Science.gov

Sample records for air sampling probe

  1. Review of the Physical Science Facility Stack Air Sampling Probe Locations

    SciTech Connect

    Glissmeyer, John A.

    2007-09-30

    This letter report reviews compliance of the current design of the Physical Science Facility (PSF) stack air sampling locations with the ANSI/HPS N13.1-1999 standard. The review was based on performance criteria used for locating air sampling probes, the design documents provided and available information on systems previously tested for compliance with the criteria. Recommendations are presented for ways to bring the design into compliance with the requirements for the sampling probe placement.

  2. Air speed and attitude probe

    NASA Technical Reports Server (NTRS)

    Baker, G. J.; Economu, M. A. (Inventor)

    1980-01-01

    An air speed and attitude probe characterized by a pivot shaft normally projected from a data boom and supported thereby for rotation about an axis of rotation coincident with the longitudinal axis of the shaft is described. The probe is a tubular body supported for angular displacement about the axis of rotation and has a fin mounted on the body for maintaining one end of the body in facing relation with relative wind and has a pair of transducers mounted in the body for providing intelligence indicative of total pressure and static pressure for use in determining air speed. A stack of potentiometers coupled with the shaft to provide intelligence indicative of aircraft attitude, and circuitry connecting the transducers and potentiometers to suitable telemetry circuits are described.

  3. Air Sampling Filter

    NASA Technical Reports Server (NTRS)

    1980-01-01

    General Metal Works' Accu-Vol is a high-volume air sampling system used by many government agencies to monitor air quality for pollution control purposes. Procedure prevents possible test-invalidating contamination from materials other than particulate pollutants, caused by manual handling or penetration of windblown matter during transit, a cassette was developed in which the filter is sealed within a metal frame and protected in transit by a snap-on aluminum cover, thus handled only under clean conditions in the laboratory.

  4. Single-point representative sampling with shrouded probes

    SciTech Connect

    McFarland, A.R.; Rodgers, J.C.

    1993-08-01

    The Environmental Protection Agency (EPA) prescribed methodologies for sampling radionuclides in air effluents from stacks and ducts at US Department of Energy (DOE) facilities. Requirements include use of EPA Method 1 for the location of sampling sites and use of American National Standards Institute (ANSI) N13.1 for guidance in design of sampling probes and the number of probes at a given site. Application of ANSI N13.1 results in sampling being performed with multiprobe rakes that have as many as 20 probes. There can be substantial losses of aerosol particles in such sampling that will degrade the quality of emission estimates from a nuclear facility. Three alternate methods, technically justified herein, are proposed for effluent sampling. First, a shrouded aerosol sampling probe should replace the sharp-edged elbowed-nozzle recommended by ANSI. This would reduce the losses of aerosol particles in probes and result in the acquisition of more representative aerosol samples. Second, the rakes of multiple probes that are intended to acquire representative samples through spatial coverage should be replaced by a single probe located where contaminant mass and fluid momentum are both well mixed. A representative sample can be obtained from a well-mixed flow. Some effluent flows will need to be engineered to achieve acceptable mixing. Third, sample extraction should be performed at a constant flow rate through a suitable designed shrouded probe rather than at a variable flow rate through isokinetic probes. A shrouded probe is shown to have constant sampling characteristics over a broad range of stack velocities when operated at a fixed flow rate.

  5. A New Technique for Sampling Firn Air

    NASA Astrophysics Data System (ADS)

    Perron, F. E.; Dibb, J. E.; Albert, M. R.

    2004-12-01

    The discovery and subsequent interest in photochemical interactions between the polar snowpack and the atmosphere has spawned interest in reliable methods of measuring chemical concentrations in interstitial air. Consistent sampling of the interstitial air in the snowpack had been problematic due to great chemical differences possible from sampling different layers in the snow and the difficulties in acquiring a sample that could serve multiple investigators at the same time. This paper describes a new air sampling device that was developed to solve many of the sampling problems. This new system allows multiple simultaneous chemical analysis of air contained in the pore spaces of the arctic snowpack at unlimited increments from depths of 0 to 150 cm. The three major components are a 4 ft diameter highly UV transmittent acrylic "hood" with a 10 cm rim, a 10 cm diameter casing barrel, and an air probe head. These components operate along with a variety of sub-components that supplement the sampling process. The technique provides for a common sample collection, use for a variety of gases to be sampled, it eliminates short circuit air sampling, provides undisturbed snow for in-situ sampling at multiple sample depths in the same location. The design is discussed and possible extension as a platform for other sensors is described.

  6. Surface sampling concentration and reaction probe

    DOEpatents

    Van Berkel, Gary J; Elnaggar, Mariam S

    2013-07-16

    A method of analyzing a chemical composition of a specimen is described. The method can include providing a probe comprising an outer capillary tube and an inner capillary tube disposed co-axially within the outer capillary tube, where the inner and outer capillary tubes define a solvent capillary and a sampling capillary in fluid communication with one another at a distal end of the probe; contacting a target site on a surface of a specimen with a solvent in fluid communication with the probe; maintaining a plug volume proximate a solvent-specimen interface, wherein the plug volume is in fluid communication with the probe; draining plug sampling fluid from the plug volume through the sampling capillary; and analyzing a chemical composition of the plug sampling fluid with an analytical instrument. A system for performing the method is also described.

  7. Inertial impaction air sampling device

    SciTech Connect

    Dewhurst, K.H.

    1987-12-10

    An inertial impactor to be used in an air sampling device for collection of respirable size particles in ambient air which may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry. 3 figs.

  8. Inertial impaction air sampling device

    SciTech Connect

    Dewhurst, K.H.

    1990-05-22

    An inertial impactor is designed which is to be used in an air sampling device for collection of respirable size particles in ambient air. The device may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry. 3 figs.

  9. Inertial impaction air sampling device

    DOEpatents

    Dewhurst, Katharine H.

    1990-01-01

    An inertial impactor to be used in an air sampling device for collection of respirable size particles in ambient air which may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry.

  10. Assessment of the 296-S-21 Stack Sampling Probe Location

    SciTech Connect

    Glissmeyer, John A.

    2006-09-08

    Tests were performed to assess the suitability of the location of the air sampling probe on the 296-S-21 stack according to the criteria of ANSI N13.1-1999, Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stacks and Ducts of Nuclear Facilities. Pacific Northwest National Laboratory conducted most tests on a 3.67:1 scale model of the stack. CH2MHill also performed some limited confirmatory tests on the actual stack. The tests assessed the capability of the air-monitoring probe to extract a sample representative of the effluent stream. The tests were conducted for the practical combinations of operating fans and addressed: (1) Angular Flow--The purpose is to determine whether the velocity vector is aligned with the sampling nozzle. The average yaw angle relative to the nozzle axis should not be more than 20. The measured values ranged from 5 to 11 degrees on the scale model and 10 to 12 degrees on the actual stack. (2) Uniform Air Velocity--The gas momentum across the stack cross section where the sample is extracted should be well mixed or uniform. The uniformity is expressed as the variability of the measurements about the mean, the coefficient of variance (COV). The lower the COV value, the more uniform the velocity. The acceptance criterion is that the COV of the air velocity must be ?20% across the center two-thirds of the area of the stack. At the location simulating the sampling probe, the measured values ranged form 4 to 11%, which are within the criterion. To confirm the validity of the scale model results, air velocity uniformity measurements were made both on the actual stack and on the scale model at the test ports 1.5 stack diameters upstream of the sampling probe. The results ranged from 6 to 8% COV on the actual stack and 10 to 13% COV on the scale model. The average difference for the eight runs was 4.8% COV, which is within the validation criterion. The fact that the scale model results were slightly higher than the

  11. Air sampling of smallpox virus

    PubMed Central

    Thomas, G.

    1974-01-01

    Airborne smallpox virus has been recovered in an isolation hospital using an adhesive surface sampling technique in the presence of very low aerosol concentrations. Previous work in this field is reviewed. Successful recovery of airborne virus depends on sampling large volumes of air with a suitable sampler and thorough investigation of the whole sample taken for the presence of viable virus. More information on the characteristics and behaviour of airborne smallpox virus is needed in particular with regard to the future design and siting of smallpox isolation units. PMID:4371586

  12. Air Sampling System Evaluation Template

    SciTech Connect

    Blunt, Brent

    2000-05-09

    The ASSET1.0 software provides a template with which a user can evaluate an Air Sampling System against the latest version of ANSI N13.1 "Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stacks and Ducts of Nuclear Facilities". The software uses the ANSI N13.1 PIC levels to establish basic design criteria for the existing or proposed sampling system. The software looks at such criteria as PIC level, type of radionuclide emissions, physical state of the radionuclide, nozzle entrance effects, particulate transmission effects, system and component accuracy and precision evaluations, and basic system operations to provide a detailed look at the subsystems of a monitoring and sampling system/program. A GAP evaluation can then be completed which leads to identification of design and operational flaws in the proposed systems. Corrective measures can then be limited to the GAPs.

  13. Comparison of Sampling Probe and Thermal Desorber in Hazardous Air Pollutants on Site (HAPSITE) Extended Range (ER) for Analysis of Toxic Organic (TO)-15 Compounds

    DTIC Science & Technology

    2014-03-01

    mustard gases using a field-portable gas chromatograph-mass spectrometer. Forensic Toxicol, 24: 17–22, 2006.   Smith PA. Person-portable gas ...ABSTRACT The Hazardous Air Pollutants on Site (HAPSITE), a portable Gas Chromatograph-Mass Spectrometer (GCMS), has been used to detect, identify...2014.   Abstract     The Hazardous Air Pollutants on Site (HAPSITE), a portable gas chromatograph-mass spectrometer (GC-MS), has been used to detect

  14. Air sampling in the workplace. Final report

    SciTech Connect

    Hickey, E.E.; Stoetzel, G.A.; Strom, D.J.; Cicotte, G.R.; Wiblin, C.M.; McGuire, S.A.

    1993-09-01

    This report provides technical information on air sampling that will be useful for facilities following the recommendations in the NRC`s Regulatory Guide 8.25, Revision 1, ``Air sampling in the Workplace.`` That guide addresses air sampling to meet the requirements in NRC`s regulations on radiation protection, 10 CFR Part 20. This report describes how to determine the need for air sampling based on the amount of material in process modified by the type of material, release potential, and confinement of the material. The purposes of air sampling and how the purposes affect the types of air sampling provided are discussed. The report discusses how to locate air samplers to accurately determine the concentrations of airborne radioactive materials that workers will be exposed to. The need for and the methods of performing airflow pattern studies to improve the accuracy of air sampling results are included. The report presents and gives examples of several techniques that can be used to evaluate whether the airborne concentrations of material are representative of the air inhaled by workers. Methods to adjust derived air concentrations for particle size are described. Methods to calibrate for volume of air sampled and estimate the uncertainty in the volume of air sampled are described. Statistical tests for determining minimum detectable concentrations are presented. How to perform an annual evaluation of the adequacy of the air sampling is also discussed.

  15. High-throughput mode liquid microjunction surface sampling probe.

    PubMed

    Van Berkel, Gary J; Kertesz, Vilmos; King, Richard C

    2009-08-15

    A simple and automated spot sampling operation mode for a liquid microjunction surface sampling probe/electrospray ionization mass spectrometry (LMJ-SSP/ESI-MS) system is reported. Prior manual and automated spot sampling methods with this probe relied on a careful, relatively slow alignment of the probe and surface distance (<20 microm spacing) to form the probe-to-surface liquid microjunction critical to successful surface sampling. Moreover, sampling multiple spots required retraction of the surface from the probe and a repeat of this careful probe-to-surface distance alignment at the next sampling position. With the method described here, the probe was not positioned as close to the surface, the exact probe-to-surface positioning was found to be less critical (spanning distances from about 100-300 microm), and this distance was not altered during the sampling of an entire array of sample spots. With the probe positioned within the appropriate distance from the surface, the liquid microjunction was formed by letting the liquid from the sampling end of the probe extend out from the probe to the surface. This was accomplished by reducing the self-aspiration liquid flow rate of the probe to a value less than the volume flow rate pumped into the probe. When the self-aspiration rate of the probe was subsequently increased, analytes on the surface that dissolved at the liquid microjunction were aspirated back into the probe with the liquid that created the liquid microjunction and electrosprayed. Presented here are the basics of this new sampling mode, as well as data that illustrate the potential analytical capabilities of the device to conduct high-throughput quantitative analysis.

  16. Sampling probe for microarray read out using electrospray mass spectrometry

    DOEpatents

    Van Berkel, Gary J.

    2004-10-12

    An automated electrospray based sampling system and method for analysis obtains samples from surface array spots having analytes. The system includes at least one probe, the probe including an inlet for flowing at least one eluting solvent to respective ones of a plurality of spots and an outlet for directing the analyte away from the spots. An automatic positioning system is provided for translating the probe relative to the spots to permit sampling of any spot. An electrospray ion source having an input fluidicly connected to the probe receives the analyte and generates ions from the analyte. The ion source provides the generated ions to a structure for analysis to identify the analyte, preferably being a mass spectrometer. The probe can be a surface contact probe, where the probe forms an enclosing seal along the periphery of the array spot surface.

  17. Verification of multiplex ligation-dependent probe amplification probes in the absence of positive samples.

    PubMed

    Wooderchak-Donahue, Whitney; Vaughn, Cecily; Chou, Lan-Szu; Lewis, Tracey; Sumner, Kelli; Procter, Melinda; Gedge, Friederike; Bayrak-Toydemir, Pinar; Lyon, Elaine; Pont-Kingdon, Genevieve

    2011-11-01

    Deletions and duplications of single or multiple exons in specific genes are associated with human diseases. Multiplex ligation-dependant probe amplification (MLPA), a technique recently introduced to clinical laboratories, can detect deletions or duplications at the exon level. MLPA kits have a high multiplexing capability containing mixtures of exon-specific probes that target the gene of interest and control probes that hybridize to other genomic areas before PCR amplification. To verify each probe set, known positive samples with a single-exon deletion or duplication and normal samples are ideally used. Often, positive samples do not exist for each exon and normal samples are not suited to verify the identity of each probe set. We designed a straightforward approach using mixes of exon-specific PCR products as template to unequivocally verify each probe set in MLPA kits. This method can be used to verify the identity of MLPA probes for exons when positive samples are unavailable. Exon-specific probes from 15 MLPA kits were shown to hybridize to the targeted exons of interest. In one kit, this method identified probes that also bind a pseudogene, making them unreliable for clinical analysis. Incorporating this methodology in the analytical validation process will help ensure that MLPA results are interpreted correctly.

  18. Air sampling with solid phase microextraction

    NASA Astrophysics Data System (ADS)

    Martos, Perry Anthony

    There is an increasing need for simple yet accurate air sampling methods. The acceptance of new air sampling methods requires compatibility with conventional chromatographic equipment, and the new methods have to be environmentally friendly, simple to use, yet with equal, or better, detection limits, accuracy and precision than standard methods. Solid phase microextraction (SPME) satisfies the conditions for new air sampling methods. Analyte detection limits, accuracy and precision of analysis with SPME are typically better than with any conventional air sampling methods. Yet, air sampling with SPME requires no pumps, solvents, is re-usable, extremely simple to use, is completely compatible with current chromatographic equipment, and requires a small capital investment. The first SPME fiber coating used in this study was poly(dimethylsiloxane) (PDMS), a hydrophobic liquid film, to sample a large range of airborne hydrocarbons such as benzene and octane. Quantification without an external calibration procedure is possible with this coating. Well understood are the physical and chemical properties of this coating, which are quite similar to those of the siloxane stationary phase used in capillary columns. The log of analyte distribution coefficients for PDMS are linearly related to chromatographic retention indices and to the inverse of temperature. Therefore, the actual chromatogram from the analysis of the PDMS air sampler will yield the calibration parameters which are used to quantify unknown airborne analyte concentrations (ppb v to ppm v range). The second fiber coating used in this study was PDMS/divinyl benzene (PDMS/DVB) onto which o-(2,3,4,5,6- pentafluorobenzyl) hydroxylamine (PFBHA) was adsorbed for the on-fiber derivatization of gaseous formaldehyde (ppb v range), with and without external calibration. The oxime formed from the reaction can be detected with conventional gas chromatographic detectors. Typical grab sampling times were as small as 5 seconds

  19. East Mountain Area 1995 air sampling results

    SciTech Connect

    Deola, R.A.

    1996-09-01

    Ambient air samples were taken at two locations in the East Mountain Area in conjunction with thermal testing at the Lurance Canyon Burn Site (LCBS). The samples were taken to provide measurements of particulate matter with a diameter less than or equal to 10 micrometers (PM{sub 10}) and volatile organic compounds (VOCs). This report summarizes the results of the sampling performed in 1995. The results from small-scale testing performed to determine the potentially produced air pollutants in the thermal tests are included in this report. Analytical results indicate few samples produced measurable concentrations of pollutants believed to be produced by thermal testing. Recommendations for future air sampling in the East Mountain Area are also noted.

  20. Neutron probe measurements of air saturation near an air sparging well

    SciTech Connect

    Acomb, L.J.; McKay, D.; Currier, P.; Berglund, S.T.; Sherhart, T.V.; Benediktsson, C.V.

    1995-12-31

    In situ air sparging is being used to remediate diesel-fuel-contaminated soils in the zone of water table fluctuation at a remote Alaskan Federal Aviation Administration (FAA) air navigation aid site. A neutron probe was used to measure changes in percent air saturation during air sparging in a uniform, aeolian sand. Air was injected about 15 ft below the water table at air flowrates of 4 to 16 ft{sup 3}/min (cfm). The neutron probe data show that during air sparging the distribution of injected air changed through time, initially expanding outward from the sparge well screen, then consolidating around the air sparging well, until a steady-state condition was reached. The maximum radius of influence, measured at an air flowrate of 16 cfm, was about 15 ft during steady-state flow. At all air flowrates the percent air saturation was highest near the air sparging well and decreased radially away from the sparging well. Near the sparging well, the percent air saturation ranged from about 30% to >50% at air injection rates of 4 to 16 cfm. Where the percent air saturation is similar to that in the vadose zone, volatilization and biodegradation may occur at rates similar to those in the vadose zone. Selected air saturation results are presented, and dissolved oxygen and saturated zone pressure data are summarized.

  1. Optimal probes for withdrawal of uncontaminated fluid samples

    NASA Astrophysics Data System (ADS)

    Sherwood, J. D.

    2005-08-01

    Withdrawal of fluid by a composite probe pushed against the face z =0 of a porous half-space z >0 is modeled assuming incompressible Darcy flow. The probe is circular, of radius a, with an inner sampling section of radius αa and a concentric outer guard probe αa βa is saturated with fluid 2; the two fluids have the same viscosity. It is assumed that the interface between the two fluids is sharp and remains so as it moves through the rock. The pressure in the probe is lower than that of the pore fluid in the rock, so that the fluid interface is convected with the fluids towards the probe. This idealized axisymmetric problem is solved numerically, and it is shown that an analysis based on far-field spherical flow towards a point sink is a good approximation when the nondimensional depth of fluid 1 is large, i.e., β ≫1. The inner sampling probe eventually produces pure fluid 2, and this technique has been proposed for sampling pore fluids in rock surrounding an oil well [A. Hrametz, C. Gardner, M. Wais, and M. Proett, U.S. Patent No. 6,301,959 B1 (16 October 2001)]. Fluid 1 is drilling fluid filtrate, which has displaced the original pore fluid (fluid 2), a pure sample of which is required. The time required to collect an uncontaminated sample of original pore fluid can be minimized by a suitable choice of the probe geometry α [J. Sherwood, J. Fitzgerald and B. Hill, U.S. Patent No. 6,719,049 B2 (13 April 2004)]. It is shown that the optimal choice of α depends on the depth of filtrate invasion β and the volume of sample required.

  2. Probe for high resolution NMR with sample reorientation

    DOEpatents

    Pines, A.; Samoson, A.

    1990-02-06

    An improved NMR probe and method are described which substantially improve the resolution of NMR measurements made on powdered or amorphous or otherwise orientationally disordered samples. The apparatus mechanically varies the orientation of the sample such that the time average of two or more sets of spherical harmonic functions are zero. 8 figs.

  3. Probe for high resolution NMR with sample reorientation

    DOEpatents

    Pines, Alexander; Samoson, Ago

    1990-01-01

    An improved NMR probe and method are described which substantially improve the resolution of NMR measurements made on powdered or amorphous or otherwise orientationally disordered samples. The apparatus mechanically varies the orientation of the sample such that the time average of two or more sets of spherical harmonic functions are zero.

  4. Probe for Sampling of Interstitial Fluid From Bone

    NASA Technical Reports Server (NTRS)

    Janle, Elsa M.

    2004-01-01

    An apparatus characterized as both a membrane probe and a bone ultrafiltration probe has been developed to enable in vivo sampling of interstitial fluid in bone. The probe makes it possible to measure the concentration of calcium and other constituents of the fluid that may be relevant to bone physiology. The probe could be especially helpful in experimental studies of microgravitational bone loss and of terrestrial bone-loss disease states, including osteoporosis. The probe can be implanted in the bone tissue of a living animal and can be used to extract samples of the interstitial bone fluid from time to time during a long-term study. The probe includes three 12-cm-long polyacrylonitrile fibers configured in a loop form and attached to polyurethane tubing [inside diameter 0.025 in. (0.64 mm), outside diameter 0.040 in. (1 mm)]; the attachment is made by use of a 1-cm-long connecting piece of polyurethane tubing [inside diameter 0.035 0.003 in. (0.89 0.08 mm), outside diameter 0.060 0.003 in. (1.52 0.08 mm)]. At the distal end, a 2-cm-long piece of polyurethane tubing of the same inner and outer diameters serves as a connector to a hub. A 1-cm long piece of expanded poly (tetrafluoroethylene) tubing over the joint between the fibers and the connecting tubing serves as a tissue-in-growth site.

  5. Situ soil sampling probe system with heated transfer line

    DOEpatents

    Robbat, Jr., Albert

    2002-01-01

    The present invention is directed both to an improved in situ penetrometer probe and to a heated, flexible transfer line. The line and probe may be implemented together in a penetrometer system in which the transfer line is used to connect the probe to a collector/analyzer at the surface. The probe comprises a heater that controls a temperature of a geologic medium surrounding the probe. At least one carrier gas port and vapor collection port are located on an external side wall of the probe. The carrier gas port provides a carrier gas into the geologic medium, and the collection port captures vapors from the geologic medium for analysis. In the transfer line, a flexible collection line that conveys a collected fluid, i.e., vapor, sample to a collector/analyzer. A flexible carrier gas line conveys a carrier gas to facilitate the collection of the sample. A system heating the collection line is also provided. Preferably the collection line is electrically conductive so that an electrical power source can generate a current through it so that the internal resistance generates heat.

  6. Surface sampling concentration and reaction probe with controller to adjust sampling position

    SciTech Connect

    Van Berkel, Gary J.; ElNaggar, Mariam S.

    2016-07-19

    A method of analyzing a chemical composition of a specimen is described. The method can include providing a probe comprising an outer capillary tube and an inner capillary tube disposed co-axially within the outer capillary tube, where the inner and outer capillary tubes define a solvent capillary and a sampling capillary in fluid communication with one another at a distal end of the probe; contacting a target site on a surface of a specimen with a solvent in fluid communication with the probe; maintaining a plug volume proximate a solvent-specimen interface, wherein the plug volume is in fluid communication with the probe; draining plug sampling fluid from the plug volume through the sampling capillary; and analyzing a chemical composition of the plug sampling fluid with an analytical instrument. A system for performing the method is also described.

  7. Real-time Sample Analysis using Sampling Probe and Miniature Mass Spectrometer

    PubMed Central

    Chen, Chien-Hsun; Lin, Ziqing; Tian, Ran; Shi, Riyi; Cooks, R. Graham; Ouyang, Zheng

    2016-01-01

    A miniature mass spectrometry system with a sampling probe has been developed for real-time analysis of chemicals from sample surfaces. The sampling probe is 1.5m in length and is comprised of one channel for introducing the spray and the other channel for transferring the charged species back to the Mini MS. This system provides a solution to the problem of real-time mass spectrometry analysis of a three-dimensional object in the field and is successful with compounds including those in inks, agrochemicals, explosives, and animal tissues. This system can be implemented in the form of a backpack MS with a sampling probe for forensic analysis or in the form of a compact MS with an intra-surgical probe for tissue analysis. PMID:26237577

  8. DC thermal microscopy: study of the thermal exchange between a probe and a sample

    NASA Astrophysics Data System (ADS)

    Gomès, Séverine; Trannoy, Nathalie; Grossel, Philippe

    1999-09-01

    The Scanning Thermal Microscopic (SThM) probe, a thin Pt resistance wire, is used in the constant force mode of an Atomic Force Microscope (AFM). Thermal signal-distance curves for differing degrees of relative humidity and different surrounding gases demonstrate how heat is transferred from the heated probe to the sample. It is known that water affects atomic force microscopy and thermal measurements; we report here on the variation of the water interaction on the thermal coupling versus the probe temperature. Measurements were taken for several solid materials and show that the predominant heat transfer mechanisms taking part in thermal coupling are dependent on the thermal conductivity of the sample. The results have important implications for any quantitative interpretation of thermal images made in air.

  9. Assessment of the HV-C2 Stack Sampling Probe Location

    SciTech Connect

    Glissmeyer, John A.; Droppo, James G.

    2007-08-24

    Tests were performed to evaluate the location of the air-sampling probe in the proposed design for the Waste Treatment Plant’s HV-C2 air exhaust stack. The evaluation criteria come from ANSI/HPS N13.1-1999, “Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stacks and Ducts of Nuclear Facilities.” Pacific Northwest National Laboratory conducted the tests on a 3.67:1 scale model of the stack. Limited confirmatory tests on the actual stack will need to be conducted during cold startup of the High Level Waste Treatment Facility. The tests documented here assessed the capability of the air-monitoring probe to extract a sample representative of the effluent stream in accordance with criteria in ANSI/HPS N13.1. The test parameters covered the expected range of system flowrates with both one and two operating fans. The current stack design calls for the sampling probe to be located about 10 diameters downstream of the junction of the duct from Fan A with the stack. In accordance with the statement of work and the test plan, the test measurements were made at that location and also at one point upstream and another downstream. An adjustment was made for the distance between a typical sampling probe inlet and the centerline of its mounting flange. Thus, the test measurements were made at three positions designated as Test Port 1, 2, and 3, respectively. The designed HV-C2 exhaust system includes dampers on the fan discharges. Custom-scale model dampers were fabricated to simulate the same number and configuration of damper blades shown in the design documents received from BNI. A subset of the test runs was run without the dampers to determine whether the dampers should be included in future tests on scale models.

  10. Air Sampling Instruments for Evaluation of Atmospheric Contaminants. Fourth Edition.

    ERIC Educational Resources Information Center

    American Conference of Governmental Industrial Hygienists, Cincinnati, OH.

    This text, a revision and extension of the first three editions, consists of papers discussing the basic considerations in sampling air for specific purposes, sampler calibration, systems components, sample collectors, and descriptions of air-sampling instruments. (BT)

  11. New approaches to nanoparticle sample fabrication for atom probe tomography.

    PubMed

    Felfer, P; Li, T; Eder, K; Galinski, H; Magyar, A P; Bell, D C; Smith, G D W; Kruse, N; Ringer, S P; Cairney, J M

    2015-12-01

    Due to their unique properties, nano-sized materials such as nanoparticles and nanowires are receiving considerable attention. However, little data is available about their chemical makeup at the atomic scale, especially in three dimensions (3D). Atom probe tomography is able to answer many important questions about these materials if the challenge of producing a suitable sample can be overcome. In order to achieve this, the nanomaterial needs to be positioned within the end of a tip and fixed there so the sample possesses sufficient structural integrity for analysis. Here we provide a detailed description of various techniques that have been used to position nanoparticles on substrates for atom probe analysis. In some of the approaches, this is combined with deposition techniques to incorporate the particles into a solid matrix, and focused ion beam processing is then used to fabricate atom probe samples from this composite. Using these approaches, data has been achieved from 10-20 nm core-shell nanoparticles that were extracted directly from suspension (i.e. with no chemical modification) with a resolution of better than ± 1 nm.

  12. Total Water Content Measurements with an Isokinetic Sampling Probe

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.; Miller, Dean R.; Bidwell, Colin S.

    2010-01-01

    The NASA Glenn Research Center has developed a Total Water Content (TWC) Isokinetic Sampling Probe. Since it is not sensitive to cloud water particle phase nor size, it is particularly attractive to support super-cooled large droplet and high ice water content aircraft icing studies. The instrument is comprised of the Sampling Probe, Sample Flow Control, and Water Vapor Measurement subsystems. Analysis and testing have been conducted on the subsystems to ensure their proper function and accuracy. End-to-end bench testing has also been conducted to ensure the reliability of the entire instrument system. A Stokes Number based collection efficiency correction was developed to correct for probe thickness effects. The authors further discuss the need to ensure that no condensation occurs within the instrument plumbing. Instrument measurements compared to facility calibrations from testing in the NASA Glenn Icing Research Tunnel are presented and discussed. There appears to be liquid water content and droplet size effects in the differences between the two measurement techniques.

  13. More about sampling and estimation of mercaptans in air samples.

    PubMed

    Moliner-Martínez, Y; Herráez-Hernández, R; Molins-Legua, C; Verdú-Andrés, J; Avella-Oliver, M; Campíns-Falcó, P

    2013-03-15

    Several strategies have been developed for sampling and determination of volatile thiols. The selectivity and sensitivity of the proposed methodologies are achieved by using a specific derivatizing reagent. The different procedures assayed are based on air sampling followed by derivatization of the analytes with OPA and isoleucine in alkaline solution. The derivatization products are separated and determined by liquid chromatography and fluorescence detection. To start, the derivatization conditions and stability of the derivates have been studied in order to establish the storage conditions. In general, the strategies studied consisted on trapping and detivatization the thiol compound on different support; a solution (Impinger) or sorbent (C₁₈ cartridges or glass fiber filter). The analytical properties of the different strategies have been obtained and compared. Procedures are recommended upon specific situations.

  14. Nanocharacterization of Soft Biological Samples in Shear Mode with Quartz Tuning Fork Probes

    PubMed Central

    Otero, Jorge; Gonzalez, Laura; Puig-Vidal, Manel

    2012-01-01

    Quartz tuning forks are extremely good resonators and their use is growing in scanning probe microscopy. Nevertheless, only a few studies on soft biological samples have been reported using these probes. In this work, we present the methodology to develop and use these nanosensors to properly work with biological samples. The working principles, fabrication and experimental setup are presented. The results in the nanocharacterization of different samples in different ambients are presented by using different working modes: amplitude modulation with and without the use of a Phase-Locked Loop (PLL) and frequency modulation. Pseudomonas aeruginosa bacteria are imaged in nitrogen using amplitude modulation. Microcontact printed antibodies are imaged in buffer using amplitude modulation with a PLL. Finally, metastatic cells are imaged in air using frequency modulation. PMID:22666059

  15. Nanocharacterization of soft biological samples in shear mode with quartz tuning fork probes.

    PubMed

    Otero, Jorge; Gonzalez, Laura; Puig-Vidal, Manel

    2012-01-01

    Quartz tuning forks are extremely good resonators and their use is growing in scanning probe microscopy. Nevertheless, only a few studies on soft biological samples have been reported using these probes. In this work, we present the methodology to develop and use these nanosensors to properly work with biological samples. The working principles, fabrication and experimental setup are presented. The results in the nanocharacterization of different samples in different ambients are presented by using different working modes: amplitude modulation with and without the use of a Phase-Locked Loop (PLL) and frequency modulation. Pseudomonas aeruginosa bacteria are imaged in nitrogen using amplitude modulation. Microcontact printed antibodies are imaged in buffer using amplitude modulation with a PLL. Finally, metastatic cells are imaged in air using frequency modulation.

  16. Assessment of the Revised 3410 Building Filtered Exhaust Stack Sampling Probe Location

    SciTech Connect

    Yu, Xiao-Ying; Recknagle, Kurtis P.; Glissmeyer, John A.

    2013-12-01

    In order to support the air emissions permit for the 3410 Building, Pacific Northwest National Laboratory performed a series of tests in the exhaust air discharge from the reconfigured 3410 Building Filtered Exhaust Stack. The objective was to determine whether the location of the air sampling probe for emissions monitoring meets the applicable regulatory criteria governing such effluent monitoring systems. In particular, the capability of the air sampling probe location to meet the acceptance criteria of ANSI/HPS N13.1-2011 , Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stack and Ducts of Nuclear Facilities was determined. The qualification criteria for these types of stacks address 1) uniformity of air velocity, 2) sufficiently small flow angle with respect to the axis of the duct, 3) uniformity of tracer gas concentration, and 4) uniformity of tracer particle concentration. Testing was performed to conform to the quality requirements of NQA-1-2000. Fan configurations tested included all fan combinations of any two fans at a time. Most of the tests were conducted at the normal flow rate, while a small subset of tests was performed at a slightly higher flow rate achieved with the laboratory hood sashes fully open. The qualification criteria for an air monitoring probe location are taken from ANSI/HPS N13.1-2011 and are paraphrased as follows with key results summarized: 1. Angular Flow—The average air velocity angle must not deviate from the axis of the stack or duct by more than 20°. Our test results show that the mean angular flow angles at the center two-thirds of the ducts are smaller than 4.5% for all testing conditions. 2. Uniform Air Velocity—The acceptance criterion is that the COV of the air velocity must be ≤ 20% across the center two thirds of the area of the stack. Our results show that the COVs of the air velocity across the center two-thirds of the stack are smaller than 2.9% for all testing conditions. 3

  17. 40 CFR 61.34 - Air sampling.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Beryllium § 61.34 Air... detect maximum concentrations of beryllium in the ambient air. (b) All monitoring sites shall be...

  18. 40 CFR 61.34 - Air sampling.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Beryllium § 61.34 Air... detect maximum concentrations of beryllium in the ambient air. (b) All monitoring sites shall be...

  19. 40 CFR 61.34 - Air sampling.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Beryllium § 61.34 Air... detect maximum concentrations of beryllium in the ambient air. (b) All monitoring sites shall be...

  20. 40 CFR 61.34 - Air sampling.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Beryllium § 61.34 Air... detect maximum concentrations of beryllium in the ambient air. (b) All monitoring sites shall be...

  1. 40 CFR 61.34 - Air sampling.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Beryllium § 61.34 Air... detect maximum concentrations of beryllium in the ambient air. (b) All monitoring sites shall be...

  2. Minanre Gas Concentrators For Air Sampling

    SciTech Connect

    Dr. Seung Ho Hong

    2001-03-01

    The goal of this project was to demonstrate the feasibility of a compact, lightweight, gas-sampling device with rapid-cycle-time characteristics. The highlights of our Phase I work include: (1) Demonstration of a compact gas sampler with integrated heater. This device has an order of magnitude greater adsorption capacity and much faster heating/cooling times than commercial sorbent tubes. (2) Completion of computational fluid dynamics modeling of the gas sampler to determine airflow characteristics for various design options. These modeling efforts guided the development and testing of the Mesochannel Gas Sampler prototype. (3) Testing of the Mesochannel Gas Sampler in parallel with tests of two packed-bed samplers. These tests showed the Mesochannel Gas Sampler represents a substantial improvement compared with the packed-bed approach. Our mesochannel heat-exchanger/adsorber architecture allows very efficient use of adsorbent mass, high adsorbent loadings, and very low pressure drop, which makes possible very high air-sampling rates using a simple, low-power fan. This device is well-suited for collecting samples of trace-level contaminants. The integrated heater, which forms the adsorbent-coated mesochannel walls, allows direct heating of the adsorbent and results in very rapid desorption of the adsorbed species. We believe the Mesochannel Gas Sampler represents a promising technology for the improvement of trace-contaminant detection limits. In our Phase II proposal, we outline several improvements to the gas sampler that will further improve its performance.

  3. Extractive probe/TDLAS measurements of acetylene in atmospheric-pressure fuel-rich premixed methane/air flames

    SciTech Connect

    Gersen, S.; Mokhov, A.V.; Levinsky, H.B.

    2005-11-01

    The profiles of C{sub 2}H{sub 2} mole fractions were measured in flat atmospheric-pressure rich-premixed methane/air flames using microprobe gas sampling followed by tunable diode laser absorption spectroscopy (TDLAS), and compared the results with predictions of one-dimensional flame calculations. Acetylene concentrations are also determined by spontaneous Raman scattering to quantify possible uncertainties due to chemical reactions on the probe surface or acceleration of the combustion products into the probe.

  4. AFTI/F-16 Air probe close-up

    NASA Technical Reports Server (NTRS)

    1982-01-01

    This close-up view shows the AFTI F-16 air probe early in the research program. It consists of a nose boom resembling a long pipe, and four indicators that look and act like weather vanes. The indicators on the left and right measure pitch, or the movement of the airplane's nose up or down. Those on the top and bottom of the boom measure yaw, or movement of the nose to the left or right. Similar probes are standard on most research and prototype aircraft. The data from the indicators is recorded aboard the aircraft and/or radioed to the ground. This data includes both the amount of yaw and pitch at any given time, and the rate at which both motions changed in flight. This information, subsequently processed and compared to wind tunnel results, may reveal stability and aerodynamic abnormalities. The two metal half-circles and their attachment fixtures are not part of the air probe. Rather, they are used to calibrate the indicators on the ground, enabling the data to be corrected for instrument errors. The figure in the photograph is shown holding a red 'Remove Before Flight' ribbon, a reminder to the ground crew that it must be taken off prior to a research mission. During the 1980s and 1990s, NASA and the U.S. Air Force participated in a joint program to integrate and demonstrate new avionics technologies to improve close air support capabilities in next-generation aircraft. The testbed aircraft, seen here in flight over the desert at NASA's Dryden Flight Research Center, Edwards, California, was called the Advanced Fighter Technology Integration (AFTI) F-16. The tests demonstrated technologies to improve navigation and the pilot's ability to find and destroy enemy ground targets day or night, including adverse weather. The aircraft--an F-16A Fighting Falcon (Serial #75-0750)--underwent numerous modifications. A relatively low-cost testbed, it evaluated the feasability of advanced, intergrated-sensor, avionics, and flight control technologies. During the first

  5. New Methods of Sample Preparation for Atom Probe Specimens

    NASA Technical Reports Server (NTRS)

    Kuhlman, Kimberly, R.; Kowalczyk, Robert S.; Ward, Jennifer R.; Wishard, James L.; Martens, Richard L.; Kelly, Thomas F.

    2003-01-01

    Magnetite is a common conductive mineral found on Earth and Mars. Disk-shaped precipitates approximately 40 nm in diameter have been shown to have manganese and aluminum concentrations. Atom-probe field-ion microscopy (APFIM) is the only technique that can potentially quantify the composition of these precipitates. APFIM will be used to characterize geological and planetary materials, analyze samples of interest for geomicrobiology; and, for the metrology of nanoscale instrumentation. Prior to APFIM sample preparation was conducted by electropolishing, the method of sharp shards (MSS), or Bosch process (deep reactive ion etching) with focused ion beam (FIB) milling as a final step. However, new methods are required for difficult samples. Many materials are not easily fabricated using electropolishing, MSS, or the Bosch process, FIB milling is slow and expensive, and wet chemistry and the reactive ion etching are typically limited to Si and other semiconductors. APFIM sample preparation using the dicing saw is commonly used to section semiconductor wafers into individual devices following manufacture. The dicing saw is a time-effective method for preparing high aspect ratio posts of poorly conducting materials. Femtosecond laser micromachining is also suitable for preparation of posts. FIB time required is reduced by about a factor of 10 and multi-tip specimens can easily be fabricated using the dicing saw.

  6. Systematic Evaluation of Aggressive Air Sampling for Bacillus ...

    EPA Pesticide Factsheets

    Report The primary objectives of this project were to evaluate the Aggressive Air Sampling (AAS) method compared to currently used surface sampling methods and to determine if AAS is a viable option for sampling Bacillus anthracis spores.

  7. Direct Electrospray Ionization Mass Spectrometric Profiling of Real-World Samples via a Solid Sampling Probe

    NASA Astrophysics Data System (ADS)

    Yu, Zhan; Chen, Lee Chuin; Mandal, Mridul Kanti; Yoshimura, Kentaro; Takeda, Sen; Hiraoka, Kenzo

    2013-10-01

    This study presents a novel direct analysis strategy for rapid mass spectrometric profiling of biochemicals in real-world samples via a direct sampling probe (DSP) without sample pretreatments. Chemical modification is applied to a disposable stainless steel acupuncture needle to enhance its surface area and hydrophilicity. After insertion into real-world samples, biofluid can be attached on the DSP surface. With the presence of a high DC voltage and solvent vapor condensing on the tip of the DSP, analyte can be dissolved and electrosprayed. The simplicity in design, versatility in application aspects, and other advantages such as low cost and disposability make this new method a competitive tool for direct analysis of real-world samples.

  8. Sparse sampling and reconstruction for electron and scanning probe microscope imaging

    DOEpatents

    Anderson, Hyrum; Helms, Jovana; Wheeler, Jason W.; Larson, Kurt W.; Rohrer, Brandon R.

    2015-07-28

    Systems and methods for conducting electron or scanning probe microscopy are provided herein. In a general embodiment, the systems and methods for conducting electron or scanning probe microscopy with an undersampled data set include: driving an electron beam or probe to scan across a sample and visit a subset of pixel locations of the sample that are randomly or pseudo-randomly designated; determining actual pixel locations on the sample that are visited by the electron beam or probe; and processing data collected by detectors from the visits of the electron beam or probe at the actual pixel locations and recovering a reconstructed image of the sample.

  9. Assessment of Waste Treatment Plant Lab C3V (LB-S1) Stack Sampling Probe Location for Compliance with ANSI/HPS N13.1-1999

    SciTech Connect

    Glissmeyer, John A.; Geeting, John GH

    2013-02-01

    This report documents a series of tests used to assess the proposed air sampling location in the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Lab C3V (LB-S1) exhaust stack with respect to the applicable criteria regarding the placement of an air sampling probe. Federal regulations require that an air sampling probe be located in the exhaust stack in accordance with the criteria of American National Standards Institute/Health Physics Society (ANSI/HPS) N13.1-1999, Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stack and Ducts of Nuclear Facilities. These criteria address the capability of the sampling probe to extract a sample that represents the effluent stream.

  10. Effect of probe geometry and optical properties on the sampling depth for diffuse reflectance spectroscopy.

    PubMed

    Hennessy, Ricky; Goth, Will; Sharma, Manu; Markey, Mia K; Tunnell, James W

    2014-01-01

    The sampling depth of light for diffuse reflectance spectroscopy is analyzed both experimentally and computationally. A Monte Carlo (MC) model was used to investigate the effect of optical properties and probe geometry on sampling depth. MC model estimates of sampling depth show an excellent agreement with experimental measurements over a wide range of optical properties and probe geometries. The MC data are used to define a mathematical expression for sampling depth that is expressed in terms of optical properties and probe geometry parameters.

  11. DOSY of sample-limited mixtures: comparison of cold, nano and conventional probes.

    PubMed

    Bradley, Scott A; Paschal, Jonathan; Kulanthaivel, Palaniappan

    2005-01-01

    The DOSY analysis of dilute mixtures can be a challenge because a high signal-to-noise ratio is required for the best DOSY results. The sensitivity increase gained from new probe technologies (e.g. cold and nano probes) could enable one to acquire good DOSY spectra on sample amounts too low for conventional probes. In this article, we investigated the performance of cold and nano probes for qualitative DOSY analysis of concentrated and sample-limited mixtures, and compared the results with those of the conventional probe. We first measured the fluid flow for each probe. All three probes exhibited only relatively small levels of flow; consequently, a double-stimulated echo pulse sequence was not employed in the subsequent DOSY experiments. This decision was based on three facts: (1) flow-induced phase distortions were not observed, (2) our intentions are only to perform qualitative mixture analysis, and (3) discarding 50% of the already limited signal cannot be afforded. Although the cold and nano probes produced DOSY results for the concentrated mixture that were inferior to the conventional probe, the increase in the signal-to-noise ratio observed with these probes proved to be advantageous for the dilute three-component mixture. Furthermore, the cold probe showed slightly superior performance over the nano probe; thus, we conclude that among the probes examined the cold probe is best suited for qualitative DOSY analysis of sample-limited mixtures.

  12. Hand and shoe monitor using air ionization probes

    DOEpatents

    Fergus, Richard W.

    1981-01-01

    A hand and shoe radiation monitor is provided which includes a probe support body defining a plurality of cells, within each cell there being an ionization probe. The support body provides structural strength for protecting the ionization probes from force applied to the support body during a radiation monitoring event. There is also provided a fast response time amplifier circuit for the output from the ionization probes.

  13. Hand and shoe monitor using air ionization probes

    SciTech Connect

    Fergus, R.W.

    1981-02-24

    A hand and shoe radiation monitor is provided which includes a probe support body defining a plurality of cells, within each cell there being an ionization probe. The support body provides structural strength for protecting the ionization probes from force applied to the support body during a radiation monitoring event. There is also provided a fast response time amplifier circuit for the output from the ionization probes.

  14. Sampling Interplanetary Dust Particles from Antarctic Air

    NASA Astrophysics Data System (ADS)

    Taylor, S.; Lever, J. H.; Alexander, C. M. O'D.; Brownlee, D. E.; Messenger, S.; Littler, L. R.; Stroud, R. M.; Wozniakiewicz, P.; Clement, S.

    2016-08-01

    We are undertaking a NASA and NSF supported project to filter large volumes of clean Antarctic air to collect a broad range of cosmic dust, including CP-IDPs, rare ultra-carbonaceous particles and particles derived from specific meteor streams.

  15. Assessment of the Building 3430 Filtered Exhaust Stack Sampling Probe Location

    SciTech Connect

    Glissmeyer, John A.

    2010-04-13

    Pacific Northwest National Laboratory performed a demonstration to determine the acceptable location in which to place an air sampling probe for emissions monitoring for radionuclides in the exhaust air discharge from the new 3430 Building Filtered Pathway Stack . The method was to adopt the results of a previously performed test series for a system of similar configuration, followed by a partial test on the actual system to verify the applicability of previously performed tests. The qualification criteria included 1) a uniform air velocity, 2) an average flow angle that does not deviate from the axis of the duct by more than 20°, 3) a uniform concentration of tracer gases, and 4) a uniform concentration of tracer particles. Section 1 provides background information for the demonstration, and Section 2 describes the test strategy, including the criteria for the applicability of model results and the test matrix. Section 3 describes the flow angle test and the velocity uniformity test, Section 4 provides the test results, and Section 5 provides the conclusions. Appendix A includes the test data sheets, and Appendix B gives applicable qualification results from the previously tested model stack. The data from the previously tested and similarly designed stack was demonstrated to be applicable to the current design for the 3430 Building Filtered Pathway stack. Therefore, this new system also meets the qualification criteria given in the ANSI/HPS N13.1 standard. Changes to the system configuration or operations outside of the bounds of this report (e.g., exhaust velocity increases, relocation of sample probe) will require retesting/reevaluation to determine compliance to the requirements.

  16. Measurement of the Tracer Gradient and Sampling System Bias of the Hot Fuel Examination Facility Stack Air Monitoring System

    SciTech Connect

    Glissmeyer, John A.; Flaherty, Julia E.

    2011-07-20

    This report describes tracer gas uniformity and bias measurements made in the exhaust air discharge of the Hot Fuel Examination Facility at Idaho National Laboratory. The measurements were a follow-up on earlier measurements which indicated a lack of mixing of the two ventilation streams being discharged via a common stack. The lack of mixing is detrimental to the accuracy of air emission measurements. The lack of mixing was confirmed in these new measurements. The air sampling probe was found to be out of alignment and that was corrected. The suspected sampling bias in the air sample stream was disproved.

  17. Sealed magic angle spinning nuclear magnetic resonance probe and process for spectroscopy of hazardous samples

    SciTech Connect

    Cho, Herman M.; Washton, Nancy M.; Mueller, Karl T.; Sears, Jr., Jesse A.; Townsend, Mark R.; Ewing, James R.

    2016-06-14

    A magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) probe is described that includes double containment enclosures configured to seal and contain hazardous samples for analysis. The probe is of a modular design that ensures containment of hazardous samples during sample analysis while preserving spin speeds for superior NMR performance and convenience of operation.

  18. Venturi Air-Jet Vacuum Ejector For Sampling Air

    NASA Technical Reports Server (NTRS)

    Hill, Gerald F.; Sachse, Glen W.; Burney, L. Garland; Wade, Larry O.

    1990-01-01

    Venturi air-jet vacuum ejector pump light in weight, requires no electrical power, does not contribute heat to aircraft, and provides high pumping speeds at moderate suctions. High-pressure motive gas required for this type of pump bled from compressor of aircraft engine with negligible effect on performance of engine. Used as source of vacuum for differential-absorption CO-measurement (DACOM), modified to achieve in situ measurements of CO at frequency response of 10 Hz. Provides improvement in spatial resolution and potentially leads to capability to measure turbulent flux of CO by use of eddy-correlation technique.

  19. Depth Probing Soft X-ray Microprobe (DPSXRM) for High Resolution Probing of Earth's Microstructural Samples

    NASA Astrophysics Data System (ADS)

    Dikedi, P. N.

    2015-12-01

    The Cambrian explosion; occurrence of landslides in very dry weather conditions; rockslides; dead, shriveled-up and crumbled leaves possessing fossil records with the semblance of well preserved, flat leaves; abundance of trilobite tracks in lower and higher rock layers; and sailing stones are enigmas demanding demystifications. These enigmas could be elucidated when data on soil structure, texture and strength are provided by some device with submicrometre accuracy; for these and other reasons, the design of a Depth Probing Soft X-ray Microprobe (DPSXRM), is being proposed; it is expected to deliver soft X-rays, at spatial resolution, ϛ≥600nm and to probe at the depth of 0.5m in 17s. The microprobe is portable compared to a synchrotron radiation facility (Diamond Light Source has land size of 43,300m2); spatial resolution,ϛ , of the DPSXRM surpasses those of the X-ray Fluorescence microanalysis (10µm), electron microprobe (1-3µm) and ion microprobe (5->30µm); the DPSXRM has allowance for multiple targets. Vanadium and Manganese membranes are proposed owing to respective 4.952KeV VKα1 and 5.899KeV MnKα1 X-rays emitted, which best suits micro-probing of Earth's microstructural samples. Compound systems like the Kirk-Patrick and Baez and Wolter optics, aspheric mirrors like elliptical and parabolic optics, small apertures and Abbe sine condition are employed to reduce or remove astigmatism, obliquity, comatic and spherical aberrations—leading to good image quality. Results show that 5.899KeV MnKα1 and 4.952KeV VKα1 soft X-rays will travel a distance of 2.75mm to form circular patches of radii 2.2mm and 2.95mm respectively. Zone plate with nth zone radius of 1.5mm must be positioned 1.5mm and 2mm from the electron gun if circular patches must be formed from 4.952KeV VKα1 and 5.899KeV MnKα1 soft X-rays respectively. The focal lengths of 0.25μm≤ƒ≤1.50μm and 0.04μm≤ƒ≤0.2μm covered by 4.952KeV VKα1 and 5.899KeV Mn Kα1 soft X-Rays, will

  20. Spectrophotometric probe

    DOEpatents

    Prather, W.S.; O'Rourke, P.E.

    1994-08-02

    A support structure is described bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe. 3 figs.

  1. Spectrophotometric probe

    DOEpatents

    Prather, William S.; O'Rourke, Patrick E.

    1994-01-01

    A support structure bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe.

  2. Workplace air monitoring and sampling practices at DOE facilities

    SciTech Connect

    Swinth, K.L.; Kenoyer, J.L.; Selby, J.M.; Vallario, E.J.; Burphy, B.L.

    1986-03-01

    Current air monitoring and sampling practices at DOE facilities were surveyed as a part of an air monitoring upgrade task. A comprehensive questionnaire was developed and distributed to DOE contractors through the DOE field offices. Twenty-six facilities returned a completed questionnaire. Questionnaire replies indicate diversity in air sampling and monitoring practices among DOE facilities. The difference among the facilities exist in monitoring and sampling instrumentation, procedures, calibration, analytical methods, detection levels, and action levels. Many of these differences could be attributed to different operational needs.

  3. Coolant-Control Valves For Fluid-Sampling Probes

    NASA Technical Reports Server (NTRS)

    Schultz, Donald F.

    1989-01-01

    Small built-in leaks prevent overheating. Downstream flow-control globe valve replaced with modified gate valve. Modification consists of drilling small hole through valve gate, so valve never turned completely off. This "leaky" valve provides enough flow of coolant to prevent overheating causing probe to fail. Principle also applied to automatic control system by installing small bypass line around control valve.

  4. APPLICATION OF SEMIPERMEABLE MEMBRANE DEVICES TO INDOOR AIR SAMPLING

    EPA Science Inventory

    Semipermeable membrane devices (SPMDs) are a relatively new passive sampling technique for nonpolar organic compounds that have been extensively used for surface water sampling. A small body of literature indicates that SPMDs are also useful for air sampling. Because SPMDs ha...

  5. EML Surface Air Sampling Program, 1990--1993 data

    SciTech Connect

    Larsen, R.J.; Sanderson, C.G.; Kada, J.

    1995-11-01

    Measurements of the concentrations of specific atmospheric radionuclides in air filter samples collected for the Environmental Measurements Laboratory`s Surface Air Sampling Program (SASP) during 1990--1993, with the exception of April 1993, indicate that anthropogenic radionuclides, in both hemispheres, were at or below the lower limits of detection for the sampling and analytical techniques that were used to collect and measure them. The occasional detection of {sup 137}Cs in some air filter samples may have resulted from resuspension of previously deposited debris. Following the April 6, 1993 accident and release of radionuclides into the atmosphere at a reprocessing plant in the Tomsk-7 military nuclear complex located 16 km north of the Siberian city of Tomsk, Russia, weekly air filter samples from Barrow, Alaska; Thule, Greenland and Moosonee, Canada were selected for special analyses. The naturally occurring radioisotopes that the authors measure, {sup 7}Be and {sup 210}Pb, continue to be detected in most air filter samples. Variations in the annual mean concentrations of {sup 7}Be at many of the sites appear to result primarily from changes in the atmospheric production rate of this cosmogenic radionuclide. Short-term variations in the concentrations of {sup 7}Be and {sup 210}Pb continued to be observed at many sites at which weekly air filter samples were analyzed. The monthly gross gamma-ray activity and the monthly mean surface air concentrations of {sup 7}Be, {sup 95}Zr, {sup 137}Cs, {sup 144}Ce, and {sup 210}Pb measured at sampling sites in SASP during 1990--1993 are presented. The weekly mean surface air concentrations of {sup 7}Be, {sup 95}Zr, {sup 137}Cs, {sup 144}Ce, and {sup 210}Pb for samples collected during 1990--1993 are given for 17 sites.

  6. AFM fluid delivery/liquid extraction surface sampling/electrostatic spray cantilever probe

    SciTech Connect

    Van Berkel, Gary J.

    2015-06-23

    An electrospray system comprises a liquid extraction surface sampling probe. The probe comprises a probe body having a liquid inlet and a liquid outlet, and having a liquid extraction tip. A solvent delivery conduit is provided for receiving solvent liquid from the liquid inlet and delivering the solvent liquid to the liquid extraction tip. An open liquid extraction channel extends across an exterior surface of the probe body from the liquid extraction tip to the liquid outlet. An electrospray emitter tip is in liquid communication with the liquid outlet of the liquid extraction surface sampling probe. A system for analyzing samples, a liquid junction surface sampling system, and a method of analyzing samples are also disclosed.

  7. [Ambient and enclosed space air sampling for determination of contaminants].

    PubMed

    Dorogova, V B

    2010-01-01

    The paper touches upon the issues how to correctly and maximally take single and average daily samples of ambient, residential and public building, and enclosed space air for further tests for the content of hazardous substances. The paper is debated.

  8. Sampling of post-Riley visual artists surreptitiously probing perception

    NASA Astrophysics Data System (ADS)

    Daly, Scott J.

    2003-06-01

    Attending any conference on visual perception undoubtedly leaves one exposed to the work of Salvador Dali, whose extended phase of work exploring what he dubbed, "the paranoiac-critical method" is very popular as examples of multiple perceptions from conflicting input. While all visual art is intertwined with perceptual science, from convincing three-dimensional illusion during the Renaissance to the isolated visual illusions of Bridget Riley"s Op-Art, direct statements about perception are rarely uttered by the artists in recent times. However, there are still a number of artists working today whose work contains perceptual questions and exemplars that can be of interest to vision scientists and imaging engineers. This talk will start sampling from Op-Art, which is most directly related to psychophysical test stimuli and then will discuss "perceptual installations" from artists such as James Turrell"s, whose focus is often directly on natural light, with no distortions imposed by any capture or display apparatus. His work generally involves installations that use daylight and focus the viewer on its nuanced qualities, such as umbra, air particle interactions, and effects of light adaptation. He is one of the last artists to actively discuss perception. Next we discuss minimal art and electronic art, with video artist Nam June Paik discussing the "intentionally boring" art of minimalism. Another artist using installations is Sandy Skoglund, who creates environments of constant spectral albedo, with the exception of her human occupants. Tom Shannon also uses installations as his media to delve into 3D aspects of depth and perspective, but in an atomized fashion. Beginning with installation concepts, Calvin Collum then adds the restrictive viewpoint of photography to create initially confusing images where the pictorial content and depth features are independent (analogous to the work of Patrick Hughes). Andy Goldsworthy also combines photography with concepts of

  9. Solid waste transuranic storage and assay facility indoor air sampling

    SciTech Connect

    Pingel, L.A., Westinghouse Hanford

    1996-08-20

    The purpose of the study is to collect and analyze samples of the indoor air at the Transuranic Storage and Assay Facility (TRUSAF), Westinghouse Hanford. A modified US EPA TO-14 methodology, using gas chromatography/mass spectrography, may be used for the collection and analysis of the samples. The information obtained will be used to estimate the total release of volatile organic compounds from TRUSAF to determine the need for air emmission permits.

  10. F-18 SRA closeup of nose cap showing Advanced L-Probe Air Data Integration experiment

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This L-shaped probe mounted on the forward fuselage of a modified F-18 Systems Research Aircraft was the focus of an air data collection experiment flown at NASA's Dryden Flight Research Center, Edwards, California. The Advanced L-Probe Air Data Integration (ALADIN) experiment focused on providing pilots with angle-of-attack and angle-of-sideslip information as well as traditional airspeed and altitude data from a single system. For the experiment, the probes--one mounted on either side of the F-18's forward fuselage--were hooked to a series of four transducers, which relayed pressure measurements to an on-board research computer.

  11. Liquid microjunction surface sampling probe fluid dynamics: computational and experimental analysis of coaxial intercapillary positioning effects on sample manipulation.

    PubMed

    Elnaggar, Mariam S; Barbier, Charlotte; Van Berkel, Gary J

    2011-07-01

    A coaxial geometry liquid microjunction surface sampling probe (LMJ-SSP) enables direct extraction of analytes from surfaces for subsequent analysis by techniques like mass spectrometry. Solution dynamics at the probe-to-sample surface interface in the LMJ-SSP has been suspected to influence sampling efficiency and dispersion but has not been rigorously investigated. The effect on flow dynamics and analyte transport to the mass spectrometer caused by coaxial retraction of the inner and outer capillaries from each other and the surface during sampling with a LMJ-SSP was investigated using computational fluid dynamics and experimentation. A transparent LMJ-SSP was constructed to provide the means for visual observation of the dynamics of the surface sampling process. Visual observation, computational fluid dynamics (CFD) analysis, and experimental results revealed that inner capillary axial retraction from the flush position relative to the outer capillary transitioned the probe from a continuous sampling and injection mode through an intermediate regime to sample plug formation mode caused by eddy currents at the sampling end of the probe. The potential for analytical implementation of these newly discovered probe operational modes is discussed.

  12. Liquid Microjunction Surface Sampling Probe Fluid Dynamics: Computational and Experimental Analysis of Coaxial Intercapillary Positioning Effects on Sample Manipulation

    NASA Astrophysics Data System (ADS)

    ElNaggar, Mariam S.; Barbier, Charlotte; Van Berkel, Gary J.

    2011-07-01

    A coaxial geometry liquid microjunction surface sampling probe (LMJ-SSP) enables direct extraction of analytes from surfaces for subsequent analysis by techniques like mass spectrometry. Solution dynamics at the probe-to-sample surface interface in the LMJ-SSP has been suspected to influence sampling efficiency and dispersion but has not been rigorously investigated. The effect on flow dynamics and analyte transport to the mass spectrometer caused by coaxial retraction of the inner and outer capillaries from each other and the surface during sampling with a LMJ-SSP was investigated using computational fluid dynamics and experimentation. A transparent LMJ-SSP was constructed to provide the means for visual observation of the dynamics of the surface sampling process. Visual observation, computational fluid dynamics (CFD) analysis, and experimental results revealed that inner capillary axial retraction from the flush position relative to the outer capillary transitioned the probe from a continuous sampling and injection mode through an intermediate regime to sample plug formation mode caused by eddy currents at the sampling end of the probe. The potential for analytical implementation of these newly discovered probe operational modes is discussed.

  13. Single point aerosol sampling: Evaluation of mixing and probe performance in a nuclear stack

    SciTech Connect

    Rodgers, J.C.; Fairchild, C.I.; Wood, G.O.

    1995-02-01

    Alternative Reference Methodologies (ARMs) have been developed for sampling of radionuclides from stacks and ducts that differ from the methods required by the U.S. EPA. The EPA methods are prescriptive in selection of sampling locations and in design of sampling probes whereas the alternative methods are performance driven. Tests were conducted in a stack at Los Alamos National Laboratory to demonstrate the efficacy of the ARMs. Coefficients of variation of the velocity tracer gas, and aerosol particle profiles were determined at three sampling locations. Results showed numerical criteria placed upon the coefficients of variation by the ARMs were met at sampling stations located 9 and 14 stack diameters from flow entrance, but not at a location that is 1.5 diameters downstream from the inlet. Experiments were conducted to characterize the transmission of 10 {mu}m aerodynamic equivalent diameter liquid aerosol particles through three types of sampling probes. The transmission ratio (ratio of aerosol concentration at the probe exit plane to the concentration in the free stream) was 107% for a 113 L/min (4-cfm) anisokinetic shrouded probe, but only 20% for an isokinetic probe that follows the EPA requirements. A specially designed isokinetic probe showed a transmission ratio of 63%. The shrouded probe performance would conform to the ARM criteria; however, the isokinetic probes would not.

  14. Accurate microfour-point probe sheet resistance measurements on small samples.

    PubMed

    Thorsteinsson, Sune; Wang, Fei; Petersen, Dirch H; Hansen, Torben Mikael; Kjaer, Daniel; Lin, Rong; Kim, Jang-Yong; Nielsen, Peter F; Hansen, Ole

    2009-05-01

    We show that accurate sheet resistance measurements on small samples may be performed using microfour-point probes without applying correction factors. Using dual configuration measurements, the sheet resistance may be extracted with high accuracy when the microfour-point probes are in proximity of a mirror plane on small samples with dimensions of a few times the probe pitch. We calculate theoretically the size of the "sweet spot," where sufficiently accurate sheet resistances result and show that even for very small samples it is feasible to do correction free extraction of the sheet resistance with sufficient accuracy. As an example, the sheet resistance of a 40 microm (50 microm) square sample may be characterized with an accuracy of 0.3% (0.1%) using a 10 microm pitch microfour-point probe and assuming a probe alignment accuracy of +/-2.5 microm.

  15. Concepts for Environmental Radioactive Air Sampling and Monitoring

    SciTech Connect

    Barnett, J. Matthew

    2011-11-04

    Environmental radioactive air sampling and monitoring is becoming increasingly important as regulatory agencies promulgate requirements for the measurement and quantification of radioactive contaminants. While researchers add to the growing body of knowledge in this area, events such as earthquakes and tsunamis demonstrate how nuclear systems can be compromised. The result is the need for adequate environmental monitoring to assure the public of their safety and to assist emergency workers in their response. Two forms of radioactive air monitoring include direct effluent measurements and environmental surveillance. This chapter presents basic concepts for direct effluent sampling and environmental surveillance of radioactive air emissions, including information on establishing the basis for sampling and/or monitoring, criteria for sampling media and sample analysis, reporting and compliance, and continual improvement.

  16. Influence of probe-sample temperature difference on thermal mapping contrast in scanning thermal microscopy imaging

    NASA Astrophysics Data System (ADS)

    Kaźmierczak-Bałata, Anna; Juszczyk, Justyna; Trefon-Radziejewska, Dominika; Bodzenta, Jerzy

    2017-03-01

    The purpose of this work is to investigate the influence of a temperature difference through a probe-sample contact on thermal contrast in Scanning Thermal Microscopy imaging. A variety of combinations of temperature differences in the probe-sample system were first analyzed based on an electro-thermal finite element model. The numerical analysis included cooling the sample, as well as heating the sample and the probe. Due to the simplicity in the implementation, experimental verification involved modifying the standard imaging technique by heating the sample. Experiments were carried out in the temperature range between 298 K and 328 K. Contrast in thermal mapping was improved for a low probe current with a heated sample.

  17. Air samplings in a Campylobacter jejuni positive laying hen flock.

    PubMed

    Ahmed, Marwa Fawzy El Metwaly; Schulz, Jochen; Hartung, Joerg

    2013-01-01

    The air in laying hen houses contains high concentrations of airborne bacteria. The numbers of these bacteria can be influenced by the efficiency of the chosen sampling method. In the presented study, AGI-30 Impingers and the Coriolis(®)µ air Sampler were compared in terms of their efficiency in sampling aerobic mesophilic bacteria in a laying hen house. Measurements were conducted in a laying hen flock with high prevalences of C. jejuni in order to investigate if culturable cells of this organism can also be detected by the applied methods. Airborne dust was also analyzed for the presence of C. jejuni specific DNA to assess the possible occurrence of non-culturable C. jejuni in the hen house air. The numbers of mesophilic airborne bacteria ranged from 8 × 10(4) - 2 × 10(6) CFU/m(-3) when sampled using AGI-30 Impingers, and from 2 × 10(5) - 4 × 10(6) CFU/m -3 when sampled using a Coriolis(®)µ air Sampler. The concentrations detected simultaneously by both devices correlated well (rPearson = 0.755), but the Coriolis(®)µ air Sampler showed a significantly higher sampling efficiency (p<0.001). Although, the within flock prevalence of C. jejuni was high during the experiments (between 70-93%), neither of the air sampling methods could detect culturable C. jejuni from the air. However, C. jejuni specific DNA was detected in 15 out of 18 airborne dust samples by mapA PCR. Based on the results, it can be concluded that airborne culturable C. jejuni were not detectable, even with an efficient air sampler, because of their low concentration. Therefore, the risk of airborne infection to poultry workers on inhaling airborne C. jejuni seems negligible. Also, the transmission of culturable C. jejuni to neighboring farms by the airborne route is unlikely. Otherwise, the detection of airborne C. jejuni specific DNA suggests that non-culturable cells could appear in the hen house air, and in future it should be verified whether sampling stress of the air sampling methods

  18. Development of a multicopter-carried whole air sampling apparatus and its applications in environmental studies.

    PubMed

    Chang, Chih-Chung; Wang, Jia-Lin; Chang, Chih-Yuan; Liang, Mao-Chang; Lin, Ming-Ren

    2016-02-01

    To advance the capabilities of probing chemical composition aloft, we designed a lightweight remote-controlled whole air sampling component (WASC) and integrated it into a multicopter drone with agile maneuverability to perform aerial whole air sampling. A field mission hovering over an exhaust shaft of a roadway tunnel to collect air samples was performed to demonstrate the applicability of the multicopter-carried WASC apparatus. Ten aerial air samples surrounding the shaft vent were collected by the multicopter-carried WASC. Additional five samples were collected manually inside the shaft for comparison. These samples were then analyzed in the laboratory for the chemical composition of 109 volatile organic compounds (VOCs), CH4, CO, CO2, or CO2 isotopologues. Most of the VOCs in the upwind samples (the least affected by shaft exhaust) were low in concentrations (5.9 ppbv for total 109 VOCs), posting a strong contrast to those in the shaft exhaust (235.8 ppbv for total 109 VOCs). By comparing the aerial samples with the in-shaft samples for chemical compositions, the influence of the shaft exhaust on the surrounding natural air was estimated. Through the aerial measurements, three major advantages of the multicopter-carried WASC were demonstrated: 1. The highly maneuverable multicopter-carried WASC can be readily deployed for three-dimensional environmental studies at a local scale (0-1.5 km); 2. Aerial sampling with superior sample integrity and preservation conditions can now be performed with ease; and 3. Data with spatial resolution for a large array of gaseous species with high precision can be easily obtained.

