Sample records for air sampling probe

  1. 40 CFR 91.420 - CVS concept of exhaust gas sampling system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... that complete mixing of the engine exhaust and background air is assured prior to the sampling probe.... The background probe must draw a representative sample of the background air during each sampling mode...) sampling system. If a critical flow venturi (CFV) is used on the dilute exhaust sample probe, this system...

  2. 40 CFR 91.420 - CVS concept of exhaust gas sampling system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... that complete mixing of the engine exhaust and background air is assured prior to the sampling probe.... The background probe must draw a representative sample of the background air during each sampling mode...) sampling system. If a critical flow venturi (CFV) is used on the dilute exhaust sample probe, this system...

  3. 40 CFR 91.420 - CVS concept of exhaust gas sampling system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... that complete mixing of the engine exhaust and background air is assured prior to the sampling probe.... The background probe must draw a representative sample of the background air during each sampling mode...) sampling system. If a critical flow venturi (CFV) is used on the dilute exhaust sample probe, this system...

  4. 40 CFR 91.420 - CVS concept of exhaust gas sampling system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... that complete mixing of the engine exhaust and background air is assured prior to the sampling probe.... The background probe must draw a representative sample of the background air during each sampling mode...) sampling system. If a critical flow venturi (CFV) is used on the dilute exhaust sample probe, this system...

  5. 40 CFR 91.420 - CVS concept of exhaust gas sampling system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... that complete mixing of the engine exhaust and background air is assured prior to the sampling probe.... The background probe must draw a representative sample of the background air during each sampling mode...) sampling system. If a critical flow venturi (CFV) is used on the dilute exhaust sample probe, this system...

  6. 40 CFR 90.420 - CVS concept of exhaust gas sampling system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sampling probe. (2) Exhaust flow metering system. A dilute exhaust flow metering system must be used to... exhaust. The background probe must draw a representative sample of the background air during each sampling... (bag) sampling system. If a critical flow venturi (CFV) is used on the dilute exhaust sample probe...

  7. 40 CFR 90.420 - CVS concept of exhaust gas sampling system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sampling probe. (2) Exhaust flow metering system. A dilute exhaust flow metering system must be used to... exhaust. The background probe must draw a representative sample of the background air during each sampling... (bag) sampling system. If a critical flow venturi (CFV) is used on the dilute exhaust sample probe...

  8. 40 CFR 90.420 - CVS concept of exhaust gas sampling system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sampling probe. (2) Exhaust flow metering system. A dilute exhaust flow metering system must be used to... exhaust. The background probe must draw a representative sample of the background air during each sampling... (bag) sampling system. If a critical flow venturi (CFV) is used on the dilute exhaust sample probe...

  9. 40 CFR 90.420 - CVS concept of exhaust gas sampling system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sampling probe. (2) Exhaust flow metering system. A dilute exhaust flow metering system must be used to... exhaust. The background probe must draw a representative sample of the background air during each sampling... (bag) sampling system. If a critical flow venturi (CFV) is used on the dilute exhaust sample probe...

  10. 40 CFR 90.420 - CVS concept of exhaust gas sampling system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sampling probe. (2) Exhaust flow metering system. A dilute exhaust flow metering system must be used to... exhaust. The background probe must draw a representative sample of the background air during each sampling... (bag) sampling system. If a critical flow venturi (CFV) is used on the dilute exhaust sample probe...

  11. Effect of air confinement on thermal contact resistance in nanoscale heat transfer

    NASA Astrophysics Data System (ADS)

    Pratap, Dheeraj; Islam, Rakibul; Al-Alam, Patricia; Randrianalisoa, Jaona; Trannoy, Nathalie

    2018-03-01

    Here, we report a detailed analysis of thermal contact resistance (R c) of nano-size contact formed between a Wollaston wire thermal probe and the used samples (fused silica and titanium) as a function of air pressure (from 1 Pa to 105 Pa). Moreover, we suggest an analytical model using experimental data to extract R c. We found that for both samples, the thermal contact resistance decreases with increasing air pressure. We also showed that R c strongly depends on the thermal conductivity of materials keeping other parameters the same, such as roughness of the probe and samples, as well as the contact force. We provide a physical explanation of the R c trend with pressure and thermal conductivity of the materials: R c is ascribed to the heat transfer through solid-solid (probe-sample) contact and confined air at nanoscale cavities, due to the rough nature of the materials in contact. The contribution of confined air on heat transfer through the probe sample contact is significant at atmospheric pressure but decreases as the pressure decreases. In vacuum, only the solid-solid contact contributes to R c. In addition, theoretical calculations using the well-known acoustic and diffuse mismatch models showed a high thermal conductivity material that exhibits high heat transmission and consequently low R c, supporting our findings.

  12. Detection and quantification of reactive oxygen species (ROS) in indoor air.

    PubMed

    Montesinos, V Nahuel; Sleiman, Mohamad; Cohn, Sebastian; Litter, Marta I; Destaillats, Hugo

    2015-06-01

    Reactive oxygen species (ROS), such as free radicals and peroxides, are environmental trace pollutants potentially associated with asthma and airways inflammation. These compounds are often not detected in indoor air due to sampling and analytical limitations. This study developed and validated an experimental method to sample, identify and quantify ROS in indoor air using fluorescent probes. Tests were carried out simultaneously using three different probes: 2',7'-dichlorofluorescin (DCFH) to detect a broad range of ROS, Amplex ultra Red® (AuR) to detect peroxides, and terephthalic acid (TPA) to detect hydroxyl radicals (HO(•)). For each test, air samples were collected using two impingers in series kept in an ice bath, containing each 10 mL of 50 mM phosphate buffer at pH 7.2. In tests with TPA, that probe was also added to the buffer prior to sampling; in the other two tests, probes and additional reactants were added immediately after sampling. The concentration of fluorescent byproducts was determined fluorometrically. Calibration curves were developed by reacting DCFH and AuR with known amounts of H2O2, and using known amounts of 2-hydroxyterephthalic acid (HTPA) for TPA. Low detection limits (9-13 nM) and quantification limits (18-22 nM) were determined for all three probes, which presented a linear response in the range 10-500 nM for AuR and TPA, and 100-2000 nM for DCFH. High collection efficiency (CE) and recovery efficiency (RE) were observed for DCFH (CE=RE=100%) and AuR (CE=100%; RE=73%) by sampling from a laboratory-developed gas phase H2O2 generator. Interference of co-occurring ozone was evaluated and quantified for the three probes by sampling from the outlet of an ozone generator. The method was demonstrated by sampling air emitted by two portable air cleaners: a strong ozone generator (AC1) and a plasma generator (AC2). High ozone levels emitted by AC1 did not allow for simultaneous determination of ROS levels due to high background levels associated with ozone decomposition in the buffer. However, emitted ROS were quantified at the outlet of AC2 using two of the three probes. With AuR, the concentration of peroxides in air emitted by the air cleaner was 300 ppt of H2O2 equivalents. With TPA, the HO(•) concentration was 47 ppt. This method is best suited to quantify ROS in the presence of low ozone levels. Published by Elsevier B.V.

  13. Assessment of the National Research Universal Reactor Proposed New Stack Sampling Probe Location for Compliance with ANSI/HPS N13.1-1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glissmeyer, John A.; Antonio, Ernest J.; Flaherty, Julia E.

    2016-02-29

    This document reports on a series of tests conducted to assess the proposed air sampling location for the National Research Universal reactor (NRU) complex exhaust stack, located in Chalk River, Ontario, Canada, with respect to the applicable criteria regarding the placement of an air sampling probe. Due to the age of the equipment in the existing monitoring system, and the increasing difficulty in acquiring replacement parts to maintain this equipment, a more up-to-date system is planned to replace the current effluent monitoring system, and a new monitoring location has been proposed. The new sampling probe should be located within themore » exhaust stack according to the criteria established by the American National Standards Institute/Health Physics Society (ANSI/HPS) N13.1-1999, Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stack and Ducts of Nuclear Facilities. These criteria address the capability of the sampling probe to extract a sample that represents the effluent stream. The internal Pacific Northwest National Laboratory (PNNL) project for this task was 65167, Atomic Energy Canada Ltd. Chalk River Effluent Duct Flow Qualification. The testing described in this document was guided by the Test Plan: Testing of the NRU Stack Air Sampling Position (TP-STMON-032).« less

  14. Assessment of the LV-C2 Stack Sampling Probe Location for Compliance with ANSI/HPS N13.1-1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glissmeyer, John A.; Antonio, Ernest J.; Flaherty, Julia E.

    2015-09-01

    This document reports on a series of tests conducted to assess the proposed air sampling location for the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Low-Activity Waste (LAW) C2V (LV-C2) exhaust stack with respect to the applicable criteria regarding the placement of an air sampling probe. Federal regulations require that a sampling probe be located in the exhaust stack according to the criteria established by the American National Standards Institute/Health Physics Society (ANSI/HPS) N13.1-1999, Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stack and Ducts of Nuclear Facilities. These criteria address the capability of the sampling probemore » to extract a sample that represents the effluent stream. The tests were conducted on the LV-C2 scale model system. Based on the scale model tests, the location proposed for the air sampling probe in the scale model stack meets the requirements of the ANSI/HPS N13.1-1999 standard for velocity uniformity, flow angle, gas tracer and particle tracer uniformity. Additional velocity uniformity and flow angle tests on the actual stack will be necessary during cold startup to confirm the validity of the scale model results in representing the actual stack.« less

  15. Analysis of non-contact and contact probe-to-sample thermal exchange for quantitative measurements of thin film and nanostructure thermal conductivity by the scanning hot probe method

    NASA Astrophysics Data System (ADS)

    Wilson, Adam A.

    The ability to measure thermal properties of thin films and nanostructured materials is an important aspect of many fields of academic study. A strategy especially well-suited for nanoscale investigations of these properties is the scanning hot probe technique, which is unique in its ability to non-destructively interrogate the thermal properties with high resolution, both laterally as well as through the thickness of the material. Strategies to quantitatively determine sample thermal conductivity depend on probe calibration. State of the art calibration strategies assume that the area of thermal exchange between probe and sample does not vary with sample thermal conductivity. However, little investigation has gone into determining whether or not that assumption is valid. This dissertation provides a rigorous study into the probe-to-sample heat transfer through the air gap at diffusive distances for a variety of values of sample thermal conductivity. It is demonstrated that the thermal exchange radius and gap/contact thermal resistance varies with sample thermal conductivity as well as tip-to-sample clearance in non-contact mode. In contact mode, it is demonstrated that higher thermal conductivity samples lead to a reduction in thermal exchange radius for Wollaston probe tips. Conversely, in non-contact mode and in contact mode for sharper probe tips where air contributes the most to probe-to-sample heat transfer, the opposite trend occurs. This may be attributed to the relatively strong solid-to-solid conduction occurring between probe and sample for the Wollaston probes. A three-dimensional finite element (3DFE) model was developed to investigate how the calibrated thermal exchange parameters vary with sample thermal conductivity when calibrating the probe via the intersection method in non-contact mode at diffusive distances. The 3DFE model was then used to explore the limits of sensitivity of the experiment for a range of simulated experimental conditions. It is determined that, when operating the scanning hot probe technique in air at standard temperature and pressure using Wollaston probes, the technique is capable of measuring, within 20% uncertainty, samples with values of thermal conductivity up to 10 Wm-1K-1 in contact mode and up to 2 Wm-1K-1 in non-contact mode. By increasing the thermal conductivity of the probe's surroundings (i.e. changing air to a more conductive gas), sensitivity in non-contact mode to sample thermal conductivity is improved, which suggests potential for future investigations using non-contact scanning hot probe to measure thermal conductivity of higher thermal conductivity samples. The ability of the technique to differentiate thin films from the substrate is investigated, and the sensitivity of the technique to thin films and samples with anisotropic properties is explored. The models (both analytical and finite element) developed and reported in this dissertation lead to the ability to measure samples which, by the standard procedure before this work, were unable to be accurately measured. While other techniques failed to be able to successfully interrogate the film thermal conductivity of a full set of double-wall carbon nanotubes infused into polymers, the methods developed in this work allowed non-contact scanning hot probe measurements to be successfully performed to obtain the film thermal conductivity for each sample. Finite element simulations accounting for the anisotropy of these thin film on sample materials show similar trends with independently measured in-plane thermal conductivity for the only two (of five) samples in the set which were successfully able to be measured by the independent technique. Investigations in contact mode with high resolution Pd probes, whose probe-to-sample clearance is difficult to control in a repeatable fashion, show that surface roughness affects the thermal contact resistance. This can lead to values of reported sample thermal conductivity which are misleading, when using the standard calibrated thermal exchange parameters on samples with significantly different surface roughness than the calibration samples. This affect was taken into account to report sample thermal conductivity of Bi2Te3 nanoflakes.

  16. Aerosols and Particulates Workshop Sampling Procedures and Venues Working Group Summary

    NASA Technical Reports Server (NTRS)

    Pachlhofer, Peter; Howard, Robert

    1999-01-01

    The Sampling Procedures and Venues Workgroup discussed the potential venues available and issues associated with obtaining measurements. Some of the issues included Incoming Air Quality, Sampling Locations, Probes and Sample Systems. The following is a summary of the discussion of the issues and venues. The influence of inlet air to the measurement of exhaust species, especially trace chemical species, must be considered. Analysis procedures for current engine exhaust emissions regulatory measurements require adjustments for air inlet humidity. As a matter of course in scientific investigations, it is recommended that "background" measurements for any species, particulate or chemical, be performed during inlet air flow before initiation of combustion, if possible, and during the engine test period as feasible and practical. For current regulatory measurements, this would be equivalent to setting the "zero" level for conventional gas analyzers. As a minimum, it is recommended that measurements of the humidity and particulates in the incoming air be taken at the start and end of each test run. Additional measurement points taken during the run are desirable if they can be practically obtained. It was felt that the presence of trace gases in the incoming air is not a significant problem. However, investigators should consider the ambient levels and influences of local air pollution for species of interest. Desired measurement locations depend upon the investigation requirements. A complete investigation of phenomenology of particulate formation and growth requires measurements at a number of locations both within the engine and in the exhaust field downstream of the nozzle exit plane. Desirable locations for both extractive and in situ measurements include: (1) Combustion Zone (Multiple axial locations); (2) Combustor Exit (Multiple radial locations for annular combustors); (3) Turbine Stage (Inlet and exit of the stage); (4) Exit Nozzle (Multiple axial locations downstream of the nozzle). Actual locations with potential for extractive or non-intrusive measurements depend upon the test article and test configuration. Committee members expressed the importance of making investigators aware of various ports that could allow access to various stages of the existing engines. Port locations are engine si)ecific and might allow extractive sampling or innovative hybrid optical-probe access. The turbine stage region was one the most desirable locations for obtaining samples and might be accessed through boroscope ports available in some engine designs. Discussions of probes and sampling systems quickly identified issues dependent on particular measurement quantities. With general consensus, the group recommends SAE procedures for measurements and data analyses of currently regulated exhaust species (CO2, CO, THC, NO(x),) using conventional gas sampling techniques. Special procedures following sound scientific practices must be developed as required for species and/or measurement conditions not covered by SAE standards. Several issues arose concerning short lived radicals and highly reactive species. For conventional sampling, there are concerns of perturbing the sample during extraction, line losses, line-wall reactions, and chemical reactions during the sample transport to the analyzers. Sample lines coated with quartz.or other materials should be investigated for minimization of such effects. The group advocates the development of innovative probe techniques and non-intrusive optical techniques for measurement of short lived radicals and highly reactive species that cannot be sampled accurately otherwise. Two innovative probe concepts were discussed. One concept uses specially designed probes to transfer optical beams to and from a region of flow inaccessible by traditional ports or windows. The probe can perturb the flow field but must have a negligible impact on the region to be optically sampled. Such probes are referred to as hybrid probes and are under development at AEDC for measurement in the high pressure, high temperature of a combustor under development for power generation. The other concept consists of coupling an instrument directly to the probe. The probe would isolate a representative sample stream, freeze chemical reactions and direct the sample into the analyzer portion of the probe. Thus, the measurement would be performed in situ without sample line losses due either to reactions or binding at the wall surfaces. This concept was used to develop a fast, in situ, time-of-flight mass spectrometer measurement system for temporal quantification of NO in the IMPULSE facility at AEDC. Additional work is required in this area to determine the best probe and sampling technique for each species measurement requirement identified by the Trace Chemistry Working Group. A partial list of Venues was used as a baseline for discussion. Additional venues were added to the list and the list was broken out into the following categories: (1)Engines (a) Sea Level Test Stands (b) Altitude Chambers; (2) Annular Combustor Test Stands, (3) Sector Flametube Test Stands, (4) Fundamentals Rigs/Experiments.

  17. Assessment of the LV-S2 & LV-S3 Stack Sampling Probe Locations for Compliance with ANSI/HPS N13.1-1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glissmeyer, John A.; Antonio, Ernest J.; Flaherty, Julia E.

    2014-09-30

    This document reports on a series of tests conducted to assess the proposed air sampling locations for the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Group 1-2A exhaust stacks with respect to the applicable criteria regarding the placement of an air sampling probe. The LV-C2, LV-S2, and LV-S3 exhaust stacks were tested together as a group (Test Group 1-2A). This report only covers the results of LV-S2 and LV-S3; LV-C2 will be reported on separately. Federal regulations1 require that a sampling probe be located in the exhaust stack according to the criteria established by the American National Standards Institute/Healthmore » Physics Society (ANSI/HPS) N13.1-1999, Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stack and Ducts of Nuclear Facilities. 2 These criteria address the capability of the sampling probe to extract a sample that represents the effluent stream.« less

  18. Thermodynamic correction of particle concentrations measured by underwing probes on fast flying aircraft

    NASA Astrophysics Data System (ADS)

    Weigel, R.; Spichtinger, P.; Mahnke, C.; Klingebiel, M.; Afchine, A.; Petzold, A.; Krämer, M.; Costa, A.; Molleker, S.; Jurkat, T.; Minikin, A.; Borrmann, S.

    2015-12-01

    Particle concentration measurements with underwing probes on aircraft are impacted by air compression upstream of the instrument body as a function of flight velocity. In particular for fast-flying aircraft the necessity arises to account for compression of the air sample volume. Hence, a correction procedure is needed to invert measured particle number concentrations to ambient conditions that is commonly applicable for different instruments to gain comparable results. In the compression region where the detection of particles occurs (i.e. under factual measurement conditions), pressure and temperature of the air sample are increased compared to ambient (undisturbed) conditions in certain distance away from the aircraft. Conventional procedures for scaling the measured number densities to ambient conditions presume that the particle penetration speed through the instruments' detection area equals the aircraft speed (True Air Speed, TAS). However, particle imaging instruments equipped with pitot-tubes measuring the Probe Air Speed (PAS) of each underwing probe reveal PAS values systematically below those of the TAS. We conclude that the deviation between PAS and TAS is mainly caused by the compression of the probed air sample. From measurements during two missions in 2014 with the German Gulfstream G-550 (HALO - High Altitude LOng range) research aircraft we develop a procedure to correct the measured particle concentration to ambient conditions using a thermodynamic approach. With the provided equation the corresponding concentration correction factor ξ is applicable to the high frequency measurements of each underwing probe which is equipped with its own air speed sensor (e.g. a pitot-tube). ξ-values of 1 to 0.85 are calculated for air speeds (i.e. TAS) between 60 and 260 m s-1. From HALO data it is found that ξ does not significantly vary between the different deployed instruments. Thus, for the current HALO underwing probe configuration a parameterisation of ξ as a function of TAS is provided for instances if PAS measurements are lacking. The ξ-correction yields higher ambient particle concentration by about 15-25 % compared to conventional procedures - an improvement which can be considered as significant for many research applications. The calculated ξ-values are specifically related to the considered HALO underwing probe arrangement and may differ for other aircraft or instrument geometries. Moreover, the ξ-correction may not cover all impacts originating from high flight velocities and from interferences between the instruments and, e.g., the aircraft wings and/or fuselage. Consequently, it is important that PAS (as a function of TAS) is individually measured by each probe deployed underneath the wings of a fast-flying aircraft.

  19. Identification of stainless steel welding fume particulates in human lung and environmental samples using electron probe microanalysis.

    PubMed

    Stettler, L E; Groth, D H; MacKay, G R

    1977-02-01

    Open lung biopsy specimens from two welders and air samples from their workplace environments were examined with the electron probe microanalyzer. X-ray analysis showed that the majority of particles found in the lung tissue from both workers and in the air samples to be composed of varying amounts of iron, chromium, manganese and nickel, the major components of some types of stainless steel. Based upon these analyses, it was concluded that the majority of the particles in both biopsy specimens were a result of the workplace environment.

  20. Thermodynamic correction of particle concentrations measured by underwing probes on fast-flying aircraft

    NASA Astrophysics Data System (ADS)

    Weigel, Ralf; Spichtinger, Peter; Mahnke, Christoph; Klingebiel, Marcus; Afchine, Armin; Petzold, Andreas; Krämer, Martina; Costa, Anja; Molleker, Sergej; Reutter, Philipp; Szakáll, Miklós; Port, Max; Grulich, Lucas; Jurkat, Tina; Minikin, Andreas; Borrmann, Stephan

    2016-10-01

    Particle concentration measurements with underwing probes on aircraft are impacted by air compression upstream of the instrument body as a function of flight velocity. In particular, for fast-flying aircraft the necessity arises to account for compression of the air sample volume. Hence, a correction procedure is needed to invert measured particle number concentrations to ambient conditions that is commonly applicable to different instruments to gain comparable results. In the compression region where the detection of particles occurs (i.e. under factual measurement conditions), pressure and temperature of the air sample are increased compared to ambient (undisturbed) conditions in certain distance away from the aircraft. Conventional procedures for scaling the measured number densities to ambient conditions presume that the air volume probed per time interval is determined by the aircraft speed (true air speed, TAS). However, particle imaging instruments equipped with pitot tubes measuring the probe air speed (PAS) of each underwing probe reveal PAS values systematically below those of the TAS. We conclude that the deviation between PAS and TAS is mainly caused by the compression of the probed air sample. From measurements during two missions in 2014 with the German Gulfstream G-550 (HALO - High Altitude LOng range) research aircraft we develop a procedure to correct the measured particle concentration to ambient conditions using a thermodynamic approach. With the provided equation, the corresponding concentration correction factor ξ is applicable to the high-frequency measurements of the underwing probes, each of which is equipped with its own air speed sensor (e.g. a pitot tube). ξ values of 1 to 0.85 are calculated for air speeds (i.e. TAS) between 60 and 250 m s-1. For different instruments at individual wing position the calculated ξ values exhibit strong consistency, which allows for a parameterisation of ξ as a function of TAS for the current HALO underwing probe configuration. The ability of cloud particles to adopt changes of air speed between ambient and measurement conditions depends on the cloud particles' inertia as a function of particle size (diameter Dp). The suggested inertia correction factor μ (Dp) for liquid cloud drops ranges between 1 (for Dp < 70 µm) and 0.8 (for 100 µm < Dp < 225 µm) but it needs to be applied carefully with respect to the particles' phase and nature. The correction of measured concentration by both factors, ξ and μ (Dp), yields higher ambient particle concentration by about 10-25 % compared to conventional procedures - an improvement which can be considered as significant for many research applications. The calculated ξ values are specifically related to the considered HALO underwing probe arrangement and may differ for other aircraft. Moreover, suggested corrections may not cover all impacts originating from high flight velocities and from interferences between the instruments and e.g. the aircraft wings and/or fuselage. Consequently, it is important that PAS (as a function of TAS) is individually measured by each probe deployed underneath the wings of a fast-flying aircraft.

  1. An automated atmospheric sampling system operating on 747 airliners

    NASA Technical Reports Server (NTRS)

    Perkins, P. J.; Gustafsson, U. R. C.

    1976-01-01

    An air sampling system that automatically measures the temporal and spatial distribution of particulate and gaseous constituents of the atmosphere is collecting data on commercial air routes covering the world. Measurements are made in the upper troposphere and lower stratosphere (6 to 12 km) of constituents related to aircraft engine emissions and other pollutants. Aircraft operated by different airlines sample air at latitudes from the Arctic to Australia. This unique system includes specialized instrumentation, a special air inlet probe for sampling outside air, a computerized automatic control, and a data acquisition system. Air constituent and related flight data are tape recorded in flight for later computer processing on the ground.

  2. An automated atmospheric sampling system operating on 747 airliners

    NASA Technical Reports Server (NTRS)

    Perkins, P.; Gustafsson, U. R. C.

    1975-01-01

    An air sampling system that automatically measures the temporal and spatial distribution of selected particulate and gaseous constituents of the atmosphere has been installed on a number of commercial airliners and is collecting data on commercial air routes covering the world. Measurements of constituents related to aircraft engine emissions and other pollutants are made in the upper troposphere and lower stratosphere (6 to 12 km) in support of the Global Air Sampling Program (GASP). Aircraft operated by different airlines sample air at latitudes from the Arctic to Australia. This system includes specialized instrumentation for measuring carbon monoxide, ozone, water vapor, and particulates, a special air inlet probe for sampling outside air, a computerized automatic control, and a data acquisition system. Air constituents and related flight data are tape recorded in flight for later computer processing on the ground.

  3. SCANNING VOLTA POTENTIALS MEASUREMENTS OF METALS IN IRRADIATED AIR.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ISAACS, H.S.; ADZIC, G.; AND ENERGY SCIENCES AND TECHNOLOGY DEPARTMENT

    2000-10-22

    A method for direct dc measurement of the Volta potential is presented. High intensity synchrotron x-ray beams were used to locally irradiate the atmosphere adjacent to the metal surface and produce a conducting path between a sample and a reference probe. The direct measurements of potential in the ionized air could be made at probe heights of around 1 mm compared to less than 0.1 mm for the Kelvin probe. The measurements were similar to traditional Kelvin probe measurements, but had a poorer spatial resolution. In contrast to the Kelvin probe methods, the approach described allows observation of the currentmore » as a function of impressed voltage. Methods to improve the special resolution of the technique and applications to corrosion under coating will be presented.« less

  4. Ice Crystal Cloud Research

    NASA Image and Video Library

    2016-07-11

    NASA Glenn’s Propulsion Systems Lab (PSL) is conducting research to characterize ice crystal clouds that can create a hazard to aircraft engines under certain conditions. The isokinetic probe (in gold) samples particles and another series of probes can measure everything from humidity to air pressure.

  5. Enabling low-noise null-point scanning thermal microscopy by the optimization of scanning thermal microscope probe through a rigorous theory of quantitative measurement.

    PubMed

    Hwang, Gwangseok; Chung, Jaehun; Kwon, Ohmyoung

    2014-11-01

    The application of conventional scanning thermal microscopy (SThM) is severely limited by three major problems: (i) distortion of the measured signal due to heat transfer through the air, (ii) the unknown and variable value of the tip-sample thermal contact resistance, and (iii) perturbation of the sample temperature due to the heat flux through the tip-sample thermal contact. Recently, we proposed null-point scanning thermal microscopy (NP SThM) as a way of overcoming these problems in principle by tracking the thermal equilibrium between the end of the SThM tip and the sample surface. However, in order to obtain high spatial resolution, which is the primary motivation for SThM, NP SThM requires an extremely sensitive SThM probe that can trace the vanishingly small heat flux through the tip-sample nano-thermal contact. Herein, we derive a relation between the spatial resolution and the design parameters of a SThM probe, optimize the thermal and electrical design, and develop a batch-fabrication process. We also quantitatively demonstrate significantly improved sensitivity, lower measurement noise, and higher spatial resolution of the fabricated SThM probes. By utilizing the exceptional performance of these fabricated probes, we show that NP SThM can be used to obtain a quantitative temperature profile with nanoscale resolution independent of the changing tip-sample thermal contact resistance and without perturbation of the sample temperature or distortion due to the heat transfer through the air.

  6. Emission measurements for a lean premixed propane/air system at pressures up to 30 atmospheres

    NASA Technical Reports Server (NTRS)

    Roffe, G.; Venkataramani, K. S.

    1978-01-01

    The emissions of a lean premixed system of propane/air were measured in a flametube apparatus. Tests were conducted at inlet temperatures of 600K and 800K and pressures of 10 atm and 30 atm over a range of equivalence ratios. The data obtained were combined with previous data taken in the same apparatus to correlate nitrogen oxide emissions with operating conditions. Sampling probe design was found to have a pronounced effect on measured CO levels but did not influence measurements. The most effective probe tested was one which combined thermal and pressure quenching of the gas sample.

  7. Spectrophotometric probe

    DOEpatents

    Prather, W.S.; O'Rourke, P.E.

    1994-08-02

    A support structure is described bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe. 3 figs.

  8. Spectrophotometric probe

    DOEpatents

    Prather, William S.; O'Rourke, Patrick E.

    1994-01-01

    A support structure bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe.

  9. 40 CFR 92.118 - Analyzer checks and calibrations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.118... sampling system at the sample probe or valve V2 at atmospheric pressure. Simultaneously, start the time...

  10. Gas sampling method for determining pollutant concentrations in the flame zone of two swirl-can combustor modules

    NASA Technical Reports Server (NTRS)

    Duerr, R. A.

    1975-01-01

    A gas sampling probe and traversing mechanism were developed to obtain detailed measurements of gaseous pollutant concentrations in the primary and mixing regions of combustors in order to better understand how pollutants are formed. The gas sampling probe was actuated by a three-degree-of-freedom traversing mechanism and the samples obtained were analyzed by an on-line gas analysis system. The pollutants in the flame zone of two different swirl-can combustor modules were measured at an inlet-air temperature of 590 K, pressure of 6 atmospheres, and reference velocities of 23 and 30 meters per second at a fuel-air ratio of 0.02. Typical results show large spatial gradients in the gaseous pollutant concentration close to the swirl-can module. Average concentrations of unburned hydrocarbons and carbon monoxide decrease rapidly in the downstream wake regions of each module. By careful and detailed probing, the effect of various module design features on pollutant formation can be assessed. The techniques presently developed seem adequate to obtain the desired information.

  11. Assessment of the Revised 3410 Building Filtered Exhaust Stack Sampling Probe Location

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Xiao-Ying; Recknagle, Kurtis P.; Glissmeyer, John A.

    2013-12-01

    In order to support the air emissions permit for the 3410 Building, Pacific Northwest National Laboratory performed a series of tests in the exhaust air discharge from the reconfigured 3410 Building Filtered Exhaust Stack. The objective was to determine whether the location of the air sampling probe for emissions monitoring meets the applicable regulatory criteria governing such effluent monitoring systems. In particular, the capability of the air sampling probe location to meet the acceptance criteria of ANSI/HPS N13.1-2011 , Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stack and Ducts of Nuclear Facilities was determined. The qualification criteriamore » for these types of stacks address 1) uniformity of air velocity, 2) sufficiently small flow angle with respect to the axis of the duct, 3) uniformity of tracer gas concentration, and 4) uniformity of tracer particle concentration. Testing was performed to conform to the quality requirements of NQA-1-2000. Fan configurations tested included all fan combinations of any two fans at a time. Most of the tests were conducted at the normal flow rate, while a small subset of tests was performed at a slightly higher flow rate achieved with the laboratory hood sashes fully open. The qualification criteria for an air monitoring probe location are taken from ANSI/HPS N13.1-2011 and are paraphrased as follows with key results summarized: 1. Angular Flow—The average air velocity angle must not deviate from the axis of the stack or duct by more than 20°. Our test results show that the mean angular flow angles at the center two-thirds of the ducts are smaller than 4.5% for all testing conditions. 2. Uniform Air Velocity—The acceptance criterion is that the COV of the air velocity must be ≤ 20% across the center two thirds of the area of the stack. Our results show that the COVs of the air velocity across the center two-thirds of the stack are smaller than 2.9% for all testing conditions. 3. Uniform Concentration of Tracer Gases—The uniformity of the concentration of potential contaminants is first tested using a tracer gas to represent gaseous effluents. The tracer is injected downstream of the fan outlets and at the junction downstream fan discharges meet. The acceptance criteria are that 1) the COV of the measured tracer gas concentration is ≤20% across the center two-thirds of the sampling plane and 2) at no point in the sampling plane does the concentration vary from the mean by >30%. Our test results show that 1) the COV of the measured tracer gas concentration is < 2.9% for all test conditions and 2) at no point in the sampling plane does the concentration vary from the mean by >6.5%. 4. Uniform Concentration of Tracer Particles—Tracer particles of 10-μm aerodynamic diameter are used for the second demonstration of concentration uniformity. The acceptance criterion is that the COV of particle concentration is ≤ 20% across the center two thirds of the sampling plane. Our test results indicate that the COV of particle concentration is <9.9% across the center two-thirds of the sampling plane among all testing conditions. Thus, the reconfigured 3410 Building Filtered Exhaust Stack was determined to meet the qualification criteria given in the ANSI/HPS N13.1-2011 standard. Changes to the system configuration or operations outside the bounds described in this report (e.g., exhaust stack velocity changes, relocation of sampling probe, and addition of fans) may require re-testing or re-evaluation to determine compliance.« less

  12. Long duration ash probe

    DOEpatents

    Hurley, J.P.; McCollor, D.P.; Selle, S.J.

    1994-07-26

    A long duration ash probe includes a pressure shell connected to a port in a combustor with a sample coupon mounted on a retractable carriage so as to retract the sample coupon within the pressure shell during soot blowing operation of the combustor. A valve mounted at the forward end of the pressure shell is selectively closeable to seal the sample coupon within the shell, and a heating element in the shell is operable to maintain the desired temperature of the sample coupon while retracted within the shell. The carriage is operably mounted on a pair of rails within the shell for longitudinal movement within the shell. A hollow carrier tube connects the hollow cylindrical sample coupon to the carriage, and extends through the carriage and out the rearward end thereof. Air lines are connected to the rearward end of the carrier tube and are operable to permit coolant to pass through the air lines and thence through the carrier tube to the sample coupon so as to cool the sample coupon. 8 figs.

  13. Long duration ash probe

    DOEpatents

    Hurley, John P.; McCollor, Don P.; Selle, Stanley J.

    1994-01-01

    A long duration ash probe includes a pressure shell connected to a port in a combustor with a sample coupon mounted on a retractable carriage so as to retract the sample coupon within the pressure shell during sootblowing operation of the combustor. A valve mounted at the forward end of the pressure shell is selectively closeable to seal the sample coupon within the shell, and a heating element in the shell is operable to maintain the desired temperature of the sample coupon while retracted within the shell. The carriage is operably mounted on a pair of rails within the shell for longitudinal movement within the shell. A hollow carrier tube connects the hollow cylindrical sample coupon to the carriage, and extends through the carriage and out the rearward end thereof. Air lines are connected to the rearward end of the carrier tube and are operable to permit coolant to pass through the air lines and thence through the carrier tube to the sample coupon so as to cool the sample coupon.

  14. Bacterial communities in commercial aircraft high-efficiency particulate air (HEPA) filters assessed by PhyloChip analysis.

    PubMed

    Korves, T M; Piceno, Y M; Tom, L M; Desantis, T Z; Jones, B W; Andersen, G L; Hwang, G M

    2013-02-01

    Air travel can rapidly transport infectious diseases globally. To facilitate the design of biosensors for infectious organisms in commercial aircraft, we characterized bacterial diversity in aircraft air. Samples from 61 aircraft high-efficiency particulate air (HEPA) filters were analyzed with a custom microarray of 16S rRNA gene sequences (PhyloChip), representing bacterial lineages. A total of 606 subfamilies from 41 phyla were detected. The most abundant bacterial subfamilies included bacteria associated with humans, especially skin, gastrointestinal and respiratory tracts, and with water and soil habitats. Operational taxonomic units that contain important human pathogens as well as their close, more benign relatives were detected. When compared to 43 samples of urban outdoor air, aircraft samples differed in composition, with higher relative abundance of Firmicutes and Gammaproteobacteria lineages in aircraft samples, and higher relative abundance of Actinobacteria and Betaproteobacteria lineages in outdoor air samples. In addition, aircraft and outdoor air samples differed in the incidence of taxa containing human pathogens. Overall, these results demonstrate that HEPA filter samples can be used to deeply characterize bacterial diversity in aircraft air and suggest that the presence of close relatives of certain pathogens must be taken into account in probe design for aircraft biosensors. A biosensor that could be deployed in commercial aircraft would be required to function at an extremely low false alarm rate, making an understanding of microbial background important. This study reveals a diverse bacterial background present on aircraft, including bacteria closely related to pathogens of public health concern. Furthermore, this aircraft background is different from outdoor air, suggesting different probes may be needed to detect airborne contaminants to achieve minimal false alarm rates. This study also indicates that aircraft HEPA filters could be used with other molecular techniques to further characterize background bacteria and in investigations in the wake of a disease outbreak. © 2012 John Wiley & Sons A/S.

  15. DC thermal microscopy: study of the thermal exchange between a probe and a sample

    NASA Astrophysics Data System (ADS)

    Gomès, Séverine; Trannoy, Nathalie; Grossel, Philippe

    1999-09-01

    The Scanning Thermal Microscopic (SThM) probe, a thin Pt resistance wire, is used in the constant force mode of an Atomic Force Microscope (AFM). Thermal signal-distance curves for differing degrees of relative humidity and different surrounding gases demonstrate how heat is transferred from the heated probe to the sample. It is known that water affects atomic force microscopy and thermal measurements; we report here on the variation of the water interaction on the thermal coupling versus the probe temperature. Measurements were taken for several solid materials and show that the predominant heat transfer mechanisms taking part in thermal coupling are dependent on the thermal conductivity of the sample. The results have important implications for any quantitative interpretation of thermal images made in air.

  16. Results and Conclusions from the NASA Isokinetic Total Water Content Probe 2009 IRT Test

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew; Brinker, David

    2010-01-01

    The NASA Glenn Research Center has developed and tested a Total Water Content Isokinetic Sampling Probe. Since, by its nature, it is not sensitive to cloud water particle phase nor size, it is particularly attractive to support super-cooled large droplet and high ice water content aircraft icing studies. The instrument comprises the Sampling Probe, Sample Flow Control, and Water Vapor Measurement subsystems. Results and conclusions are presented from probe tests in the NASA Glenn Icing Research Tunnel (IRT) during January and February 2009. The use of reference probe heat and the control of air pressure in the water vapor measurement subsystem are discussed. Several run-time error sources were found to produce identifiable signatures that are presented and discussed. Some of the differences between measured Isokinetic Total Water Content Probe and IRT calibration seems to be caused by tunnel humidification and moisture/ice crystal blow around. Droplet size, airspeed, and liquid water content effects also appear to be present in the IRT calibration. Based upon test results, the authors provide recommendations for future Isokinetic Total Water Content Probe development.

  17. Correction of Anisokinetic Sampling Errors.

    ERIC Educational Resources Information Center

    Nelson, William G.

    Gas flow patterns at a sampling nozzle are described in this presentation for the 12th Conference on Methods in Air Pollution and Industrial Hygiene Studies, University of Southern California, April, 1971. Three situations for sampling velocity are illustrated and analyzed, where the flow upstream of a sampling probe is: (1) equal to free stream…

  18. Magnetic induction spectroscopy (MIS)-probe design for cervical tissue measurements.

    PubMed

    Wang, Jau-Yi; Healey, Timothy; Barker, Anthony; Brown, Brian; Monk, Chris; Anumba, Dilly

    2017-05-01

    Gradiometers have the advantage of increasing measuring sensitivity, which is particularly useful in magnetic induction spectroscopy (MIS) for bio-impedance measurements. Traditional gradiometers use a pair of field sensing coils equally distant and on opposite sides of a drive coil, which provides high immunity to interference. In this paper, a ferrite-cored coaxial gradiometer probe of 29 mm diameter has been developed for measuring the impedance spectra of cervical tissues in vivo. It consists of a ferrite rod with outer ferrite confinement screening in order to eliminate the signals from surrounding tissue. The magnetic screening efficiency was compared with an air-cored gradiometer probe. For both gradiometer probes, a drive coil and two sensing coils were wound on a borosilicate glass former aligned coaxially with two sensing coils equidistant from the drive coil. The signal sensitivity of those two MIS gradiometers has been measured using saline samples with a conductivity range between 0.1 and 1.1 S m -1 . Finite element methods using COMSOL Multiphysics have been used to simulate the distribution of sensitivity to conductivity over the face of each probe and with depth. The ferrite-cored probe has a sensitivity confined to the volume defined by the gap between the ferrite core and outer tube of ferrite while the air-cored probe without any magnetic shielding had a wide sensitivity over the face and the side of the probe. Four saline samples and one of distilled water with conductivities from 0.1 to 1.1 S m -1 have been used to make conductivity measurements at frequencies of 50 kHz, 100 kHz, and 300 kHz. The measurement accuracy of the air-cored MIS probe was 0.09 S m -1 at 50 kHz, improving to 0.05 S m -1 at 300 kHz. For the ferrite-cored MIS probe, the measurement accuracy was 0.28 S m -1 at 50 kHz, improving to 0.04 S m -1 at 300 kHz. In vivo measurements on human hand have been performed using both types of gradiometers and the conductivity is consistent with reported data.

  19. An environmental transfer hub for multimodal atom probe tomography.

    PubMed

    Perea, Daniel E; Gerstl, Stephan S A; Chin, Jackson; Hirschi, Blake; Evans, James E

    2017-01-01

    Environmental control during transfer between instruments is required for samples sensitive to air or thermal exposure to prevent morphological or chemical changes prior to analysis. Atom probe tomography is a rapidly expanding technique for three-dimensional structural and chemical analysis, but commercial instruments remain limited to loading specimens under ambient conditions. In this study, we describe a multifunctional environmental transfer hub allowing controlled cryogenic or room-temperature transfer of specimens under atmospheric or vacuum pressure conditions between an atom probe and other instruments or reaction chambers. The utility of the environmental transfer hub is demonstrated through the acquisition of previously unavailable mass spectral analysis of an intact organic molecule made possible via controlled cryogenic transfer into the atom probe using the hub. The ability to prepare and transfer specimens in precise environments promises a means to access new science across many disciplines from untainted samples and allow downstream time-resolved in situ atom probe studies.

  20. Spatial-scanning hyperspectral imaging probe for bio-imaging applications

    NASA Astrophysics Data System (ADS)

    Lim, Hoong-Ta; Murukeshan, Vadakke Matham

    2016-03-01

    The three common methods to perform hyperspectral imaging are the spatial-scanning, spectral-scanning, and snapshot methods. However, only the spectral-scanning and snapshot methods have been configured to a hyperspectral imaging probe as of today. This paper presents a spatial-scanning (pushbroom) hyperspectral imaging probe, which is realized by integrating a pushbroom hyperspectral imager with an imaging probe. The proposed hyperspectral imaging probe can also function as an endoscopic probe by integrating a custom fabricated image fiber bundle unit. The imaging probe is configured by incorporating a gradient-index lens at the end face of an image fiber bundle that consists of about 50 000 individual fiberlets. The necessary simulations, methodology, and detailed instrumentation aspects that are carried out are explained followed by assessing the developed probe's performance. Resolution test targets such as United States Air Force chart as well as bio-samples such as chicken breast tissue with blood clot are used as test samples for resolution analysis and for performance validation. This system is built on a pushbroom hyperspectral imaging system with a video camera and has the advantage of acquiring information from a large number of spectral bands with selectable region of interest. The advantages of this spatial-scanning hyperspectral imaging probe can be extended to test samples or tissues residing in regions that are difficult to access with potential diagnostic bio-imaging applications.

  1. 40 CFR 1065.341 - CVS and batch sampler verification (propane check).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... contamination. Otherwise, zero, span, and verify contamination of the HC sampling system, as follows: (1) Select... flow rates. (2) Zero the HC analyzer using zero air introduced at the analyzer port. (3) Span the HC analyzer using C3H8 span gas introduced at the analyzer port. (4) Overflow zero air at the HC probe inlet...

  2. 40 CFR 1065.341 - CVS and batch sampler verification (propane check).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... contamination. Otherwise, zero, span, and verify contamination of the HC sampling system, as follows: (1) Select... flow rates. (2) Zero the HC analyzer using zero air introduced at the analyzer port. (3) Span the HC analyzer using C3H8 span gas introduced at the analyzer port. (4) Overflow zero air at the HC probe inlet...

  3. The role of probe oxide in local surface conductivity measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnett, C. J.; Kryvchenkova, O.; Wilson, L. S. J.

    2015-05-07

    Local probe methods can be used to measure nanoscale surface conductivity, but some techniques including nanoscale four point probe rely on at least two of the probes forming the same low resistivity non-rectifying contact to the sample. Here, the role of probe shank oxide has been examined by carrying out contact and non-contact I V measurements on GaAs when the probe oxide has been controllably reduced, both experimentally and in simulation. In contact, the barrier height is pinned but the barrier shape changes with probe shank oxide dimensions. In non-contact measurements, the oxide modifies the electrostatic interaction inducing a quantummore » dot that alters the tunneling behavior. For both, the contact resistance change is dependent on polarity, which violates the assumption required for four point probe to remove probe contact resistance from the measured conductivity. This has implications for all nanoscale surface probe measurements and macroscopic four point probe, both in air and vacuum, where the role of probe oxide contamination is not well understood.« less

  4. AFM nanoscale indentation in air of polymeric and hybrid materials with highly different stiffness

    NASA Astrophysics Data System (ADS)

    Suriano, Raffaella; Credi, Caterina; Levi, Marinella; Turri, Stefano

    2014-08-01

    In this study, nanomechanical properties of a variety of polymeric materials was investigated by means of AFM. In particular, selecting different AFM probes, poly(methyl methacrylate) (PMMA), polydimethylsiloxane (PDMS) bulk samples, sol-gel hybrid thin films and hydrated hyaluronic acid hydrogels were indented in air to determine the elastic modulus. The force-distance curves and the indentation data were found to be greatly affected by the cantilever stiffness and by tip geometry. AFM indentation tests show that the choice of the cantilever spring constant and of tip shape is crucially influenced by elastic properties of samples. When adhesion-dominated interactions occur between the tip and the surface of samples, force-displacement curves reveal that a suitable functionalization of AFM probes allows the control of such interactions and the extraction of Young' modulus from AFM curves that would be otherwise unfeasible. By applying different mathematical models depending on AFM probes and materials under investigation, the values of Young's modulus were obtained and compared to those measured by rheological and dynamic mechanical analysis or to literature data. Our results show that a wide range of elastic moduli (10 kPa-10 GPa) can be determined by AFM in good agreement with those measured by conventional macroscopic measurements.

  5. The Covariance between Air Pollution Annoyance and Noise Annoyance, and Its Relationship with Health-Related Quality of Life.

    PubMed

    Shepherd, Daniel; Dirks, Kim; Welch, David; McBride, David; Landon, Jason

    2016-08-06

    Air pollution originating from road traffic is a known risk factor of respiratory and cardiovascular disease (both in terms of chronic and acute effects). While adverse effects on cardiovascular health have also been linked with noise (after controlling for air pollution), noise exposure has been commonly linked to sleep impairment and negative emotional reactions. Health is multi-faceted, both conceptually and operationally; Health-Related Quality of Life (HRQOL) is one of many measures capable of probing health. In this study, we examine pre-collected data from postal surveys probing HRQOL obtained from a variety of urban, suburban, and rural contexts across the North Island of New Zealand. Analyses focus on the covariance between air pollution annoyance and noise annoyances, and their independent and combined effects on HRQOL. Results indicate that the highest ratings of air pollution annoyance and noise annoyances were for residents living close to the motorway, while the lowest were for rural residents. Most of the city samples indicated no significant difference between air pollution- and noise-annoyance ratings, and of all of the correlations between air pollution- and noise-annoyance, the highest were found in the city samples. These findings suggest that annoyance is driven by exposure to environmental factors and not personality characteristics. Analysis of HRQOL indicated that air pollution annoyance predicts greater variability in the physical HRQOL domain while noise annoyance predicts greater variability in the psychological, social and environmental domains. The lack of an interaction effect between air pollution annoyance and noise annoyance suggests that air pollution and noise impact on health independently. These results echo those obtained from objective measures of health and suggest that mitigation of traffic effects should address both air and noise pollution.

  6. The Covariance between Air Pollution Annoyance and Noise Annoyance, and Its Relationship with Health-Related Quality of Life

    PubMed Central

    Shepherd, Daniel; Dirks, Kim; Welch, David; McBride, David; Landon, Jason

    2016-01-01

    Air pollution originating from road traffic is a known risk factor of respiratory and cardiovascular disease (both in terms of chronic and acute effects). While adverse effects on cardiovascular health have also been linked with noise (after controlling for air pollution), noise exposure has been commonly linked to sleep impairment and negative emotional reactions. Health is multi-faceted, both conceptually and operationally; Health-Related Quality of Life (HRQOL) is one of many measures capable of probing health. In this study, we examine pre-collected data from postal surveys probing HRQOL obtained from a variety of urban, suburban, and rural contexts across the North Island of New Zealand. Analyses focus on the covariance between air pollution annoyance and noise annoyances, and their independent and combined effects on HRQOL. Results indicate that the highest ratings of air pollution annoyance and noise annoyances were for residents living close to the motorway, while the lowest were for rural residents. Most of the city samples indicated no significant difference between air pollution- and noise-annoyance ratings, and of all of the correlations between air pollution- and noise-annoyance, the highest were found in the city samples. These findings suggest that annoyance is driven by exposure to environmental factors and not personality characteristics. Analysis of HRQOL indicated that air pollution annoyance predicts greater variability in the physical HRQOL domain while noise annoyance predicts greater variability in the psychological, social and environmental domains. The lack of an interaction effect between air pollution annoyance and noise annoyance suggests that air pollution and noise impact on health independently. These results echo those obtained from objective measures of health and suggest that mitigation of traffic effects should address both air and noise pollution. PMID:27509512

  7. Multi-hole pressure probes to air data system for subsonic small-scale air vehicles

    NASA Astrophysics Data System (ADS)

    Shevchenko, A. M.; Berezin, D. R.; Puzirev, L. N.; Tarasov, A. Z.; Kharitonov, A. M.; Shmakov, A. S.

    2016-10-01

    A brief review of research performed to develop multi-hole probes to measure of aerodynamic angles, dynamic head, and static pressure of a flying vehicle. The basis of these works is the application a well-known classical multi-hole pressure probe technique of measuring of a 3D flow to use in the air data system. Two multi-hole pressure probes with spherical and hemispherical head to air-data system for subsonic small-scale vehicles have been developed. A simple analytical probe model with separation of variables is proposed. The probes were calibrated in the wind tunnel, one of them is in-flight tested.

  8. Calibration of NASA Turbulent Air Motion Measurement System

    NASA Technical Reports Server (NTRS)

    Barrick, John D. W.; Ritter, John A.; Watson, Catherine E.; Wynkoop, Mark W.; Quinn, John K.; Norfolk, Daniel R.

    1996-01-01

    A turbulent air motion measurement system (TAMMS) was integrated onboard the Lockheed 188 Electra airplane (designated NASA 429) based at the Wallops Flight Facility in support of the NASA role in global tropospheric research. The system provides air motion and turbulence measurements from an airborne platform which is capable of sampling tropospheric and planetary boundary-layer conditions. TAMMS consists of a gust probe with free-rotating vanes mounted on a 3.7-m epoxy-graphite composite nose boom, a high-resolution inertial navigation system (INS), and data acquisition system. A variation of the tower flyby method augmented with radar tracking was implemented for the calibration of static pressure position error and air temperature probe. Additional flight calibration maneuvers were performed remote from the tower in homogeneous atmospheric conditions. System hardware and instrumentation are described and the calibration procedures discussed. Calibration and flight results are presented to illustrate the overall ability of the system to determine the three-component ambient wind fields during straight and level flight conditions.

  9. Modeling and Evaluating the Environmental Degradation of UHTCs under Hypersonic Flow (Preprint)

    DTIC Science & Technology

    2014-02-01

    nozzle resulting in a supersonic flow at Mach 1.8 to 15 Approved for public release; distribution unlimited. Wiley STM / Fahrenholtz, Wuchina, Lee, and...employs an exit nozzle before reaching a probe housing. It is within the probe housing that leading edge samples were introduced. The gas composition...from air, and the actual gas flow velocities are not sufficient to cause dissociation of gases behind the bow shock. 4 Approved for public release

  10. A nuclear magnetic resonance spectrometer concept for hermetically sealed magic angle spinning investigations on highly toxic, radiotoxic, or air sensitive materials.

    PubMed

    Martel, L; Somers, J; Berkmann, C; Koepp, F; Rothermel, A; Pauvert, O; Selfslag, C; Farnan, I

    2013-05-01

    A concept to integrate a commercial high-resolution, magic angle spinning nuclear magnetic resonance (MAS-NMR) probe capable of very rapid rotation rates (70 kHz) in a hermetically sealed enclosure for the study of highly radiotoxic materials has been developed and successfully demonstrated. The concept centres on a conventional wide bore (89 mm) solid-state NMR magnet operating with industry standard 54 mm diameter probes designed for narrow bore magnets. Rotor insertion and probe tuning take place within a hermetically enclosed glovebox, which extends into the bore of the magnet, in the space between the probe and the magnet shim system. Oxygen-17 MAS-NMR measurements demonstrate the possibility of obtaining high quality spectra from small sample masses (~10 mg) of highly radiotoxic material and the need for high spinning speeds to improve the spectral resolution when working with actinides. The large paramagnetic susceptibility arising from actinide paramagnetism in (Th(1-x)U(x))O2 solid solutions gives rise to extensive spinning sidebands and poor resolution at 15 kHz, which is dramatically improved at 55 kHz. The first (17)O MAS-NMR measurements on NpO(2+x) samples spinning at 55 kHz are also reported. The glovebox approach developed here for radiotoxic materials can be easily adapted to work with other hazardous or even air sensitive materials.

  11. Air Force Air Refueling: The KC-X Aircraft Acquisition Program

    DTIC Science & Technology

    2008-08-04

    7 Boom vs . Probe and Drogue Air Refueling . . . . . . . . . . . . . . . . . . . . . . 7 Capacity vs ...consideration must be given to a few key attributes. For example, a tanker aircraft’s method of dispensing fuel – flying boom vs . probe and drogue – is a key...flight, which can add considerable flexibility to certain air operations. Boom vs . Probe and Drogue Air Refueling.32 Aircraft can be equipped to be

  12. Open Probe fast GC-MS - combining ambient sampling ultra-fast separation and in-vacuum ionization for real-time analysis.

    PubMed

    Keshet, U; Alon, T; Fialkov, A B; Amirav, A

    2017-07-01

    An Open Probe inlet was combined with a low thermal mass ultra-fast gas chromatograph (GC), in-vacuum electron ionization ion source and a mass spectrometer (MS) of GC-MS for obtaining real-time analysis with separation. The Open Probe enables ambient sampling via sample vaporization in an oven that is open to room air, and the ultra-fast GC provides ~30-s separation, while if no separation is required, it can act as a transfer line with 2 to 3-s sample transfer time. Sample analysis is as simple as touching the sample, pushing the sample holder into the Open Probe oven and obtaining the results in 30 s. The Open Probe fast GC was mounted on a standard Agilent 7890 GC that was coupled with an Agilent 5977A MS. Open Probe fast GC-MS provides real-time analysis combined with GC separation and library identification, and it uses the low-cost MS of GC-MS. The operation of Open Probe fast GC-MS is demonstrated in the 30-s separation and 50-s full analysis cycle time of tetrahydrocannabinol and cannabinol in Cannabis flower, sub 1-min analysis of trace trinitrotoluene transferred from a finger onto a glass surface, vitamin E in canola oil, sterols in olive oil, polybrominated flame retardants in plastics, alprazolam in Xanax drug pill and free fatty acids and cholesterol in human blood. The extrapolated limit of detection for pyrene is <1 fg, but the concentration is too high and the software noise calculation is untrustworthy. The broad range of compounds amenable for analysis is demonstrated in the analysis of reserpine. The possible use with alternate standard GC-MS and Open Probe fast GC-MS is demonstrated in the analysis of heroin in its street drug powder. The use of Open Probe with the fast GC acting as a transfer line is demonstrated in <10-s analysis without separation of ibuprofen and estradiol. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Turbulence measurements in axisymmetric jets of air and helium. I - Air jet. II - Helium jet

    NASA Technical Reports Server (NTRS)

    Panchapakesan, N. R.; Lumley, J. L.

    1993-01-01

    Results are presented of measurements on turbulent round jets of air and of helium of the same nozzle momentum efflux, using, for the air jets, x-wire hot-wire probes mounted on a moving shuttle and, for He jets, a composite probe consisting of an interference probe of the Way-Libby type and an x-probe. Current models for scalar triple moments were evaluated. It was found that the performance of the model termed the Full model, which includes all terms except advection, was very good for both the air and the He jets.

  14. USAF/SCEEE (United States Air Force/Southeastern Center for Electrical Engineering Education) Research Initiation Program Research Reports. Volume 1.

    DTIC Science & Technology

    1985-03-01

    comparison of samples would be difficult. (5) A restrictive random sample allows the sample to be irregularly spaced throughout the auxiliary variable space ...looking or downward-looking probes and the very low background radiation from space contribute to high signal-to-noise ratio and allow the...sunshine and earthshine, chemiluminescent processes, and radiation to space , in addition to collisional processes, determine the vibrational

  15. Analysis of air-, moisture- and solvent-sensitive chemical compounds by mass spectrometry using an inert atmospheric pressure solids analysis probe.

    PubMed

    Mosely, Jackie A; Stokes, Peter; Parker, David; Dyer, Philip W; Messinis, Antonis M

    2018-02-01

    A novel method has been developed that enables chemical compounds to be transferred from an inert atmosphere glove box and into the atmospheric pressure ion source of a mass spectrometer whilst retaining a controlled chemical environment. This innovative method is simple and cheap to implement on some commercially available mass spectrometers. We have termed this approach inert atmospheric pressure solids analysis probe ( iASAP) and demonstrate the benefit of this methodology for two air-/moisture-sensitive chemical compounds whose characterisation by mass spectrometry is now possible and easily achieved. The simplicity of the design means that moving between iASAP and standard ASAP is straightforward and quick, providing a highly flexible platform with rapid sample turnaround.

  16. Rapid non-contact inspection of composite ailerons using air-coupled ultrasound

    NASA Astrophysics Data System (ADS)

    Panda, Rabi Sankar; Karpenko, Oleksii; Udpa, Lalita; Haq, Mahmoodul; Rajagopal, Prabhu; Balasubramaniam, Krishnan

    2016-02-01

    This paper demonstrates an approach for rapid non-contact air-coupled ultrasonic inspection of composite ailerons with complex cross-sectional profile including thickness changes, curvature and the presence of a number of stiffeners. Low-frequency plate guided ultrasonic modes are used in B-scan mode for the measurements in pitch-catch mode. Appropriate probe holder angles suitable for generating and receiving lower order guided wave modes are discussed. Different embodiments of the pitch-catch tandem positions along and across stiffener and curved regions of the test sample enable a rapid test campaign capturing the feature-rich sample profile. Techniques to distinguish special features in the stiffener are presented.

  17. Meteorological and operational aspects of 46 clear air turbulence sampling missions with an instrument B-57B aircraft. Volume 1: Program summary

    NASA Technical Reports Server (NTRS)

    Davis, R. E.; Champine, R. A.; Ehernberger, L. J.

    1979-01-01

    The results of 46 clear air turbulence (CAT) probing missions conducted with an extensively instrumented B-57B aircraft are summarized. Turbulence samples were obtained under diverse conditions including mountain waves, jet streams, upper level fronts and troughs, and low altitude mechanical and thermal turbulence. CAT was encouraged on 20 flights comprising 77 data runs. In all, approximately 4335 km were flown in light turbulence, 1415 km in moderate turbulence, and 255 km in severe turbulence during the program. The flight planning, operations, and turbulence forecasting aspects conducted with the B-57B aircraft are presented.

  18. TRIZ Innovative Technology of Design Used in the Development of a Technology Roadmap for Space Soil Penetrator Probes Including a Mini Air Bag Concept

    NASA Technical Reports Server (NTRS)

    Blusiu, Julian O.

    1997-01-01

    Many Future NASA missions will be designed to robotically explore planets, moons and asteroids by collecting soil samples and conducting in-situ analyses to establish ground composition and look for the presence of specific components.

