Science.gov

Sample records for air sampling probe

  1. Review of the Physical Science Facility Stack Air Sampling Probe Locations

    SciTech Connect

    Glissmeyer, John A.

    2007-09-30

    This letter report reviews compliance of the current design of the Physical Science Facility (PSF) stack air sampling locations with the ANSI/HPS N13.1-1999 standard. The review was based on performance criteria used for locating air sampling probes, the design documents provided and available information on systems previously tested for compliance with the criteria. Recommendations are presented for ways to bring the design into compliance with the requirements for the sampling probe placement.

  2. Development of a local continuous sampling probe for the equivalence air-fuel ratio measurement. Application to spark ignition engine

    NASA Astrophysics Data System (ADS)

    Guibert, P.; Dicocco, E.

    This paper is a contribution to the development of an original technique for measuring the in-cylinder equivalence air-fuel ratio. The main objective was to construct an instrument able to furnish instantaneous values of hydrocarbon concentration for many consecutive cycles at a definite location, especially at the spark plug location. The probe is based on a hot-wire-like apparatus, but involves catalytic oxidation on the wire surface in order to be sensitive to the hydrocarbon concentration. In this paper, we present the different steps needed to develop and validate the probe. The first step focuses on the geometric configuration to simplify as much as possible the mass transfer phenomena on the wire. The second step is a parametric study to evaluate the sensitivity, confidence and lifetime of the wire. By physical analysis, we propose a relationship between the electrical signal and the air-fuel equivalence ratio of the sampled gases. The third step is the application of the probe to in-cylinder motored engine measurements, which confirms the ability of the technique to characterise, quantitatively, the homogeneity of the air-fuel mixture, especially during the compression stroke. This work points out that the global sensitivity is estimated at 4V per unit of equivalence air-fuel ratio and the response time is estimated at about 400μs. The equivalence air-fuel ratio range is from pure air to 1.2. Experiments show that it is necessary to calibrate the system before use because of the existence of multiple catalysis states. The probe presents advantages associated with its simplicity, its low cost and its direct engine application without any modifications.

  3. Probe samples components of rocket engine exhaust

    NASA Technical Reports Server (NTRS)

    Schumacher, P. E.

    1965-01-01

    Water-cooled, cantilevered probe samples the exhaust plume of rocket engines to recover particles for examination. The probe withstands the stresses of a rocket exhaust plume environment for a sufficient period to obtain a useful sample of the exhaust components.

  4. Single-point representative sampling with shrouded probes

    SciTech Connect

    McFarland, A.R.; Rodgers, J.C.

    1993-08-01

    The Environmental Protection Agency (EPA) prescribed methodologies for sampling radionuclides in air effluents from stacks and ducts at US Department of Energy (DOE) facilities. Requirements include use of EPA Method 1 for the location of sampling sites and use of American National Standards Institute (ANSI) N13.1 for guidance in design of sampling probes and the number of probes at a given site. Application of ANSI N13.1 results in sampling being performed with multiprobe rakes that have as many as 20 probes. There can be substantial losses of aerosol particles in such sampling that will degrade the quality of emission estimates from a nuclear facility. Three alternate methods, technically justified herein, are proposed for effluent sampling. First, a shrouded aerosol sampling probe should replace the sharp-edged elbowed-nozzle recommended by ANSI. This would reduce the losses of aerosol particles in probes and result in the acquisition of more representative aerosol samples. Second, the rakes of multiple probes that are intended to acquire representative samples through spatial coverage should be replaced by a single probe located where contaminant mass and fluid momentum are both well mixed. A representative sample can be obtained from a well-mixed flow. Some effluent flows will need to be engineered to achieve acceptable mixing. Third, sample extraction should be performed at a constant flow rate through a suitable designed shrouded probe rather than at a variable flow rate through isokinetic probes. A shrouded probe is shown to have constant sampling characteristics over a broad range of stack velocities when operated at a fixed flow rate.

  5. Surface sampling concentration and reaction probe

    SciTech Connect

    Van Berkel, Gary J; Elnaggar, Mariam S

    2013-07-16

    A method of analyzing a chemical composition of a specimen is described. The method can include providing a probe comprising an outer capillary tube and an inner capillary tube disposed co-axially within the outer capillary tube, where the inner and outer capillary tubes define a solvent capillary and a sampling capillary in fluid communication with one another at a distal end of the probe; contacting a target site on a surface of a specimen with a solvent in fluid communication with the probe; maintaining a plug volume proximate a solvent-specimen interface, wherein the plug volume is in fluid communication with the probe; draining plug sampling fluid from the plug volume through the sampling capillary; and analyzing a chemical composition of the plug sampling fluid with an analytical instrument. A system for performing the method is also described.

  6. Inertial impaction air sampling device

    DOEpatents

    Dewhurst, Katharine H.

    1990-01-01

    An inertial impactor to be used in an air sampling device for collection of respirable size particles in ambient air which may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry.

  7. Inertial impaction air sampling device

    DOEpatents

    Dewhurst, K.H.

    1990-05-22

    An inertial impactor is designed which is to be used in an air sampling device for collection of respirable size particles in ambient air. The device may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry. 3 figs.

  8. Inertial impaction air sampling device

    DOEpatents

    Dewhurst, K.H.

    1987-12-10

    An inertial impactor to be used in an air sampling device for collection of respirable size particles in ambient air which may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry. 3 figs.

  9. Assessment of the 296-S-21 Stack Sampling Probe Location

    SciTech Connect

    Glissmeyer, John A.

    2006-09-08

    Tests were performed to assess the suitability of the location of the air sampling probe on the 296-S-21 stack according to the criteria of ANSI N13.1-1999, Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stacks and Ducts of Nuclear Facilities. Pacific Northwest National Laboratory conducted most tests on a 3.67:1 scale model of the stack. CH2MHill also performed some limited confirmatory tests on the actual stack. The tests assessed the capability of the air-monitoring probe to extract a sample representative of the effluent stream. The tests were conducted for the practical combinations of operating fans and addressed: (1) Angular Flow--The purpose is to determine whether the velocity vector is aligned with the sampling nozzle. The average yaw angle relative to the nozzle axis should not be more than 20. The measured values ranged from 5 to 11 degrees on the scale model and 10 to 12 degrees on the actual stack. (2) Uniform Air Velocity--The gas momentum across the stack cross section where the sample is extracted should be well mixed or uniform. The uniformity is expressed as the variability of the measurements about the mean, the coefficient of variance (COV). The lower the COV value, the more uniform the velocity. The acceptance criterion is that the COV of the air velocity must be ?20% across the center two-thirds of the area of the stack. At the location simulating the sampling probe, the measured values ranged form 4 to 11%, which are within the criterion. To confirm the validity of the scale model results, air velocity uniformity measurements were made both on the actual stack and on the scale model at the test ports 1.5 stack diameters upstream of the sampling probe. The results ranged from 6 to 8% COV on the actual stack and 10 to 13% COV on the scale model. The average difference for the eight runs was 4.8% COV, which is within the validation criterion. The fact that the scale model results were slightly higher than the

  10. Air Sampling System Evaluation Template

    2000-05-09

    The ASSET1.0 software provides a template with which a user can evaluate an Air Sampling System against the latest version of ANSI N13.1 "Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stacks and Ducts of Nuclear Facilities". The software uses the ANSI N13.1 PIC levels to establish basic design criteria for the existing or proposed sampling system. The software looks at such criteria as PIC level, type of radionuclide emissions, physical state ofmore » the radionuclide, nozzle entrance effects, particulate transmission effects, system and component accuracy and precision evaluations, and basic system operations to provide a detailed look at the subsystems of a monitoring and sampling system/program. A GAP evaluation can then be completed which leads to identification of design and operational flaws in the proposed systems. Corrective measures can then be limited to the GAPs.« less

  11. Air sampling in the workplace. Final report

    SciTech Connect

    Hickey, E.E.; Stoetzel, G.A.; Strom, D.J.; Cicotte, G.R.; Wiblin, C.M.; McGuire, S.A.

    1993-09-01

    This report provides technical information on air sampling that will be useful for facilities following the recommendations in the NRC`s Regulatory Guide 8.25, Revision 1, ``Air sampling in the Workplace.`` That guide addresses air sampling to meet the requirements in NRC`s regulations on radiation protection, 10 CFR Part 20. This report describes how to determine the need for air sampling based on the amount of material in process modified by the type of material, release potential, and confinement of the material. The purposes of air sampling and how the purposes affect the types of air sampling provided are discussed. The report discusses how to locate air samplers to accurately determine the concentrations of airborne radioactive materials that workers will be exposed to. The need for and the methods of performing airflow pattern studies to improve the accuracy of air sampling results are included. The report presents and gives examples of several techniques that can be used to evaluate whether the airborne concentrations of material are representative of the air inhaled by workers. Methods to adjust derived air concentrations for particle size are described. Methods to calibrate for volume of air sampled and estimate the uncertainty in the volume of air sampled are described. Statistical tests for determining minimum detectable concentrations are presented. How to perform an annual evaluation of the adequacy of the air sampling is also discussed.

  12. A probe for sampling interstitial waters of stream sediments and bog soils

    USGS Publications Warehouse

    Nowlan, G.A.; Carollo, C.

    1974-01-01

    A probe for sampling interstitial waters of stream sediments and bog soils is described. Samples can be obtained within a stratigraphic interval of 2-3 cm, to a depth of 60-80 cm, and with little or no contamination of the samples by sediment or air. ?? 1974.

  13. 40 CFR 61.34 - Air sampling.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Air sampling. 61.34 Section 61.34 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Beryllium § 61.34...

  14. Qualification Tests for the Air Sampling System at the 296-Z-7 Stack

    SciTech Connect

    Glissmeyer, John A; Maughan, A David

    2001-10-15

    This report documents tests performed to verify that the monitoring system for the 296-Z-7 ventilation stack meets the applicable regulatory criteria regarding the placement of the air sampling probe, sample transport, and stack flow measurement accuracy.

  15. Microfabricated sampling probes for in vivo monitoring of neurotransmitters.

    PubMed

    Lee, Woong Hee; Slaney, Thomas R; Hower, Robert W; Kennedy, Robert T

    2013-04-16

    Microfabricated fluidic systems have emerged as a powerful approach for chemical analysis. Relatively unexplored is the use of microfabrication to create sampling probes. We have developed a sampling probe microfabricated in Si by bulk micromachining and lithography. The probe is 70 μm wide by 85 μm thick by 11 mm long and incorporates two buried channels that are 20 μm in diameter. The tip of the probe has two 20 μm holes where fluid is ejected or collected for sampling. Utility of the probe was demonstrated by sampling from the brain of live rats. For sampling, artificial cerebral spinal fluid was infused in through one channel at 50 nL/min while sample was withdrawn at the same flow rate from the other channel. Analysis of resulting fractions collected every 20 min from the striatum of rats by liquid chromatography with mass spectrometry demonstrated reliable detection of 17 neurotransmitters and metabolites. The small probe dimensions suggest it is less perturbing to tissue and can be used to sample smaller brain nuclei than larger sampling devices, such as microdialysis probes. This sampling probe may have other applications such as sampling from cells in culture. The use of microfabrication may also enable incorporation of electrodes for electrochemical or electrophysiological recording and other channels that enable more complex sample preparation on the device. PMID:23547793

  16. Sampling probe for microarray read out using electrospray mass spectrometry

    DOEpatents

    Van Berkel, Gary J.

    2004-10-12

    An automated electrospray based sampling system and method for analysis obtains samples from surface array spots having analytes. The system includes at least one probe, the probe including an inlet for flowing at least one eluting solvent to respective ones of a plurality of spots and an outlet for directing the analyte away from the spots. An automatic positioning system is provided for translating the probe relative to the spots to permit sampling of any spot. An electrospray ion source having an input fluidicly connected to the probe receives the analyte and generates ions from the analyte. The ion source provides the generated ions to a structure for analysis to identify the analyte, preferably being a mass spectrometer. The probe can be a surface contact probe, where the probe forms an enclosing seal along the periphery of the array spot surface.

  17. 40 CFR Appendix E to Part 58 - Probe and Monitoring Path Siting Criteria for Ambient Air Quality Monitoring

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Probe and Monitoring Path Siting... Appendix E to Part 58—Probe and Monitoring Path Siting Criteria for Ambient Air Quality Monitoring 1.... Maximum Monitoring Path Length. 9. Probe Material and Pollutant Sample Residence Time. 10....

  18. 40 CFR Appendix E to Part 58 - Probe and Monitoring Path Siting Criteria for Ambient Air Quality Monitoring

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Probe and Monitoring Path Siting... Appendix E to Part 58—Probe and Monitoring Path Siting Criteria for Ambient Air Quality Monitoring 1.... Maximum Monitoring Path Length. 9. Probe Material and Pollutant Sample Residence Time. 10....

  19. Multi-hole pressure probes to air data system for subsonic small-scale air vehicles

    NASA Astrophysics Data System (ADS)

    Shevchenko, A. M.; Berezin, D. R.; Puzirev, L. N.; Tarasov, A. Z.; Kharitonov, A. M.; Shmakov, A. S.

    2016-10-01

    A brief review of research performed to develop multi-hole probes to measure of aerodynamic angles, dynamic head, and static pressure of a flying vehicle. The basis of these works is the application a well-known classical multi-hole pressure probe technique of measuring of a 3D flow to use in the air data system. Two multi-hole pressure probes with spherical and hemispherical head to air-data system for subsonic small-scale vehicles have been developed. A simple analytical probe model with separation of variables is proposed. The probes were calibrated in the wind tunnel, one of them is in-flight tested.

  20. SnifProbe: new method and device for vapor and gas sampling.

    PubMed

    Gordin, A; Amirav, A

    2000-12-01

    SnifProbe is based on the use of 15 mm short pieces of standard 0.53 mm I.D. capillary or porous layer open tubular columns for sampling airborne, headspace, aroma or air pollution samples. A miniaturized frit-bottomed packed vial named MicroSPE was also prepared which served for the sampling of solvent vapors and gases as well as liquid water. The short (15 mm) trapping column is inserted into the SnifProbe easy-insertion-port and the SnifProbe is located or aimed at the sample environment. A miniature pump is operated for pumping 10-60 ml/min of the air sample through the short piece of column to collect the sample. After a few seconds up to a few minutes of pumping, the short column is removed from the SnifProbe with tweezers (or gloved hands) and placed inside a glass vial of a direct sample introduction device (ChromatoProbe) having a 0.5 mm hole at its bottom. The ChromatoProbe sample holder with its glass vial and sample in the short column are introduced into the GC injector as usual. The sample is then quickly and efficiently desorbed from the short sample column and is transferred into the analytical column for conventional GC and/or GC-MS analysis. We have explored the various characteristics of SnifProbe and demonstrated its applicability and effectiveness in many applications. These applications include: the analysis of benzene, toluene and o-xylene in air, SO2 in air, perfume aroma on hand, beer headspace, wine aroma, coffee aroma, cigarette smoke, trace chemical warfare agent simulants, explosives vapors, ethanol in human breath and odorants in domestic cooking gas. SnifProbe can be operated in the field or at a chemical process. The sample columns can be plugged and stored in a small union storage device, placed in a small plastic bag, marked and brought to the laboratory for analysis with the full power of GC and/or GC-MS. Accordingly, we feel that the major and most significant feature of SnifProbe is that it brings the field and process to the

  1. Air sampling with solid phase microextraction

    NASA Astrophysics Data System (ADS)

    Martos, Perry Anthony

    There is an increasing need for simple yet accurate air sampling methods. The acceptance of new air sampling methods requires compatibility with conventional chromatographic equipment, and the new methods have to be environmentally friendly, simple to use, yet with equal, or better, detection limits, accuracy and precision than standard methods. Solid phase microextraction (SPME) satisfies the conditions for new air sampling methods. Analyte detection limits, accuracy and precision of analysis with SPME are typically better than with any conventional air sampling methods. Yet, air sampling with SPME requires no pumps, solvents, is re-usable, extremely simple to use, is completely compatible with current chromatographic equipment, and requires a small capital investment. The first SPME fiber coating used in this study was poly(dimethylsiloxane) (PDMS), a hydrophobic liquid film, to sample a large range of airborne hydrocarbons such as benzene and octane. Quantification without an external calibration procedure is possible with this coating. Well understood are the physical and chemical properties of this coating, which are quite similar to those of the siloxane stationary phase used in capillary columns. The log of analyte distribution coefficients for PDMS are linearly related to chromatographic retention indices and to the inverse of temperature. Therefore, the actual chromatogram from the analysis of the PDMS air sampler will yield the calibration parameters which are used to quantify unknown airborne analyte concentrations (ppb v to ppm v range). The second fiber coating used in this study was PDMS/divinyl benzene (PDMS/DVB) onto which o-(2,3,4,5,6- pentafluorobenzyl) hydroxylamine (PFBHA) was adsorbed for the on-fiber derivatization of gaseous formaldehyde (ppb v range), with and without external calibration. The oxime formed from the reaction can be detected with conventional gas chromatographic detectors. Typical grab sampling times were as small as 5 seconds

  2. East Mountain Area 1995 air sampling results

    SciTech Connect

    Deola, R.A.

    1996-09-01

    Ambient air samples were taken at two locations in the East Mountain Area in conjunction with thermal testing at the Lurance Canyon Burn Site (LCBS). The samples were taken to provide measurements of particulate matter with a diameter less than or equal to 10 micrometers (PM{sub 10}) and volatile organic compounds (VOCs). This report summarizes the results of the sampling performed in 1995. The results from small-scale testing performed to determine the potentially produced air pollutants in the thermal tests are included in this report. Analytical results indicate few samples produced measurable concentrations of pollutants believed to be produced by thermal testing. Recommendations for future air sampling in the East Mountain Area are also noted.

  3. A stagnation pressure probe for droplet-laden air flow

    NASA Technical Reports Server (NTRS)

    Murthy, S. N. B.; Leonardo, M.; Ehresman, C. M.

    1985-01-01

    It is often of interest in a droplet-laden gas flow to obtain the stagnation pressure of both the gas phase and the mixture. A flow-decelerating probe (TPF), with separate, purged ports for the gas phase and the mixture and with a bleed for accumulating liquid at the closed end, has been developed. Measurements obtained utilizing the TPF in a nearly isothermal air-water droplet mixture flow in a smooth circular pipe under various conditions of flow velocity, pressure, liquid concentration and droplet size are presented and compared with data obtained under identical conditions with a conventional, gas phase stagnation pressure probe (CSP). The data obtained with the CSP and TPF probes are analyzed to determine the applicability of the two probes in relation to the multi-phase characteristics of the flow and the geometry of the probe.

  4. Accurate sampling of PCDD/F in high temperature flue-gas using cooled sampling probes.

    PubMed

    Phan, Duong Ngoc Chau; Weidemann, Eva; Lundin, Lisa; Marklund, Stellan; Jansson, Stina

    2012-08-01

    In a laboratory-scale combustion reactor, flue-gas samples were collected at two temperatures in the post-combustion zone, 700°C and 400°C, using two different water-cooled sampling probes. The probes were the cooled probe described in the European Standard method EN-1948:1, referred to as the original probe, and a modified probe that contained a salt/ice mixture to assist the cooling, referred to as the sub-zero probe. To determine the efficiency of the cooling probes, internal temperature measurements were recorded at 5cm intervals inside the probes. Flue-gas samples were analyzed for polychlorinated dibenzo-p-dioxin and dibenzofurans (PCDD/Fs). Samples collected at 700°C using the original cooling probe showed higher concentrations of PCDD/Fs compared to samples collected using the sub-zero probe. No significant differences were observed between samples collected at 400°C. The results indicated that artifact formation of PCDD/Fs readily occurs during flue-gas sampling at high temperatures if the cooling within the probe is insufficient, as found for the original probe at 700°C. It was also shown that this problem could be alleviated by using probes with an enhanced cooling capacity, such as the sub-zero probe. Although this may not affect samples collected for regulatory purposes in exit gases, it is of great importance for research conducted in the high-temperature region of the post-combustion zone.

  5. Evaluating Radionuclide Air Emission Stack Sampling Systems

    SciTech Connect

    Ballinger, Marcel Y.

    2002-12-16

    The Pacific Northwest National Laboratory (PNNL) operates a number of research and development (R&D) facilities for the U.S. Department of Energy at the Hanford Site, Washington. These facilities are subject to Clean Air Act regulations that require sampling of radionuclide air emissions from some of these facilities. A revision to an American National Standards Institute (ANSI) standard on sampling radioactive air emissions has recently been incorporated into federal and state regulations and a re-evaluation of affected facilities is being performed to determine the impact. The revised standard requires a well-mixed sampling location that must be demonstrated through tests specified in the standard. It also carries a number of maintenance requirements, including inspections and cleaning of the sampling system. Evaluations were performed in 2000 – 2002 on two PNNL facilities to determine the operational and design impacts of the new requirements. The evaluation included inspection and cleaning maintenance activities plus testing to determine if the current sampling locations meet criteria in the revised standard. Results show a wide range of complexity in inspection and cleaning activities depending on accessibility of the system, ease of removal, and potential impact on building operations (need for outages). As expected, these High Efficiency Particulate Air (HEPA)-filtered systems did not show deposition significant enough to cause concerns with blocking of the nozzle or other parts of the system. The tests for sampling system location in the revised standard also varied in complexity depending on accessibility of the sample site and use of a scale model can alleviate many issues. Previous criteria to locate sampling systems at eight duct diameters downstream and two duct diameters upstream of the nearest disturbances is no guarantee of meeting criteria in the revised standard. A computational fluid dynamics model was helpful in understanding flow and

  6. Probe for high resolution NMR with sample reorientation

    DOEpatents

    Pines, A.; Samoson, A.

    1990-02-06

    An improved NMR probe and method are described which substantially improve the resolution of NMR measurements made on powdered or amorphous or otherwise orientationally disordered samples. The apparatus mechanically varies the orientation of the sample such that the time average of two or more sets of spherical harmonic functions are zero. 8 figs.

  7. Probe for high resolution NMR with sample reorientation

    DOEpatents

    Pines, Alexander; Samoson, Ago

    1990-01-01

    An improved NMR probe and method are described which substantially improve the resolution of NMR measurements made on powdered or amorphous or otherwise orientationally disordered samples. The apparatus mechanically varies the orientation of the sample such that the time average of two or more sets of spherical harmonic functions are zero.

  8. Sample area of two- and three-rod time domain reflectometry probes

    NASA Astrophysics Data System (ADS)

    Nissen, Henrik H.; Ferré, Ty P. A.; Moldrup, Per

    2003-10-01

    Recent advances in the application of numerical analyses to the spatial sensitivity of conventional two- and three-rod time domain reflectometry (TDR) probes allow for investigation of the response of TDR in spatially heterogeneous media. In this study, we present numerical analyses and laboratory measurements of the effects of steep gradients in relative dielectric permittivity (K) on the spatial sensitivity of TDR probes. Two- and three-rod probes were placed horizontally through the walls of an experimental box. These horizontal probes were placed either within the same horizontal plane (horizontal probes) or within the same vertical plane (vertical probes). Then, an air/liquid interface was raised upward from below and past the probe. Three liquids (sunflower oil, ethanol, and water) with varying K values were used. The same system was analyzed using a numerical model of the spatial sensitivity of TDR probes to lateral variations in K. There was good agreement between measured and modeled K, demonstrating that the spatial sensitivity of TDR probes is biased toward the area of lowest K. The sample areas of all of the probe designs depend strongly on the relative dielectric permittivity distribution in the plane transverse to the direction of wave propagation. Two-rod instead of three-rod probes should be used if sharp changes in K are expected in the direction transverse to the plane containing the probe rods, owing to separation of the traveling electromagnetic (EM) waves in the three-rod case. Generally, a horizontal probe orientation is more appropriate for monitoring across sharp vertical boundaries such as wetting fronts.

  9. Assessment of the 3420 Building Filtered Exhaust Stack Sampling Probe Location

    SciTech Connect

    Glissmeyer, John A.; Flaherty, Julia E.

    2010-07-16

    Pacific Northwest National Laboratory performed several tests in the exhaust air discharge from the new 3420 Building Filtered Exhaust Stack to determine whether the air sampling probe for emissions monitoring for radionuclides is acceptable. The method followed involved adopting the results of a previously performed test series from a system with a similar configuration, followed by several tests on the actual system to verify the applicability of the previously performed tests. The qualification criteria for these types of stacks include metrics concerning 1) uniformity of air velocity, 2) sufficiently small flow angle with respect to the axis of the duct, 3) uniformity of tracer gas concentration, and 4) uniformity tracer particle concentration.

  10. Assessment of the 3410 Building Filtered Exhaust Stack Sampling Probe Location

    SciTech Connect

    Glissmeyer, John A.; Flaherty, Julia E.

    2010-07-16

    Pacific Northwest National Laboratory performed several tests in the exhaust air discharge from the new 3410 Building Filtered Exhaust Stack to determine whether the air sampling probe for emissions monitoring for radionuclides is acceptable. The method followed involved adopting the results of a previously performed test series from a system with a similar configuration, followed by several tests on the actual system to verify the applicability of the previously performed tests. The qualification criteria for these types of stacks include metrics concerning 1) uniformity of air velocity, 2) sufficiently small flow angle with respect to the axis of the duct, 3) uniformity of tracer gas concentration, and 4) uniformity tracer particle concentration.

  11. Situ soil sampling probe system with heated transfer line

    DOEpatents

    Robbat, Jr., Albert

    2002-01-01

    The present invention is directed both to an improved in situ penetrometer probe and to a heated, flexible transfer line. The line and probe may be implemented together in a penetrometer system in which the transfer line is used to connect the probe to a collector/analyzer at the surface. The probe comprises a heater that controls a temperature of a geologic medium surrounding the probe. At least one carrier gas port and vapor collection port are located on an external side wall of the probe. The carrier gas port provides a carrier gas into the geologic medium, and the collection port captures vapors from the geologic medium for analysis. In the transfer line, a flexible collection line that conveys a collected fluid, i.e., vapor, sample to a collector/analyzer. A flexible carrier gas line conveys a carrier gas to facilitate the collection of the sample. A system heating the collection line is also provided. Preferably the collection line is electrically conductive so that an electrical power source can generate a current through it so that the internal resistance generates heat.

  12. Probe for Sampling of Interstitial Fluid From Bone

    NASA Technical Reports Server (NTRS)

    Janle, Elsa M.

    2004-01-01

    An apparatus characterized as both a membrane probe and a bone ultrafiltration probe has been developed to enable in vivo sampling of interstitial fluid in bone. The probe makes it possible to measure the concentration of calcium and other constituents of the fluid that may be relevant to bone physiology. The probe could be especially helpful in experimental studies of microgravitational bone loss and of terrestrial bone-loss disease states, including osteoporosis. The probe can be implanted in the bone tissue of a living animal and can be used to extract samples of the interstitial bone fluid from time to time during a long-term study. The probe includes three 12-cm-long polyacrylonitrile fibers configured in a loop form and attached to polyurethane tubing [inside diameter 0.025 in. (0.64 mm), outside diameter 0.040 in. (1 mm)]; the attachment is made by use of a 1-cm-long connecting piece of polyurethane tubing [inside diameter 0.035 0.003 in. (0.89 0.08 mm), outside diameter 0.060 0.003 in. (1.52 0.08 mm)]. At the distal end, a 2-cm-long piece of polyurethane tubing of the same inner and outer diameters serves as a connector to a hub. A 1-cm long piece of expanded poly (tetrafluoroethylene) tubing over the joint between the fibers and the connecting tubing serves as a tissue-in-growth site.

  13. Radon discrimination for work place air samples

    SciTech Connect

    Bratvold, T.

    1994-09-27

    Gross alpha/beta measurement systems are designed solely to identify an incident particle as either an alpha or a beta and register a count accordingly. The tool of choice for radon identification, via decay daughters, is an instrument capable of identifying the energy of incident alpha particles and storing that information separately from detected alpha emissions of different energy. In simpler terms, the desired instrument is an alpha spectroscopy system. K Basins Radiological Control (KBRC) procured an EG&G ORTEC OCTETE PC alpha spectroscopy system to facilitate radon identification on work place air samples. The alpha spectrometer allows for the identification of any alpha emitting isotope based on characteristic alpha emission energies. With this new capability, KBRC will explicitly know whether or not there exists a true airborne concern. Based on historical air quality data, this new information venue will reduce the use of respirators substantially. Situations where an area remains ``on mask`` due solely to the presence of radon daughters on the grab air filter will finally be eliminated. This document serves to introduce a new method for radon daughter detection at the 183KE Health Physics Analytical Laboratory (HPAL). A new work place air sampling analysis program will be described throughout this paper. There is no new technology being introduced, nor any unproven analytical process. The program defined over the expanse of this document simply explains how K Basins Radiological Control will employ their alpha spectrometer.

  14. Specific fluorogenic probes for ozone in biological and atmospheric samples.

    PubMed

    Garner, Amanda L; St Croix, Claudette M; Pitt, Bruce R; Leikauf, George D; Ando, Shin; Koide, Kazunori

    2009-07-01

    Ozone exposure is a growing global health problem, especially in urban areas. While ozone in the stratosphere protects the earth from harmful ultraviolet light, tropospheric or ground-level ozone is toxic and can damage the respiratory tract. It has recently been shown that ozone may be produced endogenously in inflammation and antibacterial responses of the immune system; however, these results have sparked controversy owing to the use of a non-specific colorimetric probe. Here we report the synthesis of fluorescent molecular probes able to unambiguously detect ozone in both biological and atmospheric samples. Unlike other ozone-detection methods, in which interference from different reactive oxygen species is often a problem, these probes are ozone specific. Such probes will prove useful for the study of ozone in environmental science and biology, and so possibly provide some insight into the role of ozone in cells.

  15. Specific fluorogenic probes for ozone in biological and atmospheric samples

    PubMed Central

    Garner, Amanda L.; St Croix, Claudette M.; Pitt, Bruce R.; Leikauf, George D.; Ando, Shin; Koide, Kazunori

    2010-01-01

    Ozone exposure is a growing global health problem, especially in urban areas. While ozone in the stratosphere protects the earth from harmful ultraviolet light, tropospheric or ground-level ozone is toxic and can damage the respiratory tract. It has recently been shown that ozone may be produced endogenously in inflammation and antibacterial responses of the immune system; however, these results have sparked controversy owing to the use of a non-specific colorimetric probe. Here we report the synthesis of fluorescent molecular probes able to unambiguously detect ozone in both biological and atmospheric samples. Unlike other ozone-detection methods, in which interference from different reactive oxygen species is often a problem, these probes are ozone specific. Such probes will prove useful for the study of ozone in environmental science and biology, and so possibly provide some insight into the role of ozone in cells. PMID:20634904

  16. Quantification of probe-sample interactions of a scanning thermal microscope using a nanofabricated calibration sample having programmable size.

    PubMed

    Ge, Yunfei; Zhang, Yuan; Booth, Jamie A; Weaver, Jonathan M R; Dobson, Phillip S

    2016-08-12

    We report a method for quantifying scanning thermal microscopy (SThM) probe-sample thermal interactions in air using a novel temperature calibration device. This new device has been designed, fabricated and characterised using SThM to provide an accurate and spatially variable temperature distribution that can be used as a temperature reference due to its unique design. The device was characterised by means of a microfabricated SThM probe operating in passive mode. This data was interpreted using a heat transfer model, built to describe the thermal interactions during a SThM thermal scan. This permitted the thermal contact resistance between the SThM tip and the device to be determined as 8.33 × 10(5) K W(-1). It also permitted the probe-sample contact radius to be clarified as being the same size as the probe's tip radius of curvature. Finally, the data were used in the construction of a lumped-system steady state model for the SThM probe and its potential applications were addressed. PMID:27363896

  17. Surface sampling concentration and reaction probe with controller to adjust sampling position

    DOEpatents

    Van Berkel, Gary J.; ElNaggar, Mariam S.

    2016-07-19

    A method of analyzing a chemical composition of a specimen is described. The method can include providing a probe comprising an outer capillary tube and an inner capillary tube disposed co-axially within the outer capillary tube, where the inner and outer capillary tubes define a solvent capillary and a sampling capillary in fluid communication with one another at a distal end of the probe; contacting a target site on a surface of a specimen with a solvent in fluid communication with the probe; maintaining a plug volume proximate a solvent-specimen interface, wherein the plug volume is in fluid communication with the probe; draining plug sampling fluid from the plug volume through the sampling capillary; and analyzing a chemical composition of the plug sampling fluid with an analytical instrument. A system for performing the method is also described.

  18. Real-time Sample Analysis using Sampling Probe and Miniature Mass Spectrometer

    PubMed Central

    Chen, Chien-Hsun; Lin, Ziqing; Tian, Ran; Shi, Riyi; Cooks, R. Graham; Ouyang, Zheng

    2016-01-01

    A miniature mass spectrometry system with a sampling probe has been developed for real-time analysis of chemicals from sample surfaces. The sampling probe is 1.5m in length and is comprised of one channel for introducing the spray and the other channel for transferring the charged species back to the Mini MS. This system provides a solution to the problem of real-time mass spectrometry analysis of a three-dimensional object in the field and is successful with compounds including those in inks, agrochemicals, explosives, and animal tissues. This system can be implemented in the form of a backpack MS with a sampling probe for forensic analysis or in the form of a compact MS with an intra-surgical probe for tissue analysis. PMID:26237577

  19. Real-time sample analysis using a sampling probe and miniature mass spectrometer.

    PubMed

    Chen, Chien-Hsun; Lin, Ziqing; Tian, Ran; Shi, Riyi; Cooks, R Graham; Ouyang, Zheng

    2015-09-01

    A miniature mass spectrometry system with a sampling probe has been developed for real-time analysis of chemicals from sample surfaces. The sampling probe is 1.5 m in length and is comprised of one channel for introducing the spray and the other channel for transferring the charged species back to the Mini MS. This system provides a solution to the problem of real-time mass spectrometry analysis of a three-dimensional object in the field and is successful with compounds including those in inks, agrochemicals, explosives, and animal tissues. This system can be implemented in the form of a backpack MS with a sampling probe for forensic analysis or in the form of a compact MS with an intrasurgical probe for tissue analysis. PMID:26237577

  20. Air Sampling Instruments for Evaluation of Atmospheric Contaminants. Fourth Edition.

    ERIC Educational Resources Information Center

    American Conference of Governmental Industrial Hygienists, Cincinnati, OH.

    This text, a revision and extension of the first three editions, consists of papers discussing the basic considerations in sampling air for specific purposes, sampler calibration, systems components, sample collectors, and descriptions of air-sampling instruments. (BT)

  1. Probe technologies for clean sampling and measurement of subglacial lakes.

    PubMed

    Mowlem, Matt; Saw, Kevin; Brown, Robin; Waugh, Edward; Cardwell, Christopher L; Wyatt, James; Magiopoulos, Iordanis; Keen, Peter; Campbell, Jon; Rundle, Nicholas; Gkritzalis-Papadopoulos, Athanasios

    2016-01-28

    It is 4 years since the subglacial lake community published its plans for accessing, sampling, measuring and studying the pristine, and hitherto enigmatic and very different, Antarctic subglacial lakes, Vostok, Whillans and Ellsworth. This paper summarizes the contrasting probe technologies designed for each of these subglacial environments and briefly updates how these designs changed or were used differently when compared to previously published plans. A detailed update on the final engineering design and technical aspects of the probe for Subglacial Lake Ellsworth is presented. This probe is designed for clean access, is negatively buoyant (350 kg), 5.2 m long, 200 mm in diameter, approximately cylindrical and consists of five major units: (i) an upper power and communications unit attached to an optical and electrical conducting tether, (ii)-(iv) three water and particle samplers, and (v) a sensors, imaging and instrumentation pack tipped with a miniature sediment corer. To date, only in Subglacial Lake Whillans have instruments been successfully deployed. Probe technologies for Subglacial Lake Vostok (2014/15) and Lake Ellsworth (2012/13) were not deployed for technical reasons, in the case of Lake Ellsworth because hot-water drilling was unable to access the lake during the field season window. Lessons learned and opportunities for probe technologies in future subglacial access missions are discussed.

  2. Air sampling of nickel in a refinery.

    PubMed

    Harmse, Johannes L; Engelbrecht, Jacobus C

    2007-08-01

    Air monitoring was conducted in a nickel base metal refinery to determine compliance with occupational exposure limits. The hypothesis stated that levels of airborne dust may pose a risk to worker health if compared to the relevant exposure limits. Exposure limits for nickel species are set for the inhalable nickel dust fraction. Personal air samples, representative of three selected areas were collected in the workers' breathing zones, using the Institute of Occupational Medicine (IOM) samplers. Real-time personal samples were collected randomly over a two-month period in three nickel production areas. Filter papers were treated gravimetrically and were analysed for soluble and insoluble nickel through inductive coupled plasma-mass spectrometry (ICP-MS). Measured concentrations were expressed as time weighted average exposure concentrations. Results were compared to South African occupational exposure limits (OELs) and to the threshold limit values (TLVs) set by the American Conference of Governmental Industrial Hygienists (ACGIH) to determine compliance. Statistical compliance was also determined using the National Institute for Occupational Safety and Health procedure as prescribed by South Africa's Hazardous Chemical Substances Regulations in 1995. In two of the areas it was found that exposure concentrations complied with the OELs. Some exposures exceeded the OEL values and most exposures exceeded the TLV values in the other area concerned. A comprehensive health risk assessment needs to be conducted to determine the cause of non-compliance. PMID:17613095

  3. 40 CFR 61.34 - Air sampling.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Beryllium § 61.34 Air... detect maximum concentrations of beryllium in the ambient air. (b) All monitoring sites shall be...

  4. 40 CFR 61.34 - Air sampling.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Beryllium § 61.34 Air... detect maximum concentrations of beryllium in the ambient air. (b) All monitoring sites shall be...

  5. 40 CFR 61.34 - Air sampling.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Beryllium § 61.34 Air... detect maximum concentrations of beryllium in the ambient air. (b) All monitoring sites shall be...

  6. 40 CFR 61.34 - Air sampling.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Beryllium § 61.34 Air... detect maximum concentrations of beryllium in the ambient air. (b) All monitoring sites shall be...

  7. Assessment of the HV-C2 Stack Sampling Probe Location

    SciTech Connect

    Glissmeyer, John A.; Droppo, James G.

    2007-08-24

    Tests were performed to evaluate the location of the air-sampling probe in the proposed design for the Waste Treatment Plant’s HV-C2 air exhaust stack. The evaluation criteria come from ANSI/HPS N13.1-1999, “Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stacks and Ducts of Nuclear Facilities.” Pacific Northwest National Laboratory conducted the tests on a 3.67:1 scale model of the stack. Limited confirmatory tests on the actual stack will need to be conducted during cold startup of the High Level Waste Treatment Facility. The tests documented here assessed the capability of the air-monitoring probe to extract a sample representative of the effluent stream in accordance with criteria in ANSI/HPS N13.1. The test parameters covered the expected range of system flowrates with both one and two operating fans. The current stack design calls for the sampling probe to be located about 10 diameters downstream of the junction of the duct from Fan A with the stack. In accordance with the statement of work and the test plan, the test measurements were made at that location and also at one point upstream and another downstream. An adjustment was made for the distance between a typical sampling probe inlet and the centerline of its mounting flange. Thus, the test measurements were made at three positions designated as Test Port 1, 2, and 3, respectively. The designed HV-C2 exhaust system includes dampers on the fan discharges. Custom-scale model dampers were fabricated to simulate the same number and configuration of damper blades shown in the design documents received from BNI. A subset of the test runs was run without the dampers to determine whether the dampers should be included in future tests on scale models.

  8. Hybrid molecular probe for nucleic acid analysis in biological samples.

    PubMed

    Yang, Chaoyong James; Martinez, Karen; Lin, Hui; Tan, Weihong

    2006-08-01

    The ability to detect changes in gene expression, especially in real-time and with sensitivity sufficient enough to monitor small variations in a single-cell, will have considerable value in biomedical research and applications. Out of the many available molecular probes for intracellular monitoring of nucleic acids, molecular beacon (MB) is the most frequently used probe with the advantages of high sensitivity and selectivity. However, any processes in which the MB stem-loop structure is broken will result in a restoration of the fluorescence in MB. This brings in a few possibilities for false positive signal such as nuclease degradation, protein binding, thermodynamic fluctuation, solution composition variations (such as pH, salt concentration) and sticky-end pairing. These unwanted processes do exist inside living cells, making nucleic acid monitoring inside living cells difficult. We have designed and synthesized a hybrid molecular probe (HMP) for intracellular nucleic acid monitoring to overcome these problems. HMP has two DNA probes, one labeled with a donor and the other an acceptor. The two DNA probes are linked by a poly(ethylene glycol) (PEG) linker, with each DNA being complementary to adjacent areas of a target sequence. Target binding event brings the donor and acceptor in proximity, resulting in quenching of the donor fluorescence and enhancement of the acceptor emission. The newly designed HMP has high sensitivity, selectivity, and fast hybridization kinetics. The probe is easy to design and synthesize. HMP does not generate any false positive signal upon digestion by nuclease, binding by proteins, forming complexes by sticky-end pairing, or by other molecular interaction processes. HMP is capable of selectively detecting nucleic acid targets from cellular samples.

  9. Diagnosing AIRS Sampling with CloudSat Cloud Classes

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric; Yue, Qing; Guillaume, Alexandre; Kahn, Brian

    2011-01-01

    AIRS yield and sampling vary with cloud state. Careful utilization of collocated multiple satellite sensors is necessary. Profile differences between AIRS and ECMWF model analyses indicate that AIRS has high sampling and excellent accuracy for certain meteorological conditions. Cloud-dependent sampling biases may have large impact on AIRS L2 and L3 data in climate research. MBL clouds / lower tropospheric stability relationship is one example. AIRS and CloudSat reveal a reasonable climatology in the MBL cloud regime despite limited sampling in stratocumulus. Thermodynamic parameters such as EIS derived from AIRS data map these cloud conditions successfully. We are working on characterizing AIRS scenes with mixed cloud types.

  10. New approaches to nanoparticle sample fabrication for atom probe tomography.

    PubMed

    Felfer, P; Li, T; Eder, K; Galinski, H; Magyar, A P; Bell, D C; Smith, G D W; Kruse, N; Ringer, S P; Cairney, J M

    2015-12-01

    Due to their unique properties, nano-sized materials such as nanoparticles and nanowires are receiving considerable attention. However, little data is available about their chemical makeup at the atomic scale, especially in three dimensions (3D). Atom probe tomography is able to answer many important questions about these materials if the challenge of producing a suitable sample can be overcome. In order to achieve this, the nanomaterial needs to be positioned within the end of a tip and fixed there so the sample possesses sufficient structural integrity for analysis. Here we provide a detailed description of various techniques that have been used to position nanoparticles on substrates for atom probe analysis. In some of the approaches, this is combined with deposition techniques to incorporate the particles into a solid matrix, and focused ion beam processing is then used to fabricate atom probe samples from this composite. Using these approaches, data has been achieved from 10-20 nm core-shell nanoparticles that were extracted directly from suspension (i.e. with no chemical modification) with a resolution of better than ± 1 nm.

  11. Total Water Content Measurements with an Isokinetic Sampling Probe

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.; Miller, Dean R.; Bidwell, Colin S.

    2010-01-01

    The NASA Glenn Research Center has developed a Total Water Content (TWC) Isokinetic Sampling Probe. Since it is not sensitive to cloud water particle phase nor size, it is particularly attractive to support super-cooled large droplet and high ice water content aircraft icing studies. The instrument is comprised of the Sampling Probe, Sample Flow Control, and Water Vapor Measurement subsystems. Analysis and testing have been conducted on the subsystems to ensure their proper function and accuracy. End-to-end bench testing has also been conducted to ensure the reliability of the entire instrument system. A Stokes Number based collection efficiency correction was developed to correct for probe thickness effects. The authors further discuss the need to ensure that no condensation occurs within the instrument plumbing. Instrument measurements compared to facility calibrations from testing in the NASA Glenn Icing Research Tunnel are presented and discussed. There appears to be liquid water content and droplet size effects in the differences between the two measurement techniques.

  12. Minanre Gas Concentrators For Air Sampling

    SciTech Connect

    Dr. Seung Ho Hong

    2001-03-01

    The goal of this project was to demonstrate the feasibility of a compact, lightweight, gas-sampling device with rapid-cycle-time characteristics. The highlights of our Phase I work include: (1) Demonstration of a compact gas sampler with integrated heater. This device has an order of magnitude greater adsorption capacity and much faster heating/cooling times than commercial sorbent tubes. (2) Completion of computational fluid dynamics modeling of the gas sampler to determine airflow characteristics for various design options. These modeling efforts guided the development and testing of the Mesochannel Gas Sampler prototype. (3) Testing of the Mesochannel Gas Sampler in parallel with tests of two packed-bed samplers. These tests showed the Mesochannel Gas Sampler represents a substantial improvement compared with the packed-bed approach. Our mesochannel heat-exchanger/adsorber architecture allows very efficient use of adsorbent mass, high adsorbent loadings, and very low pressure drop, which makes possible very high air-sampling rates using a simple, low-power fan. This device is well-suited for collecting samples of trace-level contaminants. The integrated heater, which forms the adsorbent-coated mesochannel walls, allows direct heating of the adsorbent and results in very rapid desorption of the adsorbed species. We believe the Mesochannel Gas Sampler represents a promising technology for the improvement of trace-contaminant detection limits. In our Phase II proposal, we outline several improvements to the gas sampler that will further improve its performance.

  13. Quantification of probe-sample interactions of a scanning thermal microscope using a nanofabricated calibration sample having programmable size

    NASA Astrophysics Data System (ADS)

    Ge, Yunfei; Zhang, Yuan; Booth, Jamie A.; Weaver, Jonathan M. R.; Dobson, Phillip S.

    2016-08-01

    We report a method for quantifying scanning thermal microscopy (SThM) probe-sample thermal interactions in air using a novel temperature calibration device. This new device has been designed, fabricated and characterised using SThM to provide an accurate and spatially variable temperature distribution that can be used as a temperature reference due to its unique design. The device was characterised by means of a microfabricated SThM probe operating in passive mode. This data was interpreted using a heat transfer model, built to describe the thermal interactions during a SThM thermal scan. This permitted the thermal contact resistance between the SThM tip and the device to be determined as 8.33 × 105 K W-1. It also permitted the probe-sample contact radius to be clarified as being the same size as the probe’s tip radius of curvature. Finally, the data were used in the construction of a lumped-system steady state model for the SThM probe and its potential applications were addressed.

  14. Nanocharacterization of Soft Biological Samples in Shear Mode with Quartz Tuning Fork Probes

    PubMed Central

    Otero, Jorge; Gonzalez, Laura; Puig-Vidal, Manel

    2012-01-01

    Quartz tuning forks are extremely good resonators and their use is growing in scanning probe microscopy. Nevertheless, only a few studies on soft biological samples have been reported using these probes. In this work, we present the methodology to develop and use these nanosensors to properly work with biological samples. The working principles, fabrication and experimental setup are presented. The results in the nanocharacterization of different samples in different ambients are presented by using different working modes: amplitude modulation with and without the use of a Phase-Locked Loop (PLL) and frequency modulation. Pseudomonas aeruginosa bacteria are imaged in nitrogen using amplitude modulation. Microcontact printed antibodies are imaged in buffer using amplitude modulation with a PLL. Finally, metastatic cells are imaged in air using frequency modulation. PMID:22666059

  15. Sample Preparation for Electron Probe Microanalysis—Pushing the Limits

    PubMed Central

    Geller, Joseph D.; Engle, Paul D.

    2002-01-01

    There are two fundamental considerations in preparing samples for electron probe microanalysis (EPMA). The first one may seem obvious, but we often find it is overlooked. That is, the sample analyzed should be representative of the population from which it comes. The second is a direct result of the assumptions in the calculations used to convert x-ray intensity ratios, between the sample and standard, to concentrations. Samples originate from a wide range of sources. During their journey to being excited under the electron beam for the production of x rays there are many possibilities for sample alteration. Handling can contaminate samples by adding extraneous matter. In preparation, the various abrasives used in sizing the sample by sawing, grinding and polishing can embed themselves. The most accurate composition of a contaminated sample is, at best, not representative of the original sample; it is misleading. Our laboratory performs EPMA analysis on customer submitted samples and prepares over 250 different calibration standards including pure elements, compounds, alloys, glasses and minerals. This large variety of samples does not lend itself to mass production techniques, including automatic polishing. Our manual preparation techniques are designed individually for each sample. The use of automated preparation equipment does not lend itself to this environment, and is not included in this manuscript. The final step in quantitative electron probe microanalysis is the conversion of x-ray intensities ratios, known as the “k-ratios,” to composition (in mass fraction or atomic percent) and/or film thickness. Of the many assumptions made in the ZAF (where these letters stand for atomic number, absorption and fluorescence) corrections the localized geometry between the sample and electron beam, or takeoff angle, must be accurately known. Small angular errors can lead to significant errors in the final results. The sample preparation technique then becomes very

  16. Assessment of the Revised 3410 Building Filtered Exhaust Stack Sampling Probe Location

    SciTech Connect

    Yu, Xiao-Ying; Recknagle, Kurtis P.; Glissmeyer, John A.

    2013-12-01

    In order to support the air emissions permit for the 3410 Building, Pacific Northwest National Laboratory performed a series of tests in the exhaust air discharge from the reconfigured 3410 Building Filtered Exhaust Stack. The objective was to determine whether the location of the air sampling probe for emissions monitoring meets the applicable regulatory criteria governing such effluent monitoring systems. In particular, the capability of the air sampling probe location to meet the acceptance criteria of ANSI/HPS N13.1-2011 , Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stack and Ducts of Nuclear Facilities was determined. The qualification criteria for these types of stacks address 1) uniformity of air velocity, 2) sufficiently small flow angle with respect to the axis of the duct, 3) uniformity of tracer gas concentration, and 4) uniformity of tracer particle concentration. Testing was performed to conform to the quality requirements of NQA-1-2000. Fan configurations tested included all fan combinations of any two fans at a time. Most of the tests were conducted at the normal flow rate, while a small subset of tests was performed at a slightly higher flow rate achieved with the laboratory hood sashes fully open. The qualification criteria for an air monitoring probe location are taken from ANSI/HPS N13.1-2011 and are paraphrased as follows with key results summarized: 1. Angular Flow—The average air velocity angle must not deviate from the axis of the stack or duct by more than 20°. Our test results show that the mean angular flow angles at the center two-thirds of the ducts are smaller than 4.5% for all testing conditions. 2. Uniform Air Velocity—The acceptance criterion is that the COV of the air velocity must be ≤ 20% across the center two thirds of the area of the stack. Our results show that the COVs of the air velocity across the center two-thirds of the stack are smaller than 2.9% for all testing conditions. 3

  17. AFTI/F-16 Air probe close-up

    NASA Technical Reports Server (NTRS)

    1982-01-01

    This close-up view shows the AFTI F-16 air probe early in the research program. It consists of a nose boom resembling a long pipe, and four indicators that look and act like weather vanes. The indicators on the left and right measure pitch, or the movement of the airplane's nose up or down. Those on the top and bottom of the boom measure yaw, or movement of the nose to the left or right. Similar probes are standard on most research and prototype aircraft. The data from the indicators is recorded aboard the aircraft and/or radioed to the ground. This data includes both the amount of yaw and pitch at any given time, and the rate at which both motions changed in flight. This information, subsequently processed and compared to wind tunnel results, may reveal stability and aerodynamic abnormalities. The two metal half-circles and their attachment fixtures are not part of the air probe. Rather, they are used to calibrate the indicators on the ground, enabling the data to be corrected for instrument errors. The figure in the photograph is shown holding a red 'Remove Before Flight' ribbon, a reminder to the ground crew that it must be taken off prior to a research mission. During the 1980s and 1990s, NASA and the U.S. Air Force participated in a joint program to integrate and demonstrate new avionics technologies to improve close air support capabilities in next-generation aircraft. The testbed aircraft, seen here in flight over the desert at NASA's Dryden Flight Research Center, Edwards, California, was called the Advanced Fighter Technology Integration (AFTI) F-16. The tests demonstrated technologies to improve navigation and the pilot's ability to find and destroy enemy ground targets day or night, including adverse weather. The aircraft--an F-16A Fighting Falcon (Serial #75-0750)--underwent numerous modifications. A relatively low-cost testbed, it evaluated the feasability of advanced, intergrated-sensor, avionics, and flight control technologies. During the first

  18. New Methods of Sample Preparation for Atom Probe Specimens

    NASA Technical Reports Server (NTRS)

    Kuhlman, Kimberly, R.; Kowalczyk, Robert S.; Ward, Jennifer R.; Wishard, James L.; Martens, Richard L.; Kelly, Thomas F.

    2003-01-01

    Magnetite is a common conductive mineral found on Earth and Mars. Disk-shaped precipitates approximately 40 nm in diameter have been shown to have manganese and aluminum concentrations. Atom-probe field-ion microscopy (APFIM) is the only technique that can potentially quantify the composition of these precipitates. APFIM will be used to characterize geological and planetary materials, analyze samples of interest for geomicrobiology; and, for the metrology of nanoscale instrumentation. Prior to APFIM sample preparation was conducted by electropolishing, the method of sharp shards (MSS), or Bosch process (deep reactive ion etching) with focused ion beam (FIB) milling as a final step. However, new methods are required for difficult samples. Many materials are not easily fabricated using electropolishing, MSS, or the Bosch process, FIB milling is slow and expensive, and wet chemistry and the reactive ion etching are typically limited to Si and other semiconductors. APFIM sample preparation using the dicing saw is commonly used to section semiconductor wafers into individual devices following manufacture. The dicing saw is a time-effective method for preparing high aspect ratio posts of poorly conducting materials. Femtosecond laser micromachining is also suitable for preparation of posts. FIB time required is reduced by about a factor of 10 and multi-tip specimens can easily be fabricated using the dicing saw.

  19. Sampling Interplanetary Dust Particles from Antarctic Air

    NASA Astrophysics Data System (ADS)

    Taylor, S.; Lever, J. H.; Alexander, C. M. O'D.; Brownlee, D. E.; Messenger, S.; Littler, L. R.; Stroud, R. M.; Wozniakiewicz, P.; Clement, S.

    2016-08-01

    We are undertaking a NASA and NSF supported project to filter large volumes of clean Antarctic air to collect a broad range of cosmic dust, including CP-IDPs, rare ultra-carbonaceous particles and particles derived from specific meteor streams.

  20. Direct Electrospray Ionization Mass Spectrometric Profiling of Real-World Samples via a Solid Sampling Probe

    NASA Astrophysics Data System (ADS)

    Yu, Zhan; Chen, Lee Chuin; Mandal, Mridul Kanti; Yoshimura, Kentaro; Takeda, Sen; Hiraoka, Kenzo

    2013-10-01

    This study presents a novel direct analysis strategy for rapid mass spectrometric profiling of biochemicals in real-world samples via a direct sampling probe (DSP) without sample pretreatments. Chemical modification is applied to a disposable stainless steel acupuncture needle to enhance its surface area and hydrophilicity. After insertion into real-world samples, biofluid can be attached on the DSP surface. With the presence of a high DC voltage and solvent vapor condensing on the tip of the DSP, analyte can be dissolved and electrosprayed. The simplicity in design, versatility in application aspects, and other advantages such as low cost and disposability make this new method a competitive tool for direct analysis of real-world samples.

  1. A continuous sampling air-ICP for metals emission monitoring

    SciTech Connect

    Baldwin, D.P.; Zamzow, D.S.; Eckels, D.E.; Miller, G.P.

    1999-09-19

    An air-inductively coupled plasma (air-ICP) system has been developed for continuous sampling and monitoring of metals as a continuous emission monitor (CEM). The plasma is contained in a metal enclosure to allow reduced-pressure operation. The enclosure and plasma are operated at a pressure slightly less than atmospheric using a Roots blower, so that sample gas is continuously drawn into the plasma. A Teflon sampling chamber, equipped with a sampling pump, is connected to the stack that is to be monitored to isokinetically sample gas from the exhaust line and introduce the sample into the air-ICP. Optical emission from metals in the sampled gas stream is detected and monitored using an acousto-optic tunable filter (AOTF)--echelle spectrometer system. A description of the continuous sampling air-ICP system is given, along with some preliminary laboratory data for continuous monitoring of metals.

  2. Hand and shoe monitor using air ionization probes

    DOEpatents

    Fergus, Richard W.

    1981-01-01

    A hand and shoe radiation monitor is provided which includes a probe support body defining a plurality of cells, within each cell there being an ionization probe. The support body provides structural strength for protecting the ionization probes from force applied to the support body during a radiation monitoring event. There is also provided a fast response time amplifier circuit for the output from the ionization probes.

  3. Sparse sampling and reconstruction for electron and scanning probe microscope imaging

    DOEpatents

    Anderson, Hyrum; Helms, Jovana; Wheeler, Jason W.; Larson, Kurt W.; Rohrer, Brandon R.

    2015-07-28

    Systems and methods for conducting electron or scanning probe microscopy are provided herein. In a general embodiment, the systems and methods for conducting electron or scanning probe microscopy with an undersampled data set include: driving an electron beam or probe to scan across a sample and visit a subset of pixel locations of the sample that are randomly or pseudo-randomly designated; determining actual pixel locations on the sample that are visited by the electron beam or probe; and processing data collected by detectors from the visits of the electron beam or probe at the actual pixel locations and recovering a reconstructed image of the sample.

  4. Assessment of Waste Treatment Plant Lab C3V (LB-S1) Stack Sampling Probe Location for Compliance with ANSI/HPS N13.1-1999

    SciTech Connect

    Glissmeyer, John A.; Geeting, John GH

    2013-02-01

    This report documents a series of tests used to assess the proposed air sampling location in the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Lab C3V (LB-S1) exhaust stack with respect to the applicable criteria regarding the placement of an air sampling probe. Federal regulations require that an air sampling probe be located in the exhaust stack in accordance with the criteria of American National Standards Institute/Health Physics Society (ANSI/HPS) N13.1-1999, Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stack and Ducts of Nuclear Facilities. These criteria address the capability of the sampling probe to extract a sample that represents the effluent stream.

  5. Venturi Air-Jet Vacuum Ejector For Sampling Air

    NASA Technical Reports Server (NTRS)

    Hill, Gerald F.; Sachse, Glen W.; Burney, L. Garland; Wade, Larry O.

    1990-01-01

    Venturi air-jet vacuum ejector pump light in weight, requires no electrical power, does not contribute heat to aircraft, and provides high pumping speeds at moderate suctions. High-pressure motive gas required for this type of pump bled from compressor of aircraft engine with negligible effect on performance of engine. Used as source of vacuum for differential-absorption CO-measurement (DACOM), modified to achieve in situ measurements of CO at frequency response of 10 Hz. Provides improvement in spatial resolution and potentially leads to capability to measure turbulent flux of CO by use of eddy-correlation technique.

  6. Measurement of the Tracer Gradient and Sampling System Bias of the Hot Fuel Examination Facility Stack Air Monitoring System

    SciTech Connect

    Glissmeyer, John A.; Flaherty, Julia E.

    2011-07-20

    This report describes tracer gas uniformity and bias measurements made in the exhaust air discharge of the Hot Fuel Examination Facility at Idaho National Laboratory. The measurements were a follow-up on earlier measurements which indicated a lack of mixing of the two ventilation streams being discharged via a common stack. The lack of mixing is detrimental to the accuracy of air emission measurements. The lack of mixing was confirmed in these new measurements. The air sampling probe was found to be out of alignment and that was corrected. The suspected sampling bias in the air sample stream was disproved.

  7. DOSY of sample-limited mixtures: comparison of cold, nano and conventional probes.

    PubMed

    Bradley, Scott A; Paschal, Jonathan; Kulanthaivel, Palaniappan

    2005-01-01

    The DOSY analysis of dilute mixtures can be a challenge because a high signal-to-noise ratio is required for the best DOSY results. The sensitivity increase gained from new probe technologies (e.g. cold and nano probes) could enable one to acquire good DOSY spectra on sample amounts too low for conventional probes. In this article, we investigated the performance of cold and nano probes for qualitative DOSY analysis of concentrated and sample-limited mixtures, and compared the results with those of the conventional probe. We first measured the fluid flow for each probe. All three probes exhibited only relatively small levels of flow; consequently, a double-stimulated echo pulse sequence was not employed in the subsequent DOSY experiments. This decision was based on three facts: (1) flow-induced phase distortions were not observed, (2) our intentions are only to perform qualitative mixture analysis, and (3) discarding 50% of the already limited signal cannot be afforded. Although the cold and nano probes produced DOSY results for the concentrated mixture that were inferior to the conventional probe, the increase in the signal-to-noise ratio observed with these probes proved to be advantageous for the dilute three-component mixture. Furthermore, the cold probe showed slightly superior performance over the nano probe; thus, we conclude that among the probes examined the cold probe is best suited for qualitative DOSY analysis of sample-limited mixtures.

  8. In-mask aerosol sampling for powered air purifying respirators

    SciTech Connect

    Liu, B.Y.U.; Sega, K.; Rubow, K.L.; Lenhart, S.W.; Myers, W.R.

    1984-04-01

    A system for sampling aerosols in the facepiece of a powered air purifying respirator has been described. The system consists of a sampling inlet mounted on the respiratory facepiece, a filter cassette and a personal sampling pump. The theoretical and practical considerations leading to the design of the sampling inlet have been discussed and experimental data presented showing the efficiency of the inlet as a function of particle size and sampling flow rate. The in-mask sampling system has been designed for powered air purifying respirators.

  9. Assessment of the Building 3430 Filtered Exhaust Stack Sampling Probe Location

    SciTech Connect

    Glissmeyer, John A.

    2010-04-13

    Pacific Northwest National Laboratory performed a demonstration to determine the acceptable location in which to place an air sampling probe for emissions monitoring for radionuclides in the exhaust air discharge from the new 3430 Building Filtered Pathway Stack . The method was to adopt the results of a previously performed test series for a system of similar configuration, followed by a partial test on the actual system to verify the applicability of previously performed tests. The qualification criteria included 1) a uniform air velocity, 2) an average flow angle that does not deviate from the axis of the duct by more than 20°, 3) a uniform concentration of tracer gases, and 4) a uniform concentration of tracer particles. Section 1 provides background information for the demonstration, and Section 2 describes the test strategy, including the criteria for the applicability of model results and the test matrix. Section 3 describes the flow angle test and the velocity uniformity test, Section 4 provides the test results, and Section 5 provides the conclusions. Appendix A includes the test data sheets, and Appendix B gives applicable qualification results from the previously tested model stack. The data from the previously tested and similarly designed stack was demonstrated to be applicable to the current design for the 3430 Building Filtered Pathway stack. Therefore, this new system also meets the qualification criteria given in the ANSI/HPS N13.1 standard. Changes to the system configuration or operations outside of the bounds of this report (e.g., exhaust velocity increases, relocation of sample probe) will require retesting/reevaluation to determine compliance to the requirements.

  10. Assessment of the 3430 Building Filtered Exhaust Stack Sampling Probe Location

    SciTech Connect

    Glissmeyer, John A.; Flaherty, Julia E.

    2010-07-16

    Pacific Northwest National Laboratory performed a demonstration to determine the acceptable location in which to place an air sampling probe for emissions monitoring for radionuclides in the exhaust air discharge from the new 3430 Building Filtered Exhaust Stack. The method was to adopt the results of a previously performed test series for a system of similar configuration, followed by a partial test on the actual system to verify the applicability of previously performed tests. The qualification criteria included 1) a uniform air velocity, 2) an average flow angle that does not deviate from the axis of the duct by more than 20°, 3) a uniform concentration of tracer gases, and 4) a uniform concentration of tracer particles. Section 1 provides background information for the demonstration, and Section 2 describes the test strategy, including the criteria for the applicability of model results and the test matrix. Section 3 describes the flow -angle test and the velocity uniformity test, Section 4 provides the test results, and Section 5 provides the conclusions. Appendix A includes the test data sheets, and Appendix B gives applicable qualification results from the previously tested model stack. The data from the previously tested and similarly designed stack was demonstrated to be applicable to the current design for the 3430 Building Filtered Exhaust Stack. The 3430 stack was tested in both January and May of 2010 to document the results of several changes that were made to the exhaust system after the January tests. The 3430 stack meets the qualification criteria given in the American National Standards Institute/Health Physics Society N13.1 standard. Changes to the system configuration or operations outside of the bounds of this report (e.g., exhaust velocity increases, relocation of sample probe) will require retesting/reevaluation to determine compliancewith the requirements.

  11. Workplace air monitoring and sampling practices at DOE facilities

    SciTech Connect

    Swinth, K.L.; Kenoyer, J.L.; Selby, J.M.; Vallario, E.J.; Burphy, B.L.

    1986-03-01

    Current air monitoring and sampling practices at DOE facilities were surveyed as a part of an air monitoring upgrade task. A comprehensive questionnaire was developed and distributed to DOE contractors through the DOE field offices. Twenty-six facilities returned a completed questionnaire. Questionnaire replies indicate diversity in air sampling and monitoring practices among DOE facilities. The difference among the facilities exist in monitoring and sampling instrumentation, procedures, calibration, analytical methods, detection levels, and action levels. Many of these differences could be attributed to different operational needs.

  12. Sealed magic angle spinning nuclear magnetic resonance probe and process for spectroscopy of hazardous samples

    DOEpatents

    Cho, Herman M.; Washton, Nancy M.; Mueller, Karl T.; Sears, Jr., Jesse A.; Townsend, Mark R.; Ewing, James R.

    2016-06-14

    A magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) probe is described that includes double containment enclosures configured to seal and contain hazardous samples for analysis. The probe is of a modular design that ensures containment of hazardous samples during sample analysis while preserving spin speeds for superior NMR performance and convenience of operation.

  13. Stratospheric air sampling platform/sensor tradeoffs

    NASA Technical Reports Server (NTRS)

    Arno, R. D.; Page, W.

    1976-01-01

    Results of a study are described in which in-situ and remote sensing instrumentation are considered for accommodation on airborne platforms capable of reaching stratospheric altitudes. The instrumentation measures trace species of importance to present concerns regarding stratospheric pollution and possible ozone depletion. The platforms examined were the U-2, modified U-2, balloon, rocket, F-15 flown in a zoom-climb maneuver, YF-12, and remotely piloted vehicle (RPV). The sensors and performance characteristics of the platforms are described and special problems of sensor-platform integration are discussed. A typical latitudinal sampling mission is utilized to describe platform logistics problems and how the platforms might perform such missions.

  14. EML Surface Air Sampling Program, 1990--1993 data

    SciTech Connect

    Larsen, R.J.; Sanderson, C.G.; Kada, J.

    1995-11-01

    Measurements of the concentrations of specific atmospheric radionuclides in air filter samples collected for the Environmental Measurements Laboratory`s Surface Air Sampling Program (SASP) during 1990--1993, with the exception of April 1993, indicate that anthropogenic radionuclides, in both hemispheres, were at or below the lower limits of detection for the sampling and analytical techniques that were used to collect and measure them. The occasional detection of {sup 137}Cs in some air filter samples may have resulted from resuspension of previously deposited debris. Following the April 6, 1993 accident and release of radionuclides into the atmosphere at a reprocessing plant in the Tomsk-7 military nuclear complex located 16 km north of the Siberian city of Tomsk, Russia, weekly air filter samples from Barrow, Alaska; Thule, Greenland and Moosonee, Canada were selected for special analyses. The naturally occurring radioisotopes that the authors measure, {sup 7}Be and {sup 210}Pb, continue to be detected in most air filter samples. Variations in the annual mean concentrations of {sup 7}Be at many of the sites appear to result primarily from changes in the atmospheric production rate of this cosmogenic radionuclide. Short-term variations in the concentrations of {sup 7}Be and {sup 210}Pb continued to be observed at many sites at which weekly air filter samples were analyzed. The monthly gross gamma-ray activity and the monthly mean surface air concentrations of {sup 7}Be, {sup 95}Zr, {sup 137}Cs, {sup 144}Ce, and {sup 210}Pb measured at sampling sites in SASP during 1990--1993 are presented. The weekly mean surface air concentrations of {sup 7}Be, {sup 95}Zr, {sup 137}Cs, {sup 144}Ce, and {sup 210}Pb for samples collected during 1990--1993 are given for 17 sites.

  15. Gold nanoparticle coated silicon tips for Kelvin probe force microscopy in air.

    PubMed

    Hormeño, Silvia; Penedo, Marcos; Manzano, Cristina V; Luna, Mónica

    2013-10-01

    The tip apex dimensions and geometry of the conductive probe remain the major limitation to the resolution of Kelvin probe force microscopy (KPFM). One of the possible strategies to improve the spatial resolution of surface potential images consists in the development of thinner and more durable conductive tips. In an effort to improve the lateral resolution of topography and surface potential maps, we have evaluated high aspect ratio conductive tips created by depositing gold nanoparticles on standard silicon tips. Besides the already known general topographic resolution enhancement offered by these modified tips, an improvement of surface potential lateral resolution and signal-to-noise ratio is reported here for a variety of samples as compared to other regular conductive probes. We have also observed that the modified conductive tips have a significant auto-regeneration capability, which stems from a certain level of mobility of the nanoparticle coating. This property makes the modified tips highly resistant to degradation during scanning, thus increasing their durability. As demonstrated by the heterogeneous set of structures measured in the present study performed in air, the nanoparticle coated tips are suitable for KPFM analysis. In particular, surface potential difference determination on graphene deposited on silicon, gold sputtered on a salt surface, large and mildly rough areas of ZnO films and small DNA molecules on insulating mica have been achieved with enhanced resolution. PMID:24008394

  16. Gold nanoparticle coated silicon tips for Kelvin probe force microscopy in air.

    PubMed

    Hormeño, Silvia; Penedo, Marcos; Manzano, Cristina V; Luna, Mónica

    2013-10-01

    The tip apex dimensions and geometry of the conductive probe remain the major limitation to the resolution of Kelvin probe force microscopy (KPFM). One of the possible strategies to improve the spatial resolution of surface potential images consists in the development of thinner and more durable conductive tips. In an effort to improve the lateral resolution of topography and surface potential maps, we have evaluated high aspect ratio conductive tips created by depositing gold nanoparticles on standard silicon tips. Besides the already known general topographic resolution enhancement offered by these modified tips, an improvement of surface potential lateral resolution and signal-to-noise ratio is reported here for a variety of samples as compared to other regular conductive probes. We have also observed that the modified conductive tips have a significant auto-regeneration capability, which stems from a certain level of mobility of the nanoparticle coating. This property makes the modified tips highly resistant to degradation during scanning, thus increasing their durability. As demonstrated by the heterogeneous set of structures measured in the present study performed in air, the nanoparticle coated tips are suitable for KPFM analysis. In particular, surface potential difference determination on graphene deposited on silicon, gold sputtered on a salt surface, large and mildly rough areas of ZnO films and small DNA molecules on insulating mica have been achieved with enhanced resolution.

