.e. Volume of Fluid (VOF) method by solving a single set of momentum equations and tracking the volume fraction of each fluid throughout the domain. The simulated results of the bubble flow contours at two different heights of the cylindrical column were validated by the experimental results and literature data. The model developed is capable of predicting the entire flow characteristics of different sizes of bubble inside the liquid column.

  1. Air pollution dispersion models for human exposure predictions in London.

    PubMed

    Beevers, Sean D; Kitwiroon, Nutthida; Williams, Martin L; Kelly, Frank J; Ross Anderson, H; Carslaw, David C

    2013-01-01

    The London household survey has shown that people travel and are exposed to air pollutants differently. This argues for human exposure to be based upon space-time-activity data and spatio-temporal air quality predictions. For the latter, we have demonstrated the role that dispersion models can play by using two complimentary models, KCLurban, which gives source apportionment information, and Community Multi-scale Air Quality Model (CMAQ)-urban, which predicts hourly air quality. The KCLurban model is in close agreement with observations of NO(X), NO(2) and particulate matter (PM)(10/2.5), having a small normalised mean bias (-6% to 4%) and a large Index of Agreement (0.71-0.88). The temporal trends of NO(X) from the CMAQ-urban model are also in reasonable agreement with observations. Spatially, NO(2) predictions show that within 10's of metres of major roads, concentrations can range from approximately 10-20 p.p.b. up to 70 p.p.b. and that for PM(10/2.5) central London roadside concentrations are approximately double the suburban background concentrations. Exposure to different PM sources is important and we predict that brake wear-related PM(10) concentrations are approximately eight times greater near major roads than at suburban background locations. Temporally, we have shown that average NO(X) concentrations close to roads can range by a factor of approximately six between the early morning minimum and morning rush hour maximum periods. These results present strong arguments for the hybrid exposure model under development at King's and, in future, for in-building models and a model for the London Underground. PMID:23443237

  2. Modeling of air pollution from the power plant ash dumps

    NASA Astrophysics Data System (ADS)

    Aleksic, Nenad M.; Balać, Nedeljko

    A simple model of air pollution from power plant ash dumps is presented, with emission rates calculated from the Bagnold formula and transport simulated by the ATDL type model. Moisture effects are accounted for by assumption that there is no pollution on rain days. Annual mean daily sedimentation rates, calculated for the area around the 'Nikola Tesla' power plants near Belgrade for 1987, show reasonably good agreement with observations.

  3. Air-water analogy and the study of hydraulic models

    NASA Technical Reports Server (NTRS)

    Supino, Giulio

    1953-01-01

    The author first sets forth some observations about the theory of models. Then he established certain general criteria for the construction of dynamically similar models in water and in air, through reference to the perfect fluid equations and to the ones pertaining to viscous flow. It is, in addition, pointed out that there are more cases in which the analogy is possible than is commonly supposed.

  4. Assessing Climate Impacts on Air Pollution from Models and Measurements

    NASA Astrophysics Data System (ADS)

    Holloway, T.; Plachinski, S. D.; Morton, J. L.; Spak, S.

    2011-12-01

    It is well known that large-scale patterns in temperature, humidity, solar radiation and atmospheric circulation affect formation and transport of atmospheric constituents. These relationships have supported a growing body of work projecting changes in ozone (O3), and to a lesser extent aerosols, as a function of changing climate. Typically, global and regional chemical transport models are used to quantify climate impacts on air pollution, but the ability of these models to assess weather-dependent chemical processes has not been thoroughly evaluated. Quantifying model sensitivity to climate poses the additional challenge of isolating the local to synoptic scale effects of meteorological conditions on chemistry and transport from concurrent trends in emissions, hemispheric background concentrations, and land cover change. Understanding how well models capture historic climate-chemistry relationships is essential in projecting future climate impacts, in that it allows for better evaluation of model skill and improved understanding of climate-chemistry relationships. We compare the sensitivity of chemistry-climate relationships, as simulated by the EPA Community Multiscale Air Quality (CMAQ) model, with observed historical response characteristics from EPA Air Quality System (AQS) monitoring data. We present results for O3, sulfate and nitrate aerosols, and ambient mercury concentrations. Despite the fact that CMAQ over-predicts daily maximum 8-hour ground-level O3 concentrations relative to AQS data, the model does an excellent job at simulating the response of O3 to daily maximum temperature. In both model and observations, we find that higher temperatures produce higher O3 across most of the U.S., as expected in summertime conditions. However, distinct regions appear in both datasets where temperature and O3 are anti-correlated - for example, over the Upper Midwestern U.S. states of Iowa, Missouri, Illinois, and Indiana in July 2002. Characterizing uncertainties

  5. An approximate local thermodynamic nonequilibrium radiation model for air

    NASA Technical Reports Server (NTRS)

    Gally, Thomas A.; Carlson, Leland A.

    1992-01-01

    A radiatively coupled viscous shock layer analysis program which includes chemical and thermal nonequilibrium is used to calculate stagnation point flow profiles for typical aeroassisted orbital transfer vehicle conditions. Two methods of predicting local thermodynamic nonequilibrium radiation effects are used as a first and second order approximation to this phenomena. Tabulated results for both nitrogen and air freestreams are given with temperature, species, and radiation profiles for some air conditions. Two body solution results are shown for 45 and 60 degree hyperboloid bodies at 12 km/sec and 80 km altitude. The presented results constitute an advancement in the engineering modeling of radiating nonequilibrium reentry flows.

  6. EPA RESEARCH HIGHLIGHTS -- MODELS-3/CMAQ OFFERS COMPREHENSIVE APPROACH TO AIR QUALITY MODELING

    EPA Science Inventory

    Regional and global coordinated efforts are needed to address air quality problems that are growing in complexity and scope. Models-3 CMAQ contains a community multi-scale air quality modeling system for simulating urban to regional scale pollution problems relating to troposphe...

  7. Prognosis of hepatoid yolk sac tumor in women: what's up, Doc?

    PubMed

    Rittiluechai, Kristsanamon; Wilcox, Rebecca; Lisle, Jennifer; Everett, Elise; Wallace, H James; Verschraegen, Claire F

    2014-04-01

    Ovarian yolk sac tumors are highly malignant germ cell tumors that commonly occur in young women. The hepatoid yolk sac tumor is a variant form of yolk sac tumor in which there has been extensive tumor differentiation to early liver tissue. Hepatoid differentiation is traditionally considered to signify a poor prognosis. This review focuses on diagnostic criteria and establishes the optimal treatment for patients with hepatoid yolk sac tumor. Immunohistochemical stains are useful for distinguishing hepatoid yolk sac tumor from the other hepatoid-appearing tumors. With a multidisciplinary treatment approach using platinum-based regimens, the outcome is similar to those of any yolk sac tumor. PMID:24462393

  8. Caenorhabditis elegans: a model to monitor bacterial air quality

    PubMed Central

    2011-01-01

    Background Low environmental air quality is a significant cause of mortality and morbidity and this question is now emerging as a main concern of governmental authorities. Airborne pollution results from the combination of chemicals, fine particles, and micro-organisms quantitatively or qualitatively dangerous for health or for the environment. Increasing regulations and limitations for outdoor air quality have been decreed in regards to chemicals and particles contrary to micro-organisms. Indeed, pertinent and reliable tests to evaluate this biohazard are scarce. In this work, our purpose was to evaluate the Caenorhaditis elegans killing test, a model considered as an equivalent to the mouse acute toxicity test in pharmaceutical industry, in order to monitor air bacterial quality. Findings The present study investigates the bacterial population in dust clouds generated during crop ship loading in harbor installations (Rouen harbor, Normandy, France). With a biocollector, airborne bacteria were impacted onto the surface of agar medium. After incubation, a replicate of the colonies on a fresh agar medium was done using a velvet. All the replicated colonies were pooled creating the "Total Air Sample". Meanwhile, all the colonies on the original plate were isolated. Among which, five representative bacterial strains were chosen. The virulence of these representatives was compared to that of the "Total Air Sample" using the Caenorhaditis elegans killing test. The survival kinetic of nematodes fed with the "Total Air Sample" is consistent with the kinetics obtained using the five different representatives strains. Conclusions Bacterial air quality can now be monitored in a one shot test using the Caenorhaditis elegans killing test. PMID:22099854

  9. FUNCTIONALITY OF AN INTEGRATED EMISSION PREPROCESSING SYSTEM FOR AIR QUALITY MODELING: THE MODELS-3 EMISSION PREPROCESSOR

    EPA Science Inventory

    Conventional preparation of emission inventories for air quality modeling is typically an extended process using computer routines to reformat, quality check, chemically speciate, and temporally and spatially allocate data. rocessing of emission inventories for regional modeling ...

  10. MODELS-3 COMMUNITY MULTISCALE AIR QUALITY (CMAQ) MODEL AEROSOL COMPONENT 1: MODEL DESCRIPTION

    EPA Science Inventory

    The aerosol component of the Community Multiscale Air Quality (CMAQ) model is designed to be an efficient and economical depiction of aerosol dynamics in the atmosphere. The approach taken represents the particle size distribution as the superposition of three lognormal subdis...

  11. Urban compaction or dispersion? An air quality modelling study

    NASA Astrophysics Data System (ADS)

    Martins, Helena

    2012-07-01

    Urban sprawl is altering the landscape, with current trends pointing to further changes in land use that will, in turn, lead to changes in population, energy consumption, atmospheric emissions and air quality. Urban planners have debated on the most sustainable urban structure, with arguments in favour and against urban compaction and dispersion. However, it is clear that other areas of expertise have to be involved. Urban air quality and human exposure to atmospheric pollutants as indicators of urban sustainability can contribute to the discussion, namely through the study of the relation between urban structure and air quality. This paper addresses the issue by analysing the impacts of alternative urban growth patterns on the air quality of Porto urban region in Portugal, through a 1-year simulation with the MM5-CAMx modelling system. This region has been experiencing one of the highest European rates of urban sprawl, and at the same time presents a poor air quality. As part of the modelling system setup, a sensitivity study was conducted regarding different land use datasets and spatial distribution of emissions. Two urban development scenarios were defined, SPRAWL and COMPACT, together with their new land use and emission datasets; then meteorological and air quality simulations were performed. Results reveal that SPRAWL land use changes resulted in an average temperature increase of 0.4 °C, with local increases reaching as high as 1.5 °C. SPRAWL results also show an aggravation of PM10 annual average values and an increase in the exceedances to the daily limit value. For ozone, differences between scenarios were smaller, with SPRAWL presenting larger concentration differences than COMPACT. Finally, despite the higher concentrations found in SPRAWL, population exposure to the pollutants is higher for COMPACT because more inhabitants are found in areas of highest concentration levels.

  12. STEMS-Air: a simple GIS-based air pollution dispersion model for city-wide exposure assessment.

    PubMed

    Gulliver, John; Briggs, David

    2011-05-15

    Current methods of air pollution modelling do not readily meet the needs of air pollution mapping for short-term (i.e. daily) exposure studies. The main limiting factor is that for those few models that couple with a GIS there are insufficient tools for directly mapping air pollution both at high spatial resolution and over large areas (e.g. city wide). A simple GIS-based air pollution model (STEMS-Air) has been developed for PM(10) to meet these needs with the option to choose different exposure averaging periods (e.g. daily and annual). STEMS-Air uses the grid-based FOCALSUM function in ArcGIS in conjunction with a fine grid of emission sources and basic information on meteorology to implement a simple Gaussian plume model of air pollution dispersion. STEMS-Air was developed and validated in London, UK, using data on concentrations of PM(10) from routinely available monitoring data. Results from the validation study show that STEMS-Air performs well in predicting both daily (at four sites) and annual (at 30 sites) concentrations of PM(10). For daily modelling, STEMS-Air achieved r(2) values in the range 0.19-0.43 (p<0.001) based solely on traffic-related emissions and r(2) values in the range 0.41-0.63 (p<0.001) when adding information on 'background' levels of PM(10). For annual modelling of PM(10), the model returned r(2) in the range 0.67-0.77 (P<0.001) when compared with monitored concentrations. The model can thus be used for rapid production of daily or annual city-wide air pollution maps either as a screening process in urban air quality planning and management, or as the basis for health risk assessment and epidemiological studies. PMID:21458028

  13. Computational Modeling of Transport Limitations in Li-Air Batteries

    SciTech Connect

    Ryan, Emily M.; Ferris, Kim F.; Tartakovsky, Alexandre M.; Khaleel, Mohammad A.

    2013-02-22

    In this paper we investigate transport limitations in the electrodes of lithium-air batteries through computational modeling. We use meso-scale models to consider the effects of dendrites on the current and potential at the anode surface, and to investigate the effects of reaction and transport parameters on the formation of precipitates in the cathode. The formation of dendrites on the anode surface during cycling reduces the transport of ions and can lead to short circuits in the cell. Growth of precipitates in the cathode reduces the specific capacity of the cell due to surface passivation and pore clogging. Both of these degradation mechanisms depend on meso-scale phenomena, such as the pore-scale reactive transport in the cathode. To understand the effects of the meso-scale transport and precipitation on the performance and lifetime of Li-air batteries, meso-scale modeling is needed that is able to resolve the electrodes and their microstructures.

  14. Impacts of contaminant storage on indoor air quality: Model development

    SciTech Connect

    Sherman, Max H.; Hult, Erin L.

    2013-02-26

    A first-order, lumped capacitance model is used to describe the buffering of airborne chemical species by building materials and furnishings in the indoor environment. The model is applied to describe the interaction between formaldehyde in building materials and the concentration of the species in the indoor air. Storage buffering can decrease the effect of ventilation on the indoor concentration, compared to the inverse dependence of indoor concentration on the air exchange rate that is consistent with a constant emission rate source. If the exposure time of an occupant is long relative to the time scale of depletion of the compound from the storage medium, however, the total exposure will depend inversely on the air exchange rate. This lumped capacitance model is also applied to moisture buffering in the indoor environment, which occurs over much shorter depletion timescales of the order of days. This model provides a framework to interpret the impact of storage buffering on time-varying concentrations of chemical species and resulting occupant exposure. Pseudo-steady state behavior is validated using field measurements. Model behavior over longer times is consistent with formaldehyde and moisture concentration measurements in previous studies.

  15. Developing Mental Models about Air Using Inquiry-Based Instruction with Kindergartners

    ERIC Educational Resources Information Center

    Van Hook, Stephen; Huziak, Tracy; Nowak, Katherine

    2005-01-01

    This study examines the development of mental models of air by kindergarten students after completing a series of hands-on, inquiry-based science lessons. The lessons focused on two properties of air: (1) that air takes up space and (2) that it is made of particles ("balls of air"). The students were interviewed about their ideas of air and about…

  16. Solutions Network Formulation Report. Reducing Light Pollution in U.S. Coastal Regions Using the High Sensitivity Cameras on the SAC-C and Aquarius/SAC-D Satellites

    NASA Technical Reports Server (NTRS)

    Andrews, Jane C.; Knowlton, Kelly

    2007-01-01

    Light pollution has significant adverse biological effects on humans, animals, and plants and has resulted in the loss of our ability to view the stars and planets of the universe. Over half of the U.S. population resides in coastal regions where it is no longer possible to see the stars and planets in the night sky. Forty percent of the entire U.S. population is never exposed to conditions dark enough for their eyes to convert to night vision capabilities. In coastal regions, urban lights shine far out to sea where they are augmented by the output from fishing boat, cruise ship and oil platform floodlights. The proposed candidate solution suggests using HSCs (high sensitivity cameras) onboard the SAC-C and Aquarius/SAC-D satellites to quantitatively evaluate light pollution at high spatial resolution. New products modeled after pre-existing, radiance-calibrated, global nighttime lights products would be integrated into a modified Garstang model where elevation, mountain screening, Rayleigh scattering, Mie scattering by aerosols, and atmospheric extinction along light paths and curvature of the Earth would be taken into account. Because the spatial resolution of the HSCs on SAC-C and the future Aquarius/SAC-D missions is greater than that provided by the DMSP (Defense Meteorological Satellite Program) OLS (Operational Linescan System) or VIIRS (Visible/Infrared Imager/Radiometer Suite), it may be possible to obtain more precise light intensity data for analytical DSSs and the subsequent reduction in coastal light pollution.

  17. Impact of High Resolution Land-Use Data in Meteorology and Air Quality Modeling Systems

    EPA Science Inventory

    Accurate land use information is important in meteorology for land surface exchanges, in emission modeling for emission spatial allocation, and in air quality modeling for chemical surface fluxes. Currently, meteorology, emission, and air quality models often use outdated USGS Gl...

  18. Review of Air Exchange Rate Models for Air Pollution Exposure Assessments

    EPA Science Inventory

    A critical aspect of air pollution exposure assessments is estimation of the air exchange rate (AER) for various buildings, where people spend their time. The AER, which is rate the exchange of indoor air with outdoor air, is an important determinant for entry of outdoor air pol...

  19. Unusual presentation of Enterobius vermicularis in conjunctival sac.

    PubMed

    Mallick, Sanjay Kumar; Sengupta, Ranadeep; Banerjee, Arup Kumar

    2015-10-01

    We report an unusual case of extraintestinal infection with adult Enterobius vermicularis worms in the conjunctival sac of a two-and-a-half year old boy from Alipurduar, West Bengal, India. Only two other similar cases have been reported in the English literature, one from Assam, India in 1976, and the other from Illinois and California in 2011. PMID:25540166

  20. The annular hematoma of the shrew yolk-sac placenta.

    PubMed

    King, B F; Enders, A C; Wimsatt, W A

    1978-05-01

    The annular hematoma of the shrew, Blarina brevicauda, is a specialized portion of the yolk-sac wall. In this study, we have examined the fine structure of the different cellular components of the anular hematoma. Small pieces of the gestation sacs from seven pregnant shrews were fixed in glutaraldehyde and osmium tetroxide and processed for transmission electron microscopy. In the area of the trophoblastic curtain, the maternal capillary endothelial cells were hypertrophied and syncytial trophoblast surrounded the capillaries. Cellular trophoblast covered part of the luminal surface of the curtain region, whereas masses of apparently degenerating syncytium were present on other areas of the surface. Maternal erythrocytes, released into the uterine lumen from the curtain region, were phagocytized and degraded by the columnar cells of the trophoblastic annulus. No evidence of iron or pigment accumulation was evident in the parietal endodermal cells underlying the annular trophoblast. Parietal endodermal cells were characterized by cuboidal shape, widely dilated intercellular spaces, and cytoplasm containing granular endoplasmic reticulum. Endodermal cells of the visceral yolk-sac accumulated large numbers of electron-dense granules as well as glycogen in their cytoplasm. Hemopoietic areas and vitelline capillaries were found subjacent to the visceral endoderm. The various portions of the yolk-sac wall of Blarina appear to perform complementary functions which are probably important in maternal-fetal iron transfer. PMID:677046

  1. Placentation in mammals: Definitive placenta, yolk sac, and paraplacenta.

    PubMed

    Carter, A M; Enders, A C

    2016-07-01

    An overview is given of variations in placentation with particular focus on yolk sac, paraplacenta, and other structures important to histotrophic nutrition. The placenta proper varies in general shape, internal structure, and the number of tissues in the interhemal barrier. Yolk sac membranes persist to term in insectivores, colugos, rodents, and lagomorphs. In the latter two orders, they are of known importance for maternal-fetal transfer of antibodies, vitamins, lipids, and proteins. The detached yolk sac of bats is also active throughout gestation. A vascular paraplacenta, or smooth chorioallantois, has known functions in ruminants and carnivores and is found in several other orders of mammal where its function has yet to be explored. In human gestation, the chorion (avascular chorioallantois) is important for hormone synthesis. The true chorion of squirrels and hedgehogs is avascular but may nevertheless allow transfer from mother to fetus through the exocelom. Hemophagous areas with columnar trophoblast are paraplacental structures in carnivores and elephants but occur also within the placenta as in hyenas and moles. In shrews, it is the yolk sac that ingests and processes red cells. Areolas and chorionic vesicles are other structures important for absorption of uterine secretions and ingestion of cellular debris. In conclusion, we find that paraplacental structures, while showing less variation than the placenta proper, contribute not just to the integrity of overall placentation, but in various ways to maternal-fetal interrelationships. PMID:27155730

  2. Aviation System Analysis Capability Air Carrier Investment Model-Cargo

    NASA Technical Reports Server (NTRS)

    Johnson, Jesse; Santmire, Tara

    1999-01-01

    The purpose of the Aviation System Analysis Capability (ASAC) Air Cargo Investment Model-Cargo (ACIMC), is to examine the economic effects of technology investment on the air cargo market, particularly the market for new cargo aircraft. To do so, we have built an econometrically based model designed to operate like the ACIM. Two main drivers account for virtually all of the demand: the growth rate of the Gross Domestic Product (GDP) and changes in the fare yield (which is a proxy of the price charged or fare). These differences arise from a combination of the nature of air cargo demand and the peculiarities of the air cargo market. The net effect of these two factors are that sales of new cargo aircraft are much less sensitive to either increases in GDP or changes in the costs of labor, capital, fuel, materials, and energy associated with the production of new cargo aircraft than the sales of new passenger aircraft. This in conjunction with the relatively small size of the cargo aircraft market means technology improvements to the cargo aircraft will do relatively very little to spur increased sales of new cargo aircraft.

  3. Fundamental mass transfer models for indoor air pollution sources

    SciTech Connect

    Tichenor, B.A.; Guo, Z.; Sparks, L.E.

    1993-01-01

    The paper discusses a simple, fundamental mass transfer model, based on Fick's Law of Diffusion, for indoor air pollution wet sorbent-based sources. (Note: Models are needed to predict emissions from indoor sources. While empirical approaches based on dynamic chamber data are useful, a more fundamental approach is needed to fully elucidate the relevant mass transfer processes). In the model, the mass transfer rate is assumed to be gas-phase limited and controlled by the boundary layer mass transfer coefficient, the saturation vapor pressure of the material being emitted, and the mass of volatile material remaining. Results of static and dynamic chamber tests, as well as test house studies, are presented.

  4. Efficient sensitivity computations in 3D air quality models

    NASA Astrophysics Data System (ADS)

    Kioutsioukis, Ioannis; Melas, Dimitrios; Zerefos, Christos; Ziomas, Ioannis

    2005-04-01

    The prediction of ground level ozone for air quality monitoring and assessment is simulated through an integrated system of gridded models (meteorological, photochemical), where the atmosphere is represented with a three-dimensional grid that may include thousands of grid cells. The continuity equation solved by the Photochemical Air Quality Model (PAQM) reproduces the atmospheric processes (dynamical, physical, chemical and radiative), such as moving and mixing air parcels from one grid cell to another, calculating chemical reactions, injecting new emissions. The whole modeling procedure includes several sources of uncertainty, especially in the large data sets that describe the status of the domain (boundary conditions, emissions, chemical reaction rates and several others). The robustness of the photochemical simulation is addressed in this work through the deterministic approach of sensitivity analysis. The automatic differentiation tool ADIFOR is applied on the 3D PAQM CAMx and augments its Fortran 77 code by introducing new lines of code that additionally calculate, in only one run, the gradient of the solution vector with respect to its input parameters. The applicability of the approach is evaluated through a sensitivity study of the modeled concentrations to perturbations at the boundary conditions and the emissions, for three essentially dissimilar European Metropolises of the Auto-Oil II programme (Athens, Milan, and London).

  5. New Methods for Air Quality Model Evaluation with Satellite Data

    NASA Astrophysics Data System (ADS)

    Holloway, T.; Harkey, M.

    2015-12-01

    Despite major advances in the ability of satellites to detect gases and aerosols in the atmosphere, there remains significant, untapped potential to apply space-based data to air quality regulatory applications. Here, we showcase research findings geared toward increasing the relevance of satellite data to support operational air quality management, focused on model evaluation. Particular emphasis is given to nitrogen dioxide (NO2) and formaldehyde (HCHO) from the Ozone Monitoring Instrument aboard the NASA Aura satellite, and evaluation of simulations from the EPA Community Multiscale Air Quality (CMAQ) model. This work is part of the NASA Air Quality Applied Sciences Team (AQAST), and is motivated by ongoing dialog with state and federal air quality management agencies. We present the response of satellite-derived NO2 to meteorological conditions, satellite-derived HCHO:NO2 ratios as an indicator of ozone production regime, and the ability of models to capture these sensitivities over the continental U.S. In the case of NO2-weather sensitivities, we find boundary layer height, wind speed, temperature, and relative humidity to be the most important variables in determining near-surface NO2 variability. CMAQ agreed with relationships observed in satellite data, as well as in ground-based data, over most regions. However, we find that the southwest U.S. is a problem area for CMAQ, where modeled NO2 responses to insolation, boundary layer height, and other variables are at odds with the observations. Our analyses utilize a software developed by our team, the Wisconsin Horizontal Interpolation Program for Satellites (WHIPS): a free, open-source program designed to make satellite-derived air quality data more usable. WHIPS interpolates level 2 satellite retrievals onto a user-defined fixed grid, in effect creating custom-gridded level 3 satellite product. Currently, WHIPS can process the following data products: OMI NO2 (NASA retrieval); OMI NO2 (KNMI retrieval); OMI

  6. Air Dispersion Modeling for Building 3026C/D Demolition

    SciTech Connect

    Ward, Richard C; Sjoreen, Andrea L; Eckerman, Keith F

    2010-06-01

    This report presents estimates of dispersion coefficients and effective dose for potential air dispersion scenarios of uncontrolled releases from Oak Ridge National Laboratory (ORNL) buildings 3026C, 3026D, and 3140 prior to or during the demolition of the 3026 Complex. The Environmental Protection Agency (EPA) AERMOD system1-6 was used to compute these estimates. AERMOD stands for AERMIC Model, where AERMIC is the American Meteorological Society-EPA Regulatory Model Improvement Committee. Five source locations (three in building 3026D and one each in building 3026C and the filter house 3140) and associated source characteristics were determined with the customer. In addition, the area of study was determined and building footprints and intake locations of air-handling systems were obtained. In addition to the air intakes, receptor sites consisting of ground level locations on four polar grids (50 m, 100 m, 200 m, and 500 m) and two intersecting lines of points (50 m separation), corresponding to sidewalks along Central Avenue and Fifth Street. Three years of meteorological data (2006 2008) were used each consisting of three datasets: 1) National Weather Service data; 2) upper air data for the Knoxville-Oak Ridge area; and 3) local weather data from Tower C (10 m, 30 m and 100 m) on the ORNL reservation. Annual average air concentration, highest 1 h average and highest 3 h average air concentrations were computed using AERMOD for the five source locations for the three years of meteorological data. The highest 1 h average air concentrations were converted to dispersion coefficients to characterize the atmospheric dispersion as the customer was interested in the most significant response and the highest 1 h average data reflects the best time-averaged values available from the AERMOD code. Results are presented in tabular and graphical form. The results for dose were obtained using radionuclide activities for each of the buildings provided by the customer.7

  7. The Impact of Physical Atmosphere on Air Quality and the Utility of Satellite Observations in Air Quality Models

    NASA Astrophysics Data System (ADS)

    Pour Biazar, A.; McNider, R. T.; Park, Y. H.; Doty, K.; Khan, M. N.; Dornblaser, B.

    2012-12-01

    Physical atmosphere significantly impacts air quality as it regulates production, accumulation, and transport of atmospheric pollutants. Consequently, air quality simulations are greatly influenced by the uncertainties that emanates from the simulation of physical atmosphere. Since air quality model predictions are increasingly being used in health studies, regulatory applications, and policy making, reducing such uncertainties in model simulations is of outmost importance. This paper describes some of the critical aspects of physical atmosphere affecting air quality models that can be improved by utilizing satellite observations. Retrievals of skin temperature, surface albedo, surface insolation, cloud top temperature and cloud reflectance obtained from the Geostationary Operational Environmental Satellite (GOES) by NASA/MSFC GOES Product Generation System (GPGS) have been utilized to improve the air quality simulations used in the State Implementation Plan (SIP) attainment demonstrations. Satellite observations of ground temperature are used to recover surface moisture and heat capacity and thereby improving model simulation of air temperature. Observations of clouds are utilized to improve the photochemical reaction rates within the photochemical model and also to assimilate clouds in the meteorological model. These techniques have been implemented and tested in some of the widely used air quality decision modeling systems such as MM5/WRF/CMAQ/CAMx. The results from these activities show significant improvements in air quality simulations.

  8. Mathematical modeling of a primary zinc/air battery

    SciTech Connect

    Mao, Z.; White, R.E. )

    1992-04-01

    This paper reports on the mathematical model developed by Sunu and Bennion that has been extended to include the separator, precipitation of both solid ZnO and K{sub 2}Zn(OH){sub 4}, and the air electrode, and has been used to investigate the behavior of a primary Zn-Air battery with respect to battery design features. Predictions obtained from the model indicate that anode material utilization is predominantly limited by depletion of the concentration of hydroxide ions. The effect of electrode thickness on anode material utilization is insignificant, whereas material loading per unit volume has a great effect on anode material utilization; a higher loading lowers both the anode material utilization and delivered capacity. Use of a thick separator will increase the anode material utilization, but may reduce the cell voltage.

  9. Mathematical modeling of a primary zinc/air battery

    NASA Astrophysics Data System (ADS)

    Mao, Z.; White, R. E.

    1992-04-01

    The mathematical model developed by Sunu and Bennion has been extended to include the separator, precipitation of both solid ZnO and K2Zn(OH)4, and the air electrode, and has been used to investigate the behavior of a primary Zn-Air battery with respect to battery design features. Predictions obtained from the model indicate that anode material utilization is predominantly limited by depletion of the concentration of hydroxide ions. The effect of electrode thickness on anode material utilization is insignificant, whereas material loading per unit volume has a great effect on anode material utilization; a higher loading lowers both the anode material utilization and delivered capacity. Use of a thick separator will increase the anode material utilization, but may reduce the cell voltage.

  10. Mathematical modeling of a primary zinc/air battery

    NASA Technical Reports Server (NTRS)

    Mao, Z.; White, R. E.

    1992-01-01

    The mathematical model developed by Sunu and Bennion has been extended to include the separator, precipitation of both solid ZnO and K2Zn(OH)4, and the air electrode, and has been used to investigate the behavior of a primary Zn-Air battery with respect to battery design features. Predictions obtained from the model indicate that anode material utilization is predominantly limited by depletion of the concentration of hydroxide ions. The effect of electrode thickness on anode material utilization is insignificant, whereas material loading per unit volume has a great effect on anode material utilization; a higher loading lowers both the anode material utilization and delivered capacity. Use of a thick separator will increase the anode material utilization, but may reduce the cell voltage.

  11. Seine estuary modelling and AirSWOT measurements validation

    NASA Astrophysics Data System (ADS)

    Chevalier, Laetitia; Lyard, Florent; Laignel, Benoit

    2013-04-01

    In the context of global climate change, knowing water fluxes and storage, from the global scale to the local scale, is a crucial issue. The future satellite SWOT (Surface Water and Ocean Topography) mission, dedicated to the surface water observation, is proposed to meet this challenge. SWOT main payload will be a Ka-band Radar Interferometer (KaRIn). To validate this new kind of measurements, preparatory airborne campaigns (called AirSWOT) are currently being designed. AirSWOT will carry an interferometer similar to Karin: Kaspar-Ka-band SWOT Phenomenology Airborne Radar. Some campaigns are planned in France in 2014. During these campaigns, the plane will fly over the Seine River basin, especially to observe its estuary, the upstream river main channel (to quantify river-aquifer exchange) and some wetlands. The present work objective is to validate the ability of AirSWOT and SWOT, using a Seine estuary hydrodynamic modelling. In this context, field measurements will be collected by different teams such as GIP (Public Interest Group) Seine Aval, the GPMR (Rouen Seaport), SHOM (Hydrographic and Oceanographic Service of the Navy), the IFREMER (French Research Institute for Sea Exploitation), Mercator-Ocean, LEGOS (Laboratory of Space Study in Geophysics and Oceanography), ADES (Data Access Groundwater) ... . These datasets will be used first to validate locally AirSWOT measurements, and then to improve a hydrodynamic simulations (using tidal boundary conditions, river and groundwater inflows ...) for AirSWOT data 2D validation. This modelling will also be used to estimate the benefit of the future SWOT mission for mid-latitude river hydrology. To do this modelling,the TUGOm barotropic model (Toulouse Unstructured Grid Ocean model 2D) is used. Preliminary simulations have been performed by first modelling and then combining to different regions: first the Seine River and its estuarine area and secondly the English Channel. These two simulations h are currently being

  12. POPULATION EXPOSURE AND DOSE MODEL FOR AIR TOXICS: A BENZENE CASE STUDY

    EPA Science Inventory

    The EPA's National Exposure Research Laboratory (NERL) is developing a human exposure and dose model called the Stochastic Human Exposure and Dose Simulation model for Air Toxics (SHEDS-AirToxics) to characterize population exposure to air toxics in support of the National Air ...

  13. Dynamic evaluation of air quality models over European regions

    NASA Astrophysics Data System (ADS)

    Thunis, P.; Pisoni, E.; Degraeuwe, B.; Kranenburg, R.; Schaap, M.; Clappier, A.

    2015-06-01

    Chemistry-transport models are increasingly used in Europe for estimating air quality or forecasting changes in pollution levels. But with this increased use of modeling arises the need of harmonizing the methodologies to determine the quality of air quality model applications. This is complex for planning applications, i.e. when models are used to assess the impact of realistic or virtual emission scenarios. In this work, the methodology based on the calculation of potencies proposed by Thunis and Clappier (2014) to analyze the model responses to emission reductions is applied on three different domains in Europe (Po valley, Southern Poland and Flanders). This methodology is further elaborated to facilitate the inter-comparison process and bring in a single diagram the possibility of differentiating long-term from short-term effects. This methodology is designed for model users to interpret their model results but also for policy-makers to help them defining intervention priorities. The methodology is applied to both daily PM10 and 8 h daily maximum ozone.

  14. An analysis of Freedman's "image pulse" model in air.

    PubMed

    Tsakiris, J; McKerrow, P

    2000-10-01

    The "image pulse" model developed by Freedman calculates the echoes generated from convex objects in an underwater environment after insonification with a narrow-band transient signal. The model uses the source radiation and the solid angle subtended at the transducer by the scattering body to determine the echo structure. Work has been completed in adapting this model for use in an air environment using noncoincident transmitters and receivers. Experiments were conducted to measure the amplitudes of the echoes off a range of convex objects, at distances up to 1.4 m, after insonification with a Polaroid transducer. These measured amplitudes were compared to those predicted by the model, with the results for cones highlighting the limitations of the model. Spheres, however, performed significantly better, with an average error of under 5%, indicating that the model should be reasonably accurate at calculating the echoes off convex objects with a smoothly varying surface. PMID:11051488

  15. Comparison of stationary and personal air sampling with an air dispersion model for children's ambient exposure to manganese.

    PubMed

    Fulk, Florence; Haynes, Erin N; Hilbert, Timothy J; Brown, David; Petersen, Dan; Reponen, Tiina

    2016-09-01

    Manganese (Mn) is ubiquitous in the environment and essential for normal growth and development, yet excessive exposure can lead to impairments in neurological function. This study modeled ambient Mn concentrations as an alternative to stationary and personal air sampling to assess exposure for children enrolled in the Communities Actively Researching Exposure Study in Marietta, OH. Ambient air Mn concentration values were modeled using US Environmental Protection Agency's Air Dispersion Model AERMOD based on emissions from the ferromanganese refinery located in Marietta. Modeled Mn concentrations were compared with Mn concentrations from a nearby stationary air monitor. The Index of Agreement for modeled versus monitored data was 0.34 (48 h levels) and 0.79 (monthly levels). Fractional bias was 0.026 for 48 h levels and -0.019 for monthly levels. The ratio of modeled ambient air Mn to measured ambient air Mn at the annual time scale was 0.94. Modeled values were also time matched to personal air samples for 19 children. The modeled values explained a greater degree of variability in personal exposures compared with time-weighted distance from the emission source. Based on these results modeled Mn concentrations provided a suitable approach for assessing airborne Mn exposure in this cohort. PMID:27168393

  16. Beta test of models-3 with Community Multiscale Air Quality (CMAQ) model

    SciTech Connect

    LeDuc, S.