  19. High Performance Polymer Film Dielectrics for Air Force Wide-Temperature Power Electronics Applications (Preprint)

    DTIC Science & Technology

    2009-02-01

    with a combination of a turbo pump and a scroll pump system. The sample probing is accomplished with 3-axis molybdenum probing rod test fixture...thin films were carefully isolated by the addition of a non- solvent such as de-ionized, distilled water. The films were dried at ~ 0.1 torr vacuum ...1000ºC. The test station has a 100V/10A power supply, a temperature controller as well as a vacuum controller. A vacuum of < 1 µ torr is achieved

  20. Low cost biosensor-based molecular differential diagnosis of α-thalassemia (Southeast Asia deletion).

    PubMed

    Wangmaung, Nantawan; Promptmas, Chamras; Chomean, Sirinart; Sanchomphu, Chularat; Ittarat, Wanida

    2013-06-01

    Thalassemias are genetic hematologic diseases which the homozygous form of α-thalassemia can cause either death in utero or shortly after birth. It is necessary to accurately identify high-risk heterozygous couples. We developed a quartz crystal microbalance (QCM) to identify the abnormal gene causing the commonly found α-thalassemia1, [Southeast Asia (SEA) deletion]. This work is an improved method of our previous study by reducing both production cost and analysis time. A silver electrode on the QCM surface was immobilized with a biotinylated probe. The α-globin gene fragment was amplified and hybridized with the probe. Hybridization was indicated by changes of quartz oscillation. Each drying step was improved by using an air pump for 30 min instead of the overnight air dry. The diagnostic potency of the silver QCM was evaluated using 70 suspected samples with microcytic hypochromic erythrocytes. The silver QCM could clearly identify samples with abnormal α-globin genes, either homozygous or heterozygous, from normal samples. Thirteen out of 70 blood samples were identified as carrier of α-thalassemia1 (SEA deletion). Results were consistent with the standard agarose gel electrophoresis. Using silver instead of gold QCM could reduce the production expense 10-fold. An air pump drying the QCM surface could reduce the analysis time from 3 days to 4 h. The silver thalassemic QCM was specific, sensitive, rapid, cheap and field applicable. It could be used as a one-step definite diagnosis of α-thalassemia1 (SEA deletion) with no need for the preliminary screening test.

  1. Astigmatism corrected common path probe for optical coherence tomography.

    PubMed

    Singh, Kanwarpal; Yamada, Daisuke; Tearney, Guillermo

    2017-03-01

    Optical coherence tomography (OCT) catheters for intraluminal imaging are subject to various artifacts due to reference-sample arm dispersion imbalances and sample arm beam astigmatism. The goal of this work was to develop a probe that minimizes such artifacts. Our probe was fabricated using a single mode fiber at the tip of which a glass spacer and graded index objective lens were spliced to achieve the desired focal distance. The signal was reflected using a curved reflector to correct for astigmatism caused by the thin, protective, transparent sheath that surrounds the optics. The probe design was optimized using Zemax, a commercially available optical design software. Common path interferometric operation was achieved using Fresnel reflection from the tip of the focusing graded index objective lens. The performance of the probe was tested using a custom designed spectrometer-based OCT system. The probe achieved an axial resolution of 15.6 μm in air, a lateral resolution 33 μm, and a sensitivity of 103 dB. A scattering tissue phantom was imaged to test the performance of the probe for astigmatism correction. Images of the phantom confirmed that this common-path, astigmatism-corrected OCT imaging probe had minimal artifacts in the axial, and lateral dimensions. In this work, we developed an astigmatism-corrected, common path probe that minimizes artifacts associated with standard OCT probes. This design may be useful for OCT applications that require high axial and lateral resolutions. Lasers Surg. Med. 49:312-318, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Modulation of resistive switching characteristics for individual BaTiO3 microfiber by surface oxygen vacancies

    NASA Astrophysics Data System (ADS)

    Miao, Zhilei; Chen, Lei; Zhou, Fang; Wang, Qiang

    2018-01-01

    Different from traditional thin-film BaTiO3 (BTO) RRAM device with planar structure, individual microfiber-shaped RRAM device, showing promising application potentials in the micro-sized non-volatile memory system, has not been investigated so far to demonstrate resistive switching behavior. In this work, individual sol-gel BTO microfiber has been formed using the draw-bench method, followed by annealing in different atmospheres of air and argon, respectively. The resistive switching characteristics of the individual BTO microfiber have been investigated by employing double-probe SEM measurement system, which shows great convenience to test local electrical properties by modulating the contact sites between the W probes and the BTO microfiber. For the sample annealed in air, the average resistive ON/OFF ratio is as high as 108, enhanced about four orders in comparison with the counterpart that annealed in Argon. For the sample annealed in argon ambience, the weakened resistive ON/OFF ratio can be attributed to the increased presence of oxygen vacancies in the surface of BTO fibers, and the underlying electrical conduction mechanisms are also discussed.

  3. A simple and sensitive fluorescence method for the determination of trace ozone in air using acridine red as a probe.

    PubMed

    Liu, Qingye; Lin, Chenyin; Zhang, Xinghui; Wen, Guiqing; Liang, Aihui

    2014-12-01

    The ozone in an air sample was trapped by H3 BO3 -LK solution to produce iodine (I2) that interacted with excess I(-) to form I3(-). In pH 4.0 acetate buffer solutions, the I3(-) reacted with acridine red to form acridine red-I3 ion association particles that resulted in the fluorescence peak decreased at 553 nm. The decreased value ΔF553 nm is linear to the O3 concentration in the range 0.08-53.3 × 10(-6) mol/L, with a detection limit of 4 × 10(-8) mol/L. This fluorescence method was used to determine ozone in air samples, and the results were in agreement with that of indigo carmine spectrophotometry. Copyright © 2014 John Wiley & Sons, Ltd.

  4. Performance of a combined three-hole conductivity probe for void fraction and velocity measurement in air-water flows

    NASA Astrophysics Data System (ADS)

    Borges, João Eduardo; Pereira, Nuno H. C.; Matos, Jorge; Frizell, Kathleen H.

    2010-01-01

    The development of a three-hole pressure probe with back-flushing combined with a conductivity probe, used for measuring simultaneously the magnitude and direction of the velocity vector in complex air-water flows, is described in this paper. The air-water flows envisaged in the current work are typically those occurring around the rotors of impulse hydraulic turbines (like the Pelton and Cross-Flow turbines), where the flow direction is not known prior to the data acquisition. The calibration of both the conductivity and three-hole pressure components of the combined probe in a rig built for the purpose, where the probe was placed in a position similar to that adopted for the flow measurements, will be reported. After concluding the calibration procedure, the probe was utilized in the outside region of a Cross-Flow turbine rotor. The experimental results obtained in the present study illustrate the satisfactory performance of the combined probe, and are encouraging toward its use for characterizing the velocity field of other complex air-water flows.

  5. New insight into the distribution pattern, levels, and risk diagnosis of FRs in indoor and outdoor air at low- and high-altitude zones of Pakistan: Implications for sources and exposure.

    PubMed

    Khan, Muhammad Usman; Besis, Athanasios; Li, Jun; Zhang, Gan; Malik, Riffat Naseem

    2017-10-01

    Data regarding flame retardants (FRs) in indoor and outdoor air and their exposure to population are scarce and especially unknown in the case of Pakistan. The current study was designed to probe FR concentrations and distribution pattern in indoor and outdoor air at different altitudinal zones (DAZs) of Pakistan with special emphasis on their risk to the exposed population. In this study, passive air samplers for the purpose of FR deposition were deployed in indoor and outdoor air at the industrial, rural, and background/colder zones/sites. All the indoor and outdoor air samples collected from DAZs were analyzed for the target FRs (9.30-472.30 pg/m 3 ), showing a decreasing trend as follows: ∑NBFRs > ∑PBDEs > ∑DP. However, significant correlations among FRs in the indoor and outdoor air at DAZs signified a similar source of FR origin that is used in different consumer goods. Furthermore, air mass trajectories revealed that movement of air over industrial area sources influenced concentrations of FRs at rural sites. The FR concentrations, estimated daily intake (EDI) and the hazard quotient (HQ), were recorded to be higher in toddlers than those in adults. In addition, indoor air samples showed higher FR levels, EDI and HQ, than outdoor air samples. An elevated FR concentrations and their prevalent exposure risks were recorded in the industrial zones followed by rural and background zones. The HQ for BDE-47 and BDE-99 in the indoor and outdoor air samples at different industrial and rural sites were recorded to be >1 in toddlers and adults, this further warrants a health risk in the population. However, FR investigation in indoor and outdoor air samples will provide a baseline data in Pakistan to take further steps by the government and agencies for its implementations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The lung cancer breath signature: a comparative analysis of exhaled breath and air sampled from inside the lungs

    NASA Astrophysics Data System (ADS)

    Capuano, Rosamaria; Santonico, Marco; Pennazza, Giorgio; Ghezzi, Silvia; Martinelli, Eugenio; Roscioni, Claudio; Lucantoni, Gabriele; Galluccio, Giovanni; Paolesse, Roberto; di Natale, Corrado; D'Amico, Arnaldo

    2015-11-01

    Results collected in more than 20 years of studies suggest a relationship between the volatile organic compounds exhaled in breath and lung cancer. However, the origin of these compounds is still not completely elucidated. In spite of the simplistic vision that cancerous tissues in lungs directly emit the volatile metabolites into the airways, some papers point out that metabolites are collected by the blood and then exchanged at the air-blood interface in the lung. To shed light on this subject we performed an experiment collecting both the breath and the air inside both the lungs with a modified bronchoscopic probe. The samples were measured with a gas chromatography-mass spectrometer (GC-MS) and an electronic nose. We found that the diagnostic capability of the electronic nose does not depend on the presence of cancer in the sampled lung, reaching in both cases an above 90% correct classification rate between cancer and non-cancer samples. On the other hand, multivariate analysis of GC-MS achieved a correct classification rate between the two lungs of only 76%. GC-MS analysis of breath and air sampled from the lungs demonstrates a substantial preservation of the VOCs pattern from inside the lung to the exhaled breath.

  7. Forensic analysis of laser printed ink by X-ray fluorescence and laser-excited plume fluorescence.

    PubMed

    Chu, Po-Chun; Cai, Bruno Yue; Tsoi, Yeuk Ki; Yuen, Ronald; Leung, Kelvin S Y; Cheung, Nai-Ho

    2013-05-07

    We demonstrated a minimally destructive two-tier approach for multielement forensic analysis of laser-printed ink. The printed document was first screened using a portable-X-ray fluorescence (XRF) probe. If the results were not conclusive, a laser microprobe was then deployed. The laser probe was based on a two-pulse scheme: the first laser pulse ablated a thin layer of the printed ink; the second laser pulse at 193 nm induced multianalytes in the desorbed ink to fluoresce. We analyzed four brands of black toners. The toners were printed on paper in the form of patches or letters or overprinted on another ink. The XRF probe could sort the four brands if the printed letters were larger than font 20. It could not tell the printing sequence in the case of overprints. The laser probe was more discriminatory; it could sort the toner brands and reveal the overprint sequence regardless of font size while the sampled area was not visibly different from neighboring areas even under the microscope. In terms of general analytical performance, the laser probe featured tens of micrometer lateral resolution and tens to hundreds of nm depth resolution and atto-mole mass detection limits. It could handle samples of arbitrary size and shape and was air compatible, and no sample pretreatment was necessary. It will prove useful whenever high-resolution and high sensitivity 3D elemental mapping is required.

  8. Photothermal method for in situ microanalysis of the chemical composition of coal samples

    DOEpatents

    Amer, Nabil M.

    1986-01-01

    Successive minute regions (13) along a scan path on a coal sample (11) are individually analyzed, at a series of different depths if desired, to determine chemical composition including the locations, sizes and distributions of different maceral inclusions (12). A sequence of infrared light pulses (17) of progressively changing wavelengths is directed into each minute region (13) and a probe light beam (22) is directed along the sample surface (21) adjacent the region (13). Infrared wavelengths at which strong absorption occurs in the region (13) are identified by detecting the resulting deflections (.phi.) of the probe beam (22) caused by thermally induced index of refraction changes in the air or other medium (19) adjacent the region (13). The detected peak absorption wavelengths are correlated with known characteristic peak absorption wavelengths of specific coal constituents to identify the composition of each such minute region (13) of the sample (11). The method enables rapid, convenient and non-destructive analyses of coal specimens to facilitate mining, processing and utilization of coals.

  9. Photothermal method for in situ microanalysis of the chemical composition of coal samples

    DOEpatents

    Amer, N.M.

    1983-10-25

    Successive minute regions along a scan path on a coal sample are individually analyzed, at a series of different depths if desired, to determine chemical composition including the locations, sizes and distributions of different maceral inclusions. A sequence of infrared light pulses of progressively changing wavelengths is directed into each minute region and a probe light beam is directed along the sample surface adjacent the region. Infrared wavelengths at which strong absorption occurs in the region are identified by detecting the resulting deflections of the probe beam caused by thermally induced index of refraction changes in the air or other medium adjacent the region. The detected peak absorption wavelengths are correlated with known characteristic peak absorption wavelengths of specific coal constituents to identify the composition of each such minute region of the sample. The method enables rapid, convenient and non-destructive analyses of coal specimens to facilitate mining, processing and utilization of coals. 2 figures.

  10. The Vector Electric Field Investigation on the C/NOFS Satellite

    NASA Technical Reports Server (NTRS)

    Pfaff, R.; Acuna, M.; Kujawski, J.; Fourre, R.; Uribe, P.; Hunsaker, F.; Rowland, D.; Le, G.; Farrell, W.; Maynard, N.; hide

    2008-01-01

    We provide an overview of the Vector Electric Field Investigation (VEFI) on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite, a mission designed to understand, model, and forecast the presence of equatorial ionospheric irregularities. VEFI is a NASA/GSFC instrument funded by the Air Force Research Laboratory whose main objectives are to: 1) investigate the role of the ambient electric fields in initiating nighttime ionospheric density depletions and turbulence; 2) determine the quasi-DC electric fields associated with abrupt, large amplitude, density depletions, and 3) quantify the spectrum of the wave electric fields and plasma densities (irregularities) associated with density depletions typically referred to as equatorial spread-F. The VEFI instrument includes a vector electric field double probe detector, a fixed-bias Langmuir probe operating in the ion saturation regime, a flux-gate magnetometer, an optical lightning detector, and associated electronics. The heart of the instrument is the set of detectors designed to measure DC and AC electric fields using 6 identical booms that provide 3 axis, 20-m tip-to-tip orthogonal double probes. Each probe extends a 10 cm diameter sphere containing an embedded preamplifier. VEFI also includes a burst memory that enables snapshots of data from 1-8 channels of selected instruments to be sampled at rates of up to 32 kHz each. The bursts may be triggered by the detection of density depletions, intense electric field wave activity in a given band, lightning detector pulses, or an event at a pre-determined time or location. All VEFI instrument components are working exceptionally well. A description of the instrument, its sensors, and their sampling frequencies and sensitivities will be presented. Representative measurements will be shown.

  11. [Wrong connection of a flexible medical air hose to a nitrous oxide outlet caused by a defective safety device].

    PubMed

    Nicaise, C; Robert, C; Ancellin, J; Cazalaà, J B

    1996-01-01

    When plugging the O2, N2O and air hoses into the corresponding wall sockets, the air hose was wrongly inserted into the N2O wall outlet. This was made possible because of faulty retaining clasps of the male coupler of the air probe. French "fail-safe" connections consist of a two-clasp male coupler for air, three clasps for O2 and four clasps for N2O hoses. Additionally the clasps of the air probe are broader then those of the N2O probe. However, the latter difference was lost due to wear. The incident was recognized without delay as the N2O hose could not be inserted into the air outlet. However, it could have remained unnoticed had there been two N2O wall outlets and could have resulted in severe adverse effects.

  12. Vič Goes to Near Space

    NASA Astrophysics Data System (ADS)

    Merhar, Vida Kariž; Capuder, Rok; Maroševič, Timotej; Artač, Sonja; Mozer, Alenka; Štekovič, Maja

    2016-11-01

    In the school year 2012-2013 about 50 students (Fig. 1), managed by mentors (teachers from the middle school Gimnazija Vič in Ljubljana, Slovenia) created an atmospheric probe and launched it into an altitude of more than 30 km above Earth's surface. The aim of this "space expedition" was to take pictures of Earth and to measure how air pressure, the temperature, CO2 and O2 concentrations, the level of UVA and UVB radiation, and the amount of light change with altitude. There was also a yeast sample placed inside and outside of the probe. Here we report on some of the successes and failures of this endeavor.

  13. 77 FR 73282 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-10

    ... system for the angle of attack sensor, the total air temperature, and the pitot probes. We are issuing this AD to prevent ice from forming on air data system sensors and consequent loss of or misleading... angle of attack sensor, the total air temperature, and the pitot probes. Actions Since Issuance of NPRM...

  14. A User Guide for Smoothing Air Traffic Radar Data

    NASA Technical Reports Server (NTRS)

    Bach, Ralph E.; Paielli, Russell A.

    2014-01-01

    Matlab software was written to provide smoothing of radar tracking data to simulate ADS-B (Automatic Dependent Surveillance-Broadcast) data in order to test a tactical conflict probe. The probe, called TSAFE (Tactical Separation-Assured Flight Environment), is designed to handle air-traffic conflicts left undetected or unresolved when loss-of-separation is predicted to occur within approximately two minutes. The data stream that is down-linked from an aircraft equipped with an ADS-B system would include accurate GPS-derived position and velocity information at sample rates of 1 Hz. Nation-wide ADS-B equipage (mandated by 2020) should improve surveillance accuracy and TSAFE performance. Currently, position data are provided by Center radar (nominal 12-sec samples) and Terminal radar (nominal 4.8-sec samples). Aircraft ground speed and ground track are estimated using real-time filtering, causing lags up to 60 sec, compromising performance of a tactical resolution tool. Offline smoothing of radar data reduces wild-point errors, provides a sample rate as high as 1 Hz, and yields more accurate and lag-free estimates of ground speed, ground track, and climb rate. Until full ADS-B implementation is available, smoothed radar data should provide reasonable track estimates for testing TSAFE in an ADS-B-like environment. An example illustrates the smoothing of radar data and shows a comparison of smoothed-radar and ADS-B tracking. This document is intended to serve as a guide for using the smoothing software.

  15. Power and Thermal Technologies for Air and Space -- Scientific Research Program. Delivery Order 0016: Developing and Processing High Energy Density Polymer Film Dielectrics for High Temperature Air Force Power Electronic Applications

    DTIC Science & Technology

    2010-01-01

    a vacuum controller. A vacuum of < 1 µ torr was achieved with a combination of a turbo pump and a scroll pump system. The sample probing is...the polymer was reprecipitated in heptane non-solvent. The filtered polymer was washed with heptane and was finally dried in vacuum at 100ºC for three...solution was added to a large excess of methanol to precipitate the polymer. After soxhlet extraction with methanol and vacuum drying, the polymer was

  16. Probing into the Secret of the Chinese Air Force.

    DTIC Science & Technology

    1983-11-30

    Ri35 968 PROBING INTO THE SECRET OF THE CHINESE AIR FOREE(IJ 1/2 FOREIGN TECHNOLOGY DIV WRIGHT-PATTERSON RFB OH 9 38 NOV 83 FTD-ID(,RS)T 1088 3...FOREIGN TECHNOLOGY DIVISION. PROBING INTO THE SECRET OF THE CHINESE AIRFORCE CL1 Approved for public re.lease; distribution unlimited C=)X ~ EET...MICROFICHE NR: FTD-83-C-001469 PROBING INTO THE SECRET OF THE CHINESE AIRFORCE -" -English pages: 111 Source: Enclosure to IR 6 842 0088 83-Booklet

  17. Stack Flow Rate Changes and the ANSI/N13.1-1999 Qualification Criteria: Application to the Hanford Canister Storage Building Stack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flaherty, Julia E.; Glissmeyer, John A.

    2016-02-29

    The Canister Storage Building (CSB), located in the 200-East Area of the Hanford Site, is a 42,000 square foot facility used to store spent nuclear fuel from past activities at the Hanford Site. Because the facility has the potential to emit radionuclides into the environment, its ventilation exhaust stack has been equipped with an air monitoring system. Subpart H of the National Emissions Standards for Hazardous Air Pollutants requires that a sampling probe be located in the exhaust stack in accordance with criteria established by the American National Standards Institute/Health Physics Society Standard N13.1-1999, Sampling and Monitoring Releases of Airbornemore » Radioactive Substances from the Stack and Ducts of Nuclear Facilities.« less

  18. Interrelationships among Grain Size, Surface Composition, Air Stability, and Interfacial Resistance of Al-Substituted Li7La3Zr2O12 Solid Electrolytes.

    PubMed

    Cheng, Lei; Wu, Cheng Hao; Jarry, Angelique; Chen, Wei; Ye, Yifan; Zhu, Junfa; Kostecki, Robert; Persson, Kristin; Guo, Jinghua; Salmeron, Miquel; Chen, Guoying; Doeff, Marca

    2015-08-19

    The interfacial resistances of symmetrical lithium cells containing Al-substituted Li7La3Zr2O12 (LLZO) solid electrolytes are sensitive to their microstructures and histories of exposure to air. Air exposure of LLZO samples with large grain sizes (∼150 μm) results in dramatically increased interfacial impedances in cells containing them, compared to those with pristine large-grained samples. In contrast, a much smaller difference is seen between cells with small-grained (∼20 μm) pristine and air-exposed LLZO samples. A combination of soft X-ray absorption (sXAS) and Raman spectroscopy, with probing depths ranging from nanometer to micrometer scales, revealed that the small-grained LLZO pellets are more air-stable than large-grained ones, forming far less surface Li2CO3 under both short- and long-term exposure conditions. Surface sensitive X-ray photoelectron spectroscopy (XPS) indicates that the better chemical stability of the small-grained LLZO is related to differences in the distribution of Al and Li at sample surfaces. Density functional theory calculations show that LLZO can react via two different pathways to form Li2CO3. The first, more rapid, pathway involves a reaction with moisture in air to form LiOH, which subsequently absorbs CO2 to form Li2CO3. The second, slower, pathway involves direct reaction with CO2 and is favored when surface lithium contents are lower, as with the small-grained samples. These observations have important implications for the operation of solid-state lithium batteries containing LLZO because the results suggest that the interfacial impedances of these devices is critically dependent upon specific characteristics of the solid electrolyte and how it is prepared.

  19. High Temperatures Health Monitoring of the Condensed Water Height in Steam Pipe Systems

    NASA Technical Reports Server (NTRS)

    Lih, Shyh-Shiuh; Bar-Cohen, Yoseph; Lee, Hyeong Jae; Badescu, Mircea; Bao, Xiaoqi; Sherrit, Stewart; Takano, Nobuyuki; Ostlund, Patrick; Blosiu, Julian

    2013-01-01

    Ultrasonic probes were designed, fabricated and tested for high temperature health monitoring system. The goal of this work was to develop the health monitoring system that can determine the height level of the condensed water through the pipe wall at high temperature up to 250 deg while accounting for the effects of surface perturbation. Among different ultrasonic probe designs, 2.25 MHz probes with air backed configuration provide satisfactory results in terms of sensitivity, receiving reflections from the target through the pipe wall. A series of tests were performed using the air-backed probes under irregular conditions, such as surface perturbation and surface disturbance at elevated temperature, to qualify the developed ultrasonic system. The results demonstrate that the fabricated air-backed probes combined with advanced signal processing techniques offer the capability of health monitoring of steam pipe under various operating conditions.

  20. Pieces of the Huygens probe internal insulating foam await inspection after removal from the probe i

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Pieces of the Huygens probe internal insulating foam await inspection after removal from the probe in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Internal inspection, insulation repair and a cleaning of the probe were required. Mission managers are targeting a mid-October launch date after Cassini returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station.

  1. Applications of Second Harmonic and Sum Frequency Generation to Graphite and Silica Type Interfaces.

    DTIC Science & Technology

    1994-08-01

    investigated. The ultrafast barrierless isomerization of an organic dye, Malachite Green, has also been probed with femtosecond time resolution, enabling the... Malachite Green, has also been probed with femtosecond time resolution, enabling the structure of water at various aqueous interfaces to be probed. In...6G at air/aqueous interface ....................................... 7 6. Time-resolved SHG of Malachite Green at air and silica/aqueous interfaces

  2. Speciation of antimony in airborne particulate matter using ultrasound probe fast extraction and analysis by HPLC-HG-AFS.

    PubMed

    Bellido-Martín, A; Gómez-Ariza, J L; Smichowsky, P; Sánchez-Rodas, D

    2009-09-07

    A fast extraction procedure has been developed for Sb(III) and Sb(V) oxoanions speciation in airborne particulate matter samples. Different extraction media (diammonium tartrate, hidroxilammonium clorhidrate, citric acid+ascorbic acid, phosphoric acid and citrate solutions) were tried, with assistance of an ultrasonic probe. The operation power and time of extraction were also optimized. The higher extraction recoveries were obtained with a 100 mmol L(-1) hidroxilammonium clorhidrate aqueous solution assisted by the ultrasound probe operated at 50 W during 3 min. The extracts were analyzed by HPLC-HG-AFS. The chromatographic separation of Sb(III) and Sb(V) was also optimized using diammonium tartrate and phthalic acid as mobile phases. The separation of both Sb species was performed in less than 3 min under isocratic conditions, using a 200 mmol L(-1) diammonium tartrate solution. The proposed extraction procedure and the HPLC-HG-AFS instrumental coupling have been successfully applied to airborne particulate matter samples, with high Sb content, collected in heavy traffic streets from Buenos Aires (Argentina). The results showed the presence of both Sb species at similar concentrations in the ng m(-3) level. The extraction yield was higher than 90% for all the analyzed samples.

  3. Propulsion Systems Lab

    NASA Image and Video Library

    2015-04-14

    NASA Glenn’s Propulsion Systems Lab (PSL) is conducting research to characterize ice crystal clouds that can create a hazard to aircraft engines in certain conditions. With specialized equipment, scientists can create a simulated ice crystal cloud with the set of bars in the back spraying out a mist. The red area includes lasers, which measure the intensity of the cloud and a series of probes to measure everything from humidity to air pressure. The isokinetic probe (in gold) samples particles and the robotic arm (in orange) has a test tube on the end that catches ice particles for further measuring. NASA Glenn’s PSL is the only place in the world which can create these kind of ice crystal cloud conditions.

  4. Is there evidence for man-made nanoparticles in the Dutch environment?

    PubMed

    Bäuerlein, Patrick S; Emke, Erik; Tromp, Peter; Hofman, Jan A M H; Carboni, Andrea; Schooneman, Ferry; de Voogt, Pim; van Wezel, Annemarie P

    2017-01-15

    Only very limited information is available on measured environmental concentrations of nanoparticles. In this study, several environmental compartments in The Netherlands were probed for the presence of nanoparticles. Different types of water were screened for the presence of inorganic (Ag, Au, TiO 2 ) and organic nanoparticles (C 60 , C 70 , [6,6]-phenyl-C 61 -butyric acid octyl ester, [6,6]-phenyl-C 61 -butyric acid butyl ester, [6,6]-phenyl-C 61 -butyric acid methyl ester, [6,6]-bis-phenyl-C 61 -butyric acid methyl ester, [6,6]-phenyl-C 71 -butyric acid methyl ester, [6,6]-thienyl-C 61 -butyric acid methyl ester). Air samples were analysed for the presence of nanoparticulate Mo, Ag, Ce, W, Pd, Pt, Rh, Zn, Ti, Si, B as well as Fe and Cu. ICP-MS, Orbitrap-HRMS, SEM and EDX were used for this survey. Water samples included dune and bank filtrates, surface waters and ground waters as well as influents, effluents and sludge of sewage treatment plants (STPs), and surface waters collected near airports and harbours. Air samples included both urban and rural samples. C 60 was detected in air, sewage treatment plants, influents, effluents and sludge, but in no other aqueous samples despite the low detection limit of 0.1ng/L. C 70 and functionalised fullerenes were not detected at all. In STP sludge and influent the occurrence of Ag and Au nanoparticles was verified by SEM/EDX and ICP-MS. In air up to about 25m% of certain metals was found in the nanosize fraction. Overall, between 1 and 6% of the total mass from metals in the air samples was found in the size fraction <100nm. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. A Small and Slim Coaxial Probe for Single Rice Grain Moisture Sensing

    PubMed Central

    You, Kok Yeow; Mun, Hou Kit; You, Li Ling; Salleh, Jamaliah; Abbas, Zulkifly

    2013-01-01

    A moisture detection of single rice grains using a slim and small open-ended coaxial probe is presented. The coaxial probe is suitable for the nondestructive measurement of moisture values in the rice grains ranging from from 9.5% to 26%. Empirical polynomial models are developed to predict the gravimetric moisture content of rice based on measured reflection coefficients using a vector network analyzer. The relationship between the reflection coefficient and relative permittivity were also created using a regression method and expressed in a polynomial model, whose model coefficients were obtained by fitting the data from Finite Element-based simulation. Besides, the designed single rice grain sample holder and experimental set-up were shown. The measurement of single rice grains in this study is more precise compared to the measurement in conventional bulk rice grains, as the random air gap present in the bulk rice grains is excluded. PMID:23493127

  6. An Experimental and CFD Study of a Supersonic Coaxial Jet

    NASA Technical Reports Server (NTRS)

    Cutler, A. D.; White, J. A.

    2001-01-01

    A supersonic coaxial jet facility is designed and experimental data are acquired suitable for the validation of CFD codes employed in the analysis of high-speed air-breathing engines. The center jet is of a light gas, the coflow jet is of air, and the mixing layer between them is compressible. The jet flow field is characterized using schlieren imaging, surveys with pitot, total temperature and gas sampling probes, and RELIEF velocimetry. VULCAN, a structured grid CFD code, is used to solve for the nozzle and jet flow, and the results are compared to the experiment for several variations of the kappa - omega turbulence model

  7. Dual tunneling-unit scanning tunneling microscope for length measurement based on crystalline lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, H.; Higuchi, T.; Nishioki, N.

    1997-01-01

    A dual tunneling-unit scanning tunneling microscope (DTU STM) was developed for nm order length measurement with wide scan range. The crystalline lattice of highly oriented pyrolitic graphite (HOPG) was used as reference scale. A reference unit was set up on top of a test unit. The reference sample holder and the probe tip of test unit were attached to one single XY scanner on either surface, while the test sample holder was open. This enables simultaneous acquisition of wide images of HOPG and test sample. The length in test sample image was measured by counting the number of HOPG lattices.more » An inchworm actuator and an impact drive mechanism were introduced to roughly position probe tips. The XY scanner was designed to be elastic to eliminate image distortion. Some comparison experiments using two HOPG chips were carried out in air. The DTU STM is confirmed to be a stable and more powerful device for length measurement which has nanometer accuracy when covering a wide scan range up to several micrometers, and is capable of measuring comparatively large and heavy samples. {copyright} {ital 1997 American Vacuum Society.}« less

  8. Meteorological and operational aspects of 46 clear air turbulent sampling missions with an instrumented B-57B aircraft. Volume 2, appendix C: Turbulence missions

    NASA Technical Reports Server (NTRS)

    Waco, D. E.

    1979-01-01

    The results of 46 clear air turbulence (CAT) probing missions conducted with an extensively instrumented B-57B aircraft are summarized from a meteorological viewpoint in a two-volume technical memorandum. The missions were part of the NASA Langley Research Center's MAT (Measurement of Atmospheric Turbulence) program, which was conducted between March 1974, and September 1975, at altitudes ranging up to 15 km. Turbulence samples were obtained under diverse conditions including mountain waves, jet streams, upper level fronts and troughs, and low altitude mechanical and thermal turbulence. CAT was encountered on 20 flights comprising 77 data runs. In all, approximately 4335 km were flown in light turbulence, 1415 km in moderate turbulence, and 255 km in severe turbulence during the program.

  9. A comparative study between an improved novel air-cushion sensor and a wheeled probe for minimally invasive surgery.

    PubMed

    Zbyszewski, Dinusha; Challacombe, Benjamin; Li, Jichun; Seneviratne, Lakmal; Althoefer, Kaspar; Dasgupta, Prokar; Murphy, Declan

    2010-07-01

    We describe a comparative study between an enhanced air-cushion tactile sensor and a wheeled indentation probe. These laparoscopic tools are designed to rapidly locate soft-tissue abnormalities during minimally invasive surgery (MIS). The air-cushion tactile sensor consists of an optically based sensor with a 7.8 mm sphere "floating" on a cushion of air at the tip of a shaft. The wheeled indentation probe is a 10 mm wide and 5 mm in diameter wheel mounted to a force/torque sensor. A continuous rolling indentation technique is used to pass the sensors over the soft-tissue surfaces. The variations in stiffness of the viscoelastic materials that are detected during the rolling indentations are illustrated by stiffness maps that can be used for tissue diagnosis. The probes were tested by having to detect four embedded nodules in a silicone phantom. Each probe was attached to a robotic manipulator and rolled over the silicone phantom in parallel paths. The readings of each probe collected during the process of rolling indentation were used to achieve the final results. The results show that both sensors reliably detected the areas of variable stiffness by accurately identifying the location of each nodule. These are illustrated in the form of two three-dimensional spatiomechanical maps. These probes have the potential to be used in MIS because they could provide surgeons with information on the mechanical properties of soft tissue, consequently enhancing the reduction in haptic feedback.

  10. Sample exchange by beam scanning with applications to noncollinear pump-probe spectroscopy at kilohertz repetition rates.

    PubMed

    Spencer, Austin P; Hill, Robert J; Peters, William K; Baranov, Dmitry; Cho, Byungmoon; Huerta-Viga, Adriana; Carollo, Alexa R; Curtis, Anna C; Jonas, David M

    2017-06-01

    In laser spectroscopy, high photon flux can perturb the sample away from thermal equilibrium, altering its spectroscopic properties. Here, we describe an optical beam scanning apparatus that minimizes repetitive sample excitation while providing shot-to-shot sample exchange for samples such as cryostats, films, and air-tight cuvettes. In this apparatus, the beam crossing point is moved within the focal plane inside the sample by scanning both tilt angles of a flat mirror. A space-filling spiral scan pattern was designed that efficiently utilizes the sample area and mirror scanning bandwidth. Scanning beams along a spiral path is shown to increase the average number of laser shots that can be sampled before a spot on the sample cell is resampled by the laser to ∼1700 (out of the maximum possible 2500 for the sample area and laser spot size) while ensuring minimal shot-to-shot spatial overlap. Both an all-refractive version and an all-reflective version of the apparatus are demonstrated. The beam scanning apparatus does not measurably alter the time delay (less than the 0.4 fs measurement uncertainty), the laser focal spot size (less than the 2 μm measurement uncertainty), or the beam overlap (less than the 3.3% measurement uncertainty), leading to pump-probe and autocorrelation signal transients that accurately characterize the equilibrium sample.

  11. Laser-induced damage thresholds of gold, silver and their alloys in air and water

    NASA Astrophysics Data System (ADS)

    Starinskiy, Sergey V.; Shukhov, Yuri G.; Bulgakov, Alexander V.

    2017-02-01

    The nanosecond-laser-induced damage thresholds of gold, silver and gold-silver alloys of various compositions in air and water have been measured for single-shot irradiation conditions. The experimental results are analyzed theoretically by solving the heat flow equation for the samples irradiated in air and in water taking into account vapor nucleation at the solid-water interface. The damage thresholds of Au-Ag alloys are systematically lower than those for pure metals, both in air and water that is explained by lower thermal conductivities of the alloys. The thresholds measured in air agree well with the calculated melting thresholds for all samples. The damage thresholds in water are found to be considerably higher, by a factor of ∼1.5, than the corresponding thresholds in air. This cannot be explained, in the framework of the used model, neither by the conductive heat transfer to water nor by the vapor pressure effect. Possible reasons for the high damage thresholds in water such as scattering of the incident laser light by the vapor-liquid interface and the critical opalescence in the superheated water are suggested. Optical pump-probe measurements have been performed to study the reflectance dynamics of the surface irradiated in air and water. Comparison of the transient reflectance signal with the calculated nucleation dynamics provides evidence that the both suggested scattering mechanisms are likely to occur during metal ablation in water.

  12. Methods of and apparatus for levitating an eddy current probe

    DOEpatents

    Stone, William J.

    1988-05-03

    An eddy current probe is supported against the force of gravity with an air earing while being urged horizontally toward the specimen being examined by a spring and displaced horizontally against the force of the spring pneumatically. The pneumatic displacement is accomplished by flowing air between a plenum chamber fixed with respect to the probe and the surface of the specimen. In this way, the surface of the specimen can be examined without making mechanical contact therewith while precisely controlling the distance at which the probe stands-off from the surface of the specimen.

  13. Enhancement of drying and rehydration characteristics of okra by ultrasound pre-treatment application

    NASA Astrophysics Data System (ADS)

    Tüfekçi, Senem; Özkal, Sami Gökhan

    2017-07-01

    Effect of ultrasound application prior to hot air drying on drying and rehydration kinetics, rehydration ratio and microstructure of okra slices were investigated. For this purpose, the selected parameters are ultrasound pre-treatment time (10, 20 and 30 min), ultrasound amplitude (55 and 100%) and the temperature of drying air (60 and 70 °C). 5 mm thick cylindrical shaped okra slices were used in the experiments. The samples were immersed in water and ultrasonic pre-treatments were done in water with ultrasonic probe connected to an ultrasonic generator with 20 kHz frequency. Pre-treated samples were dried in a tray drier with a 0.3 m/s air velocity. Ultrasound pre-treatment affected the drying rate of the okra slices significantly. Drying time of okra slices was decreased by the application of ultrasound pre-treatment. Modified Page model found to be the most suitable model for describing the drying characteristics of okra slices. Improvements in rehydration properties of the dried samples were observed due to the ultrasound pre-treatment. The influence of the ultrasound pre-treatment on microstructure was clearly observed through scanning electron microscopy images of the dried samples. As the amplitude of ultrasound increased the changes in structure of the okra tissue increased.

  14. Development of a Methodology for the Characterisation of Air-coupled Ultrasound Probes

    NASA Astrophysics Data System (ADS)

    Pietroni, Paolo; Marco Revel, Gian

    2010-05-01

    This study is aimed at developing a technique for the characterisation of air-coupled ultrasound probes, starting from the analysis of the mechanical behaviour of the probe membrane. The vibratory behaviour of the emission membrane is studied using laser-Doppler vibrometry techniques with high frequency demodulation system (20 MHz). The determination of the vibration provides information which are useful for the assessment of the performance of the probe, in particular concerning the Quality factor and the portion of the membrane which really contributes to the emission. During the second step the results of the vibration measurements are used to calculate, by means of numerical boundary element method, the ultrasound beam emitted in terms of intensity in space. The obtained field is compared with the direct measurements carried out by scanning with the receiver probe and a pinhole plate. This comparison allows the potential and the problems of the two different characterisation techniques to be determined, even if the pinhole technique (which is currently considered the state of the art) cannot be used as an absolute reference. This study appears to be useful for paving the way for a new methodology for the calibration of air-coupled ultrasound probes, which potentially could be used not only to improve the probe manufacturing process, but also to control conformity to specifications.

  15. Clinical evaluation of the Jay Sensitivity Sensor Probe: a new microprocessor-controlled instrument to evaluate dentin hypersensitivity.

    PubMed

    Sowinski, Joseph A; Kakar, Ashish; Kakar, Kanupriya

    2013-05-01

    To compare the Jay Sensitivity Sensor Probe (Jay Probe), a new microprocessor-based, pre-calibrated instrument, with well accepted methods used to evaluate sensitivity, i.e. tactile response to the Yeaple Probe, air blast (Schiff scale), and patient responses by Visual Analog Score (VAS). Jay Probe assessments were accomplished using several approaches. With a cohort of 12 subjects, two clinical examiners compared the repeatability of the Jay and Yeaple Probes. A second evaluation of both probes was conducted during two independent parallel design clinical studies each enrolling 100 adults with dentin hypersensitivity (DH). In each study, subjects were evaluated for DH responses after twice daily oral hygiene with a negative control fluoride dentifrice or a positive control dentifrice formulated with ingredients proven to reduce sensitivity, i.e. potassium nitrate or 8.0% arginine with calcium carbonate. Tactile evaluations by the Jay and Yeaple Probes were conducted at baseline and recall visits over the 8-week duration of each study. Also evaluated at each visit were responses to air blast and to patient reported DH assessment by VAS. Low inter-examiner variability with no significant differences between replicate measurements (P > 0.05) was observed with the Jay Probe. Consistent with results from previous studies, subjects assigned dentifrices formulated with potassium nitrate or 8% arginine/calcium carbonate demonstrated improvements in Yeaple, air blast and VAS responses in comparison to those assigned the fluoride dentifrice (P < 0.05). Jay Probe responses correlated significantly with all other sensitivity measures (P < 0.05). Differences between these treatments were observed at all post-treatment evaluations using these methods.

  16. A temperature-jump NMR probe setup using rf heating optimized for the analysis of temperature-induced biomacromolecular kinetic processes

    NASA Astrophysics Data System (ADS)

    Rinnenthal, Jörg; Wagner, Dominic; Marquardsen, Thorsten; Krahn, Alexander; Engelke, Frank; Schwalbe, Harald

    2015-02-01

    A novel temperature jump (T-jump) probe operational at B0 fields of 600 MHz (14.1 Tesla) with an integrated cage radio-frequency (rf) coil for rapid (<1 s) heating in high-resolution (HR) liquid-state NMR-spectroscopy is presented and its performance investigated. The probe consists of an inner 2.5 mm "heating coil" designed for generating rf-electric fields of 190-220 MHz across a lossy dielectric sample and an outer two coil assembly for 1H-, 2H- and 15N-nuclei. High B0 field homogeneities (0.7 Hz at 600 MHz) are combined with high heating rates (20-25 K/s) and only small temperature gradients (<±1.5 K, 3 s after 20 K T-jump). The heating coil is under control of a high power rf-amplifier within the NMR console and can therefore easily be accessed by the pulse programmer. Furthermore, implementation of a real-time setup including synchronization of the NMR spectrometer's air flow heater with the rf-heater used to maintain the temperature of the sample is described. Finally, the applicability of the real-time T-jump setup for the investigation of biomolecular kinetic processes in the second-to-minute timescale is demonstrated for samples of a model 14mer DNA hairpin and a 15N-selectively labeled 40nt hsp17-RNA thermometer.

  17. Corrosion Detection in Airframes Using a New Flux-Focusing Eddy Current Probe

    NASA Technical Reports Server (NTRS)

    Fulton, James P.; Wincheski, Buzz; Nath, Shridhar; Namkung, Min

    1994-01-01

    A new flux-focusing eddy current probe was recently developed at NASA Langley Research Center. The new probe is similar in design to a reflection type eddy current probe, but is unique in that it does not require the use of an impedance bridge for balancing. The device monitors the RMS output voltage of a pickup coil and, as a result, is easier to operate and interpret than traditional eddy current instruments. The unique design feature of the probe is a ferromagnetic cylinder, typically 1020 steel, which separates a concentrically positioned drive and pickup coil. The increased permeability of the steel causes the magnetic flux produced by the drive coil to be focused in a ring around the pickup coil. At high frequencies the eddy currents induced in both the sample and the cylinder allow little or no flux to link with the pickup coil. This results in a self-nulling condition which has been shown to be useful for the unambiguous detection of cracks in conducting materials. As the frequency is lowered the flux produced by the drive coil begins to link with the pickup coil causing an output which, among other things, is proportional to the thickness of the test specimen. This enables highly accurate measurements of the thickness of conducting materials and helps to facilitate the monitoring of thickness variations in a conducting structure such as an aircraft fuselage. Under ideal laboratory conditions the probe can sense thickness changes on the order of 1% as illustrated. However, this is highly dependent upon the thickness, and the geometric complexity of the sample being tested and for practical problems the sensitivity is usually much less. In this presentation we highlight some of the advantages and limitations in using the probe to inspect aircraft panels for corrosion and other types of material nonuniformities. In particular, we present preliminary results which illustrate the probes capabilities for detecting first and second layer corrosion in aircraft panels which may contain air gaps between the layers. Since the probe utilized eddy currents its corrosion detection capabilities are similar to convectional eddy current techniques, but the new probe is much easier to use.

  18. Ultrafast scanning probe microscopy

    DOEpatents

    Weiss, S.; Chemla, D.S.; Ogletree, D.F.; Botkin, D.

    1995-05-16

    An ultrafast scanning probe microscopy method is described for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample. 6 Figs.

  19. Ultrafast scanning probe microscopy

    DOEpatents

    Weiss, Shimon; Chemla, Daniel S.; Ogletree, D. Frank; Botkin, David

    1995-01-01

    An ultrafast scanning probe microscopy method for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample.

  20. Molecular Microbial Analyses of the Mars Exploration Rovers Assembly Facility

    NASA Technical Reports Server (NTRS)

    Venkateswaran, Kasthuri; LaDuc, Myron T.; Newcombe, David; Kempf, Michael J.; Koke, John. A.; Smoot, James C.; Smoot, Laura M.; Stahl, David A.

    2004-01-01

    During space exploration, the control of terrestrial microbes associated with robotic space vehicles intended to land on extraterrestrial solar system bodies is necessary to prevent forward contamination and maintain scientific integrity during the search for life. Microorganisms associated with the spacecraft assembly environment can be a source of contamination for the spacecraft. In this study, we have monitored the microbial burden of air samples of the Mars Exploration Rovers' assembly facility at the Kennedy Space Center utilizing complementary diagnostic tools. To estimate the microbial burden and identify potential contaminants in the assembly facility, several microbiological techniques were used including culturing, cloning and sequencing of 16S rRNA genes, DNA microarray analysis, and ATP assays to assess viable microorganisms. Culturing severely underestimated types and amounts of contamination since many of the microbes implicated by molecular analyses were not cultivable. In addition to the cultivation of Agrobacterium, Burkholderia and Bacillus species, the cloning approach retrieved 16s rDNA sequences of oligotrophs, symbionts, and y-proteobacteria members. DNA microarray analysis based on rational probe design and dissociation curves complemented existing molecular techniques and produced a highly parallel, high resolution analysis of contaminating microbial populations. For instance, strong hybridization signals to probes targeting the Bacillus species indicated that members of this species were present in the assembly area samples; however, differences in dissociation curves between perfect-match and air sample sequences showed that these samples harbored nucleotide polymorphisms. Vegetative cells of several isolates were resistant when subjected to treatments of UVC (254 nm) and vapor H202 (4 mg/L). This study further validates the significance of non-cultivable microbes in association with spacecraft assembly facilities, as our analyses have identified several non-cultivable microbes likely to contaminate the surfaces of spacecraft hardware.

  1. Hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering temperature and concentration measurements using two different picosecond-duration probes.

    PubMed

    Kearney, Sean P; Scoglietti, Daniel J; Kliewer, Christopher J

    2013-05-20

    A hybrid fs/ps pure-rotational CARS scheme is characterized in furnace-heated air at temperatures from 290 to 800 K. Impulsive femtosecond excitation is used to prepare a rotational Raman coherence that is probed with a ps-duration beam generated from an initially broadband fs pulse that is bandwidth limited using air-spaced Fabry-Perot etalons. CARS spectra are generated using 1.5- and 7.0-ps duration probe beams with corresponding coarse and narrow spectral widths. The spectra are fitted using a simple phenomenological model for both shot-averaged and single-shot measurements of temperature and oxygen mole fraction. Our single-shot temperature measurements exhibit high levels of precision and accuracy when the spectrally coarse 1.5-ps probe beam is used, demonstrating that high spectral resolution is not required for thermometry. An initial assessment of concentration measurements in air is also provided, with best results obtained using the higher resolution 7.0-ps probe. This systematic assessment of the hybrid CARS technique demonstrates its utility for practical application in low-temperature gas-phase systems.

  2. Comparison of Sampling Probe and Thermal Desorber in Hazardous Air Pollutants on Site (HAPSITE) Extended Range (ER) for Analysis of Toxic Organic (TO)-15 Compounds

    DTIC Science & Technology

    2014-03-01

    641,000 671,667 1,4‐dioxane  88  2.20 101 154,000 160,000 137,000 150,333 105,000  119,000 113,000 112,333 Trichloroethylene   130  2.20 87 412,000...Bromodichloromethane 14-dioxane Trichloroethylene Heptane (Z)-13-Dichloro-1-propene Methyl Isobutyl Ketone (E)-13-Dichloro-1-propene 112

  3. Experimental study of the transient hydrogen jet - Using a fast response probe

    NASA Astrophysics Data System (ADS)

    Tanabe, H.; Ohnishi, M.; Sato, G. T.; Fujimoto, H.

    Mixing processes of a transient hydrogen jet, such as those of a hydrogen-injection internal combustion engine, are studied by means of a concentration probe having a response time of less than 200 microsec. Hydrogen was injected into quiescent air by means of (1) a single-shot device, in order to study the air interactions of the jet with schlieren photography and smoke wire methods, and (2) a hydrogen diesel engine injection nozzle to determine jet shape with high speed schlieren photography. The concentration probe's response time was found to be adequate for the very short injection period, and it was determined that air-hydrogen mixing in the case of high jet momentum is governed by eddy diffusion.

  4. Development of a subsurface gas flow probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cutler, R.P.; Ballard, S.; Barker, G.T.

    1997-04-01

    This report describes a project to develop a flow probe to monitor gas movement in the vadose zone due to passive venting or active remediation efforts such as soil vapor extraction. 3-D and 1-D probes were designed, fabricated, tested in known flow fields under laboratory conditions, and field tested. The 3-D pores were based on technology developed for ground water flow monitoring. The probes gave excellent agreement with measured air velocities in the laboratory tests. Data processing software developed for ground water flow probes was modified for use with air flow, and to accommodate various probe designs. Modifications were mademore » to decrease the cost of the probes, including developing a downhole multiplexer. Modeling indicated problems with flow channeling due to the mode of deployment. Additional testing was conducted and modifications were made to the probe and to the deployment methods. The probes were deployed at three test sites: a large outdoor test tank, a brief vapor extraction test at the Chemical Waste landfill, and at an active remediation site at a local gas station. The data from the field tests varied markedly from the laboratory test data. All of the major events such as vapor extraction system turn on and turn off, as well as changes in the flow rate, could be seen in the data. However, there were long term trends in the data which were much larger than the velocity signals, which made it difficult to determine accurate air velocities. These long term trends may be due to changes in soil moisture content and seasonal ground temperature variations.« less

  5. KSC-97PC1393

    NASA Image and Video Library

    1997-09-10

    Pieces of the Huygens probe internal insulating foam await inspection after removal from the probe in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Internal inspection, insulation repair and a cleaning of the probe were required. Mission managers are targeting a mid-October launch date after Cassini returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station

  6. Impedance probe to measure local void fraction profiles

    NASA Astrophysics Data System (ADS)

    Teyssedou, A.; Tapucu, A.; Lortie, M.

    1988-04-01

    A conductivity-type local void measurement system has been developed. The effects of the sensor tip geometry, the unbalance of the front-end bridge, the comparator threshold level, and the mass fluxes on the response of the instrument have been studied. The system has been calibrated under air-water two-phase flow conditions using the quick-closing-valve technique. Comparison of the void profiles obtained with the conductivity probe with those obtained using an optical probe confirms the applicability of this system for two-phase (air-water) flows.

  7. Direct observation of nitrate and sulfate formations from mineral dust and sea-salts using low- Z particle electron probe X-ray microanalysis

    NASA Astrophysics Data System (ADS)

    Hwang, HeeJin; Ro, Chul-Un

    In the present work, it is demonstrated that a single particle analytical technique, named low- Z particle electron probe X-ray microanalysis, is a practically useful tool for the study of heterogeneous reactions of mineral dust and sea-salts when this analytical technique was applied to a sample collected during an Asian Dust storm event. The technique does not require a special treatment of sample to identify particles reacted in the air. Also, quantitative chemical speciation of reacted particles can provide concrete information on what chemical reaction, if any, occurred for individual particles. Among overall 178 analyzed particles, the number of reacted particles is 81 and heterogeneous chemical reactions mostly occurred on CaCO 3 mineral dust (54 particles) and sea-salts (26 particles). Several observations made for the Asian Dust sample in the present work are: (1) CaCO 3 species almost completely reacted to produce mostly Ca(NO 3) 2 species, and CaSO 4 to a much lesser extent. (2) When reacted particles contain CaSO 4, almost all of them are internally mixed with nitrate. (3) Reacted CaCO 3 particles seem to contain moisture when they were collected. (4) Some reacted CaCO 3 particles have unreacted mineral species, such as aluminosilicates, iron oxide, SiO 2, etc., in the core region. (5) All sea-salt particles are observed to have reacted in the air. Some of them were recrystallized in the air before being collected and they are observed as crystalline NaNO 3 particles. (6) Many sea-salts were collected as water drops, and some of them were fractionally recrystallized on Ag collecting substrate. When sea-salts were not recrystallized on the substrate, they are found as particles internally mixed with NaNO 3 and Mg(NO 3) 2, and in some cases SO 4 and Cl species as additional anions.

  8. Parker Solar Probe Spacecraft Arrival, Offload and Transport

    NASA Image and Video Library

    2018-04-03

    A U.S. Air Force C-5 transport aircraft arrives at Space Coast Regional Airport in Titusville, Florida, with NASA's Parker Solar Probe spacecraft aboard. The spacecraft will be offloaded and transported to the Astrotech processing facility near the agency's Kennedy Space Center. The Parker Solar Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  9. Parker Solar Probe Spacecraft Arrival, Offload and Transport

    NASA Image and Video Library

    2018-04-03

    NASA's Parker Solar Probe, secured in its shipping container, arrives at the Astrotech processing facility near the agency's Kennedy Space Center in Florida. The spacecraft arrived aboard a U.S. Air Force C-5 transport aircraft at Space Coast Regional Airport in Titusville, Florida. The Parker Solar Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  10. Parker Solar Probe Spacecraft Arrival, Offload and Transport

    NASA Image and Video Library

    2018-04-03

    A U.S. Air Force C-5 transport aircraft touches down at Space Coast Regional Airport in Titusville, Florida, with NASA's Parker Solar Probe spacecraft aboard. The spacecraft will be offloaded and transported to the Astrotech processing facility near the agency's Kennedy Space Center. The Parker Solar Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  11. Parker Solar Probe Spacecraft Arrival, Offload and Transport

    NASA Image and Video Library

    2018-04-03

    NASA's Parker Solar Probe, secured in its shipping container, is offloaded from a U.S. Air Force C-5 transport aircraft at Space Coast Regional Airport in Titusville, Florida. The spacecraft will be transported to the Astrotech processing facility near the agency's Kennedy Space Center. The Parker Solar Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  12. Parker Solar Probe Spacecraft Arrival, Offload and Transport

    NASA Image and Video Library

    2018-04-03

    A U.S. Air Force C-5 transport aircraft approaches the runway for landing at Space Coast Regional Airport in Titusville, Florida, with NASA's Parker Solar Probe spacecraft aboard. The spacecraft will be offloaded and transported to the Astrotech processing facility near the agency's Kennedy Space Center. The Parker Solar Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  13. Parker Solar Probe Spacecraft Arrival, Offload and Transport

    NASA Image and Video Library

    2018-04-03

    NASA's Parker Solar Probe, secured in its shipping container, has been offloaded from a U.S. Air Force C-5 transport aircraft at Space Coast Regional Airport in Titusville, Florida. The spacecraft will be transported to the Astrotech processing facility near the agency's Kennedy Space Center. The Parker Solar Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  14. Parker Solar Probe Spacecraft Arrival, Offload and Transport

    NASA Image and Video Library

    2018-04-03

    NASA's Parker Solar Probe, secured in its shipping container, arrives aboard a U.S. Air Force C-5 transport aircraft at Space Coast Regional Airport in Titusville, Florida. The spacecraft will be offloaded and transported to the Astrotech processing facility near the agency's Kennedy Space Center. The Parker Solar Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  15. Development of a Methodology for the Characterisation of Air-coupled Ultrasound Probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pietroni, Paolo; Marco Revel, Gian

    2010-05-28

    This study is aimed at developing a technique for the characterisation of air-coupled ultrasound probes, starting from the analysis of the mechanical behaviour of the probe membrane. The vibratory behaviour of the emission membrane is studied using laser-Doppler vibrometry techniques with high frequency demodulation system (20 MHz). The determination of the vibration provides information which are useful for the assessment of the performance of the probe, in particular concerning the Quality factor and the portion of the membrane which really contributes to the emission. During the second step the results of the vibration measurements are used to calculate, by meansmore » of numerical boundary element method, the ultrasound beam emitted in terms of intensity in space. The obtained field is compared with the direct measurements carried out by scanning with the receiver probe and a pinhole plate. This comparison allows the potential and the problems of the two different characterisation techniques to be determined, even if the pinhole technique (which is currently considered the state of the art) cannot be used as an absolute reference. This study appears to be useful for paving the way for a new methodology for the calibration of air-coupled ultrasound probes, which potentially could be used not only to improve the probe manufacturing process, but also to control conformity to specifications.« less

  16. HAIC/HIWC field project: characterizing the high ice water content environment

    NASA Astrophysics Data System (ADS)

    Leroy, Delphine; Coutris, Pierre; Fontaine, Emmanuel; Schwarzenboeck, Alfons; Strapp, J. Walter; Korolev, Alexei; McFarquhar, Greg; Gourbeyre, Christophe; Dupuy, Regis; Dezitter, Fabien; Calmels, Alice

    2016-04-01

    High ice water content (IWC) cloud regions in mesoscale convective systems (MCSs) are suspected to cause in-service engine power loss events and air-data probe malfunctions on commercial aircraft. In order to better document this particular environment, a multi-year international HAIC/HIWC (High Altitude Ice Crystals / High Ice Water Content) field project has been designed including two field campaigns. The first campaign was conducted in Darwin in 2014 while the second one took place in Cayenne in May 2015. The French Falcon 20 research aircraft has been deployed for the two campaigns, with an instrumental payload including an IKP-2 (isokinetic evaporator probe which provides a reference measurement of IWC), a CDP-2 (cloud droplet spectrometer probe measuring particles in the range 2-50 μm), and optical array probes 2D-S (2D-Stereo, 10-1280 μm) and PIP (precipitation imaging probe, 100-6400 μm). 23 flights were performed in Darwin, 18 in Cayenne, all sampling MCSs at different flight levels with temperatures from -10°C to -50°C. The study presented here focuses on ice crystal size properties related to IWC, thereby analyzing in detail the 2D image data from 2D-S and PIP optical array imaging probes. 2D images recorded with 2D-S and PIP probes were processed in order to produce particle size distributions (PSDs) and median mass diameters (MMDs). Darwin results shows that ice crystals properties are quite different in high IWC areas compared to the surrounding cloud regions. Most of the sampled MCS reveal that the higher the measured IWC, the smaller are the corresponding crystal MMD. This effect is interfering with a temperature trend, whereby colder temperatures are leading to smaller MMD. A preliminary analysis of the Cayenne data seems to be consistent with the above trends.

  17. Environment and health: Probes and sensors for environment digital control

    NASA Astrophysics Data System (ADS)

    Schettini, Chiara

    2014-05-01

    The idea of studying the environment using New Technologies (NT) came from a MIUR (Ministry of Education of the Italian Government) notice that allocated funds for the realization of innovative school science projects. The "Environment and Health" project uses probes and sensors for digital control of environment (water, air and soil). The working group was composed of 4 Science teachers from 'Liceo Statale G. Mazzini ', under the coordination of teacher Chiara Schettini. The Didactic Section of Naples City of Sciences helped the teachers in developing the project and it organized a refresher course for them on the utilization of digital control sensors. The project connects Environment and Technology because the study of the natural aspects and the analysis of the chemical-physical parameters give students and teachers skills for studying the environment based on the utilization of NT in computing data elaboration. During the practical project, samples of air, water and soil are gathered in different contexts. Sample analysis was done in the school's scientific laboratory with digitally controlled sensors. The data are elaborated with specific software and the results have been written in a booklet and in a computing database. During the first year, the project involved 6 school classes (age of the students 14—15 years), under the coordination of Science teachers. The project aims are: 1) making students more aware about environmental matters 2) achieving basic skills for evaluating air, water and soil quality. 3) achieving strong skills for the utilization of digitally controlled sensors. 4) achieving computing skills for elaborating and presenting data. The project aims to develop a large environmental conscience and the need of a ' good ' environment for defending our health. Moreover it would increase the importance of NT as an instrument of knowledge.