  17. Evaluation of sampling probes for fit testing n95 filtering facepiece respirators.

    PubMed

    Bergman, Michael S; Viscusi, Dennis J; Zhuang, Ziqing; Newcomb, William E

    2013-05-01

    Previous studies have shown a sampling probe bias for measuring fit factors (FFs) in respirator facepieces. This study was conducted to evaluate three sampling probes for fit testing NIOSH-certified N95 filtering facepiece respirators (FFRs). Two phases of fit test experiments were conducted incorporating 'side-by-side' probe mounting: (i) flush probe versus deep probe and (ii) flush probe versus disc probe. Seven test subjects in Phase 1 and six subjects in Phase 2 were fit tested with one to three N95 FFR models for a total of 10 subject/FFR model combinations for each phase. For each experimental condition, induced faceseal leakage (IFSL) through an induced leak was measured using a PORTACOUNT® Plus model 8020A Respirator Fit Tester with a model 8095 N95-Companion™ accessory. For Phase 1, the mean IFSL of all flush probe measurements (3.6%) was significantly greater than (P < 0.05) the mean IFSL of all deep probe measurements (3.3%). For Phase 2, the mean IFSL of all flush probe measurements (8.5%) was not significantly greater than (P > 0.05) the mean IFSL of all disc probe measurements (8.3%). Results indicate that some leak site and subject/FFR model/leak site combination comparisons (flush probe versus deep probe or flush probe versus disc probe) were statistically different (P < 0.05). The overall mean IFSL for subject/FFR model/leak site combinations differed by 14 and 4% for the flush probe versus deep probe and the flush probe versus disc probe, respectively; however, from a practical standpoint, there is little difference between the flush probe tests compared with the deep probe or disc probe tests. Overall, IFSL measured using the flush probe is higher (resulting in a more conservative measure of faceseal leakage) compared with either the deep probe or disc probe. The more conservative results obtained using the flush probe provide support for its common usage for fit testing cup-shaped FFRs in the USA and potential use for fit testing FFRs in

  18. [An oral-ruminal probe for rumen sampling in the adult sheep].

    PubMed

    Geishauser, T; Gitzel, A

    1995-12-01

    Ten adult (height: 63-85 cm) rumen-fistulated sheep were used to test the usefulness of an ororuminal probe and a suction pump for the acquisition of ruminal fluid. The use of these instruments in 50 samplings rendered 200 ml of ruminal fluid each time. The introduction of the probe took 18 +/- 6.5 s, whereby the probe was inserted to a length of 91.3 +/- 3.5 cm. The collection of 200 ml of ruminal fluid took 7.4 +/- 2.2 s. The sampling location was the ventral ruminal sack. By comparing the fluid taken by the ororuminal probe with samples taken via ruminal fistula by a tube-like probe no significant differences in regard to pH, total acidity, reduction potential, ammonia, acetate, L-lactate, sodium and chloride concentrations were found. However, significant differences between ororuminal probe samples and fistula samples were observed in regards to the concentrations of total volatile fatty acids, propionate, n-butyrate, i-butyrate, n-valeriate, i-valeriate, calcium, phosphate, magnesium and potassium. The differences were independent of the sampling order (ororuminal probe prior to fistula and vice versa). These results indicate that samples taken by the ororuminal probe do not contain sampling-dependent saliva residues. Those samples collected via fistula had consistently higher concentrations of total volatile fatty acids, propionate, n-butyrate, i-butyrate, n-valeriate, and i-valeriate, as well as higher concentrations of calcium, phosphate, magnesium and potassium than samples taken with the ororuminal probe. These results indicate that samples taken via fistula originated from more dorsal regions than the samples taken by ororuminal probe from the ventral ruminal sack. The ororuminal probe and the suction pump used proved to be useful for the collection of ruminal fluid from the ventral ruminal sack in adult sheep (height: 63-85 cm).

  19. Development and operation of an integrated sampling probe and gas analyzer for turbulent mixing studies in complex supersonic flows

    NASA Astrophysics Data System (ADS)

    Wiswall, John D.

    For many aerospace applications, mixing enhancement between co-flowing streams has been identified as a critical and enabling technology. Due to short fuel residence times in scramjet combustors, combustion is limited by the molecular mixing of hydrogen (fuel) and air. Determining the mixedness of fuel and air in these complex supersonic flowfields is critical to the advancement of novel injection schemes currently being developed at UTA in collaboration with NASA Langley and intended to be used on a future two-stage to orbit (~Mach 16) hypersonic air-breathing vehicle for space access. Expanding on previous work, an instrument has been designed, fabricated, and tested in order to measure mean concentrations of injected helium (a passive scalar used instead of hazardous hydrogen) and to quantitatively characterize the nature of the high-frequency concentration fluctuations encountered in the compressible, turbulent, and high-speed (up to Mach 3.5) complex flows associated with the new supersonic injection schemes. This important high-frequency data is not yet attainable when employing other techniques such as Laser Induced Fluorescence, Filtered Rayleigh Scattering or mass spectroscopy in the same complex supersonic flows. The probe operates by exploiting the difference between the thermodynamic properties of two species through independent massflow measurements and calibration. The probe samples isokinetically from the flowfield's area of interest and the helium concentration may be uniquely determined by hot-film anemometry and internally measured stagnation conditions. The final design has a diameter of 0.25" and is only 2.22" long. The overall accuracy of the probe is 3% in molar fraction of helium. The frequency response of mean concentration measurements is estimated at 103 Hz, while high-frequency hot-film measurements were conducted at 60 kHz. Additionally, the work presents an analysis of the probe's internal mixing effects and the effects of the spatial

  20. Depth Probing Soft X-ray Microprobe (DPSXRM) for High Resolution Probing of Earth's Microstructural Samples

    NASA Astrophysics Data System (ADS)

    Dikedi, P. N.

    2015-12-01

    The Cambrian explosion; occurrence of landslides in very dry weather conditions; rockslides; dead, shriveled-up and crumbled leaves possessing fossil records with the semblance of well preserved, flat leaves; abundance of trilobite tracks in lower and higher rock layers; and sailing stones are enigmas demanding demystifications. These enigmas could be elucidated when data on soil structure, texture and strength are provided by some device with submicrometre accuracy; for these and other reasons, the design of a Depth Probing Soft X-ray Microprobe (DPSXRM), is being proposed; it is expected to deliver soft X-rays, at spatial resolution, ϛ≥600nm and to probe at the depth of 0.5m in 17s. The microprobe is portable compared to a synchrotron radiation facility (Diamond Light Source has land size of 43,300m2); spatial resolution,ϛ , of the DPSXRM surpasses those of the X-ray Fluorescence microanalysis (10µm), electron microprobe (1-3µm) and ion microprobe (5->30µm); the DPSXRM has allowance for multiple targets. Vanadium and Manganese membranes are proposed owing to respective 4.952KeV VKα1 and 5.899KeV MnKα1 X-rays emitted, which best suits micro-probing of Earth's microstructural samples. Compound systems like the Kirk-Patrick and Baez and Wolter optics, aspheric mirrors like elliptical and parabolic optics, small apertures and Abbe sine condition are employed to reduce or remove astigmatism, obliquity, comatic and spherical aberrations—leading to good image quality. Results show that 5.899KeV MnKα1 and 4.952KeV VKα1 soft X-rays will travel a distance of 2.75mm to form circular patches of radii 2.2mm and 2.95mm respectively. Zone plate with nth zone radius of 1.5mm must be positioned 1.5mm and 2mm from the electron gun if circular patches must be formed from 4.952KeV VKα1 and 5.899KeV MnKα1 soft X-rays respectively. The focal lengths of 0.25μm≤ƒ≤1.50μm and 0.04μm≤ƒ≤0.2μm covered by 4.952KeV VKα1 and 5.899KeV Mn Kα1 soft X-Rays, will

  1. Efficiency of dust sampling inlets in calm air.

    PubMed

    Breslin, J A; Stein, R L

    1975-08-01

    Measurement of airborne dust concentrations usually involves drawing a sample of the dust-laden air into the measuring instrument through an inlet. Even if the surrounding air is calm, theoretical calculations predict that large particles may not be sampled accurately due to the combined effects of gravity and inertia on the particles near the sampling inlet. Tests were conducted to determine the conditions of particle size, inlet radius, and flow rare necessary for accurate dust sampling. A coal-dust aerosol was sampled simultaneously through inlets of different diameters at the same volume flow-rate and collected on filters. The dust was removed from the filters and the particles were counted and sized with a Coulter counter. Results showed that published criteria for inlet conditions for correct sampling are overly restrictive and that respirable-size particles are sampled correctly in the normal range or operation of most dust sampling instruments. PMID:1227283

  2. Concepts for Environmental Radioactive Air Sampling and Monitoring

    SciTech Connect

    Barnett, J. Matthew

    2011-11-04

    Environmental radioactive air sampling and monitoring is becoming increasingly important as regulatory agencies promulgate requirements for the measurement and quantification of radioactive contaminants. While researchers add to the growing body of knowledge in this area, events such as earthquakes and tsunamis demonstrate how nuclear systems can be compromised. The result is the need for adequate environmental monitoring to assure the public of their safety and to assist emergency workers in their response. Two forms of radioactive air monitoring include direct effluent measurements and environmental surveillance. This chapter presents basic concepts for direct effluent sampling and environmental surveillance of radioactive air emissions, including information on establishing the basis for sampling and/or monitoring, criteria for sampling media and sample analysis, reporting and compliance, and continual improvement.

  3. F-18 SRA closeup of nose cap showing Advanced L-Probe Air Data Integration experiment

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This L-shaped probe mounted on the forward fuselage of a modified F-18 Systems Research Aircraft was the focus of an air data collection experiment flown at NASA's Dryden Flight Research Center, Edwards, California. The Advanced L-Probe Air Data Integration (ALADIN) experiment focused on providing pilots with angle-of-attack and angle-of-sideslip information as well as traditional airspeed and altitude data from a single system. For the experiment, the probes--one mounted on either side of the F-18's forward fuselage--were hooked to a series of four transducers, which relayed pressure measurements to an on-board research computer.

  4. Spectrophotometric probe

    DOEpatents

    Prather, William S.; O'Rourke, Patrick E.

    1994-01-01

    A support structure bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe.

  5. Spectrophotometric probe

    DOEpatents

    Prather, W.S.; O'Rourke, P.E.

    1994-08-02

    A support structure is described bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe. 3 figs.

  6. AFM fluid delivery/liquid extraction surface sampling/electrostatic spray cantilever probe

    SciTech Connect

    Van Berkel, Gary J.

    2015-06-23

    An electrospray system comprises a liquid extraction surface sampling probe. The probe comprises a probe body having a liquid inlet and a liquid outlet, and having a liquid extraction tip. A solvent delivery conduit is provided for receiving solvent liquid from the liquid inlet and delivering the solvent liquid to the liquid extraction tip. An open liquid extraction channel extends across an exterior surface of the probe body from the liquid extraction tip to the liquid outlet. An electrospray emitter tip is in liquid communication with the liquid outlet of the liquid extraction surface sampling probe. A system for analyzing samples, a liquid junction surface sampling system, and a method of analyzing samples are also disclosed.

  7. Development of a multicopter-carried whole air sampling apparatus and its applications in environmental studies.

    PubMed

    Chang, Chih-Chung; Wang, Jia-Lin; Chang, Chih-Yuan; Liang, Mao-Chang; Lin, Ming-Ren

    2016-02-01

    To advance the capabilities of probing chemical composition aloft, we designed a lightweight remote-controlled whole air sampling component (WASC) and integrated it into a multicopter drone with agile maneuverability to perform aerial whole air sampling. A field mission hovering over an exhaust shaft of a roadway tunnel to collect air samples was performed to demonstrate the applicability of the multicopter-carried WASC apparatus. Ten aerial air samples surrounding the shaft vent were collected by the multicopter-carried WASC. Additional five samples were collected manually inside the shaft for comparison. These samples were then analyzed in the laboratory for the chemical composition of 109 volatile organic compounds (VOCs), CH4, CO, CO2, or CO2 isotopologues. Most of the VOCs in the upwind samples (the least affected by shaft exhaust) were low in concentrations (5.9 ppbv for total 109 VOCs), posting a strong contrast to those in the shaft exhaust (235.8 ppbv for total 109 VOCs). By comparing the aerial samples with the in-shaft samples for chemical compositions, the influence of the shaft exhaust on the surrounding natural air was estimated. Through the aerial measurements, three major advantages of the multicopter-carried WASC were demonstrated: 1. The highly maneuverable multicopter-carried WASC can be readily deployed for three-dimensional environmental studies at a local scale (0-1.5 km); 2. Aerial sampling with superior sample integrity and preservation conditions can now be performed with ease; and 3. Data with spatial resolution for a large array of gaseous species with high precision can be easily obtained. PMID:26386435

  8. Development of a multicopter-carried whole air sampling apparatus and its applications in environmental studies.

    PubMed

    Chang, Chih-Chung; Wang, Jia-Lin; Chang, Chih-Yuan; Liang, Mao-Chang; Lin, Ming-Ren

    2016-02-01

    To advance the capabilities of probing chemical composition aloft, we designed a lightweight remote-controlled whole air sampling component (WASC) and integrated it into a multicopter drone with agile maneuverability to perform aerial whole air sampling. A field mission hovering over an exhaust shaft of a roadway tunnel to collect air samples was performed to demonstrate the applicability of the multicopter-carried WASC apparatus. Ten aerial air samples surrounding the shaft vent were collected by the multicopter-carried WASC. Additional five samples were collected manually inside the shaft for comparison. These samples were then analyzed in the laboratory for the chemical composition of 109 volatile organic compounds (VOCs), CH4, CO, CO2, or CO2 isotopologues. Most of the VOCs in the upwind samples (the least affected by shaft exhaust) were low in concentrations (5.9 ppbv for total 109 VOCs), posting a strong contrast to those in the shaft exhaust (235.8 ppbv for total 109 VOCs). By comparing the aerial samples with the in-shaft samples for chemical compositions, the influence of the shaft exhaust on the surrounding natural air was estimated. Through the aerial measurements, three major advantages of the multicopter-carried WASC were demonstrated: 1. The highly maneuverable multicopter-carried WASC can be readily deployed for three-dimensional environmental studies at a local scale (0-1.5 km); 2. Aerial sampling with superior sample integrity and preservation conditions can now be performed with ease; and 3. Data with spatial resolution for a large array of gaseous species with high precision can be easily obtained.

  9. Presence of organophosphorus pesticide oxygen analogs in air samples

    PubMed Central

    Armstrong, Jenna L.; Fenske, Richard A.; Yost, Michael G.; Galvin, Kit; Tchong-French, Maria; Yu, Jianbo

    2012-01-01

    A number of recent toxicity studies have highlighted the increased potency of oxygen analogs (oxons) of several organophosphorus (OP) pesticides. These findings were a major concern after environmental oxons were identified in environmental samples from air and surfaces following agricultural spray applications in California and Washington State. This paper reports on the validity of oxygen analog measurements in air samples for the OP pesticide, chlorpyrifos. Controlled environmental and laboratory experiments were used to examine artificial formation of chlorpyrifos-oxon using OSHA Versatile Sampling (OVS) tubes as recommended by NIOSH method 5600. Additionally, we compared expected chlorpyrifos-oxon attributable to artificial transformation to observed chlorpyrifos-oxon in field samples from a 2008 Washington State Department of Health air monitoring study using non-parametric statistical methods. The amount of artificially transformed oxon was then modeled to determine the amount of oxon present in the environment. Toxicity equivalency factors (TEFs) for chlorpyrifos-oxon were used to calculate chlorpyrifos-equivalent air concentrations. The results demonstrate that the NIOSH-recommended sampling matrix (OVS tubes with XAD-2 resin) was found to artificially transform up to 30% of chlorpyrifos to chlorpyrifos-oxon, with higher percentages at lower concentrations (< 30 ng/m3) typical of ambient or residential levels. Overall, the 2008 study data had significantly greater oxon than expected by artificial transformation, but the exact amount of environmental oxon in air remains difficult to quantify with the current sampling method. Failure to conduct laboratory analysis for chlorpyrifos-oxon may result in underestimation of total pesticide concentration when using XAD-2 resin matrices for occupational or residential sampling. Alternative methods that can accurately measure both OP pesticides and their oxygen analogs should be used for air sampling, and a toxicity

  10. Presence of organophosphorus pesticide oxygen analogs in air samples

    NASA Astrophysics Data System (ADS)

    Armstrong, Jenna L.; Fenske, Richard A.; Yost, Michael G.; Galvin, Kit; Tchong-French, Maria; Yu, Jianbo

    2013-02-01

    A number of recent toxicity studies have highlighted the increased potency of oxygen analogs (oxons) of several organophosphorus (OP) pesticides. These findings were a major concern after environmental oxons were identified in environmental samples from air and surfaces following agricultural spray applications in California and Washington State. This paper reports on the validity of oxygen analog measurements in air samples for the OP pesticide, chlorpyrifos. Controlled environmental and laboratory experiments were used to examine artificial formation of chlorpyrifos-oxon using OSHA Versatile Sampling (OVS) tubes as recommended by NIOSH method 5600. Additionally, we compared expected chlorpyrifos-oxon attributable to artificial transformation to observed chlorpyrifos-oxon in field samples from a 2008 Washington State Department of Health air monitoring study using non-parametric statistical methods. The amount of artificially transformed oxon was then modeled to determine the amount of oxon present in the environment. Toxicity equivalency factors (TEFs) for chlorpyrifos-oxon were used to calculate chlorpyrifos-equivalent air concentrations. The results demonstrate that the NIOSH-recommended sampling matrix (OVS tubes with XAD-2 resin) was found to artificially transform up to 30% of chlorpyrifos to chlorpyrifos-oxon, with higher percentages at lower concentrations (<30 ng m-3) typical of ambient or residential levels. Overall, the 2008 study data had significantly greater oxon than expected by artificial transformation, but the exact amount of environmental oxon in air remains difficult to quantify with the current sampling method. Failure to conduct laboratory analysis for chlorpyrifos-oxon may result in underestimation of total pesticide concentration when using XAD-2 resin matrices for occupational or residential sampling. Alternative methods that can accurately measure both OP pesticides and their oxygen analogs should be used for air sampling, and a toxicity

  11. A simple novel device for air sampling by electrokinetic capture

    SciTech Connect

    Gordon, Julian; Gandhi, Prasanthi; Shekhawat, Gajendra; Frazier, Angel; Hampton-Marcell, Jarrad; Gilbert, Jack A.

    2015-12-27

    A variety of different sampling devices are currently available to acquire air samples for the study of the microbiome of the air. All have a degree of technical complexity that limits deployment. Here, we evaluate the use of a novel device, which has no technical complexity and is easily deployable. An air-cleaning device powered by electrokinetic propulsion has been adapted to provide a universal method for collecting samples of the aerobiome. Plasma-induced charge in aerosol particles causes propulsion to and capture on a counter-electrode. The flow of ions creates net bulk airflow, with no moving parts. A device and electrode assembly have been re-designed from air-cleaning technology to provide an average air flow of 120 lpm. This compares favorably with current air sampling devices based on physical air pumping. Capture efficiency was determined by comparison with a 0.4 μm polycarbonate reference filter, using fluorescent latex particles in a controlled environment chamber. Performance was compared with the same reference filter method in field studies in three different environments. For 23 common fungal species by quantitative polymerase chain reaction (qPCR), there was 100 % sensitivity and apparent specificity of 87%, with the reference filter taken as “gold standard.” Further, bacterial analysis of 16S RNA by amplicon sequencing showed equivalent community structure captured by the electrokinetic device and the reference filter. Unlike other current air sampling methods, capture of particles is determined by charge and so is not controlled by particle mass. We analyzed particle sizes captured from air, without regard to specific analyte by atomic force microscopy: particles at least as low as 100 nM could be captured from ambient air. This work introduces a very simple plug-and-play device that can sample air at a high-volume flow rate with no moving parts and collect particles down to the sub-micron range. In conclusion, the performance of the

  12. A simple novel device for air sampling by electrokinetic capture

    DOE PAGES

    Gordon, Julian; Gandhi, Prasanthi; Shekhawat, Gajendra; Frazier, Angel; Hampton-Marcell, Jarrad; Gilbert, Jack A.

    2015-12-27

    A variety of different sampling devices are currently available to acquire air samples for the study of the microbiome of the air. All have a degree of technical complexity that limits deployment. Here, we evaluate the use of a novel device, which has no technical complexity and is easily deployable. An air-cleaning device powered by electrokinetic propulsion has been adapted to provide a universal method for collecting samples of the aerobiome. Plasma-induced charge in aerosol particles causes propulsion to and capture on a counter-electrode. The flow of ions creates net bulk airflow, with no moving parts. A device and electrodemore » assembly have been re-designed from air-cleaning technology to provide an average air flow of 120 lpm. This compares favorably with current air sampling devices based on physical air pumping. Capture efficiency was determined by comparison with a 0.4 μm polycarbonate reference filter, using fluorescent latex particles in a controlled environment chamber. Performance was compared with the same reference filter method in field studies in three different environments. For 23 common fungal species by quantitative polymerase chain reaction (qPCR), there was 100 % sensitivity and apparent specificity of 87%, with the reference filter taken as “gold standard.” Further, bacterial analysis of 16S RNA by amplicon sequencing showed equivalent community structure captured by the electrokinetic device and the reference filter. Unlike other current air sampling methods, capture of particles is determined by charge and so is not controlled by particle mass. We analyzed particle sizes captured from air, without regard to specific analyte by atomic force microscopy: particles at least as low as 100 nM could be captured from ambient air. This work introduces a very simple plug-and-play device that can sample air at a high-volume flow rate with no moving parts and collect particles down to the sub-micron range. In conclusion, the performance of

  13. Innovations in air sampling to detect plant pathogens

    PubMed Central

    West, JS; Kimber, RBE

    2015-01-01

    Many innovations in the development and use of air sampling devices have occurred in plant pathology since the first description of the Hirst spore trap. These include improvements in capture efficiency at relatively high air-volume collection rates, methods to enhance the ease of sample processing with downstream diagnostic methods and even full automation of sampling, diagnosis and wireless reporting of results. Other innovations have been to mount air samplers on mobile platforms such as UAVs and ground vehicles to allow sampling at different altitudes and locations in a short space of time to identify potential sources and population structure. Geographical Information Systems and the application to a network of samplers can allow a greater prediction of airborne inoculum and dispersal dynamics. This field of technology is now developing quickly as novel diagnostic methods allow increasingly rapid and accurate quantifications of airborne species and genetic traits. Sampling and interpretation of results, particularly action-thresholds, is improved by understanding components of air dispersal and dilution processes and can add greater precision in the application of crop protection products as part of integrated pest and disease management decisions. The applications of air samplers are likely to increase, with much greater adoption by growers or industry support workers to aid in crop protection decisions. The same devices are likely to improve information available for detection of allergens causing hay fever and asthma or provide valuable metadata for regional plant disease dynamics. PMID:25745191

  14. Effect of probe geometry and optical properties on the sampling depth for diffuse reflectance spectroscopy

    PubMed Central

    Hennessy, Ricky; Goth, Will; Sharma, Manu; Markey, Mia K.; Tunnell, James W.

    2014-01-01

    Abstract. The sampling depth of light for diffuse reflectance spectroscopy is analyzed both experimentally and computationally. A Monte Carlo (MC) model was used to investigate the effect of optical properties and probe geometry on sampling depth. MC model estimates of sampling depth show an excellent agreement with experimental measurements over a wide range of optical properties and probe geometries. The MC data are used to define a mathematical expression for sampling depth that is expressed in terms of optical properties and probe geometry parameters. PMID:25349033

  15. Effect of probe geometry and optical properties on the sampling depth for diffuse reflectance spectroscopy.

    PubMed

    Hennessy, Ricky; Goth, Will; Sharma, Manu; Markey, Mia K; Tunnell, James W

    2014-01-01

    The sampling depth of light for diffuse reflectance spectroscopy is analyzed both experimentally and computationally. A Monte Carlo (MC) model was used to investigate the effect of optical properties and probe geometry on sampling depth. MC model estimates of sampling depth show an excellent agreement with experimental measurements over a wide range of optical properties and probe geometries. The MC data are used to define a mathematical expression for sampling depth that is expressed in terms of optical properties and probe geometry parameters. PMID:25349033

  16. Direct analysis of air filter samples for alpha emitting isotopes

    SciTech Connect

    Mohagheghi, A.H.; Ghanbari, F.; Ebara, S.B.; Enghauser, M.E.; Bakhtiar, S.N.

    1997-04-01

    The traditional method for determination of alpha emitting isotopes on air filters has been to process the samples by radiochemical methods. However, this method is too slow for cases of incidents involving radioactive materials where the determination of personnel received dose is urgent. A method is developed to directly analyze the air filters taken from personal and area air monitors. The site knowledge is used in combination with alpha spectral information to identify isotopes. A mathematical function is developed to estimate the activity for each isotope. The strengths and weaknesses of the method are discussed.

  17. Single point aerosol sampling: Evaluation of mixing and probe performance in a nuclear stack

    SciTech Connect

    Rodgers, J.C.; Fairchild, C.I.; Wood, G.O.; Ortiz, C.A.; Muyshondt, A.; McFarland, A.R. |

    1994-12-31

    Alternative Reference Methodologies (ARMS) have been developed for sampling of radionuclide; from stacks and ducts that differ from the methods required by the US EPA. The EPA methods are prescriptive in selection of sampling locations and in design of sampling probes whereas the alternative methods are performance driven. Tests were conducted in a stack at Los Alamos National Laboratory to demonstrate the efficacy of the ARMS. Coefficients of variation of the velocity tracer gas, and aerosol particle profiles were determined at three sampling locations. Results showed numerical criteria placed upon the coefficients of variation by the ARMs were met at sampling stations located 9 and 14 stack diameters from flow entrance, but not at a location that is 1.5 diameters downstream from the inlet. Experiments were conducted to characterize the transmission of 10 {mu}m aerodynamic equivalent diameter liquid aerosol particles through three types of sampling probes. The transmission ratio (ratio of aerosol concentration at the probe exit plane to the concentration in the free stream) was 107% for a 113 L/min (4-cfm) an isokinetic shrouded probe, but only 20% for an isokinetic probe that follows the EPA requirements. A specially designed isokinetic probe showed a transmission ratio of 63%. The shrouded probe performance would conform to the ARM criteria; however, the isokinetic probes would not.

  18. Single point aerosol sampling: Evaluation of mixing and probe performance in a nuclear stack

    SciTech Connect

    Rodgers, J.C.; Fairchild, C.I.; Wood, G.O.

    1995-02-01

    Alternative Reference Methodologies (ARMs) have been developed for sampling of radionuclides from stacks and ducts that differ from the methods required by the U.S. EPA. The EPA methods are prescriptive in selection of sampling locations and in design of sampling probes whereas the alternative methods are performance driven. Tests were conducted in a stack at Los Alamos National Laboratory to demonstrate the efficacy of the ARMs. Coefficients of variation of the velocity tracer gas, and aerosol particle profiles were determined at three sampling locations. Results showed numerical criteria placed upon the coefficients of variation by the ARMs were met at sampling stations located 9 and 14 stack diameters from flow entrance, but not at a location that is 1.5 diameters downstream from the inlet. Experiments were conducted to characterize the transmission of 10 {mu}m aerodynamic equivalent diameter liquid aerosol particles through three types of sampling probes. The transmission ratio (ratio of aerosol concentration at the probe exit plane to the concentration in the free stream) was 107% for a 113 L/min (4-cfm) anisokinetic shrouded probe, but only 20% for an isokinetic probe that follows the EPA requirements. A specially designed isokinetic probe showed a transmission ratio of 63%. The shrouded probe performance would conform to the ARM criteria; however, the isokinetic probes would not.

  19. DUS II SOIL GAS SAMPLING AND AIR INJECTION TEST RESULTS

    SciTech Connect

    Noonkester, J.; Jackson, D.; Jones, W.; Hyde, W.; Kohn, J.; Walker, R.

    2012-09-20

    Soil vapor extraction (SVE) and air injection well testing was performed at the Dynamic Underground Stripping (DUS) site located near the M-Area Settling Basin (referred to as DUS II in this report). The objective of this testing was to determine the effectiveness of continued operation of these systems. Steam injection ended on September 19, 2009 and since this time the extraction operations have utilized residual heat that is present in the subsurface. The well testing campaign began on June 5, 2012 and was completed on June 25, 2012. Thirty-two (32) SVE wells were purged for 24 hours or longer using the active soil vapor extraction (ASVE) system at the DUS II site. During each test five or more soil gas samples were collected from each well and analyzed for target volatile organic compounds (VOCs). The DUS II site is divided into four parcels (see Figure 1) and soil gas sample results show the majority of residual VOC contamination remains in Parcel 1 with lesser amounts in the other three parcels. Several VOCs, including tetrachloroethylene (PCE) and trichloroethylene (TCE), were detected. PCE was the major VOC with lesser amounts of TCE. Most soil gas concentrations of PCE ranged from 0 to 60 ppmv with one well (VEW-22A) as high as 200 ppmv. Air sparging (AS) generally involves the injection of air into the aquifer through either vertical or horizontal wells. AS is coupled with SVE systems when contaminant recovery is necessary. While traditional air sparging (AS) is not a primary component of the DUS process, following the cessation of steam injection, eight (8) of the sixty-three (63) steam injection wells were used to inject air. These wells were previously used for hydrous pyrolysis oxidation (HPO) as part of the DUS process. Air sparging is different from the HPO operations in that the air was injected at a higher rate (20 to 50 scfm) versus HPO (1 to 2 scfm). . At the DUS II site the air injection wells were tested to determine if air sparging affected

  20. Probe Heating Method for the Analysis of Solid Samples Using a Portable Mass Spectrometer.

    PubMed

    Kumano, Shun; Sugiyama, Masuyuki; Yamada, Masuyoshi; Nishimura, Kazushige; Hasegawa, Hideki; Morokuma, Hidetoshi; Inoue, Hiroyuki; Hashimoto, Yuichiro

    2015-01-01

    We previously reported on the development of a portable mass spectrometer for the onsite screening of illicit drugs, but our previous sampling system could only be used for liquid samples. In this study, we report on an attempt to develop a probe heating method that also permits solid samples to be analyzed using a portable mass spectrometer. An aluminum rod is used as the sampling probe. The powdered sample is affixed to the sampling probe or a droplet of sample solution is placed on the tip of the probe and dried. The probe is then placed on a heater to vaporize the sample. The vapor is then introduced into the portable mass spectrometer and analyzed. With the heater temperature set to 130°C, the developed system detected 1 ng of methamphetamine, 1 ng of amphetamine, 3 ng of 3,4-methylenedioxymethamphetamine, 1 ng of 3,4-methylenedioxyamphetamine, and 0.3 ng of cocaine. Even from mixtures consisting of clove powder and methamphetamine powder, methamphetamine ions were detected by tandem mass spectrometry. The developed probe heating method provides a simple method for the analysis of solid samples. A portable mass spectrometer incorporating this method would thus be useful for the onsite screening of illicit drugs. PMID:26819909

  1. Probe Heating Method for the Analysis of Solid Samples Using a Portable Mass Spectrometer.

    PubMed

    Kumano, Shun; Sugiyama, Masuyuki; Yamada, Masuyoshi; Nishimura, Kazushige; Hasegawa, Hideki; Morokuma, Hidetoshi; Inoue, Hiroyuki; Hashimoto, Yuichiro

    2015-01-01

    We previously reported on the development of a portable mass spectrometer for the onsite screening of illicit drugs, but our previous sampling system could only be used for liquid samples. In this study, we report on an attempt to develop a probe heating method that also permits solid samples to be analyzed using a portable mass spectrometer. An aluminum rod is used as the sampling probe. The powdered sample is affixed to the sampling probe or a droplet of sample solution is placed on the tip of the probe and dried. The probe is then placed on a heater to vaporize the sample. The vapor is then introduced into the portable mass spectrometer and analyzed. With the heater temperature set to 130°C, the developed system detected 1 ng of methamphetamine, 1 ng of amphetamine, 3 ng of 3,4-methylenedioxymethamphetamine, 1 ng of 3,4-methylenedioxyamphetamine, and 0.3 ng of cocaine. Even from mixtures consisting of clove powder and methamphetamine powder, methamphetamine ions were detected by tandem mass spectrometry. The developed probe heating method provides a simple method for the analysis of solid samples. A portable mass spectrometer incorporating this method would thus be useful for the onsite screening of illicit drugs.

  2. Probe Heating Method for the Analysis of Solid Samples Using a Portable Mass Spectrometer

    PubMed Central

    Kumano, Shun; Sugiyama, Masuyuki; Yamada, Masuyoshi; Nishimura, Kazushige; Hasegawa, Hideki; Morokuma, Hidetoshi; Inoue, Hiroyuki; Hashimoto, Yuichiro

    2015-01-01

    We previously reported on the development of a portable mass spectrometer for the onsite screening of illicit drugs, but our previous sampling system could only be used for liquid samples. In this study, we report on an attempt to develop a probe heating method that also permits solid samples to be analyzed using a portable mass spectrometer. An aluminum rod is used as the sampling probe. The powdered sample is affixed to the sampling probe or a droplet of sample solution is placed on the tip of the probe and dried. The probe is then placed on a heater to vaporize the sample. The vapor is then introduced into the portable mass spectrometer and analyzed. With the heater temperature set to 130°C, the developed system detected 1 ng of methamphetamine, 1 ng of amphetamine, 3 ng of 3,4-methylenedioxymethamphetamine, 1 ng of 3,4-methylenedioxyamphetamine, and 0.3 ng of cocaine. Even from mixtures consisting of clove powder and methamphetamine powder, methamphetamine ions were detected by tandem mass spectrometry. The developed probe heating method provides a simple method for the analysis of solid samples. A portable mass spectrometer incorporating this method would thus be useful for the onsite screening of illicit drugs. PMID:26819909

  3. Air sampling and analysis in a rubber vulcanization area.

    PubMed

    Rappaport, S M; Fraser, D A

    1977-05-01

    Results of sampling and analysis of air in a rubber vulcanization area are described. Organic compounds were collected on activated charcoal, desorbed with carbon disulfide and analyzed by gas chromatography. Several previously identified substances were quantitated, including styrene, toluene, ethylbenzene, and several oligomers of 1,3-butadiene. Concentrations ranged from 0.007 to 1.1 ppm.

  4. Air sampling of mold spores by slit impactors: yield comparison.

    PubMed

    Pityn, Peter J; Anderson, James

    2013-01-01

    The performance of simple slit impactors for air sampling of mold contamination was compared under field conditions. Samples were collected side-by-side, outdoors in quadruplicates with Burkhard (ambient sampler) and Allergenco MK3 spore traps and with two identical Allergenco slit cassettes operated at diverse flow rates of 5 and 15 L/min, respectively. The number and types of mold spores in each sample were quantified by microscopy. Results showed all four single-stage slit impactors produced similar spore yields. Moreover, paired slit cassettes produced similar outcomes despite a three-fold difference in their sampling rate. No measurable difference in the amount or mix of mold spores per m(3)of air was detected. The implications for assessment of human exposures and interpretation of indoor/outdoor fungal burden are discussed. These findings demonstrate that slit cassettes capture most small spores, effectively and without bias, when operated at a range of flow rates including the lower flow rates used for personal sampling. Our findings indicate sampling data for mold spores correlate for different single stage impactor collection methodologies and that data quality is not deteriorated by operating conditions deviating from manufacturers' norms allowing such sampling results to be used for scientific, legal, investigative, or property insurance purposes. The same conclusion may not be applied to other particle sampling instruments and mulit-stage impactors used for ambient particulate sampling, which represent an entirely different scenario. This knowledge may help facilitate comparison between scientific studies where methodological differences exist.

  5. Probing the radio emission from air showers with polarization measurements

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bardenet, R.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Foerster, N.; Fox, B. D.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giammarchi, M.; Giller, M.; Gitto, J.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kadija, K.; Kambeitz, O.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; PeÂķala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Pontz, M.; Porcelli, A.; Preda, T.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcǎu, O.; Thao, N. T.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Pierre Auger Collaboration

    2014-03-01

    The emission of radio waves from air showers has been attributed to the so-called geomagnetic emission process. At frequencies around 50 MHz this process leads to coherent radiation which can be observed with rather simple setups. The direction of the electric field induced by this emission process depends only on the local magnetic field vector and on the incoming direction of the air shower. We report on measurements of the electric field vector where, in addition to this geomagnetic component, another component has been observed that cannot be described by the geomagnetic emission process. The data provide strong evidence that the other electric field component is polarized radially with respect to the shower axis, in agreement with predictions made by Askaryan who described radio emission from particle showers due to a negative charge excess in the front of the shower. Our results are compared to calculations which include the radiation mechanism induced by this charge-excess process.

  6. Assessment of the LV-C2 Stack Sampling Probe Location for Compliance with ANSI/HPS N13.1-1999

    SciTech Connect

    Glissmeyer, John A.; Antonio, Ernest J.; Flaherty, Julia E.

    2015-09-01

    This document reports on a series of tests conducted to assess the proposed air sampling location for the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Low-Activity Waste (LAW) C2V (LV-C2) exhaust stack with respect to the applicable criteria regarding the placement of an air sampling probe. Federal regulations require that a sampling probe be located in the exhaust stack according to the criteria established by the American National Standards Institute/Health Physics Society (ANSI/HPS) N13.1-1999, Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stack and Ducts of Nuclear Facilities. These criteria address the capability of the sampling probe to extract a sample that represents the effluent stream. The tests were conducted on the LV-C2 scale model system. Based on the scale model tests, the location proposed for the air sampling probe in the scale model stack meets the requirements of the ANSI/HPS N13.1-1999 standard for velocity uniformity, flow angle, gas tracer and particle tracer uniformity. Additional velocity uniformity and flow angle tests on the actual stack will be necessary during cold startup to confirm the validity of the scale model results in representing the actual stack.

  7. Probes for High Field Solid-state NMR of Lossy Biological Samples

    PubMed Central

    Grant, Christopher V.; Wu, Chin H.; Opella, Stanley J.

    2010-01-01

    In solid-state NMR exphydrated samples biopolymers are susceptible to radio-frequency heating and have a significant impact on probe tuning frequency and performance parameters such as sensitivity. These considerations are increasingly important as magnetic field strengths increase with improved magnet technology. Recent developments in the design, construction, and performance of probes for solid-state NMR experiments on stationary lossy biological samples at high magnetic fields are reviewed. PMID:20435493

  8. Performance Evaluation of Particle Sampling Probes for Emission Measurements of Aircraft Jet Engines

    NASA Technical Reports Server (NTRS)

    Lee, Poshin; Chen, Da-Ren; Sanders, Terry (Technical Monitor)

    2001-01-01

    Considerable attention has been recently received on the impact of aircraft-produced aerosols upon the global climate. Sampling particles directly from jet engines has been performed by different research groups in the U.S. and Europe. However, a large variation has been observed among published data on the conversion efficiency and emission indexes of jet engines. The variation results surely from the differences in test engine types, engine operation conditions, and environmental conditions. The other factor that could result in the observed variation is the performance of sampling probes used. Unfortunately, it is often neglected in the jet engine community. Particle losses during the sampling, transport, and dilution processes are often not discussed/considered in literatures. To address this issue, we evaluated the performance of one sampling probe by challenging it with monodisperse particles. A significant performance difference was observed on the sampling probe evaluated under different temperature conditions. Thermophoretic effect, nonisokinetic sampling and turbulence loss contribute to the loss of particles in sampling probes. The results of this study show that particle loss can be dramatic if the sampling probe is not well designed. Further, the result allows ones to recover the actual size distributions emitted from jet engines.

  9. Tensiometer, drive probe for use with environmental testing equipment, and methods of inserting environmental testing equipment into a sample

    DOEpatents

    Hubbell, Joel M.; Sisson, James B.

    2005-07-26

    A method of inserting a tensiometer into a sample, comprises providing a drive probe configured to be engaged by direct push equipment; supporting a porous member from the drive probe; and driving the drive probe into the sample using a cone penetrometer. A tensiometer comprises a drive probe configured to be engaged by direct push equipment or a cone penetrometer; a porous member supported by the drive probe; and a pressure sensor in pressure sensing relation to the porous member.

  10. Mixed species radioiodine air sampling readout and dose assessment system

    DOEpatents

    Distenfeld, Carl H.; Klemish, Jr., Joseph R.

    1978-01-01

    This invention provides a simple, reliable, inexpensive and portable means and method for determining the thyroid dose rate of mixed airborne species of solid and gaseous radioiodine without requiring highly skilled personnel, such as health physicists or electronics technicians. To this end, this invention provides a means and method for sampling a gas from a source of a mixed species of solid and gaseous radioiodine for collection of the mixed species and readout and assessment of the emissions therefrom by cylindrically, concentrically and annularly molding the respective species around a cylindrical passage for receiving a conventional probe-type Geiger-Mueller radiation detector.

  11. Development of a Methodology for the Characterisation of Air-coupled Ultrasound Probes

    SciTech Connect

    Pietroni, Paolo; Marco Revel, Gian

    2010-05-28

    This study is aimed at developing a technique for the characterisation of air-coupled ultrasound probes, starting from the analysis of the mechanical behaviour of the probe membrane. The vibratory behaviour of the emission membrane is studied using laser-Doppler vibrometry techniques with high frequency demodulation system (20 MHz). The determination of the vibration provides information which are useful for the assessment of the performance of the probe, in particular concerning the Quality factor and the portion of the membrane which really contributes to the emission. During the second step the results of the vibration measurements are used to calculate, by means of numerical boundary element method, the ultrasound beam emitted in terms of intensity in space. The obtained field is compared with the direct measurements carried out by scanning with the receiver probe and a pinhole plate. This comparison allows the potential and the problems of the two different characterisation techniques to be determined, even if the pinhole technique (which is currently considered the state of the art) cannot be used as an absolute reference. This study appears to be useful for paving the way for a new methodology for the calibration of air-coupled ultrasound probes, which potentially could be used not only to improve the probe manufacturing process, but also to control conformity to specifications.

  12. RAPID SEPARATION METHOD FOR ACTINIDES IN EMERGENCY AIR FILTER SAMPLES

    SciTech Connect

    Maxwell, S.; Noyes, G.; Culligan, B.

    2010-02-03

    A new rapid method for the determination of actinides and strontium in air filter samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used in emergency response situations. The actinides and strontium in air filter method utilizes a rapid acid digestion method and a streamlined column separation process with stacked TEVA, TRU and Sr Resin cartridges. Vacuum box technology and rapid flow rates are used to reduce analytical time. Alpha emitters are prepared using cerium fluoride microprecipitation for counting by alpha spectrometry. The purified {sup 90}Sr fractions are mounted directly on planchets and counted by gas flow proportional counting. The method showed high chemical recoveries and effective removal of interferences. This new procedure was applied to emergency air filter samples received in the NRIP Emergency Response exercise administered by the National Institute for Standards and Technology (NIST) in April, 2009. The actinide and {sup 90}Sr in air filter results were reported in {approx}4 hours with excellent quality.

  13. Micro Electron MicroProbe and Sample Analyzer

    NASA Technical Reports Server (NTRS)

    Manohara, Harish; Bearman, Gregory; Douglas, Susanne; Bronikowski, Michael; Urgiles, Eduardo; Kowalczyk, Robert; Bryson, Charles

    2009-01-01

    A proposed, low-power, backpack-sized instrument, denoted the micro electron microprobe and sample analyzer (MEMSA), would serve as a means of rapidly performing high-resolution microscopy and energy-dispersive x-ray spectroscopy (EDX) of soil, dust, and rock particles in the field. The MEMSA would be similar to an environmental scanning electron microscope (ESEM) but would be much smaller and designed specifically for field use in studying effects of geological alteration at the micrometer scale. Like an ESEM, the MEMSA could be used to examine uncoated, electrically nonconductive specimens. In addition to the difference in size, other significant differences between the MEMSA and an ESEM lie in the mode of scanning and the nature of the electron source.

  14. Additional sampling directions improve detection range of wireless radiofrequency probes

    PubMed Central

    Mada, Marius; Carpenter, T. Adrian; Sawiak, Stephen J.; Williams, Guy B.

    2015-01-01

    Purpose While MRI is enhancing our knowledge about the structure and function of the human brain, subject motion remains a problem in many clinical applications. Recently, the use of wireless radiofrequency markers with three one‐dimensional (1D) navigators for prospective correction was demonstrated. This method is restricted in the range of motion that can be corrected, however, because of limited information in the 1D readouts. Methods Here, the limitation of techniques for disambiguating marker locations was investigated. It was shown that including more sampling directions extends the tracking range for head rotations. The efficiency of trading readout resolution for speed was explored. Results Tracking of head rotations was demonstrated from −19.2 to 34.4°, −2.7 to 10.0°, and −60.9 to 70.9° in the x‐, y‐, and z‐directions, respectively. In the presence of excessive head motion, the deviation of marker estimates from SPM8 was reduced by 17.1% over existing three‐projection methods. This was achieved by using an additional seven directions, extending the time needed for readouts by a factor of 3.3. Much of this increase may be circumvented by reducing resolution, without compromising accuracy. Conclusion Including additional sampling directions extends the range in which markers can be used, for patients who move a lot. Magn Reson Med 76:913–918, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:26418189

  15. Probing methane hydrate nucleation through the forward flux sampling method.

    PubMed

    Bi, Yuanfei; Li, Tianshu

    2014-11-26

    Understanding the nucleation of hydrate is the key to developing effective strategies for controlling methane hydrate formation. Here we present a computational study of methane hydrate nucleation, by combining the forward flux sampling (FFS) method and the coarse-grained water model mW. To facilitate the application of FFS in studying the formation of methane hydrate, we developed an effective order parameter λ on the basis of the topological analysis of the tetrahedral network. The order parameter capitalizes the signature of hydrate structure, i.e., polyhedral cages, and is capable of efficiently distinguishing hydrate from ice and liquid water while allowing the formation of different hydrate phases, i.e., sI, sII, and amorphous. Integration of the order parameter λ with FFS allows explicitly computing hydrate nucleation rates and obtaining an ensemble of nucleation trajectories under conditions where spontaneous hydrate nucleation becomes too slow to occur in direct simulation. The convergence of the obtained hydrate nucleation rate was found to depend crucially on the convergence of the spatial distribution for the spontaneously formed hydrate seeds obtained from the initial sampling of FFS. The validity of the approach is also verified by the agreement between the calculated nucleation rate and that inferred from the direct simulation. Analyzing the obtained large ensemble of hydrate nucleation trajectories, we show hydrate formation at 220 K and 500 bar is initiated by the nucleation events occurring in the vicinity of water-methane interface, and facilitated by a gradual transition from amorphous to crystalline structure. The latter provides the direct support to the proposed two-step nucleation mechanism of methane hydrate. PMID:24849698

  16. F-18 SRA closeup of nose cap showing L-Probe experiment and standard air data sensors

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This under-the-nose view of a modified F-18 Systems Research Aircraft at NASA's Dryden Flight Research Center, Edwards, California, shows three critical components of the aircraft's air data systems which are mounted on both sides of the forward fuselage. Furthest forward are two L-probes that were the focus of the recent Advanced L-probe Air Data Integration (ALADIN) experiment. Behind the L-probes are angle-of-attack vanes, while below them are the aircraft's standard pitot-static air data probes. The ALADIN experiment focused on providing pilots with angle-of-attack and angle-of-sideslip air data as well as traditional airspeed and altitude information, all from a single system. Once fully developed, the new L-probes have the potential to give pilots more accurate air data information with less hardware.

  17. Monitoring air sampling in operating theatres: can particle counting replace microbiological sampling?

    PubMed

    Landrin, A; Bissery, A; Kac, G

    2005-09-01

    Microbiological contamination of air in the operating room is generally considered to be a risk factor for surgical site infections in clean surgery. Evaluation of the quality of air in operating theatres can be performed routinely by microbiological sampling and particle counting, but the relationship between these two methods has rarely been evaluated. The aim of this study was to determine whether particle counting could be predictive of microbiological contamination of air in operating rooms. Over a three-month period, air microbiological sampling and particle counting were performed simultaneously in four empty operating rooms belonging to two surgical theatres equipped with conventional ventilation via high-efficiency particulate air filters. Correlation between the two methods was measured with Spearman's correlation coefficient. The ability of particle counting to discriminate between microbiological counting values higher and lower than 5 colony-forming units (CFU)/m3 was evaluated using receiver-operating characteristic (ROC) analysis. Microbiological counting ranged from 0 to 38CFU/m3, while the particle counts ranged from 0 to 46 262/m3. Methods of microbiological and particle counting did not correlate (Spearman correlation coefficient=0.06, P=0.6). Using the ROC curve, no particle count value could be predictive of a microbiological count higher than 5CFU/m3. The results of the current study suggest that there is no reason to replace microbiological sampling with particle counting for routine evaluation of microbiological contamination in conventionally ventilated operating theatres.

  18. Rapidly responsive and highly selective fluorescent probe for sulfite detection in real samples and living cells.

    PubMed

    Li, Hongda

    2015-10-15

    Sulfites (HSO3(-) or SO3(-)) have very significant toxicity in the environment and in the system. However, developing specific identification of sulfite probes is still very important. In this paper, a highly selective colorimetric and fluorescent probe (HHC) was synthesized to detect HSO3(-) in real samples and living cells. Sensing performance and preponderance are listed as follows. First, probe HHC showed remarkable selectivity for HSO3(-) over varieties of other species, including cysteine, glutathione, S(2-), CN(-), and reactive oxygen species, mainly because of the introduction of the electron-poor C=C double bond for HSO3(-). Second, probe HHC has great molar absorptivity, allowing it to act as a visual detection of probe for HSO3(-). Third, the fluorescence intensities of HHC linearly correlate with the concentration of HSO3(-), with a detection limit of 6.8 nm. Finally, our proposed probe can be applied to the visually determination of trace HSO3(-) in real samples and living HeLa cells with high precision. We hope that our proposed probe will greatly benefit biological sciences when biological researchers survey the role of HSO3(-) in biological systems. PMID:26515011

  19. Rapidly responsive and highly selective fluorescent probe for sulfite detection in real samples and living cells.

    PubMed

    Li, Hongda

    2015-10-15

    Sulfites (HSO3(-) or SO3(-)) have very significant toxicity in the environment and in the system. However, developing specific identification of sulfite probes is still very important. In this paper, a highly selective colorimetric and fluorescent probe (HHC) was synthesized to detect HSO3(-) in real samples and living cells. Sensing performance and preponderance are listed as follows. First, probe HHC showed remarkable selectivity for HSO3(-) over varieties of other species, including cysteine, glutathione, S(2-), CN(-), and reactive oxygen species, mainly because of the introduction of the electron-poor C=C double bond for HSO3(-). Second, probe HHC has great molar absorptivity, allowing it to act as a visual detection of probe for HSO3(-). Third, the fluorescence intensities of HHC linearly correlate with the concentration of HSO3(-), with a detection limit of 6.8 nm. Finally, our proposed probe can be applied to the visually determination of trace HSO3(-) in real samples and living HeLa cells with high precision. We hope that our proposed probe will greatly benefit biological sciences when biological researchers survey the role of HSO3(-) in biological systems.

  20. Ambient Air Sampling During Quantum-dot Spray Deposition

    SciTech Connect

    Jankovic, John Timothy; Hollenbeck, Scott M

    2010-01-01

    Ambient air sampling for nano-size particle emissions was performed during spot spray coating operations with a Sono-Tek Exactacoat Benchtop system (ECB). The ECB consisted of the application equipment contained within an exhaust enclosure. The enclosure contained numerous small access openings, including an exhaust hook-up. Door access comprised most of the width and height of the front. The door itself was of the swing-out type. Two types of nanomaterials, Cadmium selenide (Cd-Se) quantum-dots (QDs) and Gold (Au) QDs, nominally 3.3 and 5 nm in diameter respectively, were applied during the evaluation. Median spray drop size was in the 20 to 60 micrometer size range.1 Surface coating tests were of short duration, on the order of one-half second per spray and ten spray applications between door openings. The enclosure was ventilated by connection to a high efficiency particulate aerosol (HEPA) filtered house exhaust system. The exhaust rate was nominally 80 ft3 per minute producing about 5 air changes per minute. Real time air monitoring with a scanning mobility particle size analyzer (SMPS ) with a size detection limit of 7 nm indicated a significant increase in the ambient air concentration upon early door opening. A handheld condensation particle counter (CPC) with a lower size limit of 10 nm did not record changes in the ambient background. This increase in the ambient was not observed when door opening was delayed for 2 minutes (~10 air changes). The ventilated enclosure controlled emissions except for cases of rapid door opening before the overspray could be removed by the exhaust. A time delay sufficient to provide 10 enclosure air changes (a concentration reduction of more than 99.99 %) before door opening prevented the release of aerosol particles in any size.2 Scanning-transmission electron microscopy (STEM) and atomic force microscopy (AFM) demonstrated the presence of agglomerates in the surfaces of the spray applied deposition. A filtered air sample of

  1. Passive air sampling of gaseous elemental mercury: a critical review

    NASA Astrophysics Data System (ADS)

    McLagan, David S.; Mazur, Maxwell E. E.; Mitchell, Carl P. J.; Wania, Frank

    2016-03-01

    Because gaseous elemental mercury (GEM) is distributed globally through the atmosphere, reliable means of measuring its concentrations in air are important. Passive air samplers (PASs), designed to be cheap, simple to operate, and to work without electricity, could provide an alternative to established active sampling techniques in applications such as (1) long-term monitoring of atmospheric GEM levels in remote regions and in developing countries, (2) atmospheric mercury source identification and characterization through finely resolved spatial mapping, and (3) the recording of personal exposure to GEM. An effective GEM PAS requires a tightly constrained sampling rate, a large and stable uptake capacity, and a sensitive analytical technique. None of the GEM PASs developed to date achieve levels of accuracy and precision sufficient for the reliable determination of background concentrations over extended deployments. This is due to (1) sampling rates that vary due to meteorological factors and manufacturing inconsistencies, and/or (2) an often low, irreproducible and/or unstable uptake capacity of the employed sorbents. While we identify shortcomings of existing GEM PAS, we also reveal potential routes to overcome those difficulties. Activated carbon and nanostructured metal surfaces hold promise as effective sorbents. Sampler designs incorporating diffusive barriers should be able to notably reduce the influence of wind on sampling rates.

  2. Sampling and analysis of terpenes in air. An interlaboratory comparison

    NASA Astrophysics Data System (ADS)

    Larsen, Bo; Bomboi-Mingarro, Teresa; Brancaleoni, Enzo; Calogirou, Aggelos; Cecinato, Angelo; Coeur, Cecile; Chatzinestis, Ioannis; Duane, Matthew; Frattoni, Massimiliano; Fugit, Jean-Luc; Hansen, Ute; Jacob, Veronique; Mimikos, Nikolaos; Hoffmann, Thorsten; Owen, Susan; Perez-Pastor, Rosa; Reichmann, Andreas; Seufert, Gunther; Staudt, Michael; Steinbrecher, Rainer

    An interlaboratory comparison on the sampling and analysis of terpenes in air was held within the framework of the BEMA (Biogenic Emissions in the Mediterranean Area) project in May 1995. Samples were drawn and analysed by 10 European laboratories from a dynamic artificial air generator in which five terpenes were present at low ng ℓ -1 levels and ozone varied between 8 and 125 ppbv. Significant improvements over previous inter-comparison exercises in the quality of results were observed. At the ozone mixing ratio of 8 ppbv a good agreement among laboratories was obtained for all test compounds with mean values close to the target concentration. At higher mixing ratios, ozone reduced terpene recoveries and decreased the precision of the measurements due to ozonolysis during sampling. For β-pinene this effect was negligible but for the more reactive compounds significant losses were observed in some laboratories ( cis-β-ocimene = trans-β-ocimene > linalool > d-limonene). The detrimental effect of ozone was significantly lower for the laboratories which removed ozone prior to sampling by scrubbers. Parallel sampling was carried out with a standardised sampler and each individual laboratory's own device. A good agreement between the two sets of results was obtained, clearly showing that the majority of laboratories used efficient sampling systems. Two different standard solutions were analysed by each laboratory. Only in a few cases did interference in the GC separation cause problems for the quantification of the terpenes (nonanal/linalool). However, making up of standards for the calibration of the analytical equipment (GC-MS or GC-FID) was pointed out as a source of error in some laboratories.

  3. Application of probe electrospray to direct ambient analysis of biological samples.

    PubMed

    Chen, Lee Chuin; Nishidate, Kentaro; Saito, Yuta; Mori, Kunihiko; Asakawa, Daiki; Takeda, Sen; Kubota, Takeo; Terada, Nobuo; Hashimoto, Yutaka; Hori, Hirokazu; Hiraoka, Kenzo

    2008-08-01

    Recently, we have developed probe electrospray ionization (PESI) that uses a solid needle. In this system, the probe needle moves up and down along the vertical axis by a motor-driven system. At the highest position of the probe needle, electrospray is generated by applying a high voltage. In this study, we applied PESI directly to biological samples such as urine, mouse brain, mouse liver, salmon egg, and fruits (orange, banana, etc.). Strong ion signals for almost all the samples were obtained. The amount of liquid sample picked up by the needle is as small as pL or less, making PESI a promising non-invasive technique for detecting biomolecules in living systems such as cells. Therefore, PESI may be useful as a versatile and ready-to-use semi-online analytical tool in the fields of medicine, pharmaceuticals, agriculture, food science, etc. PMID:18623622

  4. Test evaluation of potential heatshield contamination of an outer planet probe's gas sampling system

    NASA Technical Reports Server (NTRS)

    Kessler, W. C.

    1975-01-01

    The feasibility of retaining the heat shield for outer planet probes was investigated as a potential source of atmospheric sample contamination by outgassing. The onboard instruments which are affected by the concept are the pressure sensor, temperature sensor, IR detector, nephelometer, and gas sampling instruments. It was found that: (1) The retention of the charred heatshield and the baseline atmospheric sampling concepts are compatible with obtaining noncontaminated atmospheric samples. (2) Increasing the sampling tube length so that it extends beyond the viscous boundary layer eliminates contamination of the atmospheric sample. (3) The potential for contamination increases with angle of attack.

  5. Relative Humidity and its Effect on Sampling and Analysis of Agricultural Odorants in Air

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Source and ambient air sampling techniques used in agricultural air quality studies are seldom validated for the variability in the air matrix (temperature, dust levels, and relative humidity). In particular, relative humidity (RH) affects both field sampling and analysis of air samples. The objec...

  6. Simple Random Sampling-Based Probe Station Selection for Fault Detection in Wireless Sensor Networks

    PubMed Central

    Huang, Rimao; Qiu, Xuesong; Rui, Lanlan

    2011-01-01

    Fault detection for wireless sensor networks (WSNs) has been studied intensively in recent years. Most existing works statically choose the manager nodes as probe stations and probe the network at a fixed frequency. This straightforward solution leads however to several deficiencies. Firstly, by only assigning the fault detection task to the manager node the whole network is out of balance, and this quickly overloads the already heavily burdened manager node, which in turn ultimately shortens the lifetime of the whole network. Secondly, probing with a fixed frequency often generates too much useless network traffic, which results in a waste of the limited network energy. Thirdly, the traditional algorithm for choosing a probing node is too complicated to be used in energy-critical wireless sensor networks. In this paper, we study the distribution characters of the fault nodes in wireless sensor networks, validate the Pareto principle that a small number of clusters contain most of the faults. We then present a Simple Random Sampling-based algorithm to dynamic choose sensor nodes as probe stations. A dynamic adjusting rule for probing frequency is also proposed to reduce the number of useless probing packets. The simulation experiments demonstrate that the algorithm and adjusting rule we present can effectively prolong the lifetime of a wireless sensor network without decreasing the fault detected rate. PMID:22163789

  7. Evaluation of Urban Air Quality By Passive Sampling Technique

    NASA Astrophysics Data System (ADS)

    Nunes, T. V.; Miranda, A. I.; Duarte, S.; Lima, M. J.

    Aveiro is a flat small city in the centre of Portugal, close to the Atlantic coast. In the last two decades an intensive development of demographic, traffic and industry growth in the region was observed which was reflected on the air quality degrada- tion. In order to evaluate the urban air quality in Aveiro, a field-monitoring network by passive sampling with high space resolution was implemented. Twenty-four field places were distributed in a area of 3x3 Km2 and ozone and NO2 concentrations were measured. The site distribution density was higher in the centre, 250x250 m2 than in periphery where a 500x500 m2 grid was used. The selection of field places took into consideration the choice criteria recommendation by United Kingdom environmental authorities, and three tubes and a blank tube for each pollutant were used at each site. The sampling system was mounted at 3m from the ground usually profiting the street lampposts. Concerning NO2 acrylic tubes were used with 85 mm of length and an in- ternal diameter of 12mm, where in one of the extremities three steel grids impregnated with a solution of TEA were placed and fixed with a polyethylene end cup (Heal et al., 1999); PFA Teflon tube with 53 mm of length and 9 mm of internal diameter and three impregnated glass filters impregnated with DPE solution fixed by a teflon end cup was used for ozone sampling (Monn and Hargartner, 1990). The passive sampling method for ozone and nitrogen dioxide was compared with continuous measurements, but the amount of measurements wasnSt enough for an accurate calibration and validation of the method. Although this constraint the field observations (June to August 2001) for these two pollutants assign interesting information about the air quality in the urban area. A krigger method of interpolation (Surfer- Golden Software-2000) was applied to field data to obtain isolines distribution of NO2 and ozone concentration for the studied area. Even the used passive sampling method has many

  8. Bourdieu does environmental justice? Probing the linkages between population health and air pollution epidemiology.

    PubMed

    Buzzelli, Michael

    2007-03-01

    The environmental justice literature faces a number of conceptual and methodological shortcomings. The purpose of this paper is to probe ways in which these shortcomings can be remedied via recent developments in related literatures: population health and air pollution epidemiology. More sophisticated treatment of social structure, particularly if based on Pierre Bourdieu's relational approach to forms of capital, can be combined with the methodological rigour and established biological pathways of air pollution epidemiology. The aim is to reformulate environmental justice research in order to make further meaningful contributions to the wider movement concerned with issues of social justice and equity in health research.

  9. A multi-probe thermophoretic soot sampling system for high-pressure diffusion flames.

    PubMed

    Vargas, Alex M; Gülder, Ömer L

    2016-05-01

    Optical diagnostics and physical probing of the soot processes in high pressure combustion pose challenges that are not faced in atmospheric flames. One of the preferred methods of studying soot in atmospheric flames is in situ thermophoretic sampling followed by transmission electron microscopy imaging and analysis for soot sizing and morphology. The application of this method of sampling to high pressures has been held back by various operational and mechanical problems. In this work, we describe a rotating disk multi-probe thermophoretic soot sampling system, driven by a microstepping stepper motor, fitted into a high-pressure chamber capable of producing sooting laminar diffusion flames up to 100 atm. Innovative aspects of the sampling system design include an easy and precise control of the sampling time down to 2.6 ms, avoidance of the drawbacks of the pneumatic drivers used in conventional thermophoretic sampling systems, and the capability to collect ten consecutive samples in a single experimental run. Proof of principle experiments were performed using this system in a laminar diffusion flame of methane, and primary soot diameter distributions at various pressures up to 10 atm were determined. High-speed images of the flame during thermophoretic sampling were recorded to assess the influence of probe intrusion on the flow field of the flame.

  10. A multi-probe thermophoretic soot sampling system for high-pressure diffusion flames.

    PubMed

    Vargas, Alex M; Gülder, Ömer L

    2016-05-01

    Optical diagnostics and physical probing of the soot processes in high pressure combustion pose challenges that are not faced in atmospheric flames. One of the preferred methods of studying soot in atmospheric flames is in situ thermophoretic sampling followed by transmission electron microscopy imaging and analysis for soot sizing and morphology. The application of this method of sampling to high pressures has been held back by various operational and mechanical problems. In this work, we describe a rotating disk multi-probe thermophoretic soot sampling system, driven by a microstepping stepper motor, fitted into a high-pressure chamber capable of producing sooting laminar diffusion flames up to 100 atm. Innovative aspects of the sampling system design include an easy and precise control of the sampling time down to 2.6 ms, avoidance of the drawbacks of the pneumatic drivers used in conventional thermophoretic sampling systems, and the capability to collect ten consecutive samples in a single experimental run. Proof of principle experiments were performed using this system in a laminar diffusion flame of methane, and primary soot diameter distributions at various pressures up to 10 atm were determined. High-speed images of the flame during thermophoretic sampling were recorded to assess the influence of probe intrusion on the flow field of the flame. PMID:27250464

  11. A multi-probe thermophoretic soot sampling system for high-pressure diffusion flames

    NASA Astrophysics Data System (ADS)

    Vargas, Alex M.; Gülder, Ömer L.

    2016-05-01

    Optical diagnostics and physical probing of the soot processes in high pressure combustion pose challenges that are not faced in atmospheric flames. One of the preferred methods of studying soot in atmospheric flames is in situ thermophoretic sampling followed by transmission electron microscopy imaging and analysis for soot sizing and morphology. The application of this method of sampling to high pressures has been held back by various operational and mechanical problems. In this work, we describe a rotating disk multi-probe thermophoretic soot sampling system, driven by a microstepping stepper motor, fitted into a high-pressure chamber capable of producing sooting laminar diffusion flames up to 100 atm. Innovative aspects of the sampling system design include an easy and precise control of the sampling time down to 2.6 ms, avoidance of the drawbacks of the pneumatic drivers used in conventional thermophoretic sampling systems, and the capability to collect ten consecutive samples in a single experimental run. Proof of principle experiments were performed using this system in a laminar diffusion flame of methane, and primary soot diameter distributions at various pressures up to 10 atm were determined. High-speed images of the flame during thermophoretic sampling were recorded to assess the influence of probe intrusion on the flow field of the flame.

  12. Influence of probe sampling on reacting species measurement in diluted combustion

    SciTech Connect

    Lupant, D.; Pesenti, B.; Lybaert, P.

    2010-07-15

    In-flame measurements of temperature and major species are realized with intrusive probes in a laboratory scale furnace working in diluted combustion. The shape and the position of the reaction zone are experimentally identified from the distribution of temperature and carbon monoxide in a particular symmetry plane. For this purpose, two probes were designed: the sampling probe, to measure species content of the gas sample and the suction pyrometer, for the temperature. The first is completely cooled to quench the reaction, but the second is just partly cooled for handling. However, as both probes take gas sample, the species content is available in either case. Consequently the suction pyrometer can be used to measure simultaneously temperature and species, reducing by half the length of the experimental campaign. Comparing species contents on a non-reactive mixture, it has been observed that the spatial averaging is the same with both probes. The perturbation of the flow is assessed thanks to a CFD modeling of the furnace including the probe. Even if it is significant - the differences between the computed values and the measurements are about 3-4 times the measurement error - the position and the value of the maximum is well captured as well as the opening of the jet. However, the species contents measured within a reactive mixture differ significantly. For a stable regime, the levels and the distribution of CO are similar with both probes, but the gradients at the border of the reaction zone are sharper with the suction pyrometer. For another regime, for which the reaction zone is lifted and less stable, the fields of species are completely different following the probe used. A chemical kinetic modeling has shown that the reaction inside the non-cooled part of the suction pyrometer is promoted when it is placed in particular region. The use of the suction pyrometer as sampling probe inside a reaction zone should therefore be avoided even in diluted combustion

  13. Cryogenic sample exchange NMR probe for magic angle spinning dynamic nuclear polarization

    PubMed Central

    Barnes, Alexander B.; Mak-Jurkauskas, Melody L.; Matsuki, Yoh; Bajaj, Vikram S.; van der Wel, Patrick C. A.; DeRocher, Ronald; Bryant, Jeffrey; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Lugtenburg, Johan; Herzfeld, Judith; Griffin, Robert G.

    2009-01-01

    We describe a cryogenic sample exchange system that dramatically improves the efficiency of magic angle spinning (MAS) dynamic nuclear polarization (DNP) experiments by reducing the time required to change samples and by improving long-term instrument stability. Changing samples in conventional cryogenic MAS DNP/NMR experiments involves warming the probe to room temperature, detaching all cryogenic, RF, and microwave connections, removing the probe from the magnet, replacing the sample, and reversing all the previous steps, with the entire cycle requiring a few hours. The sample exchange system described here — which relies on an eject pipe attached to the front of the MAS stator and a vacuum jacketed dewar with a bellowed hole — circumvents these procedures. To demonstrate the excellent sensitivity, resolution, and stability achieved with this quadruple resonance sample exchange probe, we have performed high precision distance measurements on the active site of the membrane protein bacteriorhodopsin. We also include a spectrum of the tripeptide N-f-MLF-OH at 100 K which shows 30 Hz linewidths. PMID:19356957

  14. Bias in air sampling techniques used to measure inhalation exposure.

    PubMed

    Cohen, B S; Harley, N H; Lippmann, M

    1984-03-01

    Factors have been evaluated which contribute to the lack of agreement between inhalation exposure estimates obtained by time-weighted averaging of samples taken with mini hi-volume samplers, and those measured by time integrating, low-volume, lapel mounted, personal monitors. Measurements made with real-time aerosol monitors on workers at a Be-Cu production furnace show that part of the discrepancy results from variability of the aerosol concentration within the breathing zone. Field studies of sampler inlet bias, the influences of the electrostatic fields around polystyrene filter holders, and resuspension of dust from work clothing, were done in three areas of a Be plant. No significant differences were found in Be air concentrations measured simultaneously by open and closed face cassettes, and "mini hi-volume" samplers mounted on a test stand. No significant influence on Be collection was detected between either positively or negatively charged monitors and charge neutralized control monitors. The effect of contaminated work clothing on dust collection by lapel mounted monitors is most important. Beryllium release from the fabrics affected air concentrations measured by fabric mounted monitors more than it affected concentrations measured by monitors positioned above the fabrics. The latter were placed 16 cm from the vertically mounted fabrics, to simulate the position of the nose or mouth. We conclude that dust resuspended from work clothing is the major source of the observed discrepancy between exposures estimated from lapel mounted samplers and time-weighted averages.

  15. Bias in air sampling techniques used to measure inhalation exposure

    SciTech Connect

    Cohen, B.S.; Harley, N.H.; Lippmann, M.

    1984-03-01

    Factors have been evaluated which contribute to the lack of agreement between inhalation exposure estimates obtained by time-weighted averaging of samples taken with mini hi-volume samplers, and those measured by time integrating, low-volume, lapel mounted, personal monitors. Measurements made with real-time aerosol monitors on workers at a Be-Cu production furnace show that part of the discrepancy results from variability of the aerosol concentration within the breathing zone. Field studies of sampler inlet bias, the influences of the electrostatic fields around polystyrene filter holders, and resuspension of dust from work clothing, were done in three areas of a Be plant. No significant differences were found in Be air concentrations measured simultaneously by open and closed face cassettes, and mini hi-volume samplers mounted on a test stand. No significant influence on Be collection was detected between either positively or negatively charged monitors and charge neutralized control monitors. The effect of contaminated work clothing on dust collection by lapel mounted monitors is most important. Beryllium release from the fabrics affected air concentrations measured by fabric mounted monitors more than it affected concentrations measured by monitors positioned above the fabrics. The latter were placed 16 cm from the vertically mounted fabrics, to simulate the position of the nose or mouth. The authors conclude that dust resuspended from work clothing is the major source of the observed discrepancy between exposures estimated from lapel mounted samplers and time-weighted averages.