    1997-12-31

    The Models-3 framework for advanced air quality modeling, developed by the Environmental Protection Agency, Office of Research and Development (EPA/ORD), was provided to a limited number of beta test sites during the summer of 1997. Tutorial datasets and the Community Multiscale Air Quality (CMAQ) model were also provided. Valuable feedback on framework installation, performance, functionality, intuitiveness, user friendliness resulted from the beta test. This information will be used to guide framework improvements preparatory to public release in June 1998.

  17. Space-Time Fusion Under Error in Computer Model Output: An Application to Modeling Air Quality

    EPA Science Inventory

    In the last two decades a considerable amount of research effort has been devoted to modeling air quality with public health objectives. These objectives include regulatory activities such as setting standards along with assessing the relationship between exposure to air pollutan...

  18. Simulation model finned water-air-coil withoutcondensation

    SciTech Connect

    Wetter, Michael

    1999-01-01

    A simple simulation model of a finned water-to- air coil without condensation is presented. The model belongs to a collection of simulation models that allows eficient computer simulation of heating, ventilation, and air-conditioning (HVAC) systems. The main emphasis of the models is short computation time and use of input data that are known in the design process of an HVAC system. The target of the models is to describe the behavior of HVAC components in the part load operation mode, which is becoming increasingly important for energy efficient HVAC systems. The models are intended to be used for yearly energy calculation or load calculation with time steps of about 10 minutes or larger. Short-time dynamic effects, which are of interest for different aspects of control performance, are neglected. The part load behavior of the coil is expressed in terms of the nominal condition and the dimensionless variation of the heat transfer with change of mass flow and temperature on the water side and the air side. The effectiveness- NTU relations are used to parametrize the convective heat transfer at nominal conditions and to compute the part load conditions. Geometrical data for the coil are not required, The calculation of the convective heat transfer coefficients at nominal conditions is based on the ratio of the air side heat transfer coefficients multiplied by the fin eficiency and divided by the water side heat transfer coefficient. In this approach, the only geometrical information required are the cross section areas, which are needed to calculate the~uid velocities. The formulas for estimating this ratio are presented. For simplicity the model ignores condensation. The model is static and uses only explicit equations. The explicit formulation ensures short computation time and numerical stability. This allows using the model with sophisticated engineering methods such as automatic system optimization. The paper fully outlines the algorithm description and its

  19. The air quality forecast in Beijing with Community Multi-scale Air Quality Modeling (CMAQ) System: model evaluation and improvement

    NASA Astrophysics Data System (ADS)

    Wu, Q.

    2013-12-01

    The MM5-SMOKE-CMAQ model system, which is developed by the United States Environmental Protection Agency(U.S. EPA) as the Models-3 system, has been used for the daily air quality forecast in the Beijing Municipal Environmental Monitoring Center(Beijing MEMC), as a part of the Ensemble Air Quality Forecast System for Beijing(EMS-Beijing) since the Olympic Games year 2008. In this study, we collect the daily forecast results of the CMAQ model in the whole year 2010 for the model evaluation. The results show that the model play a good model performance in most days but underestimate obviously in some air pollution episode. A typical air pollution episode from 11st - 20th January 2010 was chosen, which the air pollution index(API) of particulate matter (PM10) observed by Beijing MEMC reaches to 180 while the prediction of PM10-API is about 100. Taking in account all stations in Beijing, including urban and suburban stations, three numerical methods are used for model improvement: firstly, enhance the inner domain with 4km grids, the coverage from only Beijing to the area including its surrounding cities; secondly, update the Beijing stationary area emission inventory, from statistical county-level to village-town level, that would provide more detail spatial informance for area emissions; thirdly, add some industrial points emission in Beijing's surrounding cities, the latter two are both the improvement of emission. As the result, the peak of the nine national standard stations averaged PM10-API, which is simulated by CMAQ as daily hindcast PM10-API, reach to 160 and much near to the observation. The new results show better model performance, which the correlation coefficent is 0.93 in national standard stations average and 0.84 in all stations, the relative error is 15.7% in national standard stations averaged and 27% in all stations. The time series of 9 national standard in Beijing urban The scatter diagram of all stations in Beijing, the red is the forecast and

  20. 38 CFR Appendix A to Part 41 - Data Collection Form (Form SF-SAC)

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2010-07-01 2010-07-01 false Data Collection Form (Form SF-SAC) A Appendix A to Part 41 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS.... Appendix A to Part 41—Data Collection Form (Form SF-SAC) Note: Data Collection Form SF-SAC and...

  1. AIR INGRESS ANALYSIS: PART 2 – COMPUTATIONAL FLUID DYNAMIC MODELS

    SciTech Connect

    Chang H. Oh; Eung S. Kim; Richard Schultz; Hans Gougar; David Petti; Hyung S. Kang

    2011-01-01

    The Idaho National Laboratory (INL), under the auspices of the U.S. Department of Energy, is performing research and development that focuses on key phenomena important during potential scenarios that may occur in very high temperature reactors (VHTRs). Phenomena Identification and Ranking Studies to date have ranked an air ingress event, following on the heels of a VHTR depressurization, as important with regard to core safety. Consequently, the development of advanced air ingress-related models and verification and validation data are a very high priority. Following a loss of coolant and system depressurization incident, air will enter the core of the High Temperature Gas Cooled Reactor through the break, possibly causing oxidation of the in-the core and reflector graphite structure. Simple core and plant models indicate that, under certain circumstances, the oxidation may proceed at an elevated rate with additional heat generated from the oxidation reaction itself. Under postulated conditions of fluid flow and temperature, excessive degradation of the lower plenum graphite can lead to a loss of structural support. Excessive oxidation of core graphite can also lead to the release of fission products into the confinement, which could be detrimental to a reactor safety. Computational fluid dynamic model developed in this study will improve our understanding of this phenomenon. This paper presents two-dimensional and three-dimensional CFD results for the quantitative assessment of the air ingress phenomena. A portion of results of the density-driven stratified flow in the inlet pipe will be compared with results of the experimental results.

  2. Transboundary air pollution in Asia: Model development and policy implications

    NASA Astrophysics Data System (ADS)

    Holloway, Tracey

    2001-12-01

    This work investigates transboundary air pollution in Asia through atmospheric modeling and public policy analysis. As an example of models actively shaping environmental policy, the Convention on Long-Range Transboundary Air Pollution in Europe (LRTAP) is selected as a case study. The LRTAP Convention is the only mulit- lateral air pollution agreement to date, and results from the RAINS integrated assessment model were heavily used to calculate nationally differentiated emission ceilings. Atmospheric chemistry and transport are included in RAINS through the use of transfer coefficients (or ``source-receptor relationships'') relating pollutant transfer among European nations. Following past work with ATMOS to simulate sulfur species in Asia, here ATMOS is developed to include odd-nitrogen. Fitting with the linear structure of ATMOS and the emphasis on computational efficiency, a simplified chemical scheme developed for use in the NOAA Geophysical Fluid Dynamics Laboratory Global Chemical Transport Model (GFDL GCTM) is adopted. The method solves for the interconversions between NOx, HNO3, and PAN based on five reaction rates stored in look-up tables. ATMOS is used to calculate source-receptor relationships for Asia. Significant exchange of NOy occurs among China, North and South Korea, and Japan. On an annual average basis, China contributes 18% to Japan's total nitrate deposition, 46% to North Korea, and 26% to South Korea. Nitrate deposition is an important component of acidification (along with sulfate deposition), contributing 30-50% to the acid burden over most of Japan, and more than 50% to acid deposition in southeast Asia, where biomass burning emits high levels of NOx. In evaluating the policy-relevance of results from the ATMOS model, four factors are taken into account: the uncertainty and limitations of ATMOS, the environmental concerns facing Asia, the current status of the scientific community in relation to regional air pollution in the region, and

  3. MODELING TRANSPORT BY CONVECTIVE CLOUDS FOR REGIONAL AIR POLLUTION MODELS

    EPA Science Inventory

    A model is developed to account for regional scale vertical transport of pollutants from the mixed layer to the overlying free troposphere by an ensemble of non-precipitating cumulus convective clouds. The model determines acceptable cloud classes for given atmospheric state repr...

  4. Time-based collision risk modeling for air traffic management

    NASA Astrophysics Data System (ADS)

    Bell, Alan E.

    Since the emergence of commercial aviation in the early part of last century, economic forces have driven a steadily increasing demand for air transportation. Increasing density of aircraft operating in a finite volume of airspace is accompanied by a corresponding increase in the risk of collision, and in response to a growing number of incidents and accidents involving collisions between aircraft, governments worldwide have developed air traffic control systems and procedures to mitigate this risk. The objective of any collision risk management system is to project conflicts and provide operators with sufficient opportunity to recognize potential collisions and take necessary actions to avoid them. It is therefore the assertion of this research that the currency of collision risk management is time. Future Air Traffic Management Systems are being designed around the foundational principle of four dimensional trajectory based operations, a method that replaces legacy first-come, first-served sequencing priorities with time-based reservations throughout the airspace system. This research will demonstrate that if aircraft are to be sequenced in four dimensions, they must also be separated in four dimensions. In order to separate aircraft in four dimensions, time must emerge as the primary tool by which air traffic is managed. A functional relationship exists between the time-based performance of aircraft, the interval between aircraft scheduled to cross some three dimensional point in space, and the risk of collision. This research models that relationship and presents two key findings. First, a method is developed by which the ability of an aircraft to meet a required time of arrival may be expressed as a robust standard for both industry and operations. Second, a method by which airspace system capacity may be increased while maintaining an acceptable level of collision risk is presented and demonstrated for the purpose of formulating recommendations for procedures

  5. Updraft Model for Development of Autonomous Soaring Uninhabited Air Vehicles

    NASA Technical Reports Server (NTRS)

    Allen, Michael J.

    2006-01-01

    Large birds and glider pilots commonly use updrafts caused by convection in the lower atmosphere to extend flight duration, increase cross-country speed, improve range, or simply to conserve energy. Uninhabited air vehicles may also have the ability to exploit updrafts to improve performance. An updraft model was developed at NASA Dryden Flight Research Center (Edwards, California) to investigate the use of convective lift for uninhabited air vehicles in desert regions. Balloon and surface measurements obtained at the National Oceanic and Atmospheric Administration Surface Radiation station (Desert Rock, Nevada) enabled the model development. The data were used to create a statistical representation of the convective velocity scale, w*, and the convective mixing-layer thickness, zi. These parameters were then used to determine updraft size, vertical velocity profile, spacing, and maximum height. This paper gives a complete description of the updraft model and its derivation. Computer code for running the model is also given in conjunction with a check case for model verification.

  6. Methodology for Modeling the Microbial Contamination of Air Filters

    PubMed Central

    Joe, Yun Haeng; Yoon, Ki Young; Hwang, Jungho

    2014-01-01

    In this paper, we propose a theoretical model to simulate microbial growth on contaminated air filters and entrainment of bioaerosols from the filters to an indoor environment. Air filter filtration and antimicrobial efficiencies, and effects of dust particles on these efficiencies, were evaluated. The number of bioaerosols downstream of the filter could be characterized according to three phases: initial, transitional, and stationary. In the initial phase, the number was determined by filtration efficiency, the concentration of dust particles entering the filter, and the flow rate. During the transitional phase, the number of bioaerosols gradually increased up to the stationary phase, at which point no further increase was observed. The antimicrobial efficiency and flow rate were the dominant parameters affecting the number of bioaerosols downstream of the filter in the transitional and stationary phase, respectively. It was found that the nutrient fraction of dust particles entering the filter caused a significant change in the number of bioaerosols in both the transitional and stationary phases. The proposed model would be a solution for predicting the air filter life cycle in terms of microbiological activity by simulating the microbial contamination of the filter. PMID:24523908

  7. Efficacy of Several Pesticide Products on Brown Widow Spider (Araneae: Theridiidae) Egg Sacs and Their Penetration Through the Egg Sac Silk.

    PubMed

    Vetter, Richard S; Tarango, Jacob; Campbell, Kathleen A; Tham, Christine; Hayashi, Cheryl Y; Choe, Dong-Hwan

    2016-02-01

    Information on pesticide effects on spiders is less common than for insects; similar information for spider egg sacs is scarcer in the open literature. Spider egg sacs are typically covered with a protective silk layer. When pesticides are directly applied to egg sacs, the silk might prevent active ingredients from reaching the eggs, blocking their insecticidal effect. We investigated the impact of six water-based pesticide sprays and four oil-based aerosol products against egg sacs of brown widow spiders, Latrodectus geometricus C. L. Koch. All water-based spray products except one failed to provide significant mortality to egg sacs, resulting in successful spiderling emergence from treated egg sacs at a similar rate to untreated egg sacs. In contrast to water-based sprays, oil-based aerosols provided almost complete control, with 94-100% prevention of spiderling emergence. Penetration studies using colored pesticide products indicated that oil-based aerosols were significantly more effective in penetrating egg sac silk than were the water-based sprays, delivering the active ingredients on most (>99%) of the eggs inside the sac. The ability of pesticides to penetrate spider egg sac silk and deliver lethal doses of active ingredients to the eggs is discussed in relation to the chemical nature of egg sac silk proteins. Our study suggests that pest management procedures primarily relying on perimeter application of water-based sprays might not provide satisfactory control of brown widow spider eggs. Determination of the most effective active ingredients and carrier characteristics warrant further research to provide more effective control options for spider egg sacs. PMID:26530954

  8. Estimating Lightning NOx Emissions for Regional Air Quality Modeling

    NASA Astrophysics Data System (ADS)

    Holloway, T.; Scotty, E.; Harkey, M.

    2014-12-01

    Lightning emissions have long been recognized as an important source of nitrogen oxides (NOx) on a global scale, and an essential emission component for global atmospheric chemistry models. However, only in recent years have regional air quality models incorporated lightning NOx emissions into simulations. The growth in regional modeling of lightning emissions has been driven in part by comparisons with satellite-derived estimates of column NO2, especially from the Ozone Monitoring Instrument (OMI) aboard the Aura satellite. We present and evaluate a lightning inventory for the EPA Community Multiscale Air Quality (CMAQ) model. Our approach follows Koo et al. [2010] in the approach to spatially and temporally allocating a given total value based on cloud-top height and convective precipitation. However, we consider alternate total NOx emission values (which translate into alternate lightning emission factors) based on a review of the literature and performance evaluation against OMI NO2 for July 2007 conditions over the U.S. and parts of Canada and Mexico. The vertical distribution of lightning emissions follow a bimodal distribution from Allen et al. [2012] calculated over 27 vertical model layers. Total lightning NO emissions for July 2007 show the highest above-land emissions in Florida, southeastern Texas and southern Louisiana. Although agreement with OMI NO2 across the domain varied significantly depending on lightning NOx assumptions, agreement among the simulations at ground-based NO2 monitors from the EPA Air Quality System database showed no meaningful sensitivity to lightning NOx. Emissions are compared with prior studies, which find similar distribution patterns, but a wide range of calculated magnitudes.

  9. ADDRESSING HUMAN EXPOSURES TO AIR POLLUTANTS AROUND BUILDINGS IN URBAN AREAS WITH COMPUTATIONAL FLUID DYNAMICS MODELS

    EPA Science Inventory

    This paper discusses the status and application of Computational Fluid Dynamics (CFD) models to address challenges for modeling human exposures to air pollutants around urban building microenvironments. There are challenges for more detailed understanding of air pollutant sour...

  10. ONE ATMOSPHERE MODELING FOR AIR QUALITY: BUILDING PARTNERSHIPS THAT TRANSITION RESEARCH INTO APPLICATIONS

    EPA Science Inventory

    The Community Miultiscale Air Quality (CMAQ) modeling system is a "one atmosphere" chemical transport model that simulates the transport and fate of air pollutants from urban to continental scales and from daily to annual time intervals.

  11. Investigation of sulfonated aromatic compound (SAC) modification to nylon film. 2. Study of SAC sorption isotherm and atomic force microscopic characterization of nylon surfaces

    SciTech Connect

    Zhang, J.; Watson, B.A.; Keown, R.W.; Malone, C.P.; Barteau, M.A.

    1995-08-01

    Nylon 6 and nylon 66 films have been treated with aqueous sulfonated aromatic compound (SAC) solutions at concentrations ranging from 0.005 to 1.0 wt%. SAC uptakes at different treatment concentrations were measured and found to follow a BET isotherm. The surface morphologies of nylon film samples, including the original and SAC-treated films, have been characterized by atomic force microscopy (AFM). For untreated nylon 6 and nylon 66 films, AFM images show a randomly distributed fibrillar surface structure. Characteristic widths of fibrils in the nylon 66 and 6 films were 150-225 and 75-150 nm, respectively. For SAC-treated nylon films, the AFM images revealed that the surfaces of the films became covered with nodule-like features having a diameter range of 25-60 nm. AFM analysis provides evidence that SAC treatment deposited a surface coating on nylon films. AFM images of SAC-treated nylon films suggest a mechanism for stain resistance in which the SAC first forms a thin coating on the nylon via bondings between attractive groups in the SAC and nylon polymers. After treatment at increased SAC concentration, the surface is covered with nodule-like deposits which likely serve as a physical barrier to dye permeation. 20 refs., 8 figs.

  12. Off-site air monitoring following methyl bromide chamber and building fumigations and evaluation of the ISCST air dispersion model

    SciTech Connect

    Barry, T.; Swgawa, R.; Wofford, P.

    1995-12-31

    The Department of Pesticide Regulation`s preliminary risk characterization of methyl bromide indicated an inadequate margin of safety for several exposure scenarios. Characterization of the air concentrations associated with common methyl bromide use patterns was necessary to determine specific scenarios that result in an unacceptable margin of safety. Field monitoring data were used in conjunction with the Industrial Source Complex, Short Tenn (ISCST) air dispersion model to characterize air concentrations associated with various types of methyl bromide applications. Chamber and building fumigations were monitored and modelled. For each fumigation the emission rates, chamber or building specifications and on-site meteorological data were input into the ISCST model. The model predicted concentrations were compared to measured air concentrations. The concentrations predicted by the ISCST model reflect both the pattern and magnitude of the measured concentrations. Required buffer zones were calculated using the ISCST output.

  13. Modelling of operation of a lithium-air battery with ambient air and oxygen-selective membrane

    NASA Astrophysics Data System (ADS)

    Sahapatsombut, Ukrit; Cheng, Hua; Scott, Keith

    2014-03-01

    A macro-homogeneous model has been developed to evaluate the impact of replacing pure oxygen with ambient air on the performance of a rechargeable non-aqueous Li-air battery. The model exhibits a significant reduction in discharge capacity, e.g. from 1240 to 226 mAh gcarbon-1 at 0.05 mA cm-2 when using ambient air rather than pure oxygen. The model correlates the relationship between the performance and electrolyte decomposition and formation of discharge products (such as Li2O2 and Li2CO3) under ambient air conditions. The model predicts a great benefit of using an oxygen-selective membrane on increasing capacity. The results indicate a good agreement between the experimental data and the model.

  14. A simple model for calculating air pollution within street canyons

    NASA Astrophysics Data System (ADS)

    Venegas, Laura E.; Mazzeo, Nicolás A.; Dezzutti, Mariana C.

    2014-04-01

    This paper introduces the Semi-Empirical Urban Street (SEUS) model. SEUS is a simple mathematical model based on the scaling of air pollution concentration inside street canyons employing the emission rate, the width of the canyon, the dispersive velocity scale and the background concentration. Dispersive velocity scale depends on turbulent motions related to wind and traffic. The parameterisations of these turbulent motions include two dimensionless empirical parameters. Functional forms of these parameters have been obtained from full scale data measured in street canyons at four European cities. The sensitivity of SEUS model is studied analytically. Results show that relative errors in the evaluation of the two dimensionless empirical parameters have less influence on model uncertainties than uncertainties in other input variables. The model estimates NO2 concentrations using a simple photochemistry scheme. SEUS is applied to estimate NOx and NO2 hourly concentrations in an irregular and busy street canyon in the city of Buenos Aires. The statistical evaluation of results shows that there is a good agreement between estimated and observed hourly concentrations (e.g. fractional bias are -10.3% for NOx and +7.8% for NO2). The agreement between the estimated and observed values has also been analysed in terms of its dependence on wind speed and direction. The model shows a better performance for wind speeds >2 m s-1 than for lower wind speeds and for leeward situations than for others. No significant discrepancies have been found between the results of the proposed model and that of a widely used operational dispersion model (OSPM), both using the same input information.

  15. Modelling of dynamic targeting in the Air Operations Centre

    NASA Astrophysics Data System (ADS)

    Lo, Edward H. S.; Au, T. Andrew

    2007-12-01

    Air Operations Centres (AOCs) are high stress multitask environments for planning and executing of theatre-wide airpower. Operators have multiple responsibilities to ensure that the orchestration of air assets is coordinated to maximum effect. AOCs utilise a dynamic targeting process to immediately prosecute time-sensitive targets. For this process to work effectively, a timely decision must be made regarding the appropriate course of action before the action is enabled. A targeting solution is typically developed using a number of inter-related processes in the kill chain - the Find, Fix, Track, Target, Engage, and Assess (F2T2EA) model. The success of making a right decision about dynamic targeting is ultimately limited by the cognitive and cooperative skills of the team prosecuting the mission and their associated workload. This paper presents a model of human interaction and tasks within the dynamic targeting sequence. The complex network of tasks executed by the team can be analysed by undertaking simulation of the model to identify possible information-processing bottlenecks and overloads. The model was subjected to various tests to generate typical outcomes, operator utilisation, duration as well as rates of output in the dynamic targeting process. This capability will allow for future "what-if" evaluations of numerous concepts for team formation or task reallocation, complementing live exercises and experiments.

  16. Urban scale air quality modelling using detailed traffic emissions estimates

    NASA Astrophysics Data System (ADS)

    Borrego, C.; Amorim, J. H.; Tchepel, O.; Dias, D.; Rafael, S.; Sá, E.; Pimentel, C.; Fontes, T.; Fernandes, P.; Pereira, S. R.; Bandeira, J. M.; Coelho, M. C.

    2016-04-01

    The atmospheric dispersion of NOx and PM10 was simulated with a second generation Gaussian model over a medium-size south-European city. Microscopic traffic models calibrated with GPS data were used to derive typical driving cycles for each road link, while instantaneous emissions were estimated applying a combined Vehicle Specific Power/Co-operative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe (VSP/EMEP) methodology. Site-specific background concentrations were estimated using time series analysis and a low-pass filter applied to local observations. Air quality modelling results are compared against measurements at two locations for a 1 week period. 78% of the results are within a factor of two of the observations for 1-h average concentrations, increasing to 94% for daily averages. Correlation significantly improves when background is added, with an average of 0.89 for the 24 h record. The results highlight the potential of detailed traffic and instantaneous exhaust emissions estimates, together with filtered urban background, to provide accurate input data to Gaussian models applied at the urban scale.

  17. Spectral Amplitude Coding (SAC)-OCDMA Network with 8DPSK

    NASA Astrophysics Data System (ADS)

    Aldhaibani, A. O.; Aljunid, S. A.; Fadhil, Hilal A.; Anuar, M. S.

    2013-09-01

    Optical code division multiple access (OCDMA) technique is required to meet the increased demand for high speed, large capacity communications in optical networks. In this paper, the transmission performance of a spectral amplitude coding (SAC)-OCDMA network is investigated when a conventional single-mode fiber (SMF) is used as the transmission link using 8DPSK modulation. The DW has a fixed weight of two. Simulation results reveal that the transmission distance is limited mainly by the fiber dispersion when high coding chip rate is used. For a two-user SAC-OCDMA network operating with 2 Gbit/s data rate and two wavelengths for each user, the maximum allowable transmission distance is about 15 km.

  18. Hydrocele of Femoral Hernial Sac-an Extremely Rare Case.

    PubMed

    Madhivanan, S; Jain, Ravindra Kumar

    2016-06-01

    A previously healthy 40-year-old woman presented with a right groin swelling for the last 2 years. Diagnosed preoperatively as uncomplicated, irreducible epiplocele of right femoral hernia, later per-operatively was diagnosed as hydrocele of femoral hernial sac also known as "femorocele"; ultrasound abdomen and groin demonstrated as a cystic mass right groin with no precise origin. All other basic line investigations within normal limits, except anemia 7 gm %, corrected to 10 gm %, by preoperative transfusions of 2 units of complete fresh blood. After low approach incision, excision of hydrocele sac, and feormal hernia repair were done with approximation of iliopectineal ligament to inguinal ligament, patient was discharged on 5th postoperative day with satisfactory wound healing and uneventful hospitalization. PMID:27358521

  19. INVESTIGATION AND IMPLICATIONS OF SUB GRID VARIABILITY OF CMAQ MODELED CONCENTRATIONS

    EPA Science Inventory

    This poster introduces a method called SGV adjusted concentrations (SAC) for introducing sub-grid variability (inherent in air quality grid models) into CMAQ for various applications C MAQ was run at 36-, 12-, 4-, and 1 km-grid sizes for July 2001 for the Delaware domain. The S...

  20. EPA third-generation air quality modeling system: Models-3 user manual. Standard tutorial

    SciTech Connect

    1998-09-01

    Models-3 is a flexible software system designed to simplify the development and use of environmental assessment and other decision support tools. It is designed for applications ranging from regulatory and policy analysis to understanding the complex interactions of atmospheric chemistry and physics. The initial version of Models-3 contains a Community Multi-scale Air Quality (CMAQ) modeling system for urban to regional scale air quality simulation of tropospheric ozone, acid deposition, visibility, and fine particles. Models-3 and CMAQ in combination form a powerful third generation air quality modeling and assessment system that enables a user to execute air quality simulation models and visualize their results. Models-3/CMAQ also assists the model developer to assemble, test, and evaluate science process components and their impact on chemistry-transport model predictions by facilitating the interchange of science codes, transparent use of multiple computing platforms, and access of data across the network. The Models-3/CMAQ provides flexibility to change key model specifications such as grid resolution and chemistry mechanism without rewriting the code. Models-3/CMAQ is intended to serve as a community framework for continual advancement and use of environmental assessment tools. This User Manual Tutorial serves as a guide to show the steps necessary to implement an application in Models-3/CMAQ.

  1. Evaluation of the Community Multiscale Air Quality model version 5.1

    EPA Science Inventory

    The Community Multiscale Air Quality model is a state-of-the-science air quality model that simulates the emission, transport and fate of numerous air pollutants, including ozone and particulate matter. The Atmospheric Modeling and Analysis Division (AMAD) of the U.S. Environment...

  2. Downscaling modelling system for multi-scale air quality forecasting

    NASA Astrophysics Data System (ADS)

    Nuterman, R.; Baklanov, A.; Mahura, A.; Amstrup, B.; Weismann, J.

    2010-09-01

    Urban modelling for real meteorological situations, in general, considers only a small part of the urban area in a micro-meteorological model, and urban heterogeneities outside a modelling domain affect micro-scale processes. Therefore, it is important to build a chain of models of different scales with nesting of higher resolution models into larger scale lower resolution models. Usually, the up-scaled city- or meso-scale models consider parameterisations of urban effects or statistical descriptions of the urban morphology, whereas the micro-scale (street canyon) models are obstacle-resolved and they consider a detailed geometry of the buildings and the urban canopy. The developed system consists of the meso-, urban- and street-scale models. First, it is the Numerical Weather Prediction (HIgh Resolution Limited Area Model) model combined with Atmospheric Chemistry Transport (the Comprehensive Air quality Model with extensions) model. Several levels of urban parameterisation are considered. They are chosen depending on selected scales and resolutions. For regional scale, the urban parameterisation is based on the roughness and flux corrections approach; for urban scale - building effects parameterisation. Modern methods of computational fluid dynamics allow solving environmental problems connected with atmospheric transport of pollutants within urban canopy in a presence of penetrable (vegetation) and impenetrable (buildings) obstacles. For local- and micro-scales nesting the Micro-scale Model for Urban Environment is applied. This is a comprehensive obstacle-resolved urban wind-flow and dispersion model based on the Reynolds averaged Navier-Stokes approach and several turbulent closures, i.e. k -ɛ linear eddy-viscosity model, k - ɛ non-linear eddy-viscosity model and Reynolds stress model. Boundary and initial conditions for the micro-scale model are used from the up-scaled models with corresponding interpolation conserving the mass. For the boundaries a

  3. Evaluation of observation-fused regional air quality model results for population air pollution exposure estimation.

    PubMed

    Chen, Gang; Li, Jingyi; Ying, Qi; Sherman, Seth; Perkins, Neil; Rajeshwari, Sundaram; Mendola, Pauline

    2014-07-01

    In this study, Community Multiscale Air Quality (CMAQ) model was applied to predict ambient gaseous and particulate concentrations during 2001 to 2010 in 15 hospital referral regions (HRRs) using a 36-km horizontal resolution domain. An inverse distance weighting based method was applied to produce exposure estimates based on observation-fused regional pollutant concentration fields using the differences between observations and predictions at grid cells where air quality monitors were located. Although the raw CMAQ model is capable of producing satisfying results for O3 and PM2.5 based on EPA guidelines, using the observation data fusing technique to correct CMAQ predictions leads to significant improvement of model performance for all gaseous and particulate pollutants. Regional average concentrations were calculated using five different methods: 1) inverse distance weighting of observation data alone, 2) raw CMAQ results, 3) observation-fused CMAQ results, 4) population-averaged raw CMAQ results and 5) population-averaged fused CMAQ results. It shows that while O3 (as well as NOx) monitoring networks in the HRRs are dense enough to provide consistent regional average exposure estimation based on monitoring data alone, PM2.5 observation sites (as well as monitors for CO, SO2, PM10 and PM2.5 components) are usually sparse and the difference between the average concentrations estimated by the inverse distance interpolated observations, raw CMAQ and fused CMAQ results can be significantly different. Population-weighted average should be used to account for spatial variation in pollutant concentration and population density. Using raw CMAQ results or observations alone might lead to significant biases in health outcome analyses. PMID:24747248

  4. Evaluation of Observation-Fused Regional Air Quality Model Results for Population Air Pollution Exposure Estimation

    PubMed Central

    Chen, Gang; Li, Jingyi; Ying, Qi; Sherman, Seth; Perkins, Neil; Rajeshwari, Sundaram; Mendola, Pauline

    2014-01-01

    In this study, Community Multiscale Air Quality (CMAQ) model was applied to predict ambient gaseous and particulate concentrations during 2001 to 2010 in 15 hospital referral regions (HRRs) using a 36-km horizontal resolution domain. An inverse distance weighting based method was applied to produce exposure estimates based on observation-fused regional pollutant concentration fields using the differences between observations and predictions at grid cells where air quality monitors were located. Although the raw CMAQ model is capable of producing satisfying results for O3 and PM2.5 based on EPA guidelines, using the observation data fusing technique to correct CMAQ predictions leads to significant improvement of model performance for all gaseous and particulate pollutants. Regional average concentrations were calculated using five different methods: 1) inverse distance weighting of observation data alone, 2) raw CMAQ results, 3) observation-fused CMAQ results, 4) population-averaged raw CMAQ results and 5) population-averaged fused CMAQ results. It shows that while O3 (as well as NOx) monitoring networks in the HRR regions are dense enough to provide consistent regional average exposure estimation based on monitoring data alone, PM2.5 observation sites (as well as monitors for CO, SO2, PM10 and PM2.5 components) are usually sparse and the difference between the average concentrations estimated by the inverse distance interpolated observations, raw CMAQ and fused CMAQ results can be significantly different. Population-weighted average should be used to account spatial variation in pollutant concentration and population density. Using raw CMAQ results or observations alone might lead to significant biases in health outcome analyses. PMID:24747248

  5. Improving ammonia emissions in air quality modelling for France

    NASA Astrophysics Data System (ADS)

    Hamaoui-Laguel, Lynda; Meleux, Frédérik; Beekmann, Matthias; Bessagnet, Bertrand; Génermont, Sophie; Cellier, Pierre; Létinois, Laurent

    2014-08-01

    We have implemented a new module to improve the representation of ammonia emissions from agricultural activities in France with the objective to evaluate the impact of such emissions on the formation of particulate matter modelled with the air quality model CHIMERE. A novel method has been set up for the part of ammonia emissions originating from mineral fertilizer spreading. They are calculated using the one dimensional 1D mechanistic model “VOLT'AIR” which has been coupled with data on agricultural practices, meteorology and soil properties obtained at high spatial resolution (cantonal level). These emissions display high spatiotemporal variations depending on soil pH, rates and dates of fertilization and meteorological variables, especially soil temperature. The emissions from other agricultural sources (animal housing, manure storage and organic manure spreading) are calculated using the national spatialised inventory (INS) recently developed in France. The comparison of the total ammonia emissions estimated with the new approach VOLT'AIR_INS with the standard emissions provided by EMEP (European Monitoring and Evaluation Programme) used currently in the CHIMERE model shows significant differences in the spatiotemporal distributions. The implementation of new ammonia emissions in the CHIMERE model has a limited impact on ammonium nitrate aerosol concentrations which only increase at most by 10% on the average for the considered spring period but this impact can be more significant for specific pollution episodes. The comparison of modelled PM10 (particulate matter with aerodynamic diameter smaller than 10 μm) and ammonium nitrate aerosol with observations shows that the use of the new ammonia emission method slightly improves the spatiotemporal correlation in certain regions and reduces the negative bias on average by 1 μg m-3. The formation of ammonium nitrate aerosol depends not only on ammonia concentrations but also on nitric acid availability, which

  6. Prediction of Indoor Air Exposure from Outdoor Air Quality Using an Artificial Neural Network Model for Inner City Commercial Buildings.

    PubMed

    Challoner, Avril; Pilla, Francesco; Gill, Laurence

    2015-12-01

    NO₂ and particulate matter are the air pollutants of most concern in Ireland, with possible links to the higher respiratory and cardiovascular mortality and morbidity rates found in the country compared to the rest of Europe. Currently, air quality limits in Europe only cover outdoor environments yet the quality of indoor air is an essential determinant of a person's well-being, especially since the average person spends more than 90% of their time indoors. The modelling conducted in this research aims to provide a framework for epidemiological studies by the use of publically available data from fixed outdoor monitoring stations to predict indoor air quality more accurately. Predictions are made using two modelling techniques, the Personal-exposure Activity Location Model (PALM), to predict outdoor air quality at a particular building, and Artificial Neural Networks, to model the indoor/outdoor relationship of the building. This joint approach has been used to predict indoor air concentrations for three inner city commercial buildings in Dublin, where parallel indoor and outdoor diurnal monitoring had been carried out on site. This modelling methodology has been shown to provide reasonable predictions of average NO₂ indoor air quality compared to the monitored data, but did not perform well in the prediction of indoor PM2.5 concentrations. Hence, this approach could be used to determine NO₂ exposures more rigorously of those who work and/or live in the city centre, which can then be linked to potential health impacts. PMID:26633448

  7. Prediction of Indoor Air Exposure from Outdoor Air Quality Using an Artificial Neural Network Model for Inner City Commercial Buildings

    PubMed Central

    Challoner, Avril; Pilla, Francesco; Gill, Laurence

    2015-01-01

    NO2 and particulate matter are the air pollutants of most concern in Ireland, with possible links to the higher respiratory and cardiovascular mortality and morbidity rates found in the country compared to the rest of Europe. Currently, air quality limits in Europe only cover outdoor environments yet the quality of indoor air is an essential determinant of a person’s well-being, especially since the average person spends more than 90% of their time indoors. The modelling conducted in this research aims to provide a framework for epidemiological studies by the use of publically available data from fixed outdoor monitoring stations to predict indoor air quality more accurately. Predictions are made using two modelling techniques, the Personal-exposure Activity Location Model (PALM), to predict outdoor air quality at a particular building, and Artificial Neural Networks, to model the indoor/outdoor relationship of the building. This joint approach has been used to predict indoor air concentrations for three inner city commercial buildings in Dublin, where parallel indoor and outdoor diurnal monitoring had been carried out on site. This modelling methodology has been shown to provide reasonable predictions of average NO2 indoor air quality compared to the monitored data, but did not perform well in the prediction of indoor PM2.5 concentrations. Hence, this approach could be used to determine NO2 exposures more rigorously of those who work and/or live in the city centre, which can then be linked to potential health impacts. PMID:26633448

  8. Improving UK Air Quality Modelling Through Exploitation of Satellite Observations

    NASA Astrophysics Data System (ADS)

    Pope, R.; Chipperfield, M.; Savage, N.