  18. Optimal approaches for inline sampling of organisms in ballast water: L-shaped vs. Straight sample probes

    NASA Astrophysics Data System (ADS)

    Wier, Timothy P.; Moser, Cameron S.; Grant, Jonathan F.; Riley, Scott C.; Robbins-Wamsley, Stephanie H.; First, Matthew R.; Drake, Lisa A.

    2017-10-01

    Both L-shaped ("L") and straight ("Straight") sample probes have been used to collect water samples from a main ballast line in land-based or shipboard verification testing of ballast water management systems (BWMS). A series of experiments was conducted to quantify and compare the sampling efficiencies of L and Straight sample probes. The findings from this research-that both L and Straight probes sample organisms with similar efficiencies-permit increased flexibility for positioning sample probes aboard ships.

  19. Mixed species radioiodine air sampling readout and dose assessment system

    DOEpatents

    Distenfeld, Carl H.; Klemish, Jr., Joseph R.

    1978-01-01

    This invention provides a simple, reliable, inexpensive and portable means and method for determining the thyroid dose rate of mixed airborne species of solid and gaseous radioiodine without requiring highly skilled personnel, such as health physicists or electronics technicians. To this end, this invention provides a means and method for sampling a gas from a source of a mixed species of solid and gaseous radioiodine for collection of the mixed species and readout and assessment of the emissions therefrom by cylindrically, concentrically and annularly molding the respective species around a cylindrical passage for receiving a conventional probe-type Geiger-Mueller radiation detector.

  20. Gas sampling system for reactive gas-solid mixtures

    DOEpatents

    Daum, Edward D.; Downs, William; Jankura, Bryan J.; McCoury, Jr., John M.

    1989-01-01

    An apparatus and method for sampling a gas containing a reactive particulate solid phase flowing through a duct and for communicating a representative sample to a gas analyzer. A sample probe sheath 32 with an angular opening 34 extends vertically into a sample gas duct 30. The angular opening 34 is opposite the gas flow. A gas sampling probe 36 concentrically located within sheath 32 along with calibration probe 40 partly extend in the sheath 32. Calibration probe 40 extends further in the sheath 32 than gas sampling probe 36 for purging the probe sheath area with a calibration gas during calibration.

  1. Gas sampling system for reactive gas-solid mixtures

    DOEpatents

    Daum, Edward D.; Downs, William; Jankura, Bryan J.; McCoury, Jr., John M.

    1990-01-01

    An apparatus and method for sampling gas containing a reactive particulate solid phase flowing through a duct and for communicating a representative sample to a gas analyzer. A sample probe sheath 32 with an angular opening 34 extends vertically into a sample gas duct 30. The angular opening 34 is opposite the gas flow. A gas sampling probe 36 concentrically located within sheath 32 along with calibration probe 40 partly extends in the sheath 32. Calibration probe 40 extends further in the sheath 32 than gas sampling probe 36 for purging the probe sheath area with a calibration gas during calibration.

  2. Advancements in non-contact metrology of asphere and diffractive optics

    NASA Astrophysics Data System (ADS)

    DeFisher, Scott

    2017-11-01

    Advancements in optical manufacturing technology allow optical designers to implement steep aspheric or high departure surfaces into their systems. Measuring these surfaces with profilometers or CMMs can be difficult due to large surface slopes or sharp steps in the surface. OptiPro has developed UltraSurf to qualify the form and figure of steep aspheric and diffractive optics. UltraSurf is a computer controlled, non-contact coordinate measuring machine. It incorporates five air-bearing axes, linear motors, high-resolution feedback, and a non-contact probe. The measuring probe is scanned over the optical surface while maintaining perpendicularity and a constant focal offset. Multiple probe technologies are available on UltraSurf. Each probe has strengths and weaknesses relative to the material properties, surface finish, and figure error of an optical component. The measuring probes utilize absolute distance to resolve step heights and diffractive surface patterns. The non-contact scanning method avoids common pitfalls with stylus contact instruments. Advancements in measuring speed and precision has enabled fast and accurate non-contact metrology of diffractive and steep aspheric surfaces. The benefits of data sampling with twodimensional profiles and three-dimensional topography maps will be presented. In addition, accuracy, repeatability, and machine qualification will be discussed with regards to aspheres and diffractive surfaces.

  3. In situ analysis of soybeans and nuts by probe electrospray ionization mass spectrometry.

    PubMed

    Petroselli, Gabriela; Mandal, Mridul K; Chen, Lee C; Hiraoka, Kenzo; Nonami, Hiroshi; Erra-Balsells, Rosa

    2015-04-01

    The probe electrospray ionization (PESI) is an ESI-based ionization technique that generates electrospray from the tip of a solid metal needle. In the present work, we describe the PESI mass spectra obtained by in situ measurement of soybeans and several nuts (peanuts, walnuts, cashew nuts, macadamia nuts and almonds) using different solid needles as sampling probes. It was found that PESI-MS is a valuable approach for in situ lipid analysis of these seeds. The phospholipid and triacylglycerol PESI spectra of different nuts and soybean were compared by principal component analysis (PCA). PCA shows significant differences among the data of each family of seeds. Methanolic extracts of nuts and soybean were exposed to air and sunlight for several days. PESI mass spectra were recorded before and after the treatment. Along the aging of the oil (rancidification), the formation of oxidated species with variable number of hydroperoxide groups could be observed in the PESI spectra. The relative intensity of oxidated triacylglycerols signals increased with days of exposition. Monitoring sensitivity of PESI-MS was high. This method provides a fast, simple and sensitive technique for the analysis (detection and characterization) of lipids in seed tissue and degree of oxidation of the oil samples. Copyright © 2015 John Wiley & Sons, Ltd.

  4. A comparative study on laser induced shock cleaning of radioactive contaminants in air and water

    NASA Astrophysics Data System (ADS)

    Kumar, Aniruddha; Prasad, Manisha; Bhatt, R. B.; Behere, P. G.; Biswas, D. J.

    2018-03-01

    Efficient removal of Uranium-di-oxide (UO2) particulates from stainless steel surface was effected by Nd-YAG laser induced plasma shock waves in air as well as in water environment. The propagation velocity of the generated shock wave was measured by employing the photo-acoustic probe deflection method. Monitoring of the alpha activity of the sample with a ZnS (Ag) scintillation detector before and after the laser exposure allowed the estimation of decontamination efficiency defined as the percentage removal of the initial activity. Experiments were carried out to study the effect of laser pulse energy, number of laser exposures, orientation of the sample, the separation between the substrate surface and the onset point of the shock wave on the de-contamination efficiency. The most optimised cleaning was found to occur when the laser beam impinged normally on the sample that was immersed in water and placed at a distance of ∼0.7 mm from the laser focal spot. Analysis of the cleaned surface by optical microscopes established that laser induced shock cleaning in no way altered the surface property. The shock force generated in both air and water has been estimated theoretically and has been found to exceed the Van der Waal's binding force for spherical contaminant particulate.

  5. Air-coupled ultrasonic sensing of grass-covered vibrating surfaces; qualitative comparisons with laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Petculescu, Andi G.; Sabatier, James M.

    2004-04-01

    The paper addresses several sensitive issues concerning the use of air-coupled ultrasound to probe small vibrations of surfaces covered with low-lying vegetation such as grass. The operation of the ultrasonic sensor is compared to that of a laser Doppler vibrometer, in various contexts. It is shown that ambient air motion affects either system, albeit differently. As air speed increases, the acoustic sensor detects a progressively richer turbulent spectrum, which reduces its sensitivity. In turn, optical sensors are prone to tremendous signal losses when probing moving vegetation, due to randomly varying speckle patterns. The work was supported by the Office of Naval Research.

  6. UW Imaging of Seismic-Physical-Models in Air Using Fiber-Optic Fabry-Perot Interferometer.

    PubMed

    Rong, Qiangzhou; Hao, Yongxin; Zhou, Ruixiang; Yin, Xunli; Shao, Zhihua; Liang, Lei; Qiao, Xueguang

    2017-02-17

    A fiber-optic Fabry-Perot interferometer (FPI) has been proposed and demonstrated for the ultrasound wave (UW) imaging of seismic-physical models. The sensor probe comprises a single mode fiber (SMF) that is inserted into a ceramic tube terminated by an ultra-thin gold film. The probe performs with an excellent UW sensitivity thanks to the nanolayer gold film, and thus is capable of detecting a weak UW in air medium. Furthermore, the compact sensor is a symmetrical structure so that it presents a good directionality in the UW detection. The spectral band-side filter technique is used for UW interrogation. After scanning the models using the sensing probe in air, the two-dimensional (2D) images of four physical models are reconstructed.

  7. Study of probe-sample distance for biomedical spectra measurement.

    PubMed

    Wang, Bowen; Fan, Shuzhen; Li, Lei; Wang, Cong

    2011-11-02

    Fiber-based optical spectroscopy has been widely used for biomedical applications. However, the effect of probe-sample distance on the collection efficiency has not been well investigated. In this paper, we presented a theoretical model to maximize the illumination and collection efficiency in designing fiber optic probes for biomedical spectra measurement. This model was in general applicable to probes with single or multiple fibers at an arbitrary incident angle. In order to demonstrate the theory, a fluorescence spectrometer was used to measure the fluorescence of human finger skin at various probe-sample distances. The fluorescence spectrum and the total fluorescence intensity were recorded. The theoretical results show that for single fiber probes, contact measurement always provides the best results. While for multi-fiber probes, there is an optimal probe distance. When a 400- μm excitation fiber is used to deliver the light to the skin and another six 400- μm fibers surrounding the excitation fiber are used to collect the fluorescence signal, the experimental results show that human finger skin has very strong fluorescence between 475 nm and 700 nm under 450 nm excitation. The fluorescence intensity is heavily dependent on the probe-sample distance and there is an optimal probe distance. We investigated a number of probe-sample configurations and found that contact measurement could be the primary choice for single-fiber probes, but was very inefficient for multi-fiber probes. There was an optimal probe-sample distance for multi-fiber probes. By carefully choosing the probe-sample distance, the collection efficiency could be enhanced by 5-10 times. Our experiments demonstrated that the experimental results of the probe-sample distance dependence of collection efficiency in multi-fiber probes were in general agreement with our theory.

  8. Tritium and radioactive carbon (14C) analyses of gas collected from unsaturated sediments next to a low-level radioactive-waste burial site south of Beatty, Nevada, April 1994 and July 1995

    USGS Publications Warehouse

    Prudic, David E.; Striegl, Robert G.

    1995-01-01

    Tritium activities in water vapor and radioactive carbon (14C) activities in carbon dioxide were determined in gas samples pumped from small-diameter air ports installed in a test hole within the unsaturated sediments next to a commercial burial site for low-level radioactive waste south of Beatty, Nevada. In April 1994, gas samples were collected from test hole UZB-2, which was drilled about 350 feet south of the southwest corner of the fence enclosing the burial site. The test hole is part of a study to determine the depth to which atmospheric air circulates through the unsaturated sediments at the desert site. Laboratory results completed in May 1995 show activities of tritium and 14C were greater than expected, with measured tritium in the water vapor as high as 762 tritium units at a depth of 79 feet and measured 14C in carbon dioxide as high as 1,700 percent modern carbon at a depth of 18 feet.In July 1995, the uppermost five air ports in test hole UZB-2 were resampled. In addition, water vapor was collected for tritium analyses at a distant test hole, and water vapor for tritium analyses and carbon dioxide for 14C analyses were collected from three depths at the research shaft about 200 feet north of test hole UZB-2, and at two shallow probes (depth of 5.5 feet) next to the fence enclosing the burial site. Analyses of samples collected in the upper 112 feet from test hole UZB-2 in July 1995 show the same distribution of tritium and 14C as analyses of samples collected in April 1994, except that activities were somewhat greater in July. The greatest activities of tritium and 14C were measured from a shallow probe next to the fence with activities of 29,400 tritium units and 517,000 percent modern carbon, respectively.

  9. Continual in situ monitoring of pore water stable isotopes in the subsurface

    NASA Astrophysics Data System (ADS)

    Volkmann, T. H. M.; Weiler, M.

    2014-05-01

    Stable isotope signatures provide an integral fingerprint of origin, flow paths, transport processes, and residence times of water in the environment. However, the full potential of stable isotopes to quantitatively characterize subsurface water dynamics is yet unfolded due to the difficulty in obtaining extensive, detailed, and repeated measurements of pore water in the unsaturated and saturated zone. This paper presents a functional and cost-efficient system for non-destructive continual in situ monitoring of pore water stable isotope signatures with high resolution. Automatic controllable valve arrays are used to continuously extract diluted water vapor in soil air via a branching network of small microporous probes into a commercial laser-based isotope analyzer. Normalized liquid-phase isotope signatures are then obtained based on a specific on-site calibration approach along with basic corrections for instrument bias and temperature dependent isotopic fractionation. The system was applied to sample depth profiles on three experimental plots with varied vegetation cover in southwest Germany. Two methods (i.e., based on advective versus diffusive vapor extraction) and two modes of sampling (i.e., using multiple permanently installed probes versus a single repeatedly inserted probe) were tested and compared. The results show that the isotope distribution along natural profiles could be resolved with sufficiently high accuracy and precision at sampling intervals of less than four minutes. The presented in situ approaches may thereby be used interchangeably with each other and with concurrent laboratory-based direct equilibration measurements of destructively collected samples. It is thus found that the introduced sampling techniques provide powerful tools towards a detailed quantitative understanding of dynamic and heterogeneous shallow subsurface and vadose zone processes.

  10. Parker Solar Probe Spacecraft Arrival, Offload and Transport

    NASA Image and Video Library

    2018-04-03

    Preparations are underway to offload NASA's Parker Solar Probe spacecraft, secured in its shipping container, from a U.S. Air Force C-5 transport aircraft at Space Coast Regional Airport in Titusville, Florida. The spacecraft will be transported to the Astrotech processing facility near the agency's Kennedy Space Center. The Parker Solar Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  11. Parker Solar Probe Spacecraft Arrival, Offload and Transport

    NASA Image and Video Library

    2018-04-03

    A forklift operator latches onto the shipping container with NASA's Parker Solar Probe inside, after it was offloaded from a U.S. Air Force C-5 transport aircraft at Space Coast Regional Airport in Titusville, Florida. The spacecraft will be transported to the Astrotech processing facility near the agency's Kennedy Space Center. The Parker Solar Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  12. Fuel-Flexible Gas Turbine Combustor Flametube Facility

    NASA Technical Reports Server (NTRS)

    Little, James E.; Nemets, Stephen A.; Tornabene, Robert T.; Smith, Timothy D.; Frankenfield, Bruce J.; Manning, Stephen D.; Thompson, William K.

    2004-01-01

    Facility modifications have been completed to an existing combustor flametube facility to enable testing with gaseous hydrogen propellants at the NASA Glenn Research Center. The purpose of the facility is to test a variety of fuel nozzle and flameholder hardware configurations for use in aircraft combustors. Facility capabilities have been expanded to include testing with gaseous hydrogen, along with the existing hydrocarbon-based jet fuel. Modifications have also been made to the facility air supply to provide heated air up to 350 psig, 1100 F, and 3.0 lbm/s. The facility can accommodate a wide variety of flametube and fuel nozzle configurations. Emissions and performance data are obtained via a variety of gas sample probe configurations and emissions measurement equipment.

  13. The Effects of Wideband Complex Electromagnetic Properties of Soils on Geophysical Sensor Performance

    NASA Astrophysics Data System (ADS)

    North, Ryan Elliot

    Common near-surface geophysical methods such as time domain electromagnetic induction (TDEM) metal detectors and ground penetrating radar (GPR) suffer performance degradation as a function of site specific complex electromagnetic soil properties (permittivity, permeability and conductivity). Knowledge of these soil properties from the kHz to the GHz frequency range can be used to predict and improve sensor performance. A prototype permittivity probe was used to measure the complex permittivity and conductivity of the soil and calculate the GPR velocity and attenuation of the from the in-situ measurements. The prototype probe was capable of accurately predicting the GPR velocities when compared with the GPR measurement and could easily predict the attenuation which is difficult to determine from actual GPR data. Unfortunately the prototype probe here has one primarily deficiency which is the assumption that the soils where it is used are non-magnetic. To illustrate the problems with using this probe in magnetic soils I made soil analogues from commercially available magnetite and crushed silica powder then measured them using a common open ended coaxial probe followed by measurements with coaxial air- line fixture which can also calculate magnetic properties. The calculated permittivities are up to twice as high when measured with the coaxial probe as they are when measured with a coaxial airline fixture which will lead to incorrect estimates of GPR velocity and attenuation. To address the performance issues of metal detectors in magnetically viscous soils I created a magnetically viscous soil analogue that could be used in mine detection training lanes instead of importing soil from sites exhibiting magnetic viscosity. Five commercially available iron oxide nano-powders were tested as additives to create the soil analogues by measuring the magnetic viscosity of these iron oxides with a new prototype instrument and compared them to samples of magnetically viscous soils collected at sites around the world. Three of the iron oxides exhibited comparable magnetic viscosities to the naturally occurring soil samples. One was selected to make a soil analogue by mixing it with crushed silica. The resulting magnetic susceptibilities compared favorably with those of the natural soil samples.

  14. KSC-97PC1347

    NASA Image and Video Library

    1997-09-07

    The Cassini spacecraft, with its attached Huygens probe, is lowered from Launch Pad 40 at Cape Canaveral Air Station for its return trip to the Payload Hazardous Servicing Facility (PHSF). Damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Further internal inspection, insulation repair and a cleaning of the probe are now required. Mission managers are targeting a mid-October launch date after Cassini returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle. Cassini will explore the Saturnian system, including the planet’s rings, while the Huygens probe will explore the moon Titan

  15. Aerodynamic design of gas and aerosol samplers for aircraft

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.; Hazen, Nathan L.; Brune, William H.

    1991-01-01

    The aerodynamic design of airborne probes for the capture of air and aerosols is discussed. Emphasis is placed on the key parameters that affect proper sampling, such as inlet-lip design, internal duct components for low pressure drop, and exhaust geometry. Inlet designs that avoid sonic flow conditions on the lip and flow separation in the duct are shown. Cross-stream velocities of aerosols are expressed in terms of droplet density and diameter. Flow curvature, which can cause aerosols to cross streamlines and impact on probe walls, can be minimized by means of a proper inlet shape and proper probe orientation, and by avoiding bends upstream of the test section. A NASA panel code called PMARC was used successfully to compute streamlines around aircraft and probes, as well as to compute to local velocity and pressure distributions in inlets. A NACA 1-series inlet with modified lip radius was used for the airborne capture of stratospheric chlorine monoxide at high altitude and high flight speed. The device has a two-stage inlet that decelerates the inflow with little disturbance to the flow through the test section. Diffuser design, exhaust hood design, valve loss, and corner vane geometry are discussed.

  16. Theory of Near-Field Scanning with a Probe Array

    DTIC Science & Technology

    2014-01-01

    AIR FORCE RESEARCH LABORATORY SENSORS DIRECTORATE WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7320 AIR FORCE MATERIEL COMMAND...AFRL/RYMH) Sensors Directorate, Air Force Research Laboratory Wright-Patterson Air Force Base, OH 45433-7320 Air Force Materiel Command, United...S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY ACRONYM(S) Air Force Research Laboratory Sensors Directorate Wright-Patterson Air Force Base

  17. Comparison of Austenite Decomposition Models During Finite Element Simulation of Water Quenching and Air Cooling of AISI 4140 Steel

    NASA Astrophysics Data System (ADS)

    Babu, K.; Prasanna Kumar, T. S.

    2014-08-01

    An indigenous, non-linear, and coupled finite element (FE) program has been developed to predict the temperature field and phase evolution during heat treatment of steels. The diffusional transformations during continuous cooling of steels were modeled using Johnson-Mehl-Avrami-Komogorov equation, and the non-diffusion transformation was modeled using Koistinen-Marburger equation. Cylindrical quench probes made of AISI 4140 steel of 20-mm diameter and 50-mm long were heated to 1123 K (850 °C), quenched in water, and cooled in air. The temperature history during continuous cooling was recorded at the selected interior locations of the quench probes. The probes were then sectioned at the mid plane and resultant microstructures were observed. The process of water quenching and air cooling of AISI 4140 steel probes was simulated with the heat flux boundary condition in the FE program. The heat flux for air cooling process was calculated through the inverse heat conduction method using the cooling curve measured during air cooling of a stainless steel 304L probe as an input. The heat flux for the water quenching process was calculated from a surface heat flux model proposed for quenching simulations. The isothermal transformation start and finish times of different phases were taken from the published TTT data and were also calculated using Kirkaldy model and Li model and used in the FE program. The simulated cooling curves and phases using the published TTT data had a good agreement with the experimentally measured values. The computation results revealed that the use of published TTT data was more reliable in predicting the phase transformation during heat treatment of low alloy steels than the use of the Kirkaldy or Li model.

  18. The effects of space radiation on thin films of YBa2Cu3O(sub 7-x)

    NASA Technical Reports Server (NTRS)

    Herschitz, R.; Bogorad, A.; Bowman, C.; Seehra, S. S.; Mogro-Campero, A.; Turner, L. G.

    1990-01-01

    This investigation had two objectives: (1) to determine the effects of space radiation on superconductor parameters that are most important in space applications; and (2) to determine whether this effect can be simulated with Co-60 gamma rays, the standard test method for space materials. Thin films of yttrium barium copper oxide (YBCO) were formed by coevaporation of Y, BaF2, and Cu and post-annealing in wet oxygen at 850 C for 3.5 h. The substrate used was (100) silicon with an evaporated zirconia buffer layer. The samples were characterized by four point probe electrical measurements as a function of temperature. The parameters measured were the zero resistance transition temperature (T sub c) and the room temperature resistance. The samples were then exposed to Co-60 gamma-rays in air and in pure nitrogen, and to 780 keV electrons, in air. The parameters were then remeasured. The results are summarized. The results indicate little or no degradation in the parameters measured for samples exposed up to 10 Mrads of gamma-rays in nitrogen. However, complete degradation of samples exposed to 10-Mrad in air was observed. This degradation is preliminarily attributed to the high level of ozone generated in the chamber by the gamma-ray interaction with air. It can be concluded that: (1) the electron component of space radiation does not degrade the critical temperature of the YBCO films described, at least for energies around 800 keV and doses similar to those received by surface materials on spacecraft in typical remote sensing missions; and (2) for qualifying this and other superconducting materials against the space-radiation threat the standard test method in the aerospace industry, namely, exposure to Co-60 gamma-rays in air, may require some further investigation. As a minimum, the sample must be either in vacuum or in positive nitrogen pressure.

  19. Finite element and analytical solutions for van der Pauw and four-point probe correction factors when multiple non-ideal measurement conditions coexist

    NASA Astrophysics Data System (ADS)

    Reveil, Mardochee; Sorg, Victoria C.; Cheng, Emily R.; Ezzyat, Taha; Clancy, Paulette; Thompson, Michael O.

    2017-09-01

    This paper presents an extensive collection of calculated correction factors that account for the combined effects of a wide range of non-ideal conditions often encountered in realistic four-point probe and van der Pauw experiments. In this context, "non-ideal conditions" refer to conditions that deviate from the assumptions on sample and probe characteristics made in the development of these two techniques. We examine the combined effects of contact size and sample thickness on van der Pauw measurements. In the four-point probe configuration, we examine the combined effects of varying the sample's lateral dimensions, probe placement, and sample thickness. We derive an analytical expression to calculate correction factors that account, simultaneously, for finite sample size and asymmetric probe placement in four-point probe experiments. We provide experimental validation of the analytical solution via four-point probe measurements on a thin film rectangular sample with arbitrary probe placement. The finite sample size effect is very significant in four-point probe measurements (especially for a narrow sample) and asymmetric probe placement only worsens such effects. The contribution of conduction in multilayer samples is also studied and found to be substantial; hence, we provide a map of the necessary correction factors. This library of correction factors will enable the design of resistivity measurements with improved accuracy and reproducibility over a wide range of experimental conditions.

  20. Finite element and analytical solutions for van der Pauw and four-point probe correction factors when multiple non-ideal measurement conditions coexist.

    PubMed

    Reveil, Mardochee; Sorg, Victoria C; Cheng, Emily R; Ezzyat, Taha; Clancy, Paulette; Thompson, Michael O

    2017-09-01

    This paper presents an extensive collection of calculated correction factors that account for the combined effects of a wide range of non-ideal conditions often encountered in realistic four-point probe and van der Pauw experiments. In this context, "non-ideal conditions" refer to conditions that deviate from the assumptions on sample and probe characteristics made in the development of these two techniques. We examine the combined effects of contact size and sample thickness on van der Pauw measurements. In the four-point probe configuration, we examine the combined effects of varying the sample's lateral dimensions, probe placement, and sample thickness. We derive an analytical expression to calculate correction factors that account, simultaneously, for finite sample size and asymmetric probe placement in four-point probe experiments. We provide experimental validation of the analytical solution via four-point probe measurements on a thin film rectangular sample with arbitrary probe placement. The finite sample size effect is very significant in four-point probe measurements (especially for a narrow sample) and asymmetric probe placement only worsens such effects. The contribution of conduction in multilayer samples is also studied and found to be substantial; hence, we provide a map of the necessary correction factors. This library of correction factors will enable the design of resistivity measurements with improved accuracy and reproducibility over a wide range of experimental conditions.

  1. Advanced Human Factors Engineering Tool Technologies.

    DTIC Science & Technology

    1988-03-01

    charger/ AC adapter immersible probe air temperature probe surface temperature probe . * Sling psychrometer , MSA or Taylor 1328A * Aspirating... psychrometer , Model PP-100 or CP-147, Psychro-Dyne * Wet-bulb-heat-stress monitor, Model B&K 1219, Briel & Kjaer Transducer, Model B&K MM 0030 (3 each), Brijel

  2. 40 CFR 89.412 - Raw gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Sample probe. (1) The sample probe shall be a straight, closed-end, stainless steel, multi-hole probe... wall thickness of the probe shall not be greater than 0.10 cm. The fitting that attaches the probe to the exhaust pipe shall be as small as practical in order to minimize heat loss from the probe. (2) The...

  3. 40 CFR 89.412 - Raw gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Sample probe. (1) The sample probe shall be a straight, closed-end, stainless steel, multi-hole probe... wall thickness of the probe shall not be greater than 0.10 cm. The fitting that attaches the probe to the exhaust pipe shall be as small as practical in order to minimize heat loss from the probe. (2) The...

  4. 40 CFR 89.412 - Raw gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Sample probe. (1) The sample probe shall be a straight, closed-end, stainless steel, multi-hole probe... wall thickness of the probe shall not be greater than 0.10 cm. The fitting that attaches the probe to the exhaust pipe shall be as small as practical in order to minimize heat loss from the probe. (2) The...

  5. Microinterferometer transducer

    DOEpatents

    Corey, III, Harry S.

    1979-01-01

    An air-bearing microinterferometer transducer is provided for increased accuracy, range and linearity over conventional displacement transducers. A microinterferometer system is housed within a small compartment of an air-bearing displacement transducer housing. A movable cube corner reflector of the interferometer is mounted to move with the displacement gauging probe of the transducer. The probe is disposed for axial displacement by means of an air-bearing. Light from a single frequency laser is directed into an interferometer system within the transducer housing by means of a self-focusing fiber optic cable to maintain light coherency. Separate fringe patterns are monitored by a pair of fiber optic cables which transmit the patterns to a detecting system. The detecting system includes a bidirectional counter which counts the light pattern fringes according to the direction of movement of the probe during a displacement gauging operation.

  6. NARSTO EPA SS BALTIMORE JHU MET DATA

    Atmospheric Science Data Center

    2018-04-09

    ... Meteorological Station Instrument:  Temperature Probe Humidity Probe Cup Anemometer Rain Gauge Sonic ...   E arthdata Search Parameters:  Air Temperature Humidity Surface Winds Precipitation Amount Heat Flux ...

  7. Reactive Oxygen Species (ROS) generation by lunar simulants

    NASA Astrophysics Data System (ADS)

    Kaur, Jasmeet; Rickman, Douglas; Schoonen, Martin A.

    2016-05-01

    The current interest in human exploration of the Moon and past experiences of Apollo astronauts has rekindled interest into the possible harmful effects of lunar dust on human health. In comparison to the Apollo-era explorations, human explorers may be weeks on the Moon, which will raise the risk of inhalation exposure. The mineralogical composition of lunar dust is well documented, but its effects on human health are not fully understood. With the aim of understanding the reactivity of dusts that may be encountered on geologically different lunar terrains, we have studied Reactive Oxygen Species (ROS) generation by a suite of lunar simulants of different mineralogical-chemical composition dispersed in water and Simulated Lung Fluid (SLF). To further explore the reactivity of simulants under lunar environmental conditions, we compared the reactivity of simulants both in air and inert atmosphere. As the impact of micrometeorites with consequent shock-induced stresses is a major environmental factor on the Moon, we also studied the effect of mechanical stress on samples. Mechanical stress was induced by hand crushing the samples both in air and inert atmosphere. The reactivity of samples after crushing was analyzed for a period of up to nine days. Hydrogen peroxide (H2O2) in water and SLF was analyzed by an in situ electrochemical probe and hydroxyl radical (•OH) by Electron Spin Resonance (ESR) spectroscopy and Adenine probe. Out of all simulants, CSM-CL-S was found to be the most reactive simulant followed by OB-1 and then JSC-1A simulant. The overall reactivity of samples in the inert atmosphere was higher than in air. Fresh crushed samples showed a higher level of reactivity than uncrushed samples. Simulant samples treated to create agglutination, including the formation of zero-valent iron, showed less reactivity than untreated simulants. ROS generation in SLF is initially slower than in deionized water (DI), but the ROS formation is sustained for as long as 7.5 h. By contrast ROS is formed rapidly within 30 min when simulants are dispersed in DI, but then the concentration either stabilizes or decreases over time. The results indicate that mechanical stress and the absence of molecular oxygen and water, which are important environmental characteristics of the lunar environment, can lead to enhanced production of ROS in general. However, compositional difference among simulants is the most important factor in governing the production of ROS. Simulants with glass content in excess of 40 wt% appear to produce as much as of order of magnitude more ROS than simulants with lower glass content.

  8. AFM fluid delivery/liquid extraction surface sampling/electrostatic spray cantilever probe

    DOEpatents

    Van Berkel, Gary J.

    2015-06-23

    An electrospray system comprises a liquid extraction surface sampling probe. The probe comprises a probe body having a liquid inlet and a liquid outlet, and having a liquid extraction tip. A solvent delivery conduit is provided for receiving solvent liquid from the liquid inlet and delivering the solvent liquid to the liquid extraction tip. An open liquid extraction channel extends across an exterior surface of the probe body from the liquid extraction tip to the liquid outlet. An electrospray emitter tip is in liquid communication with the liquid outlet of the liquid extraction surface sampling probe. A system for analyzing samples, a liquid junction surface sampling system, and a method of analyzing samples are also disclosed.

  9. KSC-97PC1349

    NASA Image and Video Library

    1997-09-07

    Workers in the Payload Hazardous Servicing Facility (PHSF) begin to remove a protective cover from the Cassini spacecraft with its attached Huygens probe. Damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Further internal inspection, insulation repair and a cleaning of the probe are now required. Mission managers are targeting a mid-October launch date after Cassini returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station. Cassini will explore the Saturnian system, including the planet’s rings, while the Huygens probe will explore the moon Titan

  10. KSC-97PC1348

    NASA Image and Video Library

    1997-09-07

    A crane lowers a protective transportation cover over the Cassini spacecraft, with its attached Huygens probe, at Launch Pad 40 at Cape Canaveral Air Station for the spacecraft’s return trip to the Payload Hazardous Servicing Facility (PHSF). Damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Further internal inspection, insulation repair and a cleaning of the probe are now required. Mission managers are targeting a mid-October launch date after Cassini returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle. Cassini will explore the Saturnian system, including the planet’s rings, while the Huygens probe will explore the moon Titan

  11. KSC-97PC1350

    NASA Image and Video Library

    1997-09-07

    Workers in the Payload Hazardous Servicing Facility (PHSF) finish the removal of a protective cover from the Cassini spacecraft with its attached Huygens probe. Damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Further internal inspection, insulation repair and a cleaning of the probe are now required. Mission managers are targeting a mid-October launch date after Cassini returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station. Cassini will explore the Saturnian system, including the planet’s rings, while the Huygens probe will explore the moon Titan

  12. Results of an air data probe investigation utilizing a 0.10 scale orbiter forebody (model 57-0) in the Ames Research Center 14-foot wind tunnel (OA220)

    NASA Technical Reports Server (NTRS)

    Esparza, V.; Thornton, D. E.

    1976-01-01

    Results are presented of a 0.10 scale orbiter forebody test with left and right mounted air data probes (ADP) as well as a flight test probe (nose boom). Left and right ADP data were obtained at Mach numbers of .3, .4, .5, .6, .7, .8, .85, .9, .95, .98, 1.05 and 1.1 through a Reynolds number range of 1.3 to 4.4 million. Nose boom data were obtained at Mach numbers of .3, .4, .5, .6, .7, .9 and .98.

  13. Sparse sampling and reconstruction for electron and scanning probe microscope imaging

    DOEpatents

    Anderson, Hyrum; Helms, Jovana; Wheeler, Jason W.; Larson, Kurt W.; Rohrer, Brandon R.

    2015-07-28

    Systems and methods for conducting electron or scanning probe microscopy are provided herein. In a general embodiment, the systems and methods for conducting electron or scanning probe microscopy with an undersampled data set include: driving an electron beam or probe to scan across a sample and visit a subset of pixel locations of the sample that are randomly or pseudo-randomly designated; determining actual pixel locations on the sample that are visited by the electron beam or probe; and processing data collected by detectors from the visits of the electron beam or probe at the actual pixel locations and recovering a reconstructed image of the sample.

  14. 40 CFR 90.414 - Raw gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... savers” or “protectors” with nonreactive diaphragms to reduce dead volumes is permitted. (b) Sample probe. (1) The sample probe must be a straight, closed end, stainless steel, multi-hole probe. The inside... probe may not be greater than 0.10 cm. The fitting that attaches the probe to the exhaust pipe must be...

  15. 40 CFR 90.414 - Raw gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... savers” or “protectors” with nonreactive diaphragms to reduce dead volumes is permitted. (b) Sample probe. (1) The sample probe must be a straight, closed end, stainless steel, multi-hole probe. The inside... probe may not be greater than 0.10 cm. The fitting that attaches the probe to the exhaust pipe must be...

  16. 40 CFR 90.414 - Raw gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... savers” or “protectors” with nonreactive diaphragms to reduce dead volumes is permitted. (b) Sample probe. (1) The sample probe must be a straight, closed end, stainless steel, multi-hole probe. The inside... probe may not be greater than 0.10 cm. The fitting that attaches the probe to the exhaust pipe must be...

  17. Thermal diffusivity measurement in thin metallic filaments using the mirage method with multiple probe beams and a digital camera

    NASA Astrophysics Data System (ADS)

    Vargas, E.; Cifuentes, A.; Alvarado, S.; Cabrera, H.; Delgado, O.; Calderón, A.; Marín, E.

    2018-02-01

    Photothermal beam deflection is a well-established technique for measuring thermal diffusivity. In this technique, a pump laser beam generates temperature variations on the surface of the sample to be studied. These variations transfer heat to the surrounding medium, which may be air or any other fluid. The medium in turn experiences a change in the refractive index, which will be proportional to the temperature field on the sample surface when the distance to this surface is small. A probe laser beam will suffer a deflection due to the refractive index periodical changes, which is usually monitored by means of a quadrant photodetector or a similar device aided by lock-in amplification. A linear relationship that arises in this technique is that given by the phase lag of the thermal wave as a function of the distance to a punctual heat source when unidimensional heat diffusion can be guaranteed. This relationship is useful in the calculation of the sample's thermal diffusivity, which can be obtained straightforwardly by the so-called slope method, if the pump beam modulation frequency is well-known. The measurement procedure requires the experimenter to displace the probe beam at a given distance from the heat source, measure the phase lag at that offset, and repeat this for as many points as desired. This process can be quite lengthy in dependence of the number points. In this paper, we propose a detection scheme, which overcomes this limitation and simplifies the experimental setup using a digital camera that substitutes all detection hardware utilizing motion detection techniques and software digital signal lock-in post-processing. In this work, the method is demonstrated using thin metallic filaments as samples.

  18. Thermal diffusivity measurement in thin metallic filaments using the mirage method with multiple probe beams and a digital camera.

    PubMed

    Vargas, E; Cifuentes, A; Alvarado, S; Cabrera, H; Delgado, O; Calderón, A; Marín, E

    2018-02-01

    Photothermal beam deflection is a well-established technique for measuring thermal diffusivity. In this technique, a pump laser beam generates temperature variations on the surface of the sample to be studied. These variations transfer heat to the surrounding medium, which may be air or any other fluid. The medium in turn experiences a change in the refractive index, which will be proportional to the temperature field on the sample surface when the distance to this surface is small. A probe laser beam will suffer a deflection due to the refractive index periodical changes, which is usually monitored by means of a quadrant photodetector or a similar device aided by lock-in amplification. A linear relationship that arises in this technique is that given by the phase lag of the thermal wave as a function of the distance to a punctual heat source when unidimensional heat diffusion can be guaranteed. This relationship is useful in the calculation of the sample's thermal diffusivity, which can be obtained straightforwardly by the so-called slope method, if the pump beam modulation frequency is well-known. The measurement procedure requires the experimenter to displace the probe beam at a given distance from the heat source, measure the phase lag at that offset, and repeat this for as many points as desired. This process can be quite lengthy in dependence of the number points. In this paper, we propose a detection scheme, which overcomes this limitation and simplifies the experimental setup using a digital camera that substitutes all detection hardware utilizing motion detection techniques and software digital signal lock-in post-processing. In this work, the method is demonstrated using thin metallic filaments as samples.

  19. Quantitative validation of an air-coupled ultrasonic probe model by Interferometric laser tomography

    NASA Astrophysics Data System (ADS)

    Revel, G. M.; Pandarese, G.; Cavuto, A.

    2012-06-01

    The present paper describes the quantitative validation of a finite element (FE) model of the ultrasound beam generated by an air coupled non-contact ultrasound transducer. The model boundary conditions are given by vibration velocities measured by laser vibrometry on the probe membrane. The proposed validation method is based on the comparison between the simulated 3D pressure field and the pressure data measured with interferometric laser tomography technique. The model details and the experimental techniques are described in paper. The analysis of results shows the effectiveness of the proposed approach and the possibility to quantitatively assess and predict the generated acoustic pressure field, with maximum discrepancies in the order of 20% due to uncertainty effects. This step is important for determining in complex problems the real applicability of air-coupled probes and for the simulation of the whole inspection procedure, also when the component is designed, so as to virtually verify its inspectability.

  20. 40 CFR 86.310-79 - Sampling and analytical system; component specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... temperature specification applies. (b) Sample probe. (1) The sample probe shall be a straight, closed end, stainless steel, multi-hole probe. The Inside Diameter (I.D.) shall not be greater than the I.D. of the sample line (=.010 in.). The wall thickness of the probe shall not be greater than .040 inch. The fitting...

  1. 40 CFR 86.310-79 - Sampling and analytical system; component specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... temperature specification applies. (b) Sample probe. (1) The sample probe shall be a straight, closed end, stainless steel, multi-hole probe. The Inside Diameter (I.D.) shall not be greater than the I.D. of the sample line (=.010 in.). The wall thickness of the probe shall not be greater than .040 inch. The fitting...

  2. 40 CFR 91.414 - Raw gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... “protectors” with nonreactive diaphragms to reduce dead volumes is permitted. (b) Sample probe. (1) The sample probe shall be a straight, closed end, stainless steel, multi-hole probe. The inside diameter shall not be greater than the inside diameter of the sample line + 0.03 cm. The wall thickness of the probe...

  3. 40 CFR 86.310-79 - Sampling and analytical system; component specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... temperature specification applies. (b) Sample probe. (1) The sample probe shall be a straight, closed end, stainless steel, multi-hole probe. The Inside Diameter (I.D.) shall not be greater than the I.D. of the sample line (=.010 in.). The wall thickness of the probe shall not be greater than .040 inch. The fitting...

  4. 40 CFR 86.310-79 - Sampling and analytical system; component specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... temperature specification applies. (b) Sample probe. (1) The sample probe shall be a straight, closed end, stainless steel, multi-hole probe. The Inside Diameter (I.D.) shall not be greater than the I.D. of the sample line (=.010 in.). The wall thickness of the probe shall not be greater than .040 inch. The fitting...

  5. 40 CFR 91.414 - Raw gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... “protectors” with nonreactive diaphragms to reduce dead volumes is permitted. (b) Sample probe. (1) The sample probe shall be a straight, closed end, stainless steel, multi-hole probe. The inside diameter shall not be greater than the inside diameter of the sample line + 0.03 cm. The wall thickness of the probe...

  6. 40 CFR 91.414 - Raw gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... “protectors” with nonreactive diaphragms to reduce dead volumes is permitted. (b) Sample probe. (1) The sample probe shall be a straight, closed end, stainless steel, multi-hole probe. The inside diameter shall not be greater than the inside diameter of the sample line + 0.03 cm. The wall thickness of the probe...

  7. 77 FR 16661 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-22

    ... unions on Goodrich pitot probes that might be the result of mis-torque of the affected unions at... detect and correct loose unions on the pitot probes, which could lead to an air leak, resulting in... pneumatic quick-disconnect unions on Goodrich pitot probes [part number] P/N 0851HL. These may be the result...

  8. Eddy-Current Inspection of Ball Bearings

    NASA Technical Reports Server (NTRS)

    Bankston, B.

    1985-01-01

    Custom eddy-current probe locates surface anomalies. Low friction air cushion within cone allows ball to roll easily. Eddy current probe reliably detects surface and near-surface cracks, voids, and material anomalies in bearing balls or other spherical objects. Defects in ball surface detected by probe displayed on CRT and recorded on strip-chart recorder.

  9. Air Temperature Distribution Measurement Using Asynchronous-Type Sound Probe

    NASA Astrophysics Data System (ADS)

    Katano, Yosuke; Wakatsuki, Naoto; Mizutani, Koichi

    2009-07-01

    In conventional temperature measurement using a sound probe, the operation beginnings of two acoustic sensors must be completely synchronized to measure time of flight (TOF), tf, because the precision of synchronization determines TOF measurement accuracy. A wireless local area network (LAN) is convenient for constructing a sensing grid; however, it causes a fluctuation in the delay of millisecond order. Therefore, it cannot provide sufficient precision for synchronizing acoustic sensors. In previous studies, synchronization was achieved by a trigger line using a coaxial cable; however, the cable reduces the flexibility of a wireless sensing grid especially in larger-scale measurement. In this study, an asynchronous-type sound probe is devised to compensate for the effect of the delay of millisecond order caused by the network. The validity of the probe was examined, and the air temperature distribution was measured using this means. A matrix method is employed to obtain the distribution. Similar results were observed using both asynchronous-type sound probes and thermocouples. This shows the validity of the use of a sensing grid with an asynchronous-type sound probe for temperature distribution measurement even if the trigger line is omitted.

  10. Supersonic Coaxial Jet Experiment for CFD Code Validation

    NASA Technical Reports Server (NTRS)

    Cutler, A. D.; Carty, A. A.; Doerner, S. E.; Diskin, G. S.; Drummond, J. P.

    1999-01-01

    A supersonic coaxial jet facility has been designed to provide experimental data suitable for the validation of CFD codes used to analyze high-speed propulsion flows. The center jet is of a light gas and the coflow jet is of air, and the mixing layer between them is compressible. Various methods have been employed in characterizing the jet flow field, including schlieren visualization, pitot, total temperature and gas sampling probe surveying, and RELIEF velocimetry. A Navier-Stokes code has been used to calculate the nozzle flow field and the results compared to the experiment.

  11. Low and medium heating value coal gas catalytic combustor characterization

    NASA Technical Reports Server (NTRS)

    Schwab, J. A.

    1982-01-01

    Catalytic combustion with both low and medium heating value coal gases obtained from an operating gasifier was demonstrated. A practical operating range for efficient operation was determined, and also to identify potential problem areas were identified for consideration during stationary gas turbine engine design. The test rig consists of fuel injectors, a fuel-air premixing section, a catalytic reactor with thermocouple instrumentation and a single point, water cooled sample probe. The test rig included inlet and outlet transition pieces and was designed for installation into an existing test loop.

  12. Characterisation of adhesional properties of lactose carriers using atomic force microscopy.

    PubMed

    Louey, M D; Mulvaney, P; Stewart, P J

    2001-06-01

    The atomic force microscopy (AFM) colloid probe technique was investigated as a method for the characterisation of adhesional properties of pharmaceutical powder surfaces. Lactose carriers used in dry powder inhaler (DPI) formulations were chosen for investigation since adhesion between the carrier surface and drug particles has been proposed to affect the dispersion of drug particles. Individual adhesion forces were determined by measuring the detachment forces in air between the colloid probe and the lactose particle surface. The colloid probe consisted of a silica sphere (10 microm diameter) attached to a V-shaped silicon nitride cantilever (spring constant, k=0.42 N/m). Adhesion forces were calculated from individual force-distance curves using Hooke's Law. Individual forces measured at various adhesion sites were observed to be reproducible and stable over 10 min (coefficient of variation, CV below 5%). The adhesion force distribution determined from measurements at multiple sites (n>50) on each sample followed a log-normal relationship (regression coefficient, r(2) ranged between 0.95 and 0.99). This enabled characterisation in terms of the geometric mean adhesion force and a geometric standard deviation (GSD). Significant differences (P<0.001) in adhesion force were observed between samples, ranging from 37.47+/-1.95 to 117.48+/-2.20 nN. This study demonstrates the suitability of AFM as sensitive technique for the characterisation of adhesional properties of pharmaceutical particles.

  13. Orientational Dynamics of a Functionalized Alkyl Planar Monolayer Probed by Polarization-Selective Angle-Resolved Infrared Pump-Probe Spectroscopy.

    PubMed

    Nishida, Jun; Yan, Chang; Fayer, Michael D

    2016-10-12

    Polarization-selective angle-resolved infrared pump-probe spectroscopy was developed and used to study the orientational dynamics of a planar alkylsiloxane monolayer functionalized with a rhenium metal carbonyl headgroup on an SiO 2 surface. The technique, together with a time-averaged infrared linear dichroism measurement, characterized picosecond orientational relaxation of the headgroup occurring at the monolayer-air interface by employing several sets of incident angles of the infrared pulses relative to the sample surface. By application of this method and using a recently developed theory, it was possible to extract both the out-of-plane and "mainly"-in-plane orientational correlation functions in a model-independent manner. The observed correlation functions were compared with theoretically derived correlation functions based on several dynamical models. The out-of-plane correlation function reveals the highly restricted out-of-plane motions of the head groups and also suggests that the angular distribution of the transition dipole moments is bimodal. The mainly-in-plane correlation function, for the sample studied here with the strongly restricted out-of-plane motions, essentially arises from the purely in-plane dynamics. In contrast to the out-of-plane dynamics, significant in-plane motions occurring over various time scales were observed including an inertial motion, a restricted wobbling motion of ∼3 ps, and complete randomization occurring in ∼25 ps.

  14. Piping inspection instrument carriage with precise and repeatable position control and location determination

    DOEpatents

    Hapstack, M.; Talarek, T.R.; Zollinger, W.T.; Heckendorn, F.M. II; Park, L.R.

    1994-02-15

    An instrument carriage for inspection of piping comprises front and rear leg assemblies for engaging the interior of the piping and supporting and centering the carriage therein, and an instrumentation arm carried by a shaft system running from the front to rear leg assemblies. The shaft system has a screw shaft for moving the arm axially and a spline gear for moving the arm azimuthally. The arm has a pair of air cylinders that raise and lower a plate in the radial direction. On the plate are probes including an eddy current probe and an ultrasonic testing probe. The ultrasonic testing probe is capable of spinning 360[degree] about its axis. The instrument carriage uses servo motors and pressurized air cylinders for precise actuation of instrument components and precise, repeatable actuation of position control mechanisms. 8 figures.

  15. Piping inspection instrument carriage with precise and repeatable position control and location determination

    DOEpatents

    Hapstack, Mark; Talarek, Ted R.; Zollinger, W. Thor; Heckendorn, II, Frank M.; Park, Larry R.

    1994-01-01

    An instrument carriage for inspection of piping comprises front and rear leg assemblies for engaging the interior of the piping and supporting and centering the carriage therein, and an instrumentation arm carried by a shaft system running from the front to rear leg assemblies. The shaft system has a screw shaft for moving the arm axially and a spline gear for moving the arm azimuthally. The arm has a pair of air cylinders that raise and lower a plate in the radial direction. On the plate are probes including an eddy current probe and an ultrasonic testing probe. The ultrasonic testing probe is capable of spinning 360.degree. about its axis. The instrument carriage uses servo motors and pressurized air cylinders for precise actuation of instrument components and precise, repeatable actuation of position control mechanisms.

  16. Apparatus and method for detecting leaks in piping

    DOEpatents

    Trapp, Donald J.

    1994-01-01

    A method and device for detecting the location of leaks along a wall or piping system, preferably in double-walled piping. The apparatus comprises a sniffer probe, a rigid cord such as a length of tube attached to the probe on one end and extending out of the piping with the other end, a source of pressurized air and a source of helium. The method comprises guiding the sniffer probe into the inner pipe to its distal end, purging the inner pipe with pressurized air, filling the annulus defined between the inner and outer pipe with helium, and then detecting the presence of helium within the inner pipe with the probe as is pulled back through the inner pipe. The length of the tube at the point where a leak is detected determines the location of the leak in the pipe.

  17. Consensus Conference Findings on Supragingival and Subgingival Air Polishing.

    PubMed

    Cobb, Charles M; Daubert, Diane M; Davis, Karen; Deming, Jodi; Flemmig, Thomas F; Pattison, Anna; Roulet, Jean-François; Stambaugh, Roger V

    2017-02-01

    A consensus conference was convened to evaluate and address issues of safety and efficacy when using glycine powder in an air-powder jet device for supra- and subgingival applications during dental prophylaxis and periodontal maintenance. The conference reported the following conclusions: 1) Supra- and subgingival air polishing using glycine powder is safe and effective for removal of biofilms from natural tooth structure and restorative materials; 2) there is no evidence of soft-tissue abrasion when using glycine powder in an air-polishing device; 3) in periodontal probing depths of 1 mm to 4 mm, glycine-powder air polishing, using a standard air-polishing nozzle, is more effective at removing subgingival biofilm than manual or ultrasonic instruments; and 4) at probing depths of 5 mm to 9 mm, using a subgingival nozzle, glycine powder air polishing is more effective at removing subgingival biofilm than manual or ultrasonic instrumentation. This conference statement, supported by an industry grant, was drafted by a panel of distinguished dental professionals.

  18. Design and implementation of atmospheric multi-parameter sensor for UAVs

    NASA Astrophysics Data System (ADS)

    Yu, F.; Zhao, Y.; Chen, G.; Liu, Y.; Han, Y.

    2017-12-01

    With the rapid development of industry and the increase of cars in developing countries, air pollutants have caused a series of environmental issues such as haze and smog. However, air pollution is a process of surface-to-air mass exchange, and various kinds of atmospheric factors have close association with aerosol concentration, such as temperature, humidity, etc. Vertical distributions of aerosol in the region provide an important clue to reveal the exchange mechanism in the atmosphere between atmospheric boundary layer and troposphere. Among the various kinds of flying platforms, unmanned aerial vehicles (UAVs) shows more advantages in vertical measurement of aerosol owned to its flexibility and low cost. However, only few sensors could be mounted on the UAVs because of the limited size and power requirement. Here, a light-weight, low-power atmospheric multi-parameter sensor (AMPS) is proposed and could be mounted on several kinds of UAV platforms. The AMPS integrates multi-sensors, which are the laser aerosol particle sensor, the temperature probe, the humidity probe and the pressure probe, in order to simultaneously sample the vertical distribution characters of aerosol particle concentration, temperature, relative humidity and atmospheric pressure. The data from the sensors are synchronized by a proposed communication mechanism based on GPS. Several kinds of housing are designed to accommodate the different payload requirements of UAVs in size and weight. The experiments were carried out with AMPS mounted on three kinds of flying platforms. The results shows that the power consumption is less than 1.3 W, with relatively high accuracy in temperature (±0.1°C), relative humidity (±0.8%RH), PM2.5 (<20%) and PM10 (<20%). Vertical profiles of PM2.5 and PM10 concentrations were observed simultaneously by the AMPS three times every day in five days. The results revealed the significant correlation between the aerosol particle concentration and atmospheric parameters. With low cost and flexibility, AMPS for UAVs provides an effective way to explore the properties of aerosol vertical distribution, and to monitor air pollutants flexibly.

  19. METAL RESISTIVITY MEASURING DEVICE

    DOEpatents

    Renken, J. Jr.; Myers, R.G.

    1960-12-20

    An eddy current device is offered for detecting discontinuities in metal samples. Alternate short and long duration pulses are inductively applied to a metal sample via the outer coil of a probe. The long pulses give a resultant signal from the metal sample responsive to probe-tosample spacing and discontinuities within the sample and the shont pulses give a resultant signal responsive only to probe -to-sample spacing. The inner coil of the probe detects the two resultant signals and transmits them to a separation network where the two signals are separated. The two separated signals are then transmitted to a compensation network where the detected signals due to the short pulses are used to compensate for variations due to probe-to-sample spacing contained in the detected signals from the long pulses. Thus, a resultant signal is obtained responsive to discontinuities within the sample and independent of probe-to- sample spacing.

  20. NONDESTRUCTIVE EDDY CURRENT TESTING

    DOEpatents

    Renken, C.J. Jr.

    1961-05-23

    An eddy current testing device is described for measuring metal continuity independent of probe-to-sample spacing. An inductance would test probe is made a leg of a variable impedance bridge and the bridge is balanced with the probe away from the sample. An a-c signal is applied across the input terminals of the bridge circuit. As the probe is brought into proximity with the metal sample, the resulting impedance change in the probe gives an output signal from the bridge whose phase angle is proportional to the sample continuity and amplitude is proportional to the probe-tosample spacing. The output signal from the bridge is applied to a compensating network where, responsive to amplitude changes from the bridge output signal, a constant phased voltage output is maintained when the sample is continuous regardless of probe-to-sample spacing. A phase meter calibrated to read changes in resistivity of the metal sample measures the phase shift between the output of the compensating network and the original a-c signal applied to the bridge.

  1. Femtosecond pulsed laser processing of electronic materials: Fundamentals and micro/nano-scale applications

    NASA Astrophysics Data System (ADS)

    Choi, Tae-Youl

    Ultra-short pulsed laser radiation has been shown to be effective for precision materials processing and surface micro-modification. One of advantages is the substantial reduction of the heat penetration depth, which leads to minimal lateral damage. Other advantages include non-thermal nature of ablation process, controlled ablation and ideal characteristics for precision micro-structuring. Yet, fundamental questions remain unsolved regarding the nature of melting and ablation mechanisms in femtosecond laser processing of materials. In addition to micro engineering problems, nano-structuring and nano-fabrication are emerging fields that are of particular interest in conjunction with femtosecond laser processing. A comprehensive experimental study as well as theoretical development is presented to address these issues. Ultra-short pulsed laser irradiation was used to crystallize 100 nm amorphous silicon (a-Si) films. The crystallization process was observed by time-resolved pump-and-probe reflection imaging in the range of 0.2 ps to 100 ns. The in-situ images in conjunction with post-processed SEM and AFM mapping of the crystallized structure provide evidence for non-thermal ultra-fast phase transition and subsequent surface-initiated crystallization. Mechanisms of ultra-fast laser-induced ablation on crystalline silicon and copper are investigated by time-resolved pump-and-probe microscopy in normal imaging and shadowgraph arrangements. A one-dimensional model of the energy transport is utilized to predict the carrier temperature and lattice temperature as well as the electron and vapor flux emitted from the surface. The temporal delay between the pump and probe pulses was set by a precision translation stage up to about 500 ps and then extended to the nanosecond regime by an optical fiber assembly. The ejection of material was observed at several picoseconds to tens of nanoseconds after the main (pump) pulse by high-resolution, ultra-fast shadowgraphs. The ultrashort laser pulse accompanied by the pre-pulse induces air breakdown that can be detrimental to materials processing. A time-resolved pump-and-probe experiment provides distinct evidence for the occurrence of an air plasma and air breakdown. This highly nonlinear phenomenon takes place before the commencement of the ablation process, which is traced beyond elapsed time of the order of 10 ps with respect to the ablating pulse. The nonlinear refractive index of the generated air plasma is calculated as a function of electron density. The self-focusing of the main pulse is identified by the third order nonlinear susceptibility. A crystalline silicon sample is subjected to two optically separated ultra-fast laser pulses of full-width-half-maximum (FWHM) duration of about 80 femtoseconds. These pulses are delivered at wavelength, lambda = 800 nm. Femtosecond-resolved imaging pump-and-probe experiments in reflective and Schlieren configurations have been performed to investigate plasma dynamics and shock wave propagation during the sample ablation process. By using a diffractive optical element (DOE) for beam shaping, microchannels were fabricated. A super-long working distance objective lens was used to machine silicon materials in the sub-micrometer scale. As an extension of micro-machining, the finite difference time domain (FDTD) method is used to assess the feasibility of using near-field distribution of laser light. Gold coated films were machined with nano-scale dimensions and characterized with atomic force microscopy (AFM).

  2. Methods for Integrated Air Sampling and DNA Analysis for Detection of Airborne Fungal Spores

    PubMed Central

    Williams, Roger H.; Ward, Elaine; McCartney, H. Alastair

    2001-01-01

    Integrated air sampling and PCR-based methods for detecting airborne fungal spores, using Penicillium roqueforti as a model fungus, are described. P. roqueforti spores were collected directly into Eppendorf tubes using a miniature cyclone-type air sampler. They were then suspended in 0.1% Nonidet P-40, and counted using microscopy. Serial dilutions of the spores were made. Three methods were used to produce DNA for PCR tests: adding untreated spores to PCRs, disrupting spores (fracturing of spore walls to release the contents) using Ballotini beads, and disrupting spores followed by DNA purification. Three P. roqueforti-specific assays were tested: single-step PCR, nested PCR, and PCR followed by Southern blotting and probing. Disrupting the spores was found to be essential for achieving maximum sensitivity of the assay. Adding untreated spores to the PCR did allow the detection of P. roqueforti, but this was never achieved when fewer than 1,000 spores were added to the PCR. By disrupting the spores, with or without subsequent DNA purification, it was possible to detect DNA from a single spore. When known quantities of P. roqueforti spores were added to air samples consisting of high concentrations of unidentified fungal spores, pollen, and dust, detection sensitivity was reduced. P. roqueforti DNA could not be detected using untreated or disrupted spore suspensions added to the PCRs. However, using purified DNA, it was possible to detect 10 P. roqueforti spores in a background of 4,500 other spores. For all DNA extraction methods, nested PCR was more sensitive than single-step PCR or PCR followed by Southern blotting. PMID:11375150

  3. Bourdieu does environmental justice? Probing the linkages between population health and air pollution epidemiology.

    PubMed

    Buzzelli, Michael

    2007-03-01

    The environmental justice literature faces a number of conceptual and methodological shortcomings. The purpose of this paper is to probe ways in which these shortcomings can be remedied via recent developments in related literatures: population health and air pollution epidemiology. More sophisticated treatment of social structure, particularly if based on Pierre Bourdieu's relational approach to forms of capital, can be combined with the methodological rigour and established biological pathways of air pollution epidemiology. The aim is to reformulate environmental justice research in order to make further meaningful contributions to the wider movement concerned with issues of social justice and equity in health research.

  4. The Preignition and Autoignition Oxidation of Alternatives to Petroleum Derived JP-8 and their Surrogate Components in a Pressurized Flow Reactor and Single Cylinder Research Engine

    DTIC Science & Technology

    2009-09-01

    sample probe consisted of TIG welding the 3/8” sample probe shaft to the sample probe tip (Koert, 1990 and Lenhert, 2004b). Silver solder was...was performed in the Drexel University Machine Shop. Conventional TIG welding was sufficient for welding the 3/8” O.D. tube to the sample probe tip...However, to TIG weld the thermocouple and the glass lined tube to the sample probe tip, extreme care had to be taken so as not to damage the

  5. Single-particle characterization of atmospheric aerosols collected at Gosan, Korea, during the Asian Pacific Regional Aerosol Characterization Experiment field campaign using low-Z (atomic number) particle electron probe X-ray microanalysis.