  16. Field evaluation of endotoxin air sampling assay methods.

    PubMed

    Thorne, P S; Reynolds, S J; Milton, D K; Bloebaum, P D; Zhang, X; Whitten, P; Burmeister, L F

    1997-11-01

    This study tested the importance of filter media, extraction and assay protocol, and bioaerosol source on the determination of endotoxin under field conditions in swine and poultry confinement buildings. Multiple simultaneous air samples were collected using glass fiber (GF) and polycarbonate (PC) filters, and these were assayed using two methods in two separate laboratories: an endpoint chromogenic Limulus amebocyte lysate (LAL) assay (QCL) performed in water and a kinetic chromogenic LAL assay (KQCL) performed in buffer with resistant-parallel line estimation analysis (KLARE). In addition, two aqueous filter extraction methods were compared in the QCL assay: 120 min extraction at 22 degrees C with vigorous shaking and 30 min extraction at 68 degrees C with gentle rocking. These extraction methods yielded endotoxin activities that were not significantly different and were very highly correlated. Reproducibility of endotoxin determinations from duplicate air sampling filters was very high (Cronbach alpha all > 0.94). When analyzed by the QCL method GF filters yielded significantly higher endotoxin activity than PC filters. QCL and KLARE methods gave similar estimates for endotoxin activity from PC filters; however, GF filters analyzed by the QCL method yielded significantly higher endotoxin activity estimates, suggesting enhancement of the QCL assay or inhibition of the KLARE asay with GF filters. Correlation between QCL-GF and QCL-PC was high (r = 0.98) while that between KLARE-GF and KLARE-PC was moderate (r = 0.68). Analysis of variance demonstrated that assay methodology, filter-type, barn-type, and interactions between assay and filter-type and between assay and barn-type were important factors influencing endotoxin exposure assessment.

  17. Assessment of the LV-S2 & LV-S3 Stack Sampling Probe Locations for Compliance with ANSI/HPS N13.1-1999

    SciTech Connect

    Glissmeyer, John A.; Antonio, Ernest J.; Flaherty, Julia E.; Amidan, Brett G.

    2014-09-30

    This document reports on a series of tests conducted to assess the proposed air sampling locations for the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Group 1-2A exhaust stacks with respect to the applicable criteria regarding the placement of an air sampling probe. The LV-C2, LV-S2, and LV-S3 exhaust stacks were tested together as a group (Test Group 1-2A). This report only covers the results of LV-S2 and LV-S3; LV-C2 will be reported on separately. Federal regulations1 require that a sampling probe be located in the exhaust stack according to the criteria established by the American National Standards Institute/Health Physics Society (ANSI/HPS) N13.1-1999, Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stack and Ducts of Nuclear Facilities. 2 These criteria address the capability of the sampling probe to extract a sample that represents the effluent stream.

  18. Molecular Dynamic Simulations of Interaction of an AFM Probe with the Surface of an SCN Sample

    NASA Technical Reports Server (NTRS)

    Bune, Adris; Kaukler, William; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Molecular dynamic (MD) simulations is conducted in order to estimate forces of probe-substrate interaction in the Atomic Force Microscope (AFM). First a review of available molecular dynamic techniques is given. Implementation of MD simulation is based on an object-oriented code developed at the University of Delft. Modeling of the sample material - succinonitrile (SCN) - is based on the Lennard-Jones potentials. For the polystyrene probe an atomic interaction potential is used. Due to object-oriented structure of the code modification of an atomic interaction potential is straight forward. Calculation of melting temperature is used for validation of the code and of the interaction potentials. Various fitting parameters of the probe-substrate interaction potentials are considered, as potentials fitted to certain properties and temperature ranges may not be reliable for the others. This research provides theoretical foundation for an interpretation of actual measurements of an interaction forces using AFM.

  19. Development of a combined air sampling and quantitative real-time PCR method for detection of Legionella spp.

    PubMed

    Sirigul, Chomrach; Wongwit, Waranya; Phanprasit, Wantanee; Paveenkittiporn, Wantana; Blacksell, Stuart D; Ramasoota, Pongrama

    2006-05-01

    The objective of this study was to develop and optimize the combined methods of air sampling and real time polymerase chain reaction (real-time PCR) for quantifying aerosol Legionella spp. Primers and TaqMan hydrolysis probe based on 5S rRNA gene specific for Legionella spp were used to amplify a specific DNA product of 84 bp. The impinger air sampler plus T-100 sampling pump was used to collect aerosol Legionella and as low as 10 fg of Legionella DNA per reaction could detected. Preliminary studies demonstrated that the developed method could detect aerosol Legionella spp 1.5-185 organisms /500 l of air within 5 hours, in contrast to culture method, that required a minimum of 7-10 days. PMID:17120970

  20. Sampling of air streams and incorporation of samples in the Microtox{trademark} toxicity testing system

    SciTech Connect

    Kleinheinz, G.T.; St. John, W.P.

    1997-10-01

    A study was conducted to develop a rapid and reliable method for the collection and incorporation of biofiltration air samples containing volatile organic compounds (VOCs) into the Microtox toxicity testing system. To date, no method exists for this type of assay. A constant stream of VOCs was generated by air stripping compounds from a complex mixture of petroleum hydrocarbons (PHCs). Samples were collected on coconut charcoal ORBO tubes and the VOCs extracted with methylene chloride. The compounds extracted were then solvent exchanged into dimethyl sulfoxide (DMSO) under gaseous nitrogen. The resulting DMSO extract was directly incorporated into the Microtox toxicity testing system. In order to determine the efficiency of the solvent exchange, the VOCs in the DMSO extract were then extracted into hexane and subsequently analyzed using gas chromatography (GC) with a flame ionization detector (FID). It was determined that all but the most volatile VOCs could be effectively transferred from the ORBO tubes to DMSO for Microtox testing. Potential trace amounts of residual methylene chloride in the DMSO extracts showed no adverse effects in the Microtox system when compared to control samples.

  1. Passive Samplers for Investigations of Air Quality: Method Description, Implementation, and Comparison to Alternative Sampling Methods

    EPA Science Inventory

    This Paper covers the basics of passive sampler design, compares passive samplers to conventional methods of air sampling, and discusses considerations when implementing a passive sampling program. The Paper also discusses field sampling and sample analysis considerations to ensu...

  2. Probing the interaction between air bubble and sphalerite mineral surface using atomic force microscope.

    PubMed

    Xie, Lei; Shi, Chen; Wang, Jingyi; Huang, Jun; Lu, Qiuyi; Liu, Qingxia; Zeng, Hongbo

    2015-03-01

    The interaction between air bubbles and solid surfaces plays important roles in many engineering processes, such as mineral froth flotation. In this work, an atomic force microscope (AFM) bubble probe technique was employed, for the first time, to directly measure the interaction forces between an air bubble and sphalerite mineral surfaces of different hydrophobicity (i.e., sphalerite before/after conditioning treatment) under various hydrodynamic conditions. The direct force measurements demonstrate the critical role of the hydrodynamic force and surface forces in bubble-mineral interaction and attachment, which agree well with the theoretical calculations based on Reynolds lubrication theory and augmented Young-Laplace equation by including the effect of disjoining pressure. The hydrophobic disjoining pressure was found to be stronger for the bubble-water-conditioned sphalerite interaction with a larger hydrophobic decay length, which enables the bubble attachment on conditioned sphalerite at relatively higher bubble approaching velocities than that of unconditioned sphalerite. Increasing the salt concentration (i.e., NaCl, CaCl2) leads to weakened electrical double layer force and thereby facilitates the bubble-mineral attachment, which follows the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory by including the effects of hydrophobic interaction. The results provide insights into the basic understanding of the interaction mechanism between bubbles and minerals at nanoscale in froth flotation processes, and the methodology on probing the interaction forces of air bubble and sphalerite surfaces in this work can be extended to many other mineral and particle systems.

  3. An Autosampler and Field Sample Carrier for Maximizing Throughput Using an Open-Air, Surface Sampling Ion Source for MS

    EPA Science Inventory

    A recently developed, commercially available, open-air, surface sampling ion source for mass spectrometers provides individual analyses in several seconds. To realize its full throughput potential, an autosampler and field sample carrier were designed and built. The autosampler ...

  4. Design and Analysis of an Isokinetic Sampling Probe for Submicron Particle Measurements at High Altitude

    NASA Technical Reports Server (NTRS)

    Heath, Christopher M.

    2012-01-01

    An isokinetic dilution probe has been designed with the aid of computational fluid dynamics to sample sub-micron particles emitted from aviation combustion sources. The intended operational range includes standard day atmospheric conditions up to 40,000-ft. With dry nitrogen as the diluent, the probe is intended to minimize losses from particle microphysics and transport while rapidly quenching chemical kinetics. Initial results indicate that the Mach number ratio of the aerosol sample and dilution streams in the mixing region is an important factor for successful operation. Flow rate through the probe tip was found to be highly sensitive to the static pressure at the probe exit. Particle losses through the system were estimated to be on the order of 50% with minimal change in the overall particle size distribution apparent. Following design refinement, experimental testing and validation will be conducted in the Particle Aerosol Laboratory, a research facility located at the NASA Glenn Research Center to study the evolution of aviation emissions at lower stratospheric conditions. Particle size distributions and number densities from various combustion sources will be used to better understand particle-phase microphysics, plume chemistry, evolution to cirrus, and environmental impacts of aviation.

  5. Use of mass spectrometry coupled with a solids insertion probe to prescreen soil samples for environmental samples

    SciTech Connect

    Check, C.E.; Bach, S.B.H.

    1995-12-31

    The contamination of air, water, and soils by a myriad of sources generates a large sample Currently, sample volume for hazardous constituent analyses is approximately half a million samples per year. The total analytical costs associated with this are astronomical. The analysis of these samples is vital in terms of assessing the types of contamination present and to what degree a site has been contaminated. The results of these analyses are very important for making an informed, knowledgeable decision as to the need for remediation and what type of remediation processes should be initiated based on site suitability vs non-action for the various sample sites. With an ever growing environmental consciousness in today`s society, the assessment and subsequent remediation of a site needs to be accomplished promptly despite the time constraints traditional methods place on such actions. In order to facilitate a rapid assessment, it is desirable to utilize instrumentation and equipment which afford the most information about a site allowing for optimization in environmental assessment while maintaining a realistic time schedule for the resulting remediation process. Because there are various types of environmental samples that can be taken at a site, different combinations of instrumentation and methods are required for assessing the level and type of contamination present whether it is in air, water, or soils. This study is limited to analyzing soil-like media that would normally fall under EPA Method 8270 which is used to analyze solid waste matrices, soils, and groundwater for semi-volatile organic compounds.

  6. Continuous air monitor correlation to fixed air sample data at Los Alamos National Laboratory

    SciTech Connect

    Whicker, J.J.

    1993-05-01

    Continuous air monitoring instruments (CAMS) deployed in laboratories in the TA-55 plutonium facility at Los Alamos National Laboratory (LANL) alarmed less than 33 percent of the time when fixed air sample measurements in the same laboratory showed integrated concentrations exceeding 500 DAC-hrs. The purpose of this study was to explore effects of non-instrument variables on alarm sensitivities for properly working CAMS. Non-instrument variables include air flow patterns, particle size of released material, and the energy of the release. Dilution Factors (DFs) for 21 airborne releases in various rooms and of different magnitudes were calculated and compared. The median DF for releases where the CAM alarmed was 13.1 while the median DF for releases where the CAM did not alarm was 179. Particle sizes ranged considerably with many particles larger than 10 {mu}m. The cause of the release was found to be important in predicting if a CAM would alarm with releases from bagouts resulting in the greatest percentage of CAM alarms. The results of this study suggest that a two-component strategy for CAM placement at LANL be utilized. The first component would require CAMs at exhaust points in the rooms to provide for reliable detection for random release locations. The second component would require placing CAMs at locations where releases have historically been seen. Finally, improvements in CAM instrumentation is needed.

  7. Quantitative reverse sample genome probing of microbial communities and its application to oil field production waters

    SciTech Connect

    Voordouw, G.; Shen, Y.; Harrington, C.S.; Teland, A.J. ); Jack, T.R. ); Westlake, W.S. )

    1993-12-01

    This paper presents a protocol for quantitative analysis of microbial communities by reverse sample genome probing is presented in which (i) whole community DNA is isolated and labeled in the presence of a known amount of an added internal standard and (ii) the resulting spiked reverse genome probe is hybridized with a master filter on which denatured genomic DNAs from bacterial standards isolated from the target environment were spotted in large amounts (up to 1,500 ng) in order to improve detection sensitivity. This protocol allowed reproducible fingerprinting of the microbial community in oil field production waters at 19 sites from which water and biofilm samples were collected. It appeared that selected sulfate-reducing bacteria were significantly enhanced in biofilms covering the metal surfaces in contact with the production waters.

  8. GUIDELINES FOR INSTALLATION AND SAMPLING OF SUB-SLAB VAPOR PROBES TO SUPPORT ASSESSMENT OF VAPOR INTRUSION

    EPA Science Inventory

    The purpose of this paper is to provide guidelines for sub-slab sampling using dedicated vapor probes. Use of dedicated vapor probes allows for multiple sample events before and after corrective action and for vacuum testing to enhance the design and monitoring of a corrective m...

  9. Cellulomonas aerilata sp. nov., isolated from an air sample.

    PubMed

    Lee, Chang-Muk; Weon, Hang-Yeon; Hong, Seung-Beom; Jeon, Young-Ah; Schumann, Peter; Kroppenstedt, Reiner M; Kwon, Soon-Wo; Stackebrandt, Erko

    2008-12-01

    A Gram-positive, aerobic, motile, coccoid or short rod-shaped bacterium, 5420S-23(T), was isolated from an air sample collected in the Republic of Korea. According to phylogenetic analysis based on 16S rRNA gene sequences, strain 5420S-23(T) revealed 97.5, 97.3, 97.3 and 97.2 % similarity, respectively, to Cellulomonas biazotea DSM 20112(T), Cellulomonas cellasea DSM 20118(T), Cellulomonas fimi DSM 20113(T) and Cellulomonas chitinilytica X.bu-b(T). The peptidoglycan type of strain 5420S-23(T) was A4beta, containing l-ornithine-d-glutamic acid. The cell-wall sugars were galactose, glucose and xylose. The major fatty acids were anteiso-C(15 : 0) (49.7 %) and C(16 : 0) (20.0 %). The major menaquinone was MK-9(H(4)) and major polar lipids were diphosphatidylglycerol and phosphatidylglycerol. The DNA G+C content was 74 mol%. The results of DNA-DNA hybridization with strains of closely related Cellulomonas species, in combination with chemotaxonomic and physiological data, demonstrated that isolate 5420S-23(T) represents a novel Cellulomonas species, for which the name Cellulomonas aerilata sp. nov. is proposed, with strain 5420S-23(T) (=KACC 20692(T) =DSM 18649(T)) as the type strain.

  10. Collection and analysis of NASA clean room air samples

    NASA Technical Reports Server (NTRS)

    Sheldon, L. S.; Keever, J.

    1985-01-01

    The environment of the HALOE assembly clean room at NASA Langley Research Center is analyzed to determine the background levels of airborne organic compounds. Sampling is accomplished by pumping the clean room air through absorbing cartridges. For volatile organics, cartridges are thermally desorbed and then analyzed by gas chromatography and mass spectrometry, compounds are identified by searching the EPA/NIH data base using an interactive operator INCOS computer search algorithm. For semivolatile organics, cartridges are solvent entracted and concentrated extracts are analyzed by gas chromatography-electron capture detection, compound identification is made by matching gas chromatogram retention times with known standards. The detection limits for the semivolatile organics are; 0.89 ng cu m for dioctylphlhalate (DOP) and 1.6 ng cu m for polychlorinated biphenyls (PCB). The detection limit for volatile organics ranges from 1 to 50 parts per trillion. Only trace quantities of organics are detected, the DOP levels do not exceed 2.5 ng cu m and the PCB levels do not exceed 454 ng cu m.

  11. Air sampling filtration media: Collection efficiency for respirable size-selective sampling

    PubMed Central

    Soo, Jhy-Charm; Monaghan, Keenan; Lee, Taekhee; Kashon, Mike; Harper, Martin

    2016-01-01

    The collection efficiencies of commonly used membrane air sampling filters in the ultrafine particle size range were investigated. Mixed cellulose ester (MCE; 0.45, 0.8, 1.2, and 5 μm pore sizes), polycarbonate (0.4, 0.8, 2, and 5 μm pore sizes), polytetrafluoroethylene (PTFE; 0.45, 1, 2, and 5 μm pore sizes), polyvinyl chloride (PVC; 0.8 and 5 μm pore sizes), and silver membrane (0.45, 0.8, 1.2, and 5 μm pore sizes) filters were exposed to polydisperse sodium chloride (NaCl) particles in the size range of 10–400 nm. Test aerosols were nebulized and introduced into a calm air chamber through a diffusion dryer and aerosol neutralizer. The testing filters (37 mm diameter) were mounted in a conductive polypropylene filter-holder (cassette) within a metal testing tube. The experiments were conducted at flow rates between 1.7 and 11.2 l min−1. The particle size distributions of NaCl challenge aerosol were measured upstream and downstream of the test filters by a scanning mobility particle sizer (SMPS). Three different filters of each type with at least three repetitions for each pore size were tested. In general, the collection efficiency varied with airflow, pore size, and sampling duration. In addition, both collection efficiency and pressure drop increased with decreased pore size and increased sampling flow rate, but they differed among filter types and manufacturer. The present study confirmed that the MCE, PTFE, and PVC filters have a relatively high collection efficiency for challenge particles much smaller than their nominal pore size and are considerably more efficient than polycarbonate and silver membrane filters, especially at larger nominal pore sizes. PMID:26834310

  12. Lanthanide complexes as luminogenic probes to measure sulfide levels in industrial samples.

    PubMed

    Thorson, Megan K; Ung, Phuc; Leaver, Franklin M; Corbin, Teresa S; Tuck, Kellie L; Graham, Bim; Barrios, Amy M

    2015-10-01

    A series of lanthanide-based, azide-appended complexes were investigated as hydrogen sulfide-sensitive probes. Europium complex 1 and Tb complex 3 both displayed a sulfide-dependent increase in luminescence, while Tb complex 2 displayed a decrease in luminescence upon exposure to NaHS. The utility of the complexes for monitoring sulfide levels in industrial oil and water samples was investigated. Complex 3 provided a sensitive measure of sulfide levels in petrochemical water samples (detection limit ∼ 250 nM), while complex 1 was capable of monitoring μM levels of sulfide in partially refined crude oil. PMID:26482000

  13. Nanoscale infrared spectroscopy as a non-destructive probe of extraterrestrial samples.

    PubMed

    Dominguez, Gerardo; Mcleod, A S; Gainsforth, Zack; Kelly, P; Bechtel, Hans A; Keilmann, Fritz; Westphal, Andrew; Thiemens, Mark; Basov, D N

    2014-12-09

    Advances in the spatial resolution of modern analytical techniques have tremendously augmented the scientific insight gained from the analysis of natural samples. Yet, while techniques for the elemental and structural characterization of samples have achieved sub-nanometre spatial resolution, infrared spectral mapping of geochemical samples at vibrational 'fingerprint' wavelengths has remained restricted to spatial scales >10 μm. Nevertheless, infrared spectroscopy remains an invaluable contactless probe of chemical structure, details of which offer clues to the formation history of minerals. Here we report on the successful implementation of infrared near-field imaging, spectroscopy and analysis techniques capable of sub-micron scale mineral identification within natural samples, including a chondrule from the Murchison meteorite and a cometary dust grain (Iris) from NASA's Stardust mission. Complementary to scanning electron microscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy probes, this work evidences a similarity between chondritic and cometary materials, and inaugurates a new era of infrared nano-spectroscopy applied to small and invaluable extraterrestrial samples.

  14. Nanoscale infrared spectroscopy as a non-destructive probe of extraterrestrial samples.

    PubMed

    Dominguez, Gerardo; Mcleod, A S; Gainsforth, Zack; Kelly, P; Bechtel, Hans A; Keilmann, Fritz; Westphal, Andrew; Thiemens, Mark; Basov, D N

    2014-01-01

    Advances in the spatial resolution of modern analytical techniques have tremendously augmented the scientific insight gained from the analysis of natural samples. Yet, while techniques for the elemental and structural characterization of samples have achieved sub-nanometre spatial resolution, infrared spectral mapping of geochemical samples at vibrational 'fingerprint' wavelengths has remained restricted to spatial scales >10 μm. Nevertheless, infrared spectroscopy remains an invaluable contactless probe of chemical structure, details of which offer clues to the formation history of minerals. Here we report on the successful implementation of infrared near-field imaging, spectroscopy and analysis techniques capable of sub-micron scale mineral identification within natural samples, including a chondrule from the Murchison meteorite and a cometary dust grain (Iris) from NASA's Stardust mission. Complementary to scanning electron microscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy probes, this work evidences a similarity between chondritic and cometary materials, and inaugurates a new era of infrared nano-spectroscopy applied to small and invaluable extraterrestrial samples. PMID:25487365

  15. High quality copy number and genotype data from FFPE samples using Molecular Inversion Probe (MIP) microarrays

    SciTech Connect

    Wang, Yuker; Carlton, Victoria E.H.; Karlin-Neumann, George; Sapolsky, Ronald; Zhang, Li; Moorhead, Martin; Wang, Zhigang C.; Richardson, Andrea L.; Warren, Robert; Walther, Axel; Bondy, Melissa; Sahin, Aysegul; Krahe, Ralf; Tuna, Musaffe; Thompson, Patricia A.; Spellman, Paul T.; Gray, Joe W.; Mills, Gordon B.; Faham, Malek

    2009-02-24

    A major challenge facing DNA copy number (CN) studies of tumors is that most banked samples with extensive clinical follow-up information are Formalin-Fixed Paraffin Embedded (FFPE). DNA from FFPE samples generally underperforms or suffers high failure rates compared to fresh frozen samples because of DNA degradation and cross-linking during FFPE fixation and processing. As FFPE protocols may vary widely between labs and samples may be stored for decades at room temperature, an ideal FFPE CN technology should work on diverse sample sets. Molecular Inversion Probe (MIP) technology has been applied successfully to obtain high quality CN and genotype data from cell line and frozen tumor DNA. Since the MIP probes require only a small ({approx}40 bp) target binding site, we reasoned they may be well suited to assess degraded FFPE DNA. We assessed CN with a MIP panel of 50,000 markers in 93 FFPE tumor samples from 7 diverse collections. For 38 FFPE samples from three collections we were also able to asses CN in matched fresh frozen tumor tissue. Using an input of 37 ng genomic DNA, we generated high quality CN data with MIP technology in 88% of FFPE samples from seven diverse collections. When matched fresh frozen tissue was available, the performance of FFPE DNA was comparable to that of DNA obtained from matched frozen tumor (genotype concordance averaged 99.9%), with only a modest loss in performance in FFPE. MIP technology can be used to generate high quality CN and genotype data in FFPE as well as fresh frozen samples.

  16. Breakthrough of 1,3-dichloropropene and chloropicrin from 600 mg XAD-4 air sampling tubes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurately measuring air concentrations of agricultural fumigants is important for the regulation of air quality. Understanding the conditions under which sorbent tubes can effectively retain such fumigants during sampling is critical in mitigating chemical breakthrough from the tubes and facilitati...

  17. Spirosoma aerophilum sp. nov., isolated from an air sample.

    PubMed

    Kim, Soo-Jin; Ahn, Jae-Hyung; Weon, Hang-Yeon; Hong, Seung-Beom; Seok, Soon-Ja; Kim, Jeong-Seon; Kwon, Soon-Wo

    2016-06-01

    A rod-shaped, yellow, Gram-stain-negative, non-flagellated, aerobic bacterium, designated 5516J-17T, was isolated from an air sample collected from Jeju Island, Republic of Korea. It grew in the temperature range of 10-37 °C (optimum 28-30 °C), pH 6.0-11.0 (optimum, pH 7.0) and 0-1 % NaCl (w/v). Phylogenetic trees generated using 16S rRNA gene sequences revealed that strain 5516J-17T belongs to the genus Spirosoma, showing 96.9 % sequence similarity to the most closely related species, Spirosoma linguale DSM 74T. The cellular fatty acids comprised large amounts (>10 % of total fatty acids) of summed feature 3 (C16:1ω7c and/or C16:1ω6c) and C16:1ω5c, and moderate amounts (5-10 % of total fatty acids) of iso-C17:0 3-OH, iso-C15:0 and C16:0. The DNA G+C content was 55.7 mol % and MK-7 was the predominant isoprenoid quinone. Polar lipids were phosphatidylethanolamine, two unknown aminophospholipids, one unknown aminolipid and one unknown lipid. On the basis of this phenotypic and polyphasic taxonomy study, it is suggested that strain 5516J-17T represents a novel species within the genus Spirosoma, with the proposed name Spirosoma aerophilum. The type strain is 5516J-17T (= KACC 17323T = DSM 28388T = JCM 19950T). PMID:27031168

  18. Terrabacter aeriphilus sp. nov., isolated from an air sample.

    PubMed

    Weon, Hang-Yeon; Son, Jung-A; Yoo, Seung-Hee; Kim, Byung-Yong; Kwon, Soon-Wo; Schumann, Peter; Kroppenstedt, Reiner; Stackebrandt, Erko

    2010-05-01

    A novel actinomycete, designated strain 5414T-18(T), was isolated from an air sample collected from the Taean region, Korea. The strain contained oxidase and grew in the presence of 7 % NaCl. A neighbour-joining tree constructed on the basis of the 16S rRNA gene sequence showed that strain 5414T-18(T) is a member of the genus Terrabacter, sharing 97.8-98.3 % 16S rRNA gene sequence similarities to type strains of species of the genus Terrabacter (98.3 % sequence similarity with Terrabacter lapilli LR-26(T)). It contained peptidoglycan containing ll-diaminopimelic acid of A3gamma type, with three glycine residues as the interpeptide bridge. Whole-cell sugars were glucose, mannose and ribose. Mycolic acids were absent. The predominant menaquinone was MK-8(H(4)). The major fatty acids (>7 % of total fatty acids) were iso-C(15 : 0), iso-C(16 : 0), C(17 : 1)omega8c and iso-C(14 : 0). The major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylinositol and an unidentified phosphoglycolipid. The DNA G+C content of the type strain was 73 mol%. Strain 5414T-18(T) exhibited DNA-DNA relatedness levels of 44, 43, 39, 34 and 34 % to the type strains of Terrabacter lapilli, Terrabacter aerolatus, Terrabacter terrae, Terrabacter tumescens and Terracoccus luteus, respectively. These findings suggest that strain 5414T-18(T) represents a novel species within the genus Terrabacter. The name Terrabacter aeriphilus sp. nov. is proposed for this novel species, with the type strain 5414T-18(T) (=KACC 20693(T)=DSM 18563(T)).

  19. A new Langmuir probe concept for rapid sampling of space plasma electron density

    NASA Astrophysics Data System (ADS)

    Jacobsen, K. S.; Pedersen, A.; Moen, J. I.; Bekkeng, T. A.

    2010-08-01

    In this paper we describe a new Langmuir probe concept that was invented for the in situ investigation of HF radar backscatter irregularities, with the capability to measure absolute electron density at a resolution sufficient to resolve the finest conceivable structure in an ionospheric plasma. The instrument consists of two or more fixed-bias cylindrical Langmuir probes whose radius is small compared to the Debye length. With this configuration, it is possible to acquire absolute electron density measurements independent of electron temperature and rocket/satellite potential. The system was flown on the ICI-2 sounding rocket to investigate the plasma irregularities which cause HF backscatter. It had a sampling rate of more than 5 kHz and successfully measured structures down to the scale of one electron gyro radius. The system can easily be adapted for any ionospheric rocket or satellite, and provides high-quality measurements of electron density at any desired resolution.

  20. Detection of hepatitis A virus in seeded estuarine samples by hybridization with cDNA probes

    SciTech Connect

    Jiang, X.; Estes, M.K.; Metcalf, T.G.; Melnick, J.L

    1986-10-01

    The development and trials of a nucleic acid hybridization test for the detection of hepatitis A virus (HAV) in estuarine samples within 48 h are described. Approximately 10/sup 4/ physical particlels of HAV per dot could be detected. Test sensitivity was optimized by the consideration of hydbridization stringency, /sup 32/P energy level, probe concentration, and nucleic acid binding to filters. Test specificity was shown by a lack of cross-hybridization with other enteroviruses and unrelated nucleic acids. Potential false-positive reactions between bacterial DNA in samples and residual vector DNA contamination of purified nucleotide sequences in probes were eliminated by DNase treatment of samples. Humic acid at concentrations of up to 100 mg/liter caused only insignificant decreases in test sensitivity. Interference with hybridization by organic components of virus-containing eluates was removed by proteinase K digestion followed by phenol extraction and ethanol precipitation. The test is suitable for detecting naturally occurring HAV in samples from polluted estuarine environments.

  1. Probe depth matters in dermal microdialysis sampling of benzoic acid after topical application: an ex vivo study in human skin.

    PubMed

    Holmgaard, R; Benfeldt, E; Bangsgaard, N; Sorensen, J A; Brosen, K; Nielsen, F; Nielsen, J B

    2012-01-01

    Microdialysis (MD) in the skin - dermal microdialysis (DMD) - is a unique technique for sampling of topically as well as systemically administered drugs at the site of action, e.g. sampling of dermatological drug concentrations in the dermis. Debate has concerned the existence of a correlation between the depth of the sampling device - the probe - in the dermis and the amount of drug sampled following topical drug administration. This study evaluates the relation between probe depth and drug sampling using dermal DMD sampling ex vivo in human skin. We used superficial (<1 mm), intermediate (1-2 mm) and deep (>2 mm) positioning of the linear MD probe in the dermis of human abdominal skin, followed by topical application of 4 mg/ml of benzoic acid (BA) in skin chambers overlying the probes. Dialysate was sampled every hour for 12 h and analysed for BA content by high-performance liquid chromatography. Probe depth was measured by 20-MHz ultrasound scanning. The area under the time-versus-concentration curve (AUC) describes the drug exposure in the tissue during the experiment and is a relevant parameter to compare for the 3 dermal probe depths investigated. The AUC(0-12) were: superficial probes: 3,335 ± 1,094 μg·h/ml (mean ± SD); intermediate probes: 2,178 ± 1,068 μg·h/ml, and deep probes: 1,159 ± 306 μg·h/ml. AUC(0-12) sampled by the superficial probes was significantly higher than that of samples from the intermediate and deeply positioned probes (p value <0.05). There was a significant inverse correlation between probe depth and AUC(0-12) sampled by the same probe (p value <0.001, r(2) value = 0.5). The mean extrapolated lag-times (±SD) for the superficial probes were 0.8 ± 0.1 h, for the intermediate probes 1.7 ± 0.5 h, and for the deep probes 2.7 ± 0.5 h, which were all significantly different from each other (p value <0.05). In conclusion, this paper demonstrates that there is an inverse relationship between the depth of the probe in the dermis

  2. Probe depth matters in dermal microdialysis sampling of benzoic acid after topical application: an ex vivo study in human skin.

    PubMed

    Holmgaard, R; Benfeldt, E; Bangsgaard, N; Sorensen, J A; Brosen, K; Nielsen, F; Nielsen, J B

    2012-01-01

    Microdialysis (MD) in the skin - dermal microdialysis (DMD) - is a unique technique for sampling of topically as well as systemically administered drugs at the site of action, e.g. sampling of dermatological drug concentrations in the dermis. Debate has concerned the existence of a correlation between the depth of the sampling device - the probe - in the dermis and the amount of drug sampled following topical drug administration. This study evaluates the relation between probe depth and drug sampling using dermal DMD sampling ex vivo in human skin. We used superficial (<1 mm), intermediate (1-2 mm) and deep (>2 mm) positioning of the linear MD probe in the dermis of human abdominal skin, followed by topical application of 4 mg/ml of benzoic acid (BA) in skin chambers overlying the probes. Dialysate was sampled every hour for 12 h and analysed for BA content by high-performance liquid chromatography. Probe depth was measured by 20-MHz ultrasound scanning. The area under the time-versus-concentration curve (AUC) describes the drug exposure in the tissue during the experiment and is a relevant parameter to compare for the 3 dermal probe depths investigated. The AUC(0-12) were: superficial probes: 3,335 ± 1,094 μg·h/ml (mean ± SD); intermediate probes: 2,178 ± 1,068 μg·h/ml, and deep probes: 1,159 ± 306 μg·h/ml. AUC(0-12) sampled by the superficial probes was significantly higher than that of samples from the intermediate and deeply positioned probes (p value <0.05). There was a significant inverse correlation between probe depth and AUC(0-12) sampled by the same probe (p value <0.001, r(2) value = 0.5). The mean extrapolated lag-times (±SD) for the superficial probes were 0.8 ± 0.1 h, for the intermediate probes 1.7 ± 0.5 h, and for the deep probes 2.7 ± 0.5 h, which were all significantly different from each other (p value <0.05). In conclusion, this paper demonstrates that there is an inverse relationship between the depth of the probe in the dermis

  3. Microbial air-sampling equipment, part 1: meeting United States pharmacopeia chapter 797 standards.

    PubMed

    Kastango, Eric S

    2008-01-01

    The most recent changes to Chapter 797 of the United States Pharmcopeia-National Formulary initiated an intense controversy about the frequency of cleanroom air sampling that is required to prevent the contamination of sterile preparations. For compounders who must purchase an air sampler to use in the cleanroom, choices abound. Included in this article are a review of United States Pharmacopeia-National Formulary requirements that pertain to air sampling, a discussion of how recent revision to Chapter 797 affect air sampling and patient safety, and, for easy reference, a table that features specifications for various models of microbial air samplers.

  4. Review of Various Air Sampling Methods for Solvent Vapors.

    ERIC Educational Resources Information Center

    Maykoski, R. T.

    Vapors of trichloroethylene, toluene, methyl ethyl ketone, and butyl cellosolve in air were collected using Scotchpac and Tedlar bags, glass prescription bottles, and charcoal adsorption tubes. Efficiencies of collection are reported. (Author/RH)

  5. Probing Atmospheric Electric Fields through Radio Emission from Cosmic-Ray-Induced Air Showers

    NASA Astrophysics Data System (ADS)

    Scholten, Olaf; Trinh, Gia; Buitink, Stijn; Corstanje, Arthur; Ebert, Ute; Enriquez, Emilio; Falcke, Heino; Hoerandel, Joerg; Nelles, Anna; Schellart, Pim; Rachen, Joerg; Rutjes, Casper; ter Veen, Sander; Rossetto, Laura; Thoudam, Satyendra

    2016-04-01

    Energetic cosmic rays impinging on the atmosphere create a particle avalanche called an extensive air shower. In the leading plasma of this shower electric currents are induced that generate coherent radio wave emission that has been detected with LOFAR, a large and dense array of simple radio antennas primarily developed for radio-astronomy observations. Our measurements are performed in the 30-80 MHz frequency band. For fair weather conditions the observations are in excellent agreement with model calculations. However, for air showers measured under thunderstorm conditions we observe large differences in the intensity and polarization patterns from the predictions of fair weather models. We will show that the linear as well as the circular polarization of the radio waves carry clear information on the magnitude and orientation of the electric fields at different heights in the thunderstorm clouds. We will show that from the measured data at LOFAR the thunderstorm electric fields can be reconstructed. We thus have established the measurement of radio emission from extensive air showers induced by cosmic rays as a new tool to probe the atmospheric electric fields present in thunderclouds in a non-intrusive way. In part this presentation is based on the work: P. Schellart et al., Phys. Rev. Lett. 114, 165001 (2015).

  6. 101-SY waste sample speed of sound/rheology testing for sonic probe program

    SciTech Connect

    Cannon, N.S.

    1994-07-25

    One problem faced in the clean-up operation at Hanford is that a number of radioactive waste storage tanks are experiencing a periodic buildup and release of potentially explosive gases. The best known example is Tank 241-SY-101 (commonly referred to as 101-SY) in which hydrogen gas periodically built up within the waste to the point that increased buoyancy caused a roll-over event, in which the gas was suddenly released in potentially explosive concentrations (if an ignition source were present). The sonic probe concept is to generate acoustic vibrations in the 101-SY tank waste at nominally 100 Hz, with sufficient amplitude to cause the controlled release of hydrogen bubbles trapped in the waste. The sonic probe may provide a potentially cost-effective alternative to large mixer pumps now used for hydrogen mitigation purposes. Two important parameters needed to determine sonic probe effectiveness and design are the speed of sound and yield stress of the tank waste. Tests to determine these parameters in a 240 ml sample of 101-SY waste (obtained near the tank bottom) were performed, and the results are reported.

  7. Adsorption, Ordering, and Local Environments of Surfactant-Encapsulated Polyoxometalate Ions Probed at the Air-Water Interface.

    PubMed

    Doughty, Benjamin; Yin, Panchao; Ma, Ying-Zhong

    2016-08-16

    The continued development and application of surfactant-encapsulated polyoxometalates (SEPs) relies on understanding the ordering and organization of species at their interface and how these are impacted by the various local environments to which they are exposed. Here, we report on the equilibrium properties of two common SEPs adsorbed to the air-water interface and probed with surface-specific vibrational sum-frequency generation (SFG) spectroscopy. These results reveal clear shifts in vibrational band positions, the magnitude of which scales with the charge of the SEP core, which is indicative of a static field effect on the surfactant coating and the associated local chemical environment. This static field also induces ordering in surrounding water molecules that is mediated by charge screening via the surface-bound surfactants. From these SFG measurements, we are able to show that Mo132-based SEPs are more polar than Mo72V30 SEPs. Disorder in the surfactant chain packing at the highly curved SEP surfaces is attributed to large conic volumes that can be sampled without interactions with neighboring chains. Measurements of adsorption isotherms yield free energies of adsorption to the air-water interface of -46.8 ± 0.4 and -44.8 ± 1.2 kJ/mol for the Mo132 and Mo72V30 SEPs, respectively, indicating a strong propensity for the fluid surface. The influence of intermolecular interactions on the surface adsorption energies is discussed. PMID:27452922

  8. Intensive probing of clear air convective fields by radar and instrumented drone aircraft.

    NASA Technical Reports Server (NTRS)

    Rowland, J. R.

    1972-01-01

    Clear air convective fields were probed in three summer experiments (1969, 1970, and 1971) on an S-band monopulse tracking radar at Wallops Island, Virginia, and a drone aircraft with a takeoff weight of 5.2 kg, wingspan of 2.5 m, and cruising glide speed of 10.3 m/sec. The drone was flown 23.2 km north of the radar and carried temperature, pressure/altitude, humidity, and vertical and airspeed velocity sensors. Extensive time-space convective field data were obtained by taking a large number of RHI and PPI pictures at short intervals of time. The rapidly changing overall convective field data obtained from the radar could be related to the meteorological information telemetered from the drone at a reasonably low cost by this combined technique.

  9. Fast, high-resolution surface potential measurements in air with heterodyne Kelvin probe force microscopy

    NASA Astrophysics Data System (ADS)

    Garrett, Joseph L.; Munday, Jeremy N.

    2016-06-01

    Kelvin probe force microscopy (KPFM) adapts an atomic force microscope to measure electric potential on surfaces at nanometer length scales. Here we demonstrate that Heterodyne-KPFM enables scan rates of several frames per minute in air, and concurrently maintains spatial resolution and voltage sensitivity comparable to frequency-modulation KPFM, the current spatial resolution standard. Two common classes of topography-coupled artifacts are shown to be avoidable with H-KPFM. A second implementation of H-KPFM is also introduced, in which the voltage signal is amplified by the first cantilever resonance for enhanced sensitivity. The enhanced temporal resolution of H-KPFM can enable the imaging of many dynamic processes, such as such as electrochromic switching, phase transitions, and device degredation (battery, solar, etc), which take place over seconds to minutes and involve changes in electric potential at nanometer lengths.

  10. GUIDE TO CALCULATING TRANSPORT EFFICIENCY OF AEROSOLS IN OCCUPATIONAL AIR SAMPLING SYSTEMS

    SciTech Connect

    Hogue, M.; Hadlock, D.; Thompson, M.; Farfan, E.

    2013-11-12

    This report will present hand calculations for transport efficiency based on aspiration efficiency and particle deposition losses. Because the hand calculations become long and tedious, especially for lognormal distributions of aerosols, an R script (R 2011) will be provided for each element examined. Calculations are provided for the most common elements in a remote air sampling system, including a thin-walled probe in ambient air, straight tubing, bends and a sample housing. One popular alternative approach would be to put such calculations in a spreadsheet, a thorough version of which is shared by Paul Baron via the Aerocalc spreadsheet (Baron 2012). To provide greater transparency and to avoid common spreadsheet vulnerabilities to errors (Burns 2012), this report uses R. The particle size is based on the concept of activity median aerodynamic diameter (AMAD). The AMAD is a particle size in an aerosol where fifty percent of the activity in the aerosol is associated with particles of aerodynamic diameter greater than the AMAD. This concept allows for the simplification of transport efficiency calculations where all particles are treated as spheres with the density of water (1g cm-3). In reality, particle densities depend on the actual material involved. Particle geometries can be very complicated. Dynamic shape factors are provided by Hinds (Hinds 1999). Some example factors are: 1.00 for a sphere, 1.08 for a cube, 1.68 for a long cylinder (10 times as long as it is wide), 1.05 to 1.11 for bituminous coal, 1.57 for sand and 1.88 for talc. Revision 1 is made to correct an error in the original version of this report. The particle distributions are based on activity weighting of particles rather than based on the number of particles of each size. Therefore, the mass correction made in the original version is removed from the text and the calculations. Results affected by the change are updated.

  11. Assessment of the Group 3-4 (HV-S1, HV-S2, IHLW-S1) Stack Sampling Probe Locations for Compliance with ANSI/HPS N13.1-1999

    SciTech Connect

    Glissmeyer, John A.; Flaherty, Julia E.; Antonio, Ernest J.

    2013-01-01

    This document reports on a series of tests conducted to assess the proposed air sampling locations for the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Group 3-4 exhaust stacks with respect to the applicable criteria regarding the placement of an air sampling probe. The HV-S1, HV-S2, and IHLW-S1 exhaust stacks were tested together as a group (Test Group 3-4) because they share a geometric attribute: the common factor in their design is that the last significant flow disturbance upstream of the air sampling probe is a jog (i.e., two conjoined bends of equal and opposite curvature resulting in a change in elevation of the duct). Federal regulations require that a sampling probe be located in the exhaust stack according to criteria established by the American National Standards Institute/Health Physics Society (ANSI/HPS) N13.1-1999, Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stack and Ducts of Nuclear Facilities. These criteria address the capability of the sampling probe to extract a sample that represents the effluent stream.

  12. Field evaluation of sampling and analysis for organic pollutants in indoor air. Project summary

    SciTech Connect

    Chuang, J.C.; Mack, G.A.; Stockrahm, J.W.; Hannan, S.W.; Bridges, C.

    1988-09-01

    The objectives of the study were to determine the feasibility of the use of newly developed indoor air samplers in residential indoor air sampling and to evaluate methodology for characterization of the concentrations of polynuclear aromatic hydrocarbons (PAH), PAH derivatives, and nicotine in residential air.

  13. Rapid on-site air sampling with a needle extraction device for evaluating the indoor air environment in school facilities.

    PubMed

    Inoue, Mitsuru; Mizuguchi, Ayako; Ueta, Ikuo; Takahashi, Kazuya; Saito, Yoshihiro

    2013-01-01

    A rapid on-site air sampling technique was developed with a miniaturized needle-type sample preparation device for a systematic evaluation of the indoor air environments in school facilities. With the in-needle extraction device packed with a polymer particle of divinylbenzene and activated carbon particles, various types of volatile organic compounds (VOCs) were successfully extracted. For evaluating the indoor air qualities in school facilities, air samples in renovated rooms using organic solvent as a thinner of the paint were analyzed along with measurements of several VOCs in indoor air samples taken in newly built primary schools mainly using low-VOCs materials. After periodical renovation/maintenance, the time-variation profile of typical VOCs found in the school facilities has also been monitored. From the results, it could be observed that the VOCs in most of the rooms in these primary schools were at a quite low level; however, a relatively higher concentration of VOCs was found in some specially designed rooms, such as music rooms. In addition, some non-regulated compounds, including benzyl alcohol and branched alkanes, were detected in these primary schools. The results showed a good applicability of the needle device to indoor air analysis in schools, suggesting a wide range of future employment of the needle device, especially for indoor air analysis in other types of facilities and rooms including hospitals and hotels. PMID:23665624

  14. Selective local lysis and sampling of live cells for nucleic acid analysis using a microfluidic probe

    PubMed Central

    Kashyap, Aditya; Autebert, Julien; Delamarche, Emmanuel; Kaigala, Govind V.

    2016-01-01

    Heterogeneity is inherent to biology, thus it is imperative to realize methods capable of obtaining spatially-resolved genomic and transcriptomic profiles of heterogeneous biological samples. Here, we present a new method for local lysis of live adherent cells for nucleic acid analyses. This method addresses bottlenecks in current approaches, such as dilution of analytes, one-sample-one-test, and incompatibility to adherent cells. We make use of a scanning probe technology - a microfluidic probe - and implement hierarchical hydrodynamic flow confinement (hHFC) to localize multiple biochemicals on a biological substrate in a non-contact, non-destructive manner. hHFC enables rapid recovery of nucleic acids by coupling cell lysis and lysate collection. We locally lysed ~300 cells with chemical systems adapted for DNA or RNA and obtained lysates of ~70 cells/μL for DNA analysis and ~15 cells/μL for mRNA analysis. The lysates were introduced into PCR-based workflows for genomic and transcriptomic analysis. This strategy further enabled selective local lysis of subpopulations in a co-culture of MCF7 and MDA-MB-231 cells, validated by characteristic E-cadherin gene expression in individually extracted cell types. The developed strategy can be applied to study cell-cell, cell-matrix interactions locally, with implications in understanding growth, progression and drug response of a tumor. PMID:27411740

  15. Probing Crystallinity of Graphene Samples via the Vibrational Density of States.

    PubMed

    Jain, Sandeep K; Juričić, Vladimir; Barkema, Gerard T

    2015-10-01

    The purity of graphene samples is of crucial importance for their experimental and practical use. In this regard, the detection of the defects is of direct relevance. Here, we show that structural defects in graphene samples give rise to clear signals in the vibrational density of states (VDOS) at specific peaks at high and low frequencies. These can be used as an independent probe of the defect density. In particular, we consider grain boundaries made of pentagon-heptagon pairs, and show that they lead to a shift of the characteristic vibrational D mode toward higher frequency; this distinguishes these line defects from Stone-Wales point defects, which do not lead to such a shift. Our findings may be instrumental for the detection of structural lattice defects using experimental techniques that can directly measure VDOS, such as inelastic electron tunneling and inelastic neutron spectroscopy. PMID:26722890

  16. The lung cancer breath signature: a comparative analysis of exhaled breath and air sampled from inside the lungs

    PubMed Central

    Capuano, Rosamaria; Santonico, Marco; Pennazza, Giorgio; Ghezzi, Silvia; Martinelli, Eugenio; Roscioni, Claudio; Lucantoni, Gabriele; Galluccio, Giovanni; Paolesse, Roberto; Di Natale, Corrado; D’Amico, Arnaldo

    2015-01-01

    Results collected in more than 20 years of studies suggest a relationship between the volatile organic compounds exhaled in breath and lung cancer. However, the origin of these compounds is still not completely elucidated. In spite of the simplistic vision that cancerous tissues in lungs directly emit the volatile metabolites into the airways, some papers point out that metabolites are collected by the blood and then exchanged at the air-blood interface in the lung. To shed light on this subject we performed an experiment collecting both the breath and the air inside both the lungs with a modified bronchoscopic probe. The samples were measured with a gas chromatography-mass spectrometer (GC-MS) and an electronic nose. We found that the diagnostic capability of the electronic nose does not depend on the presence of cancer in the sampled lung, reaching in both cases an above 90% correct classification rate between cancer and non-cancer samples. On the other hand, multivariate analysis of GC-MS achieved a correct classification rate between the two lungs of only 76%. GC-MS analysis of breath and air sampled from the lungs demonstrates a substantial preservation of the VOCs pattern from inside the lung to the exhaled breath. PMID:26559776

  17. The lung cancer breath signature: a comparative analysis of exhaled breath and air sampled from inside the lungs

    NASA Astrophysics Data System (ADS)

    Capuano, Rosamaria; Santonico, Marco; Pennazza, Giorgio; Ghezzi, Silvia; Martinelli, Eugenio; Roscioni, Claudio; Lucantoni, Gabriele; Galluccio, Giovanni; Paolesse, Roberto; di Natale, Corrado; D'Amico, Arnaldo

    2015-11-01

    Results collected in more than 20 years of studies suggest a relationship between the volatile organic compounds exhaled in breath and lung cancer. However, the origin of these compounds is still not completely elucidated. In spite of the simplistic vision that cancerous tissues in lungs directly emit the volatile metabolites into the airways, some papers point out that metabolites are collected by the blood and then exchanged at the air-blood interface in the lung. To shed light on this subject we performed an experiment collecting both the breath and the air inside both the lungs with a modified bronchoscopic probe. The samples were measured with a gas chromatography-mass spectrometer (GC-MS) and an electronic nose. We found that the diagnostic capability of the electronic nose does not depend on the presence of cancer in the sampled lung, reaching in both cases an above 90% correct classification rate between cancer and non-cancer samples. On the other hand, multivariate analysis of GC-MS achieved a correct classification rate between the two lungs of only 76%. GC-MS analysis of breath and air sampled from the lungs demonstrates a substantial preservation of the VOCs pattern from inside the lung to the exhaled breath.

  18. Stationary source sampling report: Volatile organic compounds testing, 300-M area air stripper exhaust stack

    SciTech Connect

    Not Available

    1985-11-25

    An air stripping column was used in the 300-M area to remove volatile organic compounds from contaminated groundwater. Tests were performed October 29, 1985, at the air stripper exhaust stack to measure the emissions of tetrachloroethylene, trichloroethylene, and 1,1,1-trichloroethane for compliance purposes. Three absorbent sampling train (AST) runs (yielding duplicate samples for each run) and three velocity traverses were performed at the air stripper exhaust stack. Ambient air sampling was not performed as scheduled because of inclement weather conditions.

  19. A method for sampling halothane and enflurane present in trace amounts in ambient air.

    PubMed

    Burm, A G; Spierdijk, J

    1979-03-01

    A method for the sampling of small amounts of halothane and enflurane in ambient air is described. Sampling is performed by drawing air through a sampling tube packed with Porapak Q, which absorbs the anesthetic agent. The amount absorbed is determined by gas chromatography after thermal desorption. This method can be used for "spot" or personal sampling or for determining mean whole-room concentrations over relatively long periods (several hours).

  20. Microbial air-sampling equipment, part 2: experiences of compounding pharmacists.

    PubMed

    Mixon, Bill; Cabaleiro, Joe; Latta, Kenneth S

    2008-01-01

    The most recent changes to Chapter 797 of the United States Pharmacopeia-National Formulary initiated an intense controversy about the frequency of cleanroom air sampling that is required to prevent the contamination of sterile preparations. For compounders who must purchase an air sampler to use in the cleanroom, choices abound. This article summarizes discussions from compounding pharmacists and their experiences with air sampling devices.

  1. Toxicological Assessment of ISS Air Quality: Contingency Sampling - February 2013

    NASA Technical Reports Server (NTRS)

    Meyers, Valerie

    2013-01-01

    Two grab sample containers (GSCs) were collected by crew members onboard ISS in response to a vinegar-like odor in the US Lab. On February 5, the first sample was collected approximately 1 hour after the odor was noted by the crew in the forward portion of the Lab. The second sample was collected on February 22 when a similar odor was noted and localized to the end ports of the microgravity science glovebox (MSG). The crewmember removed a glove from the MSG and collected the GSC inside the glovebox volume. Both samples were returned on SpaceX-2 for ground analysis.

  2. Low-cost monitoring of Campylobacter in poultry houses by air sampling and quantitative PCR.

    PubMed

    Søndergaard, M S R; Josefsen, M H; Löfström, C; Christensen, L S; Wieczorek, K; Osek, J; Hoorfar, J

    2014-02-01

    The present study describes the evaluation of a method for the quantification of Campylobacter by air sampling in poultry houses. Sampling was carried out in conventional chicken houses in Poland, in addition to a preliminary sampling in Denmark. Each measurement consisted of three air samples, two standard boot swab fecal samples, and one airborne particle count. Sampling was conducted over an 8-week period in three flocks, assessing the presence and levels of Campylobacter in boot swabs and air samples using quantitative real-time PCR. The detection limit for air sampling was approximately 100 Campylobacter cell equivalents (CCE)/m3. Airborne particle counts were used to analyze the size distribution of airborne particles (0.3 to 10 μm) in the chicken houses in relation to the level of airborne Campylobacter. No correlation was found. Using air sampling, Campylobacter was detected in the flocks right away, while boot swab samples were positive after 2 weeks. All samples collected were positive for Campylobacter from week 2 through the rest of the rearing period for both sampling techniques, although levels 1- to 2-log CCE higher were found with air sampling. At week 8, the levels were approximately 10(4) and 10(5) CCE per sample for boot swabs and air, respectively. In conclusion, using air samples combined with quantitative real-time PCR, Campylobacter contamination could be detected earlier than by boot swabs and was found to be a more convenient technique for monitoring and/or to obtain enumeration data useful for quantitative risk assessment of Campylobacter.

  3. 40 CFR Appendix E to Part 58 - Probe and Monitoring Path Siting Criteria for Ambient Air Quality Monitoring

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... capture rate. (d) For near-road NO2 monitoring stations, the monitor probe shall have an unobstructed air...) Trees can provide surfaces for SO2, O3, or NO2 adsorption or reactions, and surfaces for particle... desorption reactions on the FEP Teflon ®. Borosilicate glass, stainless steel, or its equivalent are...

  4. 40 CFR Appendix E to Part 58 - Probe and Monitoring Path Siting Criteria for Ambient Air Quality Monitoring

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... capture rate. (d) For near-road NO2 monitoring stations, the monitor probe shall have an unobstructed air...) Trees can provide surfaces for SO2, O3, or NO2 adsorption or reactions, and surfaces for particle... desorption reactions on the FEP Teflon®. Borosilicate glass, stainless steel, or its equivalent are...

  5. 40 CFR Appendix E to Part 58 - Probe and Monitoring Path Siting Criteria for Ambient Air Quality Monitoring

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... necessary to ensure the uniform collection of compatible and comparable air quality data. (b) The probe and... help to avoid later questions about the validity of the resulting monitoring data. Conditions under... quality data collected at a site. Particulate matter sites should not be located in an unpaved area...

  6. Liquid Microjunction Surface Sampling Probe Fluid Dynamics: Characterization and Application of an Analyte Plug Formation Operational Mode

    SciTech Connect

    ElNaggar, Mariam S; Van Berkel, Gary J

    2011-01-01

    The recently discovered sample plug formation and injection operational mode of a continuous flow, coaxial tube geometry, liquid microjunction surface sampling probe (LMJ-SSP) (J. Am. Soc. Mass Spectrom, 2011) was further characterized and applied for concentration and mixing of analyte extracted from multiple areas on a surface and for nanoliter-scale chemical reactions of sampled material. A transparent LMJ-SSP was constructed and colored analytes were used so that the surface sampling process, plug formation, and the chemical reactions could be visually monitored at the sampling end of the probe before being analyzed by mass spectrometry of the injected sample plug. Injection plug peak widths were consistent for plug hold times as long as the 8 minute maximum attempted (RSD below 1.5%). Furthermore, integrated injection peak signals were not significantly different for the range of hold times investigated. The ability to extract and completely mix individual samples within a fixed volume at the sampling end of the probe was demonstrated and a linear mass spectral response to the number of equivalent analyte spots sampled was observed. Using the color and mass changing chemical reduction of the redox dye 2,6-dichlorophenol-indophenol with ascorbic acid, the ability to sample, concentrate, and efficiently run reactions within the same plug volume within the probe was demonstrated.

  7. Liquid Microjunction Surface Sampling Probe Fluid Dynamics: Characterization and Application of an Analyte Plug Formation Operational Mode

    NASA Astrophysics Data System (ADS)

    Elnaggar, Mariam S.; van Berkel, Gary J.

    2011-10-01

    The recently discovered sample plug formation and injection operational mode of a continuous flow, coaxial tube geometry, liquid microjunction surface sampling probe (LMJ-SSP) was further characterized and applied for concentration and mixing of analyte extracted from multiple areas on a surface and for nanoliter-scale chemical reactions of sampled material. A transparent LMJ-SSP was constructed and colored analytes were used so that the surface sampling process, plug formation, and the chemical reactions could be visually monitored at the sampling end of the probe before being analyzed by mass spectrometry of the injected sample plug. Injection plug peak widths were consistent for plug hold times as long as the 8 min maximum attempted (RSD below 1.5%). Furthermore, integrated injection peak signals were not significantly different for the range of hold times investigated. The ability to extract and completely mix individual samples within a fixed volume at the sampling end of the probe was demonstrated and a linear mass spectral response to the number of equivalent analyte spots sampled was observed. Using the color and mass changing chemical reduction of the redox dye 2,6-dichlorophenol-indophenol with ascorbic acid, the ability to sample, concentrate, and efficiently run reactions within the same plug volume within the probe was demonstrated.

  8. Sex typing of forensic DNA samples using male- and female-specific probes.

    PubMed

    Naito, E; Dewa, K; Yamanouchi, H; Kominami, R

    1994-07-01

    Forensic DNA samples have been examined to ascertain the feasibility of a sex-typing procedure that we have recently developed. This uses two sets of primers complementary to the DXZ4 and SRY genes for polymerase chain reaction (PCR). PCR target in the DXZ4, an 80-bp sequence within the 130-bp fragment specific to females, is generated from inactive chromosome X by the DNA digestion with a methylation-sensitive restriction enzyme, HpaII. Therefore, the DXZ4 amplification and subsequent agarose gel electrophoresis detect the 80-bp fragment from female DNA. On the other hand, the SRY probe identifies a male-specific sequence on chromosome Y. Testing DNAs from fresh Turner's blood and from postmortem tissues exhibited band-signals confirming the sex identification. Degraded DNAs isolated from severely decomposed specimens were also identifiable when high-molecular-weight DNA was isolated before the assay. This demonstrates the usefulness of this method in forensic identification.

  9. Comparison of stationary and personal air sampling with an air dispersion model for children's ambient exposure to manganese.

    PubMed

    Fulk, Florence; Haynes, Erin N; Hilbert, Timothy J; Brown, David; Petersen, Dan; Reponen, Tiina

    2016-09-01

    Manganese (Mn) is ubiquitous in the environment and essential for normal growth and development, yet excessive exposure can lead to impairments in neurological function. This study modeled ambient Mn concentrations as an alternative to stationary and personal air sampling to assess exposure for children enrolled in the Communities Actively Researching Exposure Study in Marietta, OH. Ambient air Mn concentration values were modeled using US Environmental Protection Agency's Air Dispersion Model AERMOD based on emissions from the ferromanganese refinery located in Marietta. Modeled Mn concentrations were compared with Mn concentrations from a nearby stationary air monitor. The Index of Agreement for modeled versus monitored data was 0.34 (48 h levels) and 0.79 (monthly levels). Fractional bias was 0.026 for 48 h levels and -0.019 for monthly levels. The ratio of modeled ambient air Mn to measured ambient air Mn at the annual time scale was 0.94. Modeled values were also time matched to personal air samples for 19 children. The modeled values explained a greater degree of variability in personal exposures compared with time-weighted distance from the emission source. Based on these results modeled Mn concentrations provided a suitable approach for assessing airborne Mn exposure in this cohort. PMID:27168393

  10. Comparison of stationary and personal air sampling with an air dispersion model for children's ambient exposure to manganese.

    PubMed

    Fulk, Florence; Haynes, Erin N; Hilbert, Timothy J; Brown, David; Petersen, Dan; Reponen, Tiina

    2016-09-01

    Manganese (Mn) is ubiquitous in the environment and essential for normal growth and development, yet excessive exposure can lead to impairments in neurological function. This study modeled ambient Mn concentrations as an alternative to stationary and personal air sampling to assess exposure for children enrolled in the Communities Actively Researching Exposure Study in Marietta, OH. Ambient air Mn concentration values were modeled using US Environmental Protection Agency's Air Dispersion Model AERMOD based on emissions from the ferromanganese refinery located in Marietta. Modeled Mn concentrations were compared with Mn concentrations from a nearby stationary air monitor. The Index of Agreement for modeled versus monitored data was 0.34 (48 h levels) and 0.79 (monthly levels). Fractional bias was 0.026 for 48 h levels and -0.019 for monthly levels. The ratio of modeled ambient air Mn to measured ambient air Mn at the annual time scale was 0.94. Modeled values were also time matched to personal air samples for 19 children. The modeled values explained a greater degree of variability in personal exposures compared with time-weighted distance from the emission source. Based on these results modeled Mn concentrations provided a suitable approach for assessing airborne Mn exposure in this cohort.

  11. Air sampling to recover variola virus in the environment of a smallpox hospital.

    PubMed

    MEIKLEJOHN, G; KEMPE, C H; DOWNIE, A W; BERGE, T O; ST VINCENT, L; RAO, A R

    1961-01-01

    The view is widely held that variola is highly infectious, and it was therefore thought of interest to obtain precise information on the amount of virus disseminated in the air by smallpox patients at various stages of their illness. To this end, measured samples of air in and around the smallpox wards of the Infectious Diseases Hospital, Madras, were tested for the presence of variola virus. Surprisingly, virus was recovered on one occasion only by the air sampling device used. All other tests were negative although large volumes of air were sampled in close proximity to patients at various stages of the disease. The authors consider that further observations should be made with more sensitive air sampling methods.

  12. Air-sampled Filter Analysis for Endotoxins and DNA Content.

    PubMed

    Lang-Yona, Naama; Mazar, Yinon; Pardo, Michal; Rudich, Yinon

    2016-01-01

    Outdoor aerosol research commonly uses particulate matter sampled on filters. This procedure enables various characterizations of the collected particles to be performed in parallel. The purpose of the method presented here is to obtain a highly accurate and reliable analysis of the endotoxin and DNA content of bio-aerosols extracted from filters. The extraction of high molecular weight organic molecules, such as lipopolysaccharides, from sampled filters involves shaking the sample in a pyrogen-free water-based medium. The subsequent analysis is based on an enzymatic reaction that can be detected using a turbidimetric measurement. As a result of the high organic content on the sampled filters, the extraction of DNA from the samples is performed using a commercial DNA extraction kit that was originally designed for soils and modified to improve the DNA yield. The detection and quantification of specific microbial species using quantitative polymerase chain reaction (q-PCR) analysis are described and compared with other available methods. PMID:27023725

  13. Identification of ambient air sampling and analysis methods for the 189 Title III air toxics

    SciTech Connect

    Mukund, R.; Kelly, T.J.; Gordon, S.M.; Hays, M.J.

    1994-12-31

    The state of development of ambient air measurement methods for the 189 Hazardous Air Pollution (HAPs) in Title 3 of the Clean Air Act Amendments was surveyed. Measurement methods for the HAPs were identified by reviews of established methods, and by literature searches for pertinent research techniques. Methods were segregated by their degree of development into Applicable, Likely, and Potential methods. This survey identified a total of 183 methods, applicable at varying degrees to ambient air measurements of one or more HAPs. As a basis for classifying the HAPs and evaluating the applicability of measurement methods, a survey of a variety of chemical and physical properties of the HAPs was also conducted. The results of both the methods and properties surveys were tabulated for each of the 189 HAP. The current state of development of ambient measurement methods for the 189 HAPs was then assessed from the results of the survey, and recommendations for method development initiatives were developed.

  14. Summary of gamma spectrometry on local air samples from 1985--1995

    SciTech Connect

    Winn, W.G.

    1997-04-02

    This report summarizes the 1985--1995 results of low-level HPGe gamma spectrometry analysis of high-volume air samples collected at the Aiken Airport, which is about 25 miles north of SRS. The author began analyzing these samples with new calibrations using the newly developed GRABGAM code in 1985. The air sample collections were terminated in 1995, as the facilities at the Aiken Airport were no longer available. Air sample measurements prior to 1985 were conducted with a different analysis system (and by others prior to 1984), and the data were not readily available. The report serves to closeout this phase of local NTS air sample studies, while documenting the capabilities and accomplishments. Hopefully, the information will guide other applications for this technology, both locally and elsewhere.

  15. A method to optimize sampling locations for measuring indoor air distributions

    NASA Astrophysics Data System (ADS)

    Huang, Yan; Shen, Xiong; Li, Jianmin; Li, Bingye; Duan, Ran; Lin, Chao-Hsin; Liu, Junjie; Chen, Qingyan

    2015-02-01

    Indoor air distributions, such as the distributions of air temperature, air velocity, and contaminant concentrations, are very important to occupants' health and comfort in enclosed spaces. When point data is collected for interpolation to form field distributions, the sampling locations (the locations of the point sensors) have a significant effect on time invested, labor costs and measuring accuracy on field interpolation. This investigation compared two different sampling methods: the grid method and the gradient-based method, for determining sampling locations. The two methods were applied to obtain point air parameter data in an office room and in a section of an economy-class aircraft cabin. The point data obtained was then interpolated to form field distributions by the ordinary Kriging method. Our error analysis shows that the gradient-based sampling method has 32.6% smaller error of interpolation than the grid sampling method. We acquired the function between the interpolation errors and the sampling size (the number of sampling points). According to the function, the sampling size has an optimal value and the maximum sampling size can be determined by the sensor and system errors. This study recommends the gradient-based sampling method for measuring indoor air distributions.

  16. Thermal protection system development, testing, and qualification for atmospheric probes and sample return missions. Examples for Saturn, Titan and Stardust-type sample return

    NASA Astrophysics Data System (ADS)

    Venkatapathy, E.; Laub, B.; Hartman, G. J.; Arnold, J. O.; Wright, M. J.; Allen, G. A.

    2009-07-01

    The science community has continued to be interested in planetary entry probes, aerocapture, and sample return missions to improve our understanding of the Solar System. As in the case of the Galileo entry probe, such missions are critical to the understanding not only of the individual planets, but also to further knowledge regarding the formation of the Solar System. It is believed that Saturn probes to depths corresponding to 10 bars will be sufficient to provide the desired data on its atmospheric composition. An aerocapture mission would enable delivery of a satellite to provide insight into how gravitational forces cause dynamic changes in Saturn's ring structure that are akin to the evolution of protoplanetary accretion disks. Heating rates for the "shallow" Saturn probes, Saturn aerocapture, and sample Earth return missions with higher re-entry speeds (13-15 km/s) from Mars, Venus, comets, and asteroids are in the range of 1-6 KW/cm 2. New, mid-density thermal protection system (TPS) materials for such probes can be mission enabling for mass efficiency and also for use on smaller vehicles enabled by advancements in scientific instrumentation. Past consideration of new Jovian multiprobe missions has been considered problematic without the Giant Planet arcjet facility that was used to qualify carbon phenolic for the Galileo probe. This paper describes emerging TPS technologies and the proposed use of an affordable, small 5 MW arcjet that can be used for TPS development, in test gases appropriate for future planetary probe and aerocapture applications. Emerging TPS technologies of interest include new versions of the Apollo Avcoat material and a densified variant of Phenolic Impregnated Carbon Ablator (PICA). Application of these and other TPS materials and the use of other facilities for development and qualification of TPS for Saturn, Titan, and Sample Return missions of the Stardust class with entry speeds from 6.0 to 28.6 km/s are discussed.

  17. Dispersion modeling of selected PAHs in urban air: A new approach combining dispersion model with GIS and passive air sampling

    NASA Astrophysics Data System (ADS)

    Sáňka, Ondřej; Melymuk, Lisa; Čupr, Pavel; Dvorská, Alice; Klánová, Jana

    2014-10-01

    This study introduces a new combined air concentration measurement and modeling approach that we propose can be useful in medium and long term air quality assessment. A dispersion study was carried out for four high molecular weight polycyclic aromatic hydrocarbons (PAHs) in an urban area with industrial, traffic and domestic heating sources. A geographic information system (GIS) was used both for processing of input data as well as visualization of the modeling results. The outcomes of the dispersion model were compared to the results of passive air sampling (PAS). Despite discrepancies between measured and modeled concentrations, an approach combining the two techniques is promising for future air quality assessment. Differences between measured and modeled concentrations, in particular when measured values exceed the modeled concentrations, are indicative of undocumented, sporadic pollutant sources. Thus, these differences can also be useful for assessing and refining emission inventories.

  18. A STRINGENT COMPARISON OF SAMPLING AND ANALYSIS METHODS FOR VOCS IN AMBIENT AIR

    EPA Science Inventory

    A carefully designed study was conducted during the summer of 1998 to simultaneously collect samples of ambient air by canisters and compare the analysis results to direct sorbent preconcentration results taken at the time of sample collection. A total of 32 1-h sample sets we...

  19. Automated syringe sampler. [remote sampling of air and water

    NASA Technical Reports Server (NTRS)

    Purgold, G. C. (Inventor)

    1981-01-01

    A number of sampling services are disposed in a rack which slides into a housing. In response to a signal from an antenna, the circutry elements are activated which provide power individually, collectively, or selectively to a servomechanism thereby moving an actuator arm and the attached jawed bracket supporting an evaculated tube towards a stationary needle. One open end of the needle extends through the side wall of a conduit to the interior and the other open end is maintained within the protective sleeve, supported by a bifurcated bracket. A septum in punctured by the end of the needle within the sleeve and a sample of the fluid medium in the conduit flows through the needle and is transferred to a tube. The signal to the servo is then reversed and the actuator arm moves the tube back to its original position permitting the septum to expand and seal the hole made by the needle. The jawed bracket is attached by pivot to the actuator to facilitate tube replacement.

  20. Sampling and Analyzing Air Pollution: An Apparatus Suitable for Use in Schools.

    ERIC Educational Resources Information Center

    Rockwell, Dean M.; Hansen, Tony

    1994-01-01

    Describes two variations of an air sampler and analyzer that are inexpensive to construct, easy to operate, and designed to be used in an educational program. Variations use vacuum cleaners and aquarium pumps, and white facial tissues serve as filters. Samples of air pollution obtained by this method may be used from early grade school to advanced…

  1. Variables Related to Pre-Service Cannabis Use in a Sample of Air Force Enlistees.

    ERIC Educational Resources Information Center

    Mullins, Cecil J.; And Others

    This report is an attempt to add to the existing information about cannabis use, its correlates, and its effects. The sample population consisted of self-admitted abusers of various drugs, identified shortly after entering the Air Force. The subjects (N=4688) were located through the Drug Control Office at Lackland Air Force Base. Variables…

  2. Salmonella recovery following air chilling for matched neck-skin and whole carcass sampling methodologies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The prevalence and serogroups of Salmonella recovered following air chilling were determined for both enriched neck skin and matching enriched whole carcass samples. Commercially processed and eviscerated carcasses were air chilled to 4C before removing the neck skin (8.3 g) and stomaching in 83 mL...

  3. TECHNOLOGY EVALUATION REPORT CEREX ENVIRONMENTAL SERVICES UV HOUND POINT SAMPLE AIR MONITOR

    EPA Science Inventory

    The USEPA's National Homeland Security Research Center (NHSRC) Technology Testing and Evaluation Program (TTEP) is carrying out performance tests on homeland security technologies. Under TTEP, Battelle evaluated the performance of the Cerex UV Hound point sample air monitor in de...

  4. NEW APPLICATION OF PASSIVE SAMPLING DEVICES FOR ASSESSMENT OF RESPIRATORY EXPOSURE TO PESTICIDES IN INDOOR AIR

    EPA Science Inventory

    The United States Environmental Protection Agency (EPA) has long maintained an interest in potential applications of passive sampling devices (PSDs) for estimating the concentrations of various pollutants in air. Typically PSDs were designed for the workplace monitoring of vola...