    2012-12-01

    The Met Office's operational regional Air Quality Unified Model (AQUM) contains a description of atmospheric chemistry/aerosols which allows for the short-term forecast of chemical weather (e.g. high concentrations of ozone or nitrogen dioxide, which can trigger warnings of poor air quality). AQUM's performance has so far only been tested against a network of surface monitoring stations. Therefore, with recent improvements in the quality and quantity of satellite measurements, data products (e.g. tropospheric columns, vertical profiles) from several satellite instruments will be used to test the performance of the model. First comparisons between an AQUM simulation for the UK heatwave event of July 2006 and data from OMI, TES (both on AURA) and MODIS (on AQUA) have identified multiple model-satellite biases. The chemical/aerosol species investigated for this simulation include nitrogen dioxide (NO2), ozone (O3), formaldehyde (HCHO), carbon monoxide (CO) and aerosol optical depth (AOD) at 0.55 microns wavelength. NO2 spatial positive mean biases (AQUM-OMI July 2006 monthly mean tropospheric columns) over north- east England suggest model overestimation in the area's urban regions. Currently, sensitivity tests of the NOx emission datasets are investigating these biases and the model's represent of urban pollution. In the UK O3 monthly mean vertical profile comparisons (AQUM-TES), strong positive mean biases are detected in the upper troposphere/lower stratosphere. Since the AQUM does not use a stratospheric chemistry scheme, the satellite climatological vertical boundary conditions will be investigated (e.g. test the model with new boundary conditions using multiple satellite instruments or perturb existing climatologies). Comparisons of HCHO (AQUM-OMI monthly mean tropospheric columns) biases highlight strong negative biases over continental Europe and sporadic positive biases in the south-east lateral boundary conditions. Therefore, evaluation and development of

  9. Positional cloning of the mouse saccharin preference (Sac) locus

    PubMed Central

    Bachmanov, Alexander A.; Li, Xia; Reed, Danielle R.; Ohmen, Jeffery D.; Li, Shanru; Chen, Zhenyu; Tordoff, Michael G.; de Jong, Pieter J.; Wu, Chenyan; West, David B.; Chatterjee, Alu; Ross, David A.; Beauchamp, Gary K.

    2013-01-01

    Differences in sweetener intake among inbred strains of mice are partially determined by allelic variation of the saccharin preference (Sac) locus. Genetic and physical mapping limited a critical genomic interval containing Sac to a 194-kb DNA fragment. Sequencing and annotation of this region identified a gene (Tas1r3) encoding the third member of the T1R family of putative taste receptors, T1R3. Introgression by serial backcrossing of the 194-kb chromosomal fragment containing the Tas1r3 allele from the high-sweetener preferring C57BL/6ByJ strain onto the genetic background of the low-sweetener preferring 129P3/J strain rescued its low sweetener preference phenotype. Polymorphisms of Tas1r3 that are likely to have functional significance were identified using analysis of genomic sequences and sweetener preference phenotypes of genealogically distant mouse strains. Tas1r3 has two common haplotypes, consisting of six single nucleotide polymorphisms: one haplotype was found in mouse strains with elevated sweetener preference and the other in strains relatively indifferent to sweeteners. This study provides compelling evidence that Tas1r3 is equivalent to the Sac locus and that the T1R3 receptor responds to sweeteners. PMID:11555487

  10. Oblique sectional planes of block plastinates eased by Sac Plastination.

    PubMed

    Kürtül, Ibrahim; Hammer, Niels; Rabi, Suganthy; Saito, Toshiyuki; Böhme, Jörg; Steinke, Hanno

    2012-07-01

    To find an oblique cutting plane of a plastinate, e.g. to cut gamma-nails in the femur, the Block Plastination technique was modified. After CT and MRI examination, the specimens were plastinated with the standard resin mixture E6/E12/E600. Instead of using a box to form a block during the casting and curing stage, we embedded the specimen in a sac made of polyester foil. A polymerized wooden block was attached to the specimen. The sac was wrapped with tape to the embedded specimen with the block. This approach limited the amount of required resin to the inner volume of the plastinate. Then, the plastination sac was put in the incubator for further polymerization and curing. When the foil was removed from the plastinated specimen, the wooden block served as a socket for the grip when sawing. The outer shape of the specimen remained visible. Doing so, the adequate cutting plane could be determined easily. PMID:22209028

  11. Educational report: A case of lacrimal sac rhinosporidiosis.

    PubMed

    Jamison, Aaron; Crofts, Kevin; Roberts, Fiona; Gregory, Maria Elena

    2016-10-01

    This article reports a presentation of lacrimal sac rhinosporidiosis and informs the reader of this uncommon but important diagnosis. A 36-year-old man from Pakistan presented with a 3-month history of swelling at the nasal aspect of the left lower lid. This was associated with occasional crepitus and slight localised discomfort, but no epiphora. There was a palpable fullness near the left medial canthus associated with telecanthus but a normal sac washout and normal eye examination otherwise. Previous medical history included an ipsilateral nasal polypectomy and inferior meatal antrostomy around 10 years previously, whilst living in Pakistan. Various imaging modalities were useful in identifying a soft tissue mass within the left nasolacrimal duct. Following excision biopsy, histological examination confirmed the presence of rhinosporidiosis, likely caused by the organism Rhinosporidium seeberi. Rhinosporidiosis should be considered as a potential cause in any case of lacrimal sac pathology. Imaging studies may be helpful in measuring the extent of disease, although histological examination is required to confirm the diagnosis. Although rare, the complications of rhinosporidiosis can be potentially blinding or fatal. As discussed in this case, the presence of telecanthus may represent a lacrimal system tumour, either malignant or benign, and should always prompt further investigation. PMID:27541939

  12. Endometriosis in a spigelian hernia sac: an unexpected finding.

    PubMed

    Moris, Demetrios; Michalinos, Adamantios; Vernadakis, Spiridon

    2015-01-01

    Describes the existence of endometrioma in a spigelian hernia sac. Spigelian Hernia is a rare ventral hernia, presenting difficulties in diagnosis and carrying a high incarceration and obstruction risk. Endometriomas occur due to implantation of endometrial cells into a surgical wound, most often after a cesarean delivery. A 37-year-old woman presented to our department with persistent abdominal pain, exacerbating during menses, and vomiting for 2 days. Physical examination revealed a mass-like lesion in the border between the left-upper and left-lower quadrant. Ultrasound examination was inconclusive and a computed tomography scan of the abdomen revealed an abdominal wall mass. During surgery, a spigelian hernia was found 5 to 7 cm above a previous cesarean incision. Tissue like "chocolate cysts" was present at the hernia sac. Hernia was repaired while tissue was excised and sent for histological examination that confirmed the diagnosis. Spigelian hernia is a hernia presenting difficulties in diagnosis and treatment. Endometrioma in a spigelian hernia sac is a rare diagnosis, confirmed only histologically. Clinical suspicion can be posed only through symptoms and thorough investigation. PMID:25594648

  13. Endometriosis in a Spigelian Hernia Sac: An Unexpected Finding

    PubMed Central

    Moris, Demetrios; Michalinos, Adamantios; Vernadakis, Spiridon

    2015-01-01

    Describes the existence of endometrioma in a spigelian hernia sac. Spigelian Hernia is a rare ventral hernia, presenting difficulties in diagnosis and carrying a high incarceration and obstruction risk. Endometriomas occur due to implantation of endometrial cells into a surgical wound, most often after a cesarean delivery. A 37-year-old woman presented to our department with persistent abdominal pain, exacerbating during menses, and vomiting for 2 days. Physical examination revealed a mass-like lesion in the border between the left-upper and left-lower quadrant. Ultrasound examination was inconclusive and a computed tomography scan of the abdomen revealed an abdominal wall mass. During surgery, a spigelian hernia was found 5 to 7 cm above a previous cesarean incision. Tissue like “chocolate cysts” was present at the hernia sac. Hernia was repaired while tissue was excised and sent for histological examination that confirmed the diagnosis. Spigelian hernia is a hernia presenting difficulties in diagnosis and treatment. Endometrioma in a spigelian hernia sac is a rare diagnosis, confirmed only histologically. Clinical suspicion can be posed only through symptoms and thorough investigation. PMID:25594648

  14. Evaluation of air pollution modelling tools as environmental engineering courseware.

    PubMed

    Souto González, J A; Bello Bugallo, P M; Casares Long, J J

    2004-01-01

    The study of phenomena related to the dispersion of pollutants usually takes advantage of the use of mathematical models based on the description of the different processes involved. This educational approach is especially important in air pollution dispersion, when the processes follow a non-linear behaviour so it is difficult to understand the relationships between inputs and outputs, and in a 3D context where it becomes hard to analyze alphanumeric results. In this work, three different software tools, as computer solvers for typical air pollution dispersion phenomena, are presented. Each software tool developed to be implemented on PCs, follows approaches that represent three generations of programming languages (Fortran 77, VisualBasic and Java), applied over three different environments: MS-DOS, MS-Windows and the world wide web. The software tools were tested by students of environmental engineering (undergraduate) and chemical engineering (postgraduate), in order to evaluate the ability of these software tools to improve both theoretical and practical knowledge of the air pollution dispersion problem, and the impact of the different environment in the learning process in terms of content, ease of use and visualization of results. PMID:15193095

  15. Air assisted lamellar keratectomy for the corneal haze model

    PubMed Central

    Kim, Soohyun; Park, Young Woo; Lee, Euiri; Park, Sang Wan; Park, Sungwon; Kim, Jong Whi; Seong, Je Kyung

    2015-01-01

    To standardize the corneal haze model in the resection depth and size for efficient corneal haze development, air assisted lamellar keratectomy was performed. The ex vivo porcine corneas were categorized into four groups depending on the trephined depth: 250 µm (G1), 375 µm (G2), 500 µm (G3) and 750 µm (G4). The stroma was equally ablated at the five measurement sites in all groups. Significant differences were observed between the trephined corneal depths for resection and ablated corneal thickness in G1 (p < 0.001). No significant differences were observed between the trephined corneal depth for resection and the ablated corneal thickness in G2, G3, and G4. The resection percentage was similar in all groups after microscopic imaging of corneal sections. Air assisted lamellar keratectomy (AK) and conventional keratectomy (CK) method were applied to six beagles, after which development of corneal haze was evaluated weekly until postoperative day 28. The occurrence of corneal haze in the AK group was significantly higher than that in the CK group beginning 14 days after surgery. Alpha-smooth muscle actin expression was significantly higher in the AK group (p < 0.001) than the CK group. Air assisted lamellar keratectomy was used to achieve the desired corneal thickness after resection and produce sufficient corneal haze. PMID:25797296

  16. A NEW COMBINED LOCAL AND NON-LOCAL PBL MODEL FOR METEOROLOGY AND AIR QUALITY MODELING

    EPA Science Inventory

    A new version of the Asymmetric Convective Model (ACM) has been developed to describe sub-grid vertical turbulent transport in both meteorology models and air quality models. The new version (ACM2) combines the non-local convective mixing of the original ACM with local eddy diff...

  17. LINKING ETA MODEL WITH THE COMMUNITY MULTISCALE AIR QUALITY (CMAQ) MODELING SYSTEM: OZONE BOUNDARY CONDITIONS

    EPA Science Inventory

    A prototype surface ozone concentration forecasting model system for the Eastern U.S. has been developed. The model system is consisting of a regional meteorological and a regional air quality model. It demonstrated a strong prediction dependence on its ozone boundary conditions....

  18. A particle-grid air quality modeling approach

    SciTech Connect

    Chock, D.P.; Winkler, S.L.

    1996-12-31

    A particle-grid air quality modeling approach that can incorporate chemistry is proposed as an alternative to the conventional PDF-grid air quality modeling. The particle trajectory model can accurately describe advection of air pollutants without introducing artificial diffusion, generating negative concentrations or distorting the concentration distributions. It also accurately describes the dispersion of emissions from point sources and is capable of retaining subgrid-scale information. Inhomogeneous turbulence necessitates use of a small timestep, say, 10 s to describe vertical dispersion of particles in convective conditions. A timestep as large as 200 s can be used to simulate horizontal dispersion. A time-splitting scheme can be used to couple the horizontal and vertical dispersion in a 3D simulation, and about 2000-3000 particles per cell of size 5 km x 5 km X 50 m is sufficient to yield a highly accurate simulation of 3D dispersion. Use of an hourly-averaged concentration further reduces the demand of particle per cell to 500. The particle-grid method is applied to a system of ten reacting chemical species in a two-dimensional rotating flow field with and without diffusion. A chemistry grid within which reactions are assumed to take place can be decoupled from the grid describing the flow field. Two types of chemistry grids are used to describe the chemical reactions: a fixed coarse grid and a moving (the advection case) or stationary (the advection plus diffusion case) fine grid. Two particle-number densities are also used: 256 and 576 particles per fixed coarse grid cell. The species mass redistributed back to the particle after each reaction step is assumed to be proportional to the species mass in the particle before the reaction. The simulation results are very accurate, especially in the advection-chemistry case. Accuracy improves with the use of a fine grid.

  19. Space-Time Analysis of the Air Quality Model Evaluation International Initiative (AQMEII) Phase 1 Air Quality Simulations

    EPA Science Inventory

    This study presents an evaluation of summertime daily maximum ozone concentrations over North America (NA) and Europe (EU) using the database generated during Phase 1 of the Air Quality Model Evaluation International Initiative (AQMEII). The analysis focuses on identifying tempor...

  20. Assimilation of Satellite Data in Regional Air Quality Models

    NASA Technical Reports Server (NTRS)

    Mcnider, Richard T.; Norris, William B.; Casey, Daniel; Pleim, Jonathan E.; Roselle, Shawn J.; Lapenta, William M.

    1997-01-01

    In terms of important uncertainty in regional-scale air-pollution models, probably no other aspect ranks any higher than the current ability to specify clouds and soil moisture on the regional scale. Because clouds in models are highly parameterized, the ability of models to predict the correct spatial and radiative characteristics is highly suspect and subject to large error. The poor representation of cloud fields from point measurements at National Weather Services stations and the almost total absence of surface moisture availability observations has made assimilation of these variables difficult to impossible. Yet, the correct inclusion of clouds and surface moisture are of first-order importance in regional-scale photochemistry.

  1. Modeling and Analysis of Aluminum/Air Fuel Cell

    NASA Astrophysics Data System (ADS)

    Leon, Armando J.

    The technical and scientific challenges to provide reliable sources energy for US and global economy are enormous tasks, and especially so when combined with strategic and recent economic concerns of the last five years. It is clear that as part of the mix of energy sources necessary to deal with these challenges, fuel cells technology will play critical or even a central role. The US Department of Energy, as well as a number of the national laboratories and academic institutions have been aware of the importance such technology for some time. Recently, car manufacturers, transportation experts, and even utilities are paying attention to this vital source of energy for the future. In this thesis, a review of the main fuel cell technologies is presented with the focus on the modeling, and control of one particular and promising fuel cell technology, aluminum air fuel cells. The basic principles of this fuel cell technology are presented. A major part of the study consists of a description of the electrochemistry of the process, modeling, and simulations of aluminum air FC using Matlab Simulink(TM). The controller design of the proposed model is also presented. In sequel, a power management unit is designed and analyzed as an alternative source of power. Thus, the system commutes between the fuel cell output and the alternative power source in order to fulfill a changing power load demand. Finally, a cost analysis and assessment of this technology for portable devices, conclusions and future recommendations are presented.

  2. NASA Air Force Cost Model (NAFCOM): Capabilities and Results

    NASA Technical Reports Server (NTRS)

    McAfee, Julie; Culver, George; Naderi, Mahmoud

    2011-01-01

    NAFCOM is a parametric estimating tool for space hardware. Uses cost estimating relationships (CERs) which correlate historical costs to mission characteristics to predict new project costs. It is based on historical NASA and Air Force space projects. It is intended to be used in the very early phases of a development project. NAFCOM can be used at the subsystem or component levels and estimates development and production costs. NAFCOM is applicable to various types of missions (crewed spacecraft, uncrewed spacecraft, and launch vehicles). There are two versions of the model: a government version that is restricted and a contractor releasable version.

  3. Quantifying urban street configuration for improvements in air pollution models

    NASA Astrophysics Data System (ADS)

    Eeftens, Marloes; Beekhuizen, Johan; Beelen, Rob; Wang, Meng; Vermeulen, Roel; Brunekreef, Bert; Huss, Anke; Hoek, Gerard

    2013-06-01

    In many built-up urban areas, tall buildings along narrow streets obstruct the free flow of air, resulting in higher pollution levels. Input data to account for street configuration in models are difficult to obtain for large numbers of streets. We describe an approach to calculate indicators of this "urban canyon effect" using 3-dimensional building data and evaluated whether these indicators improved spatially resolved land use regression (LUR) models.Concentrations of NO2 and NOx were available from 132 sites in the Netherlands. We calculated four indicators for canyon effects at each site: (1) the maximum aspect ratio (building height/width of the street) between buildings on opposite sides of the street, (2) the mean building angle, which is the angle between the horizontal street level and the line of sight to the top of surrounding buildings, (3) median building angle and (4) "SkyView Factor" (SVF), a measure of the total fraction of visible sky. Basic LUR models were computed for both pollutants using common predictors such as household density, land-use and nearby traffic intensity. We added each of the four canyon indicators to the basic LUR models and evaluated whether they improved the model.The calculated aspect ratio agreed well (R2 = 0.49) with aspect ratios calculated from field observations. Explained variance (R2) of the basic LUR models without canyon indicators was 80% for NO2 and 76% for NOx, and increased to 82% and 78% respectively if SVF was included. Despite this small increase in R2, contrasts in SVF (10th-90th percentile) resulted in substantial concentration differences of 5.56 μg m-3 in NO2 and 10.9 μg m-3 in NOx.We demonstrated a GIS based approach to quantify the obstruction of free air flow by buildings, applicable for large numbers of streets. Canyon indicators could be valuable to consider in air pollution models, especially in areas with low- and high-rise canyons.

  4. Dry deposition modelling of air pollutants over urban areas

    NASA Astrophysics Data System (ADS)

    Cherin, N.; Roustan, Y.; Seigneur, C.; Musson Genon, L.

    2012-04-01

    More than one-half of the world's inhabitants lives in urban areas. Consequently, the evolution of pollutants inside these urban areas are problems of great concern in air quality studies. Though the dry deposition fluxes of air pollutants, which are known to be significant in the neighborhood of sources of pollution, like urban areas, have not been modeled precisely until recently within urban areas. By reviewing the physics of the processes leading to the dry deposition of air pollutants, it is clear that atmosphere turbulence is crucial for dry deposition. Urban areas, and particularly buildings, are known to significantly impact flow fields and then by extension the dry deposition fluxes. Numerous urban schemes have been developed in the past decades to approximate the effect of the local scale urban elements on drag, heat flux and radiative budget. The most recent urban canopy models are based on quite simple geometries, but sufficiently close to represent the aerodynamic and thermal characteristics of cities. These canopy models are generally intended to parameterize aerodynamic and thermal fields, but not dry deposition. For dry deposition, the current classical "roughness" approach, uses only two representative parameters, z0 and d, namely the roughness length and the zero-plane displacement height to represent urban areas. In this work, an innovative dry deposition model based on the urban canyon concept, is proposed. It considers a single road, bordered by two facing buildings, which are treated separately. It accounts for sub-grid effects of cities, especially a better parameterization of the turbulence scheme, through the use of local mixing length and a more detailled description of the urban area and key parameters within the urban canopy. Three different flow regimes are distinguished in the urban canyon according to the height-to-width ratio: isolated roughness flow, wake interference flow and skimming flow regime. The magnitude of differences in

  5. Air Quality Modeling in Support of the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS)

    PubMed Central

    Isakov, Vlad; Arunachalam, Saravanan; Batterman, Stuart; Bereznicki, Sarah; Burke, Janet; Dionisio, Kathie; Garcia, Val; Heist, David; Perry, Steve; Snyder, Michelle; Vette, Alan

    2014-01-01

    A major challenge in traffic-related air pollution exposure studies is the lack of information regarding pollutant exposure characterization. Air quality modeling can provide spatially and temporally varying exposure estimates for examining relationships between traffic-related air pollutants and adverse health outcomes. A hybrid air quality modeling approach was used to estimate exposure to traffic-related air pollutants in support of the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS) conducted in Detroit (Michigan, USA). Model-based exposure metrics, associated with local variations of emissions and meteorology, were estimated using a combination of the American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) and Research LINE-source dispersion model for near-surface releases (RLINE) dispersion models, local emission source information from the National Emissions Inventory, detailed road network locations and traffic activity, and meteorological data from the Detroit City Airport. The regional background contribution was estimated using a combination of the Community Multi-scale Air Quality (CMAQ) and the Space-Time Ordinary Kriging (STOK) models. To capture the near-road pollutant gradients, refined “mini-grids” of model receptors were placed around participant homes. Exposure metrics for CO, NOx, PM2.5 and its components (elemental and organic carbon) were predicted at each home location for multiple time periods including daily and rush hours. The exposure metrics were evaluated for their ability to characterize the spatial and temporal variations of multiple ambient air pollutants compared to measurements across the study area. PMID:25166917

  6. Air quality modeling in support of the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS).

    PubMed

    Isakov, Vlad; Arunachalam, Saravanan; Batterman, Stuart; Bereznicki, Sarah; Burke, Janet; Dionisio, Kathie; Garcia, Val; Heist, David; Perry, Steve; Snyder, Michelle; Vette, Alan

    2014-09-01

    A major challenge in traffic-related air pollution exposure studies is the lack of information regarding pollutant exposure characterization. Air quality modeling can provide spatially and temporally varying exposure estimates for examining relationships between traffic-related air pollutants and adverse health outcomes. A hybrid air quality modeling approach was used to estimate exposure to traffic-related air pollutants in support of the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS) conducted in Detroit (Michigan, USA). Model-based exposure metrics, associated with local variations of emissions and meteorology, were estimated using a combination of the American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) and Research LINE-source dispersion model for near-surface releases (RLINE) dispersion models, local emission source information from the National Emissions Inventory, detailed road network locations and traffic activity, and meteorological data from the Detroit City Airport. The regional background contribution was estimated using a combination of the Community Multi-scale Air Quality (CMAQ) and the Space-Time Ordinary Kriging (STOK) models. To capture the near-road pollutant gradients, refined "mini-grids" of model receptors were placed around participant homes. Exposure metrics for CO, NOx, PM2.5 and its components (elemental and organic carbon) were predicted at each home location for multiple time periods including daily and rush hours. The exposure metrics were evaluated for their ability to characterize the spatial and temporal variations of multiple ambient air pollutants compared to measurements across the study area. PMID:25166917

  7. Analysis of air pollution from swine production by using air dispersion model and GIS in Quebec.

    PubMed

    Sarr, Joachim H; Goïta, Kalifa; Desmarais, Camille

    2010-01-01

    Swine production, the second most important contributor to Quebec's agricultural revenue, faces many problems. Intensive piggeries, with up to 599 animal units, are used to raise finishing pigs for slaughter. Among the great number of gaseous species emitted to the atmospheric environment from livestock buildings and manure storage units is NH3, which is one of the most important and most offensive with respect to human health. Under appropriate meteorological and topographical conditions, gaseous contaminants can spread and cause a public nuisance--up to a 1-km radius around the farm. To mitigate these effects, the Quebec Government adopted regulations that set minimum buffer distances to be observed by any expansion of an existing or new pig farm. The objectives of this study were (i) to assess the efficiency of the current buffer distance prescriptions in Quebec in mitigating effects of air pollution from swine units and (ii) to identify potential areas for establishing pig farm operations that will not be offensive to people. The air dispersion American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) with receptors distributed at 1.6 km around each source was used first, followed by a spatial geographic information system (GIS) model. Results from the dispersion model showed that the highest hourly concentration with a 99.5% compliance frequency for a single farm was 3078.1 microg/m3 and exceeded the NH3 odor criterion hourly standard set by the Quebec Government at 183.4 microg/m3. Thus, for public safety, densely populated areas like housing developments must be located >1300 m from a pig farm. This distance is in the range of setback distances (723 to 1447 m) obtained by using abacuses defined in the L'Erable Regional County Municipality. That is why we can say the current rules established by the Quebec Government, if rigorously applied, can prevent odor nuisance, due to NH3 emission, from swine farms. In the spatial model

  8. Application of zonal model on indoor air sensor network design

    NASA Astrophysics Data System (ADS)

    Chen, Y. Lisa; Wen, Jin

    2007-04-01

    Growing concerns over the safety of the indoor environment have made the use of sensors ubiquitous. Sensors that detect chemical and biological warfare agents can offer early warning of dangerous contaminants. However, current sensor system design is more informed by intuition and experience rather by systematic design. To develop a sensor system design methodology, a proper indoor airflow modeling approach is needed. Various indoor airflow modeling techniques, from complicated computational fluid dynamics approaches to simplified multi-zone approaches, exist in the literature. In this study, the effects of two airflow modeling techniques, multi-zone modeling technique and zonal modeling technique, on indoor air protection sensor system design are discussed. Common building attack scenarios, using a typical CBW agent, are simulated. Both multi-zone and zonal models are used to predict airflows and contaminant dispersion. Genetic Algorithm is then applied to optimize the sensor location and quantity. Differences in the sensor system design resulting from the two airflow models are discussed for a typical office environment and a large hall environment.

  9. Evaluation of the meteorological forcing used for the Air Quality Model Evaluation International Initiative (AQMEII) air quality simulations

    NASA Astrophysics Data System (ADS)

    Vautard, Robert; Moran, Michael D.; Solazzo, Efisio; Gilliam, Robert C.; Matthias, Volker; Bianconi, Roberto; Chemel, Charles; Ferreira, Joana; Geyer, Beate; Hansen, Ayoe B.; Jericevic, Amela; Prank, Marje; Segers, Arjo; Silver, Jeremy D.; Werhahn, Johannes; Wolke, Ralf; Rao, S. T.; Galmarini, Stefano

    2012-06-01

    Accurate regional air pollution simulation relies strongly on the accuracy of the mesoscale meteorological simulation used to drive the air quality model. The framework of the Air Quality Model Evaluation International Initiative (AQMEII), which involved a large international community of modeling groups in Europe and North America, offered a unique opportunity to evaluate the skill of mesoscale meteorological models for two continents for the same period. More than 20 groups worldwide participated in AQMEII, using several meteorological and chemical transport models with different configurations. The evaluation has been performed over a full year (2006) for both continents. The focus for this particular evaluation was meteorological parameters relevant to air quality processes such as transport and mixing, chemistry, and surface fluxes. The unprecedented scale of the exercise (one year, two continents) allowed us to examine the general characteristics of meteorological models' skill and uncertainty. In particular, we found that there was a large variability between models or even model versions in predicting key parameters such as surface shortwave radiation. We also found several systematic model biases such as wind speed overestimations, particularly during stable conditions. We conclude that major challenges still remain in the simulation of meteorology, such as nighttime meteorology and cloud/radiation processes, for air quality simulation.

  10. Modeling Air Traffic Management Technologies with a Queuing Network Model of the National Airspace System

    NASA Technical Reports Server (NTRS)

    Long, Dou; Lee, David; Johnson, Jesse; Gaier, Eric; Kostiuk, Peter

    1999-01-01

    This report describes an integrated model of air traffic management (ATM) tools under development in two National Aeronautics and Space Administration (NASA) programs -Terminal Area Productivity (TAP) and Advanced Air Transport Technologies (AATT). The model is made by adjusting parameters of LMINET, a queuing network model of the National Airspace System (NAS), which the Logistics Management Institute (LMI) developed for NASA. Operating LMINET with models of various combinations of TAP and AATT will give quantitative information about the effects of the tools on operations of the NAS. The costs of delays under different scenarios are calculated. An extension of Air Carrier Investment Model (ACIM) under ASAC developed by the Institute for NASA maps the technologies' impacts on NASA operations into cross-comparable benefits estimates for technologies and sets of technologies.

  11. An optimization model for the US Air-Traffic System

    NASA Technical Reports Server (NTRS)

    Mulvey, J. M.

    1986-01-01

    A systematic approach for monitoring U.S. air traffic was developed in the context of system-wide planning and control. Towards this end, a network optimization model with nonlinear objectives was chosen as the central element in the planning/control system. The network representation was selected because: (1) it provides a comprehensive structure for depicting essential aspects of the air traffic system, (2) it can be solved efficiently for large scale problems, and (3) the design can be easily communicated to non-technical users through computer graphics. Briefly, the network planning models consider the flow of traffic through a graph as the basic structure. Nodes depict locations and time periods for either individual planes or for aggregated groups of airplanes. Arcs define variables as actual airplanes flying through space or as delays across time periods. As such, a special case of the network can be used to model the so called flow control problem. Due to the large number of interacting variables and the difficulty in subdividing the problem into relatively independent subproblems, an integrated model was designed which will depict the entire high level (above 29000 feet) jet route system for the 48 contiguous states in the U.S. As a first step in demonstrating the concept's feasibility a nonlinear risk/cost model was developed for the Indianapolis Airspace. The nonlinear network program --NLPNETG-- was employed in solving the resulting test cases. This optimization program uses the Truncated-Newton method (quadratic approximation) for determining the search direction at each iteration in the nonlinear algorithm. It was shown that aircraft could be re-routed in an optimal fashion whenever traffic congestion increased beyond an acceptable level, as measured by the nonlinear risk function.

  12. Air quality modeling of selected aromatic and non-aromatic air toxics in the Houston urban and industrial airshed

    NASA Astrophysics Data System (ADS)

    Coarfa, Violeta Florentina

    2007-12-01

    Air toxics, also called hazardous air pollutants (HAPs), pose a serious threat to human health and the environment. Their study is important in the Houston area, where point sources, mostly located along the Ship Channel, mobile and area sources contribute to large emissions of such toxic pollutants. Previous studies carried out in this area found dangerous levels of different HAPs in the atmosphere. This thesis presents several studies that were performed for the aromatic and non-aromatic air toxics in the HGA. For these studies we developed several tools: (1) a refined chemical mechanism, which explicitly represents 18 aromatic air toxics that were lumped under two model species by the previous version, based on their reactivity with the hydroxyl radical; (2) an engineering version of an existing air toxics photochemical model that enables us to perform much faster long-term simulations compared to the original model, that leads to a 8--9 times improvement in the running time across different computing platforms; (3) a combined emission inventory based on the available emission databases. Using the developed tools, we quantified the mobile source impact on a few selected air toxics, and analyzed the temporal and spatial variation of selected aromatic and non-aromatic air toxics in a few regions within the Houston area; these regions were characterized by different emissions and environmental conditions.

  13. Future Air Traffic Growth and Schedule Model User's Guide

    NASA Technical Reports Server (NTRS)

    Kimmel, William M. (Technical Monitor); Smith, Jeremy C.; Dollyhigh, Samuel M.

    2004-01-01

    The Future Air Traffic Growth and Schedule Model was developed as an implementation of the Fratar algorithm to project future traffic flow between airports in a system and of then scheduling the additional flights to reflect current passenger time-of-travel preferences. The methodology produces an unconstrained future schedule from a current (or baseline) schedule and the airport operations growth rates. As an example of the use of the model, future schedules are projected for 2010 and 2022 for all flights arriving at, departing from, or flying between all continental United States airports that had commercial scheduled service for May 17, 2002. Inter-continental US traffic and airports are included and the traffic is also grown with the Fratar methodology to account for their arrivals and departures to the continental US airports. Input data sets derived from the Official Airline Guide (OAG) data and FAA Terminal Area Forecast (TAF) are included in the examples of the computer code execution.

  14. Future Air Traffic Growth and Schedule Model, Supplement

    NASA Technical Reports Server (NTRS)

    Kimmel, William M. (Technical Monitor); Smith, Jeremy C.; Dollyhigh, Samuel M.

    2004-01-01

    The Future Air Traffic Growth and Schedule Model was developed as an implementation of the Fratar algorithm to project future traffic flow between airports in a system and of then scheduling the additional flights to reflect current passenger time-of-travel preferences. The methodology produces an unconstrained future schedule from a current (or baseline) schedule and the airport operations growth rates. As an example of the use of the model, future schedules are projected for 2010 and 2022 for all flights arriving at, departing from, or flying between all continental United States airports that had commercial scheduled service for May 17, 2002. Inter-continental US traffic and airports are included and the traffic is also grown with the Fratar methodology to account for their arrivals and departures to the continental US airports. Input data sets derived from the Official Airline Guide (OAG) data and FAA Terminal Area Forecast (TAF) are included in the examples of the computer code execution.

  15. Validation of two air quality models for Indian mining conditions.

    PubMed

    Chaulya, S K; Ahmad, M; Singh, R S; Bandopadhyay, L K; Bondyopadhay, C; Mondal, G C

    2003-02-01

    All major mining activity particularly opencast mining contributes to the problem of suspended particulate matter (SPM) directly or indirectly. Therefore, assessment and prediction are required to prevent and minimize the deterioration of SPM due to various opencast mining operations. Determination of emission rate of SPM for these activities and validation of air quality models are the first and foremost concern. In view of the above, the study was taken up for determination of emission rate for SPM to calculate emission rate of various opencast mining activities and validation of commonly used two air quality models for Indian mining conditions. To achieve the objectives, eight coal and three iron ore mining sites were selected to generate site specific emission data by considering type of mining, method of working, geographical location, accessibility and above all resource availability. The study covers various mining activities and locations including drilling, overburden loading and unloading, coal/mineral loading and unloading, coal handling or screening plant, exposed overburden dump, stock yard, workshop, exposed pit surface, transport road and haul road. Validation of the study was carried out through Fugitive Dust Model (FDM) and Point, Area and Line sources model (PAL2) by assigning the measured emission rate for each mining activity, meteorological data and other details of the respective mine as an input to the models. Both the models were run separately for the same set of input data for each mine to get the predicted SPM concentration at three receptor locations for each mine. The receptor locations were selected such a way that at the same places the actual filed measurement were carried out for SPM concentration. Statistical analysis was carried out to assess the performance of the models based on a set measured and predicted SPM concentration data. The value of coefficient of correlation for PAL2 and FDM was calculated to be 0.990-0.994 and 0

  16. THE EMERGENCE OF NUMERICAL AIR QUALITY FORCASTING MODELS AND THEIR APPLICATIONS

    EPA Science Inventory

    In recent years the U.S. and other nations have begun programs for short-term local through regional air quality forecasting based upon numerical three-dimensional air quality grid models. These numerical air quality forecast (NAQF) models and systems have been developed and test...

  17. THE EMERGENCE OF NUMERICAL AIR QUALITY FORECASTING MODELS AND THEIR APPLICATION

    EPA Science Inventory

    In recent years the U.S. and other nations have begun programs for short-term local through regional air quality forecasting based upon numerical three-dimensional air quality grid models. These numerical air quality forecast (NAQF) models and systems have been developed and test...

  18. Application of SIM-air modeling tools to assess air quality in Indian cities

    NASA Astrophysics Data System (ADS)

    Guttikunda, Sarath K.; Jawahar, Puja

    2012-12-01

    A prerequisite to an air quality management plan for a city is some idea of the main sources of pollution and their contributions for a city. This paper presents the results of an application of the SIM-air modeling tool in six Indian cities - Pune, Chennai, Indore, Ahmedabad, Surat, and Rajkot. Using existing and publicly available data, we put together a baseline of multi-pollutant emissions for each of the cities and then calculate concentrations, health impacts, and model alternative scenarios for 2020. The measured annual PM10 (particulate matter with aerodynamic diameter less than 10 micron meter) concentrations in μg m-3 averaged 94.7 ± 45.4 in Pune, 73.1 ± 33.7 in Chennai, 118.8 ± 44.3 in Indore, 94.0 ± 20.4 in Ahmedabad, 89.4 ± 12.1 in Surat, and 105.0 ± 25.6 in Rajkot, all exceeding the annual standard of 60 μg m-3. The PM10 inventory in tons/year for the year 2010 of 38,400 in Pune, 50,200 in Chennai, 18,600 in Indore, 31,900 in Ahmedabad, 20,000 in Surat, and 14,000 in Rajkot, is further spatially segregated into 1 km grids and includes all known sources such as transport, road dust, residential, power plants, industries (including the brick kilns), waste burning, and diesel generator sets. We use the ATMoS chemical transport model to validate the emissions inventory and estimate an annual premature mortality due to particulate pollution of 15,200 for the year 2010 for the six cities. Of the estimated 21,400 premature deaths in the six cities in 2020, we estimate that implementation of the six interventions in the transport and brick kiln sectors, can potentially save 5870 lives (27%) annually and result in an annual reduction of 16.8 million tons of carbon dioxide emissions in the six cities.