  19. Probe Heating Method for the Analysis of Solid Samples Using a Portable Mass Spectrometer

    PubMed Central

    Kumano, Shun; Sugiyama, Masuyuki; Yamada, Masuyoshi; Nishimura, Kazushige; Hasegawa, Hideki; Morokuma, Hidetoshi; Inoue, Hiroyuki; Hashimoto, Yuichiro

    2015-01-01

    We previously reported on the development of a portable mass spectrometer for the onsite screening of illicit drugs, but our previous sampling system could only be used for liquid samples. In this study, we report on an attempt to develop a probe heating method that also permits solid samples to be analyzed using a portable mass spectrometer. An aluminum rod is used as the sampling probe. The powdered sample is affixed to the sampling probe or a droplet of sample solution is placed on the tip of the probe and dried. The probe is then placed on a heater to vaporize the sample. The vapor is then introduced into the portable mass spectrometer and analyzed. With the heater temperature set to 130°C, the developed system detected 1 ng of methamphetamine, 1 ng of amphetamine, 3 ng of 3,4-methylenedioxymethamphetamine, 1 ng of 3,4-methylenedioxyamphetamine, and 0.3 ng of cocaine. Even from mixtures consisting of clove powder and methamphetamine powder, methamphetamine ions were detected by tandem mass spectrometry. The developed probe heating method provides a simple method for the analysis of solid samples. A portable mass spectrometer incorporating this method would thus be useful for the onsite screening of illicit drugs. PMID:26819909

  20. Probe Heating Method for the Analysis of Solid Samples Using a Portable Mass Spectrometer.

    PubMed

    Kumano, Shun; Sugiyama, Masuyuki; Yamada, Masuyoshi; Nishimura, Kazushige; Hasegawa, Hideki; Morokuma, Hidetoshi; Inoue, Hiroyuki; Hashimoto, Yuichiro

    2015-01-01

    We previously reported on the development of a portable mass spectrometer for the onsite screening of illicit drugs, but our previous sampling system could only be used for liquid samples. In this study, we report on an attempt to develop a probe heating method that also permits solid samples to be analyzed using a portable mass spectrometer. An aluminum rod is used as the sampling probe. The powdered sample is affixed to the sampling probe or a droplet of sample solution is placed on the tip of the probe and dried. The probe is then placed on a heater to vaporize the sample. The vapor is then introduced into the portable mass spectrometer and analyzed. With the heater temperature set to 130°C, the developed system detected 1 ng of methamphetamine, 1 ng of amphetamine, 3 ng of 3,4-methylenedioxymethamphetamine, 1 ng of 3,4-methylenedioxyamphetamine, and 0.3 ng of cocaine. Even from mixtures consisting of clove powder and methamphetamine powder, methamphetamine ions were detected by tandem mass spectrometry. The developed probe heating method provides a simple method for the analysis of solid samples. A portable mass spectrometer incorporating this method would thus be useful for the onsite screening of illicit drugs.

  1. Presence of organophosphorus pesticide oxygen analogs in air samples

    NASA Astrophysics Data System (ADS)

    Armstrong, Jenna L.; Fenske, Richard A.; Yost, Michael G.; Galvin, Kit; Tchong-French, Maria; Yu, Jianbo

    2013-02-01

    A number of recent toxicity studies have highlighted the increased potency of oxygen analogs (oxons) of several organophosphorus (OP) pesticides. These findings were a major concern after environmental oxons were identified in environmental samples from air and surfaces following agricultural spray applications in California and Washington State. This paper reports on the validity of oxygen analog measurements in air samples for the OP pesticide, chlorpyrifos. Controlled environmental and laboratory experiments were used to examine artificial formation of chlorpyrifos-oxon using OSHA Versatile Sampling (OVS) tubes as recommended by NIOSH method 5600. Additionally, we compared expected chlorpyrifos-oxon attributable to artificial transformation to observed chlorpyrifos-oxon in field samples from a 2008 Washington State Department of Health air monitoring study using non-parametric statistical methods. The amount of artificially transformed oxon was then modeled to determine the amount of oxon present in the environment. Toxicity equivalency factors (TEFs) for chlorpyrifos-oxon were used to calculate chlorpyrifos-equivalent air concentrations. The results demonstrate that the NIOSH-recommended sampling matrix (OVS tubes with XAD-2 resin) was found to artificially transform up to 30% of chlorpyrifos to chlorpyrifos-oxon, with higher percentages at lower concentrations (<30 ng m-3) typical of ambient or residential levels. Overall, the 2008 study data had significantly greater oxon than expected by artificial transformation, but the exact amount of environmental oxon in air remains difficult to quantify with the current sampling method. Failure to conduct laboratory analysis for chlorpyrifos-oxon may result in underestimation of total pesticide concentration when using XAD-2 resin matrices for occupational or residential sampling. Alternative methods that can accurately measure both OP pesticides and their oxygen analogs should be used for air sampling, and a toxicity

  2. A simple novel device for air sampling by electrokinetic capture

    DOE PAGES

    Gordon, Julian; Gandhi, Prasanthi; Shekhawat, Gajendra; ...

    2015-12-27

    A variety of different sampling devices are currently available to acquire air samples for the study of the microbiome of the air. All have a degree of technical complexity that limits deployment. Here, we evaluate the use of a novel device, which has no technical complexity and is easily deployable. An air-cleaning device powered by electrokinetic propulsion has been adapted to provide a universal method for collecting samples of the aerobiome. Plasma-induced charge in aerosol particles causes propulsion to and capture on a counter-electrode. The flow of ions creates net bulk airflow, with no moving parts. A device and electrodemore » assembly have been re-designed from air-cleaning technology to provide an average air flow of 120 lpm. This compares favorably with current air sampling devices based on physical air pumping. Capture efficiency was determined by comparison with a 0.4 μm polycarbonate reference filter, using fluorescent latex particles in a controlled environment chamber. Performance was compared with the same reference filter method in field studies in three different environments. For 23 common fungal species by quantitative polymerase chain reaction (qPCR), there was 100 % sensitivity and apparent specificity of 87%, with the reference filter taken as “gold standard.” Further, bacterial analysis of 16S RNA by amplicon sequencing showed equivalent community structure captured by the electrokinetic device and the reference filter. Unlike other current air sampling methods, capture of particles is determined by charge and so is not controlled by particle mass. We analyzed particle sizes captured from air, without regard to specific analyte by atomic force microscopy: particles at least as low as 100 nM could be captured from ambient air. This work introduces a very simple plug-and-play device that can sample air at a high-volume flow rate with no moving parts and collect particles down to the sub-micron range. In conclusion, the performance of

  3. A simple novel device for air sampling by electrokinetic capture

    SciTech Connect

    Gordon, Julian; Gandhi, Prasanthi; Shekhawat, Gajendra; Frazier, Angel; Hampton-Marcell, Jarrad; Gilbert, Jack A.

    2015-12-27

    A variety of different sampling devices are currently available to acquire air samples for the study of the microbiome of the air. All have a degree of technical complexity that limits deployment. Here, we evaluate the use of a novel device, which has no technical complexity and is easily deployable. An air-cleaning device powered by electrokinetic propulsion has been adapted to provide a universal method for collecting samples of the aerobiome. Plasma-induced charge in aerosol particles causes propulsion to and capture on a counter-electrode. The flow of ions creates net bulk airflow, with no moving parts. A device and electrode assembly have been re-designed from air-cleaning technology to provide an average air flow of 120 lpm. This compares favorably with current air sampling devices based on physical air pumping. Capture efficiency was determined by comparison with a 0.4 μm polycarbonate reference filter, using fluorescent latex particles in a controlled environment chamber. Performance was compared with the same reference filter method in field studies in three different environments. For 23 common fungal species by quantitative polymerase chain reaction (qPCR), there was 100 % sensitivity and apparent specificity of 87%, with the reference filter taken as “gold standard.” Further, bacterial analysis of 16S RNA by amplicon sequencing showed equivalent community structure captured by the electrokinetic device and the reference filter. Unlike other current air sampling methods, capture of particles is determined by charge and so is not controlled by particle mass. We analyzed particle sizes captured from air, without regard to specific analyte by atomic force microscopy: particles at least as low as 100 nM could be captured from ambient air. This work introduces a very simple plug-and-play device that can sample air at a high-volume flow rate with no moving parts and collect particles down to the sub-micron range. In conclusion, the performance of the

  4. Innovations in air sampling to detect plant pathogens.

    PubMed

    West, Js; Kimber, Rbe

    2015-01-01

    Many innovations in the development and use of air sampling devices have occurred in plant pathology since the first description of the Hirst spore trap. These include improvements in capture efficiency at relatively high air-volume collection rates, methods to enhance the ease of sample processing with downstream diagnostic methods and even full automation of sampling, diagnosis and wireless reporting of results. Other innovations have been to mount air samplers on mobile platforms such as UAVs and ground vehicles to allow sampling at different altitudes and locations in a short space of time to identify potential sources and population structure. Geographical Information Systems and the application to a network of samplers can allow a greater prediction of airborne inoculum and dispersal dynamics. This field of technology is now developing quickly as novel diagnostic methods allow increasingly rapid and accurate quantifications of airborne species and genetic traits. Sampling and interpretation of results, particularly action-thresholds, is improved by understanding components of air dispersal and dilution processes and can add greater precision in the application of crop protection products as part of integrated pest and disease management decisions. The applications of air samplers are likely to increase, with much greater adoption by growers or industry support workers to aid in crop protection decisions. The same devices are likely to improve information available for detection of allergens causing hay fever and asthma or provide valuable metadata for regional plant disease dynamics.

  5. Innovations in air sampling to detect plant pathogens

    PubMed Central

    West, JS; Kimber, RBE

    2015-01-01

    Many innovations in the development and use of air sampling devices have occurred in plant pathology since the first description of the Hirst spore trap. These include improvements in capture efficiency at relatively high air-volume collection rates, methods to enhance the ease of sample processing with downstream diagnostic methods and even full automation of sampling, diagnosis and wireless reporting of results. Other innovations have been to mount air samplers on mobile platforms such as UAVs and ground vehicles to allow sampling at different altitudes and locations in a short space of time to identify potential sources and population structure. Geographical Information Systems and the application to a network of samplers can allow a greater prediction of airborne inoculum and dispersal dynamics. This field of technology is now developing quickly as novel diagnostic methods allow increasingly rapid and accurate quantifications of airborne species and genetic traits. Sampling and interpretation of results, particularly action-thresholds, is improved by understanding components of air dispersal and dilution processes and can add greater precision in the application of crop protection products as part of integrated pest and disease management decisions. The applications of air samplers are likely to increase, with much greater adoption by growers or industry support workers to aid in crop protection decisions. The same devices are likely to improve information available for detection of allergens causing hay fever and asthma or provide valuable metadata for regional plant disease dynamics. PMID:25745191

  6. [A membrane filter sampling method for determining microbial air pollution].

    PubMed

    Cherneva, P; Kiranova, A

    1996-01-01

    The method is a contribution in the evaluation of the exposition and the control of the standards for organic powders. The method concerns the sample-taking procedure and the analysis-making technique for determining of the concentration of the microbial pollution of the air. It is based on filtering of some amount of air through a membrane filter which is then processed for cultivating of microbial colonies on its surface. The results are obtained in number of microbial colonies per unit of air. The method presents opportunity to select and vary the filtered volume of air, to determine the respirable fraction, to determine the personal exposition, as well as for the simultaneous determining of the microbial pollution together with other important parameters of the particle pollutants of the air (metal, fibre and others).

  7. Assessment of the LV-C2 Stack Sampling Probe Location for Compliance with ANSI/HPS N13.1-1999

    SciTech Connect

    Glissmeyer, John A.; Antonio, Ernest J.; Flaherty, Julia E.

    2015-09-01

    This document reports on a series of tests conducted to assess the proposed air sampling location for the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Low-Activity Waste (LAW) C2V (LV-C2) exhaust stack with respect to the applicable criteria regarding the placement of an air sampling probe. Federal regulations require that a sampling probe be located in the exhaust stack according to the criteria established by the American National Standards Institute/Health Physics Society (ANSI/HPS) N13.1-1999, Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stack and Ducts of Nuclear Facilities. These criteria address the capability of the sampling probe to extract a sample that represents the effluent stream. The tests were conducted on the LV-C2 scale model system. Based on the scale model tests, the location proposed for the air sampling probe in the scale model stack meets the requirements of the ANSI/HPS N13.1-1999 standard for velocity uniformity, flow angle, gas tracer and particle tracer uniformity. Additional velocity uniformity and flow angle tests on the actual stack will be necessary during cold startup to confirm the validity of the scale model results in representing the actual stack.

  8. DUS II SOIL GAS SAMPLING AND AIR INJECTION TEST RESULTS

    SciTech Connect

    Noonkester, J.; Jackson, D.; Jones, W.; Hyde, W.; Kohn, J.; Walker, R.

    2012-09-20

    Soil vapor extraction (SVE) and air injection well testing was performed at the Dynamic Underground Stripping (DUS) site located near the M-Area Settling Basin (referred to as DUS II in this report). The objective of this testing was to determine the effectiveness of continued operation of these systems. Steam injection ended on September 19, 2009 and since this time the extraction operations have utilized residual heat that is present in the subsurface. The well testing campaign began on June 5, 2012 and was completed on June 25, 2012. Thirty-two (32) SVE wells were purged for 24 hours or longer using the active soil vapor extraction (ASVE) system at the DUS II site. During each test five or more soil gas samples were collected from each well and analyzed for target volatile organic compounds (VOCs). The DUS II site is divided into four parcels (see Figure 1) and soil gas sample results show the majority of residual VOC contamination remains in Parcel 1 with lesser amounts in the other three parcels. Several VOCs, including tetrachloroethylene (PCE) and trichloroethylene (TCE), were detected. PCE was the major VOC with lesser amounts of TCE. Most soil gas concentrations of PCE ranged from 0 to 60 ppmv with one well (VEW-22A) as high as 200 ppmv. Air sparging (AS) generally involves the injection of air into the aquifer through either vertical or horizontal wells. AS is coupled with SVE systems when contaminant recovery is necessary. While traditional air sparging (AS) is not a primary component of the DUS process, following the cessation of steam injection, eight (8) of the sixty-three (63) steam injection wells were used to inject air. These wells were previously used for hydrous pyrolysis oxidation (HPO) as part of the DUS process. Air sparging is different from the HPO operations in that the air was injected at a higher rate (20 to 50 scfm) versus HPO (1 to 2 scfm). . At the DUS II site the air injection wells were tested to determine if air sparging affected

  9. Cost Effective Mission Strategy for Lunar Sample Return Mission Probe

    NASA Astrophysics Data System (ADS)

    Nadar, G.; Shah, U. B.; Kothandhapani, A.; Singh, N. K.; Hegde, N. S.

    2016-11-01

    A novel lunar sample return mission from south pole region is proposed where, after ascent and Trans-Geo Injection, the return module attains an Earth orbit and is de-orbited using aero-braking. Also includes a lander and an orbiter with payload.

  10. Performance Evaluation of Particle Sampling Probes for Emission Measurements of Aircraft Jet Engines

    NASA Technical Reports Server (NTRS)

    Lee, Poshin; Chen, Da-Ren; Sanders, Terry (Technical Monitor)

    2001-01-01

    Considerable attention has been recently received on the impact of aircraft-produced aerosols upon the global climate. Sampling particles directly from jet engines has been performed by different research groups in the U.S. and Europe. However, a large variation has been observed among published data on the conversion efficiency and emission indexes of jet engines. The variation results surely from the differences in test engine types, engine operation conditions, and environmental conditions. The other factor that could result in the observed variation is the performance of sampling probes used. Unfortunately, it is often neglected in the jet engine community. Particle losses during the sampling, transport, and dilution processes are often not discussed/considered in literatures. To address this issue, we evaluated the performance of one sampling probe by challenging it with monodisperse particles. A significant performance difference was observed on the sampling probe evaluated under different temperature conditions. Thermophoretic effect, nonisokinetic sampling and turbulence loss contribute to the loss of particles in sampling probes. The results of this study show that particle loss can be dramatic if the sampling probe is not well designed. Further, the result allows ones to recover the actual size distributions emitted from jet engines.

  11. Simultaneous Measurement of Air Temperature and Humidity Based on Sound Velocity and Attenuation Using Ultrasonic Probe

    NASA Astrophysics Data System (ADS)

    Motegi, Takahiro; Mizutani, Koichi; Wakatsuki, Naoto

    2013-07-01

    In this paper, an acoustic technique for air temperature and humidity measurement in moist air is described. The previous ultrasonic probe can enable the estimation of temperature from sound velocity in dry air by making use of the relationship between sound velocity and temperature. However, temperature measurement using the previous ultrasonic probe is not suitable in moist air because sound velocity also depends on humidity, and the temperature estimated from the sound velocity measured in moist air must be adjusted. Moreover, a method of humidity measurement by using only an ultrasonic probe has not been established. Thus, we focus on sound attenuation, which depends on temperature and humidity. Our proposed technique utilizes two parameters, sound velocity and attenuation, and can measure both temperature and humidity simultaneously. The acoustic technique for temperature and humidity measurement has the advantages that instantaneous temperature and humidity can be measured, and the measurement is not affected by thermal radiation because air itself is used as a sensing element. As an experiment, temperature and humidity are measured in a chamber, and compared with the reference values. The experimental results indicate the achievement of a practical temperature measurement accuracy of within +/-0.5 K in moist air, of which the temperature is 293-308 K and relative humidity (RH) is 50-90% RH, and the simultaneous measurement of temperature and humidity.

  12. Tensiometer, drive probe for use with environmental testing equipment, and methods of inserting environmental testing equipment into a sample

    DOEpatents

    Hubbell, Joel M.; Sisson, James B.

    2005-07-26

    A method of inserting a tensiometer into a sample, comprises providing a drive probe configured to be engaged by direct push equipment; supporting a porous member from the drive probe; and driving the drive probe into the sample using a cone penetrometer. A tensiometer comprises a drive probe configured to be engaged by direct push equipment or a cone penetrometer; a porous member supported by the drive probe; and a pressure sensor in pressure sensing relation to the porous member.

  13. Radiological Air Sampling. Protocol Development for the Canadian Forces

    DTIC Science & Technology

    2003-03-01

    that filter must be removed from the sampler and counted by some method. If the efficiency of the radiation detector is D (in units of count rate per...unit activity), then the count rate R of the radiation detector will be R = CVFD. In practice, C is the unknown quantity. V is known from the sampling...Potential Solutions The problem, then, is that all air samples contain radon and thoron daughters that emit alpha, beta, and gamma radiation . Moreover

  14. Probing the radio emission from air showers with polarization measurements

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bardenet, R.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Foerster, N.; Fox, B. D.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giammarchi, M.; Giller, M.; Gitto, J.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kadija, K.; Kambeitz, O.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; PeÂķala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Pontz, M.; Porcelli, A.; Preda, T.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcǎu, O.; Thao, N. T.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Pierre Auger Collaboration

    2014-03-01

    The emission of radio waves from air showers has been attributed to the so-called geomagnetic emission process. At frequencies around 50 MHz this process leads to coherent radiation which can be observed with rather simple setups. The direction of the electric field induced by this emission process depends only on the local magnetic field vector and on the incoming direction of the air shower. We report on measurements of the electric field vector where, in addition to this geomagnetic component, another component has been observed that cannot be described by the geomagnetic emission process. The data provide strong evidence that the other electric field component is polarized radially with respect to the shower axis, in agreement with predictions made by Askaryan who described radio emission from particle showers due to a negative charge excess in the front of the shower. Our results are compared to calculations which include the radiation mechanism induced by this charge-excess process.

  15. Microwave Probing of Air-Plasma and Plasma Metamaterials

    NASA Astrophysics Data System (ADS)

    Schneider, Katherine; Rock, Ben; Helle, Mike

    2016-10-01

    Plasma metamaterials are of recent interest due to their unique ability to be engineered with specific electromagnetic responses. One potential metamaterial architecture is based on a `forest' of plasma rods that can be produced using intense laser plasma filaments. In our work, we use a continuous microwave source at 26.5 GHz to measure a single air plasma filament characteristics generated from a 5 mJ laser pulse within a cylindrical hole in a Ka-band waveguide. Preliminary results show the air plasma produces a strong shock and acts to reflect microwave radiation. A computational comparison using 3D EM modeling is performed to examine the reflection and transmission properties of a single plasma rod, and further, to investigate an array of plasma rods as a potential plasma based metamaterial.

  16. Air sampling and analysis in a rubber vulcanization area.

    PubMed

    Rappaport, S M; Fraser, D A

    1977-05-01

    Results of sampling and analysis of air in a rubber vulcanization area are described. Organic compounds were collected on activated charcoal, desorbed with carbon disulfide and analyzed by gas chromatography. Several previously identified substances were quantitated, including styrene, toluene, ethylbenzene, and several oligomers of 1,3-butadiene. Concentrations ranged from 0.007 to 1.1 ppm.

  17. Air sampling of mold spores by slit impactors: yield comparison.

    PubMed

    Pityn, Peter J; Anderson, James

    2013-01-01

    The performance of simple slit impactors for air sampling of mold contamination was compared under field conditions. Samples were collected side-by-side, outdoors in quadruplicates with Burkhard (ambient sampler) and Allergenco MK3 spore traps and with two identical Allergenco slit cassettes operated at diverse flow rates of 5 and 15 L/min, respectively. The number and types of mold spores in each sample were quantified by microscopy. Results showed all four single-stage slit impactors produced similar spore yields. Moreover, paired slit cassettes produced similar outcomes despite a three-fold difference in their sampling rate. No measurable difference in the amount or mix of mold spores per m(3)of air was detected. The implications for assessment of human exposures and interpretation of indoor/outdoor fungal burden are discussed. These findings demonstrate that slit cassettes capture most small spores, effectively and without bias, when operated at a range of flow rates including the lower flow rates used for personal sampling. Our findings indicate sampling data for mold spores correlate for different single stage impactor collection methodologies and that data quality is not deteriorated by operating conditions deviating from manufacturers' norms allowing such sampling results to be used for scientific, legal, investigative, or property insurance purposes. The same conclusion may not be applied to other particle sampling instruments and mulit-stage impactors used for ambient particulate sampling, which represent an entirely different scenario. This knowledge may help facilitate comparison between scientific studies where methodological differences exist.

  18. Micro Electron MicroProbe and Sample Analyzer

    NASA Technical Reports Server (NTRS)

    Manohara, Harish; Bearman, Gregory; Douglas, Susanne; Bronikowski, Michael; Urgiles, Eduardo; Kowalczyk, Robert; Bryson, Charles

    2009-01-01

    A proposed, low-power, backpack-sized instrument, denoted the micro electron microprobe and sample analyzer (MEMSA), would serve as a means of rapidly performing high-resolution microscopy and energy-dispersive x-ray spectroscopy (EDX) of soil, dust, and rock particles in the field. The MEMSA would be similar to an environmental scanning electron microscope (ESEM) but would be much smaller and designed specifically for field use in studying effects of geological alteration at the micrometer scale. Like an ESEM, the MEMSA could be used to examine uncoated, electrically nonconductive specimens. In addition to the difference in size, other significant differences between the MEMSA and an ESEM lie in the mode of scanning and the nature of the electron source.

  19. Additional sampling directions improve detection range of wireless radiofrequency probes

    PubMed Central

    Mada, Marius; Carpenter, T. Adrian; Sawiak, Stephen J.; Williams, Guy B.

    2015-01-01

    Purpose While MRI is enhancing our knowledge about the structure and function of the human brain, subject motion remains a problem in many clinical applications. Recently, the use of wireless radiofrequency markers with three one‐dimensional (1D) navigators for prospective correction was demonstrated. This method is restricted in the range of motion that can be corrected, however, because of limited information in the 1D readouts. Methods Here, the limitation of techniques for disambiguating marker locations was investigated. It was shown that including more sampling directions extends the tracking range for head rotations. The efficiency of trading readout resolution for speed was explored. Results Tracking of head rotations was demonstrated from −19.2 to 34.4°, −2.7 to 10.0°, and −60.9 to 70.9° in the x‐, y‐, and z‐directions, respectively. In the presence of excessive head motion, the deviation of marker estimates from SPM8 was reduced by 17.1% over existing three‐projection methods. This was achieved by using an additional seven directions, extending the time needed for readouts by a factor of 3.3. Much of this increase may be circumvented by reducing resolution, without compromising accuracy. Conclusion Including additional sampling directions extends the range in which markers can be used, for patients who move a lot. Magn Reson Med 76:913–918, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:26418189

  20. Probing methane hydrate nucleation through the forward flux sampling method.

    PubMed

    Bi, Yuanfei; Li, Tianshu

    2014-11-26

    Understanding the nucleation of hydrate is the key to developing effective strategies for controlling methane hydrate formation. Here we present a computational study of methane hydrate nucleation, by combining the forward flux sampling (FFS) method and the coarse-grained water model mW. To facilitate the application of FFS in studying the formation of methane hydrate, we developed an effective order parameter λ on the basis of the topological analysis of the tetrahedral network. The order parameter capitalizes the signature of hydrate structure, i.e., polyhedral cages, and is capable of efficiently distinguishing hydrate from ice and liquid water while allowing the formation of different hydrate phases, i.e., sI, sII, and amorphous. Integration of the order parameter λ with FFS allows explicitly computing hydrate nucleation rates and obtaining an ensemble of nucleation trajectories under conditions where spontaneous hydrate nucleation becomes too slow to occur in direct simulation. The convergence of the obtained hydrate nucleation rate was found to depend crucially on the convergence of the spatial distribution for the spontaneously formed hydrate seeds obtained from the initial sampling of FFS. The validity of the approach is also verified by the agreement between the calculated nucleation rate and that inferred from the direct simulation. Analyzing the obtained large ensemble of hydrate nucleation trajectories, we show hydrate formation at 220 K and 500 bar is initiated by the nucleation events occurring in the vicinity of water-methane interface, and facilitated by a gradual transition from amorphous to crystalline structure. The latter provides the direct support to the proposed two-step nucleation mechanism of methane hydrate.

  1. Quantification of in-contact probe-sample electrostatic forces with dynamic atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Balke, Nina; Jesse, Stephen; Carmichael, Ben; Baris Okatan, M.; Kravchenko, Ivan I.; Kalinin, Sergei V.; Tselev, Alexander

    2017-02-01

    Atomic force microscopy (AFM) methods utilizing resonant mechanical vibrations of cantilevers in contact with a sample surface have shown sensitivities as high as few picometers for detecting surface displacements. Such a high sensitivity is harnessed in several AFM imaging modes. Here, we demonstrate a cantilever-resonance-based method to quantify electrostatic forces on a probe in the probe-sample junction in the presence of a surface potential or when a bias voltage is applied to the AFM probe. We find that the electrostatic forces acting on the probe tip apex can produce signals equivalent to a few pm of surface displacement. In combination with modeling, the measurements of the force were used to access the strength of the electrical field at the probe tip apex in contact with a sample. We find an evidence that the electric field strength in the junction can reach ca. 1 V nm-1 at a bias voltage of a few volts and is limited by non-ideality of the tip-sample contact. This field is sufficiently strong to significantly influence material states and kinetic processes through charge injection, Maxwell stress, shifts of phase equilibria, and reduction of energy barriers for activated processes. Besides, the results provide a baseline for accounting for the effects of local electrostatic forces in electromechanical AFM measurements as well as offer additional means to probe ionic mobility and field-induced phenomena in solids.

  2. Quantification of In-Contact Probe-Sample Electrostatic Forces with Dynamic Atomic Force Microscopy.

    PubMed

    Balke, Nina; Jesse, Stephen; Carmichael, Ben; Okatan, M; Kravchenko, Ivan; Kalinin, Sergei; Tselev, Alexander

    2016-12-13

    Atomic Force Microscopy (AFM) methods utilizing resonant mechanical vibrations of cantilevers in contact with a sample surface have shown sensitivities as high as few picometers for detecting surface displacements. Such a high sensitivity is harnessed in several AFM imaging modes. Here, we demonstrate a cantilever-resonance-based method to quantify electrostatic forces on a probe in the probe-sample junction in the presence of a surface potential or when a bias voltage is applied to the AFM probe. We find that the electrostatic forces acting on the probe tip apex can produce signals equivalent to a few pm of surface displacement. In combination with modeling, the measurements of the force were used to access the strength of the electrical field at the probe tip apex in contact with a sample. We find an evidence that the electric field strength in the junction can reach ca. 1 V/nm at a bias voltage of a few volts and is limited by non-ideality of the tip-sample contact. This field is sufficiently strong to significantly influence material states and kinetic processes through charge injection, Maxwell stress, shifts of phase equilibria, and reduction of energy barriers for activated processes. Besides, the results provide a baseline for accounting for the effects of local electrostatic forces in electromechanical AFM measurements as well as offer additional means to probe ionic mobility and field-induced phenomena in solids.

  3. Quantification of in-contact probe-sample electrostatic forces with dynamic atomic force microscopy.

    PubMed

    Balke, Nina; Jesse, Stephen; Carmichael, Ben; Okatan, M Baris; Kravchenko, Ivan I; Kalinin, Sergei V; Tselev, Alexander

    2017-01-04

    Atomic force microscopy (AFM) methods utilizing resonant mechanical vibrations of cantilevers in contact with a sample surface have shown sensitivities as high as few picometers for detecting surface displacements. Such a high sensitivity is harnessed in several AFM imaging modes. Here, we demonstrate a cantilever-resonance-based method to quantify electrostatic forces on a probe in the probe-sample junction in the presence of a surface potential or when a bias voltage is applied to the AFM probe. We find that the electrostatic forces acting on the probe tip apex can produce signals equivalent to a few pm of surface displacement. In combination with modeling, the measurements of the force were used to access the strength of the electrical field at the probe tip apex in contact with a sample. We find an evidence that the electric field strength in the junction can reach ca. 1 V nm(-1) at a bias voltage of a few volts and is limited by non-ideality of the tip-sample contact. This field is sufficiently strong to significantly influence material states and kinetic processes through charge injection, Maxwell stress, shifts of phase equilibria, and reduction of energy barriers for activated processes. Besides, the results provide a baseline for accounting for the effects of local electrostatic forces in electromechanical AFM measurements as well as offer additional means to probe ionic mobility and field-induced phenomena in solids.

  4. Planetary Probe Entry Atmosphere Estimation Using Synthetic Air Data System

    NASA Technical Reports Server (NTRS)

    Karlgaard, Chris; Schoenenberger, Mark

    2017-01-01

    This paper develops an atmospheric state estimator based on inertial acceleration and angular rate measurements combined with an assumed vehicle aerodynamic model. The approach utilizes the full navigation state of the vehicle (position, velocity, and attitude) to recast the vehicle aerodynamic model to be a function solely of the atmospheric state (density, pressure, and winds). Force and moment measurements are based on vehicle sensed accelerations and angular rates. These measurements are combined with an aerodynamic model and a Kalman-Schmidt filter to estimate the atmospheric conditions. The new method is applied to data from the Mars Science Laboratory mission, which landed the Curiosity rover on the surface of Mars in August 2012. The results of the new estimation algorithm are compared with results from a Flush Air Data Sensing algorithm based on onboard pressure measurements on the vehicle forebody. The comparison indicates that the new proposed estimation method provides estimates consistent with the air data measurements, without the use of pressure measurements. Implications for future missions such as the Mars 2020 entry capsule are described.

  5. Rapidly responsive and highly selective fluorescent probe for sulfite detection in real samples and living cells.

    PubMed

    Li, Hongda

    2015-10-15

    Sulfites (HSO3(-) or SO3(-)) have very significant toxicity in the environment and in the system. However, developing specific identification of sulfite probes is still very important. In this paper, a highly selective colorimetric and fluorescent probe (HHC) was synthesized to detect HSO3(-) in real samples and living cells. Sensing performance and preponderance are listed as follows. First, probe HHC showed remarkable selectivity for HSO3(-) over varieties of other species, including cysteine, glutathione, S(2-), CN(-), and reactive oxygen species, mainly because of the introduction of the electron-poor C=C double bond for HSO3(-). Second, probe HHC has great molar absorptivity, allowing it to act as a visual detection of probe for HSO3(-). Third, the fluorescence intensities of HHC linearly correlate with the concentration of HSO3(-), with a detection limit of 6.8 nm. Finally, our proposed probe can be applied to the visually determination of trace HSO3(-) in real samples and living HeLa cells with high precision. We hope that our proposed probe will greatly benefit biological sciences when biological researchers survey the role of HSO3(-) in biological systems.

  6. The measurement error analysis when a pitot probe is used in supersonic air flow

    NASA Astrophysics Data System (ADS)

    Zhang, XiWen; Hao, PengFei; Yao, ZhaoHui

    2011-04-01

    Pitot probes enable a simple and convenient way of measuring mean velocity in air flow. The contrastive numerical simulation between free supersonic airflow and pitot tube at different positions in supersonic air flow was performed using Navier-Stokes equations, the ENN scheme with time-dependent boundary conditions (TDBC) and the Spalart-Allmaras turbulence model. The physical experimental results including pitot pressure and shadowgraph are also presented. Numerical results coincide with the experimental data. The flow characteristics of the pitot probe on the supersonic flow structure show that the measurement gives actually the total pressure behind the detached shock wave by using the pitot probe to measure the total pressure. The measurement result of the distribution of the total pressure can still represent the real free jet flow. The similar features of the intersection and reflection of shock waves can be identified. The difference between the measurement results and the actual ones is smaller than 10%. When the pitot probe is used to measure the region of L=0-4 D, the measurement is smaller than the real one due to the increase of the shock wave strength. The difference becomes larger where the waves intersect. If the pitot probe is put at L=8 D-10 D, where the flow changes from supersonic to subsonic, the addition of the pitot probe turns the original supersonic flow region subsonic and causes bigger measurement errors.

  7. Assessment of the National Research Universal Reactor Proposed New Stack Sampling Probe Location for Compliance with ANSI/HPS N13.1-1999

    SciTech Connect

    Glissmeyer, John A.; Antonio, Ernest J.; Flaherty, Julia E.

    2016-02-29

    This document reports on a series of tests conducted to assess the proposed air sampling location for the National Research Universal reactor (NRU) complex exhaust stack, located in Chalk River, Ontario, Canada, with respect to the applicable criteria regarding the placement of an air sampling probe. Due to the age of the equipment in the existing monitoring system, and the increasing difficulty in acquiring replacement parts to maintain this equipment, a more up-to-date system is planned to replace the current effluent monitoring system, and a new monitoring location has been proposed. The new sampling probe should be located within the exhaust stack according to the criteria established by the American National Standards Institute/Health Physics Society (ANSI/HPS) N13.1-1999, Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stack and Ducts of Nuclear Facilities. These criteria address the capability of the sampling probe to extract a sample that represents the effluent stream. The internal Pacific Northwest National Laboratory (PNNL) project for this task was 65167, Atomic Energy Canada Ltd. Chalk River Effluent Duct Flow Qualification. The testing described in this document was guided by the Test Plan: Testing of the NRU Stack Air Sampling Position (TP-STMON-032).

  8. Mixed species radioiodine air sampling readout and dose assessment system

    DOEpatents

    Distenfeld, Carl H.; Klemish, Jr., Joseph R.

    1978-01-01

    This invention provides a simple, reliable, inexpensive and portable means and method for determining the thyroid dose rate of mixed airborne species of solid and gaseous radioiodine without requiring highly skilled personnel, such as health physicists or electronics technicians. To this end, this invention provides a means and method for sampling a gas from a source of a mixed species of solid and gaseous radioiodine for collection of the mixed species and readout and assessment of the emissions therefrom by cylindrically, concentrically and annularly molding the respective species around a cylindrical passage for receiving a conventional probe-type Geiger-Mueller radiation detector.

  9. RAPID SEPARATION METHOD FOR ACTINIDES IN EMERGENCY AIR FILTER SAMPLES

    SciTech Connect

    Maxwell, S.; Noyes, G.; Culligan, B.

    2010-02-03

    A new rapid method for the determination of actinides and strontium in air filter samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used in emergency response situations. The actinides and strontium in air filter method utilizes a rapid acid digestion method and a streamlined column separation process with stacked TEVA, TRU and Sr Resin cartridges. Vacuum box technology and rapid flow rates are used to reduce analytical time. Alpha emitters are prepared using cerium fluoride microprecipitation for counting by alpha spectrometry. The purified {sup 90}Sr fractions are mounted directly on planchets and counted by gas flow proportional counting. The method showed high chemical recoveries and effective removal of interferences. This new procedure was applied to emergency air filter samples received in the NRIP Emergency Response exercise administered by the National Institute for Standards and Technology (NIST) in April, 2009. The actinide and {sup 90}Sr in air filter results were reported in {approx}4 hours with excellent quality.

  10. F-18 SRA closeup of nose cap showing L-Probe experiment and standard air data sensors

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This under-the-nose view of a modified F-18 Systems Research Aircraft at NASA's Dryden Flight Research Center, Edwards, California, shows three critical components of the aircraft's air data systems which are mounted on both sides of the forward fuselage. Furthest forward are two L-probes that were the focus of the recent Advanced L-probe Air Data Integration (ALADIN) experiment. Behind the L-probes are angle-of-attack vanes, while below them are the aircraft's standard pitot-static air data probes. The ALADIN experiment focused on providing pilots with angle-of-attack and angle-of-sideslip air data as well as traditional airspeed and altitude information, all from a single system. Once fully developed, the new L-probes have the potential to give pilots more accurate air data information with less hardware.

  11. Evaluation of membrane filter field monitors for microbiological air sampling

    NASA Technical Reports Server (NTRS)

    Fields, N. D.; Oxborrow, G. S.; Puleo, J. R.; Herring, C. M.

    1974-01-01

    Due to area constraints encountered in assembly and testing areas of spacecraft, the membrane filter field monitor (MF) and the National Aeronautics and Space Administration-accepted Reyniers slit air sampler were compared for recovery of airborne microbial contamination. The intramural air in a microbiological laboratory area and a clean room environment used for the assembly and testing of the Apollo spacecraft was studied. A significantly higher number of microorganisms was recovered by the Reyniers sampler. A high degree of consistency between the two sampling methods was shown by a regression analysis, with a correlation coefficient of 0.93. The MF samplers detected 79% of the concentration measured by the Reyniers slit samplers. The types of microorganisms identified from both sampling methods were similar.

  12. Balloon Operation for Stratospheric Air Sampling at Antarctica

    NASA Astrophysics Data System (ADS)

    Honda, H.; Yajima, N.; Yamagami, T.; Aoki, S.; Hashida, G.; Machida, T.; Morimoto, S.

    On January 3rd, 1998, a cryogenic air sampling experiment was carried out at Syowa Station (69S, 40E), which is the first successful trial in the world for collection of large amount of stratospheric air over the Antarctic. The samples are analyzed for CO2, CH4, CFCs, and C and O isotope ratios in CO2 in the laboratories. As the meteorological conditions for launching and payload recovery are both critical, feasibility on wind conditions over Syowa Station was studied in detail. The balloon launching operations had to be performed without a specialist. Facilities for balloon launching, tracking, and other support systems were newly designed for ready-to- and easy-to-use. Realtime remote support from Japan for the balloon launching and flight control operations was applied using a computer network linked by INMARSAT

  13. Can car air filters be useful as a sampling medium for air pollution monitoring purposes?

    PubMed

    Katsoyiannis, Athanasios; Birgul, Askin; Ratola, Nuno; Cincinelli, Alessandra; Sweetman, Andy J; Jones, Kevin C

    2012-11-01

    Urban air quality and real human exposure to chemical environmental stressors is an issue of high scientific and political interest. In an effort to find innovative and inexpensive means for air quality monitoring, the ability of car engine air filters (CAFs) to act as efficient samplers collecting street level air, to which people are exposed to, was tested. In particular, in the case of taxis, air filters are replaced after regular distances, the itineraries are almost exclusively urban, cruising mode is similar and, thus, knowledge of the air flow can provide with an integrated city air sample. The present pilot study focused on polycyclic aromatic hydrocarbons (PAHs), the most important category of organic pollutants associated with traffic emissions. Concentrations of ΣPAHs in CAFs ranged between 650 and 2900 μg CAF(-1), with benzo[b]fluoranthene, benzo[k]fluoranthene and indeno[123-cd]pyrene being the most abundant PAHs. Benzo[a]pyrene (BaP) ranged between 110 and 250 μg CAF(-1), accounting regularly for 5-15% of the total carcinogenic PAHs. The CAF PAH loads were used to derive road-level atmospheric PAH concentrations from a standard formula relating to the CAF air flow. Important parameters/assumptions for these estimates are the cruising speed and the exposure duration of each CAF. Based on information obtained from the garage experts, an average 'sampled air volume' of 48,750 m(3) per CAF was estimated, with uncertainty in this calculation estimated to be about a factor of 4 between the two extreme scenarios. Based on this air volume, ΣPAHs ranged between 13 and 56 ng m(-3) and BaP between 2.1 and 5.0 ng m(-3), suggesting that in-traffic BaP concentrations can be many times higher than the limit values set by the UK (0.25 ng m(-3)) and the European Union (1.0 ng m(-3)), or from active sampling stations normally cited on building roof tops or far from city centres. Notwithstanding the limitations of this approach, the very low cost, the continuous

  14. Air Sampling Data for BP Spill/Deepwater Horizon

    EPA Pesticide Factsheets

    The Deepwater Horizon oil spill (also referred to as the BP oil spill) began on 20 April 2010 in the Gulf of Mexico on the BP-operated Macondo Prospect. Following the explosion and sinking of the Deepwater Horizon oil rig, a sea-floor oil gusher flowed for 87 days, until it was capped on 15 July 2010.In response to the BP oil spill, EPA sampled air, water, sediment, and waste generated by the cleanup operations.

  15. Simple random sampling-based probe station selection for fault detection in wireless sensor networks.

    PubMed

    Huang, Rimao; Qiu, Xuesong; Rui, Lanlan

    2011-01-01

    Fault detection for wireless sensor networks (WSNs) has been studied intensively in recent years. Most existing works statically choose the manager nodes as probe stations and probe the network at a fixed frequency. This straightforward solution leads however to several deficiencies. Firstly, by only assigning the fault detection task to the manager node the whole network is out of balance, and this quickly overloads the already heavily burdened manager node, which in turn ultimately shortens the lifetime of the whole network. Secondly, probing with a fixed frequency often generates too much useless network traffic, which results in a waste of the limited network energy. Thirdly, the traditional algorithm for choosing a probing node is too complicated to be used in energy-critical wireless sensor networks. In this paper, we study the distribution characters of the fault nodes in wireless sensor networks, validate the Pareto principle that a small number of clusters contain most of the faults. We then present a Simple Random Sampling-based algorithm to dynamic choose sensor nodes as probe stations. A dynamic adjusting rule for probing frequency is also proposed to reduce the number of useless probing packets. The simulation experiments demonstrate that the algorithm and adjusting rule we present can effectively prolong the lifetime of a wireless sensor network without decreasing the fault detected rate.

  16. Minimum detection limit and spatial resolution of thin-sample field-emission electron probe microanalysis.

    PubMed

    Kubo, Yugo; Hamada, Kotaro; Urano, Akira

    2013-12-01

    The minimum detection limit and spatial resolution for a thinned semiconductor sample were determined by electron probe microanalysis (EPMA) using a Schottky field emission (FE) electron gun and wavelength dispersive X-ray spectrometry. Comparison of the FE-EPMA results with those obtained using energy dispersive X-ray spectrometry in conjunction with scanning transmission electron microscopy, confirmed that FE-EPMA is largely superior in terms of detection sensitivity. Thin-sample FE-EPMA is demonstrated as a very effective method for high resolution, high sensitivity analysis in a laboratory environment because a high probe current and high signal-to-noise ratio can be achieved.

  17. Artifact peroxides produced during cryogenic sampling of ambient air

    NASA Astrophysics Data System (ADS)

    Staffelbach, Thomas; Neftel, Albrecht; Dasgupta, Purnendu K.

    Peroxides were found to be produced as artifacts during cryogenic sampling with Horibe traps. Cryogenic trap sampling was compared to collection with a wet effluent diffusion denuder and a Nafion membrane diffusion denuder. Hydrogen peroxide and hydroxymethyl hydroperoxide measured in the cryogenic trap samples were significantly higher. In comparison, no evidence of artifact methyl hydroperoxide production was found. The amount of artifact H2O2 and HMHP produced increased with decreasing trap temperature. Spiking ambient air with ethene or isoprene showed that these hydrocarbons, in the presence of ozone, can be responsible for the artifact production of peroxides. Our results clearly suggest that the peroxide data obtained by cryogenic sampling and reported in the literature should be interpreted with caution.

  18. Ambient Air Sampling During Quantum-dot Spray Deposition

    SciTech Connect

    Jankovic, John Timothy; Hollenbeck, Scott M

    2010-01-01

    Ambient air sampling for nano-size particle emissions was performed during spot spray coating operations with a Sono-Tek Exactacoat Benchtop system (ECB). The ECB consisted of the application equipment contained within an exhaust enclosure. The enclosure contained numerous small access openings, including an exhaust hook-up. Door access comprised most of the width and height of the front. The door itself was of the swing-out type. Two types of nanomaterials, Cadmium selenide (Cd-Se) quantum-dots (QDs) and Gold (Au) QDs, nominally 3.3 and 5 nm in diameter respectively, were applied during the evaluation. Median spray drop size was in the 20 to 60 micrometer size range.1 Surface coating tests were of short duration, on the order of one-half second per spray and ten spray applications between door openings. The enclosure was ventilated by connection to a high efficiency particulate aerosol (HEPA) filtered house exhaust system. The exhaust rate was nominally 80 ft3 per minute producing about 5 air changes per minute. Real time air monitoring with a scanning mobility particle size analyzer (SMPS ) with a size detection limit of 7 nm indicated a significant increase in the ambient air concentration upon early door opening. A handheld condensation particle counter (CPC) with a lower size limit of 10 nm did not record changes in the ambient background. This increase in the ambient was not observed when door opening was delayed for 2 minutes (~10 air changes). The ventilated enclosure controlled emissions except for cases of rapid door opening before the overspray could be removed by the exhaust. A time delay sufficient to provide 10 enclosure air changes (a concentration reduction of more than 99.99 %) before door opening prevented the release of aerosol particles in any size.2 Scanning-transmission electron microscopy (STEM) and atomic force microscopy (AFM) demonstrated the presence of agglomerates in the surfaces of the spray applied deposition. A filtered air sample of

  19. Sampling intercomparisons for aldehydes in simulated workplace air.

    PubMed

    Goelen, E; Lambrechts, M; Geyskens, F

    1997-05-01

    Thirty one laboratories of various EU Member States have participated in two interlaboratory comparisons in order to assess errors of personal sampling methods associated with both the sampling and the analytical steps. In contrast to conventional quality control schemes, this project particularly focuses attention on the sampling and identification step; it is executed by means of sampling exercises and has included discussions on potential sources of error. In a sampling exercise, participants come to a central facility and perform measurements on synthetic workplace air in a laboratory installation. Concentration levels of formaldehyde, acrolein, glutaraldehyde and acetaldehyde between 0.1 and 2 times the limit value for workplace air were prepared at various humidity levels and with acetone, occasionally, as interferent. Sampling times varied from 1-4 h. The related analytical work is performed at the analyst's own laboratory. The intention is for each participant to determine the observed value of the delivered standard atmosphere using the sampling method of his own choice. Trueness (bias), precision and relative overall uncertainty of each method-laboratory combination is calculated and verified towards compliance with EN 482, which outlines minimum performance criteria. The first challenge involved the precise gas phase generation of the selected analytes in high air flows (up to 300 1 min-1) and calculating the true value only by direct reference to primary standards. This was accomplished by modifying the capillary dosage injection technique so that reactive compounds, like low molecular mass aldehydes, could be dosed with the same accuracy and precision as unreactive solvents. A permeation tube with high emission rate was developed for formaldehyde. Up to ten different sampling techniques were evaluated. The measurement methods used by the majority of the participants were based on pumped sampling on silica cartridges (or tubes) and glass fiber filters

  20. A multi-probe thermophoretic soot sampling system for high-pressure diffusion flames

    NASA Astrophysics Data System (ADS)

    Vargas, Alex M.; Gülder, Ömer L.

    2016-05-01

    Optical diagnostics and physical probing of the soot processes in high pressure combustion pose challenges that are not faced in atmospheric flames. One of the preferred methods of studying soot in atmospheric flames is in situ thermophoretic sampling followed by transmission electron microscopy imaging and analysis for soot sizing and morphology. The application of this method of sampling to high pressures has been held back by various operational and mechanical problems. In this work, we describe a rotating disk multi-probe thermophoretic soot sampling system, driven by a microstepping stepper motor, fitted into a high-pressure chamber capable of producing sooting laminar diffusion flames up to 100 atm. Innovative aspects of the sampling system design include an easy and precise control of the sampling time down to 2.6 ms, avoidance of the drawbacks of the pneumatic drivers used in conventional thermophoretic sampling systems, and the capability to collect ten consecutive samples in a single experimental run. Proof of principle experiments were performed using this system in a laminar diffusion flame of methane, and primary soot diameter distributions at various pressures up to 10 atm were determined. High-speed images of the flame during thermophoretic sampling were recorded to assess the influence of probe intrusion on the flow field of the flame.

  1. Evaluation of official air sampling methodologies in Ukraine

    SciTech Connect

    Nakonechniy, J.J.; Wadden, R.A.; Scheff, P.A.; Suero, M.

    1997-12-31

    In conjunction with an environmental epidemiology study of the health of Ukrainian children, a significant amount of air pollution measurement data was gathered from government agencies. The areas of interest were the industrial city of Dneprodzherzhinsk; and the Dniprovsky region of Kyiv. The data were for 1993 and, for some of the monitoring stations, 1994. The pollutants reported included dust (approximately equivalent to TSP, total suspended particulate matter), SO{sub 2}, CO, NO{sub 2}, NO, H{sub 2}S, phenol, HCl, NH{sub 3}, formaldehyde, BaP, and lead. The ultimate goal was to evaluate whether existing historical data are appropriate for developing measures of human exposure. In order to evaluate the data it was necessary to understand the sampling and analytical methodologies which were used. Small sample volumes coupled with dated analytical procedures resulted in very poor precision and detection limits for most of the measured pollutants. The measurement of particulate matter is a good example of the limits imposed by the sampling methodology. The short sample time (20 min), small sample volume (150 lpm), and limited analytical balances (0.5 mg resolution) result in a minimum lower limit of detection of 0.25 mg/m{sup 3}. For example at Kyiv Station 3 in 1993, only one of 545 measurements exceeded 0.2 mg/m{sup 3}. This minimum detectable quantity is over three times the former US annual TSP standard. In addition, even when operated on a 24-hour basis in the US, it has been shown that the sampling method only collected approximately 34% of that collected by a co-located hi-vol sampler. Consequently, official air pollution data for suspended dust are likely to severely under-represent actual ambient concentrations. Data for other pollutants are presented and sampling and analytical methods are similarly compared with Western methods in common use.

  2. Passive air sampling of gaseous elemental mercury: a critical review

    NASA Astrophysics Data System (ADS)

    McLagan, David S.; Mazur, Maxwell E. E.; Mitchell, Carl P. J.; Wania, Frank

    2016-03-01

    Because gaseous elemental mercury (GEM) is distributed globally through the atmosphere, reliable means of measuring its concentrations in air are important. Passive air samplers (PASs), designed to be cheap, simple to operate, and to work without electricity, could provide an alternative to established active sampling techniques in applications such as (1) long-term monitoring of atmospheric GEM levels in remote regions and in developing countries, (2) atmospheric mercury source identification and characterization through finely resolved spatial mapping, and (3) the recording of personal exposure to GEM. An effective GEM PAS requires a tightly constrained sampling rate, a large and stable uptake capacity, and a sensitive analytical technique. None of the GEM PASs developed to date achieve levels of accuracy and precision sufficient for the reliable determination of background concentrations over extended deployments. This is due to (1) sampling rates that vary due to meteorological factors and manufacturing inconsistencies, and/or (2) an often low, irreproducible and/or unstable uptake capacity of the employed sorbents. While we identify shortcomings of existing GEM PAS, we also reveal potential routes to overcome those difficulties. Activated carbon and nanostructured metal surfaces hold promise as effective sorbents. Sampler designs incorporating diffusive barriers should be able to notably reduce the influence of wind on sampling rates.

  3. Passive air sampling of gaseous elemental mercury: a critical review

    NASA Astrophysics Data System (ADS)

    McLagan, D. S.; Mazur, M. E. E.; Mitchell, C. P. J.; Wania, F.

    2015-12-01

    Because gaseous elemental mercury (GEM) is distributed globally through the atmosphere, reliable means of measuring its concentrations in air are important. Passive air samplers (PASs), designed to be cheap, simple to operate, and to work without electricity, could provide an alternative to established active sampling techniques in applications such as (1) long term monitoring of atmospheric GEM levels in remote regions and in developing countries, (2) atmospheric mercury source identification and characterisation through finely-resolved spatial mapping, and (3) the recording of personal exposure to GEM. An effective GEM PAS requires a tightly constrained sampling rate, a large and stable uptake capacity, and a sensitive analytical technique. None of the GEM PASs developed to date achieves levels of accuracy and precision sufficient for the reliable determination of background concentrations over extended deployments. This is due to (1) sampling rates that vary due to meteorological factors and manufacturing inconsistencies and/or (2) an often low, irreproducible and/or unstable uptake capacity of the employed sorbents. While we identify shortcomings of existing GEM PAS, we also reveal potential routes to overcome those difficulties. Activated carbon and nano-structured metal surfaces hold promise as effective sorbents. Sampler designs incorporating diffusive barriers should be able to notably reduce the influence of wind on sampling rates.

  4. Chemical transformations during ambient air sampling for organic vapors

    SciTech Connect

    Pellizzari, E.D.; Drost, K.J.

    1984-09-01

    Potential chemical transformations of olefins in the presence of ozone and high levels (ppm) of halogens (Cl/sub 2/, Br/sub 2/) were demonstrated when sampling ambient air with a sorbent cartridge. The use of stryene-d/sub 8/ and cyclohexene-d/sub 10/ spiked sampling devices and capillary gas chromatography/mass spectrometry (GC/MS) analysis allowed the detection and identification of several deuteriated oxidation and halogenated products. Dimethylamine-d/sub 6/ was converted in trace quantities (5-10 mg) to dimethylnitrosamine-d/sub 6/ when sampling was conducted in the presence of NO/sub x/. Oxidation reactions were prevented when filters (2.5 cm) employed for removing particulates were impregnated with 5-10 mg of sodium thiosulfate and placed in front of the sorbent cartridge. Halogenation reactions were also consideraly reduced.

  5. Implementation of Fowler's method for end-tidal air sampling.

    PubMed

    Di Francesco, F; Loccioni, C; Fioravanti, M; Russo, A; Pioggia, G; Ferro, M; Roehrer, I; Tabucchi, S; Onor, M

    2008-09-01

    The design, realization and testing of a CO(2)-triggered breath sampler, capable of a separate collection of dead space and end-tidal air on multiple breaths, is presented. This sampling procedure has advantages in terms of the sample volume, insights regarding the origin of compounds, increased reproducibility and higher concentrations of compounds. The high quality of design and the speed of the components ensure a breath-by-breath estimate of dead volume, as well as the comfort and safety of the subject under test. The system represents a valid tool to contribute to the development of a standardized sampling protocol needed to compare results obtained by the various groups in this field.

  6. Bourdieu does environmental justice? Probing the linkages between population health and air pollution epidemiology.

    PubMed

    Buzzelli, Michael

    2007-03-01

    The environmental justice literature faces a number of conceptual and methodological shortcomings. The purpose of this paper is to probe ways in which these shortcomings can be remedied via recent developments in related literatures: population health and air pollution epidemiology. More sophisticated treatment of social structure, particularly if based on Pierre Bourdieu's relational approach to forms of capital, can be combined with the methodological rigour and established biological pathways of air pollution epidemiology. The aim is to reformulate environmental justice research in order to make further meaningful contributions to the wider movement concerned with issues of social justice and equity in health research.

  7. Interferometrically stable, enclosed, spinning sample cell for spectroscopic experiments on air-sensitive samples

    NASA Astrophysics Data System (ADS)

    Baranov, Dmitry; Hill, Robert J.; Ryu, Jisu; Park, Samuel D.; Huerta-Viga, Adriana; Carollo, Alexa R.; Jonas, David M.

    2017-01-01

    In experiments with high photon flux, it is necessary to rapidly remove the sample from the beam and to delay re-excitation until the sample has returned to equilibrium. Rapid and complete sample exchange has been a challenge for air-sensitive samples and for vibration-sensitive experiments. Here, a compact spinning sample cell for air and moisture sensitive liquid and thin film samples is described. The principal parts of the cell are a copper gasket sealed enclosure, a 2.5 in. hard disk drive motor, and a reusable, chemically inert glass sandwich cell. The enclosure provides an oxygen and water free environment at the 1 ppm level, as demonstrated by multi-day tests with sodium benzophenone ketyl radical. Inside the enclosure, the glass sandwich cell spins at ≈70 Hz to generate tangential speeds of 7-12 m/s that enable complete sample exchange at 100 kHz repetition rates. The spinning cell is acoustically silent and compatible with a ±1 nm rms displacement stability interferometer. In order to enable the use of the spinning cell, we discuss centrifugation and how to prevent it, introduce the cycle-averaged resampling rate to characterize repetitive excitation, and develop a figure of merit for a long-lived photoproduct buildup.

  8. Interferometrically stable, enclosed, spinning sample cell for spectroscopic experiments on air-sensitive samples.

    PubMed

    Baranov, Dmitry; Hill, Robert J; Ryu, Jisu; Park, Samuel D; Huerta-Viga, Adriana; Carollo, Alexa R; Jonas, David M

    2017-01-01

    In experiments with high photon flux, it is necessary to rapidly remove the sample from the beam and to delay re-excitation until the sample has returned to equilibrium. Rapid and complete sample exchange has been a challenge for air-sensitive samples and for vibration-sensitive experiments. Here, a compact spinning sample cell for air and moisture sensitive liquid and thin film samples is described. The principal parts of the cell are a copper gasket sealed enclosure, a 2.5 in. hard disk drive motor, and a reusable, chemically inert glass sandwich cell. The enclosure provides an oxygen and water free environment at the 1 ppm level, as demonstrated by multi-day tests with sodium benzophenone ketyl radical. Inside the enclosure, the glass sandwich cell spins at ≈70 Hz to generate tangential speeds of 7-12 m/s that enable complete sample exchange at 100 kHz repetition rates. The spinning cell is acoustically silent and compatible with a ±1 nm rms displacement stability interferometer. In order to enable the use of the spinning cell, we discuss centrifugation and how to prevent it, introduce the cycle-averaged resampling rate to characterize repetitive excitation, and develop a figure of merit for a long-lived photoproduct buildup.

  9. Cryogenic sample exchange NMR probe for magic angle spinning dynamic nuclear polarization

    PubMed Central

    Barnes, Alexander B.; Mak-Jurkauskas, Melody L.; Matsuki, Yoh; Bajaj, Vikram S.; van der Wel, Patrick C. A.; DeRocher, Ronald; Bryant, Jeffrey; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Lugtenburg, Johan; Herzfeld, Judith; Griffin, Robert G.

    2009-01-01

    We describe a cryogenic sample exchange system that dramatically improves the efficiency of magic angle spinning (MAS) dynamic nuclear polarization (DNP) experiments by reducing the time required to change samples and by improving long-term instrument stability. Changing samples in conventional cryogenic MAS DNP/NMR experiments involves warming the probe to room temperature, detaching all cryogenic, RF, and microwave connections, removing the probe from the magnet, replacing the sample, and reversing all the previous steps, with the entire cycle requiring a few hours. The sample exchange system described here — which relies on an eject pipe attached to the front of the MAS stator and a vacuum jacketed dewar with a bellowed hole — circumvents these procedures. To demonstrate the excellent sensitivity, resolution, and stability achieved with this quadruple resonance sample exchange probe, we have performed high precision distance measurements on the active site of the membrane protein bacteriorhodopsin. We also include a spectrum of the tripeptide N-f-MLF-OH at 100 K which shows 30 Hz linewidths. PMID:19356957

  10. Cryogenic sample exchange NMR probe for magic angle spinning dynamic nuclear polarization.

    PubMed

    Barnes, Alexander B; Mak-Jurkauskas, Melody L; Matsuki, Yoh; Bajaj, Vikram S; van der Wel, Patrick C A; Derocher, Ronald; Bryant, Jeffrey; Sirigiri, Jagadishwar R; Temkin, Richard J; Lugtenburg, Johan; Herzfeld, Judith; Griffin, Robert G

    2009-06-01

    We describe a cryogenic sample exchange system that dramatically improves the efficiency of magic angle spinning (MAS) dynamic nuclear polarization (DNP) experiments by reducing the time required to change samples and by improving long-term instrument stability. Changing samples in conventional cryogenic MAS DNP/NMR experiments involves warming the probe to room temperature, detaching all cryogenic, RF, and microwave connections, removing the probe from the magnet, replacing the sample, and reversing all the previous steps, with the entire cycle requiring a few hours. The sample exchange system described here-which relies on an eject pipe attached to the front of the MAS stator and a vacuum jacketed dewar with a bellowed hole-circumvents these procedures. To demonstrate the excellent sensitivity, resolution, and stability achieved with this quadruple resonance sample exchange probe, we have performed high precision distance measurements on the active site of the membrane protein bacteriorhodopsin. We also include a spectrum of the tripeptide N-f-MLF-OH at 100K which shows 30 Hz linewidths.

  11. Evaluation of Urban Air Quality By Passive Sampling Technique

    NASA Astrophysics Data System (ADS)

    Nunes, T. V.; Miranda, A. I.; Duarte, S.; Lima, M. J.

    Aveiro is a flat small city in the centre of Portugal, close to the Atlantic coast. In the last two decades an intensive development of demographic, traffic and industry growth in the region was observed which was reflected on the air quality degrada- tion. In order to evaluate the urban air quality in Aveiro, a field-monitoring network by passive sampling with high space resolution was implemented. Twenty-four field places were distributed in a area of 3x3 Km2 and ozone and NO2 concentrations were measured. The site distribution density was higher in the centre, 250x250 m2 than in periphery where a 500x500 m2 grid was used. The selection of field places took into consideration the choice criteria recommendation by United Kingdom environmental authorities, and three tubes and a blank tube for each pollutant were used at each site. The sampling system was mounted at 3m from the ground usually profiting the street lampposts. Concerning NO2 acrylic tubes were used with 85 mm of length and an in- ternal diameter of 12mm, where in one of the extremities three steel grids impregnated with a solution of TEA were placed and fixed with a polyethylene end cup (Heal et al., 1999); PFA Teflon tube with 53 mm of length and 9 mm of internal diameter and three impregnated glass filters impregnated with DPE solution fixed by a teflon end cup was used for ozone sampling (Monn and Hargartner, 1990). The passive sampling method for ozone and nitrogen dioxide was compared with continuous measurements, but the amount of measurements wasnSt enough for an accurate calibration and validation of the method. Although this constraint the field observations (June to August 2001) for these two pollutants assign interesting information about the air quality in the urban area. A krigger method of interpolation (Surfer- Golden Software-2000) was applied to field data to obtain isolines distribution of NO2 and ozone concentration for the studied area. Even the used passive sampling method has many

  12. Assessment of the LV-S2 & LV-S3 Stack Sampling Probe Locations for Compliance with ANSI/HPS N13.1-1999

    SciTech Connect

    Glissmeyer, John A.; Antonio, Ernest J.; Flaherty, Julia E.; Amidan, Brett G.

    2014-09-30

    This document reports on a series of tests conducted to assess the proposed air sampling locations for the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Group 1-2A exhaust stacks with respect to the applicable criteria regarding the placement of an air sampling probe. The LV-C2, LV-S2, and LV-S3 exhaust stacks were tested together as a group (Test Group 1-2A). This report only covers the results of LV-S2 and LV-S3; LV-C2 will be reported on separately. Federal regulations1 require that a sampling probe be located in the exhaust stack according to the criteria established by the American National Standards Institute/Health Physics Society (ANSI/HPS) N13.1-1999, Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stack and Ducts of Nuclear Facilities. 2 These criteria address the capability of the sampling probe to extract a sample that represents the effluent stream.

  13. Ozone measurement system for NASA global air sampling program

    NASA Technical Reports Server (NTRS)

    Tiefermann, M. W.

    1979-01-01

    The ozone measurement system used in the NASA Global Air Sampling Program is described. The system uses a commercially available ozone concentration monitor that was modified and repackaged so as to operate unattended in an aircraft environment. The modifications required for aircraft use are described along with the calibration techniques, the measurement of ozone loss in the sample lines, and the operating procedures that were developed for use in the program. Based on calibrations with JPL's 5-meter ultraviolet photometer, all previously published GASP ozone data are biased high by 9 percent. A system error analysis showed that the total system measurement random error is from 3 to 8 percent of reading (depending on the pump diaphragm material) or 3 ppbv, whichever are greater.

  14. Probe measurements of electron energy spectrum in Helium/air micro-plasma at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Demidov, V. I.; Adams, S. F.; Miles, J. A.; Koepke, M. E.; Kurlyandskaya, I. P.; Hensley, A. L.; Tolson, B. A.

    2016-09-01

    It is experimentally demonstrated that a wall probe may be a useful instrument for interpretation of electron energy spectrum in a micro-plasma with a nonlocal electron distribution function at atmospheric pressure. Two micro-plasma devices were fabricated with three layers of molybdenum metal foils with thickness of 0.1 mm separated by two sheets of mica insulation with thickness of 0.11 mm. In one device a hole with the diameter of 0.2 mm formed a cylindrical discharge cavity that passed through the entire five layers. In the second device the hole has the diameter of 0.065 mm. In both devices the inner molybdenum layer formed a wall probe, while the outer layers of molybdenum served as the hollow cathode and anode. The discharge was open into air with flow of helium gas. It is found that the wall probe I-V trace is sensitive to the presence of helium metastable atoms. The first derivative of the probe current with respect to the probe potential shows peaks revealing fast electrons at specific energies arising due to plasma chemical reactions. The devices may be applicable for developing analytical sensors for extreme environments, including high radiation and vibration levels and high temperatures. This work was performed while VID held a NRC Research Associateship Award at AFRL.