  5. Comparison of stationary and personal air sampling with an air dispersion model for children’s ambient exposure to manganese

    EPA Science Inventory

    Manganese (Mn) is ubiquitous in the environment and essential for normal growth and development, yet excessive exposure can lead to impairments in neurological function. This study modeled ambient Mn concentrations as an alternative to stationary and personal air sampling to asse...

  6. The NYC native air sampling pilot project: using HVAC filter data for urban biological incident characterization.

    PubMed

    Ackelsberg, Joel; Leykam, Frederic M; Hazi, Yair; Madsen, Larry C; West, Todd H; Faltesek, Anthony; Henderson, Gavin D; Henderson, Christopher L; Leighton, Terrance

    2011-09-01

    Native air sampling (NAS) is distinguished from dedicated air sampling (DAS) devices (eg, BioWatch) that are deployed to detect aerosol disseminations of biological threat agents. NAS uses filter samples from heating, ventilation, and air conditioning (HVAC) systems in commercial properties for environmental sampling after DAS detection of biological threat agent incidents. It represents an untapped, scientifically sound, efficient, widely distributed, and comparably inexpensive resource for postevent environmental sampling. Calculations predict that postevent NAS would be more efficient than environmental surface sampling by orders of magnitude. HVAC filter samples could be collected from pre-identified surrounding NAS facilities to corroborate the DAS alarm and delineate the path taken by the bioaerosol plume. The New York City (NYC) Native Air Sampling Pilot Project explored whether native air sampling would be acceptable to private sector stakeholders and could be implemented successfully in NYC. Building trade associations facilitated outreach to and discussions with property owners and managers, who expedited contact with building managers of candidate NAS properties that they managed or owned. Nominal NAS building requirements were determined; procedures to identify and evaluate candidate NAS facilities were developed; data collection tools and other resources were designed and used to expedite candidate NAS building selection and evaluation in Manhattan; and exemplar environmental sampling playbooks for emergency responders were completed. In this sample, modern buildings with single or few corporate tenants were the best NAS candidate facilities. The Pilot Project successfully demonstrated that in one urban setting a native air sampling strategy could be implemented with effective public-private collaboration. PMID:21793731

  7. The NYC native air sampling pilot project: using HVAC filter data for urban biological incident characterization.

    PubMed

    Ackelsberg, Joel; Leykam, Frederic M; Hazi, Yair; Madsen, Larry C; West, Todd H; Faltesek, Anthony; Henderson, Gavin D; Henderson, Christopher L; Leighton, Terrance

    2011-09-01

    Native air sampling (NAS) is distinguished from dedicated air sampling (DAS) devices (eg, BioWatch) that are deployed to detect aerosol disseminations of biological threat agents. NAS uses filter samples from heating, ventilation, and air conditioning (HVAC) systems in commercial properties for environmental sampling after DAS detection of biological threat agent incidents. It represents an untapped, scientifically sound, efficient, widely distributed, and comparably inexpensive resource for postevent environmental sampling. Calculations predict that postevent NAS would be more efficient than environmental surface sampling by orders of magnitude. HVAC filter samples could be collected from pre-identified surrounding NAS facilities to corroborate the DAS alarm and delineate the path taken by the bioaerosol plume. The New York City (NYC) Native Air Sampling Pilot Project explored whether native air sampling would be acceptable to private sector stakeholders and could be implemented successfully in NYC. Building trade associations facilitated outreach to and discussions with property owners and managers, who expedited contact with building managers of candidate NAS properties that they managed or owned. Nominal NAS building requirements were determined; procedures to identify and evaluate candidate NAS facilities were developed; data collection tools and other resources were designed and used to expedite candidate NAS building selection and evaluation in Manhattan; and exemplar environmental sampling playbooks for emergency responders were completed. In this sample, modern buildings with single or few corporate tenants were the best NAS candidate facilities. The Pilot Project successfully demonstrated that in one urban setting a native air sampling strategy could be implemented with effective public-private collaboration.

  8. Assessment of the Group 5-6 (LB C2, LB S2, LV S1) Stack Sampling Probe Locations for Compliance with ANSI/HPS N13.1 1999

    SciTech Connect

    Glissmeyer, John A.; Flaherty, Julia E.; Piepel, Gregory F.

    2011-03-11

    This document reports on a series of tests to assess the proposed air sampling locations for the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Group 5-6 exhaust stacks with respect to the applicable criteria regarding the placement of an air sampling probe. The LB-C2, LV-S1, and LB S2 exhaust stacks were tested together as a group (Test Group 5-6) because the common factor in their design is that the last significant flow disturbance upstream of the air sampling probe is a reduction in duct diameter. Federal regulations( ) require that a sampling probe be located in the exhaust stack according to the criteria of the American National Standards Institute/Health Physics Society (ANSI/HPS) N13.1-1999, Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stack and Ducts of Nuclear Facilities. These criteria address the capability of the sampling probe to extract a sample that represents the effluent stream. The testing on scale models of the stacks conducted for this project was part of the River Protection Project—Waste Treatment Plant Support Program under Contract No. DE-AC05-76RL01830 according to the statement of work issued by Bechtel National Inc. (BNI, 24590-QL-SRA-W000-00101, N13.1-1999 Stack Monitor Scale Model Testing and Qualification, Revision 1, 9/12/2007) and Work Authorization 09 of Memorandum of Agreement 24590-QL-HC9-WA49-00001. The internal Pacific Northwest National Laboratory (PNNL) project for this task is 53024, Work for Hanford Contractors Stack Monitoring. The testing described in this document was further guided by the Test Plan Scale Model Testing the Waste Treatment Plant LB-C2, LB-S2, and LV-S1 (Test Group 5-6) Stack Air Sampling Positions (TP-RPP-WTP-594). The tests conducted by PNNL during 2009 and 2010 on the Group 5-6 scale model systems are described in this report. The series of tests consists of various measurements taken over a grid of points in the duct cross-section at the designed sampling

  9. Novel sample preparation technique with needle-type micro-extraction device for volatile organic compounds in indoor air samples.

    PubMed

    Ueta, Ikuo; Mizuguchi, Ayako; Fujimura, Koji; Kawakubo, Susumu; Saito, Yoshihiro

    2012-10-01

    A novel needle-type sample preparation device was developed for the effective preconcentration of volatile organic compounds (VOCs) in indoor air before gas chromatography-mass spectrometry (GC-MS) analysis. To develop a device for extracting a wide range of VOCs typically found in indoor air, several types of particulate sorbents were tested as the extraction medium in the needle-type extraction device. To determine the content of these VOCs, air samples were collected for 30min with the packed sorbent(s) in the extraction needle, and the extracted VOCs were thermally desorbed in a GC injection port by the direct insertion of the needle. A double-bed sorbent consisting of a needle packed with divinylbenzene and activated carbon particles exhibited excellent extraction and desorption performance and adequate extraction capacity for all the investigated VOCs. The results also clearly demonstrated that the proposed sample preparation method is a more rapid, simpler extraction/desorption technique than traditional sample preparation methods. PMID:22975183

  10. 33S nuclear magnetic resonance spectroscopy of biological samples obtained with a laboratory model 33S cryogenic probe

    NASA Astrophysics Data System (ADS)

    Hobo, Fumio; Takahashi, Masato; Saito, Yuta; Sato, Naoki; Takao, Tomoaki; Koshiba, Seizo; Maeda, Hideaki

    2010-05-01

    S33 nuclear magnetic resonance (NMR) spectroscopy is limited by inherently low NMR sensitivity because of the quadrupolar moment and low gyromagnetic ratio of the S33 nucleus. We have developed a 10 mm S33 cryogenic NMR probe, which is operated at 9-26 K with a cold preamplifier and a cold rf switch operated at 60 K. The S33 NMR sensitivity of the cryogenic probe is as large as 9.8 times that of a conventional 5 mm broadband NMR probe. The S33 cryogenic probe was applied to biological samples such as human urine, bile, chondroitin sulfate, and scallop tissue. We demonstrated that the system can detect and determine sulfur compounds having SO42- anions and -SO3- groups using the S33 cryogenic probe, as the S33 nuclei in these groups are in highly symmetric environments. The NMR signals for other common sulfur compounds such as cysteine are still undetectable by the S33 cryogenic probe, as the S33 nuclei in these compounds are in asymmetric environments. If we shorten the rf pulse width or decrease the rf coil diameter, we should be able to detect the NMR signals for these compounds.

  11. Development of a method to detect and quantify Aspergillus fumigatus conidia by quantitative PCR for environmental air samples.

    PubMed

    McDevitt, James J; Lees, Peter S J; Merz, William G; Schwab, Kellogg J

    2004-10-01

    Exposure to Aspergillus fumigatus is linked with respiratory diseases such as asthma, invasive aspergillosis, hypersensitivity pneumonitis, and allergic bronchopulmonary aspergillosis. Molecular methods using quantitative PCR (qPCR) offer advantages over culture and optical methods for estimating human exposures to microbiological agents such as fungi. We describe an assay that uses lyticase to digest A. fumigatus conidia followed by TaqMan qPCR to quantify released DNA. This method will allow analysis of airborne A. fumigatus samples collected over extended time periods and provide a more representative assessment of chronic exposure. The method was optimized for environmental samples and incorporates: single tube sample preparation to reduce sample loss, maintain simplicity, and avoid contamination; hot start amplification to reduce non-specific primer/probe annealing; and uracil-N-glycosylase to prevent carryover contamination. An A. fumigatus internal standard was developed and used to detect PCR inhibitors potentially found in air samples. The assay detected fewer than 10 A. fumigatus conidia per qPCR reaction and quantified conidia over a 4-log10 range with high linearity (R2 >0.99) and low variability among replicate standards (CV=2.0%) in less than 4 h. The sensitivity and linearity of qPCR for conidia deposited on filters was equivalent to conidia calibration standards. A. fumigatus DNA from 8 isolates was consistently quantified using this method, while non-specific DNA from 14 common environmental fungi, including 6 other Aspergillus species, was not detected. This method provides a means of analyzing long term air samples collected on filters which may enable investigators to correlate airborne environmental A. fumigatus conidia concentrations with adverse health effects.

  12. Microbial counts and particulate matter levels in roadside air samples under skytrain stations, Bangkok, Thailand.

    PubMed

    Luksamijarulkul, Pipat; Kongtip, Pornpimol

    2010-05-01

    In conditions with heavy traffic and crowds of people on roadside areas under skytrain stations in Bangkok, the natural air ventilation may be insufficient and air quality may be poor. A study of 350 air samples collected from the roadside, under skytrain stations in Bangkok, was carried out to assess microbial counts (210 air samples) and particulate matter (PM10) levels (140 samples). The results reveal the mean +/- standard deviation bacterial counts and fungal counts were 406.8 +/- 302.7 cfu/m3 and 128.9 +/- 89.7 cfu/m3, respectively. The PM10 level was 186.1 +/- 188.1 microg/m3. When compared to recommended levels, 4.8% of air samples (10/210 samples) had bacterial counts more than recommended levels (> 1,000 cfu/ m3) and 27.1% (38/140 samples) had PM10 levels more than recommended levels (> 120 microg/m3). These may affect human health, especially of street venders who spend most of their working time in these areas. PMID:20578558

  13. Microbial counts and particulate matter levels in roadside air samples under skytrain stations, Bangkok, Thailand.

    PubMed

    Luksamijarulkul, Pipat; Kongtip, Pornpimol

    2010-05-01

    In conditions with heavy traffic and crowds of people on roadside areas under skytrain stations in Bangkok, the natural air ventilation may be insufficient and air quality may be poor. A study of 350 air samples collected from the roadside, under skytrain stations in Bangkok, was carried out to assess microbial counts (210 air samples) and particulate matter (PM10) levels (140 samples). The results reveal the mean +/- standard deviation bacterial counts and fungal counts were 406.8 +/- 302.7 cfu/m3 and 128.9 +/- 89.7 cfu/m3, respectively. The PM10 level was 186.1 +/- 188.1 microg/m3. When compared to recommended levels, 4.8% of air samples (10/210 samples) had bacterial counts more than recommended levels (> 1,000 cfu/ m3) and 27.1% (38/140 samples) had PM10 levels more than recommended levels (> 120 microg/m3). These may affect human health, especially of street venders who spend most of their working time in these areas.

  14. Joint air pollution sampling program in twin cities on the U.S.-Mexico border.

    PubMed

    Dávila, G H

    1976-01-01

    Ciudad Juárez (Chihuahua) and El Paso (Texas), two cities on the U.S.-Mexico border, form a single environmental system in which the same natural resources, especially air and water, are shared. It also constitutes a single metropolitan area which is characterized by high rates of pipulation growth, economic development, and urban expansion, all these factors mitigating against air quality. Early in 1972 the health authorities in El Paso and Ciudad Juárez initiated a joint air pollution sampling program with assistance from the Pan American Health Organization. The nearby city of Las Cruces (New Mexico) was later included in the program as well. Activities are carried out in accordance with a document entitled "Bases of Cooperation." The guiding criteria of the program are: functional simplicity, operational economy, and complementarity with other sampling programs conducted by the participating services. An Air Pollution Control Subcommittee is responsible for execution coordination of the program. Three studies are currently underway to determine levels of dust pollution in the air. A fourth study is aimed at measuring sulfur dioxide levels through the use of sulfation plates. The results collected reveal concentrations of particulates in the ambient air levels higher than the U.S. Federal primary standards. The program should be expanded to include the study of other pollutants and a joint inventory of emissions. In this way criteria on air quality may be established and joint plans of action and strategies drawn up for the control of air pollution in this important area.

  15. Report on sampling and analysis of ambient air at the central waste complex

    SciTech Connect

    Stauffer, M., Fluor Daniel Hanford

    1997-02-13

    Over 160 ambient indoor air samples were collected from warehouses at the Central Waste Complex used for the storage of low- level radioactive and mixed wastes. These grab (SUMMA) samples were analyzed by gas chromatography-mass spectrometry using a modified EPA TO-14 procedure. The data from this survey suggest that several buildings had elevated concentrations of volatile organic compounds.

  16. Marine Technician's Handbook, Instructions for Taking Air Samples on Board Ship: Carbon Dioxide Project.

    ERIC Educational Resources Information Center

    Keeling, Charles D.

    This booklet is one of a series intended to provide explicit instructions for the collection of oceanographic data and samples at sea. The methods and procedures described have been used by the Scripps Institution of Oceanography and found reliable and up-to-date. Instructions are given for taking air samples on board ship to determine the…

  17. EVALUATION OF THE FILTER PACK FOR LONG-DURATION SAMPLING OF AMBIENT AIR

    EPA Science Inventory

    A 14-week filter pack (FP) sampler evaluation field study was conducted at a site near Bondville, IL to investigate the impact of weekly sampling duration. Simultaneous samples were collected using collocated filter packs (FP) from two independent air quality monitoring networks...

  18. 40 CFR 1065.145 - Gaseous and PM probes, transfer lines, and sampling system components.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications... each stack separately. If the exhaust molar flow in each stack cannot be calculated from combustion air... rate (where the flow is calculated using combustion air mass flow(s), fuel mass flow(s), and...

  19. 40 CFR 1065.145 - Gaseous and PM probes, transfer lines, and sampling system components.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications... each stack separately. If the exhaust molar flow in each stack cannot be calculated from combustion air... rate (where the flow is calculated using combustion air mass flow(s), fuel mass flow(s), and...

  20. 40 CFR 1065.145 - Gaseous and PM probes, transfer lines, and sampling system components.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications... exhaust molar flow in each stack cannot be calculated from combustion air flow(s), fuel flow(s), and... using combustion air mass flow(s), fuel mass flow(s), and emissions concentrations) based on...

  1. 40 CFR 1065.145 - Gaseous and PM probes, transfer lines, and sampling system components.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications... each stack separately. If the exhaust molar flow in each stack cannot be calculated from combustion air... rate (where the flow is calculated using combustion air mass flow(s), fuel mass flow(s), and...

  2. 40 CFR 1065.145 - Gaseous and PM probes, transfer lines, and sampling system components.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications... each stack separately. If the exhaust molar flow in each stack cannot be calculated from combustion air... rate (where the flow is calculated using combustion air mass flow(s), fuel mass flow(s), and...

  3. Radiocarbon analysis of stratospheric CO2 retrieved from AirCore sampling

    NASA Astrophysics Data System (ADS)

    Paul, Dipayan; Chen, Huilin; Been, Henk A.; Kivi, Rigel; Meijer, Harro A. J.

    2016-10-01

    Radiocarbon (14C) is an important atmospheric tracer and one of the many used in the understanding of the global carbon budget, which includes the greenhouse gases CO2 and CH4. Measurement of radiocarbon in atmospheric CO2 generally requires the collection of large air samples (a few liters) from which CO2 is extracted and then the concentration of radiocarbon is determined using accelerator mass spectrometry (AMS). However, the regular collection of air samples from the stratosphere, for example using aircraft and balloons, is prohibitively expensive. Here we describe radiocarbon measurements in stratospheric CO2 collected by the AirCore sampling method. AirCore is an innovative atmospheric sampling system, which comprises a long tube descending from a high altitude with one end open and the other closed, and it has been demonstrated to be a reliable, cost-effective sampling system for high-altitude profile (up to ≈ 30 km) measurements of CH4 and CO2. In Europe, AirCore measurements have been being performed on a regular basis near Sodankylä (northern Finland) since September 2013. Here we describe the analysis of samples from two such AirCore flights made there in July 2014, for determining the radiocarbon concentration in stratospheric CO2. The two AirCore profiles were collected on consecutive days. The stratospheric part of the AirCore was divided into six sections, each containing ≈ 35 µg CO2 ( ≈ 9.6 µgC), and stored in a stratospheric air subsampler constructed from 1/4 in. coiled stainless steel tubing ( ≈ 3 m). A small-volume extraction system was constructed that enabled > 99.5 % CO2 extraction from the stratospheric air samples. Additionally, a new small-volume high-efficiency graphitization system was constructed for graphitization of these extracted CO2 samples, which were measured at the Groningen AMS facility. Since the stratospheric samples were very similar in mass, reference samples were also prepared in the same mass range for

  4. Survey of volatile organic compounds found in indoor and outdoor air samples from Japan.

    PubMed

    Tanaka-Kagawa, Toshiko; Uchiyama, Shigehisa; Matsushima, Erika; Sasaki, Akira; Kobayashi, Hiroshi; Kobayashi, Hiromi; Yagi, Masahiro; Tsuno, Masahiko; Arao, Masa; Ikemoto, Kazumi; Yamasaki, Makoto; Nakashima, Ayako; Shimizu, Yuri; Otsubo, Yasufumi; Ando, Masanori; Jinno, Hideto; Tokunaga, Hiroshi

    2005-01-01

    Indoor air quality is currently a growing concern, mainly due to the incidence of sick building syndrome and building related illness. To better understand indoor air quality in Japan, both indoor and outdoor air samples were collected from 50 residences in Iwate, Yamanashi, Shiga, Hyogo, Kochi and Fukuoka Prefectures. More than 100 volatile organic compounds (VOCs) were analyzed by thermal desorption-gas chromatography/mass spectrometry method. The most abundant class of compounds present in the indoor air samples were identified (i.e. alkanes, alkylbenzenes and terpenes). For 30% of the indoor air samples, the sum of each VOC exceeded the current provisional guideline value for total VOC (TVOC, 400 microg/m3). The major component of these samples included linear and branched-chain alkanes (possibly derived from fossil fuels), 1,4-dichlorobenzene (a moth repellent), alpha-pinene (emission from woody building materials) and limonene (probably derived from aroma products). As an unexpected result, one residence was polluted with an extremely high concentration of 1,1,1,2-tetrafluoroethane (720 microg/m3), suggesting accidental leakage from a household appliance such as a refrigerator. The results presented in this paper are important in establishing the Japanese target compound list for TVOC analysis, as well as defining the current status of indoor air quality in Japan.

  5. Design of Portable Mass Spectrometers with Handheld Probes: Aspects of the Sampling and Miniature Pumping Systems

    PubMed Central

    Chen, Chien-Hsun; Chen, Tsung-Chi; Zhou, Xiaoyu; Kline-Schoder, Robert; Sorensen, Paul; Cooks, R. Graham; Ouyang, Zheng

    2014-01-01

    Miniature mass spectrometry analytical systems of backpack configuration fitted with sampling probes could potentially be of significant interest for in-field, real-time chemical analysis. In this study, various configurations were explored in which a long narrow tube was used to connect the turbo and backing pumps used to create and maintain vacuum. Also, for the first time we introduced two new types of pumps for miniature mass spectrometers, the Creare 130g drag pump and Creare 350g scroll backing pump. These pumps, along with another Creare 550 turbo pump and the commercially available Pfeiffer HiPace 10 turbo and KnF diaphragm backing pumps, were tested with the backpack configurations. The system performance, especially the scan time, was characterized when used with a discontinuous atmospheric pressure interface (DAPI) for ion introduction. The pumping performance in the pressure region above 1 mtorr is critical for DAPI operation. The 550g turbo pump was shown to have a relatively higher pumping speed above 1 mtorr and gave a scan time of 300 ms, almost half the value obtained with the larger, heavier HiPace 10 often used with miniature mass spectrometers. The 350 g scroll pump was also found to be an improvement over the diaphragm pumps generally used as backing pumps. With a coaxial low temperature plasma ion source, direct analysis of low volatility compounds glass slides was demonstrated, including 1 ng DNP (2,4-Dinitrophenol) and 10ng TNT (2,4,6-trinitrotoluene) with Creare 550g turbo pump as well as 10 ng cocaine and 20 ng DNP with Creare 130g drag pump. PMID:25404157

  6. Design of Portable Mass Spectrometers with Handheld Probes: Aspects of the Sampling and Miniature Pumping Systems

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Hsun; Chen, Tsung-Chi; Zhou, Xiaoyu; Kline-Schoder, Robert; Sorensen, Paul; Cooks, R. Graham; Ouyang, Zheng

    2015-02-01

    Miniature mass spectrometry analytical systems of backpack configuration fitted with sampling probes could potentially be of significant interest for in-field, real-time chemical analysis. In this study, various configurations were explored in which a long narrow tube was used to connect the turbo and backing pumps used to create and maintain vacuum. Also, for the first time we introduced two new types of pumps for miniature mass spectrometers, the Creare 130 g drag pump and Creare 350 g scroll backing pump. These pumps, along with another Creare 550 turbo pump and the commercially available Pfeiffer HiPace 10 turbo and KnF diaphragm backing pumps, were tested with the backpack configurations. The system performance, especially the scan time, was characterized when used with a discontinuous atmospheric pressure interface (DAPI) for ion introduction. The pumping performance in the pressure region above 1 mtorr is critical for DAPI operation. The 550 g turbo pump was shown to have a relatively higher pumping speed above 1 mtorr and gave a scan time of 300 ms, almost half the value obtained with the larger, heavier HiPace 10 often used with miniature mass spectrometers. The 350 g scroll pump was also found to be an improvement over the diaphragm pumps generally used as backing pumps. With a coaxial low temperature plasma ion source, direct analysis of low volatility compounds glass slides was demonstrated, including 1 ng DNP (2,4-Dinitrophenol) and 10 ng TNT (2,4,6-trinitrotoluene) with Creare 550 g turbo pump as well as 10 ng cocaine and 20 ng DNP with Creare 130 g drag pump.

  7. Design of portable mass spectrometers with handheld probes: aspects of the sampling and miniature pumping systems.

    PubMed

    Chen, Chien-Hsun; Chen, Tsung-Chi; Zhou, Xiaoyu; Kline-Schoder, Robert; Sorensen, Paul; Cooks, R Graham; Ouyang, Zheng

    2015-02-01

    Miniature mass spectrometry analytical systems of backpack configuration fitted with sampling probes could potentially be of significant interest for in-field, real-time chemical analysis. In this study, various configurations were explored in which a long narrow tube was used to connect the turbo and backing pumps used to create and maintain vacuum. Also, for the first time we introduced two new types of pumps for miniature mass spectrometers, the Creare 130 g drag pump and Creare 350 g scroll backing pump. These pumps, along with another Creare 550 turbo pump and the commercially available Pfeiffer HiPace 10 turbo and KnF diaphragm backing pumps, were tested with the backpack configurations. The system performance, especially the scan time, was characterized when used with a discontinuous atmospheric pressure interface (DAPI) for ion introduction. The pumping performance in the pressure region above 1 mtorr is critical for DAPI operation. The 550 g turbo pump was shown to have a relatively higher pumping speed above 1 mtorr and gave a scan time of 300 ms, almost half the value obtained with the larger, heavier HiPace 10 often used with miniature mass spectrometers. The 350 g scroll pump was also found to be an improvement over the diaphragm pumps generally used as backing pumps. With a coaxial low temperature plasma ion source, direct analysis of low volatility compounds glass slides was demonstrated, including 1 ng DNP (2,4-Dinitrophenol) and 10 ng TNT (2,4,6-trinitrotoluene) with Creare 550 g turbo pump as well as 10 ng cocaine and 20 ng DNP with Creare 130 g drag pump. PMID:25404157

  8. Design of portable mass spectrometers with handheld probes: aspects of the sampling and miniature pumping systems.

    PubMed

    Chen, Chien-Hsun; Chen, Tsung-Chi; Zhou, Xiaoyu; Kline-Schoder, Robert; Sorensen, Paul; Cooks, R Graham; Ouyang, Zheng

    2015-02-01

    Miniature mass spectrometry analytical systems of backpack configuration fitted with sampling probes could potentially be of significant interest for in-field, real-time chemical analysis. In this study, various configurations were explored in which a long narrow tube was used to connect the turbo and backing pumps used to create and maintain vacuum. Also, for the first time we introduced two new types of pumps for miniature mass spectrometers, the Creare 130 g drag pump and Creare 350 g scroll backing pump. These pumps, along with another Creare 550 turbo pump and the commercially available Pfeiffer HiPace 10 turbo and KnF diaphragm backing pumps, were tested with the backpack configurations. The system performance, especially the scan time, was characterized when used with a discontinuous atmospheric pressure interface (DAPI) for ion introduction. The pumping performance in the pressure region above 1 mtorr is critical for DAPI operation. The 550 g turbo pump was shown to have a relatively higher pumping speed above 1 mtorr and gave a scan time of 300 ms, almost half the value obtained with the larger, heavier HiPace 10 often used with miniature mass spectrometers. The 350 g scroll pump was also found to be an improvement over the diaphragm pumps generally used as backing pumps. With a coaxial low temperature plasma ion source, direct analysis of low volatility compounds glass slides was demonstrated, including 1 ng DNP (2,4-Dinitrophenol) and 10 ng TNT (2,4,6-trinitrotoluene) with Creare 550 g turbo pump as well as 10 ng cocaine and 20 ng DNP with Creare 130 g drag pump.

  9. Determination of radiocarbon in stratospheric CO2, obtained through AirCore sampling.

    NASA Astrophysics Data System (ADS)

    Paul, Dipayan; Chen, Huilin; Been, Henk A.; Kivi, Rigel; Meijer, Harro A. J.

    2016-04-01

    The concentration of Greenhouse Gases (GHG), with carbon dioxide as the most prominent example, has been and still is increasing, predominantly due to emissions from fossil fuel combustion. CO2 is also the most important component of the global carbon cycle. Among other tracers, radiocarbon (Carbon-14) is a unique and an important atmospheric tracer used in the understanding of the global carbon cycle. Radiocarbon is a naturally occurring isotope (radioactive, t 1/2 = 5730 ± 40 years) of carbon produced through the interaction of thermalized neutrons and nitrogen in the upper atmosphere. Generally, for performing atmospheric radiocarbon measurements in the higher atmosphere, large samples (few liters of air) were collected using aircrafts and balloons. However, collecting stratospheric samples on a regular basis for radiocarbon analysis is extremely expensive. Here we describe the determination of radiocarbon concentrations in stratospheric CO2, collected using AirCore sampling. AirCore is an innovative sampling technique for obtaining vertical atmospheric profiles and, in Europe, is done on a regular basis at Sodankylä, Finland for CO2, CH4 and CO. The stratospheric parts of two such AirCore profiles were used in this study as a proof-of-principle. CO2 from the stratospheric air samples were extracted and converted to elemental carbon, which were then measured at the Accelerator Mass Spectrometric (AMS) facility of the Centre for Isotope Research (CIO) at the University of Groningen. The stratospheric part of the AirCore profile was divided into six sections, each contained approximately 10 μg C. A detailed description of the extraction, graphitization, AMS analysis and the derivation of the stratospheric radiocarbon profile will be the main focus. Through our results, we will show that AirCore is a viable sampling method for performing high-precision radiocarbon measurements of stratospheric CO2 with reasonably good spatial resolution on a regular basis

  10. Comparison of mold concentrations quantified by MSQPCR in indoor and outdoor air sampled simultaneously

    SciTech Connect

    Meklin, Teija; Reponen, Tina; McKinstry, Craig A.; Cho, Seung H.; Grinshpun, Sergey A.; Nevalainen, Aino; Vepsalainen, Asko; Haugland, Richard A.; Lemasters, Grace; Vesper, Sephen J.

    2007-08-15

    Mold specific quantitative PCR (MSQPCR) was used to measure the concentrations of 36 mold species in dust and in indoor and in outdoor air samples that were taken simultaneously in 17 homes in Cincinnati with no-known water damage. The total spore concentrations in the indoor (I) and outdoor (O) air samples were statistically significantly different and the concentrations in the three sample types of many of the individual species were significantly different (p < 0.05 based on the Wilcoxon Signed Rank Test). The I/O ratios of the averages or geometric means of the individual species were generally less than 1; but these I/O ratios were quite variable ranging from 0.03 for A. sydowii to 1.2 for Acremonium strictum. There were no significant correlations for the 36 specific mold concentrations between the dust samples and the indoor or outdoor air samples (based on the Spearman’s Rho test). The indoor and outdoor air concentrations of 32 of the species were not correlated. Only Aspergillus penicillioides, C. cladosporioides types 1 and 2 and C. herbarum had sufficient data to estimate a correlation at rho > 0.5 with signicance (p < 0.05) In six of these homes, a previous dust sample had been collected and analyzed 2 years earlier. The ERMI© values for the dust samples taken in the same home two years apart were not significantly different (p=0.22) based on Wilcoxon Signed Rank Test.

  11. Air Sample Conditioner Helps the Waste Treatment Plant Meet Emissions Standards

    SciTech Connect

    Glissmeyer, John A.; Flaherty, Julia E.; Pekour, Mikhail S.

    2014-12-02

    The air in three of the Hanford Site Waste Treatment and Immobilization Plant (WTP) melter off-gas discharge stacks will be hot and humid after passing through the train of emission abatement equipment. The off-gas temperature and humidity levels will be incompatible with the airborne emissions monitoring equipment required for this type of stack. To facilitate sampling from these facilities, an air sample conditioner system will be installed to introduce cool, dry air into the sample stream to reduce the temperature and dew point. This will avoid thermal damage to the instrumentation and problematic condensation. The complete sample transport system must also deliver at least 50% of the particles in the sample airstream to the sample collection and on-line analysis equipment. The primary components of the sample conditioning system were tested in a laboratory setting. The sample conditioner itself is based on a commercially-available porous tube filter design. It consists of a porous sintered metal tube inside a coaxial metal jacket. The hot gas sample stream passes axially through the porous tube, and the dry, cool air is injected into the jacket and through the porous wall of the inner tube, creating an effective sample diluter. The dilution and sample air mix along the entire length of the porous tube, thereby simultaneously reducing the dew point and temperature of the mixed sample stream. Furthermore, because the dilution air enters through the porous tube wall, the sample stream does not come in contact with the porous wall and particle deposition is reduced in this part of the sampling system. Tests were performed with an environmental chamber to supply air with the temperature and humidity needed to simulate the off-gas conditions. Air from the chamber was passed through the conditioning system to test its ability to reduce the temperature and dew point of the sample stream. To measure particle deposition, oil droplets in the range of 9 to 11 micrometer

  12. Comparison of sampling methods for radiocarbon dating of carbonyls in air samples via accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Schindler, Matthias; Kretschmer, Wolfgang; Scharf, Andreas; Tschekalinskij, Alexander

    2016-05-01

    Three new methods to sample and prepare various carbonyl compounds for radiocarbon measurements were developed and tested. Two of these procedures utilized the Strecker synthetic method to form amino acids from carbonyl compounds with either sodium cyanide or trimethylsilyl cyanide. The third procedure used semicarbazide to form crystalline carbazones with the carbonyl compounds. The resulting amino acids and semicarbazones were then separated and purified using thin layer chromatography. The separated compounds were then combusted to CO2 and reduced to graphite to determine 14C content by accelerator mass spectrometry (AMS). All of these methods were also compared with the standard carbonyl compound sampling method wherein a compound is derivatized with 2,4-dinitrophenylhydrazine and then separated by high-performance liquid chromatography (HPLC).

  13. Air sampling for hepatitis B surface antigen in a dental operatory.

    PubMed

    Petersen, N J; Bond, W W; Favero, M S

    1979-09-01

    Forty samples of air with a mean sample volume of 104 liters were collected during the treatment of patients whose blood was positive for HBsAG: no samples contained HBsAG and occult blood. These findings suggest that, if environmentally mediated transmission of hepatitis B occurs in the dental operatory, it is more likely to occur through contact with contaminated surfaces than through the airborne route.

  14. Apparatus for direct addition of reagents into a nuclear magnetic resonance (NMR) sample in the NMR probe

    NASA Astrophysics Data System (ADS)

    Perrin, Charles L.; Rivero, Ignacio A.

    1999-04-01

    Nuclear magnetic resonance (NMR) is a widely used tool in chemistry and biochemistry. It is occasionally necessary to add small aliquots of solvents or reagents repeatedly into the NMR tube. Ordinarily this is accomplished only by ejecting the sample and carrying out the addition outside the probe. It would be preferable to add the aliquot directly into the sample. We have designed and implemented a delivery system to accomplish this. This apparatus is particularly applicable to a recent NMR titration method for measuring relative pK's and to experiments where temperature must also be varied. This apparatus provides a safe, simple, and inexpensive method for repeated aliquot addition directly into the sample in the NMR probe.

  15. Liquid Microjunction Surface Sampling Probe Electrospray Mass Spectrometry for Detection of Drugs and Metabolites in Thin Tissue Sections

    SciTech Connect

    Van Berkel, Gary J; Kertesz, Vilmos; Koeplinger, Kenneth A.; Vavek, Marissa; Kong, Ah-Ng Tony

    2008-01-01

    A self-aspirating, liquid micro-junction surface sampling probe/electrospray emitter mass spectrometry system was demonstrated for use in the direct analysis of spotted and dosed drugs and their metabolites in thin tissue sections. Proof-of-principle sampling and analysis directly from tissue without the need for sample preparation was demonstrated first by raster scanning a region on a section of rat liver onto which reserpine was spotted. The mass spectral signal from selected reaction monitoring was used to develop a chemical image of the spotted drug on the tissue. The probe was also used to selectively spot sample areas of sagittal whole mouse body tissue sections that had been dosed orally (90 mg/kg) with R,S-sulforaphane 3 hrs prior to sacrifice. Sulforaphane and its glutathione and N-acetyl cysteine conjugates were monitored with selected reaction monitoring and detected in the stomach and various other tissues from the dosed mouse. No signal for these species was observed in the tissue from a control mouse. The same dosed tissue section was used to illustrate the possibility of obtaining a line scan across the whole body section. In total these results illustrate the potential for rapid screening of the distribution of drugs and metabolites in tissue sections with the micro-liquid junction surface sampling probe/electrospray mass spectrometry approach.

  16. Measurement of Air Flow Characteristics Using Seven-Hole Cone Probes

    NASA Technical Reports Server (NTRS)

    Takahashi, Timothy T.

    1997-01-01

    The motivation for this work has been the development of a wake survey system. A seven-hole probe can measure the distribution of static pressure, total pressure, and flow angularity in a wind tunnel environment. The author describes the development of a simple, very efficient algorithm to compute flow properties from probe tip pressures. Its accuracy and applicability to unsteady, turbulent flow are discussed.

  17. Problems Found Using a Radon Stripping Algorithm for Retrospective Assessment of Air Filter Samples

    SciTech Connect

    Robert Hayes

    2008-04-01

    An evaluation of a large number of air sample filters was undertaken using a commercial alpha and beta spectroscopy system employing a passive implanted planar silicon (PIPS) detector. Samples were only measured after air flow through the filters had ceased. Use of a commercial radon stripping algorithm was implemented to discriminate anthropogenic alpha activity on the filters from the radon progeny. When uncontaminated air filters were evaluated, the results showed that there was a time-dependent bias in both average estimates and measurement dispersion of anthropogenic activity estimates with the relative bias being small compared to the dispersion, indicating that the system would not give false positive indications for an appropriately set decision level. By also measuring environmental air sample filters simultaneously with electroplated alpha filters, use of the radon stripping algorithm demonstrated a number of substantial unexpected deviations from calibrated values indicating that the system would give false negative indications. Use of the current algorithm is, therefore, not recommended for general assay applications. Use of the PIPS detector should only be utilized for gross counting without appropriate modifications to the curve-fitting algorithm. As a screening method, the radon stripping algorithm might be expected to see elevated alpha activities on air sample filters (not due to radon progeny) around the 200 disintegrations per minute level.

  18. Use of a Radon Stripping Algorithm for Retrospective Assessment of Air Filter Samples

    SciTech Connect

    Robert Hayes

    2009-01-23

    An evaluation of a large number of air sample filters was undertaken using a commercial alpha and beta spectroscopy system employing a passive implanted planar silicon (PIPS) detector. Samples were only measured after air flow through the filters had ceased. Use of a commercial radon stripping algorithm was implemented to discriminate anthropogenic alpha and beta activity on the filters from the radon progeny. When uncontaminated air filters were evaluated, the results showed that there was a time-dependent bias in both average estimates and measurement dispersion with the relative bias being small compared to the dispersion. By also measuring environmental air sample filters simultaneously with electroplated alpha and beta sources, use of the radon stripping algorithm demonstrated a number of substantial unexpected deviations. Use of the current algorithm is therefore not recommended for assay applications and so use of the PIPS detector should only be utilized for gross counting without appropriate modifications to the curve fitting algorithm. As a screening method, the radon stripping algorithm might be expected to see elevated alpha and beta activities on air sample filters (not due to radon progeny) around the 200 dpm level.

  19. Use of Whatman-41 filters in air quality sampling networks (with applications to elemental analysis)

    NASA Technical Reports Server (NTRS)

    Neustadter, H. E.; Sidik, S. M.; King, R. B.; Fordyce, J. S.; Burr, J. C.

    1974-01-01

    The operation of a 16-site parallel high volume air sampling network with glass fiber filters on one unit and Whatman-41 filters on the other is reported. The network data and data from several other experiments indicate that (1) Sampler-to-sampler and filter-to-filter variabilities are small; (2) hygroscopic affinity of Whatman-41 filters need not introduce errors; and (3) suspended particulate samples from glass fiber filters averaged slightly, but not statistically significantly, higher than from Whatman-41-filters. The results obtained demonstrate the practicability of Whatman-41 filters for air quality monitoring and elemental analysis.

  20. Bio-polymer coatings on neural probe surfaces: Influence of the initial sample composition

    NASA Astrophysics Data System (ADS)

    Chow, Winnie W. Y.; Herwik, Stanislav; Ruther, Patrick; Göthelid, Emmanuelle; Oscarsson, Sven

    2012-08-01

    This paper presents the results of the study of hyaluronic acid (HyA) coating on two structural materials, silicon oxide (dielectric) surface and platinum (Pt) surface used for fabrication of probes developed for neurological investigations in the framework of the EU-project NeuroProbes. The silicon-based neural probes consist of multiple Pt electrodes on the probe shafts for neural recording applications. HyA coatings were proposed to apply on the probe surfaces to enhance the biocompatibility [1]. This study aims at understanding the influence of the initial composition of the probe surface on the structure and morphology of HyA coating. HyA was chemically functionalized by SS-pyridin using (N-Succinimidyl 3-[2-pyridyldithio]-propionate) (SPDP) and was immobilized on the surfaces via a covalent bond. The dielectric and Pt surfaces were derivatized by use of (3-mercaptopropyl) methyldimethoxysilane (MPMDMS). The silanol groups in MPMDMS bind to the dielectric surface, leaving the thiol groups at the uppermost surface and the thiol groups then bind covalently to the functionalized HyA. On the Pt surface, it is the thiol group which binds on the Pt surface. The coated surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). A well-defined HyA layer was observed on both dielectric and Pt surfaces. The coating of two molecular weights (340 kDa and 1.3 MDa) of HyA was examined. The influence of the silanized layer on the HyA coating was also investigated.

  1. Detection of Mycoplasma hyopneumoniae by Air Sampling with a Nested PCR Assay

    PubMed Central

    Stärk, Katharina D. C.; Nicolet, Jacques; Frey, Joachim

    1998-01-01

    This article describes the first successful detection of airborne Mycoplasma hyopneumoniae under experimental and field conditions with a new nested PCR assay. Air was sampled with polyethersulfone membranes (pore size, 0.2 μm) mounted in filter holders. Filters were processed by dissolution and direct extraction of DNA for PCR analysis. For the PCR, two nested pairs of oligonucleotide primers were designed by using an M. hyopneumoniae-specific DNA sequence of a repeated gene segment. A nested PCR assay was developed and used to analyze samples collected in eight pig houses where respiratory problems had been common. Air was also sampled from a mycoplasma-free herd. The nested PCR was highly specific and 104 times as sensitive as a one-step PCR. Under field conditions, the sampling system was able to detect airborne M. hyopneumoniae on 80% of farms where acute respiratory disease was present. No airborne M. hyopneumoniae was detected on infected farms without acute cases. The chance of successful detection was increased if air was sampled at several locations within a room and at a lower air humidity. PMID:9464391

  2. Air-sampling inlet contamination by aircraft emissions on the NASA CV-990 aircraft

    NASA Technical Reports Server (NTRS)

    Condon, E. P.; Vedder, J. F.

    1984-01-01

    Results of an experimental investigation of the contamination of air sampling inlets by aircraft emissions from the NASA CV-990 research aircraft are presented. This four-engine jet aircraft is a NASA facility used for many different atmospheric and meteorological experiments, as well as for developing spacecraft instrumentation for remote measurements. Our investigations were performed to provide information on which to base the selection of sampling locations for a series of multi-instrument missions for measuring tropospheric trace gases. The major source of contamination is the exhaust from the jet engines, which generate many of the same gases that are of interest in atmospheric chemistry, as well as other gases that may interfere with sampling measurements. The engine exhaust contains these gases in mixing ratios many orders of magnitude greater than those that occur in the clean atmosphere which the missions seek to quantify. Pressurized samples of air were collected simultaneously from a scoop located forward of the engines to represent clean air and from other multiport scoops at various aft positions on the aircraft. The air samples were analyzed in the laboratory by gas chromatography for carbon monoxide, an abundant combustion by-product. Data are presented for various scoop locations under various flight conditions.

  3. Solubility testing of actinides on breathing-zone and area air samples

    SciTech Connect

    Metzger, R.L.; Jessop, B.H.; McDowell, B.L.

    1996-02-01

    A solubility testing method for several common actinides has been developed with sufficient sensitivity to allow profiles to be determined from routine breathing zone and area air samples in the workplace. Air samples are covered with a clean filter to form a filter-sample-filter sandwich which is immersed in an extracellular lung serum simulant solution. The sample is moved to a fresh beaker of the lung fluid simulant each day for one week, and then weekly until the end of the 28 day test period. The soak solutions are wet ashed with nitric acid and hydrogen peroxide to destroy the organic components of the lung simulant solution prior to extraction of the nuclides of interest directly into an extractive scintillator for subsequent counting on a Photon-Electron Rejecting Alpha Liquid Scintillation (PERALS{reg_sign}) spectrometer. Solvent extraction methods utilizing the extractive scintillators have been developed for the isotopes of uranium, plutonium, and curium. The procedures normally produce an isotopic recovery greater than 95% and have been used to develop solubility profiles from air samples with 40 pCi or less of U{sub 3}O{sub 8}. Profiles developed for U{sub 3}O{sub 8} samples show good agreement with in vitro and in vivo tests performed by other investigators on samples from the same uranium mills.

  4. Evidence for microorganisms in stratosphere air samples collected at a height of 41km

    NASA Astrophysics Data System (ADS)

    Wainwright, Milton; Wickramasinghe, Nalin C.; Narlikar, J. V.; Rajaratnam, P.

    2003-02-01

    Samples of air removed from the stratosphere, at an altitude of 41km, were previously found to contain viable, but non-cultureable bacteria (cocci and rods). Here, we describe experiments aimed at growing these organisms, together with any others, present in the samples. Two bacteria (Bacillus simplex and Staphylococcus pasteuri) and a single fungus, Engyodontium albus (limber)de Hoog were isolated from the samples. Contamination can never be ruled out when space-derived samples are studied on earth, however, we are confident that the organisms isolated here originated from the stratosphere.

  5. HPTLC Plate Blotting for Liquid Microjunction Surface Sampling Probe Mass Spectrometric Analysis of Analytes Separated on a Wettable Phase Plate

    SciTech Connect

    Walworth, Matthew J; Stankovich, Joseph J; Van Berkel, Gary J; Schulz, Michael; Minarik, susanne

    2012-01-01

    A blotting method that transfers analytes separated on wettable HPTLC plates to a hydrophobic reversed-phase C8 HPLTC plate suitable for analysis with a liquid microjunction surface sampling probe electrospray ionization mass spectrometry system was described and demonstrated. The simple blotting procedure transfers the analyte from the wettable plate to the topmost surface of a rigidly backed, easy-to-mount hydrophobic substrate that already has been proven viable for analysis by this sampling probe/mass spectrometry system. The utility of the approach was demonstrated by the analysis of a four-component peptide mixture originally separated on a ProteoChrom HPTLC cellulose sheet and then blotted to the reversed phase HPTLC plate.

  6. Rugged fiber optic probes and sampling systems for remote chemical analysis via the Raman technique

    SciTech Connect

    Nave, S.E.

    1996-07-01

    Recent advances in fiber optics, diode lasers, CCD detectors, dielectric and holographic optical filters, grating spectrometers, and chemometric data analysis have greatly simplified Raman spectroscopy. In order to make a rugged fiber optic Raman probe for solids/slurries like these at Savannah River, we have designed a probe that eliminates as many optical elements and surfaces as possible. The diffuse reflectance probe tip is modified for Raman scattering by installing thin dielectric in-line filters. Effects of each filter are shown for the NaNO{sub 3} Raman spectrum. By using a diode laser excitation at 780 nm, fluorescence is greatly reduced, and excellent spectra may be obtained from organic solids. At SRS, fiber optic Raman probes are being developed for in situ chemical mapping of radioactive waste storage tanks. Radiation darkening of silica fiber optics is negligible beyond 700 nm. Corrosion resistance is being evaluated. Analysis of process gas (off-gas from SRS processes) is investigated in some detail: hydrogen in nitrogen with NO{sub 2} interference. Other applications and the advantages of the method are pointed out briefly.

  7. Professional judgment and the interpretation of viable mold air sampling data.

    PubMed

    Johnson, David; Thompson, David; Clinkenbeard, Rodney; Redus, Jason

    2008-10-01

    Although mold air sampling is technically straightforward, interpreting the results to decide if there is an indoor source is not. Applying formal statistical tests to mold sampling data is an error-prone practice due to the extreme data variability. With neither established exposure limits nor useful statistical techniques, indoor air quality investigators often must rely on their professional judgment, but the lack of a consensus "decision strategy" incorporating explicit decision criteria requires professionals to establish their own personal set of criteria when interpreting air sampling data. This study examined the level of agreement among indoor air quality practitioners in their evaluation of airborne mold sampling data and explored differences in inter-evaluator assessments. Eighteen investigators independently judged 30 sets of viable mold air sampling results to indicate: "definite indoor mold source," "likely indoor mold source," "not enough information to decide," "likely no indoor mold source," or "definitely no indoor mold source." Kappa coefficient analysis indicated weak inter-observer reliability, and comparison of evaluator mean scores showed clear inter-evaluator differences in their overall scoring patterns. The responses were modeled on indicator "traits" of the data sets using a generalized, linear mixed model approach and showed several traits to be associated with respondents' ratings, but they also demonstrated distinct and divergent inter-evaluator response patterns. Conclusions were that there was only weak overall agreement in evaluation of the mold sampling data, that particular traits of the data were associated with the conclusions reached, and that there were substantial inter-evaluator differences that were likely due to differences in the personal decision criteria employed by the individual evaluators. The overall conclusion was that there is a need for additional work to rigorously explore the constellation of decision criteria

  8. Detection of virulent Rhodococcus equi in exhaled air samples from naturally infected foals.

    PubMed

    Muscatello, G; Gilkerson, J R; Browning, G F

    2009-03-01

    Virulent Rhodococcus equi causes pyogranulomatous bronchopneumonia in foals. The route of infection of foals has been considered to be inhalation of aerosolized bacteria from soil that is contaminated with equine feces. Thus, disease caused by R. equi has been regarded as an opportunistic infection of environmental origin and not a contagious disease. In this study, we report the exhalation of virulent R. equi from the respiratory tract of naturally infected foals. A handheld air-monitoring system was used to recover virulent R. equi from the exhaled breath of foals, and the concentration of virulent R. equi organisms in exhaled air was compared to the concentration in environmental air samples taken from the holding pens and lane areas on farms. R. equi strains carrying the vapA gene of the virulence plasmid were detected by using colony blotting and DNA hybridization techniques in cultures of exhaled air from 67% (37/55) of foals tested. The concentration of virulent R. equi organisms in exhaled air from foals was significantly higher than that in environmental air (P<0.001). There were no significant differences in the median concentrations of virulent R. equi bacteria exhaled by clinically healthy or diseased foals. The high concentrations of virulent R. equi bacteria in exhaled air suggested that aerosol transmission between foals is possible and may have a significant impact on the prevalence of R. equi pneumonia on farms. The air sampling technique described is potentially useful as a noninvasive method for the detection and quantification of virulent R. equi in the respiratory tract of foals.

  9. ENVIRONMENTAL SAMPLING USING LOCATION SPECIFIC AIR MONITORING IN BULK HANDLING FACILITIES

    SciTech Connect

    Sexton, L.; Hanks, D.; Degange, J.; Brant, H.; Hall, G.; Cable-Dunlap, P.; Anderson, B.

    2011-06-07

    Since the introduction of safeguards strengthening measures approved by the International Atomic Energy Agency (IAEA) Board of Governors (1992-1997), international nuclear safeguards inspectors have been able to utilize environmental sampling (ES) (e.g. deposited particulates, air, water, vegetation, sediments, soil and biota) in their safeguarding approaches at bulk uranium/plutonium handling facilities. Enhancements of environmental sampling techniques used by the IAEA in drawing conclusions concerning the absence of undeclared nuclear materials or activities will soon be able to take advantage of a recent step change improvement in the gathering and analysis of air samples at these facilities. Location specific air monitoring feasibility tests have been performed with excellent results in determining attribute and isotopic composition of chemical elements present in an actual test-bed sample. Isotopic analysis of collected particles from an Aerosol Contaminant Extractor (ACE) collection, was performed with the standard bulk sampling protocol used throughout the IAEA network of analytical laboratories (NWAL). The results yielded bulk isotopic values expected for the operations. Advanced designs of air monitoring instruments such as the ACE may be used in gas centrifuge enrichment plants (GCEP) to detect the production of highly enriched uranium (HEU) or enrichments not declared by a State. Researchers at Savannah River National Laboratory in collaboration with Oak Ridge National Laboratory are developing the next generation of ES equipment for air grab and constant samples that could become an important addition to the international nuclear safeguards inspector's toolkit. Location specific air monitoring to be used to establish a baseline environmental signature of a particular facility employed for comparison of consistencies in declared operations will be described in this paper. Implementation of air monitoring will be contrasted against the use of smear ES

  10. Development and calibration of real-time PCR for quantification of airborne microorganisms in air samples

    NASA Astrophysics Data System (ADS)

    An, Hey Reoun; Mainelis, Gediminas; White, Lori

    This manuscript describes the coupling of bioaerosol collection and the use of real-time PCR (RT-PCR) to quantify the airborne bacteria. The quantity of collected bacteria determined by RT-PCR is compared with conventional quantification techniques, such as culturing, microscopy and airborne microorganism counting by using optical particle counter (OPC). Our data show that an experimental approach used to develop standard curves for use with RT-PCR is critical for accurate sample quantification. Using universal primers we generated 12 different standard curves which were used to quantify model organism Escherichia coli (Migula) Catellani from air samples. Standard curves prepared using a traditional approach, where serially diluted genomic DNA extracted from pure cultured bacteria were used in PCR reaction as a template DNA yielded significant underestimation of sample quantities compared to airborne microorganism concentration as measured by an OPC. The underestimation was especially pronounced when standard curves were built using colony forming units (CFUs). In contrast, the estimate of cell concentration in an air sample by RT-PCR was more accurate (˜60% compared to the airborne microorganism concentration) when the standard curve was built using aerosolized E. coli. The accuracy improved even further (˜100%) when air samples used to build the standard curves were diluted first, then the DNA extracted from each dilution was amplified by the RT-PCR—to mimic the handling of air samples with unknown and possibly low concentration. Therefore, our data show that standard curves used for quantification by RT-PCR needs to be prepared using the same environmental matrix and procedures as handling of the environmental sample in question. Reliance on the standard curves generated with cultured bacterial suspension (a traditional approach) may lead to substantial underestimation of microorganism quantities in environmental samples.

  11. Analyzing the Effects of Capacitances-to-Shield in Sample Probes on AC Quantized Hall Resistance Measurements

    PubMed Central

    Cage, M. E.; Jeffery, A.

    1999-01-01

    We analyze the effects of the large capacitances-to-shields existing in all sample probes on measurements of the ac quantized Hall resistance RH. The object of this analysis is to investigate how these capacitances affect the observed frequency dependence of RH. Our goal is to see if there is some way to eliminate or minimize this significant frequency dependence, and thereby realize an intrinsic ac quantized Hall resistance standard. Equivalent electrical circuits are used in this analysis, with circuit components consisting of: capacitances and leakage resistances to the sample probe shields; inductances and resistances of the sample probe leads; quantized Hall resistances, longitudinal resistances, and voltage generators within the quantum Hall effect device; and multiple connections to the device. We derive exact algebraic equations for the measured RH values expressed in terms of the circuit components. Only two circuits (with single-series “offset” and quadruple-series connections) appear to meet our desired goals of measuring both RH and the longitudinal resistance Rx in the same cool-down for both ac and dc currents with a one-standard-deviation uncertainty of 10−8 RH or less. These two circuits will be further considered in a future paper in which the effects of wire-to-wire capacitances are also included in the analysis.

  12. Permeation of atmospheric gases through polymer O-rings used in flasks for air sampling

    NASA Astrophysics Data System (ADS)

    Sturm, P.; Leuenberger, M.; Sirignano, C.; Neubert, R. E. M.; Meijer, H. A. J.; Langenfelds, R.; Brand, W. A.; Tohjima, Y.

    2004-02-01

    Permeation of various gases through elastomeric O-ring seals can have important effects on the integrity of atmospheric air samples collected in flasks and measured some time later. Depending on the materials and geometry of flasks and valves and on partial pressure differences between sample and surrounding air, the concentrations of different components of air can be significantly altered during storage. The influence of permeation is discussed for O2/N2, Ar/N2, CO2, δ13C in CO2, and water vapor. Results of sample storage tests for various flask and valve types and different storage conditions are presented and are compared with theoretical calculations. Effects of permeation can be reduced by maintaining short storage times and small partial pressure differences and by using a new valve design that buffers exchange of gases with surrounding air or by using less permeable materials (such as Kel-F) as sealing material. General awareness of possible permeation effects helps to achieve more reliable measurements of atmospheric composition with flask sampling techniques.

  13. Air and smear sample calculational tool for Fluor Hanford Radiological control

    SciTech Connect

    BAUMANN, B.L.

    2003-09-24

    A spreadsheet calculation tool was developed to automate the calculations performed for determining the concentration of airborne radioactivity and smear counting as outlined in HNF-13536, Section 5.2.7, Analyzing Air and smear Samples. This document reports on the design and testing of the calculation tool.

  14. COMPARISON OF FAST GC/TOFMS WITH METHOD TO-14 FOR ANALYSIS OF AMBIENT AIR SAMPLES

    EPA Science Inventory

    Field studies using portable gas chromatographs (PGC) to analyze volatile organic compounds in ambient air usually include, as reference standard method, the analysis of concurrent, collocated canister samples by EPA Method TO-14. Each laboratory analysis takes about an hour a...

  15. Development of a wireless air pollution sensor package for aerial-sampling of emissions

    EPA Science Inventory

    A new sensor system for mobile and aerial emission sampling was developed for open area pollutant sources, such as prescribed forest burns. The sensor system, termed “Kolibri”, consists of multiple low-cost air quality sensors measuring CO2, CO, samplers for particulate matter wi...

  16. Modeling and Qualification of a Modified Emission Unit for Radioactive Air Emissions Stack Sampling Compliance.

    PubMed

    Barnett, J Matthew; Yu, Xiao-Ying; Recknagle, Kurtis P; Glissmeyer, John A

    2016-11-01

    A planned laboratory space and exhaust system modification to the Pacific Northwest National Laboratory Material Science and Technology Building indicated that a new evaluation of the mixing at the air sampling system location would be required for compliance to ANSI/HPS N13.1-2011. The modified exhaust system would add a third fan, thereby increasing the overall exhaust rate out the stack, thus voiding the previous mixing study. Prior to modifying the radioactive air emissions exhaust system, a three-dimensional computational fluid dynamics computer model was used to evaluate the mixing at the sampling system location. Modeling of the original three-fan system indicated that not all mixing criteria could be met. A second modeling effort was conducted with the addition of an air blender downstream of the confluence of the three fans, which then showed satisfactory mixing results. The final installation included an air blender, and the exhaust system underwent full-scale tests to verify velocity, cyclonic flow, gas, and particulate uniformity. The modeling results and those of the full-scale tests show agreement between each of the evaluated criteria. The use of a computational fluid dynamics code was an effective aid in the design process and allowed the sampling system to remain in its original location while still meeting the requirements for sampling at a well mixed location. PMID:27682902

  17. COMPARISON OF MOLD CONCENTRATIONS IN INDOOR AND OUTDOOR AIR SAMPLED SIMULTANEOUSLY AND THEN QUANTIFIED BY MSQPCR

    EPA Science Inventory

    Mold specific quantitative PCR (MSQPCR) was used to measure the concentrations of the 36 mold species in indoor and outdoor air samples that were taken simultaneously for 48 hours in and around 17 homes in Cincinnati, Ohio. The total spore concentrations of 353 per m3...

  18. High-bandwidth, high-sampling-rate, low-noise, two-probe transient photovoltage measuring system

    SciTech Connect

    Chen, Xiaoqing; Wu, Bo

    2015-01-15

    In this article, we present a two-probe configuration for measuring transient photovoltage (TPV) signals from photo-electronic semiconductor devices. Unlike in a conventional one-probe system, the two electrodes of the devices under test in this study are both monitored in our new measuring system, giving rise to a significantly enhanced signal-to-noise ratio. Tentative experimental data ob tained from N, N′-Di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine-based organic semiconductor devices show that the bandwidth and the sampling rate of the system reach 1.5 GHz and 50 GS/s, respectively, without degradation of the noise level. In addition, the study of TPV signals on each individual electrode is allowed. The TPV values measured by the two individual probes are not identically equal to half of the differential TPV and will not cancel each other out as expected. This abnormal phenomenon is due to the photoelectric response of the photo-electronic material. This novel two-probe TPV measuring technique and abnormal TPV behavior might be useful for studying more dynamic processes in photo-electronic semiconductors.

  19. Analysis of polychlorinated biphenyls in concurrently sampled Chinese air and surface soil.

    PubMed

    Zhang, Zhi; Liu, Liyan; Li, Yi-Fan; Wang, Degao; Jia, Hongliang; Harner, Tom; Sverko, Ed; Wan, Xinnan; Xu, Diandou; Ren, Nanqi; Ma, Jianmin; Pozo, Karla

    2008-09-01

    Polychlorinated biphenyl (PCB) concentrations were measured in a concurrent air and surface soil sampling program across China. Passive air samples were collected for approximately 3 months from mid-July to mid-October, 2005 using polyurethane foam (PUF) disk type samplers at 97 sites and surface soil samples were collected in a subset of 51 sites in the same year. As expected, the air concentrations (pg m(-3)) were highest at urban sites (mean of 350 +/- 218) followed by rural (230 +/- 180) and background sites (77 +/- 50). The PCB homologue composition was similar across China, with no distinction among site types, and reflected the profile of Chinese transformer oil with a greater proportion of lower molecular weight (LMW) congeners, particularly the tri-PCBs. This differs from the profile in Chinese soil that was shifted toward the higher molecular weight (HMW) congeners and likely attributed to numerous years of deposition and accumulation in this reservoir. The PCB profile in surface soil also reflects an "urban fractionation effect" with preferential deposition of HMW congeners near sources. The profile of PCBs in Chinese air was shown to be different than reported for Europe and for the Great Lakes Area (GLA) in North America. European and GLA air samples show a distinction between urban and rural/V background sites, with urban sites dominated by tetra- and penta-PCBs, whereas rural and background sites are shifted toward LMW congeners. European and GLA samples also exhibit much higher PCB concentrations at urban sites. This may be attributed to the use of PCBs in building materials in European and North American cities. In China, the difference between urban and rural/background sites is less pronounced. Strong soil-air correlations were found for the LMW PCBs at the background and rural sites, and for the HMW PCBs at the urban sites, a strong evidence of the urban fractionation effect. To our knowledge, this is the first national-scale study in China

  20. Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissions Sampling and Analysis

    SciTech Connect

    MULKEY, C.H.

    1999-07-06

    This document describes the results of the data quality objective (DQO) process undertaken to define data needs for state and federal requirements associated with toxic, hazardous, and/or radiological air emissions under the jurisdiction of the River Protection Project (RPP). Hereafter, this document is referred to as the Air DQO. The primary drivers for characterization under this DQO are the regulatory requirements pursuant to Washington State regulations, that may require sampling and analysis. The federal regulations concerning air emissions are incorporated into the Washington State regulations. Data needs exist for nonradioactive and radioactive waste constituents and characteristics as identified through the DQO process described in this document. The purpose is to identify current data needs for complying with regulatory drivers for the measurement of air emissions from RPP facilities in support of air permitting. These drivers include best management practices; similar analyses may have more than one regulatory driver. This document should not be used for determining overall compliance with regulations because the regulations are in constant change, and this document may not reflect the latest regulatory requirements. Regulatory requirements are also expected to change as various permits are issued. Data needs require samples for both radionuclides and nonradionuclide analytes of air emissions from tanks and stored waste containers. The collection of data is to support environmental permitting and compliance, not for health and safety issues. This document does not address health or safety regulations or requirements (those of the Occupational Safety and Health Administration or the National Institute of Occupational Safety and Health) or continuous emission monitoring systems. This DQO is applicable to all equipment, facilities, and operations under the jurisdiction of RPP that emit or have the potential to emit regulated air pollutants.

  1. High-throughput liquid-absorption air-sampling apparatus and methods

    DOEpatents

    Zaromb, Solomon

    2000-01-01

    A portable high-throughput liquid-absorption air sampler [PHTLAAS] has an asymmetric air inlet through which air is drawn upward by a small and light-weight centrifugal fan driven by a direct current motor that can be powered by a battery. The air inlet is so configured as to impart both rotational and downward components of motion to the sampled air near said inlet. The PHTLAAS comprises a glass tube of relatively small size through which air passes at a high rate in a swirling, highly turbulent motion, which facilitates rapid transfer of vapors and particulates to a liquid film covering the inner walls of the tube. The pressure drop through the glass tube is <10 cm of water, usually <5 cm of water. The sampler's collection efficiency is usually >20% for vapors or airborne particulates in the 2-3.mu. range and >50% for particles larger than 4.mu.. In conjunction with various analyzers, the PHTLAAS can serve to monitor a variety of hazardous or illicit airborne substances, such as lead-containing particulates, tritiated water vapor, biological aerosols, or traces of concealed drugs or explosives.

  2. Chemical reactivities of ambient air samples in three Southern California communities

    PubMed Central

    Eiguren-Fernandez, Arantza; Di Stefano, Emma; Schmitz, Debra A.; Guarieiro, Aline Lefol Nani; Salinas, Erika M.; Nasser, Elina; Froines, John R.; Cho, Arthur K.

    2015-01-01

    The potential adverse health effects of PM2.5 and vapor samples from three communities that neighbor railyards, Commerce (CM), Long Beach (LB), and San Bernardino (SB), were assessed by determination of chemical reactivities attributed to the induction of oxidative stress by air pollutants. The assays used were dithiothreitol (DTT) and dihydrobenzoic acid (DHBA) based procedures for prooxidant content and a glyceraldehyde-3-phosphate dehydrogenase (GAPDH) assay for electrophiles. Prooxidants and electrophiles have been proposed as the reactive chemical species responsible for the induction of oxidative stress by air pollution mixtures. The PM2.5 samples from CM and LB sites showed seasonal differences in reactivities with higher levels in the winter whereas the SB sample differences were reversed. The reactivities in the vapor samples were all very similar, except for the summer SB samples, which contained higher levels of both prooxidants and electrophiles. The results suggest the observed reactivities reflect general geographical differences rather than direct effects of the railyards. Distributional differences in reactivities were also observed with PM2.5 fractions containing most of the prooxidants (74–81%) and the vapor phase most of the electrophiles (82–96%). The high levels of the vapor phase electrophiles and their potential for adverse biological effects point out the importance of the vapor phase in assessing the potential health effects of ambient air. PMID:25947123

  3. Whole Air Sampling During NASA's March-April 1999 Pacific Exploratory Expedition (PEM-Tropics B)

    NASA Technical Reports Server (NTRS)

    Blake, Donald R.

    2001-01-01

    University of California, Irvine (UCI) collected more than 4500 samples whole air samples collected over the remote Pacific Ocean during NASA's Global Tropospheric Experiment (GTE) Pacific Exploratory Mission-Tropics B (PEM-Tropics B) in March and early April 1999. Approximately 140 samples during a typical 8-hour DC-8 flight, and 120 canisters for each 8-hour flight aboard the P-3B. These samples were obtained roughly every 3-7 min during horizontal flight legs and 1-3 min during vertical legs. The filled canisters were analyzed in the laboratory at UCI within ten days of collection. The mixing ratios of 58 trace gases comprising hydrocarbons, halocarbons, alkyl nitrates and DMS were reported (and archived) for each sample. Two identical analytical systems sharing the same standards were operated simultaneously around the clock to improve canister turn-around time and to keep our measurement precision optimal. This report presents a summary of the results for sample collected.

  4. Probing Atmospheric Electric Fields in Thunderstorms through Radio Emission from Cosmic-Ray-Induced Air Showers.

    PubMed

    Schellart, P; Trinh, T N G; Buitink, S; Corstanje, A; Enriquez, J E; Falcke, H; Hörandel, J R; Nelles, A; Rachen, J P; Rossetto, L; Scholten, O; Ter Veen, S; Thoudam, S; Ebert, U; Koehn, C; Rutjes, C; Alexov, A; Anderson, J M; Avruch, I M; Bentum, M J; Bernardi, G; Best, P; Bonafede, A; Breitling, F; Broderick, J W; Brüggen, M; Butcher, H R; Ciardi, B; de Geus, E; de Vos, M; Duscha, S; Eislöffel, J; Fallows, R A; Frieswijk, W; Garrett, M A; Grießmeier, J; Gunst, A W; Heald, G; Hessels, J W T; Hoeft, M; Holties, H A; Juette, E; Kondratiev, V I; Kuniyoshi, M; Kuper, G; Mann, G; McFadden, R; McKay-Bukowski, D; McKean, J P; Mevius, M; Moldon, J; Norden, M J; Orru, E; Paas, H; Pandey-Pommier, M; Pizzo, R; Polatidis, A G; Reich, W; Röttgering, H; Scaife, A M M; Schwarz, D J; Serylak, M; Smirnov, O; Steinmetz, M; Swinbank, J; Tagger, M; Tasse, C; Toribio, M C; van Weeren, R J; Vermeulen, R; Vocks, C; Wise, M W; Wucknitz, O; Zarka, P

    2015-04-24

    We present measurements of radio emission from cosmic ray air showers that took place during thunderstorms. The intensity and polarization patterns of these air showers are radically different from those measured during fair-weather conditions. With the use of a simple two-layer model for the atmospheric electric field, these patterns can be well reproduced by state-of-the-art simulation codes. This in turn provides a novel way to study atmospheric electric fields.

  5. Probing Atmospheric Electric Fields in Thunderstorms through Radio Emission from Cosmic-Ray-Induced Air Showers.

    PubMed

    Schellart, P; Trinh, T N G; Buitink, S; Corstanje, A; Enriquez, J E; Falcke, H; Hörandel, J R; Nelles, A; Rachen, J P; Rossetto, L; Scholten, O; Ter Veen, S; Thoudam, S; Ebert, U; Koehn, C; Rutjes, C; Alexov, A; Anderson, J M; Avruch, I M; Bentum, M J; Bernardi, G; Best, P; Bonafede, A; Breitling, F; Broderick, J W; Brüggen, M; Butcher, H R; Ciardi, B; de Geus, E; de Vos, M; Duscha, S; Eislöffel, J; Fallows, R A; Frieswijk, W; Garrett, M A; Grießmeier, J; Gunst, A W; Heald, G; Hessels, J W T; Hoeft, M; Holties, H A; Juette, E; Kondratiev, V I; Kuniyoshi, M; Kuper, G; Mann, G; McFadden, R; McKay-Bukowski, D; McKean, J P; Mevius, M; Moldon, J; Norden, M J; Orru, E; Paas, H; Pandey-Pommier, M; Pizzo, R; Polatidis, A G; Reich, W; Röttgering, H; Scaife, A M M; Schwarz, D J; Serylak, M; Smirnov, O; Steinmetz, M; Swinbank, J; Tagger, M; Tasse, C; Toribio, M C; van Weeren, R J; Vermeulen, R; Vocks, C; Wise, M W; Wucknitz, O; Zarka, P

    2015-04-24

    We present measurements of radio emission from cosmic ray air showers that took place during thunderstorms. The intensity and polarization patterns of these air showers are radically different from those measured during fair-weather conditions. With the use of a simple two-layer model for the atmospheric electric field, these patterns can be well reproduced by state-of-the-art simulation codes. This in turn provides a novel way to study atmospheric electric fields. PMID:25955053

  6. Semiautomatic nondispersive infrared analyzer apparatus for CO/sub 2/ air sample analyses

    SciTech Connect

    Komhyr, W.D.; Waterman, L.S.; Taylor, W.R.

    1983-02-20

    A semiautomatic nondispersive infrared analyzer apparatus has been developed for analysis of up to 50 CO/sub 2/ air samples per day. The samples are collected in 500-ml glass flasks and are transferred to the analyzer with a novel, free-floating piston pump. Sample and calibration gas transfer operations are controlled by a microprocessor, and data are recorded, analyzed, and output by a Hewlett-Packard 9845A/S desktop computer. The apparatus is described, including operating and test modes, and performance characteristics determined from 2 years of operation are given. 7 references, 5 figures, 5 tables.

  7. Report on sampling and analysis of exhaust air at the 221-T and 2706-T buildings

    SciTech Connect

    Stauffer, M.