  19. Sac Angiography and Glue Embolization in Emergency Endovascular Aneurysm Repair for Ruptured Abdominal Aortic Aneurysm

    SciTech Connect

    Koike, Yuya Nishimura, Jun-ichi Hase, Soichiro Yamasaki, Motoshige

    2015-04-15

    PurposeThe purpose of this study was to demonstrate a sac angiography technique and evaluate the feasibility of N-butyl cyanoacrylate (NBCA) embolization of the ruptured abdominal aortic aneurysm (AAA) sac in emergency endovascular aneurysm repair (EVAR) in hemodynamically unstable patients.MethodsA retrospective case series of three patients in whom sac angiography was performed during emergency EVAR for ruptured AAA was reviewed. After stent graft deployment, angiography within the sac of aneurysm (sac angiography) was performed by manually injecting 10 ml of contrast material through a catheter to identify the presence and site of active bleeding. In two patients, sac angiography revealed active extravasation of the contrast material, and NBCA embolization with a coaxial catheter system was performed to achieve prompt sealing.ResultsSac angiography was successful in all three patients. In the two patients who underwent NBCA embolization for aneurysm sac bleeding, follow-up computed tomography (CT) images demonstrated the accumulation of NBCA consistent with the bleeding site in preprocedural CT images.ConclusionsEVAR is associated with a potential risk of ongoing bleeding from type II or IV endoleaks into the disrupted aneurysm sac in patients with severe coagulopathy. Therefore, sac angiography and NBCA embolization during emergency EVAR may represent a possible technical improvement in the treatment of ruptured AAA in hemodynamically unstable patients.

  20. PREFACE SPECIAL ISSUE ON MODEL EVALUATION: EVALUATION OF URBAN AND REGIONAL EULERIAN AIR QUALITY MODELS

    EPA Science Inventory

    The "Preface to the Special Edition on Model Evaluation: Evaluation of Urban and Regional Eulerian Air Quality Models" is a brief introduction to the papers included in a special issue of Atmospheric Environment. The Preface provides a background for the papers, which have thei...

  1. Modeling Regional Air Quality Impacts from Indonesian Biomass Burning

    NASA Astrophysics Data System (ADS)

    Jumbam, L.; Raffuse, S. M.; Wiedinmyer, C.; Larkin, N.

    2012-12-01

    Smoke from thousands of forest-clearing burns in Indonesia cause widespread air quality impacts in cities across southeastern Asia. These fires, which can produce significant smoke due to peat burning, are readily detected by polar orbiting satellites. Widespread smoke can be seen in satellite imagery, and high concentrations of particulate matter are detected by ground based sensors. Here we present results of a pilot modeling study focusing on the September 2011 Indonesian smoke episode. In the study, fire location information was collected from the National Aeronautics and Space Administration's (NASA) Moderate Resolution Imaging Spectroradiometer (MODIS). The BlueSky modeling framework, which links information about fire locations with smoke emissions and meteorological models, was used to pass the fire location information from MODIS through the Fire INventories from NCAR (FINN) methodology to estimate emissions of aerosol and gaseous pollutants from the fires. These emissions were further directed by BlueSky through the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model, which predicted the dispersion and transport of PM2.5 from the fires. The resulting regional PM2.5 concentration maps from BlueSky were compared with satellite imagery and urban ground stations, where available. This work demonstrates the extension of a system developed for producing daily smoke predictions in the United States outside of North America for the first time. We discuss the implications of regional smoke impacts and possibilities for predictive smoke modeling to protect public health in southeastern Asia.

  2. DEVELOPMENT OF MESOSCALE AIR QUALITY SIMULATION MODELS. VOLUME 6. USER'S GUIDE TO MESOPAC (MESOSCALE METEOROLOGY PACKAGE)

    EPA Science Inventory

    MESOPAC is a mesoscale meteorological preprocessor program; it is designed to provide meteorological data to regional-scale air quality simulation models. Radiosonde data routinely available from National Weather Service (NWS) radiosonde ('upper air') and surface stations are use...

  3. AIR QUALITY MODELING AT NEIGHBORHOOD SCALES TO IMPROVE HUMAN EXPOSURE ASSESSMENT

    EPA Science Inventory

    Air quality modeling is an integral component of risk assessment and of subsequent development of effective and efficient management of air quality. Urban areas introduce of fresh sources of pollutants into regional background producing significant spatial variability of the co...

  4. Dynamic stochastic optimization models for air traffic flow management

    NASA Astrophysics Data System (ADS)

    Mukherjee, Avijit

    This dissertation presents dynamic stochastic optimization models for Air Traffic Flow Management (ATFM) that enables decisions to adapt to new information on evolving capacities of National Airspace System (NAS) resources. Uncertainty is represented by a set of capacity scenarios, each depicting a particular time-varying capacity profile of NAS resources. We use the concept of a scenario tree in which multiple scenarios are possible initially. Scenarios are eliminated as possibilities in a succession of branching points, until the specific scenario that will be realized on a particular day is known. Thus the scenario tree branching provides updated information on evolving scenarios, and allows ATFM decisions to be re-addressed and revised. First, we propose a dynamic stochastic model for a single airport ground holding problem (SAGHP) that can be used for planning Ground Delay Programs (GDPs) when there is uncertainty about future airport arrival capacities. Ground delays of non-departed flights can be revised based on updated information from scenario tree branching. The problem is formulated so that a wide range of objective functions, including non-linear delay cost functions and functions that reflect equity concerns can be optimized. Furthermore, the model improves on existing practice by ensuring efficient use of available capacity without necessarily exempting long-haul flights. Following this, we present a methodology and optimization models that can be used for decentralized decision making by individual airlines in the GDP planning process, using the solutions from the stochastic dynamic SAGHP. Airlines are allowed to perform cancellations, and re-allocate slots to remaining flights by substitutions. We also present an optimization model that can be used by the FAA, after the airlines perform cancellation and substitutions, to re-utilize vacant arrival slots that are created due to cancellations. Finally, we present three stochastic integer programming

  5. NATIONAL AND REGIONAL AIR AND DEPOSITION MODELING OF STATIONARY AND MOBILE SOURCE EMISSIONS OF DIOXINS USING THE RELMAP MODELING SYSTEM

    EPA Science Inventory

    The purpose of this study is to estimate the atmospheric transport, fate and deposition flux of air releases of CDDs and CDFs from known sources within the continental United States using the Regional Lagrangian Model of Air Pollution (RELMAP). RELMAP is a Lagrangian air model th...

  6. Regional Air Toxics Modeling in California's San Francisco Bay Area

    NASA Astrophysics Data System (ADS)

    Martien, P. T.; Tanrikulu, S.; Tran, C.; Fairley, D.; Jia, Y.; Fanai, A.; Reid, S.; Yarwood, G.; Emery, C.

    2011-12-01

    Regional toxics modeling conducted for California's San Francisco Bay Area (SFBA) estimated potential cancer risk from diesel particulate matter (DPM) and four key reactive toxic gaseous pollutants (1,3-butadiene, benzene, formaldehyde, and acetaldehyde). Concentrations of other non-cancerous gaseous toxic air contaminants, including acrolein, were also generated. In this study, meteorological fields generated from July and December periods in 2000 and emissions from 2005 provided inputs to a three-dimensional air quality model at high spatial resolution (1x1 km^2 grid), from which a baseline set of annual risk values was estimated. Simulated risk maps show highest annual average DPM concentrations and cancer risks were located near and downwind of major freeways and near the Port of Oakland, a major container port in the area. Population weighted risks, using 2000 census data, were found to be highest in highly urbanized areas adjacent to significant DPM sources. For summer, the ratio of mean measured elemental carbon to mean modeled DPM was 0.78, conforming roughly to expectations. But for winter the ratio is 1.13, suggesting other sources of elemental carbon, such as wood smoke, are important. Simulated annual estimates for benzene and 1-3, butadiene compared well to measured annual estimates. Simulated acrolein and formaldehyde significantly under-predicted observed values. Simulations repeated using projected 2015 toxic emissions predicted that potential cancer risk dropped significantly in all areas throughout the SFBA. Emissions estimates for 2015 included the State of California's recently adopted on-road truck rule. Emission estimates of DPM are projected to drop about 70% between 2005 and 2015 in the SFBA, with a commensurate reduction in potential cancer risks. However, due to projected shifts in population during this period, with urban densification close to DPM sources outpacing emission reductions, there are some areas where population-weighted risks

  7. Atmospheric Modelling for Air Quality Study over the complex Himalayas

    NASA Astrophysics Data System (ADS)

    Surapipith, Vanisa; Panday, Arnico; Mukherji, Aditi; Banmali Pradhan, Bidya; Blumer, Sandro

    2014-05-01

    An Atmospheric Modelling System has been set up at International Centre for Integrated Mountain Development (ICIMOD) for the assessment of Air Quality across the Himalaya mountain ranges. The Weather Research and Forecasting (WRF) model version 3.5 has been implemented over the regional domain, stretching across 4995 x 4455 km2 centred at Ichhyakamana , the ICIMOD newly setting-up mountain-peak station (1860 m) in central Nepal, and covering terrains from sea-level to the Everest (8848 m). Simulation is carried out for the winter time period, i.e. December 2012 to February 2013, when there was an intensive field campaign SusKat, where at least 7 super stations were collecting meteorology and chemical parameters on various sites. The very complex terrain requires a high horizontal resolution (1 × 1 km2), which is achieved by nesting the domain of interest, e.g. Kathmandu Valley, into 3 coarser ones (27, 9, 3 km resolution). Model validation is performed against the field data as well as satellite data, and the challenge of capturing the necessary atmospheric processes is discussed, before moving forward with the fully coupled chemistry module (WRF-Chem), having local and regional emission databases as input. The effort aims at finding a better understanding of the atmospheric processes and air quality impact on the mountain population, as well as the impact of the long-range transport, particularly of Black Carbon aerosol deposition, to the radiative budget over the Himalayan glaciers. The higher rate of snowcap melting, and shrinkage of permafrost as noticed by glaciologists is a concern. Better prediction will supply crucial information to form the proper mitigation and adaptation strategies for saving people lives across the Himalayas in the changing climate.

  8. UNAMAP: user's network for applied modeling of air pollution, Version 6. Model

    SciTech Connect

    Turner, D.B.; Busse, A.D.

    1986-08-01

    UNAMAP (Version 6) represents the 1986 update to the users network for applied modeling of air pollution. UNAMAP consists of an ASCII magnetic tape containing FORTRAN codes an test data for 25 air-quality simulation models (AQSM) as well as associated documentation. AQSM's and supporting programs and data are arranged in six sections: (1) Guideline (appendix A) models..(files 2 through 9); (2) Other models or processors (new models). .(files 10 through 19 and 33); (3) Other models and processors (revised)..(files 20 through 27 and 32); (4) Additional models for regulatory use (files 28 through 31); (5) Data files..(files 34 through 39); and (6) Output print files..(files 40 through 68). There are 68 files on this tape..Software Description: The system is written in FORTRAN for implementation on a UNIVAC 1100/82 using the 39R2 operating system.

  9. The balance model of oxygen enrichment of atmospheric air

    NASA Astrophysics Data System (ADS)

    Popov, Alexander

    2013-04-01

    The study of turnover of carbon and oxygen is an important line of scientific investigation. This line takes on special significance in conditions of soil degradation, which leads to the excess content of carbon dioxide and, as result, decrease of oxygen in the atmosphere. The aim of this article is a statement the balance model of oxygen enrichment of atmospheric air (ratio O/C) depending on consumption and assimilation by plants of dissolved organic matter (DOM) and the value of the oxidation-reduction potential (Eh). Basis of model was the following: green vascular plants are facultative heterotrophic organisms with symbiotic digestion and nutrition. According to the trophology viewpoint, the plant consumption of organic compounds broadens greatly a notion about the plant nutrition and ways of its regulation. In particular, beside the main known cycle of carbon: plant - litter - humus - carbon dioxide - plant, there is the second carbon cycle (turnover of organic compounds): plant - litter - humus - DOM - plant. The biogeochemical meaning of consumption of organic compounds by plants is that plants build the structural and functional blocks of biological macromolecules in their bodies. It provides receiving of a certain "energy payoff" by plants, which leads to increase of plant biomass by both an inclusion of allochthonous organic molecules in plant tissues, and positive effect of organic compounds on plant metabolic processes. One more of powerful ecological consequence of a heterotrophic nutrition of green plants is oxygen enrichment of atmospheric air. As the organic molecules in the second biological cycle of carbon are built in plants without considerable chemical change, the atmospheric air is enriched on that amount of oxygen, which would be required on oxidation of the organic molecules absorbed by plants, in result. It was accepted that: plant-soil system was climax, the plant community was grassy, initial contents of carbon in phytomass was accepted

  10. Modelling of air pollution on a military airfield

    NASA Astrophysics Data System (ADS)

    Brzozowski, Krzysztof; Kotlarz, Wojciech

    The paper presents a numerical study of exhaust emission and pollutant dispersion of carbon monoxide on a military airfield. Investigations have been carried out for typical conditions of aircraft usage in the Polish Air Force Academy in Dęblin. Two different types of aircraft have been taken into account. One of them is an MI-2 helicopter, the second is a TS-11 plane. Both are used in military pilot education in Poland. Exhaust emission of CO from those aircrafts has been obtained in an experiment carried out on an engine test stand. CO concentrations have been calculated for different meteorological conditions (averaged from 5 years observations) and selected conditions of aircraft use. The finite volume method has been used to discretise the equation describing the process of pollutant dispersion. In addition, the two-cycle decomposition method has been employed to solve the set of ordinary differential equations of the first order obtained after discretisation of the advection-diffusion equation. A meteorological pre-processor, based on relationships resulting from the Monin-Obukhov theory, is used to define eddy diffusivity and the profile of air speed in the lower layer of the atmosphere. In the paper, the computer model and calculated average concentration of CO in the Dęblin airfield during typical flights are presented. The goal of the computational analysis is to predict CO pollution level in the workplace of aircraft service personnel.

  11. Numerical models for afterburning of TNT detonation products in air

    NASA Astrophysics Data System (ADS)

    Donahue, L.; Zhang, F.; Ripley, R. C.

    2013-11-01

    Afterburning occurs when fuel-rich explosive detonation products react with oxygen in the surrounding atmosphere. This energy release can further contribute to the air blast, resulting in a more severe explosion hazard particularly in confined scenarios. The primary objective of this study was to investigate the influence of the products equation of state (EOS) on the prediction of the efficiency of trinitrotoluene (TNT) afterburning and the times of arrival of reverberating shock waves in a closed chamber. A new EOS is proposed, denoted the Afterburning (AB) EOS. This EOS employs the JWL EOS in the high pressure regime, transitioning to a Variable-Gamma (VG) EOS at lower pressures. Simulations of three TNT charges suspended in a explosion chamber were performed. When compared to numerical results using existing methods, it was determined that the Afterburning EOS delays the shock arrival times giving better agreement with the experimental measurements in the early to mid time. In the late time, the Afterburning EOS roughly halved the error between the experimental measurements and results obtained using existing methods. Use of the Afterburning EOS for products with the Variable-Gamma EOS for the surrounding air further significantly improved results, both in the transient solution and the quasi-static pressure. This final combination of EOS and mixture model is recommended for future studies involving afterburning explosives, particularly those in partial and full confinement.

  12. Atmospheric Boundary Layer Modeling for Combined Meteorology and Air Quality Systems

    EPA Science Inventory

    Atmospheric Eulerian grid models for mesoscale and larger applications require sub-grid models for turbulent vertical exchange processes, particularly within the Planetary Boundary Layer (PSL). In combined meteorology and air quality modeling systems consistent PSL modeling of wi...

  13. Near Decade Long Tropospheric Air Temperature and Specific Humidity Records from AIRS for CMIP5 Model Evaluation

    NASA Astrophysics Data System (ADS)

    Tian, B.; Fetzer, E.; Kahn, B. H.; Teixeira, J.; Manning, E.; Hearty, T. J.

    2012-12-01

    The peer-reviewed analyses of multi-model outputs from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) experiments will be the most important basis for the next Intergovernmental Panel on Climate Change (IPCC) Assessment Report (AR5). To increase the fidelity of the IPCC AR5, an Obs4MIPs project has been initiated to collect some well-established and well-documented datasets, to organize them according to the CMIP5 model output requirements, and makes them available to the science community for CMIP5 model evaluation. The NASA Atmospheric Infrared Sounder (AIRS) project has produced monthly mean tropospheric air temperature (ta, K) and specific humidity (hus, kg/kg) products as part of the Obs4MIPS project. In this paper, we first describe these two AIRS datasets in terms of data description, origin, validation and caveats for model-observation comparison. We then document the climatological mean features of these two AIRS datasets and compare them to those from NASA's Modern Era Retrospective analysis for Research and Applications (MERRA) for AIRS data validation and CMIP5 model simulations for CMIP5 model evaluation. As expected, the 9-year AIRS data show several well-known climatological features of tropospheric ta and hus, such as the strong meridional and vertical gradients of tropospheric ta and hus and strong zonal gradient of tropospheric hus. AIRS data also show the strong connections between the tropospheric hus, atmospheric circulation and deep convection. In comparison to MERRA, AIRS seems to be colder in the free troposphere but warmer in the boundary layer with differences typically less than 1 K. AIRS is wetter (~10%) in the tropical boundary layer but drier (around 30%) in the tropical free troposphere and the extratropical troposphere. In particular, the large AIRS-MERRA hus differences are mainly located in the cloudy regions, such as the Intertropical Convergence Zone (ITCZ), the South Pacific Convergence Zone (SPCZ) and the

  14. Fine-resolution model simulations of California air quality

    NASA Astrophysics Data System (ADS)

    Kim, S.; Trainer, M.; Angevine, W. M.; Lee, S.; Alvarez, R. J., II; Baidar, S.; Frost, G. J.; Hardesty, R.; Langford, A. O.; McKeen, S. A.; Oetjen, H.; Pollack, I. B.; Ryerson, T. B.; Senff, C. J.; Sinreich, R.; Volkamer, R.

    2010-12-01

    The purpose of our study is to improve the understanding of tropospheric ozone, its precursors, and their temporal changes over California. We simulate California air quality using the Weather Research and Forecasting - Chemistry (WRF-Chem) model with input from the US EPA's 2005 National Emission Inventory (NEI05) for July 2009 and spring-summer 2010. The model’s nested domain includes all of California at 4 x 4 km2 horizontal resolution. These simulation periods were chosen because of the availability of measurements from the pre-CalNex and CalNex field campaigns. The WRF-Chem simulations are evaluated with observations of ozone curtains by the TOPAZ lidar and in-situ measurements of numerous trace species collected on NOAA aircraft during these deployments. The WRF-Chem meteorological predictions are also compared with surface stations and wind profiler data. These model-measurement comparisons allow us to test the sensitivity of WRF-Chem to initial and boundary conditions, land-surface models, grid configurations, and emission inventory. Using the model evaluated with these observations, we investigate the importance of transport mechanisms and emission changes on tropospheric ozone levels above California.

  15. Air Pollution Exposure Model for Individuals (EMI) in Health Studies

    EPA Science Inventory

    In health studies, traffic-related air pollution is associated with adverse respiratory effects. Due to cost and participant burden of personal measurements, health studies often estimate exposures using local ambient air monitors. Since outdoor levels do not necessarily reflect ...

  16. Equivalent Air Spring Suspension Model for Quarter-Passive Model of Passenger Vehicles

    PubMed Central

    Abid, Haider J.; Chen, Jie; Nassar, Ameen A.

    2015-01-01

    This paper investigates the GENSIS air spring suspension system equivalence to a passive suspension system. The SIMULINK simulation together with the OptiY optimization is used to obtain the air spring suspension model equivalent to passive suspension system, where the car body response difference from both systems with the same road profile inputs is used as the objective function for optimization (OptiY program). The parameters of air spring system such as initial pressure, volume of bag, length of surge pipe, diameter of surge pipe, and volume of reservoir are obtained from optimization. The simulation results show that the air spring suspension equivalent system can produce responses very close to the passive suspension system. PMID:27351020

  17. Rhinosporidiosis of lacrimal sac: An interesting case of orbital swelling

    PubMed Central

    Basu, Sandip Kanti; Bain, Jayanta; Maity, Kuntal; Chattopadhyay, Debarati; Baitalik, Debasis; Majumdar, Bijay Kumar; Gupta, Vivek; Kumar, Ashwini; Dalal, Bibhas Saha; Malik, Anu

    2016-01-01

    Rhinosporidiosis is a chronic localized granulomatous disease caused by Rhinosporidium seeberi, an aquatic protistan parasite belonging to a clade, Mesomycetozoea. Infestation of Rhinosporidiosis to the eye and adnexa is termed oculosporidiosis, in such cases, conjunctival mucosa is mostly involved; however in our case, it involved only the lacrimal sac and deeper periorbital tissue and presented as a case of orbital swelling. Surgical excision of the lesion was done, postoperatively dapsone therapy was given for 6 months, and the patient responded very well with no recurrence till date. PMID:27003980

  18. Modelling an infrared Man Portable Air Defence System

    NASA Astrophysics Data System (ADS)

    Birchenall, Richard P.; Richardson, Mark A.; Brian, Butters; Roy, Walmsley

    2010-09-01

    The global proliferation of shoulder launched IR Man Portable Air Defence Systems (ManPADS) has resulted in the existence of a serious threat to both civilian and military aircraft from terrorist attack. Some of the older generations of ManPADS can be defeated with modern countermeasures but even the most sophisticated protection still has vulnerabilities to the latest family of ManPADS. This paper describes the work undertaken by the authors to model a second generation ManPAD, based on the Russian SA-14, and assess the vulnerabilities of aircraft both with and without flare countermeasures from these systems. The conclusions are the results of over 11,000 simulated firings against targets of varying aspects, velocities and altitudes.

  19. Air Conditioning Stall Phenomenon Testing, Model Development, and Simulation

    SciTech Connect

    Irminger, Philip; Rizy, D Tom; Li, Huijuan; Smith, Travis; Rice, C Keith; Li, Fangxing; Adhikari, Sarina

    2012-01-01

    Electric distribution systems are experiencing power quality issues of extended reduced voltage due to fault-induced delayed voltage recovery (FIDVR). FIDVR occurs in part because modern air conditioner (A/C) and heat pump compressor motors are much more susceptible to stalling during a voltage sag or dip such as a sub-transmission fault. They are more susceptible than older A/C compressor motors due to the low inertia of these newer and more energy efficient motors. There is a concern that these local reduced voltage events on the distribution system will become more frequent and prevalent and will combine over larger areas and challenge transmission system voltage and ultimately power grid reliability. The Distributed Energy Communications and Controls (DECC) Laboratory at Oak Ridge National Laboratory (ORNL) has been employed to (1) test, (2) characterize and (3) model the A/C stall phenomenon.

  20. RESOLVING NEIGHBORHOOD-SCALE AIR TOXICS MODELING: A CASE STUDY IN WILMINGTON, CALIFORNIA

    EPA Science Inventory

    Air quality modeling is useful for characterizing exposures to air pollutants. While models typically provide results on regional scales, there is a need for refined modeling approaches capable of resolving concentrations on the scale of tens of meters, across modeling domains 1...

  1. Microcomputer pollution model for civilian airports and Air Force Bases. Model application and background

    SciTech Connect

    Segal, H.M.

    1988-08-01

    This is one of three reports describing the Emissions and Dispersion Modeling System (EDMS). All reports use the same main title--A MICROCOMPUTER MODEL FOR CIVILIAN AIRPORTS AND AIR FORCE BASES--but different subtitles. The subtitles are: (1) USER'S GUIDE - ISSUE 2 (FAA-EE-88-3/ESL-TR-88-54); (2) MODEL DESCRIPTION (FAA-EE-88-4/ESL-TR-88-53); (S) MODEL APPLICATION AND BACKGROUND (FAA-EE-88-5/ESL-TR-88-55). The first and second reports above describe the EDMS model and provide instructions for its use. This is the third report. IT consists of an accumulation of five key documents describing the development and use of the EDMS model. This report is prepared in accordance with discussions with the EPA and requirements outlined in the March 27, 1980 Federal Register for submitting air-quality models to the EPA. Contents: Model Development and Use - Its Chronology and Reports; Monitoring Concorde EMissions; The Influence of Aircraft Operations on Air Quality at Airports; Simplex A - A simplified Atmospheric Dispersion Model for Airport Use -(User's Guide); Microcomputer Graphics in Atmospheric Dispersion Modeling; Pollution from Motor Vehicles and Aircraft at Stapleton International Airport (Abbreviated Report).

  2. POPULATION-BASED EXPOSURE AND DOSE MODELING FOR AIR POLLUTANTS

    EPA Science Inventory

    This task will address EPA's need to better understand the variability in personal exposure to air pollutants for the purpose of assessing what populations are at risk for adverse health outcomes due to air pollutant exposures. To improve our understanding of exposures to air po...

  3. Hybrid Air Quality Modeling Approach for use in the Hear-road Exposures to Urban air pollutant Study(NEXUS)

    EPA Science Inventory

    The paper presents a hybrid air quality modeling approach and its application in NEXUS in order to provide spatial and temporally varying exposure estimates and identification of the mobile source contribution to the total pollutant exposure. Model-based exposure metrics, associa...

  4. Central California coastal air-quality model validation study: Data analysis and model evaluation

    SciTech Connect

    Dabberdt, W.F.; Johnson, W.B.; Brodzinsky, R.; Ruff, R.E.

    1984-08-01

    The objectives of the study were: to obtain a comprehensive experimental data base of overwater and inland dispersion along the central California coast; to evaluate air-quality models presently being used by MMS for determining air-quality impacts from offshore emission sources; to evaluate various schemes for determining atmospheric stability and methods of determining atmospheric stability and methods of determining dispersion parameters (sigma-y and sigma-z) overwater; and to provide data needed for an overwater dispersion model presently under development by MMS.

  5. Modelling air quality in street canyons: a review

    NASA Astrophysics Data System (ADS)

    Vardoulakis, Sotiris; Fisher, Bernard E. A.; Pericleous, Koulis; Gonzalez-Flesca, Norbert

    High pollution levels have been often observed in urban street canyons due to the increased traffic emissions and reduced natural ventilation. Microscale dispersion models with different levels of complexity may be used to assess urban air quality and support decision-making for pollution control strategies and traffic planning. Mathematical models calculate pollutant concentrations by solving either analytically a simplified set of parametric equations or numerically a set of differential equations that describe in detail wind flow and pollutant dispersion. Street canyon models, which might also include simplified photochemistry and particle deposition-resuspension algorithms, are often nested within larger-scale urban dispersion codes. Reduced-scale physical models in wind tunnels may also be used for investigating atmospheric processes within urban canyons and validating mathematical models. A range of monitoring techniques is used to measure pollutant concentrations in urban streets. Point measurement methods (continuous monitoring, passive and active pre-concentration sampling, grab sampling) are available for gaseous pollutants. A number of sampling techniques (mainly based on filtration and impaction) can be used to obtain mass concentration, size distribution and chemical composition of particles. A combination of different sampling/monitoring techniques is often adopted in experimental studies. Relatively simple mathematical models have usually been used in association with field measurements to obtain and interpret time series of pollutant concentrations at a limited number of receptor locations in street canyons. On the other hand, advanced numerical codes have often been applied in combination with wind tunnel and/or field data to simulate small-scale dispersion within the urban canopy.

  6. Modeling the air-soil transport pathway of perfluorooctanoic acid in the mid-Ohio Valley using linked air dispersion and vadose zone models

    NASA Astrophysics Data System (ADS)

    Shin, Hyeong-Moo; Ryan, P. Barry; Vieira, Verónica M.; Bartell, Scott M.

    2012-05-01

    As part of an extensive modeling effort on the air-soil-groundwater transport pathway of perfluorooctanoic acid (PFOA), this study was designed to compare the performance of different air dispersion modeling systems (AERMOD vs. ISCST3), and different approaches to handling incomplete meteorological data using a data set with substantial soil measurements and a well characterized point source for air emissions. Two of the most commonly used EPA air dispersion models, AERMOD and ISCST3, were linked with the EPA vadose zone model PRZM-3. Predicted deposition rates from the air dispersion model were used as input values for the vadose zone model to estimate soil concentrations of PFOA at different depths. We applied 34 years of meteorological data including hourly surface measurements from Parkersburg Airport and 5 years of onsite wind direction and speed to the air dispersion models. We compared offsite measured soil concentrations to predictions made for the corresponding sampling depths, focusing on soil rather than air measurements because the offsite soil samples were less likely to be influenced by short-term variability in emission rates and meteorological conditions. PFOA concentrations in surface soil (0-30 cm depth) were under-predicted and those in subsurface soil (>30 cm depth) were over-predicted compared to observed concentrations by both linked air and vadose zone model. Overall, the simulated values from the linked modeling system were positively correlated with those observed in surface soil (Spearman's rho, Rsp = 0.59-0.70) and subsurface soil (Rsp = 0.46-0.48). This approach provides a useful modeling scheme for similar exposure and risk analyses where the air-soil-groundwater transport is a primary contamination pathway.

  7. Comparisons of Air Radiation Model with Shock Tube Measurements

    NASA Technical Reports Server (NTRS)

    Bose, Deepak; McCorkle, Evan; Bogdanoff, David W.; Allen, Gary A., Jr.

    2009-01-01

    This paper presents an assessment of the predictive capability of shock layer radiation model appropriate for NASA s Orion Crew Exploration Vehicle lunar return entry. A detailed set of spectrally resolved radiation intensity comparisons are made with recently conducted tests in the Electric Arc Shock Tube (EAST) facility at NASA Ames Research Center. The spectral range spanned from vacuum ultraviolet wavelength of 115 nm to infrared wavelength of 1400 nm. The analysis is done for 9.5-10.5 km/s shock passing through room temperature synthetic air at 0.2, 0.3 and 0.7 Torr. The comparisons between model and measurements show discrepancies in the level of background continuum radiation and intensities of atomic lines. Impurities in the EAST facility in the form of carbon bearing species are also modeled to estimate the level of contaminants and their impact on the comparisons. The discrepancies, although large is some cases, exhibit order and consistency. A set of tests and analyses improvements are proposed as forward work plan in order to confirm or reject various proposed reasons for the observed discrepancies.

  8. Microwave landing system modeling with application to air traffic control

    NASA Technical Reports Server (NTRS)

    Poulose, M. M.

    1991-01-01

    Compared to the current instrument landing system, the microwave landing system (MLS), which is in the advanced stage of implementation, can potentially provide significant fuel and time savings as well as more flexibility in approach and landing functions. However, the expanded coverage and increased accuracy requirements of the MLS make it more susceptible to the features of the site in which it is located. An analytical approach is presented for evaluating the multipath effects of scatterers that are commonly found in airport environments. The approach combines a multiplane model with a ray-tracing technique and a formulation for estimating the electromagnetic fields caused by the antenna array in the presence of scatterers. The model is applied to several airport scenarios. The reduced computational burden enables the scattering effects on MLS position information to be evaluated in near real time. Evaluation in near real time would permit the incorporation of the modeling scheme into air traffic control automation; it would adaptively delineate zones of reduced accuracy within the MLS coverage volume, and help establish safe approach and takeoff trajectories in the presence of uneven terrain and other scatterers.

  9. The SAC51 Family Plays a Central Role in Thermospermine Responses in Arabidopsis.

    PubMed

    Cai, Qingqing; Fukushima, Hiroko; Yamamoto, Mai; Ishii, Nami; Sakamoto, Tomoaki; Kurata, Tetsuya; Motose, Hiroyasu; Takahashi, Taku

    2016-08-01

    The acaulis5 (acl5) mutant of Arabidopsis thaliana is defective in the biosynthesis of thermospermine and shows a dwarf phenotype associated with excess xylem differentiation. SAC51 was identified from a dominant suppressor of acl5, sac51-d, and encodes a basic helix-loop-helix protein. The sac51-d mutant has a premature termination codon in an upstream open reading frame (uORF) that is conserved among all four members of the SAC51 family, SAC51 and SACL1-SACL3 This suggests that thermospermine cancels the inhibitory effect of the uORF in main ORF translation. Another suppressor, sac57-d, has a mutation in the conserved uORF of SACL3 To define further the function of the SAC51 family in the thermospermine response, we analyzed T-DNA insertion mutants of each gene. Although sacl1-1 may not be a null allele, the quadruple mutant showed a semi-dwarf phenotype but with an increased level of thermospermine and decreased sensitivity to exogenous thermospermine that normally represses xylem differentiation. The sac51-1 sacl3-1 double mutant was also insensitive to thermospermine. These results suggest that SAC51 and SACL3 play a key role in thermospermine-dependent negative control of thermospermine biosynthesis and xylem differentiation. Using 5' leader-GUS (β-glucuronidase) fusion constructs, however, we detected a significant enhancement of the GUS activity by thermospermine only in SAC51 and SACL1 constructs. Furthermore, while acl5-1 sac51-1 showed the acl5 dwarf phenotype, acl5-1 sacl3-1 exhibited an extremely tiny-plant phenotype. These results suggest a complex regulatory network for the thermospermine response in which SAC51 and SACL3 function in parallel pathways. PMID:27388339

  10. Characterization of the sacQ genes from Bacillus licheniformis and Bacillus subtilis.

    PubMed Central

    Amory, A; Kunst, F; Aubert, E; Klier, A; Rapoport, G

    1987-01-01

    The sacQ gene from Bacillus licheniformis was cloned and expressed in Bacillus subtilis. Deletion analysis shows that it encodes a 46-amino-acid polypeptide homologous to the B. subtilis sacQ gene product. The polypeptide, when it is overexpressed, activates the expression of a number of target genes in B. subtilis, all encoding secreted enzymes: alkaline protease, levansucrase, beta-glucanase(s), xylanase, and alpha-amylase. The maximum stimulations measured for alkaline protease and levansucrase were by a factor of 70 and 50, respectively, when the sacQ gene from B. licheniformis was present on a multicopy plasmid in B. subtilis. The sacQ genes from B. subtilis and B. licheniformis, cloned in the same multicopy plasmid, were compared under the same conditions. The sacQ gene from B. licheniformis was more efficient than the sacQ gene from B. subtilis in producing the hypersecretion phenotype. The sacQ structural genes from B. subtilis and B. licheniformis were placed under the control of the same inducible promoter. Hypersecretion was specifically obtained under conditions of full induction of the promoter. The target site of levansucrase regulation by sacQ was identified as a 440-base-pair fragment located in the 5' noncoding region of sacB, suggesting transcriptional control. Images PMID:3098732

  11. Potentiodynamic polarization effect on phase and microstructure of SAC305 solder in hydrochloric acid solution

    NASA Astrophysics Data System (ADS)

    Zaini, Nurwahida Binti Mohd; Nazeri, Muhammad Firdaus Bin Mohd

    2016-07-01

    The corrosion analysis of SAC305 lead free solder was investigated in Hydrochloric acid (HCl) solution. Potentiodynamic polarization was used to polarize the SAC305. The effect of polarization on the phase and microstructure were compared to as-prepared SAC305 solder. Potentiodynamic polarization introduces mixed corrosion products on the surface of SAC305 solder. The XRD analysis confirms that the mixed corrosion products emerged on the surface after polarization by formation of SnO and SnO2 of which confirmed that dissolution of Sn was dominant during polarization. Microstructure analysis reveal the presence of gap and porosities produced limits the protection offered by the passivation film.