  15. Molecular Dynamic Simulations of Interaction of an AFM Probe with the Surface of an SCN Sample

    NASA Technical Reports Server (NTRS)

    Bune, Adris; Kaukler, William; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Molecular dynamic (MD) simulations is conducted in order to estimate forces of probe-substrate interaction in the Atomic Force Microscope (AFM). First a review of available molecular dynamic techniques is given. Implementation of MD simulation is based on an object-oriented code developed at the University of Delft. Modeling of the sample material - succinonitrile (SCN) - is based on the Lennard-Jones potentials. For the polystyrene probe an atomic interaction potential is used. Due to object-oriented structure of the code modification of an atomic interaction potential is straight forward. Calculation of melting temperature is used for validation of the code and of the interaction potentials. Various fitting parameters of the probe-substrate interaction potentials are considered, as potentials fitted to certain properties and temperature ranges may not be reliable for the others. This research provides theoretical foundation for an interpretation of actual measurements of an interaction forces using AFM.

  16. Reduced Sampling Size with Nanopipette for Tapping-Mode Scanning Probe Electrospray Ionization Mass Spectrometry Imaging

    PubMed Central

    Kohigashi, Tsuyoshi; Otsuka, Yoichi; Shimazu, Ryo; Matsumoto, Takuya; Iwata, Futoshi; Kawasaki, Hideya; Arakawa, Ryuichi

    2016-01-01

    Mass spectrometry imaging (MSI) with ambient sampling and ionization can rapidly and easily capture the distribution of chemical components in a solid sample. Because the spatial resolution of MSI is limited by the size of the sampling area, reducing sampling size is an important goal for high resolution MSI. Here, we report the first use of a nanopipette for sampling and ionization by tapping-mode scanning probe electrospray ionization (t-SPESI). The spot size of the sampling area of a dye molecular film on a glass substrate was decreased to 6 μm on average by using a nanopipette. On the other hand, ionization efficiency increased with decreasing solvent flow rate. Our results indicate the compatibility between a reduced sampling area and the ionization efficiency using a nanopipette. MSI of micropatterns of ink on a glass and a polymer substrate were also demonstrated. PMID:28101441

  17. 32 CFR 806.27 - Samples of Air Force FOIA processing documents.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Samples of Air Force FOIA processing documents. 806.27 Section 806.27 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE ADMINISTRATION AIR FORCE FREEDOM OF INFORMATION ACT PROGRAM § 806.27 Samples of Air Force FOIA...

  18. 32 CFR 806.27 - Samples of Air Force FOIA processing documents.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Samples of Air Force FOIA processing documents. 806.27 Section 806.27 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE ADMINISTRATION AIR FORCE FREEDOM OF INFORMATION ACT PROGRAM § 806.27 Samples of Air Force FOIA...

  19. 32 CFR 806.27 - Samples of Air Force FOIA processing documents.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Samples of Air Force FOIA processing documents. 806.27 Section 806.27 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE ADMINISTRATION AIR FORCE FREEDOM OF INFORMATION ACT PROGRAM § 806.27 Samples of Air Force FOIA...

  20. Design and Analysis of an Isokinetic Sampling Probe for Submicron Particle Measurements at High Altitude

    NASA Technical Reports Server (NTRS)

    Heath, Christopher M.

    2012-01-01

    An isokinetic dilution probe has been designed with the aid of computational fluid dynamics to sample sub-micron particles emitted from aviation combustion sources. The intended operational range includes standard day atmospheric conditions up to 40,000-ft. With dry nitrogen as the diluent, the probe is intended to minimize losses from particle microphysics and transport while rapidly quenching chemical kinetics. Initial results indicate that the Mach number ratio of the aerosol sample and dilution streams in the mixing region is an important factor for successful operation. Flow rate through the probe tip was found to be highly sensitive to the static pressure at the probe exit. Particle losses through the system were estimated to be on the order of 50% with minimal change in the overall particle size distribution apparent. Following design refinement, experimental testing and validation will be conducted in the Particle Aerosol Laboratory, a research facility located at the NASA Glenn Research Center to study the evolution of aviation emissions at lower stratospheric conditions. Particle size distributions and number densities from various combustion sources will be used to better understand particle-phase microphysics, plume chemistry, evolution to cirrus, and environmental impacts of aviation.

  1. Use of mass spectrometry coupled with a solids insertion probe to prescreen soil samples for environmental samples

    SciTech Connect

    Check, C.E.; Bach, S.B.H.

    1995-12-31

    The contamination of air, water, and soils by a myriad of sources generates a large sample Currently, sample volume for hazardous constituent analyses is approximately half a million samples per year. The total analytical costs associated with this are astronomical. The analysis of these samples is vital in terms of assessing the types of contamination present and to what degree a site has been contaminated. The results of these analyses are very important for making an informed, knowledgeable decision as to the need for remediation and what type of remediation processes should be initiated based on site suitability vs non-action for the various sample sites. With an ever growing environmental consciousness in today`s society, the assessment and subsequent remediation of a site needs to be accomplished promptly despite the time constraints traditional methods place on such actions. In order to facilitate a rapid assessment, it is desirable to utilize instrumentation and equipment which afford the most information about a site allowing for optimization in environmental assessment while maintaining a realistic time schedule for the resulting remediation process. Because there are various types of environmental samples that can be taken at a site, different combinations of instrumentation and methods are required for assessing the level and type of contamination present whether it is in air, water, or soils. This study is limited to analyzing soil-like media that would normally fall under EPA Method 8270 which is used to analyze solid waste matrices, soils, and groundwater for semi-volatile organic compounds.

  2. Quantitative reverse sample genome probing of microbial communities and its application to oil field production waters

    SciTech Connect

    Voordouw, G.; Shen, Y.; Harrington, C.S.; Teland, A.J. ); Jack, T.R. ); Westlake, W.S. )

    1993-12-01

    This paper presents a protocol for quantitative analysis of microbial communities by reverse sample genome probing is presented in which (i) whole community DNA is isolated and labeled in the presence of a known amount of an added internal standard and (ii) the resulting spiked reverse genome probe is hybridized with a master filter on which denatured genomic DNAs from bacterial standards isolated from the target environment were spotted in large amounts (up to 1,500 ng) in order to improve detection sensitivity. This protocol allowed reproducible fingerprinting of the microbial community in oil field production waters at 19 sites from which water and biofilm samples were collected. It appeared that selected sulfate-reducing bacteria were significantly enhanced in biofilms covering the metal surfaces in contact with the production waters.

  3. GUIDELINES FOR INSTALLATION AND SAMPLING OF SUB-SLAB VAPOR PROBES TO SUPPORT ASSESSMENT OF VAPOR INTRUSION

    EPA Science Inventory

    The purpose of this paper is to provide guidelines for sub-slab sampling using dedicated vapor probes. Use of dedicated vapor probes allows for multiple sample events before and after corrective action and for vacuum testing to enhance the design and monitoring of a corrective m...

  4. Wide Area Recovery and Resilency Program (WARRP). Video - Aggressive Air Sampling for B. anthracis Spores

    DTIC Science & Technology

    2012-09-14

    34Systematic Evaluation of Aggressive Air Sampling for Bacillus anthracis Spores", in which aggressive air sampling, used for asbestos fiber detection, was...Sep 2012 Final 01 Feb 2011 - 01 Sep 2012 Wide Area Recovery and Resiliency Program (WARRP) Video - Aggressive Air Sampling for B. anthracis Spores

  5. Automation of a Surface Sampling Probe/Electrospray Mass Spectrometry System

    SciTech Connect

    Kertesz, Vilmos; Ford, Michael J; Van Berkel, Gary J

    2005-01-01

    An image analysis automation concept and the associated software (HandsFree TLC/MS) were developed to control the surface sampling probe-to-surface distance during operation of a surface sampling electrospray system. This automation system enables both 'hands-free' formation of the liquid microjunction used to sample material from the surface and hands-free reoptimization of the microjunction thickness during a surface scan to achieve a fully automated surface sampling system. The image analysis concept and the practical implementation of the monitoring and automated adjustment of the sampling probe-to-surface distance (i.e., liquid microjunction thickness) are presented. The added capabilities for the preexisting surface sampling electrospray system afforded through this software control are illustrated by an example of automated scanning of multiple development lanes on a reversed-phase C8 TLC plate and by imaging inked lettering on a paper surface. The post data acquisition processing and data display aspects of the software package are also discussed.

  6. Probing the interaction between air bubble and sphalerite mineral surface using atomic force microscope.

    PubMed

    Xie, Lei; Shi, Chen; Wang, Jingyi; Huang, Jun; Lu, Qiuyi; Liu, Qingxia; Zeng, Hongbo

    2015-03-03

    The interaction between air bubbles and solid surfaces plays important roles in many engineering processes, such as mineral froth flotation. In this work, an atomic force microscope (AFM) bubble probe technique was employed, for the first time, to directly measure the interaction forces between an air bubble and sphalerite mineral surfaces of different hydrophobicity (i.e., sphalerite before/after conditioning treatment) under various hydrodynamic conditions. The direct force measurements demonstrate the critical role of the hydrodynamic force and surface forces in bubble-mineral interaction and attachment, which agree well with the theoretical calculations based on Reynolds lubrication theory and augmented Young-Laplace equation by including the effect of disjoining pressure. The hydrophobic disjoining pressure was found to be stronger for the bubble-water-conditioned sphalerite interaction with a larger hydrophobic decay length, which enables the bubble attachment on conditioned sphalerite at relatively higher bubble approaching velocities than that of unconditioned sphalerite. Increasing the salt concentration (i.e., NaCl, CaCl2) leads to weakened electrical double layer force and thereby facilitates the bubble-mineral attachment, which follows the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory by including the effects of hydrophobic interaction. The results provide insights into the basic understanding of the interaction mechanism between bubbles and minerals at nanoscale in froth flotation processes, and the methodology on probing the interaction forces of air bubble and sphalerite surfaces in this work can be extended to many other mineral and particle systems.

  7. An Autosampler and Field Sample Carrier for Maximizing Throughput Using an Open-Air, Surface Sampling Ion Source for MS

    EPA Science Inventory

    A recently developed, commercially available, open-air, surface sampling ion source for mass spectrometers provides individual analyses in several seconds. To realize its full throughput potential, an autosampler and field sample carrier were designed and built. The autosampler ...

  8. Sampling of air streams and incorporation of samples in the Microtox{trademark} toxicity testing system

    SciTech Connect

    Kleinheinz, G.T.; St. John, W.P.

    1997-10-01

    A study was conducted to develop a rapid and reliable method for the collection and incorporation of biofiltration air samples containing volatile organic compounds (VOCs) into the Microtox toxicity testing system. To date, no method exists for this type of assay. A constant stream of VOCs was generated by air stripping compounds from a complex mixture of petroleum hydrocarbons (PHCs). Samples were collected on coconut charcoal ORBO tubes and the VOCs extracted with methylene chloride. The compounds extracted were then solvent exchanged into dimethyl sulfoxide (DMSO) under gaseous nitrogen. The resulting DMSO extract was directly incorporated into the Microtox toxicity testing system. In order to determine the efficiency of the solvent exchange, the VOCs in the DMSO extract were then extracted into hexane and subsequently analyzed using gas chromatography (GC) with a flame ionization detector (FID). It was determined that all but the most volatile VOCs could be effectively transferred from the ORBO tubes to DMSO for Microtox testing. Potential trace amounts of residual methylene chloride in the DMSO extracts showed no adverse effects in the Microtox system when compared to control samples.

  9. Lanthanide complexes as luminogenic probes to measure sulfide levels in industrial samples.

    PubMed

    Thorson, Megan K; Ung, Phuc; Leaver, Franklin M; Corbin, Teresa S; Tuck, Kellie L; Graham, Bim; Barrios, Amy M

    2015-10-08

    A series of lanthanide-based, azide-appended complexes were investigated as hydrogen sulfide-sensitive probes. Europium complex 1 and Tb complex 3 both displayed a sulfide-dependent increase in luminescence, while Tb complex 2 displayed a decrease in luminescence upon exposure to NaHS. The utility of the complexes for monitoring sulfide levels in industrial oil and water samples was investigated. Complex 3 provided a sensitive measure of sulfide levels in petrochemical water samples (detection limit ∼ 250 nM), while complex 1 was capable of monitoring μM levels of sulfide in partially refined crude oil.

  10. Passive Samplers for Investigations of Air Quality: Method Description, Implementation, and Comparison to Alternative Sampling Methods

    EPA Science Inventory

    This Paper covers the basics of passive sampler design, compares passive samplers to conventional methods of air sampling, and discusses considerations when implementing a passive sampling program. The Paper also discusses field sampling and sample analysis considerations to ensu...

  11. Nanoscale infrared spectroscopy as a non-destructive probe of extraterrestrial samples.

    PubMed

    Dominguez, Gerardo; Mcleod, A S; Gainsforth, Zack; Kelly, P; Bechtel, Hans A; Keilmann, Fritz; Westphal, Andrew; Thiemens, Mark; Basov, D N

    2014-12-09

    Advances in the spatial resolution of modern analytical techniques have tremendously augmented the scientific insight gained from the analysis of natural samples. Yet, while techniques for the elemental and structural characterization of samples have achieved sub-nanometre spatial resolution, infrared spectral mapping of geochemical samples at vibrational 'fingerprint' wavelengths has remained restricted to spatial scales >10 μm. Nevertheless, infrared spectroscopy remains an invaluable contactless probe of chemical structure, details of which offer clues to the formation history of minerals. Here we report on the successful implementation of infrared near-field imaging, spectroscopy and analysis techniques capable of sub-micron scale mineral identification within natural samples, including a chondrule from the Murchison meteorite and a cometary dust grain (Iris) from NASA's Stardust mission. Complementary to scanning electron microscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy probes, this work evidences a similarity between chondritic and cometary materials, and inaugurates a new era of infrared nano-spectroscopy applied to small and invaluable extraterrestrial samples.

  12. High quality copy number and genotype data from FFPE samples using Molecular Inversion Probe (MIP) microarrays

    SciTech Connect

    Wang, Yuker; Carlton, Victoria E.H.; Karlin-Neumann, George; Sapolsky, Ronald; Zhang, Li; Moorhead, Martin; Wang, Zhigang C.; Richardson, Andrea L.; Warren, Robert; Walther, Axel; Bondy, Melissa; Sahin, Aysegul; Krahe, Ralf; Tuna, Musaffe; Thompson, Patricia A.; Spellman, Paul T.; Gray, Joe W.; Mills, Gordon B.; Faham, Malek

    2009-02-24

    A major challenge facing DNA copy number (CN) studies of tumors is that most banked samples with extensive clinical follow-up information are Formalin-Fixed Paraffin Embedded (FFPE). DNA from FFPE samples generally underperforms or suffers high failure rates compared to fresh frozen samples because of DNA degradation and cross-linking during FFPE fixation and processing. As FFPE protocols may vary widely between labs and samples may be stored for decades at room temperature, an ideal FFPE CN technology should work on diverse sample sets. Molecular Inversion Probe (MIP) technology has been applied successfully to obtain high quality CN and genotype data from cell line and frozen tumor DNA. Since the MIP probes require only a small ({approx}40 bp) target binding site, we reasoned they may be well suited to assess degraded FFPE DNA. We assessed CN with a MIP panel of 50,000 markers in 93 FFPE tumor samples from 7 diverse collections. For 38 FFPE samples from three collections we were also able to asses CN in matched fresh frozen tumor tissue. Using an input of 37 ng genomic DNA, we generated high quality CN data with MIP technology in 88% of FFPE samples from seven diverse collections. When matched fresh frozen tissue was available, the performance of FFPE DNA was comparable to that of DNA obtained from matched frozen tumor (genotype concordance averaged 99.9%), with only a modest loss in performance in FFPE. MIP technology can be used to generate high quality CN and genotype data in FFPE as well as fresh frozen samples.

  13. Use of IsoProbe for Uranium and Plutonium Analysis in Environmental Samples

    SciTech Connect

    Russ, G.P.; Williams, R.

    2000-10-02

    The ability to detect and isotopically characterize uranium and plutonium in environmental samples is of primary importance in the search for nuclear proliferation. The utility of isotope ratio measurements for environmental monitoring is limited by sample preparation costs, measurement precision, and sensitivity. This is particularly true for wide-area monitoring where the number of samples required varies inversely with obtainable precision and sensitivity. This report summarizes an initial evaluation of the applicability of a new technique, magnetic-sector, multicollector, inductively-coupled-plasma mass spectrometry, to environmental sample analysis. This technique is embodied at Lawrence Livermore National Laboratory in the form of a commercially available instrument, the IsoProbe, manufactured by micromass, LTD. (United Kingdom). This is the second of the current generation of such instruments installed in the United States and the first within the Department of Energy complex. Inductively-coupled plasma mass spectrometry (ICPMS) using quadrupole mass filters has existed for roughly 15 years. Magnet sector instruments have also existed for about half that time and multicollector instruments have existed for nearly as long. Among the things that make the new generation of instruments, and the IsoProbe in particular, unique are (1) the use of a gas-collision cell to reduce the energy spread of the ions and to remove ions associated with the plasma gas and (2) the introduction of multiple electron-multiplier detection systems. The net effect of these features is to increase sensitivity and precision. Historically uranium and plutonium isotopic compositions have been determined by thermal ionization mass spectrometry (TIMS). While requiring extensive sample preparation, no other technique matched its precision and sensitivity for such measurements. The purposes of this project are to evaluate whether the IsoProbe can replace TIMS for environmental monitoring

  14. Detection of hepatitis A virus in seeded estuarine samples by hybridization with cDNA probes

    SciTech Connect

    Jiang, X.; Estes, M.K.; Metcalf, T.G.; Melnick, J.L

    1986-10-01

    The development and trials of a nucleic acid hybridization test for the detection of hepatitis A virus (HAV) in estuarine samples within 48 h are described. Approximately 10/sup 4/ physical particlels of HAV per dot could be detected. Test sensitivity was optimized by the consideration of hydbridization stringency, /sup 32/P energy level, probe concentration, and nucleic acid binding to filters. Test specificity was shown by a lack of cross-hybridization with other enteroviruses and unrelated nucleic acids. Potential false-positive reactions between bacterial DNA in samples and residual vector DNA contamination of purified nucleotide sequences in probes were eliminated by DNase treatment of samples. Humic acid at concentrations of up to 100 mg/liter caused only insignificant decreases in test sensitivity. Interference with hybridization by organic components of virus-containing eluates was removed by proteinase K digestion followed by phenol extraction and ethanol precipitation. The test is suitable for detecting naturally occurring HAV in samples from polluted estuarine environments.

  15. Carter Carburetor Weekly Air Monitoring & Sampling Report - November 2, 2015 – November 8, 2015

    EPA Pesticide Factsheets

    Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati

  16. Carter Carburetor Weekly Air Monitoring & Sampling Report - November 16, 2015 – November 22, 2015

    EPA Pesticide Factsheets

    Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati

  17. Carter Carburetor Weekly Air Monitoring & Sampling Report - October 12, 2015 – October 18, 2015

    EPA Pesticide Factsheets

    Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati

  18. Carter Carburetor Weekly Air Monitoring & Sampling Report - March 7, 2013 - March 13, 2016

    EPA Pesticide Factsheets

    Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati

  19. Carter Carburetor Weekly Air Monitoring & Sampling Report - November 30, 2015 – December 6, 2015

    EPA Pesticide Factsheets

    Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati

  20. Carter Carburetor Weekly Air Monitoring & Sampling Report - November 9, 2015 – November 15, 2015

    EPA Pesticide Factsheets

    Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati

  1. Carter Carburetor Weekly Air Monitoring & Sampling Report - February 1, 2016 – February 7, 2016

    EPA Pesticide Factsheets

    Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati

  2. Carter Carburetor Weekly Air Monitoring & Sampling Report - October 26, 2015 – November 1, 2015

    EPA Pesticide Factsheets

    Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati

  3. Carter Carburetor Weekly Air Monitoring & Sampling Report - October 5, 2015 – October 11, 2015

    EPA Pesticide Factsheets

    Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati

  4. Carter Carburetor Weekly Air Monitoring & Sampling Report - September 28, 2015 – October 4, 2015

    EPA Pesticide Factsheets

    Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati

  5. Carter Carburetor Weekly Air Monitoring & Sampling Report - February 15, 2016 – February 21, 2016

    EPA Pesticide Factsheets

    Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati

  6. Carter Carburetor Weekly Air Monitoring & Sampling Report - October 19, 2015 – October 25, 2015

    EPA Pesticide Factsheets

    Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati

  7. Carter Carburetor Weekly Air Monitoring & Sampling Report - November 23, 2015 – November 29, 2015

    EPA Pesticide Factsheets

    Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati

  8. Probe depth matters in dermal microdialysis sampling of benzoic acid after topical application: an ex vivo study in human skin.

    PubMed

    Holmgaard, R; Benfeldt, E; Bangsgaard, N; Sorensen, J A; Brosen, K; Nielsen, F; Nielsen, J B

    2012-01-01

    Microdialysis (MD) in the skin - dermal microdialysis (DMD) - is a unique technique for sampling of topically as well as systemically administered drugs at the site of action, e.g. sampling of dermatological drug concentrations in the dermis. Debate has concerned the existence of a correlation between the depth of the sampling device - the probe - in the dermis and the amount of drug sampled following topical drug administration. This study evaluates the relation between probe depth and drug sampling using dermal DMD sampling ex vivo in human skin. We used superficial (<1 mm), intermediate (1-2 mm) and deep (>2 mm) positioning of the linear MD probe in the dermis of human abdominal skin, followed by topical application of 4 mg/ml of benzoic acid (BA) in skin chambers overlying the probes. Dialysate was sampled every hour for 12 h and analysed for BA content by high-performance liquid chromatography. Probe depth was measured by 20-MHz ultrasound scanning. The area under the time-versus-concentration curve (AUC) describes the drug exposure in the tissue during the experiment and is a relevant parameter to compare for the 3 dermal probe depths investigated. The AUC(0-12) were: superficial probes: 3,335 ± 1,094 μg·h/ml (mean ± SD); intermediate probes: 2,178 ± 1,068 μg·h/ml, and deep probes: 1,159 ± 306 μg·h/ml. AUC(0-12) sampled by the superficial probes was significantly higher than that of samples from the intermediate and deeply positioned probes (p value <0.05). There was a significant inverse correlation between probe depth and AUC(0-12) sampled by the same probe (p value <0.001, r(2) value = 0.5). The mean extrapolated lag-times (±SD) for the superficial probes were 0.8 ± 0.1 h, for the intermediate probes 1.7 ± 0.5 h, and for the deep probes 2.7 ± 0.5 h, which were all significantly different from each other (p value <0.05). In conclusion, this paper demonstrates that there is an inverse relationship between the depth of the probe in the dermis

  9. Hot-spot detection and calibration of a scanning thermal probe with a noise thermometry gold wire sample

    NASA Astrophysics Data System (ADS)

    Gaitas, Angelo; Wolgast, Steven; Covington, Elizabeth; Kurdak, Cagliyan

    2013-02-01

    Measuring the temperature profile of a nanoscale sample using scanning thermal microscopy is challenging due to a scanning probe's non-uniform heating. In order to address this challenge, we have developed a calibration sample consisting of a 1-μm wide gold wire, which can be heated electrically by a small bias current. The Joule heating in the calibration sample wire is characterized using noise thermometry. A thermal probe was scanned in contact over the gold wire and measured temperature changes as small as 0.4 K, corresponding to 17 ppm changes in probe resistance. The non-uniformity of the probe's temperature profile during a typical scan necessitated the introduction of a temperature conversion factor, η, which is defined as the ratio of the average temperature change of the probe with respect to the temperature change of the substrate. The conversion factor was calculated to be 0.035 ± 0.007. Finite element analysis simulations indicate a strong correlation between thermal probe sensitivity and probe tip curvature, suggesting that the sensitivity of the thermal probe can be improved by increasing the probe tip curvature, though at the expense of the spatial resolution provided by sharper tips. Simulations also indicate that a bow-tie metallization design could yield an additional 5- to 7-fold increase in sensitivity.

  10. Collection and analysis of NASA clean room air samples

    NASA Technical Reports Server (NTRS)

    Sheldon, L. S.; Keever, J.

    1985-01-01

    The environment of the HALOE assembly clean room at NASA Langley Research Center is analyzed to determine the background levels of airborne organic compounds. Sampling is accomplished by pumping the clean room air through absorbing cartridges. For volatile organics, cartridges are thermally desorbed and then analyzed by gas chromatography and mass spectrometry, compounds are identified by searching the EPA/NIH data base using an interactive operator INCOS computer search algorithm. For semivolatile organics, cartridges are solvent entracted and concentrated extracts are analyzed by gas chromatography-electron capture detection, compound identification is made by matching gas chromatogram retention times with known standards. The detection limits for the semivolatile organics are; 0.89 ng cu m for dioctylphlhalate (DOP) and 1.6 ng cu m for polychlorinated biphenyls (PCB). The detection limit for volatile organics ranges from 1 to 50 parts per trillion. Only trace quantities of organics are detected, the DOP levels do not exceed 2.5 ng cu m and the PCB levels do not exceed 454 ng cu m.

  11. Frequency Response of the Sample Vibration Mode in Scanning Probe Acoustic Microscope

    NASA Astrophysics Data System (ADS)

    Zhao, Ya-Jun; Cheng, Qian; Qian, Meng-Lu

    2010-05-01

    Based on the interaction mechanism between tip and sample in the contact mode of a scanning probe acoustic microscope (SPAM), an active mass of the sample is introduced in the mass-spring model. The tip motion and frequency response of the sample vibration mode in the SPAM are calculated by the Lagrange equation with dissipation function. For the silicon tip and glass assemblage in the SPAM the frequency response is simulated and it is in agreement with the experimental result. The living myoblast cells on the glass slide are imaged at resonance frequencies of the SPAM system, which are 20kHz, 30kHz and 120kHz. It is shown that good contrast of SPAM images could be obtained when the system is operated at the resonance frequencies of the system in high and low-frequency regions.

  12. 101-SY waste sample speed of sound/rheology testing for sonic probe program

    SciTech Connect

    Cannon, N.S.

    1994-07-25

    One problem faced in the clean-up operation at Hanford is that a number of radioactive waste storage tanks are experiencing a periodic buildup and release of potentially explosive gases. The best known example is Tank 241-SY-101 (commonly referred to as 101-SY) in which hydrogen gas periodically built up within the waste to the point that increased buoyancy caused a roll-over event, in which the gas was suddenly released in potentially explosive concentrations (if an ignition source were present). The sonic probe concept is to generate acoustic vibrations in the 101-SY tank waste at nominally 100 Hz, with sufficient amplitude to cause the controlled release of hydrogen bubbles trapped in the waste. The sonic probe may provide a potentially cost-effective alternative to large mixer pumps now used for hydrogen mitigation purposes. Two important parameters needed to determine sonic probe effectiveness and design are the speed of sound and yield stress of the tank waste. Tests to determine these parameters in a 240 ml sample of 101-SY waste (obtained near the tank bottom) were performed, and the results are reported.

  13. GRBs as probes: increasing both the high-z and short GRB sample

    NASA Astrophysics Data System (ADS)

    Grindlay, Jonathan E.

    The promise of GRBs as probes of the high-z Universe is clear, given the detection of GRBs at z = 8.3 and ˜ 9.3 within 6d in April, 2009. These were both hampered by their (late) near-IR followup, suggesting that the large high-z GRB sample is limited currently by lack of prompt JHK photometry and spectroscopy within the first few hours from trigger. With no planned space-borne near IR telescope, for prompt GRB photo-z's or high resolution spectroscopy, the power of GRBs to probe the Early Universe will depend on a possible 3.5m Chinese telescope in the near-space like environment of Dome A in Antarctica or a modest network of 4m class telescopes (proposed here) for rapid response imaging and spectra, as needed also in the era of LSST. With the coming advent of Advanced LIGO, short GRBs will be vital as probes of the gravitational wave Universe. Just as with long GRBs as probes of the high-z Universe, it is essential that we are ready with a sensitive GRB imaging mission. For sGRBs, with their lower luminosity and conspicuously faint afterglows as well as likely wider-angle beaming factors, it is advantageous to be able to locate them precisely from their prompt emission (i.e. without afterglow detectons) to identify their host galaxies within the projected ˜ 300-600 Mpc survey limits for ALIGO. This will not only open the GW-EM window, but also allow precision measures of the Hubble constant.

  14. Cancer Detection in Human Tissue Samples Using a Fiber-Tip pH Probe.

    PubMed

    Schartner, Erik P; Henderson, Matthew R; Purdey, Malcolm; Dhatrak, Deepak; Monro, Tanya M; Gill, P Grantley; Callen, David F

    2016-12-01

    Intraoperative detection of tumorous tissue is an important unresolved issue for cancer surgery. Difficulty in differentiating between tissue types commonly results in the requirement for additional surgeries to excise unremoved cancer tissue or alternatively in the removal of excess amounts of healthy tissue. Although pathologic methods exist to determine tissue type during surgery, these methods can compromise postoperative pathology, have a lag of minutes to hours before the surgeon receives the results of the tissue analysis, and are restricted to excised tissue. In this work, we report the development of an optical fiber probe that could potentially find use as an aid for margin detection during surgery. A fluorophore-doped polymer coating is deposited on the tip of an optical fiber, which can then be used to record the pH by monitoring the emission spectra from this dye. By measuring the tissue pH and comparing with the values from regular tissue, the tissue type can be determined quickly and accurately. The use of a novel lift-and-measure technique allows for these measurements to be performed without influence from the inherent autofluorescence that commonly affects fluorescence-based measurements on biological samples. The probe developed here shows strong potential for use during surgery, as the probe design can be readily adapted to a low-cost portable configuration, which could find use in the operating theater. Use of this probe in surgery either on excised or in vivo tissue has the potential to improve success rates for complete removal of cancers. Cancer Res; 76(23); 6795-801. ©2016 AACR.

  15. Breakthrough of 1,3-dichloropropene and chloropicrin from 600 mg XAD-4 air sampling tubes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurately measuring air concentrations of agricultural fumigants is important for the regulation of air quality. Understanding the conditions under which sorbent tubes can effectively retain such fumigants during sampling is critical in mitigating chemical breakthrough from the tubes and facilitati...

  16. Assessment of the Group 3-4 (HV-S1, HV-S2, IHLW-S1) Stack Sampling Probe Locations for Compliance with ANSI/HPS N13.1-1999

    SciTech Connect

    Glissmeyer, John A.; Flaherty, Julia E.; Antonio, Ernest J.

    2013-01-01

    This document reports on a series of tests conducted to assess the proposed air sampling locations for the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Group 3-4 exhaust stacks with respect to the applicable criteria regarding the placement of an air sampling probe. The HV-S1, HV-S2, and IHLW-S1 exhaust stacks were tested together as a group (Test Group 3-4) because they share a geometric attribute: the common factor in their design is that the last significant flow disturbance upstream of the air sampling probe is a jog (i.e., two conjoined bends of equal and opposite curvature resulting in a change in elevation of the duct). Federal regulations require that a sampling probe be located in the exhaust stack according to criteria established by the American National Standards Institute/Health Physics Society (ANSI/HPS) N13.1-1999, Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stack and Ducts of Nuclear Facilities. These criteria address the capability of the sampling probe to extract a sample that represents the effluent stream.

  17. Selective local lysis and sampling of live cells for nucleic acid analysis using a microfluidic probe

    PubMed Central

    Kashyap, Aditya; Autebert, Julien; Delamarche, Emmanuel; Kaigala, Govind V.

    2016-01-01

    Heterogeneity is inherent to biology, thus it is imperative to realize methods capable of obtaining spatially-resolved genomic and transcriptomic profiles of heterogeneous biological samples. Here, we present a new method for local lysis of live adherent cells for nucleic acid analyses. This method addresses bottlenecks in current approaches, such as dilution of analytes, one-sample-one-test, and incompatibility to adherent cells. We make use of a scanning probe technology - a microfluidic probe - and implement hierarchical hydrodynamic flow confinement (hHFC) to localize multiple biochemicals on a biological substrate in a non-contact, non-destructive manner. hHFC enables rapid recovery of nucleic acids by coupling cell lysis and lysate collection. We locally lysed ~300 cells with chemical systems adapted for DNA or RNA and obtained lysates of ~70 cells/μL for DNA analysis and ~15 cells/μL for mRNA analysis. The lysates were introduced into PCR-based workflows for genomic and transcriptomic analysis. This strategy further enabled selective local lysis of subpopulations in a co-culture of MCF7 and MDA-MB-231 cells, validated by characteristic E-cadherin gene expression in individually extracted cell types. The developed strategy can be applied to study cell-cell, cell-matrix interactions locally, with implications in understanding growth, progression and drug response of a tumor. PMID:27411740

  18. 4He sample probe for combined microwave and dc transport measurements

    NASA Astrophysics Data System (ADS)

    Dobrovolskiy, Oleksandr V.; Franke, Jörg; Huth, Michael

    2015-03-01

    Combined microwave and dc electrical transport measurements at low temperatures represent a valuable experimental method in many research areas. In particular, when samples are conventional superconductors, a typical experiment requires a combination of helium temperatures, a wide range of magnetic fields, and the utilization of coaxial lines along with the usual dc wiring. We report on the general design features and the microwave performance of a custom-made low-temperature sample probe, with a measurement bandwidth tested from dc to 20 GHz. Equipped with six coaxial cables, a heater, Hall and temperature sensors, the probe fits into a ⊘32 mm shaft. We present our setup, analyze its microwave performance, and describe two representative experiments enabled by this system. The proposed setup will be essential for a systematic study of the dc and ac response of the vortex dynamics in nanopatterned superconductors subject to combined dc and microwave stimuli. Besides, it will be valuable for the investigation of a broad class of nonlinear stochastic systems where a combination of dc and high-frequency ac driving in a wide temperature range is necessary.

  19. Derivation of DNA probes for enumeration of a specific strain of Lactobacillus acidophilus in piglet digestive tract samples.

    PubMed Central

    Rodtong, S; Dobbinson, S; Thode-Andersen, S; McConnell, M A; Tannock, G W

    1993-01-01

    Four DNA probes were derived that hybridized specifically to DNA from Lactobacillus acidophilus O. The probes were constructed by randomly cloning lactobacillus DNA in plasmid vector pBR322. Two of the probes (pSR1 and pSR2) were composed of vector and plasmid DNA inserts (3.6 and 1.6 kb, respectively); the others (pSR3 and pSR4) were composed of vector and chromosomally derived inserts (6.9 and 1.4 kb, respectively). The probes were used to enumerate, by colony hybridization, strain O in digestive tract samples collected from piglets inoculated 24 hours previously with a culture of the strain. The probes did not hybridize to DNA from lactobacilli inhabiting the digestive tract of uninoculated piglets. Strain O made up about 10% of the total lactobacillus population of the pars esophagea and about 20% of the population in other digestive tract samples. Images PMID:8285690

  20. Performance of a combined three-hole conductivity probe for void fraction and velocity measurement in air-water flows

    NASA Astrophysics Data System (ADS)

    Borges, João Eduardo; Pereira, Nuno H. C.; Matos, Jorge; Frizell, Kathleen H.

    2010-01-01

    The development of a three-hole pressure probe with back-flushing combined with a conductivity probe, used for measuring simultaneously the magnitude and direction of the velocity vector in complex air-water flows, is described in this paper. The air-water flows envisaged in the current work are typically those occurring around the rotors of impulse hydraulic turbines (like the Pelton and Cross-Flow turbines), where the flow direction is not known prior to the data acquisition. The calibration of both the conductivity and three-hole pressure components of the combined probe in a rig built for the purpose, where the probe was placed in a position similar to that adopted for the flow measurements, will be reported. After concluding the calibration procedure, the probe was utilized in the outside region of a Cross-Flow turbine rotor. The experimental results obtained in the present study illustrate the satisfactory performance of the combined probe, and are encouraging toward its use for characterizing the velocity field of other complex air-water flows.

  1. Review of Various Air Sampling Methods for Solvent Vapors.

    DTIC Science & Technology

    Vapors of trichloroethylene, toluene, methyl ethyl ketone, and butyl cellosolve in air were collected using Scotchpac and Tedlar bags, glass ...prescription bottles , and charcoal adsorption tubes. Efficiencies of collection are reported. (Author)

  2. Review of Various Air Sampling Methods for Solvent Vapors.

    ERIC Educational Resources Information Center

    Maykoski, R. T.

    Vapors of trichloroethylene, toluene, methyl ethyl ketone, and butyl cellosolve in air were collected using Scotchpac and Tedlar bags, glass prescription bottles, and charcoal adsorption tubes. Efficiencies of collection are reported. (Author/RH)

  3. Intensive probing of clear air convective fields by radar and instrumented drone aircraft.

    NASA Technical Reports Server (NTRS)

    Rowland, J. R.

    1972-01-01

    Clear air convective fields were probed in three summer experiments (1969, 1970, and 1971) on an S-band monopulse tracking radar at Wallops Island, Virginia, and a drone aircraft with a takeoff weight of 5.2 kg, wingspan of 2.5 m, and cruising glide speed of 10.3 m/sec. The drone was flown 23.2 km north of the radar and carried temperature, pressure/altitude, humidity, and vertical and airspeed velocity sensors. Extensive time-space convective field data were obtained by taking a large number of RHI and PPI pictures at short intervals of time. The rapidly changing overall convective field data obtained from the radar could be related to the meteorological information telemetered from the drone at a reasonably low cost by this combined technique.

  4. Fast, high-resolution surface potential measurements in air with heterodyne Kelvin probe force microscopy

    NASA Astrophysics Data System (ADS)

    Garrett, Joseph L.; Munday, Jeremy N.

    2016-06-01

    Kelvin probe force microscopy (KPFM) adapts an atomic force microscope to measure electric potential on surfaces at nanometer length scales. Here we demonstrate that Heterodyne-KPFM enables scan rates of several frames per minute in air, and concurrently maintains spatial resolution and voltage sensitivity comparable to frequency-modulation KPFM, the current spatial resolution standard. Two common classes of topography-coupled artifacts are shown to be avoidable with H-KPFM. A second implementation of H-KPFM is also introduced, in which the voltage signal is amplified by the first cantilever resonance for enhanced sensitivity. The enhanced temporal resolution of H-KPFM can enable the imaging of many dynamic processes, such as such as electrochromic switching, phase transitions, and device degredation (battery, solar, etc), which take place over seconds to minutes and involve changes in electric potential at nanometer lengths.

  5. Detection of Chromosome Aneuploidies in Chorionic Villus Samples by Multiplex Ligation-Dependent Probe Amplification

    PubMed Central

    Kooper, Angelique J.A.; Faas, Brigitte H.W.; Feuth, Ton; Creemers, Johan W.T.; Zondervan, Hans H.; Boekkooi, Peter F.; Quartero, Rik W.P.; Rijnders, Robbert J.P.; van der Burgt, Ineke; van Kessel, Ad Geurts; Smits, Arie P.T.

    2009-01-01

    The objective of this study was to examine the suitability of multiplex ligation-dependent probe amplification (MLPA) in chorionic villus samples as a replacement for traditional karyotyping for the detection of (an)euploidies of chromosomes 21, 18, 13, X, and Y. Chorionic villus samples were diagnosed by traditional karyotyping using short-term cultures (STC) and long-term cultures (LTC), and by MLPA using kit P095. DNA was extracted after digestion of whole villi with proteinase K and/or trypsin and collagenase. Different cell-dissociation procedures were tested to obtain MLPA results representative of the cytotrophoblast layer and the mesenchymal core. Over 95% of the MLPA results were in concordance with the traditional karyotyping of STC and LTC. Traditional karyotyping revealed seven mosaics. After digestion of whole villi with proteinase K, only abnormal cell lines confined to the STC gave rise to abnormal MLPA results. In one sample, the complete discrepancy between STC and LTC was resolved after enzymatic dissociation of cells from the cytotrophoblast layer and the mesenchymal core. MLPA in chorionic villus samples was found to be a reliable test for the detection of (an)euploidies of chromosomes 21, 18, 13, X, and Y. Whole villi digestion with proteinase K resulted in the over-representation of cytotrophoblasts in the DNA pool. To obtain MLPA results representative for STC and LTC, enzymatic dissociation of cells from the cytotrophoblast layer and mesenchymal core is required. PMID:19074591

  6. GUIDE TO CALCULATING TRANSPORT EFFICIENCY OF AEROSOLS IN OCCUPATIONAL AIR SAMPLING SYSTEMS

    SciTech Connect

    Hogue, M.; Hadlock, D.; Thompson, M.; Farfan, E.

    2013-11-12

    This report will present hand calculations for transport efficiency based on aspiration efficiency and particle deposition losses. Because the hand calculations become long and tedious, especially for lognormal distributions of aerosols, an R script (R 2011) will be provided for each element examined. Calculations are provided for the most common elements in a remote air sampling system, including a thin-walled probe in ambient air, straight tubing, bends and a sample housing. One popular alternative approach would be to put such calculations in a spreadsheet, a thorough version of which is shared by Paul Baron via the Aerocalc spreadsheet (Baron 2012). To provide greater transparency and to avoid common spreadsheet vulnerabilities to errors (Burns 2012), this report uses R. The particle size is based on the concept of activity median aerodynamic diameter (AMAD). The AMAD is a particle size in an aerosol where fifty percent of the activity in the aerosol is associated with particles of aerodynamic diameter greater than the AMAD. This concept allows for the simplification of transport efficiency calculations where all particles are treated as spheres with the density of water (1g cm-3). In reality, particle densities depend on the actual material involved. Particle geometries can be very complicated. Dynamic shape factors are provided by Hinds (Hinds 1999). Some example factors are: 1.00 for a sphere, 1.08 for a cube, 1.68 for a long cylinder (10 times as long as it is wide), 1.05 to 1.11 for bituminous coal, 1.57 for sand and 1.88 for talc. Revision 1 is made to correct an error in the original version of this report. The particle distributions are based on activity weighting of particles rather than based on the number of particles of each size. Therefore, the mass correction made in the original version is removed from the text and the calculations. Results affected by the change are updated.

  7. Application of a dry-gas meter for measuring air sample volumes in an ambient air monitoring network

    SciTech Connect

    Fritz, Brad G.

    2009-05-24

    Ambient air monitoring for non-research applications (e.g. compliance) occurs at locations throughout the world. Often, the air sampling systems employed for these purposes employee simple yet robust equipment capable of handling the rigors of demanding sampling schedules. At the Hanford Site (near Richland, Washington) concentrations of radionuclides in ambient air are monitored continuously at 44 locations. In 2004, mechanical dry-gas meters were incorporated into the Hanford Site ambient air sample collection system to allow the direct measurement of sample volumes. These meters replaced a portable airflow measurement system that required two manual flow measurements and a sample duration measurement to determine sample volume. A six-month evaluation of the dry-gas meters compared sample volumes calculated using the original flow rate method to the direct sample volume measurement (new method). The results of the evaluation indicate that use of the dry-gas meters result in accurate sample volume measurements and provide greater confidence in the measured sample volumes. In several years of in-network use, the meters have proven to be reliable and have resulted in an improved sampling system.

  8. Collecting Samples of Coronal and Solar Wind Plasma with Solar Probe Plus

    NASA Astrophysics Data System (ADS)

    Kasper, J. C.; Solar Wind Electrons Alphas; Protons (Sweap) Team

    2011-12-01

    The primary science objective of the NASA Solar Probe Plus mission is to determine the structure and dynamics of the Sun's coronal magnetic field and to understand how the corona and solar wind are heated and accelerated and how energetic particles are produced and evolve. To accomplish this, the spacecraft carries a broad payload of in situ and remote sensing instruments and uses a sequence of Venus gravitational assists to dive within 8.5 solar radii of the surface of the Sun, making it the first spacecraft to enter the sub-Alfvénic solar corona. This talk will focus on measurements of the thermal ions and electrons that constitute the bulk of the solar corona and solar wind, covering open questions related to the structure, heating, and acceleration of the solar corona and solar wind. The Solar Wind Electrons Alphas and Protons (SWEAP) Investigation on Solar Probe Plus will be presented, including a description of how measurements from electrostatic analyzers behind the heat shield and a Sun-viewing Faraday Cup are combined to ensure continuous and comprehensive sampling of the corona and wind throughout each encounter. Opportunities for coordinated observations with other spacecraft and ground-based observatories will be presented, along with a discussion of possible contributions from the theory and modeling communities, and from existing observations, as we prepare for this historic mission.

  9. The lung cancer breath signature: a comparative analysis of exhaled breath and air sampled from inside the lungs

    PubMed Central

    Capuano, Rosamaria; Santonico, Marco; Pennazza, Giorgio; Ghezzi, Silvia; Martinelli, Eugenio; Roscioni, Claudio; Lucantoni, Gabriele; Galluccio, Giovanni; Paolesse, Roberto; Di Natale, Corrado; D’Amico, Arnaldo

    2015-01-01

    Results collected in more than 20 years of studies suggest a relationship between the volatile organic compounds exhaled in breath and lung cancer. However, the origin of these compounds is still not completely elucidated. In spite of the simplistic vision that cancerous tissues in lungs directly emit the volatile metabolites into the airways, some papers point out that metabolites are collected by the blood and then exchanged at the air-blood interface in the lung. To shed light on this subject we performed an experiment collecting both the breath and the air inside both the lungs with a modified bronchoscopic probe. The samples were measured with a gas chromatography-mass spectrometer (GC-MS) and an electronic nose. We found that the diagnostic capability of the electronic nose does not depend on the presence of cancer in the sampled lung, reaching in both cases an above 90% correct classification rate between cancer and non-cancer samples. On the other hand, multivariate analysis of GC-MS achieved a correct classification rate between the two lungs of only 76%. GC-MS analysis of breath and air sampled from the lungs demonstrates a substantial preservation of the VOCs pattern from inside the lung to the exhaled breath. PMID:26559776

  10. The lung cancer breath signature: a comparative analysis of exhaled breath and air sampled from inside the lungs.

    PubMed

    Capuano, Rosamaria; Santonico, Marco; Pennazza, Giorgio; Ghezzi, Silvia; Martinelli, Eugenio; Roscioni, Claudio; Lucantoni, Gabriele; Galluccio, Giovanni; Paolesse, Roberto; Di Natale, Corrado; D'Amico, Arnaldo

    2015-11-12

    Results collected in more than 20 years of studies suggest a relationship between the volatile organic compounds exhaled in breath and lung cancer. However, the origin of these compounds is still not completely elucidated. In spite of the simplistic vision that cancerous tissues in lungs directly emit the volatile metabolites into the airways, some papers point out that metabolites are collected by the blood and then exchanged at the air-blood interface in the lung. To shed light on this subject we performed an experiment collecting both the breath and the air inside both the lungs with a modified bronchoscopic probe. The samples were measured with a gas chromatography-mass spectrometer (GC-MS) and an electronic nose. We found that the diagnostic capability of the electronic nose does not depend on the presence of cancer in the sampled lung, reaching in both cases an above 90% correct classification rate between cancer and non-cancer samples. On the other hand, multivariate analysis of GC-MS achieved a correct classification rate between the two lungs of only 76%. GC-MS analysis of breath and air sampled from the lungs demonstrates a substantial preservation of the VOCs pattern from inside the lung to the exhaled breath.

  11. The lung cancer breath signature: a comparative analysis of exhaled breath and air sampled from inside the lungs

    NASA Astrophysics Data System (ADS)

    Capuano, Rosamaria; Santonico, Marco; Pennazza, Giorgio; Ghezzi, Silvia; Martinelli, Eugenio; Roscioni, Claudio; Lucantoni, Gabriele; Galluccio, Giovanni; Paolesse, Roberto; di Natale, Corrado; D'Amico, Arnaldo

    2015-11-01

    Results collected in more than 20 years of studies suggest a relationship between the volatile organic compounds exhaled in breath and lung cancer. However, the origin of these compounds is still not completely elucidated. In spite of the simplistic vision that cancerous tissues in lungs directly emit the volatile metabolites into the airways, some papers point out that metabolites are collected by the blood and then exchanged at the air-blood interface in the lung. To shed light on this subject we performed an experiment collecting both the breath and the air inside both the lungs with a modified bronchoscopic probe. The samples were measured with a gas chromatography-mass spectrometer (GC-MS) and an electronic nose. We found that the diagnostic capability of the electronic nose does not depend on the presence of cancer in the sampled lung, reaching in both cases an above 90% correct classification rate between cancer and non-cancer samples. On the other hand, multivariate analysis of GC-MS achieved a correct classification rate between the two lungs of only 76%. GC-MS analysis of breath and air sampled from the lungs demonstrates a substantial preservation of the VOCs pattern from inside the lung to the exhaled breath.

  12. Reverse Sample Genome Probing, a New Technique for Identification of Bacteria in Environmental Samples by DNA Hybridization, and Its Application to the Identification of Sulfate-Reducing Bacteria in Oil Field Samples

    PubMed Central

    Voordouw, Gerrit; Voordouw, Johanna K.; Karkhoff-Schweizer, Roxann R.; Fedorak, Phillip M.; Westlake, Donald W. S.

    1991-01-01

    A novel method for the identification of bacteria in environmental samples by DNA hybridization is presented. It is based on the fact that, even within a genus, the genomes of different bacteria may have little overall sequence homology. This allows the use of the labeled genomic DNA of a given bacterium (referred to as a “standard”) to probe for its presence and that of bacteria with highly homologous genomes in total DNA obtained from an environmental sample. Alternatively, total DNA extracted from the sample can be labeled and used to probe filters on which denatured chromosomal DNA from relevant bacterial standards has been spotted. The latter technique is referred to as reverse sample genome probing, since it is the reverse of the usual practice of deriving probes from reference bacteria for analyzing a DNA sample. Reverse sample genome probing allows identification of bacteria in a sample in a single step once a master filter with suitable standards has been developed. Application of reverse sample genome probing to the identification of sulfate-reducing bacteria in 31 samples obtained primarily from oil fields in the province of Alberta has indicated that there are at least 20 genotypically different sulfate-reducing bacteria in these samples. Images PMID:16348574

  13. Low-cost monitoring of Campylobacter in poultry houses by air sampling and quantitative PCR.

    PubMed

    Søndergaard, M S R; Josefsen, M H; Löfström, C; Christensen, L S; Wieczorek, K; Osek, J; Hoorfar, J

    2014-02-01

    The present study describes the evaluation of a method for the quantification of Campylobacter by air sampling in poultry houses. Sampling was carried out in conventional chicken houses in Poland, in addition to a preliminary sampling in Denmark. Each measurement consisted of three air samples, two standard boot swab fecal samples, and one airborne particle count. Sampling was conducted over an 8-week period in three flocks, assessing the presence and levels of Campylobacter in boot swabs and air samples using quantitative real-time PCR. The detection limit for air sampling was approximately 100 Campylobacter cell equivalents (CCE)/m3. Airborne particle counts were used to analyze the size distribution of airborne particles (0.3 to 10 μm) in the chicken houses in relation to the level of airborne Campylobacter. No correlation was found. Using air sampling, Campylobacter was detected in the flocks right away, while boot swab samples were positive after 2 weeks. All samples collected were positive for Campylobacter from week 2 through the rest of the rearing period for both sampling techniques, although levels 1- to 2-log CCE higher were found with air sampling. At week 8, the levels were approximately 10(4) and 10(5) CCE per sample for boot swabs and air, respectively. In conclusion, using air samples combined with quantitative real-time PCR, Campylobacter contamination could be detected earlier than by boot swabs and was found to be a more convenient technique for monitoring and/or to obtain enumeration data useful for quantitative risk assessment of Campylobacter.

  14. Development of combination tapered fiber-optic biosensor dip probe for quantitative estimation of interleukin-6 in serum samples

    NASA Astrophysics Data System (ADS)

    Wang, Chun Wei; Manne, Upender; Reddy, Vishnu B.; Oelschlager, Denise K.; Katkoori, Venkat R.; Grizzle, William E.; Kapoor, Rakesh

    2010-11-01

    A combination tapered fiber-optic biosensor (CTFOB) dip probe for rapid and cost-effective quantification of proteins in serum samples has been developed. This device relies on diode laser excitation and a charged-coupled device spectrometer and functions on a technique of sandwich immunoassay. As a proof of principle, this technique was applied in a quantitative estimation of interleukin IL-6. The probes detected IL-6 at picomolar levels in serum samples obtained from a patient with lupus, an autoimmune disease, and a patient with lymphoma. The estimated concentration of IL-6 in the lupus sample was 5.9 +/- 0.6 pM, and in the lymphoma sample, it was below the detection limit. These concentrations were verified by a procedure involving bead-based xMAP technology. A similar trend in the concentrations was observed. The specificity of the CTFOB dip probes was assessed by analysis with receiver operating characteristics. This analysis suggests that the dip probes can detect 5-pM or higher concentration of IL-6 in these samples with specificities of 100%. The results provide information for guiding further studies in the utilization of these probes to quantify other analytes in body fluids with high specificity and sensitivity.

  15. Toxicological Assessment of ISS Air Quality: Contingency Sampling - February 2013

    NASA Technical Reports Server (NTRS)

    Meyers, Valerie

    2013-01-01

    Two grab sample containers (GSCs) were collected by crew members onboard ISS in response to a vinegar-like odor in the US Lab. On February 5, the first sample was collected approximately 1 hour after the odor was noted by the crew in the forward portion of the Lab. The second sample was collected on February 22 when a similar odor was noted and localized to the end ports of the microgravity science glovebox (MSG). The crewmember removed a glove from the MSG and collected the GSC inside the glovebox volume. Both samples were returned on SpaceX-2 for ground analysis.

  16. Thermal protection system development, testing, and qualification for atmospheric probes and sample return missions. Examples for Saturn, Titan and Stardust-type sample return

    NASA Astrophysics Data System (ADS)

    Venkatapathy, E.; Laub, B.; Hartman, G. J.; Arnold, J. O.; Wright, M. J.; Allen, G. A.

    2009-07-01

    The science community has continued to be interested in planetary entry probes, aerocapture, and sample return missions to improve our understanding of the Solar System. As in the case of the Galileo entry probe, such missions are critical to the understanding not only of the individual planets, but also to further knowledge regarding the formation of the Solar System. It is believed that Saturn probes to depths corresponding to 10 bars will be sufficient to provide the desired data on its atmospheric composition. An aerocapture mission would enable delivery of a satellite to provide insight into how gravitational forces cause dynamic changes in Saturn's ring structure that are akin to the evolution of protoplanetary accretion disks. Heating rates for the "shallow" Saturn probes, Saturn aerocapture, and sample Earth return missions with higher re-entry speeds (13-15 km/s) from Mars, Venus, comets, and asteroids are in the range of 1-6 KW/cm 2. New, mid-density thermal protection system (TPS) materials for such probes can be mission enabling for mass efficiency and also for use on smaller vehicles enabled by advancements in scientific instrumentation. Past consideration of new Jovian multiprobe missions has been considered problematic without the Giant Planet arcjet facility that was used to qualify carbon phenolic for the Galileo probe. This paper describes emerging TPS technologies and the proposed use of an affordable, small 5 MW arcjet that can be used for TPS development, in test gases appropriate for future planetary probe and aerocapture applications. Emerging TPS technologies of interest include new versions of the Apollo Avcoat material and a densified variant of Phenolic Impregnated Carbon Ablator (PICA). Application of these and other TPS materials and the use of other facilities for development and qualification of TPS for Saturn, Titan, and Sample Return missions of the Stardust class with entry speeds from 6.0 to 28.6 km/s are discussed.

  17. Detection of the Urban Release of a Bacillus anthracis Simulant by Air Sampling

    PubMed Central

    Garza, Alexander G.; Van Cuyk, Sheila M.; Brown, Michael J.

    2014-01-01

    In 2005 and 2009, the Pentagon Force Protection Agency (PFPA) staged deliberate releases of a commercially available organic pesticide containing Bacillus amyloliquefaciens to evaluate PFPA's biothreat response protocols. In concert with, but independent of, these releases, the Department of Homeland Security sponsored experiments to evaluate the efficacy of commonly employed air and surface sampling techniques for detection of an aerosolized biological agent. High-volume air samplers were placed in the expected downwind plume, and samples were collected before, during, and after the releases. Environmental surface and personal air samples were collected in the vicinity of the high-volume air samplers hours after the plume had dispersed. The results indicate it is feasible to detect the release of a biological agent in an urban area both during and after the release of a biological agent using high-volume air and environmental sampling techniques. PMID:24697146

  18. Detection of the urban release of a bacillus anthracis simulant by air sampling.

    PubMed

    Garza, Alexander G; Van Cuyk, Sheila M; Brown, Michael J; Omberg, Kristin M

    2014-01-01

    In 2005 and 2009, the Pentagon Force Protection Agency (PFPA) staged deliberate releases of a commercially available organic pesticide containing Bacillus amyloliquefaciens to evaluate PFPA's biothreat response protocols. In concert with, but independent of, these releases, the Department of Homeland Security sponsored experiments to evaluate the efficacy of commonly employed air and surface sampling techniques for detection of an aerosolized biological agent. High-volume air samplers were placed in the expected downwind plume, and samples were collected before, during, and after the releases. Environmental surface and personal air samples were collected in the vicinity of the high-volume air samplers hours after the plume had dispersed. The results indicate it is feasible to detect the release of a biological agent in an urban area both during and after the release of a biological agent using high-volume air and environmental sampling techniques.

  19. Development of a dual cell, flow-injection sample holder, and NMR probe for comparative ligand-binding studies

    NASA Astrophysics Data System (ADS)

    Marquardsen, Thorsten; Hofmann, Martin; Hollander, Johan G.; Loch, Caroline M. P.; Kiihne, Suzanne R.; Engelke, Frank; Siegal, Gregg

    2006-09-01

    NMR based ligand screening is becoming increasingly important for the very early stages of drug discovery. We have proposed a method that makes highly efficient use of a single sample of a scarce target, or one with poor or limited solubility, to screen an entire compound library. This comparative method is based on immobilizing the target for the screening procedure. In order to support the method, a dual cell, flow injection probe with a single receiver coil has been constructed. The flow injection probe has been mated to a single high performance pump and sample handling system to enable the automated analysis of large numbers of compound mixes for binding to the target. The probe, having an 8 mm 1H/ 2H dual tuned coil and triple axis gradients, is easily shimmed and yields NMR spectra of comparable quality to a standard 5 mm high-resolution probe. The lineshape in the presence of a solid support is identical to that in glass NMR tubes in a 5 mm probe. Control spectra of each cell are identical and well separated, while ligand binding in a complex mixture can be readily detected in 20-30 min, thus paving the way for use of the probe for actual drug discovery efforts.

  20. Comparison of stationary and personal air sampling with an air dispersion model for children's ambient exposure to manganese.

    PubMed

    Fulk, Florence; Haynes, Erin N; Hilbert, Timothy J; Brown, David; Petersen, Dan; Reponen, Tiina

    2016-09-01

    Manganese (Mn) is ubiquitous in the environment and essential for normal growth and development, yet excessive exposure can lead to impairments in neurological function. This study modeled ambient Mn concentrations as an alternative to stationary and personal air sampling to assess exposure for children enrolled in the Communities Actively Researching Exposure Study in Marietta, OH. Ambient air Mn concentration values were modeled using US Environmental Protection Agency's Air Dispersion Model AERMOD based on emissions from the ferromanganese refinery located in Marietta. Modeled Mn concentrations were compared with Mn concentrations from a nearby stationary air monitor. The Index of Agreement for modeled versus monitored data was 0.34 (48 h levels) and 0.79 (monthly levels). Fractional bias was 0.026 for 48 h levels and -0.019 for monthly levels. The ratio of modeled ambient air Mn to measured ambient air Mn at the annual time scale was 0.94. Modeled values were also time matched to personal air samples for 19 children. The modeled values explained a greater degree of variability in personal exposures compared with time-weighted distance from the emission source. Based on these results modeled Mn concentrations provided a suitable approach for assessing airborne Mn exposure in this cohort.

  1. Summary of gamma spectrometry on local air samples from 1985--1995

    SciTech Connect

    Winn, W.G.

    1997-04-02

    This report summarizes the 1985--1995 results of low-level HPGe gamma spectrometry analysis of high-volume air samples collected at the Aiken Airport, which is about 25 miles north of SRS. The author began analyzing these samples with new calibrations using the newly developed GRABGAM code in 1985. The air sample collections were terminated in 1995, as the facilities at the Aiken Airport were no longer available. Air sample measurements prior to 1985 were conducted with a different analysis system (and by others prior to 1984), and the data were not readily available. The report serves to closeout this phase of local NTS air sample studies, while documenting the capabilities and accomplishments. Hopefully, the information will guide other applications for this technology, both locally and elsewhere.

  2. Minimum detectable activity concentration in direct alpha spectrometry from outdoor air samples: continuous monitoring versus separate sampling and counting.

    PubMed

    Pöllänen, R; Siiskonen, T

    2006-02-01

    Rapid method for identifying the presence of alpha particle emitting radionuclides in outdoor air is of paramount importance should a nuclear or radiological incident occur. Minimum detectable activity concentrations of U, U, Pu, and Pu in outdoor air are calculated for two direct alpha spectrometry methods: continuous air monitoring is compared with separate sampling and subsequent alpha particle counting in a vacuum chamber. The radon progeny activity concentration typical for outdoor air and the effects for the alpha particle spectra caused by the properties of the filter and the aerosol particles are taken into account using measurements and Monte Carlo simulations. Continuous air monitoring is a faster method for identifying the presence of (trans)uranium elements when their activity concentration is considerably higher than the typical detection limit. Separate sampling and counting in a vacuum chamber is a more sensitive method when concentrations are close to the detection limit and when the duration of the sampling-counting cycle is greater than approximately 2 h. The method may serve as a tool for rapid field measurements.

  3. Bremsstrahlung enhancement in electron probe microanalysis for homogeneous samples using Monte Carlo simulation.

    PubMed

    Petaccia, M; Segui, S; Castellano, G

    2016-11-01

    Fluorescence enhancement in samples irradiated in a scanning electron microscope or an electron microprobe should be appropriately assessed in order not to distort quantitative analyses. Several models have been proposed to take into account this effect and current quantification routines are based on them, many of which have been developed under the assumption that bremsstrahlung fluorescence correction is negligible when compared to characteristic enhancement; however, no concluding arguments have been provided in order to support this assumption. As detectors are unable to discriminate primary from secondary characteristic X-rays, Monte Carlo simulation of radiation transport becomes a determinant tool in the study of this fluorescence enhancement. In this work, bremsstrahlung fluorescence enhancement in electron probe microanalysis has been studied by using the interaction forcing routine offered by penelope 2008 as a variance reduction alternative. The developed software allowed us to show that bremsstrahlung and characteristic fluorescence corrections are in fact comparable in the studied cases. As an extra result, the interaction forcing approach appears as a most efficient method, not only in the computation of the continuum enhancement but also for the assessment of the characteristic fluorescence correction.

  4. A method to optimize sampling locations for measuring indoor air distributions

    NASA Astrophysics Data System (ADS)

    Huang, Yan; Shen, Xiong; Li, Jianmin; Li, Bingye; Duan, Ran; Lin, Chao-Hsin; Liu, Junjie; Chen, Qingyan

    2015-02-01

    Indoor air distributions, such as the distributions of air temperature, air velocity, and contaminant concentrations, are very important to occupants' health and comfort in enclosed spaces. When point data is collected for interpolation to form field distributions, the sampling locations (the locations of the point sensors) have a significant effect on time invested, labor costs and measuring accuracy on field interpolation. This investigation compared two different sampling methods: the grid method and the gradient-based method, for determining sampling locations. The two methods were applied to obtain point air parameter data in an office room and in a section of an economy-class aircraft cabin. The point data obtained was then interpolated to form field distributions by the ordinary Kriging method. Our error analysis shows that the gradient-based sampling method has 32.6% smaller error of interpolation than the grid sampling method. We acquired the function between the interpolation errors and the sampling size (the number of sampling points). According to the function, the sampling size has an optimal value and the maximum sampling size can be determined by the sensor and system errors. This study recommends the gradient-based sampling method for measuring indoor air distributions.

  5. Assessment of the Group 5-6 (LB C2, LB S2, LV S1) Stack Sampling Probe Locations for Compliance with ANSI/HPS N13.1 1999

    SciTech Connect

    Glissmeyer, John A.; Flaherty, Julia E.; Piepel, Gregory F.

    2011-03-11

    This document reports on a series of tests to assess the proposed air sampling locations for the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Group 5-6 exhaust stacks with respect to the applicable criteria regarding the placement of an air sampling probe. The LB-C2, LV-S1, and LB S2 exhaust stacks were tested together as a group (Test Group 5-6) because the common factor in their design is that the last significant flow disturbance upstream of the air sampling probe is a reduction in duct diameter. Federal regulations( ) require that a sampling probe be located in the exhaust stack according to the criteria of the American National Standards Institute/Health Physics Society (ANSI/HPS) N13.1-1999, Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stack and Ducts of Nuclear Facilities. These criteria address the capability of the sampling probe to extract a sample that represents the effluent stream. The testing on scale models of the stacks conducted for this project was part of the River Protection Project—Waste Treatment Plant Support Program under Contract No. DE-AC05-76RL01830 according to the statement of work issued by Bechtel National Inc. (BNI, 24590-QL-SRA-W000-00101, N13.1-1999 Stack Monitor Scale Model Testing and Qualification, Revision 1, 9/12/2007) and Work Authorization 09 of Memorandum of Agreement 24590-QL-HC9-WA49-00001. The internal Pacific Northwest National Laboratory (PNNL) project for this task is 53024, Work for Hanford Contractors Stack Monitoring. The testing described in this document was further guided by the Test Plan Scale Model Testing the Waste Treatment Plant LB-C2, LB-S2, and LV-S1 (Test Group 5-6) Stack Air Sampling Positions (TP-RPP-WTP-594). The tests conducted by PNNL during 2009 and 2010 on the Group 5-6 scale model systems are described in this report. The series of tests consists of various measurements taken over a grid of points in the duct cross-section at the designed sampling

  6. Probing Multiple Core Samples through the SN 1006 Remnant by UV Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Winkler, P. F.; Long, K. S.; Fesen, R. A.; Hamilton, A. J. S.

    2003-12-01

    Ejecta within young supernova remnants (SNRs) have been widely studied both through the X-ray emission from highly ionized plasma heated by fast shocks and through the optical emission from isolated dense filaments excited by secondary shocks. A full inventory of the ejecta, however, must also include cold, unshocked material within the SNR shell, which can be studied through UV absorption spectroscopy if suitable background ``UV lightbulbs'' can be identified. So far, this technique has been applied only in the remnant of SN 1006, where IUE and HST spectra of the Schweizer-Middleditch (S-M) star have probed a single sight line 3 arcmin from the projected center of the 15 arcmin radius shell (Hamilton et al. 1997, ApJ 481, 838 and references therein). We have identified at least two more background UV sources that enable us to probe additional core samples through the SN 1006 shell, corresponding to the sight lines to each of these sources, using spectra from HST-STIS. A QSO with V = 18.3 and z = 0.337, located 9 arcmin NE of the projected center, shows evidence of broad but asymmetric (primarily red-shifted) absorption in Si II and Si IV lines. There is only marginal evidence for absorption from Fe II at 2382 and 2599 Å with near zero velocity. Only a near-UV spectrum was obtained for a fainter (V = 19.5) QSO at z = 1.026, located within 2 arcmin of the SNR center. This shows strong evidence for broad Fe II absorption with a sharp blue edge at ˜ -3000 km/s and a more gradual red edge extending to > 8000 km/s. These profiles appear similar to those for the S-M star. Two A0 stars are probably more distant than SN 1006 but are located far from the center, within 3 arcmin of the shell rim. Neither appears to show evidence for absorption along the line of sight. These multiple cores through the SNR shell enable us to better map the distribution of ejecta. This research is based on observations with the Hubble Space Telescope and is directly supported through NASA

  7. High Volume Air Sampling for Viral Aerosols: A Comparative Approach

    DTIC Science & Technology

    2010-03-01

    low, with the cotton swabbing only recovering 27.7 percent of the BA on the surface (Rose, Jensen, Peterson, Banerjee, & Arduino , 2004). A follow-on...BA were present on the surface (Hodges, Rose, Peterson, Noble-Wang, & Arduino , 2006). These lower sensitivities at low concentrations could be a...monitored during each sample collection period. Ambient pressure data was obtained hourly for Edmonton, AB from the Canadian Weather Service

  8. A STRINGENT COMPARISON OF SAMPLING AND ANALYSIS METHODS FOR VOCS IN AMBIENT AIR

    EPA Science Inventory

    A carefully designed study was conducted during the summer of 1998 to simultaneously collect samples of ambient air by canisters and compare the analysis results to direct sorbent preconcentration results taken at the time of sample collection. A total of 32 1-h sample sets we...