    PubMed

    Geng, Hong; Cheng, Fangqin; Ro, Chul-Un

    2011-11-01

    A quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA), namely low-Z (atomic number) particle EPMA, was used to characterize the chemical compositions of the individual aerosol particles collected at the Gosan supersite, Jeju Island, Korea, as a part of the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia). On 4-10 April 2001 just before a severe dust storm arrived, seven sets of aerosol samples were obtained by a seven-stage May cascade impactor with a flow rate of 20 L/min. Overall 11,200 particles on stages 1-6 with cutoff diameters of 16, 8, 4, 2, 1, and 0.5 microm, respectively, were examined and classified based on their secondary electron images and X-ray spectra. In general, sea salt particles were the most frequently encountered, followed by mineral dust, organic carbon (OC)-like, (NH4)2SO4/NH4HSO4-containing, elemental carbon (EC)-like, Fe-rich, and K-rich particles. Sea salt and mineral dust particles had a higher relative abundance on stages 1-5, whereas OC-like, (NH4)2SO4/NH4HSO4-containing, Fe-rich, and K-rich particles were relatively abundant on stage 6. The analysis on relative number abundances of various particle types combined with 72-hr backward air mass trajectories indicated that a lot of reacted sea salt and reacted mineral dust (with airborne NOx and SO2 or their acidic products) and OC-like particles were carried by the air masses passing over the Yellow Sea (for sample "10 April") and many NH4HSO4/ (NH4)2SO4-containing particles were carried by the air masses passing over the Sea of Japan and Korea Strait (for samples "4-9 April"). It was concluded that the atmosphere over Jeju Island was influenced by anthropogenic SO2 and NOx, organic compounds, and secondary aerosols when Asian dust was absent.

  6. Isotope and methane dynamics above and below the Trade Wind Inversion at Ascension Island using UAVs

    NASA Astrophysics Data System (ADS)

    Brownlow, R.; Lowry, D.; Nisbet, E. G.; Fisher, R. E.; France, J.; Lanoisellé, M.; Thomas, R.; Richardson, T.; Greatwood, C.; Freer, J. E.; MacKenzie, A. R.

    2015-12-01

    Ascension Island (8oS, 14 oW) is a South Atlantic background site for atmospheric measurement. Royal Holloway, in collaboration with the UK Met Office, installed a Picarro 1301 CRDS in 2010 for continuous methane monitoring. This has high precision and accuracy, with a 6-gas calibration and target suite, to measure long term methane mole fraction. Regular flask sampling is also carried out for NOAA and RHUL (co-located), to measure δ13CCH4 isotopic trends.Ascension Island experiences near-constant SE Trade winds below the Trade Wind Inversion (TWI), with air from the remote S. Atlantic. In flask samples and in continuous monitoring at the Airhead location, atmospheric methane mole fraction has been increasing since 2007 whilst the δ13CCH4 isotope record has shifted to more depleted values. Above the normally well-defined TWI (1200 - 1800m altitude), variable tropical air masses pass over Ascension. This air last mixed with the boundary layer over Africa or South America. Field work undertaken in September 2014 and July 2015, in collaboration with U. Bristol and U. Birmingham, using UAVs (octocopters) collected samples with Tedlar bags or aluminium flasks from different heights above and below the TWI. The maximum altitude reached was 2700masl. Sample bags were immediately analysed on Ascension for CH4 mole fraction using the Picarro CRDS and subsequently analysed at RHUL for δ13CCH4 using continuous-flow gas chromatography/isotope-ratio mass spectrometry (CF-GC/IRMS). The TWI was clearly identified by an increase in CH4 mole fraction above the TWI. Back trajectory analysis was used to distinguish the origins of the air masses, with air above showing inputs from the land surfaces of equatorial and southern Africa, and from southern S. America.The campaigns have extended the envelope of altitudes accessed by micro-UAVs for atmospheric science, demonstrating their utility for probing the remote free troposphere and for penetrating the TWI. Sampling at Ascension is able to measure both the deep S. Atlantic air and also the air that has been mixed by convective systems in the equatorial and southern savannah tropics. Biomass burning plumes in southern hemisphere winter may also be accessible. Ascension is thus potentially a measurement site of global significance.

  7. Multiplex gas chromatography: an alternative concept for gas chromatographic analysis of planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Valentin, J. R.

    1989-01-01

    Gas chromatography (GC) is a powerful technique for analyzing gaseous mixtures. Applied to the earth's atmosphere, GC can be used to determine the permanent gases--such as carbon dioxide, nitrogen, and oxygen--and to analyze organic pollutants in air. The U.S. National Aeronautics and Space Administration (NASA) has used GC in spacecraft missions to Mars (the Viking Biology Gas Exchange Experiment [GEX] and the Viking Gas Chromatograph-Mass Spectrometer [GC-MS]) and to Venus (the Pioneer Venus Gas Chromatograph [PVGC] on board the Pioneer Venus sounder probe) for determining the atmospheric constituents of these two planets. Even though conventional GC was very useful in the Viking and Pioneer missions, spacecraft constraints and limitations intrinsic to the technique prevented the collection of more samples. With the Venus probe, for instance, each measurement took a relatively long time to complete (10 min), and successive samples could not be introduced until the previous samples had left the column. Therefore, while the probe descended through the Venusian atmosphere, only three samples were acquired at widely separated altitudes. With the Viking mission, the sampling rate was not a serious problem because samples were acquired over a period of one year. However, the detection limit was a major disadvantage. The GC-MS could not detect simple hydrocarbons and simple alcohols below 0.1 ppm, and the GEX could not detect them below 1 ppm. For more complex molecules, the detection limits were at the parts-per-billion level for both instruments. Finally, in both the Viking and Pioneer missions, the relatively slow rate of data acquisition limited the number of analyses, and consequently, the amount of information returned. Similar constraints are expected in future NASA missions. For instance, gas chromatographic instrumentation is being developed to collect and analyze organic gases and aerosols in the atmosphere of Titan (one of Saturn's satellites). The Titan-Cassini entry probe, which is being jointly planned by NASA and the European Space Agency (ESA), might be launched as early as 1994. As in the Pioneer mission, limited time--perhaps only 3-4 h--will be available for the completion of all analyses while the probe descends through the atmosphere. A conventional GC or GC-MS system would be able to analyze no more than two aerosol and two gas samples during the probe's descent. Conventional GC also is limited by the sensitivity of the detector and by the sample volume. For the Titan mission, the sensitivity problems will be worse because the atmospheric pressure at the time of instrument deployment is expected to be < 3 torr. Consequently, the sample volume might not be large enough to satisfy the detector sensitivity requirements. Because of such limitations, alternative GC analysis techniques have been investigated for future NASA missions. Multiplex gas chromatography has been investigated as a possible candidate for chemical analysis within a spacecraft or other restricted environment, and chemical modulators have been developed and used when needed with this technique to reduce the size and weight of the instrumentation. Also, several new multiplex techniques have been developed for use in specific applications.

  8. New designs for portable Raman instrumentation in defense applications

    NASA Astrophysics Data System (ADS)

    Carron, Keith; Ray, Bryan; Buller, Shane; Strickland, Aaron

    2016-05-01

    The realization of global terrorism after the September 11 attacks led immediately to a need for rapid field analysis of materials. Colorimetric test kits existed, but they are very subjective to interpret and they require contact with the sample. A push for handheld spectrometers quickly led to FTIR systems with ATR sampling, handheld IMS systems, and handheld Raman spectrometers. No single technique solves all of the problems of field detection. We will discuss the development of Raman instrumentation and, in particular, cover the advantages and the problems that are inherent in Raman portability. Portable Raman instrumentation began with a limited number of accessories: a point-and-shoot and some sort of vial adaptor. Currently this has expanded to stand-off attachments for measurements at a distance, air sampling to look for toxic gasses or aerosols, Orbital Raster Scan (ORS) to spatially average over samples, SERS attachments for trace detection, and fiber optic probes.

  9. Characterization of power induced heating and damage in fiber optic probes for near-field scanning optical microscopy

    NASA Astrophysics Data System (ADS)

    Dickenson, Nicholas E.; Erickson, Elizabeth S.; Mooren, Olivia L.; Dunn, Robert C.

    2007-05-01

    Tip-induced sample heating in near-field scanning optical microscopy (NSOM) is studied for fiber optic probes fabricated using the chemical etching technique. To characterize sample heating from etched NSOM probes, the spectra of a thermochromic polymer sample are measured as a function of probe output power, as was previously reported for pulled NSOM probes. The results reveal that sample heating increases rapidly to ˜55-60°C as output powers reach ˜50nW. At higher output powers, the sample heating remains approximately constant up to the maximum power studied of ˜450nW. The sample heating profiles measured for etched NSOM probes are consistent with those previously measured for NSOM probes fabricated using the pulling method. At high powers, both pulled and etched NSOM probes fail as the aluminum coating is damaged. For probes fabricated in our laboratory we find failure occurring at input powers of 3.4±1.7 and 20.7±6.9mW for pulled and etched probes, respectively. The larger half-cone angle for etched probes (˜15° for etched and ˜6° for pulled probes) enables more light delivery and also apparently leads to a different failure mechanism. For pulled NSOM probes, high resolution images of NSOM probes as power is increased reveal the development of stress fractures in the coating at a taper diameter of ˜6μm. These stress fractures, arising from the differential heating expansion of the dielectric and the metal coating, eventually lead to coating removal and probe failure. For etched tips, the absence of clear stress fractures and the pooled morphology of the damaged aluminum coating following failure suggest that thermal damage may cause coating failure, although other mechanisms cannot be ruled out.

  10. Characterization of power induced heating and damage in fiber optic probes for near-field scanning optical microscopy.

    PubMed

    Dickenson, Nicholas E; Erickson, Elizabeth S; Mooren, Olivia L; Dunn, Robert C

    2007-05-01

    Tip-induced sample heating in near-field scanning optical microscopy (NSOM) is studied for fiber optic probes fabricated using the chemical etching technique. To characterize sample heating from etched NSOM probes, the spectra of a thermochromic polymer sample are measured as a function of probe output power, as was previously reported for pulled NSOM probes. The results reveal that sample heating increases rapidly to approximately 55-60 degrees C as output powers reach approximately 50 nW. At higher output powers, the sample heating remains approximately constant up to the maximum power studied of approximately 450 nW. The sample heating profiles measured for etched NSOM probes are consistent with those previously measured for NSOM probes fabricated using the pulling method. At high powers, both pulled and etched NSOM probes fail as the aluminum coating is damaged. For probes fabricated in our laboratory we find failure occurring at input powers of 3.4+/-1.7 and 20.7+/-6.9 mW for pulled and etched probes, respectively. The larger half-cone angle for etched probes ( approximately 15 degrees for etched and approximately 6 degrees for pulled probes) enables more light delivery and also apparently leads to a different failure mechanism. For pulled NSOM probes, high resolution images of NSOM probes as power is increased reveal the development of stress fractures in the coating at a taper diameter of approximately 6 microm. These stress fractures, arising from the differential heating expansion of the dielectric and the metal coating, eventually lead to coating removal and probe failure. For etched tips, the absence of clear stress fractures and the pooled morphology of the damaged aluminum coating following failure suggest that thermal damage may cause coating failure, although other mechanisms cannot be ruled out.

  11. Measurement of dentin hypersensitivity with the Jay Sensitivity Sensor Probe and the Yeaple probe to compare relief from dentin hypersensitivity by dentifrices.

    PubMed

    Kakar, Ashish; Kakar, Kanupriya

    2013-05-01

    To compare relief from dentin hypersensitivity (DH) after use of dentifrices formulated with potassium nitrate or fluoride. For the study, DH evaluations were conducted with the Jay Sensitivity Sensor Probe (Jay Probe), a novel tactile hypersensitivity instrument, in conjunction with three other DH methods, i.e. Yeaple probe (tactile), air blast, and the Visual Analog Scale (VAS). Adults (n = 100) who presented two teeth with DH and met study criteria were enrolled for this double-blind, randomized, parallel, controlled clinical trial conducted in an outpatient setting. DH evaluations at baseline were conducted by the tactile, air blast, and VAS methods. Subjects were randomly assigned a dentifrice formulated with 5% potassium nitrate and 1,000 ppm fluoride (as sodium monofluorophosphate) (Colgate Sensitive toothpaste; Test) or a commercially available fluoride dentifrice with 1,000 ppm fluoride as sodium monofluorophosphate (Colgate Cibaca toothpaste; Negative control). Subjects were recalled for DH evaluations after 4 and 8 weeks of product use. 85 subjects completed the entire study with evaluable results. Both treatments resulted in significant reductions in DH from baseline to all recall visits. In comparison to the Negative control, subjects in the Test group demonstrated significantly greater reductions for all DH evaluations at both 4 and 8 weeks (P < 0.05). Average tactile DH scores at week 8 for the Test and Negative control groups were 36.25 and 15.24 with the Yeaple probe and 35 and 12.43 with the Jay probe. Correspondingly, subjects in the Test group demonstrated significantly greater reductions in air blast and VAS responses for DH than those in the Negative control group (P < 0.05).

  12. Field portable low temperature porous layer open tubular cryoadsorption headspace sampling and analysis part II: Applications.

    PubMed

    Harries, Megan; Bukovsky-Reyes, Santiago; Bruno, Thomas J

    2016-01-15

    This paper details the sampling methods used with the field portable porous layer open tubular cryoadsorption (PLOT-cryo) approach, described in Part I of this two-part series, applied to several analytes of interest. We conducted tests with coumarin and 2,4,6-trinitrotoluene (two solutes that were used in initial development of PLOT-cryo technology), naphthalene, aviation turbine kerosene, and diesel fuel, on a variety of matrices and test beds. We demonstrated that these analytes can be easily detected and reliably identified using the portable unit for analyte collection. By leveraging efficiency-boosting temperature control and the high flow rate multiple capillary wafer, very short collection times (as low as 3s) yielded accurate detection. For diesel fuel spiked on glass beads, we determined a method detection limit below 1 ppm. We observed greater variability among separate samples analyzed with the portable unit than previously documented in work using the laboratory-based PLOT-cryo technology. We identify three likely sources that may help explain the additional variation: the use of a compressed air source to generate suction, matrix geometry, and variability in the local vapor concentration around the sampling probe as solute depletion occurs both locally around the probe and in the test bed as a whole. This field-portable adaptation of the PLOT-cryo approach has numerous and diverse potential applications. Published by Elsevier B.V.

  13. Field Portable Low Temperature Porous Layer Open Tubular Cryoadsorption Headspace Sampling and Analysis Part II: Applications*

    PubMed Central

    Harries, Megan; Bukovsky-Reyes, Santiago; Bruno, Thomas J.

    2016-01-01

    This paper details the sampling methods used with the field portable porous layer open tubular cryoadsorption (PLOT-cryo) approach, described in Part I of this two-part series, applied to several analytes of interest. We conducted tests with coumarin and 2,4,6-trinitrotoluene (two solutes that were used in initial development of PLOT-cryo technology), naphthalene, aviation turbine kerosene, and diesel fuel, on a variety of matrices and test beds. We demonstrated that these analytes can be easily detected and reliably identified using the portable unit for analyte collection. By leveraging efficiency-boosting temperature control and the high flow rate multiple capillary wafer, very short collection times (as low as 3 s) yielded accurate detection. For diesel fuel spiked on glass beads, we determined a method detection limit below 1 ppm. We observed greater variability among separate samples analyzed with the portable unit than previously documented in work using the laboratory-based PLOT-cryo technology. We identify three likely sources that may help explain the additional variation: the use of a compressed air source to generate suction, matrix geometry, and variability in the local vapor concentration around the sampling probe as solute depletion occurs both locally around the probe and in the test bed as a whole. This field-portable adaptation of the PLOT-cryo approach has numerous and diverse potential applications. PMID:26726934

  14. Airsheds, Isotopes and Ecosystem Metabolism in Mountainous Terrain

    NASA Astrophysics Data System (ADS)

    Sulzman, E.; Barnard, H.; Bond, B. J.; Czarnomski, N. M.; Hauck, M.; Kayler, Z.; Mix, A. C.; Pypker, T.; Rugh, W.; Unsworth, M.

    2005-12-01

    At least 20% of the terrestrial surface of the earth is covered by mountains, which contain many of the world's most productive ecosystems. Interactions between vegetation and the physical environment are often very different in mountains than on flat land. However, few studies have addressed these unique interactions, and many of the tools used to measure and monitor ecosystem metabolism are difficult or impossible to use in complex, mountainous terrain. In a project we call the "Andrews Airshed study" located in western Oregon Cascades, we aim to identify and explore sources of variation in the isotopic composition of ecosystem respiration (δ13CR-eco) and airflow patterns in cold-air drainage, with the eventual aim of "inverting" this understanding so that we can use δ13CR-eco to monitor intra- and inter-annual variations in ecosystem metabolism on a basin scale. We are measuring patterns of airflow, quantifying the CO2 concentration in the flow, and measuring the carbon isotope composition of ecosystem-respired CO2 as well as soil-respired CO2 (δ13CR-soil), which accounts for more than half of δ13CR-eco. We have designed an automated air sampling device that we programmed to sample air at 10 ppm intervals from 30 m above the stream in our 100 ha, deeply-incised watershed. Samples are collected via Valco valves into stainless steel tubing that can be connected directly to an isotope ratio mass spectrometer. We also designed and installed soil gas sampling probes, which are located in five 10 m2 sampling plots from ridge top to valley floor to the opposite ridge top. Weekly samples (May-Sept, 2005) of air from soil and the nocturnal air flow show seasonal variation in δ13CR-eco over a 2 per mil range, with more enriched values corresponding to lower soil moisture. Soil-respired CO2 also reveal seasonality and are isotopically enriched compared with above-ground air. δ13CR-soil values from north- and south-facing slopes of the watershed differ by 1 per mil, with south-facing values consistently enriched relative to those of the north-facing slope. We are concurrently conducting studies to determine the appropriate footprint of respired CO2 in the nocturnal airstream, which will allow us to overlay the data properly.

  15. Fuel-Air Mixing Effect on Nox Emissions for a Lean Premixed-Prevaporized Combustion System

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming; Chun, Kue S.; Locke, Randy J.

    1995-01-01

    The lean premixed-prevaporized (LPP) concept effectively meets low nitrogen oxides (NOx) emission requirements for combustors with the high inlet temperature and pressure typical of the High-Speed Civil Transport (HSCT). For the LPP system fuel-air mixture uniformity is probably the most important factor for low NOx emissions. Previous studies have suggested that the fuel-air mixture uniformity can be severely affected by changing the number and configuration of fuel injection points. Therefore, an experimental study was performed to determine how the number of fuel injection points and their arrangement affect NOx emissions from an LPP system. The NOx emissions were measured by a gas-sampling probe in a flame-tube rig at the following conditions: inlet temperature of 810 K (1000 F), rig pressure of 10 atm, reference velocity of 150 ft/s, and residence time near 0.005 s. Additionally, a focused Schlieren diagnostic technique coupled with a high speed camera was used to provide a qualitative description of the spatial flow field.

  16. Wind-instrument reflection function measurements in the time domain.

    PubMed

    Keefe, D H

    1996-04-01

    Theoretical and computational analyses of wind-instrument sound production in the time domain have emerged as useful tools for understanding musical instrument acoustics, yet there exist few experimental measurements of the air-column response directly in the time domain. A new experimental, time-domain technique is proposed to measure the reflection function response of woodwind and brass-instrument air columns. This response is defined at the location of sound regeneration in the mouthpiece or double reed. A probe assembly comprised of an acoustic source and microphone is inserted directly into the air column entryway using a foam plug to ensure a leak-free fit. An initial calibration phase involves measurements on a single cylindrical tube of known dimensions. Measurements are presented on an alto saxophone and euphonium. The technique has promise for testing any musical instrument air columns using a single probe assembly and foam plugs over a range of diameters typical of air-column entryways.

  17. Sampling probe for microarray read out using electrospray mass spectrometry

    DOEpatents

    Van Berkel, Gary J.

    2004-10-12

    An automated electrospray based sampling system and method for analysis obtains samples from surface array spots having analytes. The system includes at least one probe, the probe including an inlet for flowing at least one eluting solvent to respective ones of a plurality of spots and an outlet for directing the analyte away from the spots. An automatic positioning system is provided for translating the probe relative to the spots to permit sampling of any spot. An electrospray ion source having an input fluidicly connected to the probe receives the analyte and generates ions from the analyte. The ion source provides the generated ions to a structure for analysis to identify the analyte, preferably being a mass spectrometer. The probe can be a surface contact probe, where the probe forms an enclosing seal along the periphery of the array spot surface.

  18. Nanomechanical testing system

    DOEpatents

    Vodnick, David James; Dwivedi, Arpit; Keranen, Lucas Paul; Okerlund, Michael David; Schmitz, Roger William; Warren, Oden Lee; Young, Christopher David

    2014-07-08

    An automated testing system includes systems and methods to facilitate inline production testing of samples at a micro (multiple microns) or less scale with a mechanical testing instrument. In an example, the system includes a probe changing assembly for coupling and decoupling a probe of the instrument. The probe changing assembly includes a probe change unit configured to grasp one of a plurality of probes in a probe magazine and couple one of the probes with an instrument probe receptacle. An actuator is coupled with the probe change unit, and the actuator is configured to move and align the probe change unit with the probe magazine and the instrument probe receptacle. In another example, the automated testing system includes a multiple degree of freedom stage for aligning a sample testing location with the instrument. The stage includes a sample stage and a stage actuator assembly including translational and rotational actuators.

  19. Nanomechanical testing system

    DOEpatents

    Vodnick, David James; Dwivedi, Arpit; Keranen, Lucas Paul; Okerlund, Michael David; Schmitz, Roger William; Warren, Oden Lee; Young, Christopher David

    2015-01-27

    An automated testing system includes systems and methods to facilitate inline production testing of samples at a micro (multiple microns) or less scale with a mechanical testing instrument. In an example, the system includes a probe changing assembly for coupling and decoupling a probe of the instrument. The probe changing assembly includes a probe change unit configured to grasp one of a plurality of probes in a probe magazine and couple one of the probes with an instrument probe receptacle. An actuator is coupled with the probe change unit, and the actuator is configured to move and align the probe change unit with the probe magazine and the instrument probe receptacle. In another example, the automated testing system includes a multiple degree of freedom stage for aligning a sample testing location with the instrument. The stage includes a sample stage and a stage actuator assembly including translational and rotational actuators.

  20. Nanomechanical testing system

    DOEpatents

    Vodnick, David James; Dwivedi, Arpit; Keranen, Lucas Paul; Okerlund, Michael David; Schmitz, Roger William; Warren, Oden Lee; Young, Christopher David

    2015-02-24

    An automated testing system includes systems and methods to facilitate inline production testing of samples at a micro (multiple microns) or less scale with a mechanical testing instrument. In an example, the system includes a probe changing assembly for coupling and decoupling a probe of the instrument. The probe changing assembly includes a probe change unit configured to grasp one of a plurality of probes in a probe magazine and couple one of the probes with an instrument probe receptacle. An actuator is coupled with the probe change unit, and the actuator is configured to move and align the probe change unit with the probe magazine and the instrument probe receptacle. In another example, the automated testing system includes a multiple degree of freedom stage for aligning a sample testing location with the instrument. The stage includes a sample stage and a stage actuator assembly including translational and rotational actuators.

  1. Footprint radius of a cosmic-ray neutron probe for measuring soil-water content and its spatiotemporal variability in an alpine meadow ecosystem

    NASA Astrophysics Data System (ADS)

    Zhu, Xuchao; Cao, Ruixue; Shao, Mingan; Liang, Yin

    2018-03-01

    Cosmic-ray neutron probes (CRNPs) have footprint radii for measuring soil-water content (SWC). The theoretical radius is much larger at high altitude, such as the northern Tibetan Plateau, than the radius at sea level. The most probable practical radius of CRNPs for the northern Tibetan Plateau, however, is not known due to the lack of SWC data in this hostile environment. We calculated the theoretical footprint of the CRNP based on a recent simulation and analyzed the practical radius of a CRNP for the northern Tibetan Plateau by measuring SWC at 113 sampling locations on 21 measuring occasions to a depth of 30 cm in a 33.5 ha plot in an alpine meadow at 4600 m a.s.l. The temporal variability and spatial heterogeneity of SWC within the footprint were then analyzed. The theoretical footprint radius was between 360 and 420 m after accounting for the influences of air humidity, soil moisture, vegetation and air pressure. A comparison of SWCs measured by the CRNP and a neutron probe from access tubes in circles with different radii conservatively indicated that the most probable experimental footprint radius was >200 m. SWC within the CRNP footprint was moderately variable over both time and space, but the temporal variability was higher. Spatial heterogeneity was weak, but should be considered in future CRNP calibrations. This study provided theoretical and practical bases for the application and promotion of CRNPs in alpine meadows on the Tibetan Plateau.

  2. Measurement of cytoplasmic Ca2+ concentration in Saccharomyces cerevisiae induced by air cold plasma

    NASA Astrophysics Data System (ADS)

    Xiaoyu, DONG

    2018-03-01

    In this study, a novel approach to measure the absolute cytoplasmic Ca2+ concentration ([Ca2+]cyt) using the Ca2+ indicator fluo-3 AM was established. The parameters associated with the probe fluo-3 AM were optimized to accurately determine fluorescence intensity from the Ca2+-bound probe. Using three optimized parameters (final concentration of 6 mM probe, incubation time of 135 min, loading probe before plasma treatment), the maximum fluorescence intensity (F max = 527.8 a.u.) and the minimum fluorescence intensity (F min = 63.8 a.u.) were obtained in a saturated Ca2+ solution or a solution of lacking Ca2+. Correspondingly, the maximum [Ca2+]cyt induced by cold plasma was 1232.5 nM. Therefore, the Ca2+ indicator fluo-3 AM was successfully applied to measure the absolute [Ca2+]cyt in Saccharomyces cerevisiae stimulated by cold plasma at atmospheric air pressure.

  3. Apparatus and method for detecting leaks in piping

    DOEpatents

    Trapp, D.J.

    1994-12-27

    A method and device are disclosed for detecting the location of leaks along a wall or piping system, preferably in double-walled piping. The apparatus comprises a sniffer probe, a rigid cord such as a length of tube attached to the probe on one end and extending out of the piping with the other end, a source of pressurized air and a source of helium. The method comprises guiding the sniffer probe into the inner pipe to its distal end, purging the inner pipe with pressurized air, filling the annulus defined between the inner and outer pipe with helium, and then detecting the presence of helium within the inner pipe with the probe as is pulled back through the inner pipe. The length of the tube at the point where a leak is detected determines the location of the leak in the pipe. 2 figures.

  4. Investigation of space shuttle vehicle 140C configuration orbiter (model 16-0) wheel well pressure loads in the Rockwell International 7.75 x 11 foot wind tunnel (OA143)

    NASA Technical Reports Server (NTRS)

    Mennell, R. C.

    1975-01-01

    Experimental aerodynamic investigations were conducted on a sting mounted .0405-scale representation of the 140C outer mold line space shuttle orbiter configuration in the Rockwell International 7.75 x 11.00 foot low speed wind tunnel. The primary test objectives were to define the orbiter wheel well pressure loading and its effects on landing gear thermal insulation and to investigate the pressure environment experienced by both the horizontal flight nose probe and air vent door probes. Steady state and dynamic pressure values were recorded in the orbiter nose gear well, left main landing gear well, horizontal flight nose probe, and both left and right air vent door probe. All steady state pressure levels were measured by Statham differential pressure transducers while dynamic pressure levels were recorded by Kulite high frequency response pressure sensors.

  5. Geologic and hydrologic data for the municipal solid waste landfill facility, U.S. Army Air Defense Artillery Center and Fort Bliss, El Paso County, Texas

    USGS Publications Warehouse

    Abeyta, Cynthia G.; Frenzel, P.F.

    1999-01-01

    Geologic and hydrologic data for the Municipal Solid Waste Landfill Facility on the U.S. Army Air Defense Artillery Center and Fort Bliss in El Paso County, Texas, were collected by the U.S. Geological Survey in cooperation with the U.S. Department of the Army. The 106.03-acre landfill has been in operation since January 1974. The landfill contains household refuse, Post solid wastes, bulky items, grass and tree trimmings from family housing, refuse from litter cans, construction debris, classified waste (dry), dead animals, asbestos, and empty oil cans. The depth of the filled areas is about 30 feet and the cover, consisting of locally derived material, is 2 to 3 feet thick. Geologic and hydrologic data were collected at or adjacent to the landfill during (1) drilling of 10 30- to 31-foot boreholes that were completed with gas-monitoring probes, (2) drilling of a 59-foot borehole, (3) drilling of a 355-foot borehole that was completed as a ground-water monitoring well, and (4) in situ measurements made on the landfill cover. After completion, the gas- monitoring probes were monitored on a quarterly basis (1 year total) for gases generated by the landfill. Water samples were collected from the ground-water monitoring well for chemical analysis. Data collection is divided into two elements: geologic data and hydrologic data. Geologic data include lithologic descriptions of cores and cuttings, geophysical logs, soil- gas and ambient-air analyses, and chemical analyses of soil. Hydrologic data include physical properties, total organic carbon, and pH of soil and sediment samples; soil-water chloride and soil-moisture analyses; physical properties of the landfill cover; measurements of depth to ground water; and ground-water chemical analyses. Interpretation of data is not included in this report.

  6. Characterisation of an Al-BN nanocomposite prepared by ball milling and hot extrusion

    NASA Astrophysics Data System (ADS)

    Arlic, U.; Drozd, Z.; Trojanová, Z.; Molnárová, O.; Kasakewitsch, A.

    2017-07-01

    Aluminium-matrix-nanocomposites were manufactured by ball milling of microscale aluminium powder with BN nanoparticles in air, followed by subsequent consolidation by hot extrusion. The microstructure of the samples was studied using scanning electron microscopy. Vickers microhardness measurements were used to probe the mechanical properties of the samples. The amplitude dependent damping of the nanocomposites was measured at room temperature after thermal treatment of samples, and the linear thermal expansion was measured over a wide temperature range from room temperature up to 670K in the as-extruded state. The experimental results give a comprehensive picture of the behaviour of this nanocomposite system over the range of thermomechanical treatment conditions examined in this study. Based on these experimental data some possible influences of BN nanoparticles on the anelastic, plastic and thermal properties of microcrystalline aluminium are discussed.

  7. Results of the non-nulling calibration of five-hole pressure probe

    NASA Astrophysics Data System (ADS)

    Bereznai, J.; Mlynár, P.; Masaryk, M.

    2017-09-01

    In the laboratory of the Institute of Energy Machinery, Faculty of Mechanical Engineering in Bratislava were produced amount of pressure probes of different designs. Special position among themselves are five-hole pressure probe with tip of sphere or wedge used to determine the velocity vector in a unknown flow fields. Such probes have to be calibrated during blowing an air stream of known velocity magnitude and components of the velocity vector at different angles of attack, when the characteristic information about pressures on a sensitive part of the measuring probe is obtained.

  8. Tensiometer, drive probe for use with environmental testing equipment, and methods of inserting environmental testing equipment into a sample

    DOEpatents

    Hubbell, Joel M.; Sisson, James B.

    2005-07-26

    A method of inserting a tensiometer into a sample, comprises providing a drive probe configured to be engaged by direct push equipment; supporting a porous member from the drive probe; and driving the drive probe into the sample using a cone penetrometer. A tensiometer comprises a drive probe configured to be engaged by direct push equipment or a cone penetrometer; a porous member supported by the drive probe; and a pressure sensor in pressure sensing relation to the porous member.

  9. Probe Heating Method for the Analysis of Solid Samples Using a Portable Mass Spectrometer

    PubMed Central

    Kumano, Shun; Sugiyama, Masuyuki; Yamada, Masuyoshi; Nishimura, Kazushige; Hasegawa, Hideki; Morokuma, Hidetoshi; Inoue, Hiroyuki; Hashimoto, Yuichiro

    2015-01-01

    We previously reported on the development of a portable mass spectrometer for the onsite screening of illicit drugs, but our previous sampling system could only be used for liquid samples. In this study, we report on an attempt to develop a probe heating method that also permits solid samples to be analyzed using a portable mass spectrometer. An aluminum rod is used as the sampling probe. The powdered sample is affixed to the sampling probe or a droplet of sample solution is placed on the tip of the probe and dried. The probe is then placed on a heater to vaporize the sample. The vapor is then introduced into the portable mass spectrometer and analyzed. With the heater temperature set to 130°C, the developed system detected 1 ng of methamphetamine, 1 ng of amphetamine, 3 ng of 3,4-methylenedioxymethamphetamine, 1 ng of 3,4-methylenedioxyamphetamine, and 0.3 ng of cocaine. Even from mixtures consisting of clove powder and methamphetamine powder, methamphetamine ions were detected by tandem mass spectrometry. The developed probe heating method provides a simple method for the analysis of solid samples. A portable mass spectrometer incorporating this method would thus be useful for the onsite screening of illicit drugs. PMID:26819909

  10. 40 CFR 85.2224 - Exhaust analysis system-EPA 81.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... probe, moisture separator and analyzers for HC and CO. (2) Dual sample probe requirements. If used, a dual sample probe must provide equal flow in each leg. The equal flow criterion is considered to be met if the flow rate in each leg of the probe (or an identical model) has been measured under two sample...

  11. 40 CFR 85.2224 - Exhaust analysis system-EPA 81.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... probe, moisture separator and analyzers for HC and CO. (2) Dual sample probe requirements. If used, a dual sample probe must provide equal flow in each leg. The equal flow criterion is considered to be met if the flow rate in each leg of the probe (or an identical model) has been measured under two sample...

  12. 40 CFR 85.2224 - Exhaust analysis system-EPA 81.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... probe, moisture separator and analyzers for HC and CO. (2) Dual sample probe requirements. If used, a dual sample probe must provide equal flow in each leg. The equal flow criterion is considered to be met if the flow rate in each leg of the probe (or an identical model) has been measured under two sample...

  13. Probing dimensionality using a simplified 4-probe method.

    PubMed

    Kjeldby, Snorre B; Evenstad, Otto M; Cooil, Simon P; Wells, Justin W

    2017-10-04

    4-probe electrical measurements have been in existence for many decades. One of the most useful aspects of the 4-probe method is that it is not only possible to find the resistivity of a sample (independently of the contact resistances), but that it is also possible to probe the dimensionality of the sample. In theory, this is straightforward to achieve by measuring the 4-probe resistance as a function of probe separation. In practice, it is challenging to move all four probes with sufficient precision over the necessary range. Here, we present an alternative approach. We demonstrate that the dimensionality of the conductive path within a sample can be directly probed using a modified 4-probe method in which an unconventional geometry is exploited; three of the probes are rigidly fixed, and the position of only one probe is changed. This allows 2D and 3D (and other) contributions the to resistivity to be readily disentangled. The required experimental instrumentation can be vastly simplified relative to traditional variable spacing 4-probe instruments.

  14. Common path ball lens probe for optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Singh, Kanwarpal; Yamada, Daisuke; Tearney, Guillermo J.

    2016-02-01

    Background: Common path probes are highly desirable for optical coherence tomography (OCT) as they reduce system complexity and cost. In this work we report an all-fiber common path side viewing monolithic probe for coronary artery imaging. Methods: Our common path probe was designed for spectrometer based Fourier domain OCT at 1310 nm wavelength. Light from the fiber expands in the coreless fiber region and then focussed by the ball lens. Reflection from ball lens-air interface served as reference signal. The monolithic ball lens probe was assembled within a 560 µmouter diameter drive shaft which was attached to a rotary junction. The drive shaft was placed inside an outer, transparent sheath of 800 µm diameter. Results: With a source input power of 25 mW, we could achieve sensitivity of 100.5 dB. The axial resolution of the system was found to be 15.6 µm in air and the lateral resolution (full width half maximum) was approximately 49 µm. As proof of principal, images of skin acquired using this probe demonstrated clear visualization of the stratum corneum, epidermis, and papillary dermis, along with sweat ducts. Conclusion: In this work we have demonstrated a monolithic, ball lens common, path probe for OCT imaging. The designed ball lens probe is easy to fabricate using a laser splicer. Based on the features and capability of common path probes to provide a simpler solution for OCT, we believe that this development will be an important enhancement for certain types of catheters.

  15. The surface chemical reactivity of particles and its impact on human health

    NASA Astrophysics Data System (ADS)

    Setyan, A.; Sauvain, J. J.; Riediker, M.; Guillemin, M.; Rossi, M. J.

    2017-12-01

    The chemical composition of the particle-air interface is the gateway to chemical reactions of gases with condensed phase particles. It is of prime importance to understand the reactivity of particles and their interaction with surrounding gases, biological membranes, and solid supports. We used a Knudsen flow reactor to quantify functional groups on the surface of a few selected particle types. This technique is based on a heterogeneous titration reaction between a probe gas and a specific functional group on the particle surface. Six probe gases have been selected for the identification and quantification of important functional groups: N(CH3)3 for the titration of acidic sites, NH2OH for the detection of carbonyl functions (aldehydes and ketones) and/or oxidized sites owing to its strong reducing properties, CF3COOH and HCl for basic sites of different strength, O3 and NO2 for oxidizable groups. We also studied the kinetics of the reactions between particles and probe gases (uptake coefficient γ0). We tested the surface chemical composition and oxidation states of laboratory-generated aerosols (3 amorphous carbons, 2 flame soots, 2 Diesel particles, 2 secondary organic aerosols [SOA], 4 multiwall carbon nanotubes [MWCNT], 3 TiO2, and 2 metal salts) and of aerosols sampled in several bus depots. The sampling of particles in the bus depots was accompanied by the collection of urine samples of mechanics working full-time in these bus depots, and the quantification of 8-hydroxy-2'-deoxyguanosine, a biomarker of oxidative stress. The increase in oxidative stress biomarker levels over a working day was correlated (p<0.05) with the number of olefinic and/or PAH sites on the surface of particles sampled at the bus depots, obtained from O3 uptakes, as well as with the initial uptake coefficient (γ0) of five probe gases used in the field. This correlation with γ0 suggests the idea of competing pathways occurring at the interface of the aerosol particles between the generation of reactive oxygen species (ROS) responsible for oxidative stress and cellular antioxidants.

  16. 7 CFR 800.82 - Sampling provisions by level of service.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... criteria, and a sample obtained with a probe at the time of the reinspection or appeal, generally, shall be... instances where original inspection results are based on samples obtained by probe, the decision as to whether file samples or new samples obtained by probe are to be used shall be made by the official...

  17. Sample rotating turntable kit for infrared spectrometers

    DOEpatents

    Eckels, Joel Del [Livermore, CA; Klunder, Gregory L [Oakland, CA

    2008-03-04

    An infrared spectrometer sample rotating turntable kit has a rotatable sample cup containing the sample. The infrared spectrometer has an infrared spectrometer probe for analyzing the sample and the rotatable sample cup is adapted to receive the infrared spectrometer probe. A reflectance standard is located in the rotatable sample cup. A sleeve is positioned proximate the sample cup and adapted to receive the probe. A rotator rotates the rotatable sample cup. A battery is connected to the rotator.

  18. KSC-97pc679

    NASA Image and Video Library

    1997-04-21

    Workers prepare to tow away the large container with the Cassini orbiter from KSC’s Shuttle Landing Facility. The orbiter just arrived on the U.S. Air Force C-17 air cargo plane, shown here, from Edwards Air Force Base, California. The orbiter and the Huygens probe already being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn’s largest moon, Titan. The orbiter was designed and assembled at NASA’s Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004

  19. KSC-97pc677

    NASA Image and Video Library

    1997-04-21

    Workers begin unloading the Cassini orbiter from a U.S. Air Force C-17 air cargo plane after its arrival at KSC’s Shuttle Landing Facility from Edwards Air Force Base, California. The orbiter and the Huygens probe already being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn’s largest moon, Titan. The orbiter was designed and assembled at NASA’s Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004

  20. Systems and methods for laser assisted sample transfer to solution for chemical analysis

    DOEpatents

    Van Berkel, Gary J.; Kertesz, Vilmos; Ovchinnikova, Olga S.

    2014-06-03

    Systems and methods are described for laser ablation of an analyte from a specimen and capturing of the analyte in a dispensed solvent to form a testing solution. A solvent dispensing and extraction system can form a liquid microjunction with the specimen. The solvent dispensing and extraction system can include a surface sampling probe. The laser beam can be directed through the surface sampling probe. The surface sampling probe can also serve as an atomic force microscopy probe. The surface sampling probe can form a seal with the specimen. The testing solution including the analyte can then be analyzed using an analytical instrument or undergo further processing.

  1. Systems and methods for laser assisted sample transfer to solution for chemical analysis

    DOEpatents

    Van Berkel, Gary J.; Kertesz, Vilmos; Ovchinnikova, Olga S.

    2015-09-29

    Systems and methods are described for laser ablation of an analyte from a specimen and capturing of the analyte in a dispensed solvent to form a testing solution. A solvent dispensing and extraction system can form a liquid microjunction with the specimen. The solvent dispensing and extraction system can include a surface sampling probe. The laser beam can be directed through the surface sampling probe. The surface sampling probe can also serve as an atomic force microscopy probe. The surface sampling probe can form a seal with the specimen. The testing solution including the analyte can then be analyzed using an analytical instrument or undergo further processing.

  2. Systems and methods for laser assisted sample transfer to solution for chemical analysis

    DOEpatents

    Van Berkel, Gary J; Kertesz, Vilmos; Ovchinnikova, Olga S

    2013-08-27

    Systems and methods are described for laser ablation of an analyte from a specimen and capturing of the analyte in a dispensed solvent to form a testing solution. A solvent dispensing and extraction system can form a liquid microjunction with the specimen. The solvent dispensing and extraction system can include a surface sampling probe. The laser beam can be directed through the surface sampling probe. The surface sampling probe can also serve as an atomic force microscopy probe. The surface sampling probe can form a seal with the specimen. The testing solution including the analyte can then be analyzed using an analytical instrument or undergo further processing.

  3. Self-referencing remote optical probe

    DOEpatents

    O'Rourke, Patrick E.; Prather, William S.; Livingston, Ronald R.

    1991-01-01

    A probe for remote spectrometric measurements of fluid samples having a hollow probe body with a sliding reflective plug therein and a lens at one end, ports for admitting and expelling the fluid sample and a means for moving the reflector so that reference measurement can be made with the reflector in a first position near the lens and a sample measurement can be made with the reflector away from the lens and the fluid sample between the reflector and the lens. Comparison of the two measurements will yield the composition of the fluid sample. The probe is preferably used for remote measurements and light is carried to and from the probe via fiber optic cables.

  4. Self-referencing remote optical probe

    DOEpatents

    O'Rourke, P.E.; Prather, W.S.; Livingston, R.R.

    1991-08-13

    A probe is described for remote spectrometric measurements of fluid samples having a hollow probe body with a sliding reflective plug therein and a lens at one end, ports for admitting and expelling the fluid sample and a means for moving the reflector so that reference measurement can be made with the reflector in a first position near the lens and a sample measurement can be made with the reflector away from the lens and the fluid sample between the reflector and the lens. Comparison of the two measurements will yield the composition of the fluid sample. The probe is preferably used for remote measurements and light is carried to and from the probe via fiber optic cables. 3 figures.

  5. Sci—Fri PM: Topics — 01: A monte carlo model of a miniature low-energy x-ray tube using EGSnrc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, P; Seuntjens, J

    The INTRABEAM system (Carl Zeiss, Oberkochen, Germany) is a miniature x-ray generator for use in intraoperative radiotherapy and brachytherapy. The device accelerates electrons to up to 50 keV, which are then steered down an evacuated needle probe to strike a thin gold target. For accurate dosimetry of the INTRABEAM system, it is important that the photon spectrum be well understood. Measurements based on air-kerma are heavily impacted by photon spectra, particularly for low photon energies due to the large photoelectric contribution in air mass energy absorption coefficient. While low energy photons have little clinical significance at treatment depths, they maymore » have a large effect on air-kerma measurements. In this work, we have developed an EGSnrc-based monte carlo (MC) model of the Zeiss INTRABEAM system to study the source photon spectra and half-value layers (HVLs) of the bare probe and with various spherical applicators. HVLs were calculated using the analytical attenuation of air-kerma spectra. The calculated bare probe spectrum was compared with simulated and measured results taken from literature. Differences in the L-line energies of gold were found between the spectra predicted by EGSnrc and Geant4. This is due to M and N shell averaging during atomic transitions in EGSnrc. The calculated HVLs of the bare probe and spherical applicators are consistent with literature reported measured values.« less

  6. Development of an instantaneous local fuel-concentration measurement probe: an engine application

    NASA Astrophysics Data System (ADS)

    Guibert, P.; Boutar, Z.; Lemoyne, L.

    2003-11-01

    This work presents a new tool which can deliver instantaneous local measurements of fuel concentration in an engine cylinder with a high temporal resolution, particularly during compression strokes. Fuel concentration is represented by means of equivalence fuel-air ratio, i.e. the real engine mass ratio of fuel to air divided by the same ratio in ideal stoichiometry conditions. Controlling the mixture configuration for any strategy in a spark ignition engine and for auto-ignition combustion has a dominant effect on the subsequent processes of ignition, flame propagation and auto-ignition combustion progression, pollutant formation under lean or even stoichiometric operating conditions. It is extremely difficult, under a transient operation, to control the equivalence air/fuel ratio precisely at a required value and at the right time. This requires the development of a highly accurate equivalence air/fuel ratio control system and a tool to measure using crank angle (CA) resolution. Although non-intrusive laser techniques have considerable advantages, they are most of the time inappropriate due to their optical inaccessibility or the complex experimental set-up involved. Therefore, as a response to the demand for a relatively simple fuel-concentration measurement system a probe is presented that replaces a spark plug and allows the engine to run completely normally. The probe is based on hot-wire like apparatus, but involves catalytic oxidation at the wire surface. The development, characteristics and calibration of the probe are presented followed by applications to in-cylinder engine measurements.

  7. Patterns of entrapped air dissolution in a two-dimensional pilot-scale synthetic aquifer.

    PubMed

    McLeod, Heather C; Roy, James W; Smith, James E

    2015-01-01

    Past studies of entrapped air dissolution have focused on one-dimensional laboratory columns. Here the multidimensional nature of entrapped air dissolution was investigated using an indoor tank (180 × 240 × 600 cm(3) ) simulating an unconfined sand aquifer with horizontal flow. Time domain reflectometry (TDR) probes directly measured entrapped air contents, while dissolved gas conditions were monitored with total dissolved gas pressure (PTDG ) probes. Dissolution occurred as a diffuse wedge-shaped front from the inlet downgradient, with preferential dissolution at depth. This pattern was mainly attributed to increased gas solubility, as shown by PTDG measurements. However, compression of entrapped air at greater depths, captured by TDR and leading to lower quasi-saturated hydraulic conductivities and thus greater velocities, also played a small role. Linear propagation of the dissolution front downgradient was observed at each depth, with both TDR and PTDG , with increasing rates with depth (e.g, 4.1 to 5.7× slower at 15 cm vs. 165 cm depth). PTDG values revealed equilibrium with the entrapped gas initially, being higher at greater depth and fluctuating with the barometric pressure, before declining concurrently with entrapped air contents to the lower PTDG of the source water. The observed dissolution pattern has long-term implications for a wide variety of groundwater management issues, from recharge to contaminant transport and remediation strategies, due to the persistence of entrapped air near the water table (potential timescale of years). This study also demonstrated the utility of PTDG probes for simple in situ measurements to detect entrapped air and monitor its dissolution. © 2014 Her Majesty the Queen in Right of Canada Groundwater © 2014, National Ground Water Association.

  8. A Field Investigation of Bacillus anthracis Contamination of U.S. Department of Agriculture and Other Washington, D.C., Buildings during the Anthrax Attack of October 2001

    PubMed Central

    Higgins, James A.; Cooper, Mary; Schroeder-Tucker, Linda; Black, Scott; Miller, David; Karns, Jeffrey S.; Manthey, Erlynn; Breeze, Roger; Perdue, Michael L.

    2003-01-01

    In response to a bioterrorism attack in the Washington, D.C., area in October 2001, a mobile laboratory (ML) was set up in the city to conduct rapid molecular tests on environmental samples for the presence of Bacillus anthracis spores and to route samples for further culture analysis. The ML contained class I laminar-flow hoods, a portable autoclave, two portable real-time PCR devices (Ruggedized Advanced Pathogen Identification Device [RAPID]), and miscellaneous supplies and equipment to process samples. Envelopes and swab and air samples collected from 30 locations in the metropolitan area once every three days were subjected to visual examination and DNA extraction, followed by real-time PCR using freeze-dried, fluorescent-probe-based reagents. Surface swabs and air samples were also cultured for B. anthracis at the National Veterinary Service Laboratory (NVSL) in Ames, Iowa. From 24 October 2001 to 15 September 2002, 2,092 pieces of mail were examined, 405 real-time PCR assays were performed (comprising 4,639 samples), and at the NVSL 6,275 samples were subjected to over 18,000 platings. None of the PCR assays on DNA extracted from swab and air samples were positive, but viable spores were cultured from surface swabs taken from six locations in the metropolitan area in October, November, and December 2001 and February, March, and May 2002. DNA extracted from these suspected B. anthracis colonies was positive by real-time and conventional PCRs for the lethal factor, pXO1, and for capA and vrr genes; sequence analysis of the latter amplicons indicated >99% homology with the Ames, vollum, B6273-93, C93022281, and W-21 strains of B. anthracis, suggesting they arose from cross-contamination during the attack through the mail. The RAPID-based PCR analysis provided fast confirmation of suspect colonies from an overnight incubation on agar plates. PMID:12514046

  9. Surface Functionalization of Polyethylene Granules by Treatment with Low-Pressure Air Plasma.

    PubMed

    Šourková, Hana; Primc, Gregor; Špatenka, Petr

    2018-05-25

    Polyethylene granules of diameter 2 mm were treated with a low-pressure weakly ionized air plasma created in a metallic chamber by a pulsed microwave discharge of pulse duration 180 μs and duty cycle 70%. Optical emission spectroscopy showed rich bands of neutral nitrogen molecules and weak O-atom transitions, but the emission from N atoms was below the detection limit. The density of O atoms in the plasma above the samples was measured with a cobalt catalytic probe and exhibited a broad peak at the pressure of 80 Pa, where it was about 2.3 × 10 21 m -3 . The samples were characterized by X-ray photoelectron spectroscopy. Survey spectra showed oxygen on the surface, while the nitrogen concentration remained below the detection limit for all conditions. The high-resolution C1s peaks revealed formation of various functional groups rather independently from treatment parameters. The results were explained by extensive dissociation of oxygen molecules in the gaseous plasma and negligible flux of N atoms on the polymer surface.

  10. Metal Resistivity Measuring Device

    DOEpatents

    Renken, Jr, C. J.; Myers, R. G.

    1960-12-20

    An eddy current device is designed for detecting discontinuities in metal samples. Alternate short and long duration pulses are inductively applied to a metal sample via the outer coil of a probe. The lorg pulses give a resultant signal from the metal sample responsive to probe-tosample spacing and discontinuities with the sample, and the short pulses give a resultant signal responsive only to probe-to-sample spacing. The inner coil of the probe detects the two resultant signals and transmits them to a separation network where the two signals are separated. The two separated signals are then transmitted to a compensation network where the detected signals due to the short pulses are used to compensate for variations due to probeto-sample spacing contained in the detected signals from the long pulses. Thus a resultant signal is obtained responsive to discontinuities within the sample and independent of probe-to- sample spacing.

  11. Scanning optical microscope with long working distance objective

    DOEpatents

    Cloutier, Sylvain G.

    2010-10-19

    A scanning optical microscope, including: a light source to generate a beam of probe light; collimation optics to substantially collimate the probe beam; a probe-result beamsplitter; a long working-distance, infinity-corrected objective; scanning means to scan a beam spot of the focused probe beam on or within a sample; relay optics; and a detector. The collimation optics are disposed in the probe beam. The probe-result beamsplitter is arranged in the optical paths of the probe beam and the resultant light from the sample. The beamsplitter reflects the probe beam into the objective and transmits resultant light. The long working-distance, infinity-corrected objective is also arranged in the optical paths of the probe beam and the resultant light. It focuses the reflected probe beam onto the sample, and collects and substantially collimates the resultant light. The relay optics are arranged to relay the transmitted resultant light from the beamsplitter to the detector.

  12. An Optimized Set of Fluorescence In Situ Hybridization Probes for Detection of Pancreatobiliary Tract Cancer in Cytology Brush Samples.

    PubMed

    Barr Fritcher, Emily G; Voss, Jesse S; Brankley, Shannon M; Campion, Michael B; Jenkins, Sarah M; Keeney, Matthew E; Henry, Michael R; Kerr, Sarah M; Chaiteerakij, Roongruedee; Pestova, Ekaterina V; Clayton, Amy C; Zhang, Jun; Roberts, Lewis R; Gores, Gregory J; Halling, Kevin C; Kipp, Benjamin R

    2015-12-01

    Pancreatobiliary cancer is detected by fluorescence in situ hybridization (FISH) of pancreatobiliary brush samples with UroVysion probes, originally designed to detect bladder cancer. We designed a set of new probes to detect pancreatobiliary cancer and compared its performance with that of UroVysion and routine cytology analysis. We tested a set of FISH probes on tumor tissues (cholangiocarcinoma or pancreatic carcinoma) and non-tumor tissues from 29 patients. We identified 4 probes that had high specificity for tumor vs non-tumor tissues; we called this set of probes pancreatobiliary FISH. We performed a retrospective analysis of brush samples from 272 patients who underwent endoscopic retrograde cholangiopancreatography for evaluation of malignancy at the Mayo Clinic; results were available from routine cytology and FISH with UroVysion probes. Archived residual specimens were retrieved and used to evaluate the pancreatobiliary FISH probes. Cutoff values for FISH with the pancreatobiliary probes were determined using 89 samples and validated in the remaining 183 samples. Clinical and pathologic evidence of malignancy in the pancreatobiliary tract within 2 years of brush sample collection was used as the standard; samples from patients without malignancies were used as negative controls. The validation cohort included 85 patients with malignancies (46.4%) and 114 patients with primary sclerosing cholangitis (62.3%). Samples containing cells above the cutoff for polysomy (copy number gain of ≥2 probes) were classified as positive in FISH with the UroVysion and pancreatobiliary probes. Multivariable logistic regression was used to estimate associations between clinical and pathology findings and results from FISH. The combination of FISH probes 1q21, 7p12, 8q24, and 9p21 identified cancer cells with 93% sensitivity and 100% specificity in pancreatobiliary tissue samples and were therefore included in the pancreatobiliary probe set. In the validation cohort of brush samples, pancreatobiliary FISH identified samples from patients with malignancy with a significantly higher level of sensitivity (64.7%) than the UroVysion probes (45.9%) (P < .001) or routine cytology analysis (18.8%) (P < .001), but similar specificity (92.9%, 90.8%, and 100.0% respectively). Factors significantly associated with detection of carcinoma, in adjusted analyses, included detection of polysomy by pancreatobiliary FISH (P < .001), a mass by cross-sectional imaging (P < .001), cancer cells by routine cytology (overall P = .003), as well as absence of primary sclerosing cholangitis (P = .011). We identified a set of FISH probes that detects cancer cells in pancreatobiliary brush samples from patients with and without primary sclerosing cholangitis with higher levels of sensitivity than UroVysion probes. Cytologic brushing test results and clinical features were independently associated with detection of cancer and might be used to identify patients with pancreatobiliary cancers. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.

  13. Interpretation of discrepancies in mass spectroscopy data obtained from different experimental configurations

    NASA Technical Reports Server (NTRS)

    Russell, John M.

    1993-01-01

    Many helium mass spectrometer leak detectors at KSC employ sampling systems that feature hand held sniffer probes. Authors of general leakage-testing literature recommend sniffer probes for leak location but not for quantitative leakage measurement. Their use in the latter application at KSC involves assumptions that may be subtle. The purpose of the research effort reported herein was to establish the significance of indicated leak rates displayed by sniffer-probe equipped leak detectors and to determine whether the use of alternative hardware or testing procedures may reduce the uncertainty of leakage measurements made with them. The report classifies probe-type sampling systems for helium leak detectors according to their internal plumbing (direct or branched), presents a basic analysis of the fluid dynamics in the sampling system in the branched-conduit case, describes the usual test method for measuring the internal supply-to-sample flowrate ratio (a.k.a permeation ratio), and describes a concept for a sponge-tipped probe whose external supply-to-sample flowrate ratio promises to be lower than that of a simple-ended probe. One conclusion is that the main source of uncertainty in the use of probe-type sampling systems for leakage measurement is uncertainty in the external supply-to-sample flowrate ratio. In contrast, the present method for measuring the internal supply-to-sample flowrate ratio is quantitative and satisfactory. The implication is that probes of lower external supply-to-sample flowrate ratio must be developed before this uncertainty may be reduced significantly.

  14. Method and apparatus for chemical and topographical microanalysis

    NASA Technical Reports Server (NTRS)

    Kossakovski, Dmitri A. (Inventor); Baldeschwieler, John D. (Inventor); Beauchamp, Jesse L. (Inventor)

    2002-01-01

    A scanning probe microscope is combined with a laser induced breakdown spectrometer to provide spatially resolved chemical analysis of the surface correlated with the surface topography. Topographical analysis is achieved by scanning a sharp probe across the sample at constant distance from the surface. Chemical analysis is achieved by the means of laser induced breakdown spectroscopy by delivering pulsed laser radiation to the sample surface through the same sharp probe, and consequent collection and analysis of emission spectra from plasma generated on the sample by the laser radiation. The method comprises performing microtopographical analysis of the sample with a scanning probe, selecting a scanned topological site on the sample, generating a plasma plume at the selected scanned topological site, and measuring a spectrum of optical emission from the plasma at the selected scanned topological site. The apparatus comprises a scanning probe, a pulsed laser optically coupled to the probe, an optical spectrometer, and a controller coupled to the scanner, laser and spectrometer for controlling the operation of the scanner, laser and spectrometer. The probe and scanner are used for topographical profiling the sample. The probe is also used for laser radiation delivery to the sample for generating a plasma plume from the sample. Optical emission from the plasma plume is collected and delivered to the optical spectrometer so that analysis of emission spectrum by the optical spectrometer allows for identification of chemical composition of the sample at user selected sites.