  12. Spatiotemporal control of phosphatidylinositol 4-phosphate by Sac2 regulates endocytic recycling

    PubMed Central

    Hsu, FoSheng; Hu, Fenghua

    2015-01-01

    It is well established that the spatial- and temporal-restricted generation and turnover of phosphoinositides (PIs) by a cascade of PI-metabolizing enzymes is a key regulatory mechanism in the endocytic pathway. Here, we demonstrate that the Sac1 domain–containing protein Sac2 is a PI 4-phosphatase that specifically hydrolyzes phosphatidylinositol 4-phosphate in vitro. We further show that Sac2 colocalizes with early endosomal markers and is recruited to transferrin (Tfn)-containing vesicles during endocytic recycling. Exogenous expression of the catalytically inactive mutant Sac2C458S resulted in altered cellular distribution of Tfn receptors and delayed Tfn recycling. Furthermore, genomic ablation of Sac2 caused a similar perturbation on Tfn and integrin recycling as well as defects in cell migration. Structural characterization of Sac2 revealed a unique pleckstrin-like homology Sac2 domain conserved in all Sac2 orthologues. Collectively, our findings provide evidence for the tight regulation of PIs by Sac2 in the endocytic recycling pathway. PMID:25869669

  13. Rigid-plug elastic-water model for transient pipe flow with entrapped air pocket

    SciTech Connect

    Zhou, Ling; Liu, Prof. Deyou; Karney, Professor Byran W.; Zhang, Qin Fen; OU, CHANGQI

    2011-01-01

    Pressure transients in a rapidly filling pipe with an entrapped air pocket are investigated analytically. A rigid-plug elastic water model is developed by applying elastic water hammer to the majority of the water column while applying rigid water analysis to a small portion near the air-water interface, which avoids effectively the interpolation error of previous approaches. Moreover, another two simplified models are introduced respectively based on constant water length and by neglecting water elasticity. Verification of the three models is confirmed by experimental results. Calculations show that the simplification of constant water length is feasible for small air pockets. The complete rigid water model is appropriate for cases with large initial air volume. The rigid-plug elastic model can predict all the essential features for the entire range of initial air fraction considered in this study, and it is the effective model for analysis of pressure transients of entrapped air.

  14. Modelling pesticide volatilization after soil application using the mechanistic model Volt'Air

    NASA Astrophysics Data System (ADS)

    Bedos, Carole; Génermont, Sophie; Le Cadre, Edith; Garcia, Lucas; Barriuso, Enrique; Cellier, Pierre

    Volatilization of pesticides participates in atmospheric contamination and affects environmental ecosystems including human welfare. Modelling at relevant time and spatial scales is needed to better understand the complex processes involved in pesticide volatilization. Volt'Air-Pesticides has been developed following a two-step procedure to study pesticide volatilization at the field scale and at a quarter time step. Firstly, Volt'Air-NH 3 was adapted by extending the initial transfer of solutes to pesticides and by adding specific calculations for physico-chemical equilibriums as well as for the degradation of pesticides in soil. Secondly, the model was evaluated in terms of 3 pesticides applied on bare soil (atrazine, alachlor, and trifluralin) which display a wide range of volatilization rates. A sensitivity analysis confirmed the relevance of tuning to K h. Then, using Volt'Air-Pesticides, environmental conditions and emission fluxes of the pesticides were compared to fluxes measured under 2 environmental conditions. The model fairly well described water temporal dynamics, soil surface temperature, and energy budget. Overall, Volt'Air-Pesticides estimates of the order of magnitude of the volatilization flux of all three compounds were in good agreement with the field measurements. The model also satisfactorily simulated the decrease in the volatilization rate of the three pesticides during night-time as well as the decrease in the soil surface residue of trifluralin before and after incorporation. However, the timing of the maximum flux rate during the day was not correctly described, thought to be linked to an increased adsorption under dry soil conditions. Thanks to Volt'Air's capacity to deal with pedo-climatic conditions, several existing parameterizations describing adsorption as a function of soil water content could be tested. However, this point requires further investigation. Practically speaking, Volt'Air-Pesticides can be a useful tool to make

  15. The PIKfyve–ArPIKfyve–Sac3 triad in human breast cancer: Functional link between elevated Sac3 phosphatase and enhanced proliferation of triple negative cell lines

    SciTech Connect

    Ikonomov, Ognian C. Filios, Catherine Sbrissa, Diego Chen, Xuequn Shisheva, Assia

    2013-10-18

    Highlights: •We assess PAS complex proteins and phosphoinositide levels in breast cancer cells. •Sac3 and ArPIKfyve are markedly elevated in triple-negative breast cancer cells. •Sac3 silencing inhibits proliferation in triple-negative breast cancer cell lines. •Phosphoinositide profiles are altered in breast cancer cells. •This is the first evidence linking high Sac3 with breast cancer cell proliferation. -- Abstract: The phosphoinositide 5-kinase PIKfyve and 5-phosphatase Sac3 are scaffolded by ArPIKfyve in the PIKfyve–ArPIKfyve–Sac3 (PAS) regulatory complex to trigger a unique loop of PtdIns3P–PtdIns(3,5)P{sub 2} synthesis and turnover. Whereas the metabolizing enzymes of the other 3-phosphoinositides have already been implicated in breast cancer, the role of the PAS proteins and the PtdIns3P–PtdIns(3,5)P{sub 2} conversion is unknown. To begin elucidating their roles, in this study we monitored the endogenous levels of the PAS complex proteins in cell lines derived from hormone-receptor positive (MCF7 and T47D) or triple-negative breast cancers (TNBC) (BT20, BT549 and MDA-MB-231) as well as in MCF10A cells derived from non-tumorigenic mastectomy. We report profound upregulation of Sac3 and ArPIKfyve in the triple negative vs. hormone-sensitive breast cancer or non-tumorigenic cells, with BT cell lines showing the highest levels. siRNA-mediated knockdown of Sac3, but not that of PIKfyve, significantly inhibited proliferation of BT20 and BT549 cells. In these cells, knockdown of ArPIKfyve had only a minor effect, consistent with a primary role for Sac3 in TNBC cell proliferation. Intriguingly, steady-state levels of PtdIns(3,5)P{sub 2} in BT20 and T47D cells were similar despite the 6-fold difference in Sac3 levels between these cell lines. However, steady-state levels of PtdIns3P and PtdIns5P, both regulated by the PAS complex, were significantly reduced in BT20 vs. T47D or MCF10A cell lines, consistent with elevated Sac3 affecting directly or

  16. CMAQ MODELING FOR AIR TOXICS AT FINE SCALES: A PROTOTYPE STUDY

    EPA Science Inventory

    Toxic air pollutants (TAPs) or hazardous air pollutants (HAPs) exhibit considerable spatial and temporal variability across urban areas. Therefore, the ability of chemical transport models (CTMs), e.g. Community Multi-scale Air Quality (CMAQ), to reproduce the spatial and tempor...

  17. Improving UK Air Quality Modelling Through Exploitation of Satellite Observations

    NASA Astrophysics Data System (ADS)

    Pope, Richard; Chipperfield, Martyn; Savage, Nick

    2014-05-01

    In this work the applicability of satellite observations to evaluate the operational UK Met Office Air Quality in the Unified Model (AQUM) have been investigated. The main focus involved the AQUM validation against satellite observations, investigation of satellite retrieval error types and of synoptic meteorological-atmospheric chemistry relationships simulated/seen by the AQUM/satellite. The AQUM is a short range forecast model of atmospheric chemistry and aerosols up to 5 days. It has been designed to predict potentially hazardous air pollution events, e.g. high concentrations of surface ozone. The AQUM has only been validated against UK atmospheric chemistry recording surface stations. Therefore, satellite observations of atmospheric chemistry have been used to further validate the model, taking advantage of better satellite spatial coverage. Observations of summer and winter 2006 tropospheric column NO2 from both OMI and SCIAMACHY show that the AQUM generally compares well with the observations. However, in northern England positive biases (AQUM - satellite) suggest that the AQUM overestimates column NO2; we present results of sensitivity experiments on UK emissions datasets suspected to be the cause. In winter, the AQUM over predicts background column NO2 when compared to both satellite instruments. We hypothesise that the cause is the AQUM winter night-time chemistry, where the NO2 sinks are not substantially defined. Satellite data are prone to errors/uncertainty such as random, systematic and smoothing errors. We have investigated these error types and developed an algorithm to calculate and reduce the random error component of DOAS NO2 retrievals, giving more robust seasonal satellite composites. The Lamb Weather Types (LWT), an objective method of classifying the daily synoptic weather over the UK, were used to create composite satellite maps of column NO2 under different synoptic conditions. Under cyclonic conditions, satellite observed UK column NO2 is

  18. Dynamic Model of the BIO-Plex Air Revitalization System

    NASA Technical Reports Server (NTRS)

    Finn, Cory; Meyers, Karen; Duffield, Bruce; Luna, Bernadette (Technical Monitor)

    2000-01-01

    The BIO-Plex facility will need to support a variety of life support system designs and operation strategies. These systems will be tested and evaluated in the BIO-Plex facility. An important goal of the life support program is to identify designs that best meet all size and performance constraints for a variety of possible future missions. Integrated human testing is a necessary step in reaching this goal. System modeling and analysis will also play an important role in this endeavor. Currently, simulation studies are being used to estimate air revitalization buffer and storage requirements in order to develop the infrastructure requirements of the BIO-Plex facility. Simulation studies are also being used to verify that the envisioned operation strategy will be able to meet all performance criteria. In this paper, a simulation study is presented for a nominal BIO-Plex scenario with a high-level of crop growth. A general description of the dynamic mass flow model is provided, along with some simulation results. The paper also discusses sizing and operations issues and describes plans for future simulation studies.

  19. Development and Evaluation of Land-Use Regression Models Using Modeled Air Quality Concentrations

    EPA Science Inventory

    Abstract Land-use regression (LUR) models have emerged as a preferred methodology for estimating individual exposure to ambient air pollution in epidemiologic studies in absence of subject-specific measurements. Although there is a growing literature focused on LUR evaluation, fu...

  20. APPLICATION OF FINE SCALE AIR TOXICS MODELING WITH CMAQ TO HAPEM5

    EPA Science Inventory

    This paper provides a preliminary demonstration of the EPA neighborhood scale modeling paradigm for air toxics by linking concentration from the Community Multiscale Air Quality (CMAQ) modeling system to the fifth version of the Hazardous Pollutant Exposure Model (HAPEM5). For t...

  1. A Flexible Spatio-Temporal Model for Air Pollution with Spatial and Spatio-Temporal Covariates

    PubMed Central

    Lindström, Johan; Szpiro, Adam A; Sampson, Paul D; Oron, Assaf P; Richards, Mark; Larson, Tim V; Sheppard, Lianne

    2013-01-01

    The development of models that provide accurate spatio-temporal predictions of ambient air pollution at small spatial scales is of great importance for the assessment of potential health effects of air pollution. Here we present a spatio-temporal framework that predicts ambient air pollution by combining data from several different monitoring networks and deterministic air pollution model(s) with geographic information system (GIS) covariates. The model presented in this paper has been implemented in an R package, SpatioTemporal, available on CRAN. The model is used by the EPA funded Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) to produce estimates of ambient air pollution; MESA Air uses the estimates to investigate the relationship between chronic exposure to air pollution and cardiovascular disease. In this paper we use the model to predict long-term average concentrations of NOx in the Los Angeles area during a ten year period. Predictions are based on measurements from the EPA Air Quality System, MESA Air specific monitoring, and output from a source dispersion model for traffic related air pollution (Caline3QHCR). Accuracy in predicting long-term average concentrations is evaluated using an elaborate cross-validation setup that accounts for a sparse spatio-temporal sampling pattern in the data, and adjusts for temporal effects. The predictive ability of the model is good with cross-validated R2 of approximately 0.7 at subject sites. Replacing four geographic covariate indicators of traffic density with the Caline3QHCR dispersion model output resulted in very similar prediction accuracy from a more parsimonious and more interpretable model. Adding traffic-related geographic covariates to the model that included Caline3QHCR did not further improve the prediction accuracy. PMID:25264424

  2. A Flexible Spatio-Temporal Model for Air Pollution with Spatial and Spatio-Temporal Covariates.

    PubMed

    Lindström, Johan; Szpiro, Adam A; Sampson, Paul D; Oron, Assaf P; Richards, Mark; Larson, Tim V; Sheppard, Lianne

    2014-09-01

    The development of models that provide accurate spatio-temporal predictions of ambient air pollution at small spatial scales is of great importance for the assessment of potential health effects of air pollution. Here we present a spatio-temporal framework that predicts ambient air pollution by combining data from several different monitoring networks and deterministic air pollution model(s) with geographic information system (GIS) covariates. The model presented in this paper has been implemented in an R package, SpatioTemporal, available on CRAN. The model is used by the EPA funded Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) to produce estimates of ambient air pollution; MESA Air uses the estimates to investigate the relationship between chronic exposure to air pollution and cardiovascular disease. In this paper we use the model to predict long-term average concentrations of NOx in the Los Angeles area during a ten year period. Predictions are based on measurements from the EPA Air Quality System, MESA Air specific monitoring, and output from a source dispersion model for traffic related air pollution (Caline3QHCR). Accuracy in predicting long-term average concentrations is evaluated using an elaborate cross-validation setup that accounts for a sparse spatio-temporal sampling pattern in the data, and adjusts for temporal effects. The predictive ability of the model is good with cross-validated R (2) of approximately 0.7 at subject sites. Replacing four geographic covariate indicators of traffic density with the Caline3QHCR dispersion model output resulted in very similar prediction accuracy from a more parsimonious and more interpretable model. Adding traffic-related geographic covariates to the model that included Caline3QHCR did not further improve the prediction accuracy. PMID:25264424

  3. FINE SCALE AIR QUALITY MODELING USING DISPERSION AND CMAQ MODELING APPROACHES: AN EXAMPLE APPLICATION IN WILMINGTON, DE

    EPA Science Inventory

    Characterization of spatial variability of air pollutants in an urban setting at fine scales is critical for improved air toxics exposure assessments, for model evaluation studies and also for air quality regulatory applications. For this study, we investigate an approach that su...

  4. SLC26A4 Targeted to the Endolymphatic Sac Rescues Hearing and Balance in Slc26a4 Mutant Mice

    PubMed Central

    Li, Xiangming; Sanneman, Joel D.; Harbidge, Donald G.; Zhou, Fei; Ito, Taku; Nelson, Raoul; Picard, Nicolas; Chambrey, Régine; Eladari, Dominique; Miesner, Tracy; Griffith, Andrew J.; Marcus, Daniel C.; Wangemann, Philine

    2013-01-01

    Mutations of SLC26A4 are a common cause of human hearing loss associated with enlargement of the vestibular aqueduct. SLC26A4 encodes pendrin, an anion exchanger expressed in a variety of epithelial cells in the cochlea, the vestibular labyrinth and the endolymphatic sac. Slc26a4 Δ/Δ mice are devoid of pendrin and develop a severe enlargement of the membranous labyrinth, fail to acquire hearing and balance, and thereby provide a model for the human phenotype. Here, we generated a transgenic mouse line that expresses human SLC26A4 controlled by the promoter of ATP6V1B1. Crossing this transgene into the Slc26a4 Δ/Δ line restored protein expression of pendrin in the endolymphatic sac without inducing detectable expression in the cochlea or the vestibular sensory organs. The transgene prevented abnormal enlargement of the membranous labyrinth, restored a normal endocochlear potential, normal pH gradients between endolymph and perilymph in the cochlea, normal otoconia formation in the vestibular labyrinth and normal sensory functions of hearing and balance. Our study demonstrates that restoration of pendrin to the endolymphatic sac is sufficient to restore normal inner ear function. This finding in conjunction with our previous report that pendrin expression is required for embryonic development but not for the maintenance of hearing opens the prospect that a spatially and temporally limited therapy will restore normal hearing in human patients carrying a variety of mutations of SLC26A4. PMID:23874234

  5. FVCOM model estimate of the location of Air France 447

    NASA Astrophysics Data System (ADS)

    Chen, Changsheng; Limeburner, Richard; Gao, Guoping; Xu, Qichun; Qi, Jianhua; Xue, Pengfei; Lai, Zhigang; Lin, Huichan; Beardsley, Robert; Owens, Breck; Carlson, Barry

    2012-06-01

    On June 1, 2009, Air France AF447 disappeared in the Equatorial Atlantic Ocean en route from Rio de Janeiro, Brazil, to Paris, France. On June 6-19, 2009, bodies and debris from the aircraft were recovered floating in the equatorial ocean. This paper describes efforts on using the global-local nested finite volume community ocean model (FVCOM) to model reversely the tracks of bodies and debris back to the time of the crash and to help searchers locate the cockpit voice and flight data recorders and learn why this tragic accident occurred. To validate the reliability and reality of FVCOM, eight surface drifters were deployed by the French Bureau d'Enquêtes et d'Analyses pour la sécurité de l'aviation civile (BEA) near the last known position in early June 2010 for a period of 3 weeks. These drifter data were used to optimize the spatial and temporal correlation scales of the adaptive sampling data assimilation method of FVCOM. Applying an optimized FVCOM system to assimilate all available drifter- and float-tracking-derived currents in May-June 2009 under three different wind conditions, we reproduced the June 2009 current fields in the area near the LKP and used these fields to reversely track bodies and debris from locations where they were found to the time when the crash occurred. Possible locations for the crashed plane were suggested based on our model results and were made available to the French investigators and the Woods Hole Oceanographic Institution REMUS autonomous underwater vehicle Operations Group who successfully located the aircraft debris field in April 2011 on the seafloor at a depth of 3,900 m.

  6. Modelling future impacts of air pollution using the multi-scale UK Integrated Assessment Model (UKIAM).

    PubMed

    Oxley, Tim; Dore, Anthony J; ApSimon, Helen; Hall, Jane; Kryza, Maciej

    2013-11-01

    Integrated assessment modelling has evolved to support policy development in relation to air pollutants and greenhouse gases by providing integrated simulation tools able to produce quick and realistic representations of emission scenarios and their environmental impacts without the need to re-run complex atmospheric dispersion models. The UK Integrated Assessment Model (UKIAM) has been developed to investigate strategies for reducing UK emissions by bringing together information on projected UK emissions of SO2, NOx, NH3, PM10 and PM2.5, atmospheric dispersion, criteria for protection of ecosystems, urban air quality and human health, and data on potential abatement measures to reduce emissions, which may subsequently be linked to associated analyses of costs and benefits. We describe the multi-scale model structure ranging from continental to roadside, UK emission sources, atmospheric dispersion of emissions, implementation of abatement measures, integration with European-scale modelling, and environmental impacts. The model generates outputs from a national perspective which are used to evaluate alternative strategies in relation to emissions, deposition patterns, air quality metrics and ecosystem critical load exceedance. We present a selection of scenarios in relation to the 2020 Business-As-Usual projections and identify potential further reductions beyond those currently being planned. PMID:24096039

  7. Interfacing air pathway models with other media models for impact assessment

    SciTech Connect

    Drake, R.L.

    1980-10-01

    The assessment of the impacts/effects of a coal conversion industry on human health, ecological systems, property and aesthetics requires knowledge about effluent and fugitive emissions, dispersion of pollutants in abiotic media, chemical and physical transformations of pollutants during transport, and pollutant fate passing through biotic pathways. Some of the environmental impacts that result from coal conversion facility effluents are subtle, acute, subacute or chronic effects in humans and other ecosystem members, acute or chronic damage of materials and property, odors, impaired atmospheric visibility, and impacts on local, regional and global weather and climate. This great variety of impacts and effects places great demands on the abiotic and biotic numerical simulators (modelers) in terms of time and space scales, transformation rates, and system structure. This paper primarily addresses the demands placed on the atmospheric analyst. The paper considers the important air pathway processes, the interfacing of air pathway models with other media models, and the classes of air pathway models currently available. In addition, a strong plea is made for interaction and communication between all modeling groups to promote efficient construction of intermedia models that truly interface across pathway boundaries.

  8. The Atlanta Urban Heat Island Mitigation and Air Quality Modeling Project: How High-Resoution Remote Sensing Data Can Improve Air Quality Models

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Estes, Maurice G., Jr.; Crosson, William L.; Khan, Maudood N.

    2006-01-01

    The Atlanta Urban Heat Island and Air Quality Project had its genesis in Project ATLANTA (ATlanta Land use Analysis: Temperature and Air quality) that began in 1996. Project ATLANTA examined how high-spatial resolution thermal remote sensing data could be used to derive better measurements of the Urban Heat Island effect over Atlanta. We have explored how these thermal remote sensing, as well as other imaged datasets, can be used to better characterize the urban landscape for improved air quality modeling over the Atlanta area. For the air quality modeling project, the National Land Cover Dataset and the local scale Landpro99 dataset at 30m spatial resolutions have been used to derive land use/land cover characteristics for input into the MM5 mesoscale meteorological model that is one of the foundations for the Community Multiscale Air Quality (CMAQ) model to assess how these data can improve output from CMAQ. Additionally, land use changes to 2030 have been predicted using a Spatial Growth Model (SGM). SGM simulates growth around a region using population, employment and travel demand forecasts. Air quality modeling simulations were conducted using both current and future land cover. Meteorological modeling simulations indicate a 0.5 C increase in daily maximum air temperatures by 2030. Air quality modeling simulations show substantial differences in relative contributions of individual atmospheric pollutant constituents as a result of land cover change. Enhanced boundary layer mixing over the city tends to offset the increase in ozone concentration expected due to higher surface temperatures as a result of urbanization.

  9. Air Quality Modeling in Support of the Near-road EXposures and effects of Urban air pollutants Study (NEXUS)

    EPA Science Inventory

    The paper presents the results of the model applications to estimate exposure metrics in support of an epidemiologic study in Detroit, Michigan. The Near-road Exposures to Urban air pollutant Study (NEXUS) design includes determining if children in Detroit, MI with asthma living ...

  10. Comparison of stationary and personal air sampling with an air dispersion model for children’s ambient exposure to manganese

    EPA Science Inventory

    Manganese (Mn) is ubiquitous in the environment and essential for normal growth and development, yet excessive exposure can lead to impairments in neurological function. This study modeled ambient Mn concentrations as an alternative to stationary and personal air sampling to asse...

  11. 75 FR 4070 - Science Advisory Board Staff Office; Notification of a Public Meeting of the Air Quality Modeling...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-26

    ... AGENCY Science Advisory Board Staff Office; Notification of a Public Meeting of the Air Quality Modeling... public meeting of the Air Quality Modeling Subcommittee (AQMS) of the Advisory Council on Clean Air... air quality modeling results for scenarios with and without EPA's regulatory programs...

  12. Vienna SAC-SOS: Analysis of the European VLBI Sessions

    NASA Astrophysics Data System (ADS)

    Ros, C. T.; Pavetich, P.; Nilsson, T.; Böhm, J.; Schuh, H.

    2012-12-01

    The Institute of Geodesy and Geophysics (IGG) of the Vienna University of Technology as an IVS Special Analysis Center for Specific Observing Sessions (SAC-SOS) has analyzed the European VLBI sessions using the software VieVS. Between 1990 and 2011, 115 sessions have been carried out. The analyzed baselines have lengths ranging from approximately 445 to 4580 km, and they show good repeatabilities, apart from the ones containing station Simeiz. The station velocities have also been investigated. The stations situated in the stable part of Europe have not shown significant relative movements w.r.t. Wettzell, whereas the stations located in the northern areas have the largest vertical motions as a result of the post glacial isostatic rebound of the zone. The stations placed in Italy, around the Black Sea, in Siberia, and near the Arctic Circle show the largest relative horizontal motions because they belong to different geodynamical units.

  13. Clearance of chlamydial elementary bodies from the conjunctival sac

    SciTech Connect

    Taylor, H.R.; Velez, V.L.

    1987-07-01

    The rate of disappearance of inactivated Chlamydia trachomatis elementary body (EB) preparations from the conjunctival sac was studied in monkeys. Direct fluorescent antibody (DFA) cytology showed that the majority of EB had been cleared from the eye within 24 hr of the inoculation of 1 X 10(6) inactivated EB, although small numbers of EB could be detected for up to 144 hr. The rate of clearance in normal and ocular immune animals did not differ, and formalin-killed and UV-inactivated EBs disappeared at a comparable rate. These studies suggest that chlamydial EB are cleared relatively quickly from the eye and support the notion that EBs detected by DFA cytology indicate the presence of current infection.

  14. IN VITRO/IN VIVO COMPARISON OF YOLK SAC FUNCTION AND EMBRYO DEVELOPMENT

    EPA Science Inventory

    Yolk sac function and development of rat embryos grown in vitro for 24 hrs starting on day 10.5 were compared to those of embryos grown in utero. he embryos grown in vitro had significantly fewer somites, shorter crown-rump length and smaller yolk sac diameter when compared to th...

  15. Existing air sparging model and literature review for the development of an air sparging optimization decision tool

    SciTech Connect

    1995-08-01

    The objectives of this Report are two-fold: (1) to provide overviews of the state-of-the-art and state-of-the-practice with respect to air sparging technology, air sparging models and related or augmentation technologies (e.g., soil vapor extraction); and (2) to provide the basis for the development of the conceptual Decision Tool. The Project Team conducted an exhaustive review of available literature. The complete listing of the documents, numbering several hundred and reviewed as a part of this task, is included in Appendix A. Even with the large amount of material written regarding the development and application of air sparging, there still are significant gaps in the technical community`s understanding of the remediation technology. The results of the literature review are provided in Section 2. In Section 3, an overview of seventeen conceptual, theoretical, mathematical and empirical models is presented. Detailed descriptions of each of the models reviewed is provided in Appendix B. Included in Appendix D is a copy of the questionnaire used to compile information about the models. The remaining sections of the document reflect the analysis and synthesis of the information gleaned during the literature and model reviews. The results of these efforts provide the basis for development of the decision tree and conceptual decision tool for determining applicability and optimization of air sparging. The preliminary decision tree and accompanying information provided in Section 6 describe a three-tiered approach for determining air sparging applicability: comparison with established scenarios; calculation of conceptual design parameters; and the conducting of pilot-scale studies to confirm applicability. The final two sections of this document provide listings of the key success factors which will be used for evaluating the utility of the Decision Tool and descriptions of potential applications for Decision Tool use.

  16. ZBTB16: a novel sensitive and specific biomarker for yolk sac tumor.

    PubMed

    Xiao, Guang-Qian; Li, Faqian; Unger, Pamela D; Katerji, Hani; Yang, Qi; McMahon, Loralee; Burstein, David E

    2016-06-01

    Although the function of zinc finger and BTB domain containing 16 (ZBTB16) in spermatogenesis is well documented, expression of ZBTB16 in germ cell tumors has not yet been studied. The aim of this study was to investigate the immunohistochemical expression and diagnostic utility of ZBTB16 in germ cell tumors. A total of 67 adult germ cell tumors were studied (62 testicular germ cell tumors, 2 ovarian yolk sac tumors, 1 mediastinal yolk sac tumor, and 2 retroperitoneal metastatic yolk sac tumors). The 62 testicular primary germ cell tumors are as follows: 34 pure germ cell tumors (20 seminomas, 8 embryonal carcinomas, 2 teratomas, 1 choriocarcinoma, 1 carcinoid, and 2 spermatocytic tumors) and 28 mixed germ cell tumors (composed of 13 embryonal carcinomas, 15 yolk sac tumors, 15 teratomas, 7 seminomas, and 3 choriocarcinomas in various combinations). Thirty-five cases contained germ cell neoplasia in situ. Yolk sac tumor was consistently reactive for ZBTB16. Among the 15 testicular yolk sac tumors in mixed germ cell tumors, all displayed moderate to diffuse ZBTB16 staining. ZBTB16 reactivity was present regardless of the histologic patterns of yolk sac tumor and ZBTB16 was able to pick up small foci of yolk sac tumor intermixed/embedded in other germ cell tumor subtype elements. Diffuse ZBTB16 immunoreactivity was also observed in 2/2 metastatic yolk sac tumors, 1/1 mediastinal yolk sac tumor, 2/2 ovarian yolk sac tumors, 2/2 spermatocytic tumors, 1/1 carcinoid, and the spermatogonial cells. All the other non-yolk sac germ cell tumors were nonreactive, including seminoma (n=27), embryonal carcinoma (n=21), teratoma (n=17), choriocarcinoma (n=4), and germ cell neoplasia in situ (n=35). The sensitivity and specificity of ZBTB16 in detecting yolk sac tumor among the germ cell tumors was 100% (20/20) and 96% (66/69), respectively. In conclusion, ZBTB16 is a highly sensitive and specific marker for yolk sac tumor. PMID:26916077

  17. Air quality modelling using the Met Office Unified Model (AQUM OS24-26): model description and initial evaluation

    NASA Astrophysics Data System (ADS)

    Savage, N. H.; Agnew, P.; Davis, L. S.; Ordóñez, C.; Thorpe, R.; Johnson, C. E.; O'Connor, F. M.; Dalvi, M.

    2013-03-01

    The on-line air quality model AQUM (Air Quality in the Unified Model) is a limited-area forecast configuration of the Met Office Unified Model which uses the UKCA (UK Chemistry and Aerosols) sub-model. AQUM has been developed with two aims: as an operational system to deliver regional air quality forecasts and as a modelling system to conduct air quality studies to inform policy decisions on emissions controls. This paper presents a description of the model and the methods used to evaluate the performance of the forecast system against the automated UK surface network of air quality monitors. Results are presented of evaluation studies conducted for a year-long period of operational forecast trials and several past cases of poor air quality episodes. The results demonstrate that AQUM tends to over-predict ozone (~8 μg m-3 mean bias for the year-long forecast), but has a good level of responsiveness to elevated ozone episode conditions - a characteristic which is essential for forecasting poor air quality episodes. AQUM is shown to have a negative bias for PM10, while for PM2.5 the negative bias is much smaller in magnitude. An analysis of speciated PM2.5 data during an episode of elevated particulate matter (PM) suggests that the PM bias occurs mainly in the coarse component. The sensitivity of model predictions to lateral boundary conditions (LBCs) has been assessed by using LBCs from two different global reanalyses and by comparing the standard, single-nested configuration with a configuration having an intermediate European nest. We conclude that, even with a much larger regional domain, the LBCs remain an important source of model error for relatively long-lived pollutants such as ozone. To place the model performance in context we compare AQUM ozone forecasts with those of another forecasting system, the MACC (Monitoring Atmospheric Composition and Climate) ensemble, for a 5-month period. An analysis of the variation of model skill with forecast lead time is

  18. User manual for the EPA third-generation air quality modeling system (Models-3 version 3.0). Appendices

    SciTech Connect

    1999-06-01

    Models-3 is a flexible third generation software modeling system designed to simplify the development and use of the environmental assessment and other decision support tools. It is designed for applications ranging from regulatory and policy analysis to understanding the complex interactions of atmospheric chemistry and physics. This version of Models-3 contains a Community Multiscale Air Quality (CMAQ) system for urban to regional scale air quality simulation of tropospheric ozone, acid deposition, visibility and fine particulate. Models-3 and CMAQ in combination form a powerful third generation air quality modeling and assessment system. Third generation models treat multiple pollutants simultaneously up to continental scales and incorporate feedback between chemical and meteorological components.

  19. User manual for the EPA third-generation air quality modeling system (Models-3 version 3.0)

    SciTech Connect

    1999-06-01

    Models-3 is a flexible third generation software modeling system designed to simplify the development and use of the environmental assessment and other decision support tools. It is designed for applications ranging from regulatory and policy analysis to understanding the complex interactions of atmospheric chemistry and physics. This version of Models-3 contains a Community Multiscale Air Quality (CMAQ) system for urban to regional scale air quality simulation of tropospheric ozone, acid deposition, visibility and fine particulate. Models-3 and CMAQ in combination form a powerful third generation air quality modeling and assessment system. Third generation models treat multiple pollutants simultaneously up to continental scales and incorporate feedback between chemical and meteorological components.

  20. Development of the endolymphatic sac in chick embryos, with reference to the degradation of otoconia

    NASA Technical Reports Server (NTRS)

    Yoshihara, T.; Kaname, H.; Narita, N.; Ishii, T.; Igarashi, M.; Fermin, C. D.

    1992-01-01

    The endolymphatic sac of chick embryos (from embryonic day 7 to 1-day-old chicks) was studied light- and electron-microscopically. At stage 30-31 (embryonic day 7-7.5), the epithelial cells of the endolymphatic sac were cuboidal to columnar in shape. Microvilli were relatively well developed. The intercellular space was wide. In the endolymphatic space of the endolymphatic sac, varying shapes and sizes of otoconia-like bodies were often observed. Intracytoplasmic phagosomes containing these bodies were rarely found. After stage 37 (embryonic day 11), otoconia-like bodies in the endolymphatic sac decreased in number and size. They were almost the same as the otoconia in the macular organs, ultrastructurally. These findings indicate that the endolymphatic sac of the chick embryos may possess the function of otoconial degradation and removal of calcium from otoconia.

  1. Dynamic Evaluation of a Regional Air Quality Model: Assessing the Emissions-Induced Weekly Ozone Cycle

    EPA Science Inventory

    Air quality models are used to predict changes in pollutant concentrations resulting from envisioned emission control policies. Recognizing the need to assess the credibility of air quality models in a policy-relevant context, we perform a dynamic evaluation of the community Mult...

  2. SIMULATION OF AEROSOL DYNAMICS: A COMPARATIVE REVIEW OF ALGORITHMS USED IN AIR QUALITY MODELS

    EPA Science Inventory

    A comparative review of algorithms currently used in air quality models to simulate aerosol dynamics is presented. This review addresses coagulation, condensational growth, nucleation, and gas/particle mass transfer. Two major approaches are used in air quality models to repres...

  3. Dynamic Evaluation of Long-Term Air Quality Model Simulations Over the Northeastern U.S.

    EPA Science Inventory

    Dynamic model evaluation assesses a modeling system's ability to reproduce changes in air quality induced by changes in meteorology and/or emissions. In this paper, we illustrate various approaches to dynamic mode evaluation utilizing 18 years of air quality simulations perform...

  4. PROTOTYPING AND IMPLEMENTATION OF MULTISCALE AIR QUALITY MODELS FOR HIGH PERFORMANCE COMPUTING

    EPA Science Inventory

    Important missions of the U.S. EPA are to enhance understanding of the global environmental system and to develop tools to help environmental policy decision making. hree-dimensional air quality models used by EPA are examples of such tools. lthough current air quality models are...

  5. Air Quality Model Evaluation International Initiative (AQMEII) - Utrecht, Netherlands The May 8, 2012

    EPA Science Inventory

    The 4th workshop of the Air Quality Model Evaluation International Initiative (AQMEII) was held on May 8 in Utrecht, The Netherlands, in conjunction with the NATO/SPS International Technical Meeting on Air Pollution Modeling and Its Application. AQMEII was launched in 2009 as a l...

  6. DESCRIPTION OF UNAMAP (USER'S NETWORK FOR APPLIED MODELING OF AIR POLLUTION) (VERSION 6)

    EPA Science Inventory

    UNAMAP (VERSION 6) represents the 1986 update to the User's Network for Applied Modeling of Air Pollution. UNAMAP consists of an ASCII magnetic tape containing FORTRAN codes and test data for 25 air quality simulation models as well as associated documentation. The tape and docum...

  7. Diagnostic Analysis of Ozone Concentrations Simulated by Two Regional-Scale Air Quality Models

    EPA Science Inventory

    Since the Community Multiscale Air Quality modeling system (CMAQ) and the Weather Research and Forecasting with Chemistry model (WRF/Chem) use different approaches to simulate the interaction of meteorology and chemistry, this study compares the CMAQ and WRF/Chem air quality simu...

  8. EMERGING AIR QUALITY MODELING TECHNOLOGY FOR HIGH PERFORMANCE COMPUTING AND COMMUNICATION ENVIRONMENTS

    EPA Science Inventory

    To demonstrate applications of the HPCC technologies in air quality models, we organized the Specialty Evening Session 1, "Emerging Air Quality Modeling Technologies for High Performance Computing and Communication Environment" as a part of the Twenty First NATO/CCMS Internationa...