  9. Salmonella recovery following air chilling for matched neck-skin and whole carcass sampling methodologies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The prevalence and serogroups of Salmonella recovered following air chilling were determined for both enriched neck skin and matching enriched whole carcass samples. Commercially processed and eviscerated carcasses were air chilled to 4C before removing the neck skin (8.3 g) and stomaching in 83 mL...

  10. Monte Carlo simulation of air sampling methods for the measurement of radon decay products.

    PubMed

    Sima, Octavian; Luca, Aurelian; Sahagia, Maria

    2017-02-21

    A stochastic model of the processes involved in the measurement of the activity of the (222)Rn decay products was developed. The distributions of the relevant factors, including air sampling and radionuclide collection, are propagated using Monte Carlo simulation to the final distribution of the measurement results. The uncertainties of the (222)Rn decay products concentrations in the air are realistically evaluated.

  11. Sampling and Analyzing Air Pollution: An Apparatus Suitable for Use in Schools.

    ERIC Educational Resources Information Center

    Rockwell, Dean M.; Hansen, Tony

    1994-01-01

    Describes two variations of an air sampler and analyzer that are inexpensive to construct, easy to operate, and designed to be used in an educational program. Variations use vacuum cleaners and aquarium pumps, and white facial tissues serve as filters. Samples of air pollution obtained by this method may be used from early grade school to advanced…

  12. 33S nuclear magnetic resonance spectroscopy of biological samples obtained with a laboratory model 33S cryogenic probe.

    PubMed

    Hobo, Fumio; Takahashi, Masato; Saito, Yuta; Sato, Naoki; Takao, Tomoaki; Koshiba, Seizo; Maeda, Hideaki

    2010-05-01

    (33)S nuclear magnetic resonance (NMR) spectroscopy is limited by inherently low NMR sensitivity because of the quadrupolar moment and low gyromagnetic ratio of the (33)S nucleus. We have developed a 10 mm (33)S cryogenic NMR probe, which is operated at 9-26 K with a cold preamplifier and a cold rf switch operated at 60 K. The (33)S NMR sensitivity of the cryogenic probe is as large as 9.8 times that of a conventional 5 mm broadband NMR probe. The (33)S cryogenic probe was applied to biological samples such as human urine, bile, chondroitin sulfate, and scallop tissue. We demonstrated that the system can detect and determine sulfur compounds having SO(4)(2-) anions and -SO(3)(-) groups using the (33)S cryogenic probe, as the (33)S nuclei in these groups are in highly symmetric environments. The NMR signals for other common sulfur compounds such as cysteine are still undetectable by the (33)S cryogenic probe, as the (33)S nuclei in these compounds are in asymmetric environments. If we shorten the rf pulse width or decrease the rf coil diameter, we should be able to detect the NMR signals for these compounds.

  13. NEW APPLICATION OF PASSIVE SAMPLING DEVICES FOR ASSESSMENT OF RESPIRATORY EXPOSURE TO PESTICIDES IN INDOOR AIR

    EPA Science Inventory

    The United States Environmental Protection Agency (EPA) has long maintained an interest in potential applications of passive sampling devices (PSDs) for estimating the concentrations of various pollutants in air. Typically PSDs were designed for the workplace monitoring of vola...

  14. TECHNOLOGY EVALUATION REPORT CEREX ENVIRONMENTAL SERVICES UV HOUND POINT SAMPLE AIR MONITOR

    EPA Science Inventory

    The USEPA's National Homeland Security Research Center (NHSRC) Technology Testing and Evaluation Program (TTEP) is carrying out performance tests on homeland security technologies. Under TTEP, Battelle evaluated the performance of the Cerex UV Hound point sample air monitor in de...

  15. A method for reducing and evaluating blanks in Tenax air sampling cartridges

    NASA Astrophysics Data System (ADS)

    Hubbard, Sarah A.; Russwurm, George M.; Walburn, Stephen G.

    Clean sorbent cartridges are essential in ambient air sampling to avoid false analytical results. This paper describes a procedure for the construction and cleaning of a Tenax cartridge. A definition is formulated to describe a clean cartridge quantitatively.

  16. 40 CFR 1065.145 - Gaseous and PM probes, transfer lines, and sampling system components.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications... each stack separately. If the exhaust molar flow in each stack cannot be calculated from combustion air... rate (where the flow is calculated using combustion air mass flow(s), fuel mass flow(s), and...

  17. 40 CFR 1065.145 - Gaseous and PM probes, transfer lines, and sampling system components.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications... each stack separately. If the exhaust molar flow in each stack cannot be calculated from combustion air... rate (where the flow is calculated using combustion air mass flow(s), fuel mass flow(s), and...

  18. 40 CFR 1065.145 - Gaseous and PM probes, transfer lines, and sampling system components.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications... exhaust molar flow in each stack cannot be calculated from combustion air flow(s), fuel flow(s), and... using combustion air mass flow(s), fuel mass flow(s), and emissions concentrations) based on...

  19. 40 CFR 1065.145 - Gaseous and PM probes, transfer lines, and sampling system components.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications... each stack separately. If the exhaust molar flow in each stack cannot be calculated from combustion air... rate (where the flow is calculated using combustion air mass flow(s), fuel mass flow(s), and...

  20. 40 CFR 1065.145 - Gaseous and PM probes, transfer lines, and sampling system components.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications... each stack separately. If the exhaust molar flow in each stack cannot be calculated from combustion air... rate (where the flow is calculated using combustion air mass flow(s), fuel mass flow(s), and...

  1. Automated syringe sampler. [remote sampling of air and water

    NASA Technical Reports Server (NTRS)

    Purgold, G. C. (Inventor)

    1981-01-01

    A number of sampling services are disposed in a rack which slides into a housing. In response to a signal from an antenna, the circutry elements are activated which provide power individually, collectively, or selectively to a servomechanism thereby moving an actuator arm and the attached jawed bracket supporting an evaculated tube towards a stationary needle. One open end of the needle extends through the side wall of a conduit to the interior and the other open end is maintained within the protective sleeve, supported by a bifurcated bracket. A septum in punctured by the end of the needle within the sleeve and a sample of the fluid medium in the conduit flows through the needle and is transferred to a tube. The signal to the servo is then reversed and the actuator arm moves the tube back to its original position permitting the septum to expand and seal the hole made by the needle. The jawed bracket is attached by pivot to the actuator to facilitate tube replacement.

  2. The NYC native air sampling pilot project: using HVAC filter data for urban biological incident characterization.

    PubMed

    Ackelsberg, Joel; Leykam, Frederic M; Hazi, Yair; Madsen, Larry C; West, Todd H; Faltesek, Anthony; Henderson, Gavin D; Henderson, Christopher L; Leighton, Terrance

    2011-09-01

    Native air sampling (NAS) is distinguished from dedicated air sampling (DAS) devices (eg, BioWatch) that are deployed to detect aerosol disseminations of biological threat agents. NAS uses filter samples from heating, ventilation, and air conditioning (HVAC) systems in commercial properties for environmental sampling after DAS detection of biological threat agent incidents. It represents an untapped, scientifically sound, efficient, widely distributed, and comparably inexpensive resource for postevent environmental sampling. Calculations predict that postevent NAS would be more efficient than environmental surface sampling by orders of magnitude. HVAC filter samples could be collected from pre-identified surrounding NAS facilities to corroborate the DAS alarm and delineate the path taken by the bioaerosol plume. The New York City (NYC) Native Air Sampling Pilot Project explored whether native air sampling would be acceptable to private sector stakeholders and could be implemented successfully in NYC. Building trade associations facilitated outreach to and discussions with property owners and managers, who expedited contact with building managers of candidate NAS properties that they managed or owned. Nominal NAS building requirements were determined; procedures to identify and evaluate candidate NAS facilities were developed; data collection tools and other resources were designed and used to expedite candidate NAS building selection and evaluation in Manhattan; and exemplar environmental sampling playbooks for emergency responders were completed. In this sample, modern buildings with single or few corporate tenants were the best NAS candidate facilities. The Pilot Project successfully demonstrated that in one urban setting a native air sampling strategy could be implemented with effective public-private collaboration.

  3. Comparison of stationary and personal air sampling with an air dispersion model for children’s ambient exposure to manganese

    EPA Science Inventory

    Manganese (Mn) is ubiquitous in the environment and essential for normal growth and development, yet excessive exposure can lead to impairments in neurological function. This study modeled ambient Mn concentrations as an alternative to stationary and personal air sampling to asse...

  4. A competitive immunochromatographic assay based on a novel probe for the detection of mercury (II) ions in water samples.

    PubMed

    Zhou, Yu; Zhang, Yuanyuan; Pan, Fengguang; Li, Yansong; Lu, Shiying; Ren, Honglin; Shen, Qingfeng; Li, Zhaohui; Zhang, Junhui; Chen, Qijun; Liu, Zengshan

    2010-07-15

    Mercury ions (Hg(2+)) are one of the most dangerous pollutants. Even at low concentration, it causes serious environmental and health problems. Current methods for the detection of Hg(2+) in environmental samples are tedious and time consuming because they require sophisticated instrumentation and complicated sample pre-treatment processes. In this work, a novel probe with high selectivity towards Hg(2+) was synthesized and a one step competitive immunochromatographic assay based on the probe for the detection of Hg(2+) was developed and applied for water samples. The detection conjugate was immobilized on one end of the nitrocellulose membrane (detection line) and anti-BSA polyclonal antibody was immobilized on the other end of the membrane (control line). Hg(2+) in samples competed with the probe to bind with immobilized detection conjugate. The visual detection limit of Hg(2+) in spiked water samples was found to be about 1 ppb. The qualitative assay can be performed within 15 min. The advantages of the technique are rapidity, low cost and without the need of any equipment and complicated sample preparation.

  5. Design of Portable Mass Spectrometers with Handheld Probes: Aspects of the Sampling and Miniature Pumping Systems

    PubMed Central

    Chen, Chien-Hsun; Chen, Tsung-Chi; Zhou, Xiaoyu; Kline-Schoder, Robert; Sorensen, Paul; Cooks, R. Graham; Ouyang, Zheng

    2014-01-01

    Miniature mass spectrometry analytical systems of backpack configuration fitted with sampling probes could potentially be of significant interest for in-field, real-time chemical analysis. In this study, various configurations were explored in which a long narrow tube was used to connect the turbo and backing pumps used to create and maintain vacuum. Also, for the first time we introduced two new types of pumps for miniature mass spectrometers, the Creare 130g drag pump and Creare 350g scroll backing pump. These pumps, along with another Creare 550 turbo pump and the commercially available Pfeiffer HiPace 10 turbo and KnF diaphragm backing pumps, were tested with the backpack configurations. The system performance, especially the scan time, was characterized when used with a discontinuous atmospheric pressure interface (DAPI) for ion introduction. The pumping performance in the pressure region above 1 mtorr is critical for DAPI operation. The 550g turbo pump was shown to have a relatively higher pumping speed above 1 mtorr and gave a scan time of 300 ms, almost half the value obtained with the larger, heavier HiPace 10 often used with miniature mass spectrometers. The 350 g scroll pump was also found to be an improvement over the diaphragm pumps generally used as backing pumps. With a coaxial low temperature plasma ion source, direct analysis of low volatility compounds glass slides was demonstrated, including 1 ng DNP (2,4-Dinitrophenol) and 10ng TNT (2,4,6-trinitrotoluene) with Creare 550g turbo pump as well as 10 ng cocaine and 20 ng DNP with Creare 130g drag pump. PMID:25404157

  6. Design of portable mass spectrometers with handheld probes: aspects of the sampling and miniature pumping systems.

    PubMed

    Chen, Chien-Hsun; Chen, Tsung-Chi; Zhou, Xiaoyu; Kline-Schoder, Robert; Sorensen, Paul; Cooks, R Graham; Ouyang, Zheng

    2015-02-01

    Miniature mass spectrometry analytical systems of backpack configuration fitted with sampling probes could potentially be of significant interest for in-field, real-time chemical analysis. In this study, various configurations were explored in which a long narrow tube was used to connect the turbo and backing pumps used to create and maintain vacuum. Also, for the first time we introduced two new types of pumps for miniature mass spectrometers, the Creare 130 g drag pump and Creare 350 g scroll backing pump. These pumps, along with another Creare 550 turbo pump and the commercially available Pfeiffer HiPace 10 turbo and KnF diaphragm backing pumps, were tested with the backpack configurations. The system performance, especially the scan time, was characterized when used with a discontinuous atmospheric pressure interface (DAPI) for ion introduction. The pumping performance in the pressure region above 1 mtorr is critical for DAPI operation. The 550 g turbo pump was shown to have a relatively higher pumping speed above 1 mtorr and gave a scan time of 300 ms, almost half the value obtained with the larger, heavier HiPace 10 often used with miniature mass spectrometers. The 350 g scroll pump was also found to be an improvement over the diaphragm pumps generally used as backing pumps. With a coaxial low temperature plasma ion source, direct analysis of low volatility compounds glass slides was demonstrated, including 1 ng DNP (2,4-Dinitrophenol) and 10 ng TNT (2,4,6-trinitrotoluene) with Creare 550 g turbo pump as well as 10 ng cocaine and 20 ng DNP with Creare 130 g drag pump.

  7. Design of Portable Mass Spectrometers with Handheld Probes: Aspects of the Sampling and Miniature Pumping Systems

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Hsun; Chen, Tsung-Chi; Zhou, Xiaoyu; Kline-Schoder, Robert; Sorensen, Paul; Cooks, R. Graham; Ouyang, Zheng

    2015-02-01

    Miniature mass spectrometry analytical systems of backpack configuration fitted with sampling probes could potentially be of significant interest for in-field, real-time chemical analysis. In this study, various configurations were explored in which a long narrow tube was used to connect the turbo and backing pumps used to create and maintain vacuum. Also, for the first time we introduced two new types of pumps for miniature mass spectrometers, the Creare 130 g drag pump and Creare 350 g scroll backing pump. These pumps, along with another Creare 550 turbo pump and the commercially available Pfeiffer HiPace 10 turbo and KnF diaphragm backing pumps, were tested with the backpack configurations. The system performance, especially the scan time, was characterized when used with a discontinuous atmospheric pressure interface (DAPI) for ion introduction. The pumping performance in the pressure region above 1 mtorr is critical for DAPI operation. The 550 g turbo pump was shown to have a relatively higher pumping speed above 1 mtorr and gave a scan time of 300 ms, almost half the value obtained with the larger, heavier HiPace 10 often used with miniature mass spectrometers. The 350 g scroll pump was also found to be an improvement over the diaphragm pumps generally used as backing pumps. With a coaxial low temperature plasma ion source, direct analysis of low volatility compounds glass slides was demonstrated, including 1 ng DNP (2,4-Dinitrophenol) and 10 ng TNT (2,4,6-trinitrotoluene) with Creare 550 g turbo pump as well as 10 ng cocaine and 20 ng DNP with Creare 130 g drag pump.

  8. Formaldehyde quantitation in air samples by thiazolidine derivatization: Factors affecting analysis

    SciTech Connect

    Yasuhara, A.; Shibamoto, T. )

    1989-11-01

    A new method for the determination of trace levels of formaldehyde in air was developed and validated. The method is based on the reaction of formaldehyde with cysteamine to form thiazolidine. Air samples containing trace levels of formaldehyde were prepared from paraformaldehyde. The percent yield of formaldehyde from paraformaldehyde was 85.1 +/- 1.14%. Air samples were bubbled into an aqueous cysteamine trap. Thiazolidine formed from formaldehyde and cysteamine in the trap was determined by gas chromatography with a fused silica capillary column and a nitrogen-phosphorus detector (NPD). The lowest detection level for thiazolidine was 17.2 pg, equivalent to 5.80 pg formaldehyde. The recovery efficiency of trace gas phase formaldehyde in air was greater than 90%. Formaldehyde levels in ambient laboratory air were 48.9-56.2 ppb (v/v).

  9. Effect of air pressure differential on vapor flow through sample building walls

    SciTech Connect

    Stewart, W.E. Jr.

    1998-12-31

    Laboratory scale experiments were performed on two small sample composite walls of typical building construction to determine the approximate opposing air pressure difference required to stop or significantly reduce the transmission of water vapor due to a water vapor pressure difference. The experiments used wall section samples between two controlled atmosphere chambers. One chamber was held at a temperature and humidity condition approximating that of a typical summer day, while the other chamber was controlled at a condition typical of indoor conditioned space. Vapor transmission data through the wall samples were obtained over a range of vapor pressure differentials and opposing air pressure differentials. The results show that increasing opposing air pressure differences decrease water vapor transmission, as expected, and relatively small opposing air pressure differentials are required for wall materials of small vapor permeability and large air permeability. The opposing air pressure that stopped or significantly reduced the flow of water vapor through the wall sample was determined experimentally and also compared to air pressures as predicted by an analytical model.

  10. Clinical application of novel sample processing technology for the identification of salmonellae by using DNA probes.

    PubMed

    Scholl, D R; Kaufmann, C; Jollick, J D; York, C K; Goodrum, G R; Charache, P

    1990-02-01

    Two hundred and fifty clinical fecal specimens collected over a 7-month period were analyzed for the presence of salmonellae by a rapid DNA hybridization procedure. Hybridizations were performed by using a novel specimen processing protocol called wicking and a previously unreported 1,600-base-pair probe cloned from Salmonella enteritidis DNA. The probe was shown to be reactive with all 70 Salmonella serotypes tested and not reactive with 101 stock strains of other enteric bacteria. Southern analysis of 30 Salmonella isolates representing 22 serotypes suggested that the probe sequence was highly conserved, appearing as a 1,600-base-pair band in a BglII digest of isolate DNA in 29 of 30 isolates and as a 2,300-base-pair fragment in 1 of the isolates. The probe correctly identified all salmonellae (nine isolates) among 47 H2S-producing colonies tested from among 250 clinical specimens cultured on xylose-lysine-desoxycholate medium. Salmonellae grown on xylose-lysine-desoxycholate medium gave consistently higher hybridization values than did those grown on either MacConkey or Hektoen enteric agar. In addition, of eight gram-negative broth enrichments in which salmonellae were identified by conventional means, seven were probe positive. The use of this nucleic acid probe and hybridization technique provides a simple and rapid identification of Salmonella species.

  11. Identification of Distinct Communities of Sulfate-Reducing Bacteria in Oil Fields by Reverse Sample Genome Probing

    PubMed Central

    Voordouw, Gerrit; Voordouw, Johanna K.; Jack, Thomas R.; Foght, Julia; Fedorak, Phillip M.; Westlake, Donald W. S.

    1992-01-01

    Thirty-five different standards of sulfate-reducing bacteria, identified by reverse sample genome probing and defined as bacteria with genomes showing little or no cross-hybridization, were in part characterized by Southern blotting, using 16S rRNA and hydrogenase gene probes. Samples from 56 sites in seven different western Canadian oil field locations were collected and enriched for sulfate-reducing bacteria by using different liquid media containing one of the following carbon sources: lactate, ethanol, benzoate, decanoate, propionate, or acetate. DNA was isolated from the enrichments and probed by reverse sample genome probing using master filters containing denatured chromosomal DNAs from the 35 sulfate-reducing bacterial standards. Statistical analysis of the microbial compositions at 44 of the 56 sites indicated the presence of two distinct communities of sulfate-reducing bacteria. The discriminating factor between the two communities was the salt concentration of the production waters, which were either fresh water or saline. Of 34 standards detected, 10 were unique to the fresh water and 18 were unique to the saline oil field environment, while only 6 organisms were cultured from both communities. Images PMID:16348801

  12. Liquid Microjunction Surface Sampling Probe Electrospray Mass Spectrometry for Detection of Drugs and Metabolites in Thin Tissue Sections

    SciTech Connect

    Van Berkel, Gary J; Kertesz, Vilmos; Koeplinger, Kenneth A.; Vavek, Marissa; Kong, Ah-Ng Tony

    2008-01-01

    A self-aspirating, liquid micro-junction surface sampling probe/electrospray emitter mass spectrometry system was demonstrated for use in the direct analysis of spotted and dosed drugs and their metabolites in thin tissue sections. Proof-of-principle sampling and analysis directly from tissue without the need for sample preparation was demonstrated first by raster scanning a region on a section of rat liver onto which reserpine was spotted. The mass spectral signal from selected reaction monitoring was used to develop a chemical image of the spotted drug on the tissue. The probe was also used to selectively spot sample areas of sagittal whole mouse body tissue sections that had been dosed orally (90 mg/kg) with R,S-sulforaphane 3 hrs prior to sacrifice. Sulforaphane and its glutathione and N-acetyl cysteine conjugates were monitored with selected reaction monitoring and detected in the stomach and various other tissues from the dosed mouse. No signal for these species was observed in the tissue from a control mouse. The same dosed tissue section was used to illustrate the possibility of obtaining a line scan across the whole body section. In total these results illustrate the potential for rapid screening of the distribution of drugs and metabolites in tissue sections with the micro-liquid junction surface sampling probe/electrospray mass spectrometry approach.

  13. Fabrication and characterization of buckypapers for use in air sampling

    NASA Astrophysics Data System (ADS)

    Oh, Jonghwa

    Occupational exposure to volatile organic compounds (VOCs) is a concern from a public health perspective. In many industrial activities, workers' exposure to VOCs can be sufficiently high to induce adverse health effects, so their monitoring is necessary. In exposure assessment, post sampling extraction and quantification are the typical analytical procedures. Recently, our group developed the photothermal desorption (PTD) technique in which a pulse of light thermally desorbs an analyte directly from a sorbent. Advantages of this technique are; it is solvent free, repeated analysis is possible, sorbents are reusable, and no high cost of equipment is required. PTD overcomes almost all drawbacks of current extraction methods. This study was aimed to develop and test a new sorbent which will efficiently work with PTD. Single-walled carbon nanotubes (SWNTs) were examined as potential sorbents because of their high surface area, great thermal conductivity, and efficient light absorption. SWNTs were fabricated into a self-supporting form (i.e., buckypaper (BP)) which will preserve its physical integrity under normal working conditions. Largely two types of SWNTs were used, arc discharge (AD) and high-pressure carbon monoxide (HiPco), and different fabrication methods were examined. Upon fabrication, their adsorption properties were characterized in terms of Brunauer, Emmett, and Teller (BET) surface area, pore size, and toluene adsorption capacity. HiPco BP and methanol-cleaned AD BP (suspended/rinsed with methanol) were the top two materials, showing the highest surface area (649 and 387 m²/g, respectively) and adsorption capacity (106 and 46 mg/g, respectively) with relatively small mean pore diameter (7.7 and 8.8 nm, respectively). To further improve the adsorption properties, specific heat treatment conditions for each type of BPs were employed. After initial treatments only HiPco BP and acetone-cleaned AD BP (suspended/rinsed with acetone) were selected for further

  14. The variation of the relative humidity of air released from canisters after ambient sampling

    SciTech Connect

    McClenny, W.A.; Schmidt, S.M.; Kronmiller, K.G.

    1997-12-31

    Dalton`s Law of partial pressures and the hypothesis that water vapor equilibrium above a canister surface is identical to that established above liquid water are used to predict the variation of the percent relative humidity (%RH) of air released from canisters used in ambient air sampling, typically 6L canisters pressurized with 18L of air. During sampling, some water vapor is adsorbed on the canister wall. When (and if) the water vapor partial pressure exceeds its saturation vapor pressure, water vapor condensation begins and the condensation rate equals the sampling rate of water vapor into the canister. Under constant temperature conditions, the air subsequently released from the canister is less humid than the original sample, following the relationship, %RH = 100% (6L/V{sub s}) for V{sub s} > V{sub r} where V{sub s} is the residual air volume and V{sub r} is the residual air volume at which water is completely removed (except for adsorbed water vapor) from the canister wall. For V{sub s} < V{sub r} the %RH is constant and equal to its value at V{sub r}, V{sub r} is shown to depend on the %RH of the ambient air sample. Experimental values to agree reasonably well with predictions; however, experimental values were systematically lower than predicted especially when ambient air with mid-range %RH was sampled. This difference is related to the mass of water vapor remaining adsorbed on the canister surface as water evaporates. This paper has been reviewed in accordance with the U.S. Environmental Protection Agency`s peer and administrative review policies and approved for presentation and publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

  15. Stratospheric Air Sub-sampler (SAS) and its application to analysis of Δ17O(CO2) from small air samples collected with an AirCore

    NASA Astrophysics Data System (ADS)

    Janina Mrozek, Dorota; van der Veen, Carina; Hofmann, Magdalena E. G.; Chen, Huilin; Kivi, Rigel; Heikkinen, Pauli; Röckmann, Thomas

    2016-11-01

    We present the set-up and a scientific application of the Stratospheric Air Sub-sampler (SAS), a device to collect and to store the vertical profile of air collected with an AirCore (Karion et al., 2010) in numerous sub-samples for later analysis in the laboratory. The SAS described here is a 20 m long 1/4 inch stainless steel tubing that is separated by eleven valves to divide the tubing into 10 identical segments, but it can be easily adapted to collect smaller or larger samples. In the collection phase the SAS is directly connected to the outlet of an optical analyzer that measures the mole fractions of CO2, CH4 and CO from an AirCore sampler. The stratospheric part (or if desired any part of the AirCore air) is then directed through the SAS. When the SAS is filled with the selected air, the valves are closed and the vertical profile is maintained in the different segments of the SAS. The segments can later be analysed to retrieve vertical profiles of other trace gas signatures that require slower instrumentation. As an application, we describe the coupling of the SAS to an analytical system to determine the 17O excess of CO2, which is a tracer for photochemical processing of stratospheric air. For this purpose the analytical system described by Mrozek et al. (2015) was adapted for analysis of air directly from the SAS. The performance of the coupled system is demonstrated for a set of air samples from an AirCore flight in November 2014 near Sodankylä, Finland. The standard error for a 25 mL air sample at stratospheric CO2 mole fraction is 0.56 ‰ (1σ) for δ17O and 0.03 ‰ (1σ) for both δ18O and δ13C. Measured Δ17O(CO2) values show a clear correlation with N2O in agreement with already published data.

  16. Microbial counts and particulate matter levels in roadside air samples under skytrain stations, Bangkok, Thailand.

    PubMed

    Luksamijarulkul, Pipat; Kongtip, Pornpimol

    2010-05-01

    In conditions with heavy traffic and crowds of people on roadside areas under skytrain stations in Bangkok, the natural air ventilation may be insufficient and air quality may be poor. A study of 350 air samples collected from the roadside, under skytrain stations in Bangkok, was carried out to assess microbial counts (210 air samples) and particulate matter (PM10) levels (140 samples). The results reveal the mean +/- standard deviation bacterial counts and fungal counts were 406.8 +/- 302.7 cfu/m3 and 128.9 +/- 89.7 cfu/m3, respectively. The PM10 level was 186.1 +/- 188.1 microg/m3. When compared to recommended levels, 4.8% of air samples (10/210 samples) had bacterial counts more than recommended levels (> 1,000 cfu/ m3) and 27.1% (38/140 samples) had PM10 levels more than recommended levels (> 120 microg/m3). These may affect human health, especially of street venders who spend most of their working time in these areas.

  17. Marine Technician's Handbook, Instructions for Taking Air Samples on Board Ship: Carbon Dioxide Project.

    ERIC Educational Resources Information Center

    Keeling, Charles D.

    This booklet is one of a series intended to provide explicit instructions for the collection of oceanographic data and samples at sea. The methods and procedures described have been used by the Scripps Institution of Oceanography and found reliable and up-to-date. Instructions are given for taking air samples on board ship to determine the…

  18. Report on sampling and analysis of ambient air at the central waste complex

    SciTech Connect

    Stauffer, M., Fluor Daniel Hanford

    1997-02-13

    Over 160 ambient indoor air samples were collected from warehouses at the Central Waste Complex used for the storage of low- level radioactive and mixed wastes. These grab (SUMMA) samples were analyzed by gas chromatography-mass spectrometry using a modified EPA TO-14 procedure. The data from this survey suggest that several buildings had elevated concentrations of volatile organic compounds.

  19. DEVELOPMENT OF A SUB-SLAB AIR SAMPLING PROTOCOL TO SUPPORT ASSESSMENT OF VAPOR INTRUSION

    EPA Science Inventory

    The primary purpose of this research effort is to develop a methodology for sub-slab sampling to support the EPA guidance and vapor intrusion investigations after vapor intrusion has been established at a site. Methodologies for sub-slab air sampling are currently lacking in ref...

  20. EVALUATION OF THE FILTER PACK FOR LONG-DURATION SAMPLING OF AMBIENT AIR

    EPA Science Inventory

    A 14-week filter pack (FP) sampler evaluation field study was conducted at a site near Bondville, IL to investigate the impact of weekly sampling duration. Simultaneous samples were collected using collocated filter packs (FP) from two independent air quality monitoring networks...

  1. Radiocarbon analysis of stratospheric CO2 retrieved from AirCore sampling

    NASA Astrophysics Data System (ADS)

    Paul, Dipayan; Chen, Huilin; Been, Henk A.; Kivi, Rigel; Meijer, Harro A. J.

    2016-10-01

    Radiocarbon (14C) is an important atmospheric tracer and one of the many used in the understanding of the global carbon budget, which includes the greenhouse gases CO2 and CH4. Measurement of radiocarbon in atmospheric CO2 generally requires the collection of large air samples (a few liters) from which CO2 is extracted and then the concentration of radiocarbon is determined using accelerator mass spectrometry (AMS). However, the regular collection of air samples from the stratosphere, for example using aircraft and balloons, is prohibitively expensive. Here we describe radiocarbon measurements in stratospheric CO2 collected by the AirCore sampling method. AirCore is an innovative atmospheric sampling system, which comprises a long tube descending from a high altitude with one end open and the other closed, and it has been demonstrated to be a reliable, cost-effective sampling system for high-altitude profile (up to ≈ 30 km) measurements of CH4 and CO2. In Europe, AirCore measurements have been being performed on a regular basis near Sodankylä (northern Finland) since September 2013. Here we describe the analysis of samples from two such AirCore flights made there in July 2014, for determining the radiocarbon concentration in stratospheric CO2. The two AirCore profiles were collected on consecutive days. The stratospheric part of the AirCore was divided into six sections, each containing ≈ 35 µg CO2 ( ≈ 9.6 µgC), and stored in a stratospheric air subsampler constructed from 1/4 in. coiled stainless steel tubing ( ≈ 3 m). A small-volume extraction system was constructed that enabled > 99.5 % CO2 extraction from the stratospheric air samples. Additionally, a new small-volume high-efficiency graphitization system was constructed for graphitization of these extracted CO2 samples, which were measured at the Groningen AMS facility. Since the stratospheric samples were very similar in mass, reference samples were also prepared in the same mass range for

  2. Determination of radiocarbon in stratospheric CO2, obtained through AirCore sampling.

    NASA Astrophysics Data System (ADS)

    Paul, Dipayan; Chen, Huilin; Been, Henk A.; Kivi, Rigel; Meijer, Harro A. J.

    2016-04-01

    The concentration of Greenhouse Gases (GHG), with carbon dioxide as the most prominent example, has been and still is increasing, predominantly due to emissions from fossil fuel combustion. CO2 is also the most important component of the global carbon cycle. Among other tracers, radiocarbon (Carbon-14) is a unique and an important atmospheric tracer used in the understanding of the global carbon cycle. Radiocarbon is a naturally occurring isotope (radioactive, t 1/2 = 5730 ± 40 years) of carbon produced through the interaction of thermalized neutrons and nitrogen in the upper atmosphere. Generally, for performing atmospheric radiocarbon measurements in the higher atmosphere, large samples (few liters of air) were collected using aircrafts and balloons. However, collecting stratospheric samples on a regular basis for radiocarbon analysis is extremely expensive. Here we describe the determination of radiocarbon concentrations in stratospheric CO2, collected using AirCore sampling. AirCore is an innovative sampling technique for obtaining vertical atmospheric profiles and, in Europe, is done on a regular basis at Sodankylä, Finland for CO2, CH4 and CO. The stratospheric parts of two such AirCore profiles were used in this study as a proof-of-principle. CO2 from the stratospheric air samples were extracted and converted to elemental carbon, which were then measured at the Accelerator Mass Spectrometric (AMS) facility of the Centre for Isotope Research (CIO) at the University of Groningen. The stratospheric part of the AirCore profile was divided into six sections, each contained approximately 10 μg C. A detailed description of the extraction, graphitization, AMS analysis and the derivation of the stratospheric radiocarbon profile will be the main focus. Through our results, we will show that AirCore is a viable sampling method for performing high-precision radiocarbon measurements of stratospheric CO2 with reasonably good spatial resolution on a regular basis

  3. Pesticide detection in air samples from contrasted houses and in their inhabitants' hair.

    PubMed

    Raeppel, Caroline; Salquèbre, Guillaume; Millet, Maurice; Appenzeller, Brice M R

    2016-02-15

    In order to identify associations between indoor air contamination and human exposure to pesticides, hair samples from 14 persons (9 adults and 5 children below 12 years) were collected simultaneously with the air of their 5 contrasted houses. Three houses were situated in Alsace (France), one in Lorraine (France) and one in Luxembourg (Luxembourg). Houses were located in urban (n=3), semi-urban (n=1) and rural areas (n=1). Twenty five (25) pesticides were detected at least once in indoor air samples and 20 pesticides were detected at least once in hair samples. The comparison between hair and air samples for the same sampling periods shows that pesticides detected in the two matrices were not necessarily associated. Exposure profiles varied from one home to another but also between inhabitants of the same home, suggesting that exposure can be different between inhabitants of the same home. This study demonstrated the usefulness and the complementarity of hair analysis, for the personalized biomonitoring of people exposure to pesticides, and air analysis, for the identification of airborne exposure and house contamination.

  4. Comparison of mold concentrations quantified by MSQPCR in indoor and outdoor air sampled simultaneously

    SciTech Connect

    Meklin, Teija; Reponen, Tina; McKinstry, Craig A.; Cho, Seung H.; Grinshpun, Sergey A.; Nevalainen, Aino; Vepsalainen, Asko; Haugland, Richard A.; Lemasters, Grace; Vesper, Sephen J.

    2007-08-15

    Mold specific quantitative PCR (MSQPCR) was used to measure the concentrations of 36 mold species in dust and in indoor and in outdoor air samples that were taken simultaneously in 17 homes in Cincinnati with no-known water damage. The total spore concentrations in the indoor (I) and outdoor (O) air samples were statistically significantly different and the concentrations in the three sample types of many of the individual species were significantly different (p < 0.05 based on the Wilcoxon Signed Rank Test). The I/O ratios of the averages or geometric means of the individual species were generally less than 1; but these I/O ratios were quite variable ranging from 0.03 for A. sydowii to 1.2 for Acremonium strictum. There were no significant correlations for the 36 specific mold concentrations between the dust samples and the indoor or outdoor air samples (based on the Spearman’s Rho test). The indoor and outdoor air concentrations of 32 of the species were not correlated. Only Aspergillus penicillioides, C. cladosporioides types 1 and 2 and C. herbarum had sufficient data to estimate a correlation at rho > 0.5 with signicance (p < 0.05) In six of these homes, a previous dust sample had been collected and analyzed 2 years earlier. The ERMI© values for the dust samples taken in the same home two years apart were not significantly different (p=0.22) based on Wilcoxon Signed Rank Test.

  5. Field evaluation of sampling and analysis for organic pollutants in indoor air

    SciTech Connect

    Chuang, J.C.; Mack, G.A.; Stockrahm, J.W.; Hannan, S.W.; Bridges, C.

    1988-08-01

    The objectives of the study were to determine the feasibility of the use of newly developed indoor air samplers in residential indoor air sampling and to evaluate methodology for characterization of the concentrations of polynuclear aromatic hydrocarbons (PAH), PAH derivatives, and nicotine in residential air. Residential air sampling was conducted in Columbus, Ohio during the winter of 1986/87. The PAH derivatives were found at much lower levels than their parent PAH. Higher average indoor levels of all but three target compounds were found compared to outdoor levels. The higher outdoor levels of these three compounds (naphthalene dicarboxylic acid anhydride, pyrene dicarboxylic acid anhydride, and 2-nitrofluoranthene) are probably due to atmospheric transformation. Cigarette smoking was identified as the most-significant contributor to indoor levels of PAH and PAH derivatives. Homes with gas-heating systems appeared to have higher pollutant levels compared to homes with electric-heating systems.

  6. Rugged fiber optic probes and sampling systems for remote chemical analysis via the Raman technique

    SciTech Connect

    Nave, S.E.

    1996-07-01

    Recent advances in fiber optics, diode lasers, CCD detectors, dielectric and holographic optical filters, grating spectrometers, and chemometric data analysis have greatly simplified Raman spectroscopy. In order to make a rugged fiber optic Raman probe for solids/slurries like these at Savannah River, we have designed a probe that eliminates as many optical elements and surfaces as possible. The diffuse reflectance probe tip is modified for Raman scattering by installing thin dielectric in-line filters. Effects of each filter are shown for the NaNO{sub 3} Raman spectrum. By using a diode laser excitation at 780 nm, fluorescence is greatly reduced, and excellent spectra may be obtained from organic solids. At SRS, fiber optic Raman probes are being developed for in situ chemical mapping of radioactive waste storage tanks. Radiation darkening of silica fiber optics is negligible beyond 700 nm. Corrosion resistance is being evaluated. Analysis of process gas (off-gas from SRS processes) is investigated in some detail: hydrogen in nitrogen with NO{sub 2} interference. Other applications and the advantages of the method are pointed out briefly.

  7. Transcutaneous Raman spectroscopy of bone global sampling and ring/disk fiber optic probes

    NASA Astrophysics Data System (ADS)

    Schulmerich, Matthew V.; Morris, Michael D.; Vanasse, Thomas M.; Goldstein, Steven A.

    2007-02-01

    We have used fiber optic probes with global illumination/collection (PhAT probe, Kaiser Optical Systems) and ring illumination/disk collection configurations for transcutaneous Raman spectroscopy of bone tissue. Both illumination/collection schemes can be used for recovery of spectra of subsurface components. In this paper the global illumination configuration provides minimum local power density and so minimizes the probability of damage to specimens, animals or human subjects. It also allows non-destructive subsurface mapping under certain conditions. The ring/disk probe utilizes a ring of laser light and collects Raman scatter from within the diameter of the ring. This design distributes the laser power for efficient heat dissipation and provides a better collection ratio of subsurface to surface components than the global illumination design. For non-invasive tissue spectroscopy the ring/disk design also provides better rejection of fluorescence from melanocytes. We have tested the performance of these Raman probes on polymer model systems and chicken tibiae.

  8. Air Sample Conditioner Helps the Waste Treatment Plant Meet Emissions Standards

    SciTech Connect

    Glissmeyer, John A.; Flaherty, Julia E.; Pekour, Mikhail S.

    2014-12-02

    The air in three of the Hanford Site Waste Treatment and Immobilization Plant (WTP) melter off-gas discharge stacks will be hot and humid after passing through the train of emission abatement equipment. The off-gas temperature and humidity levels will be incompatible with the airborne emissions monitoring equipment required for this type of stack. To facilitate sampling from these facilities, an air sample conditioner system will be installed to introduce cool, dry air into the sample stream to reduce the temperature and dew point. This will avoid thermal damage to the instrumentation and problematic condensation. The complete sample transport system must also deliver at least 50% of the particles in the sample airstream to the sample collection and on-line analysis equipment. The primary components of the sample conditioning system were tested in a laboratory setting. The sample conditioner itself is based on a commercially-available porous tube filter design. It consists of a porous sintered metal tube inside a coaxial metal jacket. The hot gas sample stream passes axially through the porous tube, and the dry, cool air is injected into the jacket and through the porous wall of the inner tube, creating an effective sample diluter. The dilution and sample air mix along the entire length of the porous tube, thereby simultaneously reducing the dew point and temperature of the mixed sample stream. Furthermore, because the dilution air enters through the porous tube wall, the sample stream does not come in contact with the porous wall and particle deposition is reduced in this part of the sampling system. Tests were performed with an environmental chamber to supply air with the temperature and humidity needed to simulate the off-gas conditions. Air from the chamber was passed through the conditioning system to test its ability to reduce the temperature and dew point of the sample stream. To measure particle deposition, oil droplets in the range of 9 to 11 micrometer

  9. Comparison of sampling methods for radiocarbon dating of carbonyls in air samples via accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Schindler, Matthias; Kretschmer, Wolfgang; Scharf, Andreas; Tschekalinskij, Alexander

    2016-05-01

    Three new methods to sample and prepare various carbonyl compounds for radiocarbon measurements were developed and tested. Two of these procedures utilized the Strecker synthetic method to form amino acids from carbonyl compounds with either sodium cyanide or trimethylsilyl cyanide. The third procedure used semicarbazide to form crystalline carbazones with the carbonyl compounds. The resulting amino acids and semicarbazones were then separated and purified using thin layer chromatography. The separated compounds were then combusted to CO2 and reduced to graphite to determine 14C content by accelerator mass spectrometry (AMS). All of these methods were also compared with the standard carbonyl compound sampling method wherein a compound is derivatized with 2,4-dinitrophenylhydrazine and then separated by high-performance liquid chromatography (HPLC).

  10. The combined effects of sampling parameters on the sorbent tube sampling of phthalates in air

    PubMed Central

    Jo, Sang-Hee; Kim, Ki-Hyun; Kwon, Kyenghee

    2017-01-01

    The adsorption properties of various sorbent materials were investigated to assess the factors affecting biases in the sorbent tube (ST) sampling of airborne phthalates. The recovery of phthalates was assessed critically in relation to four key sampling parameters: (1) three types of sorbent materials (quartz wool (QW), glass wool (GW), and quartz wool plus Tenax TA (QWTN)), (2) the concentration level of phthalate standards, (3) purge flow rate, and (4) purge volume for analysis based on a ‘sorbent tube-thermal desorption-gas chromatography-mass spectrometry (ST-TD-GC-MS)’ system. Among these parameters, the type of ST was the most influential in determining the recovery of phthalates. For a given ST type, the recovery of phthalates tends to improve with increases in the concentration level of standards. In case of QW and QWTN tubes, the breakthrough of phthalates was not observed up to the maximum purge volume (100 L) tested in this work; however, in case of GW, the recovery decreased drastically to 60% even at a purge volume of 1 L for low molecular weight phthalates. The results of our study demonstrate that accurate analysis of airborne phthalates can be achieved through proper control of key sampling parameters, particularly the choice of sorbent material. PMID:28361993

  11. Air bearing center cross gap of neutron stress spectrometer sample table support system

    NASA Astrophysics Data System (ADS)

    Li, Yang; Wu, Yunxin; Gong, Hai; Feng, Xiaolei

    2016-12-01

    A support system is the main load-bearing component of sample table for neutron stress spectrometer, and air bearing is an important element of a support system. The neutron stress spectrometer sample table was introduced, and the scheme for air bearing combination was selected. To study the performance of air bearing center cross gap, finite element models (FEMs) were established based on air motion and Reynolds equations, effects of air supply pressure, and gap parameters on the overturning moment and bearing capacity of air bearing center cross gap were analyzed. Results indicate that the width, depth, and height differences of the marble floor gap played important roles in the performance of the air bearing. When gap width is lesser than 1 mm and gap depth is lower than 0.4 mm, bearing capacity and overturning moment would vary rapidly with the variation of the width and depth. A gap height difference results in the bearing capacity dropping rapidly. The FEM results agree well with experimental results. Further, findings of the study could guide the design of the support system and marble floor.

  12. Measurement of Air Flow Characteristics Using Seven-Hole Cone Probes

    NASA Technical Reports Server (NTRS)

    Takahashi, Timothy T.

    1997-01-01

    The motivation for this work has been the development of a wake survey system. A seven-hole probe can measure the distribution of static pressure, total pressure, and flow angularity in a wind tunnel environment. The author describes the development of a simple, very efficient algorithm to compute flow properties from probe tip pressures. Its accuracy and applicability to unsteady, turbulent flow are discussed.

  13. Sampling technologies and air pollution control devices for gaseous and particulate arsenic: a review.

    PubMed

    Helsen, Lieve

    2005-09-01

    Direct measurement of arsenic release requires a good sampling and analysis procedure in order to capture and detect the total amount of metals emitted. The literature is extensively reviewed in order to evaluate the efficiency of full field-scale and laboratory scale techniques for capturing particulate and gaseous emissions of arsenic from the thermo-chemical treatment of different sources of arsenic. Furthermore, trace arsenic concentrations in ambient air, national standard sampling methods and arsenic analysis methods are considered. Besides sampling techniques, the use of sorbents is also reviewed with respect to both approaches (1) to prevent the metals from exiting with the flue gas and (2) to react or combine with the metals in order to be collected in air pollution control systems. The most important conclusion is that submicron arsenic fumes are difficult to control in conventional air pollution control devices. Complete capture of the arsenic species requires a combination of particle control and vapour control devices.

  14. Use of a Radon Stripping Algorithm for Retrospective Assessment of Air Filter Samples

    SciTech Connect

    Robert Hayes

    2009-01-23

    An evaluation of a large number of air sample filters was undertaken using a commercial alpha and beta spectroscopy system employing a passive implanted planar silicon (PIPS) detector. Samples were only measured after air flow through the filters had ceased. Use of a commercial radon stripping algorithm was implemented to discriminate anthropogenic alpha and beta activity on the filters from the radon progeny. When uncontaminated air filters were evaluated, the results showed that there was a time-dependent bias in both average estimates and measurement dispersion with the relative bias being small compared to the dispersion. By also measuring environmental air sample filters simultaneously with electroplated alpha and beta sources, use of the radon stripping algorithm demonstrated a number of substantial unexpected deviations. Use of the current algorithm is therefore not recommended for assay applications and so use of the PIPS detector should only be utilized for gross counting without appropriate modifications to the curve fitting algorithm. As a screening method, the radon stripping algorithm might be expected to see elevated alpha and beta activities on air sample filters (not due to radon progeny) around the 200 dpm level.

  15. High-bandwidth, high-sampling-rate, low-noise, two-probe transient photovoltage measuring system

    SciTech Connect

    Chen, Xiaoqing; Wu, Bo

    2015-01-15

    In this article, we present a two-probe configuration for measuring transient photovoltage (TPV) signals from photo-electronic semiconductor devices. Unlike in a conventional one-probe system, the two electrodes of the devices under test in this study are both monitored in our new measuring system, giving rise to a significantly enhanced signal-to-noise ratio. Tentative experimental data ob tained from N, N′-Di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine-based organic semiconductor devices show that the bandwidth and the sampling rate of the system reach 1.5 GHz and 50 GS/s, respectively, without degradation of the noise level. In addition, the study of TPV signals on each individual electrode is allowed. The TPV values measured by the two individual probes are not identically equal to half of the differential TPV and will not cancel each other out as expected. This abnormal phenomenon is due to the photoelectric response of the photo-electronic material. This novel two-probe TPV measuring technique and abnormal TPV behavior might be useful for studying more dynamic processes in photo-electronic semiconductors.

  16. Use of Whatman-41 filters in air quality sampling networks (with applications to elemental analysis)

    NASA Technical Reports Server (NTRS)

    Neustadter, H. E.; Sidik, S. M.; King, R. B.; Fordyce, J. S.; Burr, J. C.

    1974-01-01

    The operation of a 16-site parallel high volume air sampling network with glass fiber filters on one unit and Whatman-41 filters on the other is reported. The network data and data from several other experiments indicate that (1) Sampler-to-sampler and filter-to-filter variabilities are small; (2) hygroscopic affinity of Whatman-41 filters need not introduce errors; and (3) suspended particulate samples from glass fiber filters averaged slightly, but not statistically significantly, higher than from Whatman-41-filters. The results obtained demonstrate the practicability of Whatman-41 filters for air quality monitoring and elemental analysis.

  17. Mitigating factors on air concentrations of radon emanating from different granite samples

    SciTech Connect

    Qari, T.M.; Mamoon, A.M.; Abdul-Fattah, A.F. )

    1991-11-01

    Continuous exposure to increased air concentrations of radon in living areas is to be avoided according to the Environmental Protection Agency (EPA) and several published reports. Radon concentrations in ambient air are influenced by several factors related to the nature of the radon source itself, environmental conditions, and the presence of mitigating factors, if any. In this study, crushed granite samples of different types, particle diameters, and moisture contents were compared in simplified test systems with regard to radon emanation from the samples. The effects of selected mitigating factors, namely, ventilation and different barriers to diffusion of emanated radon were determined.

  18. Cleanliness of common air sampling sorbents for application to phenolic compounds measurement using supercritical fluid extraction

    SciTech Connect

    Bowyer, J.R.; Pleil, J.D.

    1994-12-31

    The trace-level measurement of phenolic compounds in the ambient air is complicated by the acidic and polar nature of the compounds especially during recovery from the sampling medium. Recently, supercritical fluid extraction (SFE) has been proposed as an alternative extraction method to Soxhlet extraction or thermal desorption to achieve more efficient recoveries. For such methodology to become practical, the candidate sorbents must first be tested for stability and cleanliness under SFE conditions. This paper describes exploratory research results of background contamination tests and cleanup properties of some common air sampling sorbent media with respect to future application to phenolic compounds monitoring.

  19. Cleanliness of common air sampling sorbents for application to phenolic compounds measurement using supercritical fluid extraction

    SciTech Connect

    Bowyer, J.R.; Pleil, J.D.

    1994-01-01

    The trace-level measurement of phenolic compounds in the ambient air is complicated by the acidic and polar nature of the compounds especially during recovery from the sampling medium. Recently, supercritical fluid extraction (SFE) has been proposed as an alternative extraction method to Soxhlet extraction or thermal desorption to achieve more efficient recoveries. For such methodology to become practical, the candidate sorbents must first be tested for stability and cleanliness under SFE conditions. The paper describes exploratory research results of background contamination tests and cleanup properties of some common air sampling sorbent media with respect to future application to phenolic compounds monitoring.

  20. Measurement of the microwave dielectric constant for low-loss samples with finite thickness using open-ended coaxial-line probes

    NASA Astrophysics Data System (ADS)

    Jiang, G. Q.; Wong, W. H.; Raskovich, E. Y.; Clark, W. G.; Hines, W. A.; Sanny, J.

    1993-06-01

    This work addresses the effect of finite sample thickness on microwave dielectric constant measurements for thin, planar, low-loss samples using the open-ended coaxial-line probe method. Detailed measurements of the dielectric constant were carried out on a wide range of thicknesses of air samples which were backed by infinitely thick teflon and alumina dielectric media. The measurements were made at room temperature for various (50 Ω) coaxial-line dimensions, microwave frequencies 4-8 GHz, and power levels near a fraction of a mW. The results provide strong support for previously published theoretical calculations based on a boundary value problem which uses a spectral domain formulation for the aperture fields. From thin, planar samples, values of 10.4±0.5 and 25.9±1.3 were obtained at 5 GHz and 300 K for the bulk dielectric constant of MgO and LaAl2O3, respectively. The applicability of a simple empirical model based on an exponential fit is discussed.

  1. Detection of Mycoplasma hyopneumoniae by Air Sampling with a Nested PCR Assay

    PubMed Central

    Stärk, Katharina D. C.; Nicolet, Jacques; Frey, Joachim

    1998-01-01

    This article describes the first successful detection of airborne Mycoplasma hyopneumoniae under experimental and field conditions with a new nested PCR assay. Air was sampled with polyethersulfone membranes (pore size, 0.2 μm) mounted in filter holders. Filters were processed by dissolution and direct extraction of DNA for PCR analysis. For the PCR, two nested pairs of oligonucleotide primers were designed by using an M. hyopneumoniae-specific DNA sequence of a repeated gene segment. A nested PCR assay was developed and used to analyze samples collected in eight pig houses where respiratory problems had been common. Air was also sampled from a mycoplasma-free herd. The nested PCR was highly specific and 104 times as sensitive as a one-step PCR. Under field conditions, the sampling system was able to detect airborne M. hyopneumoniae on 80% of farms where acute respiratory disease was present. No airborne M. hyopneumoniae was detected on infected farms without acute cases. The chance of successful detection was increased if air was sampled at several locations within a room and at a lower air humidity. PMID:9464391

  2. Passive dosimeters for nitrogen dioxide in personal/indoor air sampling: A review

    PubMed Central

    Yu, Chang Ho; Morandi, Maria T.; Weisel, Clifford P.

    2015-01-01

    Accurate measurement of nitrogen dioxide concentrations in both outdoor and indoor environments, including personal exposures, is a fundamental step for linking atmospheric nitrogen dioxide levels to potential health and ecological effects. The measurement has been conducted generally in two ways: active (pumped) sampling and passive (diffusive) sampling. Diffusion samplers, initially developed and used for workplace air monitoring, have been found to be useful and cost-effective alternatives to conventional pumped samplers for monitoring ambient, indoor and personal exposures at the lower concentrations found in environmental settings. Since the 1970s, passive samplers have been deployed for ambient air monitoring in urban and rural sites, and to determine personal and indoor exposure to NO2. This article reviews the development of NO2 passive samplers, the sampling characteristics of passive samplers currently available, and their application in ambient and indoor air monitoring and personal exposure studies. The limitations and advantages of the various passive sampler geometries (i.e., tube, badge, and radial type) are also discussed. This review provides researchers and risk assessors with practical information about NO2 passive samplers, especially useful when designing field sampling strategies for exposure and indoor/outdoor air sampling. PMID:18446185

  3. Air-sampling inlet contamination by aircraft emissions on the NASA CV-990 aircraft

    NASA Technical Reports Server (NTRS)

    Condon, E. P.; Vedder, J. F.

    1984-01-01

    Results of an experimental investigation of the contamination of air sampling inlets by aircraft emissions from the NASA CV-990 research aircraft are presented. This four-engine jet aircraft is a NASA facility used for many different atmospheric and meteorological experiments, as well as for developing spacecraft instrumentation for remote measurements. Our investigations were performed to provide information on which to base the selection of sampling locations for a series of multi-instrument missions for measuring tropospheric trace gases. The major source of contamination is the exhaust from the jet engines, which generate many of the same gases that are of interest in atmospheric chemistry, as well as other gases that may interfere with sampling measurements. The engine exhaust contains these gases in mixing ratios many orders of magnitude greater than those that occur in the clean atmosphere which the missions seek to quantify. Pressurized samples of air were collected simultaneously from a scoop located forward of the engines to represent clean air and from other multiport scoops at various aft positions on the aircraft. The air samples were analyzed in the laboratory by gas chromatography for carbon monoxide, an abundant combustion by-product. Data are presented for various scoop locations under various flight conditions.

  4. Solubility testing of actinides on breathing-zone and area air samples

    SciTech Connect

    Metzger, R.L.; Jessop, B.H.; McDowell, B.L.

    1996-02-01

    A solubility testing method for several common actinides has been developed with sufficient sensitivity to allow profiles to be determined from routine breathing zone and area air samples in the workplace. Air samples are covered with a clean filter to form a filter-sample-filter sandwich which is immersed in an extracellular lung serum simulant solution. The sample is moved to a fresh beaker of the lung fluid simulant each day for one week, and then weekly until the end of the 28 day test period. The soak solutions are wet ashed with nitric acid and hydrogen peroxide to destroy the organic components of the lung simulant solution prior to extraction of the nuclides of interest directly into an extractive scintillator for subsequent counting on a Photon-Electron Rejecting Alpha Liquid Scintillation (PERALS{reg_sign}) spectrometer. Solvent extraction methods utilizing the extractive scintillators have been developed for the isotopes of uranium, plutonium, and curium. The procedures normally produce an isotopic recovery greater than 95% and have been used to develop solubility profiles from air samples with 40 pCi or less of U{sub 3}O{sub 8}. Profiles developed for U{sub 3}O{sub 8} samples show good agreement with in vitro and in vivo tests performed by other investigators on samples from the same uranium mills.

  5. High sensitivity high-resolution full range relaxometry using a fast mechanical sample shuttling device and a cryo-probe.

    PubMed

    Chou, Ching-Yu; Chu, Minglee; Chang, Chi-Fon; Yu, Tsunai; Huang, Tai-Huang; Sakellariou, Dimitris

    2016-11-01

    Field-dependent NMR studies of bio-molecular systems using a sample shuttling hardware operating on a high-field NMR apparatus have provided valuable structural and dynamic information. We have recently published a design of a compact sample transportation device, called "field-cycler", which was installed in a commercial spectrometer and which provided highly precise positioning and stability during high speed shuttling. In this communication, we demonstrate the first use of a sample shuttling device on a commercial high field standard bore NMR spectrometer, equipped with a commercial triple resonance cryogenically cooled NMR probe. The performance and robustness of the hardware operating in 1D and 2D field cycling experiments, as well as the impact of the sample shuttling time on the signal intensity are discussed.

  6. Professional judgment and the interpretation of viable mold air sampling data.

    PubMed

    Johnson, David; Thompson, David; Clinkenbeard, Rodney; Redus, Jason

    2008-10-01

    Although mold air sampling is technically straightforward, interpreting the results to decide if there is an indoor source is not. Applying formal statistical tests to mold sampling data is an error-prone practice due to the extreme data variability. With neither established exposure limits nor useful statistical techniques, indoor air quality investigators often must rely on their professional judgment, but the lack of a consensus "decision strategy" incorporating explicit decision criteria requires professionals to establish their own personal set of criteria when interpreting air sampling data. This study examined the level of agreement among indoor air quality practitioners in their evaluation of airborne mold sampling data and explored differences in inter-evaluator assessments. Eighteen investigators independently judged 30 sets of viable mold air sampling results to indicate: "definite indoor mold source," "likely indoor mold source," "not enough information to decide," "likely no indoor mold source," or "definitely no indoor mold source." Kappa coefficient analysis indicated weak inter-observer reliability, and comparison of evaluator mean scores showed clear inter-evaluator differences in their overall scoring patterns. The responses were modeled on indicator "traits" of the data sets using a generalized, linear mixed model approach and showed several traits to be associated with respondents' ratings, but they also demonstrated distinct and divergent inter-evaluator response patterns. Conclusions were that there was only weak overall agreement in evaluation of the mold sampling data, that particular traits of the data were associated with the conclusions reached, and that there were substantial inter-evaluator differences that were likely due to differences in the personal decision criteria employed by the individual evaluators. The overall conclusion was that there is a need for additional work to rigorously explore the constellation of decision criteria

  7. Measured phenol concentrations in air and rain water samples collected near a wood preserving facility

    SciTech Connect

    Allen, S.K.; Allen, C.W.

    1995-12-31

    Phenol concentrations were determined in air and rain water samples collected downwind from a coal tar creosote wood preserving facility in Terre Haute, IN. Coal tar creosote is known to contain a large number of constituents and is composed chiefly of polycyclic aromatic hydrocarbons (PAH), phenols, and N-, S-, and O-heterocycles. Phenol was chosen as a marker compound for coal tar creosote emissions because it is present at a large mole fraction in coal tar creosote. Phenol was determined by HPLC with UV-Visible detection. Phenol in collected rain water samples was determined directly by HPLC after acidification and filtration. Phenol concentrations in collected air samples ranged from 4.1 to 15.7 {micro}g/m3 while rain water concentrations ranged from 7.9 to 28.2 {micro}g/L. Using a value for the thermodynamic Henry`s law constant of K{sub H} = 4.5 {times} 10{sup {minus}4} L atm/mole at 20 C for phenol and measured gas-phase phenol concentrations, even higher rain water concentrations would be expected if equilibrium was established. This indicates that the amount of phenol present in the air parcels sampled exceeded the amount that could be scavenged by rain drops under the conditions prevailing at the time of sampling. The values for phenol concentrations reported here are roughly two orders of magnitude higher than results from previous studies where phenol concentrations in air and rain water samples collected in urban areas were reported. It is likely that other more toxic constituents of coal tar creosote are also present at high concentrations in air parcels that receive emissions from wood treatment facilities.

  8. ENVIRONMENTAL SAMPLING USING LOCATION SPECIFIC AIR MONITORING IN BULK HANDLING FACILITIES

    SciTech Connect

    Sexton, L.; Hanks, D.; Degange, J.; Brant, H.; Hall, G.; Cable-Dunlap, P.; Anderson, B.

    2011-06-07

    Since the introduction of safeguards strengthening measures approved by the International Atomic Energy Agency (IAEA) Board of Governors (1992-1997), international nuclear safeguards inspectors have been able to utilize environmental sampling (ES) (e.g. deposited particulates, air, water, vegetation, sediments, soil and biota) in their safeguarding approaches at bulk uranium/plutonium handling facilities. Enhancements of environmental sampling techniques used by the IAEA in drawing conclusions concerning the absence of undeclared nuclear materials or activities will soon be able to take advantage of a recent step change improvement in the gathering and analysis of air samples at these facilities. Location specific air monitoring feasibility tests have been performed with excellent results in determining attribute and isotopic composition of chemical elements present in an actual test-bed sample. Isotopic analysis of collected particles from an Aerosol Contaminant Extractor (ACE) collection, was performed with the standard bulk sampling protocol used throughout the IAEA network of analytical laboratories (NWAL). The results yielded bulk isotopic values expected for the operations. Advanced designs of air monitoring instruments such as the ACE may be used in gas centrifuge enrichment plants (GCEP) to detect the production of highly enriched uranium (HEU) or enrichments not declared by a State. Researchers at Savannah River National Laboratory in collaboration with Oak Ridge National Laboratory are developing the next generation of ES equipment for air grab and constant samples that could become an important addition to the international nuclear safeguards inspector's toolkit. Location specific air monitoring to be used to establish a baseline environmental signature of a particular facility employed for comparison of consistencies in declared operations will be described in this paper. Implementation of air monitoring will be contrasted against the use of smear ES

  9. Development and calibration of real-time PCR for quantification of airborne microorganisms in air samples

    NASA Astrophysics Data System (ADS)

    An, Hey Reoun; Mainelis, Gediminas; White, Lori

    This manuscript describes the coupling of bioaerosol collection and the use of real-time PCR (RT-PCR) to quantify the airborne bacteria. The quantity of collected bacteria determined by RT-PCR is compared with conventional quantification techniques, such as culturing, microscopy and airborne microorganism counting by using optical particle counter (OPC). Our data show that an experimental approach used to develop standard curves for use with RT-PCR is critical for accurate sample quantification. Using universal primers we generated 12 different standard curves which were used to quantify model organism Escherichia coli (Migula) Catellani from air samples. Standard curves prepared using a traditional approach, where serially diluted genomic DNA extracted from pure cultured bacteria were used in PCR reaction as a template DNA yielded significant underestimation of sample quantities compared to airborne microorganism concentration as measured by an OPC. The underestimation was especially pronounced when standard curves were built using colony forming units (CFUs). In contrast, the estimate of cell concentration in an air sample by RT-PCR was more accurate (˜60% compared to the airborne microorganism concentration) when the standard curve was built using aerosolized E. coli. The accuracy improved even further (˜100%) when air samples used to build the standard curves were diluted first, then the DNA extracted from each dilution was amplified by the RT-PCR—to mimic the handling of air samples with unknown and possibly low concentration. Therefore, our data show that standard curves used for quantification by RT-PCR needs to be prepared using the same environmental matrix and procedures as handling of the environmental sample in question. Reliance on the standard curves generated with cultured bacterial suspension (a traditional approach) may lead to substantial underestimation of microorganism quantities in environmental samples.

  10. The effect of compressed air foam on the detection of hydrocarbon fuels in fire debris samples.

    PubMed

    Coulson, S A; Morgan-Smith, R K; Noble, D

    2000-01-01

    In 1998/99 the New Zealand Fire Service implemented compressed air foam delivery systems for the suppression of fires in rural areas. This study investigated whether the introduction of the foam to the seat of the fire created any problems in subsequent analyses of fire debris samples. No significant interferences from the foam were found when the samples were analysed by direct headspace using activated carbon strips. The only foam component detected was limonene.

  11. Rapid aneuploidy detection with multiplex ligation-dependent probe amplification: a prospective study of 4000 amniotic fluid samples

    PubMed Central

    Van Opstal, Diane; Boter, Marjan; de Jong, Danielle; van den Berg, Cardi; Brüggenwirth, Hennie T; Wildschut, Hajo I J; de Klein, Annelies; Galjaard, Robert-Jan H

    2009-01-01

    The introduction of prenatal screening requires rapid high-throughput diagnosis of common aneuploidies. Multiplex ligation-dependent probe amplification (MLPA) allows for quick, easily automated multiplex testing of these aneuploidies in one polymerase chain reaction. We performed a large prospective study using MLPA on 4000 amniotic fluid (AF) samples including all indications and compared its value to karyotyping and fluorescence in situ hybridization (FISH). MLPA can reliably determine common aneuploidies with 100% sensitivity and 100% specificity. Moreover, some mosaic cases and structural chromosome aberrations were detected as well. In cases of a male fetus, triploidies can be detected by an aberrant pattern of probe signals, which mimics maternal cell contamination (MCC). Macroscopic blood contamination was encountered in 3.2% of the AF samples. In 20% of these samples, an MLPA pattern was found consistent with MCC, although there were no false negatives of the most common aneuploidies. As the vast majority of inconclusive results (1.7%) is due to potential MCC, we designed a protocol in which we determine whether MLPA can be performed on blood-contaminated AF samples by testing if blood is of fetal origin. Then, the number of inconclusive results could be theoretically reduced to 0.05%. We propose an alternative interpretation of relative probe signals for rapid aneuploidy diagnosis (RAD). We discuss the value of MLPA for the detection of (submicroscopic) structural chromosome anomalies. MLPA is a reliable method that can replace FISH and could be used as a stand-alone test for RAD instead of karyotyping. PMID:18781187

  12. Magnetic bead and gold nanoparticle probes based immunoassay for β-casein detection in bovine milk samples.

    PubMed

    Li, Y S; Meng, X Y; Zhou, Y; Zhang, Y Y; Meng, X M; Yang, L; Hu, P; Lu, S Y; Ren, H L; Liu, Z S; Wang, X R

    2015-04-15

    In this work, a double-probe based immunoassay was developed for rapid and sensitive determination of β-casein in bovine milk samples. In the method, magnetic beads (MBs), employed as supports for the immobilization of anti-β-casein polyclonal antibody (PAb), were used as the capture probe. Colloidal gold nanoparticles (AuNPs), employed as a bridge for loading anti-β-casein monoclonal antibody (McAb) and horseradish peroxidase (HRP), were used as the amplification probe. The presence of β-casein causes the sandwich structures of MBs-PAb-β-casein-McAb-AuNPs through the interaction between β-casein and the anti-β-casein antibodies. The HRP, used as an enzymatic-amplified tracer, can catalytically oxidize the substrate 3,3',5,5'-tetramethylbenzidine (TMB), generating optical signals that are proportional to the quantity of β-casein. The linear range of the immunoassay was from 6.5 to 1520ngmL(-1). The limit of detection (LOD) was 4.8ngmL(-1) which was 700 times lower than that of MBs-antibody-HRP based immunoassay and 6-7 times lower than that from the microplate-antibody-HRP based assay. The recoveries of β-casein from bovine milk samples were from 95.0% to 104.3% that had a good correlation coefficient (R(2)=0.9956) with those obtained by an official standard Kjeldahl method. For higher sensitivity, simple sample pretreatment and shorter time requirement of the antigen-antibody reaction, the developed immunoassay demonstrated the viability for detection of β-casein in bovine milk samples.