    1997-09-22

    This report presents analytical results from exhaust air samples collected at stacks 221-T and 2706-T of the T-Plant. The samples were collected with SUMMA canisters over a 24 hour interval and were analyzed by gas chromatography-mass spectrometry using a modified EPA TO-14 procedure. The data suggest that the buildings had generally low concentrations of volatile organic compounds (< 40 ppbv). However, samples from building 2706-T did have significant amounts of non-target higher-boiling hydrocarbons, probably from a petroleum destination fraction.

  8. Volatile organic components of air samples collected from Vertical Launch Missile capsules. Summary report

    SciTech Connect

    Tappan, D.V.; Knight, D.R.; Heyder, E.; Weathersby, P.K.

    1988-09-27

    Gas chromatographic/mass spectroscopic analyses are presented for the volatile organic components found in air samples collected from the inboard vents from Vertical Launch System (VLS) missile capsules aboard a 688 class submarine. Similar analyses were also conducted for a sample of the ship's high pressure air used to fill the missile tubes. A wide variety of organics was detected in the air from the missile capsules; and while no unique components have yet been identified, a significant contribution has been shown to be made by pressure-ventilation of the VLS capsules into the submarine atmosphere which is already heavily laden with volatile organic compounds. The most apparent conclusion from these preliminary analyses is that the mixtures of organic components in the air within VLS missile capsules vary greatly from capsule to capsule (and probably from time to time). Many such samples need to be investigated to provide sufficient information to judge the seriousness of the possibility of venting toxic components into the submarine atmosphere during the maintenance or firing of VLS missiles.

  9. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  10. Diffusive sampling and measurement of microbial volatile organic compounds in indoor air.

    PubMed

    Araki, A; Eitaki, Y; Kawai, T; Kanazawa, A; Takeda, M; Kishi, R

    2009-10-01

    Microbial volatile organic compounds (MVOC), chemicals emitted from various microorganisms, in indoor air have been of concern in recent years. For large field studies, diffusive samplers are widely used to measure indoor environments. Since the sampling rate of a sampler is a fundamental parameter to calculate concentration, the sampling rates of eight MVOC with diffusive samplers were determined experimentally using a newly developed water-bubbling method: air was supplied to the MVOC-solutions and the vapor collected in an exposure bag, where diffusive and active samplers were placed in parallel for comparison. Correlations between the diffusive and active samplings gave good linear regressions. The sampling rates were 30-35 ml/min and the detection limits were 0.044-0.178 microg/m(3), as determined by GC/MS analysis. Application of the sampling rates in indoor air was validated by parallel sampling of the diffusive and active sampling method. 5% Propan-2-ol/CS(2) was the best solvent to desorb the compounds from absorbents. The procedure was applied to a field study in 41 dwellings. The most frequently detected compounds were hexan-2-one and heptan-2-one, with 97.5% detection rates and geometric mean values of 0.470 and 0.302 microg/m(3), respectively. This study shows that diffusive samplers are applicable to measure indoor MVOC levels. Practical Implications At present, there are still limited reports on indoor Microbial Volatile Organic Compounds (MVOC) levels in general dwellings and occupants' health. Compared with active sampling methods, air sampling using a diffusive sampler is particularly advantageous for use in large field studies due to its smallness, light-size, easy-handling, and cost-effectiveness. In this study, sampling rates of selected MVOC of the diffusive sampler were determined using the water-bubbling method: generating gases by water-bubbling and exposing the diffusive and active samplers at the same time. The obtained sampling rates

  11. Monitoring airborne fungal spores in an experimental indoor environment to evaluate sampling methods and the effects of human activity on air sampling.

    PubMed Central

    Buttner, M P; Stetzenbach, L D

    1993-01-01

    Aerobiological monitoring was conducted in an experimental room to aid in the development of standardized sampling protocols for airborne microorganisms in the indoor environment. The objectives of this research were to evaluate the relative efficiencies of selected sampling methods for the retrieval of airborne fungal spores and to determine the effect of human activity on air sampling. Dry aerosols containing known concentrations of Penicillium chrysogenum spores were generated, and air samples were taken by using Andersen six-stage, Surface Air System, Burkard, and depositional samplers. The Andersen and Burkard samplers retrieved the highest numbers of spores compared with the measurement standard, an aerodynamic particle sizer located inside the room. Data from paired samplers demonstrated that the Andersen sampler had the highest levels of sensitivity and repeatability. With a carpet as the source of P. chrysogenum spores, the effects of human activity (walking or vacuuming near the sampling site) on air sampling were also examined. Air samples were taken under undisturbed conditions and after human activity in the room. Human activity resulted in retrieval of significantly higher concentrations of airborne spores. Surface sampling of the carpet revealed moderate to heavy contamination despite relatively low airborne counts. Therefore, in certain situations, air sampling without concomitant surface sampling may not adequately reflect the level of microbial contamination in indoor environments. PMID:8439150

  12. Evaluation of a Surface Sampling Probe Electrospray Mass Spectrometry System for the Analysis of Surface Deposited and Affinity Captured Proteins

    SciTech Connect

    Van Berkel, Gary J; Ford, Michael J; Doktycz, Mitchel John; Kennel, Steve J

    2006-01-01

    A combined self-aspirating electrospray emitter/surfacing-sampling probe coupled with an ion trap mass spectrometer was used to sample and mass analyze proteins from surfaces. The sampling probe mass spectrometer system was used to sample and detect lysozyme that had been deposited onto a glass slide using a piezoelectric spotter or murine gamma-interferon affinity captured on a glass slide using surface-immobilized anti-gamma-interferon antibody. The detection level for surface-deposited lysozyme (spot size {le}200 {micro}m) was approximately 1.0 fmol ({approx}100 fmol/mm{sup 2}) as determined from the ability to measure accurately the protein molecular mass from the mass spectrum acquired by sampling the deposit. These detection limits may be sufficient for certain applications in which protein fractions from a separation method are collected onto a surface. Radiolabeled proteins were used to quantify the surface density of immobilized antibody and the efficiency of capture of the gamma-interferon on glass and higher surface area ceramic supports. The capture density of gamma-interferon at surface saturation ranged from about 23 to 50 fmol/mm{sup 2} depending on the capture surface. Nonetheless, mass spectrometric detection of affinity capture protein was successful in some cases, but the results were not reproducible. Thus, improvement of the sampling system, ionization efficiency and/or capture density will be necessary for practical sampling of affinity-captured proteins. The means to accomplish improved sampling system detection limits and to increase the absolute amounts of protein captured per unit area are discussed.

  13. Meteorological and operational aspects of 46 clear air turbulence sampling missions with an instrument B-57B aircraft. Volume 1: Program summary

    NASA Technical Reports Server (NTRS)

    Davis, R. E.; Champine, R. A.; Ehernberger, L. J.

    1979-01-01

    The results of 46 clear air turbulence (CAT) probing missions conducted with an extensively instrumented B-57B aircraft are summarized. Turbulence samples were obtained under diverse conditions including mountain waves, jet streams, upper level fronts and troughs, and low altitude mechanical and thermal turbulence. CAT was encouraged on 20 flights comprising 77 data runs. In all, approximately 4335 km were flown in light turbulence, 1415 km in moderate turbulence, and 255 km in severe turbulence during the program. The flight planning, operations, and turbulence forecasting aspects conducted with the B-57B aircraft are presented.

  14. Air flow assisted ionization for remote sampling of ambient mass spectrometry and its application.

    PubMed

    He, Jiuming; Tang, Fei; Luo, Zhigang; Chen, Yi; Xu, Jing; Zhang, Ruiping; Wang, Xiaohao; Abliz, Zeper

    2011-04-15

    Ambient ionization methods are an important research area in mass spectrometry (MS) analysis. Under ambient conditions, the gas flow and atmospheric pressure significantly affect the transfer and focusing of ions. The design and implementation of air flow assisted ionization (AFAI) as a novel and effective, remote sampling method for ambient mass spectrometry are described herein. AFAI benefits from a high extracting air flow rate. A systematic investigation of the extracting air flow in the AFAI system has been carried out, and it has been demonstrated not only that it plays a role in the effective capture and remote transport of charged droplets, but also that it promotes desolvation and ion formation, and even prevents ion fragmentation during the ionization process. Moreover, the sensitivity of remote sampling ambient MS analysis was improved significantly by the AFAI method. Highly polar and nonpolar molecules, including dyes, pharmaceutical samples, explosives, drugs of abuse, protein and volatile compounds, have been successfully analyzed using AFAI-MS. The successful application of the technique to residue detection on fingers, large object analysis and remote monitoring in real time indicates its potential for the analysis of a variety of samples, especially large objects. The ability to couple this technique with most commercially available MS instruments with an API interface further enhances its broad applicability.

  15. Magnetic bead and gold nanoparticle probes based immunoassay for β-casein detection in bovine milk samples.

    PubMed

    Li, Y S; Meng, X Y; Zhou, Y; Zhang, Y Y; Meng, X M; Yang, L; Hu, P; Lu, S Y; Ren, H L; Liu, Z S; Wang, X R

    2015-04-15

    In this work, a double-probe based immunoassay was developed for rapid and sensitive determination of β-casein in bovine milk samples. In the method, magnetic beads (MBs), employed as supports for the immobilization of anti-β-casein polyclonal antibody (PAb), were used as the capture probe. Colloidal gold nanoparticles (AuNPs), employed as a bridge for loading anti-β-casein monoclonal antibody (McAb) and horseradish peroxidase (HRP), were used as the amplification probe. The presence of β-casein causes the sandwich structures of MBs-PAb-β-casein-McAb-AuNPs through the interaction between β-casein and the anti-β-casein antibodies. The HRP, used as an enzymatic-amplified tracer, can catalytically oxidize the substrate 3,3',5,5'-tetramethylbenzidine (TMB), generating optical signals that are proportional to the quantity of β-casein. The linear range of the immunoassay was from 6.5 to 1520ngmL(-1). The limit of detection (LOD) was 4.8ngmL(-1) which was 700 times lower than that of MBs-antibody-HRP based immunoassay and 6-7 times lower than that from the microplate-antibody-HRP based assay. The recoveries of β-casein from bovine milk samples were from 95.0% to 104.3% that had a good correlation coefficient (R(2)=0.9956) with those obtained by an official standard Kjeldahl method. For higher sensitivity, simple sample pretreatment and shorter time requirement of the antigen-antibody reaction, the developed immunoassay demonstrated the viability for detection of β-casein in bovine milk samples. PMID:25522084

  16. Magnetic bead and gold nanoparticle probes based immunoassay for β-casein detection in bovine milk samples.

    PubMed

    Li, Y S; Meng, X Y; Zhou, Y; Zhang, Y Y; Meng, X M; Yang, L; Hu, P; Lu, S Y; Ren, H L; Liu, Z S; Wang, X R

    2015-04-15

    In this work, a double-probe based immunoassay was developed for rapid and sensitive determination of β-casein in bovine milk samples. In the method, magnetic beads (MBs), employed as supports for the immobilization of anti-β-casein polyclonal antibody (PAb), were used as the capture probe. Colloidal gold nanoparticles (AuNPs), employed as a bridge for loading anti-β-casein monoclonal antibody (McAb) and horseradish peroxidase (HRP), were used as the amplification probe. The presence of β-casein causes the sandwich structures of MBs-PAb-β-casein-McAb-AuNPs through the interaction between β-casein and the anti-β-casein antibodies. The HRP, used as an enzymatic-amplified tracer, can catalytically oxidize the substrate 3,3',5,5'-tetramethylbenzidine (TMB), generating optical signals that are proportional to the quantity of β-casein. The linear range of the immunoassay was from 6.5 to 1520ngmL(-1). The limit of detection (LOD) was 4.8ngmL(-1) which was 700 times lower than that of MBs-antibody-HRP based immunoassay and 6-7 times lower than that from the microplate-antibody-HRP based assay. The recoveries of β-casein from bovine milk samples were from 95.0% to 104.3% that had a good correlation coefficient (R(2)=0.9956) with those obtained by an official standard Kjeldahl method. For higher sensitivity, simple sample pretreatment and shorter time requirement of the antigen-antibody reaction, the developed immunoassay demonstrated the viability for detection of β-casein in bovine milk samples.

  17. Ruthenium(II) and osmium(II) vinyl complexes as highly sensitive and selective chromogenic and fluorogenic probes for the sensing of carbon monoxide in air.

    PubMed

    Toscani, Anita; Marín-Hernández, Cristina; Moragues, María E; Sancenón, Félix; Dingwall, Paul; Brown, Neil J; Martínez-Máñez, Ramón; White, Andrew J P; Wilton-Ely, James D E T

    2015-10-01

    The detection of carbon monoxide in solution and air has been achieved using simple, inexpensive systems based on the vinyl complexes [M(CHCHR)Cl(CO)(BTD)(PPh3 )2 ] (R=aryl, BTD=2,1,3-benzothiadiazole). Depending on the nature of the vinyl group, chromogenic and fluorogenic responses signalled the presence of this odourless, tasteless, invisible, and toxic gas. Solutions of the complexes in CHCl3 underwent rapid change between easily differentiated colours when exposed to air samples containing CO. More significantly, the adsorption of the complexes on silica produced colorimetric probes for the naked-eye detection of CO in the gas phase. Structural data for key species before and after the addition of CO were obtained by means of single X-ray diffraction studies. In all cases, the ruthenium and osmium vinyl complexes studied showed a highly selective response to CO with exceptionally low detection limits. Naked-eye detection of CO at concentrations as low as 5 ppb in air was achieved with the onset of toxic levels (i.e., 100 ppm), thus resulting in a remarkably clear colour change. Moreover, complexes bearing pyrenyl, naphthyl, and phenanthrenyl moieties were fluorescent, and greater sensitivities were achieved (through turn-on emission fluorescence) in the presence of CO both in solution and air. This behaviour was explored computationally using time-dependent density functional theory (TDDFT) experiments. In addition, the systems were shown to be selective for CO over all other gases tested, including water vapour and common organic solvents. Supporting the metal complexes on cellulose strips for use in an existing optoelectronic device allows numerical readings for the CO concentration to be obtained and provision of an alarm system.

  18. Ruthenium(II) and osmium(II) vinyl complexes as highly sensitive and selective chromogenic and fluorogenic probes for the sensing of carbon monoxide in air.

    PubMed

    Toscani, Anita; Marín-Hernández, Cristina; Moragues, María E; Sancenón, Félix; Dingwall, Paul; Brown, Neil J; Martínez-Máñez, Ramón; White, Andrew J P; Wilton-Ely, James D E T

    2015-10-01

    The detection of carbon monoxide in solution and air has been achieved using simple, inexpensive systems based on the vinyl complexes [M(CHCHR)Cl(CO)(BTD)(PPh3 )2 ] (R=aryl, BTD=2,1,3-benzothiadiazole). Depending on the nature of the vinyl group, chromogenic and fluorogenic responses signalled the presence of this odourless, tasteless, invisible, and toxic gas. Solutions of the complexes in CHCl3 underwent rapid change between easily differentiated colours when exposed to air samples containing CO. More significantly, the adsorption of the complexes on silica produced colorimetric probes for the naked-eye detection of CO in the gas phase. Structural data for key species before and after the addition of CO were obtained by means of single X-ray diffraction studies. In all cases, the ruthenium and osmium vinyl complexes studied showed a highly selective response to CO with exceptionally low detection limits. Naked-eye detection of CO at concentrations as low as 5 ppb in air was achieved with the onset of toxic levels (i.e., 100 ppm), thus resulting in a remarkably clear colour change. Moreover, complexes bearing pyrenyl, naphthyl, and phenanthrenyl moieties were fluorescent, and greater sensitivities were achieved (through turn-on emission fluorescence) in the presence of CO both in solution and air. This behaviour was explored computationally using time-dependent density functional theory (TDDFT) experiments. In addition, the systems were shown to be selective for CO over all other gases tested, including water vapour and common organic solvents. Supporting the metal complexes on cellulose strips for use in an existing optoelectronic device allows numerical readings for the CO concentration to be obtained and provision of an alarm system. PMID:26270512

  19. [Analysis of polycyclic aromatic hydrocarbons in air samples by gas chromatography-triple quadrupole mass spectrometry].

    PubMed

    Zhao, Bo; Li, Yuqing; Zhang, Sukun; Han, Jinglei; Xu, Zhencheng; Fang, Jiande

    2014-09-01

    A method of gas chromatography coupled to triple quadrupole tandem mass spectrometry (GC-MS/MS) has been optimized for the determination of polycyclic aromatic hydrocarbons (PAHs) in air samples. In the analysis step, isotope dilution was introduced to the quantification of PAHs. The GC-MS/MS method was applied to the analysis of the real air samples around a big petrochemical power plant in South China. The results were compared with those obtained by gas chromatography coupled to mass spectrometry (GC-MS). The results showed that better selectivity and sensitivity were obtained by GC-MS/MS. It was found that the external standard of deuterated-PAHs and internal standard of hexamethyl benzene were disturbed seriously with GC-MS, and the problems were both solved effectively by GC-MS/MS. Therefore more accurate quantification results of PAHs were obtained with GC-MS/MS. For the analysis of real samples, the RSDs of relative response factors ranged from 2.60% to 15.6% in standard curves; the recoveries of deuterated-PAHs ranged from 55.2% to 82.3%; the recoveries of spiked samples ranged from 98.9% to 111%; the RSDs of parallel specimens ranged from 6.50% to 18.4%; the concentrations of field blank samples ranged from not detected to 44.3 pg/m3; and the concentrations of library blank samples ranged from not detected to 36.5 pg/m3. The study indicated that the application of GC-MS/MS on the analysis of PAHs in air samples was recommended. PMID:25752088

  20. Experiments probing the influence of air exchange rates on secondary organic aerosols derived from indoor chemistry

    NASA Astrophysics Data System (ADS)

    Weschler, Charles J.; Shields, Helen C.

    Reactions between ozone and terpenes have been shown to increase the concentrations of submicron particles in indoor settings. The present study was designed to examine the influence of air exchange rates on the concentrations of these secondary organic aerosols as well as on the evolution of their particle size distributions. The experiments were performed in a manipulated office setting containing a constant source of d-limonene and an ozone generator that was remotely turned "on" or "off" at 6 h intervals. The particle number concentrations were monitored using an optical particle counter with eight-channels ranging from 0.1-0.2 to>2.0 μm diameter. The air exchange rates during the experiments were either high (working hours) or low (non-working hours) and ranged from 1.6 to>12 h -1, with intermediate exchange rates. Given the emission rates of ozone and d-limonene used in these studies, at an air exchange rate of 1.6 h -1 particle number concentration in the 0.1-0.2 μm size-range peaked 1.2 h after the ozone generator was switched on. In the ensuing 4.8 h particle counts increased in successive size-ranges up to the 0.5-0.7 μm diameter range. At higher air exchange rates, the resulting concentrations of total particles and particle mass (calculated from particle counts) were smaller, and at exchange rates exceeding 12 h -1, no excess particle formation was detectable with the instrument used in this study. Particle size evolved through accretion and, in some cases, coagulation. There was evidence for coagulation among particles in the smallest size-range at low air exchange rates (high particle concentrations) but no evidence of coagulation was apparent at higher air exchange rates (lower particle concentrations). At higher air exchange rates the particle count or size distributions were shifted towards smaller particle diameters and less time was required to achieve the maximum concentration in each of the size-ranges where discernable particle growth

  1. Analysis of a workplace air particulate sample by synchronous luminescence and room-temperature phosphorescence

    SciTech Connect

    Vo-Dinh, T.; Gammage, R.B.; Martinez, P.R.

    1981-02-01

    An analysis of a XAD-2 resin extract of a particulate air sample collected at an industrial environment was conducted by use of two simple spectroscopic methods performed at ambient temperature, the synchronous luminescence and room-temperature phosphorescence techniques. Results of the analysis of 13 polynuclear aromatic compounds including anthracene, benzo(a)pyrene, benzo(e)pyrene, 2,3-benzofluorene, chrysene, 1,2,5,6-dibenzanthracene, dibenzthiophene, fluoranthene, fluorene, phenanthrene, perylene, pyrene, and tetracene were reported.

  2. STS-65 Commander Cabana and PLC Hieb take air sample at IML-2 Rack 7 NIZEMI

    NASA Technical Reports Server (NTRS)

    1994-01-01

    STS-65 Commander Robert D. Cabana (right) and Payload Commander (PLC) Richard J. Hieb take an air sample inside the International Microgravity Laboratory 2 (IML-2) spacelab science module. The two crewmembers are in front of Rack 7 which contains the large isothermal furnace (LIF) and slow rotating centrifuge microscope (NIZEMI). The photo was among the first group released by NASA following the two-week IML-2 mission aboard the Space Shuttle Columbia, Orbiter Vehicle (OV) 102.

  3. Use of the 1‐mm micro‐probe for metabolic analysis on small volume biological samples

    PubMed Central

    Serkova, Natalie J.; Freund, Amy S.; Brown, Jaimi L.

    2008-01-01

    Abstract Endogenous metabolites are promising diagnostic end‐points in cancer research. Clinical application of high‐resolution NMR spectroscopy is often limited by extremely low volumes of human specimens. In the present study, the use of the Bruker 1‐mm high‐resolution TXI micro‐probe was evaluated in the elucidation of metabolic profiles for three different clinical applications with limited sample sizes (body fluids, isolated cells and tissue biopsies). Sample preparation and 1H‐NMR metabolite quantification protocols were optimized for following oncology‐oriented applications: (i) to validate the absolute concentrations of citrate and spermine in human expressed prostatic specimens (EPS volumes 5 to 10 μl: prostate cancer application); (ii) to establish the metabolic profile of isolated human lymphocytes (total cell count 4 = 106: chronic myelogenous leukaemia application); (iii) to assess the metabolic composition of human head‐and‐neck cancers from mouse xenografts (biopsy weights 20 to 70 mg: anti‐cancer treatment application). In this study, the use of the Bruker 1‐mm micro‐probe provides a convenient way to measure and quantify endogenous metabolic profiles of samples with a very low volume/weight/cell count. PMID:19267884

  4. Dipole-dipole interactions in solution mixtures probed by two-dimensional synchronous spectroscopy based on orthogonal sample design scheme.

    PubMed

    Li, Hui-zhen; Tao, Dong-liang; Qi, Jian; Wu, Jin-guang; Xu, Yi-zhuang; Noda, Isao

    2014-04-24

    Two-dimensional (2D) synchronous spectroscopy together with a new approach called "Orthogonal Sample Design Scheme" was used to study the dipole-dipole interactions in two representative ternary chemical systems (N,N-dimethyllformamide (DMF)/CH3COOC2H5/CCl4 and C60/CH3COOC2H5/CCl4). For the first system, dipole-dipole interactions among carbonyl groups from DMF and CH3COOC2H5 are characterized by using the cross peak in 2D Fourier Transform Infrared Radiation (FT-IR) spectroscopy. For the second system, intermolecular interaction among π-π transition from C60 and vibration transition from the carbonyl band of ethyl acetate is probed by using 2D spectra. The experimental results demonstrate that "Orthogonal Sample Design Scheme" can effectively remove interfering part that is not relevant to intermolecular interaction. Additional procedures are carried out to preclude the possibilities of producing interfering cross peaks by other reasons, such as experimental errors. Dipole-dipole interactions that manifest in the form of deviation from the Beer-Lambert law generate distinct cross peaks visualized in the resultant 2D synchronous spectra of the two chemical systems. This work demonstrates that 2D synchronous spectra coupled with orthogonal sample design scheme provide us an applicable experimental approach to probing and characterizing dipole-dipole interactions in complex molecular systems. PMID:24582337

  5. Enzyme-antibody dual labeled gold nanoparticles probe for ultrasensitive detection of κ-casein in bovine milk samples.

    PubMed

    Li, Y S; Zhou, Y; Meng, X Y; Zhang, Y Y; Liu, J Q; Zhang, Y; Wang, N N; Hu, P; Lu, S Y; Ren, H L; Liu, Z S

    2014-11-15

    A dual labeled probe was synthesized by coating gold nanoparticles (AuNPs) with anti-κ-CN monoclonal antibody (McAb) and horseradish peroxidase (HRP) enzyme on their surface. The McAb was used as detector and HRP was used as label for signal amplification catalytically oxidize the substrate. AuNPs were used as bridges between the McAb and HRP. Based on the probe, an immunoassay was developed for ultrasensitive detection of κ-CN in bovine milk samples. The assay has a linear response range within 4.2-560 ng mL(-1). The limit of detection (LOD) was 4.2 ng mL(-1) which was 10 times lower than that of traditional McAb-HRP based ELISA. The recoveries of κ-CN from three brand bovine milk samples were from 95.8% to 111.0% that had a good correlation (R(2)=0.998) with those obtained by official standard Kjeldahl method. For higher sensitivity and as simple as the traditional ELISA, the developed immunoassay could provide an alternative approach for ultrasensitive detection of κ-CN in bovine milk sample. PMID:24892786

  6. Organic toxicants in air and precipitation samples from the Lake Michigan area

    SciTech Connect

    Harlin, K.S.; Sweet, C.W.; Gatz, D.F.

    1995-12-31

    Measurements of PCBs, organochlorine insecticides, PAHs, and atrazine were made in air and precipitation samples collected at regionally-representative locations near Lake Michigan from 1992-1995. The purpose of these measurements was to provide information needed to estimate the atmospheric deposition of organic toxicants to Lake Michigan. Twenty-four hour samples of airborne particles and vapor were collected at 12-day intervals on quartz fiber filters and XAD-2 resin vapor traps using modified high volume sampleers. Twenty-eight day precipitation samples were collected using wet-only samplers with stainless steel sampling surfaces and heated enclosure containing an XAD-2 resin adsorption column. Samples were Soxhlet extracted for 24 hours with hexane:acetone (1:1), and concentrated by rotary evaporation. Interferences were removed and the samples separated into analyte groups by silica gel chromatography. Four fractions were collected for GC-ECD and GC-Ion Trap MS analyses. Ten pesticides, 101 PCB congeners, 18 PAHs, and atrazine were measured in all samples. Quality assurance was maintained by including field duplicate samples, field blanks, alboratory matrix spikes, laboratory matrix blanks, and laboratory surrogate spikes in the sampling/analytical protocols. Preliminary results from urban and remote sites show geographical variations in the concentrations of some toxicants due to contributions from local sources. For all sites the total PCB levels are higher in the vapor phase than the particulate phase and show strong seasonal variations. Seasonal variations were also observed for several pesticides.

  7. Technical assessment of TRUSAF for compliance with work place air sampling. Revision 1

    SciTech Connect

    Butler, J.D.

    1995-01-23

    The purpose of this Technical Work Document is to satisfy WHC-CM-1-6, the ``WHC Radiological Control Manual.`` This first revision of the original Supporting Document covers the period from January 1, 1994 to December 31, 1994. WHC-CM-1-6 is the primary guidance for radiological control at Westinghouse Hanford Company (WHC). As such, it complies with Title 10, Part 835 of the Code of Federal Regulations. In addition to WHC-CM-1-6, there is HSRCM-1, the ``Hanford Site Radiological Control Manual`` and several Department of Energy (DOE) Orders, national consensus standards, and reports that provide criteria, standards, and requirements for workplace air sampling programs. This document provides a summary of these, as they apply to WHC facility workplace air sampling programs. this document also provides an evaluation of the compliance of the TRUSAF workplace air sampling program to the criteria, standards, and requirements and documents. Where necessary, it also indicates changes needed to bring specific locations into compliance.

  8. Determination of methyl bromide in air samples by headspace gas chromatography

    SciTech Connect

    Woodrow, J.E.; McChesney, M.M.; Seiber, J.N.

    1988-03-01

    Methyl bromide is extensively used in agriculture (4 x 10/sup 6/ kg for 1985 in California alone as a fumigant to control nematodes, weeds, and fungi in soil and insect pests in harvested grains and nuts. Given its low boiling point (3.8/sup 0/C) and high vapor pressure (approx. 1400 Torr at 20/sup 0/C), methyl bromide will readily diffuse if not rigorously contained. Methods for determining methyl bromide and other halocarbons in air vary widely. A common practice is to trap the material from air on an adsorbent, such as polymeric resins, followed by thermal desorption either directly into the analytical instrumentation or after intermediary cryofocusing. While in some cases analytical detection limits were reasonable (parts per million range), many of the published methods were labor intensive and required special handling techniques that precluded high sample throughput. They describe here a method for the sampling and analysis of airborne methyl bromide that was designed to handle large numbers of samples through automating some critical steps of the analysis. The result was a method that allowed around-the-clock operation with a minimum of operator attention. Furthermore, the method was not specific to methyl bromide and could be used to determine other halocarbons in air.

  9. Polyurethane foam (PUF) disks passive air samplers: wind effect on sampling rates.

    PubMed

    Tuduri, Ludovic; Harner, Tom; Hung, Hayley

    2006-11-01

    Different passive sampler housings were evaluated for their wind dampening ability and how this might translate to variability in sampler uptake rates. Polyurethane foam (PUF) disk samplers were used as the sampling medium and were exposed to a PCB-contaminated atmosphere in a wind tunnel. The effect of outside wind speed on PUF disk sampling rates was evaluated by exposing polyurethane foam (PUF) disks to a PCB-contaminated air stream in a wind tunnel over air velocities in the range 0 to 1.75 m s-1. PUF disk sampling rates increased gradually over the range 0-0.9 m s-1 at approximately 4.5-14.6 m3 d-1 and then increased sharply to approximately 42 m3 d-1 at approximately 1.75 m s-1 (sum of PCBs). The results indicate that for most field deployments the conventional 'flying saucer' housing adequately dampens the wind effect and will yield approximately time-weighted air concentrations.

  10. Microbial Air and Surface Monitoring Results from International Space Station Samples

    NASA Technical Reports Server (NTRS)

    Ott, C. Mark; Bruce, Rebekah J.; Castro, Victoria A.; Novikova, Natalia D.; Pierson, D. L.

    2005-01-01

    Over the course of long-duration spaceflight, spacecraft develop a microbial ecology that directly interacts with the crew of the vehicle. While most microorganisms are harmless or beneficial to the inhabitants of the vehicle, the presence of medically significant organisms appearing in this semi-closed environment could adversely affect crew health and performance. The risk of exposure of the crew to medically significant organisms during a mission is estimated using information gathered during nominal and contingency environmental monitoring. Analysis of the air and surface microbiota in the habitable compartments of the International Space Station (ISS) over the last four years indicate a high presence of Staphylococcus species reflecting the human inhabitants of the vehicle. Generally, air and surface microbial concentrations are below system design specifications, suggesting a lower risk of contact infection or biodegradation. An evaluation of sample frequency indicates a decrease in the identification of new species, suggesting a lower potential for unknown microorganisms to be identified. However, the opportunistic pathogen, Staphylococcus aureus, has been identified in 3 of the last 5 air samples and 5 of the last 9 surface samples. In addition, 47% of the coagulase negative Staphylococcus species that were isolated from the crew, ISS, and its hardware were found to be methicillin resistance. In combination, these observations suggest the potential of methicillin resistant infectious agents over time.

  11. Technical assessment of workplace air sampling requirements at tank farm facilities. Revision 1

    SciTech Connect

    Olsen, P.A.

    1994-09-21

    WHC-CM-1-6 is the primary guidance for radiological control at Westinghouse Hanford Company (WHC). It was written to implement DOE N 5480.6 ``US Department of Energy Radiological Control Manual`` as it applies to programs at Hanford which are now overseen by WHC. As such, it complies with Title 10, Part 835 of the Code of Federal Regulations. In addition to WHC-CM-1-6, there is HSRCM-1, the ``Hanford Site Radiological Control Manual`` and several Department of Energy (DOE) Orders, national consensus standards, and reports that provide criteria, standards, and requirements for workplace air sampling programs. This document provides a summary of these, as they apply to WHC facility workplace air sampling programs. This document also provides an evaluation of the compliance of Tank Farms` workplace air sampling program to the criteria, standards, and requirements and documents compliance with the requirements where appropriate. Where necessary, it also indicates changes needed to bring specific locations into compliance.

  12. A new analysis system for whole air sampling: description and results from 2013 SENEX

    NASA Astrophysics Data System (ADS)

    Lerner, B. M.; Gilman, J.; Dumas, M.; Hughes, D.; Jaksich, A.; Hatch, C. D.; Graus, M.; Warneke, C.; Apel, E. C.; Hornbrook, R. S.; Holloway, J. S.; De Gouw, J. A.

    2014-12-01

    Accurate measurement of volatile organic compounds (VOCs) in the troposphere is critical for the understanding of emissions and physical and chemical processes that can impact both air quality and climate. Airborne VOC measurements have proven especially challenging due to the requirement of both high sensitivity (pptv) and short sample collection times (≤15 s) to maximize spatial resolution and sampling frequency for targeted plume analysis. The use of stainless steel canisters to collect whole air samples (WAS) for post-flight analysis has been pioneered by the groups of D. Blake and E. Atlas [Blake et al., 1992; Atlas et al., 1993]. For the 2013 Southeast Nexus Study (SENEX), the NOAA ESRL CSD laboratory undertook WAS measurements for the first time. This required the construction of three new, highly-automated, and field-portable instruments designed to sample, analyze, and clean the canisters for re-use. Analysis was performed with a new custom-built gas chromatograph-mass spectrometer system. The instrument pre-concentrates analyte cryostatically into two parallel traps by means of a Stirling engine, a novel technique which obviates the need for liquid nitrogen to reach trapping temperatures of -175C. Here we present an evaluation of the retrieval of target VOC species from WAS canisters. We discuss the effects of humidity and sample age on the analyte, particularly upon C8+ alkane and aromatic species and biogenic species. Finally, we present results from several research flights during SENEX that targeted emissions from oil/natural gas production.

  13. An approach to area sampling and analysis for total isocyanates in workplace air.

    PubMed

    Key-Schwartz, R J; Tucker, S P

    1999-01-01

    An approach to sampling and analysis for total isocyanates (monomer plus any associated oligomers of a given isocyanate) in workplace air has been developed and evaluated. Based on a method developed by the Occupational Health Laboratory, Ontario Ministry of Labour, Ontario, Canada, isocyanates present in air are derivatized with a fluorescent reagent, tryptamine, in an impinger and subsequently analyzed via high-performance liquid chromatography (HPLC) with fluorescence detection. Excitation and emission wavelengths are set at 275 and 320 nm, respectively. A modification to the Ontario method was made in the replacement of the recommended impinger solvents (acetonitrile and 2,2,4-trimethylpentane) with dimethyl sulfoxide (DMSO). DMSO has the advantages of being compatible with reversedphase HPLC and not evaporating during sampling, as do the more volatile solvents used in the Ontario method. DMSO also may dissolve aerosol particles more efficiently during sampling than relatively nonpolar solvents. Several formulations containing diisocyanate prepolymers have been tested with this method in the laboratory. This method has been issued as National Institute for Occupational Safety and Health (NIOSH) Method 5522 in the first supplement to the fourth edition of the NIOSH Manual of Analytical Methods. This method is recommended for area sampling only due to possible hazards from contact with DMSO solutions containing isocyanate derivatives. The limits of detection are 0.1 microgram/sample for 2,4-toluene diisocyanate, 0.2 microgram/sample for 2,6-toluene diisocyanate, 0.3 microgram/sample for methylene bisphenyl diisocyanate, and 0.2 microgram/sample for 1,6-hexamethylene diisocyanate.

  14. Water temperature effect on upward air-water flow in a vertical pipe: Local measurements database using four-sensor conductivity probes and LDA

    NASA Astrophysics Data System (ADS)

    Monrós-Andreu, G.; Chiva, S.; Martínez-Cuenca, R.; Torró, S.; Juliá, J. E.; Hernández, L.; Mondragón, R.

    2013-04-01

    Experimental work was carried out to study the effects of temperature variation in bubbly, bubbly to slug transition. Experiments were carried out in an upward air-water flow configuration. Four sensor conductivity probes and LDA techniques was used together for the measurement of bubble parameters. The aim of this paper is to provide a bubble parameter experimental database using four-sensor conductivity probes and LDA technique for upward air-water flow at different temperatures and also show transition effect in different temperatures under the boiling point.

  15. Passive sampling of glycol ethers and their acetates in indoor air.

    PubMed

    Plaisance, H; Desmettres, P; Leonardis, T; Pennequin-Cardinal, A; Locoge, N; Galloo, J-C

    2008-04-01

    This study examined the performances of a thermal desorbable radial diffusive sampler for the weekly measurement of eight glycol ethers in indoor air and described the results of an application of this method carried out as part of HABIT'AIR Nord - Pas de Calais program for the air monitoring of these compounds in sixty homes located in northern France. The target compounds were the four glycol ethers banned from sale to the public in France since the 1990s (i.e. 2-methoxy ethanol, 2-ethoxy ethanol and their acetates) and four other glycol ethers derivatives of which the use have increased considerably (i.e. 1-methoxy-2-propanol, 2-butoxy ethanol and their acetates).A test program was carried out with the aim of validating the passive sampling method. It allowed the estimation of all the parameters of a method for each compound (calibration, analytical precision, desorption efficiency, sampling rate in standard conditions, detection limit and stability of sample before and after exposure), the examination of the influence of environmental factors on the sampling rate by some exposure chamber experiments and the assessment of the uncertainty of the measurements. The results of this evaluation demonstrated that the method has turned out to be suitable for six out of eight glycol ethers tested. The effect of the environmental factors on the sampling rates was the main source of measurement uncertainty. The measurements done in sixty homes revealed a relative abundance of 1-methoxy-2-propanol that was found in more than two thirds of homes at concentration levels of 4.5 microg m(-3) on average (a maximum value of 28 microg m(-3)). 1-methoxy-2-propanol acetate and 2-butoxy ethanol were also detected, but less frequently (in 19% of homes) and with the concentrations below 12 microg m(-3). The highest levels of these glycol ethers appear to be in relation to the emissions occurring at the time of cleaning tasks.

  16. Airborne detection and quantification of swine influenza a virus in air samples collected inside, outside and downwind from swine barns.

    PubMed

    Corzo, Cesar A; Culhane, Marie; Dee, Scott; Morrison, Robert B; Torremorell, Montserrat

    2013-01-01

    Airborne transmission of influenza A virus (IAV) in swine is speculated to be an important route of virus dissemination, but data are scarce. This study attempted to detect and quantify airborne IAV by virus isolation and RRT-PCR in air samples collected under field conditions. This was accomplished by collecting air samples from four acutely infected pig farms and locating air samplers inside the barns, at the external exhaust fans and downwind from the farms at distances up to 2.1 km. IAV was detected in air samples collected in 3 out of 4 farms included in the study. Isolation of IAV was possible from air samples collected inside the barn at two of the farms and in one farm from the exhausted air. Between 13% and 100% of samples collected inside the barns tested RRT-PCR positive with an average viral load of 3.20E+05 IAV RNA copies/m³ of air. Percentage of exhaust positive air samples also ranged between 13% and 100% with an average viral load of 1.79E+04 RNA copies/m³ of air. Influenza virus RNA was detected in air samples collected between 1.5 and 2.1 Km away from the farms with viral levels significantly lower at 4.65E+03 RNA copies/m³. H1N1, H1N2 and H3N2 subtypes were detected in the air samples and the hemagglutinin gene sequences identified in the swine samples matched those in aerosols providing evidence that the viruses detected in the aerosols originated from the pigs in the farms under study. Overall our results indicate that pigs can be a source of IAV infectious aerosols and that these aerosols can be exhausted from pig barns and be transported downwind. The results from this study provide evidence of the risk of aerosol transmission in pigs under field conditions.

  17. Airborne Detection and Quantification of Swine Influenza A Virus in Air Samples Collected Inside, Outside and Downwind from Swine Barns

    PubMed Central

    Corzo, Cesar A.; Culhane, Marie; Dee, Scott; Morrison, Robert B.; Torremorell, Montserrat

    2013-01-01

    Airborne transmission of influenza A virus (IAV) in swine is speculated to be an important route of virus dissemination, but data are scarce. This study attempted to detect and quantify airborne IAV by virus isolation and RRT-PCR in air samples collected under field conditions. This was accomplished by collecting air samples from four acutely infected pig farms and locating air samplers inside the barns, at the external exhaust fans and downwind from the farms at distances up to 2.1 km. IAV was detected in air samples collected in 3 out of 4 farms included in the study. Isolation of IAV was possible from air samples collected inside the barn at two of the farms and in one farm from the exhausted air. Between 13% and 100% of samples collected inside the barns tested RRT-PCR positive with an average viral load of 3.20E+05 IAV RNA copies/m3 of air. Percentage of exhaust positive air samples also ranged between 13% and 100% with an average viral load of 1.79E+04 RNA copies/m3 of air. Influenza virus RNA was detected in air samples collected between 1.5 and 2.1 Km away from the farms with viral levels significantly lower at 4.65E+03 RNA copies/m3. H1N1, H1N2 and H3N2 subtypes were detected in the air samples and the hemagglutinin gene sequences identified in the swine samples matched those in aerosols providing evidence that the viruses detected in the aerosols originated from the pigs in the farms under study. Overall our results indicate that pigs can be a source of IAV infectious aerosols and that these aerosols can be exhausted from pig barns and be transported downwind. The results from this study provide evidence of the risk of aerosol transmission in pigs under field conditions. PMID:23951164

  18. Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air Part 1: Sorbent-based air monitoring options.

    PubMed

    Woolfenden, Elizabeth

    2010-04-16

    Sorbent tubes/traps are widely used in combination with gas chromatographic (GC) analytical methods to monitor the vapour-phase fraction of organic compounds in air. Target compounds range in volatility from acetylene and freons to phthalates and PCBs and include apolar, polar and reactive species. Airborne vapour concentrations will vary depending on the nature of the location, nearby pollution sources, weather conditions, etc. Levels can range from low percent concentrations in stack and vent emissions to low part per trillion (ppt) levels in ultra-clean outdoor locations. Hundreds, even thousands of different compounds may be present in any given atmosphere. GC is commonly used in combination with mass spectrometry (MS) detection especially for environmental monitoring or for screening uncharacterised workplace atmospheres. Given the complexity and variability of organic vapours in air, no one sampling approach suits every monitoring scenario. A variety of different sampling strategies and sorbent media have been developed to address specific applications. Key sorbent-based examples include: active (pumped) sampling onto tubes packed with one or more sorbents held at ambient temperature; diffusive (passive) sampling onto sorbent tubes/cartridges; on-line sampling of air/gas streams into cooled sorbent traps; and transfer of air samples from containers (canisters, Tedlar) bags, etc.) into cooled sorbent focusing traps. Whichever sampling approach is selected, subsequent analysis almost always involves either solvent extraction or thermal desorption (TD) prior to GC(/MS) analysis. The overall performance of the air monitoring method will depend heavily on appropriate selection of key sampling and analytical parameters. This comprehensive review of air monitoring using sorbent tubes/traps is divided into 2 parts. (1) Sorbent-based air sampling option. (2) Sorbent selection and other aspects of optimizing sorbent-based air monitoring methods. The paper presents

  19. Biomimetic air sampling for detection of low concentrations of molecules and bioagents : LDRD 52744 final report.

    SciTech Connect

    Hughes, Robert Clark

    2003-12-01

    Present methods of air sampling for low concentrations of chemicals like explosives and bioagents involve noisy and power hungry collectors with mechanical parts for moving large volumes of air. However there are biological systems that are capable of detecting very low concentrations of molecules with no mechanical moving parts. An example is the silkworm moth antenna which is a highly branched structure where each of 100 branches contains about 200 sensory 'hairs' which have dimensions of 2 microns wide by 100 microns long. The hairs contain about 3000 pores which is where the gas phase molecules enter the aqueous (lymph) phase for detection. Simulations of diffusion of molecules indicate that this 'forest' of hairs is 'designed' to maximize the extraction of the vapor phase molecules. Since typical molecules lose about 4 decades in diffusion constant upon entering the liquid phase, it is important to allow air diffusion to bring the molecule as close to the 'sensor' as possible. The moth acts on concentrations as low as 1000 molecules per cubic cm. (one part in 1e16). A 3-D collection system of these dimensions could be fabricated by micromachining techniques available at Sandia. This LDRD addresses the issues involved with extracting molecules from air onto micromachined structures and then delivering those molecules to microsensors for detection.

  20. Urban air quality assessment using monitoring data of fractionized aerosol samples, chemometrics and meteorological conditions.

    PubMed

    Yotova, Galina I; Tsitouridou, Roxani; Tsakovski, Stefan L; Simeonov, Vasil D

    2016-01-01

    The present article deals with assessment of urban air by using monitoring data for 10 different aerosol fractions (0.015-16 μm) collected at a typical urban site in City of Thessaloniki, Greece. The data set was subject to multivariate statistical analysis (cluster analysis and principal components analysis) and, additionally, to HYSPLIT back trajectory modeling in order to assess in a better way the impact of the weather conditions on the pollution sources identified. A specific element of the study is the effort to clarify the role of outliers in the data set. The reason for the appearance of outliers is strongly related to the atmospheric condition on the particular sampling days leading to enhanced concentration of pollutants (secondary emissions, sea sprays, road and soil dust, combustion processes) especially for ultra fine and coarse particles. It is also shown that three major sources affect the urban air quality of the location studied-sea sprays, mineral dust and anthropogenic influences (agricultural activity, combustion processes, and industrial sources). The level of impact is related to certain extent to the aerosol fraction size. The assessment of the meteorological conditions leads to defining of four downwind patterns affecting the air quality (Pelagic, Western and Central Europe, Eastern and Northeastern Europe and Africa and Southern Europe). Thus, the present study offers a complete urban air assessment taking into account the weather conditions, pollution sources and aerosol fractioning.

  1. Sampling artifacts in active air sampling of semivolatile organic contaminants: Comparing theoretical and measured artifacts and evaluating implications for monitoring networks.

    PubMed

    Melymuk, Lisa; Bohlin-Nizzetto, Pernilla; Prokeš, Roman; Kukučka, Petr; Klánová, Jana

    2016-10-01

    The effects of sampling artifacts are often not fully considered in the design of air monitoring with active air samplers. Semivolatile organic contaminants (SVOCs) are particularly vulnerable to a range of sampling artifacts because of their wide range of gas-particle partitioning and degradation rates, and these can lead to erroneous measurements of air concentrations and a lack of comparability between sites with different environmental and sampling conditions. This study used specially adapted filter-sorbent sampling trains in three types of active air samplers to investigate breakthrough of SVOCs, and the possibility of other sampling artifacts. Breakthrough volumes were experimentally determined for a range of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and polybrominated diphenyl ethers (PBDEs) in sampling volumes from 300 to 10,000 m(3), and sampling durations of 1-7 days. In parallel, breakthrough was estimated based on theoretical sorbent-vapor pressure relationships. The comparison of measured and theoretical determinations of breakthrough demonstrated good agreement between experimental and estimated breakthrough volumes, and showed that theoretical breakthrough estimates should be used when developing air monitoring protocols. Significant breakthrough in active air samplers occurred for compounds with vapor pressure >0.5 Pa at volumes <700 m(3). Sample volumes between 700 and 10,000 m(3) may lead to breakthrough for compounds with vapor pressures between 0.005 and 0.5 Pa. Breakthrough is largely driven by sample volume and compound volatility (therefore indirectly by temperature) and is independent of sampler type. The presence of significant breakthrough at "typical" sampling conditions is relevant for air monitoring networks, and may lead to under-reporting of more volatile SVOCs.

  2. Radiological air monitoring and sample analysis research and development progress report. Calendar year, 1992

    SciTech Connect

    Not Available

    1992-12-31

    Sponsored by a Department Of Energy (DOE) research and development grant, the State of Idaho INEL Oversight Program (OP) personnel designed an independent air monitoring system that provides detection of the presence of priority airborne contaminants potentially migrating beyond INEL boundaries. Initial locations for off-site ambient air monitoring stations were chosen in consultation with: DOE and NOAA reports; Mesodif modeling; review of the relevant literature; and communication with private contractors and experts in pertinent fields. Idaho State University (ISU) has initiated an Environmental Monitoring Program (EMP). The EMP provides an independent monitoring function as well as a training ground for students. Students learn research techniques dedicated to environmental studies and learn analytical skills and rules of compliance related to monitoring. ISU-EMP assisted OP in specific aspects of identifying optimum permanent monitoring station locations, and in selecting appropriate sample collection equipment for each station. The authorization to establish, prepare and install sampling devices on selected sites was obtained by OP personnel in conjunction with ISU-EMP personnel. All samples described in this program are collected by OP or ISU-EMP personnel and returned to the ISU for analysis. This report represents the summary of results of those samples collected and analyzed for radioactivity during the year of 1992.

  3. Summary of stationary and personal air sampling measurements made during a plutonium glovebox decommissioning project.

    SciTech Connect

    Munyon, W. J.; Lee, M. B.

    2002-02-01

    Workplace air sampling was performed during the decommissioning of a previously active plutonium glovebox facility located at Argonne National Laboratory. Personal air samplers (PAS) were used to measure breathing zone activity concentrations of workers engaged in size-reducing contaminated gloveboxes. Stationary air samplers (SAS) were used to measure the work area activity concentrations and test their application in providing representative sampling of breathing zone activity concentrations. The relative response of these samplers (PAS:SAS) was tracked during the course of the decommissioning work, with results yielding favorable agreement to within a factor of {+-}5. A cascade impactor was used to determine the particle size distribution of workplace aerosols. The average activity median aerodynamic diameter (AMAD) was estimated to be 3.0 {mu}m, with a corresponding geometric standard deviation of 2.4. A gas-flow proportional counter was utilized to measure the gross alpha activity collected on both the SAS glass fiber and the PAS cellulose fiber filters. A subset of this filter group was subsequently analyzed using an alpha spectrometer post radiochemical processing and isotopic separation. The quantity of alpha activity measured on the SAS filters was generally within {+-}30% of the alpha spectrometry measurements. However, measurements made of the activity present on the PAS cellulose fiber filters were consistently underestimated using a gas-flow proportional counter, suggesting a small correction factor of 15-20% to account for the absorption of alpha particle emissions.

  4. Mass spectrometry of solid samples in open air using combined laser ionization and ambient metastable ionization

    NASA Astrophysics Data System (ADS)

    He, X. N.; Xie, Z. Q.; Gao, Y.; Hu, W.; Guo, L. B.; Jiang, L.; Lu, Y. F.

    2012-01-01

    Mass spectrometry of solid samples in open air was carried out using combined laser ionization and metastable ionization time-of-flight mass spectrometry (LI-MI-TOFMS) in ambient environment for qualitative and semiquantitative (relative analyte information, not absolute information) analysis. Ambient metastable ionization using a direct analysis in realtime (DART) ion source was combined with laser ionization time-of-flight mass spectrometry (LI-TOFMS) to study the effects of combining metastable and laser ionization. A series of metallic samples from the National Institute of Standards and Technology (NIST 494, 495, 498, 499, and 500) and a pure carbon target were characterized using LI-TOFMS in open air. LI-MI-TOFMS was found to be superior to laser-induced breakdown spectroscopy (LIBS). Laser pulse energies between 10 and 200 mJ at the second harmonic (532 nm) of an Nd:YAG laser were applied in the experiment to obtain a high degree of ionization in plasmas. Higher laser pulse energy improves signal intensities of trace elements (such as Fe, Cr, Mn, Ni, Ca, Al, and Ag). Data were analyzed by numerically calculating relative sensitivity coefficients (RSCs) and limit of detections (LODs) from mass spectrometry (MS) and LIBS spectra. Different parameters, such as boiling point, ionization potential, RSC, LOD, and atomic weight, were shown to analyze the ionization and MS detection processes in open air.

  5. Summary of stationary and personal air sampling measurements made during a plutonium glovebox decommissioning project.

    PubMed

    Munyon, W J; Lee, M B

    2002-02-01

    Workplace air sampling was performed during the decommissioning of a previously active plutonium glovebox facility located at Argonne National Laboratory. Personal air samplers (PAS) were used to measure breathing zone activity concentrations of workers engaged in size-reducing contaminated gloveboxes. Stationary air samplers (SAS) were used to measure the work area activity concentrations and test their application in providing representative sampling of breathing zone activity concentrations. The relative response of these samplers (PAS:SAS) was tracked during the course of the decommissioning work, with results yielding favorable agreement to within a factor of +/-5. A cascade impactor was used to determine the particle size distribution of workplace aerosols. The average activity median aerodynamic diameter (AMAD) was estimated to be 3.0 microm, with a corresponding geometric standard deviation of 2.4. A gas-flow proportional counter was utilized to measure the gross alpha activity collected on both the SAS glass fiber and the PAS cellulose fiber filters. A subset of this filter group was subsequently analyzed using an alpha spectrometer post radiochemical processing and isotopic separation. The quantity of alpha activity measured on the SAS filters was generally within +/-30% of the alpha spectrometry measurements. However, measurements made of the activity present on the PAS cellulose fiber filters were consistently underestimated using a gas-flow proportional counter, suggesting a small correction factor of 15-20% to account for the absorption of alpha particle emissions.

  6. Identification of monochloro-nonabromodiphenyl ethers in the air and soil samples from south China.

    PubMed

    Yu, Zhiqiang; Zheng, Kewen; Ren, Guofa; Wang, Decheng; Ma, Shengtao; Peng, Pingan; Wu, Minghong; Sheng, Guoying; Fu, Jiamo

    2011-04-01

    Several studies have indicated that mixed brominated/chlorinated organic compounds could be formed during the thermal process such as the incineration of municipal solid waste and open burning of unregulated e-waste at recycling areas. In this study, air particles and soils from e-waste recycling areas, as well as outdoor and indoor air particles from urban Guangzhou, were collected and pooled for the identification of mixed chlorinated/brominated diphenyl ethers (PXDEs). Three monochloro-nonabromo diphenyl ethers (Cl-nonaBDEs), including 6'-Cl-BDE-206, 5'-Cl-BDE-207, and/or 4'-Cl-BDE-208, were first structurally identified in these air and soil samples. The identification was done by comparison of retention times in chromatograms of pure reference compounds and environmental samples, as well as by comparison with full-scan mass spectra data in electron capture negative ionization mode. Because of their similar physical-chemical properties, 4'-Cl-BDE-208 and 5'-Cl-BDE-207 absolutely coeluted, even on a nonpolar DB-5 column. Further investigation is still needed to clarify these findings. Nevertheless, the results indicated that Cl-nonaBDEs would occur in various environmental matrices. Because the replacement of Br by Cl will change the physical-chemical properties of PBDE analogues, environmental occurrence, fate, and transport, the potential toxicity of PXDEs should be investigated.

  7. Glyphosate-rich air samples induce IL-33, TSLP and generate IL-13 dependent airway inflammation.

    PubMed

    Kumar, Sudhir; Khodoun, Marat; Kettleson, Eric M; McKnight, Christopher; Reponen, Tiina; Grinshpun, Sergey A; Adhikari, Atin

    2014-11-01

    Several low weight molecules have often been implicated in the induction of occupational asthma. Glyphosate, a small molecule herbicide, is widely used in the world. There is a controversy regarding a role of glyphosate in developing asthma and rhinitis among farmers, the mechanism of which is unexplored. The aim of this study was to explore the mechanisms of glyphosate induced pulmonary pathology by utilizing murine models and real environmental samples. C57BL/6, TLR4-/-, and IL-13-/- mice inhaled extracts of glyphosate-rich air samples collected on farms during spraying of herbicides or inhaled different doses of glyphosate and ovalbumin. The cellular response, humoral response, and lung function of exposed mice were evaluated. Exposure to glyphosate-rich air samples as well as glyphosate alone to the lungs increased: eosinophil and neutrophil counts, mast cell degranulation, and production of IL-33, TSLP, IL-13, and IL-5. In contrast, in vivo systemic IL-4 production was not increased. Co-administration of ovalbumin with glyphosate did not substantially change the inflammatory immune response. However, IL-13-deficiency resulted in diminished inflammatory response but did not have a significant effect on airway resistance upon methacholine challenge after 7 or 21 days of glyphosate exposure. Glyphosate-rich farm air samples as well as glyphosate alone were found to induce pulmonary IL-13-dependent inflammation and promote Th2 type cytokines, but not IL-4 for glyphosate alone. This study, for the first time, provides evidence for the mechanism of glyphosate-induced occupational lung disease. PMID:25172162

  8. Glyphosate–rich air samples induce IL–33, TSLP and generate IL–13 dependent airway inflammation

    PubMed Central

    Kumar, Sudhir; Khodoun, Marat; Kettleson, Eric M.; McKnight, Christopher; Reponen, Tiina; Grinshpun, Sergey A.; Adhikari, Atin

    2014-01-01

    Several low weight molecules have often been implicated in the induction of occupational asthma. Glyphosate, a small molecule herbicide, is widely used in the world. There is a controversy regarding a role of glyphosate in developing asthma and rhinitis among farmers, the mechanism of which is unexplored. The aim of this study was to explore the mechanisms of glyphosate induced pulmonary pathology by utilizing murine models and real environmental samples. C57BL/6, TLR4−/−, and IL-13−/− mice inhaled extracts of glyphosate-rich air samples collected on farms during spraying of herbicides or inhaled different doses of glyphosate and ovalbumin. The cellular response, humoral response, and lung function of exposed mice were evaluated. Exposure to glyphosate-rich air samples as well as glyphosate alone to the lungs increased: eosinophil and neutrophil counts, mast cell degranulation, and production of IL-33, TSLP, IL-13, and IL-5. In contrast, in vivo systemic IL-4 production was not increased. Co-administration of ovalbumin with glyphosate did not substantially change the inflammatory immune response. However, IL-13-deficiency resulted in diminished inflammatory response but did not have a significant effect on airway resistance upon methacholine challenge after 7 or 21 days of glyphosate exposure. Glyphosate-rich farm air samples as well as glyphosate alone were found to induce pulmonary IL-13-dependent inflammation and promote Th2 type cytokines, but not IL-4 for glyphosate alone. This study, for the first time, provides evidence for the mechanism of glyphosate-induced occupational lung disease. PMID:25172162

  9. Glyphosate-rich air samples induce IL-33, TSLP and generate IL-13 dependent airway inflammation.

    PubMed

    Kumar, Sudhir; Khodoun, Marat; Kettleson, Eric M; McKnight, Christopher; Reponen, Tiina; Grinshpun, Sergey A; Adhikari, Atin

    2014-11-01

    Several low weight molecules have often been implicated in the induction of occupational asthma. Glyphosate, a small molecule herbicide, is widely used in the world. There is a controversy regarding a role of glyphosate in developing asthma and rhinitis among farmers, the mechanism of which is unexplored. The aim of this study was to explore the mechanisms of glyphosate induced pulmonary pathology by utilizing murine models and real environmental samples. C57BL/6, TLR4-/-, and IL-13-/- mice inhaled extracts of glyphosate-rich air samples collected on farms during spraying of herbicides or inhaled different doses of glyphosate and ovalbumin. The cellular response, humoral response, and lung function of exposed mice were evaluated. Exposure to glyphosate-rich air samples as well as glyphosate alone to the lungs increased: eosinophil and neutrophil counts, mast cell degranulation, and production of IL-33, TSLP, IL-13, and IL-5. In contrast, in vivo systemic IL-4 production was not increased. Co-administration of ovalbumin with glyphosate did not substantially change the inflammatory immune response. However, IL-13-deficiency resulted in diminished inflammatory response but did not have a significant effect on airway resistance upon methacholine challenge after 7 or 21 days of glyphosate exposure. Glyphosate-rich farm air samples as well as glyphosate alone were found to induce pulmonary IL-13-dependent inflammation and promote Th2 type cytokines, but not IL-4 for glyphosate alone. This study, for the first time, provides evidence for the mechanism of glyphosate-induced occupational lung disease.

  10. Sampling size in the verification of manufactured-supplied air kerma strengths

    SciTech Connect

    Ramos, Luis Isaac; Martinez Monge, Rafael

    2005-11-15

    Quality control mandate that the air kerma strengths (S{sub K}) of permanent seeds be verified, this is usually done by statistics inferred from 10% of the seeds. The goal of this paper is to proposed a new sampling method in which the number of seeds to be measured will be set beforehand according to an a priori statistical level of uncertainty. The results are based on the assumption that the S{sub K} has a normal distribution. To demonstrate this, the S{sub K} of each of the seeds measured was corrected to ensure that the average S{sub K} of its sample remained the same. In this process 2030 results were collected and analyzed using a normal plot. In our opinion, the number of seeds sampled should be determined beforehand according to an a priori level of statistical uncertainty.

  11. Size selective isocyanate aerosols personal air sampling using porous plastic foams

    NASA Astrophysics Data System (ADS)

    Khanh Huynh, Cong; Duc, Trinh Vu

    2009-02-01

    As part of a European project (SMT4-CT96-2137), various European institutions specialized in occupational hygiene (BGIA, HSL, IOM, INRS, IST, Ambiente e Lavoro) have established a program of scientific collaboration to develop one or more prototypes of European personal samplers for the collection of simultaneous three dust fractions: inhalable, thoracic and respirable. These samplers based on existing sampling heads (IOM, GSP and cassettes) use Polyurethane Plastic Foam (PUF) according to their porosity to support sampling and separator size of the particles. In this study, the authors present an original application of size selective personal air sampling using chemical impregnated PUF to perform isocyanate aerosols capturing and derivatizing in industrial spray-painting shops.

  12. Soyuz 23 Return Samples: Assessment of Air Quality Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    James, John T.

    2011-01-01

    Six mini-grab sample containers (m-GSCs) were returned aboard Soyuz 23 because of concerns that new air pollutants had been present in the air and these were getting into the water recovery system. The Total Organic Carbon Analyzer had been giving increasing readings of total organic carbon (TOC) in the potable water, and it was postulated that an increased load into the system was responsible. The TOC began to decline in late October, 2010. The toxicological assessment of 6 m-GSCs from the ISS is shown in Table 1. The recoveries of 13C-acetone, fluorobenzene, and chlorobenzene from the GSCs averaged 73, 82, and 59%, respectively. We are working to understand the sub-optimal recovery of chlorobenzene.

  13. Relationship of air sampling rates of semipermeable membrane devices with the properties of organochlorine pesticides.

    PubMed

    Zhu, Xiuhua; Ding, Guanghui; Levy, Walkiria; Jakobi, Gert; Schramm, Karl-Werner

    2011-06-01

    The organochlorine pesticides (OCP) in Eastern-Barvaria at Haidel 1160 m a.s.l. were monitored with a low volume active air sampler and semi-permeable membrane devices (SPMD). The air sampling rates (Rair) of SPMD for OCP were calculated. Quantitative structure-property relationship (QSPR) models of Rair of SPMD were developed for OCP with partial least square (PLS) regression. Quantum chemical descriptors computed by semi-empirical PM6 method were used as predictor variables. The cumulative variance of the dependent variable explained by the PLS components and determined by cross-validation (Q(2)cum), for the optimal models, is 0.637, indicating that the model has good predictive ability and robustness, and could be used to estimate Rair values of OCP. The main factors governing Rair of OCP are intermolecular interactions and the energy required for cave-forming in dissolution of OCP into triolein of SPMD.

  14. Evaluation of passive air sampler calibrations: Selection of sampling rates and implications for the measurement of persistent organic pollutants in air

    NASA Astrophysics Data System (ADS)

    Melymuk, Lisa; Robson, Matthew; Helm, Paul A.; Diamond, Miriam L.

    2011-04-01

    Polyurethane foam (PUF) passive air samplers (PAS) are a common and highly useful method of sampling persistent organic pollutants (POP) concentrations in air. PAS calibration is necessary to obtain reasonable and comparable semi-quantitative measures of air concentrations. Various methods are found in the literature concerning PAS calibration. 35 studies on PAS use and calibration are examined here, in conjunction with a study involving 10 PAS deployed concurrently in outdoor air with a low-volume air sampler in order to measure the sampling rates of PUF-PAS for polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), polycyclic musks (PCMs), and polycyclic aromatic hydrocarbons (PAHs). Based on this analysis it is recommended that (1) PAS should be assumed to represent bulk rather than gas-phase compound concentrations due to the sampling of particle-bound compounds, (2) calibration of PAS sampling rates is more accurately achieved using an active low-volume air sampler rather than depuration compounds since the former measures gas- and particle-phase compounds and does so continuously over the deployment period of the PAS, and (3) homolog-specific sampling rates based on KOA groupings be used in preference to compound/congener-specific or single sampling rates.

  15. Intensive probing of a clear air convective field by radar and instrumental drone aircraft.

    NASA Technical Reports Server (NTRS)

    Rowland, J. R.

    1973-01-01

    An instrumented drone aircraft was used in conjunction with ultrasensitive radar to study the development of a convective field in the clear air. Radar data are presented which show an initial constant growth rate in the height of the convective field of 3.8 m/min, followed by a short period marked by condensation and rapid growth at a rate in excess of 6.1 m/min. Drone aircraft soundings show general features of a convective field including progressive lifting of the inversion at the top of the convection and a cooling of the air at the top of the field. Calculations of vertical heat flux as a function of time and altitude during the early stages of convection show a linear decrease in heat flux with altitude to near the top of the convective field and a negative heat flux at the top. Evidence is presented which supports previous observations that convective cells overshoot their neutral buoyancy level into a region where they are cool and moist compared to their surroundings. Furthermore, only that portion of the convective cell that has overshot its neutral buoyancy level is generally visible to the radar.

  16. Circular polarization of radio emission from air showers probes atmospheric electric fields in thunderclouds.

    NASA Astrophysics Data System (ADS)

    Gia Trinh, Thi Ngoc; Scholten, Olaf; Buitink, Stijn; Corstanje, Arthur; Ebert, Ute; Enriquez, Emilio; Falcke, Heino; Horandel, Jörg R.; Nelles, Anna; Schellart, Pim; Rachen, Jorg; Rossetto, Laura; Rutjes, Casper; ter Veen, Sander; Thoudam, Satyendra

    2016-04-01

    When a high-energy cosmic-ray particle enters the upper layer of the atmosphere, it generates many secondary high-energy particles and forms a cosmic-ray-induced air shower. In the leading plasma of this shower electric currents are induced that emit electromagnetic radiation. These radio waves can be detected with LOw-Frequency ARray (LOFAR) radio telescope. Events have been collected under fair-weather conditions as well as under atmospheric conditions where thunderstorms occur. For the events under the fair weather conditions the emission process is well understood by present models. For the events measured under the thunderstorm conditions, we observe a large fraction of the circular polarization near the core of the shower which is not shown in the events under the fair-weather conditions. This can be explained by the change of direction of the atmospheric electric fields with altitude. Therefore, measuring the circular polarization of radio emission from cosmic ray extensive air showers during the thunderstorm conditions helps to have a better understanding about the structure of atmospheric electric fields in the thunderclouds.

  17. Lower-Cost, Relocatable Lunar Polar Lander and Lunar Surface Sample Return Probes

    NASA Technical Reports Server (NTRS)

    Amato, G. Michael; Garvin, James B.; Burt, I. Joseph; Karpati, Gabe

    2011-01-01

    Key science and exploration objectives of lunar robotic precursor missions can be achieved with the Lunar Explorer (LEx) low-cost, robotic surface mission concept described herein. Selected elements of the LEx concept can also be used to create a lunar surface sample return mission that we have called Boomerang

  18. Release of Free DNA by Membrane-Impaired Bacterial Aerosols Due to Aerosolization and Air Sampling

    PubMed Central

    Zhen, Huajun; Han, Taewon; Fennell, Donna E.

    2013-01-01

    We report here that stress experienced by bacteria due to aerosolization and air sampling can result in severe membrane impairment, leading to the release of DNA as free molecules. Escherichia coli and Bacillus atrophaeus bacteria were aerosolized and then either collected directly into liquid or collected using other collection media and then transferred into liquid. The amount of DNA released was quantified as the cell membrane damage index (ID), i.e., the number of 16S rRNA gene copies in the supernatant liquid relative to the total number in the bioaerosol sample. During aerosolization by a Collison nebulizer, the ID of E. coli and B. atrophaeus in the nebulizer suspension gradually increased during 60 min of continuous aerosolization. We found that the ID of bacteria during aerosolization was statistically significantly affected by the material of the Collison jar (glass > polycarbonate; P < 0.001) and by the bacterial species (E. coli > B. atrophaeus; P < 0.001). When E. coli was collected for 5 min by filtration, impaction, and impingement, its ID values were within the following ranges: 0.051 to 0.085, 0.16 to 0.37, and 0.068 to 0.23, respectively; when it was collected by electrostatic precipitation, the ID values (0.011 to 0.034) were significantly lower (P < 0.05) than those with other sampling methods. Air samples collected inside an equine facility for 2 h by filtration and impingement exhibited ID values in the range of 0.30 to 0.54. The data indicate that the amount of cell damage during bioaerosol sampling and the resulting release of DNA can be substantial and that this should be taken into account when analyzing bioaerosol samples. PMID:24096426

  19. In situ detection of lung cancer volatile fingerprints using bronchoscopic air-sampling.

    PubMed

    Santonico, M; Lucantoni, G; Pennazza, G; Capuano, R; Galluccio, G; Roscioni, C; La Delfa, G; Consoli, D; Martinelli, E; Paolesse, R; Di Natale, C; D'Amico, A

    2012-07-01

    Lung cancer diagnosis via breath analysis has to overcome some issues that can be summarized by two crucial points: (1) further developments for more performant breath sampling technologies; (2) discovering more differentiated volatile fingerprints to be ascribed to specific altered biological mechanisms. The present work merges these two aspects in a pilot study, where a breath volume, sampled via endoscopic probe, is analyzed by an array of non-selective gas sensors. Even if the original non-invasive methods of breath analysis has been laid in favour of the endoscopic means, the innovative technique here proposed allows the analysis of the volatile mixtures directly sampled near the tumor mass. This strategy could open the way for a better understanding of the already obtained discrimination among positive and negative cancer cases. The results obtained so far confirm the established discrimination capacity. This allows to discriminate the different subtypes of lung cancer with 75% of correct classification between adenocarcinoma and squamous cell carcinoma. This result suggests that a 'zoom-in' on the cancer settled inside the human body can increase the resolution power of key-volatiles detection, allowing the discrimination among different cancer fingerprints. We report this novel technique as a robust support for a better comprehension of the promising results obtained so far and present in literature; it is not to be intended as a replacement for non-invasive breath sampling procedure with the endoscope.

  20. Results of Self-Absorption Study on the Versapor 3000 Filters for Radioactive Particulate Air Sampling

    SciTech Connect

    Barnett, J. Matthew; Cullinan, Valerie I.; Barnett, Debra S.; Trang-Le, Truc LT; Bliss, Mary; Greenwood, Lawrence R.; Ballinger, Marcel Y.