  9. Urban Landscape Characterization Using Remote Sensing Data For Input into Air Quality Modeling

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Estes, Maurice G., Jr.; Crosson, William; Khan, Maudood

    2005-01-01

    The urban landscape is inherently complex and this complexity is not adequately captured in air quality models that are used to assess whether urban areas are in attainment of EPA air quality standards, particularly for ground level ozone. This inadequacy of air quality models to sufficiently respond to the heterogeneous nature of the urban landscape can impact how well these models predict ozone pollutant levels over metropolitan areas and ultimately, whether cities exceed EPA ozone air quality standards. We are exploring the utility of high-resolution remote sensing data and urban growth projections as improved inputs to meteorological and air quality models focusing on the Atlanta, Georgia metropolitan area as a case study. The National Land Cover Dataset at 30m resolution is being used as the land use/land cover input and aggregated to the 4km scale for the MM5 mesoscale meteorological model and the Community Multiscale Air Quality (CMAQ) modeling schemes. Use of these data have been found to better characterize low density/suburban development as compared with USGS 1 km land use/land cover data that have traditionally been used in modeling. Air quality prediction for future scenarios to 2030 is being facilitated by land use projections using a spatial growth model. Land use projections were developed using the 2030 Regional Transportation Plan developed by the Atlanta Regional Commission. This allows the State Environmental Protection agency to evaluate how these transportation plans will affect future air quality.

  10. The AQMEII Two-Continent Regional Air Quality Model Evaluation Study: Fueling Ideas with Unprecedented Data

    EPA Science Inventory

    Although strong collaborations in the air pollution field have existed among the North American (NA) and European (EU) countries over the past five decades, regional-scale air quality model developments and model performance evaluations have been carried out independently unlike ...

  11. CASE STUDIES IN THE APPLICATION OF AIR QUALITY MODELING IN ENVIRONMENTAL DECISION MAKING: SUMMARY AND RECOMMENDATIONS

    EPA Science Inventory

    Eleven case studies of the application of air quality models were undertaken in order to examine the problems encountered when trying to use these models in making environmental policy decisions. The case studies of air pollution control decisions describe the decision process, t...

  12. High-resolution modelling of health impacts from air pollution using the integrated model system EVA

    NASA Astrophysics Data System (ADS)

    Brandt, Jørgen; Andersen, Mikael S.; Bønløkke, Jakob; Christensen, Jesper H.; Geels, Camilla; Hansen, Kaj M.; Jensen, Steen S.; Ketzel, Matthias; Plejdrup, Marlene S.; Sigsgaard, Torben; Silver, Jeremy D.

    2014-05-01

    A high-resolution assessment of health impacts from air pollution and related external cost has been conducted for Denmark using the integrated EVA model system. The EVA system has been further developed by implementing an air quality model with a 1 km x 1 km resolution covering the whole of Denmark. New developments of the integrated model system will be presented as well as results for health impacts and related external costs over several decades. Furthermore, the sensitivity of health impacts to model resolution will be studied. We have developed an integrated model system EVA (Economic Valuation of Air pollution), based on the impact-pathway chain, to assess the health impacts and health-related economic externalities of air pollution resulting from specific emission sources or sectors. The system is used to support policymaking with respect to emission control. In Brandt et al. (2013a; 2013b), the EVA system was used to assess the impacts in Europe and Denmark from the past, present and future total air pollution levels as well as the contribution from the major anthropogenic emission sectors. The EVA system was applied using the hemispheric chemistry-transport model, the Danish Eulerian Hemispheric Model (DEHM), with nesting capability for higher resolution over Europe (50 km x 50 km) and Northern Europe (16.7 km x 16.7 km). In this study an Urban Background Model (UBM) has been further developed to cover the whole of Denmark with a 1 km x 1 km resolution and the model has been implemented as a part of the integrated model system, EVA. The EVA system is based on the impact-pathway methodology. The site-specific emissions will result (via atmospheric transport and chemistry) in a concentration distribution, which together with detailed population data, are used to estimate the population-level exposure. Using exposure-response functions and economic valuations, the exposure is transformed into impacts on human health and related external costs. In this study

  13. Aircraft/Air Traffic Management Functional Analysis Model. Version 2.0; User's Guide

    NASA Technical Reports Server (NTRS)

    Etheridge, Melvin; Plugge, Joana; Retina, Nusrat

    1998-01-01

    The Aircraft/Air Traffic Management Functional Analysis Model, Version 2.0 (FAM 2.0), is a discrete event simulation model designed to support analysis of alternative concepts in air traffic management and control. FAM 2.0 was developed by the Logistics Management Institute (LMI) a National Aeronautics and Space Administration (NASA) contract. This document provides a guide for using the model in analysis. Those interested in making enhancements or modification to the model should consult the companion document, Aircraft/Air Traffic Management Functional Analysis Model, Version 2.0 Technical Description.

  14. MODELING POPULATION EXPOSURES TO OUTDOOR SOURCES OF HAZARDOUS AIR POLLUTANTS

    EPA Science Inventory

    Accurate assessment of human exposures is an important part of environmental health effects research. However, most air pollution epidemiology studies rely upon imperfect surrogates of personal exposures, such as information based on available central-site outdoor concentration ...

  15. Development of Gridded Fields of Urban Canopy Parameters for Advanced Urban Meteorological and Air Quality Models

    EPA Science Inventory

    Urban dispersion and air quality simulation models applied at various horizontal scales require different levels of fidelity for specifying the characteristics of the underlying surfaces. As the modeling scales approach the neighborhood level (~1 km horizontal grid spacing), the...

  16. Assessment and prediction of air quality using fuzzy logic and autoregressive models

    NASA Astrophysics Data System (ADS)

    Carbajal-Hernández, José Juan; Sánchez-Fernández, Luis P.; Carrasco-Ochoa, Jesús A.; Martínez-Trinidad, José Fco.

    2012-12-01

    In recent years, artificial intelligence methods have been used for the treatment of environmental problems. This work, presents two models for assessment and prediction of air quality. First, we develop a new computational model for air quality assessment in order to evaluate toxic compounds that can harm sensitive people in urban areas, affecting their normal activities. In this model we propose to use a Sigma operator to statistically asses air quality parameters using their historical data information and determining their negative impact in air quality based on toxicity limits, frequency average and deviations of toxicological tests. We also introduce a fuzzy inference system to perform parameter classification using a reasoning process and integrating them in an air quality index describing the pollution levels in five stages: excellent, good, regular, bad and danger, respectively. The second model proposed in this work predicts air quality concentrations using an autoregressive model, providing a predicted air quality index based on the fuzzy inference system previously developed. Using data from Mexico City Atmospheric Monitoring System, we perform a comparison among air quality indices developed for environmental agencies and similar models. Our results show that our models are an appropriate tool for assessing site pollution and for providing guidance to improve contingency actions in urban areas.

  17. An air dispersion model for the city of Toronto, Ontario, Canada.

    PubMed

    Sylvestre-Williams, Barbara; Mehrvar, Mehrab

    2012-01-01

    Air quality is a major concern for the public; therefore, the reliability of accurate models in predicting the air quality is of a major interest. In this study, a Gaussian air dispersion model, known as the Air dispersion model for Road Sources in Urban areaS (ARSUS), was developed to predict the ground level concentrations for a contaminant of interest. It was demonstrated that this model could be used successfully in place of or in conjunction with ambient air monitoring stations in determining the local Air Quality Index (AQI). The ARSUS model was validated against the US EPA ISC3 model before it was used to conduct two studies in this investigation. These two studies simulated weekday morning rush-hour tailpipe emissions of CO and predicted ground level concentrations. The first study used the ARSUS model to predict ground level concentrations of CO from the tailpipe emissions for roads and highways located in the vicinity of the Toronto West ambient air monitoring station. The second study involved an expansion of the domain to predict ground level concentrations of CO from tailpipe emissions from highways in the City of Toronto, Ontario, Canada. The predicted concentrations were then compared to the data collected from the Toronto West ambient air monitoring station. The results of the ARSUS model indicated that the air quality in the immediate vicinity of roads or highways is highly impacted by the tailpipe emissions. Higher concentrations were observed for the areas adjacent to the road and highway sources. The tailpipe emissions of CO from highways had a higher contribution to the local air quality. The predicted ground level concentrations from the ARSUS model under-predicted when compared to the observed data from the monitoring station; however, despite this, the predictive model is viable. PMID:22506705

  18. Development of a Micro-scale Air Monitoring and Modeling System for a Urban District Air Quality Management

    NASA Astrophysics Data System (ADS)

    Yoo, Seung Heon; Woo, Jung-Hun; Ryoo, Rina; Jung, Bujeon; Seo, Jun Seong; Kim, Jae-Jin; Boem Lim, Sang; Kim, Hyungseok

    2010-05-01

    As the city is urbanized, its landscape is getting more complex due to the construction of high-rise buildings. The smaller scale wind-field in an urban district may change frequently due to the complex terrain, the diverse landuse, and high-rise buildings. It also leads to dynamic changes of air pollution in that area. The conventional urban scale air quality management system, however, is too coarse to effectively manage such a small area. In this study, we set up a micro-scale air quality management testbed near Konkuk University, Seoul, Korea. A ubiquities sensor monitoring network, high resolution emission database, and CFD-based air quality modeling system were developed, and then applied to the testbed. A sensor data management system using wireless technology and multi-modal scientific visualization module were combined in support of the management system. The sensor based monitoring system shows reasonably good performance for wind speed, temperature, and carbon dioxide from inter-comparison study against conventional large format analyzers. The sensor data have been successfully collected using a wireless sensor data collection network during a 6months operation period from July, 2009. The fire pollution event simulation using the CFD model reveals the effect of high rise buildings in the testbed.

  19. Uncertainty characterization and quantification in air pollution models. Application to the ADMS-Urban model.

    NASA Astrophysics Data System (ADS)

    Debry, E.; Malherbe, L.; Schillinger, C.; Bessagnet, B.; Rouil, L.

    2009-04-01

    Evaluation of human exposure to atmospheric pollution usually requires the knowledge of pollutants concentrations in ambient air. In the framework of PAISA project, which studies the influence of socio-economical status on relationships between air pollution and short term health effects, the concentrations of gas and particle pollutants are computed over Strasbourg with the ADMS-Urban model. As for any modeling result, simulated concentrations come with uncertainties which have to be characterized and quantified. There are several sources of uncertainties related to input data and parameters, i.e. fields used to execute the model like meteorological fields, boundary conditions and emissions, related to the model formulation because of incomplete or inaccurate treatment of dynamical and chemical processes, and inherent to the stochastic behavior of atmosphere and human activities [1]. Our aim is here to assess the uncertainties of the simulated concentrations with respect to input data and model parameters. In this scope the first step consisted in bringing out the input data and model parameters that contribute most effectively to space and time variability of predicted concentrations. Concentrations of several pollutants were simulated for two months in winter 2004 and two months in summer 2004 over five areas of Strasbourg. The sensitivity analysis shows the dominating influence of boundary conditions and emissions. Among model parameters, the roughness and Monin-Obukhov lengths appear to have non neglectable local effects. Dry deposition is also an important dynamic process. The second step of the characterization and quantification of uncertainties consists in attributing a probability distribution to each input data and model parameter and in propagating the joint distribution of all data and parameters into the model so as to associate a probability distribution to the modeled concentrations. Several analytical and numerical methods exist to perform an

  20. Air tamponade of the heart

    PubMed Central

    Orłowski, Tadeusz; Iwanowicz, Katarzyna; Snarska, Jadwiga

    2016-01-01

    Pneumopericardium is a rare disease defined as the presence of air or gas in the pericardial sac. Among the etiological factors, the following stand out: chest trauma, barotrauma, air-containing fistulas between the pericardium and the surrounding structures, secondary gas production by microorganisms growing in the pericardial sac, and iatrogenic factors. Until now, spontaneous pneumopericardium has been considered a harmless and temporary state, but a review of clinical cases indicates that the presence of air in the pericardium can lead to cardiac tamponade and life-threatening hemodynamic disturbances. We present the case of an 80-year-old patient with a chronic bronchopericardial fistula, who suffered from a cardiac arrest due to air tamponade of the heart. PMID:27516791

  1. Local-Scale Air Quality Modeling in Support of Human Health and Exposure Research (Invited)

    NASA Astrophysics Data System (ADS)

    Isakov, V.

    2010-12-01

    Spatially- and temporally-sparse information on air quality is a key concern for air-pollution-related environmental health studies. Monitor networks are sparse in both space and time, are costly to maintain, and are often designed purposely to avoid detecting highly localized sources. Recent studies have shown that more narrowly defining the geographic domain of the study populations and improvements in the measured/estimated ambient concentrations can lead to stronger associations between air pollution and hospital admissions and mortality records. Traditionally, ambient air quality measurements have been used as a primary input to support human health and exposure research. However, there is increasing evidence that the current ambient monitoring network is not capturing sharp gradients in exposure due to the presence of high concentration levels near, for example, major roadways. Many air pollutants exhibit large concentration gradients near large emitters such as major roadways, factories, ports, etc. To overcome these limitations, researchers are now beginning to use air quality models to support air pollution exposure and health studies. There are many advantages to using air quality models over traditional approaches based on existing ambient measurements alone. First, models can provide spatially- and temporally-resolved concentrations as direct input to exposure and health studies and thus better defining the concentration levels for the population in the geographic domain. Air quality models have a long history of use in air pollution regulations, and supported by regulatory agencies and a large user community. Also, models can provide bidirectional linkages between sources of emissions and ambient concentrations, thus allowing exploration of various mitigation strategies to reduce risk to exposure. In order to provide best estimates of air concentrations to support human health and exposure studies, model estimates should consider local-scale features

  2. Regional air quality in the four corners studys region: modeling approach

    SciTech Connect

    Nochumson, D.

    1982-01-01

    A two-dimensional Eulerian air pollutant transport model was used in an air quality study of the Four Corners region conducted for the National Commission on Air Quality. The regional modeling methodology and some sample results from the regional air quality analysis are presented. One major advantage of the regional transport model that was employed is that its solution involves the calculation of transfer coefficients that relate emissions to ambient concentrations and deposition and which can be used repeatedly to evaluate alternative scenarios and regulatory policies which represent different emission source configurations. The regional transport model was used in the calculation of the concentration and deposition of SO/sub 2/, SO/sub 4/, and primary fine particulates; and these estimates were used as inputs to regional atmospheric visibility and mass budget calculations. Previous studies have shown that the methods used in the regional air quality analysis give good agreement when comparing observed and estimated values.

  3. Developments in EPA`s air dispersion modeling for hazardous/toxic releases

    SciTech Connect

    Touma, J.S.

    1995-12-31

    Title 3 of the 1990 Clean Air Act Amendments (CAAA) lists many chemicals as hazardous air pollutants and requires establishing regulations to prevent their accidental release, and to minimize the consequence, if any such releases occur. With the large number of potential release scenarios that are associated with these chemicals, there is a need for a systematic approach for applying air dispersion models to estimate impact. Because some chemicals may form dense gas clouds upon release, and dispersion models that can simulate these releases are complex, EPA has paid attention to the development of modeling tools and guidance on the use of models that can address these types of releases.

  4. On the accuracy of the rate coefficients used in plasma fluid models for breakdown in air

    NASA Astrophysics Data System (ADS)

    Kourtzanidis, Konstantinos; Raja, Laxminarayan L.

    2016-07-01

    The electrical breakdown of air depends on the balance between creation and loss of charged particles. In fluid models, datasets of the rate coefficients used are obtained either from fits to experimental data or by solutions of the Boltzmann equation. Here, we study the accuracy of the commonly used models for ionization and attachment frequencies and their impact on the prediction of the breakdown threshold for air. We show that large errors can occur depending on the model and propose the most accurate dataset available for modeling of air breakdown phenomena.

  5. E-ɛ modelling of turbulent air flow downwind of a model forest edge

    NASA Astrophysics Data System (ADS)

    Liu, J.; Chen, J. M.; Black, T. A.; Novak, M. D.

    1996-01-01

    A two-dimensional E-ɛ model, which included the effects of plant-atmosphere interaction, was used to simulate air flow downwind of forest edges for the purpose of predicting the microclimate in forest openings. A suitable set of wall functions was selected to consider the aerodynamic effects of the ground in the opening. The model with discretization and parameter schemes was validated using a set of data from a wind-tunnel experiment. The simulated wind speed and turbulence kinetic energy closely agreed with the measured values. After validation, the model was used to predict eddy diffusivity in the lee of the forest edge. The modelled spatial distribution of the eddy diffusivity agreed in general with that calculated using wind-tunnel measurements. The usefulness and limitations of the E-ɛ model are discussed.

  6. Modeling subcanopy incoming longwave radiation to seasonal snow using air and tree trunk temperatures

    NASA Astrophysics Data System (ADS)

    Webster, Clare; Rutter, Nick; Zahner, Franziska; Jonas, Tobias

    2016-02-01

    Data collected at three Swiss alpine forested sites over a combined 11 year period were used to evaluate the role of air temperature in modeling subcanopy incoming longwave radiation to the snow surface. Simulated subcanopy incoming longwave radiation is traditionally partitioned into that from the sky and that from the canopy, i.e., a two-part model. Initial uncertainties in predicting longwave radiation using the two-part model resulted from vertical differences in measured air temperature. Above-canopy (35 m) air temperatures were higher than those within (10 m) and below (2 m) canopy throughout four snow seasons (December-April), demonstrating how the forest canopy can act as a cold sink for air. Lowest model root-mean-square error (RMSE) was using above-canopy air temperature. Further investigation of modeling subcanopy longwave radiation using above-canopy air temperature showed underestimations, particularly during periods of high insolation. In order to explicitly account for canopy temperatures in modeling longwave radiation, the two-part model was improved by incorporating a measured trunk view component and trunk temperature. Trunk temperature measurements were up to 25°C higher than locally measured air temperatures. This three-part model reduced the RMSE by up to 7.7 W m-2 from the two-part air temperature model at all sensor positions across the 2014 snowmelt season and performed particularly well during periods of high insolation when errors from the two-part model were up to 40 W m-2. A parameterization predicting tree trunk temperatures using measured air temperature and incoming shortwave radiation demonstrate a simple method that can be applied to provide input to the three-part model across midlatitude coniferous forests.

  7. Molecular detection and in vitro antioxidant activity of S-allyl-L-cysteine (SAC) extracted from Allium sativum.

    PubMed

    Sun, Y-E; Wang, W-D

    2016-01-01

    It is well known that Allium sativum has potential applications to clinical treatment of various cancers due to its remarkable ability in eliminating free radicals and increasing metabolism. An allyl-substituted cysteine derivative - S-allyl-L-cysteine (SAC) was separated and identified from Allium sativum. The extracted SAC was reacted with 1-pyrenemethanol to obtain pyrene-labelled SAC (Py-SAC) to give SAC fluorescence properties. Molecular detection of Py-SAC was conducted by steady-state fluorescence spectroscopy and time-resolved fluorescence method to quantitatively measure concentrations of Py-SAC solutions. The ability of removing 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radical using Py-SAC was determined through oxygen radical absorbance capacity (ORAC). Results showed the activity of Py-SAC and Vitamin C (VC) with ORAC as index, the concentrations of Py-SAC and VC were 58.43 mg/L and 5.72 mg/L respectively to scavenge DPPH, and 8.16 mg/L and 1.67 mg/L to scavenge •OH respectively. Compared with VC, the clearance rates of Py-SAC to scavenge DPPH were much higher, Py-SAC could inhibit hydroxyl radical. The ability of removing radical showed a dose-dependent relationship within the scope of the drug concentration. PMID:27453278

  8. Aneuploidy generates proteotoxic stress and DNA damage concurrently with p53-mediated post-mitotic apoptosis in SAC-impaired cells.

    PubMed

    Ohashi, Akihiro; Ohori, Momoko; Iwai, Kenichi; Nakayama, Yusuke; Nambu, Tadahiro; Morishita, Daisuke; Kawamoto, Tomohiro; Miyamoto, Maki; Hirayama, Takaharu; Okaniwa, Masanori; Banno, Hiroshi; Ishikawa, Tomoyasu; Kandori, Hitoshi; Iwata, Kentaro

    2015-01-01

    The molecular mechanism responsible that determines cell fate after mitotic slippage is unclear. Here we investigate the post-mitotic effects of different mitotic aberrations--misaligned chromosomes produced by CENP-E inhibition and monopolar spindles resulting from Eg5 inhibition. Eg5 inhibition in cells with an impaired spindle assembly checkpoint (SAC) induces polyploidy through cytokinesis failure without a strong anti-proliferative effect. In contrast, CENP-E inhibition causes p53-mediated post-mitotic apoptosis triggered by chromosome missegregation. Pharmacological studies reveal that aneuploidy caused by the CENP-E inhibitor, Compound-A, in SAC-attenuated cells causes substantial proteotoxic stress and DNA damage. Polyploidy caused by the Eg5 inhibitor does not produce this effect. Furthermore, p53-mediated post-mitotic apoptosis is accompanied by aneuploidy-associated DNA damage response and unfolded protein response activation. Because Compound-A causes p53 accumulation and antitumour activity in an SAC-impaired xenograft model, CENP-E inhibitors could be potential anticancer drugs effective against SAC-impaired tumours. PMID:26144554

  9. Geospatial Modeling of Asthma Population in Relation to Air Pollution

    NASA Technical Reports Server (NTRS)

    Kethireddy, Swatantra R.; Tchounwou, Paul B.; Young, John H.; Luvall, Jeffrey C.; Alhamdan, Mohammad

    2013-01-01

    Current observations indicate that asthma is growing every year in the United States, specific reasons for this are not well understood. This study stems from an ongoing research effort to investigate the spatio-temporal behavior of asthma and its relatedness to air pollution. The association between environmental variables such as air quality and asthma related health issues over Mississippi State are investigated using Geographic Information Systems (GIS) tools and applications. Health data concerning asthma obtained from Mississippi State Department of Health (MSDH) for 9-year period of 2003-2011, and data of air pollutant concentrations (PM2.5) collected from USEPA web resources, and are analyzed geospatially to establish the impacts of air quality on human health specifically related to asthma. Disease mapping using geospatial techniques provides valuable insights into the spatial nature, variability, and association of asthma to air pollution. Asthma patient hospitalization data of Mississippi has been analyzed and mapped using quantitative Choropleth techniques in ArcGIS. Patients have been geocoded to their respective zip codes. Potential air pollutant sources of Interstate highways, Industries, and other land use data have been integrated in common geospatial platform to understand their adverse contribution on human health. Existing hospitals and emergency clinics are being injected into analysis to further understand their proximity and easy access to patient locations. At the current level of analysis and understanding, spatial distribution of Asthma is observed in the populations of Zip code regions in gulf coast, along the interstates of south, and in counties of Northeast Mississippi. It is also found that asthma is prevalent in most of the urban population. This GIS based project would be useful to make health risk assessment and provide information support to the administrators and decision makers for establishing satellite clinics in future.

  10. Comment on "Improved ray tracing air mass numbers model"

    NASA Astrophysics Data System (ADS)

    van der Werf, Siebren Y.

    2008-01-01

    Air mass numbers have traditionally been obtained by techniques that use height as the integration variable. This introduces an inherent singularity at the horizon, and ad hoc solutions have been invented to cope with it. A survey of the possible options including integration by height, zenith angle, and horizontal distance or path length is presented. Ray tracing by path length is shown to avoid singularities both at the horizon and in the zenith. A fourth-order Runge-Kutta numerical integration scheme is presented, which treats refraction and air mass as path integrals. The latter may optionally be split out into separate contributions of the atmosphere's constituents.

  11. Conjunctival sac bacterial flora isolated prior to cataract surgery

    PubMed Central

    Suto, Chikako; Morinaga, Masahiro; Yagi, Tomoko; Tsuji, Chieko; Toshida, Hiroshi

    2012-01-01

    Objective To determine the trends of conjunctival sac bacterial flora isolated from patients prior to cataract surgery. Subjects and methods The study comprised 579 patients (579 eyes) who underwent cataract surgery. Specimens were collected by lightly rubbing the inferior palpebral conjunctival sac with a sterile cotton swab 2 weeks before surgery, and then cultured for isolation of bacteria and antimicrobial sensitivity testing. The bacterial isolates and percentage of drug-resistant isolates were compared among age groups and according to whether or not patients had diabetes mellitus, hyperlipidemia, dialysis therapy, oral steroid use, dry eye syndrome, or allergic conjunctivitis. Results The bacterial isolation rate was 39.2%. There were 191 strains of Gram-positive cocci, accounting for the majority of all isolates (67.0%), among which methicillin-sensitive coagulase-negative staphylococci was the most frequent (127 strains, 44.5%), followed by methicillin-resistant coagulase-negative staphylococci (37 strains, 12.7%). All 76 Gram-positive bacillary isolates (26.7%) were from the genus Corynebacterium. Among the 16 Gram-negative bacillary isolates (5.9%), the most frequent was Escherichia coli (1.0%). The bacterial isolation rate was higher in patients >60 years old, and was lower in patients with dry eye syndrome, patients under topical treatment for other ocular disorders, and patients with hyperlipidemia. There was no significant difference in bacterial isolation rate with respect to the presence/absence of diabetes mellitus, steroid therapy, dialysis, or a history of allergic conjunctivitis. Methicillin-resistant coagulase-negative staphylococci showed a significantly higher detection rate in diabetic patients than nondiabetic patients (20.3% versus 7.0%, P < 0.05). The percentage of all isolates resistant to levofloxacin, cefmenoxime, and tobramycin was 14.0%, 15.2%, and 17.9%, respectively, with no significant differences among these drugs. Conclusion

  12. The First Transmembrane Domain of Lipid Phosphatase SAC1 Promotes Golgi Localization

    PubMed Central

    Wang, Jinzhi; Chen, Juxing; Enns, Caroline A.; Mayinger, Peter

    2013-01-01

    The lipid phosphatase Sac1 cycles between endoplasmic reticulum and cisternal Golgi compartments. In proliferating mammalian cells, a canonical dilysine motif at the C-terminus of Sac1 is required for coatomer complex-I (COP-I)-binding and continuous retrieval to the ER. Starvation triggers accumulation of Sac1 at the Golgi. The mechanism responsible for Golgi retention of Sac1 is unknown. Here we show that the first of the two transmembrane regions in human SAC1 (TM1) functions in Golgi localization. A minimal construct containing only TM1 and the adjacent flanking sequences is concentrated at the Golgi. Transplanting TM1 into transferrin receptor 2 (TfR2) induces Golgi accumulation of this normally plasma membrane and endosomal protein, indicating that TM1 is sufficient for Golgi localization. In addition, we determined that the N-terminal cytoplasmic domain of SAC1 also promotes Golgi localization, even when TM1 is mutated or absent. We conclude that the distribution of SAC1 within the Golgi is controlled via both passive membrane thickness-dependent partitioning of TM1 and a retention mechanism that requires the N-terminal cytoplasmic region. PMID:23936490

  13. Modeling air quality in main cities of Peninsular Malaysia by using a generalized Pareto model.

    PubMed

    Masseran, Nurulkamal; Razali, Ahmad Mahir; Ibrahim, Kamarulzaman; Latif, Mohd Talib

    2016-01-01

    The air pollution index (API) is an important figure used for measuring the quality of air in the environment. The API is determined based on the highest average value of individual indices for all the variables which include sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), ozone (O3), and suspended particulate matter (PM10) at a particular hour. API values that exceed the limit of 100 units indicate an unhealthy status for the exposed environment. This study investigates the risk of occurrences of API values greater than 100 units for eight urban areas in Peninsular Malaysia for the period of January 2004 to December 2014. An extreme value model, known as the generalized Pareto distribution (GPD), has been fitted to the API values found. Based on the fitted model, return period for describing the occurrences of API exceeding 100 in the different cities has been computed as the indicator of risk. The results obtained indicated that most of the urban areas considered have a very small risk of occurrence of the unhealthy events, except for Kuala Lumpur, Malacca, and Klang. However, among these three cities, it is found that Klang has the highest risk. Based on all the results obtained, the air quality standard in urban areas of Peninsular Malaysia falls within healthy limits to human beings. PMID:26718946

  14. A site-specific screening comparison of modeled and monitored air dispersion and deposition for perfluorooctanoate.

    PubMed

    Barton, Catherine A; Zarzecki, Charles J; Russell, Mark H

    2010-04-01

    This work assessed the usefulness of a current air quality model (American Meteorological Society/Environmental Protection Agency Regulatory Model [AERMOD]) for predicting air concentrations and deposition of perfluorooctanoate (PFO) near a manufacturing facility. Air quality models play an important role in providing information for verifying permitting conditions and for exposure assessment purposes. It is important to ensure traditional modeling approaches are applicable to perfluorinated compounds, which are known to have unusual properties. Measured field data were compared with modeling predictions to show that AERMOD adequately located the maximum air concentration in the study area, provided representative or conservative air concentration estimates, and demonstrated bias and scatter not significantly different than that reported for other compounds. Surface soil/grass concentrations resulting from modeled deposition flux also showed acceptable bias and scatter compared with measured concentrations of PFO in soil/grass samples. Errors in predictions of air concentrations or deposition may be best explained by meteorological input uncertainty and conservatism in the PRIME algorithm used to account for building downwash. In general, AERMOD was found to be a useful screening tool for modeling the dispersion and deposition of PFO in air near a manufacturing facility. PMID:20437775

  15. The effect of pigeon yolk sac fluid on the growth behavior of calcium carbonate crystals.

    PubMed

    Song, Juan; Cheng, Haixia; Shen, Xinyu; Tong, Hua

    2015-03-01

    Previous experiments have proved that thermodynamically unstable calcium carbonate vaterite can exist for long periods in the yolk sac of a pigeon embryo. The aim of this article was to demonstrate the effect of in vitro mineralization of yolk sac fluid on calcium carbonate by direct precipitation. Experiments were conducted using pigeon yolk sac fluid and using lecithin extracted from pigeon yolk sac fluid as a control to investigate the regulating effects of the organic components in the embryo on the formation of the calcium carbonate precipitate. Multiple characterization methods were employed to study the various morphological patterns, sizes, crystal growth, and crystal phase transformations of the calcium carbonate precipitates as regulated by the yolk sac fluid extracted at different stages of incubation. The experimental results demonstrate that as the incubation proceeds towards the later stages, the composition and environmental features of the yolk sac fluid become more favorable for the formation of relatively unstable calcium carbonate phases with high energies of the vaterite state. The experiments conducted with extracted lecithin as the template for crystal growth yielded similar results. A large amount of organic molecules with polar functional groups carried by the yolk sac fluid have strong effects and can both initially induce the crystallization and regulate the aggregation of calcium carbonate. Furthermore, this regulation process is found to be closely related to the lecithin contained in yolk sac fluid. These observations confirm the changes in yolk sac fluid composition during incubation have significant effects on the production of vaterite, which implicates the calcium transport during embryo growth. PMID:25681477

  16. MODELING THE IMPACT OF AIR POLLUTION ON GLOBAL CLIMATE CHANGE

    EPA Science Inventory

    Tropospheric ozone (O3) and aerosols have major effects on climate and are the two air pollutants of most concern in the developed world. O3 is a major greenhouse gas (GHG) and light-absorbing aerosols such as black carbon (BC) also contribute to global warm...

  17. VALIDATION OF THE EKMA MODEL USING HISTORICAL AIR QUALITY DATA

    EPA Science Inventory

    Historical air quality and emissions trend data for the Los Angeles region were used to check the EKMA isopleth method of relating ozone concentration changes to precursor emission changes. Trends in ozone and ozone precursors (NMHC and NOx) were estimated from data for the perio...

  18. Linking Air Quality and Watershed Models for Environmental Assessments: Analysis of the Effects of Model-Specific Precipitation Estimates on Calculated Water Flux

    EPA Science Inventory

    Directly linking air quality and watershed models could provide an effective method for estimating spatially-explicit inputs of atmospheric contaminants to watershed biogeochemical models. However, to adequately link air and watershed models for wet deposition estimates, each mod...

  19. Primary yolk sac tumor of the gluteus: a case report and literature review.

    PubMed

    Li, Bo; Jiang, Qianqian; Zhang, Shitai; Zhou, Yang; Zhang, Qing-Fu; OuYang, Ling

    2016-01-01

    Yolk sac tumor (YST) is a common malignant primitive germ cell tumor that often exhibits differentiation into endodermal structures. They most commonly occur in childhood and adolescence and are rare after the age of 40 years. Derived from the yolk sac during the embryonic period, YSTs can occur in the gonads and germ cells because the tumor cells migrate from the yolk sac toward the gonads. Here, we present a rare case of primary gluteus YST in a 3-year-old girl. She received BEP chemotherapy (bleomycin + etoposide + cisplatin) after surgical resection. There was no evidence of recurrence 7 months after primary treatment. PMID:27536133

  20. Primary yolk sac tumor of the gluteus: a case report and literature review

    PubMed Central

    Li, Bo; Jiang, Qianqian; Zhang, Shitai; Zhou, Yang; Zhang, Qing-Fu; OuYang, Ling

    2016-01-01

    Yolk sac tumor (YST) is a common malignant primitive germ cell tumor that often exhibits differentiation into endodermal structures. They most commonly occur in childhood and adolescence and are rare after the age of 40 years. Derived from the yolk sac during the embryonic period, YSTs can occur in the gonads and germ cells because the tumor cells migrate from the yolk sac toward the gonads. Here, we present a rare case of primary gluteus YST in a 3-year-old girl. She received BEP chemotherapy (bleomycin + etoposide + cisplatin) after surgical resection. There was no evidence of recurrence 7 months after primary treatment. PMID:27536133

  1. Surveillance Analysis Computer System (SACS): Software requirements specification (SRS). Revision 2

    SciTech Connect

    Glasscock, J.A.

    1995-03-08

    This document is the primary document establishing requirements for the Surveillance Analysis Computer System (SACS) database, an Impact Level 3Q system. SACS stores information on tank temperatures, surface levels, and interstitial liquid levels. This information is retrieved by the customer through a PC-based interface and is then available to a number of other software tools. The software requirements specification (SRS) describes the system requirements for the SACS Project, and follows the Standard Engineering Practices (WHC-CM-6-1), Software Practices (WHC-CM-3-10) and Quality Assurance (WHC-CM-4-2, QR 19.0) policies.

  2. Micro air vehicle motion tracking and aerodynamic modeling

    NASA Astrophysics Data System (ADS)

    Uhlig, Daniel V.

    Aerodynamic performance of small-scale fixed-wing flight is not well understood, and flight data are needed to gain a better understanding of the aerodynamics of micro air vehicles (MAVs) flying at Reynolds numbers between 10,000 and 30,000. Experimental studies have shown the aerodynamic effects of low Reynolds number flow on wings and airfoils, but the amount of work that has been conducted is not extensive and mostly limited to tests in wind and water tunnels. In addition to wind and water tunnel testing, flight characteristics of aircraft can be gathered through flight testing. The small size and low weight of MAVs prevent the use of conventional on-board instrumentation systems, but motion tracking systems that use off-board triangulation can capture flight trajectories (position and attitude) of MAVs with minimal onboard instrumentation. Because captured motion trajectories include minute noise that depends on the aircraft size, the trajectory results were verified in this work using repeatability tests. From the captured glide trajectories, the aerodynamic characteristics of five unpowered aircraft were determined. Test results for the five MAVs showed the forces and moments acting on the aircraft throughout the test flights. In addition, the airspeed, angle of attack, and sideslip angle were also determined from the trajectories. Results for low angles of attack (less than approximately 20 deg) showed the lift, drag, and moment coefficients during nominal gliding flight. For the lift curve, the results showed a linear curve until stall that was generally less than finite wing predictions. The drag curve was well described by a polar. The moment coefficients during the gliding flights were used to determine longitudinal and lateral stability derivatives. The neutral point, weather-vane stability and the dihedral effect showed some variation with different trim speeds (different angles of attack). In the gliding flights, the aerodynamic characteristics

  3. Local-scale variability in regional air quality modelling: Implications on temporal distribution of emissions

    NASA Astrophysics Data System (ADS)

    Bergemann, Christoph; Meyer-Arnek, Julian

    2010-05-01

    In the field of air quality modeling, the comparison of model results with ground-based measurements is essential for validation purposes. The usefulness of these measurements for regional air quality modeling is however limited by the extremely local nature of station measurements. This is especially true for short-lived species like NO2, which is of high importance for public health. Nevertheless station observations are the only continuously available source of data on ground level air quality besides model results. Uncertainties in air quality models mainly arise from the lack of precise knowledge of the spatial and temporal distribution of pollutants. Most emission inventories provide aggregated values for long periods of time and yield no information on the temporal (diurnal) distribution of emissions. By applying ground-based measurements, our study yields optimized diurnal variations of anthropogenic emissions for different urban regions of Germany. In the course of the study the variability of air pollution on the urban scale (the model's subgrid scale) is also addressed. The study applies the newly established POLYPHEMUS/DLR model at a moderate resolution. In the framework of the GMES project "PROMOTE", this model system operationally analyzes and forecasts air quality in Bavaria, Germany. The model employs the latest version of the EMEP emission register in combination with high-resolution emission data provided by Bavarian authorities.