  13. Air and smear sample calculational tool for Fluor Hanford Radiological control

    SciTech Connect

    BAUMANN, B.L.

    2003-07-11

    A spreadsheet calculation tool was developed to automate the calculations performed for determining the concentration of airborne radioactivity and smear counting as outlined in HNF-13536, Section 5.2.7, ''Analyzing Air and Smear Samples''. This document reports on the design and testing of the calculation tool. Radiological Control Technicians (RCTs) will save time and reduce hand written and calculation errors by using an electronic form for documenting and calculating work place air samples. Current expectations are RCTs will perform an air sample and collect the filter or perform a smear for surface contamination. RCTs will then survey the filter for gross alpha and beta/gamma radioactivity and with the gross counts utilize either hand calculation method or a calculator to determine activity on the filter. The electronic form will allow the RCT with a few key strokes to document the individual's name, payroll, gross counts, instrument identifiers; produce an error free record. This productivity gain is realized by the enhanced ability to perform mathematical calculations electronically (reducing errors) and at the same time, documenting the air sample.

  14. Technical assessment of workplace air sampling requirements at tank farm facilities. Revision 2

    SciTech Connect

    Olsen, P.A.; Brown, R.L.

    1995-03-22

    Tank Farm facilities compliance with the workplace air sampling (WPAS) program has been assessed. Requirements bases for determining compliance and recommendations are included. In the current condition all buildings are in compliance with the WPAS program. This document also supersedes WHC-SD-SQA-TA-20012, revision 0.

  15. Modeling and Qualification of a Modified Emission Unit for Radioactive Air Emissions Stack Sampling Compliance

    SciTech Connect

    Barnett, J. Matthew; Yu, Xiao-Ying; Recknagle, Kurtis P.; Glissmeyer, John A.

    2016-01-01

    A planned laboratory space and exhaust system modification to the Pacific Northwest National Laboratory Material Science and Technology Building indicated a new evaluation of the mixing at the air sampling system location would be required for compliance to ANSI/HPS N13.1-2011. The modified exhaust system would add a third fan thereby increasing the overall exhaust rate out the stack thus voiding the previous mixing study. Prior to modifying the radioactive air emissions exhaust system, a three-dimensional computational fluid dynamics computer model was used to evaluate the mixing at the sampling system location. Modeling of the new original three-fan system indicated that not all mixing criteria could be met. A second modeling effort was conducted with the addition of an air blender downstream of the confluence of the three fans which then showed satisfactory mixing results. The final installation included an air blender, and the exhaust system underwent full-scale tests to verify velocity, cyclonic flow, gas, and particulate uniformity. The modeling results and those of the full-scale tests show agreement between each of the evaluated criteria. The use of a computational fluid dynamics code was an effective aid in the design process and allowed the sampling system to remain in its original location while still meeting the requirements for sampling at a well-mixed location.

  16. COMPARISON OF FAST GC/TOFMS WITH METHOD TO-14 FOR ANALYSIS OF AMBIENT AIR SAMPLES

    EPA Science Inventory

    Field studies using portable gas chromatographs (PGC) to analyze volatile organic compounds in ambient air usually include, as reference standard method, the analysis of concurrent, collocated canister samples by EPA Method TO-14. Each laboratory analysis takes about an hour a...

  17. COMPARISON OF MOLD CONCENTRATIONS IN INDOOR AND OUTDOOR AIR SAMPLED SIMULTANEOUSLY AND THEN QUANTIFIED BY MSQPCR

    EPA Science Inventory

    Mold specific quantitative PCR (MSQPCR) was used to measure the concentrations of the 36 mold species in indoor and outdoor air samples that were taken simultaneously for 48 hours in and around 17 homes in Cincinnati, Ohio. The total spore concentrations of 353 per m3...

  18. Development of a wireless air pollution sensor package for aerial-sampling of emissions

    EPA Science Inventory

    A new sensor system for mobile and aerial emission sampling was developed for open area pollutant sources, such as prescribed forest burns. The sensor system, termed “Kolibri”, consists of multiple low-cost air quality sensors measuring CO2, CO, samplers for particulate matter wi...

  19. Collecting Samples of Workplace Air. Module 8. Vocational Education Training in Environmental Health Sciences.

    ERIC Educational Resources Information Center

    Consumer Dynamics Inc., Rockville, MD.

    This module, one of 25 on vocational education training for careers in environmental health occupations, contains self-instructional materials on collecting samples of workplace air. Following guidelines for students and instructors and an introduction that explains what the student will learn are three lessons: (1) collecting information about…

  20. Ten-year air sample analysis of Aspergillus prevalence in a university hospital.

    PubMed

    Falvey, D G; Streifel, A J

    2007-09-01

    Airborne fungal samples were collected on a monthly basis for 10 years, from 1995 to 2005, at a tertiary university hospital. Paired samples were cultured at 25 and 37 degrees C. Data were interpreted according to the air filtration systems serving each location. Samples cultured at 37 degrees C from the patient care areas had a mean recovery of 18% of the mean recovery from outdoor air (22 versus 122cfu/m(3)). Recovery of Aspergillus spp. at 37 degrees C in the high-efficiency particulate air (HEPA)-filtered locations was positive for Aspergillus spp. approximately one-third of the time; the rest of the patient care areas were positive half of the time and the outdoor samples were positive 95% of the time. We found 48 sporadic bursts at 37 degrees C which produced counts >3 SD above the mean. Hospital-acquired infection was related to high recovery of Aspergillus fumigatus on at least one occasion. We have found it impossible, without implementing impractical measures, to provide an environment completely devoid of Aspergillus spp. We conclude that routine air sampling is not an effective means of predicting hospital-acquired infections. However, a transient spike, or burst, may be useful in identifying an in-house source of contamination and may be used to consider additional interventional treatments for patients at risk. Emphasis should be placed on maintaining high-efficiency filtration of the outside air and on ensuring that other environmental control methods are used to prevent dissemination of environmental opportunistic fungal spores.

  1. Probing Atmospheric Electric Fields in Thunderstorms through Radio Emission from Cosmic-Ray-Induced Air Showers.

    PubMed

    Schellart, P; Trinh, T N G; Buitink, S; Corstanje, A; Enriquez, J E; Falcke, H; Hörandel, J R; Nelles, A; Rachen, J P; Rossetto, L; Scholten, O; Ter Veen, S; Thoudam, S; Ebert, U; Koehn, C; Rutjes, C; Alexov, A; Anderson, J M; Avruch, I M; Bentum, M J; Bernardi, G; Best, P; Bonafede, A; Breitling, F; Broderick, J W; Brüggen, M; Butcher, H R; Ciardi, B; de Geus, E; de Vos, M; Duscha, S; Eislöffel, J; Fallows, R A; Frieswijk, W; Garrett, M A; Grießmeier, J; Gunst, A W; Heald, G; Hessels, J W T; Hoeft, M; Holties, H A; Juette, E; Kondratiev, V I; Kuniyoshi, M; Kuper, G; Mann, G; McFadden, R; McKay-Bukowski, D; McKean, J P; Mevius, M; Moldon, J; Norden, M J; Orru, E; Paas, H; Pandey-Pommier, M; Pizzo, R; Polatidis, A G; Reich, W; Röttgering, H; Scaife, A M M; Schwarz, D J; Serylak, M; Smirnov, O; Steinmetz, M; Swinbank, J; Tagger, M; Tasse, C; Toribio, M C; van Weeren, R J; Vermeulen, R; Vocks, C; Wise, M W; Wucknitz, O; Zarka, P

    2015-04-24

    We present measurements of radio emission from cosmic ray air showers that took place during thunderstorms. The intensity and polarization patterns of these air showers are radically different from those measured during fair-weather conditions. With the use of a simple two-layer model for the atmospheric electric field, these patterns can be well reproduced by state-of-the-art simulation codes. This in turn provides a novel way to study atmospheric electric fields.

  2. Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissions Sampling and Analysis

    SciTech Connect

    MULKEY, C.H.

    1999-07-06

    This document describes the results of the data quality objective (DQO) process undertaken to define data needs for state and federal requirements associated with toxic, hazardous, and/or radiological air emissions under the jurisdiction of the River Protection Project (RPP). Hereafter, this document is referred to as the Air DQO. The primary drivers for characterization under this DQO are the regulatory requirements pursuant to Washington State regulations, that may require sampling and analysis. The federal regulations concerning air emissions are incorporated into the Washington State regulations. Data needs exist for nonradioactive and radioactive waste constituents and characteristics as identified through the DQO process described in this document. The purpose is to identify current data needs for complying with regulatory drivers for the measurement of air emissions from RPP facilities in support of air permitting. These drivers include best management practices; similar analyses may have more than one regulatory driver. This document should not be used for determining overall compliance with regulations because the regulations are in constant change, and this document may not reflect the latest regulatory requirements. Regulatory requirements are also expected to change as various permits are issued. Data needs require samples for both radionuclides and nonradionuclide analytes of air emissions from tanks and stored waste containers. The collection of data is to support environmental permitting and compliance, not for health and safety issues. This document does not address health or safety regulations or requirements (those of the Occupational Safety and Health Administration or the National Institute of Occupational Safety and Health) or continuous emission monitoring systems. This DQO is applicable to all equipment, facilities, and operations under the jurisdiction of RPP that emit or have the potential to emit regulated air pollutants.

  3. Probing Effect of Salinity and pH on Surface Interactions between Air Bubbles and Hydrophobic Solids: Implications on Colloidal Assembly at Air/Water Interface.

    PubMed

    Cui, Xin; Shi, Chen; Zhang, Shuo; Xie, Lei; Liu, Jing; Jiang, Dazhi; Zeng, Hongbo

    2017-04-05

    In this work, bubble probe atomic force microscope (AFM) was employed to quantify the interactions between two air bubbles and between an air bubble and an octadecyltrichlorosilane (OTS)-hydrophobized mica under various aqueous conditions. The key parameters (e.g. surface potentials, decay length of hydrophobic attraction) were obtained by analyzing the measured forces through a theoretical model based on Reynolds lubrication theory and augmented Young-Laplace equation by including effect of disjoining pressure. The bubble-OTS hydrophobic attraction with a decay length of 1.0 nm was found to be independent of solution pH and salinity. These parameters were further used to predict the attachment of OTS-hydrophobized particles onto air/water interface, demonstrating that particle attachment driven by hydrophobic attraction could be facilitated by suppressing electrical double-layer repulsion at low pH or high salinity condition. This facile methodology can be readily extended to quantify interactions of many other colloidal particles with gas/water and oil/water interfaces, with implications on colloidal assembly at different interfaces in many engineering applications.

  4. High-throughput liquid-absorption air-sampling apparatus and methods

    DOEpatents

    Zaromb, Solomon

    2000-01-01

    A portable high-throughput liquid-absorption air sampler [PHTLAAS] has an asymmetric air inlet through which air is drawn upward by a small and light-weight centrifugal fan driven by a direct current motor that can be powered by a battery. The air inlet is so configured as to impart both rotational and downward components of motion to the sampled air near said inlet. The PHTLAAS comprises a glass tube of relatively small size through which air passes at a high rate in a swirling, highly turbulent motion, which facilitates rapid transfer of vapors and particulates to a liquid film covering the inner walls of the tube. The pressure drop through the glass tube is <10 cm of water, usually <5 cm of water. The sampler's collection efficiency is usually >20% for vapors or airborne particulates in the 2-3.mu. range and >50% for particles larger than 4.mu.. In conjunction with various analyzers, the PHTLAAS can serve to monitor a variety of hazardous or illicit airborne substances, such as lead-containing particulates, tritiated water vapor, biological aerosols, or traces of concealed drugs or explosives.

  5. Results of Self-Absorption Study on the Versapor 3000 Filters for Radioactive Particulate Air Sampling

    SciTech Connect

    Barnett, J. Matthew

    2008-08-22

    Since the mid-1980s the Pacific Northwest National Laboratory (PNNL) has used a value of 0.85 as a correction factor for the self absorption of activity of particulate radioactive air samples. More recently, an effort was made to evaluate the current particulate radioactive air sample filters (Versapor® 3000) used at PNNL for self absorption effects. There were two methods used in the study, 1) to compare the radioactivity concentration by direct gas-flow proportional counting of the filter to the results obtained after acid digestion of the filter and counting again by gas-flow proportional detection and 2) to evaluate sample filters by high resolution visual/infrared microscopy to determine the depth of material loading on or in the filter fiber material. Sixty samples were selected from the archive for acid digestion in the first method and about 30 samples were selected for high resolution visual/infrared microscopy. Mass loading effects were also considered. From the sample filter analysis, large error is associated with the average self absorption factor, however, when the data is compared directly one-to-one, statistically, there appears to be good correlation between the two analytical methods. The mass loading of filters evaluated was <0.2 mg cm-2 and was also compared against other published results. The microscopy analysis shows the sample material remains on the top of the filter paper and does not imbed into the filter media. Results of the microscopy evaluation lead to the conclusion that there is not a mechanism for significant self absorption. The overall conclusion is that self-absorption is not a significant factor in the analysis of filters used at PNNL for radioactive air stack sampling of radionuclide particulates and that an applied correction factor is conservative in determining overall sample activity. A new self absorption factor of 1.0 is recommended.

  6. Chemical reactivities of ambient air samples in three Southern California communities

    PubMed Central

    Eiguren-Fernandez, Arantza; Di Stefano, Emma; Schmitz, Debra A.; Guarieiro, Aline Lefol Nani; Salinas, Erika M.; Nasser, Elina; Froines, John R.; Cho, Arthur K.

    2015-01-01

    The potential adverse health effects of PM2.5 and vapor samples from three communities that neighbor railyards, Commerce (CM), Long Beach (LB), and San Bernardino (SB), were assessed by determination of chemical reactivities attributed to the induction of oxidative stress by air pollutants. The assays used were dithiothreitol (DTT) and dihydrobenzoic acid (DHBA) based procedures for prooxidant content and a glyceraldehyde-3-phosphate dehydrogenase (GAPDH) assay for electrophiles. Prooxidants and electrophiles have been proposed as the reactive chemical species responsible for the induction of oxidative stress by air pollution mixtures. The PM2.5 samples from CM and LB sites showed seasonal differences in reactivities with higher levels in the winter whereas the SB sample differences were reversed. The reactivities in the vapor samples were all very similar, except for the summer SB samples, which contained higher levels of both prooxidants and electrophiles. The results suggest the observed reactivities reflect general geographical differences rather than direct effects of the railyards. Distributional differences in reactivities were also observed with PM2.5 fractions containing most of the prooxidants (74–81%) and the vapor phase most of the electrophiles (82–96%). The high levels of the vapor phase electrophiles and their potential for adverse biological effects point out the importance of the vapor phase in assessing the potential health effects of ambient air. PMID:25947123

  7. Use of the 1‐mm micro‐probe for metabolic analysis on small volume biological samples

    PubMed Central

    Serkova, Natalie J.; Freund, Amy S.; Brown, Jaimi L.

    2008-01-01

    Abstract Endogenous metabolites are promising diagnostic end‐points in cancer research. Clinical application of high‐resolution NMR spectroscopy is often limited by extremely low volumes of human specimens. In the present study, the use of the Bruker 1‐mm high‐resolution TXI micro‐probe was evaluated in the elucidation of metabolic profiles for three different clinical applications with limited sample sizes (body fluids, isolated cells and tissue biopsies). Sample preparation and 1H‐NMR metabolite quantification protocols were optimized for following oncology‐oriented applications: (i) to validate the absolute concentrations of citrate and spermine in human expressed prostatic specimens (EPS volumes 5 to 10 μl: prostate cancer application); (ii) to establish the metabolic profile of isolated human lymphocytes (total cell count 4 = 106: chronic myelogenous leukaemia application); (iii) to assess the metabolic composition of human head‐and‐neck cancers from mouse xenografts (biopsy weights 20 to 70 mg: anti‐cancer treatment application). In this study, the use of the Bruker 1‐mm micro‐probe provides a convenient way to measure and quantify endogenous metabolic profiles of samples with a very low volume/weight/cell count. PMID:19267884

  8. Enzyme-antibody dual labeled gold nanoparticles probe for ultrasensitive detection of κ-casein in bovine milk samples.

    PubMed

    Li, Y S; Zhou, Y; Meng, X Y; Zhang, Y Y; Liu, J Q; Zhang, Y; Wang, N N; Hu, P; Lu, S Y; Ren, H L; Liu, Z S

    2014-11-15

    A dual labeled probe was synthesized by coating gold nanoparticles (AuNPs) with anti-κ-CN monoclonal antibody (McAb) and horseradish peroxidase (HRP) enzyme on their surface. The McAb was used as detector and HRP was used as label for signal amplification catalytically oxidize the substrate. AuNPs were used as bridges between the McAb and HRP. Based on the probe, an immunoassay was developed for ultrasensitive detection of κ-CN in bovine milk samples. The assay has a linear response range within 4.2-560 ng mL(-1). The limit of detection (LOD) was 4.2 ng mL(-1) which was 10 times lower than that of traditional McAb-HRP based ELISA. The recoveries of κ-CN from three brand bovine milk samples were from 95.8% to 111.0% that had a good correlation (R(2)=0.998) with those obtained by official standard Kjeldahl method. For higher sensitivity and as simple as the traditional ELISA, the developed immunoassay could provide an alternative approach for ultrasensitive detection of κ-CN in bovine milk sample.

  9. Mathematical estimation of the level of microbial contamination on spacecraft surfaces by volumetric air sampling

    NASA Technical Reports Server (NTRS)

    Oxborrow, G. S.; Roark, A. L.; Fields, N. D.; Puleo, J. R.

    1974-01-01

    Microbiological sampling methods presently used for enumeration of microorganisms on spacecraft surfaces require contact with easily damaged components. Estimation of viable particles on surfaces using air sampling methods in conjunction with a mathematical model would be desirable. Parameters necessary for the mathematical model are the effect of angled surfaces on viable particle collection and the number of viable cells per viable particle. Deposition of viable particles on angled surfaces closely followed a cosine function, and the number of viable cells per viable particle was consistent with a Poisson distribution. Other parameters considered by the mathematical model included deposition rate and fractional removal per unit time. A close nonlinear correlation between volumetric air sampling and airborne fallout on surfaces was established with all fallout data points falling within the 95% confidence limits as determined by the mathematical model.

  10. A survey of results for passive air and water sampling via semipermeable membrane devices

    SciTech Connect

    Prest, H.F.; Jacobson, L.; Hodgins, M.; Huckins, J.N.; Petty, J.D.; Richardson, B.; Wilson, M.; Martin, M.

    1994-12-31

    Passive sampling techniques have progressed and are providing new possibilities for measuring trace contaminants in environmental compartments. One such device, the semipermeable membrane device (SPMD) developed by Huckins, et al in Columbia, MO. is especially promising. The authors present an overview of results for sampling in air and water with semipermeable membrane devices (SPMDS) for organochlorines and polynuclear aromatic hydrocarbons (PAHs) and comment on possible future applications and potential. Differences in organohalogen profiles for SPMDs and green-lipped mussels deployed along transacts of Corio Bay, Australia show marked differences in sequestering ``windows``. An illustration of the application of SPMDs to the measurement of the half-life of chemicals is presented using PAH data from SPMD deployments in an irrigation canal in New Mexico. Results for simultaneous sampling of water and coastal air in Northern California illustrate the promise of SPMDs as global monitors.

  11. Model of a Plasmonic Phase Interrogation Probe for Optical Sensing of Hemoglobin in Blood Samples

    NASA Astrophysics Data System (ADS)

    Sharma, Anuj K.

    2015-11-01

    Phase interrogation based surface plasmon resonance (SPR) biosensor is proposed for the determination of Hb concentration. Previous experimental results describing variation of refractive index of human blood with Hb concentration at different wavelengths are considered for design simulations. The biosensor design with silica substrate and gold layer is considered. The sensor's performance is closely analyzed in terms of phase sensitivity and resolution. The influence of operating wavelength on biosensor's performance for Hb measurement is critically investigated, which points to carry out the Hb measurement at a shorter wavelength as phase sensitivity and resolution increase significantly with decrease in wavelength. The results are explained in terms of suitable physical concepts such as radiation damping. Use of contamination-preventing biochemical layer ascertains the stability of measurement with the intended SPR biosensor probe. The simulation results also highlight that the resolution of Hb measurement achievable with the proposed biosensor is much higher compared with several existing methods.

  12. A stringent comparison of sampling and analysis methods for VOCs in ambient air

    SciTech Connect

    Daughtrey, E.H. Jr.; Oliver, K.D.; Adams, J.R.; Kronmiller, K.G.; Lonneman, W.A.; McClenny, W.A.; Colon, M.

    1999-07-01

    A carefully designed study was conducted during the summer of 1998 to simultaneously collect samples of ambient air by canisters and compare the analysis results to direct sorbent preconcentration results taken at the time of sample collection. A total of 32 1-h sample sets were taken, each composed of a real-time sample analyzed by an autoGC/MS XonTech 930/Varian Saturn 2000 system, and SUMMA and Silco canisters. Hourly total non-methane organic carbon (TNMOC), ozone, and meteorological measurements were also made. Each of the canisters was analyzed on the autoGC/MS system for a target list of 108 VOCs and on a manual cryosampling GC/FID system. Comparisons are made between the collection and analysis methods. Because of the low sample loading (150--250 ppbC TNMOC), these comparisons are a stringent test of sample collection and analysis capabilities.

  13. Whole Air Sampling During NASA's March-April 1999 Pacific Exploratory Expedition (PEM-Tropics B)

    NASA Technical Reports Server (NTRS)

    Blake, Donald R.

    2001-01-01

    University of California, Irvine (UCI) collected more than 4500 samples whole air samples collected over the remote Pacific Ocean during NASA's Global Tropospheric Experiment (GTE) Pacific Exploratory Mission-Tropics B (PEM-Tropics B) in March and early April 1999. Approximately 140 samples during a typical 8-hour DC-8 flight, and 120 canisters for each 8-hour flight aboard the P-3B. These samples were obtained roughly every 3-7 min during horizontal flight legs and 1-3 min during vertical legs. The filled canisters were analyzed in the laboratory at UCI within ten days of collection. The mixing ratios of 58 trace gases comprising hydrocarbons, halocarbons, alkyl nitrates and DMS were reported (and archived) for each sample. Two identical analytical systems sharing the same standards were operated simultaneously around the clock to improve canister turn-around time and to keep our measurement precision optimal. This report presents a summary of the results for sample collected.

  14. Monitoring airborne fungal spores in an experimental indoor environment to evaluate sampling methods and the effects of human activity on air sampling.

    PubMed Central

    Buttner, M P; Stetzenbach, L D

    1993-01-01

    Aerobiological monitoring was conducted in an experimental room to aid in the development of standardized sampling protocols for airborne microorganisms in the indoor environment. The objectives of this research were to evaluate the relative efficiencies of selected sampling methods for the retrieval of airborne fungal spores and to determine the effect of human activity on air sampling. Dry aerosols containing known concentrations of Penicillium chrysogenum spores were generated, and air samples were taken by using Andersen six-stage, Surface Air System, Burkard, and depositional samplers. The Andersen and Burkard samplers retrieved the highest numbers of spores compared with the measurement standard, an aerodynamic particle sizer located inside the room. Data from paired samplers demonstrated that the Andersen sampler had the highest levels of sensitivity and repeatability. With a carpet as the source of P. chrysogenum spores, the effects of human activity (walking or vacuuming near the sampling site) on air sampling were also examined. Air samples were taken under undisturbed conditions and after human activity in the room. Human activity resulted in retrieval of significantly higher concentrations of airborne spores. Surface sampling of the carpet revealed moderate to heavy contamination despite relatively low airborne counts. Therefore, in certain situations, air sampling without concomitant surface sampling may not adequately reflect the level of microbial contamination in indoor environments. PMID:8439150

  15. Meteorological and operational aspects of 46 clear air turbulence sampling missions with an instrument B-57B aircraft. Volume 1: Program summary

    NASA Technical Reports Server (NTRS)

    Davis, R. E.; Champine, R. A.; Ehernberger, L. J.

    1979-01-01

    The results of 46 clear air turbulence (CAT) probing missions conducted with an extensively instrumented B-57B aircraft are summarized. Turbulence samples were obtained under diverse conditions including mountain waves, jet streams, upper level fronts and troughs, and low altitude mechanical and thermal turbulence. CAT was encouraged on 20 flights comprising 77 data runs. In all, approximately 4335 km were flown in light turbulence, 1415 km in moderate turbulence, and 255 km in severe turbulence during the program. The flight planning, operations, and turbulence forecasting aspects conducted with the B-57B aircraft are presented.

  16. Volatile organic components of air samples collected from Vertical Launch Missile capsules. Summary report

    SciTech Connect

    Tappan, D.V.; Knight, D.R.; Heyder, E.; Weathersby, P.K.

    1988-09-27

    Gas chromatographic/mass spectroscopic analyses are presented for the volatile organic components found in air samples collected from the inboard vents from Vertical Launch System (VLS) missile capsules aboard a 688 class submarine. Similar analyses were also conducted for a sample of the ship's high pressure air used to fill the missile tubes. A wide variety of organics was detected in the air from the missile capsules; and while no unique components have yet been identified, a significant contribution has been shown to be made by pressure-ventilation of the VLS capsules into the submarine atmosphere which is already heavily laden with volatile organic compounds. The most apparent conclusion from these preliminary analyses is that the mixtures of organic components in the air within VLS missile capsules vary greatly from capsule to capsule (and probably from time to time). Many such samples need to be investigated to provide sufficient information to judge the seriousness of the possibility of venting toxic components into the submarine atmosphere during the maintenance or firing of VLS missiles.

  17. Covalent binding of biological samples to solid supports for scanning probe microscopy in buffer solution.

    PubMed Central

    Karrasch, S; Dolder, M; Schabert, F; Ramsden, J; Engel, A

    1993-01-01

    Scanning force microscopy allows imaging of biological molecules in their native state in buffer solution. To this end samples have to be fixed to a flat solid support so that they cannot be displaced by the scanning tip. Here we describe a method to achieve the covalent binding of biological samples to glass surfaces. Coverslips were chemically modified with the photoactivatable cross-linker N-5-azido-2-nitrobenzoyloxysuccinimide. Samples are squeezed between derivatized coverslips and then cross-linked to the glass surface by irradiation with ultraviolet light. Such samples can be imaged repeatedly by the scanning force microscope without loss of image quality, whereas identical but not immobilized samples are pushed away by the stylus. Images FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 8 PMID:8312482

  18. Soyuz 22 Return Samples: Assessment of Air Quality Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Jams, John T.

    2010-01-01

    Three mini-grab sample containers (m-GSCs) were returned aboard Soyuz 22 because of concerns that new air pollutants were present in the air and these were getting into the water recovery system. The Total Organic Carbon Analyzer had been giving increasing readings of total organic carbon (TOC) in the potable water, and it was postulated that an increased load into the system was responsible. The toxicological assessment of 3 m-GSCs from the ISS is shown in Table 1. The recoveries of the 3 standards (as listed above) from the GSCs averaged 103, 95 and 76%, respectively. Recovery from formaldehyde control badges were 90 and 91%.

  19. Quantitative Passive Diffusive Sampling for Assessing Soil Vapor Intrusion to Indoor Air

    DTIC Science & Technology

    2012-03-28

    4/11/2012 1 Quantitative Passive Diffusive Sampling for Assessing Soil Vapor Intrusion to Indoor Air Todd McAlary and Hester Groenevelt, Geosyntec... Intrusion to Indoor Air 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK...10-6 risk (ppb) Vapour pressure (atm) Water solubility (g/l) 1,1,1-Trichloroethane 110 400 0.16 1.33 1,2,4-Trimethylbenzene

  20. A pulsed wire probe for the measurement of velocity and flow direction in slowly moving air.

    PubMed

    Olson, D E; Parker, K H; Snyder, B

    1984-02-01

    This report describes the theory and operation of a pulsed-probe anemometer designed to measure steady three-dimensional velocity fields typical of pulmonary tracheo-bronchial airflows. Local velocities are determined by measuring the transport time and orientation of a thermal pulse initiated at an upstream wire and sensed at a downstream wire. The transport time is a reproducible function of velocity and the probe wire spacing, as verified by a theoretical model of convective heat transfer. When calibrated the anemometer yields measurements of velocity accurate to +/- 5 percent and resolves flow direction to within 1 deg at airspeeds greater than or equal to 10 cm/s. Spatial resolution is +/- 0.5 mm. Measured flow patterns typical of curved circular pipes are included as examples of its application.

  1. Ruthenium(II) and osmium(II) vinyl complexes as highly sensitive and selective chromogenic and fluorogenic probes for the sensing of carbon monoxide in air.

    PubMed

    Toscani, Anita; Marín-Hernández, Cristina; Moragues, María E; Sancenón, Félix; Dingwall, Paul; Brown, Neil J; Martínez-Máñez, Ramón; White, Andrew J P; Wilton-Ely, James D E T

    2015-10-05

    The detection of carbon monoxide in solution and air has been achieved using simple, inexpensive systems based on the vinyl complexes [M(CHCHR)Cl(CO)(BTD)(PPh3 )2 ] (R=aryl, BTD=2,1,3-benzothiadiazole). Depending on the nature of the vinyl group, chromogenic and fluorogenic responses signalled the presence of this odourless, tasteless, invisible, and toxic gas. Solutions of the complexes in CHCl3 underwent rapid change between easily differentiated colours when exposed to air samples containing CO. More significantly, the adsorption of the complexes on silica produced colorimetric probes for the naked-eye detection of CO in the gas phase. Structural data for key species before and after the addition of CO were obtained by means of single X-ray diffraction studies. In all cases, the ruthenium and osmium vinyl complexes studied showed a highly selective response to CO with exceptionally low detection limits. Naked-eye detection of CO at concentrations as low as 5 ppb in air was achieved with the onset of toxic levels (i.e., 100 ppm), thus resulting in a remarkably clear colour change. Moreover, complexes bearing pyrenyl, naphthyl, and phenanthrenyl moieties were fluorescent, and greater sensitivities were achieved (through turn-on emission fluorescence) in the presence of CO both in solution and air. This behaviour was explored computationally using time-dependent density functional theory (TDDFT) experiments. In addition, the systems were shown to be selective for CO over all other gases tested, including water vapour and common organic solvents. Supporting the metal complexes on cellulose strips for use in an existing optoelectronic device allows numerical readings for the CO concentration to be obtained and provision of an alarm system.

  2. Quantitative estimation of IL-6 in serum/plasma samples using a rapid and cost-effective fiber optic dip-probe

    NASA Astrophysics Data System (ADS)

    Wang, Chun-Wei; Manne, Upender; Reddy, Vishnu B.; Kapoor, Rakesh

    2010-02-01

    A rapid and cost-effective combination tapered fiber-optic biosensor (CTFOB) dip-probe was used for quantitative estimation of interleukin (IL)-6 in serum/plasma samples. Sandwich immunoassay was used as the detection technique. Probes could successfully detect presence of IL-6 in two serum samples, non-neoplastic autoimmune patient (lupus) sample and lymphoma patient sample. The estimated amount of IL-6 in lupus patient sample was 4.8 +/- 0.9 pM and in lymphoma patient sample was 2 +/- 1 pM. It is demonstrated that the developed CTFOB dip-probe is capable of quantitative estimation of proteins in serum/plasma samples with high specificity.

  3. Nano-LC/MALDI-MS using a column-integrated spotting probe for analysis of complex biomolecule samples.

    PubMed

    Hioki, Yusaku; Tanimura, Ritsuko; Iwamoto, Shinichi; Tanaka, Koichi

    2014-03-04

    Nanoflow liquid chromatography (nano-LC) is an essential technique for highly sensitive analysis of complex biological samples, and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is advantageous for rapid identification of proteins and in-depth analysis of post-translational modifications (PTMs). A combination of nano-LC and MALDI-MS (nano-LC/MALDI-MS) is useful for highly sensitive and detailed analysis in life sciences. However, the existing system does not fully utilize the advantages of each technique, especially in the interface of eluate transfer from nano-LC to a MALDI plate. To effectively combine nano-LC with MALDI-MS, we integrated a nano-LC column and a deposition probe for the first time (column probe) and incorporated it into a nano-LC/MALDI-MS system. Spotting nanoliter eluate droplets directly from the column onto the MALDI plate prevents postcolumn diffusion and preserves the chromatographic resolution. A DHB prespotted plate was prepared to suit the fabricated column probe to concentrate the droplets of nano-LC eluate. The performance of the advanced nano-LC/MALDI-MS system was substantiated by analyzing protein digests. When the system was coupled with multidimensional liquid chromatography (MDLC), trace amounts of glycopeptides that spiked into complex samples were successfully detected. Thus, a nano-LC/MALDI-MS direct-spotting system that eliminates postcolumn diffusion was constructed, and the efficacy of the system was demonstrated through highly sensitive analysis of the protein digests or spiked glycopeptides.

  4. Results of inspection and cleaning of two radionuclide air-sampling systems based on the requirements of ANSI/HPS N13.1-1999.

    PubMed

    Barnett, J M; Ballinger, M Y; Gervais, T L; Douglas, D D; Edwards, D L

    2004-04-01

    The Pacific Northwest National Laboratory inspected and cleaned two radionuclide air-sampling systems that continuously monitor radioactive air emissions from research and development facilities. The inspection and cleaning was performed to evaluate effective methods and potential cost impacts of maintenance requirements in the revised American National Standard Institute standard Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stacks and Ducts of Nuclear Facilities. The standard requires at least annual inspections of sampling systems followed by cleaning if deposits are visible. During 2001 and 2002, inspections were performed leaving the sampling systems in place and inserting videoscope cables into different access points to allow viewing of the inside and outside of sampling manifolds and transport lines. Cleaning was performed on one of the systems by disconnecting and extracting the sampling manifold, then washing it with de-ionized water and scrub brushes. The wash water was analyzed for radioactivity and solids. Results of the inspection showed greater deposition in one of the systems than would be expected by a High Efficiency Particulate Air (HEPA) filtered exhaust stream, possibly due to accumulation of dust from a short period when unfiltered air was exhausted from construction areas. The second system was also downstream of HEPA filters and appeared much cleaner. The videoscope was a useful and cost-effective tool and provided a better view than could be obtained with the naked eye. However, because even small amounts of deposition were made visible with the videoscope, clarification is needed in defining when probe washing is merited, particularly in existing sampling systems whose design is not conducive to easy removal and cleaning.

  5. Determination of air-loop volume and radon partition coefficient for measuring radon in water sample.

    PubMed

    Lee, Kil Yong; Burnett, William C

    A simple method for the direct determination of the air-loop volume in a RAD7 system as well as the radon partition coefficient was developed allowing for an accurate measurement of the radon activity in any type of water. The air-loop volume may be measured directly using an external radon source and an empty bottle with a precisely measured volume. The partition coefficient and activity of radon in the water sample may then be determined via the RAD7 using the determined air-loop volume. Activity ratios instead of absolute activities were used to measure the air-loop volume and the radon partition coefficient. In order to verify this approach, we measured the radon partition coefficient in deionized water in the temperature range of 10-30 °C and compared the values to those calculated from the well-known Weigel equation. The results were within 5 % variance throughout the temperature range. We also applied the approach for measurement of the radon partition coefficient in synthetic saline water (0-75 ppt salinity) as well as tap water. The radon activity of the tap water sample was determined by this method as well as the standard RAD-H2O and BigBottle RAD-H2O. The results have shown good agreement between this method and the standard methods.

  6. Probing crystal packing of uniformly (13)C-enriched powder samples using homonuclear dipolar coupling measurements.

    PubMed

    Mollica, Giulia; Dekhil, Myriam; Ziarelli, Fabio; Thureau, Pierre; Viel, Stéphane

    2015-02-01

    The relationship between the crystal packing of powder samples and long-range (13)C-(13)C homonuclear dipolar couplings is presented and illustrated for the case of uniformly (13)C-enriched L-alanine and L-histidine·HCl·H2O. Dipolar coupling measurement is based on the partial reintroduction of dipolar interactions by spinning the sample slightly off-magic-angle, while the coupling of interest for a given spin pair is isolated with a frequency-selective pulse. A cost function is used to correlate the so-derived dipolar couplings to trial crystal structures of the samples under study. This procedure allowed for the investigation of the l-alanine space group and L-histidine·HCl·H2O space group and unit-cell parameters.

  7. Nuclear Quadrupole Resonance (NQR) Method and Probe for Generating RF Magnetic Fields in Different Directions to Distinguish NQR from Acoustic Ringing Induced in a Sample

    DTIC Science & Technology

    1997-08-01

    77,719 TITLE OF THE INVENTION NUCLEAR QUADRUPOLE RESONANCE ( NQR ) METHOD AND PROBE FOR GENERATING RF MAGNETIC FIELDS IN DIFFERENT DIRECTIONS TO...DISTINGUISH NQR FROM ACOUSTIC RINGING INDUCED IN A SAMPLE BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a...nuclear quadrupole 15 resonance ( NQR ) method and probe for generating RF magnetic fields in different directions towards a sample. More specifically

  8. Direct high-resolution alpha spectrometry from nuclear fuel particles in an outdoor air sample.

    PubMed

    Pöllänen, R; Siiskonen, T

    2008-01-01

    The potential use of direct high-resolution alpha spectrometry to identify the presence of transactinium elements in air samples is illustrated in the case when alpha-particle-emitting radionuclides are incorporated in nuclear fuel particles. Alpha particle energy spectra are generated through Monte Carlo simulations assuming a nuclide composition similar to RBMK (Chernobyl) nuclear fuel. The major alpha-particle-emitting radionuclides, in terms of activity, are 242Cm, 239Pu and 240Pu. The characteristics of the alpha peaks are determined by fuel particle properties as well as the type of the air filter. It is shown that direct alpha spectrometry can be readily applied to membrane filter samples containing nuclear fuel particles when rapid nuclide identification is of relevance. However, the development of a novel spectrum analysis code is a prerequisite for unfolding complex alpha spectra.

  9. Water temperature effect on upward air-water flow in a vertical pipe: Local measurements database using four-sensor conductivity probes and LDA

    NASA Astrophysics Data System (ADS)

    Monrós-Andreu, G.; Chiva, S.; Martínez-Cuenca, R.; Torró, S.; Juliá, J. E.; Hernández, L.; Mondragón, R.

    2013-04-01

    Experimental work was carried out to study the effects of temperature variation in bubbly, bubbly to slug transition. Experiments were carried out in an upward air-water flow configuration. Four sensor conductivity probes and LDA techniques was used together for the measurement of bubble parameters. The aim of this paper is to provide a bubble parameter experimental database using four-sensor conductivity probes and LDA technique for upward air-water flow at different temperatures and also show transition effect in different temperatures under the boiling point.

  10. Lower-Cost, Relocatable Lunar Polar Lander and Lunar Surface Sample Return Probes

    NASA Technical Reports Server (NTRS)

    Amato, G. Michael; Garvin, James B.; Burt, I. Joseph; Karpati, Gabe

    2011-01-01

    Key science and exploration objectives of lunar robotic precursor missions can be achieved with the Lunar Explorer (LEx) low-cost, robotic surface mission concept described herein. Selected elements of the LEx concept can also be used to create a lunar surface sample return mission that we have called Boomerang

  11. Sample cells for probing solid/liquid interfaces with broadband sum-frequency-generation spectroscopy

    NASA Astrophysics Data System (ADS)

    Verreault, Dominique; Kurz, Volker; Howell, Caitlin; Koelsch, Patrick

    2010-06-01

    Two sample cells designed specifically for sum-frequency-generation (SFG) measurements at the solid/liquid interface were developed: one thin-layer analysis cell allowing measurement of films on reflective metallic surfaces through a micrometer layer of solution and one spectroelectrochemical cell allowing investigation of processes at the indium tin oxide/solution interface. Both sample cells are described in detail and data illustrating the capabilities of each are shown. To further improve measurements at solid/liquid interfaces, the broadband SFG system was modified to include a reference beam which can be measured simultaneously with the sample signal, permitting background correction of SFG spectra in real time. Sensitivity tests of this system yielded a signal-to-noise ratio of 100 at a surface coverage of 0.2 molecules/nm2. Details on data analysis routines, pulse shaping methods of the visible beam, as well as the design of a purging chamber and sample stage setup are presented. These descriptions will be useful to those planning to set up a SFG spectrometer or seeking to optimize their own SFG systems for measurements of solid/liquid interfaces.

  12. Air Sampling of Polychlorinated Dibenzodioxins, Polychlorinated Dibenzofurans, and Polychlorinated Biphenyls Arnold AFS, Tennessee.

    DTIC Science & Technology

    1987-01-01

    DIBENZOFURANS, AND POLYCHLORINATED BIPHENYLS ARNOLD AFS TN ISAAC ATKINS, JR., CAPTAIN, USAF, BSC January 1987 D I ~ELECTE FINAL REPORT 0Wfl D LU...NO 11. TITLE (Include Security ClassificatiOtl) Air Sampling of Polychlorinated Dibenzodioxins, Polychlorinated Dibenzofurans, and Polychlorinated ... Biphenyls at Arnold AFS TN (U) 12. PERSONAL AUTHOR(S) Captaiq Isaac Atkins, Jr. 13a. TYP OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month

  13. STS-65 Commander Cabana and PLC Hieb take air sample at IML-2 Rack 7 NIZEMI

    NASA Technical Reports Server (NTRS)

    1994-01-01

    STS-65 Commander Robert D. Cabana (right) and Payload Commander (PLC) Richard J. Hieb take an air sample inside the International Microgravity Laboratory 2 (IML-2) spacelab science module. The two crewmembers are in front of Rack 7 which contains the large isothermal furnace (LIF) and slow rotating centrifuge microscope (NIZEMI). The photo was among the first group released by NASA following the two-week IML-2 mission aboard the Space Shuttle Columbia, Orbiter Vehicle (OV) 102.

  14. Isotopic air sampling in a tallgrass prairie to partition net ecosystem CO2 exchange

    NASA Astrophysics Data System (ADS)

    Lai, Chun-Ta; Schauer, Andrew J.; Owensby, Clenton; Ham, Jay M.; Ehleringer, James R.

    2003-09-01

    Stable isotope ratios of various ecosystem components and net ecosystem exchange (NEE) CO2 fluxes were measured in a C3-C4 mixture tallgrass prairie near Manhattan, Kansas. The July 2002 study period was chosen because of contrasting soil moisture contents, which allowed us to address the effects of drought on photosynthetic CO2 uptake and isotopic discrimination. Significantly higher NEE fluxes were observed for both daytime uptake and nighttime respiration during well-watered conditions when compared to a drought period. Given these differences, we investigated two carbon-flux partitioning questions: (1) What proportions of NEE were contributed by C3 versus C4 species? (2) What proportions of NEE fluxes resulted from canopy assimilation versus ecosystem respiration? To evaluate these questions, air samples were collected every 2 hours during daytime for 3 consecutive days at the same height as the eddy covariance system. These air samples were analyzed for both carbon isotope ratios and CO2 concentrations to establish an empirical relationship for isoflux calculations. An automated air sampling system was used to collect nighttime air samples to estimate the carbon isotope ratios of ecosystem respiration (δR) at weekly intervals for the entire growing season. Models of C3 and C4 photosynthesis were employed to estimate bulk canopy intercellular CO2 concentration in order to calculate photosynthetic discrimination against 13C. Our isotope/NEE results showed that for this grassland, C4 vegetation contributed ˜80% of the NEE fluxes during the drought period and later ˜100% of the NEE fluxes in response to an impulse of intense precipitation. For the entire growing season, the C4 contribution ranged from ˜68% early in the spring to nearly 100% in the late summer. Using an isotopic approach, the calculated partitioned respiratory fluxes were slightly greater than chamber-measured estimates during midday under well-watered conditions. In addition, time series

  15. Microbial Air and Surface Monitoring Results from International Space Station Samples

    NASA Technical Reports Server (NTRS)

    Ott, C. Mark; Bruce, Rebekah J.; Castro, Victoria A.; Novikova, Natalia D.; Pierson, D. L.

    2005-01-01

    Over the course of long-duration spaceflight, spacecraft develop a microbial ecology that directly interacts with the crew of the vehicle. While most microorganisms are harmless or beneficial to the inhabitants of the vehicle, the presence of medically significant organisms appearing in this semi-closed environment could adversely affect crew health and performance. The risk of exposure of the crew to medically significant organisms during a mission is estimated using information gathered during nominal and contingency environmental monitoring. Analysis of the air and surface microbiota in the habitable compartments of the International Space Station (ISS) over the last four years indicate a high presence of Staphylococcus species reflecting the human inhabitants of the vehicle. Generally, air and surface microbial concentrations are below system design specifications, suggesting a lower risk of contact infection or biodegradation. An evaluation of sample frequency indicates a decrease in the identification of new species, suggesting a lower potential for unknown microorganisms to be identified. However, the opportunistic pathogen, Staphylococcus aureus, has been identified in 3 of the last 5 air samples and 5 of the last 9 surface samples. In addition, 47% of the coagulase negative Staphylococcus species that were isolated from the crew, ISS, and its hardware were found to be methicillin resistance. In combination, these observations suggest the potential of methicillin resistant infectious agents over time.

  16. Technical assessment of workplace air sampling requirements at tank farm facilities. Revision 1

    SciTech Connect

    Olsen, P.A.

    1994-09-21

    WHC-CM-1-6 is the primary guidance for radiological control at Westinghouse Hanford Company (WHC). It was written to implement DOE N 5480.6 ``US Department of Energy Radiological Control Manual`` as it applies to programs at Hanford which are now overseen by WHC. As such, it complies with Title 10, Part 835 of the Code of Federal Regulations. In addition to WHC-CM-1-6, there is HSRCM-1, the ``Hanford Site Radiological Control Manual`` and several Department of Energy (DOE) Orders, national consensus standards, and reports that provide criteria, standards, and requirements for workplace air sampling programs. This document provides a summary of these, as they apply to WHC facility workplace air sampling programs. This document also provides an evaluation of the compliance of Tank Farms` workplace air sampling program to the criteria, standards, and requirements and documents compliance with the requirements where appropriate. Where necessary, it also indicates changes needed to bring specific locations into compliance.

  17. Organic toxicants in air and precipitation samples from the Lake Michigan area

    SciTech Connect

    Harlin, K.S.; Sweet, C.W.; Gatz, D.F.

    1995-12-31

    Measurements of PCBs, organochlorine insecticides, PAHs, and atrazine were made in air and precipitation samples collected at regionally-representative locations near Lake Michigan from 1992-1995. The purpose of these measurements was to provide information needed to estimate the atmospheric deposition of organic toxicants to Lake Michigan. Twenty-four hour samples of airborne particles and vapor were collected at 12-day intervals on quartz fiber filters and XAD-2 resin vapor traps using modified high volume sampleers. Twenty-eight day precipitation samples were collected using wet-only samplers with stainless steel sampling surfaces and heated enclosure containing an XAD-2 resin adsorption column. Samples were Soxhlet extracted for 24 hours with hexane:acetone (1:1), and concentrated by rotary evaporation. Interferences were removed and the samples separated into analyte groups by silica gel chromatography. Four fractions were collected for GC-ECD and GC-Ion Trap MS analyses. Ten pesticides, 101 PCB congeners, 18 PAHs, and atrazine were measured in all samples. Quality assurance was maintained by including field duplicate samples, field blanks, alboratory matrix spikes, laboratory matrix blanks, and laboratory surrogate spikes in the sampling/analytical protocols. Preliminary results from urban and remote sites show geographical variations in the concentrations of some toxicants due to contributions from local sources. For all sites the total PCB levels are higher in the vapor phase than the particulate phase and show strong seasonal variations. Seasonal variations were also observed for several pesticides.

  18. The use of Whatman-41 filters for high volume air sampling

    NASA Technical Reports Server (NTRS)

    Neustadter, H. E.; Sidik, S. M.; King, R. B.; Fordyce, J. S.; Burr, J. C.

    1975-01-01

    The feasibility of using W41 filter media on a routine TSP high-volume monitoring network was determined by comparison with glass fiber (GF) filtering. Results indicate that suspended particulate samples from GF filters averaged slightly, but not significantly, higher than those from Whatman-41 filters. Some extra handling procedures were required to avoid errors due to the hygroscopic nature of W41 filters; these added procedures are not overly burdensome, however, and they allow the performance of analytical work, thus extending the capabilities of high-volume sampling. It was demonstrated that W41 filters are practical for air quality monitoring and elemental analysis in environments similar to Cleveland's.

  19. Sampling and analysis of trace-organic constituents in ambient and workplace air at coal-conversion facilities

    SciTech Connect

    Flotard, R D

    1980-07-01

    A review of the recent literature reveals that current sampling procedures involve the use of glass fiber filters for particulate-sorbed organics and sorbent resins such as Tenax GC and XAD-2 for vapor-phase organics. Ultra trace-organic analysis of air pollutants or particulates may require the collection of a large (1000 to 3000 m/sup 3/) sample by a high volume air sampler. Personal air sampling requires a smaller (approx. = 0.5 m/sup 3/) and a portable collection apparatus. Trapped organic chemicals are recovered by solvent extraction or thermal desorption of the collector. Recovered organics are separated by using liquid chromatography or gas chromatography and are identified by ultraviolet or fluorescence spectroscopy, gas chromatography, or mass spectrometry. For quantification, standards are added to the air stream during sampling or to the filter or resin following sampling. Analysis of the requirement for air sampling in and around coal conversion plants, coupled with the findings of the literature review, indicates that a combined particulate-filter and solvent-extractable-resin sampling unit should be used to collect both particulate-sorbed organics and vapor-phase organics from workplace or ambient plant air. Such a sampler was developed for stationary, moderate-to-high-volume air sampling. Descriptions of the sampler are provided together with sampling efficiency information and recommendations for a sampling procedure.

  20. A new analysis system for whole air sampling: description and results from 2013 SENEX

    NASA Astrophysics Data System (ADS)

    Lerner, B. M.; Gilman, J.; Dumas, M.; Hughes, D.; Jaksich, A.; Hatch, C. D.; Graus, M.; Warneke, C.; Apel, E. C.; Hornbrook, R. S.; Holloway, J. S.; De Gouw, J. A.

    2014-12-01

    Accurate measurement of volatile organic compounds (VOCs) in the troposphere is critical for the understanding of emissions and physical and chemical processes that can impact both air quality and climate. Airborne VOC measurements have proven especially challenging due to the requirement of both high sensitivity (pptv) and short sample collection times (≤15 s) to maximize spatial resolution and sampling frequency for targeted plume analysis. The use of stainless steel canisters to collect whole air samples (WAS) for post-flight analysis has been pioneered by the groups of D. Blake and E. Atlas [Blake et al., 1992; Atlas et al., 1993]. For the 2013 Southeast Nexus Study (SENEX), the NOAA ESRL CSD laboratory undertook WAS measurements for the first time. This required the construction of three new, highly-automated, and field-portable instruments designed to sample, analyze, and clean the canisters for re-use. Analysis was performed with a new custom-built gas chromatograph-mass spectrometer system. The instrument pre-concentrates analyte cryostatically into two parallel traps by means of a Stirling engine, a novel technique which obviates the need for liquid nitrogen to reach trapping temperatures of -175C. Here we present an evaluation of the retrieval of target VOC species from WAS canisters. We discuss the effects of humidity and sample age on the analyte, particularly upon C8+ alkane and aromatic species and biogenic species. Finally, we present results from several research flights during SENEX that targeted emissions from oil/natural gas production.

  1. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  2. Quantification of different Eubacterium spp. in human fecal samples with species-specific 16S rRNA-targeted oligonucleotide probes.

    PubMed

    Schwiertz, A; Le Blay, G; Blaut, M

    2000-01-01

    Species-specific 16S rRNA-targeted, Cy3 (indocarbocyanine)-labeled oligonucleotide probes were designed and validated to quantify different Eubacterium species in human fecal samples. Probes were directed at Eubacterium barkeri, E. biforme, E. contortum, E. cylindroides (two probes), E. dolichum, E. hadrum, E. lentum, E. limosum, E. moniliforme, and E. ventriosum. The specificity of the probes was tested with the type strains and a range of common intestinal bacteria. With one exception, none of the probes showed cross-hybridization under stringent conditions. The species-specific probes were applied to fecal samples obtained from 12 healthy volunteers. E. biforme, E. cylindroides, E. hadrum, E. lentum, and E. ventriosum could be determined. All other Eubacterium species for which probes had been designed were under the detection limit of 10(7) cells g (dry weight) of feces(-1). The cell counts obtained are essentially in accordance with the literature data, which are based on colony counts. This shows that whole-cell in situ hybridization with species-specific probes is a valuable tool for the enumeration of Eubacterium species in feces.

  3. Airborne Detection and Quantification of Swine Influenza A Virus in Air Samples Collected Inside, Outside and Downwind from Swine Barns

    PubMed Central

    Corzo, Cesar A.; Culhane, Marie; Dee, Scott; Morrison, Robert B.; Torremorell, Montserrat

    2013-01-01

    Airborne transmission of influenza A virus (IAV) in swine is speculated to be an important route of virus dissemination, but data are scarce. This study attempted to detect and quantify airborne IAV by virus isolation and RRT-PCR in air samples collected under field conditions. This was accomplished by collecting air samples from four acutely infected pig farms and locating air samplers inside the barns, at the external exhaust fans and downwind from the farms at distances up to 2.1 km. IAV was detected in air samples collected in 3 out of 4 farms included in the study. Isolation of IAV was possible from air samples collected inside the barn at two of the farms and in one farm from the exhausted air. Between 13% and 100% of samples collected inside the barns tested RRT-PCR positive with an average viral load of 3.20E+05 IAV RNA copies/m3 of air. Percentage of exhaust positive air samples also ranged between 13% and 100% with an average viral load of 1.79E+04 RNA copies/m3 of air. Influenza virus RNA was detected in air samples collected between 1.5 and 2.1 Km away from the farms with viral levels significantly lower at 4.65E+03 RNA copies/m3. H1N1, H1N2 and H3N2 subtypes were detected in the air samples and the hemagglutinin gene sequences identified in the swine samples matched those in aerosols providing evidence that the viruses detected in the aerosols originated from the pigs in the farms under study. Overall our results indicate that pigs can be a source of IAV infectious aerosols and that these aerosols can be exhausted from pig barns and be transported downwind. The results from this study provide evidence of the risk of aerosol transmission in pigs under field conditions. PMID:23951164

  4. Sampling artifacts in active air sampling of semivolatile organic contaminants: Comparing theoretical and measured artifacts and evaluating implications for monitoring networks.

    PubMed

    Melymuk, Lisa; Bohlin-Nizzetto, Pernilla; Prokeš, Roman; Kukučka, Petr; Klánová, Jana

    2016-10-01

    The effects of sampling artifacts are often not fully considered in the design of air monitoring with active air samplers. Semivolatile organic contaminants (SVOCs) are particularly vulnerable to a range of sampling artifacts because of their wide range of gas-particle partitioning and degradation rates, and these can lead to erroneous measurements of air concentrations and a lack of comparability between sites with different environmental and sampling conditions. This study used specially adapted filter-sorbent sampling trains in three types of active air samplers to investigate breakthrough of SVOCs, and the possibility of other sampling artifacts. Breakthrough volumes were experimentally determined for a range of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and polybrominated diphenyl ethers (PBDEs) in sampling volumes from 300 to 10,000 m(3), and sampling durations of 1-7 days. In parallel, breakthrough was estimated based on theoretical sorbent-vapor pressure relationships. The comparison of measured and theoretical determinations of breakthrough demonstrated good agreement between experimental and estimated breakthrough volumes, and showed that theoretical breakthrough estimates should be used when developing air monitoring protocols. Significant breakthrough in active air samplers occurred for compounds with vapor pressure >0.5 Pa at volumes <700 m(3). Sample volumes between 700 and 10,000 m(3) may lead to breakthrough for compounds with vapor pressures between 0.005 and 0.5 Pa. Breakthrough is largely driven by sample volume and compound volatility (therefore indirectly by temperature) and is independent of sampler type. The presence of significant breakthrough at "typical" sampling conditions is relevant for air monitoring networks, and may lead to under-reporting of more volatile SVOCs.

  5. Direct Analysis of Amphetamine Stimulants in a Whole Urine Sample by Atmospheric Solids Analysis Probe Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Crevelin, Eduardo J.; Salami, Fernanda H.; Alves, Marcela N. R.; De Martinis, Bruno S.; Crotti, Antônio E. M.; Moraes, Luiz A. B.

    2016-05-01

    Amphetamine-type stimulants (ATS) are among illicit stimulant drugs that are most often used worldwide. A major challenge is to develop a fast and efficient methodology involving minimal sample preparation to analyze ATS in biological fluids. In this study, a urine pool solution containing amphetamine, methamphetamine, ephedrine, sibutramine, and fenfluramine at concentrations ranging from 0.5 pg/mL to 100 ng/mL was prepared and analyzed by atmospheric solids analysis probe tandem mass spectrometry (ASAP-MS/MS) and multiple reaction monitoring (MRM). A urine sample and saliva collected from a volunteer contributor (V1) were also analyzed. The limit of detection of the tested compounds ranged between 0.002 and 0.4 ng/mL in urine samples; the signal-to-noise ratio was 5. These results demonstrated that the ASAP-MS/MS methodology is applicable for the fast detection of ATS in urine samples with great sensitivity and specificity, without the need for cleanup, preconcentration, or chromatographic separation. Thus ASAP-MS/MS could potentially be used in clinical and forensic toxicology applications.

  6. Colloidal gold probe-based immunochromatographic assay for the rapid detection of brevetoxins in fishery product samples.

    PubMed

    Zhou, Yu; Pan, Feng-Guang; Li, Yan-Song; Zhang, Yuan-Yuan; Zhang, Jun-Hui; Lu, Shi-Ying; Ren, Hong-Lin; Liu, Zeng-Shan

    2009-04-15

    One-step immunochromatographic assay using colloidal gold-labeled monoclonal antibody (Mab) probe for the rapid detection of brevetoxins (PbTxs) in fishery product samples was developed. The described assay was based on a competitive format using two antibodies. The primary antibody was conjugated with colloidal gold (detector reagent), the secondary antibody (capture reagent) was immobilized within a defined detection zone (control line) on a diagnostic cellulose nitrate membrane. The toxin in sample compete with immobilized toxin to bind with gold conjugated Mab. The mobile complex (colloidal gold-Mab-toxin) can be captured by the secondary antibody but cannot be captured by BSA-PbTx (test line). The color density of the test line correlated with the concentration of PbTx in sample in the range 10-4000 ng mL(-1). Spiked samples were detected by the assay and the visual detection limit was found to be 20 ng mL(-1). This qualitative test based on the visual evaluation of results did not require any equipment. The assay time for PbTx detection was less than 10 min, suitable for rapid testing on-site.

  7. Quantitative Caffeine Analysis Using a Surface Sampling Probe Electrospray Ionization Tandem Mass Spectrometry System

    SciTech Connect

    Ford, Michael J; Deibel, Michael A.; Tomkins, Bruce A; Van Berkel, Gary J

    2005-01-01

    Quantitative determination of caffeine on reversed-phase C8 thin-layer chromatography plates using a surface sampling electrospray ionization system with tandem mass spectrometry detection is reported. The thin-layer chromatography/electrospray tandem mass spectrometry method employed a deuterium-labeled caffeine internal standard and selected reaction monitoring detection. Up to nine parallel caffeine bands on a single plate were sampled in a single surface scanning experiment requiring 35 min at a surface scan rate of 44 {mu}m/s. A reversed-phase HPLC/UV caffeine assay was developed in parallel to assess the mass spectrometry method performance. Limits of detection for the HPLC/UV and thin-layer chromatography/electrospray tandem mass spectrometry methods determined from the calibration curve statistics were 0.20 ng injected (0.50 {mu}L) and 1.0 ng spotted on the plate, respectively. Spike recoveries with standards and real samples ranged between 97 and 106% for both methods. The caffeine content of three diet soft drinks (Diet Coke, Diet Cherry Coke, Diet Pepsi) and three diet sport drinks (Diet Turbo Tea, Speed Stack Grape, Speed Stack Fruit Punch) was measured. The HPLC/UV and mass spectrometry determinations were in general agreement, and these values were consistent with the quoted values for two of the three diet colas. In the case of Diet Cherry Coke and the diet sports drinks, the determined caffeine amounts using both methods were consistently higher (by 8% or more) than the literature values.

  8. HPLC-FLD and spectrofluorometer apparatus: How to best detect fluorescent probe-loaded niosomes in biological samples.

    PubMed

    Primavera, Rosita; Di Francesco, Martina; De Cola, Antonella; De Laurenzi, Vincenzo; Paolino, Donatella; Ciancaioni, Matteo; Carafa, Maria; Celia, Christian; Di Ilio, Carmine; Di Stefano, Antonio; Fresta, Massimo; Locatelli, Marcello; Di Marzio, Luisa

    2015-11-01

    The analytical tools allow the detection of bioactive compounds, diagnostic agents and chemotherapeutics. Recently, new methods have been developed to analyze pharmaceutical samples and ingredients. In this attempt, analytical parameters, e.g., the lack of trueness, robustness and sensitivity, play a pivotal role to quantify and analyze molecules, both for diagnostic applications as well as therapeutic treatments. Spectrophotometers and spectrofluorometers are apparatus for easy and rapid quantification of molecular probes and chemotherapeutics into cells, plasma and tissues. However, they lack accuracy and precision. Conversely, HPLC provides the maximum resolution to detect and separate fluorescent probes and chemotherapeutics after their incubation in cells, plasma and tissues. The aim of this work was to develop an HPLC method that easily detects molecular and fluorescent probes, e.g., Nile Red, in biological samples. To improve the robustness of the method, Nile Red was analyzed before and after loading into niosomes made from Tween 20 and 21, respectively. A significant difference was further obtained by comparing the entrapment efficacy percentage of niosomes made from Tween 21 (42.23%) and Tween 20 (53.25%). The comparison between HPLC and spectrofluorometer assays showed differences between the two methods in terms of limit of detection, linearity and accuracy. The resulting data demonstrated that the HPLC-FLD provides a limit of detection for Nile Red of 0.1 ng/mL, and a good linearity up to 62.5 ng/mL. The HPLC-FLD analysis showed a limit of quantification value for a total mass of Nile Red 1200-folds better than data previously reported in studies; and 312-folds better than the spectrofluorometer analysis. Additionally, results show that the HPLC-FLD increases the sensitivity for biological samples compared to the spectrofluorometer. The Nile Red-loaded niosomes were also incubated at different times with HEK-293 cells. In vitro results demonstrated

  9. Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air Part 1: Sorbent-based air monitoring options.

    PubMed

    Woolfenden, Elizabeth

    2010-04-16

    Sorbent tubes/traps are widely used in combination with gas chromatographic (GC) analytical methods to monitor the vapour-phase fraction of organic compounds in air. Target compounds range in volatility from acetylene and freons to phthalates and PCBs and include apolar, polar and reactive species. Airborne vapour concentrations will vary depending on the nature of the location, nearby pollution sources, weather conditions, etc. Levels can range from low percent concentrations in stack and vent emissions to low part per trillion (ppt) levels in ultra-clean outdoor locations. Hundreds, even thousands of different compounds may be present in any given atmosphere. GC is commonly used in combination with mass spectrometry (MS) detection especially for environmental monitoring or for screening uncharacterised workplace atmospheres. Given the complexity and variability of organic vapours in air, no one sampling approach suits every monitoring scenario. A variety of different sampling strategies and sorbent media have been developed to address specific applications. Key sorbent-based examples include: active (pumped) sampling onto tubes packed with one or more sorbents held at ambient temperature; diffusive (passive) sampling onto sorbent tubes/cartridges; on-line sampling of air/gas streams into cooled sorbent traps; and transfer of air samples from containers (canisters, Tedlar) bags, etc.) into cooled sorbent focusing traps. Whichever sampling approach is selected, subsequent analysis almost always involves either solvent extraction or thermal desorption (TD) prior to GC(/MS) analysis. The overall performance of the air monitoring method will depend heavily on appropriate selection of key sampling and analytical parameters. This comprehensive review of air monitoring using sorbent tubes/traps is divided into 2 parts. (1) Sorbent-based air sampling option. (2) Sorbent selection and other aspects of optimizing sorbent-based air monitoring methods. The paper presents

  10. Urban air quality assessment using monitoring data of fractionized aerosol samples, chemometrics and meteorological conditions.

    PubMed

    Yotova, Galina I; Tsitouridou, Roxani; Tsakovski, Stefan L; Simeonov, Vasil D

    2016-01-01

    The present article deals with assessment of urban air by using monitoring data for 10 different aerosol fractions (0.015-16 μm) collected at a typical urban site in City of Thessaloniki, Greece. The data set was subject to multivariate statistical analysis (cluster analysis and principal components analysis) and, additionally, to HYSPLIT back trajectory modeling in order to assess in a better way the impact of the weather conditions on the pollution sources identified. A specific element of the study is the effort to clarify the role of outliers in the data set. The reason for the appearance of outliers is strongly related to the atmospheric condition on the particular sampling days leading to enhanced concentration of pollutants (secondary emissions, sea sprays, road and soil dust, combustion processes) especially for ultra fine and coarse particles. It is also shown that three major sources affect the urban air quality of the location studied-sea sprays, mineral dust and anthropogenic influences (agricultural activity, combustion processes, and industrial sources). The level of impact is related to certain extent to the aerosol fraction size. The assessment of the meteorological conditions leads to defining of four downwind patterns affecting the air quality (Pelagic, Western and Central Europe, Eastern and Northeastern Europe and Africa and Southern Europe). Thus, the present study offers a complete urban air assessment taking into account the weather conditions, pollution sources and aerosol fractioning.

  11. Biomimetic air sampling for detection of low concentrations of molecules and bioagents : LDRD 52744 final report.

    SciTech Connect

    Hughes, Robert Clark

    2003-12-01

    Present methods of air sampling for low concentrations of chemicals like explosives and bioagents involve noisy and power hungry collectors with mechanical parts for moving large volumes of air. However there are biological systems that are capable of detecting very low concentrations of molecules with no mechanical moving parts. An example is the silkworm moth antenna which is a highly branched structure where each of 100 branches contains about 200 sensory 'hairs' which have dimensions of 2 microns wide by 100 microns long. The hairs contain about 3000 pores which is where the gas phase molecules enter the aqueous (lymph) phase for detection. Simulations of diffusion of molecules indicate that this 'forest' of hairs is 'designed' to maximize the extraction of the vapor phase molecules. Since typical molecules lose about 4 decades in diffusion constant upon entering the liquid phase, it is important to allow air diffusion to bring the molecule as close to the 'sensor' as possible. The moth acts on concentrations as low as 1000 molecules per cubic cm. (one part in 1e16). A 3-D collection system of these dimensions could be fabricated by micromachining techniques available at Sandia. This LDRD addresses the issues involved with extracting molecules from air onto micromachined structures and then delivering those molecules to microsensors for detection.