  15. Liquid Microjunction Surface Sampling Probe Fluid Dynamics: Computational and Experimental Analysis of Coaxial Intercapillary Positioning Effects on Sample Manipulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ElNaggar, Mariam S; Barbier, Charlotte N; Van Berkel, Gary J

    A coaxial geometry liquid microjunction surface sampling probe (LMJ-SSP) enables direct extraction of analytes from surfaces for subsequent analysis by techniques like mass spectrometry. Solution dynamics at the probe-to-sample surface interface in the LMJ-SSP has been suspected to influence sampling efficiency and dispersion but has not been rigorously investigated. The effect on flow dynamics and analyte transport to the mass spectrometer caused by coaxial retraction of the inner and outer capillaries from each other and the surface during sampling with a LMJ-SSP was investigated using computational fluid dynamics and experimentation. A transparent LMJ-SSP was constructed to provide the means formore » visual observation of the dynamics of the surface sampling process. Visual observation, computational fluid dynamics (CFD) analysis, and experimental results revealed that inner capillary axial retraction from the flush position relative to the outer capillary transitioned the probe from a continuous sampling and injection mode through an intermediate regime to sample plug formationmode caused by eddy currents at the sampling end of the probe. The potential for analytical implementation of these newly discovered probe operational modes is discussed.« less

  16. Monitoring environmental effects of shale gas exploitation at Wysin in Poland.

    NASA Astrophysics Data System (ADS)

    Lasocki, Stanislaw; Mirek, Janusz; Bialon, Wojciech; Cielesta, Szymon; Lasak, Mateusz; Cesca, Simone; Lopez Comino, Jose Angel; Dahm, Torsten; Scarpa, Roberto; Gunning, Andrew; Montcoudiol, Nelly; Isherwood, Catherine; Jaroslawski, Janusz; Guzikowski, Jakub

    2017-04-01

    Environmental effects of shale gas exploration and exploitation are extensively studied in the framework of "Shale Gas Exploration and Exploitation Induced Risks" project (SHEER, H2020-LCE 16-2014-1). One of the main component of this study is on-site monitoring of the effects at Wysin shale-gas play of Polish Oil and Gas Company in Poland. This includes monitoring of seismicity and water and air quality. Surface seismic monitoring network consists of 6 surface broadband (BB) seismometers and 25 surface short-period (SP) seismometers The SPs are assembled into three small aperture arrays with 9, 8 and 8 stations, respectively, distributed in a triangle geometry at a distance of about 2-4 km from the hydrofracturing rig. Each array is complemented with one BB station. The three remaining BBs are located up to about 5 km from the rig. In addition 3 borehole broadband seismometers are located in three shallow boreholes. The groundwater monitoring makes use of four wells, which reach a main underground water reservoir. Three complementary datasets are collected: continuous monitoring of borehole data, laboratory analyses of water samples and field monitoring of water quality parameters. The continuous monitoring makes use of down-hole probes, which have been installed in each borehole. The probes record absolute pressure, temperature and electrical conductivity. In addition, a barometric probe has been installed above ground to record atmospheric pressure in order to allow conversion of absolute pressure to a water level. After collection, water samples are sent to an accredited laboratory for analysis. The field monitoring is undertaken during the sampling visits. Whilst the borehole is being purged, physico-chemical parameters are monitored using a multi-parameter probe. This measures and records temperature, specific conductivity, pH, dissolved oxygen and oxidation-reduction potential within the water. Hydrocarbon gas content within the water is below detection limits for methane, ethane, ethene and propane gases. Air pollution monitoring is performed by means of an automatic station. The station is situated east from the Wysin rig at the distance of some 1200 m. This distance is appropriate in order not to measure a direct emission of pollutants. The station monitors the content of NO, NO2, NOx, CO, PM10, O3, CO2, CH4, NMHC and Radon. At the beginning of SHEER project in May 2015, there was one vertical well at the site, reaching gas-bearing shale formations at the nearly 4km depth. Further on two horizontal wells, each of about 1.7km length, were drilled (late Autumn 2015) and fracked (June - August, 2016). This time table has provided the opportunity to record background seismicity and baseline levels of water and air quality, and then to record the immediate and delayed effects of hydrofracturing operations. The monitoring will continue at least 1.5 year after completion of technological activity at the site. This work was supported within SHEER: "Shale Gas Exploration and Exploitation Induced Risks" project funded from Horizon 2020 - R&I Framework Programme, call H2020-LCE-2014-1 and within statutory activities No3841/E-41/S/2016 of Ministry of Science and Higher Education of Poland.

  17. Renewable-reagent electrochemical sensor

    DOEpatents

    Wang, Joseph; Olsen, Khris B.

    1999-01-01

    A new electrochemical probe(s) design allowing for continuous (renewable) reagent delivery. The probe comprises an integrated membrane-sampling/electrochemical sensor that prevents interferences from surface-active materials and greatly extends the linear range. The probe(s) is useful for remote or laboratory-based monitoring in connection with microdialysis sampling and electrochemical measurements of metals and organic compounds that are not readily detected in the absence of reacting with the compound. Also disclosed is a method of using the probe(s).

  18. Mapping the geogenic radon potential of the eastern Canary Islands.

    NASA Astrophysics Data System (ADS)

    Rubiano, Jesús G.; Alonso, Hector; Arnedo, Miguel. A.; Tejera, Alicia; Martel, Pablo; Gil, Juan M.; Rodriguez, Rafael; González, Jonay

    2014-05-01

    The main contribution of indoor radon comes from soils and thus, the knowledge of the concentration of this gas in soils is important for estimating the risk of finding high radon indoor concentrations. To characterize the behavior of radon in soils, it is common to use the a quantity named Radon Potential which results of a combination of properties of the soil itself and from the underlying rock, such as concentration and distribution of radium, porosity, permeability, the moisture content and meteorological parameters, among others. In this work, the results three year of campaigns of measurement radon gas as well as the permeability in soils of the Eastern Canary Islands (Gran Canaria, Fuerteventura and Lanzarote) are presented. By combining these two parameters and through the use of geostatistic interpolation techniques, the radon potential of soils is estimated and it is used to carry on a classification of the territory into hazard zones according to their potential for radon emanation. To measure the radon soil gas a probe equipped with a "lost" sharp tip is inserted to the desired sampling depth. One of the characteristics of the Canary Islands is the absence of developed soils and so the bedrock is found typically at very shallow depth. This fact has led us to adopt a sampling depth of 50 cm at most. The probe is connected to the continuous radon monitor Durridge RAD7 equipped with a solid-state alpha spectrometer to determine concentration radon using the activity its short-lived progeny. Dried soil air is delivered to the RAD7 radon monitor by pumping. A half hour counting time for all sampling points has been taken. In parallel to the radon measurement campaign, the permeability of soils has also been determined at each point using the permeameter RADON-JOK. The principle of operation of this equipment consists of air withdrawal by means of negative pressure. The gas permeability is then calculated using the known flow of air flowing through the probe using a calibrated nomogram. As results, maps of radon in soils have been developed for the three islands to identify areas where may appear high activity concentrations of radon due to natural sources. Finally to determine the radon potential of soils analyzed we applied a procedure to classify the radon areas in several levels of risk using the measured values of radon activity concentration and soil permeability. Acknowledgments: This work was financed by the Nuclear Safety Council (CSN) through a grant in its R&D program 2009 and by the European Development Fund (ERDF) through a research project program 2007 granted by Canary Agency for Research, Innovation and Information Society (ACIISI) of the Canary Islands.

  19. A self-assembled fluorescent organic nanoprobe and its application for sulfite detection in food samples and living systems.

    PubMed

    Gao, Tang; Cao, Xiaozheng; Ge, Peng; Dong, Jie; Yang, Shuqi; Xu, Huan; Wu, Yong; Gao, Feng; Zeng, Wenbin

    2017-05-23

    Sulfur dioxide (SO 2 ) is a widely distributed air pollutant, and humans can easily be exposed to sulfite by inhaling SO 2 , thus inducing respiratory responses and diseases. Hence, to develop a rapid, sensitive and selective method for detection of sulfites is of great importance. Herein, we designed and synthesized a novel tetraphenyl imidazole compound TIBM with aggregation-induced emission enhancement (AIEE). TIBM can self-assemble into well-organized nanoparticles and is reported as an excellent probe for detection of sulfite with high selectivity and sensitivity. The nanoprobe performed very well for the detection of sulfite with an ultrafast detection time (15 s) and an ultralow detection limit (7.4 nM), which is superior to most of the reported probes. Moreover, the nanoprobe was successfully used to detect sulfite in food samples with a favorable accuracy. In addition, we developed paper-based devices for point-of-care detection of sulfite with naked eyes. Furthermore, due to its high water solubility, cell membrane permeability and good biocompatibility, the nanoproboe was further applied to detect sulfite in living systems. This study may offer some helpful insights for designing other AIE-based fluorescent nanosensors for various analytes.

  20. [Evaluation of inverse gas chromatography (IGC) methods to measure astragaloside solubility parameter from Buyang Huanwu decoction].

    PubMed

    Tang, Yu; Hu, Chao; Liao, Qiong; Liu, Wen-long; Yang, Yan-tao; He, Hong; He, Fu-yuan

    2015-01-01

    The solubility parameter determination of astrageloside from Buyang Huanwu decoction with inverse gas chromatography (IGC) method evaluation was investigated in this paper. Di-n-octyl phthalate Kwai alternative sample was used to carry out methodological study. The accuracy of the measured correlation coefficient was 0.992 1. Experimental precision measured by IGC experiments showed that the results were accurate and reliable. The sample was uniformly coated on the surface of an inert carrier and N2 gas was carrier gas, a variety of polar solvents such as isopropanol, toluene, acetone, chloroform, cyclohexane as probes. TCD detector temperature was 150 degrees C, gas room temperature was 120 degrees C. Similar headspace method was used whichever over 1 μL gas into the GC measurement, Retention time t(R), t(0) and all the parameters of air and probes molecules within the column were tested. Astragaloside solubility parameter was (21.02 ± 2.4) [J x cm(-3)] ½, literature value was 19.24 [J x cm(-3)] ½, and relevant coefficient was 0.984 5. IGC method is effective and accurate to measure ingredients solubility parameter.

  1. Fiber optic probe for light scattering measurements

    DOEpatents

    Nave, Stanley E.; Livingston, Ronald R.; Prather, William S.

    1995-01-01

    A fiber optic probe and a method for using the probe for light scattering analyses of a sample. The probe includes a probe body with an inlet for admitting a sample into an interior sample chamber, a first optical fiber for transmitting light from a source into the chamber, and a second optical fiber for transmitting light to a detector such as a spectrophotometer. The interior surface of the probe carries a coating that substantially prevents non-scattered light from reaching the second fiber. The probe is placed in a region where the presence and concentration of an analyte of interest are to be detected, and a sample is admitted into the chamber. Exciting light is transmitted into the sample chamber by the first fiber, where the light interacts with the sample to produce Raman-scattered light. At least some of the Raman-scattered light is received by the second fiber and transmitted to the detector for analysis. Two Raman spectra are measured, at different pressures. The first spectrum is subtracted from the second to remove background effects, and the resulting sample Raman spectrum is compared to a set of stored library spectra to determine the presence and concentration of the analyte.

  2. Fiber optic probe for light scattering measurements

    DOEpatents

    Nave, S.E.; Livingston, R.R.; Prather, W.S.

    1993-01-01

    This invention is comprised of a fiber optic probe and a method for using the probe for light scattering analyses of a sample. The probe includes a probe body with an inlet for admitting a sample into an interior sample chamber, a first optical fiber for transmitting light from a source into the chamber, and a second optical fiber for transmitting light to a detector such as a spectrophotometer. The interior surface of the probe carries a coating that substantially prevents non-scattered light from reaching the second fiber. The probe is placed in a region where the presence and concentration of an analyte of interest are to be detected, and a sample is admitted into the chamber. Exciting light is transmitted into the sample chamber by the first fiber, where the light interacts with the sample to produce Raman-scattered light. At least some of the Raman- scattered light is received by the second fiber and transmitted to the detector for analysis. Two Raman spectra are measured, at different pressures. The first spectrum is subtracted from the second to remove background effects, and the resulting sample Raman spectrum is compared to a set of stored library spectra to determine the presence and concentration of the analyte.

  3. Near-Field Scanning Optical Microscopy of Soft, Biological, or Rough Objects in Aqueous Environment: Challenges and some Remedies to Circumvent

    NASA Technical Reports Server (NTRS)

    Vikram, C. S.; Witherow, W. K.

    1999-01-01

    Near-field scanning optical microscopy is an established technique for sub-wavelength spatial resolution in imaging, spectroscopy, material science, surface chemistry, polarimetry, etc. A significant amount of confidence has been established for thin hard specimens in air. However when soft, biological, rough, in aqueous environment object, or a combination is involved, the progress has been slow. The tip-sample mechanical interaction, heat effects to sample, drag effects to the probe, difficulty in controlling tip-sample separation in case of rough objects, light scattering from sample thickness, etc. create problems. Although these problems are not even fully understood, there have been attempts to study them with the aim of performing reliable operations. In this review we describe these attempts. Starting with general problems encountered, various effects like polarization, thermal, and media are covered. The roles of independent tip-sample distance control tools in the relevant situations are then described. Finally progress in fluid cell aspect has been summarized.

  4. An Evanescent Microwave Probe for Super-Resolution Nondestructive Imaging of Metals, Semiconductors, Dielectrics, Composites and Biological Specimens

    NASA Technical Reports Server (NTRS)

    Pathak, P. S.; Tabib-Azar, M.; Ponchak, G.

    1998-01-01

    Using evanescent microwaves with decay lengths determined by a combination of microwave wavelength (lambda) and waveguide termination geometry, we have imaged and mapped material non-uniformities and defects with a resolving capability of lambda/3800=79 microns at 1 GHz. In our method a microstrip quarter wavelength resonator was used to generate evanescent microwaves. We imaged materials with a wide range of conductivities. Carbon composites, dielectrics (Duroid, polymers), semiconductors (3C-SiC, polysilicon, natural diamond), metals (tungsten alloys, copper, zinc, steel), high-temperature superconductors, and botanical samples were scanned for defects, residual stresses, integrity of brazed junctions, subsurface features, areas of different film thickness and moisture content. The evanescent microwave probe is a versatile tool and it can be used to perform very fast, large scale mapping of a wide range of materials. This method of characterization compares favorably with ultrasound testing, which has a resolution of about 0.1 mm and suffers from high absorption in composite materials and poor transmission across boundaries. Eddy current methods which can have a resolution on the order of 50 microns are restricted to evaluating conducting materials. Evanescent microwave imaging, with careful choice of operating frequency and probe geometry, can have a resolution of up to 1 micron. In this method we can scan hot and moving objects, sample preparation is not required, testing is non-destructive, non-invasive and non-contact, and can be done in air, in liquid or in vacuum.

  5. The Effects of Sampling Probe Design and Sampling Techniques on Aerosol Measurements

    DTIC Science & Technology

    1975-05-01

    Schematic of Extraction and Sampling System 39 16. Filter Housing 40 17. Theoretical Isokinetic Flow Requirements of the EPA Sampling...from the flow parameters based on a zero-error assumption at isokinetic sampling conditions. Isokinetic , or equal velocity sampling, was...prior to testing the probes. It was also used to measure the flow field adjacent to the probe inlets to determine the isokinetic condition of the

  6. Measurement of Air Flow Characteristics Using Seven-Hole Cone Probes

    NASA Technical Reports Server (NTRS)

    Takahashi, Timothy T.

    1997-01-01

    The motivation for this work has been the development of a wake survey system. A seven-hole probe can measure the distribution of static pressure, total pressure, and flow angularity in a wind tunnel environment. The author describes the development of a simple, very efficient algorithm to compute flow properties from probe tip pressures. Its accuracy and applicability to unsteady, turbulent flow are discussed.

  7. Influence of outflow from the Gulf of Mexico region on NMHC composition of the free and upper troposphere over Europe and the North Atlantic

    NASA Astrophysics Data System (ADS)

    Baker, A. K.; Schuck, T. J.; Rauthe-Schöch, A.; Brenninkmeijer, C. A.

    2012-12-01

    The CARIBIC project (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container; www.caribic-atmospheric.com) involves the deployment of an instrument container equipped to make atmospheric measurements from aboard a passenger jet, and has operated since 2005 from aboard a Lufthansa Airbus 340-600. Measurements from the container include in-situ trace gas and aerosol analyses and the collection of aerosol and whole air samples for post-flight laboratory analysis. A suite of 20 non-methane hydrocarbons (NMHCs) are measured from the whole air samples, along with greenhouse gas and halocarbon measurements. As all flights originate in and return to Frankfurt, Germany, the free and upper troposphere (FT/UT) over Europe and the North Atlantic are probed on nearly every flight, and the composition was found to be strongly influenced by air masses from the Gulf of Mexico region. Over 75% of air samples collected during flight had backwards trajectories which passed over the region, and nearly half of these had passed through the lower troposphere and boundary layer, affording CARIBIC a "bird's-eye view" of emissions from the Gulf region. Measurements of NMHCs, and also methane, show distinct fossil fuel extraction signatures for Gulf region outflow, namely relatively large enhancements in C2-C4 alkanes coupled with unique ratios between species. Here we discuss the impact of these emissions and their subsequent chemical transformations on FT/UT composition. We also investigate the possible influence of these emissions on the increase in C2-C4 alkanes observed in the FT/UT by CARIBIC over the last 7 years.

  8. Endothelial Inflammatory Transcriptional Responses Induced by Plasma Following Inhalation of Diesel Emissions

    PubMed Central

    Schisler, Jonathan C.; Ronnebaum, Sarah M.; Madden, Michael; Channell, Meghan M.; Campen, Matthew J.; Willis, Monte S.

    2016-01-01

    Background Air pollution, especially emissions derived from traffic sources, is associated with adverse cardiovascular outcomes. However, it remains unclear how inhaled factors drive extrapulmonary pathology. Objectives Previously, we found that canonical inflammatory response transcripts were elevated in cultured endothelial cells treated with plasma obtained after exposure compared with pre-exposure samples or filtered air (sham) exposures. While the findings confirmed the presence of bioactive factor(s) in the plasma after diesel inhalation, we wanted to better examine the complete genomic response to investigate 1) major responsive transcripts and 2) collected response pathways and ontogeny that may help to refine this method and inform the pathogenesis. Methods We assayed endothelial RNA with gene expression microarrays, examining the responses of cultured endothelial cells to plasma obtained from 6 healthy human subjects exposed to 100 μg/m3 diesel exhaust or filtered air for 2 h on separate occasions. In addition to pre-exposure baseline samples, we investigated samples obtained immediately-post and 24h-post exposure. Results Microarray analysis of the coronary artery endothelial cells challenged with plasma identified 855 probes that changed over time following diesel exhaust exposure. Over-representation analysis identified inflammatory cytokine pathways were upregulated both at the 2 and 24 h condition. Novel pathways related to FOX transcription factors and secreted extracellular factors were also identified in the microarray analysis. Conclusions These outcomes are consistent with our recent findings that plasma contains bioactive and inflammatory factors following pollutant inhalation. The specific study design implicates a novel pathway related to inflammatory blood borne components that may drive the extrapulmonary toxicity of ambient air pollutants. PMID:25942053

  9. Quality assured measurements of animal building emissions: gas concentrations.

    PubMed

    Heber, Albert J; Ni, Ji-Qin; Lim, Teng T; Tao, Pei-Chun; Schmidt, Amy M; Koziel, Jacek A; Beasley, David B; Hoff, Steven J; Nicolai, Richard E; Jacobson, Larry D; Zhang, Yuanhui

    2006-10-01

    Comprehensive field studies were initiated in 2002 to measure emissions of ammonia (NH3), hydrogen sulfide (H2S), carbon dioxide (CO2), methane (CH4), nonmethane hydrocarbons (NMHC), particulate matter <10 microm in diameter, and total suspended particulate from swine and poultry production buildings in the United States. This paper focuses on the quasicontinuous gas concentration measurement at multiple locations among paired barns in seven states. Documented principles, used in air pollution monitoring at industrial sources, were applied in developing quality assurance (QA) project plans for these studies. Air was sampled from multiple locations with each gas analyzed with one high quality commercial gas analyzer that was located in an environmentally controlled on-farm instrument shelter. A nominal 4 L/min gas sampling system was designed and constructed with Teflon wetted surfaces, bypass pumping, and sample line flow and pressure sensors. Three-way solenoids were used to automatically switch between multiple gas sampling lines with > or =10 min sampling intervals. Inside and outside gas sampling probes were between 10 and 115 m away from the analyzers. Analyzers used chemiluminescence, fluorescence, photoacoustic infrared, and photoionization detectors for NH3, H2S, CO2, CH4, and NMHC, respectively. Data were collected using personal computer-based data acquisition hardware and software. This paper discusses the methodology of gas concentration measurements and the unique challenges that livestock barns pose for achieving desired accuracy and precision, data representativeness, comparability and completeness, and instrument calibration and maintenance.

  10. Chemical compositions of subway particles in Seoul, Korea determined by a quantitative single particle analysis.

    PubMed

    Kang, Sunni; Hwang, HeeJin; Park, YooMyung; Kim, HyeKyoung; Ro, Chul-Un

    2008-12-15

    A novel single particle analytical technique, low-Z particle electron probe X-ray microanalysis, was applied to characterize seasonal subway samples collected at a subway station in Seoul, Korea. For all 8 samples collected twice in each season, 4 major types of subway particles, based on their chemical compositions, are significantly encountered: Fe-containing; soil-derived; carbonaceous; and secondary nitrate and/or sulfate particles. Fe-containing particles are generated indoors from wear processes at rail-wheel-brake interfaces while the others may be introduced mostly from the outdoor urban atmosphere. Fe-containing particles are the most frequently encountered with relative abundances in the range of 61-79%. In this study, it is shown that Fe-containing subway particles almost always exist either as partially or fully oxidized forms in underground subway microenvironments. Their relative abundances of Fe-containing particles increase as particle sizes decrease. Relative abundances of Fe-containing particles are higher in morning samples than in afternoon samples because of heavier train traffic in the morning. In the summertime samples, Fe-containing particles are the most abundantly encountered, whereas soil-derived and nitrate/sulfate particles are the least encountered, indicating the air-exchange between indoor and outdoor environments is limited in the summer, owing to the air-conditioning in the subway system. In our work, it was observed that the relative abundances of the particles of outdoor origin vary somewhat among seasonal samples to a lesser degree, reflecting that indoor emission sources predominate.

  11. Renewable-reagent electrochemical sensor

    DOEpatents

    Wang, J.; Olsen, K.B.

    1999-08-24

    A new electrochemical probe(s) design allowing for continuous (renewable) reagent delivery is described. The probe comprises an integrated membrane sampling/electrochemical sensor that prevents interferences from surface-active materials and greatly extends the linear range. The probe(s) is useful for remote or laboratory-based monitoring in connection with microdialysis sampling and electrochemical measurements of metals and organic compounds that are not readily detected in the absence of reacting with the compound. Also disclosed is a method of using the probe(s). 19 figs.

  12. Measurements of multi-scalar mixing in a turbulent coaxial jet

    NASA Astrophysics Data System (ADS)

    Hewes, Alais; Mydlarski, Laurent

    2017-11-01

    There are relatively few studies of turbulent multi-scalar mixing, despite the occurrence of this phenomenon in common processes (e.g. chemically reacting flows, oceanic mixing). In the present work, we simultaneously measure the evolution of two passive scalars (temperature and helium concentration) and velocity in a coaxial jet. Such a flow is particularly relevant, as coaxial jets are regularly employed in applications of turbulent non-premixed combustion, which relies on multi-scalar mixing. The coaxial jet used in the current experiment is based on the work of Cai et al. (J. Fluid Mech., 2011), and consists of a vertically oriented central jet of helium and air, surrounded by an annular flow of (unheated) pure air, emanating into a slow co-flow of (pure) heated air. The simultaneous two-scalar and velocity measurements are made using a 3-wire hot-wire anemometry probe. The first two wires of this probe form an interference (or Way-Libby) probe, and measure velocity and concentration. The third wire, a hot-wire operating at a low overheat ratio, measures temperature. The 3-wire probe is used to obtain concurrent velocity, concentration, and temperature statistics to characterize the mixing process by way of single and multivariable/joint statistics. Supported by the Natural Sciences and Engineering Research Council of Canada (Grant 217184).

  13. KSC-97PC1363

    NASA Image and Video Library

    1997-09-08

    Workers remove the Huygens probe from the Cassini spacecraft in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Further internal inspection, insulation repair and a cleaning of the probe are now required. Mission managers are targeting a mid-October launch date after Cassini returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station

  14. KSC-97PC1392

    NASA Image and Video Library

    1997-09-10

    Jet Propulsion Laboratory (JPL) workers examine the Huygens probe after removal from the Cassini spacecraft in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Internal inspection, insulation repair and a cleaning of the probe were required. Mission managers are targeting a mid-October launch date after Cassini returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station

  15. KSC-97PC1360

    NASA Image and Video Library

    1997-09-08

    Jet Propulsion Laboratory (JPL) workers remove the Huygens probe from the Cassini spacecraft in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Further internal inspection, insulation repair and a cleaning of the probe are now required. Mission managers are targeting a mid-October launch date after Cassini returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station

  16. KSC-97PC1362

    NASA Image and Video Library

    1997-09-08

    Workers remove the Huygens probe from the Cassini spacecraft in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Further internal inspection, insulation repair and a cleaning of the probe are now required. Mission managers are targeting a mid-October launch date after Cassini returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station

  17. KSC-97PC1361

    NASA Image and Video Library

    1997-09-08

    Workers remove the Huygens probe from the Cassini spacecraft in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Further internal inspection, insulation repair and a cleaning of the probe are now required. Mission managers are targeting a mid-October launch date after Cassini returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station

  18. Multi-hole pressure probes to wind tunnel experiments and air data systems

    NASA Astrophysics Data System (ADS)

    Shevchenko, A. M.; Shmakov, A. S.

    2017-10-01

    The problems to develop a multihole pressure system to measure flow angularity, Mach number and dynamic head for wind tunnel experiments or air data systems are discussed. A simple analytical model with separation of variables is derived for the multihole spherical pressure probe. The proposed model is uniform for small subsonic and supersonic speeds. An error analysis was performed. The error functions are obtained, allowing to estimate the influence of the Mach number, the pitch angle, the location of the pressure ports on the uncertainty of determining the flow parameters.

  19. Performance Evaluation of Particle Sampling Probes for Emission Measurements of Aircraft Jet Engines

    NASA Technical Reports Server (NTRS)

    Lee, Poshin; Chen, Da-Ren; Sanders, Terry (Technical Monitor)

    2001-01-01

    Considerable attention has been recently received on the impact of aircraft-produced aerosols upon the global climate. Sampling particles directly from jet engines has been performed by different research groups in the U.S. and Europe. However, a large variation has been observed among published data on the conversion efficiency and emission indexes of jet engines. The variation results surely from the differences in test engine types, engine operation conditions, and environmental conditions. The other factor that could result in the observed variation is the performance of sampling probes used. Unfortunately, it is often neglected in the jet engine community. Particle losses during the sampling, transport, and dilution processes are often not discussed/considered in literatures. To address this issue, we evaluated the performance of one sampling probe by challenging it with monodisperse particles. A significant performance difference was observed on the sampling probe evaluated under different temperature conditions. Thermophoretic effect, nonisokinetic sampling and turbulence loss contribute to the loss of particles in sampling probes. The results of this study show that particle loss can be dramatic if the sampling probe is not well designed. Further, the result allows ones to recover the actual size distributions emitted from jet engines.

  20. 40 CFR 1065.145 - Gaseous and PM probes, transfer lines, and sampling system components.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... measuring sample flows by designing a passive sampling system that meets the following requirements: (A) The... number of bends, and have no filters. (B) If probes are designed such that they are sensitive to stack... design and construction. Use sample probes with inside surfaces of 300 series stainless steel or, for raw...

  1. 40 CFR 1065.145 - Gaseous and PM probes, transfer lines, and sampling system components.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... measuring sample flows by designing a passive sampling system that meets the following requirements: (A) The... number of bends, and have no filters. (B) If probes are designed such that they are sensitive to stack... design and construction. Use sample probes with inside surfaces of 300 series stainless steel or, for raw...

  2. 40 CFR 1065.145 - Gaseous and PM probes, transfer lines, and sampling system components.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... measuring sample flows by designing a passive sampling system that meets the following requirements: (A) The... number of bends, and have no filters. (B) If probes are designed such that they are sensitive to stack... design and construction. Use sample probes with inside surfaces of 300 series stainless steel or, for raw...

  3. 40 CFR 1065.145 - Gaseous and PM probes, transfer lines, and sampling system components.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... measuring sample flows by designing a passive sampling system that meets the following requirements: (A) The... number of bends, and have no filters. (B) If probes are designed such that they are sensitive to stack... design and construction. Use sample probes with inside surfaces of 300 series stainless steel or, for raw...

  4. 40 CFR 1065.145 - Gaseous and PM probes, transfer lines, and sampling system components.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... measuring sample flows by designing a passive sampling system that meets the following requirements: (A) The... number of bends, and have no filters. (B) If probes are designed such that they are sensitive to stack... design and construction. Use sample probes with inside surfaces of 300 series stainless steel or, for raw...

  5. Use of mass spectrometry coupled with a solids insertion probe to prescreen soil samples for environmental samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Check, C.E.; Bach, S.B.H.

    1995-12-31

    The contamination of air, water, and soils by a myriad of sources generates a large sample Currently, sample volume for hazardous constituent analyses is approximately half a million samples per year. The total analytical costs associated with this are astronomical. The analysis of these samples is vital in terms of assessing the types of contamination present and to what degree a site has been contaminated. The results of these analyses are very important for making an informed, knowledgeable decision as to the need for remediation and what type of remediation processes should be initiated based on site suitability vs non-actionmore » for the various sample sites. With an ever growing environmental consciousness in today`s society, the assessment and subsequent remediation of a site needs to be accomplished promptly despite the time constraints traditional methods place on such actions. In order to facilitate a rapid assessment, it is desirable to utilize instrumentation and equipment which afford the most information about a site allowing for optimization in environmental assessment while maintaining a realistic time schedule for the resulting remediation process. Because there are various types of environmental samples that can be taken at a site, different combinations of instrumentation and methods are required for assessing the level and type of contamination present whether it is in air, water, or soils. This study is limited to analyzing soil-like media that would normally fall under EPA Method 8270 which is used to analyze solid waste matrices, soils, and groundwater for semi-volatile organic compounds.« less

  6. Application of porous metal enrichment probe sampling to single cell analysis using matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS).

    PubMed

    Fu, Qiang; Tang, Jun; Cui, Meng; Xing, Junpeng; Liu, Zhiqiang; Liu, Shuying

    2016-01-01

    There is an increasing need for analyzing metabolism in a single cell, which is important to understand the nature of cellular heterogeneity, disease, growth and specialization, etc. However, single cell analysis is often challenging for the traces of samples. In the present study, porous metal enrichment probe sampling combined with matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) has been applied for in situ analysis of live onion epidemic cell. Porous probe, treated by corroding copper wire with HCl, was directly inserted into a single cell to get cell solution. A self-made linear actuator was enough to control the penetration of probe into the target cell accurately. Then samples on the tip of probe were eluted and detected by a commercial MALDI-TOF-MS directly. The formation of porous microstructure on the probe surface increased the adsorptive capacity of cell solution. The sensitivity of porous probe sampling was 6 times higher than uncorroded probes generally. This method provides a sensitive and convenient way for the sampling and detection of single cell solution. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Surface sampling concentration and reaction probe with controller to adjust sampling position

    DOEpatents

    Van Berkel, Gary J.; ElNaggar, Mariam S.

    2016-07-19

    A method of analyzing a chemical composition of a specimen is described. The method can include providing a probe comprising an outer capillary tube and an inner capillary tube disposed co-axially within the outer capillary tube, where the inner and outer capillary tubes define a solvent capillary and a sampling capillary in fluid communication with one another at a distal end of the probe; contacting a target site on a surface of a specimen with a solvent in fluid communication with the probe; maintaining a plug volume proximate a solvent-specimen interface, wherein the plug volume is in fluid communication with the probe; draining plug sampling fluid from the plug volume through the sampling capillary; and analyzing a chemical composition of the plug sampling fluid with an analytical instrument. A system for performing the method is also described.

  8. 7 CFR 800.84 - Inspection of grain in land carriers, containers, and barges in single lots.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... each probe, the grain shall be sampled as thoroughly as possible with an approved probe. The grain in... show a statement, as specified in the instructions, indicating the depth probed. Any inspection which... and is loaded in such a manner that it is possible to secure only door-probe or shallow-probe samples...

  9. 7 CFR 800.84 - Inspection of grain in land carriers, containers, and barges in single lots.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... each probe, the grain shall be sampled as thoroughly as possible with an approved probe. The grain in... show a statement, as specified in the instructions, indicating the depth probed. Any inspection which... and is loaded in such a manner that it is possible to secure only door-probe or shallow-probe samples...

  10. 7 CFR 800.84 - Inspection of grain in land carriers, containers, and barges in single lots.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... probe, the grain shall be sampled as thoroughly as possible with an approved probe. The grain in the... statement, as specified in the instructions, indicating the depth probed. Any inspection which is based on a... manner that it is possible to secure only door-probe or shallow-probe samples, the container shall be...

  11. 7 CFR 800.84 - Inspection of grain in land carriers, containers, and barges in single lots.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... each probe, the grain shall be sampled as thoroughly as possible with an approved probe. The grain in... show a statement, as specified in the instructions, indicating the depth probed. Any inspection which... and is loaded in such a manner that it is possible to secure only door-probe or shallow-probe samples...

  12. Predicting vehicle fuel consumption patterns using floating vehicle data.

    PubMed

    Du, Yiman; Wu, Jianping; Yang, Senyan; Zhou, Liutong

    2017-09-01

    The status of energy consumption and air pollution in China is serious. It is important to analyze and predict the different fuel consumption of various types of vehicles under different influence factors. In order to fully describe the relationship between fuel consumption and the impact factors, massive amounts of floating vehicle data were used. The fuel consumption pattern and congestion pattern based on large samples of historical floating vehicle data were explored, drivers' information and vehicles' parameters from different group classification were probed, and the average velocity and average fuel consumption in the temporal dimension and spatial dimension were analyzed respectively. The fuel consumption forecasting model was established by using a Back Propagation Neural Network. Part of the sample set was used to train the forecasting model and the remaining part of the sample set was used as input to the forecasting model. Copyright © 2017. Published by Elsevier B.V.

  13. Lateral Diffusion in a DMPC:DMPE-EO Binary Monolayer at the Air/Water Interface

    NASA Astrophysics Data System (ADS)

    Adalsteinsson, Thorsteinn; Porter, Ryan; Yu, Hyuk

    2002-03-01

    Polyethylene glycol tethered phospholipids (lipo-polymers) have recently attracted attention for improving the stability of liposomes and other bilayer delivery systems. Here, we report a study of surface pressure measurement and diffusion measurements of a probe lipid (NBD-DMPC) in a binary monolayer of DMPC and DMPE-EO at the Air/Water interface. Our findings are that the DMPE-EO lipo-polymer desorbs from the interface at intermediate surface pressures if the EO tail is sufficiently large (i.e. EO_45) and does not interfere with the diffusion of the probe thereafter. In the case where the EO tail is short (i.e. EO_17) the lipo-polymer retards the diffusion of the probe, but as the surface pressure increases, the diffusion behavior approaches that of pure DMPC monolayer independent of lipo-polymer. Thus, we conclude that the surface pressure and EO molar mass dependent desorption of the lipo-polymer modulates the probe diffusion retardation.

  14. Collective behavior of silver plasma during pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Dildar, I. M.; Rehman, S.; Khaleeq-ur-Rahman, M.; Bhatti, K. A.; Shuaib, A.

    2015-07-01

    The present work reports an electrical investigation of silver plasma using a self-fabricated Langmuir probe in air and under a low vacuum (~10-3 torr). A silver target was irradiated with a Q-switched Nd:YAG laser with the wavelength 1.064 µm, energy 10 mJ, pulse duration 9-14 ns and power 1.1 MW. The collective behavior of a silver plasma plume is studied using a Langmuir probe as an electrical diagnostic technique. By applying different positive and negative voltages to the probe, the respective signals are collected on a four channels digital storage oscilloscope having a frequency of 500 MHz. An I-V curve helps to measure electron temperature and electron density directly and plasma frequency, response time, Debye length and number of particles in ‘Debye’s sphere’ indirectly using the theory of Langmuir probe and mathematical formulas. The floating potential is measured as negative for laser induced silver plasma in air and vacuum, following the theory of plasma.

  15. 77 FR 11789 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-28

    ...-icing system for the angle of attack sensor, the total air temperature, and the pitot probes. We are proposing this AD to prevent ice from forming on air data system sensors and consequent loss of or... receive about this proposed AD. Discussion The air data sensor heating system, when ON, heats the pitot...

  16. 40 CFR 264.1063 - Test methods and procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... in air). (ii) A mixture of methane or n-hexane and air at a concentration of approximately, but less than, 10,000 ppm methane or n-hexane. (5) The instrument probe shall be traversed around all potential...

  17. 40 CFR 264.1063 - Test methods and procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... in air). (ii) A mixture of methane or n-hexane and air at a concentration of approximately, but less than, 10,000 ppm methane or n-hexane. (5) The instrument probe shall be traversed around all potential...

  18. 40 CFR 265.1063 - Test methods and procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of hydrocarbon in air). (ii) A mixture of methane or n-hexane and air at a concentration of approximately, but less than, 10,000 ppm methane or n-hexane. (5) The instrument probe shall be traversed around...

  19. 40 CFR 264.1063 - Test methods and procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... in air). (ii) A mixture of methane or n-hexane and air at a concentration of approximately, but less than, 10,000 ppm methane or n-hexane. (5) The instrument probe shall be traversed around all potential...

  20. 40 CFR 265.1063 - Test methods and procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of hydrocarbon in air). (ii) A mixture of methane or n-hexane and air at a concentration of approximately, but less than, 10,000 ppm methane or n-hexane. (5) The instrument probe shall be traversed around...

  1. 40 CFR 265.1063 - Test methods and procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of hydrocarbon in air). (ii) A mixture of methane or n-hexane and air at a concentration of approximately, but less than, 10,000 ppm methane or n-hexane. (5) The instrument probe shall be traversed around...

  2. 40 CFR 265.1063 - Test methods and procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of hydrocarbon in air). (ii) A mixture of methane or n-hexane and air at a concentration of approximately, but less than, 10,000 ppm methane or n-hexane. (5) The instrument probe shall be traversed around...

  3. 40 CFR 264.1063 - Test methods and procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... in air). (ii) A mixture of methane or n-hexane and air at a concentration of approximately, but less than, 10,000 ppm methane or n-hexane. (5) The instrument probe shall be traversed around all potential...

  4. 40 CFR 265.1063 - Test methods and procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of hydrocarbon in air). (ii) A mixture of methane or n-hexane and air at a concentration of approximately, but less than, 10,000 ppm methane or n-hexane. (5) The instrument probe shall be traversed around...

  5. Scanning drop sensor

    DOEpatents

    Jin, Jian; Xiang, Chengxiang; Gregoire, John

    2017-05-09

    Electrochemical experiments are performed on a collection of samples by suspending a drop of electrolyte solution between an electrochemical experiment probe and one of the samples that serves as a test sample. During the electrochemical experiment, the electrolyte solution is added to the drop and an output solution is removed from the drop. The probe and collection of samples can be moved relative to one another so the probe can be scanned across the samples.

  6. Fast and reliable method of conductive carbon nanotube-probe fabrication for scanning probe microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dremov, Vyacheslav, E-mail: dremov@issp.ac.ru; Fedorov, Pavel; Grebenko, Artem

    2015-05-15

    We demonstrate the procedure of scanning probe microscopy (SPM) conductive probe fabrication with a single multi-walled carbon nanotube (MWNT) on a silicon cantilever pyramid. The nanotube bundle reliably attached to the metal-covered pyramid is formed using dielectrophoresis technique from the MWNT suspension. It is shown that the dimpled aluminum sample can be used both for shortening/modification of the nanotube bundle by applying pulse voltage between the probe and the sample and for controlling the probe shape via atomic force microscopy imaging the sample. Carbon nanotube attached to cantilever covered with noble metal is suitable for SPM imaging in such modulationmore » regimes as capacitance contrast microscopy, Kelvin probe microscopy, and scanning gate microscopy. The majority of such probes are conductive with conductivity not degrading within hours of SPM imaging.« less

  7. Enhanced Characterization of Microorganisms in the Spacecraft Environment

    NASA Technical Reports Server (NTRS)

    Cruz, Patricia; Stetzenbach, Linda D.

    2004-01-01

    Spacecraft such as the International Space Station (ISS) and the space shuttles are enclosed environments where crewmembers may spend long periods of time. Currently, crewmembers spend approximately a period of 6 months in the ISS. It is known that these prolonged stays in space may result in weakening of the immune system. Therefore, exposure to opportunistic pathogens or high concentrations of environmental microorganisms may compromise the health of the crew. The detection of biocontaminants in spacecraft environments utilizes culture-based methodology, omitting greater than 90% of all microorganisms including pathogens such as Legionella and Cryptosporidium. Culturable bacteria and fungi have been the only allergens studied; the more potent allergens, such as those from dust mites, have never been tested for in spacecraft environments. In addition, no attempts have been made to monitor microbial toxins in spacecrafts. The present study utilized quantitative polymerase chain reaction (QPCR) as a novel approach for monitoring microorganisms in the spacecraft environment. QPCR is a molecular biology technique that does not rely on the physiological state of the organisms for identification, thereby enabling detection of both culturable and non-culturable organisms. In this project, specific molecular primers and probes were utilized for the detection and quantitation of two fungi of concern in indoor environments, Aspergillus fumigatus and Stachybotrys chartarum. These organisms were selected because of the availability of PCR primers and probes, and to establish the sample processing and analysis methodology that may be employed with additional organisms. Purification methods and QPCR assays were optimized for the detection of these organisms in air, surface, and water; and sample processing and analysis protocols were developed. Preliminary validation of these protocols was conducted in the laboratory with air, surface, and water samples seeded with known concentrations of the target organisms. Additional studies were conducted with bulk materials (HEPA filter pleats and particulate found on the filter screen) obtained from the ISS.

  8. Sealed magic angle spinning nuclear magnetic resonance probe and process for spectroscopy of hazardous samples

    DOEpatents

    Cho, Herman M.; Washton, Nancy M.; Mueller, Karl T.; Sears, Jr., Jesse A.; Townsend, Mark R.; Ewing, James R.

    2016-06-14

    A magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) probe is described that includes double containment enclosures configured to seal and contain hazardous samples for analysis. The probe is of a modular design that ensures containment of hazardous samples during sample analysis while preserving spin speeds for superior NMR performance and convenience of operation.

  9. Single point aerosol sampling: evaluation of mixing and probe performance in a nuclear stack.

    PubMed

    Rodgers, J C; Fairchild, C I; Wood, G O; Ortiz, C A; Muyshondt, A; McFarland, A R

    1996-01-01

    Alternative reference methodologies have been developed for sampling of radionuclides from stacks and ducts, which differ from the methods previously required by the United States Environmental Protection Agency. These alternative reference methodologies have recently been approved by the U.S. EPA for use in lieu of the current standard techniques. The standard EPA methods are prescriptive in selection of sampling locations and in design of sampling probes whereas the alternative reference methodologies are performance driven. Tests were conducted in a stack at Los Alamos National Laboratory to demonstrate the efficacy of some aspects of the alternative reference methodologies. Coefficients of variation of velocity, tracer gas, and aerosol particle profiles were determined at three sampling locations. Results showed that numerical criteria placed upon the coefficients of variation by the alternative reference methodologies were met at sampling stations located 9 and 14 stack diameters from the flow entrance, but not at a location that was 1.5 diameters downstream from the inlet. Experiments were conducted to characterize the transmission of 10 microns aerodynamic diameter liquid aerosol particles through three types of sampling probes. The transmission ratio (ratio of aerosol concentration at the probe exit plane to the concentration in the free stream) was 107% for a 113 L min-1 (4-cfm) anisokinetic shrouded probe, but only 20% for an isokinetic probe that follows the existing EPA standard requirements. A specially designed isokinetic probe showed a transmission ratio of 63%. The shrouded probe performance would conform to the alternative reference methodologies criteria; however, the isokinetic probes would not.

  10. Development of solvent-free ambient mass spectrometry for green chemistry applications.

    PubMed

    Liu, Pengyuan; Forni, Amanda; Chen, Hao

    2014-04-15

    Green chemistry minimizes chemical process hazards in many ways, including eliminating traditional solvents or using alternative recyclable solvents such as ionic liquids. This concept is now adopted in this study for monitoring solvent-free reactions and analysis of ionic liquids, solids, and catalysts by mass spectrometry (MS), without using any solvent. In our approach, probe electrospray ionization (PESI), an ambient ionization method, was employed for this purpose. Neat viscous room-temperature ionic liquids (RTILs) in trace amounts (e.g., 25 nL) could be directly analyzed without sample carryover effect, thereby enabling high-throughput analysis. With the probe being heated, it can also ionize ionic solid compounds such as organometallic complexes as well as a variety of neat neutral solid chemicals (e.g., amines). More importantly, moisture-sensitive samples (e.g., [bmim][AlCl4]) can be successfully ionized. Furthermore, detection of organometallic catalysts (including air-sensitive [Rh-MeDuPHOS][OTf]) in ionic liquids, a traditionally challenging task due to strong ion suppression effect from ionic liquids, can be enabled using PESI. In addition, PESI can be an ideal approach for monitoring solvent-free reactions. Using PESI-MS, we successfully examined the alkylation of amines by alcohols, the conversion of pyrylium into pyridinium, and the condensation of aldehydes with indoles as well as air- and moisture-sensitive reactions such as the oxidation of ferrocene and the condensation of pyrazoles with borohydride. Interestingly, besides the expected reaction products, the reaction intermediates such as the monopyrazolylborate ion were also observed, providing insightful information for reaction mechanisms. We believe that the presented solvent-free PESI-MS method would impact the green chemistry field.

  11. The effects of space radiation on thin films of YBa2Cu3O(7-x)

    NASA Technical Reports Server (NTRS)

    Herschitz, R.; Bogorad, A.; Bowman, C.; Seehra, S. S.; Mogro-Campero, A.; Turner, L. G.

    1991-01-01

    This investigation had two objectives: (1) to determine the effects of space radiation on superconductor parameters that are most important in space applications; and (2) to determine whether this effect can be simulated with Co-60 gamma rays, the standard test method for space materials. Thin films of yttrium barium copper oxide (YBCO) were formed by coevaporation of Y, BaF2, and Cu and post-annealing in wet oxygen at 850 C for 3.5 h. The substrate used was (100) silicon with an evaporated zirconia buffer layer. The samples were characterized by four point probe electrical measurements as a function of temperature. The parameters measured were the zero resistance transition temperature T(sub c) and the room temperature resistance. The samples were then exposed to Co-60 gamma-rays in air and in pure nitrogen, and to 780 keV electrons, in air. The parameters were then remeasured. The results are summarized. The results indicate little or no degradation in the parameters measured for samples exposed up to 10 Mrads of gamma-rays in nitrogen. However, complete degradation is preliminarily attributed to the high level of ozone generated in the chamber by the gamma-ray interaction with air. It can be concluded that: (1) the electron component of space radiation does not degrade the critical temperature of the YBCO films described, at least for energies around 800 keV and doses similar to those received by surface materials on spacecraft in typical remote sensing missions; and (2) for qualifying this and other superconducting materials against the space-radiation threat the standard test method used in the aerospace industry, namely, exposure to Co-60 gamma-rays in air, may require some further investigation. As a minimum, the sample must be either in vacuum or in positive nitrogen pressure.

  12. Change of the isoelectric point of hemoglobin at the air/water interface probed by the orientational flip-flop of water molecules.

    PubMed

    Devineau, Stéphanie; Inoue, Ken-Ichi; Kusaka, Ryoji; Urashima, Shu-Hei; Nihonyanagi, Satoshi; Baigl, Damien; Tsuneshige, Antonio; Tahara, Tahei

    2017-04-19

    Elucidation of the molecular mechanisms of protein adsorption is of essential importance for further development of biotechnology. Here, we use interface-selective nonlinear vibrational spectroscopy to investigate protein charge at the air/water interface by probing the orientation of interfacial water molecules. We measured the Im χ (2) spectra of hemoglobin, myoglobin, serum albumin and lysozyme at the air/water interface in the CH and OH stretching regions using heterodyne-detected vibrational sum frequency generation (HD-VSFG) spectroscopy, and we deduced the isoelectric point of the protein by monitoring the orientational flip-flop of water molecules at the interface. Strikingly, our measurements indicate that the isoelectric point of hemoglobin is significantly lowered (by about one pH unit) at the air/water interface compared to that in the bulk. This can be predominantly attributed to the modifications of the protein structure at the air/water interface. Our results also suggest that a similar mechanism accounts for the modification of myoglobin charge at the air/water interface. This effect has not been reported for other model proteins at interfaces probed by conventional VSFG techniques, and it emphasizes the importance of the structural modifications of proteins at the interface, which can drastically affect their charge profiles in a protein-specific manner. The direct experimental approach using HD-VSFG can unveil the changes of the isoelectric point of adsorbed proteins at various interfaces, which is of major relevance to many biological applications and sheds new light on the effect of interfaces on protein charge.

  13. KSC-97pc678

    NASA Image and Video Library

    1997-04-21

    Workers offload the shipping container with the Cassini orbiter from what looks like a giant shark mouth, but is really an Air Force C-17 air cargo plane which just landed at KSC’s Shuttle Landing Facility from Edwards Air Force Base, California. The orbiter and the Huygens probe already being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn’s largest moon, Titan. The orbiter was designed and assembled at NASA’s Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004

  14. KSC-97pc680

    NASA Image and Video Library

    1997-04-21

    Workers prepare to move the shipping container with the Cassini orbiter inside the Payload Hazardous Servicing Facility (PHSF) for prelaunch processing, testing and integration. The orbiter arrived at KSC’s Shuttle Landing Facility in a U.S. Air Force C-17 air cargo plane from Edwards Air Force Base, California. The orbiter and the Huygens probe already being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn’s largest moon, Titan. The orbiter was designed and assembled at NASA’s Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004

  15. KSC-97pc682

    NASA Image and Video Library

    1997-04-21

    Workers prepare to move the shipping container with the Cassini orbiter inside the Payload Hazardous Servicing Facility (PHSF) for prelaunch processing, testing and integration. The orbiter arrived at KSC’s Shuttle Landing Facility in a U.S. Air Force C-17 air cargo plane from Edwards Air Force Base, California. The orbiter and the Huygens probe already being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn’s largest moon, Titan. The orbiter was designed and assembled at NASA’s Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004

  16. KSC-97pc681

    NASA Image and Video Library

    1997-04-21

    Workers prepare to move the shipping container with the Cassini orbiter inside the Payload Hazardous Servicing Facility (PHSF) for prelaunch processing, testing and integration. The orbiter arrived at KSC’s Shuttle Landing Facility in a U.S. Air Force C-17 air cargo plane from Edwards Air Force Base, California. The orbiter and the Huygens probe already being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn’s largest moon, Titan. The orbiter was designed and assembled at NASA’s Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004

  17. Cassini orbiter arrives at SLF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Workers offload the shipping container with the Cassini orbiter from what looks like a giant shark mouth, but is really an Air Force C-17 air cargo plane which just landed at KSC's Shuttle Landing Facility from Edwards Air Force Base, California. The orbiter and the Huygens probe already being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn's largest moon, Titan. The orbiter was designed and assembled at NASA's Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004.

  18. Cassini orbiter arrives at SLF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Workers prepare to tow away the large container with the Cassini orbiter from KSC's Shuttle Landing Facility. The orbiter just arrived on the U.S. Air Force C-17 air cargo plane, shown here, from Edwards Air Force Base, California. The orbiter and the Huygens probe already being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn's largest moon, Titan. The orbiter was designed and assembled at NASA's Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004.

  19. Luminescence properties and color identification of Eu doped Ca3(PO4)2 phosphors calcined in air

    NASA Astrophysics Data System (ADS)

    Tong, Chao; Zhu, Yangguang; Xu, Chuanyan; Yang, Lei; Li, Yadong

    2017-09-01

    The Ca3(PO4)2:Eu (TCP) phosphor was synthesized by a high-temperature solid-state reaction in air atmosphere. X-ray powder diffraction(XRD) analysis indicates that the α-TCP↔β-TCP phase transition takes place under different calcination and cooling conditions. The luminescence properties of the two different phases of TCP were discussed according to the luminescence spectra during the heating and cooling transition. The CIE chromaticity coordinates of β-TCP phase located at the red region, α-TCP phase at bluish-green region because of the coexistence of Eu2+ and Eu3+ ions. The color-tunable emission of the products could also be directly observed under UV lamp. Pure red and bluish-green-emitting particles were observed respectively for the pure β-TCP phase and α-TCP phase samples whereas bluish-green and red mixture emitting particles were traced for the α-TCP /β-TCP phase co-existence samples. Therefore, results of this study suggested that Eu ion could be used as a spectroscopic probe to qualitatively identify the crystalline phase of TCP by a simple and convenient way to observe the color-tunable emission of the samples when irradiating it under 365 nm UV lamp.

  20. Artefacts in intracavitary temperature measurements during regional hyperthermia.

    PubMed

    Kok, H P; Van den Berg, C A T; Van Haaren, P M A; Crezee, J

    2007-09-07

    For adequate hyperthermia treatments, reliable temperature information during treatment is essential. During regional hyperthermia, temperature information is preferably obtained non-invasively from intracavitary or intraluminal measurements to avoid implant risks for the patient. However, for intracavitary or intraluminal thermometry optimal tissue contact is less natural as for invasive thermometry. In this study, the reliability of intraluminal/intracavitary measurements was examined in phantom experiments and in a numerical model for various extents of thermal contact between thermometry and the surroundings. Both thermocouple probes and fibre optic probes were investigated. Temperature rises after a 30 s power pulse of the 70 MHz AMC-4 hyperthermia system were measured in a tissue-equivalent phantom using a multisensor thermocouple probe placed centrally in a hollow tube. The tube was filled with (1) air, (2) distilled water or (3) saline solution that mimics the properties of tissue, simulating situations with (1) bad thermal contact and no power dissipation in the tube, (2) good thermal contact but no power dissipation or (3) good thermal contact and tissue representative power dissipation. For numerical simulations, a cylindrical symmetric model of a thermocouple probe or a fibre optic probe in a cavity was developed. The cavity was modelled as air, distilled water or saline solution. A generalised E-Field distribution was assumed, resulting in a power deposition. With this power deposition, the temperature rise after a 30 s power pulse was calculated. When thermal contact was bad (1), both phantom measurements and simulations with a thermocouple probe showed very high temperature rises (>0.5 degrees C), which are artefacts due to self-heating of the thermocouple probe, since no power is dissipated in air. Simulations with a fibre optic probe showed almost no temperature rise when the cavity was filled with air. When thermal contact was good, but no power was dissipated in the tube (2), artefacts due to self-heating were not significant and the observed temperature rises were very low ( approximately 0-0.1 degrees C). For the situation, with tissue representative power dissipation (3), a temperature rise of approximately 0.23 degrees C was observed for both measurements and simulations. A clinical example of a regional hyperthermia treatment of a patient with a cervix uteri carcinoma showed that the artefacts observed in the case of bad thermal contact also affect the steady-state temperature measurements. Good tissue contact must be assured for reliable intraluminal or intracavitary measurements.

  1. Scanning drop sensor

    DOEpatents

    Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Shinde, Aniketa A.; Guevarra, Dan W.; Jones, Ryan J.; Marcin, Martin R.; Mitrovic, Slobodan

    2017-05-09

    Electrochemical or electrochemical and photochemical experiments are performed on a collection of samples by suspending a drop of electrolyte solution between an electrochemical experiment probe and one of the samples that serves as a test sample. During the electrochemical experiment, the electrolyte solution is added to the drop and an output solution is removed from the drop. The probe and collection of samples can be moved relative to one another so the probe can be scanned across the samples.

  2. High temperature probe

    DOEpatents

    Swan, Raymond A.

    1994-01-01

    A high temperature probe for sampling, for example, smokestack fumes, and is able to withstand temperatures of 3000.degree. F. The probe is constructed so as to prevent leakage via the seal by placing the seal inside the water jacket whereby the seal is not exposed to high temperature, which destroys the seal. The sample inlet of the probe is also provided with cooling fins about the area of the seal to provide additional cooling to prevent the seal from being destroyed. Also, a heated jacket is provided for maintaining the temperature of the gas being tested as it passes through the probe. The probe includes pressure sensing means for determining the flow velocity of an efficient being sampled. In addition, thermocouples are located in various places on the probe to monitor the temperature of the gas passing there through.

  3. Metallized Capillaries as Probes for Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Pelletier, Michael

    2003-01-01

    A class of miniature probes has been proposed to supplant the fiber-optic probes used heretofore in some Raman and fluorescence spectroscopic systems. A probe according to the proposal would include a capillary tube coated with metal on its inside to make it reflective. A microlens would be hermetically sealed onto one end of the tube. A spectroscopic probe head would contain a single such probe, which would both deliver laser light to a sample and collect Raman or fluorescent light emitted by the sample.

  4. A versatile rotary-stage high frequency probe station for studying magnetic films and devices

    NASA Astrophysics Data System (ADS)

    He, Shikun; Meng, Zhaoliang; Huang, Lisen; Yap, Lee Koon; Zhou, Tiejun; Panagopoulos, Christos

    2016-07-01

    We present a rotary-stage microwave probe station suitable for magnetic films and spintronic devices. Two stages, one for field rotation from parallel to perpendicular to the sample plane (out-of-plane) and the other intended for field rotation within the sample plane (in-plane) have been designed. The sample probes and micro-positioners are rotated simultaneously with the stages, which allows the field orientation to cover θ from 0∘ to 90∘ and φ from 0∘ to 360∘. θ and φ being the angle between the direction of current flow and field in a out-of-plane and an in-plane rotation, respectively. The operation frequency is up to 40 GHz and the magnetic field up to 1 T. The sample holder vision system and probe assembly are compactly designed for the probes to land on a wafer with diameter up to 3 cm. Using homemade multi-pin probes and commercially available high frequency probes, several applications including 4-probe DC measurements, the determination of domain wall velocity, and spin transfer torque ferromagnetic resonance are demonstrated.

  5. Cloud System Evolution in the Trades (CSET): Airborne sampling of Lagrangian airmass evolution in the Northeast Pacific stratocumulus-cumulus transition

    NASA Astrophysics Data System (ADS)

    Bretherton, Christopher; Wood, Robert; Albrecht, Bruce; Zuidema, Paquita; Ghate, Virendra; Mohrmann, Johannes; Oh, Kuan-Ting; Blossey, Peter

    2017-04-01

    The CSET field study in July-August 2015 over the Northeast Pacific ocean was motivated by a need for more in-situ sampling of the subtropical stratocumulus to cumulus (Sc-Cu) transition zones. One goal was comprehensive documentation of observational cases suitable for detailed intercomparison with large-eddy simulation models run following Lagrangian air columns and global models run in a hindcast mode. A second goal was to understand the role of aerosol and precipitation processes in this transition. The U.S. National Science Foundation G-V, equipped with cloud, aerosol, turbulence probes, a multispectral lidar, a cloud radar, and dropsondes, flew seven missions consisting of an outbound leg from northern California to Hawaii and a return leg two days later. Each mission was based on forecast air trajectories within the boundary layer; the goal was to sample a 2000-km long vertical curtain of boundary-layer air on the outbound leg and resample the advected position of that curtain on the return leg, using ramped sawtooths. In this way, most missions successfully captured the Lagrangian Sc-Cu transition. While CSET sampled diverse aerosol conditions, including the interaction of the boundary layer with smoke plumes from massive forest fires, lower tropospheric stability was the primary control on cloud cover. Mesoscale cloud organization was ubiquitous. Toward Hawaii, clusters of 2 km deep precipitating shallow cumulus and patchy thin stratiform 'veil cloud' with extremely low droplet concentrations were embedded in ultraclean layers at the trade inversion. These were separated by drier regions of suppressed convection. LES and parcel modeling plausibly explain these features.

  6. A Holding Function for Conflict Probe Appiications

    NASA Technical Reports Server (NTRS)

    McNally, Dave; Walton, Joe

    2004-01-01

    Conflict Alerts for aircraft in holding patterns are often missed or in error due to fact that holding trajectories are not modeled in Conflict Alert or Conflict Probe logic. In addition, a controller in one sector may not know when aircraft are holding in a neighboring sector. These factors can lead to an increased potential for loss of separation while aircraft are flying in holding patterns. A holding function for conflict probe applications has been developed and tested with air traffic data from Fort Worth Center. The holding function automatically determines when an aircraft enters a holding pattern, builds a holding region around the pattern and then probes the region for conflict with other traffic. The operational concept of use assumes that air traffic controllers are very busy during periods when aircraft are in holding and therefore don't have time to manually enter information which defines a holding pattern and activates conflict probing. For this reason, it is important the holding function automatically detect aircraft in holding and compute a holding region for conflict analysis. The controller is then alerted if other aircraft are predicted to fly through the holding region at the holding altitude.

  7. Probing the energy levels of perovskite solar cells via Kelvin probe and UV ambient pressure photoemission spectroscopy.

    PubMed

    Harwell, J R; Baikie, T K; Baikie, I D; Payne, J L; Ni, C; Irvine, J T S; Turnbull, G A; Samuel, I D W

    2016-07-20

    The field of organo-lead halide perovskite solar cells has been rapidly growing since their discovery in 2009. State of the art devices are now achieving efficiencies comparable to much older technologies like silicon, while utilising simple manufacturing processes and starting materials. A key parameter to consider when optimising solar cell devices or when designing new materials is the position and effects of the energy levels in the materials. We present here a comprehensive study of the energy levels present in a common structure of perovskite solar cell using an advanced macroscopic Kelvin probe and UV air photoemission setup. By constructing a detailed map of the energy levels in the system we are able to predict the importance of each layer to the open circuit voltage of the solar cell, which we then back up through measurements of the surface photovoltage of the cell under white illumination. Our results demonstrate the effectiveness of air photoemission and Kelvin probe contact potential difference measurements as a method of identifying the factors contributing to the open circuit voltage in a solar cell, as well as being an excellent way of probing the physics of new materials.