  4. Observational Opportunities with the CUBIC Experiment on SAC-B

    NASA Astrophysics Data System (ADS)

    Nousek, J. A.; Burrows, D. N.; Moskalenko, E. I.

    1996-12-01

    The CUBIC experiment on the SAC-B satellite is now collecting data on the Diffuse X-Ray Background and bright point sources over an energy range of 0.2 - 10 keV with energy resolution ranging from 40 - 160 eV over this bandpass. CUBIC observations, several of which are discussed in other posters at this session, provide 2 - 4 high quality spectra per week. CUBIC was built as a PI-class instrument, and at present data rights are divided between Penn State (90%) and Leicester University (10%). We present the observing plan for the first six months of CUBIC operations. We are currently collaborating with several astronomers who are not on the CUBIC team but have expressed interest in one or more of these targets. We invite additional collaborations on targets which are not currently assigned to a specific observer. In order to make these data more accessible to the astronomical community, we are proposing to institute a modest Guest Investigator program. If supported by ADP funding, this would permit observing requests from outside astronomers and would place a large fraction of the CUBIC data in a public archive at the HEASARC.

  5. ANALYSIS OF AIR QUALITY DATA NEAR ROADWAYS USING A DISPERSION MODEL

    EPA Science Inventory

    A dispersion model was used to analyze measurements made during a field study conducted by the U.S. EPA in July and August 2006, to estimate the impact of highway emissions on air quality at distances of tens of meters from an eight-lane highway. The air quality measurements con...

  6. 40 CFR Appendix W to Part 51 - Guideline on Air Quality Models

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... clear from the needs expressed by the States and EPA Regional Offices, by many industries and trade... 51—Guideline on Air Quality Models Preface a. Industry and control agencies have long expressed a....0Bibliography 12.0References Appendix A to Appendix W of 40 CFR Part 51—Summaries of Preferred Air...

  7. 40 CFR Appendix W to Part 51 - Guideline on Air Quality Models

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... clear from the needs expressed by the States and EPA Regional Offices, by many industries and trade... 51—Guideline on Air Quality Models Preface a. Industry and control agencies have long expressed a....0Bibliography 12.0References Appendix A to Appendix W of 40 CFR Part 51—Summaries of Preferred Air...

  8. 40 CFR Appendix W to Part 51 - Guideline on Air Quality Models

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... clear from the needs expressed by the States and EPA Regional Offices, by many industries and trade... 51—Guideline on Air Quality Models Preface a. Industry and control agencies have long expressed a....0Bibliography 12.0References Appendix A to Appendix W of 40 CFR Part 51—Summaries of Preferred Air...

  9. 40 CFR Appendix W to Part 51 - Guideline on Air Quality Models

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... clear from the needs expressed by the States and EPA Regional Offices, by many industries and trade... 51—Guideline on Air Quality Models Preface a. Industry and control agencies have long expressed a....0Bibliography 12.0References Appendix A to Appendix W of 40 CFR Part 51—Summaries of Preferred Air...

  10. FUNDAMENTAL MASS TRANSFER MODEL FOR INDOOR AIR EMISSION FROM SURFACE COATINGS

    EPA Science Inventory

    The paper, discusses the work of researchers at the U.S. EPA's Air and Energy Engineering Research Laboratory (Indoor Air Branch) who are evaluating mass transfer models based on fundamental principles to determine their effectiveness in predicting emissions from indoor architect...

  11. FINAL EVALUATION OF URBAN-SCALE PHOTOCHEMICAL AIR QUALITY SIMULATION MODELS

    EPA Science Inventory

    The research study discussed here is a continuation of previous work whose goal was to determine the accuracy of several selected urban photochemical air quality simulation models using data from the Regional Air Pollution Study in St. Louis. This work reports on the testing of t...

  12. BUILDING AN ENVIRONMENTAL TRAINING MODEL, MAPCORE - A TRAINING EXERCISE FOR AIR POLLUTION CONTROL.

    ERIC Educational Resources Information Center

    SIEGEL, GILBERT B.; SULLIVAN, DONALD M.

    NEW AIR POLLUTION CONTROL PROGRAMS HAVE RESULTED FROM THE "CLEAN AIR ACT" PASSED BY CONGRESS IN DECEMBER 1963. THE UNIVERSITY OF SOUTHERN CALIFORNIA DEVELOPED A TRAINING MODEL, CALLED "MAPCORE," WHICH PROVIDES A SEMISTRUCTURED ENVIRONMENT, IS PRACTICAL AND REALISTIC IN APPROACH, PROVIDES OPPORTUNITY FOR HIGH CREATIVITY, PROVIDES AN…

  13. (AMD) ANALYSIS OF AIR QUALITY DATA NEAR ROADWAYS USING A DISPERSION MODEL

    EPA Science Inventory

    We used a dispersion model to analyze measurements made during a field study conducted by the U.S. EPA in July-August 2006, to estimate the impact of traffic emissions on air quality at distances of tens of meters from an 8 lane highway located in Raleigh, North Carolina. The air...

  14. Hydrogen cyanide in ambient air near a gold heap leach field: Measured vs. modeled concentrations

    NASA Astrophysics Data System (ADS)

    Orloff, Kenneth G.; Kaplan, Brian; Kowalski, Peter

    To extract gold from low-grade ores, a solution of sodium cyanide is trickled over pads of crushed ore. During this operation, small quantities of hydrogen cyanide gas may escape to the ambient air. To assess these emissions, we collected air samples at monitoring stations located on opposite sides of a gold heap leach field at distances ranging from 1100 to 1500 ft from the center of the field. Hydrogen cyanide was detected in 6 of 18 ambient air samples at concentrations ranging from 0.26 to 1.86 parts per billion (ppb). Ambient air samples collected at residential properties located within 2600 ft of the leach field did not contain detectable concentrations of cyanide (detection level of 0.2 ppb). We used site-specific data and two steady-state air dispersion models, ISCST3 and AERMOD, to predict ambient air concentrations of cyanide at the sampling points. The ISCST3 model over-predicted the measured 8-h concentrations of hydrogen cyanide by a factor of 2.4, on average, and the AERMOD model under-predicted the air concentrations of hydrogen cyanide by a factor of 0.76, on average. The major sources of uncertainty in the model predictions were the complex terrain of the area and the uncertainty in the emission rates of cyanide from the leach field. The measured and predicted concentrations of cyanide in the air samples were not at levels that would pose a human health hazard for acute or chronic exposures.

  15. AIR QUALITY MODELING AT COARSE-TO-FINE SCALES IN URBAN AREAS

    EPA Science Inventory

    Urban air toxics control strategies are moving towards a community based modeling approach, with an emphasis on assessing those areas that experience high air toxic concentration levels, the so-called "hot spots". This approach will require information that accurately maps and...

  16. Path Forward for the Air Quality Model Evaluation International Initiative (AQMEII)

    EPA Science Inventory

    This article lays out the objectives for Phase 2 of the Air Quality Model Evaluation International Initiative (AQMEII). The inhalation of air pollutants such as ozone and fine particles has been linked to adverse impacts on human health, and the atmospheric deposition of pollutan...

  17. REGIONAL AIR QUALITY AND ACID DEPOSITION MODELING AND THE ROLE FOR VISUALIZATION

    EPA Science Inventory

    The U.S Environmental Protection Agency (EPA) uses air quality and deposition models to advance the scientific understanding of basic physical and chemical processes related to air pollution, and to assess the effectiveness of alternative emissions control strategies. his paper p...

  18. THE MAXIMUM LIKELIHOOD APPROACH TO PROBABILISTIC MODELING OF AIR QUALITY DATA

    EPA Science Inventory

    Software using maximum likelihood estimation to fit six probabilistic models is discussed. The software is designed as a tool for the air pollution researcher to determine what assumptions are valid in the statistical analysis of air pollution data for the purpose of standard set...

  19. Implementation of a WRF-CMAQ Air Quality Modeling System in Bogotá, Colombia

    NASA Astrophysics Data System (ADS)

    Nedbor-Gross, R.; Henderson, B. H.; Pachon, J. E.; Davis, J. R.; Baublitz, C. B.; Rincón, A.

    2014-12-01

    Due to a continuous economic growth Bogotá, Colombia has experienced air pollution issues in recent years. The local environmental authority has implemented several strategies to curb air pollution that have resulted in the decrease of PM10 concentrations since 2010. However, more activities are necessary in order to meet international air quality standards in the city. The University of Florida Air Quality and Climate group is collaborating with the Universidad de La Salle to prioritize regulatory strategies for Bogotá using air pollution simulations. To simulate pollution, we developed a modeling platform that combines the Weather Research and Forecasting Model (WRF), local emissions, and the Community Multi-scale Air Quality model (CMAQ). This platform is the first of its kind to be implemented in the megacity of Bogota, Colombia. The presentation will discuss development and evaluation of the air quality modeling system, highlight initial results characterizing photochemical conditions in Bogotá, and characterize air pollution under proposed regulatory strategies. The WRF model has been configured and applied to Bogotá, which resides in a tropical climate with complex mountainous topography. Developing the configuration included incorporation of local topography and land-use data, a physics sensitivity analysis, review, and systematic evaluation. The threshold, however, was set based on synthesis of model performance under less mountainous conditions. We will evaluate the impact that differences in autocorrelation contribute to the non-ideal performance. Air pollution predictions are currently under way. CMAQ has been configured with WRF meteorology, global boundary conditions from GEOS-Chem, and a locally produced emission inventory. Preliminary results from simulations show promising performance of CMAQ in Bogota. Anticipated results include a systematic performance evaluation of ozone and PM10, characterization of photochemical sensitivity, and air

  20. The Oak Ridge Heat Pump Models: I. A Steady-State Computer Design Model of Air-to-Air Heat Pumps

    SciTech Connect

    Fischer, S.K. Rice, C.K.

    1999-12-10

    The ORNL Heat Pump Design Model is a FORTRAN-IV computer program to predict the steady-state performance of conventional, vapor compression, electrically-driven, air-to-air heat pumps in both heating and cooling modes. This model is intended to serve as an analytical design tool for use by heat pump manufacturers, consulting engineers, research institutions, and universities in studies directed toward the improvement of heat pump performance. The Heat Pump Design Model allows the user to specify: system operating conditions, compressor characteristics, refrigerant flow control devices, fin-and-tube heat exchanger parameters, fan and indoor duct characteristics, and any of ten refrigerants. The model will compute: system capacity and COP (or EER), compressor and fan motor power consumptions, coil outlet air dry- and wet-bulb temperatures, air- and refrigerant-side pressure drops, a summary of the refrigerant-side states throughout the cycle, and overall compressor efficiencies and heat exchanger effectiveness. This report provides thorough documentation of how to use and/or modify the model. This is a revision of an earlier report containing miscellaneous corrections and information on availability and distribution of the model--including an interactive version.

  1. AIR DISPERSION MODELING AT THE WASTE ISOLATION PILOT PLANT

    SciTech Connect

    Rucker, D.F.

    2000-08-01

    One concern at the Waste Isolation Pilot Plant (WIPP) is the amount of alpha-emitting radionuclides or hazardous chemicals that can become airborne at the facility and reach the Exclusive Use Area boundary as the result of a release from the Waste Handling Building (WHB) or from the underground during waste emplacement operations. The WIPP Safety Analysis Report (SAR), WIPP RCRA Permit, and WIPP Emergency Preparedness Hazards Assessments include air dispersion calculations to address this issue. Meteorological conditions at the WIPP facility will dictate direction, speed, and dilution of a contaminant plume of respirable material due to chronic releases or during an accident. Due to the paucity of meteorological information at the WIPP site prior to September 1996, the Department of Energy (DOE) reports had to rely largely on unqualified climatic data from the site and neighboring Carlsbad, which is situated approximately 40 km (26 miles) to the west of the site. This report examines the validity of the DOE air dispersion calculations using new meteorological data measured and collected at the WIPP site since September 1996. The air dispersion calculations in this report include both chronic and acute releases. Chronic release calculations were conducted with the EPA-approved code, CAP88PC and the calculations showed that in order for a violation of 40 CFR61 (NESHAPS) to occur, approximately 15 mCi/yr of 239Pu would have to be released from the exhaust stack or from the WHB. This is an extremely high value. Hence, it is unlikely that NESHAPS would be violated. A site-specific air dispersion coefficient was evaluated for comparison with that used in acute dose calculations. The calculations presented in Section 3.2 and 3.3 show that one could expect a slightly less dispersive plume (larger air dispersion coefficient) given greater confidence in the meteorological data, i.e. 95% worst case meteorological conditions. Calculations show that dispersion will decrease

  2. Computational fluid dynamics model of avian tracheal temperature control as a model for extant and extinct animals.

    PubMed

    Sverdlova, N S; Arkali, F; Witzel, U; Perry, S F

    2013-10-01

    Respiratory evaporative cooling is an important mechanism of temperature control in bird. A computational simulation of the breathing cycle, heat and water loss in anatomical avian trachea/air sac model has not previously been conducted. We report a first attempt to simulate a breathing cycle in a three-dimensional model of avian trachea and air sacs (domestic fowl) using transient computational fluid dynamics. The airflow in the trachea of the model is evoked by changing the volume of the air sacs based on the measured tidal volume and inspiratory/expiratory times for the domestic fowl. We compare flow parameters and heat transfer results with in vivo data and with our previously reported results for a two-dimensional model. The total respiratory heat loss corresponds to about 13-19% of the starvation metabolic rate of domestic fowl. The present study can lend insight into a possible thermoregulatory function in species with long necks and/or a very long trachea, as found in swans and birds of paradise. Assuming the structure of the sauropod dinosaur respiratory system was close to avian, the simulation of the respiratory temperature control (using convective and evaporative cooling) in the extensively experimentally studied domestic fowl may also help in making simulations of respiratory heat control in these extinct animals. PMID:23797184

  3. Use of air quality modeling results as exposure estimates in health studies

    NASA Astrophysics Data System (ADS)

    Holmes, H. A.; Ivey, C.; Friberg, M.; Zhai, X.; Balachandran, S.; Hu, Y.; Russell, A. G.; Mulholland, J. A.; Tolbert, P. E.; Sarnat, S. E.

    2013-12-01

    Air pollutant measurements from regulatory monitoring networks are commonly utilized in combination with spatial averaging techniques to develop air quality metrics for use in epidemiologic studies. While these data provide useful indicators for air pollution in a region, their temporal and spatial information are limited. The growing availability of spatially resolved health data sets (i.e., resident and county level patient records) provides an opportunity to develop and apply corresponding spatially resolved air quality metrics as enhanced exposure estimates when investigating the impact of air pollution on health outcomes. Additionally, the measured species concentrations from monitoring networks cannot directly identify specific emission sources or characterize pollutant mixtures. However, these observations in combination with chemical transport models (e.g., CMAQ) and source apportionment methods (e.g., CMB and PMF) can be used to characterize pollutant mixtures, sources and species impacting both individual locations and wider areas. Extensive analysis using a combination of air quality modeling approaches and observations may be beneficial for health studies whose goal is to assess the health impacts of pollutant mixtures, in both spatially resolved and time-series health analyses. As part of the Southeastern Center for Air Pollution and Epidemiology (SCAPE) unique methods have been developed to effectively analyze air pollution and air quality modeling data to better understand how emission sources combine to impact air quality and to provide air quality metrics for use in health assessments. This presentation will discuss the air quality modeling techniques being utilized in SCAPE investigations that are aimed at providing enhanced exposure metrics for use in spatially resolved (state of Georgia) and time-series epidemiologic analyses (St. Louis and Atlanta). To generate spatially resolved daily air quality estimates of species concentrations and source

  4. Improved Products for Assimilation and Model Validation from the Atmospheric Infrared Sounder (AIRS) on Aqua

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.

    2008-01-01

    The Atmospheric Infrared Sounder (AIRS) on the EOS Aqua Spacecraft was launched on May 4, 2002. AIRS acquires hyperspectral infrared radiances in the 3.7-15.4 micrometer spectral region with spectral resolution of better than 1200. Key channels from the AIRS Level 1B calibrated radiance product are currently assimilated into operational weather forecasts at NCEP and other international agencies. Additional Level 2 products for assimilation include the AIRS cloud cleared radiances and the geophysical retrieved temperature and water vapor profiles. The AIRS products are also used to validate climate model vertical and horizontal biases and transport of water vapor and key trace gases including Carbon Dioxide and Ozone. The wide variety of products available from the AIRS make it well suited to study processes affecting the interaction of these products.

  5. Regional/Urban Air Quality Modeling Assessment over China Using the Models-3/CMAQ System

    NASA Astrophysics Data System (ADS)

    Fu, J. S.; Jang, C. C.; Streets, D. G.; Li, Z.; Wang, L.; Zhang, Q.; Woo, J.; Wang, B.

    2004-12-01

    China is the world's most populous country with a fast growing economy that surges in energy comsumption. It has become the second largest energy consumer after the United States although the per capita level is much lower than those found in developed or developing countries. Air pollution has become one of the most important problems of megacities such as Beijing and Shanghai and has serious impacts on public health, causes urban and regional haze. The Models-3/CMAQ modeling application that has been conducted to simulate multi-pollutants in China is presented. The modeling domains cover East Asia (36-kmx36-km) including Japan, South Korea, Korea DPR, Indonesia, Thailand, India and Mongolia, East China (12-kmx12-km) and Beijing/Tianjing, Shanghai (4-kmx4-km). For this study, the Asian emission inventory based on the emission estimates of the year 2000 that supported the NASA TRACE-P program is used. However, the TRACE-P emission inventory was developed for a different purpose such as global modeling. TRACE-P emission inventory may not be practical in urban area. There is no China national emission inventory available. Therefore, TRACE-P emission inventory is used on the East Asia and East China domains. The 8 districts of Beijing and Shanghai local emissions inventory are used to replace TRACE-P in 4-km domains. The meteorological data for the Models-3/CMAQ run are extracted from MM5. The model simulation is performed during the period January 1-20 and July 1-20, 2001 that presented the winter and summer time for China areas. The preliminary model results are shown O3 concentrations are in the range of 80 -120 ppb in the urban area. Lower urban O3 concentrations are shown in Beijing areas, possibly due to underestimation of urban man-made VOC emissions in the TRACE-P inventory and local inventory. High PM2.5 (70ug/m3 in summer and 150ug/m3 in winter) were simulated over metropolitan & downwind areas with significant secondary constituents. More comprehensive

  6. Characterization of ambient air pollution for stochastic health models

    SciTech Connect

    Batterman, S.A.

    1981-08-01

    This research is an analysis of various measures of ambient air pollution useful in cross-sectional epidemiological investigations and rick assessments. The Chestnut Ridge area health effects investigation, which includes a cross-sectional study of respiratory symptoms in young children, is used as a case study. Four large coal-fired electric generating power plants are the dominant pollution sources in this area of western Pennsylvania. The air pollution data base includes four years of sulfur dioxide and five years of total suspended particulate concentrations at seventeen monitors. Some 70 different characterizations of pollution are constructed and tested. These include pollutant concentrations at various percentiles and averaging times, exceedence measures which show the amount of time a specified threshold concentration is exceeded, and several dosage measures which transform non-linear dose-response relationships onto pollutant concentrations.

  7. Indoor Air Quality (IAQ) model for windows, risk (version 1.0) (for microcomputers). Model-Simulation

    SciTech Connect

    1995-07-01

    A computer model, called RISK, for calculating individual exposure to indoor air pollutants from sources is presented. The model is designed to calculate exposure due to individual, as opposed to population, activities patterns and source use. The model also provides the capability to calculate risk due to the calculated exposure. RISK is the third in a series of indoor air quality (IAQ) models developed by the Indoor Environment Management Branch of U.S. EPA`s National Risk Management Research Laboratory. The model uses data on source emissions, room-to-room air flows, air exchange with the outdoors, and indoor sinks to predict concentration-time profiles for all rooms. The concentration-time profiles are then combined with individual activity patterns to estimate exposure. Risk is calculated using a risk calculation using a risk calculation framework developed by Naugle and Pierson (1991). The model allows analysis of the effects of air cleaners located in either/or both the central air circulating system or individual rooms on IAQ and exposure. The model allows simulation of a wide range of sources including long term steady state sources, on/off sources, and decaying sources. Several sources are allowed in each room. The model allows the analysis of the effects of sinks and sink re-emissions on IAQ. The results of test house experiments are compared with model predictions. The agreement between predicted concentration-time profiles and the test house data is good.

  8. Constant Entropy Properties for an Approximate Model of Equilibrium Air

    NASA Technical Reports Server (NTRS)

    Hansen, C. Frederick; Hodge, Marion E.

    1961-01-01

    Approximate analytic solutions for properties of equilibrium air up to 15,000 K have been programmed for machine computation. Temperature, compressibility, enthalpy, specific heats, and speed of sound are tabulated as constant entropy functions of temperature. The reciprocal of acoustic impedance and its integral with respect to pressure are also given for the purpose of evaluating the Riemann constants for one-dimensional, isentropic flow.

  9. NEIGHBORHOOD SCALE MODELING OF PM 2.5 AND AIR TOXICS CONCENTRATION DISTRIBUTIONS TO DRIVE HUMAN EXPOSURE MODELS

    EPA Science Inventory

    Air quality (AQ) simulation models provide a basis for implementing the National Ambient Air Quality Standards (NAAQS) and are a tool for performing risk-based assessments and for developing environmental management strategies. Fine particulate matter (PM 2.5), its constituent...

  10. Modelling and simulation of air-conditioning cycles

    NASA Astrophysics Data System (ADS)

    Rais, Sandi; Kadono, Yoshinori; Murayama, Katsunori; Minakuchi, Kazuya; Takeuchi, Hisae; Hasegawa, Tatsuya

    2016-05-01

    The heat-pump cycle for air conditioning was investigated both numerically and experimentally by evaluating the coefficient of performance (COP) under Japanese Industrial Standard (JIS B 8619:1999) and ANSI/AHRI standard 750-2007 operating conditions. We used two expansion valve coefficients Cv_{(\\varphi )} = 0.12 for standard operating conditions (Case 1) approaching 1.3 MPa at high pressure and 0.2 MPa at low pressure, and Cv_{(\\varphi )} = 0.06 namely poor operating conditions (Case 2). To improve the performance of the air conditioner, we compared the performance for two outside air temperatures, 35 and 40 °C (Case 3). The simulation and experiment comparison resulted the decreasing of the COP for standard operating condition is equal to 14 %, from 3.47 to 2.95 and a decrease of the cooling capacity is equal to 18 %, from 309.72 to 253.53 W. This result was also occurred in poor operating condition which the COP was superior at 35 °C temperature.

  11. MODELS-3 COMMUNITY MULTISCALE AIR QUALITY (CMAQ) MODEL AEROSOL COMPONENT 2. MODEL EVALUATION

    EPA Science Inventory

    Ambient air concentrations of particulate matter (atmospheric suspensions of solid of liquid materials, i.e., aerosols) continue to be a major concern for the U.S. Environmental Protection Agency (EPA). High particulate matter (PM) concentrations are associated not only with adv...

  12. MODELING AIR TOXICS AND PM 2.5 CONCENTRATION FIELDS AS A MEANS FOR FACILITATING HUMAN EXPOSURE ASSESSMENTS

    EPA Science Inventory

    The capability of the US EPA Models-3/Community Multiscale Air Quality (CMAQ) modeling system is extended to provide gridded ambient air quality concentration fields at fine scales. These fields will drive human exposure to air toxics and fine particulate matter (PM2.5) models...

  13. Endolymphatic sac tumor with von Hippel-Lindau disease: report of a case with atypical pathology of endolymphatic sac tumor.

    PubMed

    Yang, Xiang; Liu, Xue-Song; Fang, Yuan; Zhang, Xiu-Hui; Zhang, Yue-Kang

    2014-01-01

    The authors described a case of a patient with co-existing endolymphatic sac tumor (ELST) and hemangioblastoma in the posterior cranial fossa, which belonged to a subtype of Von Hippel-Lindau (VHL) disease confirmed by the test of VHL-gene. The signs in this 42-year-old female included intermittent headache and dizziness. Imaging revealed a giant mass in the right cerebellopontine angle (CPA) region and another lesion in the left cerebellar hemisphere. The results of biopsy after two operations confirmed the diagnosis respectively. Both of the tumors were resected totally. Nevertheless, we had to confess the misdiagnosis as vascular tumor instead of ELST at the initial diagnosis because of the rarity of ELST associated with atypical histological characteristics. The purposes we reported this case were to describe the atypical pathological feature of ELST and the mutation of germline VHL not mentioned in previously literature, furthermore, to foster understanding of ELSTs with the avoidance of the similar misdiagnosis as far as possible in future. PMID:24966975

  14. COMIS -- an international multizone air-flow and contaminant transport model

    SciTech Connect

    Feustel, H.E.

    1998-08-01

    A number of interzonal models have been developed to calculate air flows and pollutant transport mechanisms in both single and multizone buildings. A recent development in multizone air-flow modeling, the COMIS model, has a number of capabilities that go beyond previous models, much as COMIS can be used as either a stand-alone air-flow model with input and output features or as an infiltration module for thermal building simulation programs. COMIS was designed during a 12 month workshop at Lawrence Berkeley National Laboratory (LBNL) in 1988-89. In 1990, the Executive Committee of the International Energy Agency`s Energy Conservation in Buildings and Community Systems program created a working group on multizone air-flow modeling, which continued work on COMIS. The group`s objectives were to study physical phenomena causing air flow and pollutant (e.g., moisture) transport in multizone buildings, develop numerical modules to be integrated in the previously designed multizone air flow modeling system, and evaluate the computer code. The working group supported by nine nations, officially finished in late 1997 with the release of IISiBat/COMIS 3.0, which contains the documented simulation program COMIS, the user interface IISiBat, and reports describing the evaluation exercise.

  15. Histological and histochemical analyses of the cuttlebone sac of the golden cuttlefish Sepia esculenta

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaodong; Xiao, Shu; Wang, Zhaoping; Wang, Rucai

    2007-10-01

    The secretion function of mantle is closely related to shell formation in some bivalves and gastropods. Up to now, few researches have been reported for cuttlebone formation in the class Cephalopoda. In this study, the structure and secretion function of cuttlebone sac of the golden cuttlefish Sepia esculenta was analyzed using the histological and histochemical methods. The results showed that high and columnar cells located in sac epithelium, and flat cells existed near the base membrane. A lot of fibroblasts were found in the lateral mantle collective tissue. Some mucus, mucopolysaccharide and alkaline phosphatase (ALP) were found in the sac. The ultrastructural characteristics of Quasi-connective-tissue-calcium cells (QCTCC) were observed using a transmission electron microscope (TEM). The relationship between cuttlebone sac secretion function and shell formation was discussed.

  16. Extraovarian pelvic yolk sac tumor: case report and review of published work.

    PubMed

    Pasternack, Tanya; Shaco-Levy, Ruthy; Wiznitzer, Arnon; Piura, Benjamin

    2008-08-01

    Extraovarian pelvic yolk sac tumors are rare, with only nine cases documented previously in the published work. We report a case of extraovarian pelvic yolk sac tumor occurring synchronously with breast carcinoma. The patient underwent resection of the pelvic tumor and hepatic implant, omentectomy and breast lumpectomy with sentinel axillary lymph node biopsy. The uterus and bilateral adnexa were preserved. Postoperative adjuvant therapy for the yolk sac tumor included three cycles of the bleomycin, etoposide and cisplatin (BEP) regimen. This was followed by adjuvant chemotherapy and radiotherapy for the breast carcinoma. It is concluded that in women with extraovarian pelvic yolk sac tumor who wish to preserve childbearing capacity, fertility-saving surgery followed by fertility-preserving cisplatin-based chemotherapy is adequate and appropriate treatment. PMID:18840194

  17. Performance Evaluation of Hybrid SCM/SAC-OCDMA Transmissions System using Dynamic Cyclic Shift Code

    NASA Astrophysics Data System (ADS)

    Abd, Thanaa Hussein; Aljunid, S. A.; Fadhil, Hilal Adnan; Radhi, Ibrahim Fadhil; Saad, N. M.

    2012-12-01

    In this paper, the performance of a hybrid scheme of Subcarrier Multiplexing (SCM) technique in a Spectral Amplitude Coding (SAC) Optical Code Division Multiple Access (CDMA) transmissions system is evaluated. The hybrid system is design using new code family; we call it Dynamic Cyclic Shift (DCS) code. The DCS code design for SAC-OCDMA system to reduce the effect of Multi Access Interference due to it property of low cross-correlation (λC ≤ 1) between code words. In contrast, the SCM scheme shows the ability to increase the data rate of SAC-OCDMA system. Consequently, the hybrid SCM/SAC-OCDMA system could be one promising solution to the high-capacity access network with low cost effective, good flexibility and enhanced security, which makes an attractive candidate for next-generation broadband access network.

  18. A COMPUTER SIMULATION MODEL--FOR ANALYZING MOBILE SOURCE AIR POLLUTION CONTROL STRATEGIES

    EPA Science Inventory

    This report describes MATHAIR, a computer model that simulates the impacts of strategies for controlling mobile source air pollutants. Vehicle miles traveled (VMT) for different modes of ground transportation are predicted by a transportation module. Given VMT predictions, an inv...

  19. POPULATION-BASED EXPOSURE MODELING FOR AIR POLLUTANTS AT EPA'S NATIONAL EXPOSURE RESEARCH LABORATORY

    EPA Science Inventory

    The US EPA's National Exposure Research Laboratory (NERL) has been developing, applying, and evaluating population-based exposure models to improve our understanding of the variability in personal exposure to air pollutants. Estimates of population variability are needed for E...

  20. MODEL FOR MEASURING THE HEALTH IMPACT FROM CHANGING LEVELS OF AMBIENT AIR POLLUTION: MORBIDITY STUDY

    EPA Science Inventory

    The study quantitatively examines the relationship between human health and ambient air concentrations of the major pollutants in the city of Chicago. This report describes the morbidity analysis in which linear regression models have been developed to quantitatively estimate the...

  1. A FRAMEWORK FOR FINE-SCALE COMPUTATIONAL FLUID DYNAMICS AIR QUALITY MODELING AND ANALYSIS

    EPA Science Inventory

    Fine-scale Computational Fluid Dynamics (CFD) simulation of pollutant concentrations within roadway and building microenvironments is feasible using high performance computing. Unlike currently used regulatory air quality models, fine-scale CFD simulations are able to account rig...

  2. Improved Modeling of Residential Air Conditioners and Heat Pumps for Energy Calculations

    SciTech Connect

    Cutler, D.; Winkler, J.; Kruis, N.; Christensen, C.; Brendemuehl, M.

    2013-01-01

    This report presents improved air conditioner and heat pump modeling methods in the context of whole-building simulation tools, with the goal of enabling more accurate evaluation of cost effective equipment upgrade opportunities and efficiency improvements in residential buildings.

  3. APPLICATION OF BAYESIAN MONTE CARLO ANALYSIS TO A LAGRANGIAN PHOTOCHEMICAL AIR QUALITY MODEL. (R824792)

    EPA Science Inventory

    Uncertainties in ozone concentrations predicted with a Lagrangian photochemical air quality model have been estimated using Bayesian Monte Carlo (BMC) analysis. Bayesian Monte Carlo analysis provides a means of combining subjective "prior" uncertainty estimates developed ...

  4. AIR QUALITY MODELING OF HAZARDOUS POLLUTANTS: CURRENT STATUS AND FUTURE DIRECTIONS

    EPA Science Inventory

    The paper presents a review of current air toxics modeling applications and discusses possible advanced approaches. Many applications require the ability to predict hot spots from industrial sources or large roadways that are needed for community health and Environmental Justice...

  5. Modeling U.S. air pollutant emissions and controls in GCAM-USA

    EPA Science Inventory

    We describe extensions to the GCAM-USA modeling framework that facilitate exploration of the co-benefits, tradeoffs and synergies among strategies for addressing climate, air quality, and other environmental goals.

  6. DEVELOPMENT OF MESOSCALE AIR QUALITY SIMULATION MODELS. VOLUME 5. USER'S GUIDE TO THE MESOFILE POSTPROCESSING PACKAGE

    EPA Science Inventory

    The MESOscale FILE management and analysis package (MESOFILE) is a highly flexible postprocessing system designed especially for interface with the MESOPLUME, MESOPUFF, and MESOGRID regional-scale air quality models, and the MESOPAC meteorology package. The MESOFILE package is co...

  7. A fuzzy fractional chance-constrained programming model for air quality management under uncertainty

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Wen, Zhi; Xu, Ye

    2016-01-01

    A fuzzy fractional chance-constrained programming model (FFCCPM) was developed for dealing with air quality management under uncertainty. FFCCPM integrates a fractional programming model and a double-sided fuzzy chance-constrained programming model. It considers the ratio between total treated pollutant amounts and system cost in the objective function; the constraints with fuzzy variables can be satisfied under some predetermined confidence levels and reliability scenarios. The air quality management system in Fengrun district, Tangshan City, China, was used to demonstrate the applicability of the proposed method. The obtained results indicated that the proposed model was suitable in describing and providing an overview of a studied management system for decision makers, generating various cost-effective air pollution-abatement alternatives. The strategy with a balance between system economy and reliability was recommended for decision makers. The successful application of FFCCPM in Fengrun district provides a good example of real-world regional air quality management.

  8. Evolution of soot size distribution in premixed ethylene/air and ethylene/benzene/air flames: Experimental and modeling study

    SciTech Connect

    Echavarria, Carlos A.; Sarofim, Adel F.; Lighty, JoAnn S.; D'Anna, Andrea

    2011-01-15

    The effect of benzene concentration in the initial fuel on the evolution of soot size distribution in ethylene/air and ethylene/benzene/air flat flames was characterized by experimental measurements and model predictions of size and number concentration within the flames. Experimentally, a scanning mobility particle sizer was used to allow spatially resolved and online measurements of particle concentration and sizes in the nanometer-size range. The model couples a detailed kinetic scheme with a discrete-sectional approach to follow the transition from gas-phase to nascent particles and their coagulation to larger soot particles. The evolution of soot size distribution (experimental and modeled) in pure ethylene and ethylene flames doped with benzene showed a typical nucleation-sized (since particles do not actually nucleate in the classical sense particle inception is often used in place of nucleation) mode close to the burner surface, and a bimodal behavior at greater height above burner (HAB). However, major features were distinguished between the data sets. The growth of nucleation and agglomeration-sized particles was faster for ethylene/benzene/air flames, evidenced by the earlier presence of bimodality in these flames. The most significant changes in size distribution were attributed to an increase in benzene concentration in the initial fuel. However, these changes were more evident for high temperature flames. In agreement with the experimental data, the model also predicted the decrease of nucleation-sized particles in the postflame region for ethylene flames doped with benzene. This behavior was associated with the decrease of soot precursors after the main oxidation zone of the flames. (author)

  9. Low GWP Refrigerants Modelling Study for a Room Air Conditioner Having Microchannel Heat Exchangers

    SciTech Connect

    Shen, Bo; Bhandari, Mahabir S

    2016-01-01

    Microchannel heat exchangers (MHX) have found great successes in residential and commercial air conditioning applications, being compact heat exchangers, to reduce refrigerant charge and material cost. This investigation aims to extend the application of MHXs in split, room air conditioners (RAC), per fundamental heat exchanger and system modelling. For this paper, microchannel condenser and evaporator models were developed, using a segment-to-segment modelling approach. The microchannel heat exchanger models were integrated to a system design model. The system model is able to predict the performance indices, such as cooling capacity, efficiency, sensible heat ratio, etc. Using the calibrated system and heat exchanger models, we evaluated numerous low GWP (global warming potential) refrigerants. The predicted system performance indices, e.g. cooling efficiency, compressor discharge temperature, and required compressor displacement volume etc., are compared. Suitable replacements for R22 and R-410A for the room air conditioner application are recommended.