  12. Nonuniform air flow in inlets: the effect on filter deposits in the fiber sampling cassette.

    PubMed

    Baron, P A; Chen, C C; Hemenway, D R; O'Shaughnessy, P

    1994-08-01

    Smoke stream studies were combined with a new technique for visualizing a filter deposit from samples used to monitor asbestos or other fibers. Results clearly show the effect of secondary flow vortices within the sampler under anisoaxial sampling conditions. The vortices observed at low wind velocities occur when the inlet axis is situated at angles between 45 degrees and 180 degrees to the motion of the surrounding air. It is demonstrated that the vortices can create a complex nonuniform pattern in the filter deposit, especially when combined with particle settling or electrostatic interactions between the particles and the sampler. Inertial effects also may play a role in the deposit nonuniformity, as well as causing deposition on the cowl surfaces. Changes in the sampler, such as its placement, may reduce these biases. The effects noted are not likely to occur in all sampling situations, but may explain some reports of high variability on asbestos fiber filter samples. The flow patterns observed in this study are applicable to straight, thin-walled inlets. Although only compact particles were used, the air flow patterns and forces involved will have similar effects on fibers of the same aerodynamic diameter.

  13. Integrated assessment on groundwater nitrate by unsaturated zone probing and aquifer sampling with environmental tracers.

    PubMed

    Yuan, Lijuan; Pang, Zhonghe; Huang, Tianming

    2012-12-01

    By employing chemical and isotopic tracers ((15)N and (18)O in NO(3)(-)), we investigated the main processes controlling nitrate distribution in the unsaturated zone and aquifer. Soil water was extracted from two soil cores drilled in a typical agricultural cropping area of the North China Plain (NCP), where groundwater was also sampled. The results indicate that evaporation and denitrification are the two major causes of the distribution of nitrate in soil water extracts in the unsaturated zone. Evaporation from unsaturated zone is evidenced by a positive correlation between chloride and nitrate, and denitrification by a strong linear relationship between [Formula: see text] and ln(NO(3)(-)/Cl). The latter is estimated to account for up to 50% of the nitrate loss from soil drainage. In the saturated zone, nitrate is reduced at varying extents (100 mg/L and 10 mg/L at two sites, respectively), largely by dilution of the aquifer water.

  14. Polybrominated diphenyl ethers and alternative flame retardants in air and precipitation samples from the northern Lake Victoria region, East Africa.

    PubMed

    Arinaitwe, Kenneth; Muir, Derek C G; Kiremire, Bernard T; Fellin, Phil; Li, Henrik; Teixeira, Camilla

    2014-01-01

    High volume air and precipitation samples were collected close to the shore of Lake Victoria at Entebbe, Uganda, between October 2008 and July 2010 inclusive. Polybrominated diphenyl ethers (PBDEs) and alternative flame retardants (AFRs) were analyzed by GC-MS. BDEs 47, 99, and 209 were the predominant PBDEs with mean concentrations (in air) of 9.84, 4.38, 8.27 pg m(-3) and mean fluxes in precipitation of 3.40, 6.23, and 7.82 ng m(-2) sample(-1), respectively. 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), and hexabromocyclododecane (HBCDD), anti- and syn-Dechlorane plus were detected at levels comparable with those of PBDEs. Both PBDEs and AFRs in air generally increased from 2008 to 2010. Elevated PBDE concentrations in air were associated with slow moving low altitude air masses from the region immediately adjacent to the lake, while low concentrations were mostly associated with fast moving westerly and southwesterly air masses. Analysis of the octa- and nona-BDE profiles suggested photolysis and pyrolytic debromination of BDE-209 in the air samples. The highly halogenated and most abundant PBDEs and AFRs in air also predominated in precipitation samples. This is the first study to report flame retardants in high volume air samples and precipitation in Equatorial Africa.

  15. Intensive probing of a clear air convective field by radar and instrumental drone aircraft.

    NASA Technical Reports Server (NTRS)

    Rowland, J. R.

    1973-01-01

    An instrumented drone aircraft was used in conjunction with ultrasensitive radar to study the development of a convective field in the clear air. Radar data are presented which show an initial constant growth rate in the height of the convective field of 3.8 m/min, followed by a short period marked by condensation and rapid growth at a rate in excess of 6.1 m/min. Drone aircraft soundings show general features of a convective field including progressive lifting of the inversion at the top of the convection and a cooling of the air at the top of the field. Calculations of vertical heat flux as a function of time and altitude during the early stages of convection show a linear decrease in heat flux with altitude to near the top of the convective field and a negative heat flux at the top. Evidence is presented which supports previous observations that convective cells overshoot their neutral buoyancy level into a region where they are cool and moist compared to their surroundings. Furthermore, only that portion of the convective cell that has overshot its neutral buoyancy level is generally visible to the radar.

  16. Spectrofluorimetric determination of buparvaquone in biological fluids, food samples and a pharmaceutical formulation by using terbium-deferasirox probe.

    PubMed

    Manzoori, Jamshid L; Jouyban, Abolghasem; Amjadi, Mohammad; Panahi-Azar, Vahid; Karami-Bonari, Amir Reza; Tamizi, Elnaz

    2011-06-15

    A simple spectrofluorimetric method is described for the determination of buparvaquone (BPQ), based on its quenching effect on the fluorescence intensity of Tb(3+)-deferasirox (DFX) complex as a fluorescent probe. The excitation and emission wavelengths were 328 and 545nm, respectively. The optimum conditions for determination of BPQ were investigated considering the effects of various affecting parameters. The variations in fluorescence intensity of the system showed a good linear relationship with the concentration of BPQ in the range of 10-1500μgL(-1), its correlation coefficient was 0.999 with the detection and quantification limits of 1.1 and 3.4μgL(-1), respectively. Linearity, reproducibility, recovery, limits of detection and quantification made the method suitable for BPQ assay in biological fluids, meat, dairy products and BPQ parenteral solutions (vials). The method was applied to real samples of serum and milk of three cows receiving BPQ.

  17. Glyphosate-rich air samples induce IL-33, TSLP and generate IL-13 dependent airway inflammation.

    PubMed

    Kumar, Sudhir; Khodoun, Marat; Kettleson, Eric M; McKnight, Christopher; Reponen, Tiina; Grinshpun, Sergey A; Adhikari, Atin

    2014-11-05

    Several low weight molecules have often been implicated in the induction of occupational asthma. Glyphosate, a small molecule herbicide, is widely used in the world. There is a controversy regarding a role of glyphosate in developing asthma and rhinitis among farmers, the mechanism of which is unexplored. The aim of this study was to explore the mechanisms of glyphosate induced pulmonary pathology by utilizing murine models and real environmental samples. C57BL/6, TLR4-/-, and IL-13-/- mice inhaled extracts of glyphosate-rich air samples collected on farms during spraying of herbicides or inhaled different doses of glyphosate and ovalbumin. The cellular response, humoral response, and lung function of exposed mice were evaluated. Exposure to glyphosate-rich air samples as well as glyphosate alone to the lungs increased: eosinophil and neutrophil counts, mast cell degranulation, and production of IL-33, TSLP, IL-13, and IL-5. In contrast, in vivo systemic IL-4 production was not increased. Co-administration of ovalbumin with glyphosate did not substantially change the inflammatory immune response. However, IL-13-deficiency resulted in diminished inflammatory response but did not have a significant effect on airway resistance upon methacholine challenge after 7 or 21 days of glyphosate exposure. Glyphosate-rich farm air samples as well as glyphosate alone were found to induce pulmonary IL-13-dependent inflammation and promote Th2 type cytokines, but not IL-4 for glyphosate alone. This study, for the first time, provides evidence for the mechanism of glyphosate-induced occupational lung disease.

  18. STM-SQUID probe microscope

    NASA Astrophysics Data System (ADS)

    Hayashi, Tadayuki; Tachiki, Minoru; Itozaki, Hideo

    2007-11-01

    We have developed a STM-SQUID probe microscope. A high TC SQUID probe microscope was combined with a scanning tunneling microscope for investigation of samples at room temperature in air. A high permeability probe needle was used as a magnetic flux guide to improve the spatial resolution. The probe with tip radius of less than 100 nm was prepared by microelectropolishing. The probe was also used as a scanning tunneling microscope tip. Topography of the sample surface could be measured by the scanning tunneling microscope with high spatial resolution prior to observation by SQUID microscopy. The SQUID probe microscope image could be observed while keeping the distance from the sample surface to the probe tip constant. We observed a topographic image and a magnetic image of Ni fine pattern and also a magnetically recorded hard disk. Furthermore we have investigated a sample vibration method of the static magnetic field emanating from a sample with the aim of achieving a higher signal-to-noise (S/N) ratio.

  19. Size selective isocyanate aerosols personal air sampling using porous plastic foams

    NASA Astrophysics Data System (ADS)

    Khanh Huynh, Cong; Duc, Trinh Vu

    2009-02-01

    As part of a European project (SMT4-CT96-2137), various European institutions specialized in occupational hygiene (BGIA, HSL, IOM, INRS, IST, Ambiente e Lavoro) have established a program of scientific collaboration to develop one or more prototypes of European personal samplers for the collection of simultaneous three dust fractions: inhalable, thoracic and respirable. These samplers based on existing sampling heads (IOM, GSP and cassettes) use Polyurethane Plastic Foam (PUF) according to their porosity to support sampling and separator size of the particles. In this study, the authors present an original application of size selective personal air sampling using chemical impregnated PUF to perform isocyanate aerosols capturing and derivatizing in industrial spray-painting shops.

  20. Atmospheric trace gas measurements with a new clean air sampling system

    SciTech Connect

    Leifer, R.; Sommers, K.; Guggenheim, S.F.

    1981-10-01

    The development of a new clean air sampling system for the Department of Energy's WB-57F aircraft has allowed the analysis of CCl/sub 3/F (Fluorocarbon-11), CCl/sub 2/F/sub 2/ (Fluorocarbon-12), CHClF/sub 2/ (Fluorocarbon-22), C/sub 2/Cl/sub 3/F/sub 3/ (Fluorocarbon-113), CH/sub 4/, CO, CO/sub 2/, N/sub 2/O, CH/sub 3/Cl, CCl/sub 4/, CH/sub 3/CCl/sub 3/, OCS and SF/sub 6/ in tropospheric and stratospheric samples. Samples collected during the interception of the plume from the eruption of Mount St. Helens indicate that OCS was injected into the stratosphere during the eruption. A large CO/sub 2/ gradient was found at 19.2 km on this flight.

  1. Relationship of air sampling rates of semipermeable membrane devices with the properties of organochlorine pesticides.

    PubMed

    Zhu, Xiuhua; Ding, Guanghui; Levy, Walkiria; Jakobi, Gert; Schramm, Karl-Werner

    2011-06-01

    The organochlorine pesticides (OCP) in Eastern-Barvaria at Haidel 1160 m a.s.l. were monitored with a low volume active air sampler and semi-permeable membrane devices (SPMD). The air sampling rates (Rair) of SPMD for OCP were calculated. Quantitative structure-property relationship (QSPR) models of Rair of SPMD were developed for OCP with partial least square (PLS) regression. Quantum chemical descriptors computed by semi-empirical PM6 method were used as predictor variables. The cumulative variance of the dependent variable explained by the PLS components and determined by cross-validation (Q(2)cum), for the optimal models, is 0.637, indicating that the model has good predictive ability and robustness, and could be used to estimate Rair values of OCP. The main factors governing Rair of OCP are intermolecular interactions and the energy required for cave-forming in dissolution of OCP into triolein of SPMD.

  2. Soyuz 23 Return Samples: Assessment of Air Quality Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    James, John T.

    2011-01-01

    Six mini-grab sample containers (m-GSCs) were returned aboard Soyuz 23 because of concerns that new air pollutants had been present in the air and these were getting into the water recovery system. The Total Organic Carbon Analyzer had been giving increasing readings of total organic carbon (TOC) in the potable water, and it was postulated that an increased load into the system was responsible. The TOC began to decline in late October, 2010. The toxicological assessment of 6 m-GSCs from the ISS is shown in Table 1. The recoveries of 13C-acetone, fluorobenzene, and chlorobenzene from the GSCs averaged 73, 82, and 59%, respectively. We are working to understand the sub-optimal recovery of chlorobenzene.

  3. Serotypic differentiation of rotaviruses in field samples from diarrheic pigs by using nucleic acid probes specific for porcine VP4 and human and porcine VP7 genes.

    PubMed Central

    Rosen, B I; Parwani, A V; Lopez, S; Flores, J; Saif, L J

    1994-01-01

    Of 216 fecal and intestinal samples collected from nursing or weaned diarrheic pigs in the United States and Canada, 57 were identified as group A rotavirus positive by RNA electrophoresis and silver staining. Fifty-seven and 52 rotavirus-positive samples were analyzed by hybridization with Gottfried and OSU PCR-derived gene 9 and 4 probes, respectively. Only 17 samples were identified with either homologous VP4 (P)- or VP7 (G)-coding genes or both. One rotavirus identified as G4 and P7 was similar to the previously characterized interserotype rotavirus, SB-1A. Additional hybridization analyses were performed with PCR-derived probes prepared from gene 9 cDNA of the human rotaviruses Wa (G1), DS-1 (G2), and P (G3) and of the porcine rotavirus YM (G11). Eleven of 52 samples collected and analyzed from swine in Ohio, California, and Nebraska were identified as G11. No samples with G1-, G2-, or G3-type specificities were detected among the 25 of 57 rotavirus-positive samples analyzed with human rotavirus-derived probes. Further investigations with a PCR-derived gene 4 probe prepared from porcine rotavirus YM revealed hybridization specificities similar to those of the OSU gene 4 probe. Images PMID:8150940

  4. Gas analysis of Apollo 12, 14, and 15 samples by laser-probe mass spectrometry

    NASA Technical Reports Server (NTRS)

    Imegrue, G. H.

    1972-01-01

    Solar wind gases, cosmogenic gases from high energy spallation reactions from soxmic rays, and radiogenic gases from decay of radioactive potassium and from uranium and thorium isotopes were analyzed in lunar materials. Details are presented on two aspects of the studies: (1) The spatial distribution of Ar-40/Ar-38 ages in lunar breccia 14301 was determined. The ages of clasts within this breccia are 3.68 + or - 0.09 and 2.9 + or - 0.3 x 10 to the 9th power years. Parentless radiogenic Ar-40 exists within the fine-grained matrix. (2) The distribution of helium, neon, and argon isotopes within Apollo 15 samples results primarily from fractionated solar wind gases, accompanied by small quantities of cosmogenic gases. Comparison of this Apollo 15 data with Kapoeta and Fayetteville meteorite and Apollo 12 and 14 data indicates that solar wind implantation followed by fractionation of the gases was primarily responsible for incorporation of original gas phase within solid bodies of the solar system.

  5. Radiological background levels found on glass fiber filters used for low-level environmental surveillance air sampling

    SciTech Connect

    Althouse, P. E.

    1998-09-16

    Environmental surveillance of low-level radioactive particles in air requires a thorough understanding of low-level techniques and air sample collection media. High-volume air sampling for radioactive particles around Lawrence Livermore National Laboratory (LLNL) employs glass-fiber filters that are analyzed for gross alpha and gross beta activity and for specific isotopes. This study was conducted to determine the activities of radionuclides contained in blank glass-fiber filters. Data from this study provided a partial explanation of differences between current reported concentrations of radionuclides in air and those reported historically when cellulose filters were used in the LLNL monitoring effort.

  6. An improved thin-layer chromatography/mass spectrometry coupling using a surface sampling probe electrospray ion trap system

    SciTech Connect

    Ford, Michael J; Van Berkel, Gary J

    2004-01-01

    A combined surface sampling probe/electrospray emitter coupled with an ion trap mass spectrometer was used for the direct read out of unmodified reversed-phase C18 thin-layer chromatography (TLC) plates. The operation of the surface sampling electrospray ionization interface in positive and negative ionization modes was demonstrated through the direct analysis of TLC plates on which a commercial test mix comprised of four dye compounds viz., rhodamine B, fluorescein, naphthol blue black, and fast green FCF, and an extract of the caffeine-containing plant Ilex vomitoria, were spotted and developed. Acquisition of full-scan mass spectra and automated collection of MS/MS product ion spectra while scanning a development lane along the surface of a TLC plate demonstrated the advantages of using an ion trap in this combination. Details of the sampling system, benefits of analyzing a developed lane in both positive ion and negative ion modes, levels of detection while surface scanning, surface scan speed effects, and the utility of three-dimensional data display, are also discussed.

  7. Development of a sampling and analysis method for 4-vinyl-1-cyclohexene in air.

    PubMed

    Kongtip, Pornpimol; Tangprakorn, Bantoon; Yoosook, Witaya; Chantanakul, Suttinun

    2008-01-01

    The purpose of this research was to develop an applicable sampling and analytical method to determine airborne 4-vinyl-1-cyclohexene concentrations which are usually found in the atmosphere of polybutadiene factories. A solid sorbent tube, containing two sections (100 mg in the front and 50 mg in the back) of activated coconut-shell charcoal was chosen for sampling 4-vinyl-1-cyclohexene vapor. The 4-vinyl-1-cyclohexene in the charcoal samples was desorbed with carbon disulfide and analyzed by gas chromatography equipped with a flame ionization detector. The suitable air flow rate, adsorption capacity, sample storage stability, desorption efficiency and reliability of the method for sampling and analysis of 4-vinyl-1-cyclohexene were evaluated. The method was applied to sampling and analysis of 4-vinyl-1-cyclohexene in the rubber industry. The results indicated a suitable air flow rate of 0.3 to 1.5 l/min. The adsorption capacity of 4-vinyl-1-cyclohexene on 100 mg of charcoal was 0.2134 mg. The 4-vinyl-1-cyclohexene adsorbed on the charcoal was stable for 7 d at room temperature or 21 d in a refrigerated condition. The average percent desorption efficiency of 4-vinyl-1-cyclohexene ranged from 90.45% to 97.04% with the loaded amount ranging from 0.412 to 8.250 microg using 1 ml carbon disulfide. The limit of detection of 4-vinyl-1-cyclohexene was 0.044 ng. The average percent recoveries (n=6) of 4-vinyl-1-cyclohexene adsorbed on charcoal ranging from 0.46 to 8.87 microg were 96.78-102.87% with relative standard deviations (RSDs) of 0.34-1.92%, respectively. The concentrations of 4-vinyl-1-cyclohexene ranged from 0.011 to 0.105 mg/m(3) in the working environment of a polybutadiene factory.

  8. Oxidation effects on cleaved multiple quantum well surfaces in air observed by scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Howells, S.; Gallagher, M. J.; Chen, T.; Pax, P.; Sarid, D.

    1992-08-01

    The paper presents the first atomic force microscopy (AFM) images of cleaved InGaAs/InP multiple quantum wells and compares them with scanning tunneling microscopy (STM) images taken of the same heterostructure. The images were stable in air for over a day. Based on these results, it is proposed that the mechanism for contrast in the images is due to an oxide layer that grows primarily on the InGaAs wells and not on the InP barriers. Both STM and AFM clearly resolve the individual wells of the heterostructure, although STM measured a larger corrugation than an AFM. STM also exhibited superior lateral resolution of about 2 nm, while AFM had a lateral resolution of approximately 6 nm.

  9. Developing and testing a diagnostic probe for grape phylloxera applicable to soil samples.

    PubMed

    Herbert, Karen; Powell, Kevin; Mckay, Alan; Hartley, Di; Herdina; Ophel-Keller, Kathy; Schiffer, Michele; Hoffmann, Ary

    2008-12-01

    Grape phylloxera, Daktulosphaira vitifoliae (Fitch) (Hemiptera Phylloxeridae) is a damaging pest of grapevines (Vitis spp.) around the world, and the management of this pest requires early detection of infestations. Here, we describe the development and validation of a sensitive DNA test for grape phylloxera that can be applied to soil. Species-specific primers were developed for grape phylloxera in the internal transcribed space region 2, and their specificity was confirmed after thorough screening by using a wide range of vineyard organisms and aphid genera. Preliminary testing of the detection limits of the grape phylloxera-specific primers was conducted using field-sourced soil types spiked with a known number of grape phylloxera. The assay was converted to a real-time polymerase chain reaction format (TaqMan MGB). This assay, in combination with DNA extraction from soil, can detect phylloxera crawlers added to soil. The assay was evaluated in the field at a recently detected grape phylloxera infestation site from the Yarra Valley in Victoria, Australia. The DNA assay proved to be substantially more sensitive than a standard ground survey for detecting grape phylloxera presence on vine roots in the infested vineyard. Moreover, unlike the ground survey, the assay provided quantitative information on grape phylloxera infestations, because grape phylloxera DNA concentrations in samples from vines closely matched the numbers of grape phylloxera crawlers collected with emergence traps placed at the base of vines. Unlike other detection techniques, the method can be applied at any time of the year, and it can be potentially modified to provide specific information on the virulence levels of the particular grape phylloxera genotypes responsible for any new infestations.

  10. Results of Self-Absorption Study on the Versapor 3000 Filters for Radioactive Particulate Air Sampling

    SciTech Connect

    Barnett, J. Matthew; Cullinan, Valerie I.; Barnett, Debra S.; Trang-Le, Truc LT; Bliss, Mary; Greenwood, Lawrence R.; Ballinger, Marcel Y.

    2009-02-17

    Since the mid-1980s, Pacific Northwest National Laboratory (PNNL) has used a value of 0.85 as the correction factor for self absorption of activity for particulate radioactive air samples collected from building exhaust for environmental monitoring. This value accounts for activity that cannot be detected by direct counting of alpha and beta particles. Emissions can be degraded or blocked by filter fibers for particles buried in the filter material or by inactive dust particles collected with the radioactive particles. These filters are used for monitoring air emissions from PNNL stacks for radioactive particles. This paper describes an effort to re-evaluate self-absorption effects in particulate radioactive air sample filters (Versapor® 3000, 47 mm diameter) used at PNNL. There were two methods used to characterize the samples. Sixty samples were selected from the archive for acid digestion to compare the radioactivity measured by direct gas-flow proportional counting of filters to the results obtained after acid digestion of the filter and counting again by gas-flow proportional detection. Thirty different sample filters were selected for visible light microscopy to evaluate filter loading and particulate characteristics. Mass-loading effects were also considered. Filter ratios were calculated by dividing the initial counts by the post-digestion counts with the expectation that post-digestion counts would be higher because digestion would expose radioactivity embedded in the filter in addition to that on top of the filter. Contrary to expectations, the post digestion readings were almost always lower than initial readings and averaged approximately half the initial readings for both alpha and beta activity. Before and after digestion readings appeared to be related to each other, but with a low coefficient of determination (R^2) value. The ratios had a wide range of values indicating that this method did not provide sufficient precision to quantify self

  11. Combining Transmission Geometry Laser Ablation and a Non Contact Continuous Flow Surface Sampling Probe/Electrospray Emitter for Mass Spectrometry-Based Chemical Imaging

    SciTech Connect

    Ovchinnikova, Olga S; Kertesz, Vilmos; Van Berkel, Gary J

    2011-01-01

    This paper describes the coupling of ambient pressure transmission geometry laser ablation with a liquid phase sample collection into a continuous flow surface sampling probe/electrospray emitter for mass spectrometry based chemical imaging. The flow probe/emitter device was placed in close proximity to the surface to collect the sample plume produced by laser ablation. The sample collected was immediately aspirated into the probe and on to the electrospray emitter, ionized and detected with the mass spectrometer. Freehand drawn ink lines and letters and an inked fingerprint on microscope slides were analyzed. The circular laser ablation area was about 210 m in diameter and under the conditions used in these experiments the spatial resolution, as determined by the size of the surface features distinguished in the chemical images, was about 100 m.

  12. A survey of recent results in passive sampling of water and air by semipermeable membrane devices

    USGS Publications Warehouse

    Prest, Harry F.; Huckins, James N.; Petty, Jimmie D.; Herve, Sirpa; Paasivirta, Jaakko; Heinonen, Pertti

    1995-01-01

    A survey is presented of some recent results for passive sampling of water and air for trace organic contaminants using lipid-filled semipermeable membrane devices (SPMDs). Results of water sampling for trace organochlorine compounds using simultaneously exposed SPMDs and the most universally applied biomonitor (bivalves) are discussed. In general, the total amounts of accumulated analytes available for analysis in bivalves and SPMDs were comparable. However, SPMD controls typically had negligible levels of contamination, which was not always the case for transplanted bivalves, even after prolonged depuration prior to exposure. In surveys of the spatial trends of organochlorines at a series of sites, data from bivalves and SPMDs provided the same picture of contaminant distribution and severity. An exception was ionizable contaminants such as the chlorinated phenolic compounds and their transformation products found in pulp mill effluents. In these cases the two monitoring approaches compliment each other, i.e. what is not found in bivalves appears in SPMDs and vice versa. SPMDs have also been applied in environments where biomonitoring is not feasible. SPMDs have shown their utility in studies of trace levels of polyaromatic hydrocarbons by locating and characterizing point sources. An example is given of their application to the calculation of contaminant half-lives from aqueous SPMD residues, a direct measurement of the persistence of contaminants in an environmental compartment. Similarly, results of air sampling with SPMDs in a relatively pristine coastal location are cited which reveal a tremendous enhancement in p,p′-DDE relative to open ocean values.

  13. Contemporary-use pesticides in personal air samples during pregnancy and blood samples at delivery among urban minority mothers and newborns.

    PubMed Central

    Whyatt, Robin M; Barr, Dana B; Camann, David E; Kinney, Patrick L; Barr, John R; Andrews, Howard F; Hoepner, Lori A; Garfinkel, Robin; Hazi, Yair; Reyes, Andria; Ramirez, Judyth; Cosme, Yesenia; Perera, Frederica P

    2003-01-01

    We have measured 29 pesticides in plasma samples collected at birth between 1998 and 2001 from 230 mother and newborn pairs enrolled in the Columbia Center for Children's Environmental Health prospective cohort study. Our prior research has shown widespread pesticide use during pregnancy among this urban minority cohort from New York City. We also measured eight pesticides in 48-hr personal air samples collected from the mothers during pregnancy. The following seven pesticides were detected in 48-83% of plasma samples (range, 1-270 pg/g): the organophosphates chlorpyrifos and diazinon, the carbamates bendiocarb and 2-isopropoxyphenol (metabolite of propoxur), and the fungicides dicloran, phthalimide (metabolite of folpet and captan), and tetrahydrophthalimide (metabolite of captan and captafol). Maternal and cord plasma levels were similar and, except for phthalimide, were highly correlated (p < 0.001). Chlorpyrifos, diazinon, and propoxur were detected in 100% of personal air samples (range, 0.7-6,010 ng/m(3)). Diazinon and propoxur levels were significantly higher in the personal air of women reporting use of an exterminator, can sprays, and/or pest bombs during pregnancy compared with women reporting no pesticide use or use of lower toxicity methods only. A significant correlation was seen between personal air level of chlorpyrifos, diazinon, and propoxur and levels of these insecticides or their metabolites in plasma samples (maternal and/or cord, p < 0.05). The fungicide ortho-phenylphenol was also detected in 100% of air samples but was not measured in plasma. The remaining 22 pesticides were detected in 0-45% of air or plasma samples. Chlorpyrifos, diazinon, propoxur, and bendiocarb levels in air and/or plasma decreased significantly between 1998 and 2001. Findings indicate that pesticide exposures are frequent but decreasing and that the pesticides are readily transferred to the developing fetus during pregnancy. PMID:12727605

  14. Sampling of Breathable Air in U.S. Navy Sonar Domes

    DTIC Science & Technology

    1994-03-01

    USS Kidd 4/92 154 ( DDG - 993 ) USS Donald B. Beary (FF- 6/92 41 1085) USS Truett 6/92 149 (FF-1095) USS San Jacinto 6/92 70 (CG-56) USS Hue City 9/92 32...pressure-tight bulkhead in the center of the dome. On the DD-963, and DDG - 993 , and CG-47 class ships (i.e., destroyers and 5 cruisers), samples of dome air...Command. NAVSEA S9165-AH-MMA-010. Technical manual for sonar dome rubber window SDRW-1 for DD-963, DDG - 993 , and CG-47 class vessels. Revision 1,

  15. Evaluation of septum-capped vials for storage of gas samples during air transport.

    PubMed

    Glatzel, Stephan; Well, Reinhard

    2008-01-01

    In order to provide information on the suitability of commonly used gas storage vials for air transport, we tested two vial types on their ability to preserve defined nitrous oxide concentrations and excess pressure when exposed to low pressure, low temperature and puncture by needles. Unlike in Crimp Cap vials, in Exetainers no nitrous oxide loss following low pressure storage was detectable. Tightness of Exetainers following multiple puncture was best using a small needle diameter. Pressure loss following 5, 10, or 25 punctures was lowest in the Exetainers. We conclude that Exetainers are suitable for storing gas samples for an extended period of time during aircraft transport.

  16. Robust detection and identification of multiple oomycetes and fungi in environmental samples by using a novel cleavable padlock probe-based ligation detection assay.

    PubMed

    van Doorn, R; Slawiak, M; Szemes, M; Dullemans, A M; Bonants, P; Kowalchuk, G A; Schoen, C D

    2009-06-01

    Simultaneous detection and identification of multiple pathogenic microorganisms in complex environmental samples are required in numerous diagnostic fields. Here, we describe the development of a novel, background-free ligation detection (LD) system using a single compound detector probe per target. The detector probes used, referred to as padlock probes (PLPs), are long oligonucleotides containing asymmetric target complementary regions at both their 5' and 3' ends which confer extremely specific target detection. Probes also incorporate a desthiobiotin moiety and an internal endonuclease IV cleavage site. DNA samples are PCR amplified, and the resulting products serve as potential targets for PLP ligation. Upon perfect target hybridization, the PLPs are circularized via enzymatic ligation, captured, and cleaved, allowing only the originally ligated PLPs to be visualized on a universal microarray. Unlike previous procedures, the probes themselves are not amplified, thereby allowing a simple PLP cleavage to yield a background-free assay. We designed and tested nine PLPs targeting several oomycetes and fungi. All of the probes specifically detected their corresponding targets and provided perfect discrimination against closely related nontarget organisms, yielding an assay sensitivity of 1 pg genomic DNA and a dynamic detection range of 10(4). A practical demonstration with samples collected from horticultural water circulation systems was performed to test the robustness of the newly developed multiplex assay. This novel LD system enables highly specific detection and identification of multiple pathogens over a wide range of target concentrations and should be easily adaptable to a variety of applications in environmental microbiology.

  17. Wind estimation using air data probe measurements to evaluate meteorological measurements made during Space Shuttle entries

    NASA Technical Reports Server (NTRS)

    Kelly, G. M.; Findlay, J. T.; Compton, H. R.

    1982-01-01

    Deterministic and weighted least squares methods for obtaining estimates of the horizontal winds encountered during the Shuttle entry phase are described. The estimates are based on in situ Air Data System (ADS) measurements of angle-of-attack, side-slip angle and true airspeed, in conjunction with inertial trajectory parameters obtained from the post flight trajectory reconstruction. Accuracies in the wind estimates obtained from each method are assessed using both theoretical arguments and flight results. Comparisons of derived winds with meteorological measurements taken during the first three Shuttle entries have demonstrated: (1) the usefulness of the wind estimators for evaluating meteorological measurements below 50 kft, and (2) the potential for adequate wind determinations in the absence of independent wind measurements. Comparisons of STS-3 flight-derived L/D versus predicted values from the LaRC aerodynamic data base are presented from 50 kft to touchdown. These results exemplify the importance of such determinations to enhance the ongoing Shuttle aerodynamic and aerothermodynamic research.

  18. Detection of pollen grains in multifocal optical microscopy images of air samples.

    PubMed

    Landsmeer, Sander H; Hendriks, Emile A; de Weger, Letty A; Reiber, Johan H C; Stoel, Berend C

    2009-06-01

    Pollen is a major cause of allergy and monitoring pollen in the air is relevant for diagnostic purposes, development of pollen forecasts, and for biomedical and biological researches. Since counting airborne pollen is a time-consuming task and requires specialized personnel, an automated pollen counting system is desirable. In this article, we present a method for detecting pollen in multifocal optical microscopy images of air samples collected by a Burkard pollen sampler, as a first step in an automated pollen counting procedure. Both color and shape information was used to discriminate pollen grains from other airborne material in the images, such as fungal spores and dirt. A training set of 44 images from successive focal planes (stacks) was used to train the system in recognizing pollen color and for optimization. The performance of the system has been evaluated using a separate set of 17 image stacks containing 65 pollen grains, of which 86% was detected. The obtained precision of 61% can still be increased in the next step of classifying the different pollen in such a counting system. These results show that the detection of pollen is feasible in images from a pollen sampler collecting ambient air. This first step in automated pollen detection may form a reliable basis for an automated pollen counting system.

  19. Extreme 13C depletion of CCl2F2 in firn air samples from NEEM, Greenland

    NASA Astrophysics Data System (ADS)

    Zuiderweg, A.; Holzinger, R.; Martinerie, P.; Schneider, R.; Kaiser, J.; Witrant, E.; Etheridge, D.; Petrenko, V.; Blunier, T.; Röckmann, T.

    2013-01-01

    A series of 12 high volume air samples collected from the S2 firn core during the North Greenland Eemian Ice Drilling (NEEM) 2009 campaign have been measured for mixing ratio and stable carbon isotope composition of the chlorofluorocarbon CFC-12 (CCl2F2). While the mixing ratio measurements compare favorably to other firn air studies, the isotope results show extreme 13C depletion at the deepest measurable depth (65 m), to values lower than δ13C = -80‰ vs. VPDB (the international stable carbon isotope scale), compared to present day surface tropospheric measurements near -40‰. Firn air modeling was used to interpret these measurements. Reconstructed atmospheric time series indicate even larger depletions (to -120‰) near 1950 AD, with subsequent rapid enrichment of the atmospheric reservoir of the compound to the present day value. Mass-balance calculations show that this change is likely to have been caused by a large change in the isotopic composition of anthropogenic CFC-12 emissions, probably due to technological advances in the CFC production process over the last 80 yr, though direct evidence is lacking.

  20. Extreme 13C depletion of CCl2F2 in firn air samples from NEEM, Greenland

    NASA Astrophysics Data System (ADS)

    Zuiderweg, A.; Holzinger, R.; Martinerie, P.; Schneider, R.; Kaiser, J.; Witrant, E.; Etheridge, D.; Rubino, M.; Petrenko, V.; Blunier, T.; Röckmann, T.

    2012-07-01

    A series of 12 high volume air samples collected from the S2 firn core during the North Greenland Eemian Ice Drilling (NEEM) 2009 campaign have been measured for mixing ratio and stable carbon isotope composition of the chlorofluorocarbon CFC-12 (CCl2F2). While the mixing ratio measurements compare favorably to other firn air studies, the isotope results show extreme 13C depletion at the deepest measurable depth (65 m), to values lower than δ13C = -80‰ vs. VPDB (the international stable carbon isotope scale), compared to present day surface tropospheric measurements near -40‰. Firn air modeling was used to interpret these measurements. Reconstructed atmospheric time series indicate even larger depletions (to -120‰) near 1950 AD, with subsequent rapid enrichment of the atmospheric reservoir of the compound to the present day value. Mass-balance calculations show that this change must have been caused by a large change in the isotopic composition of anthropogenic CFC-12 emissions, probably due to technological changes in the CFC production process over the last 80 yr. Propagating the mass-balance calculations into the future demonstrates that as emissions decrease to zero, isotopic fractionation by the stratospheric sinks will lead to continued 13C enrichment in atmospheric CFC-12.

  1. Effect of Nitrate Injection on the Microbial Community in an Oil Field as Monitored by Reverse Sample Genome Probing

    PubMed Central

    Telang, A. J.; Ebert, S.; Foght, J. M.; Westlake, D.; Jenneman, G. E.; Gevertz, D.; Voordouw, G.

    1997-01-01

    The reverse sample genome probe (RSGP) method, developed for monitoring the microbial community in oil fields with a moderate subsurface temperature, has been improved by (i) isolation of a variety of heterotrophic bacteria and inclusion of their genomes on the oil field master filter and (ii) use of phosphorimaging technology for the rapid quantitation of hybridization signals. The new master filter contains the genomes of 30 sulfate-reducing, 1 sulfide-oxidizing, and 16 heterotrophic bacteria. Most have been identified by partial 16S rRNA sequencing. Use of improved RSGP in monitoring the effect of nitrate injection in an oil field indicated that the sulfide-oxidizing, nitrate-reducing isolate CVO (a Campylobacter sp.) becomes the dominant community component immediately after injection. No significant enhancement of other community members, including the sulfate-reducing bacteria, was observed. The elevated level of CVO decayed at most sampling sites within 30 days after nitrate injection was terminated. Chemical analyses indicated a corresponding decrease and subsequent increase in sulfide concentrations. Thus, transient injection of a higher potential electron acceptor into an anaerobic subsurface system can have desirable effects (i.e., reduction of sulfide levels) without a permanent adverse influence on the resident microbial community. PMID:16535595

  2. Anaerobic Methyl tert-Butyl Ether-Degrading Microorganisms Identified in Wastewater Treatment Plant Samples by Stable Isotope Probing

    PubMed Central

    Sun, Weimin; Sun, Xiaoxu

    2012-01-01

    Anaerobic methyl tert-butyl ether (MTBE) degradation potential was investigated in samples from a range of sources. From these 22 experimental variations, only one source (from wastewater treatment plant samples) exhibited MTBE degradation. These microcosms were methanogenic and were subjected to DNA-based stable isotope probing (SIP) targeted to both bacteria and archaea to identify the putative MTBE degraders. For this purpose, DNA was extracted at two time points, subjected to ultracentrifugation, fractioning, and terminal restriction fragment length polymorphism (TRFLP). In addition, bacterial and archaeal 16S rRNA gene clone libraries were constructed. The SIP experiments indicated bacteria in the phyla Firmicutes (family Ruminococcaceae) and Alphaproteobacteria (genus Sphingopyxis) were the dominant MTBE degraders. Previous studies have suggested a role for Firmicutes in anaerobic MTBE degradation; however, the putative MTBE-degrading microorganism in the current study is a novel MTBE-degrading phylotype within this phylum. Two archaeal phylotypes (genera Methanosarcina and Methanocorpusculum) were also enriched in the heavy fractions, and these organisms may be responsible for minor amounts of MTBE degradation or for the uptake of metabolites released from the primary MTBE degraders. Currently, limited information exists on the microorganisms able to degrade MTBE under anaerobic conditions. This work represents the first application of DNA-based SIP to identify anaerobic MTBE-degrading microorganisms in laboratory microcosms and therefore provides a valuable set of data to definitively link identity with anaerobic MTBE degradation. PMID:22327600

  3. 3D site specific sample preparation and analysis of 3D devices (FinFETs) by atom probe tomography.

    PubMed

    Kambham, Ajay Kumar; Kumar, Arul; Gilbert, Matthieu; Vandervorst, Wilfried

    2013-09-01

    With the transition from planar to three-dimensional device architectures such as Fin field-effect-transistors (FinFETs), new metrology approaches are required to meet the needs of semiconductor technology. It is important to characterize the 3D-dopant distributions precisely as their extent, positioning relative to gate edges and absolute concentration determine the device performance in great detail. At present the atom probe has shown its ability to analyze dopant distributions in semiconductor and thin insulating materials with sub-nm 3D-resolution and good dopant sensitivity. However, so far most reports have dealt with planar devices or restricted the measurements to 2D test structures which represent only limited challenges in terms of localization and site specific sample preparation. In this paper we will discuss the methodology to extract the dopant distribution from real 3D-devices such as a 3D-FinFET device, requiring the sample preparation to be carried out at a site specific location with a positioning accuracy ∼50 nm.

  4. Micro-fluidics and integrated optics glass sensor for in-line micro-probing of nuclear samples

    SciTech Connect

    Schimpf, A.; Canto, F.; Bucci, D.; Magnaldo, A.; Couston, L.; Broquin, J. E.

    2011-07-01

    We study the miniaturisation of Thermal Lens Spectrometry (TLS) towards Lab-on-chip integration in order to reduce the volume of fluid assays in nuclear process control. TLS is of great interest in this context since it combines the advantages of optical detection methods with an inherent suitability for small-scale samples. After validating the experimental principle in a classical thermal lens crossed-beam setup, we show the integration of a Young-interferometer with a microcapillary on a glass substrate, reducing the necessary sample size to 400 nl. The interferometer translates the photo-thermally induced refractive index change in the fluid to a phase shift of the fringe pattern, which can then be detected by a camera. Measurements of Co(II) in ethanol yield a detection limit of c = 5 x 10{sup -4} M for the crossed-beam setup and c = 6x10{sup -3} M for the integrated sensor. At an interaction length of 10 {mu}m, it detects a minimum absorbance of AU = 6 x 10{sup -5} in a probed volume of 10 pl. (authors)

  5. Micro-fluidics and integrated optics glass sensor for in-line micro-probing of nuclear samples

    SciTech Connect

    Schimpf, A.; Bucci, D.; Broquin, J.E.; Canto, F.; Magnaldo, A.; Couston, L.

    2012-08-15

    We study the miniaturization of Thermal Lens Spectrometry (TLS) towards Lab-on-chip integration in order to reduce the volume of fluid assays in nuclear process control. TLS is of great interest in this context since it combines the advantages of optical detection methods with an inherent suitability for small-scale samples. After validating the experimental principle in a classical thermal lens crossed-beam setup, we show the integration of a Young-interferometer with a microcapillary on a glass substrate, reducing the necessary sample size to 400 nl. The interferometer translates the photo-thermally induced refractive index change in the fluid to a phase shift of the fringe pattern, which can then be detected by a camera. Measurements of Co(II) in ethanol yield a detection limit of c = 5 x 10{sup -4} M for the crossed-beam setup and c = 6 x 10{sup -3} M for the integrated sensor. At an interaction length of 10 m, it detects a minimum absorbance of K = 1.2 x 10{sup -4} in a probed volume of 14 pl. (authors)

  6. Estimation of sampling error uncertainties in observed surface air temperature change in China

    NASA Astrophysics Data System (ADS)

    Hua, Wei; Shen, Samuel S. P.; Weithmann, Alexander; Wang, Huijun

    2016-06-01

    This study examines the sampling error uncertainties in the monthly surface air temperature (SAT) change in China over recent decades, focusing on the uncertainties of gridded data, national averages, and linear trends. Results indicate that large sampling error variances appear at the station-sparse area of northern and western China with the maximum value exceeding 2.0 K2 while small sampling error variances are found at the station-dense area of southern and eastern China with most grid values being less than 0.05 K2. In general, the negative temperature existed in each month prior to the 1980s, and a warming in temperature began thereafter, which accelerated in the early and mid-1990s. The increasing trend in the SAT series was observed for each month of the year with the largest temperature increase and highest uncertainty of 0.51 ± 0.29 K (10 year)-1 occurring in February and the weakest trend and smallest uncertainty of 0.13 ± 0.07 K (10 year)-1 in August. The sampling error uncertainties in the national average annual mean SAT series are not sufficiently large to alter the conclusion of the persistent warming in China. In addition, the sampling error uncertainties in the SAT series show a clear variation compared with other uncertainty estimation methods, which is a plausible reason for the inconsistent variations between our estimate and other studies during this period.

  7. EPA's Response to the February 2014 Release of Radioactive Material from the Waste Isolation Pilot Plant (WIPP): EPA's WIPP Air Sampling Data from April 2014

    EPA Pesticide Factsheets

    In April 2014, U.S. Environmental Protection Agency (EPA) environmental monitoring and assessment team members reviewed DOE's air sampling plan, visited DOE's air samplers and placed air samplers onsite near existing DOE samplers to corroborate results.

  8. Cast Stone Oxidation Front Evaluation: Preliminary Results For Samples Exposed To Moist Air

    SciTech Connect

    Langton, C. A.; Almond, P. M.

    2013-11-26

    The rate of oxidation is important to the long-term performance of reducing salt waste forms because the solubility of some contaminants, e.g., technetium, is a function of oxidation state. TcO{sub 4}{sup -} in the salt solution is reduced to Tc(IV) and has been shown to react with ingredients in the waste form to precipitate low solubility sulfide and/or oxide phases. Upon exposure to oxygen, the compounds containing Tc(IV) oxidize to the pertechnetate ion, Tc(VII)O{sub 4}{sup -}, which is very soluble. Consequently the rate of technetium oxidation front advancement into a monolith and the technetium leaching profile as a function of depth from an exposed surface are important to waste form performance and ground water concentration predictions. An approach for measuring contaminant oxidation rate (effective contaminant specific oxidation rate) based on leaching of select contaminants of concern is described in this report. In addition, the relationship between reduction capacity and contaminant oxidation is addressed. Chromate (Cr(VI) was used as a non-radioactive surrogate for pertechnetate, Tc(VII), in Cast Stone samples prepared with 5 M Simulant. Cast Stone spiked with pertechnetate was also prepared and tested. Depth discrete subsamples spiked with Cr were cut from Cast Stone exposed to Savannah River Site (SRS) outdoor ambient temperature fluctuations and moist air. Depth discrete subsamples spiked with Tc-99 were cut from Cast Stone exposed to laboratory ambient temperature fluctuations and moist air. Similar conditions are expected to be encountered in the Cast Stone curing container. The leachability of Cr and Tc-99 and the reduction capacities, measured by the Angus-Glasser method, were determined for each subsample as a function of depth from the exposed surface. The results obtained to date were focused on continued method development and are preliminary and apply to the sample composition and curing / exposure conditions described in this report. The

  9. Ram-air sample collection device for a chemical warfare agent sensor

    DOEpatents

    Megerle, Clifford A.; Adkins, Douglas R.; Frye-Mason, Gregory C.

    2002-01-01

    In a surface acoustic wave sensor mounted within a body, the sensor having a surface acoustic wave array detector and a micro-fabricated sample preconcentrator exposed on a surface of the body, an apparatus for collecting air for the sensor, comprising a housing operatively arranged to mount atop the body, the housing including a multi-stage channel having an inlet and an outlet, the channel having a first stage having a first height and width proximate the inlet, a second stage having a second lower height and width proximate the micro-fabricated sample preconcentrator, a third stage having a still lower third height and width proximate the surface acoustic wave array detector, and a fourth stage having a fourth height and width proximate the outlet, where the fourth height and width are substantially the same as the first height and width.

  10. BIBLE A whole-air sampling as a window on Asian biogeochemistry

    NASA Astrophysics Data System (ADS)

    Elliott, Scott; Blake, Donald R.; Blake, Nicola J.; Dubey, Manvendra K.; Rowland, F. Sherwood; Sive, Barkley C.; Smith, Felisa A.

    2003-02-01

    Asian trace gas and aerosol emissions into carbon, nitrogen, and other elemental cycles will figure prominently in near term Earth system evolution. Atmospheric hydrocarbon measurements resolve numerous chemical species and can be used to investigate sourcing for key geocarriers. A recent aircraft study of biomass burning and lightning (BIBLE A) explored the East Asian atmosphere and was unique in centering on the Indonesian archipelago. Samples of volatile organics taken over/between the islands of Japan, Saipan, Java, and Borneo are here examined as a guide to whole-air-based studies of future Asian biogeochemistry. The midlatitude onshore/offshore pulse and tropical convection strongly influence concentration distributions. As species of increasing molecular weight are considered, rural, combustion, and industrial source regimes emerge. Methane-rich inputs such as waste treatment and rice cultivation are evidenced in the geostrophic outflow. The Indonesian atmosphere is rich in biomass burning markers and also those of vehicular activity. Complexity of air chemistry in the archipelago is a direct reflection of diverse topography, land use, and local economies in a rapidly developing nation. Conspicuous in its absence is the fingerprint for liquefied petroleum gas leakage, but it can be expected to appear as demand for clean fossil fuels rises along with per capita incomes. Combustion tracers indicate high nitrogen mobilization rates, linking regional terrestrial geocycles with open marine ecosystems. Sea to air fluxes are superimposed on continental and marine backgrounds for the methyl halides. However, ocean hot spots are not coordinated and suggest an intricate subsurface kinetics. Levels of long-lived anthropogenic halocarbons attest to the success of international environmental treaties while reactive chlorine containing species track industrial air masses. The dozens of hydrocarbons resolvable by gas chromatographic methods will enable monitoring of

  11. Comparison of air samples, nasal swabs, ear-skin swabs and environmental dust samples for detection of methicillin-resistant Staphylococcus aureus (MRSA) in pig herds.

    PubMed

    Agersø, Y; Vigre, H; Cavaco, L M; Josefsen, M H

    2014-08-01

    To identify a cost-effective and practical method for detection of methicillin-resistant Staphylococcus aureus (MRSA) in pig herds, the relative sensitivity of four sample types: nasal swabs, ear-skin (skin behind the ears) swabs, environmental dust swabs and air was compared. Moreover, dependency of sensitivity on within-herd prevalence was estimated. spa-typing was applied in order to study strain diversity. The sensitivity of one air sample was equal to the sensitivity of ten pools of five nasal swabs and relatively independent of within-herd prevalence [predicted to be nearly perfect (99%) for within-herd prevalence ⩾25%]. The results indicate that taking swabs of skin behind the ears (ten pools of five) was even more sensitive than taking nasal swabs (ten pools of five) at the herd level and detected significantly more positive samples. spa types t011, t034 and t4208 were observed. In conclusion, MRSA detection by air sampling is easy to perform, reduces costs and analytical time compared to existing methods, and is recommended for initial testing of herds. Ear-skin swab sampling may be more sensitive for MRSA detection than air sampling or nasal swab sampling.

  12. Evaluation of physical sampling efficiency for cyclone-based personal bioaerosol samplers in moving air environments.

    PubMed

    Su, Wei-Chung; Tolchinsky, Alexander D; Chen, Bean T; Sigaev, Vladimir I; Cheng, Yung Sung

    2012-09-01

    The need to determine occupational exposure to bioaerosols has notably increased in the past decade, especially for microbiology-related workplaces and laboratories. Recently, two new cyclone-based personal bioaerosol samplers were developed by the National Institute for Occupational Safety and Health (NIOSH) in the USA and the Research Center for Toxicology and Hygienic Regulation of Biopreparations (RCT & HRB) in Russia to monitor bioaerosol exposure in the workplace. Here, a series of wind tunnel experiments were carried out to evaluate the physical sampling performance of these two samplers in moving air conditions, which could provide information for personal biological monitoring in a moving air environment. The experiments were conducted in a small wind tunnel facility using three wind speeds (0.5, 1.0 and 2.0 m s(-1)) and three sampling orientations (0°, 90°, and 180°) with respect to the wind direction. Monodispersed particles ranging from 0.5 to 10 μm were employed as the test aerosols. The evaluation of the physical sampling performance was focused on the aspiration efficiency and capture efficiency of the two samplers. The test results showed that the orientation-averaged aspiration efficiencies of the two samplers closely agreed with the American Conference of Governmental Industrial Hygienists (ACGIH) inhalable convention within the particle sizes used in the evaluation tests, and the effect of the wind speed on the aspiration efficiency was found negligible. The capture efficiencies of these two samplers ranged from 70% to 80%. These data offer important information on the insight into the physical sampling characteristics of the two test samplers.

  13. 'Pseudomonas saudimassiliensis' sp. nov. a new bacterial species isolated from air samples in the urban environment of Makkah, Saudi Arabia.

    PubMed

    Azhar, E I; Papadioti, A; Bibi, F; Ashshi, A M; Raoult, D; Angelakis, E

    2017-03-01

    We report here the main characteristics of 'Pseudomonas saudimassiliensis' strain 12M76_air(T) (CSUR P1220), a new species of the Pseudomonas genus that was isolated from air samples in the city environment of Makkah, Saudi Arabia, during the pilgrim period of Hajj 2012.

  14. 'Lysinibacillus saudimassiliensis' sp. nov., a new bacterial species isolated from air samples in the urban environment of Makkah, Saudi Arabia.

    PubMed

    Papadioti, A; Azhar, E I; Bibi, F; Jiman-Fatani, A; Aboushoushah, S M; Yasir, M; Raoult, D; Angelakis, E

    2017-03-01

    We report here the main characteristics of 'Lysinibacillus saudimassiliensis' strain 13S34_air(τ) (CSUR = P1222), a new species of the Lysinibacillus genus that was isolated from air samples in the city environment of Makkah, Saudi Arabia, during the pilgrim period of Hajj 2012.

  15. 'Jeotgalicoccus saudimassiliensis' sp. nov., a new bacterial species isolated from air samples in the urban environment of Makkah, Saudi Arabia.

    PubMed

    Papadioti, A; Azhar, E I; Bibi, F; Jiman-Fatani, A; Aboushoushah, S M; Yasir, M; Raoult, D; Angelakis, E

    2017-01-01

    We report here the main characteristics of 'Jeotgalicoccus saudimassiliensis' strain 13MG44_air(T) (CSUR P1221), a new species of the Jeotgalicoccus genus that was isolated from air samples in the city environment of Makkah, Saudi Arabia, during the pilgrim period of Hajj 2012.

  16. 'Arthrobacter saudimassiliensis' sp. nov. a new bacterial species isolated from air samples in the urban environment of Makkah, Saudi Arabia.

    PubMed

    Papadioti, A; Azhar, E I; Bibi, F; Jiman-Fatani, A; Aboushoushah, S M; Yasir, M; Raoult, D; Angelakis, E

    2017-03-01

    We report here the main characteristics of 'Arthrobacter saudimassiliensis' strain 11W110_air(T) (CSUR P1223), a new species of the Arthrobacter genus that was isolated from air samples in the city environment of Makkah, Saudi Arabia, during the pilgrim period of Hajj 2012.

  17. Can the use of deactivated glass fibre filters eliminate sorption artefacts associated with active air sampling of perfluorooctanoic acid?

    PubMed

    Johansson, Jana H; Berger, Urs; Cousins, Ian T

    2017-05-01

    Experimental work was undertaken to test whether gaseous perfluorooctanoic acid (PFOA) sorbs to glass fibre filters (GFFs) during air sampling, causing an incorrect measure of the gas-particle equilibrium distribution. Furthermore, tests were performed to investigate whether deactivation by siliconisation prevents sorption of gaseous PFOA to filter materials. An apparatus was constructed to closely simulate a high-volume air sampler, although with additional features allowing introduction of gaseous test compounds into an air stream stripped from particles. The set-up enabled investigation of the sorption of gaseous test compounds to filter media, eliminating any contribution from particles. Experiments were performed under ambient outdoor air conditions at environmentally relevant analyte concentrations. The results demonstrate that gaseous PFOA sorbs to GFFs, but that breakthrough of gaseous PFOA on the GFFs occurs at trace-level loadings. This indicates that during high volume air sampling, filters do not quantitatively capture all the PFOA in the sampled air. Experiments with siliconised GFFs showed that this filter pre-treatment reduced the sorption of gaseous PFOA, but that sorption still occurred at environmentally relevant air concentrations. We conclude that deactivation of GFFs does not allow for the separation of gaseous and particle bound perfluorinated carboxylic acids (PFCAs) during active air sampling. Consequently, the well-recognised theory that PFCAs do not prevail as gaseous species in the atmosphere may be based on biased measurements. Caution should be taken to ensure that this artefact will not bias the conclusions of future field studies.

  18. Air sampling of aromatic hydrocarbons in the presence of ozone by solid-phase microextraction.

    PubMed

    Xiong, Gouhua; Koziel, Jacek A; Pawliszyn, Janusz

    2004-01-30

    Effects of ozone on air sampling of standard gas mixtures of aromatic hydrocarbons were tested using solid-phase microextraction (SPME). Standard concentrations of ozone ranging from 10 ppb (v/v) to 6400 ppm (v/v) were generated using an in-house built ozone generator based on corona discharge. Effects of temperature, discharge voltage, and oxygen flow on the ozone generation were tested. The working dc voltage had the greatest effect on generated ozone concentration and was proportional to the ozone concentration. Generation temperature and oxygen flow rate were inversely proportional to ozone concentrations. Produced ozone was mixed with standard benzene, toluene, ethylbenzene, and xylenes (BTEX) gas at less than 100 ppb (v/v). Air samples were collected with poly(dimethylsiloxane) (PDMS) 100 microm SPME fibers and analyzed by gas chromatography (GC)-flame ionization detection (FID) and GC-MS. Significant reductions of BTEX concentrations were observed. In addition, some products of BTEX-ozone-oxygen reactions were identified. SPME worked well as a rapid sampler for BTEX and BTEX-ozone-oxygen reaction products. No significant deterioration of the PDMS coating and no significant reduction of absorption capacity were observed after repeated exposure to ozone.

  19. Optimal media for use in air sampling to detect cultivable bacteria and fungi in the pharmacy.

    PubMed

    Weissfeld, Alice S; Joseph, Riya Augustin; Le, Theresa V; Trevino, Ernest A; Schaeffer, M Frances; Vance, Paula H

    2013-10-01

    Current guidelines for air sampling for bacteria and fungi in compounding pharmacies require the use of a medium for each type of organism. U.S. Pharmacopeia (USP) chapter <797> (http://www.pbm.va.gov/linksotherresources/docs/USP797PharmaceuticalCompoundingSterileCompounding.pdf) calls for tryptic soy agar with polysorbate and lecithin (TSApl) for bacteria and malt extract agar (MEA) for fungi. In contrast, the Controlled Environment Testing Association (CETA), the professional organization for individuals who certify hoods and clean rooms, states in its 2012 certification application guide (http://www.cetainternational.org/reference/CAG-009v3.pdf?sid=1267) that a single-plate method is acceptable, implying that it is not always necessary to use an additional medium specifically for fungi. In this study, we reviewed 5.5 years of data from our laboratory to determine the utility of TSApl versus yeast malt extract agar (YMEA) for the isolation of fungi. Our findings, from 2,073 air samples obtained from compounding pharmacies, demonstrated that the YMEA yielded >2.5 times more fungal isolates than TSApl.

  20. Evaluation of bioaerosol sampling techniques for the detection of Chlamydophila psittaci in contaminated air.

    PubMed

    Van Droogenbroeck, Caroline; Van Risseghem, Marleen; Braeckman, Lutgart; Vanrompay, Daisy

    2009-03-16

    Chlamydophila (C.) psittaci, a category B bioterrorism agent, causes respiratory disease in birds and psittacosis or parrot fever in man. The disease spreads aerogenically and no vaccines are available for either birds or man. Highly sensitive C. psittaci bioaerosol monitoring methods are unavailable. We evaluated: (1) dry filtration for collecting C. psittaci from contaminated air using different samplers and membrane filters, (2) impingement into different liquid collection media by use of the AGI-30 impinger and the BioSampler and (3) impaction into newly designed C. psittaci media utilizing the MAS-100 aerosol impactor. For personal bioaerosol sampling, we recommend the use of a gelatin filter in combination with the IOM inhalable dust sampler at an airflow rate of 2L/min. This allowed the detection of 10 organisms of C. psittaci by both PCR and culture. For stationary bioaerosol monitoring, sampling 1000L of air in 10min with the MAS-100 impactor and ChlamyTrap 1 impaction medium was most efficient and made it possible to detect 1 and 10 C. psittaci organisms by PCR and culture, respectively. ChlamyTrap 1 in combination with the MAS-100 impactor might also be applicable for bioaerosol monitoring of viruses.

  1. Evaluating spatial distribution and seasonal variation of phthalates using passive air sampling in southern India.

    PubMed

    Sampath, Srimurali; Selvaraj, Krishna Kumar; Shanmugam, Govindaraj; Krishnamoorthy, Vimalkumar; Chakraborty, Paromita; Ramaswamy, Babu Rajendran

    2017-02-01

    Usage of phthalates as plasticizers has resulted in worldwide occurrence and is becoming a serious concern to human health and environment. However, studies on phthalates in Indian atmosphere are lacking. Therefore, we studied the spatio-temporal trends of six major phthalates in Tamil Nadu, southern India, using passive air samplers. Phthalates were ubiquitously detected in all the samples and the average total phthalates found in decreasing order is pre-monsoon (61 ng m(-3)) > summer (52 ng m(-3)) > monsoon (17 ng m(-3)). Largely used phthalates, dibutylphthalate (DBP) and diethylhexlphthalate (DEHP) were predominantly found in all the seasons with contribution of 11-31% and 59-68%, respectively. The highest total phthalates was observed in summer at an urban location (836 ng m(-3)). Furthermore, through principal component analysis, potential sources were identified as emissions from additives of plasticizers in the polymer industry and the productions of adhesives, building materials and vinyl flooring. Although inhalation exposure of infants was higher than other population segments (toddlers, children and adults), exposure levels were found to be safe for people belonging to all ages based on reference dose (RfD) and tolerable daily intake (TDI) values. This study first attempted to report seasonal trend based on atmospheric monitoring using passive air sampling technique and exposure risk together.

  2. Concentrations of polybrominated diphenyl ethers (PBDEs) in matched samples of human milk, dust and indoor air.

    PubMed

    Toms, Leisa-Maree L; Hearn, Laurence; Kennedy, Karen; Harden, Fiona; Bartkow, Michael; Temme, Christian; Mueller, Jochen F

    2009-08-01

    Polybrominated diphenyl ethers (PBDEs) are lipophilic, persistent pollutants found worldwide in environmental and human samples. Exposure pathways for PBDEs remain unclear but may include food, air and dust. The aim of this study was to conduct an integrated assessment of PBDE exposure and human body burden using 10 matched samples of human milk, indoor air and dust collected in 2007-2008 in Brisbane, Australia. In addition, temporal analysis was investigated comparing the results of the current study with PBDE concentrations in human milk collected in 2002-2003 from the same region. PBDEs were detected in all matrices and the median concentrations of BDEs -47 and -209 in human milk, air and dust were: 4.2 and 0.3 ng/g lipid; 25 and 7.8 pg/m(3); and 56 and 291 ng/g dust, respectively. Significant correlations were observed between the concentrations of BDE-99 in air and human milk (r=0.661, p=0.038) and BDE-153 in dust and BDE-183 in human milk (r=0.697, p=0.025). These correlations do not suggest causal relationships - there is no hypothesis that can be offered to explain why BDE-153 in dust and BDE-183 in milk are correlated. The fact that so few correlations were found in the data could be a function of the small sample size, or because additional factors, such as sources of exposure not considered or measured in the study, might be important in explaining exposure to PBDEs. There was a slight decrease in PBDE concentrations from 2002-2003 to 2007-2008 but this may be due to sampling and analytical differences. Overall, average PBDE concentrations from these individual samples were similar to results from pooled human milk collected in Brisbane in 2002-2003 indicating that pooling may be an efficient, cost-effective strategy of assessing PBDE concentrations on a population basis. The results of this study were used to estimate an infant's daily PBDE intake via inhalation, dust ingestion and human milk consumption. Differences in PBDE intake of individual

  3. ANASORB{reg_sign} 747 - A universal sorbent for air sampling?

    SciTech Connect

    Harper, M.

    1997-12-31

    A sorbent to be used for air sampling must meet certain performance criteria including sample background, capacity, stability, and recovery. Anasorb{sup R} 747 is a proprietary 20/40 mesh beaded active carbon prepared from raw materials with a very low ash content in a process which creates a regular pore structure. The background is very low for both inorganic and organic species, and the surface is more inert and less hydrophilic than coconut charcoal, while capacity is similar. The low catalytic activity of the surface means samples of many reactive compounds remain stable for longer periods. The sorbent is compatible with most solvent systems in use (e.g. carbon disulfide, methylene chloride, methanol, dimethyformamide). Anasorb 747 can be coated with chemicals for efficient adsorption of inorganic gases, which can be analyzed at very low levels because of low background interference. A large number of validated sampling methods use Anasorb 747, including methods from OSHA and NIOSH, corporate industrial hygiene laboratories, various branches of the EPA, and international agencies. These methods refer to around fifty different gases and vapors. Although this sorbent is not compatible with some compounds (e.g. low molecular weight aldehydes) it is quite close to being of universal application.

  4. Sampling nitric oxide from combustion gases.

    NASA Technical Reports Server (NTRS)

    England, C.; Houseman, J.; Teixeira, D. P.

    1973-01-01

    Experimental study of several sampling tube and probe material compositions and designs aimed at preventing nitric oxide reduction when sampling nitric oxide from combustion gases. A 250,000 Btu/h furnace fired with technical grade methane was used for testing the sampling probes over a wide range of air-fuel mixtures. The results obtained include the finding that the use of stainless steel in probes creates inaccuracies in near-stoichiometric and fuel-rich sampling in hydrocarbon flames. For very fuel-rich flames, water cooling is needed even in quartz probes to prevent significant reduction of nitric oxide.-

  5. Total Particulate Matter Air Sampling Data (TEOM) from Los Alamos National Laboratory

    DOE Data Explorer

    LANL measures the total particulate mass concentration in the air on a routine basis as well as during incidents that may affect ambient air. The collected data is added to the Air Quality Index (AQI). AQI is an index for reporting daily air quality. It tells you how clean or polluted your air is, and what associated health effects might be a concern for you. The AQI focuses on health effects you may experience within a few hours or days after breathing polluted air. EPA calculates the AQI for five major air pollutants regulated by the Clean Air Act.

  6. An evaluation of analytical methods, air sampling techniques, and airborne occupational exposure of metalworking fluids.

    PubMed

    Verma, Dave K; Shaw, Don S; Shaw, M Lorraine; Julian, Jim A; McCollin, Shari-Ann; des Tombe, Karen

    2006-02-01

    This article summarizes an assessment of air sampling and analytical methods for both oil and water-based metalworking fluids (MWFs). Three hundred and seventy-four long-term area and personal airborne samples were collected at four plants using total (closed-face) aerosol samplers and thoracic samplers. A direct-reading device (DustTrak) was also used. The processes sampled include steel tube making, automotive component manufacturing, and small part manufacturing in a machine shop. The American Society for Testing and Materials (ASTM) Method PS42-97 of analysis was evaluated in the laboratory. This evaluation included sample recovery, determination of detection limits, and stability of samples during storage. Results of the laboratory validation showed (a) the sample recovery to be about 87%, (b) the detection limit to be 35 microg, and (c) sample stability during storage at room temperature to decline rapidly within a few days. To minimize sample loss, the samples should be stored in a freezer and analyzed within a week. The ASTM method should be the preferred method for assessing metalworking fluids (MWFs). The ratio of thoracic aerosol to total aerosol ranged from 0.6 to 0.7. A similar relationship was found between the thoracic extractable aerosol and total extractable aerosol. The DustTrak, with 10-microm sampling head, was useful in pinpointing the areas of potential exposure. MWF exposure at the four plants ranged from 0.04 to 3.84 mg/m3 with the geometric mean ranging between 0.22 to 0.59 mg/m3. Based on this data and the assumption of log normality, MWF exposures are expected to exceed the National Institute for Occupational Safety and Health recommended exposure limit of 0.5 mg/m3 as total mass and 0.4 mg/m3 as thoracic mass about 38% of the time. In addition to controlling airborne MWF exposure, full protection of workers would require the institution of programs for fluid management and dermal exposure prevention.