  8. GUIDELINES FOR INSTALLATION AND SAMPLING OF SUB-SLAB VAPOR PROBES TO SUPPORT ASSESSMENT OF VAPOR INTRUSION

    EPA Science Inventory

    The purpose of this paper is to provide guidelines for sub-slab sampling using dedicated vapor probes. Use of dedicated vapor probes allows for multiple sample events before and after corrective action and for vacuum testing to enhance the design and monitoring of a corrective m...

  9. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification

    PubMed Central

    Schouten, Jan P.; McElgunn, Cathal J.; Waaijer, Raymond; Zwijnenburg, Danny; Diepvens, Filip; Pals, Gerard

    2002-01-01

    We describe a new method for relative quantification of 40 different DNA sequences in an easy to perform reaction requiring only 20 ng of human DNA. Applications shown of this multiplex ligation-dependent probe amplification (MLPA) technique include the detection of exon deletions and duplications in the human BRCA1, MSH2 and MLH1 genes, detection of trisomies such as Down’s syndrome, characterisation of chromosomal aberrations in cell lines and tumour samples and SNP/mutation detection. Relative quantification of mRNAs by MLPA will be described elsewhere. In MLPA, not sample nucleic acids but probes added to the samples are amplified and quantified. Amplification of probes by PCR depends on the presence of probe target sequences in the sample. Each probe consists of two oligonucleotides, one synthetic and one M13 derived, that hybridise to adjacent sites of the target sequence. Such hybridised probe oligonucleotides are ligated, permitting subsequent amplification. All ligated probes have identical end sequences, permitting simultaneous PCR amplification using only one primer pair. Each probe gives rise to an amplification product of unique size between 130 and 480 bp. Probe target sequences are small (50–70 nt). The prerequisite of a ligation reaction provides the opportunity to discriminate single nucleotide differences. PMID:12060695

  10. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification.

    PubMed

    Schouten, Jan P; McElgunn, Cathal J; Waaijer, Raymond; Zwijnenburg, Danny; Diepvens, Filip; Pals, Gerard

    2002-06-15

    We describe a new method for relative quantification of 40 different DNA sequences in an easy to perform reaction requiring only 20 ng of human DNA. Applications shown of this multiplex ligation-dependent probe amplification (MLPA) technique include the detection of exon deletions and duplications in the human BRCA1, MSH2 and MLH1 genes, detection of trisomies such as Down's syndrome, characterisation of chromosomal aberrations in cell lines and tumour samples and SNP/mutation detection. Relative quantification of mRNAs by MLPA will be described elsewhere. In MLPA, not sample nucleic acids but probes added to the samples are amplified and quantified. Amplification of probes by PCR depends on the presence of probe target sequences in the sample. Each probe consists of two oligonucleotides, one synthetic and one M13 derived, that hybridise to adjacent sites of the target sequence. Such hybridised probe oligonucleotides are ligated, permitting subsequent amplification. All ligated probes have identical end sequences, permitting simultaneous PCR amplification using only one primer pair. Each probe gives rise to an amplification product of unique size between 130 and 480 bp. Probe target sequences are small (50-70 nt). The prerequisite of a ligation reaction provides the opportunity to discriminate single nucleotide differences.

  11. Casingless down-hole for sealing an ablation volume and obtaining a sample for analysis

    DOEpatents

    Noble, Donald T.; Braymen, Steven D.; Anderson, Marvin S.

    1996-10-01

    A casing-less down hole sampling system for acquiring a subsurface sample for analysis using an inductively coupled plasma system is disclosed. The system includes a probe which is pushed into the formation to be analyzed using a hydraulic ram system. The probe includes a detachable tip member which has a soil point mad a barb, with the soil point aiding the penetration of the earth, and the barb causing the tip member to disengage from the probe and remain in the formation when the probe is pulled up. The probe is forced into the formation to be tested, and then pulled up slightly, to disengage the tip member and expose a column of the subsurface formation to be tested. An instrumentation tube mounted in the probe is then extended outward from the probe to longitudinally extend into the exposed column. A balloon seal mounted on the end of the instrumentation tube allows the bottom of the column to be sealed. A source of laser radiation is emitted from the instrumentation tube to ablate a sample from the exposed column. The instrumentation tube can be rotated in the probe to sweep the laser source across the surface of the exposed column. An aerosol transport system carries the ablated sample from the probe to the surface for testing in an inductively coupled plasma system. By testing at various levels in the down-hole as the probe is extracted from the soil, a profile of the subsurface formation may be obtained.

  12. Discrepancy between culture and DNA probe analysis for the detection of periodontal bacteria.

    PubMed

    van Steenbergen, T J; Timmerman, M F; Mikx, F H; de Quincey, G; van der Weijden, G A; van der Velden, U; de Graaff, J

    1996-10-01

    The purpose of this study was to compare a commercially available DNA probe technique with conventional cultural techniques for the detection of Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis and Prevotella intermedia in subgingival plaque samples. Samples from 20 patients with moderate to severe periodontitis were evaluated at baseline and during a 15 months period of periodontal treatment. Paperpoints from 4 periodontal pockets per patient were forwarded to Omnigene for DNA probe analysis, and simultaneously inserted paperpoints from the same pockets were analyzed by standard culture techniques. In addition, mixed bacterial samples were constructed harbouring known proportions of 25 strains of A. actinomycetemcomitans, P. gingivalis and P. intermedia each. A relatively low concordance was found between both methods. At baseline a higher detection frequency was found for A. actinomycetemcomitans and P. gingivalis for the DNA probe technique; for P. intermedia the detection frequency by culture was higher. For A. actinomycetemcomitans, 21% of the culture positive samples was positive with the DNA probe. Testing the constructed bacterial samples with the DNA probe method resulted in about 16% false positive results for the 3 species tested. Furthermore, 40% of P. gingivalis strains were not detected by the DNA probe. The present data suggest that at least part of the discrepancies found between the DNA probe technique used and cultural methods are caused by false positive and false negative DNA probe results. Therefore, the value of this DNA probe method for the detection of periodontal pathogens is questionable.

  13. Gas phase oxidation downstream of a catalytic combustor

    NASA Technical Reports Server (NTRS)

    Tien, J. S.; Anderson, D. N.

    1979-01-01

    Effect of the length available for gas-phase reactions downstream of the catalytic reactor on the emission of CO and unburned hydrocarbons was investigated. A premixed, prevaporized propane/air feed to a 12/cm/diameter catalytic/reactor test section was used. The catalytic reactor was made of four 2.5 cm long monolithic catalyst elements. Four water cooled gas sampling probes were located at positions between 0 and 22 cm downstream of the catalytic reactor. Measurements of unburned hydrocarbon, CO, and CO2 were made. Tests were performed with an inlet air temperature of 800 K, a reference velocity of 10 m/s, pressures of 3 and 600,000 Pa, and fuel air equivalence ratios of 0.14 to 0.24. For very lean mixtures, hydrocarbon emissions were high and CO continued to be formed downstream of the catalytic reactor. At the highest equivalence ratios tested, hydrocarbon levels were much lower and CO was oxidized to CO2 in the gas phase downstream. To achieve acceptable emissions, a downstream region several times longer than the catalytic reactor could be required.

  14. Surface sampling concentration and reaction probe

    DOEpatents

    Van Berkel, Gary J; Elnaggar, Mariam S

    2013-07-16

    A method of analyzing a chemical composition of a specimen is described. The method can include providing a probe comprising an outer capillary tube and an inner capillary tube disposed co-axially within the outer capillary tube, where the inner and outer capillary tubes define a solvent capillary and a sampling capillary in fluid communication with one another at a distal end of the probe; contacting a target site on a surface of a specimen with a solvent in fluid communication with the probe; maintaining a plug volume proximate a solvent-specimen interface, wherein the plug volume is in fluid communication with the probe; draining plug sampling fluid from the plug volume through the sampling capillary; and analyzing a chemical composition of the plug sampling fluid with an analytical instrument. A system for performing the method is also described.

  15. An environmental transfer hub for multimodal atom probe tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perea, Daniel E.; Gerstl, Stephan S. A.; Chin, Jackson

    Environmental control during transfer between instruments is required for specimens sensitive to air or thermal exposure to prevent morphological or chemical changes. Atom Probe Tomography is an expanding technique but commercial instruments remain limited to loading under ambient conditions. Here we describe a multifunctional environmental transfer hub allowing controlled cryogenic, atmospheric and vacuum transfer between an Atom Probe and other instruments containing separate chambers to allow downstream time-resolved in-situ studies.

  16. Persistence of Microbial Contamination on Transvaginal Ultrasound Probes despite Low-Level Disinfection Procedure

    PubMed Central

    M'Zali, Fatima; Bounizra, Carole; Leroy, Sandrine; Mekki, Yahia; Quentin-Noury, Claudine; Kann, Michael

    2014-01-01

    Aim of the Study In many countries, Low Level Disinfection (LLD) of covered transvaginal ultrasound probes is recommended between patients' examinations. The aim of this study was to evaluate the antimicrobial efficacy of LLD under routine conditions on a range of microorganisms. Materials and Methods Samples were taken over a six month period in a private French Radiology Center. 300 specimens derived from endovaginal ultrasound probes were analyzed after disinfection of the probe with wipes impregnated with a quaternary ammonium compound and chlorhexidine. Human papillomavirus (HPV) was sought in the first set of s100 samples, Chlamydia trachomatis and mycoplasmas were searched in the second set of 100 samples, bacteria and fungi in the third 100 set samples. HPV, C. trachomatis and mycoplasmas were detected by PCR amplification. PCR positive samples were subjected to a nuclease treatment before an additional PCR assay to assess the likely viable microorganisms. Bacteria and fungi were investigated by conventional methods. Results A substantial persistence of microorganisms was observed on the disinfected probes: HPV DNA was found on 13% of the samples and 7% in nuclease-resistant form. C. trachomatis DNA was detected on 20% of the probes by primary PCR but only 2% after nuclease treatment, while mycoplasma DNA was amplified in 8% and 4%, respectively. Commensal and/or environmental bacterial flora was present on 86% of the probes, occasionally in mixed culture, and at various levels (10->3000 CFU/probe); Staphylococcus aureus was cultured from 4% of the probes (10-560 CFU/probe). No fungi were isolated. Conclusion Our findings raise concerns about the efficacy of impregnated towels as a sole mean for disinfection of ultrasound probes. Although the ultrasound probes are used with disposable covers, our results highlight the potential risk of cross contamination between patients during ultrasound examination and emphasize the need for reviewing the disinfection procedure. PMID:24695371

  17. Development and Validation of a Collocated Exposure Monitoring Methodology using Portable Air Monitors

    NASA Astrophysics Data System (ADS)

    Li, Z.; Che, W.; Frey, H. C.; Lau, A. K. H.

    2016-12-01

    Portable air monitors are currently being developed and used to enable a move towards exposure monitoring as opposed to fixed site monitoring. Reliable methods are needed regarding capturing spatial and temporal variability in exposure concentration to obtain credible data from which to develop efficient exposure mitigation measures. However, there are few studies that quantify the validity and repeatability of the collected data. The objective of this study is to present and evaluate a collocated exposure monitoring (CEM) methodology including the calibration of portable air monitors against stationary reference equipment, side-by-side comparison of portable air monitors, personal or microenvironmental exposure monitoring and the processing and interpretation of the collected data. The CEM methodology was evaluated based on application to portable monitors TSI DustTrak II Aerosol Monitor 8530 for fine particulate matter (PM2.5) and TSI Q-Trak model 7575 with probe model 982 for CO, CO2, temperature and relative humidity. Taking a school sampling campaign in Hong Kong in January and June, 2015 as an example, the calibrated side-by-side measured 1 Hz PM2.5 concentrations showed good consistency between two sets of portable air monitors. Confidence in side-by-side comparison, PM2.5 concentrations of which most of the time were within 2 percent, enabled robust inference regarding differences when the monitors measured in classroom and pedestrian during school hour. The proposed CEM methodology can be widely applied in sampling campaigns with the objective of simultaneously characterizing pollutant concentrations in two or more locations or microenvironments. The further application of the CEM methodology to transportation exposure will be presented and discussed.

  18. Face Recognition via Ensemble SIFT Matching of Uncorrelated Hyperspectral Bands and Spectral PCTs

    DTIC Science & Technology

    2011-06-01

    Operational Sciences Graduate School of Engineering and Management Air Force Institute of Technology Air University Air...Education and Training Command In Partial Fulfillment of the Requirements for the Degree of Master of Science in Operations Research...Comparison of performance against different categories of probes (Phillips, Moon, Rauss, & Rizvi, 1997, p. 141

  19. Laser interferometry force-feedback sensor for an interfacial force microscope

    DOEpatents

    Houston, Jack E.; Smith, William L.

    2004-04-13

    A scanning force microscope is provided with a force-feedback sensor to increase sensitivity and stability in determining interfacial forces between a probe and a sample. The sensor utilizes an interferometry technique that uses a collimated light beam directed onto a deflecting member, comprising a common plate suspended above capacitor electrodes situated on a substrate forming an interference cavity with a probe on the side of the common plate opposite the side suspended above capacitor electrodes. The probe interacts with the surface of the sample and the intensity of the reflected beam is measured and used to determine the change in displacement of the probe to the sample and to control the probe distance relative to the surface of the sample.

  20. Split D Differential Probe Model Validation Using an Impedance Analyzer (Preprint)

    DTIC Science & Technology

    2014-02-01

    AIR FORCE RESEARCH LABORATORY MATERIALS AND MANUFACTURING DIRECTORATE WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7750 AIR FORCE MATERIEL COMMAND... manufacture , use, or sell any patented invention that may relate to them. This report was cleared for public release by the USAF 88th Air Base Wing (88...Materials Division Materials and Manufacturing Directorate This report is published in the interest of scientific and technical information

  1. A practical model for pressure probe system response estimation (with review of existing models)

    NASA Astrophysics Data System (ADS)

    Hall, B. F.; Povey, T.

    2018-04-01

    The accurate estimation of the unsteady response (bandwidth) of pneumatic pressure probe systems (probe, line and transducer volume) is a common practical problem encountered in the design of aerodynamic experiments. Understanding the bandwidth of the probe system is necessary to capture unsteady flow features accurately. Where traversing probes are used, the desired traverse speed and spatial gradients in the flow dictate the minimum probe system bandwidth required to resolve the flow. Existing approaches for bandwidth estimation are either complex or inaccurate in implementation, so probes are often designed based on experience. Where probe system bandwidth is characterized, it is often done experimentally, requiring careful experimental set-up and analysis. There is a need for a relatively simple but accurate model for estimation of probe system bandwidth. A new model is presented for the accurate estimation of pressure probe bandwidth for simple probes commonly used in wind tunnel environments; experimental validation is provided. An additional, simple graphical method for air is included for convenience.

  2. KSC-97PC1394

    NASA Image and Video Library

    1997-09-10

    Dornier Satelliten Systeme (DSS) workers lift part of the Huygens probe aft cover assembly in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Internal inspection, insulation repair and a cleaning of the probe were required. Mission managers are targeting a mid-October launch date after the Cassini spacecraft, aboard which Huygens will be launched, returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station

  3. KSC-97PC1388

    NASA Image and Video Library

    1997-09-12

    Dornier Satelliten Systeme (DSS) workers lift the heat shield of the Huygens probe in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Internal inspection, insulation repair and a cleaning of the probe were required. Mission managers are targeting a mid-October launch date after the Cassini spacecraft, aboard which Huygens will be launched, returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station

  4. KSC-97PC1391

    NASA Image and Video Library

    1997-09-12

    Dornier Satelliten Systeme (DSS) workers place the back cover of the Huygens probe under its front heat shield in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Internal inspection, insulation repair and a cleaning of the probe were required. Mission managers are targeting a mid-October launch date after the Cassini spacecraft, aboard which Huygens will be launched, returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station

  5. KSC-97PC1395

    NASA Image and Video Library

    1997-09-10

    Dornier Satelliten Systeme (DSS) workers lift the front heat shield of the Huygens probe in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Internal inspection, insulation repair and a cleaning of the probe were required. Mission managers are targeting a mid-October launch date after the Cassini spacecraft, aboard which Huygens will be launched, returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station

  6. KSC-97PC1390

    NASA Image and Video Library

    1997-09-12

    Dornier Satelliten Systeme (DSS) workers place the back cover of the Huygens probe under its front heat shield in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Internal inspection, insulation repair and a cleaning of the probe were required. Mission managers are targeting a mid-October launch date after the Cassini spacecraft, aboard which Huygens will be launched, returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station

  7. KSC-97PC1389

    NASA Image and Video Library

    1997-09-12

    Dornier Satelliten Systeme (DSS) workers lift the heat shield of the Huygens probe in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Internal inspection, insulation repair and a cleaning of the probe were required. Mission managers are targeting a mid-October launch date after the Cassini spacecraft, aboard which Huygens will be launched, returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station

  8. Air sampling unit for breath analyzers

    NASA Astrophysics Data System (ADS)

    Szabra, Dariusz; Prokopiuk, Artur; Mikołajczyk, Janusz; Ligor, Tomasz; Buszewski, Bogusław; Bielecki, Zbigniew

    2017-11-01

    The paper presents a portable breath sampling unit (BSU) for human breath analyzers. The developed unit can be used to probe air from the upper airway and alveolar for clinical and science studies. The BSU is able to operate as a patient interface device for most types of breath analyzers. Its main task is to separate and to collect the selected phases of the exhaled air. To monitor the so-called I, II, or III phase and to identify the airflow from the upper and lower parts of the human respiratory system, the unit performs measurements of the exhaled CO2 (ECO2) in the concentration range of 0%-20% (0-150 mm Hg). It can work in both on-line and off-line modes according to American Thoracic Society/European Respiratory Society standards. A Tedlar bag with a volume of 5 dm3 is mounted as a BSU sample container. This volume allows us to collect ca. 1-25 selected breath phases. At the user panel, each step of the unit operation is visualized by LED indicators. This helps us to regulate the natural breathing cycle of the patient. There is also an operator's panel to ensure monitoring and configuration setup of the unit parameters. The operation of the breath sampling unit was preliminarily verified using the gas chromatography/mass spectrometry (GC/MS) laboratory setup. At this setup, volatile organic compounds were extracted by solid phase microextraction. The tests were performed by the comparison of GC/MS signals from both exhaled nitric oxide and isoprene analyses for three breath phases. The functionality of the unit was proven because there was an observed increase in the signal level in the case of the III phase (approximately 40%). The described work made it possible to construct a prototype of a very efficient breath sampling unit dedicated to breath sample analyzers.

  9. Simple and direct method for detecting phosphorus in air at normal pressure and temperature using a combination of LIBS and LIFS techniques

    NASA Astrophysics Data System (ADS)

    Al-Jeffery, Mohammad O.; Kondou, H.; Belenkevitch, Alexander; Azzeer, Abdallah M.

    2002-05-01

    The Environmental Protection Agency (EAP) designated phosphorus as hazardous material; it is flammable and poisonous. Phosphorus attacks the respiratory system, liver, kidneys, jaw, teeth, blood, eyes, and skin. Phosphorus is an element that has a high detection limit when using laser-induced breakdown spectroscopy (LIBS) techniques. In order to improve on detection limits, laser-induced fluorescence spectroscopy (LIFS) has been proposed, as an extension to LIBS. The ultimate goal of this work is to use the combined LIBS & LIFS techniques to detect the presence of phosphorus in air and to measure its level. In order to provide 'proof-of-concept' results, the sample used for our experiment was prepared using the 'igniting' strip of a safety match box. The spectrally and temporally resolved detection of the specific atomic emission revealed analytical information about the elemental composition of the sample. A tunable Ti: sapphire laser, at the resonance wavelength of 253.4 nm, was then used to probe the plume by exciting the phosphorus element and we measured the fluorescence from the atoms at 213.62 nm and 214.91 nm. The whole experiment was carried out in a few minutes. We have thus demonstrated for the first time, to our knowledge, the use of LIBS and LIFS in air quality monitoring and in particular for phosphorus detection.

  10. Conflict Probe Concepts Analysis in Support of Free Flight

    NASA Technical Reports Server (NTRS)

    Warren, Anthony W.; Schwab, Robert W.; Geels, Timothy J.; Shakarian, Arek

    1997-01-01

    This study develops an operational concept and requirements for en route Free Flight using a simulation of the Cleveland Air Route Traffic Control Center, and develops requirements for an automated conflict probe for use in the Air Traffic Control (ATC) Centers. In this paper, we present the results of simulation studies and summarize implementation concepts and infrastructure requirements to transition from the current air traffic control system to mature Free Right. The transition path to Free Flight envisioned in this paper assumes an orderly development of communications, navigation, and surveillance (CNS) technologies based on results from our simulation studies. The main purpose of this study is to provide an overall context and methodology for evaluating airborne and ground-based requirements for cooperative development of the future ATC system.

  11. Transitioning to future air traffic management: effects of imperfect automation on controller attention and performance.

    PubMed

    Rovira, Ericka; Parasuraman, Raja

    2010-06-01

    This study examined whether benefits of conflict probe automation would occur in a future air traffic scenario in which air traffic service providers (ATSPs) are not directly responsible for freely maneuvering aircraft but are controlling other nonequipped aircraft (mixed-equipage environment). The objective was to examine how the type of automation imperfection (miss vs. false alarm) affects ATSP performance and attention allocation. Research has shown that the type of automation imperfection leads to differential human performance costs. Participating in four 30-min scenarios were 12 full-performance-level ATSPs. Dependent variables included conflict detection and resolution performance, eye movements, and subjective ratings of trust and self confidence. ATSPs detected conflicts faster and more accurately with reliable automation, as compared with manual performance. When the conflict probe automation was unreliable, conflict detection performance declined with both miss (25% conflicts detected) and false alarm automation (50% conflicts detected). When the primary task of conflict detection was automated, even highly reliable yet imperfect automation (miss or false alarm) resulted in serious negative effects on operator performance. The further in advance that conflict probe automation predicts a conflict, the greater the uncertainty of prediction; thus, designers should provide users with feedback on the state of the automation or other tools that allow for inspection and analysis of the data underlying the conflict probe algorithm.

  12. Casingless down-hole for sealing an ablation volume and obtaining a sample for analysis

    DOEpatents

    Noble, D.T.; Braymen, S.D.; Anderson, M.S.

    1996-10-01

    A casing-less down hole sampling system for acquiring a subsurface sample for analysis using an inductively coupled plasma system is disclosed. The system includes a probe which is pushed into the formation to be analyzed using a hydraulic ram system. The probe includes a detachable tip member which has a soil point and a barb, with the soil point aiding the penetration of the earth, and the barb causing the tip member to disengage from the probe and remain in the formation when the probe is pulled up. The probe is forced into the formation to be tested, and then pulled up slightly, to disengage the tip member and expose a column of the subsurface formation to be tested. An instrumentation tube mounted in the probe is then extended outward from the probe to longitudinally extend into the exposed column. A balloon seal mounted on the end of the instrumentation tube allows the bottom of the column to be sealed. A source of laser radiation is emitted from the instrumentation tube to ablate a sample from the exposed column. The instrumentation tube can be rotated in the probe to sweep the laser source across the surface of the exposed column. An aerosol transport system carries the ablated sample from the probe to the surface for testing in an inductively coupled plasma system. By testing at various levels in the down-hole as the probe is extracted from the soil, a profile of the subsurface formation may be obtained. 9 figs.

  13. A versatile rotary-stage high frequency probe station for studying magnetic films and devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Shikun; Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371; Meng, Zhaoliang

    We present a rotary-stage microwave probe station suitable for magnetic films and spintronic devices. Two stages, one for field rotation from parallel to perpendicular to the sample plane (out-of-plane) and the other intended for field rotation within the sample plane (in-plane) have been designed. The sample probes and micro-positioners are rotated simultaneously with the stages, which allows the field orientation to cover θ from 0{sup ∘} to 90{sup ∘} and φ from 0{sup ∘} to 360{sup ∘}. θ and φ being the angle between the direction of current flow and field in a out-of-plane and an in-plane rotation, respectively. Themore » operation frequency is up to 40 GHz and the magnetic field up to 1 T. The sample holder vision system and probe assembly are compactly designed for the probes to land on a wafer with diameter up to 3 cm. Using homemade multi-pin probes and commercially available high frequency probes, several applications including 4-probe DC measurements, the determination of domain wall velocity, and spin transfer torque ferromagnetic resonance are demonstrated.« less

  14. A Triaxial Applicator for the Measurement of the Electromagnetic Properties of Materials

    PubMed Central

    2018-01-01

    The design, analysis, and fabrication of a prototype triaxial applicator is described. The applicator provides both reflected and transmitted signals that can be used to characterize the electromagnetic properties of materials in situ. A method for calibrating the probe is outlined and validated using simulated data. Fabrication of the probe is discussed, and measured data for typical absorbing materials and for the probe situated in air are presented. The simulations and measurements suggest that the probe should be useful for measuring the properties of common radar absorbing materials under usual in situ conditions. PMID:29382122

  15. Parker Solar Probe Antenna Deployment

    NASA Image and Video Library

    2018-04-19

    Antenna's on NASA's Parker Solar Probe are deployed for testing at the Astrotech processing facility in Titusville, Florida, near NASA's Kennedy Space Center on Thursday, April 19, 2018. The Parker Solar Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida no earlier than Aug. 4, 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  16. Parker Solar Probe Light Bar Test

    NASA Image and Video Library

    2018-06-05

    In the Astrotech processing facility in Titusville, Florida, near NASA's Kennedy Space Center, on Tuesday, June 5, 2018, technicians and engineers perform light bar testing on NASA's Parker Solar Probe. The Parker Solar Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida no earlier than Aug. 4, 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  17. Preventing probe induced topography correlated artifacts in Kelvin Probe Force Microscopy.

    PubMed

    Polak, Leo; Wijngaarden, Rinke J

    2016-12-01

    Kelvin Probe Force Microscopy (KPFM) on samples with rough surface topography can be hindered by topography correlated artifacts. We show that, with the proper experimental configuration and using homogeneously metal coated probes, we are able to obtain amplitude modulation (AM) KPFM results on a gold coated sample with rough topography that are free from such artifacts. By inducing tip inhomogeneity through contact with the sample, clear potential variations appear in the KPFM image, which correlate with the surface topography and, thus, are probe induced artifacts. We find that switching to frequency modulation (FM) KPFM with such altered probes does not remove these artifacts. We also find that the induced tip inhomogeneity causes a lift height dependence of the KPFM measurement, which can therefore be used as a check for the presence of probe induced topography correlated artifacts. We attribute the observed effects to a work function difference between the tip and the rest of the probe and describe a model for such inhomogeneous probes that predicts lift height dependence and topography correlated artifacts for both AM and FM-KPFM methods. This work demonstrates that using a probe with a homogeneous work function and preventing tip changes is essential for KPFM on non-flat samples. From the three investigated probe coatings, PtIr, Au and TiN, the latter appears to be the most suitable, because of its better resistance against coating damage. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Method of monitoring CO concentrations in hydrogen feed to a PEM fuel cell

    DOEpatents

    Grot, Stephen Andreas; Meltser, Mark Alexander; Gutowski, Stanley; Neutzler, Jay Kevin; Borup, Rodney Lynn; Weisbrod, Kirk

    2000-01-01

    The CO concentration in the H.sub.2 feed stream to a PEM fuel cell stack is monitored by measuring current and/or voltage behavior patterns from a PEM-probe communicating with the reformate feed stream. Pattern recognition software may be used to compare the current and voltage patterns from the PEM-probe to current and voltage telltale outputs determined from a reference cell similar to the PEM-probe and operated under controlled conditions over a wide range of CO concentrations in the H.sub.2 fuel stream. The PEM-probe is intermittently purged of any CO build-up on the anode catalyst (e.g., by (1) flushing the anode with air, (2) short circuiting the PEM-probe, or (3) reverse biasing the PEM-probe) to keep the PEM-probe at peak performance levels.

  19. A novel reaction-based fluorescent probe for the detection of cysteine in milk and water samples.

    PubMed

    Wang, Jialin; Wang, Hao; Hao, Yanfeng; Yang, Shaoxiang; Tian, Hongyu; Sun, Baoguo; Liu, Yongguo

    2018-10-01

    A novel fluorescent probe 3'-hydroxy-3-oxo-3H-spiro [isobenzofuran-1,9'-xanthene]-6'-yl-2,4-dinitrobenzenesulfonate (probe 1) was designed and synthesized as a visual sensor for the detection of cysteine levels in milk and water samples. The addition of cysteine to the solution of probe 1 resulted in an increase in fluorescence intensity and color change, from light yellow to yellow-green. The distinct color response indicated that probe 1 could be used as a visual sensor for cysteine. Cysteine can be detected quantitatively at concentrations between 0 and 400 μM and the detection limit of the fluorescence response to the probe was 6.5 μM. This suggests that probe 1 could be used as a signaling tool to determine the cysteine levels in samples, such as milk and water. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Inherent size effects on XANES of nanometer metal clusters: Size-selected platinum clusters on silica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Yang; Gorey, Timothy J.; Anderson, Scott L.

    2016-12-12

    X-ray absorption near-edge structure (XANES) is commonly used to probe the oxidation state of metal-containing nanomaterials, however, as the particle size in the material drops below a few nanometers, it becomes important to consider inherent size effects on the electronic structure of the materials. In this paper, we analyze a series of size-selected Pt n/SiO 2 samples, using X-ray photoelectron spectroscopy (XPS), low energy ion scattering, grazing-incidence small angle X-ray scattering, and XANES. The oxidation state and morphology are characterized both as-deposited in UHV, and after air/O 2 exposure and annealing in H 2. Here, the clusters are found tomore » be stable during deposition and upon air exposure, but sinter if heated above ~150 °C. XANES shows shifts in the Pt L 3 edge, relative to bulk Pt, that increase with decreasing cluster size, and the cluster samples show high white line intensity. Reference to bulk standards would suggest that the clusters are oxidized, however, XPS shows that they are not. Instead, the XANES effects are attributable to development of a band gap and localization of empty state wavefunctions in small clusters.« less

  1. Ultrafiltrate and microdialysis DL probe in vitro recoveries: electrolytes and metabolites

    NASA Technical Reports Server (NTRS)

    Janle, E. M.; Cregor, M.

    1996-01-01

    UF ultrafiltration and DL microdialysis probes are well-suited for sampling interstitial concentrations of ions and metabolites in peripheral tissue. The first step in utilization of membrane sampling techniques is to determine the recovery characteristics of the probes in vitro.

  2. A dark mode in scanning thermal microscopy

    NASA Astrophysics Data System (ADS)

    Ramiandrisoa, Liana; Allard, Alexandre; Joumani, Youssef; Hay, Bruno; Gomés, Séverine

    2017-12-01

    The need for high lateral spatial resolution in thermal science using Scanning Thermal Microscopy (SThM) has pushed researchers to look for more and more tiny probes. SThM probes have consequently become more and more sensitive to the size effects that occur within the probe, the sample, and their interaction. Reducing the tip furthermore induces very small heat flux exchanged between the probe and the sample. The measurement of this flux, which is exploited to characterize the sample thermal properties, requires then an accurate thermal management of the probe-sample system and to reduce any phenomenon parasitic to this system. Classical experimental methodologies must then be constantly questioned to hope for relevant and interpretable results. In this paper, we demonstrate and estimate the influence of the laser of the optical force detection system used in the common SThM setup that is based on atomic-force microscopy equipment on SThM measurements. We highlight the bias induced by the overheating due to the laser illumination on the measurements performed by thermoresistive probes (palladium probe from Kelvin Nanotechnology). To face this issue, we propose a new experimental procedure based on a metrological approach of the measurement: a SThM "dark mode." The comparison with the classical procedure using the laser shows that errors between 14% and 37% can be reached on the experimental data exploited to determine the heat flux transferred from the hot probe to the sample.

  3. Direct and quantitative broadband absorptance spectroscopy with multilayer cantilever probes

    DOEpatents

    Hsu, Wei-Chun; Tong, Jonathan Kien-Kwok; Liao, Bolin; Chen, Gang

    2015-04-21

    A system for measuring the absorption spectrum of a sample is provided that includes a broadband light source that produces broadband light defined within a range of an absorptance spectrum. An interferometer modulates the intensity of the broadband light source for a range of modulation frequencies. A bi-layer cantilever probe arm is thermally connected to a sample arm having at most two layers of materials. The broadband light modulated by the interferometer is directed towards the sample and absorbed by the sample and converted into heat, which causes a temperature rise and bending of the bi-layer cantilever probe arm. A detector mechanism measures and records the deflection of the probe arm so as to obtain the absorptance spectrum of the sample.

  4. What do you measure when you measure the Hall effect?

    NASA Astrophysics Data System (ADS)

    Koon, D. W.; Knickerbocker, C. J.

    1993-02-01

    A formalism for calculating the sensitivity of Hall measurements to local inhomogeneities of the sample material or the magnetic field is developed. This Hall weighting function g(x,y) is calculated for various placements of current and voltage probes on square and circular laminar samples. Unlike the resistivity weighting function, it is nonnegative throughout the entire sample, provided all probes lie at the edge of the sample. Singularities arise in the Hall weighting function near the current and voltage probes except in the case where these probes are located at the corners of a square. Implications of the results for cross, clover, and bridge samples, and the implications of our results for metal-insulator transition and quantum Hall studies are discussed.

  5. Results of the space shuttle vehicle ascent air data system probe calibration test using a 0.07-scale external tank forebody model (68T) in the AEDC 16-foot transonic wind tunnel (IA-310), volume 2

    NASA Technical Reports Server (NTRS)

    Collette, J. G. R.

    1991-01-01

    A recalibration of the Space Shuttle Vehicle Ascent Air Data System probe was conducted in the Arnold Engineering and Development Center (AEDC) transonic wind tunnel. The purpose was to improve on the accuracy of the previous calibration in order to reduce the existing uncertainties in the system. A probe tip attached to a 0.07-scale External Tank Forebody model was tested at angles of attack of -8 to +4 degrees and sideslip angles of -4 to +4 degrees. High precision instrumentation was used to acquire pressure data at discrete Mach numbers ranging from 0.6 to 1.55. Pressure coefficient uncertainties were estimated at less than 0.0020. Additional information is given in tabular form.

  6. Results of the space shuttle vehicle ascent air data system probe calibration test using a 0.07-scale external tank forebody model (68T) in the AEDC 16-foot transonic wind tunnel (IA-310), volume 1

    NASA Technical Reports Server (NTRS)

    Collette, J. G. R.

    1991-01-01

    A recalibration of the Space Shuttle Vehicle Ascent Air Data System probe was conducted in the Arnold Engineering Development Center (AEDC) transonic wind tunnel. The purpose was to improve on the accuracy of the previous calibration in order to reduce the existing uncertainties in the system. A probe tip attached to a 0.07-scale External Tank Forebody model was tested at angles of attack of -8 to +4 degrees and sideslip angles of -4 to +4 degrees. High precision instrumentation was used to acquire pressure data at discrete Mach numbers ranging from 0.6 to 1.55. Pressure coefficient uncertainties were estimated at less than 0.0020. Data is given in graphical and tabular form.

  7. Results of an investigation to determine local flow characteristics at the air data probe locations using an 0.030-scale model (45-0) of the space shuttle vehicle orbiter configuration 140A/B (modified) in the NASA Ames Research Center unitary plan wind tunnel (OA161, A, B, C), volume 1

    NASA Technical Reports Server (NTRS)

    Nichols, M. E.

    1976-01-01

    Results are presented of wind tunnel test 0A161 of a 0.030-scale model 45-0 of the configuration 140A/B (modified) space shuttle vehicle orbiter in the NASA Ames Research Center Unitary Plan Wind Tunnel facilities. The purpose of this test was to determine local total and static pressure environments for the air data probe locations and relative effectiveness of alternate flight-test probe configurations. Testing was done in the Mach number range from 0.30 to 3.5. Angle of attack was varied from -8 to 25 degrees while sideslip varied between -8 and 8 degrees.

  8. Quantification of different Eubacterium spp. in human fecal samples with species-specific 16S rRNA-targeted oligonucleotide probes.

    PubMed

    Schwiertz, A; Le Blay, G; Blaut, M

    2000-01-01

    Species-specific 16S rRNA-targeted, Cy3 (indocarbocyanine)-labeled oligonucleotide probes were designed and validated to quantify different Eubacterium species in human fecal samples. Probes were directed at Eubacterium barkeri, E. biforme, E. contortum, E. cylindroides (two probes), E. dolichum, E. hadrum, E. lentum, E. limosum, E. moniliforme, and E. ventriosum. The specificity of the probes was tested with the type strains and a range of common intestinal bacteria. With one exception, none of the probes showed cross-hybridization under stringent conditions. The species-specific probes were applied to fecal samples obtained from 12 healthy volunteers. E. biforme, E. cylindroides, E. hadrum, E. lentum, and E. ventriosum could be determined. All other Eubacterium species for which probes had been designed were under the detection limit of 10(7) cells g (dry weight) of feces(-1). The cell counts obtained are essentially in accordance with the literature data, which are based on colony counts. This shows that whole-cell in situ hybridization with species-specific probes is a valuable tool for the enumeration of Eubacterium species in feces.

  9. Quantification of Different Eubacterium spp. in Human Fecal Samples with Species-Specific 16S rRNA-Targeted Oligonucleotide Probes

    PubMed Central

    Schwiertz, Andreas; Le Blay, Gwenaelle; Blaut, Michael

    2000-01-01

    Species-specific 16S rRNA-targeted, Cy3 (indocarbocyanine)-labeled oligonucleotide probes were designed and validated to quantify different Eubacterium species in human fecal samples. Probes were directed at Eubacterium barkeri, E. biforme, E. contortum, E. cylindroides (two probes), E. dolichum, E. hadrum, E. lentum, E. limosum, E. moniliforme, and E. ventriosum. The specificity of the probes was tested with the type strains and a range of common intestinal bacteria. With one exception, none of the probes showed cross-hybridization under stringent conditions. The species-specific probes were applied to fecal samples obtained from 12 healthy volunteers. E. biforme, E. cylindroides, E. hadrum, E. lentum, and E. ventriosum could be determined. All other Eubacterium species for which probes had been designed were under the detection limit of 107 cells g (dry weight) of feces−1. The cell counts obtained are essentially in accordance with the literature data, which are based on colony counts. This shows that whole-cell in situ hybridization with species-specific probes is a valuable tool for the enumeration of Eubacterium species in feces. PMID:10618251

  10. Local Environment and Interactions of Liquid and Solid Interfaces Revealed by Spectral Line Shape of Surface Selective Nonlinear Vibrational Probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Shun-Li; Fu, Li; Chase, Zizwe A.

    Vibrational spectral lineshape contains important detailed information of molecular vibration and reports its specific interactions and couplings to its local environment. In this work, recently developed sub-1 cm-1 high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS) was used to measure the -C≡N stretch vibration in the 4-n-octyl-4’-cyanobiphenyl (8CB) Langmuir or Langmuir-Blodgett (LB) monolayer as a unique vibrational probe, and the spectral lineshape analysis revealed the local environment and interactions at the air/water, air/glass, air/calcium fluoride and air/-quartz interfaces for the first time. The 8CB Langmuir or LB film is uniform and the vibrational spectral lineshape of its -C≡N group hasmore » been well characterized, making it a good choice as the surface vibrational probe. Lineshape analysis of the 8CB -C≡N stretch SFG vibrational spectra suggests the coherent vibrational dynamics and the structural and dynamic inhomogeneity of the -C≡N group at each interface are uniquely different. In addition, it is also found that there are significantly different roles for water molecules in the LB films on different substrate surfaces. These results demonstrated the novel capabilities of the surface nonlinear spectroscopy in characterization and in understanding the specific structures and chemical interactions at the liquid and solid interfaces in general.« less

  11. Cassini orbiter is moved to PHSF after arriving at SLF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Workers prepare to move the shipping container with the Cassini orbiter inside the Payload Hazardous Servicing Facility (PHSF) for prelaunch processing, testing and integration. The orbiter arrived at KSC's Shuttle Landing Facility in a U.S. Air Force C-17 air cargo plane from Edwards Air Force Base, California. The orbiter and the Huygens probe already being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn's largest moon, Titan. The orbiter was designed and assembled at NASA's Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004.

  12. Contact lens assisted imaging with integrated flexible handheld probe for glaucoma diagnosis

    NASA Astrophysics Data System (ADS)

    Hong, Xun Jie Jeesmond; V. K., Shinoj; Murukeshan, V. M.; Baskaran, M.; Aung, Tin

    2017-06-01

    Angle closure glaucoma accounts for majority of the bilateral blindness in Asian countries such as Singapore, China, and India. Abnormalities in the optic nerve and aqueous outflow system are the most indicative clinical hallmarks for glaucoma of this clinical subtype. Traditional photographic imaging techniques to assess the drainage angle are contact based, and may expose patients to risk of corneal abrasion and infections. In addition, these procedures require the use of viscous ophthalmic gels as coupling medium to overcome the phenomenon of total internal reflection at the tear-air interface. In this paper, we propose an integrated flexible handheld probe consisting of a micro color CCD video camera and white light LEDs. The handheld probe is able to capture images of the fundus and opposite iridocorneal angle when placed at the central cornea or limbus respectively. Here, we propose the use of hydrogel contact lens as an index matching medium and better protective barrier, as an alternative to conventional ophthalmic gels. The proposed imaging system and methodology has been successfully tested on porcine eye samples, ex vivo. With its high repeatability, reproducibility, and a good safety profile, it is believed that the proposed imaging system and methodology will complement existing imaging modalities in the diagnosis and management of glaucoma.

  13. Fluorescence suppression using wavelength modulated Raman spectroscopy in fiber-probe-based tissue analysis.

    PubMed

    Praveen, Bavishna B; Ashok, Praveen C; Mazilu, Michael; Riches, Andrew; Herrington, Simon; Dholakia, Kishan

    2012-07-01

    In the field of biomedical optics, Raman spectroscopy is a powerful tool for probing the chemical composition of biological samples. In particular, fiber Raman probes play a crucial role for in vivo and ex vivo tissue analysis. However, the high-fluorescence background typically contributed by the auto fluorescence from both a tissue sample and the fiber-probe interferes strongly with the relatively weak Raman signal. Here we demonstrate the implementation of wavelength-modulated Raman spectroscopy (WMRS) to suppress the fluorescence background while analyzing tissues using fiber Raman probes. We have observed a significant signal-to-noise ratio enhancement in the Raman bands of bone tissue, which have a relatively high fluorescence background. Implementation of WMRS in fiber-probe-based bone tissue study yielded usable Raman spectra in a relatively short acquisition time (∼30  s), notably without any special sample preparation stage. Finally, we have validated its capability to suppress fluorescence on other tissue samples such as adipose tissue derived from four different species.

  14. Microwave resonances in dielectric samples probed in Corbino geometry: simulation and experiment.

    PubMed

    Felger, M Maximilian; Dressel, Martin; Scheffler, Marc

    2013-11-01

    The Corbino approach, where the sample of interest terminates a coaxial cable, is a well-established method for microwave spectroscopy. If the sample is dielectric and if the probe geometry basically forms a conductive cavity, this combination can sustain well-defined microwave resonances that are detrimental for broadband measurements. Here, we present detailed simulations and measurements to investigate the resonance frequencies as a function of sample and probe size and of sample permittivity. This allows a quantitative optimization to increase the frequency of the lowest-lying resonance.

  15. Determination of hydrogen sulfide and volatile thiols in air samples by mercury probe derivatization coupled with liquid chromatography-atomic fluorescence spectrometry.

    PubMed

    Bramanti, Emilia; D'Ulivo, Lucia; Lomonte, Cristina; Onor, Massimo; Zamboni, Roberto; Raspi, Giorgio; D'Ulivo, Alessandro

    2006-10-02

    A new procedure is proposed for the sampling and storage of hydrogen sulphide (H2S) and volatile thiols (methanethiol or methyl mercaptan, ethanethiol and propanethiol) for their determination by liquid chromatography. The sampling procedure is based on the trapping/pre-concentration of the analytes in alkaline aqueous solution containing an organic mercurial probe p-hydroxymercurybenzoate, HO-Hg-C6H4-COO- (PHMB), where they are derivatized to stable PHMB complexes based on mercury-sulfur covalent bonds. PHMB complexes are separated on a C18 reverse phase column, allowing their determination by liquid chromatography coupled with sequential non-selective UV-vis (DAD) and mercury specific (chemical vapor generation atomic fluorescence spectrometry, CVGAFS) on-line detectors. PHMB complexes, S(PHMB)2CH3S-PHMB, C2H5S-PHMB and C3H7S-PHMB, are stable alt least for 12 h at room temperature and for 3 months if stored frozen (-20 degrees C). The best analytical figures of merits in the optimized conditions were obtained by CVGAFS detection, with detection limits (LODc) of 9.7 microg L(-1) for H2S, 13.7 microg L(-1) for CH(3)SH, 17.7 microg L(-1) for C2H5SH and 21.7 microg L(-1) for C3H7SH in the trapping solution in form of RS-PHMB complexes, the relative standard deviation (R.S.D.) ranging between 1.0 and 1.5%, and a linear dynamic range (LDR) between 10 and 9700 microg L(-1). Conventional UV absorbance detectors tuned at 254 nm can be employed as well with comparable R.S.D. and LDR, but with LODc one order of magnitude higher than AFS detector and lower specificity. The sampling procedure followed by LC-DAD-CVGAFS analysis has been validated, as example, for H2S determination by a certified gas permeation tube as a source of 3.071+/-0.154 microg min(-1) of H2S, giving a recovery of 99.8+/-7% and it has been applied to the determination of sulfur compounds in real gas samples (biogas and the air of a plant for fractional distillation of crude oil).

  16. A LOW-E MAGIC ANGLE SPINNING PROBE FOR BIOLOGICAL SOLID STATE NMR AT 750 MHz

    PubMed Central

    McNeill, Seth A.; Gor’kov, Peter L.; Shetty, Kiran; Brey, William W.; Long, Joanna R.

    2009-01-01

    Crossed-coil NMR probes are a useful tool for reducing sample heating for biological solid state NMR. In a crossed-coil probe, the higher frequency 1H field, which is the primary source of sample heating in conventional probes, is produced by a separate low-inductance resonator. Because a smaller driving voltage is required, the electric field across the sample and the resultant heating is reduced. In this work we describe the development of a magic angle spinning (MAS) solid state NMR probe utilizing a dual resonator. This dual resonator approach, referred to as “Low-E,” was originally developed to reduce heating in samples of mechanically aligned membranes. The study of inherently dilute systems, such as proteins in lipid bilayers, via MAS techniques requires large sample volumes at high field to obtain spectra with adequate signal-to-noise ratio under physiologically relevant conditions. With the Low-E approach, we are able to obtain homogeneous and sufficiently strong radiofrequency fields for both 1H and 13C frequencies in a 4 mm probe with a 1H frequency of 750 MHz. The performance of the probe using windowless dipolar recoupling sequences is demonstrated on model compounds as well as membrane embedded peptides. PMID:19138870

  17. Development and Deployment of an Aerospace Recommended Practice (ARP) Compliant Measurement System for nvPM Certification Measurements of Aircraft Engines - Current Status.

    NASA Astrophysics Data System (ADS)

    Whitefield, P. D.; Hagen, D. E.; Lobo, P.; Miake-Lye, R. C.

    2015-12-01

    The Society of Automotive Engineers (SAE) Aircraft Exhaust Emissions Measurement Committee (E-31) has published an Aerospace Information Report (AIR) 6241 detailing the sampling system for the measurement of non-volatile particulate matter (nvPM) from aircraft engines (SAE 2013). The system is designed to operate in parallel with existing International Civil Aviation Organization (ICAO) Annex 16 compliant combustion gas sampling systems used for emissions certification from aircraft engines captured by conventional (Annex 16) gas sampling rakes (ICAO, 2008). The SAE E-31 committee is also working to ballot an Aerospace Recommended Practice (ARP) that will provide the methodology and system specification to measure nvPM from aircraft engines. The ARP is currently in preparation and is expected to be ready for ballot in 2015. A prototype AIR-compliant nvPM measurement system - The North American Reference System (NARS) has been built and evaluated at the MSTCOE under the joint sponsorship of the FAA, EPA and Transport Canada. It has been used to validate the performance characteristics of OEM AIR-compliant systems and is being used in engine certification type testing at OEM facilities to obtain data from a set of representative engines in the fleet. The data collected during these tests will be used by ICAO/CAEP/WG3/PMTG to develop a metric on which on the regulation for nvPM emissions will be based. This paper will review the salient features of the NARS including: (1) emissions sample transport from probe tip to the key diagnostic tools, (2) the mass and number-based diagnostic tools for nvPM mass and number concentration measurement and (3) methods employed to assess the extent of nvPM loss throughout the sampling system. This paper will conclude with a discussion of the recent results from inter-comparison studies conducted with other US - based systems that gives credence to the ARP's readiness for ballot.

  18. Titan Orbiter with Aerorover Mission (TOAM)

    NASA Astrophysics Data System (ADS)

    Sittler, Edward C.; Cooper, J. F.; Mahaffey, P.; Esper, J.; Fairbrother, D.; Farley, R.; Pitman, J.; Kojiro, D. R.; TOAM Team

    2006-12-01

    We propose to develop a new mission to Titan called Titan Orbiter with Aerorover Mission (TOAM). This mission is motivated by the recent discoveries of Titan, its atmosphere and its surface by the Huygens Probe, and a combination of in situ, remote sensing and radar mapping measurements of Titan by the Cassini orbiter. Titan is a body for which Astrobiology (i.e., prebiotic chemistry) will be the primary science goal of any future missions to it. TOAM is planned to use an orbiter and balloon technology (i.e., aerorover). Aerobraking will be used to put payload into orbit around Titan. The Aerorover will probably use a hot air balloon concept using the waste heat from the MMRTG 500 watts. Orbiter support for the Aerorover is unique to our approach for Titan. Our strategy to use an orbiter is contrary to some studies using just a single probe with balloon. Autonomous operation and navigation of the Aerorover around Titan will be required, which will include descent near to the surface to collect surface samples for analysis (i.e., touch and go technique). The orbiter can provide both relay station and GPS roles for the Aerorover. The Aerorover will have all the instruments needed to sample Titan’s atmosphere, surface, possible methane lakes-rivers, use multi-spectral imagers for surface reconnaissance; to take close up surface images; take core samples and deploy seismometers during landing phase. Both active and passive broadband remote sensing techniques will be used for surface topography, winds and composition measurements.

  19. KSC-04pd0940

    NASA Image and Video Library

    2004-04-20

    KENNEDY SPACE CENTER, FLA. - The Gravity Probe B spacecraft, atop a Boeing Delta II vehicle, launches at 12:57:24 p.m. EDT from Space Launch Complex 2 at Vandenberg Air Force Base, Calif. Gravity Probe B is the relativity gyroscope experiment being developed by NASA and Stanford University to test two extraordinary, unverified predictions of Albert Einstein's general theory of relativity.

  20. KSC-04PD-0940

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. The Gravity Probe B spacecraft, atop a Boeing Delta II vehicle, launches at 12:57:24 p.m. EDT from Space Launch Complex 2 at Vandenberg Air Force Base, Calif. Gravity Probe B is the relativity gyroscope experiment being developed by NASA and Stanford University to test two extraordinary, unverified predictions of Albert Einstein's general theory of relativity.

  1. Four-probe measurements with a three-probe scanning tunneling microscope.

    PubMed

    Salomons, Mark; Martins, Bruno V C; Zikovsky, Janik; Wolkow, Robert A

    2014-04-01

    We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position by imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe.

  2. Development of combination tapered fiber-optic biosensor dip probe for quantitative estimation of interleukin-6 in serum samples

    NASA Astrophysics Data System (ADS)

    Wang, Chun Wei; Manne, Upender; Reddy, Vishnu B.; Oelschlager, Denise K.; Katkoori, Venkat R.; Grizzle, William E.; Kapoor, Rakesh

    2010-11-01

    A combination tapered fiber-optic biosensor (CTFOB) dip probe for rapid and cost-effective quantification of proteins in serum samples has been developed. This device relies on diode laser excitation and a charged-coupled device spectrometer and functions on a technique of sandwich immunoassay. As a proof of principle, this technique was applied in a quantitative estimation of interleukin IL-6. The probes detected IL-6 at picomolar levels in serum samples obtained from a patient with lupus, an autoimmune disease, and a patient with lymphoma. The estimated concentration of IL-6 in the lupus sample was 5.9 +/- 0.6 pM, and in the lymphoma sample, it was below the detection limit. These concentrations were verified by a procedure involving bead-based xMAP technology. A similar trend in the concentrations was observed. The specificity of the CTFOB dip probes was assessed by analysis with receiver operating characteristics. This analysis suggests that the dip probes can detect 5-pM or higher concentration of IL-6 in these samples with specificities of 100%. The results provide information for guiding further studies in the utilization of these probes to quantify other analytes in body fluids with high specificity and sensitivity.

  3. 33 CFR 157.12d - Technical specifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... section. The sampling probes located in the overboard discharge lines and the piping system connecting the sampling probes to the oil content meter must meet the requirements of this paragraph. (2) The piping and probes must be— (i) Of a material resistant to fire, corrosion, and oil; and (ii) Of adequate strength...

  4. Liquid microjunction surface sampling probe fluid dynamics: Characterization and application of an analyte plug formation operational mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ElNaggar, Mariam S.; Van Berkel, Gary J.

    2011-08-10

    The recently discovered sample plug formation and injection operational mode of a continuous flow, coaxial tube geometry, liquid microjunction surface sampling probe (LMJ-SSP) (J. Am. Soc. Mass Spectrom, 2011) was further characterized and applied for concentration and mixing of analyte extracted from multiple areas on a surface and for nanoliter-scale chemical reactions of sampled material. A transparent LMJ-SSP was constructed and colored analytes were used so that the surface sampling process, plug formation, and the chemical reactions could be visually monitored at the sampling end of the probe before being analyzed by mass spectrometry of the injected sample plug. Injectionmore » plug peak widths were consistent for plug hold times as long as the 8 minute maximum attempted (RSD below 1.5%). Furthermore, integrated injection peak signals were not significantly different for the range of hold times investigated. The ability to extract and completely mix individual samples within a fixed volume at the sampling end of the probe was demonstrated and a linear mass spectral response to the number of equivalent analyte spots sampled was observed. Lastly, using the color and mass changing chemical reduction of the redox dye 2,6-dichlorophenol-indophenol with ascorbic acid, the ability to sample, concentrate, and efficiently run reactions within the same plug volume within the probe was demonstrated.« less

  5. 40 CFR 89.419 - Dilute gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Continuous HC measurement system. (i) The continuous HC sample system (as shown in Figure 2 or 3 in appendix... this is not required. (ii) No other analyzers may draw a sample from the continuous HC sample probe... continuous HC sampling system shall consist of a probe (which must raise the sample to the specified...

  6. Aerosol Production from Charbroiled and Wet-Fried Meats

    NASA Astrophysics Data System (ADS)

    Niedziela, R. F.; Blanc, L. E.

    2012-12-01

    Previous work in our laboratory focused on the chemical and optical characterization of aerosols produced during the dry-frying of different meat samples. This method yielded a complex ensemble of particles composed of water and long-chain fatty acids with the latter dominated by oleic, stearic, and palmitic acids. The present study examines how wet-frying and charbroiling cooking methods affect the physical and chemical properties of their derived aerosols. Samples of ground beef, salmon, chicken, and pork were subject to both cooking methods in the laboratory, with their respective aerosols swept into a laminar flow cell where they were optically analyzed in the mid-infrared and collected through a gas chromatography probe for chemical characterization. This presentation will compare and contrast the nature of the aerosols generated in each cooking method, particularly those produced during charbroiling which exposes the samples, and their drippings, to significantly higher temperatures. Characterization of such cooking-related aerosols is important because of the potential impact of these particles on air quality, particularly in urban areas.

  7. Primary VOC emissions from Commercial Aircraft Jet Engines

    NASA Astrophysics Data System (ADS)

    Kilic, Dogushan; Huang, Rujin; Slowik, Jay; Brem, Benjamin; Durdina, Lukas; Rindlisbacher, Theo; Baltensperger, Urs; Prevot, Andre

    2014-05-01

    Air traffic is growing continuously [1]. The increasing number of airplanes leads to an increase of aviation emissions giving rise to environmental concerns globally by high altitude emissions and, locally on air quality at the ground level [2]. The overall impact of aviation emissions on the environment is likely to increase when the growing air transportation trend [2] is considered. The Aviation Particle Regulatory Instrumentation Demonstration Experiment (APRIDE)-5 campaign took place at Zurich Airport in 2013. In this campaign, aircraft exhaust is sampled during engine acceptance tests after engine overhaul at the facilities of SR Technics. Direct sampling from the engine core is made possible due to the unique fixed installation of a retractable sampling probe and the use of a standardized sampling system designed for the new particulate matter regulation in development for aircraft engines. Many of the gas-phase aircraft emissions, e.g. CO2, NOX, CO, SO2, hydrocarbons, and volatile organic compounds (VOC) were detected by the instruments in use. This study, part of the APRIDE-5 campaign, focuses on the primary VOC emissions in order to produce emission factors of VOC species for varying engine operating conditions which are the surrogates for the flight cycles. Previously, aircraft plumes were sampled in order to quantify VOCs by a proton transfer reaction quadrupole mass spectrometer (PTR-MS) [3]. This earlier study provided a preliminary knowledge on the emission of species such as methanol, acetaldehyde, acetone, benzene and toluene by varying engine thrust levels. The new setup was (i) designed to sample from the diluted engine exhaust and the new tool and (ii) used a high resolution time of flight PTR-MS with higher accuracy for many new species, therefore providing a more detailed and accurate inventory. We will present the emission factors for species that were quantified previously, as well as for many additional VOCs detected during the campaign. References 1."Annual Review 2013", International Air Transport Association (IATA) 2014, Page 8, available on: http://www.iata.org/about/Documents/iata-annual-review-2013-en.pdf. 2."Summary for Policymakers: IPCC Special Report Aviation and the Global Atmosphere", 1999, pp. 5-10. 3."Hydrocarbon emissions from in-use commercial aircraft during airport operations", Herndon S.C., Rogers T., Dunlea E.J., Jayne J.T., Miake-Lye R., Knighton B., Environ Sci. Technol. 2006 Jul 15;40(14):4406-13.

  8. Quantification of in-contact probe-sample electrostatic forces with dynamic atomic force microscopy.

    PubMed

    Balke, Nina; Jesse, Stephen; Carmichael, Ben; Okatan, M Baris; Kravchenko, Ivan I; Kalinin, Sergei V; Tselev, Alexander

    2017-01-04

    Atomic force microscopy (AFM) methods utilizing resonant mechanical vibrations of cantilevers in contact with a sample surface have shown sensitivities as high as few picometers for detecting surface displacements. Such a high sensitivity is harnessed in several AFM imaging modes. Here, we demonstrate a cantilever-resonance-based method to quantify electrostatic forces on a probe in the probe-sample junction in the presence of a surface potential or when a bias voltage is applied to the AFM probe. We find that the electrostatic forces acting on the probe tip apex can produce signals equivalent to a few pm of surface displacement. In combination with modeling, the measurements of the force were used to access the strength of the electrical field at the probe tip apex in contact with a sample. We find an evidence that the electric field strength in the junction can reach ca. 1 V nm -1 at a bias voltage of a few volts and is limited by non-ideality of the tip-sample contact. This field is sufficiently strong to significantly influence material states and kinetic processes through charge injection, Maxwell stress, shifts of phase equilibria, and reduction of energy barriers for activated processes. Besides, the results provide a baseline for accounting for the effects of local electrostatic forces in electromechanical AFM measurements as well as offer additional means to probe ionic mobility and field-induced phenomena in solids.

  9. 40 CFR 1065.308 - Continuous gas analyzer system-response and updating-recording verification-for gas analyzers not...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications § 1065.308 Continuous... adjusted to account for the dilution from ambient air drawn into the probe. We recommend you use the final... gases diluted in air. You may use a multi-gas span gas, such as NO-CO-CO2-C3H8-CH4, to verify multiple...