    2009-02-17

    Since the mid-1980s, Pacific Northwest National Laboratory (PNNL) has used a value of 0.85 as the correction factor for self absorption of activity for particulate radioactive air samples collected from building exhaust for environmental monitoring. This value accounts for activity that cannot be detected by direct counting of alpha and beta particles. Emissions can be degraded or blocked by filter fibers for particles buried in the filter material or by inactive dust particles collected with the radioactive particles. These filters are used for monitoring air emissions from PNNL stacks for radioactive particles. This paper describes an effort to re-evaluate self-absorption effects in particulate radioactive air sample filters (Versapor® 3000, 47 mm diameter) used at PNNL. There were two methods used to characterize the samples. Sixty samples were selected from the archive for acid digestion to compare the radioactivity measured by direct gas-flow proportional counting of filters to the results obtained after acid digestion of the filter and counting again by gas-flow proportional detection. Thirty different sample filters were selected for visible light microscopy to evaluate filter loading and particulate characteristics. Mass-loading effects were also considered. Filter ratios were calculated by dividing the initial counts by the post-digestion counts with the expectation that post-digestion counts would be higher because digestion would expose radioactivity embedded in the filter in addition to that on top of the filter. Contrary to expectations, the post digestion readings were almost always lower than initial readings and averaged approximately half the initial readings for both alpha and beta activity. Before and after digestion readings appeared to be related to each other, but with a low coefficient of determination (R^2) value. The ratios had a wide range of values indicating that this method did not provide sufficient precision to quantify self

  1. Residues of 2, 4-D in air samples from Saskatchewan: 1966-1975.

    PubMed

    Grover, R; Kerr, L A; Wallace, K; Yoshida, K; Maybank, J

    1976-01-01

    Residues of 2,4-D (2,4-dichlorophenoxyacetic acid) in air samples from several sampling sites in central and southern Saskatchewan during the spraying seasons in the 1966-68 and 1970-75 periods were determined by gas-liquid chromatographic techniques. Initially, individual esters of 2,4-D were characterized by retention times and confirmed further by co-injection and dual column procedures. Since 1973, however, only total 2,4-D acid levels in air samples have been determined after esterification to the methyl ester and confirmed by gc/ms techniques whenever possible. Up to 50% of the daily samples collected during the spraying season at any of the locations and during any given year contained 2,4-D, with butyl esters being found most frequently. The daily 24-hr mean atmospheric concentrations of 2,4-D ranged from 0.01 to 1.22 mug/m3, 0.01 to 13.50 mug/m3, and 0.05 to 0.59 mug/m3 for the iso-propyl, mixed butyl and iso-octyl esters, respectively. Even when the samples were analysed for the total 2,4-D content, i.e. from 1973 onwards, the maximum level of the total acid reached only 23.14 mug/m3. In any given year and at any of the sampling sites, about 30% of the samples contained less than 0.01 mug/m3 of 2,4-D. In another 40% of the samples, the levels of 2,4-D ranged from 0.01 to 0.099 mug/m3. Only about 30% of the samples contained 2,4-D concentrations higher than 0.1 mug/m3, with only 10% or less exceeding 1 mug/m3. None of the samples, obtained with the high volume particulate sampler, showed any detectable levels of 2,4-D, indicating little or no transport of 2,4-D adsorbed on dust particles or as crystals of amine salts. PMID:1002953

  2. A survey of recent results in passive sampling of water and air by semipermeable membrane devices

    USGS Publications Warehouse

    Prest, Harry F.; Huckins, James N.; Petty, Jimmie D.; Herve, Sirpa; Paasivirta, Jaakko; Heinonen, Pertti

    1995-01-01

    A survey is presented of some recent results for passive sampling of water and air for trace organic contaminants using lipid-filled semipermeable membrane devices (SPMDs). Results of water sampling for trace organochlorine compounds using simultaneously exposed SPMDs and the most universally applied biomonitor (bivalves) are discussed. In general, the total amounts of accumulated analytes available for analysis in bivalves and SPMDs were comparable. However, SPMD controls typically had negligible levels of contamination, which was not always the case for transplanted bivalves, even after prolonged depuration prior to exposure. In surveys of the spatial trends of organochlorines at a series of sites, data from bivalves and SPMDs provided the same picture of contaminant distribution and severity. An exception was ionizable contaminants such as the chlorinated phenolic compounds and their transformation products found in pulp mill effluents. In these cases the two monitoring approaches compliment each other, i.e. what is not found in bivalves appears in SPMDs and vice versa. SPMDs have also been applied in environments where biomonitoring is not feasible. SPMDs have shown their utility in studies of trace levels of polyaromatic hydrocarbons by locating and characterizing point sources. An example is given of their application to the calculation of contaminant half-lives from aqueous SPMD residues, a direct measurement of the persistence of contaminants in an environmental compartment. Similarly, results of air sampling with SPMDs in a relatively pristine coastal location are cited which reveal a tremendous enhancement in p,p′-DDE relative to open ocean values.

  3. Probing Invisible, Excited Protein States by Non-Uniformly Sampled Pseudo-4D CEST Spectroscopy.

    PubMed

    Long, Dong; Delaglio, Frank; Sekhar, Ashok; Kay, Lewis E

    2015-09-01

    Chemical exchange saturation transfer (CEST) NMR spectroscopy is a powerful tool for studies of slow timescale protein dynamics. Typical experiments are based on recording a large number of 2D data sets and quantifying peak intensities in each of the resulting planes. A weakness of the method is that peaks must be resolved in 2D spectra, limiting applications to relatively small proteins. Resolution is significantly improved in 3D spectra but recording uniformly sampled data is time-prohibitive. Here we describe non-uniformly sampled HNCO-based pseudo-4D CEST that provides excellent resolution in reasonable measurement times. Data analysis is done through fitting in the time domain, without the need of reconstructing the frequency dimensions, exploiting previously measured accurate peak positions in reference spectra. The methodology is demonstrated on several protein systems, including a nascent form of superoxide dismutase that is implicated in neurodegenerative disease. PMID:26178142

  4. Laser Ablation Sampling of Materials Directly into the Formed Liquid Microjunction of a Continuous Flow Surface Sampling Probe/Electrospray Ionization Emitter for Mass Spectral Analysis and Imaging

    SciTech Connect

    Ovchinnikova, Olga S; Lorenz, Matthias; Kertesz, Vilmos; Van Berkel, Gary J

    2013-01-01

    Transmission geometry laser ablation directly into a formed liquid microjunction of a continuous flow liquid microjunction surface sampling probe/electrospray ionization emitter was utilized for molecular and elemental detection and mass spectrometry imaging. The ability to efficiently capture and ionize ablated material was demonstrated by the detection of various small soluble n-mers of polyaniline and silver ion solvent clusters formed from laser ablation of electropolymerized polyaniline and silver thin films, respectively. In addition, analysis of surfaces that contain soluble components was accomplished by coating or laminating the sample with an insoluble film to enable liquid junction formation without directly extracting material from the surface. The ability to perform mass spectrometry imaging at a spatial resolution of about 50 m was illustrated by using laminated inked patterns on a microscope slide. In general, these data demonstrate at least an order of magnitude signal enhancement compared to the non-contact, laser ablation droplet capture-based surface sampling/ionization approaches that have been previously presented.

  5. Note: A scanning electron microscope sample holder for bidirectional characterization of atomic force microscope probe tips

    SciTech Connect

    Eisenstein, Alon; Goh, M. Cynthia

    2012-03-15

    A novel sample holder that enables atomic force microscopy (AFM) tips to be mounted inside a scanning electron microscopy (SEM) for the purpose of characterizing the AFM tips is described. The holder provides quick and easy handling of tips by using a spring clip to hold them in place. The holder can accommodate two tips simultaneously in two perpendicular orientations, allowing both top and side view imaging of the tips by the SEM.

  6. Solvent-free sampling with di-n-butylamine for monitoring of isocyanates in air.

    PubMed

    Marand, Asa; Karlsson, Daniel; Dalene, Marianne; Skarping, Gunnar

    2005-04-01

    The solvent-free sampler for airborne isocyanates consisted of a polypropylene tube with an inner wall coated with a glass fibre filter, coupled in series with a 13 mm glass fibre filter. The filters were impregnated with reagent solution containing equimolar amounts of di-n-butylamine (DBA) and acetic acid. Air sampling was performed with an air flow of 0.2 l min(-1). The formed isocyanate-DBA derivatives were determined using liquid chromatography and tandem mass spectrometry. The sampler was investigated in regard to collection principle and extraction of the formed derivatives with good results. The possibility to store the sampler before sampling and to perform long-term sampling was demonstrated. Field extraction of the sampler was not necessary, as there was no difference between immediately extracted samples and stored ones (2 days). In comparative studies, the sampler was evaluated against a reference method, impinger-filter sampling with DBA as reagent. The ratios between the results obtained with the sampler and the reference in a test chamber at a relative humidity (RH) of 45% was in the range of 83-109% for isocyanates formed during thermal decomposition of PUR. At RH 95%, the range was 72-101% with the exception of isocyanic acid. In two field evaluations, the ratios for fast curing 2,4'- and 4,4'-methylene bisphenyl diisocyanate (MDI) was in the range 81-113% and for the 3-ring MDI the range was 54-70%. For the slower curing 1,6-hexamethylene diisocyanate (HDI) and HDI isocyanurate, the ratios were in the range 78-145%. In conclusion, the solvent-free sampler is a convenient alternative in most applications to the more cumbersome impinger-filter sampler.

  7. Direct Analysis of Amphetamine Stimulants in a Whole Urine Sample by Atmospheric Solids Analysis Probe Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Crevelin, Eduardo J.; Salami, Fernanda H.; Alves, Marcela N. R.; De Martinis, Bruno S.; Crotti, Antônio E. M.; Moraes, Luiz A. B.

    2016-05-01

    Amphetamine-type stimulants (ATS) are among illicit stimulant drugs that are most often used worldwide. A major challenge is to develop a fast and efficient methodology involving minimal sample preparation to analyze ATS in biological fluids. In this study, a urine pool solution containing amphetamine, methamphetamine, ephedrine, sibutramine, and fenfluramine at concentrations ranging from 0.5 pg/mL to 100 ng/mL was prepared and analyzed by atmospheric solids analysis probe tandem mass spectrometry (ASAP-MS/MS) and multiple reaction monitoring (MRM). A urine sample and saliva collected from a volunteer contributor (V1) were also analyzed. The limit of detection of the tested compounds ranged between 0.002 and 0.4 ng/mL in urine samples; the signal-to-noise ratio was 5. These results demonstrated that the ASAP-MS/MS methodology is applicable for the fast detection of ATS in urine samples with great sensitivity and specificity, without the need for cleanup, preconcentration, or chromatographic separation. Thus ASAP-MS/MS could potentially be used in clinical and forensic toxicology applications.

  8. Quantitative Caffeine Analysis Using a Surface Sampling Probe Electrospray Ionization Tandem Mass Spectrometry System

    SciTech Connect

    Ford, Michael J; Deibel, Michael A.; Tomkins, Bruce A; Van Berkel, Gary J

    2005-01-01

    Quantitative determination of caffeine on reversed-phase C8 thin-layer chromatography plates using a surface sampling electrospray ionization system with tandem mass spectrometry detection is reported. The thin-layer chromatography/electrospray tandem mass spectrometry method employed a deuterium-labeled caffeine internal standard and selected reaction monitoring detection. Up to nine parallel caffeine bands on a single plate were sampled in a single surface scanning experiment requiring 35 min at a surface scan rate of 44 {mu}m/s. A reversed-phase HPLC/UV caffeine assay was developed in parallel to assess the mass spectrometry method performance. Limits of detection for the HPLC/UV and thin-layer chromatography/electrospray tandem mass spectrometry methods determined from the calibration curve statistics were 0.20 ng injected (0.50 {mu}L) and 1.0 ng spotted on the plate, respectively. Spike recoveries with standards and real samples ranged between 97 and 106% for both methods. The caffeine content of three diet soft drinks (Diet Coke, Diet Cherry Coke, Diet Pepsi) and three diet sport drinks (Diet Turbo Tea, Speed Stack Grape, Speed Stack Fruit Punch) was measured. The HPLC/UV and mass spectrometry determinations were in general agreement, and these values were consistent with the quoted values for two of the three diet colas. In the case of Diet Cherry Coke and the diet sports drinks, the determined caffeine amounts using both methods were consistently higher (by 8% or more) than the literature values.

  9. Contemporary-use pesticides in personal air samples during pregnancy and blood samples at delivery among urban minority mothers and newborns.

    PubMed Central

    Whyatt, Robin M; Barr, Dana B; Camann, David E; Kinney, Patrick L; Barr, John R; Andrews, Howard F; Hoepner, Lori A; Garfinkel, Robin; Hazi, Yair; Reyes, Andria; Ramirez, Judyth; Cosme, Yesenia; Perera, Frederica P

    2003-01-01

    We have measured 29 pesticides in plasma samples collected at birth between 1998 and 2001 from 230 mother and newborn pairs enrolled in the Columbia Center for Children's Environmental Health prospective cohort study. Our prior research has shown widespread pesticide use during pregnancy among this urban minority cohort from New York City. We also measured eight pesticides in 48-hr personal air samples collected from the mothers during pregnancy. The following seven pesticides were detected in 48-83% of plasma samples (range, 1-270 pg/g): the organophosphates chlorpyrifos and diazinon, the carbamates bendiocarb and 2-isopropoxyphenol (metabolite of propoxur), and the fungicides dicloran, phthalimide (metabolite of folpet and captan), and tetrahydrophthalimide (metabolite of captan and captafol). Maternal and cord plasma levels were similar and, except for phthalimide, were highly correlated (p < 0.001). Chlorpyrifos, diazinon, and propoxur were detected in 100% of personal air samples (range, 0.7-6,010 ng/m(3)). Diazinon and propoxur levels were significantly higher in the personal air of women reporting use of an exterminator, can sprays, and/or pest bombs during pregnancy compared with women reporting no pesticide use or use of lower toxicity methods only. A significant correlation was seen between personal air level of chlorpyrifos, diazinon, and propoxur and levels of these insecticides or their metabolites in plasma samples (maternal and/or cord, p < 0.05). The fungicide ortho-phenylphenol was also detected in 100% of air samples but was not measured in plasma. The remaining 22 pesticides were detected in 0-45% of air or plasma samples. Chlorpyrifos, diazinon, propoxur, and bendiocarb levels in air and/or plasma decreased significantly between 1998 and 2001. Findings indicate that pesticide exposures are frequent but decreasing and that the pesticides are readily transferred to the developing fetus during pregnancy. PMID:12727605

  10. Visual & reversible sensing of cyanide in real samples by an effective ratiometric colorimetric probe & logic gate application.

    PubMed

    Bhardwaj, Shubhrajyotsna; Singh, Ashok Kumar

    2015-10-15

    A novel anion probe 3 (2,4-di-tert-butyl-6-((2(2,4-dinitrophenyl) hydrazono) methyl) phenol) has been unveiled as an effective ratiometric and colorimetric sensor for selective and rapid detection of cyanide. The sensing behavior was demonstrated by UV-vis experiments and NMR studies. This sensory system exhibited prominent visual color change toward cyanide ion over other testing anions in DMSO (90%) solvent, with a 1:1 binding stoichiometry and a detection limit down to 3.6×10(-8) mol L(-1). Sensor reveals specific anti-jamming activity and reversible in the presence of Cu(2+) ions. This concept has been applied to design a logic gate circuit at the molecular level. Further we developed coated graphite electrode using probe 3 as ionophore and studied the performance characteristics of electrode. The sensitivity of ratiometric-based colorimetric assay is below the 1.9 μM, accepted by the World Health Organization as the highest permissible cyanide concentration in drinking water. So it can be applied for both quantitative determination and qualitative supervising of cyanide concentrations in real samples.

  11. Extreme 13C depletion of CCl2F2 in firn air samples from NEEM, Greenland

    NASA Astrophysics Data System (ADS)

    Zuiderweg, A.; Holzinger, R.; Martinerie, P.; Schneider, R.; Kaiser, J.; Witrant, E.; Etheridge, D.; Rubino, M.; Petrenko, V.; Blunier, T.; Röckmann, T.

    2012-07-01

    A series of 12 high volume air samples collected from the S2 firn core during the North Greenland Eemian Ice Drilling (NEEM) 2009 campaign have been measured for mixing ratio and stable carbon isotope composition of the chlorofluorocarbon CFC-12 (CCl2F2). While the mixing ratio measurements compare favorably to other firn air studies, the isotope results show extreme 13C depletion at the deepest measurable depth (65 m), to values lower than δ13C = -80‰ vs. VPDB (the international stable carbon isotope scale), compared to present day surface tropospheric measurements near -40‰. Firn air modeling was used to interpret these measurements. Reconstructed atmospheric time series indicate even larger depletions (to -120‰) near 1950 AD, with subsequent rapid enrichment of the atmospheric reservoir of the compound to the present day value. Mass-balance calculations show that this change must have been caused by a large change in the isotopic composition of anthropogenic CFC-12 emissions, probably due to technological changes in the CFC production process over the last 80 yr. Propagating the mass-balance calculations into the future demonstrates that as emissions decrease to zero, isotopic fractionation by the stratospheric sinks will lead to continued 13C enrichment in atmospheric CFC-12.

  12. Extreme 13C depletion of CCl2F2 in firn air samples from NEEM, Greenland

    NASA Astrophysics Data System (ADS)

    Zuiderweg, A.; Holzinger, R.; Martinerie, P.; Schneider, R.; Kaiser, J.; Witrant, E.; Etheridge, D.; Petrenko, V.; Blunier, T.; Röckmann, T.

    2013-01-01

    A series of 12 high volume air samples collected from the S2 firn core during the North Greenland Eemian Ice Drilling (NEEM) 2009 campaign have been measured for mixing ratio and stable carbon isotope composition of the chlorofluorocarbon CFC-12 (CCl2F2). While the mixing ratio measurements compare favorably to other firn air studies, the isotope results show extreme 13C depletion at the deepest measurable depth (65 m), to values lower than δ13C = -80‰ vs. VPDB (the international stable carbon isotope scale), compared to present day surface tropospheric measurements near -40‰. Firn air modeling was used to interpret these measurements. Reconstructed atmospheric time series indicate even larger depletions (to -120‰) near 1950 AD, with subsequent rapid enrichment of the atmospheric reservoir of the compound to the present day value. Mass-balance calculations show that this change is likely to have been caused by a large change in the isotopic composition of anthropogenic CFC-12 emissions, probably due to technological advances in the CFC production process over the last 80 yr, though direct evidence is lacking.

  13. Sampling and measurement issues in establishing a climate reference upper air network

    NASA Astrophysics Data System (ADS)

    Gardiner, T.; Madonna, F.; Wang, J.; Whiteman, D. N.; Dykema, J.; Fassò, A.; Thorne, P. W.; Bodeker, G.

    2013-09-01

    The GCOS Reference Upper Air Network (GRUAN) is an international reference observing network, designed to meet climate requirements and to fill a major void in the current global observing system. Upper air observations within the GRUAN network will provide long-term high-quality climate records, will be used to constrain and validate data from space based remote sensors, and will provide accurate data for the study of atmospheric processes. The network covers measurements of a range of key climate variables including temperature. Implementation of the network has started, and as part of this process a number of scientific questions need to be addressed in order to establish a viable climate reference upper air network, in addition to meeting the other objectives for the network measurements. These include quantifying collocation issues for different measurement techniques including the impact on the overall uncertainty of combined measurements; change management requirements when switching between sensors; assessing the benefit of complementary measurements of the same variable using different measurement techniques; and establishing the appropriate sampling strategy to determine long-term trends. This paper reviews the work that is currently underway to address these issues.

  14. Coherent anti-Stokes Raman scattering microscopy of samples probed with Gaussian volumes.

    PubMed

    Marrocco, Michele

    2008-12-25

    Coherent anti-Stokes Raman scattering (CARS) microscopy is becoming increasingly popular to characterize biochemical samples. Within this context, we show that theoretical analysis can still be accomplished under the simple assumption of Gaussian volumes instead of spatial shapes obtainable from diffraction necessary to describe the tight-focusing condition realized within the focus of microscopes with high numerical apertures. The assumption, common in other physical and chemical spectroscopic techniques based on microscopy (e.g., fluorescence correlation spectroscopy, photon counting histogram) and never applied to CARS, is here used to determine the expression of the anti-Stokes electric field. Contrary to the standard approach resorting to numerical methods, we find that either the field is analytical for certain shapes of the Raman scatterer or the numerical reconstruction is strongly limited. In addition, we examine tests against two typical problems found in the literature, namely, a description of CARS radiation patterns and CARS imaging. With regard to the latter, we remark that the loss of spatial symmetry, the treatment of which is onerous in standard CARS microscopy because of possible separations between the microscope focus and the Raman scatterer, can be handled with ease in the limit of Gaussian volumes. An example is considered for polystyrene beads that are usually employed as test model of a CARS response of relevant biochemical samples. PMID:19093820

  15. Estimation of sampling error uncertainties in observed surface air temperature change in China

    NASA Astrophysics Data System (ADS)

    Hua, Wei; Shen, Samuel S. P.; Weithmann, Alexander; Wang, Huijun

    2016-06-01

    This study examines the sampling error uncertainties in the monthly surface air temperature (SAT) change in China over recent decades, focusing on the uncertainties of gridded data, national averages, and linear trends. Results indicate that large sampling error variances appear at the station-sparse area of northern and western China with the maximum value exceeding 2.0 K2 while small sampling error variances are found at the station-dense area of southern and eastern China with most grid values being less than 0.05 K2. In general, the negative temperature existed in each month prior to the 1980s, and a warming in temperature began thereafter, which accelerated in the early and mid-1990s. The increasing trend in the SAT series was observed for each month of the year with the largest temperature increase and highest uncertainty of 0.51 ± 0.29 K (10 year)-1 occurring in February and the weakest trend and smallest uncertainty of 0.13 ± 0.07 K (10 year)-1 in August. The sampling error uncertainties in the national average annual mean SAT series are not sufficiently large to alter the conclusion of the persistent warming in China. In addition, the sampling error uncertainties in the SAT series show a clear variation compared with other uncertainty estimation methods, which is a plausible reason for the inconsistent variations between our estimate and other studies during this period.

  16. [Problems in sampling the polycyclic aromatic hydrocarbons and air-dispersed particles].

    PubMed

    Pozzoli, L; Cottica, D

    1984-01-01

    Polynuclear aromatic hydrocarbons (PAH) are difficult to monitor and quantify. This study has been worked-out to evaluate various sampling methods for monitoring PAH in the work environment: the sampling devices were tested on the field in a carbon electrodes factory. During the field surveys we used the following sampling procedures that actually are the most adopted: Glass fiber filter, Silver membrane (Teflon, cellulosic esters), The over mentioned membrane filters followed by solid substrate (Amberlite XAD-2). For the analytical quantification we followed this procedure: PAH s extraction from membranes and resins by solvent in ultrasonic bath; quantification by GS-MS (single ion monitor, capillary column, on column injection). Results of field testing show that for completely retain PAHs during air sampling in work environment it is necessary to use a membrane filter followed by a back-up tube of Amberlite-XAD-2 resin: the use of this sampling device is particularly recommended during monitoring of work operations with temperature greater than or equal to 150 degrees C involving coke oven procedure, charcoal production, asphalt production, petroleum coking operations.

  17. Cast Stone Oxidation Front Evaluation: Preliminary Results For Samples Exposed To Moist Air

    SciTech Connect

    Langton, C. A.; Almond, P. M.

    2013-11-26

    The rate of oxidation is important to the long-term performance of reducing salt waste forms because the solubility of some contaminants, e.g., technetium, is a function of oxidation state. TcO{sub 4}{sup -} in the salt solution is reduced to Tc(IV) and has been shown to react with ingredients in the waste form to precipitate low solubility sulfide and/or oxide phases. Upon exposure to oxygen, the compounds containing Tc(IV) oxidize to the pertechnetate ion, Tc(VII)O{sub 4}{sup -}, which is very soluble. Consequently the rate of technetium oxidation front advancement into a monolith and the technetium leaching profile as a function of depth from an exposed surface are important to waste form performance and ground water concentration predictions. An approach for measuring contaminant oxidation rate (effective contaminant specific oxidation rate) based on leaching of select contaminants of concern is described in this report. In addition, the relationship between reduction capacity and contaminant oxidation is addressed. Chromate (Cr(VI) was used as a non-radioactive surrogate for pertechnetate, Tc(VII), in Cast Stone samples prepared with 5 M Simulant. Cast Stone spiked with pertechnetate was also prepared and tested. Depth discrete subsamples spiked with Cr were cut from Cast Stone exposed to Savannah River Site (SRS) outdoor ambient temperature fluctuations and moist air. Depth discrete subsamples spiked with Tc-99 were cut from Cast Stone exposed to laboratory ambient temperature fluctuations and moist air. Similar conditions are expected to be encountered in the Cast Stone curing container. The leachability of Cr and Tc-99 and the reduction capacities, measured by the Angus-Glasser method, were determined for each subsample as a function of depth from the exposed surface. The results obtained to date were focused on continued method development and are preliminary and apply to the sample composition and curing / exposure conditions described in this report. The

  18. Venturi air-jet vacuum ejectors for high-volume atmospheric sampling on aircraft platforms

    NASA Technical Reports Server (NTRS)

    Hill, Gerald F.; Sachse, Glen W.; Young, Douglas C.; Wade, Larry O.; Burney, Lewis G.

    1992-01-01

    Documentation of the installation and use of venturi air-jet vacuum ejectors for high-volume atmospheric sampling on aircraft platforms is presented. Information on the types of venturis that are useful for meeting the pumping requirements of atmospheric-sampling experiments is also presented. A description of the configuration and installation of the venturi system vacuum line is included with details on the modifications that were made to adapt a venturi to the NASA Electra aircraft at GSFC, Wallops Flight Facility. Flight test results are given for several venturis with emphasis on applications to the Differential Absorption Carbon Monoxide Measurement (DACOM) system at LaRC. This is a source document for atmospheric scientists interested in using the venturi systems installed on the NASA Electra or adapting the technology to other aircraft.

  19. Ram-air sample collection device for a chemical warfare agent sensor

    DOEpatents

    Megerle, Clifford A.; Adkins, Douglas R.; Frye-Mason, Gregory C.

    2002-01-01

    In a surface acoustic wave sensor mounted within a body, the sensor having a surface acoustic wave array detector and a micro-fabricated sample preconcentrator exposed on a surface of the body, an apparatus for collecting air for the sensor, comprising a housing operatively arranged to mount atop the body, the housing including a multi-stage channel having an inlet and an outlet, the channel having a first stage having a first height and width proximate the inlet, a second stage having a second lower height and width proximate the micro-fabricated sample preconcentrator, a third stage having a still lower third height and width proximate the surface acoustic wave array detector, and a fourth stage having a fourth height and width proximate the outlet, where the fourth height and width are substantially the same as the first height and width.

  20. Integrated assessment on groundwater nitrate by unsaturated zone probing and aquifer sampling with environmental tracers.

    PubMed

    Yuan, Lijuan; Pang, Zhonghe; Huang, Tianming

    2012-12-01

    By employing chemical and isotopic tracers ((15)N and (18)O in NO(3)(-)), we investigated the main processes controlling nitrate distribution in the unsaturated zone and aquifer. Soil water was extracted from two soil cores drilled in a typical agricultural cropping area of the North China Plain (NCP), where groundwater was also sampled. The results indicate that evaporation and denitrification are the two major causes of the distribution of nitrate in soil water extracts in the unsaturated zone. Evaporation from unsaturated zone is evidenced by a positive correlation between chloride and nitrate, and denitrification by a strong linear relationship between [Formula: see text] and ln(NO(3)(-)/Cl). The latter is estimated to account for up to 50% of the nitrate loss from soil drainage. In the saturated zone, nitrate is reduced at varying extents (100 mg/L and 10 mg/L at two sites, respectively), largely by dilution of the aquifer water.

  1. BIBLE A whole-air sampling as a window on Asian biogeochemistry

    NASA Astrophysics Data System (ADS)

    Elliott, Scott; Blake, Donald R.; Blake, Nicola J.; Dubey, Manvendra K.; Rowland, F. Sherwood; Sive, Barkley C.; Smith, Felisa A.

    2003-02-01

    Asian trace gas and aerosol emissions into carbon, nitrogen, and other elemental cycles will figure prominently in near term Earth system evolution. Atmospheric hydrocarbon measurements resolve numerous chemical species and can be used to investigate sourcing for key geocarriers. A recent aircraft study of biomass burning and lightning (BIBLE A) explored the East Asian atmosphere and was unique in centering on the Indonesian archipelago. Samples of volatile organics taken over/between the islands of Japan, Saipan, Java, and Borneo are here examined as a guide to whole-air-based studies of future Asian biogeochemistry. The midlatitude onshore/offshore pulse and tropical convection strongly influence concentration distributions. As species of increasing molecular weight are considered, rural, combustion, and industrial source regimes emerge. Methane-rich inputs such as waste treatment and rice cultivation are evidenced in the geostrophic outflow. The Indonesian atmosphere is rich in biomass burning markers and also those of vehicular activity. Complexity of air chemistry in the archipelago is a direct reflection of diverse topography, land use, and local economies in a rapidly developing nation. Conspicuous in its absence is the fingerprint for liquefied petroleum gas leakage, but it can be expected to appear as demand for clean fossil fuels rises along with per capita incomes. Combustion tracers indicate high nitrogen mobilization rates, linking regional terrestrial geocycles with open marine ecosystems. Sea to air fluxes are superimposed on continental and marine backgrounds for the methyl halides. However, ocean hot spots are not coordinated and suggest an intricate subsurface kinetics. Levels of long-lived anthropogenic halocarbons attest to the success of international environmental treaties while reactive chlorine containing species track industrial air masses. The dozens of hydrocarbons resolvable by gas chromatographic methods will enable monitoring of

  2. Evaluation of physical sampling efficiency for cyclone-based personal bioaerosol samplers in moving air environments.

    PubMed

    Su, Wei-Chung; Tolchinsky, Alexander D; Chen, Bean T; Sigaev, Vladimir I; Cheng, Yung Sung

    2012-09-01

    The need to determine occupational exposure to bioaerosols has notably increased in the past decade, especially for microbiology-related workplaces and laboratories. Recently, two new cyclone-based personal bioaerosol samplers were developed by the National Institute for Occupational Safety and Health (NIOSH) in the USA and the Research Center for Toxicology and Hygienic Regulation of Biopreparations (RCT & HRB) in Russia to monitor bioaerosol exposure in the workplace. Here, a series of wind tunnel experiments were carried out to evaluate the physical sampling performance of these two samplers in moving air conditions, which could provide information for personal biological monitoring in a moving air environment. The experiments were conducted in a small wind tunnel facility using three wind speeds (0.5, 1.0 and 2.0 m s(-1)) and three sampling orientations (0°, 90°, and 180°) with respect to the wind direction. Monodispersed particles ranging from 0.5 to 10 μm were employed as the test aerosols. The evaluation of the physical sampling performance was focused on the aspiration efficiency and capture efficiency of the two samplers. The test results showed that the orientation-averaged aspiration efficiencies of the two samplers closely agreed with the American Conference of Governmental Industrial Hygienists (ACGIH) inhalable convention within the particle sizes used in the evaluation tests, and the effect of the wind speed on the aspiration efficiency was found negligible. The capture efficiencies of these two samplers ranged from 70% to 80%. These data offer important information on the insight into the physical sampling characteristics of the two test samplers.

  3. Local surface potential of π-conjugated nanostructures by Kelvin probe force microscopy: effect of the sampling depth.

    PubMed

    Liscio, Andrea; Palermo, Vincenzo; Fenwick, Oliver; Braun, Slawomir; Müllen, Klaus; Fahlman, Mats; Cacialli, Franco; Samorí, Paolo

    2011-03-01

    Kelvin probe force microscopy (KPFM) is usually applied to map the local surface potential of nanostructured materials at surfaces and interfaces. KPFM is commonly defined as a 'surface technique', even if this assumption is not fully justified. However, a quantification of the surface sensitivity of this technique is crucial to explore electrical properties at the nanoscale. Here a versatile 3D model is presented which provides a quantitative explanation of KPFM results, taking into account the vertical structure of the sample. The model is tested on nanostructured films obtained from two relevant semiconducting systems for field-effect transistor and solar cell applications showing different interfacial properties, i.e., poly(3-hexylthiophene) (P3HT) and perylene-bis-dicarboximide (PDI). These findings are especially important since they enable quantitative determination of the local surface potential of conjugated nanostructures, and thereby pave the way towards optimization of the electronic properties of nanoscale architectures for organic electronic applications.

  4. Solid-phase microextraction fiber development for sampling and analysis of volatile organohalogen compounds in air.

    PubMed

    Attari, Seyed Ghavameddin; Bahrami, Abdolrahman; Shahna, Farshid Ghorbani; Heidari, Mahmoud

    2014-01-01

    A green, environmental friendly and sensitive method for determination of volatile organohalogen compounds was described in this paper. The method is based on a homemade sol-gel single-walled carbon nanotube/silica composite coated solid-phase microextraction to develop for sampling and analysis of Carbon tetrachloride, Benzotrichloride, Chloromethyl methyl ether and Trichloroethylene in air. Application of this method was investigated under different laboratory conditions. Predetermined concentrations of each analytes were prepared in a home-made standard chamber and the influences of experimental parameters such as temperature, humidity, extraction time, storage time, desorption temperature, desorption time and the sorbent performance were investigated. Under optimal conditions, the use of single-walled carbon nanotube/silica composite fiber showed good performance, high sensitive and fast sampling of volatile organohalogen compounds from air. For linearity test the regression correlation coefficient was more than 98% for analyte of interest and linear dynamic range for the proposed fiber and the applied Gas Chromatography-Flame Ionization Detector technique was from 1 to 100 ngmL(-1). Method detection limits ranged between 0.09 to 0.2 ngmL(-1) and method quantification limits were between 0.25 and 0.7 ngmL(-1). Single-walled carbon nanotube/silica composite fiber was highly reproducible, relative standard deviations were between 4.3 to 11.7 percent. PMID:25279223

  5. Gas-particle partitioning of PCDD/Fs in daily air samples

    NASA Astrophysics Data System (ADS)

    Lohmann, Rainer; Lee, Robert G. M.; Green, Nicholas J. L.; Jones, Kevin C.

    Eight short-term (24-48 h) air samples were taken at Lancaster, UK, to study the gas-particle partitioning of PCDD/Fs. Sampling dates in autumn 1997 were selected with a view to minimising temperature fluctuation during the sampling events. ΣCl 4-8DD/Fs ( ΣTEQ) for the first 6 samples were 1.1-3.6 pg m -3 (15-44 fg TEQ m -3), typical of a rural site; two other samples had ΣCl 4-8DD/Fs of 18 and 7.9 pg m -3, with 320 and 100 fg TEQ m -3. The observed gas-particle distributions varied from 0-34% particle-bound for Cl 2/3DD/Fs to >70% for Cl 6-8DD/Fs. Measured particle-bound fractions were compared to theoretical estimates of their distribution based on the Junge-Pankow model using three different reported sets of vapour pressures. The best correlation was obtained using vapour pressures derived from measured GC-retention time indices ( Eitzer and Hites, 1988). Plotting log partition coefficient ( Kp) versus log sub-cooled liquid vapour pressure ( pL) gave excellent correlations with slopes of roughly -1 for all homologue groups. 2, 3, 7, 8-substituted congeners showed slopes of -1 for the first five sampling events. It is proposed that kinetic factors at the low ambient temperatures, coupled with additional emissions during the last sampling events resulted in non-equilibrium partitioning.

  6. An improved thin-layer chromatography/mass spectrometry coupling using a surface sampling probe electrospray ion trap system

    SciTech Connect

    Ford, Michael J; Van Berkel, Gary J

    2004-01-01

    A combined surface sampling probe/electrospray emitter coupled with an ion trap mass spectrometer was used for the direct read out of unmodified reversed-phase C18 thin-layer chromatography (TLC) plates. The operation of the surface sampling electrospray ionization interface in positive and negative ionization modes was demonstrated through the direct analysis of TLC plates on which a commercial test mix comprised of four dye compounds viz., rhodamine B, fluorescein, naphthol blue black, and fast green FCF, and an extract of the caffeine-containing plant Ilex vomitoria, were spotted and developed. Acquisition of full-scan mass spectra and automated collection of MS/MS product ion spectra while scanning a development lane along the surface of a TLC plate demonstrated the advantages of using an ion trap in this combination. Details of the sampling system, benefits of analyzing a developed lane in both positive ion and negative ion modes, levels of detection while surface scanning, surface scan speed effects, and the utility of three-dimensional data display, are also discussed.

  7. Probing oral microbial functionality--expression of spxB in plaque samples.

    PubMed

    Zhu, Lin; Xu, Yifan; Ferretti, Joseph J; Kreth, Jens

    2014-01-01

    The Human Oral Microbiome Database (HOMD) provides an extensive collection of genome sequences from oral bacteria. The sequence information is a static snapshot of the microbial potential of the so far sequenced species. A major challenge is to connect the microbial potential encoded in the metagenome to an actual function in the in vivo oral biofilm. In the present study we took a reductionist approach and identified a considerably conserved metabolic gene, spxB to be encoded by a majority of oral streptococci using the HOMD metagenome information. spxB encodes the pyruvate oxidase responsible for the production of growth inhibiting amounts of hydrogen peroxide (H2O2) and has previously been shown as important in the interspecies competition in the oral biofilm. Here we demonstrate a strong correlation of H2O2 production and the presence of the spxB gene in dental plaque. Using Real-Time RT PCR we show that spxB is expressed in freshly isolated human plaque samples from several donors and that the expression is relative constant when followed over time in one individual. This is the first demonstration of an oral community encoded gene expressed in vivo suggesting a functional role of spxB in oral biofilm physiology. This also demonstrates a possible strategy to connect the microbial potential of the metagenome to its functionality in future studies by identifying similar highly conserved genes in the oral microbial community. PMID:24489768

  8. DNA sequences identical to Pneumocystis carinii f. sp. carinii and Pneumocystis carinii f. sp. hominis in samples of air spora.

    PubMed Central

    Wakefield, A E

    1996-01-01

    Samples of ambient air collected with three different types of spore traps in a rural location were examined for the presence of Pneumocystis carinii by screening for P. carinii-specific DNA sequences by DNA amplification. Eleven spore trap samples were analyzed by nested PCR, using oligonucleotide primers designed for the gene encoding the mitochondrial large subunit rRNA of P. carinii f. sp. carinii and P. carinii f. sp. hominis. The samples were collected over a 3-year period during the months of May to September, with a range of sampling times from 9 to 240 h. One air sample from an animal facility housing P. carinii-infected rats was also examined. P. carinii-specific amplification products were obtained from samples from each of the spore traps. The amplification products from eight air samples were cloned and sequenced. The majority of the recombinants from each of these samples had sequences identical to those of P. carinii f. sp. carinii and P. carinii f. sp. hominis, and a number of clones had single-base differences. These data suggest that sequences identical to those of P. carinii f. sp. carinii and P. carinii f. sp. hominis can be detected in samples of air collected in a rural location and that P. carinii may be a component of the air spora of rural Oxfordshire. PMID:8784583

  9. ANASORB{reg_sign} 747 - A universal sorbent for air sampling?

    SciTech Connect

    Harper, M.

    1997-12-31

    A sorbent to be used for air sampling must meet certain performance criteria including sample background, capacity, stability, and recovery. Anasorb{sup R} 747 is a proprietary 20/40 mesh beaded active carbon prepared from raw materials with a very low ash content in a process which creates a regular pore structure. The background is very low for both inorganic and organic species, and the surface is more inert and less hydrophilic than coconut charcoal, while capacity is similar. The low catalytic activity of the surface means samples of many reactive compounds remain stable for longer periods. The sorbent is compatible with most solvent systems in use (e.g. carbon disulfide, methylene chloride, methanol, dimethyformamide). Anasorb 747 can be coated with chemicals for efficient adsorption of inorganic gases, which can be analyzed at very low levels because of low background interference. A large number of validated sampling methods use Anasorb 747, including methods from OSHA and NIOSH, corporate industrial hygiene laboratories, various branches of the EPA, and international agencies. These methods refer to around fifty different gases and vapors. Although this sorbent is not compatible with some compounds (e.g. low molecular weight aldehydes) it is quite close to being of universal application.

  10. Developing and testing a diagnostic probe for grape phylloxera applicable to soil samples.

    PubMed

    Herbert, Karen; Powell, Kevin; Mckay, Alan; Hartley, Di; Herdina; Ophel-Keller, Kathy; Schiffer, Michele; Hoffmann, Ary

    2008-12-01

    Grape phylloxera, Daktulosphaira vitifoliae (Fitch) (Hemiptera Phylloxeridae) is a damaging pest of grapevines (Vitis spp.) around the world, and the management of this pest requires early detection of infestations. Here, we describe the development and validation of a sensitive DNA test for grape phylloxera that can be applied to soil. Species-specific primers were developed for grape phylloxera in the internal transcribed space region 2, and their specificity was confirmed after thorough screening by using a wide range of vineyard organisms and aphid genera. Preliminary testing of the detection limits of the grape phylloxera-specific primers was conducted using field-sourced soil types spiked with a known number of grape phylloxera. The assay was converted to a real-time polymerase chain reaction format (TaqMan MGB). This assay, in combination with DNA extraction from soil, can detect phylloxera crawlers added to soil. The assay was evaluated in the field at a recently detected grape phylloxera infestation site from the Yarra Valley in Victoria, Australia. The DNA assay proved to be substantially more sensitive than a standard ground survey for detecting grape phylloxera presence on vine roots in the infested vineyard. Moreover, unlike the ground survey, the assay provided quantitative information on grape phylloxera infestations, because grape phylloxera DNA concentrations in samples from vines closely matched the numbers of grape phylloxera crawlers collected with emergence traps placed at the base of vines. Unlike other detection techniques, the method can be applied at any time of the year, and it can be potentially modified to provide specific information on the virulence levels of the particular grape phylloxera genotypes responsible for any new infestations.

  11. Combining Transmission Geometry Laser Ablation and a Non Contact Continuous Flow Surface Sampling Probe/Electrospray Emitter for Mass Spectrometry-Based Chemical Imaging

    SciTech Connect

    Ovchinnikova, Olga S; Kertesz, Vilmos; Van Berkel, Gary J

    2011-01-01

    This paper describes the coupling of ambient pressure transmission geometry laser ablation with a liquid phase sample collection into a continuous flow surface sampling probe/electrospray emitter for mass spectrometry based chemical imaging. The flow probe/emitter device was placed in close proximity to the surface to collect the sample plume produced by laser ablation. The sample collected was immediately aspirated into the probe and on to the electrospray emitter, ionized and detected with the mass spectrometer. Freehand drawn ink lines and letters and an inked fingerprint on microscope slides were analyzed. The circular laser ablation area was about 210 m in diameter and under the conditions used in these experiments the spatial resolution, as determined by the size of the surface features distinguished in the chemical images, was about 100 m.

  12. Total Particulate Matter Air Sampling Data (TEOM) from Los Alamos National Laboratory

    DOE Data Explorer

    LANL measures the total particulate mass concentration in the air on a routine basis as well as during incidents that may affect ambient air. The collected data is added to the Air Quality Index (AQI). AQI is an index for reporting daily air quality. It tells you how clean or polluted your air is, and what associated health effects might be a concern for you. The AQI focuses on health effects you may experience within a few hours or days after breathing polluted air. EPA calculates the AQI for five major air pollutants regulated by the Clean Air Act.

  13. Evaluation of sampling methods for toxicological testing of indoor air particulate matter.

    PubMed

    Tirkkonen, Jenni; Täubel, Martin; Hirvonen, Maija-Riitta; Leppänen, Hanna; Lindsley, William G; Chen, Bean T; Hyvärinen, Anne; Huttunen, Kati

    2016-09-01

    There is a need for toxicity tests capable of recognizing indoor environments with compromised air quality, especially in the context of moisture damage. One of the key issues is sampling, which should both provide meaningful material for analyses and fulfill requirements imposed by practitioners using toxicity tests for health risk assessment. We aimed to evaluate different existing methods of sampling indoor particulate matter (PM) to develop a suitable sampling strategy for a toxicological assay. During three sampling campaigns in moisture-damaged and non-damaged school buildings, we evaluated one passive and three active sampling methods: the Settled Dust Box (SDB), the Button Aerosol Sampler, the Harvard Impactor and the National Institute for Occupational Safety and Health (NIOSH) Bioaerosol Cyclone Sampler. Mouse RAW264.7 macrophages were exposed to particle suspensions and cell metabolic activity (CMA), production of nitric oxide (NO) and tumor necrosis factor (TNFα) were determined after 24 h of exposure. The repeatability of the toxicological analyses was very good for all tested sampler types. Variability within the schools was found to be high especially between different classrooms in the moisture-damaged school. Passively collected settled dust and PM collected actively with the NIOSH Sampler (Stage 1) caused a clear response in exposed cells. The results suggested the higher relative immunotoxicological activity of dust from the moisture-damaged school. The NIOSH Sampler is a promising candidate for the collection of size-fractionated PM to be used in toxicity testing. The applicability of such sampling strategy in grading moisture damage severity in buildings needs to be developed further in a larger cohort of buildings. PMID:27569522

  14. Evaluation of sampling methods for toxicological testing of indoor air particulate matter.

    PubMed

    Tirkkonen, Jenni; Täubel, Martin; Hirvonen, Maija-Riitta; Leppänen, Hanna; Lindsley, William G; Chen, Bean T; Hyvärinen, Anne; Huttunen, Kati

    2016-09-01

    There is a need for toxicity tests capable of recognizing indoor environments with compromised air quality, especially in the context of moisture damage. One of the key issues is sampling, which should both provide meaningful material for analyses and fulfill requirements imposed by practitioners using toxicity tests for health risk assessment. We aimed to evaluate different existing methods of sampling indoor particulate matter (PM) to develop a suitable sampling strategy for a toxicological assay. During three sampling campaigns in moisture-damaged and non-damaged school buildings, we evaluated one passive and three active sampling methods: the Settled Dust Box (SDB), the Button Aerosol Sampler, the Harvard Impactor and the National Institute for Occupational Safety and Health (NIOSH) Bioaerosol Cyclone Sampler. Mouse RAW264.7 macrophages were exposed to particle suspensions and cell metabolic activity (CMA), production of nitric oxide (NO) and tumor necrosis factor (TNFα) were determined after 24 h of exposure. The repeatability of the toxicological analyses was very good for all tested sampler types. Variability within the schools was found to be high especially between different classrooms in the moisture-damaged school. Passively collected settled dust and PM collected actively with the NIOSH Sampler (Stage 1) caused a clear response in exposed cells. The results suggested the higher relative immunotoxicological activity of dust from the moisture-damaged school. The NIOSH Sampler is a promising candidate for the collection of size-fractionated PM to be used in toxicity testing. The applicability of such sampling strategy in grading moisture damage severity in buildings needs to be developed further in a larger cohort of buildings.

  15. Air-Based Remediation Workshop - Section 1 Sampling And Analysis Revelant To Air-Based Remediation Technologies

    EPA Science Inventory

    Pursant to the EPA-AIT Implementing Arrangement 7 for Technical Environmental Collaboration, Activity 11 "Remediation of Contaminated Sites," the USEPA Office of International Affairs Organized a Force Air Remediation Workshop in Taipei to deliver expert training to the Environme...

  16. Micro-fluidics and integrated optics glass sensor for in-line micro-probing of nuclear samples

    SciTech Connect

    Schimpf, A.; Bucci, D.; Broquin, J.E.; Canto, F.; Magnaldo, A.; Couston, L.

    2012-08-15

    We study the miniaturization of Thermal Lens Spectrometry (TLS) towards Lab-on-chip integration in order to reduce the volume of fluid assays in nuclear process control. TLS is of great interest in this context since it combines the advantages of optical detection methods with an inherent suitability for small-scale samples. After validating the experimental principle in a classical thermal lens crossed-beam setup, we show the integration of a Young-interferometer with a microcapillary on a glass substrate, reducing the necessary sample size to 400 nl. The interferometer translates the photo-thermally induced refractive index change in the fluid to a phase shift of the fringe pattern, which can then be detected by a camera. Measurements of Co(II) in ethanol yield a detection limit of c = 5 x 10{sup -4} M for the crossed-beam setup and c = 6 x 10{sup -3} M for the integrated sensor. At an interaction length of 10 m, it detects a minimum absorbance of K = 1.2 x 10{sup -4} in a probed volume of 14 pl. (authors)

  17. Anaerobic Methyl tert-Butyl Ether-Degrading Microorganisms Identified in Wastewater Treatment Plant Samples by Stable Isotope Probing

    PubMed Central

    Sun, Weimin; Sun, Xiaoxu

    2012-01-01

    Anaerobic methyl tert-butyl ether (MTBE) degradation potential was investigated in samples from a range of sources. From these 22 experimental variations, only one source (from wastewater treatment plant samples) exhibited MTBE degradation. These microcosms were methanogenic and were subjected to DNA-based stable isotope probing (SIP) targeted to both bacteria and archaea to identify the putative MTBE degraders. For this purpose, DNA was extracted at two time points, subjected to ultracentrifugation, fractioning, and terminal restriction fragment length polymorphism (TRFLP). In addition, bacterial and archaeal 16S rRNA gene clone libraries were constructed. The SIP experiments indicated bacteria in the phyla Firmicutes (family Ruminococcaceae) and Alphaproteobacteria (genus Sphingopyxis) were the dominant MTBE degraders. Previous studies have suggested a role for Firmicutes in anaerobic MTBE degradation; however, the putative MTBE-degrading microorganism in the current study is a novel MTBE-degrading phylotype within this phylum. Two archaeal phylotypes (genera Methanosarcina and Methanocorpusculum) were also enriched in the heavy fractions, and these organisms may be responsible for minor amounts of MTBE degradation or for the uptake of metabolites released from the primary MTBE degraders. Currently, limited information exists on the microorganisms able to degrade MTBE under anaerobic conditions. This work represents the first application of DNA-based SIP to identify anaerobic MTBE-degrading microorganisms in laboratory microcosms and therefore provides a valuable set of data to definitively link identity with anaerobic MTBE degradation. PMID:22327600

  18. Effect of Nitrate Injection on the Microbial Community in an Oil Field as Monitored by Reverse Sample Genome Probing

    PubMed Central

    Telang, A. J.; Ebert, S.; Foght, J. M.; Westlake, D.; Jenneman, G. E.; Gevertz, D.; Voordouw, G.

    1997-01-01

    The reverse sample genome probe (RSGP) method, developed for monitoring the microbial community in oil fields with a moderate subsurface temperature, has been improved by (i) isolation of a variety of heterotrophic bacteria and inclusion of their genomes on the oil field master filter and (ii) use of phosphorimaging technology for the rapid quantitation of hybridization signals. The new master filter contains the genomes of 30 sulfate-reducing, 1 sulfide-oxidizing, and 16 heterotrophic bacteria. Most have been identified by partial 16S rRNA sequencing. Use of improved RSGP in monitoring the effect of nitrate injection in an oil field indicated that the sulfide-oxidizing, nitrate-reducing isolate CVO (a Campylobacter sp.) becomes the dominant community component immediately after injection. No significant enhancement of other community members, including the sulfate-reducing bacteria, was observed. The elevated level of CVO decayed at most sampling sites within 30 days after nitrate injection was terminated. Chemical analyses indicated a corresponding decrease and subsequent increase in sulfide concentrations. Thus, transient injection of a higher potential electron acceptor into an anaerobic subsurface system can have desirable effects (i.e., reduction of sulfide levels) without a permanent adverse influence on the resident microbial community. PMID:16535595

  19. Unmanned platform for long-range remote analysis of volatile compounds in air samples.

    PubMed

    da Costa, Eric T; Neves, Carlos A; Hotta, Guilherme M; Vidal, Denis T R; Barros, Marcelo F; Ayon, Arturo A; Garcia, Carlos D; do Lago, Claudimir Lucio

    2012-09-01

    This paper describes a long-range remotely controlled CE system built on an all-terrain vehicle. A four-stroke engine and a set of 12-V batteries were used to provide power to a series of subsystems that include drivers, communication, computers, and a capillary electrophoresis module. This dedicated instrument allows air sampling using a polypropylene porous tube, coupled to a flow system that transports the sample to the inlet of a fused-silica capillary. A hybrid approach was used for the construction of the analytical subsystem combining a conventional fused-silica capillary (used for separation) and a laser machined microfluidic block, made of PMMA. A solid-state cooling approach was also integrated in the CE module to enable controlling the temperature and therefore increasing the useful range of the robot. Although ultimately intended for detection of chemical warfare agents, the proposed system was used to analyze a series of volatile organic acids. As such, the system allowed the separation and detection of formic, acetic, and propionic acids with signal-to-noise ratios of 414, 150, and 115, respectively, after sampling by only 30 s and performing an electrokinetic injection during 2.0 s at 1.0 kV.

  20. Unmanned platform for long-range remote analysis of volatile compounds in air samples.

    PubMed

    da Costa, Eric T; Neves, Carlos A; Hotta, Guilherme M; Vidal, Denis T R; Barros, Marcelo F; Ayon, Arturo A; Garcia, Carlos D; do Lago, Claudimir Lucio

    2012-09-01

    This paper describes a long-range remotely controlled CE system built on an all-terrain vehicle. A four-stroke engine and a set of 12-V batteries were used to provide power to a series of subsystems that include drivers, communication, computers, and a capillary electrophoresis module. This dedicated instrument allows air sampling using a polypropylene porous tube, coupled to a flow system that transports the sample to the inlet of a fused-silica capillary. A hybrid approach was used for the construction of the analytical subsystem combining a conventional fused-silica capillary (used for separation) and a laser machined microfluidic block, made of PMMA. A solid-state cooling approach was also integrated in the CE module to enable controlling the temperature and therefore increasing the useful range of the robot. Although ultimately intended for detection of chemical warfare agents, the proposed system was used to analyze a series of volatile organic acids. As such, the system allowed the separation and detection of formic, acetic, and propionic acids with signal-to-noise ratios of 414, 150, and 115, respectively, after sampling by only 30 s and performing an electrokinetic injection during 2.0 s at 1.0 kV. PMID:22965708

  1. 24-HOUR DIFFUSIVE SAMPLING OF TOXIC VOCS IN AIR ONTO CARBOPACK X SOLID ADSORBENT FOLLOWED BY THERMAL DESORPTION/GC/MS ANALYSIS - LABORATORY STUDIES

    EPA Science Inventory

    Diffusive sampling of a mixture of 42 volatile organic compounds (VOCs) in humidified, purified air onto the solid adsorbent Carbopack X was evaluated under controlled laboratory conditions. The evaluation included variations in sample air temperature, relative humidity, and ozon...

  2. CTEPP STANDARD OPERATING PROCEDURE FOR COLLECTION OF FIXED SITE INDOOR AND OUTDOOR AIR SAMPLES FOR PERSISTENT ORGANIC POLLUTANTS (SOP-2.12)

    EPA Science Inventory

    This SOP describes the procedures to set up, calibrate, initiate and terminate air sampling for persistent organic pollutants. This method is used to sample air, indoors and outdoors, at homes and at day care centers over a 48-hr period.

  3. Evaluation of a modified sampling method for molecular analysis of air microflora.

    PubMed

    Lech, T; Ziembinska-Buczynska, A

    2015-04-10

    A serious issue concerning the durability of economically important materials for humans related to cultural heritage is the process of biodeterioration. As a result of this phenomenon, priceless works of art, documents, and old prints have undergone a process of decomposition caused by microorganisms. Therefore, it is important to constantly monitor the presence and diversity of microorganisms in exposition rooms and storage areas of historical objects. In addition, the use of molecular biology tools for conservation studies will enable detailed research as well as reduce the time needed to perform the analyses compared with using conventional methods related to microbiology and conservation. The aim of this study was to adapt the sampling indoor air method for direct DNA extraction from microorganisms, including evaluating the extracted DNA quality and concentration. The obtained DNA was used to study the diversity of mold fungi in indoor air using polymerase chain reaction-denaturing gradient gel electrophoresis in specific archives and museum environments. The research was conducted in 2 storage rooms of the National Archives in Krakow and in 1 exposition room of the Archaeological Museum in Krakow (Poland).

  4. Sampling of power plant stacks for air toxic emissions: Topical report for Phases 1 and 2

    SciTech Connect

    1995-02-21

    Under contract with the US Department of Energy (DE-AC22-92PCO0367), Pittsburgh Energy Technology Center, Radian Corporation has conducted a test program to collect and analyze size-fractionated stack gas particulate samples for selected inorganic hazardous air pollutants (HAPS). Specific goals of the program are (1) the collection of one-gram quantities of size-fractionated stack gas particulate matter for bulk (total) and surface chemical charactization, and (2) the determination of the relationship between particle size, bulk and surface (leachable) composition, and unit load. The information obtained from this program identifies the effects of unit load, particle size, and wet FGD system operation on the relative toxicological effects of exposure to particulate emissions.

  5. Pteam: Monitoring of phthalates and PAHs in indoor and outdoor air samples in Riverside, California. Volume 2. Final report

    SciTech Connect

    Sheldon, L.; Clayton, A.; Keever, J.; Perritt, R.; Whitaker, D.

    1992-12-01

    The primary purpose of the study was to obtain indoor and outdoor air concentration data for benzo(a)pyrene, other polynuclear aromatic hydrocarbons (PAHs), and phthalates in California residences to be used in making exposure predictions. To meet these objectives, a field monitoring study was performed in 125 homes in Riverside, California in the fall of 1990. In each home, two 12-hour indoor air samples were collected during daytime and overnight periods. In a subset of 65 homes, outdoor air samples were also collected. PAH and phthalate concentrations were measured in collected air samples using gas chromatography/mass spectrometry techniques. Along with field monitoring, information on potential source usage in the home was collected using questionnaires.

  6. Spectral fingerprinting of polycyclic aromatic hydrocarbons in high-volume ambient air samples by constant energy synchronous luminescence spectroscopy

    USGS Publications Warehouse

    Kerkhoff, M.J.; Lee, T.M.; Allen, E.R.; Lundgren, D.A.; Winefordner, J.D.

    1985-01-01

    A high-volume sampler fitted with a glass-fiber filter and backed by polyurethane foam (PUF) was employed to collect airborne particulate and gas-phase polycylic aromatic hydrocarbons (PAHs) in ambient air. Samples were collected from four sources representing a range of environmental conditions: gasoline engine exhaust, diesel engine exhaust, air near a heavily traveled interstate site, and air from a moderately polluted urban site. Spectral fingerprints of the unseparated particulate and gas-phase samples were obtained by constant energy synchronous luminescence spectroscopy (CESLS). Five major PAHs in the gas-phase extracts were characterized and estimated. The compatibility of a high-volume sampling method using polyurethane foam coupled with CESLS detection is explored for use as a screening technique for PAHs in ambient air. ?? 1985 American Chemical Society.

  7. Evaluation of sampling and analytical methods for the determination of chlorodifluoromethane in air.

    PubMed

    Seymour, M J; Lucas, M F

    1993-05-01

    In January 1989, the Occupational Safety and Health Administration (OSHA) published revised permissible exposure limits (PELs) for 212 compounds and established PELs for 164 additional compounds. In cases where regulated compounds did not have specific sampling and analytical methods, methods were suggested by OSHA. The National Institute for Occupational Safety and Health (NIOSH) Manual of Analytical Methods (NMAM) Method 1020, which was developed for 1,1,2-trichloro-1,2,2-trifluoroethane, was suggested by OSHA for the determination of chlorodifluoromethane in workplace air. Because this method was developed for a liquid and chlorodifluoromethane is a gas, the ability of NMAM Method 1020 to adequately sample and quantitate chlorodifluoromethane was questioned and tested by researchers at NIOSH. The evaluation of NMAM Method 1020 for chlorodifluoromethane showed that the capacity of the 100/50-mg charcoal sorbent bed was limited, the standard preparation procedure was incorrect for a gas analyte, and the analyte had low solubility in carbon disulfide. NMAM Method 1018 for dichlorodifluoromethane uses two coconut-shell charcoal tubes in series, a 400/200-mg tube followed by a 100/50-mg tube, which are desorbed with methylene chloride. This method was evaluated for chlorodifluoromethane. Test atmospheres, with chlorodifluoromethane concentrations from 0.5-2 times the PEL were generated. Modifications of NMAM Method 1018 included changes in the standard preparation procedure, and the gas chromatograph was equipped with a capillary column. These revisions to NMAM 1018 resulted in a 96.5% recovery and a total precision for the method of 7.1% for chlorodifluoromethane. No significant bias in the method was found. Results indicate that the revised NMAM Method 1018 is suitable for the determination of chlorodifluoromethane in workplace air.

  8. Air-spore in Cartagena, Spain: viable and non-viable sampling methods.

    PubMed

    Elvira-Rendueles, Belen; Moreno, Jose; Garcia-Sanchez, Antonio; Vergara, Nuria; Martinez-Garcia, Maria Jose; Moreno-Grau, Stella

    2013-01-01

    In the presented study the airborne fungal spores of the semiarid city of Cartagena, Spain, are identified and quantified by means of viable or non-viable sampling methods. Airborne fungal samples were collected simultaneously using a filtration method and a pollen and particle sampler based on the Hirst methodology. This information is very useful for elucidating geographical patterns of hay fever and asthma. The qualitative results showed that when the non-viable methodology was employed, Cladosporium, Ustilago, and Alternaria were the most abundant spores identified in the atmosphere of Cartagena, while the viable methodology showed that the most abundant taxa were: Cladosporium, Penicillium, Aspergillus and Alternaria. The quantitative results of airborne fungal spores identified by the Hirst-type air sampler (non-viable method), showed that Deuteromycetes represented 74% of total annual spore counts, Cladosporium being the major component of the fungal spectrum (62.2%), followed by Alternaria (5.3%), and Stemphylium (1.3%). The Basidiomycetes group represented 18.9% of total annual spore counts, Ustilago (7.1%) being the most representative taxon of this group and the second most abundant spore type. Ascomycetes accounted for 6.9%, Nectria (2.3%) being the principal taxon. Oomycetes (0.2%) and Zygomycestes and Myxomycestes (0.06%) were scarce. The prevailing species define our bioaerosol as typical of dry air. The viable methodology was better at identifying small hyaline spores and allowed for the discrimination of the genus of some spore types. However, non-viable methods revealed the richness of fungal types present in the bioaerosol. Thus, the use of both methodologies provides a more comprehensive characterization of the spore profile.

  9. Correction of Anisokinetic Sampling Errors.

    ERIC Educational Resources Information Center

    Nelson, William G.

    Gas flow patterns at a sampling nozzle are described in this presentation for the 12th Conference on Methods in Air Pollution and Industrial Hygiene Studies, University of Southern California, April, 1971. Three situations for sampling velocity are illustrated and analyzed, where the flow upstream of a sampling probe is: (1) equal to free stream…

  10. Indoor air sampling for fine particulate matter and black carbon in industrial communities in Pittsburgh.

    PubMed

    Tunno, Brett J; Naumoff Shields, Kyra; Cambal, Leah; Tripathy, Sheila; Holguin, Fernando; Lioy, Paul; Clougherty, Jane E

    2015-12-01

    Impacts of industrial emissions on outdoor air pollution in nearby communities are well-documented. Fewer studies, however, have explored impacts on indoor air quality in these communities. Because persons in northern climates spend a majority of their time indoors, understanding indoor exposures, and the role of outdoor air pollution in shaping such exposures, is a priority issue. Braddock and Clairton, Pennsylvania, industrial communities near Pittsburgh, are home to an active steel mill and coke works, respectively, and the population experiences elevated rates of childhood asthma. Twenty-one homes were selected for 1-week indoor sampling for fine particulate matter (PM2.5) and black carbon (BC) during summer 2011 and winter 2012. Multivariate linear regression models were used to examine contributions from both outdoor concentrations and indoor sources. In the models, an outdoor infiltration component explained 10 to 39% of variability in indoor air pollution for PM2.5, and 33 to 42% for BC. For both PM2.5 models and the summer BC model, smoking was a stronger predictor than outdoor pollution, as greater pollutant concentration increases were identified. For winter BC, the model was explained by outdoor pollution and an open windows modifier. In both seasons, indoor concentrations for both PM2.5 and BC were consistently higher than residence-specific outdoor concentration estimates. Mean indoor PM2.5 was higher, on average, during summer (25.8±22.7 μg/m3) than winter (18.9±13.2 μg/m3). Contrary to the study's hypothesis, outdoor concentrations accounted for only little to moderate variability (10 to 42%) in indoor concentrations; a much greater proportion of PM2.5 was explained by cigarette smoking. Outdoor infiltration was a stronger predictor for BC compared to PM2.5, especially in winter. Our results suggest that, even in industrial communities of high outdoor pollution concentrations, indoor activities--particularly cigarette smoking--may play a larger

  11. Indoor air sampling for fine particulate matter and black carbon in industrial communities in Pittsburgh.

    PubMed

    Tunno, Brett J; Naumoff Shields, Kyra; Cambal, Leah; Tripathy, Sheila; Holguin, Fernando; Lioy, Paul; Clougherty, Jane E

    2015-12-01

    Impacts of industrial emissions on outdoor air pollution in nearby communities are well-documented. Fewer studies, however, have explored impacts on indoor air quality in these communities. Because persons in northern climates spend a majority of their time indoors, understanding indoor exposures, and the role of outdoor air pollution in shaping such exposures, is a priority issue. Braddock and Clairton, Pennsylvania, industrial communities near Pittsburgh, are home to an active steel mill and coke works, respectively, and the population experiences elevated rates of childhood asthma. Twenty-one homes were selected for 1-week indoor sampling for fine particulate matter (PM2.5) and black carbon (BC) during summer 2011 and winter 2012. Multivariate linear regression models were used to examine contributions from both outdoor concentrations and indoor sources. In the models, an outdoor infiltration component explained 10 to 39% of variability in indoor air pollution for PM2.5, and 33 to 42% for BC. For both PM2.5 models and the summer BC model, smoking was a stronger predictor than outdoor pollution, as greater pollutant concentration increases were identified. For winter BC, the model was explained by outdoor pollution and an open windows modifier. In both seasons, indoor concentrations for both PM2.5 and BC were consistently higher than residence-specific outdoor concentration estimates. Mean indoor PM2.5 was higher, on average, during summer (25.8±22.7 μg/m3) than winter (18.9±13.2 μg/m3). Contrary to the study's hypothesis, outdoor concentrations accounted for only little to moderate variability (10 to 42%) in indoor concentrations; a much greater proportion of PM2.5 was explained by cigarette smoking. Outdoor infiltration was a stronger predictor for BC compared to PM2.5, especially in winter. Our results suggest that, even in industrial communities of high outdoor pollution concentrations, indoor activities--particularly cigarette smoking--may play a larger

  12. Conductivity Probe

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Thermal and Electrical Conductivity Probe (TECP) for NASA's Phoenix Mars Lander took measurements in Martian soil and in the air.

    The needles on the end of the instrument were inserted into the Martian soil, allowing TECP to measure the propagation of both thermal and electrical energy. TECP also measured the humidity in the surrounding air.

    The needles on the probe are 15 millimeters (0.6 inch) long.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  13. Sampling of power plant stacks for air toxic emissions: Final report for Phases 1 and 2

    SciTech Connect

    1995-04-28

    A test program to collect and analyze size-fractionated stack gas particulate samples for selected inorganic hazardous air pollutants (HAPs) was conducted . Specific goals of the program are (1) the collection of one-gram quantities of size-fractionated stack gas particulate matter for bulk (total) and surface chemical characterization, and (2) the determination of the relationship between particle size, bulk and surface (leachable) composition, and unit load. The information obtained from this program identifies the effects of unit load, particle size, and wet FGD system operation on the relative toxicological effects of exposure to particulate emissions. Field testing was conducted in two phases. The Phase I field program was performed over the period of August 24 through September 20, 1992, at the Tennessee Valley Authority Widows Creek Unit 8 Power Station, located near Stevenson (Jackson County), Alabama, on the Tennessee River. Sampling activities for Phase II were conducted from September 11 through October 14, 1993. Widows Creek Unit 8 is a 575-megawatt plant that uses bituminous coal averaging 3.7% sulfur and 13% ash. Downstream of the boiler, a venture wet scrubbing system is used for control of both sulfur dioxide and particulate emissions. There is no electrostatic precipitator (ESP) in this system. This system is atypical and represents only about 5% of the US utility industry. However, this site was chosen for this study because of the lack of information available for this particulate emission control system.

  14. Uncertainties in Air Exchange using Continuous-Injection, Long-Term Sampling Tracer-Gas Methods

    SciTech Connect

    Sherman, Max H.; Walker, Iain S.; Lunden, Melissa M.

    2013-12-01

    The PerFluorocarbon Tracer (PFT) method is a low-cost approach commonly used for measuring air exchange in buildings using tracer gases. It is a specific application of the more general Continuous-Injection, Long-Term Sampling (CILTS) method. The technique is widely used but there has been little work on understanding the uncertainties (both precision and bias) associated with its use, particularly given that it is typically deployed by untrained or lightly trained people to minimize experimental costs. In this article we will conduct a first-principles error analysis to estimate the uncertainties and then compare that analysis to CILTS measurements that were over-sampled, through the use of multiple tracers and emitter and sampler distribution patterns, in three houses. We find that the CILTS method can have an overall uncertainty of 10-15percent in ideal circumstances, but that even in highly controlled field experiments done by trained experimenters expected uncertainties are about 20percent. In addition, there are many field conditions (such as open windows) where CILTS is not likely to provide any quantitative data. Even avoiding the worst situations of assumption violations CILTS should be considered as having a something like a ?factor of two? uncertainty for the broad field trials that it is typically used in. We provide guidance on how to deploy CILTS and design the experiment to minimize uncertainties.

  15. Isolation of airborne oxacillin-resistant Staphylococcus aureus from culturable air samples of urban residences.

    PubMed

    Perez, Hernando R; Johnson, Rachel; Gurian, Patrick L; Gibbs, Shawn G; Taylor, Jennifer; Burstyn, Igor

    2011-02-01

    Culturable single-stage impactor samples were collected onto nutrient agar in kitchen and bedroom areas of eight urban and four suburban residences in Philadelphia, Pennsylvania. Staphylococcus aureus colonies were identified by replica plating of the original impactor samples onto Chapman Stone medium followed by isolation of up to eight colonies for coagulase testing. Kirby-Bauer disk diffusion method was utilized to evaluate S. aureus resistance to both oxacillin and cefaclor. The median concentrations of total culturable bacteria observed in bedrooms and trash areas were 300 CFU/m(3) and 253 CFU/m(3), respectively. Median culturable Staphylococcus spp. concentrations in bedrooms and trash areas were 142 CFU/m(3) and 204 CFU/m(3), respectively. A total of 148 individual S. aureus colonies were isolated and tested for antibiotic resistance. Cefaclor resistance was encountered among only 6 of the 148 (4%) colonies. Nearly one-quarter of all S. aureus isolates tested displayed resistance (n = 30) or intermediate resistance (n = 5) to oxacillin. Twenty-six percent (n = 20) of trash area isolates and 21% (n = 15) of bedroom isolates displayed resistance or intermediate resistance to oxacillin. The median difference in percent resistance between trash and bedroom areas was 10% (p = 0.1). Results suggest that there may be a systematic difference in bacterial populations between downtown and suburban residences. Storage of household waste and handling of food may contribute to presence of the organism in the air of residences.

  16. The Inter-Mammary Sticky Roll: A Novel Technique for Securing a Doppler Ultrasonic Probe to the Precordium for Venous Air Embolism Detection.

    PubMed

    Santiago-Dieppa, David R; Wali, Arvin R; Gabel, Brandon C; Khalessi, Alexander A; Sang U, Hoi; Drummond, John C

    2016-01-01

    Venous air embolism is a devastating and potentially life-threatening complication that can occur during neurosurgical procedures. We report the development and use of the "inter-mammary sticky roll," a technique to reliably secure a precordial Doppler ultrasonic probe to the chest wall during neurosurgical cases that require lateral decubitus positioning. We have found that this noninvasive technique is safe, and effectively facilitates a constant Doppler signal with no additional risk to the patient. PMID:27625905

  17. The Inter-Mammary Sticky Roll: A Novel Technique for Securing a Doppler Ultrasonic Probe to the Precordium for Venous Air Embolism Detection

    PubMed Central

    Wali, Arvin R; Gabel, Brandon C; Khalessi, Alexander A; Sang U, Hoi; Drummond, John C

    2016-01-01

    Venous air embolism is a devastating and potentially life-threatening complication that can occur during neurosurgical procedures. We report the development and use of the “inter-mammary sticky roll,” a technique to reliably secure a precordial Doppler ultrasonic probe to the chest wall during neurosurgical cases that require lateral decubitus positioning. We have found that this noninvasive technique is safe, and effectively facilitates a constant Doppler signal with no additional risk to the patient. PMID:27625905

  18. Hydrophobic treatment enabling analysis of wettable surfaces using a liquid microjunction surface sampling probe/electrospray ionization-mass spectrometry system.