  7. Sampling medium side resistance to uptake of semivolatile organic compounds in passive air samplers.

    PubMed

    Zhang, Xianming; Tsurukawa, Masahiro; Nakano, Takeshi; Lei, Ying D; Wania, Frank

    2011-12-15

    Current theory of the uptake of semivolatile organic compounds in passive air samplers (PAS) assumes uniform chemical distribution and no kinetic resistance within the passive sampling media (PSM) such as polystyrene-divinylbenzene resin (XAD) and polyurethane foam (PUF). However, these assumptions have not been tested experimentally and are challenged by some recently reported observations. To test the assumptions, we performed kinetic uptake experiments indoors using cylindrical PSM that had been concentrically segmented into three layers. Both XAD and PUF were positioned in the same type of sampler housing to eliminate the variation caused by the different housing designs, which enabled us to quantify differences in uptake caused by the properties of the PSM. Duplicated XAD (PUF) samples were retrieved after being deployed for 0, 1 (0.5), 2 (1), 4 (2), 8 (4), 12 (8), and 24 (12) weeks. Upon retrieval, the PSM layers were separated and analyzed individually for PCBs. Passive sampling rates (R) were lower for heavier PCB homologues. Within a homologue group, R for XAD was higher than that for PUF, from which we infer that the design of the "cylindrical can" housing typically used for XAD PAS lowers the R compared to the "double bowl" shelter commonly used for PUF-disk PAS. Outer layers of the PSM sequestered much higher levels of PCBs than inner layers, indicative of a kinetic resistance to chemical transfer within the PSM. The effective diffusivities for chemical transfer within PSM were derived and were found negatively correlated with the partition coefficients between the PSM and air. Based on the results, we conclude that the PSM-side kinetic resistance should be considered when investigating factors influencing R and when deriving R based on the loss of depuration compounds.

  8. Evaluation of sampling methods for toxicological testing of indoor air particulate matter.

    PubMed

    Tirkkonen, Jenni; Täubel, Martin; Hirvonen, Maija-Riitta; Leppänen, Hanna; Lindsley, William G; Chen, Bean T; Hyvärinen, Anne; Huttunen, Kati

    2016-09-01

    There is a need for toxicity tests capable of recognizing indoor environments with compromised air quality, especially in the context of moisture damage. One of the key issues is sampling, which should both provide meaningful material for analyses and fulfill requirements imposed by practitioners using toxicity tests for health risk assessment. We aimed to evaluate different existing methods of sampling indoor particulate matter (PM) to develop a suitable sampling strategy for a toxicological assay. During three sampling campaigns in moisture-damaged and non-damaged school buildings, we evaluated one passive and three active sampling methods: the Settled Dust Box (SDB), the Button Aerosol Sampler, the Harvard Impactor and the National Institute for Occupational Safety and Health (NIOSH) Bioaerosol Cyclone Sampler. Mouse RAW264.7 macrophages were exposed to particle suspensions and cell metabolic activity (CMA), production of nitric oxide (NO) and tumor necrosis factor (TNFα) were determined after 24 h of exposure. The repeatability of the toxicological analyses was very good for all tested sampler types. Variability within the schools was found to be high especially between different classrooms in the moisture-damaged school. Passively collected settled dust and PM collected actively with the NIOSH Sampler (Stage 1) caused a clear response in exposed cells. The results suggested the higher relative immunotoxicological activity of dust from the moisture-damaged school. The NIOSH Sampler is a promising candidate for the collection of size-fractionated PM to be used in toxicity testing. The applicability of such sampling strategy in grading moisture damage severity in buildings needs to be developed further in a larger cohort of buildings.

  9. 24-HOUR DIFFUSIVE SAMPLING OF TOXIC VOCS IN AIR ONTO CARBOPACK X SOLID ADSORBENT FOLLOWED BY THERMAL DESORPTION/GC/MS ANALYSIS - LABORATORY STUDIES

    EPA Science Inventory

    Diffusive sampling of a mixture of 42 volatile organic compounds (VOCs) in humidified, purified air onto the solid adsorbent Carbopack X was evaluated under controlled laboratory conditions. The evaluation included variations in sample air temperature, relative humidity, and ozon...

  10. CTEPP STANDARD OPERATING PROCEDURE FOR COLLECTION OF FIXED SITE INDOOR AND OUTDOOR AIR SAMPLES FOR PERSISTENT ORGANIC POLLUTANTS (SOP-2.12)

    EPA Science Inventory

    This SOP describes the procedures to set up, calibrate, initiate and terminate air sampling for persistent organic pollutants. This method is used to sample air, indoors and outdoors, at homes and at day care centers over a 48-hr period.

  11. Monte Carlo Simulation of Characteristic Secondary Fluorescence in Electron Probe Microanalysis of Homogeneous Samples Using the Splitting Technique.

    PubMed

    Petaccia, Mauricio; Segui, Silvina; Castellano, Gustavo

    2015-06-01

    Electron probe microanalysis (EPMA) is based on the comparison of characteristic intensities induced by monoenergetic electrons. When the electron beam ionizes inner atomic shells and these ionizations cause the emission of characteristic X-rays, secondary fluorescence can occur, originating from ionizations induced by X-ray photons produced by the primary electron interactions. As detectors are unable to distinguish the origin of these characteristic X-rays, Monte Carlo simulation of radiation transport becomes a determinant tool in the study of this fluorescence enhancement. In this work, characteristic secondary fluorescence enhancement in EPMA has been studied by using the splitting routines offered by PENELOPE 2008 as a variance reduction alternative. This approach is controlled by a single parameter NSPLIT, which represents the desired number of X-ray photon replicas. The dependence of the uncertainties associated with secondary intensities on NSPLIT was studied as a function of the accelerating voltage and the sample composition in a simple binary alloy in which this effect becomes relevant. The achieved efficiencies for the simulated secondary intensities bear a remarkable improvement when increasing the NSPLIT parameter; although in most cases an NSPLIT value of 100 is sufficient, some less likely enhancements may require stronger splitting in order to increase the efficiency associated with the simulation of secondary intensities.

  12. Hydrophobic Treatment Enabling Analysis of Wettable Surfaces using a Liquid Microjunction Surface Sampling Probe/Electrospray Ionization-Mass Spectrometry System

    SciTech Connect

    Walworth, Matthew J; Stankovich, Joseph J; Van Berkel, Gary J; Schulz, Michael; Minarik, susanne; Nichols, Judy; Reich, Eike

    2011-01-01

    An aerosol application procedure involving one or more commercially available silicone based products was developed to create hydrophobic surfaces that enable analysis of otherwise wettable, absorbent surfaces using a liquid microjunction surface sampling probe/electrospray ionization mass spectrometry system. The treatment process resulted in a hydrophobic surface that enabled formation of the requisite probe - to - surface liquid microjunction for sampling and allowed efficient extraction of the analytes from the surface, but did not contribute significant chemical background in the mass spectra. The utility of this treatment process was demonstrated with the treatment of wettable high performance thin layer chromatography plates, post plate development, and their subsequent analysis with the sampling probe. The surface treatment process for different surface types was described and explained and the effectiveness of the treatment and subsequent analysis was illustrated using alkaloids from Goldenseal (Hydrastis canadensis) root separated on a normal phase silica gel 60 F254S plate and peptides from protein tryptic digests separated on a Protochrom HPTLC Silica gel 60 F254S plate and a Protochrom HPTLC cellulose sheet. This simple surface treatment process significantly expands the analytical surfaces that can be analyzed with the liquid microjunction surface sampling probe, and therefore, also expands the analytical utility of this liquid extraction based surface sampling approach.

  13. In vitro effects of pollutants from particulate and volatile fractions of air samples-day and night variability.

    PubMed

    Novák, Jiří; Giesy, John P; Klánová, Jana; Hilscherová, Klára

    2013-09-01

    Chemicals in air were characterized for potential interference with signaling of estrogen, androgen, and arylhydrocarbon (AhR) receptors, which are known to play an important role in endocrine-disruptive changes in vivo. Previously, effects of this type have been studied mainly in particulate matter in the ambient air from various localities. In this study, both volatile and particulate fractions of air from three sites in Banja Luka region (Bosnia and Herzegovina) were investigated to describe the distribution of endocrine-disrupting contaminants on a small spatial scale. Circadian variability of air pollution was investigated by collecting samples during both day and night. Air samples collected from urban localities at night were more potent in producing the AhR-mediated effects than those collected during daytime. This trend was not observed at the reference rural location. None of the samples showed significant estrogenic or androgenic activity. On the other hand, anti-androgenicity was detected in both particulate and vapor phases, while anti-estrogenicity was detected only in the particulate fraction of air from all localities. The AhR-mediated potencies of samples were associated primarily with non-persistent compounds. Based on the concentrations of 28 individual compounds, PAHs accounted for approximately 30 % of the AhR-mediated potency determined by the bioassay. The results show that there can be a significant difference between levels of bioactive compounds in air between daytime and nighttime.

  14. Interface for direct and continuous sample-matrix deposition onto a MALDI probe for polymer analysis by thermal field flow fractionation and off-line MALDI-MS.

    PubMed

    Basile, Franco; Kassalainen, Galina E; Ratanathanawongs Williams, S Kim

    2005-05-01

    A simple interface based on an oscillating capillary nebulizer (OCN) is described for direct deposition of eluate from a thermal field-flow fractionation (ThFFF) system onto a matrix-assisted laser desorption/ionization (MALDI) probe. In this study, the polymer-containing eluent from the ThFFF system was mixed on-line with MALDI matrix solution and deposited directly onto a moving MALDI probe. The result was a continuous sample track representative of the fractionation process. Subsequent off-line MALDI-mass spectrometry analysis was performed in automated and manual modes. Polystyrene samples of broad polydispersity were used to characterize the overall system performance. The OCN interface is easy to build and operate without the use of heaters or high voltages and is compatible with any MALDI probe format.

  15. Spectral fingerprinting of polycyclic aromatic hydrocarbons in high-volume ambient air samples by constant energy synchronous luminescence spectroscopy

    USGS Publications Warehouse

    Kerkhoff, M.J.; Lee, T.M.; Allen, E.R.; Lundgren, D.A.; Winefordner, J.D.

    1985-01-01

    A high-volume sampler fitted with a glass-fiber filter and backed by polyurethane foam (PUF) was employed to collect airborne particulate and gas-phase polycylic aromatic hydrocarbons (PAHs) in ambient air. Samples were collected from four sources representing a range of environmental conditions: gasoline engine exhaust, diesel engine exhaust, air near a heavily traveled interstate site, and air from a moderately polluted urban site. Spectral fingerprints of the unseparated particulate and gas-phase samples were obtained by constant energy synchronous luminescence spectroscopy (CESLS). Five major PAHs in the gas-phase extracts were characterized and estimated. The compatibility of a high-volume sampling method using polyurethane foam coupled with CESLS detection is explored for use as a screening technique for PAHs in ambient air. ?? 1985 American Chemical Society.

  16. Evaluation of a modified sampling method for molecular analysis of air microflora.

    PubMed

    Lech, T; Ziembinska-Buczynska, A

    2015-04-10

    A serious issue concerning the durability of economically important materials for humans related to cultural heritage is the process of biodeterioration. As a result of this phenomenon, priceless works of art, documents, and old prints have undergone a process of decomposition caused by microorganisms. Therefore, it is important to constantly monitor the presence and diversity of microorganisms in exposition rooms and storage areas of historical objects. In addition, the use of molecular biology tools for conservation studies will enable detailed research as well as reduce the time needed to perform the analyses compared with using conventional methods related to microbiology and conservation. The aim of this study was to adapt the sampling indoor air method for direct DNA extraction from microorganisms, including evaluating the extracted DNA quality and concentration. The obtained DNA was used to study the diversity of mold fungi in indoor air using polymerase chain reaction-denaturing gradient gel electrophoresis in specific archives and museum environments. The research was conducted in 2 storage rooms of the National Archives in Krakow and in 1 exposition room of the Archaeological Museum in Krakow (Poland).

  17. Cluster analysis of passive air sampling data based on the relative composition of persistent organic pollutants.

    PubMed

    Liu, Xiande; Wania, Frank

    2014-03-01

    The development of passive air samplers has allowed the measurement of time-integrated concentrations of persistent organic pollutants (POPs) within spatial networks on a variety of scales. Cluster analysis of POP composition may enhance the interpretation of such spatial data. Several methodological aspects of the application of cluster analysis are discussed, including the influence of a dominant pollutant, the role of PAS duplication, and comparison of regional studies. Relying on data from six regional studies in North and South America, Africa, and Asia, we illustrate here how cluster analysis can be used to extract information and gain insights into POP sources and atmospheric transport contributions. Cluster analysis allows classification of PAS samples into those with significant local source contributions and those that represent regional fingerprints. Local emissions, atmospheric transport, and seasonal cycles are identified as being among the major factors determining the variation in POP composition at many sites. By complementing cluster analysis with meteorological data such as air mass back-trajectories, terrain, as well as geographical and socio-economic aspects, a comprehensive picture of the atmospheric contamination of a region by POPs emerges.

  18. Air-Based Remediation Workshop - Section 1 Sampling And Analysis Revelant To Air-Based Remediation Technologies

    EPA Science Inventory

    Pursant to the EPA-AIT Implementing Arrangement 7 for Technical Environmental Collaboration, Activity 11 "Remediation of Contaminated Sites," the USEPA Office of International Affairs Organized a Force Air Remediation Workshop in Taipei to deliver expert training to the Environme...

  19. Solvent Selection for Pressurized Liquid Extraction of Polymeric Sorbents Used in Air Sampling

    PubMed Central

    Primbs, Toby; Genualdi, Susan; Simonich, Staci

    2014-01-01

    Pressurized liquid extraction (PLE) was evaluated as a method for extracting semivolatile organic compounds (SOCs) from air sampling media; including quartz fiber filter (QFF), polyurethane foam (PUF), and a polystyrene divinyl benzene copolymer (XAD-2). Hansen solubility parameter plots were used to aid in the PLE solvent selection in order to reduce both co-extraction of polyurethane and save time in evaluating solvent compatibility during the initial steps of method development. A PLE solvent composition of 75:25% hexane:acetone was chosen for PUF. The XAD-2 copolymer was not solubilized under the PLE conditions used. The average percent PLE recoveries (and percent relative standard deviations) of 63 SOCs, including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and organochlorine, amide, triazine, thiocarbamate, and phosphorothioate pesticides, were 76.7 (6.2), 79.3 (8.1), and 93.4 (2.9) % for the QFF, PUF, and XAD-2, respectively. PMID:18220448

  20. Sampling of power plant stacks for air toxic emissions: Topical report for Phases 1 and 2

    SciTech Connect

    1995-02-21

    Under contract with the US Department of Energy (DE-AC22-92PCO0367), Pittsburgh Energy Technology Center, Radian Corporation has conducted a test program to collect and analyze size-fractionated stack gas particulate samples for selected inorganic hazardous air pollutants (HAPS). Specific goals of the program are (1) the collection of one-gram quantities of size-fractionated stack gas particulate matter for bulk (total) and surface chemical charactization, and (2) the determination of the relationship between particle size, bulk and surface (leachable) composition, and unit load. The information obtained from this program identifies the effects of unit load, particle size, and wet FGD system operation on the relative toxicological effects of exposure to particulate emissions.

  1. Sampling Human Indigenous Saliva Peptidome Using a Lollipop-Like Ultrafiltration Probe: Simplify and Enhance Peptide Detection for Clinical Mass Spectrometry

    PubMed Central

    Zhu, Wenhong; Gallo, Richard L.; Huang, Chun-Ming

    2012-01-01

    Although human saliva proteome and peptidome have been revealed 1-2 they were majorly identified from tryptic digests of saliva proteins. Identification of indigenous peptidome of human saliva without prior digestion with exogenous enzymes becomes imperative, since native peptides in human saliva provide potential values for diagnosing disease, predicting disease progression, and monitoring therapeutic efficacy. Appropriate sampling is a critical step for enhancement of identification of human indigenous saliva peptidome. Traditional methods of sampling human saliva involving centrifugation to remove debris 3-4 may be too time-consuming to be applicable for clinical use. Furthermore, debris removal by centrifugation may be unable to clean most of the infected pathogens and remove the high abundance proteins that often hinder the identification of low abundance peptidome. Conventional proteomic approaches that primarily utilize two-dimensional gel electrophoresis (2-DE) gels in conjugation with in-gel digestion are capable of identifying many saliva proteins 5-6. However, this approach is generally not sufficiently sensitive to detect low abundance peptides/proteins. Liquid chromatography-Mass spectrometry (LC-MS) based proteomics is an alternative that can identify proteins without prior 2-DE separation. Although this approach provides higher sensitivity, it generally needs prior sample pre-fractionation 7 and pre-digestion with trypsin, which makes it difficult for clinical use. To circumvent the hindrance in mass spectrometry due to sample preparation, we have developed a technique called capillary ultrafiltration (CUF) probes 8-11. Data from our laboratory demonstrated that the CUF probes are capable of capturing proteins in vivo from various microenvironments in animals in a dynamic and minimally invasive manner 8-11. No centrifugation is needed since a negative pressure is created by simply syringe withdrawing during sample collection. The CUF probes combined

  2. Spectrophotometric determination of nitrogen dioxide in air and nitrite in water and soil samples

    SciTech Connect

    Pandurangappa, M.; Balasubramanian, N.

    1995-02-01

    A sensitive spectrophotometric method for the determination of nitrogen dioxide in air and nitrite in water and soil samples is described. Nitrogen dioxide in air is fixed as nitrite ion in alkaline sodium arsenite or in triethanolamine absorber solutions. The method is based on the diazo coupling reaction between p-nitro aniline and 1-hydroxy-2-naphthoic acid. The azo dye formed under aqueous condition has an absorption maximum at 585nm and obeys Beer`s law over the range 0-25{mu}g of nitrite. The colour system is stable for 72h. The relative standard deviation is 2.7% for ten determinations at 15{mu}g of nitrite. The dye is extracted with 1:1 isoamyl alcohol-IBMK mixture and stabilisation with methanolic potassium hydroxide showed {lambda}{sub max} at 610nm. It obeys Beer`s law over the range 0-4{mu}g of nitrite. The colour system is stable for 40h in organic phase and the relative standard deviation is 2.5% for ten determinations at 3{mu}g of nitrite. The molar absorptivity of the colour system is 3.68 x 10{sup 4} Lmol{sup {minus}1} cm{sup {minus}1}. The effect of interfering gases and other ions on the determination of nitrite is described. The developed method has been applied for the determination of residual nitrogen dioxide gas present in the laboratory fume cupboard and automobile exhaust gases. In addition, the method has been applied for the determination of nitrite and nitrate in samples like water, soil and radiator coolants.

  3. Evaluation of sampling and analytical methods for the determination of chlorodifluoromethane in air.

    PubMed

    Seymour, M J; Lucas, M F

    1993-05-01

    In January 1989, the Occupational Safety and Health Administration (OSHA) published revised permissible exposure limits (PELs) for 212 compounds and established PELs for 164 additional compounds. In cases where regulated compounds did not have specific sampling and analytical methods, methods were suggested by OSHA. The National Institute for Occupational Safety and Health (NIOSH) Manual of Analytical Methods (NMAM) Method 1020, which was developed for 1,1,2-trichloro-1,2,2-trifluoroethane, was suggested by OSHA for the determination of chlorodifluoromethane in workplace air. Because this method was developed for a liquid and chlorodifluoromethane is a gas, the ability of NMAM Method 1020 to adequately sample and quantitate chlorodifluoromethane was questioned and tested by researchers at NIOSH. The evaluation of NMAM Method 1020 for chlorodifluoromethane showed that the capacity of the 100/50-mg charcoal sorbent bed was limited, the standard preparation procedure was incorrect for a gas analyte, and the analyte had low solubility in carbon disulfide. NMAM Method 1018 for dichlorodifluoromethane uses two coconut-shell charcoal tubes in series, a 400/200-mg tube followed by a 100/50-mg tube, which are desorbed with methylene chloride. This method was evaluated for chlorodifluoromethane. Test atmospheres, with chlorodifluoromethane concentrations from 0.5-2 times the PEL were generated. Modifications of NMAM Method 1018 included changes in the standard preparation procedure, and the gas chromatograph was equipped with a capillary column. These revisions to NMAM 1018 resulted in a 96.5% recovery and a total precision for the method of 7.1% for chlorodifluoromethane. No significant bias in the method was found. Results indicate that the revised NMAM Method 1018 is suitable for the determination of chlorodifluoromethane in workplace air.

  4. Identification of Mycobacterium avium and Mycobacterium intracellulare isolated in Puerto Rico from clinical samples by the use of a non-radioactive DNA probe.

    PubMed

    García, M T; Peña, I; Zlotnik, H

    1994-06-01

    The Mycobacterium avium complex (MAC), especially M. avium, is an important opportunistic pathogen of AIDS patients in the United States. In Puerto Rico, the incidence of infections caused by MAC has not been determined. This is due, in part, to the difficulties associated to the microbiological identification of the microorganisms. In this work, a commercially available kit (AccuProbe, Gen-Probe, Inc., San Diego, CA) utilizing a DNA probe complementary to rRNA of M. avium and M. intracellulare was used to identify seventeen MAC strains and one unknown atypical mycobacterium recovered in culture in Puerto Rico from clinical samples. The results obtained revealed that M. avium was the predominant species recovered (83% of isolates tested). Only two cultures were identified as M. intracellulare. The unknown culture, which did not react with either probe, turned out to be M. gordonae. The probe tests not only are simple to perform, but provide cultural identification results in as little as two hours. This study, the first one of its kind in Puerto Rico, demonstrates that the nucleic acid probes for the cultural identification of M. avium and M. intracellulare offer the potential of providing a prompt diagnosis and much needed data on the epidemiology of MAC infections in Puerto Rico.

  5. Meteorological and operational aspects of 46 clear air turbulent sampling missions with an instrumented B-57B aircraft. Volume 2, appendix C: Turbulence missions

    NASA Technical Reports Server (NTRS)

    Waco, D. E.

    1979-01-01

    The results of 46 clear air turbulence (CAT) probing missions conducted with an extensively instrumented B-57B aircraft are summarized from a meteorological viewpoint in a two-volume technical memorandum. The missions were part of the NASA Langley Research Center's MAT (Measurement of Atmospheric Turbulence) program, which was conducted between March 1974, and September 1975, at altitudes ranging up to 15 km. Turbulence samples were obtained under diverse conditions including mountain waves, jet streams, upper level fronts and troughs, and low altitude mechanical and thermal turbulence. CAT was encountered on 20 flights comprising 77 data runs. In all, approximately 4335 km were flown in light turbulence, 1415 km in moderate turbulence, and 255 km in severe turbulence during the program.

  6. The Inter-Mammary Sticky Roll: A Novel Technique for Securing a Doppler Ultrasonic Probe to the Precordium for Venous Air Embolism Detection

    PubMed Central

    Wali, Arvin R; Gabel, Brandon C; Khalessi, Alexander A; Sang U, Hoi; Drummond, John C

    2016-01-01

    Venous air embolism is a devastating and potentially life-threatening complication that can occur during neurosurgical procedures. We report the development and use of the “inter-mammary sticky roll,” a technique to reliably secure a precordial Doppler ultrasonic probe to the chest wall during neurosurgical cases that require lateral decubitus positioning. We have found that this noninvasive technique is safe, and effectively facilitates a constant Doppler signal with no additional risk to the patient. PMID:27625905

  7. A Modified Alderman-Grant Coil Makes Possible an Efficient Cross-Coil Probe for High Field Solid-state NMR of Lossy Biological Samples

    PubMed Central

    Grant, Christopher V.; Yang, Yuan; Glibowicka, Mira; Wu, Chin H.; Park, Sang Ho; Deber, Charles M.; Opella, Stanley J.

    2009-01-01

    The design, construction, and performance of a cross-coil double-resonance probe for solid-state NMR experiments on lossy biological samples at high magnetic fields are described. The outer coil is a Modified Alderman-Grant Coil (MAGC) tuned to the 1H frequency. The inner coil consists of a multi-turn solenoid coil that produces a B1 field orthogonal to that of the outer coil. This results in a compact nested cross-coil pair with the inner solenoid coil tuned to the low frequency detection channel. This design has several advantages over multiple-tuned solenoid coil probes, since RF heating from the 1H channel is substantially reduced, it can be tuned for samples with a wide range of dielectric constants, and the simplified circuit design and high inductance inner coil provides excellent sensitivity. The utility of this probe is demonstrated on two electrically lossy samples of membrane proteins in phospholipid bilayers (bicelles) that are particularly difficult for conventional NMR probes. The 72-residue polypeptide embedding the transmembrane helices 3 and 4 of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) (residues 194 – 241) requires a high salt concentration in order to be successfully reconstituted in phospholipid bicelles. A second application is to paramagnetic relaxation enhancement applied to the membrane-bound form of Pf1 coat protein in phospholipid bicelles where the resistance to sample heating enables high duty cycle solid-state NMR experiments to be performed. PMID:19733108

  8. Continuous Flow Liquid Microjunction Surface Sampling Probe Connected On-line with HPLC/MS for Spatially Resolved Analysis of Small Molecules and Proteins

    SciTech Connect

    Van Berkel, Gary J; Kertesz, Vilmos

    2013-01-01

    RATIONALE: A continuous flow liquid microjunction surface sampling probe extracts soluble material from surfaces for direct ionization and detection by MS. Demonstrated here is the on-line coupling of such a probe with HPLC/MS enabling extraction, separation and detection of small molecules and proteins from surfaces in a spatially resolved (~0.5 mm diameter spots) manner. Methods: A continuous flow liquid microjunction surface sampling probe was connected to a 6-port, 2-position valve for extract collection and injection to an HPLC column. A QTRAP 5500 hybrid triple quadrupole linear ion trap equipped with a Turbo V ion source operated in positive ESI mode was used for all experiments. System operation was tested with extraction, separation and detection of propranolol and associated metabolites from drug dosed tissues and proteins from dried sheep blood spots on paper. Results: Confirmed in the tissue were the parent drug and two different hydroxypropranolol glucuronides. The mass spectrometric response for these compounds from different locations in the liver showed an increase with increasing extraction time (5, 20 and 40 s extractions). For on-line separation and detection/identification of extracted proteins from dried sheep blood spots, two major protein peaks dominated the chromatogram and could be correlated with the expected masses for the hemoglobin and chains. Conclusions: Spatially resolved sampling, separation, and detection of small molecules and proteins from surfaces can be accomplished using a continuous flow liquid microjunction surface sampling probe coupled on-line with HPLC/MS detection.

  9. A Modified Alderman-Grant Coil makes possible an efficient cross-coil probe for high field solid-state NMR of lossy biological samples

    NASA Astrophysics Data System (ADS)

    Grant, Christopher V.; Yang, Yuan; Glibowicka, Mira; Wu, Chin H.; Park, Sang Ho; Deber, Charles M.; Opella, Stanley J.

    2009-11-01

    The design, construction, and performance of a cross-coil double-resonance probe for solid-state NMR experiments on lossy biological samples at high magnetic fields are described. The outer coil is a Modified Alderman-Grant Coil (MAGC) tuned to the 1H frequency. The inner coil consists of a multi-turn solenoid coil that produces a B 1 field orthogonal to that of the outer coil. This results in a compact nested cross-coil pair with the inner solenoid coil tuned to the low frequency detection channel. This design has several advantages over multiple-tuned solenoid coil probes, since RF heating from the 1H channel is substantially reduced, it can be tuned for samples with a wide range of dielectric constants, and the simplified circuit design and high inductance inner coil provides excellent sensitivity. The utility of this probe is demonstrated on two electrically lossy samples of membrane proteins in phospholipid bilayers (bicelles) that are particularly difficult for conventional NMR probes. The 72-residue polypeptide embedding the transmembrane helices 3 and 4 of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) (residues 194-241) requires a high salt concentration in order to be successfully reconstituted in phospholipid bicelles. A second application is to paramagnetic relaxation enhancement applied to the membrane-bound form of Pf1 coat protein in phospholipid bicelles where the resistance to sample heating enables high duty cycle solid-state NMR experiments to be performed.

  10. A Modified Alderman-Grant Coil makes possible an efficient cross-coil probe for high field solid-state NMR of lossy biological samples.

    PubMed

    Grant, Christopher V; Yang, Yuan; Glibowicka, Mira; Wu, Chin H; Park, Sang Ho; Deber, Charles M; Opella, Stanley J

    2009-11-01

    The design, construction, and performance of a cross-coil double-resonance probe for solid-state NMR experiments on lossy biological samples at high magnetic fields are described. The outer coil is a Modified Alderman-Grant Coil (MAGC) tuned to the (1)H frequency. The inner coil consists of a multi-turn solenoid coil that produces a B(1) field orthogonal to that of the outer coil. This results in a compact nested cross-coil pair with the inner solenoid coil tuned to the low frequency detection channel. This design has several advantages over multiple-tuned solenoid coil probes, since RF heating from the (1)H channel is substantially reduced, it can be tuned for samples with a wide range of dielectric constants, and the simplified circuit design and high inductance inner coil provides excellent sensitivity. The utility of this probe is demonstrated on two electrically lossy samples of membrane proteins in phospholipid bilayers (bicelles) that are particularly difficult for conventional NMR probes. The 72-residue polypeptide embedding the transmembrane helices 3 and 4 of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) (residues 194-241) requires a high salt concentration in order to be successfully reconstituted in phospholipid bicelles. A second application is to paramagnetic relaxation enhancement applied to the membrane-bound form of Pf1 coat protein in phospholipid bicelles where the resistance to sample heating enables high duty cycle solid-state NMR experiments to be performed.

  11. COMPARISON OF GEOPROBE PRT AND AMS GVP SOIL-GAS SAMPLING SYSTEMS WITH DEDICATED VAPOR PROBES IN SANDY SOILS AT THE RAYMARK SUPERFUND SITE

    EPA Science Inventory

    A study was conducted near the Raymark Superfund Site in Stratford, Connecticut to compare results of soil-gas sampling using dedicated vapor probes, a truck-mounted direct-push technique - the Geoprobe Post-Run-Tubing (PRT) system, and a hand-held rotary hammer technique - the A...

  12. Probing BL Lac and Cluster Evolution via a Wide-angle, Deep X-ray Selected Sample

    NASA Astrophysics Data System (ADS)

    Perlman, E.; Jones, L.; White, N.; Angelini, L.; Giommi, P.; McHardy, I.; Wegner, G.

    1994-12-01

    The WARPS survey (Wide-Angle ROSAT Pointed Survey) has been constructed from the archive of all public ROSAT PSPC observations, and is a subset of the WGACAT catalog. WARPS will include a complete sample of >= 100 BL Lacs at F_x >= 10(-13) erg s(-1) cm(-2) . A second selection technique will identify ~ 100 clusters at 0.15samples, as well as their benefits. Only 171 BL Lacs are known and the largest complete samples are also small, with 20-50 objects each. Current data shows a discrepancy between XBL (X-ray selected BL Lac) and RBL (Radio-selected BL Lac) evolution, with = 0.304 +/- 0.062 for XBLs but = 0.60 +/- 0.05 for RBLs. Models of the X-ray luminosity function (XLF) are also poorly constrained. WARPS will allow us to compute an accurate XLF, decreasing the error bars above by over a factor of two. We will also test for low-luminosity BL Lacs, whose non-thermal nuclear sources are dim compared to the host galaxy. Browne and Marcha (1993) claim the EMSS missed most of these objects and is incomplete. If their predictions are correct, 20-40% of the BL Lacs we find will fall in this category, enabling us to probe the evolution and internal workings of BL Lacs at lower luminosities than ever before. By removing likely QSOs before optical spectroscopy, WARPS requires only modest amounts of telescope time. It will extend measurement of the cluster XLF both to higher redshifts (z>0.5) and lower luminosities (LX<1x10(44) erg s(-1) ) than previous measurements, confirming or rejecting the 3sigma detection of negative evolution found in the EMSS, and constraining Cold Dark Matter cosmologies. Faint NELGs are a recently discovered major contributor to the X-ray background. They are a mixture of Sy2s, starbursts and galaxies of unknown type. Detailed classification and evolution of their XLF will be determined for the first time.

  13. The importance of correcting for variable probe-sample interactions in AFM-IR spectroscopy: AFM-IR of dried bacteria on a polyurethane film.

    PubMed

    Barlow, Daniel E; Biffinger, Justin C; Cockrell-Zugell, Allison L; Lo, Michael; Kjoller, Kevin; Cook, Debra; Lee, Woo Kyung; Pehrsson, Pehr E; Crookes-Goodson, Wendy J; Hung, Chia-Suei; Nadeau, Lloyd J; Russell, John N

    2016-08-02

    AFM-IR is a combined atomic force microscopy-infrared spectroscopy method that shows promise for nanoscale chemical characterization of biological-materials interactions. In an effort to apply this method to quantitatively probe mechanisms of microbiologically induced polyurethane degradation, we have investigated monolayer clusters of ∼200 nm thick Pseudomonas protegens Pf-5 bacteria (Pf) on a 300 nm thick polyether-polyurethane (PU) film. Here, the impact of the different biological and polymer mechanical properties on the thermomechanical AFM-IR detection mechanism was first assessed without the additional complication of polymer degradation. AFM-IR spectra of Pf and PU were compared with FTIR and showed good agreement. Local AFM-IR spectra of Pf on PU (Pf-PU) exhibited bands from both constituents, showing that AFM-IR is sensitive to chemical composition both at and below the surface. One distinct difference in local AFM-IR spectra on Pf-PU was an anomalous ∼4× increase in IR peak intensities for the probe in contact with Pf versus PU. This was attributed to differences in probe-sample interactions. In particular, significantly higher cantilever damping was observed for probe contact with PU, with a ∼10× smaller Q factor. AFM-IR chemical mapping at single wavelengths was also affected. We demonstrate ratioing of mapping data for chemical analysis as a simple method to cancel the extreme effects of the variable probe-sample interactions.

  14. 40 CFR Appendix E to Part 58 - Probe and Monitoring Path Siting Criteria for Ambient Air Quality Monitoring

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... 23. Hughes, E.E. Development of Standard Reference Material for Air Quality Measurement. ISA... Criteria for Ambient Air Quality Monitoring E Appendix E to Part 58 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Pt. 58, App....

  15. 40 CFR Appendix E to Part 58 - Probe and Monitoring Path Siting Criteria for Ambient Air Quality Monitoring

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Material for Air Quality Measurement. ISA Transactions, 14:281-291, 1975. 24. Altshuller, A.D. and A.G... Criteria for Ambient Air Quality Monitoring E Appendix E to Part 58 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Pt. 58, App....

  16. 40 CFR Appendix E to Part 58 - Probe and Monitoring Path Siting Criteria for Ambient Air Quality Monitoring

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... 23. Hughes, E.E. Development of Standard Reference Material for Air Quality Measurement. ISA... Criteria for Ambient Air Quality Monitoring E Appendix E to Part 58 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Pt. 58, App....

  17. Swan probe: A nanoliter-scale and high-throughput sampling interface for coupling electrospray ionization mass spectrometry with microfluidic droplet array and multiwell plate.

    PubMed

    Jin, Di-Qiong; Zhu, Ying; Fang, Qun

    2014-11-04

    Mass spectrometry provides a versatile detection method for high-throughput drug screening because it permits the use of native biological substrates and the direct quantification of unlabeled reaction products. This paper describes the design and application of a Swan-shaped probe for high-throughput and nanoliter-scale analysis of biological samples in both a microfluidic droplet array and a multiwell plate with electrospray ionization mass spectrometry (ESI-MS). The Swan probe is fabricated using a single capillary with quite low cost, and it consists of a U-shaped section with a micrometer-sized hole for sampling and a tapered tip for sample electrospray ionization. Continuous sample introduction was carried out under both sampling modes of push-pull and spontaneous injection by sequentially dipping the probe in the sample solutions and then removing them. High-throughput and reliable ESI-MS analysis was achieved in analyzing 256 droplets within 90 min with a peak height RSD of 12.6% (n = 256). To validate its potential in drug discovery, the present system was applied in the screening of inhibitors of acetylcholinesterase (AchE) and the measurement of the IC50 values of identified inhibitors.

  18. Sampling, storage, and analysis of C2-C7 non-methane hydrocarbons from the US National Oceanic and Atmospheric Administration Cooperative Air Sampling Network glass flasks.

    PubMed

    Pollmann, Jan; Helmig, Detlev; Hueber, Jacques; Plass-Dülmer, Christian; Tans, Pieter

    2008-04-25

    An analytical technique was developed to analyze light non-methane hydrocarbons (NMHC), including ethane, propane, iso-butane, n-butane, iso-pentane, n-pentane, n-hexane, isoprene, benzene and toluene from whole air samples collected in 2.5l-glass flasks used by the National Oceanic and Atmospheric Administration, Earth System Research Laboratory, Global Monitoring Division (NOAA ESRL GMD, Boulder, CO, USA) Cooperative Air Sampling Network. This method relies on utilizing the remaining air in these flasks (which is at below-ambient pressure at this stage) after the completion of all routine greenhouse gas measurements from these samples. NMHC in sample aliquots extracted from the flasks were preconcentrated with a custom-made, cryogen-free inlet system and analyzed by gas chromatography (GC) with flame ionization detection (FID). C2-C7 NMHC, depending on their ambient air mixing ratios, could be measured with accuracy and repeatability errors of generally < or =10-20%. Larger deviations were found for ethene and propene. Hexane was systematically overestimated due to a chromatographic co-elution problem. Saturated NMHC showed less than 5% changes in their mixing ratios in glass flask samples that were stored for up to 1 year. In the same experiment ethene and propene increased at approximately 30% yr(-1). A series of blank experiments showed negligible contamination from the sampling process and from storage (<10 pptv yr(-1)) of samples in these glass flasks. Results from flask NMHC analyses were compared to in-situ NMHC measurements at the Global Atmospheric Watch station in Hohenpeissenberg, Germany. This 9-months side-by-side comparison showed good agreement between both methods. More than 94% of all data comparisons for C2-C5 alkanes, isoprene, benzene and toluene fell within the combined accuracy and precision objectives of the World Meteorological Organization Global Atmosphere Watch (WMO-GAW) for NMHC measurements.

  19. Uncertainties in Air Exchange using Continuous-Injection, Long-Term Sampling Tracer-Gas Methods

    SciTech Connect

    Sherman, Max H.; Walker, Iain S.; Lunden, Melissa M.

    2013-12-01

    The PerFluorocarbon Tracer (PFT) method is a low-cost approach commonly used for measuring air exchange in buildings using tracer gases. It is a specific application of the more general Continuous-Injection, Long-Term Sampling (CILTS) method. The technique is widely used but there has been little work on understanding the uncertainties (both precision and bias) associated with its use, particularly given that it is typically deployed by untrained or lightly trained people to minimize experimental costs. In this article we will conduct a first-principles error analysis to estimate the uncertainties and then compare that analysis to CILTS measurements that were over-sampled, through the use of multiple tracers and emitter and sampler distribution patterns, in three houses. We find that the CILTS method can have an overall uncertainty of 10-15percent in ideal circumstances, but that even in highly controlled field experiments done by trained experimenters expected uncertainties are about 20percent. In addition, there are many field conditions (such as open windows) where CILTS is not likely to provide any quantitative data. Even avoiding the worst situations of assumption violations CILTS should be considered as having a something like a ?factor of two? uncertainty for the broad field trials that it is typically used in. We provide guidance on how to deploy CILTS and design the experiment to minimize uncertainties.

  20. Volatile N-nitrosamines in environmental tobacco smoke: Sampling, analysis, emission factors, and indoor air exposures

    SciTech Connect

    Mahanama, K.R.R.; Daisey, J.M.

    1996-05-01

    A more convenient sampling and analysis method for the volatile N-nitrosamines (VNA) in environmental tobacco smoke (ETS), using commercially available Thermosorb/N cartridges, was developed and validated. Using the method, emission factors for the two major VNA in ETS were determined in a room-sized environmental chamber for six commercial cigarette brands, which together accounted for 62.5% of the total market in California in 1990. The average emission factors were 565{+-}115 and 104{+-}20 ng per cigarette for N-nitrosodimethylamine and N-nitrosopyrrolidine, respectively. The emission factors were used to estimate VNA exposures from ETS in a typical office building and an average residence. Indoor concentrations of N,N-dimethylnitrosamine from ETS for these modeled scenarios were less than 10% of the reported median outdoor concentration. This median outdoor concentration, however, includes many measurements made in source-dominated areas and may be considerably higher than one based on more representative sampling of outdoor air. 35 refs., 4 tabs.

  1. Sampling of power plant stacks for air toxic emissions: Final report for Phases 1 and 2

    SciTech Connect

    1995-04-28

    A test program to collect and analyze size-fractionated stack gas particulate samples for selected inorganic hazardous air pollutants (HAPs) was conducted . Specific goals of the program are (1) the collection of one-gram quantities of size-fractionated stack gas particulate matter for bulk (total) and surface chemical characterization, and (2) the determination of the relationship between particle size, bulk and surface (leachable) composition, and unit load. The information obtained from this program identifies the effects of unit load, particle size, and wet FGD system operation on the relative toxicological effects of exposure to particulate emissions. Field testing was conducted in two phases. The Phase I field program was performed over the period of August 24 through September 20, 1992, at the Tennessee Valley Authority Widows Creek Unit 8 Power Station, located near Stevenson (Jackson County), Alabama, on the Tennessee River. Sampling activities for Phase II were conducted from September 11 through October 14, 1993. Widows Creek Unit 8 is a 575-megawatt plant that uses bituminous coal averaging 3.7% sulfur and 13% ash. Downstream of the boiler, a venture wet scrubbing system is used for control of both sulfur dioxide and particulate emissions. There is no electrostatic precipitator (ESP) in this system. This system is atypical and represents only about 5% of the US utility industry. However, this site was chosen for this study because of the lack of information available for this particulate emission control system.

  2. Investigating the momentum balance of a plasma pinch: An air-side stereoscopic imaging system for locating probes

    SciTech Connect

    Sears, Jason Intrator, T. P.; Feng, Y.; Swan, H. O.; Klarenbeek, J.; Gao, K.

    2014-10-01

    The momentum balance of a plasma pinch in the Reconnection Scaling Experiment (RSX) is examined in three dimensions using several repositionable, insertable probes. A new camera-based system described here triangulates the locations of the probe tips so that their measurements are spatially registered. The optical system locates probes to within ±1.5 mm of their absolute 3D position in the vessel and to within ±0.7 mm relative to other probes, on the order of the electron inertial length (1–2 mm)

  3. Atom probe tomography characterization of neutron irradiated surveillance samples from the R. E. Ginna reactor pressure vessel

    NASA Astrophysics Data System (ADS)

    Edmondson, P. D.; Miller, M. K.; Powers, K. A.; Nanstad, R. K.

    2016-03-01

    Surveillance samples of a low copper (nominally 0.05 wt.% Cu) forging and a higher copper (0.23 wt.% Cu) submerged arc weld from the R. E. Ginna reactor pressure vessel have been characterized by atom probe tomography (APT) after exposure to three levels of neutron irradiation, i.e., fluences of 1.7, 3.6 and 5.8 × 1023 n.m-2 (E > 1 MeV), and inlet temperatures of ∼289 °C (∼552 °F). As no copper-enriched precipitates were observed in the low copper forging, and the measured copper content in the ferrite matrix was 0.04± <0.01 at.% Cu, after neutron irradiation to a fluence of 1.7 × 1023 n.m-3, this copper level was below the solubility limit. A number density of 2 × 1022 m-3 of Ni-, Mn- Si-enriched precipitates with an equivalent radius of gyration of 1.7 ± 0.4 nm were detected in the sample. However, Cu-, Ni-, Mn-enriched precipitates were observed in specimens cut from different surveillance specimens from the same forging material in which the overall measured copper level was 0.08± <0.01 at.% (fluence of 3.6 × 1023 n.m-3) and 0.09± <0.01 at.% Cu (fluence of 5.8 × 1023 n.m-3). Therefore, these slightly higher copper contents were above the solubility limit of Cu under these irradiation conditions. A best fit of all the composition data indicated that the size and number density of the Cu-enriched precipitates increased slightly in both size and number density by additional exposure to neutron irradiation. High number densities of Cu-enriched precipitates were observed in the higher Cu submerged arc weld for all irradiated conditions. The size and number density of the precipitates in the welds were higher than in the same fluence forgings. Some Cu-enriched precipitates were found to have Ni-, Mn- Si-, and P-enriched regions on their surfaces suggesting a preferential nucleation site. Atom maps revealed P, Ni, and Mn segregation to, and preferential precipitation of, Cu-enriched precipitates over the surface of a grain boundary in the low fluence

  4. Atom probe tomography characterization of neutron irradiated surveillance samples from the R. E. Ginna reactor pressure vessel

    SciTech Connect

    Edmondson, Philip D.; Miller, Michael K.; Powers, Kathy A.; Nanstad, Randy K.

    2015-12-29

    Surveillance samples of a low copper (nominally 0.05 wt.% Cu) forging and a higher copper (0.23 wt.% Cu) submerged arc weld from the R. E. Ginna reactor pressure vessel have been characterized by atom probe tomography (APT) after exposure to three levels of neutron irradiation, i.e., fluences of 1.7, 3.6 and 5.8 × 1023 n.m–2 (E > 1 MeV), and inlet temperatures of ~289 °C (~552 °F). As no copper-enriched precipitates were observed in the low copper forging, and the measured copper content in the ferrite matrix was 0.04± <0.01 at.% Cu, after neutron irradiation to a fluence of 1.7 × 1023 n.m–3, this copper level was below the solubility limit. A number density of 2 × 1022 m–3 of Ni–, Mn– Si-enriched precipitates with an equivalent radius of gyration of 1.7 ± 0.4 nm were detected in the sample. However, Cu-, Ni-, Mn-enriched precipitates were observed in specimens cut from different surveillance specimens from the same forging material in which the overall measured copper level was 0.08± <0.01 at.% (fluence of 3.6 × 1023 n.m–3) and 0.09± <0.01 at.% Cu (fluence of 5.8 × 1023 n.m–3). Therefore, these slightly higher copper contents were above the solubility limit of Cu under these irradiation conditions. A best fit of all the composition data indicated that the size and number density of the Cu-enriched precipitates increased slightly in both size and number density by additional exposure to neutron irradiation. High number densities of Cu-enriched precipitates were observed in the higher Cu submerged arc weld for all irradiated conditions. The size and number density of the precipitates in the welds were higher than in the same fluence forgings. Some Cu-enriched precipitates were found to have Ni-, Mn- Si-, and P-enriched regions on their surfaces suggesting a preferential nucleation site. Furthermore, atom maps revealed P, Ni, and Mn

  5. Atom probe tomography characterization of neutron irradiated surveillance samples from the R. E. Ginna reactor pressure vessel

    DOE PAGES

    Edmondson, Philip D.; Miller, Michael K.; Powers, Kathy A.; ...

    2015-12-29

    Surveillance samples of a low copper (nominally 0.05 wt.% Cu) forging and a higher copper (0.23 wt.% Cu) submerged arc weld from the R. E. Ginna reactor pressure vessel have been characterized by atom probe tomography (APT) after exposure to three levels of neutron irradiation, i.e., fluences of 1.7, 3.6 and 5.8 × 1023 n.m–2 (E > 1 MeV), and inlet temperatures of ~289 °C (~552 °F). As no copper-enriched precipitates were observed in the low copper forging, and the measured copper content in the ferrite matrix was 0.04± <0.01 at.% Cu, after neutron irradiation to a fluence of 1.7more » × 1023 n.m–3, this copper level was below the solubility limit. A number density of 2 × 1022 m–3 of Ni–, Mn– Si-enriched precipitates with an equivalent radius of gyration of 1.7 ± 0.4 nm were detected in the sample. However, Cu-, Ni-, Mn-enriched precipitates were observed in specimens cut from different surveillance specimens from the same forging material in which the overall measured copper level was 0.08± <0.01 at.% (fluence of 3.6 × 1023 n.m–3) and 0.09± <0.01 at.% Cu (fluence of 5.8 × 1023 n.m–3). Therefore, these slightly higher copper contents were above the solubility limit of Cu under these irradiation conditions. A best fit of all the composition data indicated that the size and number density of the Cu-enriched precipitates increased slightly in both size and number density by additional exposure to neutron irradiation. High number densities of Cu-enriched precipitates were observed in the higher Cu submerged arc weld for all irradiated conditions. The size and number density of the precipitates in the welds were higher than in the same fluence forgings. Some Cu-enriched precipitates were found to have Ni-, Mn- Si-, and P-enriched regions on their surfaces suggesting a preferential nucleation site. Furthermore, atom maps revealed P, Ni, and Mn segregation to, and preferential precipitation of, Cu-enriched precipitates over the surface of a grain

  6. Analysis of quartz by FT-IR in air samples of construction dust.

    PubMed

    Virji, M Abbas; Bello, Dhimiter; Woskie, Susan R; Liu, X Michael; Kalil, Andrew J

    2002-03-01

    The construction industry is reported to have some of the highest exposures to silica-containing dust. With the designation of crystalline silica as a group I human carcinogen by the International Agency for Research on Cancer (IARC), there exists a need for an analytical method to accurately quantify low levels of quartz. A method is described that uses FT-IR for quartz analysis of personal air samples collected from heavy and highway construction sites using 4-stage personal impactors. Sample filters were ashed and 13-mm or 5-mm pellets were prepared. Absorbance spectra were collected using FT-IR at resolution of 1 cm(-1) and 64 scans per spectrum. Two spectra were collected per sample using the appropriate background spectrum subtraction. Spectral manipulations such as Fourier self-deconvolution and derivatizations were performed to improve quantification. Peak height for quartz was measured at 798 cm(-1) for quantitative analysis. The estimated limit of detection for the 5-mm pellets was 1.3 microg. Recoveries of Min-U-Sil 5 spikes showed an average of > or = 94 percent for the two pellet types. The coefficient of variation of the 5-mm pellet was 9 percent at 6 microg quartz load, and 7 percent at 62 microg load. Interferences from clay, amorphous silica, concrete, calcite, and kaolinite were investigated, these being the more likely sources of interferences in construction environment. Spikes of mixtures of amorphous silica or kaolinite with Min-U-Sil 5 showed both contaminants introduced, on average, a positive error of < 5 microg with average recoveries of 106 percent and 111 percent, respectively. Spikes of mixtures of clay or concrete with Min-U-Sil 5 showed overall average recovery of 100 percent and 90 percent, respectively, after accounting for the presence of quartz in clay and concrete. This method can quantify low levels of quartz with reasonable accuracy in the face of common contaminants found in the construction industry.

  7. Air sampling of flame retardants based on the use of mixed-bed sorption tubes--a validation study.

    PubMed

    Lazarov, Borislav; Swinnen, Rudi; Spruyt, Maarten; Maes, Frederick; Van Campenhout, Karen; Goelen, Eddy; Covaci, Adrian; Stranger, Marianne

    2015-11-01

    An analytical methodology using automatic thermal desorption and gas chromatography mass spectrometry analysis was optimized and validated for simultaneous determination of a set of components from three different flame retardant chemical classes: polybrominated diphenyl ethers (PBDEs) (PBDE-28, PBDE-47, PBDE-66, PBDE-85, PBDE-99, PBDE-100), organophosphate flame retardants (PFRs) (tributyl phosphate, tripropyl phosphate, tris(2-chloroethyl)phosphate-, tris(1,3-dichloro-2-propyl) phosphate, tris(2-ethylhexyl) phosphate, triphenyl phosphate, tris(2-chloro-1-methylethyl) phosphate and tricresylphosphate), and "novel" brominated flame retardants (NBFRs) (pentabromotoluene, 2,3,4,5,6-pentabromoethylbenzene, (2,3-dibromopropyl) (2,4,6-tribromophenyl) ether, hexabromobenzene, and 2-ethylhexyl 2,3,4,5-tetrabromobenzoate) in air. The methodology is based on low volume active air sampling of gaseous and particulate air fractions on mixed-bed (polydimethylsiloxane (PDMS)/Tenax TA) sorption tubes. The optimized method provides recoveries >88%; a limit of detection in the range of 6-25 pg m(-3) for PBDEs, 6-171 pg m(-3) for PFRs, and 7-41 pg m(-3) for NBFRs; a linearity greater than 0.996; and a repeatability of less than 10% for all studied compounds. The optimized method was compared with a standard method using active air sampling on XAD-2 sorbent material, followed by liquid extraction. On the one hand, the PDMS/Tenax TA method shows comparable results at longer sampling time conditions (e.g., indoor air sampling, personal air sampling). On the other hand, at shorter sampling time conditions (e.g., sampling from emission test chambers), the optimized method detects up to three times higher concentrations and identifies more flame retardant compounds compared to the standard method based on XAD-2 loading.

  8. Feasibility study of parallel conduction cooling of NbTi magnet and sample probe in a cryogen-free magnet system

    NASA Astrophysics Data System (ADS)

    Catarino, I.; Soni, V.; Barreto, J.; Martins, D.; Kar, S.

    2017-02-01

    The conduction cooling of both a 6 T superconducting magnet along with a sample probe in a parallel configuration is addressed in this work. A Gifford-McMahon (GM) cryocooler is directly cooling the NbTi magnet, which aims to be kept at 4 K, while a gas-gap heat switch (GGHS) manages the cooling power to be diverted to the sample probe, which may be swept from 4 K up to 300 K. A first prototype of a GGHS was customized and validated for this purpose. A sample probe assembly has been designed and assembled with the existing cryogen-free magnet system. The whole test setup and components are described and the preliminary experimental results on the integration are presented and discussed. The magnet was charged up to 3 T with a 4 K sample space and up to 1 T with a sweeping sample space temperature up to 300 K while acting on the GGHS. Despite some identified thermal insulation problems that occurred during this first test, the overall results demonstrated the feasibility of the cryogen-free parallel conduction cooling on study.

  9. Comparison of air dispersion modeling results with ambient air sampling data: A case study at Tacoma Landfill, a National Priorities List Site

    SciTech Connect

    Griffin, L.R. ); Rutherford, T.L. )

    1994-08-01

    Air dispersion modeling, ambient air sampling, and emissions testing of landfill sources have been performed to evaluate the effects of remedial activities on ambient air surrounding the Tacoma Landfill. In 1983, the Tacoma Landfill was placed on the National Priorities List (NPL) as part of the Commencement Bay/South Tacoma Channel Superfund site. Remedial activities completed, or near completion, at the 190 acre (768,903 m[sup 2]) Tacoma Landfill include a groundwater extraction system and air stripping units used to remove volatile organic compounds (VOCs) from groundwater, landfill gas extraction and flare system to control gas migration from the landfill, landfill liner and leachate collection system for an active section of the landfill, and a landfill cap that covers the inactive portions of the landfill. Dispersion modeling was performed with measured stack emission data using Industrial Source Complex (ISC) to determine the groundlevel concentrations of VOCs from the air stripper, flares, and active portion of the landfill for comparison with the measured ambient air data collected during 1992. 9 refs., 3 figs., 6 tabs.

  10. A novel Whole Air Sample Profiler (WASP) for the quantification of volatile organic compounds in the boundary layer

    SciTech Connect

    Mak, J. E.; Su, L.; Guenther, Alex B.; Karl, Thomas G.

    2013-10-16

    The emission and fate of reactive VOCs is of inherent interest to those studying chemical biosphere-atmosphere interactions. In-canopy VOC observations are obtainable using tower-based samplers, but the lack of suitable sampling systems for the full boundary 5 layer has limited the data characterizing the vertical structure of such gases above the canopy height and still in the boundary layer. This is the important region where many reactive VOCs are oxidized or otherwise removed. Here we describe an airborne sampling system designed to collect a vertical profile of air into a 3/800 OD tube 150m in length. The inlet ram air pressure is used to flow sampled air through the 10 tube, which results in a varying flow rate based on aircraft speed and altitude. Since aircraft velocity decreases during ascent, it is necessary to account for the variable flow rate into the tube. This is accomplished using a reference gas that is pulsed into the air stream so that the precise altitude of the collected air can be reconstructed post-collection. The pulsed injections are also used to determine any significant effect 15 from diffusion/mixing within the sampling tube, either during collection or subsequent extraction for gas analysis. This system has been successfully deployed, and we show some measured vertical profiles of isoprene and its oxidation products methacrolein and methyl vinyl ketone from a mixed canopy near Columbia, Missouri.

  11. Day and night variation in chemical composition and toxicological responses of size segregated urban air PM samples in a high air pollution situation

    NASA Astrophysics Data System (ADS)

    Jalava, P. I.; Wang, Q.; Kuuspalo, K.; Ruusunen, J.; Hao, L.; Fang, D.; Väisänen, O.; Ruuskanen, A.; Sippula, O.; Happo, M. S.; Uski, O.; Kasurinen, S.; Torvela, T.; Koponen, H.; Lehtinen, K. E. J.; Komppula, M.; Gu, C.; Jokiniemi, J.; Hirvonen, M.-R.

    2015-11-01

    Urban air particulate pollution is a known cause for adverse human health effects worldwide. China has encountered air quality problems in recent years due to rapid industrialization. Toxicological effects induced by particulate air pollution vary with particle sizes and season. However, it is not known how distinctively different photochemical activity and different emission sources during the day and the night affect the chemical composition of the PM size ranges and subsequently how it is reflected to the toxicological properties of the PM exposures. The particulate matter (PM) samples were collected in four different size ranges (PM10-2.5; PM2.5-1; PM1-0.2 and PM0.2) with a high volume cascade impactor. The PM samples were extracted with methanol, dried and thereafter used in the chemical and toxicological analyses. RAW264.7 macrophages were exposed to the particulate samples in four different doses for 24 h. Cytotoxicity, inflammatory parameters, cell cycle and genotoxicity were measured after exposure of the cells to particulate samples. Particles were characterized for their chemical composition, including ions, element and PAH compounds, and transmission electron microscopy (TEM) was used to take images of the PM samples. Chemical composition and the induced toxicological responses of the size segregated PM samples showed considerable size dependent differences as well as day to night variation. The PM10-2.5 and the PM0.2 samples had the highest inflammatory potency among the size ranges. Instead, almost all the PM samples were equally cytotoxic and only minor differences were seen in genotoxicity and cell cycle effects. Overall, the PM0.2 samples had the highest toxic potential among the different size ranges in many parameters. PAH compounds in the samples and were generally more abundant during the night than the day, indicating possible photo-oxidation of the PAH compounds due to solar radiation. This was reflected to different toxicity in the PM

  12. Minimization of sample volume with air-segmented sample injection and the simultaneous determination of trace elements by ICP-MS.

    PubMed

    Noguchi, Osamu; Oshima, Mitsuko; Motomizu, Shoji

    2008-05-01

    The application of inductively coupled plasma mass spectrometry (ICP-MS) to forensic chemistry was studied. The developed method, air-segmented sample injection (ASSI) coupled with ICP-MS, allowed the determination of about 25 elements at the sub-ppb level with only 0.2 ml of a sample solution. The optimum sample flow rate was found to be 0.4 ml min(-1), along with a sample suction time of 30 s. The proposed method was validated by determining trace elements in river-water certified reference material (SLRS-4) issued by National Research Council Canada. The analytical results of the proposed method were in good agreement with the certified values. This method was successfully applied to a human hair sample, the volume of which was 3 ml.

  13. Suitability of air sampling locations downstream of bends and static mixing elements.

    PubMed

    McFarland, A R; Gupta, R; Anand, N K

    1999-12-01

    The revised standard for sampling effluent air from stacks and ducts of the nuclear industry places limits on the non-uniformity of velocity and contaminant profiles at the sampling location; namely, the coefficients of variation must not exceed 20% over an area that encompasses at least the center 2/3 of the cross sectional area. Tests were conducted to characterize the degree of mixing at downstream locations as affected by several types of flow disturbances, including 90 degree elbows and commercial static mixing devices. Flow straighteners were incorporated into the ducting upstream of the mixer to be tested to simulate the dampening of flow turbulence that might occur because of upstream HEPA filters. The coefficients of variation of velocity and tracer gas concentration measured in a straight tube at a distance of 3 diameters downstream from a 90 degree elbow were 17% and 69%, respectively. The mixing is impacted by the upstream flow turbulence. Without a flow straightener, the tracer gas concentration coefficient of variation was reduced to 33% at the 3-diameter location. The use of static mixing elements can greatly enhance the mixing process. A ring placed just downstream of a 90 degree elbow, which blocks the outer 56% of the cross sectional area, results in a coefficient of variation of 19% for tracer gas concentration at the 3-diameter location. Pressure loss across the elbow with the ring is about nine times that of the basic elbow. One of the commercially available static mixers provides coefficients of variation that are less than 10% for both velocity and tracer gas concentration at 4 diameters downstream from the mixer with a pressure loss that is only about 3.5 times as large as that of a 90 degree elbow.

  14. Ice nucleation active particles in continental air samples over Mainz, Germany

    NASA Astrophysics Data System (ADS)

    Pummer, Bernhard G.; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine

    2016-04-01

    Aerosol particles are of central importance for atmospheric chemistry and physics, climate and public health. Some of these particles possess ice nucleation activity (INA), which is highly relevant for cloud formation and precipitation. In 2010, air filter samples were collected with a high-volume filter sampler separating fine and coarse particles (aerodynamic cut-off diameter 3 μm) in Mainz, Germany. In this study, the INA of the atmospheric particles deposited on these filters was determined. Therefore,they were extracted with ultrapure water, which was then measured in a droplet freezing assay, as described in Fröhlich-Nowoisky et al. (2015). The determined concentration of ice nucleators (INs) was between 0.3 and 2per m³ at 266 K, and between5 and 75 per m³ at 260 K. The INs were further characterized by different treatments, like heating (308 K, 371 K), filtration (0.1 μm, 300 kDa), and digestion with papain (10 mg/ml). We further investigated, which atmospheric conditions (e.g. weather) and distinguished events (e.g. dust storms, volcanic eruptions, and pollen peaks) influenced the number and nature of these INs. Fröhlich-Nowoisky, J., Hill, T. C. J., Pummer, B. G., Yordanova, P., Franc, G. D., and Pöschl, U.: Ice nucleation activity in the widespread soil fungus Mortierella alpina, Biogeosci., 12, 1057-1071, doi:10.5194/bg-12-1057-2015, 2015.

  15. Comparison of halocarbon measurements in an atmospheric dry whole air sample

    PubMed Central

    Hall, Bradley D.; Harth, Christina M.; Kim, Jin Seog; Lee, Jeongsoon; Montzka, Stephen A.; Mühle, Jens; Reimann, Stefan; Vollmer, Martin K.; Weiss, Ray F.

    2015-01-01

    The growing awareness of climate change/global warming, and continuing concerns regarding stratospheric ozone depletion, will require continued measurements and standards for many compounds, in particular halocarbons that are linked to these issues. In order to track atmospheric mole fractions and assess the impact of policy on emission rates, it is necessary to demonstrate measurement equivalence at the highest levels of accuracy for assigned values of standards. Precise measurements of these species aid in determining small changes in their atmospheric abundance. A common source of standards/scales and/or well-documented agreement of different scales used to calibrate the measurement instrumentation are key to understanding many sets of data reported by researchers. This report describes the results of a comparison study among National Metrology Institutes and atmospheric research laboratories for the chlorofluorocarbons (CFCs) dichlorodifluoromethane (CFC-12), trichlorofluoromethane (CFC-11), and 1,1,2-trichlorotrifluoroethane (CFC-113); the hydrochlorofluorocarbons (HCFCs) chlorodifluoromethane (HCFC-22) and 1-chloro-1,1-difluoroethane (HCFC-142b); and the hydrofluorocarbon (HFC) 1,1,1,2-tetrafluoroethane (HFC-134a), all in a dried whole air sample. The objective of this study is to compare calibration standards/scales and the measurement capabilities of the participants for these halocarbons at trace atmospheric levels. The results of this study show agreement among four independent calibration scales to better than 2.5% in almost all cases, with many of the reported agreements being better than 1.0%. PMID:26753167

  16. Comparison of Air Impaction and Electrostatic Dust Collector Sampling Methods to Assess Airborne Fungal Contamination in Public Buildings.

    PubMed

    Normand, Anne-Cécile; Ranque, Stéphane; Cassagne, Carole; Gaudart, Jean; Sallah, Kankoé; Charpin, Denis-André; Piarroux, Renaud

    2016-03-01

    Many ailments can be linked to exposure to indoor airborne fungus. However, obtaining a precise measurement of airborne fungal levels is complicated partly due to indoor air fluctuations and non-standardized techniques. Electrostatic dust collector (EDC) sampling devices have been used to measure a wide range of airborne analytes, including endotoxins, allergens, β-glucans, and microbial DNA in various indoor environments. In contrast, viable mold contamination has only been assessed in highly contaminated environments such as farms and archive buildings. This study aimed to assess the use of EDCs, compared with repeated air-impactor measurements, to assess airborne viable fungal flora in moderately contaminated indoor environments. Indoor airborne fungal flora was cultured from EDCs and daily air-impaction samples collected in an office building and a daycare center. The quantitative fungal measurements obtained using a single EDC significantly correlated with the cumulative measurement of nine daily air impactions. Both methods enabled the assessment of fungal exposure, although a few differences were observed between the detected fungal species and the relative quantity of each species. EDCs were also used over a 32-month period to monitor indoor airborne fungal flora in a hospital office building, which enabled us to assess the impact of outdoor events (e.g. ground excavations) on the fungal flora levels on the indoor environment. In conclusion, EDC-based measurements provided a relatively accurate profile of the viable airborne flora present during a sampling period. In particular, EDCs provided a more representative assessment of fungal levels compared with single air-impactor sampling. The EDC technique is also simpler than performing repetitive air-impaction measures over the course of several consecutive days. EDC is a versatile tool for collecting airborne samples and was efficient for measuring mold levels in indoor environments.

  17. Evaluation of microvolume regenerated cellulose (RC) microdialysis fibers for the sampling and detection of ammonia in air.

    PubMed

    Tang, Hao; Thompson, Jonathan E

    2010-06-15

    We have explored use of perfused regenerated cellulose (RC) microdialysis tubing (216microm o.d./200microm i.d.) as sampling probes for gaseous ammonia. The probes functioned by allowing the gas to diffuse through the permeable membrane into a stream of de-ionized water which continually perfused the tubing at 10-20microLmin(-1). The resulting ammonium in the perfusate was determined through a fluorimetric method (OPA-sulfite) with LED excitation at lambda(ex)=365+/-10nm and measurement of fluorescence emission at lambda(em)=425+/-20nm. By shielding the sampling membrane with a Plexiglas tube purged under laminar flow conditions, the potential interference of particulate ammonium depositing on the probe was minimized. The RC microdialysis tube was found to act as an efficient sampling device since it exhibits a very high surface-area-to-volume ratio (approximately 200cm(2)mL(-1)). As a result, aqueous concentrations of >100microM NH(4)(+) per ppm NH(3) (g) have been observed. In addition, the fluorogenic OPA-sulfite reaction is demonstrated to be very selective for ammonia over amines that have been measured in the atmosphere. This feature of the derivatization chemistry allows analysis of ammonia by fluorimetry without need for a separation step. The method developed has been applied to field measurements of ammonia at a swine barn facility with quantitative results agreeing with a reference method.

  18. Estimating sampling biases and measurement uncertainties of AIRS/AMSU-A temperature and water vapor observations using MERRA reanalysis

    NASA Astrophysics Data System (ADS)

    Hearty, Thomas J.; Savtchenko, Andrey; Tian, Baijun; Fetzer, Eric; Yung, Yuk L.; Theobald, Michael; Vollmer, Bruce; Fishbein, Evan; Won, Young-In

    2014-03-01

    We use MERRA (Modern Era Retrospective-Analysis for Research Applications) temperature and water vapor data to estimate the sampling biases of climatologies derived from the AIRS/AMSU-A (Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit-A) suite of instruments. We separate the total sampling bias into temporal and instrumental components. The temporal component is caused by the AIRS/AMSU-A orbit and swath that are not able to sample all of time and space. The instrumental component is caused by scenes that prevent successful retrievals. The temporal sampling biases are generally smaller than the instrumental sampling biases except in regions with large diurnal variations, such as the boundary layer, where the temporal sampling biases of temperature can be ± 2 K and water vapor can be 10% wet. The instrumental sampling biases are the main contributor to the total sampling biases and are mainly caused by clouds. They are up to 2 K cold and > 30% dry over midlatitude storm tracks and tropical deep convective cloudy regions and up to 20% wet over stratus regions. However, other factors such as surface emissivity and temperature can also influence the instrumental sampling bias over deserts where the biases can be up to 1 K cold and 10% wet. Some instrumental sampling biases can vary seasonally and/or diurnally. We also estimate the combined measurement uncertainties of temperature and water vapor from AIRS/AMSU-A and MERRA by comparing similarly sampled climatologies from both data sets. The measurement differences are often larger than the sampling biases and have longitudinal variations.