  10. Use of the polymerase chain reaction to directly detect malaria parasites in blood samples from the Venezuelan Amazon.

    PubMed

    Laserson, K F; Petralanda, I; Hamlin, D M; Almera, R; Fuentes, M; Carrasquel, A; Barker, R H

    1994-02-01

    We have examined the reproducibility, sensitivity, and specificity of detecting Plasmodium falciparum using the polymerase chain reaction (PCR) and the species-specific probe pPF14 under field conditions in the Venezuelan Amazon. Up to eight samples were field collected from each of 48 consenting Amerindians presenting with symptoms of malaria. Sample processing and analysis was performed at the Centro Amazonico para la Investigacion y Control de Enfermedades Tropicales Simon Bolivar. A total of 229 samples from 48 patients were analyzed by PCR methods using four different P. falciparum-specific probes. One P. vivax-specific probe and by conventional microscopy. Samples in which results from PCR and microscopy differed were reanalyzed at a higher sensitivity by microscopy. Results suggest that microscopy-negative, PCR-positive samples are true positives, and that microscopy-positive and PCR-negative samples are true negatives. The sensitivity of the DNA probe/PCR method was 78% and its specificity was 97%. The positive predictive value of the PCR method was 88%, and the negative predictive value was 95%. Through the analysis of multiple blood samples from each individual, the DNA probe/PCR methodology was found to have an inherent reproducibility that was highly statistically significant.

  11. Structure and Soot Properties of Nonbuoyant Ethylene/Air Laminar Jet Diffusion Flames. Appendix I

    NASA Technical Reports Server (NTRS)

    Urban, D. L.; Yuan, Z.-G.; Sunderland, P. B.; Linteris, G. T.; Voss, J. E.; Lin, K.-C.; Dai, Z.; Sun, K.; Faeth, G. M.; Ross, Howard D. (Technical Monitor)

    2000-01-01

    The structure and soot properties of round, soot-emitting, nonbuoyant, laminar jet diffusion flames are described, based on long-duration (175-230/s) experiments at microgravity carried out on orbit In the Space Shuttle Columbia. Experiments] conditions included ethylene-fueled flames burning in still air at nominal pressures of 50 and 100 kPa and an ambient temperature of 300 K with luminous Annie lengths of 49-64 mm. Measurements included luminous flame shapes using color video imaging, soot concentration (volume fraction) distributions using deconvoluted laser extinction imaging, soot temperature distributions using deconvoluted multiline emission imaging, gas temperature distributions at fuel-lean (plume) conditions using thermocouple probes, not structure distributions using thermophoretic sampling and analysis by transmission electron microscopy, and flame radiation using a radiometer. The present flames were larger, and emitted soot men readily, than comparable observed during ground-based microgravity experiments due to closer approach to steady conditions resulting from the longer test times and the reduced gravitational disturbances of the space-based experiments.

  12. Four-probe measurements with a three-probe scanning tunneling microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salomons, Mark; Martins, Bruno V. C.; Zikovsky, Janik

    2014-04-15

    We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position bymore » imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe.« less

  13. Direct Surface and Droplet Microsampling for Electrospray Ionization Mass Spectrometry Analysis with an Integrated Dual-Probe Microfluidic Chip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Cong-Min; Zhu, Ying; Jin, Di-Qiong

    Ambient mass spectrometry (MS) has revolutionized the way of MS analysis and broadened its application in various fields. This paper describes the use of microfluidic techniques to simplify the setup and improve the functions of ambient MS by integrating the sampling probe, electrospray emitter probe, and online mixer on a single glass microchip. Two types of sampling probes, including a parallel-channel probe and a U-shaped channel probe, were designed for dryspot and liquid-phase droplet samples, respectively. We demonstrated that the microfabrication techniques not only enhanced the capability of ambient MS methods in analysis of dry-spot samples on various surfaces, butmore » also enabled new applications in the analysis of nanoliter-scale chemical reactions in an array of droplets. The versatility of the microchip-based ambient MS method was demonstrated in multiple different applications including evaluation of residual pesticide on fruit surfaces, sensitive analysis of low-ionizable analytes using postsampling derivatization, and high-throughput screening of Ugi-type multicomponent reactions.« less

  14. Plastron Respiration Using Commercial Fabrics

    PubMed Central

    Atherton, Shaun; Brennan, Joseph C.; Morris, Robert H.; Smith, Joshua D.E.; Hamlett, Christopher A.E.; McHale, Glen; Shirtcliffe, Neil J.; Newton, Michael I.

    2014-01-01

    A variety of insect and arachnid species are able to remain submerged in water indefinitely using plastron respiration. A plastron is a surface-retained film of air produced by surface morphology that acts as an oxygen-carbon dioxide exchange surface. Many highly water repellent and hydrophobic surfaces when placed in water exhibit a silvery sheen which is characteristic of a plastron. In this article, the hydrophobicity of a range of commercially available water repellent fabrics and polymer membranes is investigated, and how the surface of the materials mimics this mechanism of underwater respiration is demonstrated allowing direct extraction of oxygen from oxygenated water. The coverage of the surface with the plastron air layer was measured using confocal microscopy. A zinc/oxygen cell is used to consume oxygen within containers constructed from the different membranes, and the oxygen consumed by the cell is compared to the change in oxygen concentration as measured by an oxygen probe. By comparing the membranes to an air-tight reference sample, it was found that the membranes facilitated oxygen transfer from the water into the container, with the most successful membrane showing a 1.90:1 ratio between the cell oxygen consumption and the change in concentration within the container. PMID:28788469

  15. Probing emissions of military cargo aircraft: description of a joint field measurement Strategic Environmental Research and Development Program.

    PubMed

    Cheng, Meng-Dawn; Corporan, Edwin; DeWitt, Matthew J; Spicer, Chester W; Holdren, Michael W; Cowen, Kenneth A; Laskin, Alex; Harris, David B; Shores, Richard C; Kagann, Robert; Hashmonay, Ram

    2008-06-01

    To develop effective air quality control strategies for military air bases, there is a need to accurately quantify these emissions. In support of the Strategic Environmental Research and Development Program project, the particulate matter (PM) and gaseous emissions from two T56 engines on a parked C-130 aircraft were characterized at the Kentucky Air National Guard base in Louisville, KY. Conventional and research-grade instrumentation and methodology were used in the field campaign during the first week of October 2005. Particulate emissions were sampled at the engine exit plane and at 15 m downstream. In addition, remote sensing of the gaseous species was performed via spectroscopic techniques at 5 and 15 m downstream of the engine exit. It was found that PM mass and number concentrations measured at 15-m downstream locations, after dilution-correction generally agreed well with those measured at the engine exhaust plane; however, higher variations were observed in the far-field after natural dilution of the downstream measurements was accounted for. Using carbon dioxide-normalized data we demonstrated that gas species measurements by extractive and remote sensing techniques agreed reasonably well.

  16. Surfactants reduce platelet-bubble and platelet-platelet binding induced by in vitro air embolism.

    PubMed

    Eckmann, David M; Armstead, Stephen C; Mardini, Feras

    2005-12-01

    The effect of gas bubbles on platelet behavior is poorly characterized. The authors assessed platelet-bubble and platelet-platelet binding in platelet-rich plasma in the presence and absence of bubbles and three surface-active compounds. Platelet-rich plasma was prepared from blood drawn from 16 volunteers. Experimental groups were surfactant alone, sparging (microbubble embolization) alone, sparging with surfactant, and neither sparging nor surfactant. The surfactants were Pluronic F-127 (Molecular Probes, Eugene, OR), Perftoran (OJSC SPC Perftoran, Moscow, Russia), and Dow Corning Antifoam 1510US (Dow Corning, Midland, MI). Videomicroscopy images of specimens drawn through rectangular glass microcapillaries on an inverted microscope and Coulter counter measurements were used to assess platelet-bubble and platelet-platelet binding, respectively, in calcium-free and recalcified samples. Histamine-induced and adenosine diphosphate-induced platelet-platelet binding were measured in unsparged samples. Differences between groups were considered significant for P < 0.05 using analysis of variance and the Bonferroni correction. Sixty to 100 platelets adhered to bubbles in sparged, surfactant-free samples. With sparging and surfactant, few platelets adhered to bubbles. Numbers of platelet singlets and multimers not adherent to bubbles were different (P < 0.05) compared both with unsparged samples and sparged samples without surfactant. No significant platelet-platelet binding occurred in uncalcified, sparged samples, although 20-30 platelets adhered to bubbles. Without sparging, histamine and adenosine diphosphate provoked platelet-platelet binding with and without surfactants present. Sparging causes platelets to bind to air bubbles and each other. Surfactants added before sparging attenuate platelet-bubble and platelet-platelet binding. Surfactants may have a clinical role in attenuating gas embolism-induced platelet-bubble and platelet-platelet binding.

  17. Characterization of a novel miniaturized burst-mode infrared laser system for IR-MALDESI mass spectrometry imaging.

    PubMed

    Ekelöf, Måns; Manni, Jeffrey; Nazari, Milad; Bokhart, Mark; Muddiman, David C

    2018-03-01

    Laser systems are widely used in mass spectrometry as sample probes and ionization sources. Mid-infrared lasers are particularly suitable for analysis of high water content samples such as animal and plant tissues, using water as a resonantly excited sacrificial matrix. Commercially available mid-IR lasers have historically been bulky and expensive due to cooling requirements. This work presents a novel air-cooled miniature mid-IR laser with adjustable burst-mode output and details an evaluation of its performance for mass spectrometry imaging. The miniature laser was found capable of generating sufficient energy for complete ablation of animal tissue in the context of an IR-MALDESI experiment with exogenously added ice matrix, yielding several hundred confident metabolite identifications. Graphical abstract The use of a novel miniature 2.94 μm burst-mode laser in IR-MALDESI allows for rapid and sensitive mass spectrometry imaging of a whole mouse.

  18. Cryogenic sample exchange NMR probe for magic angle spinning dynamic nuclear polarization

    PubMed Central

    Barnes, Alexander B.; Mak-Jurkauskas, Melody L.; Matsuki, Yoh; Bajaj, Vikram S.; van der Wel, Patrick C. A.; DeRocher, Ronald; Bryant, Jeffrey; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Lugtenburg, Johan; Herzfeld, Judith; Griffin, Robert G.

    2009-01-01

    We describe a cryogenic sample exchange system that dramatically improves the efficiency of magic angle spinning (MAS) dynamic nuclear polarization (DNP) experiments by reducing the time required to change samples and by improving long-term instrument stability. Changing samples in conventional cryogenic MAS DNP/NMR experiments involves warming the probe to room temperature, detaching all cryogenic, RF, and microwave connections, removing the probe from the magnet, replacing the sample, and reversing all the previous steps, with the entire cycle requiring a few hours. The sample exchange system described here — which relies on an eject pipe attached to the front of the MAS stator and a vacuum jacketed dewar with a bellowed hole — circumvents these procedures. To demonstrate the excellent sensitivity, resolution, and stability achieved with this quadruple resonance sample exchange probe, we have performed high precision distance measurements on the active site of the membrane protein bacteriorhodopsin. We also include a spectrum of the tripeptide N-f-MLF-OH at 100 K which shows 30 Hz linewidths. PMID:19356957

  19. System and method for liquid extraction electrospray-assisted sample transfer to solution for chemical analysis

    DOEpatents

    Kertesz, Vilmos; Van Berkel, Gary J.

    2016-07-12

    A system for sampling a surface includes a surface sampling probe comprising a solvent liquid supply conduit and a distal end, and a sample collector for suspending a sample collection liquid adjacent to the distal end of the probe. A first electrode provides a first voltage to solvent liquid at the distal end of the probe. The first voltage produces a field sufficient to generate electrospray plume at the distal end of the probe. A second electrode provides a second voltage and is positioned to produce a plume-directing field sufficient to direct the electrospray droplets and ions to the suspended sample collection liquid. The second voltage is less than the first voltage in absolute value. A voltage supply system supplies the voltages to the first electrode and the second electrode. The first electrode can apply the first voltage directly to the solvent liquid. A method for sampling for a surface is also disclosed.

  20. The Maneuverable Atmospheric Probe (MAP), a Remotely Piloted Vehicle.

    DTIC Science & Technology

    1982-05-01

    9 lb. MAP vehicle and major- components .................................... 10 2. Endevco Pitot tube airspeed indicator mounted below front...28 8. Cascaded PIXE impactors, housing cylinder and wing pod front end cup with aerosol inlet plastic tubing ........................... 30 9...turbulence sensors, a Pitot tube , two air temperature sensors, and a yaw gust probe. Located at each wing tip are sensors that contain encapsulated

  1. Ball assisted device for analytical surface sampling

    DOEpatents

    ElNaggar, Mariam S; Van Berkel, Gary J; Covey, Thomas R

    2015-11-03

    A system for sampling a surface includes a sampling probe having a housing and a socket, and a rolling sampling sphere within the socket. The housing has a sampling fluid supply conduit and a sampling fluid exhaust conduit. The sampling fluid supply conduit supplies sampling fluid to the sampling sphere. The sampling fluid exhaust conduit has an inlet opening for receiving sampling fluid carried from the surface by the sampling sphere. A surface sampling probe and a method for sampling a surface are also disclosed.

  2. Preliminary evaluation of several disinfection/sterilization techniques for use with microdialysis probes.

    PubMed

    Huff, Jacquelyn K; Bresnahan, James F; Davies, Malonne I

    2003-06-06

    This study evaluated the suitability of some disinfection and sterilization methods for use with microdialysis probes. Disinfection or sterilization should minimize the tissue inflammatory reaction and improve the long-term health of rats on study and ensure the quality of data obtained by microdialysis sampling. Furthermore, the treatment should not negatively impact probe integrity or sampling performance. The techniques chosen for evaluation included two disinfection methods (70% ethanol and a commercial contact lens solution) and two sterilization methods (hydrogen peroxide plasma, and e-beam radiation). Linear microdialysis probes treated by these processes were compared to untreated probes removed from the manufacturer's packaging as if sterile (the control group). The probes were aseptically implanted in the livers of rats and monitored for 72 hours. The parameters chosen to evaluate probe performance were relative sample mass recovery and the relative in vivo extraction efficiency of the probe for caffeine. Post mortem bacterial counts and histopathology examination of liver tissue were also conducted. The probes remained intact and functional for the entire study period. The methods tested did not acutely alter the probes although hydrogen peroxide plasma and contact lens solution groups showed reduced extraction efficiencies. Minimal tissue damage was observed surrounding the probes and acute inflammatory reaction was mild to moderate. Low numbers of bacterial colonies from the implantation sites indicates that the health of animals in this study was not impaired. This was also true for the control group (untreated probe).

  3. Four-point probe measurements using current probes with voltage feedback to measure electric potentials

    NASA Astrophysics Data System (ADS)

    Lüpke, Felix; Cuma, David; Korte, Stefan; Cherepanov, Vasily; Voigtländer, Bert

    2018-02-01

    We present a four-point probe resistance measurement technique which uses four equivalent current measuring units, resulting in minimal hardware requirements and corresponding sources of noise. Local sample potentials are measured by a software feedback loop which adjusts the corresponding tip voltage such that no current flows to the sample. The resulting tip voltage is then equivalent to the sample potential at the tip position. We implement this measurement method into a multi-tip scanning tunneling microscope setup such that potentials can also be measured in tunneling contact, allowing in principle truly non-invasive four-probe measurements. The resulting measurement capabilities are demonstrated for \

  4. Parker Solar Probe Delta IV Heavy LVOS

    NASA Image and Video Library

    2018-04-17

    The first stage of a United Launch Alliance Delta IV Heavy rocket is prepared to be lifted vertical at the Vertical Integration Facility near Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  5. Parker Solar Probe Delta IV Heavy LVOS

    NASA Image and Video Library

    2018-04-17

    In this sunrise photograph, the first stage of a United Launch Alliance Delta IV Heavy rocket is at the Vertical Integration Facility near Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  6. Parker Solar Probe Delta IV Heavy LVOS

    NASA Image and Video Library

    2018-04-17

    The United Launch Alliance Delta IV Heavy first stage is being lifted to the vertical position at the Vertical Integration Facility near Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  7. Parker Solar Probe Delta IV Heavy LVOS

    NASA Image and Video Library

    2018-04-17

    The United Launch Alliance Delta IV Heavy first stage has been lifted to the vertical position and is inside the Vertical Integration Facility near Space Launch 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  8. Handheld, rapidly switchable, anterior/posterior segment swept source optical coherence tomography probe

    PubMed Central

    Nankivil, Derek; Waterman, Gar; LaRocca, Francesco; Keller, Brenton; Kuo, Anthony N.; Izatt, Joseph A.

    2015-01-01

    We describe the first handheld, swept source optical coherence tomography (SSOCT) system capable of imaging both the anterior and posterior segments of the eye in rapid succession. A single 2D microelectromechanical systems (MEMS) scanner was utilized for both imaging modes, and the optical paths for each imaging mode were optimized for their respective application using a combination of commercial and custom optics. The system has a working distance of 26.1 mm and a measured axial resolution of 8 μm (in air). In posterior segment mode, the design has a lateral resolution of 9 μm, 7.4 mm imaging depth range (in air), 4.9 mm 6dB fall-off range (in air), and peak sensitivity of 103 dB over a 22° field of view (FOV). In anterior segment mode, the design has a lateral resolution of 24 μm, imaging depth range of 7.4 mm (in air), 6dB fall-off range of 4.5 mm (in air), depth-of-focus of 3.6 mm, and a peak sensitivity of 99 dB over a 17.5 mm FOV. In addition, the probe includes a wide-field iris imaging system to simplify alignment. A fold mirror assembly actuated by a bi-stable rotary solenoid was used to switch between anterior and posterior segment imaging modes, and a miniature motorized translation stage was used to adjust the objective lens position to correct for patient refraction between −12.6 and + 9.9 D. The entire probe weighs less than 630 g with a form factor of 20.3 x 9.5 x 8.8 cm. Healthy volunteers were imaged to illustrate imaging performance. PMID:26601014

  9. Effects of salt loading and flow blockage on the WIPP shrouded probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandra, S.; Ortiz, C.A.; McFarland, A.R.

    1993-08-01

    The shrouded probes at the WIPP site operate in a salt aerosol environment that can cause a buildup of salt deposits on exposed surfaces of the probes that, in turn, could produce changes in the sampling performance of the probes. At Station A, three probes had been operated for a period of approximately 2 1/2 years when they were inspected with a remote television camera. There were visible deposits of unknown thickness on the probes, so WIPP removed the probes for inspection and cleanup. Measurements were made on the probes and they showed the buildups to be approximately 2.5 mmmore » thick on the most critical dimension of a shrouded probe, which is the inside diameter of the inner probe. For reference, the diameter of a clean probe is 30 mm. The sampling performance of this particular shrouded probe had been previously evaluated in a wind tunnel at Aerosol Technology Laboratory (ATL) of Texas A&M University for two free stream velocities (14 and 21 m/s) and three particle sizes (5, 10 and 15 {mu}m AED).« less

  10. Optimal probes for withdrawal of uncontaminated fluid samples

    NASA Astrophysics Data System (ADS)

    Sherwood, J. D.

    2005-08-01

    Withdrawal of fluid by a composite probe pushed against the face z =0 of a porous half-space z >0 is modeled assuming incompressible Darcy flow. The probe is circular, of radius a, with an inner sampling section of radius αa and a concentric outer guard probe αa βa is saturated with fluid 2; the two fluids have the same viscosity. It is assumed that the interface between the two fluids is sharp and remains so as it moves through the rock. The pressure in the probe is lower than that of the pore fluid in the rock, so that the fluid interface is convected with the fluids towards the probe. This idealized axisymmetric problem is solved numerically, and it is shown that an analysis based on far-field spherical flow towards a point sink is a good approximation when the nondimensional depth of fluid 1 is large, i.e., β ≫1. The inner sampling probe eventually produces pure fluid 2, and this technique has been proposed for sampling pore fluids in rock surrounding an oil well [A. Hrametz, C. Gardner, M. Wais, and M. Proett, U.S. Patent No. 6,301,959 B1 (16 October 2001)]. Fluid 1 is drilling fluid filtrate, which has displaced the original pore fluid (fluid 2), a pure sample of which is required. The time required to collect an uncontaminated sample of original pore fluid can be minimized by a suitable choice of the probe geometry α [J. Sherwood, J. Fitzgerald and B. Hill, U.S. Patent No. 6,719,049 B2 (13 April 2004)]. It is shown that the optimal choice of α depends on the depth of filtrate invasion β and the volume of sample required.

  11. In situ temperature measurements with thermocouple probes during laser interstitial thermotherapy (LITT): quantification and correction of a measurement artifact.

    PubMed

    Manns, F; Milne, P J; Gonzalez-Cirre, X; Denham, D B; Parel, J M; Robinson, D S

    1998-01-01

    The purpose of this work was to quantify the magnitude of an artifact induced by stainless steel thermocouple probes in temperature measurements made in situ during experimental laser interstitial thermo-therapy (LITT). A procedure for correction of this observational error is outlined. A CW Nd:YAG laser system emitting 20W for 25-30 s delivered through a fiber-optic probe was used to create localized heating. The temperature field around the fiber-optic probe during laser irradiation was measured every 0.3 s in air, water, 0.4% intralipid solution, and fatty cadaver pig tissue, with a field of up to fifteen needle thermocouple probes. Direct absorption of Nd:YAG laser radiation by the thermocouple probes induced an overestimation of the temperature, ranging from 1.8 degrees C to 118.6 degrees C in air, 2.2 degrees C to 9.9 degrees C in water, 0.7 C to 4.7 C in intralipid and 0.3 C to 17.9 C in porcine tissue after irradiation at 20W for 30 s and depending on the thermocouple location. The artifact in porcine tissue was removed by applying exponential and linear fits to the measured temperature curves. Light absorption by thermocouple probes can induce a significant artifact in the measurement of laser-induced temperature increases. When the time constant of the thermocouple effect is much smaller than the thermal relaxation time of the surrounding tissue, the artifact can be accurately quantified. During LITT experiments where temperature differences of a few degrees are significant, the thermocouple artifact must be removed in order to be able accurately to predict the treatment outcome.

  12. High-speed broadband nanomechanical property quantification and imaging of life science materials using atomic force microscope

    NASA Astrophysics Data System (ADS)

    Ren, Juan

    Nanoscale morphological characterization and mechanical properties quantification of soft and biological materials play an important role in areas ranging from nano-composite material synthesis and characterization, cellular mechanics to drug design. Frontier studies in these areas demand the coordination between nanoscale morphological evolution and mechanical behavior variations through simultaneous measurement of these two aspects of properties. Atomic force microscope (AFM) is very promising in achieving such simultaneous measurements at high-speed and broadband owing to its unique capability in applying force stimuli and then, measuring the response at specific locations in a physiologically friendly environment with pico-newton force and nanometer spatial resolution. Challenges, however, arise as current AFM systems are unable to account for the complex and coupled dynamics of the measurement system and probe-sample interaction during high-speed imaging and broadband measurements. In this dissertation, the creation of a set of dynamics and control tools to probe-based high-speed imaging and rapid broadband nanomechanical spectroscopy of soft and biological materials are presented. Firstly, advanced control-based approaches are presented to improve the imaging performance of AFM imaging both in air and in liquid. An adaptive contact mode (ACM) imaging scheme is proposed to replace the traditional contact mode (CM) imaging by addressing the major concerns in both the speed and the force exerted to the sample. In this work, the image distortion caused by the topography tracking error is accounted for in the topography quantification and the quantified sample topography is utilized in a gradient-based optimization method to adjust the cantilever deflection set-point for each scanline closely around the minimal level needed for maintaining a stable probe-sample contact, and a data-driven iterative feedforward control that utilizes a prediction of the next-line tracking is implemented to enhance the sample topography tracking. An adaptive multi-loop mode (AMLM) imaging approach is proposed to substantially increase the imaging speed of tapping mode (TM) while preserving the advantages of TM over CM by integrating an inner-outer feedback control loop to regulate the TM-deflection on top of the conventional TM-amplitude feedback control to improve the sample topography tracking. Experiments demonstrated that the proposed ACM and AMLM are capable of increasing the imaging speed by at least 20 times for conventional contact and tapping mode imaging, respectively, with no loss of imaging quality and well controlled tip-sample interaction force. In addition, an adaptive mode imaging for in-liquid topography quantification on live cells is presented. The experiment results demonstrated that instead of keeping constant scanning speed, the proposed speed optimization scheme is able to increase the imaging speed on live human prostate cancer cells by at least eight-fold with no loss of imaging quality. Secondly, control based approaches to accurate nanomechanical quantification on soft materials for both broadband and in-liquid force-curve measurements are proposed to address the adverse effects caused by the system coupling dynamics and the cantilever acceleration, which were not compensated for by the conventional AFM measurement approach. The proposed nanomechanical measurement approaches are demonstrated through experiments to measure the viscoelastic properties of different polymer samples in air and live human cells in liquid to study the variation of rate-dependent elastic modulus of cervix cancer cell during the epithelial-mesenchymal transition process.

  13. Methods for making nucleotide probes for sequencing and synthesis

    DOEpatents

    Church, George M; Zhang, Kun; Chou, Joseph

    2014-07-08

    Compositions and methods for making a plurality of probes for analyzing a plurality of nucleic acid samples are provided. Compositions and methods for analyzing a plurality of nucleic acid samples to obtain sequence information in each nucleic acid sample are also provided.

  14. Capacitance-level/density monitor for fluidized-bed combustor

    DOEpatents

    Fasching, George E.; Utt, Carroll E.

    1982-01-01

    A multiple segment three-terminal type capacitance probe with segment selection, capacitance detection and compensation circuitry and read-out control for level/density measurements in a fluidized-bed vessel is provided. The probe is driven at a high excitation frequency of up to 50 kHz to sense quadrature (capacitive) current related to probe/vessel capacitance while being relatively insensitive to the resistance current component. Compensation circuitry is provided for generating a negative current of equal magnitude to cancel out only the resistive component current. Clock-operated control circuitry separately selects the probe segments in a predetermined order for detecting and storing this capacitance measurement. The selected segment acts as a guarded electrode and is connected to the read-out circuitry while all unselected segments are connected to the probe body, which together form the probe guard electrode. The selected probe segment capacitance component signal is directed to a corresponding segment channel sample and hold circuit dedicated to that segment to store the signal derived from that segment. This provides parallel outputs for display, computer input, etc., for the detected capacitance values. The rate of segment sampling may be varied to either monitor the dynamic density profile of the bed (high sampling rate) or monitor average bed characteristics (slower sampling rate).

  15. Tapered Optical Fiber Probe Assembled with Plasmonic Nanostructures for Surface-Enhanced Raman Scattering Application.

    PubMed

    Huang, Zhulin; Lei, Xing; Liu, Ye; Wang, Zhiwei; Wang, Xiujuan; Wang, Zhaoming; Mao, Qinghe; Meng, Guowen

    2015-08-12

    Optical fiber-Raman devices integrated with plasmonic nanostructures have promising potentials for in situ probing remote liquid samples and biological samples. In this system, the fiber probe is required to simultaneously demonstrate stable surface enhanced Raman scattering (SERS) signals and high sensitivity toward the target species. Here we demonstrate a generic approach to integrate presynthesized plasmonic nanostructures with tapered fiber probes that are prepared by a dipping-etching method, through reversed electrostatic attraction between the silane couple agent modified silica fiber probe and the nanostructures. Using this approach, both negatively and positively charged plasmonic nanostructures with various morphologies (such as Au nanosphere, Ag nanocube, Au nanorod, Au@Ag core-shell nanorod) can be stably assembled on the tapered silica fiber probes. Attributed to the electrostatic force between the plasmonic units and the fiber surface, the nanostructures do not disperse in liquid samples easily, making the relative standard deviation of SERS signals as low as 2% in analyte solution. Importantly, the detection sensitivity of the system can be optimized by adjusting the cone angle (from 3.6° to 22°) and the morphology of nanostructures assembled on the fiber. Thus, the nanostructures-sensitized optical fiber-Raman probes show great potentials in the applications of SERS-based environmental detection of liquid samples.

  16. Discriminating Bio-aerosols from Non-Bio-aerosols in Real-Time by Pump-Probe Spectroscopy

    PubMed Central

    Sousa, Gustavo; Gaulier, Geoffrey; Bonacina, Luigi; Wolf, Jean-Pierre

    2016-01-01

    The optical identification of bioaerosols in the atmosphere and its discrimination against combustion related particles is a major issue for real-time, field compatible instruments. In the present paper, we show that by embedding advanced pump-probe depletion spectroscopy schemes in a portable instrument, it is possible to discriminate amino acid containing airborne particles (bacteria, humic particles, etc.) from poly-cyclic aromatic hydrocarbon containing combustion particles (Diesel droplets, soot, vehicle exhausts) with high selectivity. Our real-time, multi-modal device provides, in addition to the pump-probe depletion information, fluorescence spectra (over 32 channels), fluorescence lifetime and Mie scattering patterns of each individually flowing particle in the probed air. PMID:27619546

  17. Discriminating Bio-aerosols from Non-Bio-aerosols in Real-Time by Pump-Probe Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sousa, Gustavo; Gaulier, Geoffrey; Bonacina, Luigi; Wolf, Jean-Pierre

    2016-09-01

    The optical identification of bioaerosols in the atmosphere and its discrimination against combustion related particles is a major issue for real-time, field compatible instruments. In the present paper, we show that by embedding advanced pump-probe depletion spectroscopy schemes in a portable instrument, it is possible to discriminate amino acid containing airborne particles (bacteria, humic particles, etc.) from poly-cyclic aromatic hydrocarbon containing combustion particles (Diesel droplets, soot, vehicle exhausts) with high selectivity. Our real-time, multi-modal device provides, in addition to the pump-probe depletion information, fluorescence spectra (over 32 channels), fluorescence lifetime and Mie scattering patterns of each individually flowing particle in the probed air.

  18. Discriminating Bio-aerosols from Non-Bio-aerosols in Real-Time by Pump-Probe Spectroscopy.

    PubMed

    Sousa, Gustavo; Gaulier, Geoffrey; Bonacina, Luigi; Wolf, Jean-Pierre

    2016-09-13

    The optical identification of bioaerosols in the atmosphere and its discrimination against combustion related particles is a major issue for real-time, field compatible instruments. In the present paper, we show that by embedding advanced pump-probe depletion spectroscopy schemes in a portable instrument, it is possible to discriminate amino acid containing airborne particles (bacteria, humic particles, etc.) from poly-cyclic aromatic hydrocarbon containing combustion particles (Diesel droplets, soot, vehicle exhausts) with high selectivity. Our real-time, multi-modal device provides, in addition to the pump-probe depletion information, fluorescence spectra (over 32 channels), fluorescence lifetime and Mie scattering patterns of each individually flowing particle in the probed air.

  19. Situ soil sampling probe system with heated transfer line

    DOEpatents

    Robbat, Jr., Albert

    2002-01-01

    The present invention is directed both to an improved in situ penetrometer probe and to a heated, flexible transfer line. The line and probe may be implemented together in a penetrometer system in which the transfer line is used to connect the probe to a collector/analyzer at the surface. The probe comprises a heater that controls a temperature of a geologic medium surrounding the probe. At least one carrier gas port and vapor collection port are located on an external side wall of the probe. The carrier gas port provides a carrier gas into the geologic medium, and the collection port captures vapors from the geologic medium for analysis. In the transfer line, a flexible collection line that conveys a collected fluid, i.e., vapor, sample to a collector/analyzer. A flexible carrier gas line conveys a carrier gas to facilitate the collection of the sample. A system heating the collection line is also provided. Preferably the collection line is electrically conductive so that an electrical power source can generate a current through it so that the internal resistance generates heat.

  20. Enhancement of low-temperature thermometry by strong coupling

    NASA Astrophysics Data System (ADS)

    Correa, Luis A.; Perarnau-Llobet, Martí; Hovhannisyan, Karen V.; Hernández-Santana, Senaida; Mehboudi, Mohammad; Sanpera, Anna

    2017-12-01

    We consider the problem of estimating the temperature T of a very cold equilibrium sample. The temperature estimates are drawn from measurements performed on a quantum Brownian probe strongly coupled to it. We model this scenario by resorting to the canonical Caldeira-Leggett Hamiltonian and find analytically the exact stationary state of the probe for arbitrary coupling strength. In general, the probe does not reach thermal equilibrium with the sample, due to their nonperturbative interaction. We argue that this is advantageous for low-temperature thermometry, as we show in our model that (i) the thermometric precision at low T can be significantly enhanced by strengthening the probe-sampling coupling, (ii) the variance of a suitable quadrature of our Brownian thermometer can yield temperature estimates with nearly minimal statistical uncertainty, and (iii) the spectral density of the probe-sample coupling may be engineered to further improve thermometric performance. These observations may find applications in practical nanoscale thermometry at low temperatures—a regime which is particularly relevant to quantum technologies.

  1. Leaf patch clamp pressure probe measurements on olive leaves in a nearly turgorless state.

    PubMed

    Ehrenberger, W; Rüger, S; Rodríguez-Domínguez, C M; Díaz-Espejo, A; Fernández, J E; Moreno, J; Zimmermann, D; Sukhorukov, V L; Zimmermann, U

    2012-07-01

    The non-invasive leaf patch clamp pressure (LPCP) probe measures the attenuated pressure of a leaf patch, P(p) , in response to an externally applied magnetic force. P(p) is inversely coupled with leaf turgor pressure, P(c) , i.e. at high P(c) values the P(p) values are small and at low P(c) values the P(p) values are high. This relationship between P(c) and P(p) could also be verified for 2-m tall olive trees under laboratory conditions using the cell turgor pressure probe. When the laboratory plants were subjected to severe water stress (P(c) dropped below ca. 50 kPa), P(p) curves show reverse diurnal changes, i.e. during the light regime (high transpiration) a minimum P(p) value, and during darkness a peak P(p) value is recorded. This reversal of the P(p) curves was completely reversible. Upon watering, the original diurnal P(p) changes were re-established within 2-3 days. Olive trees in the field showed a similar turnover of the shape of the P(p) curves upon drought, despite pronounced fluctuations in microclimate. The reversal of the P(p) curves is most likely due to accumulation of air in the leaves. This assumption was supported with cross-sections through leaves subjected to prolonged drought. In contrast to well-watered leaves, microscopic inspection of leaves exhibiting inverse diurnal P(p) curves revealed large air-filled areas in parenchyma tissue. Significantly larger amounts of air could also be extracted from water-stressed leaves than from well-watered leaves using the cell turgor pressure probe. Furthermore, theoretical analysis of the experimental P(p) curves shows that the propagation of pressure through the nearly turgorless leaf must be exclusively dictated by air. Equations are derived that provide valuable information about the water status of olive leaves close to zero P(c) . © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  2. Quantification of in-contact probe-sample electrostatic forces with dynamic atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balke, Nina Wisinger; Jesse, Stephen; Carmichael, Ben D.

    Here, atomic force microscopy (AFM) methods utilizing resonant mechanical vibrations of cantilevers in contact with a sample surface have shown sensitivities as high as few picometers for detecting surface displacements. Such a high sensitivity is harnessed in several AFM imaging modes. Here, we demonstrate a cantilever-resonance-based method to quantify electrostatic forces on a probe in the probe-sample junction in the presence of a surface potential or when a bias voltage is applied to the AFM probe. We find that the electrostatic forces acting on the probe tip apex can produce signals equivalent to a few pm of surface displacement. Inmore » combination with modeling, the measurements of the force were used to access the strength of the electrical field at the probe tip apex in contact with a sample. We find an evidence that the electric field strength in the junction can reach ca. 1 V nm –1 at a bias voltage of a few volts and is limited by non-ideality of the tip-sample contact. This field is sufficiently strong to significantly influence material states and kinetic processes through charge injection, Maxwell stress, shifts of phase equilibria, and reduction of energy barriers for activated processes. Besides, the results provide a baseline for accounting for the effects of local electrostatic forces in electromechanical AFM measurements as well as offer additional means to probe ionic mobility and field-induced phenomena in solids.« less

  3. Quantification of In-Contact Probe-Sample Electrostatic Forces with Dynamic Atomic Force Microscopy.

    PubMed

    Balke, Nina; Jesse, Stephen; Carmichael, Ben; Okatan, M; Kravchenko, Ivan; Kalinin, Sergei; Tselev, Alexander

    2016-12-13

    Atomic Force Microscopy (AFM) methods utilizing resonant mechanical vibrations of cantilevers in contact with a sample surface have shown sensitivities as high as few picometers for detecting surface displacements. Such a high sensitivity is harnessed in several AFM imaging modes. Here, we demonstrate a cantilever-resonance-based method to quantify electrostatic forces on a probe in the probe-sample junction in the presence of a surface potential or when a bias voltage is applied to the AFM probe. We find that the electrostatic forces acting on the probe tip apex can produce signals equivalent to a few pm of surface displacement. In combination with modeling, the measurements of the force were used to access the strength of the electrical field at the probe tip apex in contact with a sample. We find an evidence that the electric field strength in the junction can reach ca. 1 V/nm at a bias voltage of a few volts and is limited by non-ideality of the tip-sample contact. This field is sufficiently strong to significantly influence material states and kinetic processes through charge injection, Maxwell stress, shifts of phase equilibria, and reduction of energy barriers for activated processes. Besides, the results provide a baseline for accounting for the effects of local electrostatic forces in electromechanical AFM measurements as well as offer additional means to probe ionic mobility and field-induced phenomena in solids. Copyright 2016 IOP Publishing Ltd.

  4. Quantification of in-contact probe-sample electrostatic forces with dynamic atomic force microscopy

    DOE PAGES

    Balke, Nina Wisinger; Jesse, Stephen; Carmichael, Ben D.; ...

    2017-01-04

    Here, atomic force microscopy (AFM) methods utilizing resonant mechanical vibrations of cantilevers in contact with a sample surface have shown sensitivities as high as few picometers for detecting surface displacements. Such a high sensitivity is harnessed in several AFM imaging modes. Here, we demonstrate a cantilever-resonance-based method to quantify electrostatic forces on a probe in the probe-sample junction in the presence of a surface potential or when a bias voltage is applied to the AFM probe. We find that the electrostatic forces acting on the probe tip apex can produce signals equivalent to a few pm of surface displacement. Inmore » combination with modeling, the measurements of the force were used to access the strength of the electrical field at the probe tip apex in contact with a sample. We find an evidence that the electric field strength in the junction can reach ca. 1 V nm –1 at a bias voltage of a few volts and is limited by non-ideality of the tip-sample contact. This field is sufficiently strong to significantly influence material states and kinetic processes through charge injection, Maxwell stress, shifts of phase equilibria, and reduction of energy barriers for activated processes. Besides, the results provide a baseline for accounting for the effects of local electrostatic forces in electromechanical AFM measurements as well as offer additional means to probe ionic mobility and field-induced phenomena in solids.« less

  5. Nuclear Quadrupole Resonance (NQR) Method and Probe for Generating RF Magnetic Fields in Different Directions to Distinguish NQR from Acoustic Ringing Induced in a Sample

    DTIC Science & Technology

    1997-08-01

    77,719 TITLE OF THE INVENTION NUCLEAR QUADRUPOLE RESONANCE ( NQR ) METHOD AND PROBE FOR GENERATING RF MAGNETIC FIELDS IN DIFFERENT DIRECTIONS TO...DISTINGUISH NQR FROM ACOUSTIC RINGING INDUCED IN A SAMPLE BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a...nuclear quadrupole 15 resonance ( NQR ) method and probe for generating RF magnetic fields in different directions towards a sample. More specifically

  6. Evaluation of Criteria for the Detection of Fires in Underground Conveyor Belt Haulageways.

    PubMed

    Litton, Charles D; Perera, Inoka Eranda

    2012-07-01

    Large-scale experiments were conducted in an above-ground gallery to simulate typical fires that develop along conveyor belt transport systems within underground coal mines. In the experiments, electrical strip heaters, imbedded ~5 cm below the top surface of a large mass of coal rubble, were used to ignite the coal, producing an open flame. The flaming coal mass subsequently ignited 1.83-meter-wide conveyor belts located approximately 0.30 m above the coal surface. Gas samples were drawn through an averaging probe located approximately 20 m downstream of the coal for continuous measurement of CO, CO 2 , and O 2 as the fire progressed through the stages of smoldering coal, flaming coal, and flaming conveyor belt. Also located approximately 20 m from the fire origin and approximately 0.5 m below the roof of the gallery were two commercially available smoke detectors, a light obscuration meter, and a sampling probe for measurement of total mass concentration of smoke particles. Located upstream of the fire origin and also along the wall of the gallery at approximately 14 m and 5 m upstream were two video cameras capable of both smoke and flame detection. During the experiments, alarm times of the smoke detectors and video cameras were measured while the smoke obscuration and total smoke mass were continually measured. Twelve large-scale experiments were conducted using three different types of fire-resistant conveyor belts and four air velocities for each belt. The air velocities spanned the range from 1.0 m/s to 6.9 m/s. The results of these experiments are compared to previous large-scale results obtained using a smaller fire gallery and much narrower (1.07-m) conveyor belts to determine if the fire detection criteria previously developed (1) remained valid for the wider conveyor belts. Although some differences between these and the previous experiments did occur, the results, in general, compare very favorably. Differences are duly noted and their impact on fire detection discussed.

  7. Long-Term Implanted cOFM Probe Causes Minimal Tissue Reaction in the Brain

    PubMed Central

    Hochmeister, Sonja; Asslaber, Martin; Kroath, Thomas; Pieber, Thomas R.; Sinner, Frank

    2014-01-01

    This study investigated the histological tissue reaction to long-term implanted cerebral open flow microperfusion (cOFM) probes in the frontal lobe of the rat brain. Most probe-based cerebral fluid sampling techniques are limited in application time due to the formation of a glial scar that hinders substance exchange between brain tissue and the probe. A glial scar not only functions as a diffusion barrier but also alters metabolism and signaling in extracellular brain fluid. cOFM is a recently developed probe-based technique to continuously sample extracellular brain fluid with an intact blood-brain barrier. After probe implantation, a 2 week healing period is needed for blood-brain barrier reestablishment. Therefore, cOFM probes need to stay in place and functional for at least 15 days after implantation to ensure functionality. Probe design and probe materials are optimized to evoke minimal tissue reaction even after a long implantation period. Qualitative and quantitative histological tissue analysis revealed no continuous glial scar formation around the cOFM probe 30 days after implantation and only a minor tissue reaction regardless of perfusion of the probe. PMID:24621608

  8. Near-surface density profiling of Fe ion irradiated Si (100) using extremely asymmetric x-ray diffraction by variation of the wavelength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khanbabaee, B., E-mail: khanbabaee@physik.uni-siegen.de; Pietsch, U.; Facsko, S.

    2014-10-20

    In this work, we report on correlations between surface density variations and ion parameters during ion beam-induced surface patterning process. The near-surface density variations of irradiated Si(100) surfaces were investigated after off-normal irradiation with 5 keV Fe ions at different fluences. In order to reduce the x-ray probing depth to a thickness below 5 nm, the extremely asymmetrical x-ray diffraction by variation of wavelength was applied, exploiting x-ray refraction at the air-sample interface. Depth profiling was achieved by measuring x-ray rocking curves as function of varying wavelengths providing incidence angles down to 0°. The density variation was extracted from the deviationsmore » from kinematical Bragg angle at grazing incidence angles due to refraction of the x-ray beam at the air-sample interface. The simulations based on the dynamical theory of x-ray diffraction revealed that while a net near-surface density decreases with increasing ion fluence which is accompanied by surface patterning, there is a certain threshold of ion fluence to surface density modulation. Our finding suggests that the surface density variation can be relevant with the mechanism of pattern formation.« less

  9. Using membrane composition to fine-tune the pKa of an optical liposome pH sensor.

    PubMed

    Clear, Kasey J; Virga, Katelyn; Gray, Lawrence; Smith, Bradley D

    2016-04-14

    Liposomes containing membrane-anchored pH-sensitive optical probes are valuable sensors for monitoring pH in various biomedical samples. The dynamic range of the sensor is maximized when the probe p K a is close to the expected sample pH. While some biomedical samples are close to neutral pH there are several circumstances where the pH is 1 or 2 units lower. Thus, there is a need to fine-tune the probe p K a in a predictable way. This investigation examined two lipid-conjugated optical probes, each with appended deep-red cyanine dyes containing indoline nitrogen atoms that are protonated in acid. The presence of anionic phospholipids in the liposomes stabilized the protonated probes and increased the probe p K a values by < 1 unit. The results show that rational modification of the membrane composition is a general non-covalent way to fine-tune the p K a of an optical liposome sensor for optimal pH sensing performance.

  10. KSC-06pd2788

    NASA Image and Video Library

    2006-12-11

    KENNEDY SPACE CENTER, FLA. -- Workers at Astrotech Space Operations in Titusville, Fla., wipe down the crates containing the probes of the THEMIS spacecraft. THEMIS, which stands for Time History of Events and Macroscale Interactions during Substorms, comprises five identical probes that will study the dynamic and colorful eruptions of auroras. THEMIS is scheduled to launch Feb. 15 from Cape Canaveral Air Force Station. Photo credit: NASA/George Shelton

  11. KSC-06pd2787

    NASA Image and Video Library

    2006-12-11

    KENNEDY SPACE CENTER, FLA. -- Workers at Astrotech Space Operations in Titusville, Fla., wipe down the crates containing the probes of the THEMIS spacecraft. THEMIS, which stands for Time History of Events and Macroscale Interactions during Substorms, comprises five identical probes that will study the dynamic and colorful eruptions of auroras. THEMIS is scheduled to launch Feb. 15 from Cape Canaveral Air Force Station. Photo credit: NASA/George Shelton

  12. Molecular Dynamics and Theoretical Chemistry

    DTIC Science & Technology

    2013-03-08

    and structural stability compared to H-Si(111) • Air- and electrochemical-stability enables advanced sensors, fuel and solar cells , etc. • Probes...Diagnostics ARO – plasmonics AFOSR - Endo fuels, combustion, solar PNNL – Institute for Integrated Catalysis Navy, DTRA – Clusters AFRL, NASA, DoD...Propellants • Real-time probing of reactions • Hybrid Chemical Lasers • Sensors for Trace Detection Distribution A: Approved for public release

  13. Open-target sparse sensing of biological agents using DNA microarray

    PubMed Central

    2011-01-01

    Background Current biosensors are designed to target and react to specific nucleic acid sequences or structural epitopes. These 'target-specific' platforms require creation of new physical capture reagents when new organisms are targeted. An 'open-target' approach to DNA microarray biosensing is proposed and substantiated using laboratory generated data. The microarray consisted of 12,900 25 bp oligonucleotide capture probes derived from a statistical model trained on randomly selected genomic segments of pathogenic prokaryotic organisms. Open-target detection of organisms was accomplished using a reference library of hybridization patterns for three test organisms whose DNA sequences were not included in the design of the microarray probes. Results A multivariate mathematical model based on the partial least squares regression (PLSR) was developed to detect the presence of three test organisms in mixed samples. When all 12,900 probes were used, the model correctly detected the signature of three test organisms in all mixed samples (mean(R2)) = 0.76, CI = 0.95), with a 6% false positive rate. A sampling algorithm was then developed to sparsely sample the probe space for a minimal number of probes required to capture the hybridization imprints of the test organisms. The PLSR detection model was capable of correctly identifying the presence of the three test organisms in all mixed samples using only 47 probes (mean(R2)) = 0.77, CI = 0.95) with nearly 100% specificity. Conclusions We conceived an 'open-target' approach to biosensing, and hypothesized that a relatively small, non-specifically designed, DNA microarray is capable of identifying the presence of multiple organisms in mixed samples. Coupled with a mathematical model applied to laboratory generated data, and sparse sampling of capture probes, the prototype microarray platform was able to capture the signature of each organism in all mixed samples with high sensitivity and specificity. It was demonstrated that this new approach to biosensing closely follows the principles of sparse sensing. PMID:21801424

  14. Evaluation of Meteorological and Aerosol Sensing with small Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Claussen, Johanna; Möhler, Ottmar; Leisner, Thomas; Brooks, Ian; Norris, Sarah; Brooks, Barbara; Hill, Martin; Haunold, Werner; Schrod, Jann; Danielczok, Anja

    2013-04-01

    Atmospheric aerosols have a large impact on the climate system due to their influence on the global radiation budget. Local aerosol sources such as vegetation, (bare) soil or industrial sites have to be quantified with high resolution data to validate aerosol transport models and improve the input for high resolution weather models. Our goal is to evaluate the use of Unmanned Aerial Systems (UAS) as a method for acquisition of high resolution meteorological and aerosol data. During the INUIT measurement campaign in August 2012 at mount Großer Feldberg near Frankfurt, Germany, several flights with different sensor packages were carried out. We measured basic meteorological parameters such as temperature, relative humidity and air pressure with miniaturized onboard sensors. In addition, the Compact Lightweight Aerosol Spectrometer Probe (CLASP) for aerosol size distribution measurement or the Electrostatic Aerosol Collector (EAC) for aerosol sample collection was installed on board. CLASP measures aerosol particles with diameters from 0.17 μm to 9.5 μm in up to 32 channels at a frequency of 10 Hz. The EAC collects air samples at 2 l/min onto a sample holder. After the flight the ice nuclei on the sample holder are activated and counted in the isothermal static diffusion chamber FRIDGE. The results from the INUIT campaign and additional calibration laboratory measurements show that UAS are a valuable platform for miniaturized sensors. The number of ice nuclei was determined with the EAC at 200m above ground level and compared to the reference measurement on the ground.

  15. DIAGNOSTIC EVALUATION OF NUMBERICAL AIR QUALITY MODELS WITH SPECIALIZED AMBIENT OBSERVATIONS: TESTING THE COMMUNITY MULTISCALE AIR QUALITY MODELING SYSTEM (CMAQ) AT SELECTED SOS 95 GROUND SITES

    EPA Science Inventory

    Three probes for diagnosing photochemical dynamics are presented and applied to specialized ambient surface-level observations and to a numerical photochemical model to better understand rates of production and other process information in the atmosphere and in the model. Howeve...

  16. Improving the lateral resolution of quartz tuning fork-based sensors in liquid by integrating commercial AFM tips into the fiber end.

    PubMed

    Gonzalez, Laura; Martínez-Martín, David; Otero, Jorge; de Pablo, Pedro José; Puig-Vidal, Manel; Gómez-Herrero, Julio

    2015-01-14

    The use of quartz tuning fork sensors as probes for scanning probe microscopy is growing in popularity. Working in shear mode, some methods achieve a lateral resolution comparable with that obtained with standard cantilevered probes, but only in experiments conducted in air or vacuum. Here, we report a method to produce and use commercial AFM tips in electrically driven quartz tuning fork sensors operating in shear mode in a liquid environment. The process is based on attaching a standard AFM tip to the end of a fiber probe which has previously been sharpened. Only the end of the probe is immersed in the buffer solution during imaging. The lateral resolution achieved is about 6 times higher than that of the etched microfiber on its own.

  17. Probe for high resolution NMR with sample reorientation

    DOEpatents

    Pines, Alexander; Samoson, Ago

    1990-01-01

    An improved NMR probe and method are described which substantially improve the resolution of NMR measurements made on powdered or amorphous or otherwise orientationally disordered samples. The apparatus mechanically varies the orientation of the sample such that the time average of two or more sets of spherical harmonic functions are zero.

  18. Comparing Cognitive Interviewing and Online Probing: Do They Find Similar Results?

    ERIC Educational Resources Information Center

    Meitinger, Katharina; Behr, Dorothée

    2016-01-01

    This study compares the application of probing techniques in cognitive interviewing (CI) and online probing (OP). Even though the probing is similar, the methods differ regarding typical mode setting, sample size, level of interactivity, and goals. We analyzed probing answers to the International Social Survey Programme item battery on specific…

  19. Modulated microwave microscopy and probes used therewith

    DOEpatents

    Lai, Keji; Kelly, Michael; Shen, Zhi-Xun

    2012-09-11

    A microwave microscope including a probe tip electrode vertically positionable over a sample and projecting downwardly from the end of a cantilever. A transmission line connecting the tip electrode to the electronic control system extends along the cantilever and is separated from a ground plane at the bottom of the cantilever by a dielectric layer. The probe tip may be vertically tapped near or at the sample surface at a low frequency and the microwave signal reflected from the tip/sample interaction is demodulated at the low frequency. Alternatively, a low-frequency electrical signal is also a non-linear electrical element associated with the probe tip to non-linearly interact with the applied microwave signal and the reflected non-linear microwave signal is detected at the low frequency. The non-linear element may be semiconductor junction formed near the apex of the probe tip or be an FET formed at the base of a semiconducting tip.

  20. Design of planar microcoil-based NMR probe ensuring high SNR

    NASA Astrophysics Data System (ADS)

    Ali, Zishan; Poenar, D. P.; Aditya, Sheel

    2017-09-01

    A microNMR probe for ex vivo applications may consist of at least one microcoil, which can be used as the oscillating magnetic field (MF) generator as well as receiver coil, and a sample holder, with a volume in the range of nanoliters to micro-liters, placed near the microcoil. The Signal-to-Noise ratio (SNR) of such a probe is, however, dependent not only on its design but also on the measurement setup, and the measured sample. This paper introduces a performance factor P independent of both the proton spin density in the sample and the external DC magnetic field, and which can thus assess the performance of the probe alone. First, two of the components of the P factor (inhomogeneity factor K and filling factor η ) are defined and an approach to calculate their values for different probe variants from electromagnetic simulations is devised. A criterion based on dominant component of the magnetic field is then formulated to help designers optimize the sample volume which also affects the performance of the probe, in order to obtain the best SNR for a given planar microcoil. Finally, the P factor values are compared between different planar microcoils with different number of turns and conductor aspect ratios, and planar microcoils are also compared with conventional solenoids. These comparisons highlight which microcoil geometry-sample volume combination will ensure a high SNR under any external setup.

  1. A broad range assay for rapid detection and etiologic characterization of bacterial meningitis: performance testing in samples from sub-Sahara.

    PubMed

    Won, Helen; Yang, Samuel; Gaydos, Charlotte; Hardick, Justin; Ramachandran, Padmini; Hsieh, Yu-Hsiang; Kecojevic, Alexander; Njanpop-Lafourcade, Berthe-Marie; Mueller, Judith E; Tameklo, Tsidi Agbeko; Badziklou, Kossi; Gessner, Bradford D; Rothman, Richard E

    2012-09-01

    This study aimed to conduct a pilot evaluation of broad-based multiprobe polymerase chain reaction (PCR) in clinical cerebrospinal fluid (CSF) samples compared to local conventional PCR/culture methods used for bacterial meningitis surveillance. A previously described PCR consisting of initial broad-based detection of Eubacteriales by a universal probe, followed by Gram typing, and pathogen-specific probes was designed targeting variable regions of the 16S rRNA gene. The diagnostic performance of the 16S rRNA assay in "127 CSF samples was evaluated in samples from patients from Togo, Africa, by comparison to conventional PCR/culture methods. Our probes detected Neisseria meningitidis, Streptococcus pneumoniae, and Haemophilus influenzae. Uniprobe sensitivity and specificity versus conventional PCR were 100% and 54.6%, respectively. Sensitivity and specificity of uniprobe versus culture methods were 96.5% and 52.5%, respectively. Gram-typing probes correctly typed 98.8% (82/83) and pathogen-specific probes identified 96.4% (80/83) of the positives. This broad-based PCR algorithm successfully detected and provided species level information for multiple bacterial meningitis agents in clinical samples. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. A broad range assay for rapid detection and etiologic characterization of bacterial meningitis: performance testing in samples from sub-Sahara☆, ☆☆,★

    PubMed Central

    Won, Helen; Yang, Samuel; Gaydos, Charlotte; Hardick, Justin; Ramachandran, Padmini; Hsieh, Yu-Hsiang; Kecojevic, Alexander; Njanpop-Lafourcade, Berthe-Marie; Mueller, Judith E.; Tameklo, Tsidi Agbeko; Badziklou, Kossi; Gessner, Bradford D.; Rothman, Richard E.

    2012-01-01

    This study aimed to conduct a pilot evaluation of broad-based multiprobe polymerase chain reaction (PCR) in clinical cerebrospinal fluid (CSF) samples compared to local conventional PCR/culture methods used for bacterial meningitis surveillance. A previously described PCR consisting of initial broad-based detection of Eubacteriales by a universal probe, followed by Gram typing, and pathogen-specific probes was designed targeting variable regions of the 16S rRNA gene. The diagnostic performance of the 16S rRNA assay in “”127 CSF samples was evaluated in samples from patients from Togo, Africa, by comparison to conventional PCR/culture methods. Our probes detected Neisseria meningitidis, Streptococcus pneumoniae, and Haemophilus influenzae. Uniprobe sensitivity and specificity versus conventional PCR were 100% and 54.6%, respectively. Sensitivity and specificity of uniprobe versus culture methods were 96.5% and 52.5%, respectively. Gram-typing probes correctly typed 98.8% (82/83) and pathogen-specific probes identified 96.4% (80/83) of the positives. This broad-based PCR algorithm successfully detected and provided species level information for multiple bacterial meningitis agents in clinical samples. PMID:22809694

  3. Parker Solar Probe Delta IV Heavy LVOS

    NASA Image and Video Library

    2018-04-17

    A brilliant blue sky serves as a backdrop as the United Launch Alliance Delta IV Heavy first stage is being lifted to the vertical position at the Vertical Integration Facility near Space Launch 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  4. Parker Solar Probe Delta IV Heavy LVOS

    NASA Image and Video Library

    2018-04-17

    A view from above in the Vertical Integration Facility near Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The first stage of a United Launch Alliance Delta IV Heavy is being prepared to be lifted to vertical in the facility. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  5. Note: Measurement of the cathode layer thickness in glow discharges with a Langmuir probe

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Hou, Xinyu; Zou, Xiaobing; Luo, Haiyun; Wang, Xinxin

    2018-06-01

    A method using a Langmuir probe to determine the thickness of the cathode layer for a glow discharge is developed. The method is based on the phenomenon that the curve of the voltage-current characteristics changes in shape as the Langmuir probe moves from the positive column into the cathode layer. The method was used to measure the thicknesses of the cathode layer in the normal glow discharges of argon and air with the cathodes made from stainless steel and aluminum. The results are in good agreement with those given in a book of gas discharge.

  6. Parker Solar Probe Delta IV Heavy LVOS

    NASA Image and Video Library

    2018-04-17

    A brilliant blue sky serves as a backdrop as the United Launch Alliance Delta IV Heavy first stage is being lifted to the vertical position at the Vertical Integration Facility near Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  7. Two-phase flow measurements with advanced instrumented spool pieces and local conductivity probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turnage, K.G.; Davis, C.E.

    1979-01-01

    A series of two-phase, air-water and steam-water tests performed with instrumented spool pieces and with conductivity probes obtained from Atomic Energy of Canada, Ltd. is described. The behavior of the three-beam densitometer, turbine meter, and drag flowmeter is discussed in terms of two-phase models. Application of some two-phase mass flow models to the recorded spool piece data is made and preliminary results are shown. Velocity and void fraction information derived from the conductivity probes is presented and compared to velocities and void fractions obtained using the spool piece instrumentation.

  8. Rapid detection of Listeria monocytogenes in foods, by a combination of PCR and DNA probe.

    PubMed

    Ingianni, A; Floris, M; Palomba, P; Madeddu, M A; Quartuccio, M; Pompei, R

    2001-10-01

    Listeria monocytogenes is a frequent contaminant of water and foods. Its rapid detection is needed before some foods can be prepared for marketing. In this work L. monocytogenes has been searched for in foods, by a combination of polymerase chain reaction (PCR) and a DNA probe. Both PCR and the probe were prepared for recognizing a specific region of the internalin gene, which is responsible for the production of one of the most important pathogenic factors of Listeria. The combined use of PCR and the DNA probe was used for the detection of L. monocytogenes in over 180 environmental and food samples. Several detection methods were compared in this study, namely conventional culture methods; direct PCR; PCR after an enrichment step; a DNA probe alone; a DNA probe after enrichment and another commercially available gene-probe. Finally PCR and the DNA probe were used in series on all the samples collected. When the DNA probe was associated with the PCR, specific and accurate detection of listeria in the samples could be obtained in about a working-day. The present molecular method showed some advantages in terms of rapidity and specificity in comparison to the other aforementioned tests. In addition, it resulted as being easy to handle, even for non-specialized personnel in small diagnostic microbiology laboratories. Copyright 2001 Academic Press.