    PubMed

    Walworth, Matthew J; Stankovich, Joseph J; Van Berkel, Gary J; Schulz, Michael; Minarik, Susanne; Nichols, Judy; Reich, Eike

    2011-01-15

    An aerosol application procedure involving one or more commercially available silicone-based products was developed to create hydrophobic surfaces that enable analysis of otherwise wettable, absorbent surfaces using a liquid microjunction surface sampling probe/electrospray ionization mass spectrometry system. The treatment process resulted in a hydrophobic surface that enabled formation of the requisite probe-to-surface liquid microjunction for sampling and allowed efficient extraction of the analytes from the surface, but did not contribute significant chemical background in the mass spectra. The utility of this treatment process was demonstrated with the treatment of wettable high-performance thin layer chromatography plates, post-plate development, and their subsequent analysis with the sampling probe. The surface treatment process for different surface types was described and explained and the effectiveness of the treatment and subsequent analysis was illustrated using alkaloids from goldenseal (Hydrastis canadensis) root separated on a normal phase silica gel 60 F(254S) plate and peptides from protein tryptic digests separated on a ProteoChrom HPTLC Silica gel 60 F(254S) plate and a ProteoChrom HPTLC Cellulose sheet. This simple surface treatment process significantly expands the analytical surfaces that can be analyzed with the liquid microjunction surface sampling probe, and therefore, also expands the analytical utility of this liquid extraction based surface sampling approach. PMID:21158402

  19. Hydrophobic Treatment Enabling Analysis of Wettable Surfaces using a Liquid Microjunction Surface Sampling Probe/Electrospray Ionization-Mass Spectrometry System

    SciTech Connect

    Walworth, Matthew J; Stankovich, Joseph J; Van Berkel, Gary J; Schulz, Michael; Minarik, susanne; Nichols, Judy; Reich, Eike

    2011-01-01

    An aerosol application procedure involving one or more commercially available silicone based products was developed to create hydrophobic surfaces that enable analysis of otherwise wettable, absorbent surfaces using a liquid microjunction surface sampling probe/electrospray ionization mass spectrometry system. The treatment process resulted in a hydrophobic surface that enabled formation of the requisite probe - to - surface liquid microjunction for sampling and allowed efficient extraction of the analytes from the surface, but did not contribute significant chemical background in the mass spectra. The utility of this treatment process was demonstrated with the treatment of wettable high performance thin layer chromatography plates, post plate development, and their subsequent analysis with the sampling probe. The surface treatment process for different surface types was described and explained and the effectiveness of the treatment and subsequent analysis was illustrated using alkaloids from Goldenseal (Hydrastis canadensis) root separated on a normal phase silica gel 60 F254S plate and peptides from protein tryptic digests separated on a Protochrom HPTLC Silica gel 60 F254S plate and a Protochrom HPTLC cellulose sheet. This simple surface treatment process significantly expands the analytical surfaces that can be analyzed with the liquid microjunction surface sampling probe, and therefore, also expands the analytical utility of this liquid extraction based surface sampling approach.

  20. Optimisation of sample preparation and analysis conditions for atom probe tomography characterisation of low concentration surface species

    NASA Astrophysics Data System (ADS)

    Douglas, J. O.; Bagot, P. A. J.; Johnson, B. C.; Jamieson, D. N.; Moody, M. P.

    2016-08-01

    The practicalities for atom probe tomography (APT) analysis of near-surface chemistry, particularly the distribution of low concentration elements, are presented in detail. Specifically, the challenges of surface analysis using APT are described through the characterisation of near-surface implantation profiles of low concentration phosphorus into single crystal silicon. This material system was chosen to illustrate this surface specific approach as low concentration phosphorus has significant mass spectra overlaps with silicon species and the near surface location requires particular attention to focused ion beam specimen preparation and deposition of various capping layers. Required changes to standard sample preparation procedure are described and the effects of changes in APT analysis parameters are discussed with regards to this specific material system. Implantation profiles of 14 kV phosphorus ions with a predicted peak concentration of 0.2 at .% were successfully analysed using APT using pulsed laser assisted evaporation. It is demonstrated that the most important factor in obtaining the most accurate implantation profile was to ensure all phosphorus mass peaks were as free of background noise as possible, with thermal tails from the Si2+ ions obscuring the P2+ ions being the major overlap in the mass spectrum. The false positive contribution to the phosphorus profiles from hydride species appears minimal at the capping layer/substrate interface. The initial capping layer selection of nickel was successful in allowing the analysis of the majority of the phosphorus profile but nickel and phosphorus mass spectra overlaps prevent optimum quantification of phosphorus at the surface.

  1. Sampling, storage, and analysis of C2-C7 non-methane hydrocarbons from the US National Oceanic and Atmospheric Administration Cooperative Air Sampling Network glass flasks.

    PubMed

    Pollmann, Jan; Helmig, Detlev; Hueber, Jacques; Plass-Dülmer, Christian; Tans, Pieter

    2008-04-25

    An analytical technique was developed to analyze light non-methane hydrocarbons (NMHC), including ethane, propane, iso-butane, n-butane, iso-pentane, n-pentane, n-hexane, isoprene, benzene and toluene from whole air samples collected in 2.5l-glass flasks used by the National Oceanic and Atmospheric Administration, Earth System Research Laboratory, Global Monitoring Division (NOAA ESRL GMD, Boulder, CO, USA) Cooperative Air Sampling Network. This method relies on utilizing the remaining air in these flasks (which is at below-ambient pressure at this stage) after the completion of all routine greenhouse gas measurements from these samples. NMHC in sample aliquots extracted from the flasks were preconcentrated with a custom-made, cryogen-free inlet system and analyzed by gas chromatography (GC) with flame ionization detection (FID). C2-C7 NMHC, depending on their ambient air mixing ratios, could be measured with accuracy and repeatability errors of generally < or =10-20%. Larger deviations were found for ethene and propene. Hexane was systematically overestimated due to a chromatographic co-elution problem. Saturated NMHC showed less than 5% changes in their mixing ratios in glass flask samples that were stored for up to 1 year. In the same experiment ethene and propene increased at approximately 30% yr(-1). A series of blank experiments showed negligible contamination from the sampling process and from storage (<10 pptv yr(-1)) of samples in these glass flasks. Results from flask NMHC analyses were compared to in-situ NMHC measurements at the Global Atmospheric Watch station in Hohenpeissenberg, Germany. This 9-months side-by-side comparison showed good agreement between both methods. More than 94% of all data comparisons for C2-C5 alkanes, isoprene, benzene and toluene fell within the combined accuracy and precision objectives of the World Meteorological Organization Global Atmosphere Watch (WMO-GAW) for NMHC measurements.

  2. Assessment of respiratory effect of air pollution: study design on general population samples.

    PubMed

    Baldacci, S; Carrozzi, L; Viegi, G; Giuntini, C

    1997-01-01

    The aim of this paper is to describe an epidemiological model to investigate the relationship between respiratory diseases and environmental air pollution. In the Po Delta prospective study, subjects were investigated before and after a large thermoelectric power plant began operating, in 1980 to 1982 and in 1988 to 1991, respectively. The Pisa prospective study was performed in 1986 to 1988 and in 1991 to 1993, before and after the construction of a new expressway that encircles the city from the North to the Southeast. In each survey, subjects completed the interviewer-administered standardized CNR questionnaire on respiratory symptoms/diseases and risk factors, and performed lung function tests. In the second survey of each study, skin prick tests, total serum IgE determination, methacholine challenge test and biomarkers (such as sister chromatide exchanges, micronuclei, chromosomal abnormalities, DNA and hemoglobin adducts) were also performed. Concentrations of total suspended particulate and SO2 in both surveys were higher in urban than in rural areas, as well as symptom/disease prevalences and bronchial reactivity. Subgroups of subjects from the two samples were enrolled to perform a specific study on the acute respiratory effects of indoor pollution; the daily presence of symptoms and measurements of peak expiratory flow (PEF), daily activity pattern, and assessment of the indoor air quality (particulates < 2.5 mu and NO2) were evaluated. Higher symptom prevalences and PEF variability level were observed in subjects with the highest levels of NO2 or particulates, especially asthmatics. In conclusion, these studies represent a basis for further analyses to better define the relationship between respiratory health and indoor/outdoor pollutant levels.

  3. Investigating the momentum balance of a plasma pinch: An air-side stereoscopic imaging system for locating probes

    SciTech Connect

    Sears, Jason Intrator, T. P.; Feng, Y.; Swan, H. O.; Klarenbeek, J.; Gao, K.

    2014-10-01

    The momentum balance of a plasma pinch in the Reconnection Scaling Experiment (RSX) is examined in three dimensions using several repositionable, insertable probes. A new camera-based system described here triangulates the locations of the probe tips so that their measurements are spatially registered. The optical system locates probes to within ±1.5 mm of their absolute 3D position in the vessel and to within ±0.7 mm relative to other probes, on the order of the electron inertial length (1–2 mm)

  4. Fluorescent in situ hybridization with specific DNA probes offers adequate detection of Enterococcus faecalis and Enterococcus faecium in clinical samples.

    PubMed

    Waar, Karola; Degener, John E; van Luyn, Marja J; Harmsen, Hermie J M

    2005-10-01

    Enterococcus faecalis and Enterococcus faecium are among the leading causes of hospital-acquired infections. Reliable and quick identification of E. faecalis and E. faecium is important for accurate treatment and understanding their role in the pathogenesis of infections. Fluorescent in situ hybridization (FISH) of whole bacterial cells with oligonucleotides targeted at the 16S rRNA molecule leads to a reduced time to identification. In clinical practice, FISH therefore can be used in situations in which quick identification is necessary for optimal treatment of the patient. Furthermore, the abundance, spatial distribution and bacterial cell morphology can be observed in situ. This report describes the design of two fluorescent-labelled oligonucleotides that, respectively, detect the 16S rRNA of E. faecalis and the 16S rRNA of E. faecium, Enterococcus hirae, Enterococcus mundtii, Enterococcus villorum and Enterococcus saccharolyticus. Different protocols for the application of these oligonucleotides with FISH in different clinical samples such as faeces or blood cultures are given. Enterococci in a biofilm attached to a biomaterial were also visualized. Embedding of the biomaterial preserved the morphology and therefore the architecture of the biofilm could be observed. The usefulness of other studies describing FISH for detection of enterococci is generally hampered by the fact that they have only focused on one material and one protocol to detect the enterococci. However, the results of this study show that the probes can be used both in the routine laboratory to detect and determine the enterococcal species in different clinical samples and in a research setting to enumerate and detect the enterococci in their physical environment.

  5. Air sampling of flame retardants based on the use of mixed-bed sorption tubes--a validation study.

    PubMed

    Lazarov, Borislav; Swinnen, Rudi; Spruyt, Maarten; Maes, Frederick; Van Campenhout, Karen; Goelen, Eddy; Covaci, Adrian; Stranger, Marianne

    2015-11-01

    An analytical methodology using automatic thermal desorption and gas chromatography mass spectrometry analysis was optimized and validated for simultaneous determination of a set of components from three different flame retardant chemical classes: polybrominated diphenyl ethers (PBDEs) (PBDE-28, PBDE-47, PBDE-66, PBDE-85, PBDE-99, PBDE-100), organophosphate flame retardants (PFRs) (tributyl phosphate, tripropyl phosphate, tris(2-chloroethyl)phosphate-, tris(1,3-dichloro-2-propyl) phosphate, tris(2-ethylhexyl) phosphate, triphenyl phosphate, tris(2-chloro-1-methylethyl) phosphate and tricresylphosphate), and "novel" brominated flame retardants (NBFRs) (pentabromotoluene, 2,3,4,5,6-pentabromoethylbenzene, (2,3-dibromopropyl) (2,4,6-tribromophenyl) ether, hexabromobenzene, and 2-ethylhexyl 2,3,4,5-tetrabromobenzoate) in air. The methodology is based on low volume active air sampling of gaseous and particulate air fractions on mixed-bed (polydimethylsiloxane (PDMS)/Tenax TA) sorption tubes. The optimized method provides recoveries >88%; a limit of detection in the range of 6-25 pg m(-3) for PBDEs, 6-171 pg m(-3) for PFRs, and 7-41 pg m(-3) for NBFRs; a linearity greater than 0.996; and a repeatability of less than 10% for all studied compounds. The optimized method was compared with a standard method using active air sampling on XAD-2 sorbent material, followed by liquid extraction. On the one hand, the PDMS/Tenax TA method shows comparable results at longer sampling time conditions (e.g., indoor air sampling, personal air sampling). On the other hand, at shorter sampling time conditions (e.g., sampling from emission test chambers), the optimized method detects up to three times higher concentrations and identifies more flame retardant compounds compared to the standard method based on XAD-2 loading.

  6. Comparison of air dispersion modeling results with ambient air sampling data: A case study at Tacoma Landfill, a National Priorities List Site

    SciTech Connect

    Griffin, L.R. ); Rutherford, T.L. )

    1994-08-01

    Air dispersion modeling, ambient air sampling, and emissions testing of landfill sources have been performed to evaluate the effects of remedial activities on ambient air surrounding the Tacoma Landfill. In 1983, the Tacoma Landfill was placed on the National Priorities List (NPL) as part of the Commencement Bay/South Tacoma Channel Superfund site. Remedial activities completed, or near completion, at the 190 acre (768,903 m[sup 2]) Tacoma Landfill include a groundwater extraction system and air stripping units used to remove volatile organic compounds (VOCs) from groundwater, landfill gas extraction and flare system to control gas migration from the landfill, landfill liner and leachate collection system for an active section of the landfill, and a landfill cap that covers the inactive portions of the landfill. Dispersion modeling was performed with measured stack emission data using Industrial Source Complex (ISC) to determine the groundlevel concentrations of VOCs from the air stripper, flares, and active portion of the landfill for comparison with the measured ambient air data collected during 1992. 9 refs., 3 figs., 6 tabs.

  7. COMPARISON OF GEOPROBE PRT AND AMS GVP SOIL-GAS SAMPLING SYSTEMS WITH DEDICATED VAPOR PROBES IN SANDY SOILS AT THE RAYMARK SUPERFUND SITE

    EPA Science Inventory

    A study was conducted near the Raymark Superfund Site in Stratford, Connecticut to compare results of soil-gas sampling using dedicated vapor probes, a truck-mounted direct-push technique - the Geoprobe Post-Run-Tubing (PRT) system, and a hand-held rotary hammer technique - the A...

  8. A Modified Alderman-Grant Coil makes possible an efficient cross-coil probe for high field solid-state NMR of lossy biological samples

    NASA Astrophysics Data System (ADS)

    Grant, Christopher V.; Yang, Yuan; Glibowicka, Mira; Wu, Chin H.; Park, Sang Ho; Deber, Charles M.; Opella, Stanley J.

    2009-11-01

    The design, construction, and performance of a cross-coil double-resonance probe for solid-state NMR experiments on lossy biological samples at high magnetic fields are described. The outer coil is a Modified Alderman-Grant Coil (MAGC) tuned to the 1H frequency. The inner coil consists of a multi-turn solenoid coil that produces a B 1 field orthogonal to that of the outer coil. This results in a compact nested cross-coil pair with the inner solenoid coil tuned to the low frequency detection channel. This design has several advantages over multiple-tuned solenoid coil probes, since RF heating from the 1H channel is substantially reduced, it can be tuned for samples with a wide range of dielectric constants, and the simplified circuit design and high inductance inner coil provides excellent sensitivity. The utility of this probe is demonstrated on two electrically lossy samples of membrane proteins in phospholipid bilayers (bicelles) that are particularly difficult for conventional NMR probes. The 72-residue polypeptide embedding the transmembrane helices 3 and 4 of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) (residues 194-241) requires a high salt concentration in order to be successfully reconstituted in phospholipid bicelles. A second application is to paramagnetic relaxation enhancement applied to the membrane-bound form of Pf1 coat protein in phospholipid bicelles where the resistance to sample heating enables high duty cycle solid-state NMR experiments to be performed.

  9. Continuous Flow Liquid Microjunction Surface Sampling Probe Connected On-line with HPLC/MS for Spatially Resolved Analysis of Small Molecules and Proteins

    SciTech Connect

    Van Berkel, Gary J; Kertesz, Vilmos

    2013-01-01

    RATIONALE: A continuous flow liquid microjunction surface sampling probe extracts soluble material from surfaces for direct ionization and detection by MS. Demonstrated here is the on-line coupling of such a probe with HPLC/MS enabling extraction, separation and detection of small molecules and proteins from surfaces in a spatially resolved (~0.5 mm diameter spots) manner. Methods: A continuous flow liquid microjunction surface sampling probe was connected to a 6-port, 2-position valve for extract collection and injection to an HPLC column. A QTRAP 5500 hybrid triple quadrupole linear ion trap equipped with a Turbo V ion source operated in positive ESI mode was used for all experiments. System operation was tested with extraction, separation and detection of propranolol and associated metabolites from drug dosed tissues and proteins from dried sheep blood spots on paper. Results: Confirmed in the tissue were the parent drug and two different hydroxypropranolol glucuronides. The mass spectrometric response for these compounds from different locations in the liver showed an increase with increasing extraction time (5, 20 and 40 s extractions). For on-line separation and detection/identification of extracted proteins from dried sheep blood spots, two major protein peaks dominated the chromatogram and could be correlated with the expected masses for the hemoglobin and chains. Conclusions: Spatially resolved sampling, separation, and detection of small molecules and proteins from surfaces can be accomplished using a continuous flow liquid microjunction surface sampling probe coupled on-line with HPLC/MS detection.

  10. Day and night variation in chemical composition and toxicological responses of size segregated urban air PM samples in a high air pollution situation

    NASA Astrophysics Data System (ADS)

    Jalava, P. I.; Wang, Q.; Kuuspalo, K.; Ruusunen, J.; Hao, L.; Fang, D.; Väisänen, O.; Ruuskanen, A.; Sippula, O.; Happo, M. S.; Uski, O.; Kasurinen, S.; Torvela, T.; Koponen, H.; Lehtinen, K. E. J.; Komppula, M.; Gu, C.; Jokiniemi, J.; Hirvonen, M.-R.

    2015-11-01

    Urban air particulate pollution is a known cause for adverse human health effects worldwide. China has encountered air quality problems in recent years due to rapid industrialization. Toxicological effects induced by particulate air pollution vary with particle sizes and season. However, it is not known how distinctively different photochemical activity and different emission sources during the day and the night affect the chemical composition of the PM size ranges and subsequently how it is reflected to the toxicological properties of the PM exposures. The particulate matter (PM) samples were collected in four different size ranges (PM10-2.5; PM2.5-1; PM1-0.2 and PM0.2) with a high volume cascade impactor. The PM samples were extracted with methanol, dried and thereafter used in the chemical and toxicological analyses. RAW264.7 macrophages were exposed to the particulate samples in four different doses for 24 h. Cytotoxicity, inflammatory parameters, cell cycle and genotoxicity were measured after exposure of the cells to particulate samples. Particles were characterized for their chemical composition, including ions, element and PAH compounds, and transmission electron microscopy (TEM) was used to take images of the PM samples. Chemical composition and the induced toxicological responses of the size segregated PM samples showed considerable size dependent differences as well as day to night variation. The PM10-2.5 and the PM0.2 samples had the highest inflammatory potency among the size ranges. Instead, almost all the PM samples were equally cytotoxic and only minor differences were seen in genotoxicity and cell cycle effects. Overall, the PM0.2 samples had the highest toxic potential among the different size ranges in many parameters. PAH compounds in the samples and were generally more abundant during the night than the day, indicating possible photo-oxidation of the PAH compounds due to solar radiation. This was reflected to different toxicity in the PM

  11. Potential contamination of shipboard air samples by diffusive emissions of PCBs and other organic pollutants: implications and solutions.

    PubMed

    Lohmann, Rainer; Jaward, Foday M; Durham, Louise; Barber, Jonathan L; Ockenden, Wendy; Jones, Kevin C; Bruhn, Regina; Lakaschus, Soenke; Dachs, Jordi; Booij, Kees

    2004-07-15

    Air samples were taken onboard the RRS Bransfield on an Atlantic cruise from the United Kingdom to Halley, Antarctica, from October to December 1998, with the aim of establishing PCB oceanic background air concentrations and assessing their latitudinal distribution. Great care was taken to minimize pre- and post-collection contamination of the samples, which was validated through stringent QA/QC procedures. However, there is evidence that onboard contamination of the air samples occurred,following insidious, diffusive emissions on the ship. Other data (for PCBs and other persistent organic pollutants (POPs)) and examples of shipboard contamination are presented. The implications of these findings for past and future studies of global POPs distribution are discussed. Recommendations are made to help critically appraise and minimize the problems of insidious/diffusive shipboard contamination.

  12. A strip-shield improves the efficiency of a solenoid coil in probes for high field solid-state NMR of lossy biological samples

    PubMed Central

    Wu, Chin H.; Grant, Christopher V.; Cook, Gabriel A.; Park, Sang Ho; Opella, Stanley J.

    2009-01-01

    A strip-shield inserted between a high inductance double-tuned solenoid coil and the glass tube containing the sample improves the efficiency of probes used for high-field solid-state NMR experiments on lossy aqueous samples of proteins and other biopolymers. A strip-shield is a coil liner consisting of thin copper strips layered on a PTFE (polytetrafluoroethylene) insulator. With lossy samples, the shift in tuning frequency is smaller, the reduction in Q, and RF-induced heating are all significantly reduced when the strip-shield is present. The performance of 800 MHz 1H/15N and 1H/13C double-resonance probes is demonstrated on aqueous samples of membrane proteins in phospholipid bilayers. PMID:19559634

  13. The importance of correcting for variable probe-sample interactions in AFM-IR spectroscopy: AFM-IR of dried bacteria on a polyurethane film.

    PubMed

    Barlow, Daniel E; Biffinger, Justin C; Cockrell-Zugell, Allison L; Lo, Michael; Kjoller, Kevin; Cook, Debra; Lee, Woo Kyung; Pehrsson, Pehr E; Crookes-Goodson, Wendy J; Hung, Chia-Suei; Nadeau, Lloyd J; Russell, John N

    2016-08-01

    AFM-IR is a combined atomic force microscopy-infrared spectroscopy method that shows promise for nanoscale chemical characterization of biological-materials interactions. In an effort to apply this method to quantitatively probe mechanisms of microbiologically induced polyurethane degradation, we have investigated monolayer clusters of ∼200 nm thick Pseudomonas protegens Pf-5 bacteria (Pf) on a 300 nm thick polyether-polyurethane (PU) film. Here, the impact of the different biological and polymer mechanical properties on the thermomechanical AFM-IR detection mechanism was first assessed without the additional complication of polymer degradation. AFM-IR spectra of Pf and PU were compared with FTIR and showed good agreement. Local AFM-IR spectra of Pf on PU (Pf-PU) exhibited bands from both constituents, showing that AFM-IR is sensitive to chemical composition both at and below the surface. One distinct difference in local AFM-IR spectra on Pf-PU was an anomalous ∼4× increase in IR peak intensities for the probe in contact with Pf versus PU. This was attributed to differences in probe-sample interactions. In particular, significantly higher cantilever damping was observed for probe contact with PU, with a ∼10× smaller Q factor. AFM-IR chemical mapping at single wavelengths was also affected. We demonstrate ratioing of mapping data for chemical analysis as a simple method to cancel the extreme effects of the variable probe-sample interactions. PMID:27403761

  14. A novel Whole Air Sample Profiler (WASP) for the quantification of volatile organic compounds in the boundary layer

    SciTech Connect

    Mak, J. E.; Su, L.; Guenther, Alex B.; Karl, Thomas G.

    2013-10-16

    The emission and fate of reactive VOCs is of inherent interest to those studying chemical biosphere-atmosphere interactions. In-canopy VOC observations are obtainable using tower-based samplers, but the lack of suitable sampling systems for the full boundary 5 layer has limited the data characterizing the vertical structure of such gases above the canopy height and still in the boundary layer. This is the important region where many reactive VOCs are oxidized or otherwise removed. Here we describe an airborne sampling system designed to collect a vertical profile of air into a 3/800 OD tube 150m in length. The inlet ram air pressure is used to flow sampled air through the 10 tube, which results in a varying flow rate based on aircraft speed and altitude. Since aircraft velocity decreases during ascent, it is necessary to account for the variable flow rate into the tube. This is accomplished using a reference gas that is pulsed into the air stream so that the precise altitude of the collected air can be reconstructed post-collection. The pulsed injections are also used to determine any significant effect 15 from diffusion/mixing within the sampling tube, either during collection or subsequent extraction for gas analysis. This system has been successfully deployed, and we show some measured vertical profiles of isoprene and its oxidation products methacrolein and methyl vinyl ketone from a mixed canopy near Columbia, Missouri.

  15. Aqueous photooxidation of ambient Po Valley Italy air samples: Insights into secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Kirkland, J. R.; Lim, Y. B.; Sullivan, A. P.; Decesari, S.; Facchini, C.; Collett, J. L.; Keutsch, F. N.; Turpin, B. J.

    2012-12-01

    In this work, we conducted aqueous photooxidation experiments with ambient samples in order to develop insights concerning the formation of secondary organic aerosol through gas followed by aqueous chemistry (SOAaq). Water-soluble organics (e.g., glyoxal, methylglyoxal, glycolaldehyde, acetic acid, acetone) are formed through gas phase oxidation of alkene and aromatic emissions of anthropogenic and biogenic origin. Their further oxidation in clouds, fogs and wet aerosols can form lower volatility products (e.g., oligomers, organic acids) that remain in the particle phase after water evaporation, thus producing SOA. The aqueous OH radical oxidation of several individual potentially important precursors has been studied in the laboratory. In this work, we used a mist-chamber apparatus to collect atmospheric mixtures of water-soluble gases from the ambient air at San Pietro Capofiume, Italy during the PEGASOS field campaign. We measured the concentration dynamics after addition of OH radicals, in order to develop new insights regarding formation of SOA through aqueous chemistry. Specifically, batch aqueous reactions were conducted with 33 ml mist-chamber samples (TOC ~ 50-100μM) and OH radicals (~10-12M) in a new low-volume aqueous reaction vessel. OH radicals were formed in-situ, continuously by H2O2 photolysis. Products were analyzed by ion chromatography (IC), electrospray ionization mass spectrometry (ESI-MS +/-), and ESI-MS with IC pre-separation (IC/ESI-MS-). Reproducible formation of pyruvate and oxalate were observed both by IC and ESI-MS. These compounds are known to form from aldehyde oxidation in the aqueous phase. New insights regarding the aqueous chemistry of these "more atmospherically-realistic" experiments will be discussed.

  16. Comparison of halocarbon measurements in an atmospheric dry whole air sample

    PubMed Central

    Hall, Bradley D.; Harth, Christina M.; Kim, Jin Seog; Lee, Jeongsoon; Montzka, Stephen A.; Mühle, Jens; Reimann, Stefan; Vollmer, Martin K.; Weiss, Ray F.

    2015-01-01

    The growing awareness of climate change/global warming, and continuing concerns regarding stratospheric ozone depletion, will require continued measurements and standards for many compounds, in particular halocarbons that are linked to these issues. In order to track atmospheric mole fractions and assess the impact of policy on emission rates, it is necessary to demonstrate measurement equivalence at the highest levels of accuracy for assigned values of standards. Precise measurements of these species aid in determining small changes in their atmospheric abundance. A common source of standards/scales and/or well-documented agreement of different scales used to calibrate the measurement instrumentation are key to understanding many sets of data reported by researchers. This report describes the results of a comparison study among National Metrology Institutes and atmospheric research laboratories for the chlorofluorocarbons (CFCs) dichlorodifluoromethane (CFC-12), trichlorofluoromethane (CFC-11), and 1,1,2-trichlorotrifluoroethane (CFC-113); the hydrochlorofluorocarbons (HCFCs) chlorodifluoromethane (HCFC-22) and 1-chloro-1,1-difluoroethane (HCFC-142b); and the hydrofluorocarbon (HFC) 1,1,1,2-tetrafluoroethane (HFC-134a), all in a dried whole air sample. The objective of this study is to compare calibration standards/scales and the measurement capabilities of the participants for these halocarbons at trace atmospheric levels. The results of this study show agreement among four independent calibration scales to better than 2.5% in almost all cases, with many of the reported agreements being better than 1.0%. PMID:26753167

  17. Ice nucleation active particles in continental air samples over Mainz, Germany

    NASA Astrophysics Data System (ADS)

    Pummer, Bernhard G.; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine

    2016-04-01

    Aerosol particles are of central importance for atmospheric chemistry and physics, climate and public health. Some of these particles possess ice nucleation activity (INA), which is highly relevant for cloud formation and precipitation. In 2010, air filter samples were collected with a high-volume filter sampler separating fine and coarse particles (aerodynamic cut-off diameter 3 μm) in Mainz, Germany. In this study, the INA of the atmospheric particles deposited on these filters was determined. Therefore,they were extracted with ultrapure water, which was then measured in a droplet freezing assay, as described in Fröhlich-Nowoisky et al. (2015). The determined concentration of ice nucleators (INs) was between 0.3 and 2per m³ at 266 K, and between5 and 75 per m³ at 260 K. The INs were further characterized by different treatments, like heating (308 K, 371 K), filtration (0.1 μm, 300 kDa), and digestion with papain (10 mg/ml). We further investigated, which atmospheric conditions (e.g. weather) and distinguished events (e.g. dust storms, volcanic eruptions, and pollen peaks) influenced the number and nature of these INs. Fröhlich-Nowoisky, J., Hill, T. C. J., Pummer, B. G., Yordanova, P., Franc, G. D., and Pöschl, U.: Ice nucleation activity in the widespread soil fungus Mortierella alpina, Biogeosci., 12, 1057-1071, doi:10.5194/bg-12-1057-2015, 2015.

  18. Swan probe: A nanoliter-scale and high-throughput sampling interface for coupling electrospray ionization mass spectrometry with microfluidic droplet array and multiwell plate.

    PubMed

    Jin, Di-Qiong; Zhu, Ying; Fang, Qun

    2014-11-01

    Mass spectrometry provides a versatile detection method for high-throughput drug screening because it permits the use of native biological substrates and the direct quantification of unlabeled reaction products. This paper describes the design and application of a Swan-shaped probe for high-throughput and nanoliter-scale analysis of biological samples in both a microfluidic droplet array and a multiwell plate with electrospray ionization mass spectrometry (ESI-MS). The Swan probe is fabricated using a single capillary with quite low cost, and it consists of a U-shaped section with a micrometer-sized hole for sampling and a tapered tip for sample electrospray ionization. Continuous sample introduction was carried out under both sampling modes of push-pull and spontaneous injection by sequentially dipping the probe in the sample solutions and then removing them. High-throughput and reliable ESI-MS analysis was achieved in analyzing 256 droplets within 90 min with a peak height RSD of 12.6% (n = 256). To validate its potential in drug discovery, the present system was applied in the screening of inhibitors of acetylcholinesterase (AchE) and the measurement of the IC50 values of identified inhibitors. PMID:25302930

  19. An analytical method for trifluoroacetic Acid in water and air samples using headspace gas chromatographic determination of the methyl ester.

    PubMed

    Zehavi, D; Seiber, J N

    1996-10-01

    An analytical method has been developed for the determination of trace levels of trifluoroacetic acid (TFA), an atmospheric breakdown product of several of the hydrofluorocarbon (HFC) and hydrochlorofluorocarbon (HCFC) replacements for the chlorofluorocarbon (CFC) refrigerants, in water and air. TFA is derivatized to the volatile methyl trifluoroacetate (MTFA) and determined by automated headspace gas chromatography (HSGC) with electron-capture detection or manual HSGC using GC/MS in the selected ion monitoring (SIM) mode. The method is based on the reaction of an aqueous sample containing TFA with dimethyl sulfate (DMS) in concentrated sulfuric acid in a sealed headspace vial under conditions favoring distribution of MTFA to the vapor phase. Water samples are prepared by evaporative concentration, during which TFA is retained as the anion, followed by extraction with diethyl ether of the acidified sample and then back-extraction of TFA (as the anion) in aqueous bicarbonate solution. The extraction step is required for samples with a relatively high background of other salts and organic materials. Air samples are collected in sodium bicarbonate-glycerin-coated glass denuder tubes and prepared by rinsing the denuder contents with water to form an aqueous sample for derivatization and analysis. Recoveries of TFA from spiked water, with and without evaporative concentration, and from spiked air were quantitative, with estimated detection limits of 10 ng/mL (unconcentrated) and 25 pg/mL (concentrated 250 mL:1 mL) for water and 1 ng/m(3) (72 h at 5 L/min) for air. Several environmental air, fogwater, rainwater, and surface water samples were successfully analyzed; many showed the presence of TFA. PMID:21619278

  20. Evaluation of microvolume regenerated cellulose (RC) microdialysis fibers for the sampling and detection of ammonia in air.

    PubMed

    Tang, Hao; Thompson, Jonathan E

    2010-06-15

    We have explored use of perfused regenerated cellulose (RC) microdialysis tubing (216microm o.d./200microm i.d.) as sampling probes for gaseous ammonia. The probes functioned by allowing the gas to diffuse through the permeable membrane into a stream of de-ionized water which continually perfused the tubing at 10-20microLmin(-1). The resulting ammonium in the perfusate was determined through a fluorimetric method (OPA-sulfite) with LED excitation at lambda(ex)=365+/-10nm and measurement of fluorescence emission at lambda(em)=425+/-20nm. By shielding the sampling membrane with a Plexiglas tube purged under laminar flow conditions, the potential interference of particulate ammonium depositing on the probe was minimized. The RC microdialysis tube was found to act as an efficient sampling device since it exhibits a very high surface-area-to-volume ratio (approximately 200cm(2)mL(-1)). As a result, aqueous concentrations of >100microM NH(4)(+) per ppm NH(3) (g) have been observed. In addition, the fluorogenic OPA-sulfite reaction is demonstrated to be very selective for ammonia over amines that have been measured in the atmosphere. This feature of the derivatization chemistry allows analysis of ammonia by fluorimetry without need for a separation step. The method developed has been applied to field measurements of ammonia at a swine barn facility with quantitative results agreeing with a reference method.

  1. Comparison of Air Impaction and Electrostatic Dust Collector Sampling Methods to Assess Airborne Fungal Contamination in Public Buildings.

    PubMed

    Normand, Anne-Cécile; Ranque, Stéphane; Cassagne, Carole; Gaudart, Jean; Sallah, Kankoé; Charpin, Denis-André; Piarroux, Renaud

    2016-03-01

    Many ailments can be linked to exposure to indoor airborne fungus. However, obtaining a precise measurement of airborne fungal levels is complicated partly due to indoor air fluctuations and non-standardized techniques. Electrostatic dust collector (EDC) sampling devices have been used to measure a wide range of airborne analytes, including endotoxins, allergens, β-glucans, and microbial DNA in various indoor environments. In contrast, viable mold contamination has only been assessed in highly contaminated environments such as farms and archive buildings. This study aimed to assess the use of EDCs, compared with repeated air-impactor measurements, to assess airborne viable fungal flora in moderately contaminated indoor environments. Indoor airborne fungal flora was cultured from EDCs and daily air-impaction samples collected in an office building and a daycare center. The quantitative fungal measurements obtained using a single EDC significantly correlated with the cumulative measurement of nine daily air impactions. Both methods enabled the assessment of fungal exposure, although a few differences were observed between the detected fungal species and the relative quantity of each species. EDCs were also used over a 32-month period to monitor indoor airborne fungal flora in a hospital office building, which enabled us to assess the impact of outdoor events (e.g. ground excavations) on the fungal flora levels on the indoor environment. In conclusion, EDC-based measurements provided a relatively accurate profile of the viable airborne flora present during a sampling period. In particular, EDCs provided a more representative assessment of fungal levels compared with single air-impactor sampling. The EDC technique is also simpler than performing repetitive air-impaction measures over the course of several consecutive days. EDC is a versatile tool for collecting airborne samples and was efficient for measuring mold levels in indoor environments.

  2. Estimating sampling biases and measurement uncertainties of AIRS/AMSU-A temperature and water vapor observations using MERRA reanalysis

    NASA Astrophysics Data System (ADS)

    Hearty, Thomas J.; Savtchenko, Andrey; Tian, Baijun; Fetzer, Eric; Yung, Yuk L.; Theobald, Michael; Vollmer, Bruce; Fishbein, Evan; Won, Young-In

    2014-03-01

    We use MERRA (Modern Era Retrospective-Analysis for Research Applications) temperature and water vapor data to estimate the sampling biases of climatologies derived from the AIRS/AMSU-A (Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit-A) suite of instruments. We separate the total sampling bias into temporal and instrumental components. The temporal component is caused by the AIRS/AMSU-A orbit and swath that are not able to sample all of time and space. The instrumental component is caused by scenes that prevent successful retrievals. The temporal sampling biases are generally smaller than the instrumental sampling biases except in regions with large diurnal variations, such as the boundary layer, where the temporal sampling biases of temperature can be ± 2 K and water vapor can be 10% wet. The instrumental sampling biases are the main contributor to the total sampling biases and are mainly caused by clouds. They are up to 2 K cold and > 30% dry over midlatitude storm tracks and tropical deep convective cloudy regions and up to 20% wet over stratus regions. However, other factors such as surface emissivity and temperature can also influence the instrumental sampling bias over deserts where the biases can be up to 1 K cold and 10% wet. Some instrumental sampling biases can vary seasonally and/or diurnally. We also estimate the combined measurement uncertainties of temperature and water vapor from AIRS/AMSU-A and MERRA by comparing similarly sampled climatologies from both data sets. The measurement differences are often larger than the sampling biases and have longitudinal variations.

  3. Estimating Sampling Biases and Measurement Uncertainties of AIRS-AMSU-A Temperature and Water Vapor Observations Using MERRA Reanalysis

    NASA Technical Reports Server (NTRS)

    Hearty, Thomas J.; Savtchenko, Andrey K.; Tian, Baijun; Fetzer, Eric; Yung, Yuk L.; Theobald, Michael; Vollmer, Bruce; Fishbein, Evan; Won, Young-In

    2014-01-01

    We use MERRA (Modern Era Retrospective-Analysis for Research Applications) temperature and water vapor data to estimate the sampling biases of climatologies derived from the AIRS/AMSU-A (Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit-A) suite of instruments. We separate the total sampling bias into temporal and instrumental components. The temporal component is caused by the AIRS/AMSU-A orbit and swath that are not able to sample all of time and space. The instrumental component is caused by scenes that prevent successful retrievals. The temporal sampling biases are generally smaller than the instrumental sampling biases except in regions with large diurnal variations, such as the boundary layer, where the temporal sampling biases of temperature can be +/- 2 K and water vapor can be 10% wet. The instrumental sampling biases are the main contributor to the total sampling biases and are mainly caused by clouds. They are up to 2 K cold and greater than 30% dry over mid-latitude storm tracks and tropical deep convective cloudy regions and up to 20% wet over stratus regions. However, other factors such as surface emissivity and temperature can also influence the instrumental sampling bias over deserts where the biases can be up to 1 K cold and 10% wet. Some instrumental sampling biases can vary seasonally and/or diurnally. We also estimate the combined measurement uncertainties of temperature and water vapor from AIRS/AMSU-A and MERRA by comparing similarly sampled climatologies from both data sets. The measurement differences are often larger than the sampling biases and have longitudinal variations.

  4. Computational study and error analysis of an integrated sampling-probe and gas-analyzer for mixing measurements in supersonic flow

    NASA Astrophysics Data System (ADS)

    Zhu, Wenbo; Ground, Cody; Maddalena, Luca; Viti, Valerio

    2016-09-01

    Concentration probes are employed in supersonic flow mixing measurements. Because the typical design of such probes is essentially based on an inviscid, adiabatic, quasi-1D analysis, the scope of this work is to understand better and quantify the severe impact of viscous effects on the probe’s internal gasdynamics and the associated uncertainties in the measured quantities via a computational fluid dynamics analysis. Specifically, the focus is on the augmented errors due to the aforementioned viscous effects when coupled with various cases of probe-flow misalignment, which is a typical scenario encountered in mixing measurements of binary gas compositions (air and helium in the present work) in vortex-dominated flows. Results show phenomena such as shock induced boundary layer separation and the formation of an oblique shock train. These flow features are found to noticeably affect the accuracy of the composition measurement. The errors associated with the inviscid, adiabatic, quasi-1D analysis of the probes are quantified in this study.

  5. Atom probe tomography characterization of neutron irradiated surveillance samples from the R. E. Ginna reactor pressure vessel

    DOE PAGES

    Edmondson, Philip D.; Miller, Michael K.; Powers, Kathy A.; Nanstad, Randy K.

    2015-12-29

    Surveillance samples of a low copper (nominally 0.05 wt.% Cu) forging and a higher copper (0.23 wt.% Cu) submerged arc weld from the R. E. Ginna reactor pressure vessel have been characterized by atom probe tomography (APT) after exposure to three levels of neutron irradiation, i.e., fluences of 1.7, 3.6 and 5.8 × 1023 n.m–2 (E > 1 MeV), and inlet temperatures of ~289 °C (~552 °F). As no copper-enriched precipitates were observed in the low copper forging, and the measured copper content in the ferrite matrix was 0.04± <0.01 at.% Cu, after neutron irradiation to a fluence of 1.7more » × 1023 n.m–3, this copper level was below the solubility limit. A number density of 2 × 1022 m–3 of Ni–, Mn– Si-enriched precipitates with an equivalent radius of gyration of 1.7 ± 0.4 nm were detected in the sample. However, Cu-, Ni-, Mn-enriched precipitates were observed in specimens cut from different surveillance specimens from the same forging material in which the overall measured copper level was 0.08± <0.01 at.% (fluence of 3.6 × 1023 n.m–3) and 0.09± <0.01 at.% Cu (fluence of 5.8 × 1023 n.m–3). Therefore, these slightly higher copper contents were above the solubility limit of Cu under these irradiation conditions. A best fit of all the composition data indicated that the size and number density of the Cu-enriched precipitates increased slightly in both size and number density by additional exposure to neutron irradiation. High number densities of Cu-enriched precipitates were observed in the higher Cu submerged arc weld for all irradiated conditions. The size and number density of the precipitates in the welds were higher than in the same fluence forgings. Some Cu-enriched precipitates were found to have Ni-, Mn- Si-, and P-enriched regions on their surfaces suggesting a preferential nucleation site. Furthermore, atom maps revealed P, Ni, and Mn segregation to, and preferential precipitation of, Cu-enriched precipitates over the surface of a grain

  6. Atom probe tomography characterization of neutron irradiated surveillance samples from the R. E. Ginna reactor pressure vessel

    SciTech Connect

    Edmondson, Philip D.; Miller, Michael K.; Powers, Kathy A.; Nanstad, Randy K.

    2015-12-29

    Surveillance samples of a low copper (nominally 0.05 wt.% Cu) forging and a higher copper (0.23 wt.% Cu) submerged arc weld from the R. E. Ginna reactor pressure vessel have been characterized by atom probe tomography (APT) after exposure to three levels of neutron irradiation, i.e., fluences of 1.7, 3.6 and 5.8 × 1023 n.m–2 (E > 1 MeV), and inlet temperatures of ~289 °C (~552 °F). As no copper-enriched precipitates were observed in the low copper forging, and the measured copper content in the ferrite matrix was 0.04± <0.01 at.% Cu, after neutron irradiation to a fluence of 1.7 × 1023 n.m–3, this copper level was below the solubility limit. A number density of 2 × 1022 m–3 of Ni–, Mn– Si-enriched precipitates with an equivalent radius of gyration of 1.7 ± 0.4 nm were detected in the sample. However, Cu-, Ni-, Mn-enriched precipitates were observed in specimens cut from different surveillance specimens from the same forging material in which the overall measured copper level was 0.08± <0.01 at.% (fluence of 3.6 × 1023 n.m–3) and 0.09± <0.01 at.% Cu (fluence of 5.8 × 1023 n.m–3). Therefore, these slightly higher copper contents were above the solubility limit of Cu under these irradiation conditions. A best fit of all the composition data indicated that the size and number density of the Cu-enriched precipitates increased slightly in both size and number density by additional exposure to neutron irradiation. High number densities of Cu-enriched precipitates were observed in the higher Cu submerged arc weld for all irradiated conditions. The size and number density of the precipitates in the welds were higher than in the same fluence forgings. Some Cu-enriched precipitates were found to have Ni-, Mn- Si-, and P-enriched regions on their surfaces suggesting a preferential nucleation site. Furthermore, atom maps revealed P, Ni, and Mn

  7. Atom probe tomography characterization of neutron irradiated surveillance samples from the R. E. Ginna reactor pressure vessel

    NASA Astrophysics Data System (ADS)

    Edmondson, P. D.; Miller, M. K.; Powers, K. A.; Nanstad, R. K.

    2016-03-01

    Surveillance samples of a low copper (nominally 0.05 wt.% Cu) forging and a higher copper (0.23 wt.% Cu) submerged arc weld from the R. E. Ginna reactor pressure vessel have been characterized by atom probe tomography (APT) after exposure to three levels of neutron irradiation, i.e., fluences of 1.7, 3.6 and 5.8 × 1023 n.m-2 (E > 1 MeV), and inlet temperatures of ∼289 °C (∼552 °F). As no copper-enriched precipitates were observed in the low copper forging, and the measured copper content in the ferrite matrix was 0.04± <0.01 at.% Cu, after neutron irradiation to a fluence of 1.7 × 1023 n.m-3, this copper level was below the solubility limit. A number density of 2 × 1022 m-3 of Ni-, Mn- Si-enriched precipitates with an equivalent radius of gyration of 1.7 ± 0.4 nm were detected in the sample. However, Cu-, Ni-, Mn-enriched precipitates were observed in specimens cut from different surveillance specimens from the same forging material in which the overall measured copper level was 0.08± <0.01 at.% (fluence of 3.6 × 1023 n.m-3) and 0.09± <0.01 at.% Cu (fluence of 5.8 × 1023 n.m-3). Therefore, these slightly higher copper contents were above the solubility limit of Cu under these irradiation conditions. A best fit of all the composition data indicated that the size and number density of the Cu-enriched precipitates increased slightly in both size and number density by additional exposure to neutron irradiation. High number densities of Cu-enriched precipitates were observed in the higher Cu submerged arc weld for all irradiated conditions. The size and number density of the precipitates in the welds were higher than in the same fluence forgings. Some Cu-enriched precipitates were found to have Ni-, Mn- Si-, and P-enriched regions on their surfaces suggesting a preferential nucleation site. Atom maps revealed P, Ni, and Mn segregation to, and preferential precipitation of, Cu-enriched precipitates over the surface of a grain boundary in the low fluence

  8. Probing Shear Thinning Behaviors of IgG Molecules at the Air-Water Interface via Rheological Methods.

    PubMed

    Gleason, Camille; Yee, Chanel; Masatani, Peter; Middaugh, C Russell; Vance, Aylin

    2016-01-19

    Shear thinning behavior, often observed in shear viscosity tests of IgG therapeutic molecules, could lead to significant disparities in the projections for the viscosity profile of a molecule. Despite its importance, molecular determinants of sheer thinning in protein suspensions are largely unknown. To better understand the factors influencing sheer thinning, viscosity profiles of IgG1 and IgG2 molecules were monitored over a wide range of bulk concentrations (0.007-70 mg/mL). The degree of shear-thinning of 70 and 0.007 mg/mL samples was minimal in comparison to the 0.7 mg/mL solution for both IgG molecules. These observations suggest that bulk concentration alone does not determine the degree of sheer thinning, and additional factors play a role. Additional data reveals, within a threshold range of concentrations, that a strong correlation exists between the degree of shear thinning and the surface area to volume (SA:V) ratio of an IgG sample exposed to the interface. The influence of the interface, however, diminishes when the bulk concentration falls outside this concentration window. Also revealed by interfacial oscillatory rheological testing, both IgG molecules showed solid-like behavior (G'i) at the air-water interface at 0.7 mg/mL, whereas liquid-like behavior (G″i) was dominant at 0.007 and 70 mg/mL concentrations. These observations imply that the lack of solid-like behavior was due to the absence of a network structure. Likewise the addition of polysorbate 20 (PS20) to the 0.7 mg/mL solutions decreased the degree of shear thinning by disrupting the network structure at the interface. Taken together, the results presented here suggest that, although shear thinning behavior is a manifestation of an interfacial, rather than a bulk, phenomenon, the extent of it depends on how susceptible the surface molecules are to the air-water interface, where the surface molecular structures are influenced by the bulk properties.

  9. 3D Air Quality and the Clean Air Interstate Rule: Lagrangian Sampling of CMAQ Model Results to Aid Regional Accountability Metrics

    NASA Technical Reports Server (NTRS)

    Fairlie, T. D.; Szykman, Jim; Pierce, Robert B.; Gilliland, A. B.; Engel-Cox, Jill; Weber, Stephanie; Kittaka, Chieko; Al-Saadi, Jassim A.; Scheffe, Rich; Dimmick, Fred; Tikvart, Joe

    2008-01-01

    The Clean Air Interstate Rule (CAIR) is expected to reduce transport of air pollutants (e.g. fine sulfate particles) in nonattainment areas in the Eastern United States. CAIR highlights the need for an integrated air quality observational and modeling system to understand sulfate as it moves in multiple dimensions, both spatially and temporally. Here, we demonstrate how results from an air quality model can be combined with a 3d monitoring network to provide decision makers with a tool to help quantify the impact of CAIR reductions in SO2 emissions on regional transport contributions to sulfate concentrations at surface monitors in the Baltimore, MD area, and help improve decision making for strategic implementation plans (SIPs). We sample results from the Community Multiscale Air Quality (CMAQ) model using ensemble back trajectories computed with the NASA Langley Research Center trajectory model to provide Lagrangian time series and vertical profile information, that can be compared with NASA satellite (MODIS), EPA surface, and lidar measurements. Results are used to assess the regional transport contribution to surface SO4 measurements in the Baltimore MSA, and to characterize the dominant source regions for low, medium, and high SO4 episodes.

  10. Five Years' Evaluation of the BD ProbeTec System for the Direct Molecular Detection of Mycobacterium tuberculosis Complex in Respiratory and Nonrespiratory Clinical Samples.

    PubMed

    Bicmen, Can; Karaman, Onur; Gunduz, Ayriz T; Erer, Onur F; Coskun, Meral; Kaftan, Osman; Demirel, Mahmut M; Senol, Gunes; Akarca, Tulay; Dereli, Sevket; Ozsoz, Ayse

    2015-01-01

    In this study, Mycobacterium tuberculosis complex was detected by BD ProbeTec ET system in 4716 respiratory and 167 nonrespiratory samples [mostly (98%) smear negative). Sensitivity, specificity, positive and negative predictive values were 81.8%, 98.3, 85.1 and 97.9 for respiratory and 100%, 96.2, 64.7 and 100, for nonrespiratory samples, respectively. Among 149 (3.1%) ProbeTec DTB positive and culture negative samples, 72 (65 respiratory and seven nonrespiratory) (48.3%) were recovered from the patients who were evaluated as having TB infection. The system has been found as useful in early diagnosis of tuberculosis infection in association with the clinical, radiological and histopathological findings.

  11. 32 CFR 806.27 - Samples of Air Force FOIA processing documents.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... installation; (and/or) Processing this FOIA request will require us to collect and review a substantial number... documents might be responsive to your request. Please give us whatever additional details you may have on the Air Force records you want. Can you tell us when the records were created, and what Air...

  12. 32 CFR 806.27 - Samples of Air Force FOIA processing documents.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... installation; (and/or) Processing this FOIA request will require us to collect and review a substantial number... documents might be responsive to your request. Please give us whatever additional details you may have on the Air Force records you want. Can you tell us when the records were created, and what Air...

  13. 32 CFR 806.27 - Samples of Air Force FOIA processing documents.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... installation; (and/or) Processing this FOIA request will require us to collect and review a substantial number... documents might be responsive to your request. Please give us whatever additional details you may have on the Air Force records you want. Can you tell us when the records were created, and what Air...

  14. It's Alive!: Students Observe Air-Water Interface Samples Rich with Organisms

    ERIC Educational Resources Information Center

    Avant, Thomas

    2002-01-01

    This article describes an experiment, designed by Cindy Henk, manager of the Socolofsky Microscopy Center at Louisiana State University (LSU), that involved collecting and viewing microorganisms in the air-water interface. The experiment was participated by Leesville High School microbiology students. The students found that the air-water…

  15. Deinococcus aerolatus sp. nov. and Deinococcus aerophilus sp. nov., isolated from air samples.

    PubMed

    Yoo, Seung-Hee; Weon, Hang-Yeon; Kim, Soo-Jin; Kim, Yi-Seul; Kim, Byung-Yong; Kwon, Soon-Wo

    2010-05-01

    Two strains of pink-coloured bacteria, 5516T-9(T) and 5516T-11(T), were isolated from an air sample collected in Korea. The taxonomic status of these novel strains was investigated by means of a polyphasic approach. The novel strains were Gram-positive, aerobic, non-spore-forming and coccus-shaped bacteria. The DNA G+C contents of strains 5516T-9(T) and 5516T-11(T) were 61.0 and 59.3 mol%, respectively. The major isoprenoid quinone for both strains was MK-8. Strain 5516T-9(T) contained summed feature 3 (iso-C(15 : 0) 2-OH and/or C(16 : 1)omega7c), C(16 : 0) and iso-C(17 : 1)omega9c, and strain 5516T-11(T) contained summed feature 3, iso-C(17 : 1)omega9c, C(17 : 1)omega8c and C(15 : 1)omega6c as the major fatty acids (>10 %). The polar lipid patterns of both strains were similar, comprising one phospholipid and one aminophospholipid as the major components. Phylogenetic analyses using 16S rRNA gene sequences showed that both novel strains were affiliated to the genus Deinococcus. Strain 5516T-9(T) exhibited the highest sequence similarity with Deinococcus marmoris DSM 12784(T) (96.8 %) and strain 5516T-11(T) showed the highest sequence similarity with Deinococcus saxicola DSM 15974(T) (94.5 %). The sequence similarity between strains 5516T-9(T) and 5516T-11(T) was 94.7 %. On the basis of the data presented, it is evident that both strains represent separate novel species of the genus Deinococcus for which the names Deinococcus aerolatus sp. nov. (type strain 5516T-9(T)=KACC 12745(T)=JCM 15442(T)) and Deinococcus aerophilus sp. nov. (type strain 5516T-11(T)=KACC 12746(T)=JCM 15443(T)) are proposed.

  16. Massilia jejuensis sp. nov. and Naxibacter suwonensis sp. nov., isolated from air samples.

    PubMed

    Weon, Hang-Yeon; Yoo, Seung-Hee; Kim, Soo-Jin; Kim, Yi-Seul; Anandham, Rangasamy; Kwon, Soon-Wo

    2010-08-01

    Two Gram-negative, motile, rod-shaped bacteria (strains 5317J-18T and 5414S-25T) were isolated from air samples collected in the Jeju Island and Suwon region of Korea, respectively. Phylogenetically, strain 5317J-18T was grouped with the genus Massilia with Massilia brevitalea byr23-80T as the closest relative (98.8% sequence similarity). Strain 5414S-25T was affiliated with the genus Naxibacter with Naxibacter haematophilus CCUG 38318T as the closest relative (98.8% sequence similarity). The mean DNA-DNA relatedness values between strain 5317J-18T and M. brevitalea DSM 18925T and Massilia aurea DSM 18055T were 43 and 36%, respectively. The mean DNA-DNA hybridization values between strain 5414S-25T and N. haematophilus KACC 13771T, M. brevitalea DSM 18925T, Massilia timonae DSM 16850T, Naxibacter varians KACC 13770T, M. aurea DSM 18055T, Massilia lutea DSM 17473T and Massilia albidiflava DSM 17472T ranged from 33 to 42%. Both novel strains had ubiquinone Q-8 as the predominant isoprenoid quinone and summed feature 3 (comprising iso-C15:0 2-OH and/or C16:1 omega7c) and C16:0 as the major fatty acids. Both strains also showed similar polar lipid profiles with phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol as the major polar lipids. The DNA G+C contents of strains 5317J-18T and 5414S-25T were 66.1 and 67.8%, respectively. On the basis of their phenotypic, chemotaxonomic and genotypic characteristics, the new strains represent novel species in the genera Massilia and Naxibacter. Strain 5317J-18T (=KACC 12634T=DSM 21309T) is proposed as the type strain of Massilia jejuensis sp. nov. and strain 5414S-25T (=KACC 12635T=DSM 21311T) is proposed as the type strain of Naxibacter suwonensis sp. nov.

  17. Comparison of lichen, conifer needles, passive air sampling devices, and snowpack as passive sampling media to measure semi-volatile organic compounds in remote atmospheres.

    PubMed

    Schrlau, Jill E; Geiser, Linda; Hageman, Kimberly J; Landers, Dixon H; Simonich, Staci Massey

    2011-12-15

    A wide range of semivolatile organic compounds (SOCs), including pesticides and polycyclic aromatic hydrocarbons (PAHs), were measured in lichen, conifer needles, snowpack and XAD-based passive air sampling devices (PASDs) collected from 19 different U.S. national parks in order to compare the magnitude and mechanism of SOC accumulation in the different passive sampling media. Lichen accumulated the highest SOC concentrations, in part because of its long (and unknown) exposure period, whereas PASDs accumulated the lowest concentrations. However, only the PASD SOC concentrations can be used to calculate an average atmospheric gas-phase SOC concentration because the sampling rates are known and the media is uniform. Only the lichen and snowpack SOC accumulation profiles were statistically significantly correlated (r = 0.552, p-value <0.0001) because they both accumulate SOCs present in the atmospheric particle-phase. This suggests that needles and PASDs represent a different composition of the atmosphere than lichen and snowpack and that the interpretation of atmospheric SOC composition is dependent on the type of passive sampling media used. All four passive sampling media preferentially accumulated SOCs with relatively low air-water partition coefficients, while snowpack accumulated SOCs with higher log K(OA) values compared to the other media. Lichen accumulated more SOCs with log K(OA) > 10 relative to needles and showed a greater accumulation of particle-phase PAHs.

  18. Use of Whole-Genome Sequencing to Link Burkholderia pseudomallei from Air Sampling to Mediastinal Melioidosis, Australia

    PubMed Central

    Price, Erin P.; Mayo, Mark; Kaestli, Mirjam; Theobald, Vanessa; Harrington, Ian; Harrington, Glenda; Sarovich, Derek S.

    2015-01-01

    The frequency with which melioidosis results from inhalation rather than percutaneous inoculation or ingestion is unknown. We recovered Burkholderia pseudomallei from air samples at the residence of a patient with presumptive inhalational melioidosis and used whole-genome sequencing to link the environmental bacteria to B. pseudomallei recovered from the patient. PMID:26488732

  19. Early detection of foot-and-mouth disease virus from infected cattle using a dry filter air sampling system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foot-and-mouth disease (FMD) is a highly contagious livestock disease of high economic impact. Early detection of FMD virus (FMDV) is fundamental for rapid outbreak control. Air sampling collection has been demonstrated as a useful technique for detection of FMDV RNA in infected animals, related to ...

  20. Inter-laboratory comparison study on measuring semi-volatile organic chemicals in standards and air samples.

    PubMed

    Su, Yushan; Hung, Hayley

    2010-11-01

    Measurements of semi-volatile organic chemicals (SVOCs) were compared among 21 laboratories from 7 countries through the analysis of standards, a blind sample, an air extract, and an atmospheric dust sample. Measurement accuracy strongly depended on analytes, laboratories, and types of standards and samples. Intra-laboratory precision was generally good with relative standard deviations (RSDs) of triplicate injections <10% and with median differences of duplicate samples between 2.1 and 22%. Inter-laboratory variability, measured by RSDs of all measurements, was in the range of 2.8-58% in analyzing standards, and 6.9-190% in analyzing blind sample and air extract. Inter-laboratory precision was poorer when samples were subject to cleanup processes, or when SVOCs were quantified at low concentrations. In general, inter-laboratory differences up to a factor of 2 can be expected to analyze atmospheric SVOCs. When comparing air measurements from different laboratories, caution should be exercised if the data variability is less than the inter-laboratory differences.

  1. COMPREHENSIVE STRUCTURAL STUDY OF PRE-AND POST-HEAT TREATED COMPRESSION MOLDED POLYURETHANE SAMPLES OF VARYING COMPOSITION STUDIES BY SCANNING PROBE TECHNIQUES

    SciTech Connect

    M. HAWLEY; E. ORLER; ET AL

    2001-03-01

    Only a limited number of structural studies have been performed on polyurethanes using scanning probe techniques to determine both the microstructure and the corresponding distribution of hard and soft segments within samples. This type of information is needed to better understand the mechanical properties of these materials and to facilitate modeling. In order to address these issues, we have fabricated a series of compression molded segmented poly(ester urethane) samples with hard (HS) to soft segment ratios from 19 to 100%. Samples were examined using scanning probe phase imaging techniques to obtain the topography and corresponding distribution of hard domains before and after heating at 100 C. A number of significant differences were observed between the pre- and post-heat treated samples. Variations in structure and heat-induced morphological changes were directly related to HS content. Fine strand- or fibril-like structures were most prominent in the 23 and 19% HS sample but first appeared at 30% HS. Harder, thicker elongated structures dominated the surface of the 100% HS sample and were seen to a limited extent on all samples, especially after annealing and quenching. The 23% HS sample surface structure depended on quenching rate and time after treatment.

  2. A spatial multicriteria model for determining air pollution at sample locations.

    PubMed

    Réquia Júnior, Weeberb João; Roig, Henrique Llacer; Koutrakis, Petros

    2015-02-01

    Atmospheric pollution in urban centers has been one of the main causes of human illness related to the respiratory and circulatory system. Efficient monitoring of air quality is a source of information for environmental management and public health. This study investigates the spatial patterns of atmospheric pollution using a spatial multicriteria model that helps target locations for air pollution monitoring sites. The main objective was to identify high-priority areas for measuring human exposures to air pollutants as they relate to emission sources. The method proved to be viable and flexible in its application to various areas.

  3. Detection of airborne bacteria in a duck production facility with two different personal air sampling devices for an exposure assessment.

    PubMed

    Martin, Elena; Dziurowitz, Nico; Jäckel, Udo; Schäfer, Jenny

    2015-01-01

    Prevalent airborne microorganisms are not well characterized in industrial animal production buildings with respect to their quantity or quality. To investigate the work-related microbial exposure, personal bioaerosol sampling during the whole working day is recommended. Therefore, bioaerosol sampling in a duck hatchery and a duck house with two personal air sampling devices, a filter-based PGP and a NIOSH particle size separator, was performed. Subsequent, quantitative and qualitative analyses were carried out with" culture independent methods. Total cell concentrations (TCC) determined via fluorescence microscopy showed no difference between the two devices. In average, 8 × 10(6) cells/m(3) were determined in the air of the duck hatchery and 5 × 10(7) cells/m(3) in the air of the duck house. A Generated Restriction Fragment Length Polymorphism (RFLP) pattern revealed deviant bacterial compositions comparing samples collected with both devices. Clone library analyses based on 16S rRNA gene sequence analysis from the hatchery's air showed 65% similarity between the two sampling devices. Detailed 16S rRNA gene sequence analyses showed the occurrence of bacterial species like Acinetobacter baumannii, Enterococcus faecalis, Escherichia sp., and Shigella sp.; and a group of Staphylococcus delphini, S. intermedius, and S. pseudintermedius that provided the evidence of potential exposure to risk group 2 bacteria at the hatchery workplace. Size fractionated sampling with the developed by the Institute for Occupational Safety and Health of the German Social Accident Insurance (IFA) device revealed that pathogenic bacteria would deposit in the inhalable, the thorax, and possibly alveolar dust fraction according to EN481. TCC analysis showed the deposition of bacterial cells in the third stage (< 1μm) at the NIOSH device which implies that bacteria can reach deep into the lungs and contaminate the alveolus after inhalation. Nevertheless, both personal sampling devices

  4. Evaluation of a sampling and analysis method for determination of polyhalogenated dibenzo-p-dioxins and dibenzofurans in ambient air

    SciTech Connect

    Harless, R.L.; Lewis, R.G.; McDaniel, D.D.; Gibson, J.F.; Dupuy, A.E.

    1992-01-01

    General Metals Works PS-1 PUF air samplers and an analytical method based on high resolution gas chromatography - high resolution mass spectrometry (HRGC-HRMS) were evaluated for determination of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDDs/PCDFs), polybrominated dibenz-p-dioxins and dibenzofurans (PBDDs/PBDFs) and bromo/chloro dibenzo-p-dioxins and dibenzofurans (BCDDs/BCDFs) in ambient air. Dilute solutions of these compounds and (13)C-1,2,3,4-TCDD were used to spike the filters of PS-1 air samplers which were then operated 24 hrs to sample 350-400 cubic meter ambient air. After sampling, each quartz-fiber filter and polyurethane foam (PUF) were spiked with (13)C-12-labeled PCDD, PCDF, PBDD, and PBDF internal standards before separate Soxhlet extractions with benzene. The extracts were subjected to an acid/base clean-up procedure followed by clean-up on microcolumns of silica gel, alumina, and carbon and then analyzed by HRGC-HRMS. Results derived from the study indicated the PS-1 ambient air samplers and the analytical procedures were very efficient and that pg/cubic meter and sub-pg/cubic meter levels of total PCDDs/PCDFs, PBDDs/PBDFs, BCDDs/BCDFs, and 2,3,7,8-substituted congeners could be accurately measured.

  5. Evaluation of a method to detect Mycobacterium bovis in air samples from infected Eurasian badgers (Meles meles) and their setts.

    PubMed

    Jones, R M; Ashford, R; Cork, J; Palmer, S; Wood, E; Spyvee, P; Parks, S; Bennett, A; Brewer, J; Delahay, R; Chambers, M; Sawyer, J

    2013-05-01

    Environmental air sampling was evaluated as a method to detect the presence of M. bovis in the vicinity of infected badgers and their setts. Airborne particles were collected on gelatine filters using a commercially available air sampling instrument and tested for the presence of M. bovis using bacteriological culture and real-time PCR. The sensitivity of bacteriological culture was broadly similar to that of real-time PCR when testing samples artificially spiked with M. bovis. Sampling was undertaken from directly under the muzzles of badgers which had been experimentally infected with M. bovis (37 samples), within enclosures housing the experimentally infected animals (50 samples), and in the vicinity of setts with resident infected wild badgers (52 samples). The methods employed did not detect M. bovis from either infected badgers or artificial or natural setts known to contain infected animals. However, samples taken at four of the six natural setts were positive for Mycobacterium gordonae.

  6. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - BAGHOUSE FILTRATION PRODUCTS - AIR PURATOR CORPORATION HUYGLAS 1405M FILTER SAMPLE

    EPA Science Inventory

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) pilot of the Environmental Technology Verification (ETV) Program. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of th...

  7. Scheduling whole-air samples above the Trade Wind Inversion from SUAS using real-time sensors

    NASA Astrophysics Data System (ADS)

    Freer, J. E.; Greatwood, C.; Thomas, R.; Richardson, T.; Brownlow, R.; Lowry, D.; MacKenzie, A. R.; Nisbet, E. G.

    2015-12-01

    Small Unmanned Air Systems (SUAS) are increasingly being used in science applications for a range of applications. Here we explore their use to schedule the sampling of air masses up to 2.5km above ground using computer controlled bespoked Octocopter platforms. Whole-air sampling is targeted above, within and below the Trade Wind Inversion (TWI). On-board sensors profiled the TWI characteristics in real time on ascent and, hence, guided the altitudes at which samples were taken on descent. The science driver for this research is investigation of the Southern Methane Anomaly and, more broadly, the hemispheric-scale transport of long-lived atmospheric tracers in the remote troposphere. Here we focus on the practical application of SUAS for this purpose. Highlighting the need for mission planning, computer control, onboard sensors and logistics in deploying such technologies for out of line-of-sight applications. We show how such a platform can be deployed successfully, resulting in some 60 sampling flights within a 10 day period. Challenges remain regarding the deployment of such platforms routinely and cost-effectively, particularly regarding training and support. We present some initial results from the methane sampling and its implication for exploring and understanding the Southern Methane Anomaly.

  8. Technique for determination of accurate heat capacities of volatile, powdered, or air-sensitive samples using relaxation calorimetry

    NASA Astrophysics Data System (ADS)

    Marriott, Robert A.; Stancescu, Maria; Kennedy, Catherine A.; White, Mary Anne

    2006-09-01

    We introduce a four-step technique for the accurate determination of the heat capacity of volatile or air-sensitive samples using relaxation calorimetry. The samples are encapsulated in a hermetically sealed differential scanning calorimetry pan, in which there is an internal layer of Apiezon N grease to assist thermal relaxation. Using the Quantum Design physical property measurement system to investigate benzoic acid and copper standards, we find that this method can lead to heat capacity determinations accurate to ±2% over the temperature range of 1-300K, even for very small samples (e.g., <10mg and contributing ca. 20% to the total heat capacity).

  9. Application of a Liquid Extraction Based Sealing Surface Sampling Probe for Mass Spectrometric Analysis of Dried Blood Spots and Mouse Whole-Body Thin Tissue Sections

    SciTech Connect

    Van Berkel, Gary J; Kertesz, Vilmos

    2009-01-01

    The utility of a liquid extraction based sealing surface sampling probe (SSSP) for the direct mass spectrometric analysis of targeted drugs and metabolites in dried blood spots (DBSs) and whole mouse thin tissue sections was demonstrated. The accuracy and precision for the quantitative analysis of a minimum of 50 ng/mL sitamaquine or acetaminophen in DBSs on paper were well within the required 15% dictated by internationally recognized acceptance criteria for assay validations. Analysis of whole-body mouse thin tissue sections from animals dosed with propranolol, adhered to an adhesive tape substrate, provided semi-quantitative information for propranolol and its hydroxyproranolol glucuronide metabolite within specific organs of the tissue. The relative abundances recorded for the two compounds in the brain, lung, kidney and liver were in nominal agreement with previously reported amounts based on analysis using a liquid microjunction surface sampling probe (LMJ-SSP), and whole-body autoradiography (WBA) and HPLC-MS analysis. The ability to sample and analyze from tape-adhered tissue samples, which are generally employed in WBA analysis, presents the possibility of consecutive WBA and SSSP-MS analysis of the same tissue section. This would facilitate assignment, and possibly quantitation, of the different molecular forms of total drug related material detected in the WBA analysis. The flexibility to sample larger or smaller spot sizes, alternative probe sealing mechanisms, and a reduction in internal volumes and associated sample carryover issues will be among the first simple improvements necessary to make the SSSP-MS method a practical DBS and/or thin tissue section analysis tool or to expand its use to other surface sampling applications.

  10. Field calibration of rapidly equilibrating thin-film passive air samplers and their potential application for low-volume air sampling studies.