  19. Estimating Sampling Biases and Measurement Uncertainties of AIRS-AMSU-A Temperature and Water Vapor Observations Using MERRA Reanalysis

    NASA Technical Reports Server (NTRS)

    Hearty, Thomas J.; Savtchenko, Andrey K.; Tian, Baijun; Fetzer, Eric; Yung, Yuk L.; Theobald, Michael; Vollmer, Bruce; Fishbein, Evan; Won, Young-In

    2014-01-01

    We use MERRA (Modern Era Retrospective-Analysis for Research Applications) temperature and water vapor data to estimate the sampling biases of climatologies derived from the AIRS/AMSU-A (Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit-A) suite of instruments. We separate the total sampling bias into temporal and instrumental components. The temporal component is caused by the AIRS/AMSU-A orbit and swath that are not able to sample all of time and space. The instrumental component is caused by scenes that prevent successful retrievals. The temporal sampling biases are generally smaller than the instrumental sampling biases except in regions with large diurnal variations, such as the boundary layer, where the temporal sampling biases of temperature can be +/- 2 K and water vapor can be 10% wet. The instrumental sampling biases are the main contributor to the total sampling biases and are mainly caused by clouds. They are up to 2 K cold and greater than 30% dry over mid-latitude storm tracks and tropical deep convective cloudy regions and up to 20% wet over stratus regions. However, other factors such as surface emissivity and temperature can also influence the instrumental sampling bias over deserts where the biases can be up to 1 K cold and 10% wet. Some instrumental sampling biases can vary seasonally and/or diurnally. We also estimate the combined measurement uncertainties of temperature and water vapor from AIRS/AMSU-A and MERRA by comparing similarly sampled climatologies from both data sets. The measurement differences are often larger than the sampling biases and have longitudinal variations.

  20. A Zn2+-specific fluorescent molecular probe for the selective detection of endogenous cyanide in biorelevant samples.

    PubMed

    Divya, Kizhumuri P; Sreejith, Sivaramapanicker; Balakrishna, Bugga; Jayamurthy, Purushothaman; Anees, Palappuravan; Ajayaghosh, Ayyappanpillai

    2010-09-07

    A Zn(2+)-specific molecular probe 3 was developed for the selective detection of CN(-) under aqueous conditions. The fluorescent Zn(2+) complex of 3 upon CN(-) addition generates a bright blue fluorescence that allows the detection of the latter and is useful for the screening of natural products with and without endogenous cyanide content.

  1. US EPA Base Study Standard Operating Procedure for Sampling and Characterization of Viable and Non-Viable Bioaerosols in Indoor Air

    EPA Pesticide Factsheets

    The objective of the procedure is to collect a representative sample concentration of total airborne fungal spores (viable and non-viable) that may be present in indoor air and in the outdoor air supplied to the space tested.

  2. A passive sampling-based analytical strategy for the determination of volatile organic compounds in the air of working areas.

    PubMed

    Ly-Verdú, Saray; Esteve-Turrillas, Francesc A; Pastor, Agustín; de la Guardia, Miguel

    2010-09-16

    An analytical methodology based on the use of a polyethylene layflat tube filled with activated carbon and Florisil (ACFL-VERAM) was employed for the passive sampling of volatile organic compounds (VOCs) in the air of working areas of packing industries. VOCs amount in the ACFL-VERAM sampler was directly determined through head-space-gas chromatography-mass spectrometry (HS-GC-MS) allowing a direct determination in only 20 min without the need of any previous treatment. Uptake parameters, like sampling rate (R(S)) and sampler-air partition coefficient (K(SA)), were determined for every studied VOC from adsorption isotherm data. Additionally, experimental equations have been proposed to predict R(S) and K(SA) from the octanol-air partition coefficients reported in the literature. The proposed methodology reaches method detection levels from 0.007 to 0.2 mg m(-3) for the studied VOCs.

  3. Comparison of Lichen, Conifer Needles, Passive Air Sampling Devices, and Snowpack as Passive Sampling Media to Measure Semi-Volatile Organic Compounds in Remote Atmospheres

    PubMed Central

    SCHRLAU, JILL E.; GEISER, LINDA; HAGEMAN, KIMBERLY J.; LANDERS, DIXON H.

    2011-01-01

    A wide range of semi-volatile organic compounds (SOCs), including pesticides and polycyclic aromatic hydrocarbons (PAHs), were measured in lichen, conifer needles, snowpack and XAD-based passive air sampling devices (PASDs) collected from 19 different U.S. national parks in order to compare the magnitude and mechanism of SOC accumulation in the different passive sampling media. Lichen accumulated the highest SOC concentrations, in part because of its long (and unknown) exposure period, while PASDs accumulated the lowest concentrations. However, only the PASD SOC concentrations can be used to calculate an average atmospheric gas-phase SOC concentration because the sampling rates are known and the media is uniform. Only the lichen and snowpack SOC accumulation profiles were statistically significantly correlated (r = 0.552, p-value <0.0001) because they both accumulate SOCs present in the atmospheric particle-phase. This suggests that needles and PASDs represent a different composition of the atmosphere than lichen and snowpack and that the interpretation of atmospheric SOC composition is dependent on the type of passive sampling media used. All four passive sampling media preferentially accumulated SOCs with relatively low air-water partition coefficients, while snowpack accumulated SOCs with higher log KOA values compared to the other media. Lichen accumulated more SOCs with log KOA > 10 relative to needles and showed a greater accumulation of particle-phase PAHs. PMID:22087860

  4. Comparison of lichen, conifer needles, passive air sampling devices, and snowpack as passive sampling media to measure semi-volatile organic compounds in remote atmospheres.

    PubMed

    Schrlau, Jill E; Geiser, Linda; Hageman, Kimberly J; Landers, Dixon H; Simonich, Staci Massey

    2011-12-15

    A wide range of semivolatile organic compounds (SOCs), including pesticides and polycyclic aromatic hydrocarbons (PAHs), were measured in lichen, conifer needles, snowpack and XAD-based passive air sampling devices (PASDs) collected from 19 different U.S. national parks in order to compare the magnitude and mechanism of SOC accumulation in the different passive sampling media. Lichen accumulated the highest SOC concentrations, in part because of its long (and unknown) exposure period, whereas PASDs accumulated the lowest concentrations. However, only the PASD SOC concentrations can be used to calculate an average atmospheric gas-phase SOC concentration because the sampling rates are known and the media is uniform. Only the lichen and snowpack SOC accumulation profiles were statistically significantly correlated (r = 0.552, p-value <0.0001) because they both accumulate SOCs present in the atmospheric particle-phase. This suggests that needles and PASDs represent a different composition of the atmosphere than lichen and snowpack and that the interpretation of atmospheric SOC composition is dependent on the type of passive sampling media used. All four passive sampling media preferentially accumulated SOCs with relatively low air-water partition coefficients, while snowpack accumulated SOCs with higher log K(OA) values compared to the other media. Lichen accumulated more SOCs with log K(OA) > 10 relative to needles and showed a greater accumulation of particle-phase PAHs.

  5. 3D Air Quality and the Clean Air Interstate Rule: Lagrangian Sampling of CMAQ Model Results to Aid Regional Accountability Metrics

    NASA Technical Reports Server (NTRS)

    Fairlie, T. D.; Szykman, Jim; Pierce, Robert B.; Gilliland, A. B.; Engel-Cox, Jill; Weber, Stephanie; Kittaka, Chieko; Al-Saadi, Jassim A.; Scheffe, Rich; Dimmick, Fred; Tikvart, Joe

    2008-01-01

    The Clean Air Interstate Rule (CAIR) is expected to reduce transport of air pollutants (e.g. fine sulfate particles) in nonattainment areas in the Eastern United States. CAIR highlights the need for an integrated air quality observational and modeling system to understand sulfate as it moves in multiple dimensions, both spatially and temporally. Here, we demonstrate how results from an air quality model can be combined with a 3d monitoring network to provide decision makers with a tool to help quantify the impact of CAIR reductions in SO2 emissions on regional transport contributions to sulfate concentrations at surface monitors in the Baltimore, MD area, and help improve decision making for strategic implementation plans (SIPs). We sample results from the Community Multiscale Air Quality (CMAQ) model using ensemble back trajectories computed with the NASA Langley Research Center trajectory model to provide Lagrangian time series and vertical profile information, that can be compared with NASA satellite (MODIS), EPA surface, and lidar measurements. Results are used to assess the regional transport contribution to surface SO4 measurements in the Baltimore MSA, and to characterize the dominant source regions for low, medium, and high SO4 episodes.

  6. 32 CFR 806.27 - Samples of Air Force FOIA processing documents.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... documents. (a) This section includes suggested language in paragraph format that tracks Air Force and DoD FOIA guidance. The rest of the body of letters and memorandums should comply with Air Force... section, language in parentheses is for explanatory purposes only. Do not include any of the...

  7. It's Alive!: Students Observe Air-Water Interface Samples Rich with Organisms

    ERIC Educational Resources Information Center

    Avant, Thomas

    2002-01-01

    This article describes an experiment, designed by Cindy Henk, manager of the Socolofsky Microscopy Center at Louisiana State University (LSU), that involved collecting and viewing microorganisms in the air-water interface. The experiment was participated by Leesville High School microbiology students. The students found that the air-water…

  8. Early detection of foot-and-mouth disease virus from infected cattle using a dry filter air sampling system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foot-and-mouth disease (FMD) is a highly contagious livestock disease of high economic impact. Early detection of FMD virus (FMDV) is fundamental for rapid outbreak control. Air sampling collection has been demonstrated as a useful technique for detection of FMDV RNA in infected animals, related to ...

  9. Long duration ash probe

    DOEpatents

    Hurley, J.P.; McCollor, D.P.; Selle, S.J.

    1994-07-26

    A long duration ash probe includes a pressure shell connected to a port in a combustor with a sample coupon mounted on a retractable carriage so as to retract the sample coupon within the pressure shell during soot blowing operation of the combustor. A valve mounted at the forward end of the pressure shell is selectively closeable to seal the sample coupon within the shell, and a heating element in the shell is operable to maintain the desired temperature of the sample coupon while retracted within the shell. The carriage is operably mounted on a pair of rails within the shell for longitudinal movement within the shell. A hollow carrier tube connects the hollow cylindrical sample coupon to the carriage, and extends through the carriage and out the rearward end thereof. Air lines are connected to the rearward end of the carrier tube and are operable to permit coolant to pass through the air lines and thence through the carrier tube to the sample coupon so as to cool the sample coupon. 8 figs.

  10. Rapid identification and characterization of Penicillium marneffei using multiplex ligation-dependent probe amplification (MLPA) in paraffin-embedded tissue samples.

    PubMed

    Zhang, Jun-Min; Sun, Jiu-Feng; Feng, Pei-Ying; Li, Xi-Qing; Lu, Chang-Ming; Lu, Sha; Cai, Wen-Ying; Xi, Li-Yan; de Hoog, G S

    2011-04-01

    Penicillium marneffei infection is a deadly disease and early diagnosis leads to prompt and appropriate antifungal therapy. To develop a sensitive method to diagnose P. marneffei infection, a multiplex ligation-dependent probe amplification (MLPA) assay was adapted. This method can rapidly and specifically detect P. marneffei DNA in cultured cells and paraffin-embedded tissue samples. Three pairs of probes were designed for amplifying the internally (intergenic) transcribed spacer (ITS) region of P. marneffei rRNA using a systematic phylogenetic analysis. These three probe sets produced three amplicons of 198, 166, and 152 bp, respectively, specific for P. marneffei. In contrast, there was only one 198 bp amplicon produced for Talaromyces stipitatus, and one 152 bp amplicon for P. funiculosum, T. intermedius and T. derxii. The probes did not amplify any other reference strains. An array of 40 P. marneffei strains isolated from human patients, bamboo rat, and the local environment was tested by using MLPA, and all were positively identified. Most importantly, P. marneffei in paraffin-embedded tissue specimens from infected human patients was positively amplified by MLPA. The sensitivity and specificity of the MLPA assay could be a useful tool for prompt diagnosis, pathogen characterization, and epidemiological studies of fungal infections.

  11. Use of depuration compounds in passive air samplers: results from active sampling-supported field deployment, potential uses, and recommendations.

    PubMed

    Moeckel, Claudia; Harner, Tom; Nizzetto, Luca; Strandberg, Bo; Lindroth, Anders; Jones, Kevin C

    2009-05-01

    Depuration compounds (DCs) are added to passive air samplers (PAS) prior to deployment to account for the wind-dependency of the sampling rate for gas-phase compounds. This correction is particularly useful for providing comparable data for samplers that are deployed in different environments and subject to different meteorological conditions such as wind speeds. Two types of PAS--the polyurethane foam (PUF) disk sampler and semipermeable membrane devices (SPMDs)--were deployed at eight heights on a 100 m tower to test whether the DC approach could yield air concentrations profiles for PCBs and organochlorine pesticides and account for the wind speed gradient with height. Average wind speeds ranged from 0.3 to 4.5 m s(-1) over the 40 day deployment, increasing with height Two low volume active air samples (AAS), one collected at 25 m and one at 73 m over the 40 day deployment showed no significant concentration differences for target compounds. As expected, the target compounds taken up by PAS reflected the wind profile with height This wind-dependency of the PAS was also reflected in the results of the DCs. A correction based on the DC approach successfully accounted for the effect of wind on PAS sampling rates, yielding a profile consistent with the AAS. Interestingly, in terms of absolute air concentrations, there were differences between the AAS and PAS-derived values for some target compounds. These were attributed to different sampling characteristics of the two approaches that may have resulted in slightly different air masses being sampled. Based on the results of this study, guidelines are presented for the use of DCs and for the calibration of PAS using AAS.

  12. Detection of airborne bacteria in a duck production facility with two different personal air sampling devices for an exposure assessment.

    PubMed

    Martin, Elena; Dziurowitz, Nico; Jäckel, Udo; Schäfer, Jenny

    2015-01-01

    Prevalent airborne microorganisms are not well characterized in industrial animal production buildings with respect to their quantity or quality. To investigate the work-related microbial exposure, personal bioaerosol sampling during the whole working day is recommended. Therefore, bioaerosol sampling in a duck hatchery and a duck house with two personal air sampling devices, a filter-based PGP and a NIOSH particle size separator, was performed. Subsequent, quantitative and qualitative analyses were carried out with" culture independent methods. Total cell concentrations (TCC) determined via fluorescence microscopy showed no difference between the two devices. In average, 8 × 10(6) cells/m(3) were determined in the air of the duck hatchery and 5 × 10(7) cells/m(3) in the air of the duck house. A Generated Restriction Fragment Length Polymorphism (RFLP) pattern revealed deviant bacterial compositions comparing samples collected with both devices. Clone library analyses based on 16S rRNA gene sequence analysis from the hatchery's air showed 65% similarity between the two sampling devices. Detailed 16S rRNA gene sequence analyses showed the occurrence of bacterial species like Acinetobacter baumannii, Enterococcus faecalis, Escherichia sp., and Shigella sp.; and a group of Staphylococcus delphini, S. intermedius, and S. pseudintermedius that provided the evidence of potential exposure to risk group 2 bacteria at the hatchery workplace. Size fractionated sampling with the developed by the Institute for Occupational Safety and Health of the German Social Accident Insurance (IFA) device revealed that pathogenic bacteria would deposit in the inhalable, the thorax, and possibly alveolar dust fraction according to EN481. TCC analysis showed the deposition of bacterial cells in the third stage (< 1μm) at the NIOSH device which implies that bacteria can reach deep into the lungs and contaminate the alveolus after inhalation. Nevertheless, both personal sampling devices

  13. Identification of oxidation products of solanesol produced during air sampling for tobacco smoke by electrospray mass spectrometry and HPLC.

    PubMed

    Tucker, Samuel P; Pretty, Jack R

    2005-10-01

    Solanesol, a 45-carbon, trisesquiterpenoid alcohol found in tobacco leaves and tobacco smoke, has been used as a quantitative marker for tobacco smoke for years. However, solanesol appears to be unreliable as a quantitative marker for tobacco smoke during environmental air sampling because it can be degraded substantially when present as a component of tobacco smoke and by as much as 100% when present as pure solanesol on fortified filters during air sampling. Since there is strong evidence that ozone is the agent responsible for the degradation, solanesol appears to be unreliable as a quantitative marker during indoor air sampling when indoor levels of ozone are greater than about 15 ppb. The degree of loss of pure solanesol is directly proportional to the concentration of ozone and the length of the sampling period and depends on the type of 37 mm membrane filter used for air sampling (PTFE or quartz fiber). While the degree of loss of solanesol is inversely proportional to the relative humidity of the air at a sampling rate of 1.7 L min(-1), the degree of loss is virtually independent of relative humidity at a lower sampling rate; i.e., 0.25 L min(-1). A curve of loss of solanesol on a filter versus concentration of ozone from an ozone generator is virtually identical to a curve segment based on atmospheric ozone under the same conditions of air sampling. Oxidation of solanesol by ozone to approximately 25 to 60% completion produces at least three series of products for a total of at least 26 compounds: (1) isoprenoid acetones, (2)omega-hydroxyisoprenoid acetaldehydes, and (3) isoprenoid oxoaldehydes. All products in each series were tentatively identified as their derivatives with 2-(p-aminophenyl)ethanol (APE) by electrospray mass spectrometry (ES-MS). Ten ozonation products were detected as their 2,4-dinitrophenylhydrazine derivatives by HPLC at 360 nm: 4-oxopentanal and nine isoprenoid acetones (acetone, 6-methyl-5-hepten-2-one, geranylacetone

  14. Evaluation of sampling and analytical methodology for polynuclear aromatic compounds in indoor air. Final report, 1 March-30 September 1985

    SciTech Connect

    Chuang, C.C.; Mack, G.A.; Mondron, P.J.; Petersen, B.A.

    1985-10-01

    The objective of this project was to develop a generic sampling and analytical methodology to characterize the polynuclear aromatic hydrocarbon (PAH) concentrations in air within various microenvironments. The following three studies were performed: evaluation of analytical methods, design of a sampling method, and design of a pilot study. Two analytical methods, high performance liquid chromatography with ultraviolet adsorption and fluorescence detection and gas chromatography/mass spectrometry, were evaluated for the determination of PAHs and their derivatives in air within microenvironments. The results showed that gas chromatography/positive chemical ionization massspectrometry with data acquisition in the selected ion-monitoring mode is the preferred analytical approach. A modified EPA high-volume sampler, consisting of a quartz fiber filter and a polyurethane foam cartridge, is proposed for use in a future experimental study. A literature review was conducted to determine what is known about the contribution of cigarette smoke to the levels of PAHs in air within microenvironments and to evaluate the use of quinoline and isoquinoline as possible marker compounds for the levels of cigarette smoke. A pilot study was designed to assess PAH levels in air found in residences. A study using this design, was conducted in Columbus, Ohio, during the winter of 1983/84. These results can then be applied to a future large-scale study involving the measurement of human exposure to PAH in air.

  15. Evaluation of a method to detect Mycobacterium bovis in air samples from infected Eurasian badgers (Meles meles) and their setts.

    PubMed

    Jones, R M; Ashford, R; Cork, J; Palmer, S; Wood, E; Spyvee, P; Parks, S; Bennett, A; Brewer, J; Delahay, R; Chambers, M; Sawyer, J

    2013-05-01

    Environmental air sampling was evaluated as a method to detect the presence of M. bovis in the vicinity of infected badgers and their setts. Airborne particles were collected on gelatine filters using a commercially available air sampling instrument and tested for the presence of M. bovis using bacteriological culture and real-time PCR. The sensitivity of bacteriological culture was broadly similar to that of real-time PCR when testing samples artificially spiked with M. bovis. Sampling was undertaken from directly under the muzzles of badgers which had been experimentally infected with M. bovis (37 samples), within enclosures housing the experimentally infected animals (50 samples), and in the vicinity of setts with resident infected wild badgers (52 samples). The methods employed did not detect M. bovis from either infected badgers or artificial or natural setts known to contain infected animals. However, samples taken at four of the six natural setts were positive for Mycobacterium gordonae.

  16. Scheduling whole-air samples above the Trade Wind Inversion from SUAS using real-time sensors

    NASA Astrophysics Data System (ADS)

    Freer, J. E.; Greatwood, C.; Thomas, R.; Richardson, T.; Brownlow, R.; Lowry, D.; MacKenzie, A. R.; Nisbet, E. G.

    2015-12-01

    Small Unmanned Air Systems (SUAS) are increasingly being used in science applications for a range of applications. Here we explore their use to schedule the sampling of air masses up to 2.5km above ground using computer controlled bespoked Octocopter platforms. Whole-air sampling is targeted above, within and below the Trade Wind Inversion (TWI). On-board sensors profiled the TWI characteristics in real time on ascent and, hence, guided the altitudes at which samples were taken on descent. The science driver for this research is investigation of the Southern Methane Anomaly and, more broadly, the hemispheric-scale transport of long-lived atmospheric tracers in the remote troposphere. Here we focus on the practical application of SUAS for this purpose. Highlighting the need for mission planning, computer control, onboard sensors and logistics in deploying such technologies for out of line-of-sight applications. We show how such a platform can be deployed successfully, resulting in some 60 sampling flights within a 10 day period. Challenges remain regarding the deployment of such platforms routinely and cost-effectively, particularly regarding training and support. We present some initial results from the methane sampling and its implication for exploring and understanding the Southern Methane Anomaly.

  17. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - BAGHOUSE FILTRATION PRODUCTS - AIR PURATOR CORPORATION HUYGLAS 1405M FILTER SAMPLE

    EPA Science Inventory

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) pilot of the Environmental Technology Verification (ETV) Program. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of th...

  18. Exposure assessment of monoterpenes and styrene: a comparison of air sampling and biomonitoring

    PubMed Central

    Liljelind, I; Rappaport, S; Eriksson, K; Andersson, J; Bergdahl, I; Sunesson, A; Jarvholm, B

    2003-01-01

    Background: Within- and between-worker variance components have seldom been reported for both environmental and biological data collected from the same persons. Aims: To estimate these variance components and their ratio for air contaminants and urinary metabolites in two different work environments and to predict the attenuation of exposure-response relationships based on these measures. Methods: Parallel measurements of air and urine were performed among workers exposed to monoterpenes in sawmills (urinary metabolite: verbenol) and styrene in reinforced plastics factories (urinary metabolite: mandelic acid). Results: Among the sawmill workers, variance components of the air and urinary verbenol results were similar; for the reinforced plastics workers the estimated between-worker variance component was greater for styrene in air than mandelic acid in urine. This suggests that attenuation bias would be about equal if air or biological monitoring were employed for monoterpene exposures, but would be greater if urinary mandelic acid were used instead of airborne styrene in an investigation of styrene exposure. Conclusions: Personal air samplers provide data with similar or superior quality to urinary metabolites as measures of exposure to these monoterpenes in sawmills and styrene in reinforced plastics factories. PMID:12883022

  19. Lab in a Tube: Sensitive Detection of MicroRNAs in Urine Samples from Bladder Cancer Patients Using a Single-Label DNA Probe with AIEgens.

    PubMed

    Min, Xuehong; Zhuang, Yuan; Zhang, Zhenyu; Jia, Yongmei; Hakeem, Abdul; Zheng, Fuxin; Cheng, Yong; Tang, Ben Zhong; Lou, Xiaoding; Xia, Fan

    2015-08-05

    We demonstrate an ultrasensitive microRNA detection method based on an extremely simple probe with only fluorogens but without quencher groups. It avoids complex and difficult steps to accurately design the relative distance between the fluorogens and quencher groups in the probes. Furthermore, the assay could accomplish various detection limits by tuning the reaction temperature due to the different activity of exonuclease III corresponding to the diverse temperature. Specifically, 1 pM miR-21 can be detected in 40 min at 37 °C, and 10 aM (about 300 molecules in 50 μL) miR-21 could be discriminated in 7 days at 4 °C. The great specificity of the assay guarantees that the real 21 urine samples from the bladder cancer patients are successfully detected by our method.

  20. Perfluoroalkyl acids and their precursors in indoor air sampled in children's bedrooms.

    PubMed

    Winkens, Kerstin; Koponen, Jani; Schuster, Jasmin; Shoeib, Mahiba; Vestergren, Robin; Berger, Urs; Karvonen, Anne M; Pekkanen, Juha; Kiviranta, Hannu; Cousins, Ian T

    2017-03-01

    The contamination levels and patterns of perfluoroalkyl acids (PFAAs) and their precursors in indoor air of children's bedrooms in Finland, Northern Europe, were investigated. Our study is among the most comprehensive indoor air monitoring studies (n = 57) and to our knowledge the first one to analyse air in children's bedrooms for PFASs (17 PFAAs and 9 precursors, including two acrylates, 6:2 FTAC and 6:2 FTMAC). The most frequently detected compound was 8:2 fluorotelomer alcohol (8:2 FTOH) with the highest median concentration (3570 pg/m(3)). FTOH concentrations were generally similar to previous studies, indicating that in 2014/2015 the impact of the industrial transition had been minor on FTOH levels in indoor air. However, in contrast to earlier studies (with one exception), median concentrations of 6:2 FTOH were higher than 10:2 FTOH. The C8 PFAAs are still the most abundant acids, even though they have now been phased out by major manufacturers. The mean concentrations of FOSE/As, especially MeFOSE (89.9 pg/m(3)), were at least an order of magnitude lower compared to previous studies. Collectively the comparison of FTOHs, PFAAs and FOSE/FOSAs with previous studies indicates that indoor air levels of PFASs display a time lag to changes in production of several years. This is the first indoor air study investigating 6:2 FTMAC, which was frequently detected (58%) and displayed some of the highest maximum concentrations (13 000 pg/m(3)). There were several statistically significant correlations between particular house and room characteristics and PFAS concentrations, most interestingly higher EtFOSE air concentrations in rooms with plastic floors compared to wood or laminate.

  1. Thermal desorption-gas chromatography-mass spectrometry method to determine phthalate and organophosphate esters from air samples.

    PubMed

    Aragón, M; Borrull, F; Marcé, R M

    2013-08-16

    A method based on thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) has been developed to determine four organophosphate esters, seven phthalate esters, and bis(2-ethylhexyl) adipate in the gas phase from harbour and urban air samples. The method involves the sampling of 1.5L of air in a Tenax TA sorbent tube followed by thermal desorption (using a Tenax TA cryogenic trap) coupled to gas chromatography-mass spectrometry. The repeatability of the method expressed as %RSD (n=3) is less than 15% and the MQLs are between 0.007μgm(-3) (DMP, TBP, BBP, TPP and DnOP) and 6.7μgm(-3) (DEHP). The method was successfully applied in two areas (urban and harbour) testing two and three points in each one, respectively. Some of these compounds were found in both urban and harbour samples. Di-(2-ethylhexyl)phthalate was the most abundant compound found in both areas at concentration levels between 6.7μgm(-3) and 136.4μgm(-3). This study demonstrates that thermal desorption is an efficient method for the determination of these semi-volatile compounds in the gas phase fraction of air samples.

  2. Evaluation of mixing downstream of tees in duct systems with respect to single point representative air sampling.

    PubMed

    Kim, Taehong; O'Neal, Dennis L; Ortiz, Carlos

    2006-09-01

    Air duct systems in nuclear facilities must be monitored with continuous sampling in case of an accidental release of airborne radionuclides. The purpose of this work is to identify the air sampling locations where the velocity and contaminant concentrations fall below the 20% coefficient of variation required by the American National Standards Institute/Health Physics Society N13.1-1999. Experiments of velocity and tracer gas concentration were conducted on a generic "T" mixing system which included combinations of three sub ducts, one main duct, and air velocities from 0.5 to 2 m s (100 to 400 fpm). The experimental results suggest that turbulent mixing provides the accepted velocity coefficients of variation after 6 hydraulic diameters downstream of the T-junction. About 95% of the cases achieved coefficients of variation below 10% by 6 hydraulic diameters. However, above a velocity ratio (velocity in the sub duct/velocity in the main duct) of 2, velocity profiles were uniform in a shorter distance downstream of the T-junction as the velocity ratio went up. For the tracer gas concentration, the distance needed for the coefficients of variation to drop 20% decreased with increasing velocity ratio due to the sub duct airflow momentum. The results may apply to other duct systems with similar geometries and, ultimately, be a basis for selecting a proper sampling location under the requirements of single point representative sampling.

  3. A new sample holder for laser-excited pump-probe magnetic measurements on a Focus photoelectron emission microscope

    SciTech Connect

    Miguel, Jorge; Bernien, Matthias; Kuch, Wolfgang; Bayer, Daniela; Aeschlimann, Martin; Sanchez-Barriga, Jaime; Kronast, Florian; Duerr, Hermann A.

    2008-03-15

    A custom-made Omicron-compatible sample holder for time-resolved photoelectron emission microscopy experiments is presented. It comprises a sample plate with four contacts that hosts a chip carrier where the semiconductor substrate is mounted. Covering the sample holder, a 6 mm diameter mask protects electrostatically the sample from the extractor lens voltage while keeping the imaging quality unperturbed. The improvements are a greater sample lifetime and the ability to withstand much higher currents in the stripline that provides the magnetic pulse to the magnetic microstructure.

  4. Investigation on per- and polyfluorinated compounds in paired samples of house dust and indoor air from Norwegian homes.

    PubMed

    Haug, Line S; Huber, Sandra; Schlabach, Martin; Becher, Georg; Thomsen, Cathrine

    2011-10-01

    Per- and polyfluorinated compounds (PFCs) have been found to be ubiquitously distributed in human populations, however the sources of human exposure are not fully characterized. A wide range of PFCs were determined in paired samples of indoor air and dust from 41 Norwegian households. Up to 18 ionic and 9 neutral PFCs were detected. The concentrations found are comparable to or lower than what has previously been reported in North America, Europe, and Asia. The highest median concentrations in dust were observed for perfluorohexanoic acid (28 ng/g), perfluorononanoic acid (23 ng/g), perfluorododecanoic acid (19 ng/g), and perfluorooctanoic acid (18 ng/g). However, perfluoroalkyl sulfonic acids (PFSAs) were also frequently detected. Fluortelomer alcohols were the most prominent compounds found in indoor air, with median concentrations for 8:2 fluortelomer alcohol, 10:2 fluortelomer alcohol, and 6:2 fluortelomer alcohol of 5173, 2822, and 933 pg/m(3) air, respectively. All perfluoroalkyl sulfonamides and sulfonamidoethanols (FOSA/FOSEs) were detected in more than 40% of the air samples. For the first time, significant positive correlations (p < 0.05) between PFSAs in house dust and FOSA/FOSEs in the indoor air have been shown, supporting the hypothesis that FOSA/FOSEs may be transformed to PFSAs. Further, we found the age of the residence to be a predictor of PFC concentrations in both indoor air and house dust. These results are important for estimating the exposure to PFCs from the indoor environment and for characterization of exposure pathways.

  5. Probing Volcanic Eruption Clouds With the Airs Spectrometer on Aqua: A New Tool for Quantifying Sulfur Dioxide and Ash Emissions

    NASA Astrophysics Data System (ADS)

    Edmonds, Y.; Strow, L. L.; Carn, S.; Machado, S. D.; Hannon, S.

    2003-12-01

    Since its launch on EOS/Aqua in May 2002, the Atmospheric Infrared Sounder (AIRS) has successfully detected SO2 and ash clouds emitted during a number of volcanic eruptions. Detection of SO2 is achieved using the strong infrared absorption band of the gas centered around 7.3 μ m. For upper tropospheric volcanic clouds, preliminary AIRS SO2 retrievals performed using a version of the AIRS radiative transfer algorithm that includes variable SO2 indicate good agreement with SO2 amounts detected by the ultraviolet Total Ozone Mapping Spectrometer (TOMS) where coincident data are available. However, the higher spatial, spectral and temporal resolution of AIRS provides much improved coverage of volcanic emissions at lower altitudes, such as the October 2002 eruption of Mt.Etna (Italy). AIRS retrievals of SO2 and ash optical depths and effective particle radii in volcanic clouds from several eruptions will be presented, including Etna, Ruang (Indonesia, September 2002), Reventador (Ecuador, November 2002), Anatahan (Mariana Islands, May 2003) and Soufriere Hills (Montserrat, July 2003). These examples demonstrate the potential of AIRS data to improve measurements of volcanic SO2 and ash loading following eruptions, and to refine our understanding of volcanic cloud composition,structure and evolution.

  6. Direct Trace Element Analysis of Liquid Blood Samples by In-Air Ion Beam Analytical Techniques (PIXE-PIGE).

    PubMed

    Huszank, Robert; Csedreki, László; Török, Zsófia

    2017-02-07

    There are various liquid materials whose elemental composition is of interest in various fields of science and technology. In many cases, sample preparation or the extraction can be complicated, or it would destroy the original environment before the analysis (for example, in the case of biological samples). However, multielement direct analysis of liquid samples can be realized by an external PIXE-PIGE measurement system. Particle-induced X-ray and gamma-ray emission spectroscopy (PIXE, PIGE) techniques were applied in external (in-air) microbeam configuration for the trace and main element determination of liquid samples. The direct analysis of standard solutions of several metal salts and human blood samples (whole blood, blood serum, blood plasma, and formed elements) was realized. From the blood samples, Na, P, S, Cl, K, Ca, Fe, Cu, Zn, and Br elemental concentrations were determined. The focused and scanned ion beam creates an opportunity to analyze very small volume samples (∼10 μL). As the sample matrix consists of light elements, the analysis is possible at ppm level. Using this external beam setup, it was found that it is possible to determine elemental composition of small-volume liquid samples routinely, while the liquid samples do not require any preparation processes, and thus, they can be analyzed directly. In the case of lower concentrations, the method is also suitable for the analysis (down to even ∼1 ppm level) but with less accuracy and longer measurement times.

  7. CTEPP STANDARD OPERATING PROCEDURE FOR EXTRACTING AND PREPARING AIR SAMPLES FOR ANALYSIS OF POLAR PERSISTENT ORGANIC POLLUTANTS (SOP-5.13)

    EPA Science Inventory

    The method for extracting and preparing indoor and outdoor air samples for analysis of polar persistent organic pollutants is summarized in this SOP. It covers the preparation of samples that are to be analyzed by gas chromatography/mass spectrometry.

  8. Assessment of Air Quality in the Shuttle and International Space Station (ISS) Based on Samples Returned by STS-104 at the Conclusion of 7A

    NASA Technical Reports Server (NTRS)

    James, John T.

    2001-01-01

    The toxicological assessment of air samples returned at the end of the STS-l04 (7 A) flight to the ISS is reported. ISS air samples were taken in June and July 2001 from the Service Module, FGB, and U.S. Laboratory using grab sample canisters (GSCs) and/or formaldehyde badges. Preflight and end-of-mission samples were obtained from Atlantis using GSCs. Solid sorbent air sampler (SSAS) samples were obtained from the ISS in April, June, and July. Analytical methods have not changed from earlier reports, and all quality control measures were met.

  9. Integrating silicon nanowire field effect transistor, microfluidics and air sampling techniques for real-time monitoring biological aerosols.

    PubMed

    Shen, Fangxia; Tan, Miaomiao; Wang, Zhenxing; Yao, Maosheng; Xu, Zhenqiang; Wu, Yan; Wang, Jindong; Guo, Xuefeng; Zhu, Tong

    2011-09-01

    Numerous threats from biological aerosol exposures, such as those from H1N1 influenza, SARS, bird flu, and bioterrorism activities necessitate the development of a real-time bioaerosol sensing system, which however is a long-standing challenge in the field. Here, we developed a real-time monitoring system for airborne influenza H3N2 viruses by integrating electronically addressable silicon nanowire (SiNW) sensor devices, microfluidics and bioaerosol-to-hydrosol air sampling techniques. When airborne influenza H3N2 virus samples were collected and delivered to antibody-modified SiNW devices, discrete nanowire conductance changes were observed within seconds. In contrast, the conductance levels remained relatively unchanged when indoor air or clean air samples were delivered. A 10-fold increase in virus concentration was found to give rise to about 20-30% increase in the sensor response. The selectivity of the sensing device was successfully demonstrated using H1N1 viruses and house dust allergens. From the simulated aerosol release to the detection, we observed a time scale of 1-2 min. Quantitative polymerase chain reaction (qPCR) tests revealed that higher virus concentrations in the air samples generally corresponded to higher conductance levels in the SiNW devices. In addition, the display of detection data on remote platforms such as cell phone and computer was also successfully demonstrated with a wireless module. The work here is expected to lead to innovative methods for biological aerosol monitoring, and further improvements in each of the integrated elements could extend the system to real world applications.

  10. Passive air sampling of organochlorine pesticides in a northeastern state of India, Manipur.

    PubMed

    Devi, Ningombam Linthoingambi; Qi, Shihua; Chakraborty, Paromita; Zhang, Gan; Yadav, Ishwar Chandra

    2011-01-01

    Thirty-six polyurethane foam disk passive air samplers (PUF-PAS) were deployed over a year during January to December, 2009 at three locations, i.e., Imphal (urban site), Thoubal (rural site) and Waithou (alpine site) of Manipur, to assess the seasonal local atmospheric emission of selected organochlorine pesticides (OCPs). The average concentration of HCHs monitored at mountain site during hot season (Mar, Apr, and May) and rainy seasons (Jun, Jul, Aug, and Sep) were 403 and 349 pg/m3, respectively. DDTs had a high concentration with 384 pg/m3 at rural site and 379 pg/m3 at urban site during hot seasons. Endosulfans and chlordane were found high in concentration during hot seasons (260 pg/m3) and low during retreating monsoon seasons (44 pg/m3) at rural site. Most of the OCPs concentrations were high during cultivation period. The OCP concentrations of rainy season were highly correlated (p < 0.01) with OCPs of hot seasons. Further, positive correlation (p < 0.05) was also obtained between cold seasons and retreating monsoon. Principal component analysis showed a significant correlation among the four seasons and distribution pattern of OCPs in air. Back trajectory analysis by using HYPSLIT model showed a long range air transport of OCPs to the present study area. Present OCP levels at Manipur is an outcome of both local emission and also movement of air mass by long range atmospheric transport.

  11. 32 CFR 806.27 - Samples of Air Force FOIA processing documents.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... documents. (a) This section includes suggested language in paragraph format that tracks Air Force and DoD... section, language in parentheses is for explanatory purposes only. Do not include any of the parenthetical language of this section in your FOIA correspondence. When optional language must be selected, the...

  12. An Inexpensive Autosampler to Maximize Throughput for an Ion Source that Samples Surfaces in Open Air

    EPA Science Inventory

    An autosampler was built to pull cotton swab heads mounted into a 3-foot long, square Al rod in ambient air through the He ionizing beam of a Direct Analysis in Real Time (DART) ion source interfaced to an orthogonal acceleration, time-of-flight mass spectrometer. The cost of th...

  13. Sampling of Malodorous Compounds in Air Using Stir Bar Sorbtive Extraction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Twisters, (poly)-dimethylsiloxane-coated magnetic stir bars, were used to measure malodorous compounds in air. In initial experiments, a minimum deployment time was determined by preloading the stir bars with 10 compounds with a range of volatilities and polarities and then monitoring their loss. ...

  14. ASSESSMENT OF VAPOR INTRUSION USING INDOOR AND SUB-SLAB AIR SAMPLING

    EPA Science Inventory

    The objective of this investigation was to develop a method for evaluating vapor intrusion using indoor and sub-slab air measurement and at the same time directly assist EPA’s New England Regional Office in evaluating vapor intrusion in 15 homes and one business near the former R...

  15. Effect of Sampling Depth on Air-Sea CO2 Flux Estimates in River-Stratified Arctic Coastal Waters

    NASA Astrophysics Data System (ADS)

    Miller, L. A.; Papakyriakou, T. N.

    2015-12-01

    In summer-time Arctic coastal waters that are strongly influenced by river run-off, extreme stratification severely limits wind mixing, making it difficult to effectively sample the surface 'mixed layer', which can be as shallow as 1 m, from a ship. During two expeditions in southwestern Hudson Bay, off the Nelson, Hayes, and Churchill River estuaries, we confirmed that sampling depth has a strong impact on estimates of 'surface' pCO2 and calculated air-sea CO2 fluxes. We determined pCO2 in samples collected from 5 m, using a typical underway system on the ship's seawater supply; from the 'surface' rosette bottle, which was generally between 1 and 3 m; and using a niskin bottle deployed at 1 m and just below the surface from a small boat away from the ship. Our samples confirmed that the error in pCO2 derived from typical ship-board versus small-boat sampling at a single station could be nearly 90 μatm, leading to errors in the calculated air-sea CO2 flux of more than 0.1 mmol/(m2s). Attempting to extrapolate such fluxes over the 6,000,000 km2 area of the Arctic shelves would generate an error approaching a gigamol CO2/s. Averaging the station data over a cruise still resulted in an error of nearly 50% in the total flux estimate. Our results have implications not only for the design and execution of expedition-based sampling, but also for placement of in-situ sensors. Particularly in polar waters, sensors are usually deployed on moorings, well below the surface, to avoid damage and destruction from drifting ice. However, to obtain accurate information on air-sea fluxes in these areas, it is necessary to deploy sensors on ice-capable buoys that can position the sensors in true 'surface' waters.

  16. Direct Analysis of Reversed-Phase HPTLC Separated Tryptic Protein Digests using a Liquid Microjunction Surface Sampling Probe/ESI-MS System

    SciTech Connect

    Emory, Joshua F; Walworth, Matthew J; Van Berkel, Gary J; Schulz, Michael; Minarik, susanne

    2010-01-01

    The sampling, ionization and detection of tryptic peptides separated in one-dimension on reversed phase HPTLC plates was performed using liquid microjunction surface sampling probe electrospray ionization mass spectrometry. Tryptic digests of five proteins (cytochrome c., myoglobin, beta-casein, lysozyme, and bovine serum albumin) were spotted on reversed phase HPTLC RP-8 F254s and HPTLC RP-18 F254s plates. The plates were then developed using 70/30 methanol/water with 0.1 M ammonium acetate. A dual purpose extraction/electrospray solution containing 70/30/0.1 water/methanol/formic acid was infused through the sampling probe during analysis of the developed lanes. Both full scan mass spectra and data dependent tandem mass spectra were acquired for each development lane to detect and verify the peptide distributions. Data dependent tandem mass spectra provided both protein identification and sequence coverage information. Highest sequence coverages were achieved for cytochrome c. and myoglobin (62.5% and 58.3%, respectively) on reversed phase RP-8 plates. While the tryptic peptides were separated enough for identification, the peptide bands did show some overlap with most peptides located in the lower half of the development lane. Proteins whose peptides were more separated gave higher sequence coverage. Larger proteins such as beta-casein and BSA which were spotted in lower relative amounts gave much lower sequence coverage than the smaller proteins.

  17. Ultimate detectability of volatile organic compounds: how much further can we reduce their ambient air sample volumes for analysis?

    PubMed

    Kim, Yong-Hyun; Kim, Ki-Hyun

    2012-10-02

    To understand the ultimately lowest detection range of volatile organic compounds (VOCs) in air, application of a high sensitivity analytical system was investigated by coupling thermal desorption (TD) technique with gas chromatography (GC) and time-of-flight (TOF) mass spectrometry (MS). The performance of the TD-GC/TOF MS system was evaluated using liquid standards of 19 target VOCs prepared in the range of 35 pg to 2.79 ng per μL. Studies were carried out using both total ion chromatogram (TIC) and extracted ion chromatogram (EIC) mode. EIC mode was used for calibration to reduce background and to improve signal-to-noise. The detectability of 19 target VOCs, if assessed in terms of method detection limit (MDL, per US EPA definition) and limit of detection (LOD), averaged 5.90 pg and 0.122 pg, respectively, with the mean coefficient of correlation (R(2)) of 0.9975. The minimum quantifiable mass of target analytes, when determined using real air samples by the TD-GC/TOF MS, is highly comparable to the detection limits determined experimentally by standard. In fact, volumes for the actual detection of the major aromatic VOCs like benzene, toluene, and xylene (BTX) in ambient air samples were as low as 1.0 mL in the 0.11-2.25 ppb range. It was thus possible to demonstrate that most target compounds including those in low abundance could be reliably quantified at concentrations down to 0.1 ppb at sample volumes of less than 10 mL. The unique sensitivity of this advanced analytical system can ultimately lead to a shift in field sampling strategy with smaller air sample volumes facilitating faster, simpler air sampling (e.g., use of gas syringes rather than the relative complexity of pumps or bags/canisters), with greatly reduced risk of analyte breakthrough and minimal interference, e.g., from atmospheric humidity. The improved detection limits offered by this system can also enhance accuracy and measurement precision.

  18. Ultrafast scanning probe microscopy

    DOEpatents

    Weiss, Shimon; Chemla, Daniel S.; Ogletree, D. Frank; Botkin, David

    1995-01-01

    An ultrafast scanning probe microscopy method for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample.

  19. Ultrafast scanning probe microscopy

    DOEpatents

    Weiss, S.; Chemla, D.S.; Ogletree, D.F.; Botkin, D.

    1995-05-16

    An ultrafast scanning probe microscopy method is described for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample. 6 Figs.

  20. CO2 isotope analyses using large air samples collected on intercontinental flights by the CARIBIC Boeing 767.

    PubMed

    Assonov, S S; Brenninkmeijer, C A M; Koeppel, C; Röckmann, T

    2009-03-01

    Analytical details for 13C and 18O isotope analyses of atmospheric CO2 in large air samples are given. The large air samples of nominally 300 L were collected during the passenger aircraft-based atmospheric chemistry research project CARIBIC and analyzed for a large number of trace gases and isotopic composition. In the laboratory, an ultra-pure and high efficiency extraction system and high-quality isotope ratio mass spectrometry were used. Because direct comparison with other laboratories was practically impossible, the extraction and measurement procedures were tested in considerable detail. Extracted CO2 was measured twice vs. two different working reference CO2 gases of different isotopic composition. The two data sets agree well and their distributions can be used to evaluate analytical errors due to isotope measurement, ion corrections, internal calibration consistency, etc. The calibration itself is based on NBS-19 and also verified using isotope analyses on pure CO2 gases (NIST Reference Materials (RMs) and NARCIS CO2 gases). The major problem encountered could be attributed to CO2-water exchange in the air sampling cylinders. This exchange decreased over the years. To exclude artefacts due to such isotopic exchange, the data were filtered to reject negative delta18O(CO2) values. Examples of the results are given.

  1. Combining low-energy electron microscopy and scanning probe microscopy techniques for surface science: Development of a novel sample-holder

    SciTech Connect

    Cheynis, F.; Leroy, F.; Ranguis, A.; Detailleur, B.; Bindzi, P.; Veit, C.; Bon, W.; Müller, P.

    2014-04-15

    We introduce an experimental facility dedicated to surface science that combines Low-Energy Electron Microscopy/Photo-Electron Emission Microscopy (LEEM/PEEM) and variable-temperature Scanning Probe Microscopy techniques. A technical challenge has been to design a sample-holder that allows to exploit the complementary specifications of both microscopes and to preserve their optimal functionality. Experimental demonstration is reported by characterizing under ultrahigh vacuum with both techniques: Au(111) surface reconstruction and a two-layer thick graphene on 6H-SiC(0001). A set of macros to analyze LEEM/PEEM data extends the capabilities of the setup.

  2. Combining low-energy electron microscopy and scanning probe microscopy techniques for surface science: development of a novel sample-holder.

    PubMed

    Cheynis, F; Leroy, F; Ranguis, A; Detailleur, B; Bindzi, P; Veit, C; Bon, W; Müller, P

    2014-04-01

    We introduce an experimental facility dedicated to surface science that combines Low-Energy Electron Microscopy/Photo-Electron Emission Microscopy (LEEM/PEEM) and variable-temperature Scanning Probe Microscopy techniques. A technical challenge has been to design a sample-holder that allows to exploit the complementary specifications of both microscopes and to preserve their optimal functionality. Experimental demonstration is reported by characterizing under ultrahigh vacuum with both techniques: Au(111) surface reconstruction and a two-layer thick graphene on 6H-SiC(0001). A set of macros to analyze LEEM/PEEM data extends the capabilities of the setup.

  3. Comparison of culture and a multiplex probe PCR for identifying Mycoplasma species in bovine milk, semen and swab samples

    PubMed Central

    Parker, Alysia M.; House, John K.; Hazelton, Mark S.; Bosward, Katrina L.; Sheehy, Paul A.

    2017-01-01

    Mycoplasma spp. are a major cause of mastitis, arthritis and pneumonia in cattle, and have been associated with reproductive disorders in cows. While culture is the traditional method of identification the use of PCR has become more common. Several investigators have developed PCR protocols to detect M. bovis in milk, yet few studies have evaluated other sample types or other important Mycoplasma species. Therefore the objective of this study was to develop a multiplex PCR assay to detect M. bovis, M. californicum and M. bovigenitalium, and evaluate its analytical performance against traditional culture of bovine milk, semen and swab samples. The PCR specificity was determined and the limit of detection evaluated in spiked milk, semen and swabs. The PCR was then compared to culture on 474 field samples from individual milk, bulk tank milk (BTM), semen and swab (vaginal, preputial, nose and eye) samples. Specificity analysis produced appropriate amplification for all M. bovis, M. californicum and M. bovigenitalium isolates. Amplification was not seen for any of the other Mollicutes or eubacterial isolates. The limit of detection of the PCR was best in milk, followed by semen and swabs. When all three Mycoplasma species were present in a sample, the limit of detection increased. When comparing culture and PCR, overall there was no significant difference in the proportion of culture and PCR positive samples. Culture could detect significantly more positive swab samples. No significant differences were identified for semen, individual milk or BTM samples. PCR identified five samples with two species present. Culture followed by 16S-23S rRNA sequencing did not enable identification of more than one species. Therefore, the superior method for identification of M. bovis, M. californicum and M. bovigenitalium may be dependent on the sample type being analysed, and whether the identification of multiple target species is required. PMID:28264012

  4. Magnesium, Iron and Aluminum in LLNL Air Particulate and Rain Samples with Reference to Magnesium in Industrial Storm Water

    SciTech Connect

    Esser, Bradley K.; Bibby, Richard K.; Fish, Craig

    2016-08-25

    Storm water runoff from the Lawrence Livermore National Laboratory’s (LLNL’s) main site and Site 300 periodically exceeds the Discharge Permit Numeric Action Level (NAL) for Magnesium (Mg) under the Industrial General Permit (IGP) Order No. 2014-0057-DWQ. Of particular interest is the source of magnesium in storm water runoff from the site. This special study compares new metals data from air particulate and precipitation samples from the LLNL main site and Site 300 to previous metals data for storm water from the main site and Site 300 and alluvial sediment from the main site to investigate the potential source of elevated Mg in storm water runoff. Data for three metals (Mg, Iron {Fe}, and Aluminum {Al}) were available from all media; data for additional metals, such as Europium (Eu), were available from rain, air particulates, and alluvial sediment. To attribute source, this study compared metals concentration data (for Mg, Al, and Fe) in storm water and rain; metal-metal correlations (Mg with Fe, Mg with Al, Al with Fe, Mg with Eu, Eu with Fe, and Eu with Al) in storm water, rain, air particulates, and sediments; and metal-metal ratios ((Mg/Fe, Mg/Al, Al/Fe, Mg/Eu, Eu/Fe, and Eu/Al) in storm water, rain, air particulates and sediments. The results presented in this study are consistent with a simple conceptual model where the source of Mg in storm water runoff is air particulate matter that has dry-deposited on impervious surfaces and subsequently entrained in runoff during precipitation events. Such a conceptual model is consistent with 1) higher concentrations of metals in storm water runoff than in precipitation, 2) the strong correlation of Mg with Aluminum (Al) and Iron (Fe) in both storm water and air particulates, and 3) the similarity in metal mass ratios between storm water and air particulates in contrast to the dissimilarity of metal mass ratios between storm water and precipitation or alluvial sediment. The strong correlation of Mg with Fe and Al

  5. Probing the mechanisms of an air amplifier using a LTQ-FT-ICR-MS and fluorescence spectroscopy.

    PubMed

    Dixon, R Brent; Muddiman, David C; Hawkridge, Adam M; Fedorov, A G

    2007-11-01

    We report the first quantitative assessment of electrosprayed droplet/ion focusing enabled by the use of a voltage-assisted air amplifier between an electrospray ionization emitter and a hybrid linear ion trap Fourier transform ion cyclotron resonance mass spectrometer (ESI-LTQ-FT-ICR-MS). A solution of fluorescent dye was electrosprayed with a stainless steel mesh screen placed in front of the MS inlet capillary acting as a gas-permeable imaging plate for fluorescence spectroscopy. Without use of the air amplifier, no detectable FT-ICR signal was observed, as well as no detectable fluorescence on the screen upon imaging using a fluorescence scanner. When the air amplifier was turned ON while electrospraying the fluorescent dye, FT-ICR mass spectra with high signal to noise ratio were obtained with an average ion injection time of 21 ms for an AGC target value of 5 x 10(5). Imaging of the screen using a fluorescence scanner produced a distinct spot of cross-sectional area approximately 33.5 mm(2) in front of the MS inlet capillary. These experimental results provide direct evidence of aerodynamic focusing of electrosprayed droplets/ions enabled by an air amplifier, resulting in improved electrospray droplet/ion capture efficiency and reduced ion injection time. A second set of experiments was carried out to explore whether the air amplifier assists in desolvation. By electrospraying a mix of quaternary amines, ratios of increasingly hydrophobic molecules were obtained. Observation of the solvophobic effect associated with electrospray ionization resulted in a higher abundance of the hydrophobic molecule. This bias was eliminated when the air amplifier was turned ON and a response indicative of the respective component concentrations of the molecules in the bulk solution was observed.

  6. Final work plan : indoor air and ambient air sampling near the former CCC/USDA grain storage facility in Everest, Kansas.

    SciTech Connect

    LaFreniere, L. M.

    2010-05-24

    The Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) operated a grain storage facility at the western edge of Everest, Kansas, from the early 1950s to the early 1970s. Sampling by the Kansas Department of Health and Environment (KDHE) in 1997 resulted in the detection of carbon tetrachloride in one domestic well (the Nigh well) northwest of the former facility. On behalf of the CCC/USDA, Argonne National Laboratory subsequently conducted a series of investigations to characterize the contamination (Argonne 2003, 2006a,b,c). Automatic, continuous monitoring of groundwater levels began in 2002 and is ongoing at six locations. The results have consistently indicated groundwater flow toward the north-northwest from the former CCC/USDA property to the Nigh property, then west-southwest from the Nigh property to the intermittent creek. Sitewide periodic groundwater and surface water sampling with analysis for volatile organic compounds (VOCs) began in 2008. Argonne's combined data indicate no significant downgradient extension of contamination since 2000. At present, the sampling is annual, as approved by the KDHE (2009) in response to a plan developed for the CCC/USDA (Argonne 2009). This document presents a plan for collecting indoor air samples in homes located along and adjacent to the defined extent of the carbon tetrachloride contamination. The plan was requested by the KDHE. Ambient air samples to represent the conditions along this pathway will also be taken. The purpose of the proposed work is to satisfy KDHE requirements and to collect additional data for assessing the risk to human health due to the potential upward migration of carbon tetrachloride and its primary degradation product (chloroform) into homes located in close proximity to the former grain storage facility, as well as along and within 100 ft laterally from the currently defined plume emanating from the former Everest facility. Investigation of the indoor air

  7. Remote mass spectrometric sampling of electrospray- and desorption electrospray-generated ions using an air ejector.

    PubMed

    Dixon, R Brent; Bereman, Michael S; Muddiman, David C; Hawkridge, Adam M

    2007-10-01

    A commercial air ejector was coupled to an electrospray ionization linear ion trap mass spectrometer (LTQ) to transport remotely generated ions from both electrospray (ESI) and desorption electrospray ionization (DESI) sources. We demonstrate the remote analysis of a series of analyte ions that range from small molecules and polymers to polypeptides using the AE-LTQ interface. The details of the ESI-AE-LTQ and DESI-AE-LTQ experimental configurations are described and preliminary mass spectrometric data are presented.

  8. Investigation of synthesized Be-bearing silicate glass as laboratory reference sample at X-ray electron probe microanalysis of silicates

    NASA Astrophysics Data System (ADS)

    Belozerova, Olga Yu.; Mikhailov, Mikhail A.; Demina, Tamara V.

    2017-01-01

    The article discusses estimates of the stability and homogeneity in Be-Mg-Al-silicate glass produced by the authors and its applicability as a laboratory reference sample for X-ray electron probe microanalysis (EPMA) of Be-bearing silicate matters: crystals and quenching melt (glasses), silicates and oxides. The results were obtained using Superprobe-733 and Superprobe JXA-8200 (JEOL Ltd, Japan) devices. The sample homogeneity was studied on macro (10-100 μm) and micro (1-10 μm) levels and was evaluated by the scheme of dispersion analysis. The applicability of Be-bearing silicate glass as a reference sample for Mg, Al, Si determinations was tested on the international certified reference glasses and laboratory reference samples of minerals with a known composition. The obtained experimental metrological characteristics correspond to the "applied geochemistry" type of analysis (second category) and suggest that Be-bearing silicate glass is appropriate as a laboratory reference sample for EPMA of Be-bearing silicate matters, silicates and oxides. Using Be-Mg-Al-silicate glass as a reference sample we obtained satisfactory data on the composition of both some minerals including cordierite and beryllium cordierite, beryllium indialite, beryl and metastable phases (chrysoberyl, compounds with structure of β-quartz and petalite).

  9. Design of a scanning probe microscope with advanced sample treatment capabilities: An atomic force microscope combined with a miniaturized inductively coupled plasma source.

    PubMed

    Hund, Markus; Herold, Hans

    2007-06-01

    We describe the design and performance of an atomic force microscope (AFM) combined with a miniaturized inductively coupled plasma source working at a radio frequency of 27.12 MHz. State-of-the-art scanning probe microscopes (SPMs) have limited in situ sample treatment capabilities. Aggressive treatments such as plasma etching or harsh treatments such as etching in aggressive liquids typically require the removal of the sample from the microscope. Consequently, time consuming procedures are required if the same sample spot has to be imaged after successive processing steps. We have developed a first prototype of a SPM which features a quasi in situ sample treatment using a modified commercial atomic force microscope. A sample holder is positioned in a special reactor chamber; the AFM tip can be retracted by several millimeters so that the chamber can be closed for a treatment procedure. Most importantly, after the treatment, the tip is moved back to the sample with a lateral drift per process step in the 20 nm regime. The performance of the prototype is characterized by consecutive plasma etching of a nanostructured polymer film.

  10. The reproducibility of indoor air pollution (IAP) measurement: a test case for the measurement of key air pollutants from the pan frying of fish samples.

    PubMed

    Kim, Ki-Hyun; Kim, Yong-Hyun; Kim, Bo-Won; Ahn, Jeong-Hyeon; Bae, Min-Suk; Brown, Richard J C

    2014-01-01

    To assess the robustness of various indoor air quality (IAQ) indices, we explored the possible role of reproducibility-induced variability in the measurements of different pollutants under similar sampling and emissions conditions. Polluted indoor conditions were generated by pan frying fish samples in a closed room. A total of 11 experiments were carried out to measure a list of key variables commonly used to represent indoor air pollution (IAP) indicators such as particulate matter (PM: PM1, PM2.5, PM10, and TSP) and a set of individual volatile organic compounds (VOCs) with some odor markers. The cooking activity conducted as part of our experiments was successful to consistently generate significant pollution levels (mean PM10: 7110 μg m(-3) and mean total VOC (TVOC): 1400 μg m(-3), resp.). Then, relative standard error (RSE) was computed to assess the reproducibility between different IAP paramters measured across the repeated experiments. If the results were evaluated by an arbitrary criterion of 10%, the patterns were divided into two data groups (e.g., <10% for benzene and some aldehydes and >10% for the remainders). Most noticeably, TVOC had the most repeatable results with a reproducibility (RSE) value of 3.2% (n = 11).

  11. The Reproducibility of Indoor Air Pollution (IAP) Measurement: A Test Case for the Measurement of Key Air Pollutants from the Pan Frying of Fish Samples

    PubMed Central

    Kim, Bo-Won; Ahn, Jeong-Hyeon; Bae, Min-Suk; Brown, Richard J. C.

    2014-01-01

    To assess the robustness of various indoor air quality (IAQ) indices, we explored the possible role of reproducibility-induced variability in the measurements of different pollutants under similar sampling and emissions conditions. Polluted indoor conditions were generated by pan frying fish samples in a closed room. A total of 11 experiments were carried out to measure a list of key variables commonly used to represent indoor air pollution (IAP) indicators such as particulate matter (PM: PM1, PM2.5, PM10, and TSP) and a set of individual volatile organic compounds (VOCs) with some odor markers. The cooking activity conducted as part of our experiments was successful to consistently generate significant pollution levels (mean PM10: 7110 μg m−3 and mean total VOC (TVOC): 1400 μg m−3, resp.). Then, relative standard error (RSE) was computed to assess the reproducibility between different IAP paramters measured across the repeated experiments. If the results were evaluated by an arbitrary criterion of 10%, the patterns were divided into two data groups (e.g., <10% for benzene and some aldehydes and >10% for the remainders). Most noticeably, TVOC had the most repeatable results with a reproducibility (RSE) value of 3.2% (n = 11). PMID:25054167

  12. Coherent Anti-Stokes Raman Scattering (CARS) as a Probe for Supersonic Hydrogen-Fuel/Air Mixing

    NASA Technical Reports Server (NTRS)

    Danehy, P. M.; O'Byrne, S.; Cutler, A. D.; Rodriguez, C. G.

    2003-01-01

    The dual-pump coherent anti-Stokes Raman spectroscopy (CARS) method was used to measure temperature and the absolute mole fractions of N2, O2 and H2 in a supersonic non-reacting fuel-air mixing experiment. Experiments were conducted in NASA Langley Research Center s Direct Connect Supersonic Combustion Test Facility. Under normal operation of this facility, hydrogen and air burn to increase the enthalpy of the test gas and O2 is added to simulate air. This gas is expanded through a Mach 2 nozzle and into a combustor model where fuel is then injected, mixes and burns. In the present experiment the O2 of the test gas is replaced by N2. The lack of oxidizer inhibited combustion of the injected H2 fuel jet allowing the fuel/air mixing process to be studied. CARS measurements were performed 427 mm downstream of the nozzle exit and 260 mm downstream of the fuel injector. Maps were obtained of the mean temperature, as well as the N2, O2 and H2 mean mole fraction fields. A map of mean H2O vapor mole fraction was also inferred from these measurements. Correlations between different measured parameters and their fluctuations are presented. The CARS measurements are compared with a preliminary computational prediction of the flow.

  13. 40 CFR Appendix E to Part 58 - Probe and Monitoring Path Siting Criteria for Ambient Air Quality Monitoring

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... be substantially influenced by any one roadway. Computations were made to determine the separation... a written request from the State agency to waive one or more siting criteria for some monitoring... Criteria for Ambient Air Quality Monitoring E Appendix E to Part 58 Protection of Environment...

  14. 40 CFR Appendix E to Part 58 - Probe and Monitoring Path Siting Criteria for Ambient Air Quality Monitoring

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... emissions, then the site is likely to be properly located nearby. This type of monitoring site would in all likelihood be a microscale type of monitoring site. If a monitoring site is to be used to determine air... account the heights of the flues, type of waste or fuel burned, and the sulfur content of the fuel....

  15. Evaluation of a portable X-ray fluorescence instrument for the determination of lead in workplace air samples.

    PubMed

    Morley, J C; Clark, C S; Deddens, J A; Ashley, K; Roda, S

    1999-05-01

    Occupational Safety and Health Administration (OSHA) regulations for worker exposure to lead specify worker protection levels based upon airborne concentrations of lead dust. The rapid, on-site determination of lead in air filter samples using a portable x-ray fluorescence (XRF) instrument with an attachment to hold the filter would expedite the exposure assessment process and facilitate compliance with the OSHA standards. A total of 65 lead in air filter samples were collected at bridge blasting lead-abatement projects using closed-faced, 37-mm cassettes with pre-loaded 0.8 micron pore size mixed cellulose ester membrane filters. The lead loading range of the data set was 0.1-1514.6 micrograms (micrograms) of lead/sample. Samples were initially analyzed with a field portable XRF (NITON 700) using an experimental non-destructive XRF method. Samples were subsequently analyzed using National Institute for Occupational Safety and Health (NIOSH) Method 7105 (Graphite Furnace AA) as a reference analytical method. The paired data were not normally distributed; therefore, the non-parametric Wilcoxon signed rank test was used for statistical analysis. There was no statistically significant difference between data from the field portable XRF method and the NIOSH method (p-value = 0.72). Linear regression of the data resulted in a slope of 0.959, a y-intercept of 5.20 micrograms, and an r2 of 0.985. The XRF limit of detection and limit of quantitation were determined to be 6.2 and 17 micrograms of lead/sample, respectively. The XRF method accuracy was +/- 16.4% (7.1%-27%, 90% confidence interval). The data presented in this study indicate that field-portable XRF can be used for the analysis of lead air filter samples over the range of 17 to 1500 micrograms of lead/sample. The practicing industrial hygienist can use field-portable XRF to produce a rapid, on-site determination of lead exposure that can immediately be communicated to workers and help identify appropriate levels

  16. Monitoring Iodine-129 in Air and Milk Samples Collected Near the Hanford Site: An Investigation of Historical Iodine Monitoring Data

    SciTech Connect

    Fritz, Brad G.; Patton, Gregory W.

    2006-01-01

    While other research has reported on the concentrations of 129I in the environment surrounding active nuclear fuel reprocessing facilities, there is a shortage of information regarding how the concentrations change once facilities close. At the Hanford Site, the Plutonium-Uranium Extraction (PUREX) chemical separation plant was operational between 1983 and 1990, during which time 129I concentrations in air and milk were measured. After the cessation of operations in 1990, plant emissions decreased 2.5 orders of magnitude over an 8 year period, and monitoring of environmental levels continued. An evaluation of air and milk 129I concentration data spanning the PUREX operation and post closure period was conducted to compare the changes in environmental levels of 129I measured. Measured concentrations over the monitoring period were below levels that could result in a potential human dose greater than 10 uSv. There was a significant and measurable difference in the measured air concentrations of 129I at different distances from the source, indicating a distinct Hanford fingerprint. Correlations between stack emissions of 129I and concentrations in air and milk indicate that atmospheric emissions were responsible for the 129I concentrations measured in environmental samples. The measured concentrations during PUREX operation were similar to observations made around a fuel reprocessing plant in Germany.

  17. STS 134, 135 and 26S Return Samples: Air Quality aboard Shuttle (STS-134) and International Space Station

    NASA Technical Reports Server (NTRS)

    James, John T.

    2011-01-01

    This is a very limited set of samples on which to perform an air quality assessment. However, based on these samples, we have no reason to believe that nominal ISS air is unsafe to breathe. We must continue to be vigilant when dealing with nominal atmospheres in ISS. New, unmanned modules require special attention when the crew first enters. Carbon Monoxide Accumulation aboard ISS: Beginning in late 2008 the nominal concent