  9. 40 CFR 60.386 - Test methods and procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... The sample volume for each run shall be at least 1.70 dscm (60 dscf). The sampling probe and filter... probe and filter temperature slightly above the effluent temperature (up to a maximum filter temperature...

  10. 40 CFR 60.386 - Test methods and procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... The sample volume for each run shall be at least 1.70 dscm (60 dscf). The sampling probe and filter... probe and filter temperature slightly above the effluent temperature (up to a maximum filter temperature...

  11. 40 CFR 60.386 - Test methods and procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... The sample volume for each run shall be at least 1.70 dscm (60 dscf). The sampling probe and filter... probe and filter temperature slightly above the effluent temperature (up to a maximum filter temperature...

  12. 40 CFR 89.413 - Raw sampling procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) The gaseous emission sampling probe must be installed at least 0.5 m or 3 times the diameter of the... multi-cylinder engine with a branched exhaust manifold, the inlet of the probe shall be located...

  13. 40 CFR 60.386 - Test methods and procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... The sample volume for each run shall be at least 1.70 dscm (60 dscf). The sampling probe and filter... probe and filter temperature slightly above the effluent temperature (up to a maximum filter temperature...

  14. Thin Cu film resistivity using four probe techniques: Effect of film thickness and geometrical shapes

    NASA Astrophysics Data System (ADS)

    Choudhary, Sumita; Narula, Rahul; Gangopadhyay, Subhashis

    2018-05-01

    Precise measurement of electrical sheet resistance and resistivity of metallic thin Cu films may play a significant role in temperature sensing by means of resistivity changes which can further act as a safety measure of various electronic devices during their operation. Four point probes resistivity measurement is a useful approach as it successfully excludes the contact resistance between the probes and film surface of the sample. Although, the resistivity of bulk samples at a particular temperature mostly depends on its materialistic property, however, it may significantly differ in the case of thin films, where the shape and thickness of the sample can significantly influence on it. Depending on the ratio of the film thickness to probe spacing, samples are usually classified in two segments such as (i) thick films or (ii) thin films. Accordingly, the geometric correction factors G can be related to the sample resistivity r, which has been calculated here for thin Cu films of thickness up to few 100 nm. In this study, various rectangular shapes of thin Cu films have been used to determine the shape induced geometric correction factors G. An expressions for G have been obtained as a function of film thickness t versus the probe spacing s. Using these expressions, the correction factors have been plotted separately for each cases as a function of (a) film thickness for fixed linear probe spacing and (b) probe distance from the edge of the film surface for particular thickness. Finally, we compare the experimental results of thin Cu films of various rectangular geometries with the theoretical reported results.

  15. Development, fabrication and testing of a magnetically connected plastic vacuum probe surface sampler

    NASA Technical Reports Server (NTRS)

    Phillips, G. B.; Pace, V. A., Jr.

    1972-01-01

    The sampler utilizes permanent magnets and soft metal pole pieces to connect the cone/filter assembly to the sampling head and vacuum supply. The cone/filter assembly is packaged in a plastic container and presterilized so that the need for any human contact during the sampling procedure is completely eliminated. Microbiological tests have demonstrated that the sampling efficiency is not affected by the magnetic coupling apparatus and that the probe appears to function as efficiently as the conventional plastic and Sandia vacuum probes.

  16. Hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering at flame temperatures using a second-harmonic bandwidth-compressed probe.

    PubMed

    Kearney, Sean P; Scoglietti, Daniel J

    2013-03-15

    We demonstrate an approach for picosecond probe-beam generation that enables hybrid femtosecond/picosecond pure-rotational coherent anti-Stokes Raman scattering (CARS) measurements in flames. Sum-frequency generation of bandwidth-compressed picosecond radiation from femtosecond pumps with phase-conjugate chirps provides probe pulses with energies in excess of 1 mJ that are temporally locked to the femtosecond pump/Stokes preparation. This method overcomes previous limitations on hybrid femtosecond/picosecond rotational CARS techniques, which have relied upon less efficient bandwidth-reduction processes that have generally resulted in prohibitively low probe energy for flame measurements. We provide the details of the second-harmonic approach and demonstrate the technique in near-adiabatic hydrogen/air flames.

  17. Genus Level Identification of Mycobacteria from Clinical Specimens by Using an Easy-To-Handle Mycobacterium-Specific PCR Assay

    PubMed Central

    Stauffer, Fritz; Haber, Heinrich; Rieger, Armin; Mutschlechner, Robert; Hasenberger, Petra; Tevere, Vincent J.; Young, Karen K. Y.

    1998-01-01

    An easy-to-handle Mycobacterium-specific PCR assay for detection of the presence of a wide range of mycobacterial species in clinical samples was evaluated. The performance of the genus probe was compared with the performance of probes specific for Mycobacterium tuberculosis and Mycobacterium avium and with that of standard culture. In addition, the utility of an internal control in monitoring amplification inhibitors was studied. Of 545 respiratory and 325 nonrespiratory specimens (a total of 870 specimens), 58 (6.7%) showed the presence of amplification inhibitors, as determined by a negative result for the internal control. Of these 58 specimens, 31 (53%) were stool specimens; other material, even citrate blood after lysis of erythrocytes, did not pose a problem with regard to inhibition of PCR amplification. Eighty-one of the remaining 812 specimens had a positive Mycobacterium culture result. Of these culture-positive specimens, 58 (71.6%) showed a positive result with the Mycobacterium genus-specific probe. Seventy-two samples had a positive result with the Mycobacterium-specific probe but a negative culture result. Of these 72 samples, 26 samples were regarded as true positive, either because the M. tuberculosis- or M. avium-specific probe was also positive at the same time or because other specimens from the same patient taken at the same time were culture positive. The sensitivity of the Mycobacterium-specific probe was 78.5% and the specificity was 93.5%. This study showed that pretesting of clinical specimens for mycobacteria to the genus level with a Mycobacterium-specific probe offers the routine clinical laboratory the possibility of detecting tuberculous and nontuberculous mycobacteria with one test. Furthermore, specimens testing positive with the genus-specific probe can be immediately identified with species-specific probes. PMID:9508282

  18. Theoretical analysis of a dual-probe scanning tunneling microscope setup on graphene.

    PubMed

    Settnes, Mikkel; Power, Stephen R; Petersen, Dirch H; Jauho, Antti-Pekka

    2014-03-07

    Experimental advances allow for the inclusion of multiple probes to measure the transport properties of a sample surface. We develop a theory of dual-probe scanning tunneling microscopy using a Green's function formalism, and apply it to graphene. Sampling the local conduction properties at finite length scales yields real space conductance maps which show anisotropy for pristine graphene systems and quantum interference effects in the presence of isolated impurities. Spectral signatures in the Fourier transforms of real space conductance maps include characteristics that can be related to different scattering processes. We compute the conductance maps of graphene systems with different edge geometries or height fluctuations to determine the effects of nonideal graphene samples on dual-probe measurements.

  19. United States Air Force Summer Faculty Research Program: Program Management Report

    DTIC Science & Technology

    1988-12-01

    Laboratory 64 Realization of Sublayer Relative Dr. Lane Clark Shielding Order in Electromagnetic Topology 65 Diode Laser Probe of Vibrational Dr. David...given. In addition, all possible sublayer topologies with relative shielding order at most 5 are explicitly given. S863 Diode Laser Probe of...dioxide at 193 nm to prepare the SO radicals. High resolution diode laser absorption spectrometry will be used to obtain time-dependent concentrations

  20. Nano-material processing with laser radiation in the near field of a scanning probe tip

    NASA Astrophysics Data System (ADS)

    Jersch, J.; Demming, F.; Hildenhagen, J.; Dickmann, K.

    1998-04-01

    We report preliminary results of using a scanning probe microscope/laser combination to perform nanostructuring on insulator and metal surfaces in air. This technique enables processing of structures with a lateral resolution of approximately 10 nm. In this paper we present our last structuring results with both scanning tunnelling and scanning force microscopy. Some possible interaction mechanisms responsible for the structuring will be discussed.

  1. KSC-06pd2792

    NASA Image and Video Library

    2006-12-11

    KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations in Titusville, Fla., one of the probes of the THEMIS spacecraft is revealed after the crate and cover were removed. THEMIS, which stands for Time History of Events and Macroscale Interactions during Substorms, comprises five identical probes that will study the dynamic and colorful eruptions of auroras. THEMIS is scheduled to launch Feb. 15 from Cape Canaveral Air Force Station. Photo credit: NASA/George Shelton

  2. KSC-06pd2793

    NASA Image and Video Library

    2006-12-11

    KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations in Titusville, Fla., one of the probes of the THEMIS spacecraft is revealed after the crate and cover were removed. THEMIS, which stands for Time History of Events and Macroscale Interactions during Substorms, comprises five identical probes that will study the dynamic and colorful eruptions of auroras. THEMIS is scheduled to launch Feb. 15 from Cape Canaveral Air Force Station. Photo credit: NASA/George Shelton

  3. Multiparameter spatio-thermochemical probing of flame–wall interactions advanced with coherent Raman imaging

    DOE PAGES

    Bohlin, Gustav Alexis; Jainski, Christopher; Patterson, Brian D.; ...

    2016-08-10

    Ultrabroadband coherent anti-Stokes Ra man spectroscopy (CARS) has been developed for one -dimensional imaging of temperature and major species distributions simultaneously in the near-wall region of a methane/air flame supported on a side-wall-quenching (SWQ) burner. Automatic temporal and spatial overlap of the ~7 femtosecond pump and Stokes pulses is achieved utilizing a two-beam CARS phase-matching scheme, and the crossed ~75 picosecond probe beam provide s excellent spatial sectioning of the probed location. Concurrent detection of N 2, O 2, H 2, CO, CO 2, and CH 4 is demonstrated while high-fidelity flame thermometry is assessed from the N 2 puremore » rotational S-branch in a one-dimensional -CARS imaging configuration. A methane/air premixed flame at lean, stoichiometric, and rich conditions ( Φ = 0.83, 1.0 , and 1.2) and Reynolds number = 5,000 is probed as it quenches against a cooled steel side- wall parallel to the flow providing a persistent flame-wall interaction. Here, an imaging resolution of better than 40 μm is achieved across the field -of-view, thus allowing thermochemical states (temperature and major species) of the thermal boundary layer to be resolved to within ~30 μm of the interface.« less

  4. Multiparameter spatio-thermochemical probing of flame–wall interactions advanced with coherent Raman imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohlin, Gustav Alexis; Jainski, Christopher; Patterson, Brian D.

    Ultrabroadband coherent anti-Stokes Ra man spectroscopy (CARS) has been developed for one -dimensional imaging of temperature and major species distributions simultaneously in the near-wall region of a methane/air flame supported on a side-wall-quenching (SWQ) burner. Automatic temporal and spatial overlap of the ~7 femtosecond pump and Stokes pulses is achieved utilizing a two-beam CARS phase-matching scheme, and the crossed ~75 picosecond probe beam provide s excellent spatial sectioning of the probed location. Concurrent detection of N 2, O 2, H 2, CO, CO 2, and CH 4 is demonstrated while high-fidelity flame thermometry is assessed from the N 2 puremore » rotational S-branch in a one-dimensional -CARS imaging configuration. A methane/air premixed flame at lean, stoichiometric, and rich conditions ( Φ = 0.83, 1.0 , and 1.2) and Reynolds number = 5,000 is probed as it quenches against a cooled steel side- wall parallel to the flow providing a persistent flame-wall interaction. Here, an imaging resolution of better than 40 μm is achieved across the field -of-view, thus allowing thermochemical states (temperature and major species) of the thermal boundary layer to be resolved to within ~30 μm of the interface.« less

  5. Terahertz imaging with sub-wavelength resolution by femtosecond laser filament in air

    PubMed Central

    Zhao, Jiayu; Chu, Wei; Guo, Lanjun; Wang, Zhi; Yang, Jing; Liu, Weiwei; Cheng, Ya; Xu, Zhizhan

    2014-01-01

    Terahertz (THz) imaging provides cutting edge technique in biology, medical sciences and non-destructive evaluation. However, due to the long wavelength of the THz wave, the obtained resolution of THz imaging is normally a few hundred microns and is much lower than that of the traditional optical imaging. We introduce a sub-wavelength resolution THz imaging technique which uses the THz radiation generated by a femtosecond laser filament in air as the probe. This method is based on the fact that the femtosecond laser filament forms a waveguide for the THz wave in air. The diameter of the THz beam, which propagates inside the filament, varies from 20 μm to 50 μm, which is significantly smaller than the wavelength of the THz wave. Using this highly spatially confined THz beam as the probe, THz imaging with resolution as high as 20 μm (~λ/38 at 0.4 THz) can be realized. PMID:24457525

  6. Water at surfaces with tunable surface chemistries

    NASA Astrophysics Data System (ADS)

    Sanders, Stephanie E.; Vanselous, Heather; Petersen, Poul B.

    2018-03-01

    Aqueous interfaces are ubiquitous in natural environments, spanning atmospheric, geological, oceanographic, and biological systems, as well as in technical applications, such as fuel cells and membrane filtration. Where liquid water terminates at a surface, an interfacial region is formed, which exhibits distinct properties from the bulk aqueous phase. The unique properties of water are governed by the hydrogen-bonded network. The chemical and physical properties of the surface dictate the boundary conditions of the bulk hydrogen-bonded network and thus the interfacial properties of the water and any molecules in that region. Understanding the properties of interfacial water requires systematically characterizing the structure and dynamics of interfacial water as a function of the surface chemistry. In this review, we focus on the use of experimental surface-specific spectroscopic methods to understand the properties of interfacial water as a function of surface chemistry. Investigations of the air-water interface, as well as efforts in tuning the properties of the air-water interface by adding solutes or surfactants, are briefly discussed. Buried aqueous interfaces can be accessed with careful selection of spectroscopic technique and sample configuration, further expanding the range of chemical environments that can be probed, including solid inorganic materials, polymers, and water immiscible liquids. Solid substrates can be finely tuned by functionalization with self-assembled monolayers, polymers, or biomolecules. These variables provide a platform for systematically tuning the chemical nature of the interface and examining the resulting water structure. Finally, time-resolved methods to probe the dynamics of interfacial water are briefly summarized before discussing the current status and future directions in studying the structure and dynamics of interfacial water.

  7. STM, SECPM, AFM and Electrochemistry on Single Crystalline Surfaces

    PubMed Central

    Wolfschmidt, Holger; Baier, Claudia; Gsell, Stefan; Fischer, Martin; Schreck, Matthias; Stimming, Ulrich

    2010-01-01

    Scanning probe microscopy (SPM) techniques have had a great impact on research fields of surface science and nanotechnology during the last decades. They are used to investigate surfaces with scanning ranges between several 100 μm down to atomic resolution. Depending on experimental conditions, and the interaction forces between probe and sample, different SPM techniques allow mapping of different surface properties. In this work, scanning tunneling microscopy (STM) in air and under electrochemical conditions (EC-STM), atomic force microscopy (AFM) in air and scanning electrochemical potential microscopy (SECPM) under electrochemical conditions, were used to study different single crystalline surfaces in electrochemistry. Especially SECPM offers potentially new insights into the solid-liquid interface by providing the possibility to image the potential distribution of the surface, with a resolution that is comparable to STM. In electrocatalysis, nanostructured catalysts supported on different electrode materials often show behavior different from their bulk electrodes. This was experimentally and theoretically shown for several combinations and recently on Pt on Au(111) towards fuel cell relevant reactions. For these investigations single crystals often provide accurate and well defined reference and support systems. We will show heteroepitaxially grown Ru, Ir and Rh single crystalline surface films and bulk Au single crystals with different orientations under electrochemical conditions. Image studies from all three different SPM methods will be presented and compared to electrochemical data obtained by cyclic voltammetry in acidic media. The quality of the single crystalline supports will be verified by the SPM images and the cyclic voltammograms. Furthermore, an outlook will be presented on how such supports can be used in electrocatalytic studies. PMID:28883327

  8. Pump-probe nonlinear phase dispersion spectroscopy.

    PubMed

    Robles, Francisco E; Samineni, Prathyush; Wilson, Jesse W; Warren, Warren S

    2013-04-22

    Pump-probe microscopy is an imaging technique that delivers molecular contrast of pigmented samples. Here, we introduce pump-probe nonlinear phase dispersion spectroscopy (PP-NLDS), a method that leverages pump-probe microscopy and spectral-domain interferometry to ascertain information from dispersive and resonant nonlinear effects. PP-NLDS extends the information content to four dimensions (phase, amplitude, wavelength, and pump-probe time-delay) that yield unique insight into a wider range of nonlinear interactions compared to conventional methods. This results in the ability to provide highly specific molecular contrast of pigmented and non-pigmented samples. A theoretical framework is described, and experimental results and simulations illustrate the potential of this method. Implications for biomedical imaging are discussed.

  9. Pump-probe nonlinear phase dispersion spectroscopy

    PubMed Central

    Robles, Francisco E.; Samineni, Prathyush; Wilson, Jesse W.; Warren, Warren S.

    2013-01-01

    Pump-probe microscopy is an imaging technique that delivers molecular contrast of pigmented samples. Here, we introduce pump-probe nonlinear phase dispersion spectroscopy (PP-NLDS), a method that leverages pump-probe microscopy and spectral-domain interferometry to ascertain information from dispersive and resonant nonlinear effects. PP-NLDS extends the information content to four dimensions (phase, amplitude, wavelength, and pump-probe time-delay) that yield unique insight into a wider range of nonlinear interactions compared to conventional methods. This results in the ability to provide highly specific molecular contrast of pigmented and non-pigmented samples. A theoretical framework is described, and experimental results and simulations illustrate the potential of this method. Implications for biomedical imaging are discussed. PMID:23609646

  10. Carbon nanotube scanning probe for imaging in aqueous environment

    NASA Technical Reports Server (NTRS)

    Stevens, Ramsey M.; Nguyen, Cattien V.; Meyyappan, M.

    2004-01-01

    Carbon nanotubes (CNTs) used as a probe for scanning probe microscopy has become one of the many potential usages of CNTs that is finding real applications in scientific research and industrial communities. It has been proposed that the unique mechanical buckling properties of the CNT would lessen the imaging force exerted on the sample and, thus, make CNT scanning probes ideal for imaging soft materials, including biological samples in liquid environments. The hydrophobic nature of the CNT graphitic sidewall is clearly chemically incompatible with the aqueous solution requirements in some biological imaging applications. In this paper, we present electron micrograph results demonstrating the instability of CNT scanning probes when submerged in aqueous solution. Moreover, we also introduce a novel approach to resolve this chemical incompatibility problem. By coating the CNT probe with ethylenediamine, thus rendering the CNT probe less hydrophobic, we demonstrate the liquid imaging capability of treated CNT probes. Experimental data for imaging in aqueous solutions are presented, which include an ultrathin Ir film and DNA molecules on a mica surface.

  11. Improved Cloud Condensation Nucleus Spectrometer

    NASA Technical Reports Server (NTRS)

    Leu, Ming-Taun

    2010-01-01

    An improved thermal-gradient cloud condensation nucleus spectrometer (CCNS) has been designed to provide several enhancements over prior thermal- gradient counters, including fast response and high-sensitivity detection covering a wide range of supersaturations. CCNSs are used in laboratory research on the relationships among aerosols, supersaturation of air, and the formation of clouds. The operational characteristics of prior counters are such that it takes long times to determine aerosol critical supersaturations. Hence, there is a need for a CCNS capable of rapid scanning through a wide range of supersaturations. The present improved CCNS satisfies this need. The improved thermal-gradient CCNS (see Figure 1) incorporates the following notable features: a) The main chamber is bounded on the top and bottom by parallel thick copper plates, which are joined by a thermally conductive vertical wall on one side and a thermally nonconductive wall on the opposite side. b) To establish a temperature gradient needed to establish a supersaturation gradient, water at two different regulated temperatures is pumped through tubes along the edges of the copper plates at the thermally-nonconductive-wall side. Figure 2 presents an example of temperature and supersaturation gradients for one combination of regulated temperatures at the thermally-nonconductive-wall edges of the copper plates. c) To enable measurement of the temperature gradient, ten thermocouples are cemented to the external surfaces of the copper plates (five on the top plate and five on the bottom plate), spaced at equal intervals along the width axis of the main chamber near the outlet end. d) Pieces of filter paper or cotton felt are cemented onto the interior surfaces of the copper plates and, prior to each experimental run, are saturated with water to establish a supersaturation field inside the main chamber. e) A flow of monodisperse aerosol and a dilution flow of humid air are introduced into the main chamber at the inlet end. The inlet assembly is designed to offer improved (relative to prior such assemblies) laminar-flow performance within the main chamber. Dry aerosols are subjected to activation and growth in the supersaturation field. f) After aerosol activation, at the outlet end of the main chamber, a polished stainless-steel probe is used to sample droplets into a laser particle counter. The probe features an improved design for efficient sampling. The counter has six channels with size bins in the range of 0.5- to 5.0-micron diameter. g) To enable efficient sampling, the probe is scanned along the width axis of the main chamber (thereby effecting scanning along the temperature gradient and thereby, further, effecting scanning along the supersaturation gradient) by means of a computer-controlled translation stage.

  12. Probe for high resolution NMR with sample reorientation

    DOEpatents

    Pines, A.; Samoson, A.

    1990-02-06

    An improved NMR probe and method are described which substantially improve the resolution of NMR measurements made on powdered or amorphous or otherwise orientationally disordered samples. The apparatus mechanically varies the orientation of the sample such that the time average of two or more sets of spherical harmonic functions are zero. 8 figs.

  13. Probing Atmospheric Electric Fields in Thunderstorms through Radio Emission from Cosmic-Ray-Induced Air Showers.

    PubMed

    Schellart, P; Trinh, T N G; Buitink, S; Corstanje, A; Enriquez, J E; Falcke, H; Hörandel, J R; Nelles, A; Rachen, J P; Rossetto, L; Scholten, O; Ter Veen, S; Thoudam, S; Ebert, U; Koehn, C; Rutjes, C; Alexov, A; Anderson, J M; Avruch, I M; Bentum, M J; Bernardi, G; Best, P; Bonafede, A; Breitling, F; Broderick, J W; Brüggen, M; Butcher, H R; Ciardi, B; de Geus, E; de Vos, M; Duscha, S; Eislöffel, J; Fallows, R A; Frieswijk, W; Garrett, M A; Grießmeier, J; Gunst, A W; Heald, G; Hessels, J W T; Hoeft, M; Holties, H A; Juette, E; Kondratiev, V I; Kuniyoshi, M; Kuper, G; Mann, G; McFadden, R; McKay-Bukowski, D; McKean, J P; Mevius, M; Moldon, J; Norden, M J; Orru, E; Paas, H; Pandey-Pommier, M; Pizzo, R; Polatidis, A G; Reich, W; Röttgering, H; Scaife, A M M; Schwarz, D J; Serylak, M; Smirnov, O; Steinmetz, M; Swinbank, J; Tagger, M; Tasse, C; Toribio, M C; van Weeren, R J; Vermeulen, R; Vocks, C; Wise, M W; Wucknitz, O; Zarka, P

    2015-04-24

    We present measurements of radio emission from cosmic ray air showers that took place during thunderstorms. The intensity and polarization patterns of these air showers are radically different from those measured during fair-weather conditions. With the use of a simple two-layer model for the atmospheric electric field, these patterns can be well reproduced by state-of-the-art simulation codes. This in turn provides a novel way to study atmospheric electric fields.

  14. Switching-angle sample spinning NMR probe with a commercially available 20 kHz spinning system

    NASA Astrophysics Data System (ADS)

    Mizuno, Takashi; Takegoshi, K.; Terao, Takehiko

    2004-11-01

    A switching-angle sample spinning (SASS) probe workable at high spinning speeds was developed using a commercially available rotor/housing system. Details of the construction are described. As application examples of the SASS probe, we report experiments of powder pattern separation at the spinning speed of 20 kHz and broadband 13C- 13C polarization transfer at 16 kHz.

  15. Total RNA Sequencing Analysis of DCIS Progressing to Invasive Breast Cancer

    DTIC Science & Technology

    2015-09-01

    EPICOPY to obtain reliable copy number variation ( CNV ) data from the methylome array data, thereby decreasing the DNA requirements in half...in the R statistical environment. Samples were assessed for good performance on the array using detection p-values, a metric implemented by...Illumina to identify probes detected with confidence. Samples less than 90% of probes detected were removed from the analysis and probes undetected in any

  16. Nonisotopic detection of human papillomavirus DNA in clinical specimens using a consensus PCR and a generic probe mix in an enzyme-linked immunosorbent assay format.

    PubMed

    Kornegay, J R; Shepard, A P; Hankins, C; Franco, E; Lapointe, N; Richardson, H; Coutleé, F

    2001-10-01

    We assessed the value of a new digoxigenin (DIG)-labeled generic probe mix in a PCR-enzyme-linked immunosorbent assay format to screen for the presence of human papillomavirus (HPV) DNA amplified from clinical specimens. After screening with this new generic assay is performed, HPV DNA-positive samples can be directly genotyped using a reverse blotting method with product from the same PCR amplification. DNA from 287 genital specimens was amplified via PCR using biotin-labeled consensus primers directed to the L1 gene. HPV amplicons were captured on a streptavidin-coated microwell plate (MWP) and detected with a DIG-labeled HPV generic probe mix consisting of nested L1 fragments from types 11, 16, 18, and 51. Coamplification and detection of human DNA with biotinylated beta-globin primers served as a control for both sample adequacy and PCR amplification. All specimens were genotyped using a reverse line blot assay (13). Results for the generic assay using MWPs and a DIG-labeled HPV generic probe mix (DIG-MWP generic probe assay) were compared with results from a previous analysis using dot blots with a radiolabeled nested generic probe mix and type-specific probes for genotyping. The DIG-MWP generic probe assay resulted in high intralaboratory concordance in genotyping results (88% versus 73% agreement using traditional methods). There were 207 HPV-positive results using the DIG-MWP method and 196 positives using the radiolabeled generic probe technique, suggesting slightly improved sensitivity. Only one sample failed to test positive with the DIG-MWP generic probe assay in spite of a positive genotyping result. Concordance between the two laboratories was nearly 87%. Approximately 6% of samples that were positive or borderline when tested with the DIG-MWP generic probe assay were not detected with the HPV type-specific panel, perhaps representing very rare or novel HPV types. This new method is easier to perform than traditional generic probe techniques and uses more objective interpretation criteria, making it useful in studies of HPV natural history.

  17. Determining confounding sensitivities in eddy current thin film measurements

    NASA Astrophysics Data System (ADS)

    Gros, Ethan; Udpa, Lalita; Smith, James A.; Wachs, Katelyn

    2017-02-01

    Eddy current (EC) techniques are widely used in industry to measure the thickness of non-conductive films on a metal substrate. This is done by using a system whereby a coil carrying a high-frequency alternating current is used to create an alternating magnetic field at the surface of the instrument's probe. When the probe is brought near a conductive surface, the alternating magnetic field will induce ECs in the conductor. The substrate characteristics and the distance of the probe from the substrate (the coating thickness) affect the magnitude of the ECs. The induced currents load the probe coil affecting the terminal impedance of the coil. The measured probe impedance is related to the lift off between coil and conductor as well as conductivity of the test sample. For a known conductivity sample, the probe impedance can be converted into an equivalent film thickness value. The EC measurement can be confounded by a number of measurement parameters. It was the goal of this research to determine which physical properties of the measurement set-up and sample can adversely affect the thickness measurement. The eddy-current testing was performed using a commercially available, hand-held eddy-current probe (ETA3.3H spring-loaded eddy probe running at 8 MHz) that comes with a stand to hold the probe. The stand holds the probe and adjusts the probe on the z-axis to help position the probe in the correct area as well as make precise measurements. The signal from the probe was sent to a hand-held readout, where the results are recorded directly in terms of liftoff or film thickness. Understanding the effect of certain factors on the measurements of film thickness, will help to evaluate how accurate the ETA3.3H spring-loaded eddy probe was at measuring film thickness under varying experimental conditions. This research studied the effects of a number of factors such as i) conductivity, ii) edge effect, iii) surface finish of base material and iv) cable condition.

  18. 'FloraArray' for screening of specific DNA probes representing the characteristics of a certain microbial community.

    PubMed

    Yokoi, Takahide; Kaku, Yoshiko; Suzuki, Hiroyuki; Ohta, Masayuki; Ikuta, Hajime; Isaka, Kazuichi; Sumino, Tatsuo; Wagatsuma, Masako

    2007-08-01

    To investigate uncharacterized microbial communities, a custom DNA microarray named 'FloraArray' was developed for screening specific probes that would represent the characteristics of a microbial community. The array was prepared by spotting 2000 plasmid DNAs from a genomic shotgun library of a sludge sample on a DNA microarray. By comparative hybridization of the array with two different samples of genomic DNA, one from the activated sludge and the other from a nonactivated sludge sample of an anaerobic ammonium oxidation (anammox) bacterial community, specific spots were visualized as a definite fluctuating profile in an MA (differential intensity ratio vs. spot intensity) plot. About 300 spots of the array accounted for the candidate probes to represent anammox reaction of the activated sludge. After sequence analysis of the probes and examination of the results of blastn searches against the reported anammox reference sequence, complete matches were found for 161 probes (58.3%) and >90% matches were found for 242 probes (87.1%). These results demonstrate that 'FloraArray' could be a useful tool for screening specific DNA molecules of unknown microbial communities.

  19. In situ identification of nocardioform actinomycetes in activated sludge using fluorescent rRNA-targeted oligonucleotide probes.

    PubMed

    Schuppler, M; Wagner, M; Schön, G; Göbel, U B

    1998-01-01

    Hitherto, few environmental samples have been investigated by a 'full cycle rRNA analysis'. Here the results of in situ hybridization experiments with specific rRNA-targeted oligonucleotide probes developed on the basis of new sequences derived from a previously described comparative 16S rRNA analysis of nocardioform actinomycetes in activated sludge are reported. Application of the specific probes enabled identification and discrimination of the distinct populations of nocardioform actinomycetes in activated sludge. One of the specific probes (DLP) detected rod-shaped bacteria which were found in 13 of the 16 investigated sludge samples from various wastewater treatment plants, suggesting their importance in the wastewater treatment process. Another probe (GLP2) hybridized with typically branched filaments of nocardioforms mainly found in samples from enhanced biological phosphorus removal plants, suggesting that these bacteria are involved in sludge foaming. The combination of in situ hybridization with fluorescently labelled rRNA-targeted oligonucleotide probes and confocal laser scanning microscopy improved the detection of nocardioform actinomycetes, which often showed only weak signals inside the activated-sludge flocs.

  20. Pump and probe spectroscopy with continuous wave quantum cascade lasers.

    PubMed

    Kirkbride, James M R; Causier, Sarah K; Dalton, Andrew R; Weidmann, Damien; Ritchie, Grant A D

    2014-02-07

    This paper details infra-red pump and probe studies on nitric oxide conducted with two continuous wave quantum cascade lasers both operating around 5 μm. The pump laser prepares a velocity selected population in a chosen rotational quantum state of the v = 1 level which is subsequently probed using a second laser tuned to a rotational transition within the v = 2 ← v = 1 hot band. The rapid frequency scan of the probe (with respect to the molecular collision rate) in combination with the velocity selective pumping allows observation of marked rapid passage signatures in the transient absorption profiles from the polarized vibrationally excited sample. These coherent transient signals are influenced by the underlying hyperfine structure of the pump and probe transitions, the sample pressure, and the coherent properties of the lasers. Pulsed pump and probe studies show that the transient absorption signals decay within 1 μs at 50 mTorr total pressure, reflecting both the polarization and population dephasing times of the vibrationally excited sample. The experimental observations are supported by simulation based upon solving the optical Bloch equations for a two level system.

  1. VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, a balloon gently lifts the solar array panel to be installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-04

    VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, a balloon gently lifts the solar array panel to be installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  2. VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, the Gravity Probe B spacecraft is seen with all four solar array panels installed. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-04

    VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, the Gravity Probe B spacecraft is seen with all four solar array panels installed. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  3. VANDENBERG AFB, CALIF. - A worker in the NASA spacecraft processing facility on North Vandenberg Air Force Base adjust the supports on a solar array panel to be lifted and installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-03

    VANDENBERG AFB, CALIF. - A worker in the NASA spacecraft processing facility on North Vandenberg Air Force Base adjust the supports on a solar array panel to be lifted and installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  4. VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, the Gravity Probe B spacecraft is seen with two solar array panels installed. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-04

    VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, the Gravity Probe B spacecraft is seen with two solar array panels installed. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  5. VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, Dr. Francis Everitt, principal investigator, and Brad Parkinson, co-principal investigator, both from Stanford University, hold one of the small gyroscopes used in the Gravity Probe B spacecraft. The GP-B towers behind them. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-10

    VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, Dr. Francis Everitt, principal investigator, and Brad Parkinson, co-principal investigator, both from Stanford University, hold one of the small gyroscopes used in the Gravity Probe B spacecraft. The GP-B towers behind them. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  6. VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, a worker checks the installation of a solar array panel onto the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-04

    VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, a worker checks the installation of a solar array panel onto the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  7. VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base prepare for the installation of solar array panel 3 on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-03

    VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base prepare for the installation of solar array panel 3 on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  8. VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base prepare to rotate the framework containing one of four solar panels to be installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-03

    VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base prepare to rotate the framework containing one of four solar panels to be installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  9. VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base work on a solar array panel to be installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-03

    VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base work on a solar array panel to be installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  10. VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, workers prepare to attach the top of a solar array panel onto the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-04

    VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, workers prepare to attach the top of a solar array panel onto the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  11. VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base attach a solar array panel on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-03

    VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base attach a solar array panel on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  12. VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base attach supports to a solar array panel to be lifted and installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-03

    VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base attach supports to a solar array panel to be lifted and installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  13. Development and characterization of a compact hand-held gamma probe system, SURGEOGUIDE, based on NEMA NU3-2004 standards

    NASA Astrophysics Data System (ADS)

    Kaviani, S.; Zeraatkar, N.; Sajedi, S.; Gorjizadeh, N.; Farahani, M. H.; Ghafarian, P.; El Fakhri, G.; Sabet, H.; Ay, M. R.

    2016-12-01

    Using an intra-operative gamma probe after periareolar or peritumoral injection of a radiotracer during surgery helps the surgeon to identify the sentinel, or first, nodal site of regional metastasis in clinically node-negative patients. The pathological analysis of this node can have an important influence on the treatment staging in various cancers. This paper reports the design and performance evaluation of a gamma probe recently developed in our department. The detector unit of this system consists of an 8 mm diameter and 10 mm thickness monolithic CsI(Tl) scintillator optically, coupled to a Silicon Photomultiplier (SiPM) with an active area of 6×6 mm2, and a single-hole collimator. The unit is shielded using tungsten. The system can operate in three different modes for Tc-99m, I-131, or F-18 isotopes. The following measurements were carried out to evaluate the performance of the probe: sensitivity in air and scatter medium, spatial resolution in scatter medium, angular resolution in scatter medium, and side and back shielding effectiveness. All experiments have been performed based on the NEMA NU3-2004 standard set up. The measured system sensitivities in air and scatter medium (water) are 1700 cps/MBq and 1770 cps/MBq, respectively, both measured at 3 cm from the collimator. The spatial resolution in the scatter medium is about 45 mm at 3 cm distance from the collimator. Also, the angular resolution of the probe is 74o FWHM. Finally, a shielding effectiveness of 99.5% is measured. The results show that the probe can potentially be used for sentinel lymph node localization during the surgery.

  14. Explicitly Teaching English through the Air to Students Who Are Deaf or Hard of Hearing

    ERIC Educational Resources Information Center

    Bennett, Jessica G.; Gardner, Ralph, III; Leighner, Ross; Clancy, Shannon; Garner, Joshua

    2014-01-01

    The Effects of the Language for Learning curriculum (Engelmann & Osborne, 1999) on through-the-air (i.e., signed and/or spoken) English skills for students who are deaf or hard of hearing (DHH) were examined by means of a single-subject, concurrent-multiple-probes-across-participants design. Four 11-year-old participants varied in auditory…

  15. NATURAL ATTENUATION OF FUEL AND SOLVENT SPILLS ON AIR FORCE BASES: BIOSLURPING AND NATURAL BIOVENTING TO REMEDIATE A JET FUEL SPILL. EVALUATE PERFORMANCE OF NEW PUSH PROBES TO ASSAY FOR BIOREMEDIATION

    EPA Science Inventory

    Frequently both the subsurface vadose zone and underlying aquifer at Air Force Base spill locations are contaminated with fuel hydrocarbons such as benzene and degreasing solvents such as trichloroethene. In many instances these concentrations exceed regulatory limits mandated by...

  16. A multi-probe thermophoretic soot sampling system for high-pressure diffusion flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vargas, Alex M.; Gülder, Ömer L.

    Optical diagnostics and physical probing of the soot processes in high pressure combustion pose challenges that are not faced in atmospheric flames. One of the preferred methods of studying soot in atmospheric flames is in situ thermophoretic sampling followed by transmission electron microscopy imaging and analysis for soot sizing and morphology. The application of this method of sampling to high pressures has been held back by various operational and mechanical problems. In this work, we describe a rotating disk multi-probe thermophoretic soot sampling system, driven by a microstepping stepper motor, fitted into a high-pressure chamber capable of producing sooting laminarmore » diffusion flames up to 100 atm. Innovative aspects of the sampling system design include an easy and precise control of the sampling time down to 2.6 ms, avoidance of the drawbacks of the pneumatic drivers used in conventional thermophoretic sampling systems, and the capability to collect ten consecutive samples in a single experimental run. Proof of principle experiments were performed using this system in a laminar diffusion flame of methane, and primary soot diameter distributions at various pressures up to 10 atm were determined. High-speed images of the flame during thermophoretic sampling were recorded to assess the influence of probe intrusion on the flow field of the flame.« less

  17. 40 CFR 89.413 - Raw sampling procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... emissions. (a) The gaseous emission sampling probe must be installed at least 0.5 m or 3 times the diameter... the case of a multi-cylinder engine with a branched exhaust manifold, the inlet of the probe shall be...

  18. 40 CFR 89.413 - Raw sampling procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... emissions. (a) The gaseous emission sampling probe must be installed at least 0.5 m or 3 times the diameter... the case of a multi-cylinder engine with a branched exhaust manifold, the inlet of the probe shall be...

  19. Precise dielectric property measurements and E-field probe calibration for specific absorption rate measurements using a rectangular waveguide

    PubMed Central

    Hakim, B M; Beard, B B; Davis, C C

    2018-01-01

    Specific absorption rate (SAR) measurements require accurate calculations of the dielectric properties of tissue-equivalent liquids and associated calibration of E-field probes. We developed a precise tissue-equivalent dielectric measurement and E-field probe calibration system. The system consists of a rectangular waveguide, electric field probe, and data control and acquisition system. Dielectric properties are calculated using the field attenuation factor inside the tissue-equivalent liquid and power reflectance inside the waveguide at the air/dielectric-slab interface. Calibration factors were calculated using isotropicity measurements of the E-field probe. The frequencies used are 900 MHz and 1800 MHz. The uncertainties of the measured values are within ±3%, at the 95% confidence level. Using the same waveguide for dielectric measurements as well as calibrating E-field probes used in SAR assessments eliminates a source of uncertainty. Moreover, we clearly identified the system parameters that affect the overall uncertainty of the measurement system. PMID:29520129

  20. Diffusing Wave Spectroscopy Used to Study Foams

    NASA Technical Reports Server (NTRS)

    Zimmerli, Gregory A.; Durian, Douglas J.

    2000-01-01

    The white appearance of familiar objects such as clouds, snow, milk, or foam is due to the random scattering of light by the sample. As we all know, pure water is clear and easily passes a beam of light. However, tiny water droplets, such as those in a cloud, scatter light because the air and water droplet have different indexes of refraction. When many droplets, or scattering sites, are present, the incident light is scattered in random directions and the sample takes on a milky white appearance. In a glass of milk, the scattering is due to small colloidal particles. The white appearance of shaving cream, or foam, is due to the scattering of light at the water-bubble interface. Diffusing wave spectroscopy (DWS) is a laser light-scattering technique used to noninvasively probe the particle dynamics in systems that strongly scatter light. The technique takes advantage of the diffuse nature of light, which is reflected or transmitted from samples such as foams, dense colloidal suspensions (such as paint and milk), emulsions, liquid crystals, sandpiles, and even biological tissues.

  1. Design and Operation of a Fast, Thin-Film Thermocouple Probe on a Turbine Engine

    NASA Technical Reports Server (NTRS)

    Meredith, Roger D.; Wrbanek, John D.; Fralick, Gustave C.; Greer, Lawrence C., III; Hunter, Gary W.; Chen, Liang-Yu

    2014-01-01

    As a demonstration of technology maturation, a thin-film temperature sensor probe was fabricated and installed on a F117 turbofan engine via a borescope access port to monitor the temperature experienced in the bleed air passage of the compressor area during an engine checkout test run. To withstand the harsh conditions experienced in this environment, the sensor probe was built from high temperature materials. The thin-film thermocouple sensing elements were deposited by physical vapor deposition using pure metal elements, thus avoiding the inconsistencies of sputter-depositing particular percentages of materials to form standardized alloys commonly found in thermocouples. The sensor probe and assembly were subjected to a strict protocol of multi-axis vibrational testing as well as elevated temperature pressure testing to be qualified for this application. The thin-film thermocouple probe demonstrated a faster response than a traditional embedded thermocouple during the engine checkout run.

  2. A buoyant tornado-probe concept incorporating an inverted lifting device. [and balloon combination

    NASA Technical Reports Server (NTRS)

    Grant, F. C.

    1973-01-01

    Addition of an inverted lifting device to a simple balloon probe is shown to make possible low-altitude entry to tornado cores with easier launch conditions than for the simple balloon probe. Balloon-lifter combinations are particularly suitable for penetration of tornadoes with average to strong circulation, but tornadoes of less than average circulation which are inaccessible to simple balloon probes become accessible. The increased launch radius which is needed for access to tornadoes over a wide range of circulation results in entry times of about 3 minutes. For a simple balloon probe the uninflated balloon must be first dropped on, or near, the track of the tornado from a safe distance. The increase in typical launch radius from about 0.75 kilometer to slightly over 1.0 kilometer with a balloon-lifter combination suggests that a direct air launch may be feasible.

  3. The Huygens probe is prepared for transport from the Skid Strip, CCAS

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Huygens probe, which will study the clouds, atmosphere and surface of Saturn's largest moon, Titan, as part of the Cassini mission to Saturn, is prepared for transport from the Skid Strip, Cape Canaveral Air Station (CCAS), after being off-loaded from a plane. The probe was designed and developed for the European Space Agency (ESA) by a European industrial consortium led by Aerospatiale as prime contractor. Over the past year, it was integrated and tested at the facilities of Daimler Benz Aerospace Dornier Satellitensysteme in Germany. The probe will be mated to the Cassini orbiter, which was designed and assembled at NASA's Jet Propulsion Laboratory in California. The Cassini launch is targeted for October 6 from CCAS aboard a Titan IVB/Centaur expendable launch vehicle. After arrival at Saturn in 2004, the probe will be released from the Cassini orbiter to slowly descend through the Titan atmosphere to the moon's surface.

  4. Noninvasive Synchrotron-Based X-ray Raman Scattering Discriminates Carbonaceous Compounds in Ancient and Historical Materials [ In situ synchrotron-based X-Ray Raman scattering discriminates carbonaceous compounds in ancient and historical materials

    DOE PAGES

    Gueriau, Pierre; Rueff, Jean -Pascal; Bernard, Sylvain; ...

    2017-09-13

    Carbon compounds are ubiquitous and occur in a diversity of chemical forms in many systems including ancient and historic materials ranging from cultural heritage to paleontology. Determining their speciation cannot only provide unique information on their origin but may also elucidate degradation processes. Synchrotron-based X-ray absorption near-edge structure (XANES) spectroscopy at the carbon K-edge (280–350 eV) is a very powerful method to probe carbon speciation. However, the short penetration depth of soft X-rays imposes stringent constraints on sample type, preparation, and analytical environment. A hard X-ray probe such as X-ray Raman scattering (XRS) can overcome many of these difficulties. Heremore » we report the use of XRS at ~6 keV incident energy to collect carbon K-edge XANES data and probe the speciation of organic carbon in several specimens relevant to cultural heritage and natural history. This methodology enables the measurement to be done in a nondestructive way, in air, and provides information that is not compromised by surface contamination by ensuring that the dominant signal contribution is from the bulk of the probed material. Using the backscattering geometry at large photon momentum transfer maximizes the XRS signal at the given X-ray energy and enhances nondipole contributions compared to conventional XANES, thereby augmenting the speciation sensitivity. The capabilities and limitations of the technique are discussed. As a result, we show that despite its small cross section, for a range of systems the XRS method can provide satisfactory signals at realistic experimental conditions. XRS constitutes a powerful complement to FT-IR, Raman, and conventional XANES spectroscopy, overcoming some of the limitations of these techniques.« less

  5. Hygroscopic growth of size-resolved, emission-source classified, aerosol particles sampled across the United States

    NASA Astrophysics Data System (ADS)

    Shingler, T.; Crosbie, E. C.; Ziemba, L. D.; Anderson, B. E.; Campuzano Jost, P.; Jimenez, J. L.; Mikoviny, T.; Wisthaler, A.; Sorooshian, A.

    2014-12-01

    The hygroscopic growth of atmospheric aerosol particles is a key air quality parameter, impacting the radiation budget, visibility, and cloud formation. During the DC3 and SEAC4RS field campaigns (>300 total flight hours), measurements were made over 32 US states, Canada, the Pacific Ocean, and the Gulf of Mexico, between the surface and 41,000 feet ASL. The aircraft research payloads included a suite of in-situ aerosol and gas phase instruments. The Differential Aerosol Sizing and Hygroscopicity Spectrometer Probe (DASH-SP) and the Langley Aerosol Research Group Experiment (LARGE) humidified nephelometer instrument applied different techniques to measure water uptake by aerosol particles at prescribed relative humidity values. Size-resolved growth factor (GF ≡ Dp,wet/Dp,dry) measurements by the DASH-SP are compared to bulk scattering measurements (f(RH) ≡ σscat,wet/σscat,dry) by the LARGE instrument. Spatial location and volatile organic compound tracers such as isoprene and acetonitrile are used to classify the origin of distinct air masses, including: forest fires, biogenic-emitting forests, agricultural use lands, marine boundary layer, urban, and rural background. Analyses of GF results by air mass origin are reported and results are compared with f(RH) measurements. A parameterization between the f(RH) and GF measurements and its potential uses are discussed.

  6. Importance of the efficiency of double-stranded DNA formation in cDNA synthesis for the imprecision of microarray expression analysis.

    PubMed

    Thormar, Hans G; Gudmundsson, Bjarki; Eiriksdottir, Freyja; Kil, Siyoen; Gunnarsson, Gudmundur H; Magnusson, Magnus Karl; Hsu, Jason C; Jonsson, Jon J

    2013-04-01

    The causes of imprecision in microarray expression analysis are poorly understood, limiting the use of this technology in molecular diagnostics. Two-dimensional strandness-dependent electrophoresis (2D-SDE) separates nucleic acid molecules on the basis of length and strandness, i.e., double-stranded DNA (dsDNA), single-stranded DNA (ssDNA), and RNA·DNA hybrids. We used 2D-SDE to measure the efficiency of cDNA synthesis and its importance for the imprecision of an in vitro transcription-based microarray expression analysis. The relative amount of double-stranded cDNA formed in replicate experiments that used the same RNA sample template was highly variable, ranging between 0% and 72% of the total DNA. Microarray experiments showed an inverse relationship between the difference between sample pairs in probe variance and the relative amount of dsDNA. Approximately 15% of probes showed between-sample variation (P < 0.05) when the dsDNA percentage was between 12% and 35%. In contrast, only 3% of probes showed between-sample variation when the dsDNA percentage was 69% and 72%. Replication experiments of the 35% dsDNA and 72% dsDNA samples were used to separate sample variation from probe replication variation. The estimated SD of the sample-to-sample variation and of the probe replicates was lower in 72% dsDNA samples than in 35% dsDNA samples. Variation in the relative amount of double-stranded cDNA synthesized can be an important component of the imprecision in T7 RNA polymerase-based microarray expression analysis. © 2013 American Association for Clinical Chemistry

  7. Development of a multichannel hyperspectral imaging probe for food property and quality assessment

    NASA Astrophysics Data System (ADS)

    Huang, Yuping; Lu, Renfu; Chen, Kunjie

    2017-05-01

    This paper reports on the development, calibration and evaluation of a new multipurpose, multichannel hyperspectral imaging probe for property and quality assessment of food products. The new multichannel probe consists of a 910 μm fiber as a point light source and 30 light receiving fibers of three sizes (i.e., 50 μm, 105 μm and 200 μm) arranged in a special pattern to enhance signal acquisitions over the spatial distances of up to 36 mm. The multichannel probe allows simultaneous acquisition of 30 spatially-resolved reflectance spectra of food samples with either flat or curved surface over the spectral region of 550-1,650 nm. The measured reflectance spectra can be used for estimating the optical scattering and absorption properties of food samples, as well as for assessing the tissues of the samples at different depths. Several calibration procedures that are unique to this probe were carried out; they included linearity calibrations for each channel of the hyperspectral imaging system to ensure consistent linear responses of individual channels, and spectral response calibrations of individual channels for each fiber size group and between the three groups of different size fibers. Finally, applications of this new multichannel probe were demonstrated through the optical property measurement of liquid model samples and tomatoes of different maturity levels. The multichannel probe offers new capabilities for optical property measurement and quality detection of food and agricultural products.

  8. Self-sensing cantilevers with integrated conductive coaxial tips for high-resolution electrical scanning probe metrology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haemmerli, Alexandre J.; Pruitt, Beth L., E-mail: pruitt@stanford.edu; Harjee, Nahid

    The lateral resolution of many electrical scanning probe techniques is limited by the spatial extent of the electrostatic potential profiles produced by their probes. Conventional unshielded conductive atomic force microscopy probes produce broad potential profiles. Shielded probes could offer higher resolution and easier data interpretation in the study of nanostructures. Electrical scanning probe techniques require a method of locating structures of interest, often by mapping surface topography. As the samples studied with these techniques are often photosensitive, the typical laser measurement of cantilever deflection can excite the sample, causing undesirable changes electrical properties. In this work, we present the design,more » fabrication, and characterization of probes that integrate coaxial tips for spatially sharp potential profiles with piezoresistors for self-contained, electrical displacement sensing. With the apex 100 nm above the sample surface, the electrostatic potential profile produced by our coaxial tips is more than 2 times narrower than that of unshielded tips with no long tails. In a scan bandwidth of 1 Hz–10 kHz, our probes have a displacement resolution of 2.9 Å at 293 K and 79 Å at 2 K, where the low-temperature performance is limited by amplifier noise. We show scanning gate microscopy images of a quantum point contact obtained with our probes, highlighting the improvement to lateral resolution resulting from the coaxial tip.« less

  9. Phoenix Conductivity Probe with Shadow and Toothmark

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA's Phoenix Mars Lander inserted the four needles of its thermal and conductivity probe into Martian soil during the 98th Martian day, or sol, of the mission and left it in place until Sol 99 (Sept. 4, 2008).

    The Robotic Arm Camera on Phoenix took this image on the morning of Sol 99 after the probe was lifted away from the soil. The imprint left by the insertion is visible below the probe, and a shadow showing the probe's four needles is cast on a rock to the left.

    The thermal and conductivity probe measures how fast heat and electricity move from one needle to an adjacent one through the soil or air between the needles. Conductivity readings can be indicators about water vapor, water ice and liquid water.

    The probe is part of Phoenix's Microscopy, Electrochemistry and Conductivity suite of instruments.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  10. Impact of science objectives and requirements on probe mission and system design

    NASA Technical Reports Server (NTRS)

    Ledbetter, K. W.

    1974-01-01

    Problem areas in probe science technology are discussed that require a solution before probe systems can actually be designed. Considered are the effects of the model atmospheres on probe design; secondly, the effects of implementing the requirements to locate and measure the clouds and, trade-offs between descent sampling and measurement criteria as they affect probe system design.

  11. Radio-frequency powered glow discharge device and method with high voltage interface

    DOEpatents

    Duckworth, D.C.; Marcus, R.K.; Donohue, D.L.; Lewis, T.A.

    1994-06-28

    A high voltage accelerating potential, which is supplied by a high voltage direct current power supply, is applied to the electrically conducting interior wall of an RF powered glow discharge cell. The RF power supply desirably is electrically grounded, and the conductor carrying the RF power to the sample held by the probe is desirably shielded completely excepting only the conductor's terminal point of contact with the sample. The high voltage DC accelerating potential is not supplied to the sample. A high voltage capacitance is electrically connected in series between the sample on the one hand and the RF power supply and an impedance matching network on the other hand. The high voltage capacitance isolates the high DC voltage from the RF electronics, while the RF potential is passed across the high voltage capacitance to the plasma. An inductor protects at least the RF power supply, and desirably the impedance matching network as well, from a short that might occur across the high voltage capacitance. The discharge cell and the probe which holds the sample are configured and disposed to prevent the probe's components, which are maintained at ground potential, from bridging between the relatively low vacuum region in communication with the glow discharge maintained within the cell on the one hand, and the relatively high vacuum region surrounding the probe and cell on the other hand. The probe and cell also are configured and disposed to prevent the probe's components from electrically shorting the cell's components. 11 figures.

  12. Radio-frequency powered glow discharge device and method with high voltage interface

    DOEpatents

    Duckworth, Douglas C.; Marcus, R. Kenneth; Donohue, David L.; Lewis, Trousdale A.

    1994-01-01

    A high voltage accelerating potential, which is supplied by a high voltage direct current power supply, is applied to the electrically conducting interior wall of an RF powered glow discharge cell. The RF power supply desirably is electrically grounded, and the conductor carrying the RF power to the sample held by the probe is desirably shielded completely excepting only the conductor's terminal point of contact with the sample. The high voltage DC accelerating potential is not supplied to the sample. A high voltage capacitance is electrically connected in series between the sample on the one hand and the RF power supply and an impedance matching network on the other hand. The high voltage capacitance isolates the high DC voltage from the RF electronics, while the RF potential is passed across the high voltage capacitance to the plasma. An inductor protects at least the RF power supply, and desirably the impedance matching network as well, from a short that might occur across the high voltage capacitance. The discharge cell and the probe which holds the sample are configured and disposed to prevent the probe's components, which are maintained at ground potential, from bridging between the relatively low vacuum region in communication with the glow discharge maintained within the cell on the one hand, and the relatively high vacuum region surrounding the probe and cell on the other hand. The probe and cell also are configured and disposed to prevent the probe's components from electrically shorting the cell's components.

  13. Chemical characterization of diesel and hydrotreated vegetable oil (HVO) soot after reactive gas probing using diffuse reflectance FTIR spectroscopy (DRIFTS).

    PubMed

    Tapia, A; Salgado, M S; Martín, M P; Rodríguez-Fernández, J; Rossi, M J; Cabañas, B

    2017-03-01

    A chemical characterization of diesel and hydrotreated vegetable oil (HVO) soot has been developed using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) before and after the reaction with different probe gases. Samples were generated under combustion conditions corresponding to an urban operation mode of a diesel engine and were reacted with probe gas-phase molecules in a Knudsen flow reactor. Specifically, NH 2 OH, O 3 and NO 2 were used as reactants (probes) and selected according to their reactivities towards specific functional groups on the sample surface. Samples of previously ground soot were diluted with KBr and were introduced in a DRIFTS accessory. A comparison between unreacted and reacted soot samples was made in order to establish chemical changes on the soot surface upon reaction. It was concluded that the interface of diesel and HVO soot before reaction mainly consists polycyclic aromatic hydrocarbons, nitro and carbonyl compounds, as well as ether functionalities. The main difference between both soot samples was observed in the band of the C=O groups that in diesel soot was observed at 1719 cm -1 but not in HVO soot. After reaction with probe gases, it was found that nitro compounds remain on the soot surface, that the degree of unsaturation decreases for reacted samples, and that new spectral bands such as hydroxyl groups are observed.

  14. Intensive probing of clear air convective fields by radar and instrumented drone aircraft.

    NASA Technical Reports Server (NTRS)

    Rowland, J. R.

    1972-01-01

    Clear air convective fields were probed in three summer experiments (1969, 1970, and 1971) on an S-band monopulse tracking radar at Wallops Island, Virginia, and a drone aircraft with a takeoff weight of 5.2 kg, wingspan of 2.5 m, and cruising glide speed of 10.3 m/sec. The drone was flown 23.2 km north of the radar and carried temperature, pressure/altitude, humidity, and vertical and airspeed velocity sensors. Extensive time-space convective field data were obtained by taking a large number of RHI and PPI pictures at short intervals of time. The rapidly changing overall convective field data obtained from the radar could be related to the meteorological information telemetered from the drone at a reasonably low cost by this combined technique.

  15. 75 FR 13486 - Application(s) for Duty-Free Entry of Scientific Instruments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ... nanostructures. This instrument combines an optical microscope with a scanning probe imaging system. Specifically... soft materials than other instruments, as it detects the probe coming close to the sample surface by... conventional AFM type silicon cantilevers as well as cantilevered optical fiber probes with exposed probe...

  16. Method for replicating an array of nucleic acid probes

    DOEpatents

    Cantor, Charles R.; Przetakiewicz, Marek; Smith, Cassandra L.; Sano, Takeshi

    1998-01-01

    The invention relates to the replication of probe arrays and methods for replicating arrays of probes which are useful for the large scale manufacture of diagnostic aids used to screen biological samples for specific target sequences. Arrays created using PCR technology may comprise probes with 5'- and/or 3'-overhangs.

  17. Full information acquisition in scanning probe microscopy and spectroscopy

    DOEpatents

    Jesse, Stephen; Belianinov, Alex; Kalinin, Sergei V.; Somnath, Suhas

    2017-04-04

    Apparatus and methods are described for scanning probe microscopy and spectroscopy based on acquisition of full probe response. The full probe response contains valuable information about the probe-sample interaction that is lost in traditional scanning probe microscopy and spectroscopy methods. The full probe response is analyzed post data acquisition using fast Fourier transform and adaptive filtering, as well as multivariate analysis. The full response data is further compressed to retain only statistically significant components before being permanently stored.

  18. Unlabeled probes for the detection and typing of herpes simplex virus.

    PubMed

    Dames, Shale; Pattison, David C; Bromley, L Kathryn; Wittwer, Carl T; Voelkerding, Karl V

    2007-10-01

    Unlabeled probe detection with a double-stranded DNA (dsDNA) binding dye is one method to detect and confirm target amplification after PCR. Unlabeled probes and amplicon melting have been used to detect small deletions and single-nucleotide polymorphisms in assays where template is in abundance. Unlabeled probes have not been applied to low-level target detection, however. Herpes simplex virus (HSV) was chosen as a model to compare the unlabeled probe method to an in-house reference assay using dual-labeled, minor groove binding probes. A saturating dsDNA dye (LCGreen Plus) was used for real-time PCR. HSV-1, HSV-2, and an internal control were differentiated by PCR amplicon and unlabeled probe melting analysis after PCR. The unlabeled probe technique displayed 98% concordance with the reference assay for the detection of HSV from a variety of archived clinical samples (n = 182). HSV typing using unlabeled probes was 99% concordant (n = 104) to sequenced clinical samples and allowed for the detection of sequence polymorphisms in the amplicon and under the probe. Unlabeled probes and amplicon melting can be used to detect and genotype as few as 10 copies of target per reaction, restricted only by stochastic limitations. The use of unlabeled probes provides an attractive alternative to conventional fluorescence-labeled, probe-based assays for genotyping and detection of HSV and might be useful for other low-copy targets where typing is informative.

  19. 40 CFR 86.328-79 - Leak checks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... flows may be used to estimate the in-use flow rates. (3) The sample probe and the connection between the sample probe and valve V2 (Figure D79-1) may be excluded from the leak check. (b) Pressure side leak...

  20. 40 CFR 91.324 - Analyzer leakage check.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... flows and bypass flows may be used to estimate the in-use flow rates. (3) The sample probe and the connection between the sample probe and valve V2 (see Figure 1 in appendix B of this subpart) may be excluded...

Top