  10. A stochastic simulation model to predict future air quality in protected areas

    NASA Astrophysics Data System (ADS)

    Stavros, E.; McKenzie, D.; Larkin, N.; Strand, T.; Lamb, B. K.

    2010-12-01

    It is widely accepted in both scientific and political communities such as the Intergovernmental Panel on Climate Change (IPCC) and the Environmental Protection Agency (EPA), that climate is changing. Previous studies have shown that expected changes in climate will increase the severity of wild fire. It is necessary to assess the impact of global climate change on wildfire and consequent effects on air quality in order to meet existing air quality regulations such as the Regional Haze Rule, which regulates visibility in Class 1 or “pristine areas”, and the National Ambient Air Quality Standards (NAAQS). The challenge in such an assessment lies in not only integrating disciplines (climatology, fire ecology, air chemistry), but also in bridging knowledge across temporal (hourly to decadal) and spatial scales (local to global). In response to this challenge, we are integrating a stochastic model to simulate fire events, the Fire Scenario Builder (FSB), and the BlueSky Modeling Framework, which has a strong record of successfully linking wildfire emissions to air quality. FSB integrates fuel information and meteorological data to estimate regional fire season summary statistics such as total area burned and number of fire starts. The Blue Sky Modeling Framework then simulates total fuel consumption and smoke emissions both in local air sheds and downwind. Emissions are then fed into the Community Multiscale Air Quality (CMAQ) model through Sparse Matrix Operator Kernel Emissions Modeling System (SMOKE). The goal of this research is threefold: 1) to compare emission results from the FSB-Blue Sky integration for current vs. future decades; 2) to assess model uncertainty, by comparing model output to observations, analyzing parameter sensitivity, and verifying the theoretical basis of FSB model structure; and, 3) prepare data files for analysis on air quality.

  11. Transcriptome analysis of biomineralisation-related genes within the pearl sac: host and donor oyster contribution.

    PubMed

    McGinty, E L; Zenger, K R; Jones, D B; Jerry, D R

    2012-03-01

    Cultured pearl production is a complex biological process involving the implantation of a mantle graft from a donor pearl oyster along with a bead nucleus into the gonad of a second recipient host oyster. Therefore, pearl production potentially involves the genetic co-operation of two oyster genomes. Whilst many genes in the mantle tissue have been identified and linked to shell biomineralisation in pearl oysters, few studies have determined which of these biomineralisation genes are expressed in the pearl sac and potentially linked to pearl biomineralisation processes. It is also uncertain whether the host or donor oyster is primarily responsible for the expression of biomineralisation genes governing pearl formation, with only two shell matrix proteins previously identified as being expressed by the donor oyster in the pearl sac. To further our understanding of pearl formation, the pearl sac transcriptome of Pinctada maxima and Pinctada margaritifera was each sequenced to an equivalent 5× genome coverage with putative molluscan biomineralisation-related genes identified. Furthermore, the host and donor contribution of these expressed genes within the pearl sac were quantified using a novel approach whereby two pearl oyster species harbouring unique genomes, P. maxima or P. margaritifera, were used to produce xenografted pearl sacs. A total of 19 putative mollusc biomineralisation genes were identified and found to be expressed in the pearl sacs of P. maxima and P. margaritifera. From this list of expressed genes, species-diagnostic single nucleotide polymorphisms (SNP) were identified within seven of these genes; Linkine, N66, Perline, N44, MSI60, Calreticulin and PfCHS1. Based on the presence/absence of species diagnostic gene transcripts within xenografted pearl sacs, all seven genes were found to be expressed by the species used as the donor oyster. In one individual we also found that the host was expressing Linkine. These results convincingly show for the

  12. Deposition of anal-sac secretions by captive wolves (Canis lupus)

    USGS Publications Warehouse

    Asa, C.S.; Peterson, E.K.; Seal, U.S.; Mech, L.D.

    1985-01-01

    Deposition of anal-sac secretions by captive wolves was investigated by a labelling technique using protein-bound iodine125 and food dye. Wolves deposited secretions on some but not all scats. Adult males, especially the alpha male, deposited anal-sac secretions more frequently while defecating than did females or juveniles. Secretions sometimes also were deposited independently of defecation, suggesting a dual role in communication by these substances.

  13. Dynamic models of heating and cooling coils with one-dimensional air distribution

    NASA Astrophysics Data System (ADS)

    Wang, Zijie; Krauss, G.

    1993-06-01

    This paper presents the simulation models of the plate-fin, air-to-water (or water vapour) heat exchangers used as air-heating or air-cooling and dehumidifying coils in the HVAC (Heating, Ventilation and Air-Conditioning) systems. The thermal models are used to calculate the heat exchange between distributing air and coil pipes and outlet temperatures of air and heat or chilled fluid. The aerodynamic models are used to account for the pressure drop of the air crossing the coil tubes. They can also be used to optimize the structures of such coils. The models are based on principal laws of heat and mass conservation and fluid mechanics. They are transparent and easy to use. In our work, a coil is considered as an assembly of numbers of basic elements in which all the state variables are unique. Therefore we can conveniently simulate the coils with different structures and different geometric parameters. Two modular programs TRNSYS (Transient System Simulation) and ESACAP are utilized as supporting softwares which make the programming and simulation greatly simplified. The coil elements and a real coil were simulated. The results were compared with the data offered by the manufacturer (company SOFICA) and also with those obtained using critical methods such as NTU method, etc. and good agreement is attained.

  14. Numerical simulation of air flow in a model of lungs with mouth cavity

    NASA Astrophysics Data System (ADS)

    Elcner, Jakub; Lizal, Frantisek; Jedelsky, Jan; Jicha, Miroslav

    2012-04-01

    The air flow in a realistic geometry of human lung is simulated with computational flow dynamics approach as stationary inspiration. Geometry used for the simulation includes oral cavity, larynx, trachea and bronchial tree up to the seventh generation of branching. Unsteady RANS approach was used for the air flow simulation. Velocities corresponding to 15, 30 and 60 litres/min of flow rate were set as boundary conditions at the inlet to the model. These flow rates are frequently used as a representation of typical human activities. Character of air flow in the model for these different flow rates is discussed with respect to future investigation of particle deposition.

  15. The Use of Regulatory Air Quality Models to Develop Successful Ozone Attainment Strategies

    NASA Astrophysics Data System (ADS)

    Canty, T. P.; Salawitch, R. J.; Dickerson, R. R.; Ring, A.; Goldberg, D. L.; He, H.; Anderson, D. C.; Vinciguerra, T.

    2015-12-01

    The Environmental Protection Agency (EPA) recently proposed lowering the 8-hr ozone standard to between 65-70 ppb. Not all regions of the U.S. are in attainment of the current 75 ppb standard and it is expected that many regions currently in attainment will not meet the future, lower surface ozone standard. Ozone production is a nonlinear function of emissions, biological processes, and weather. Federal and state agencies rely on regulatory air quality models such as the Community Multi-Scale Air Quality (CMAQ) model and Comprehensive Air Quality Model with Extensions (CAMx) to test ozone precursor emission reduction strategies that will bring states into compliance with the National Ambient Air Quality Standards (NAAQS). We will describe various model scenarios that simulate how future limits on emission of ozone precursors (i.e. NOx and VOCs) from sources such as power plants and vehicles will affect air quality. These scenarios are currently being developed by states required to submit a State Implementation Plan to the EPA. Projections from these future case scenarios suggest that strategies intended to control local ozone may also bring upwind states into attainment of the new NAAQS. Ground based, aircraft, and satellite observations are used to ensure that air quality models accurately represent photochemical processes within the troposphere. We will highlight some of the improvements made to the CMAQ and CAMx model framework based on our analysis of NASA observations obtained by the OMI instrument on the Aura satellite and by the DISCOVER-AQ field campaign.

  16. Sac2/INPP5F is an inositol 4-phosphatase that functions in the endocytic pathway

    PubMed Central

    Nakatsu, Fubito; Messa, Mirko; Nández, Ramiro; Czapla, Heather; Zou, Yixiao; Strittmatter, Stephen M.

    2015-01-01

    The recruitment of inositol phosphatases to endocytic membranes mediates dephosphorylation of PI(4,5)P2, a phosphoinositide concentrated in the plasma membrane, and prevents its accumulation on endosomes. The importance of the conversion of PI(4,5)P2 to PtdIns during endocytosis is demonstrated by the presence of both a 5-phosphatase and a 4-phosphatase (Sac domain) module in the synaptojanins, endocytic PI(4,5)P2 phosphatases conserved from yeast to humans and the only PI(4,5)P2 phosphatases in yeast. OCRL, another 5-phosphatase that couples endocytosis to PI(4,5)P2 dephosphorylation, lacks a Sac domain. Here we show that Sac2/INPP5F is a PI4P phosphatase that colocalizes with OCRL on endocytic membranes, including vesicles formed by clathrin-mediated endocytosis, macropinosomes, and Rab5 endosomes. An OCRL–Sac2/INPP5F interaction could be demonstrated by coimmunoprecipitation and was potentiated by Rab5, whose activity is required to recruit Sac2/INPP5F to endosomes. Sac2/INPP5F and OCRL may cooperate in the sequential dephosphorylation of PI(4,5)P2 at the 5 and 4 position of inositol in a partnership that mimics that of the two phosphatase modules of synaptojanin. PMID:25869668

  17. Sac1--Vps74 structure reveals a mechanism to terminate phosphoinositide signaling in the Golgi apparatus

    SciTech Connect

    Cai, Yiying; Deng, Yongqiang; Horenkamp, Florian; Reinisch, Karin M.; Burd, Christopher G.

    2014-08-25

    Sac1 is a phosphoinositide phosphatase of the endoplasmic reticulum and Golgi apparatus that controls organelle membrane composition principally via regulation of phosphatidylinositol 4-phosphate signaling. We present a characterization of the structure of the N-terminal portion of yeast Sac1, containing the conserved Sac1 homology domain, in complex with Vps74, a phosphatidylinositol 4-kinase effector and the orthologue of human GOLPH3. The interface involves the N-terminal subdomain of the Sac1 homology domain, within which mutations in the related Sac3/Fig4 phosphatase have been linked to Charcot–Marie–Tooth disorder CMT4J and amyotrophic lateral sclerosis. Disruption of the Sac1–Vps74 interface results in a broader distribution of phosphatidylinositol 4-phosphate within the Golgi apparatus and failure to maintain residence of a medial Golgi mannosyltransferase. The analysis prompts a revision of the membrane-docking mechanism for GOLPH3 family proteins and reveals how an effector of phosphoinositide signaling serves a dual function in signal termination.

  18. Modeling indoor air pollution of outdoor origin in homes of SAPALDIA subjects in Switzerland.

    PubMed

    Meier, Reto; Schindler, Christian; Eeftens, Marloes; Aguilera, Inmaculada; Ducret-Stich, Regina E; Ineichen, Alex; Davey, Mark; Phuleria, Harish C; Probst-Hensch, Nicole; Tsai, Ming-Yi; Künzli, Nino

    2015-09-01

    Given the shrinking spatial contrasts in outdoor air pollution in Switzerland and the trends toward tightly insulated buildings, the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA) needs to understand to what extent outdoor air pollution remains a determinant for residential indoor exposure. The objectives of this paper are to identify determining factors for indoor air pollution concentrations of particulate matter (PM), ultrafine particles in the size range from 15 to 300nm, black smoke measured as light absorbance of PM (PMabsorbance) and nitrogen dioxide (NO2) and to develop predictive indoor models for SAPALDIA. Multivariable regression models were developed based on indoor and outdoor measurements among homes of selected SAPALDIA participants in three urban (Basel, Geneva, Lugano) and one rural region (Wald ZH) in Switzerland, various home characteristics and reported indoor sources such as cooking. Outdoor levels of air pollutants were important predictors for indoor air pollutants, except for the coarse particle fraction. The fractions of outdoor concentrations infiltrating indoors were between 30% and 66%, the highest one was observed for PMabsorbance. A modifying effect of open windows was found for NO2 and the ultrafine particle number concentration. Cooking was associated with increased particle and NO2 levels. This study shows that outdoor air pollution remains an important determinant of residential indoor air pollution in Switzerland. PMID:26070024

  19. Recommended direct simulation Monte Carlo collision model parameters for modeling ionized air transport processes

    NASA Astrophysics Data System (ADS)

    Swaminathan-Gopalan, Krishnan; Stephani, Kelly A.

    2016-02-01

    A systematic approach for calibrating the direct simulation Monte Carlo (DSMC) collision model parameters to achieve consistency in the transport processes is presented. The DSMC collision cross section model parameters are calibrated for high temperature atmospheric conditions by matching the collision integrals from DSMC against ab initio based collision integrals that are currently employed in the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) and Data Parallel Line Relaxation (DPLR) high temperature computational fluid dynamics solvers. The DSMC parameter values are computed for the widely used Variable Hard Sphere (VHS) and the Variable Soft Sphere (VSS) models using the collision-specific pairing approach. The recommended best-fit VHS/VSS parameter values are provided over a temperature range of 1000-20 000 K for a thirteen-species ionized air mixture. Use of the VSS model is necessary to achieve consistency in transport processes of ionized gases. The agreement of the VSS model transport properties with the transport properties as determined by the ab initio collision integral fits was found to be within 6% in the entire temperature range, regardless of the composition of the mixture. The recommended model parameter values can be readily applied to any gas mixture involving binary collisional interactions between the chemical species presented for the specified temperature range.

  20. Statistical modeling of urban air temperature distributions under different synoptic conditions

    NASA Astrophysics Data System (ADS)

    Beck, Christoph; Breitner, Susanne; Cyrys, Josef; Hald, Cornelius; Hartz, Uwe; Jacobeit, Jucundus; Richter, Katja; Schneider, Alexandra; Wolf, Kathrin

    2015-04-01

    Within urban areas air temperature may vary distinctly between different locations. These intra-urban air temperature variations partly reach magnitudes that are relevant with respect to human thermal comfort. Therefore and furthermore taking into account potential interrelations with other health related environmental factors (e.g. air quality) it is important to estimate spatial patterns of intra-urban air temperature distributions that may be incorporated into urban planning processes. In this contribution we present an approach to estimate spatial temperature distributions in the urban area of Augsburg (Germany) by means of statistical modeling. At 36 locations in the urban area of Augsburg air temperatures are measured with high temporal resolution (4 min.) since December 2012. These 36 locations represent different typical urban land use characteristics in terms of varying percentage coverages of different land cover categories (e.g. impervious, built-up, vegetated). Percentage coverages of these land cover categories have been extracted from different sources (Open Street Map, European Urban Atlas, Urban Morphological Zones) for regular grids of varying size (50, 100, 200 meter horizonal resolution) for the urban area of Augsburg. It is well known from numerous studies that land use characteristics have a distinct influence on air temperature and as well other climatic variables at a certain location. Therefore air temperatures at the 36 locations are modeled utilizing land use characteristics (percentage coverages of land cover categories) as predictor variables in Stepwise Multiple Regression models and in Random Forest based model approaches. After model evaluation via cross-validation appropriate statistical models are applied to gridded land use data to derive spatial urban air temperature distributions. Varying models are tested and applied for different seasons and times of the day and also for different synoptic conditions (e.g. clear and calm

  1. The NASA Lightning Nitrogen Oxides Model (LNOM): Application to Air Quality Modeling

    NASA Technical Reports Server (NTRS)

    Koshak, William; Peterson, Harold; Khan, Maudood; Biazar, Arastoo; Wang, Lihua

    2011-01-01

    Recent improvements to the NASA Marshall Space Flight Center Lightning Nitrogen Oxides Model (LNOM) and its application to the Community Multiscale Air Quality (CMAQ) modeling system are discussed. The LNOM analyzes Lightning Mapping Array (LMA) and National Lightning Detection Network(TradeMark)(NLDN) data to estimate the raw (i.e., unmixed and otherwise environmentally unmodified) vertical profile of lightning NO(x) (= NO + NO2). The latest LNOM estimates of lightning channel length distributions, lightning 1-m segment altitude distributions, and the vertical profile of lightning NO(x) are presented. The primary improvement to the LNOM is the inclusion of non-return stroke lightning NOx production due to: (1) hot core stepped and dart leaders, (2) stepped leader corona sheath, K-changes, continuing currents, and M-components. The impact of including LNOM-estimates of lightning NO(x) for an August 2006 run of CMAQ is discussed.

  2. Robust comparison of climate models with observations using blended land air and ocean sea surface temperatures

    NASA Astrophysics Data System (ADS)

    Cowtan, Kevin; Hausfather, Zeke; Hawkins, Ed; Jacobs, Peter; Mann, Michael E.; Miller, Sonya K.; Steinman, Byron A.; Stolpe, Martin B.; Way, Robert G.

    2015-08-01

    The level of agreement between climate model simulations and observed surface temperature change is a topic of scientific and policy concern. While the Earth system continues to accumulate energy due to anthropogenic and other radiative forcings, estimates of recent surface temperature evolution fall at the lower end of climate model projections. Global mean temperatures from climate model simulations are typically calculated using surface air temperatures, while the corresponding observations are based on a blend of air and sea surface temperatures. This work quantifies a systematic bias in model-observation comparisons arising from differential warming rates between sea surface temperatures and surface air temperatures over oceans. A further bias arises from the treatment of temperatures in regions where the sea ice boundary has changed. Applying the methodology of the HadCRUT4 record to climate model temperature fields accounts for 38% of the discrepancy in trend between models and observations over the period 1975-2014.

  3. Robust Comparison of Climate Models with Observations Using Blended Land Air and Ocean Sea Surface Temperatures

    NASA Astrophysics Data System (ADS)

    Hausfather, Z.; Jacobs, P.; Cowtan, K.; Hawkins, E.; Mann, M. E.; Miller, S. K.; Steinman, B. A.; Way, R. G.; Stolpe, M.

    2015-12-01

    Model-observation comparisons provide an important test of climate models' ability to realistically simulate the transient evolution of the system. A great deal of attention has recently focused on the so-called "hiatus" period of the past ~15 years, when estimates of recent surface temperature evolution fall at the lower end of climate model projections. This work quantifies a systematic bias in model-observation comparisons arising from differential warming rates between sea surface temperatures and surface air temperatures over oceans. Global mean temperatures from climate model simulations are typically calculated using surface air temperatures, while the corresponding observations are based on a blend of air and sea surface temperatures. A further bias arises from the treatment of temperatures in regions where the sea ice boundary has changed. We discuss the magnitude of these biases, and their implications for the evaluation of climate model performance over the "hiatus" period and the full instrumental record.

  4. A Novel Biobjective Risk-Based Model for Stochastic Air Traffic Network Flow Optimization Problem

    PubMed Central

    Cai, Kaiquan; Jia, Yaoguang; Zhu, Yanbo; Xiao, Mingming

    2015-01-01

    Network-wide air traffic flow management (ATFM) is an effective way to alleviate demand-capacity imbalances globally and thereafter reduce airspace congestion and flight delays. The conventional ATFM models assume the capacities of airports or airspace sectors are all predetermined. However, the capacity uncertainties due to the dynamics of convective weather may make the deterministic ATFM measures impractical. This paper investigates the stochastic air traffic network flow optimization (SATNFO) problem, which is formulated as a weighted biobjective 0-1 integer programming model. In order to evaluate the effect of capacity uncertainties on ATFM, the operational risk is modeled via probabilistic risk assessment and introduced as an extra objective in SATNFO problem. Computation experiments using real-world air traffic network data associated with simulated weather data show that presented model has far less constraints compared to stochastic model with nonanticipative constraints, which means our proposed model reduces the computation complexity. PMID:26180842

  5. Aircraft/Air Traffic Management Functional Analysis Model: Technical Description. 2.0

    NASA Technical Reports Server (NTRS)

    Etheridge, Melvin; Plugge, Joana; Retina, Nusrat

    1998-01-01

    The Aircraft/Air Traffic Management Functional Analysis Model, Version 2.0 (FAM 2.0), is a discrete event simulation model designed to support analysis of alternative concepts in air traffic management and control. FAM 2.0 was developed by the Logistics Management Institute (LMI) under a National Aeronautics and Space Administration (NASA) contract. This document provides a technical description of FAM 2.0 and its computer files to enable the modeler and programmer to make enhancements or modifications to the model. Those interested in a guide for using the model in analysis should consult the companion document, Aircraft/Air Traffic Management Functional Analysis Model, Version 2.0 Users Manual.

  6. A Novel Biobjective Risk-Based Model for Stochastic Air Traffic Network Flow Optimization Problem.

    PubMed

    Cai, Kaiquan; Jia, Yaoguang; Zhu, Yanbo; Xiao, Mingming

    2015-01-01

    Network-wide air traffic flow management (ATFM) is an effective way to alleviate demand-capacity imbalances globally and thereafter reduce airspace congestion and flight delays. The conventional ATFM models assume the capacities of airports or airspace sectors are all predetermined. However, the capacity uncertainties due to the dynamics of convective weather may make the deterministic ATFM measures impractical. This paper investigates the stochastic air traffic network flow optimization (SATNFO) problem, which is formulated as a weighted biobjective 0-1 integer programming model. In order to evaluate the effect of capacity uncertainties on ATFM, the operational risk is modeled via probabilistic risk assessment and introduced as an extra objective in SATNFO problem. Computation experiments using real-world air traffic network data associated with simulated weather data show that presented model has far less constraints compared to stochastic model with nonanticipative constraints, which means our proposed model reduces the computation complexity. PMID:26180842

  7. Analytical modeling of a hydraulically-compensated compressed-air energy-storage system

    SciTech Connect

    McMonagle, C.A.; Rowe, D.S.

    1982-12-01

    A computer program was developed to calculate the dynamic response of a hydraulically-compensated compressed air energy storage (CAES) system, including the compressor, air pipe, cavern, and hydraulic compensation pipe. The model is theoretically based on the two-fluid model in which the dynamics of each phase are presented by its set of conservation equations for mass and momentum. The conservation equations define the space and time distribution of pressure, void fraction, air saturation, and phase velocities. The phases are coupled by two interface equations. The first defines the rate of generation (or dissolution) of gaseous air in water and can include the effects of supersaturation. The second defines the frictional shear coupling (drag) between the gaseous air and water as they move relative to each other. The relative motion of the air and water is, therefore, calculated and not specified by a slip or drift-velocity correlation. The total CASE system is represented by a nodal arrangement. The conservation equations are written for each nodal volume and are solved numerically. System boundary conditions include the air flow rate, atmospheric pressure at the top of the compensation pipe, and air saturation in the reservoir. Initial conditions are selected for velocity and air saturation. Uniform and constant temperature (60/sup 0/F) is assumed. The analytical model was used to investigate the dynamic response of a proposed system.Investigative calculations considered high and low water levels, and a variety of charging and operating conditions. For all cases investigated, the cavern response to air-charging, was a damped oscillation of pressure and flow. Detailed results are presented. These calculations indicate that the Champagne Effect is unlikely to cause blowout for a properly designed CAES system.

  8. Investigating the Physical Basis of Aquarius/SAC-D Salinity Retrievals' Regional SST Bias

    NASA Astrophysics Data System (ADS)

    Scott, J. P.; Meissner, T.; Wentz, F. J.

    2014-12-01

    Sea-surface temperature (SST) plays an important, and yet to be fully understood, role in sea-surface sailinty (SSS) retrievals. The Version-3 release of Aquarius/SAC-D salinity retrievals applied an empirically derived adjustment to SSS that is a function of SST. This adjustment was derived after noticing regional salinity biases relative to modeled and in situ salinity observations. These SSS biases correlate well with climatological SST maps. While the ΔSSS(SST) adjustment has already been implemented in the ADPS standard processing, there is great value in determining the physical basis of this bias adjustment. Understanding the root causes of this adjustment will enable improved Aquarius's salinity retrievals, as well as ensure that no true SSS-SST correlations or variability are being removed by the adjustment. There are several factors contributing to the ΔSSS(SST) adjustment, which may be classified into direct, correlated, and indirect effects. Direct effects include the dependence of the sea-water dielectric constant on SST and the dependence of the roughness model on SST. Correlated effects include a small mis-modeling of the atmospheric oxygen absorption, which correlates with SST. Indirect effects include other errors sources such as reflected galactic radiation and RFI that produce ocean-basin-wide anomalies that are being misinterpreted as an SST effect. This presentation will demonstrate how the ΔSSS(SST) adjustment was derived, as well as present our findings regarding the physical basis of this adjustment.

  9. A FRAMEWORK FOR FINE-SCALE COMPUTATIONAL FLUID DYNAMICS AIR QUALITY MODELING AND ANALYSIS

    EPA Science Inventory

    This paper discusses a framework for fine-scale CFD modeling that may be developed to complement the present Community Multi-scale Air Quality (CMAQ) modeling system which itself is a computational fluid dynamics model. A goal of this presentation is to stimulate discussions on w...

  10. EVALUATING ADVECTION SCHEMES FOR USE IN THE NEXT GENERATION OF AIR QUALITY MODELING SYSTEMS

    EPA Science Inventory

    A simple air quality model prototype for EPA's third-generation modeling system, the Models-3 system, was recently implemented to test several design concepts. he prototype uses a time-splitting approach and process modules can be exchanged easily, without any restructuring of th...

  11. APPLICATION OF AUTOMATIC DIFFERENTIATION FOR STUDYING THE SENSITIVITY OF NUMERICAL ADVECTION SCHEMES IN AIR QUALITY MODELS

    EPA Science Inventory

    In any simulation model, knowing the sensitivity of the system to the model parameters is of utmost importance. s part of an effort to build a multiscale air quality modeling system for a high performance computing and communication (HPCC) environment, we are exploring an automat...

  12. VERIFICATION AND USES OF THE ENVIRONMENTAL PROTECTION AGENCY (EPA) INDOOR AIR QUALITY MODEL

    EPA Science Inventory

    The paper describes a set of experiments used to verify an indoor air quality (IAQ) model for estimating the impact of various pollution sources on IAQ in a multiroom building. he model treats each room as a well-mixed chamber that contains pollution sources and sinks. he model a...

  13. Remote Sensing Characterization of the Urban Landscape for Improvement of Air Quality Modeling

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Estes, Maurice G., Jr.; Khan, Maudood

    2005-01-01

    The urban landscape is inherently complex and this complexity is not adequately captured in air quality models, particularly the Community Multiscale Air Quality (CMAQ) model that is used to assess whether urban areas are in attainment of EPA air quality standards, primarily for ground level ozone. This inadequacy of the CMAQ model to sufficiently respond to the heterogeneous nature of the urban landscape can impact how well the model predicts ozone pollutant levels over metropolitan areas and ultimately, whether cities exceed EPA ozone air quality standards. We are exploring the utility of high-resolution remote sensing data and urban growth projections as improved inputs to the meteorology component of the CMAQ model focusing on the Atlanta, Georgia metropolitan area as a case study. These growth projections include "business as usual" and "smart growth" scenarios out to 2030. The growth projections illustrate the effects of employing urban heat island mitigation strategies, such as increasing tree canopy and albedo across the Atlanta metro area, in moderating ground-level ozone and air temperature, compared to "business as usual" simulations in which heat island mitigation strategies are not applied. The National Land Cover Dataset at 30m resolution is being used as the land use/land cover input and aggregated to the 4km scale for the MM5 mesoscale meteorological model and the (CMAQ) modeling schemes. Use of these data has been found to better characterize low densityhburban development as compared with USGS 1 km land use/land cover data that have traditionally been used in modeling. Air quality prediction for fiture scenarios to 2030 is being facilitated by land use projections using a spatial growth model. Land use projections were developed using the 2030 Regional Transportation Plan developed by the Atlanta Regional Commission, the regional planning agency for the area. This allows the state Environmental Protection agency to evaluate how these

  14. NESTED GRID MODELING APPROACH FOR ASSESSING URBAN OZONE AIR QUALITY

    EPA Science Inventory

    This paper describes an effort to interface the modeled concentrations and other outputs of the Regional Oxidant Model (ROM) as an alternative set of input files to apply in Urban Airshed Model (UAM) simulations. ive different days exhibiting high ozone concentrations during the ...

  15. NEW DEVELOPMENTS IN THE COMMUNITY MULTISCALE AIR QUALITY (CMAQ) MODEL

    EPA Science Inventory

    CMAQ model research and development is currently following two tracks at the Atmospheric Modeling Division of the USEPA. Public releases of the community model system for research and policy analysis is continuing on an annual interval with the latest release scheduled for Augus...

  16. Control strategies for sub-micrometer particles indoors: model study of air filtration and ventilation.

    PubMed

    Jamriska, M; Morawska, L; Ensor, D S

    2003-06-01

    The effects of air filtration and ventilation on indoor particles were investigated using a single-zone mathematical model. Particle concentration indoors was predicted for several I/O conditions representing scenarios likely to occur in naturally and mechanically ventilated buildings. The effects were studied for static and dynamic conditions in a hypothetical office building. The input parameters were based on real-world data. For conditions with high particle concentrations outdoors, it is recommended to reduce the amount of outdoor air delivered indoors and the necessary reduction level can be quantified by the model simulation. Consideration should also be given to the thermal comfort and minimum outdoor air required for occupants. For conditions dominated by an indoor source, it is recommended to increase the amount of outdoor air delivered indoors and to reduce the amount of return air. Air filtration and ventilation reduce particle concentrations indoors, with the overall effect depending on efficiency, location and the number of filters applied. The assessment of indoor air quality for specific conditions could be easily calculated by the model using user-defined input parameters. PMID:12756003

  17. Constraining Ammonia in Air Quality Models with Remote Sensing Observations and Inverse Modeling

    NASA Astrophysics Data System (ADS)

    Zhu, Liye

    Ammonia is an important species in the atmosphere as it contributes to air pollution, climate change and environmental health. Ammonia emissions are known to be primarily from agricultural sources, however there is persistent uncertainty in the magnitudes and seasonal trends of these sources, as ammonia has not traditionally been routinely monitored. The first detection of boundary layer ammonia from space by the NASA Tropospheric Emissions Spectrometer (TES) satellite has provided an exciting new means of reducing this uncertainty. In this thesis, I explore how forward and inverse modeling can be used with satellite observations to constrain ammonia emissions. Model simulations are used to build and validate the TES ammonia retrieval product. TES retrievals are then used to characterize global ammonia distributions and model estimates. Correlations between ammonia and carbon monoxide, observed simultaneously by TES, provide additional insight into observed and modeled ammonia from biomass burning. Next, through inverse modeling, I show that ammonia emissions are broadly underestimated throughout the U.S., particularly in the West. Optimized model simulations capture the range and variability of in-situ observation in April and October, while estimates in July are biased high. To understand these adjustments, several aspects of the retrieval are considered, such as spatial and temporal sampling biases. These investigations lead to revisions of fundamental aspects of how ammonia emissions are modeled, such as the diurnal variability of livestock ammonia emissions. While this improves comparison to hourly in situ measurements in the SE U.S., ammonia concentrations decrease throughout the globe, up to 17 ppb in India and Southeastern China. Lastly, the bi-directional air-surface exchange of ammonia is implemented for the first time in a global model and its adjoint. Ammonia bi-directional exchange generally increases ammonia gross emissions (10.9%) and surface

  18. [The orbital implant after exenteration of the orbit with the preservation of the eyelids and the conjunctival sac].

    PubMed

    Krásný, J; Novák, V; Otradovec, J

    2006-04-01

    In ophthalmology, the orbital exenteration presents the most mutilating surgical procedure. The surgical technique presented by authors, preserves the eyelids and conjunctival sac. This surgical procedure was suggested and repeatedly performed in adult patients with extensive benign tumors (mostly meningeomas) by J. Otradovec and J. Safár. The enucleation of the eyeball preceded this type of surgery. The final state made it possible to put the prosthesis into the conjunctival sac. Today we inform about further development of this surgical technique and according to our own experiences we widen its indications to some malignant tumors (rhabdomyosarcoma and metastases of the retinoblastoma, etc.) in children. The initial cutaneous incision starts in the eyebrow area and is directed toward the bone of the orbital rim. The preparation of the tissue underneath the intact conjunctival sac to the lower aspect of the bone orbital rim follows. After folding the conjuctival-cutaneous sac back, the real content of the orbit is exenterated in the classical manner. After the hemostasis in the orbital apex, the flap is returned to its primary position and suturing of the primary incision in anatomical layers terminates the surgery. The authors refer about a boy, now 17 years old, who underwent at the age of three years the exenteration of the orbit in this manner due to a rhabdomyosarcoma. The authors also refer about the development and application of a special type of prosthesis made from silicone rubber--implant grade--filling out the orbital space and forming the anterior segment of the eye. The prosthesis was created from a classical orbital implant, regularly used in enucleation surgery and a conjunctival implant, a convex-concave plate with diameter of 20 mm. Both parts are made from the same type of silicon rubber and were connected together by vulcanization. The orbital implant was eliptically extended according to the measurements of the orbital casting made from

  19. Respiratory-tract dosimetry modeling of air toxics

    SciTech Connect

    Overton, J.H.

    1988-05-01

    Development of a PBPK for the whole body in which inhalation, exhalation, and metabolism in RT tissues can be simulated is described. As an example of the model's use, the results of several experiments in which rats and humans were exposed to styrene were simulated. The predicted results agreed with the empirical data. This model results were also in agreement with the results of the model of Ramsey and Anderson (1984) which, unlike the present model, does not simulate inhalation and exhalation or explicitly model the URT and TB region. In addition to describing the development and simulation results of a PBPK model, a procedure was illustrated that used such models in combination with laboratory animal data to predict doses in humans.

  20. Uncertainty characterization and quantification in air pollution models. Application to the CHIMERE model

    NASA Astrophysics Data System (ADS)

    Debry, Edouard; Mallet, Vivien; Garaud, Damien; Malherbe, Laure; Bessagnet, Bertrand; Rouïl, Laurence

    2010-05-01

    Prev'Air is the French operational system for air pollution forecasting. It is developed and maintained by INERIS with financial support from the French Ministry for Environment. On a daily basis it delivers forecasts up to three days ahead for ozone, nitrogene dioxide and particles over France and Europe. Maps of concentration peaks and daily averages are freely available to the general public. More accurate data can be provided to customers and modelers. Prev'Air forecasts are based on the Chemical Transport Model CHIMERE. French authorities rely more and more on this platform to alert the general public in case of high pollution events and to assess the efficiency of regulation measures when such events occur. For example the road speed limit may be reduced in given areas when the ozone level exceeds one regulatory threshold. These operational applications require INERIS to assess the quality of its forecasts and to sensitize end users about the confidence level. Indeed concentrations always remain an approximation of the true concentrations because of the high uncertainty on input data, such as meteorological fields and emissions, because of incomplete or inaccurate representation of physical processes, and because of efficiencies in numerical integration [1]. We would like to present in this communication the uncertainty analysis of the CHIMERE model led in the framework of an INERIS research project aiming, on the one hand, to assess the uncertainty of several deterministic models and, on the other hand, to propose relevant indicators describing air quality forecast and their uncertainty. There exist several methods to assess the uncertainty of one model. Under given assumptions the model may be differentiated into an adjoint model which directly provides the concentrations sensitivity to given parameters. But so far Monte Carlo methods seem to be the most widely and oftenly used [2,3] as they are relatively easy to implement. In this framework one