    PubMed

    Farrar, N J; Harner, T J; Sweetman, A J; Jones, K C

    2005-01-01

    This paper reports on a field calibration and ambient deployment study with rapidly equilibrating thin-film passive air samplers. POlymer-coated Glass (POG) samplers have a coating of ethylene vinyl acetate (EVA) less than 1 microm thick coated on to glass, which can be dissolved off after exposure and prepared for quantification of persistent organic pollutants (POPs) that have partitioned into the film during field exposure. In this study, POGs were exposed for up to 18 d, in a study to assess compound uptake rates and their time to approach equilibrium. Results confirmed theoretical predictions, with time to equilibrium varying between a few hours to ca. 20 d for PCB-18 and PCB-138, respectively. Performance reference compounds and contaminated POGs were used to investigate depuration kinetics, confirming that lighter congeners behave extremely dynamically with substantial losses from the films over periods of a few hours. Repeated deployments of the samplers for different3-d periods yielded detectable levels of a range of PCB congeners, which had partitioned from as little as approximately 2 to 10 m3 air. This highlights the potential utility of POGs for extremely sensitive and dynamic passive air sampling in the future to help improve understanding of sources, environmental fate, and behavior of POPs. Recommendations are made for future improvements/refinements in POG sampling and handling procedures.

  11. Whole air canister sampling coupled with preconcentration GC/MS analysis of part-per-trillion levels of trimethylsilanol in semiconductor cleanroom air.

    PubMed

    Herrington, Jason S

    2013-08-20

    The costly damage airborne trimethylsilanol (TMS) exacts on optics in the semiconductor industry has resulted in the demand for accurate and reliable methods for measuring TMS at trace levels (i.e., parts per trillion, volume per volume of air [ppt(v)] [~ng/m(3)]). In this study I developed a whole air canister-based approach for field sampling trimethylsilanol in air, as well as a preconcentration gas chromatography/mass spectrometry laboratory method for analysis. The results demonstrate clean canister blanks (0.06 ppt(v) [0.24 ng/m(3)], which is below the detection limit), excellent linearity (a calibration relative response factor relative standard deviation [RSD] of 9.8%) over a wide dynamic mass range (1-100 ppt(v)), recovery/accuracy of 93%, a low selected ion monitoring method detection limit of 0.12 ppt(v) (0.48 ng/m(3)), replicate precision of 6.8% RSD, and stability (84% recovery) out to four days of storage at room temperature. Samples collected at two silicon wafer fabrication facilities ranged from 10.0 to 9120 ppt(v) TMS and appear to be associated with the use of hexamethyldisilazane priming agent. This method will enable semiconductor cleanroom managers to monitor and control for trace levels of trimethylsilanol.

  12. Dual Femtosecond TITANIUM:SAPPHIRE Laser for Ultrafast Optical Sampling Two-Color Pump/probe Studies.

    NASA Astrophysics Data System (ADS)

    Luo, Ningyi Daniel

    A pair of self-synchronous Ti:Sapphire lasers have been setup for two-color pump/probe detection in the sub-picosecond time regime. The two 75 femtosecond self -mode-locked Ti:Sapphire lasers are operated asynchronously at slightly different repetition rates to provide continuously varying dynamic delay times. They are tunable at 700-890 nm. The shorter wavelength pulses from one laser are used as a pump source, while the longer wavelength pulses are used as a probe. The sum-frequency pulses generated by the cross-correlation of the two laser pulses are used to define the "time-zero" position and trigger the pump/probe process. The experiment is triggered at the difference frequency, and the signal can be averaged many times allowing a weak signal to build up. Dual-time scale is involved with the interpretation of the signal, which allows the experiment to be carried on the real time scale and the signal to be recorded on a much reduced equivalent time scale. Excited state lifetime measurement of laser HITCI has proven that this technology is practically feasible. Several advantages have been seen: (1) independent wavelength tunability of the pump and probe lasers; (2) variable femto- to nano -second pump/probe time delay; (3) fast (mu s-ms) data collection time; (4) compact optical layout, without the need for optical delay lines and modulators, and thus, simple optical alignment. This study sheds light on the development of a novel compact high speed optical instrument.

  13. Detection of counterfeit Scotch whisky samples using mid-infrared spectrometry with an attenuated total reflectance probe incorporating polycrystalline silver halide fibres.

    PubMed

    McIntyre, Allyson C; Bilyk, Madeleine L; Nordon, Alison; Colquhoun, Gary; Littlejohn, David

    2011-04-01

    Two methods of analysis were developed to permit detection of counterfeit Scotch whisky samples using a novel attenuated total reflectance (ATR) diamond-tipped immersion probe for mid-infrared (MIR) spectrometry. The first method allowed determination of the ethanol concentration (35-45% (v/v)) in situ without dilution of the samples; the results obtained compared well with the supplied concentrations (average relative error of 1.2% and 0.8% for univariate and multivariate partial least squares (PLS) calibration, respectively). The second method involved analysis of dried residues of the whisky samples and caramel solutions on the diamond ATR crystal; principal component analysis (PCA) of the spectra was used to classify the samples and investigate the colorant added. Seventeen test whisky samples were successfully categorised as either authentic or counterfeit in a blind study when both MIR methods were used.

  14. Thermal desorption-gas chromatography-mass spectrometry method to determine phthalate and organophosphate esters from air samples.

    PubMed

    Aragón, M; Borrull, F; Marcé, R M

    2013-08-16

    A method based on thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) has been developed to determine four organophosphate esters, seven phthalate esters, and bis(2-ethylhexyl) adipate in the gas phase from harbour and urban air samples. The method involves the sampling of 1.5L of air in a Tenax TA sorbent tube followed by thermal desorption (using a Tenax TA cryogenic trap) coupled to gas chromatography-mass spectrometry. The repeatability of the method expressed as %RSD (n=3) is less than 15% and the MQLs are between 0.007μgm(-3) (DMP, TBP, BBP, TPP and DnOP) and 6.7μgm(-3) (DEHP). The method was successfully applied in two areas (urban and harbour) testing two and three points in each one, respectively. Some of these compounds were found in both urban and harbour samples. Di-(2-ethylhexyl)phthalate was the most abundant compound found in both areas at concentration levels between 6.7μgm(-3) and 136.4μgm(-3). This study demonstrates that thermal desorption is an efficient method for the determination of these semi-volatile compounds in the gas phase fraction of air samples.

  15. Detection of Campylobacter Bacteria in Air Samples for Continuous Real-Time Monitoring of Campylobacter Colonization in Broiler Flocks▿

    PubMed Central

    Olsen, Katja N.; Lund, Marianne; Skov, Julia; Christensen, Laurids S.; Hoorfar, Jeffrey

    2009-01-01

    Improved monitoring tools are important for the control of Campylobacter bacteria in broiler production. In this study, we compare the sensitivities of detection of Campylobacter by PCR with feces, dust, and air samples during the lifetimes of broilers in two poultry houses and conclude that the sensitivity of detection of Campylobacter in air is comparable to that in other sample materials. Profiling of airborne particles in six poultry houses revealed that the aerodynamic conditions were dependent on the age of the chickens and very comparable among different poultry houses, with low proportions of particles in the 0.5- to 2-μm-diameter range and high proportions in the 2- to 5-μm-diameter range. Campylobacter could also be detected by PCR in air samples collected at the hanging stage during the slaughter process but not at the other stages tested at the slaughterhouse. The exploitation of airborne dust in poultry houses as a sample material for the detection of Campylobacter and other pathogens provides an intriguing possibility, in conjunction with new detection technologies, for allowing continuous or semicontinuous monitoring of colonization status. PMID:19201953

  16. Detection of Campylobacter bacteria in air samples for continuous real-time monitoring of Campylobacter colonization in broiler flocks.

    PubMed

    Olsen, Katja N; Lund, Marianne; Skov, Julia; Christensen, Laurids S; Hoorfar, Jeffrey

    2009-04-01

    Improved monitoring tools are important for the control of Campylobacter bacteria in broiler production. In this study, we compare the sensitivities of detection of Campylobacter by PCR with feces, dust, and air samples during the lifetimes of broilers in two poultry houses and conclude that the sensitivity of detection of Campylobacter in air is comparable to that in other sample materials. Profiling of airborne particles in six poultry houses revealed that the aerodynamic conditions were dependent on the age of the chickens and very comparable among different poultry houses, with low proportions of particles in the 0.5- to 2-microm-diameter range and high proportions in the 2- to 5-microm-diameter range. Campylobacter could also be detected by PCR in air samples collected at the hanging stage during the slaughter process but not at the other stages tested at the slaughterhouse. The exploitation of airborne dust in poultry houses as a sample material for the detection of Campylobacter and other pathogens provides an intriguing possibility, in conjunction with new detection technologies, for allowing continuous or semicontinuous monitoring of colonization status.

  17. Evaluation of a sampling and analysis method for determination of polyhalogenated dibenzo-p-dioxins and dibenzofurans in ambient air

    SciTech Connect

    Harless, R.L.; Lewis, R.G.; McDaniel, D.D.; Gibson, J.F.; Dupuy, A.E.

    1991-01-01

    General Metals Works PS-1 PUF air samplers and an analytical method based on high resolution gas chromatography - high resolution mass spectrometry (HRGC-HRMS) were evaluated for determination of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDDs/PCDFs), polybrominated dibenzo-p-dioxins and dibenzofurans (PBDDs/PBDFs) and bromo/chloro dibenzo-p-dioxins and dibenzofurans (BCDDs/BCDFs) in ambient air. Dilute solutions of these compounds and (13)C12-1,2,3,4-TCDD were used to spike the filters of PS-1 air samplers which were then operated 24 hrs to sample 350-400 cu m ambient air. After sampling, each quartz-fiber filter and polyurethane foam (PUF) were spiked with (13)C12-labeled PCDD, PCDF, PBDD, and PBDF internal standards before separate Soxhlet extractions with benzene. The extracts were subjected to an acid/base clean-up procedure followed by clean-up on microcolumns of silica gel, alumina, and carbon and then analyzed by HRGC-HRMS. Results derived from the study indicated the PS-1 ambient air samplers and the analytical procedures were very efficient and that pg/cu m and sub-pg/cu m levels of total PCDDs/PCDFs, PBDDs/PBDFs, BCDDs/BCDFs, and 2,3,7,8-substituted congeners could be accurately measured. Background levels of these compounds in the ambient air were also determined. Total PCDDs, PCDFs, TBDFs, and PeBDFs were detected in a low concentration range of 0.3 to 3.0 pg/cu m.

  18. Long duration ash probe

    DOEpatents

    Hurley, J.P.; McCollor, D.P.; Selle, S.J.

    1994-07-26

    A long duration ash probe includes a pressure shell connected to a port in a combustor with a sample coupon mounted on a retractable carriage so as to retract the sample coupon within the pressure shell during soot blowing operation of the combustor. A valve mounted at the forward end of the pressure shell is selectively closeable to seal the sample coupon within the shell, and a heating element in the shell is operable to maintain the desired temperature of the sample coupon while retracted within the shell. The carriage is operably mounted on a pair of rails within the shell for longitudinal movement within the shell. A hollow carrier tube connects the hollow cylindrical sample coupon to the carriage, and extends through the carriage and out the rearward end thereof. Air lines are connected to the rearward end of the carrier tube and are operable to permit coolant to pass through the air lines and thence through the carrier tube to the sample coupon so as to cool the sample coupon. 8 figs.

  19. Long duration ash probe

    DOEpatents

    Hurley, John P.; McCollor, Don P.; Selle, Stanley J.

    1994-01-01

    A long duration ash probe includes a pressure shell connected to a port in a combustor with a sample coupon mounted on a retractable carriage so as to retract the sample coupon within the pressure shell during sootblowing operation of the combustor. A valve mounted at the forward end of the pressure shell is selectively closeable to seal the sample coupon within the shell, and a heating element in the shell is operable to maintain the desired temperature of the sample coupon while retracted within the shell. The carriage is operably mounted on a pair of rails within the shell for longitudinal movement within the shell. A hollow carrier tube connects the hollow cylindrical sample coupon to the carriage, and extends through the carriage and out the rearward end thereof. Air lines are connected to the rearward end of the carrier tube and are operable to permit coolant to pass through the air lines and thence through the carrier tube to the sample coupon so as to cool the sample coupon.

  20. A versatile and highly sensitive probe for Hg(II), Pb(II) and Cd(II) detection individually and totally in water samples.

    PubMed

    Zhou, Yu; Tian, Xiang-Li; Li, Yan-Song; Zhang, Yuan-Yuan; Yang, Li; Zhang, Jun-Hui; Wang, Xin-Rui; Lu, Shi-Ying; Ren, Hong-Lin; Liu, Zeng-Shan

    2011-12-15

    The detection of heavy metal ions using enzyme-linked immunosorbent assays (ELISA) has been reported by several research groups. However, highly sensitive and selective detection of total heavy metal ions using ELISA is a major technical limitation. Here we describe the development of a versatile and highly sensitive probe combining goat anti-mice IgG, colloidal gold nanoparticles (AuNPs) and horseradish peroxidase (HRP). We demonstrate the utility of this probe using three kinds of heavy metal complete antigens and three monoclonal antibodies (McAbs) in one ELISA system to establish a high-throughput screening protocol. The procedure was successfully applied to analysis of Hg(II), Pb(II) and Cd(II) individually and totally from different water samples. The sensitivities for the detection of Hg(II), Pb(II) and Cd(II) individually and totally are 27.4, 3.9, 15.8 and 18.2 nM, respectively. And all limit of detection (LODs) are lower than 1.2 nM. The recovery results obtained from the developed technique showed a good correlation (R(2)=0.983) with those from ICP-MS. The major advantage of the probe is the versatility and high sensibility. The probe could be potentially used, upon demand, as a sensitive and versatile detector for a broad range of applications. PMID:21975341

  1. Fast, long-scan-range pump-probe measurement based on asynchronous sampling using a dual-wavelength mode-locked fiber laser.

    PubMed

    Zhao, Xin; Zheng, Zheng; Liu, Lei; Wang, Qi; Chen, Haiwei; Liu, Jiansheng

    2012-11-01

    A simple, fast and long-scan-range pump-probe scheme is experimentally demonstrated using a dual-wavelength passively mode-locked fiber laser. The pulse trains from the dual-wavelength laser have a small difference in their repetition frequencies inherently determined by the intracavity dispersion. This enables the realization of the asynchronous sampling scheme with a tens-of-nanosecond-long delay range and a picosecond scan step at a millisecond scan speed. Instead of two synchronized ultrafast lasers in the traditional asynchronous sampling scheme, just one fiber laser is needed in our scheme, which could significantly simplify the system setup.

  2. Methods for polynuclear aromatic hydrocarbon determination in air samples using polar-bonded phase HPLC and GC-MS with application to oil refinery samples

    SciTech Connect

    Karlesky, K.L.

    1985-01-01

    Particle samples were collected using high volume air samplers fitted with glass fiber filters or with a cascade impactor containing paper filters. They were then cleaned using either extraction with dimethylsulfoxide and pentane or utilizing a small cartridge containing a diamine polar-bonded phase material, the second method being more effective. Vapor phase PAH were sampled using an apparatus designed in the laboratory. After collection, the resins were desorbed with solvent and the PAH content was determined. The suitability of the resins decrease in the following order: Amberlite XAD-2, Chromosorb 105, Tenax GC, coconut charcoal, and Ambesorb XE-348. High performance liquid chromatography (HPLC) was used to determine the behavior of PAH in the normal and reversed phase on polar-bonded phases containing amine, diamine, and pyrrolidone substrates. Results support the proposed mechanism in the normal phase and indicate that both a partitioning and liquid-solid adsorption mechanism takes place in the reversed phase depending upon the mobile phase. Occasionally, these polar-bonded phases can be deactivated by the formation of amine-carbonyl complexes from polar aldehydes or ketones in the solvent or sample. Deactivation can be reversed by flushing with water to hydrolyze the Schiff's base imine back to the amine. Gas chromatography-mass spectroscopy (GC-MS) was used to analyze air samples from oil refineries in Port Arthur, collected over a period of three years. The analytical procedures are applied to the collected samples to determine if they contain detectable amounts of PAH. The GC-MS analysis was adequate for this study but the use of SIM detection is preferred because of the greater sensitivity for PAH.

  3. Passive air sampling of organochlorine pesticides in a northeastern state of India, Manipur.

    PubMed

    Devi, Ningombam Linthoingambi; Qi, Shihua; Chakraborty, Paromita; Zhang, Gan; Yadav, Ishwar Chandra

    2011-01-01

    Thirty-six polyurethane foam disk passive air samplers (PUF-PAS) were deployed over a year during January to December, 2009 at three locations, i.e., Imphal (urban site), Thoubal (rural site) and Waithou (alpine site) of Manipur, to assess the seasonal local atmospheric emission of selected organochlorine pesticides (OCPs). The average concentration of HCHs monitored at mountain site during hot season (Mar, Apr, and May) and rainy seasons (Jun, Jul, Aug, and Sep) were 403 and 349 pg/m3, respectively. DDTs had a high concentration with 384 pg/m3 at rural site and 379 pg/m3 at urban site during hot seasons. Endosulfans and chlordane were found high in concentration during hot seasons (260 pg/m3) and low during retreating monsoon seasons (44 pg/m3) at rural site. Most of the OCPs concentrations were high during cultivation period. The OCP concentrations of rainy season were highly correlated (p < 0.01) with OCPs of hot seasons. Further, positive correlation (p < 0.05) was also obtained between cold seasons and retreating monsoon. Principal component analysis showed a significant correlation among the four seasons and distribution pattern of OCPs in air. Back trajectory analysis by using HYPSLIT model showed a long range air transport of OCPs to the present study area. Present OCP levels at Manipur is an outcome of both local emission and also movement of air mass by long range atmospheric transport.

  4. An Inexpensive Autosampler to Maximize Throughput for an Ion Source that Samples Surfaces in Open Air

    EPA Science Inventory

    An autosampler was built to pull cotton swab heads mounted into a 3-foot long, square Al rod in ambient air through the He ionizing beam of a Direct Analysis in Real Time (DART) ion source interfaced to an orthogonal acceleration, time-of-flight mass spectrometer. The cost of th...

  5. 32 CFR 806.27 - Samples of Air Force FOIA processing documents.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... documents. (a) This section includes suggested language in paragraph format that tracks Air Force and DoD... section, language in parentheses is for explanatory purposes only. Do not include any of the parenthetical language of this section in your FOIA correspondence. When optional language must be selected, the...

  6. ASSESSMENT OF VAPOR INTRUSION USING INDOOR AND SUB-SLAB AIR SAMPLING

    EPA Science Inventory

    The objective of this investigation was to develop a method for evaluating vapor intrusion using indoor and sub-slab air measurement and at the same time directly assist EPA’s New England Regional Office in evaluating vapor intrusion in 15 homes and one business near the former R...

  7. Influenza virus survival in aerosols and estimates of viable virus loss resulting from aerosolization and air-sampling.

    PubMed

    Brown, J R; Tang, J W; Pankhurst, L; Klein, N; Gant, V; Lai, K M; McCauley, J; Breuer, J

    2015-11-01

    Using a Collison nebulizer, aerosols of influenza (A/Udorn/307/72 H3N2) were generated within a controlled experimental chamber, from known starting virus concentrations. Air samples collected after variable suspension times were tested quantitatively using both plaque and polymerase chain reaction assays, to compare the proportion of viable virus against the amount of detectable viral RNA. These experiments showed that whereas influenza RNA copies were well preserved, the number of viable viruses decreased by a factor of 10(4)-10(5). This suggests that air-sampling studies for assessing infection control risks that detect only influenza RNA may greatly overestimate the amount of viable virus available to cause infection.

  8. Extent of sample loss on the sampling device and the resulting experimental biases when collecting volatile fatty acids (VFAs) in air using sorbent tubes.

    PubMed

    Kim, Yong-Hyun; Kim, Ki-Hyun

    2013-08-20

    Not all volatile organic compounds (VOCs) are suitable for sampling from air onto sorbent tubes (ST) with subsequent analysis by thermal desorption (TD) with gas chromatography (GC). Some compounds (such as C2 hydrocarbons) are too volatile for quantitative retention by sorbents at ambient temperature, while others are too reactive - either for storage stability on the tubes (post-sampling) or for thermal desorption/GC analysis. Volatile fatty acids (VFAs) are one of the compound groups that present a challenge to sorbent tube sampling. In this study, we evaluated sample losses on the inner wall surface of the sorbent tube sampler. The sorptive losses of five VFA (acetic, propionic, n-butyric, i-valeric, and n-valeric acid) were tested using two types of tubes (stainless steel and quartz), each packed with three sorbent beds arranged in order of sorbent strength from the sampling end of the tube (Tenax TA, Carbopack B, and Carbopack X). It showed significantly higher losses of VFAs in both liquid phase and vapor phase when using stainless steel tube samplers. These losses were also seen if vapor-phase fatty acids were passed through empty stainless steel tubing and increased dramatically with increasing molecular weight, e.g., losses of 33.6% (acetic acid) to 97.5% (n-valeric acid). Similar losses of VFAs were also observed from headspace sampling of cheese products. Considering that stainless steel sampling tubes are still used extensively by many researchers, their replacement with quartz tubes is recommended to reduce systematic biases in collecting VFA samples or in their calibration. PMID:23869450

  9. Effect of Sampling Depth on Air-Sea CO2 Flux Estimates in River-Stratified Arctic Coastal Waters

    NASA Astrophysics Data System (ADS)

    Miller, L. A.; Papakyriakou, T. N.

    2015-12-01

    In summer-time Arctic coastal waters that are strongly influenced by river run-off, extreme stratification severely limits wind mixing, making it difficult to effectively sample the surface 'mixed layer', which can be as shallow as 1 m, from a ship. During two expeditions in southwestern Hudson Bay, off the Nelson, Hayes, and Churchill River estuaries, we confirmed that sampling depth has a strong impact on estimates of 'surface' pCO2 and calculated air-sea CO2 fluxes. We determined pCO2 in samples collected from 5 m, using a typical underway system on the ship's seawater supply; from the 'surface' rosette bottle, which was generally between 1 and 3 m; and using a niskin bottle deployed at 1 m and just below the surface from a small boat away from the ship. Our samples confirmed that the error in pCO2 derived from typical ship-board versus small-boat sampling at a single station could be nearly 90 μatm, leading to errors in the calculated air-sea CO2 flux of more than 0.1 mmol/(m2s). Attempting to extrapolate such fluxes over the 6,000,000 km2 area of the Arctic shelves would generate an error approaching a gigamol CO2/s. Averaging the station data over a cruise still resulted in an error of nearly 50% in the total flux estimate. Our results have implications not only for the design and execution of expedition-based sampling, but also for placement of in-situ sensors. Particularly in polar waters, sensors are usually deployed on moorings, well below the surface, to avoid damage and destruction from drifting ice. However, to obtain accurate information on air-sea fluxes in these areas, it is necessary to deploy sensors on ice-capable buoys that can position the sensors in true 'surface' waters.

  10. CTEPP STANDARD OPERATING PROCEDURE FOR EXTRACTING AND PREPARING AIR SAMPLES FOR ANALYSIS OF POLAR PERSISTENT ORGANIC POLLUTANTS (SOP-5.13)

    EPA Science Inventory

    The method for extracting and preparing indoor and outdoor air samples for analysis of polar persistent organic pollutants is summarized in this SOP. It covers the preparation of samples that are to be analyzed by gas chromatography/mass spectrometry.

  11. Assessment of Air Quality in the Shuttle and International Space Station (ISS) Based on Samples Returned by STS-104 at the Conclusion of 7A

    NASA Technical Reports Server (NTRS)

    James, John T.

    2001-01-01

    The toxicological assessment of air samples returned at the end of the STS-l04 (7 A) flight to the ISS is reported. ISS air samples were taken in June and July 2001 from the Service Module, FGB, and U.S. Laboratory using grab sample canisters (GSCs) and/or formaldehyde badges. Preflight and end-of-mission samples were obtained from Atlantis using GSCs. Solid sorbent air sampler (SSAS) samples were obtained from the ISS in April, June, and July. Analytical methods have not changed from earlier reports, and all quality control measures were met.

  12. Ultimate detectability of volatile organic compounds: how much further can we reduce their ambient air sample volumes for analysis?

    PubMed

    Kim, Yong-Hyun; Kim, Ki-Hyun

    2012-10-01

    To understand the ultimately lowest detection range of volatile organic compounds (VOCs) in air, application of a high sensitivity analytical system was investigated by coupling thermal desorption (TD) technique with gas chromatography (GC) and time-of-flight (TOF) mass spectrometry (MS). The performance of the TD-GC/TOF MS system was evaluated using liquid standards of 19 target VOCs prepared in the range of 35 pg to 2.79 ng per μL. Studies were carried out using both total ion chromatogram (TIC) and extracted ion chromatogram (EIC) mode. EIC mode was used for calibration to reduce background and to improve signal-to-noise. The detectability of 19 target VOCs, if assessed in terms of method detection limit (MDL, per US EPA definition) and limit of detection (LOD), averaged 5.90 pg and 0.122 pg, respectively, with the mean coefficient of correlation (R(2)) of 0.9975. The minimum quantifiable mass of target analytes, when determined using real air samples by the TD-GC/TOF MS, is highly comparable to the detection limits determined experimentally by standard. In fact, volumes for the actual detection of the major aromatic VOCs like benzene, toluene, and xylene (BTX) in ambient air samples were as low as 1.0 mL in the 0.11-2.25 ppb range. It was thus possible to demonstrate that most target compounds including those in low abundance could be reliably quantified at concentrations down to 0.1 ppb at sample volumes of less than 10 mL. The unique sensitivity of this advanced analytical system can ultimately lead to a shift in field sampling strategy with smaller air sample volumes facilitating faster, simpler air sampling (e.g., use of gas syringes rather than the relative complexity of pumps or bags/canisters), with greatly reduced risk of analyte breakthrough and minimal interference, e.g., from atmospheric humidity. The improved detection limits offered by this system can also enhance accuracy and measurement precision. PMID:22934885

  13. Primary Multidrug Resistant Tuberculosis and Utility of Line Probe Assay for Its Detection in Smear-Positive Sputum Samples in a Tertiary Care Hospital in South India

    PubMed Central

    Yacoob, Fahmiya Leena; Philomina Jose, Beena; Karunakaran Lelitha, Sarada Devi; Sreenivasan, Sreelatha

    2016-01-01

    In a high tuberculosis burdened country like India, rapid, cost-effective, and reliable diagnostic tools for tuberculosis are an urgent need of the hour to prevent inappropriate treatment strategies and further spread of resistance. This study aimed to estimate the proportion of new smear-positive tuberculosis cases with primary resistance to rifampicin and/or isoniazid as well as identify the common mutations associated with it. Sputum of 200 newly diagnosed smear-positive cases of 1+ score and above was directly subjected to Line Probe Assay using the GenoType MTBDRplus assay kit. All samples were inoculated onto solid media and 61 samples were inoculated in automated liquid culture also. The Line Probe Assay gave hundred percent interpretable results with 2.5% of the study population showing resistant pattern. Only 1% of the cases were primary multidrug resistant tuberculosis and 1.5% showed isoniazid monoresistance. S531L and C15T were the most common genetic mutations seen for rifampicin and isoniazid resistance, respectively. 40% had absent rpoB wild type 8 band indicating probable silent mutation after clinical correlation. The average turnaround time for Line Probe Assay was far less (3.8 days) as compared to solid and liquid cultures (35.6 days and 13.5 days, resp.). PMID:27099794

  14. Development and application of 16S rRNA-targeted probes for detection of iron- and manganese-oxidizing sheathed bacteria in environmental samples.

    PubMed Central

    Siering, P L; Ghiorse, W C

    1997-01-01

    Comparative sequence analysis of the 16S rRNA genes from several Leptothrix and Sphaerotilus strains led to the design of an oligonucleotide probe (PS-1) based on a sequence within the hypervariable region 1 specific for four Leptothrix strains and for one of the four Sphaerotilus natans strains examined. Another probe (PSP-6) was based on a sequence within the hypervariable region 2. PSP-6 was specific for one of the two evolutionary lineages previously described for Leptothrix spp. (P. L. Siering and W. C. Ghiorse, Int. J. Syst. Bacteriol. 46:173-182, 1996). Fluorescein-labeled oligonucleotide probes were synthesized, and their specificity for fluorescence in situ hybridization identification was confirmed by a laser scanning microscopy technique (W. C. Ghiorse, D. N. Miller, R. L. Sandoli, and P. L. Siering, Microsc. Res. Tech. 33:73-86, 1996) to compare whole-cell hybridizations of closely related bacteria. Probe specificity was also tested in dot blot against total RNA isolated from four Leptothrix strains, four Sphaerotilus strains, and 15 other members of the class Proteobacteria. When the probes were tested on samples from the Sapsucker Woods wetland habitat where Leptothrix spp. are thought to play a role in manganese and iron oxidation, positive signals were obtained from several sheathed filamentous bacteria including some that were morphologically similar to previously isolated strains of "Leptothrix discophora." Other unknown filamentous sheathed bacteria also gave strong positive signals. This work provides a foundation for future studies correlating the presence of members of the Leptothrix-Sphaerotilus group of sheathed bacteria with manganese and iron oxidation activity in habitats where biological iron and manganese oxidation are important environmental processes. PMID:9023942

  15. Development and application of 16S rRNA-targeted probes for detection of iron- and manganese-oxidizing sheathed bacteria in environmental samples.

    PubMed

    Siering, P L; Ghiorse, W C

    1997-02-01

    Comparative sequence analysis of the 16S rRNA genes from several Leptothrix and Sphaerotilus strains led to the design of an oligonucleotide probe (PS-1) based on a sequence within the hypervariable region 1 specific for four Leptothrix strains and for one of the four Sphaerotilus natans strains examined. Another probe (PSP-6) was based on a sequence within the hypervariable region 2. PSP-6 was specific for one of the two evolutionary lineages previously described for Leptothrix spp. (P. L. Siering and W. C. Ghiorse, Int. J. Syst. Bacteriol. 46:173-182, 1996). Fluorescein-labeled oligonucleotide probes were synthesized, and their specificity for fluorescence in situ hybridization identification was confirmed by a laser scanning microscopy technique (W. C. Ghiorse, D. N. Miller, R. L. Sandoli, and P. L. Siering, Microsc. Res. Tech. 33:73-86, 1996) to compare whole-cell hybridizations of closely related bacteria. Probe specificity was also tested in dot blot against total RNA isolated from four Leptothrix strains, four Sphaerotilus strains, and 15 other members of the class Proteobacteria. When the probes were tested on samples from the Sapsucker Woods wetland habitat where Leptothrix spp. are thought to play a role in manganese and iron oxidation, positive signals were obtained from several sheathed filamentous bacteria including some that were morphologically similar to previously isolated strains of "Leptothrix discophora." Other unknown filamentous sheathed bacteria also gave strong positive signals. This work provides a foundation for future studies correlating the presence of members of the Leptothrix-Sphaerotilus group of sheathed bacteria with manganese and iron oxidation activity in habitats where biological iron and manganese oxidation are important environmental processes. PMID:9023942

  16. Single-particle characterization of soil samples collected at various arid areas of China, using low-Z particle electron probe X-ray microanalysis☆

    NASA Astrophysics Data System (ADS)

    Kim, HyeKyeong; Hwang, HeeJin; Ro, Chul-Un

    2006-04-01

    Individual soil particles collected at arid areas of China are analyzed using a single particle analytical technique, named low- Z particle electron probe X-ray microanalysis (EPMA). The major chemical species encountered in soil samples are SiO 2, aluminosilicates, CaCO 3, Fe-containing particles, and carbonaceous particles. Aluminosilicate particles are the most abundant in soil samples, followed by SiO 2 particles. For soil samples collected at Loess plateau nearby the Yellow river, aluminosilicate and CaCO 3 species are more abundantly observed than for soil samples collected at the Tengger and the Hungshandake deserts. Whereas, sand desert soils have higher content of SiO 2 than loess soils. In this work, using the low- Z particle EPMA, it is clearly demonstrated that the relative abundances of each chemical species significantly vary among soil samples. The frequencies to encounter aluminosilicates and the contents of minor elements in aluminosilicate-containing particles are different between soil samples. Also, the contents of calcite, dolomite, and Fe-containing particles vary from sample to sample. This kind of detailed information on chemical composition of source soils could be useful for the identification of the source region of mineral particles in aerosol samples and in the research of chemical modification of Asian Dust particles during long-range transport.

  17. Final work plan : indoor air and ambient air sampling near the former CCC/USDA grain storage facility in Everest, Kansas.

    SciTech Connect

    LaFreniere, L. M.

    2010-05-24

    The Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) operated a grain storage facility at the western edge of Everest, Kansas, from the early 1950s to the early 1970s. Sampling by the Kansas Department of Health and Environment (KDHE) in 1997 resulted in the detection of carbon tetrachloride in one domestic well (the Nigh well) northwest of the former facility. On behalf of the CCC/USDA, Argonne National Laboratory subsequently conducted a series of investigations to characterize the contamination (Argonne 2003, 2006a,b,c). Automatic, continuous monitoring of groundwater levels began in 2002 and is ongoing at six locations. The results have consistently indicated groundwater flow toward the north-northwest from the former CCC/USDA property to the Nigh property, then west-southwest from the Nigh property to the intermittent creek. Sitewide periodic groundwater and surface water sampling with analysis for volatile organic compounds (VOCs) began in 2008. Argonne's combined data indicate no significant downgradient extension of contamination since 2000. At present, the sampling is annual, as approved by the KDHE (2009) in response to a plan developed for the CCC/USDA (Argonne 2009). This document presents a plan for collecting indoor air samples in homes located along and adjacent to the defined extent of the carbon tetrachloride contamination. The plan was requested by the KDHE. Ambient air samples to represent the conditions along this pathway will also be taken. The purpose of the proposed work is to satisfy KDHE requirements and to collect additional data for assessing the risk to human health due to the potential upward migration of carbon tetrachloride and its primary degradation product (chloroform) into homes located in close proximity to the former grain storage facility, as well as along and within 100 ft laterally from the currently defined plume emanating from the former Everest facility. Investigation of the indoor air

  18. On the construction, comparison, and variability of airsheds for interpreting semivolatile organic compounds in passively sampled air.

    PubMed

    Westgate, John N; Wania, Frank

    2011-10-15

    Air mass origin as determined by back trajectories often aids in explaining some of the short-term variability in the atmospheric concentrations of semivolatile organic contaminants. Airsheds, constructed by amalgamating large numbers of back trajectories, capture average air mass origins over longer time periods and thus have found use in interpreting air concentrations obtained by passive air samplers. To explore some of their key characteristics, airsheds for 54 locations on Earth were constructed and compared for roundness, seasonality, and interannual variability. To avoid the so-called "pole problem" and to simplify the calculation of roundness, a "geodesic grid" was used to bin the back-trajectory end points. Departures from roundness were seen to occur at all latitudes and to correlate significantly with local slope but no strong relationship between latitude and roundness was revealed. Seasonality and interannual variability vary widely enough to imply that static models of transport are not sufficient to describe the proximity of an area to potential sources of contaminants. For interpreting an air measurement an airshed should be generated specifically for the deployment time of the sampler, especially when investigating long-term trends. Samples taken in a single season may not represent the average annual atmosphere, and samples taken in linear, as opposed to round, airsheds may not represent the average atmosphere in the area. Simple methods are proposed to ascertain the significance of an airshed or individual cell. It is recommended that when establishing potential contaminant source regions only end points with departure heights of less than ∼700 m be considered.

  19. Results of a Self-Absorption Study on the Versapor 3000 47-mm Filters for Radioactive Particulate Air Stack Sampling

    SciTech Connect

    Barnett, J. Matthew; Cullinan, Valerie I.; Barnett, Debra S.; Trang-Le, Truc LT; Bliss, Mary; Greenwood, Lawrence R.; Ballinger, Marcel Y.

    2009-11-01

    Since the mid-1980s the Pacific Northwest National Laboratory (PNNL) has used a value of 0.85 as a correction factor for the self absorption of activity for particulate radioactive air samples collected from building exhaust for environmental monitoring. More recently, an effort was made to evaluate the current particulate radioactive air sample filters (Versapor® 3000, 47-mm diameter) used at PNNL for self absorption effects. There were two methods used to characterize the samples. Sixty samples were selected from the archive for acid digestion to compare the radioactivity measured by direct gas-flow proportional counting of filters to the results obtained after acid digestion of the filter and counting again by gas-flow proportional detection. Thirty different sample filters were selected for visible light microscopy to evaluate filter loading and particulate characteristics. Mass-loading effects were also considered. Large error is associated with the sample filter analysis comparison and subsequently with the estimation of the absorption factor resulting in an inadequate method to estimate losses from self-absorption in the sample filter. The mass loading on the sample filter as determined after digestion and drying was ~0.08 mg cm-2; however, this value may not represent the total filter mass loading given that there may be undetermined losses associated with the digestion process. While it is difficult to determine how much material is imbedded in the filter, observations from the microscopy analysis indicate that the vast majority of the particles remain on the top of the filter. In comparing the results obtained, the continued use of 0.85 as a conservative correction factor is recommended.

  20. Quantification of Uncultured Ruminococcus obeum-Like Bacteria in Human Fecal Samples by Fluorescent In Situ Hybridization and Flow Cytometry Using 16S rRNA-Targeted Probes

    PubMed Central

    Zoetendal, Erwin G.; Ben-Amor, Kaouther; Harmsen, Hermie J. M.; Schut, Frits; Akkermans, Antoon D. L.; de Vos, Willem M.

    2002-01-01

    A 16S rRNA-targeted probe was designed and validated in order to quantify the number of uncultured Ruminococcus obeum-like bacteria by fluorescent in situ hybridization (FISH). These bacteria have frequently been found in 16S ribosomal DNA clone libraries prepared from bacterial communities in the human intestine. Thirty-two reference strains from the human intestine, including a phylogenetically related strain and strains of some other Ruminococcus species, were used as negative controls and did not hybridize with the new probe. Microscopic and flow cytometric analyses revealed that a group of morphologically similar bacteria in feces did hybridize with this probe. Moreover, it was found that all hybridizing cells also hybridized with a probe specific for the Clostridium coccoides-Eubacterium rectale group, a group that includes the uncultured R. obeum-like bacteria. Quantification of the uncultured R. obeum-like bacteria and the C. coccoides-E. rectale group by flow cytometry and microscopy revealed that these groups comprised approximately 2.5 and 16% of the total community in fecal samples, respectively. The uncultured R. obeum-like bacteria comprise about 16% of the C. coccoides-E. rectale group. These results indicate that the uncultured R. obeum-like bacteria are numerically important in human feces. Statistical analysis revealed no significant difference between the microscopic and flow cytometric counts and the different feces sampling times, while a significant host-specific effect on the counts was observed. Our data demonstrate that the combination of FISH and flow cytometry is a useful approach for studying the ecology of uncultured bacteria in the human gastrointestinal tract. PMID:12200269

  1. The Reproducibility of Indoor Air Pollution (IAP) Measurement: A Test Case for the Measurement of Key Air Pollutants from the Pan Frying of Fish Samples

    PubMed Central

    Kim, Bo-Won; Ahn, Jeong-Hyeon; Bae, Min-Suk; Brown, Richard J. C.

    2014-01-01

    To assess the robustness of various indoor air quality (IAQ) indices, we explored the possible role of reproducibility-induced variability in the measurements of different pollutants under similar sampling and emissions conditions. Polluted indoor conditions were generated by pan frying fish samples in a closed room. A total of 11 experiments were carried out to measure a list of key variables commonly used to represent indoor air pollution (IAP) indicators such as particulate matter (PM: PM1, PM2.5, PM10, and TSP) and a set of individual volatile organic compounds (VOCs) with some odor markers. The cooking activity conducted as part of our experiments was successful to consistently generate significant pollution levels (mean PM10: 7110 μg m−3 and mean total VOC (TVOC): 1400 μg m−3, resp.). Then, relative standard error (RSE) was computed to assess the reproducibility between different IAP paramters measured across the repeated experiments. If the results were evaluated by an arbitrary criterion of 10%, the patterns were divided into two data groups (e.g., <10% for benzene and some aldehydes and >10% for the remainders). Most noticeably, TVOC had the most repeatable results with a reproducibility (RSE) value of 3.2% (n = 11). PMID:25054167

  2. A new sample holder for laser-excited pump-probe magnetic measurements on a Focus photoelectron emission microscope

    SciTech Connect

    Miguel, Jorge; Bernien, Matthias; Kuch, Wolfgang; Bayer, Daniela; Aeschlimann, Martin; Sanchez-Barriga, Jaime; Kronast, Florian; Duerr, Hermann A.

    2008-03-15

    A custom-made Omicron-compatible sample holder for time-resolved photoelectron emission microscopy experiments is presented. It comprises a sample plate with four contacts that hosts a chip carrier where the semiconductor substrate is mounted. Covering the sample holder, a 6 mm diameter mask protects electrostatically the sample from the extractor lens voltage while keeping the imaging quality unperturbed. The improvements are a greater sample lifetime and the ability to withstand much higher currents in the stripline that provides the magnetic pulse to the magnetic microstructure.

  3. On eddy accumulation with limited conditional sampling to measure air-surface exchange

    SciTech Connect

    Wesely, M.L.; Hart, R.L.

    1994-01-01

    An analysis of turbulence data collected at a height of 12.3 m above grasslands was carried out to illustrate some of the limitations and possible improvements in methods to compute vertical fluxes of trace substances by the eddy accumulation technique with conditional sampling. The empirical coefficient used in the technique has a slight dependence on atmospheric stability, which can be minimized by using a threshold vertical velocity equal to approximately 0.75{sigma}{sub w}, below which chemical sampling is suspended. This protocol results in a smaller chemical sample but increases the differences in concentrations by approximately 70%. For effective conditional sampling when mass is being accumulated in a trap or reservoir, the time of sampling during updrafts versus downdrafts should be measured and used to adjust estimates of the mean concentrations.

  4. Evaluation of a portable X-ray fluorescence instrument for the determination of lead in workplace air samples.

    PubMed

    Morley, J C; Clark, C S; Deddens, J A; Ashley, K; Roda, S

    1999-05-01

    Occupational Safety and Health Administration (OSHA) regulations for worker exposure to lead specify worker protection levels based upon airborne concentrations of lead dust. The rapid, on-site determination of lead in air filter samples using a portable x-ray fluorescence (XRF) instrument with an attachment to hold the filter would expedite the exposure assessment process and facilitate compliance with the OSHA standards. A total of 65 lead in air filter samples were collected at bridge blasting lead-abatement projects using closed-faced, 37-mm cassettes with pre-loaded 0.8 micron pore size mixed cellulose ester membrane filters. The lead loading range of the data set was 0.1-1514.6 micrograms (micrograms) of lead/sample. Samples were initially analyzed with a field portable XRF (NITON 700) using an experimental non-destructive XRF method. Samples were subsequently analyzed using National Institute for Occupational Safety and Health (NIOSH) Method 7105 (Graphite Furnace AA) as a reference analytical method. The paired data were not normally distributed; therefore, the non-parametric Wilcoxon signed rank test was used for statistical analysis. There was no statistically significant difference between data from the field portable XRF method and the NIOSH method (p-value = 0.72). Linear regression of the data resulted in a slope of 0.959, a y-intercept of 5.20 micrograms, and an r2 of 0.985. The XRF limit of detection and limit of quantitation were determined to be 6.2 and 17 micrograms of lead/sample, respectively. The XRF method accuracy was +/- 16.4% (7.1%-27%, 90% confidence interval). The data presented in this study indicate that field-portable XRF can be used for the analysis of lead air filter samples over the range of 17 to 1500 micrograms of lead/sample. The practicing industrial hygienist can use field-portable XRF to produce a rapid, on-site determination of lead exposure that can immediately be communicated to workers and help identify appropriate levels

  5. Monitoring Iodine-129 in Air and Milk Samples Collected Near the Hanford Site: An Investigation of Historical Iodine Monitoring Data

    SciTech Connect

    Fritz, Brad G.; Patton, Gregory W.

    2006-01-01

    While other research has reported on the concentrations of 129I in the environment surrounding active nuclear fuel reprocessing facilities, there is a shortage of information regarding how the concentrations change once facilities close. At the Hanford Site, the Plutonium-Uranium Extraction (PUREX) chemical separation plant was operational between 1983 and 1990, during which time 129I concentrations in air and milk were measured. After the cessation of operations in 1990, plant emissions decreased 2.5 orders of magnitude over an 8 year period, and monitoring of environmental levels continued. An evaluation of air and milk 129I concentration data spanning the PUREX operation and post closure period was conducted to compare the changes in environmental levels of 129I measured. Measured concentrations over the monitoring period were below levels that could result in a potential human dose greater than 10 uSv. There was a significant and measurable difference in the measured air concentrations of 129I at different distances from the source, indicating a distinct Hanford fingerprint. Correlations between stack emissions of 129I and concentrations in air and milk indicate that atmospheric emissions were responsible for the 129I concentrations measured in environmental samples. The measured concentrations during PUREX operation were similar to observations made around a fuel reprocessing plant in Germany.

  6. STS 134, 135 and 26S Return Samples: Air Quality aboard Shuttle (STS-134) and International Space Station

    NASA Technical Reports Server (NTRS)

    James, John T.

    2011-01-01

    This is a very limited set of samples on which to perform an air quality assessment. However, based on these samples, we have no reason to believe that nominal ISS air is unsafe to breathe. We must continue to be vigilant when dealing with nominal atmospheres in ISS. New, unmanned modules require special attention when the crew first enters. Carbon Monoxide Accumulation aboard ISS: Beginning in late 2008 the nominal concentrations of CO began increasing gradually (Figure 1). The results from samples returned on this flight indicate that the CO concentrations, after dropping in late 2009, have cycled upward and then settled back to concentrations near 2 mg/m3. In any case, these changes are well below the 180-day SMAC for CO, which is17 mg/m3. There is no threat to crew health. Carbon Dioxide: This anthropogenic compound has drawn much attention recently because of the possibility that it could contribute to the effects of intracranial hypertension experienced because of spaceflight-induced fluid shifts. From now on we will maintain a plot (Figure 2) of carbon dioxide concentrations ( SD) by averaging the values found in the 3-5 mini-GSC samples taken each month in diverse locations of the ISS. This will enable us to estimate the average exposure of crewmembers to carbon dioxide during their stay aboard the ISS. In general, concentrations are being maintained below 3.5 mmHg. Figure 1

  7. Evaluation of an ambient air sampling system for tritium (as tritiated water vapor) using silica gel adsorbent columns

    SciTech Connect

    Patton, G.W.; Cooper, A.T.; Tinker, M.R.

    1995-08-01

    Ambient air samples for tritium analysis (as the tritiated water vapor [HTO] content of atmospheric moisture) are collected for the Hanford Site Surface Environmental Surveillance Project (SESP) using the solid adsorbent silica gel. The silica gel has a moisture sensitive indicator which allows for visual observation of moisture movement through a column. Despite using an established method, some silica gel columns showed a complete change in the color indicator for summertime samples suggesting that breakthrough had occurred; thus a series of tests was conducted on the sampling system in an environmental chamber. The purpose of this study was to determine the maximum practical sampling volume and overall collection efficiency for water vapor collected on silica gel columns. Another purpose was to demonstrate the use of an impinger-based system to load water vapor onto silica gel columns to provide realistic analytical spikes and blanks for the Hanford Site SESP. Breakthrough volumes (V{sub b}) were measured and the chromatographic efficiency (expressed as the number of theoretical plates [N]) was calculated for a range of environmental conditions. Tests involved visual observations of the change in the silica gel`s color indicator as a moist air stream was drawn through the column, measurement of the amount of a tritium tracer retained and then recovered from the silica gel, and gravimetric analysis for silica gel columns exposed in the environmental chamber.

  8. Coherent Anti-Stokes Raman Scattering (CARS) as a Probe for Supersonic Hydrogen-Fuel/Air Mixing

    NASA Technical Reports Server (NTRS)

    Danehy, P. M.; O'Byrne, S.; Cutler, A. D.; Rodriguez, C. G.

    2003-01-01

    The dual-pump coherent anti-Stokes Raman spectroscopy (CARS) method was used to measure temperature and the absolute mole fractions of N2, O2 and H2 in a supersonic non-reacting fuel-air mixing experiment. Experiments were conducted in NASA Langley Research Center s Direct Connect Supersonic Combustion Test Facility. Under normal operation of this facility, hydrogen and air burn to increase the enthalpy of the test gas and O2 is added to simulate air. This gas is expanded through a Mach 2 nozzle and into a combustor model where fuel is then injected, mixes and burns. In the present experiment the O2 of the test gas is replaced by N2. The lack of oxidizer inhibited combustion of the injected H2 fuel jet allowing the fuel/air mixing process to be studied. CARS measurements were performed 427 mm downstream of the nozzle exit and 260 mm downstream of the fuel injector. Maps were obtained of the mean temperature, as well as the N2, O2 and H2 mean mole fraction fields. A map of mean H2O vapor mole fraction was also inferred from these measurements. Correlations between different measured parameters and their fluctuations are presented. The CARS measurements are compared with a preliminary computational prediction of the flow.

  9. Laboratory evaluation of a field-portable sealed source X-ray fluorescence spectrometer for determination of metals in air filter samples.

    PubMed

    Lawryk, Nicholas J; Feng, H Amy; Chen, Bean T

    2009-07-01

    Recent advances in field-portable X-ray fluorescence (FP XRF) spectrometer technology have made it a potentially valuable screening tool for the industrial hygienist to estimate worker exposures to airborne metals. Although recent studies have shown that FP XRF technology may be better suited for qualitative or semiquantitative analysis of airborne lead in the workplace, these studies have not extensively addressed its ability to measure other elements. This study involved a laboratory-based evaluation of a representative model FP XRF spectrometer to measure elements commonly encountered in workplace settings that may be collected on air sample filter media, including chromium, copper, iron, manganese, nickel, lead, and zinc. The evaluation included assessments of (1) response intensity with respect to location on the probe window, (2) limits of detection for five different filter media, (3) limits of detection as a function of analysis time, and (4) bias, precision, and accuracy estimates. Teflon, polyvinyl chloride, polypropylene, and mixed cellulose ester filter media all had similarly low limits of detection for the set of elements examined. Limits of detection, bias, and precision generally improved with increasing analysis time. Bias, precision, and accuracy estimates generally improved with increasing element concentration. Accuracy estimates met the National Institute for Occupational Safety and Health criterion for nearly all the element and concentration combinations. Based on these results, FP XRF spectrometry shows potential to be useful in the assessment of worker inhalation exposures to other metals in addition to lead. PMID:19387888

  10. Laboratory evaluation of a field-portable sealed source X-ray fluorescence spectrometer for determination of metals in air filter samples.

    PubMed

    Lawryk, Nicholas J; Feng, H Amy; Chen, Bean T

    2009-07-01

    Recent advances in field-portable X-ray fluorescence (FP XRF) spectrometer technology have made it a potentially valuable screening tool for the industrial hygienist to estimate worker exposures to airborne metals. Although recent studies have shown that FP XRF technology may be better suited for qualitative or semiquantitative analysis of airborne lead in the workplace, these studies have not extensively addressed its ability to measure other elements. This study involved a laboratory-based evaluation of a representative model FP XRF spectrometer to measure elements commonly encountered in workplace settings that may be collected on air sample filter media, including chromium, copper, iron, manganese, nickel, lead, and zinc. The evaluation included assessments of (1) response intensity with respect to location on the probe window, (2) limits of detection for five different filter media, (3) limits of detection as a function of analysis time, and (4) bias, precision, and accuracy estimates. Teflon, polyvinyl chloride, polypropylene, and mixed cellulose ester filter media all had similarly low limits of detection for the set of elements examined. Limits of detection, bias, and precision generally improved with increasing analysis time. Bias, precision, and accuracy estimates generally improved with increasing element concentration. Accuracy estimates met the National Institute for Occupational Safety and Health criterion for nearly all the element and concentration combinations. Based on these results, FP XRF spectrometry shows potential to be useful in the assessment of worker inhalation exposures to other metals in addition to lead.

  11. Fukushima radionuclides at air filter and rain water samples collected from Istanbul and their atmospheric removal time.

    PubMed

    Güngör, E; Güngör, N; Yüksel, A; Bağ, G; Orhan, N

    2014-01-01

    Accident at Fukushima Daiichi Nuclear Power Plant (FDNPP) is one of the most serious accident in the world after Chernobyl accident. Following the continuing release of radionuclides in air after FDNPP, traces of fission products ((131)I, (134)Cs and (137)Cs) were recorded in the air filter and rain water samples collected from the ÇNAEM area at İstanbul on 4 April 2011. Airborne particle samples were collected daily in air filters and radio assayed with a high purity germanium detector. The fission products (131)I, (134)Cs and (137)Cs were measured with the maximum activity concentrations of 1.03±0.08, 0.25±0.03 and 0.23±0.03 mBq m(-3), respectively. For determination of the origin of the releases the (134)Cs/(137)Cs ratio was calculated between 1.09 and 0.85. The authors find removal times for (137)Cs of 8.13 d, (134)Cs of 7.25 d and (131)I of 6.82 d.

  12. Sorption of a diverse set of organic chemical vapors onto XAD-2 resin: Measurement, prediction and implications for air sampling

    NASA Astrophysics Data System (ADS)

    Hayward, Stephen J.; Lei, Ying D.; Wania, Frank

    2011-01-01

    The wide-spread use of styrene-divinylbenzene-copolymeric resin (XAD-2) in air sampling necessitates a quantitative understanding of its sorption characteristics for organic chemicals. Inverse Gas Chromatography (IGC) was used to measure the sorption of a diverse set of 52 organic chemicals to XAD-2 at temperatures between 40 °C and 100 °C and at relative humidities between 0 and 87%. Even though relative humidity has been shown to influence sorption to other sorbents, it did not significantly influence most chemicals' sorption to XAD-2, indicating that water does not form a strong physical barrier to sorption on XAD-2 at high relative humidity. The resin-air partition coefficients ( KXAD) determined by IGC and the enthalpies of sorption derived from them were regressed against solute descriptors to derive poly-parameter Linear Free Energy Relationships (ppLFERs) which allow the estimation of KXAD for chemicals which are not sufficiently volatile to be amenable to IGC and for temperatures outside the experimental range. KXAD values at 20 °C estimated for a set of 296 chemicals for which solute descriptors are available, including polychlorinated biphenyls, polycyclic aromatic hydrocarbons, and pesticides, indicate that for many of the substances commonly found in the atmosphere sorption is higher to XAD-2 than to poly-urethane foam, another popular air sampling sorbent.

  13. Field use of semipermeable membrane devices (SPMDs) for passive air sampling of polycyclic aromatic hydrocarbons: Opportunities and limitations

    NASA Astrophysics Data System (ADS)

    Piccardo, M. T.; Stella, A.; Pala, M.; Balducci, D.; Valerio, F.

    2010-05-01

    Semipermeable membrane devices (SPMDs) were used for measurements in air of twelve polycyclic aromatic hydrocarbons (PAHs) in two Genoa locations, both on building roofs, distant 300 m from each other. The first, site A, was in front a dismissing steel complex and the second, site B, was in an urban area overlooking a busy thoroughfare. SPMDs were deployed contemporary at the two sites, in nine monthly samplings, from April 2007 to May 2008. The amount of sequestered PAHs, in sites A and B, ranged between 61-267 ng SPMD -1 d -1 and 50-535 ng SPMD -1 d -1, respectively. PAHs profiles highlighted seasonal differences and suggested the possible role of different PAHs sources in the two areas. In particular, the contribution of remediation works of the steel complex was observed in site A. Moreover, a naphthalene leak from a tank, into the former industrial area, and a fire broke out near site A, were registered by time-integrated measurements of SPMDs. However, the strong dependence between amount of sequestered PAHs and air temperature needs further studies to distinguish between uptake rate variability and seasonal contribution of different sources. Finally, to measure air concentrations with reasonable accuracy, it should be very important to have certified sampling rates for all individual PAHs.

  14. Technical assessment of compliance with workplace air sampling requirements at WRAP

    SciTech Connect

    HACKWORTH, M.F.

    1999-06-02

    The purpose of this Technical Assessment is to satisfy HSRCM-1, ''Hanford Site Radiological Control Manual'' Article 551.4 for a documented study of facility Workplace Air Monitoring (WAM) programs. HSRCM-1 is the primary guidance for radiological control at Waste Management Federal Services of Hanford, Inc. (WMH). The HSRCM-1 complies with Title 10. Part 835 of the Code of Federal Regulations (10CFR835). This document provides an evaluation of the compliance of the Waste Receiving and Processing facility (WRAP) WAM program to the criteria standards, requirements, and documents compliance with the requirements where appropriate. Where necessary, it also indicates changes needed to bring specific locations into compliance.

  15. Ecotoxicological studies of environmental samples from Buenos Aires area using a standardized amphibian embryo toxicity test (AMPHITOX).

    PubMed

    Herkovits, Jorge; Perez-Coll, Cristina; Herkovits, Francisco D

    2002-01-01

    The toxicity of 34 environmental samples from potentially polluted and reference stations were evaluated by means of the AMPHITOX test from acute to chronic exposure according to the toxicity found in each sample. The samples were obtained from surface and ground water, leaches, industrial effluents and soils. The data, expressed in acute, short-term chronic and chronic Toxicity Units (TUa, TUstc and TUc) resulted in a maximal value of 1000 TUc, found in a leach, while the lower toxicity value was 1.4 TUa corresponding to two surface water samples. In five samples (four providing from reference places) no toxicity was detected. The results point out the possibility of evaluating the toxicity of a wide diversity of samples by means of AMPHITOX as a customized toxicity test. The fact that almost all samples with suspected toxicity in rivers and streams from the Metropolitan area of Buenos Aires city resulted toxic, indicates the need of enhanced stewardship of chemical substances for environmental and human health protection purposes. PMID:11808551

  16. Soyuz 27 Return Samples: Air Quality Aboard the International Space Station: Revised

    NASA Technical Reports Server (NTRS)

    James, John T.

    2012-01-01

    The toxicological assessment of 6 GSCs from the ISS is shown. The average recoveries of the 3 surrogate standards from the grab sample containers were as follows: C-13-acetone, 115%; fluorobenzene, 108%; and chlorobenzene, 93%.

  17. Procedures manual for the recommended ARB (Air Resources Board) sized chemical sample method (cascade cyclones)

    SciTech Connect

    McCain, J.D.; Dawes, S.S.; Farthing, W.E.

    1986-05-01

    The report is Attachment No. 2 to the Final Report of ARB Contract A3-092-32 and provides a tutorial on the use of Cascade (Series) Cyclones to obtain size-fractionated particulate samples from industrial flue gases at stationary sources. The instrumentation and procedures described are designed to protect the purity of the collected samples so that post-test chemical analysis may be performed for organic and inorganic compounds, including instrumental analysis for trace elements. The instrumentation described collects bulk quantities for each of six size fractions over the range 10 to 0.4 micrometer diameter. The report describes the operating principles, calibration, and empirical modeling of small cyclone performance. It also discusses the preliminary calculations, operation, sample retrieval, and data analysis associated with the use of cyclones to obtain size-segregated samples and to measure particle-size distributions.

  18. Soyuz 24 Return Samples: Assessment of Air Quality Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    James, John T.

    2011-01-01

    Fifteen mini-grab sample containers (m-GSCs) were returned aboard Soyuz. This is the first time all samples were acquired with the mini-grab samplers. The toxicological assessment of 15 m-GSCs from the ISS is shown. The recoveries of the 3 internal standards, C(13)-acetone, fluorobenzene, and chlorobenzene, from the GSCs averaged 75, 97 and 79%, respectively. Formaldehyde badges were not returned on Soyuz 24

  19. Recent developments in the analysis of air samples by luminescence techniques

    SciTech Connect

    Vo-Dinh, T.

    1981-01-01

    A report is presented on recent developments in luminescence analysis of atmospheric samples using two simple luminescence methods, the synchronous excitation and the room temperature phosphorescence (RPT) techniques. Samples extracted from high-volume samplers can be analyzed for their content of certain polynuclear aromatic (PNA) compounds using these two spectroscopic methods. The RPT technique also provides a novel approach for direct detection of PNA vapors collected on filter paper.

  20. Direct Analysis of Reversed-Phase HPTLC Separated Tryptic Protein Digests using a Liquid Microjunction Surface Sampling Probe/ESI-MS System

    SciTech Connect

    Emory, Joshua F; Walworth, Matthew J; Van Berkel, Gary J; Schulz, Michael; Minarik, susanne

    2010-01-01

    The sampling, ionization and detection of tryptic peptides separated in one-dimension on reversed phase HPTLC plates was performed using liquid microjunction surface sampling probe electrospray ionization mass spectrometry. Tryptic digests of five proteins (cytochrome c., myoglobin, beta-casein, lysozyme, and bovine serum albumin) were spotted on reversed phase HPTLC RP-8 F254s and HPTLC RP-18 F254s plates. The plates were then developed using 70/30 methanol/water with 0.1 M ammonium acetate. A dual purpose extraction/electrospray solution containing 70/30/0.1 water/methanol/formic acid was infused through the sampling probe during analysis of the developed lanes. Both full scan mass spectra and data dependent tandem mass spectra were acquired for each development lane to detect and verify the peptide distributions. Data dependent tandem mass spectra provided both protein identification and sequence coverage information. Highest sequence coverages were achieved for cytochrome c. and myoglobin (62.5% and 58.3%, respectively) on reversed phase RP-8 plates. While the tryptic peptides were separated enough for identification, the peptide bands did show some overlap with most peptides located in the lower half of the development lane. Proteins whose peptides were more separated gave higher sequence coverage. Larger proteins such as beta-casein and BSA which were spotted in lower relative amounts gave much lower sequence coverage than the smaller proteins.

  1. Combining low-energy electron microscopy and scanning probe microscopy techniques for surface science: Development of a novel sample-holder

    NASA Astrophysics Data System (ADS)

    Cheynis, F.; Leroy, F.; Ranguis, A.; Detailleur, B.; Bindzi, P.; Veit, C.; Bon, W.; Müller, P.

    2014-04-01

    We introduce an experimental facility dedicated to surface science that combines Low-Energy Electron Microscopy/Photo-Electron Emission Microscopy (LEEM/PEEM) and variable-temperature Scanning Probe Microscopy techniques. A technical challenge has been to design a sample-holder that allows to exploit the complementary specifications of both microscopes and to preserve their optimal functionality. Experimental demonstration is reported by characterizing under ultrahigh vacuum with both techniques: Au(111) surface reconstruction and a two-layer thick graphene on 6H-SiC(0001). A set of macros to analyze LEEM/PEEM data extends the capabilities of the setup.

  2. Combining low-energy electron microscopy and scanning probe microscopy techniques for surface science: Development of a novel sample-holder

    SciTech Connect

    Cheynis, F.; Leroy, F.; Ranguis, A.; Detailleur, B.; Bindzi, P.; Veit, C.; Bon, W.; Müller, P.

    2014-04-15

    We introduce an experimental facility dedicated to surface science that combines Low-Energy Electron Microscopy/Photo-Electron Emission Microscopy (LEEM/PEEM) and variable-temperature Scanning Probe Microscopy techniques. A technical challenge has been to design a sample-holder that allows to exploit the complementary specifications of both microscopes and to preserve their optimal functionality. Experimental demonstration is reported by characterizing under ultrahigh vacuum with both techniques: Au(111) surface reconstruction and a two-layer thick graphene on 6H-SiC(0001). A set of macros to analyze LEEM/PEEM data extends the capabilities of the setup.

  3. Ultrafast scanning probe microscopy

    DOEpatents

    Weiss, Shimon; Chemla, Daniel S.; Ogletree, D. Frank; Botkin, David

    1995-01-01

    An ultrafast scanning probe microscopy method for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample.

  4. Ultrafast scanning probe microscopy

    DOEpatents

    Weiss, S.; Chemla, D.S.; Ogletree, D.F.; Botkin, D.

    1995-05-16

    An ultrafast scanning probe microscopy method is described for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample. 6 Figs.

  5. Occupational dimethylformamide exposure. 1. Diffusive sampling of dimethylformamide vapor for determination of time-weighted average concentration in air.

    PubMed

    Yasugi, T; Kawai, T; Mizunuma, K; Horiguchi, S; Iguchi, H; Ikeda, M

    1992-01-01

    A diffusive sampling method with water as absorbent was examined in comparison with 3 conventional methods of diffusive sampling with carbon cloth as absorbent, pumping through National Institute of Occupational Safety and Health (NIOSH) charcoal tubes, and pumping through NIOSH silica gel tubes to measure time-weighted average concentration of dimethylformamide (DMF). DMF vapors of constant concentrations at 3-110 ppm were generated by bubbling air at constant velocities through liquid DMF followed by dilution with fresh air. Both types of diffusive samplers could either absorb or adsorb DMF in proportion to time (0.25-8 h) and concentration (3-58 ppm), except that the DMF adsorbed was below the measurable amount when carbon cloth samplers were exposed at 3 ppm for less than 1 h. When both diffusive samplers were loaded with DMF and kept in fresh air, the DMF in water samplers stayed unchanged for at least for 12 h. The DMF in carbon cloth samplers showed a decay with a half-time of 14.3 h. When the carbon cloth was taken out immediately after termination of DMF exposure, wrapped in aluminum foil, and kept refrigerated, however, there was no measurable decrease in DMF for at least 3 weeks. When the air was drawn at 0.2 l/min, a breakthrough of the silica gel tube took place at about 4,000 ppm.min (as the lower 95% confidence limit), whereas charcoal tubes could tolerate even heavier exposures, suggesting that both tubes are fit to measure the 8-h time-weighted average of DMF at 10 ppm. PMID:1577523

  6. Use of Respondent Driven Sampling (RDS) Generates a Very Diverse Sample of Men Who Have Sex with Men (MSM) in Buenos Aires, Argentina

    PubMed Central

    Carballo-Diéguez, Alex; Balan, Ivan; Marone, Rubén; Pando, María A.; Dolezal, Curtis; Barreda, Victoria; Leu, Cheng-Shiun; Ávila, María Mercedes

    2011-01-01

    Background Prior research focusing on men who have sex with men (MSM) conducted in Buenos Aires, Argentina, used convenience samples that included mainly gay identified men. To increase MSM sample representativeness, we used Respondent Driven Sampling (RDS) for the first time in Argentina. Using RDS, under certain specified conditions, the observed estimates for the percentage of the population with a specific trait are asymptotically unbiased. We describe, the diversity of the recruited sample, from the point of view of sexual orientation, and contrast the different subgroups in terms of their HIV sexual risk behavior. Methodology 500 MSM were recruited using RDS. Behavioral data were collected through face-to-face interviews and Web-based CASI. Conclusion In contrast with prior studies, RDS generated a very diverse sample of MSM from a sexual identity perspective. Only 24.5% of participants identified as gay; 36.2% identified as bisexual, 21.9% as heterosexual, and 17.4% were grouped as “other.” Gay and non-gay identified MSM differed significantly in their sexual behavior, the former having higher numbers of partners, more frequent sexual contacts and less frequency of condom use. One third of the men (gay, 3%; bisexual, 34%, heterosexual, 51%; other, 49%) reported having had sex with men, women and transvestites in the two months prior to the interview. This population requires further study and, potentially, HIV prevention strategies tailored to such diversity of partnerships. Our results highlight the potential effectiveness of using RDS to reach non-gay identified MSM. They also present lessons learned in the implementation of RDS to recruit MSM concerning both the importance and limitations of formative work, the need to tailor incentives to circumstances of the less affluent potential participants, the need to prevent masking, and the challenge of assessing network size. PMID:22102896

  7. Exploring prenatal outdoor air pollution, birth outcomes and neonatal health care utilization in a nationally representative sample.

    PubMed

    Trasande, Leonardo; Wong, Kendrew; Roy, Angkana; Savitz, David A; Thurston, George

    2013-01-01

    The impact of air pollution on fetal growth remains controversial, in part, because studies have been limited to sub-regions of the United States with limited variability. No study has examined air pollution impacts on neonatal health care utilization. We performed descriptive, univariate and multivariable analyses on administrative hospital record data from 222,359 births in the 2000, 2003 and 2006 Kids Inpatient Database linked to air pollution data drawn from the US Environmental Protection Agency's Aerometric Information Retrieval System. In this study, air pollution exposure during the birth month was estimated based on birth hospital address. Although air pollutants were not individually associated with mean birth weight, a three-pollutant model controlling for hospital characteristics, demographics, and birth month identified 9.3% and 7.2% increases in odds of low birth weight and very low birth weight for each μg/m(3) increase in PM(2.5) (both P<0.0001). PM(2.5) and NO(2) were associated with -3.0% odds/p.p.m. and +2.5% odds/p.p.b. of preterm birth, respectively (both P<0.0001). A four-pollutant multivariable model indicated a 0.05 days/p.p.m. NO(2) decrease in length of the birth hospitalization (P=0.0061) and a 0.13 days increase/p.p.m. CO (P=0.0416). A $1166 increase in per child costs was estimated for the birth hospitalization per p.p.m. CO (P=0.0002) and $964 per unit increase in O(3) (P=0.0448). A reduction from the 75th to the 25th percentile in the highest CO quartile for births predicts annual savings of $134.7 million in direct health care costs. In a national, predominantly urban, sample, air pollutant exposures during the month of birth are associated with increased low birth weight and neonatal health care utilization. Further study of this database, with enhanced control for confounding, improved exposure assessment, examination of exposures across multiple time windows in pregnancy, and in the entire national sample, is supported by these

  8. Field comparison of air sampling methods for monomeric and polymeric 1,6-hexamethylene diisocyanate.

    PubMed

    Thomasen, Jennifer M; Fent, Kenneth W; Reeb-Whitaker, Carolyn; Whittaker, Stephen G; Nylander-French, Leena A

    2011-03-01

    This study was to critically compared 13 different air samplers for their ability to monitor air exposures to monomeric and polymeric 1,6-hexamethylene diisocyanate (HDI) in the automotive refinishing industry. Using both fast- and slow-drying clearcoat, we tested the following types of samplers: single- and dual-stage 37-mm polypropylene (PP) and polystyrene (PS) samplers (open- and closed-face), IOM (with plastic and stainless steel inserts), OSHA42, IsoChek, and WA-DOSH samplers. Midget impingers with frit were used as reference samplers. We observed the PP, PS, and IOM samplers to measure greater levels of HDI monomer and biuret when a fast-drying clearcoat was applied compared with a slow-drying clearcoat. When a slow-drying clearcoat was applied, the open-face PP and PS samplers measured significantly more monomeric and polymeric HDI (2-fold; p < 0.003) than the closed-face PP and PS samplers. We determined that significantly more monomeric and polymeric HDI were measured by impingers (1.3-1.9-fold) compared with single-stage PP/PS (N = 59), dual-stage PP/PS (N = 59), or IOM (N = 24) samplers. However, when stratified by cassette characteristics, the open-face single-stage PP and PS samplers performed equally to the impingers for HDI monomer when a fast-drying clearcoat was applied, and for all analytes when a slow-drying clearcoat was applied. Significantly higher HDI monomer concentrations (1.2-3.1-fold; p = 0.001) were measured with OSHA42 compared with the impinger. The IsoChek did not detect HDI monomer, and of the three samplers analyzed by laboratories other than UNC (i.e., OSHA42, IsoChek, and WA-DOSH), the WA-DOSH was in the best agreement with the impingers. The influence of clearcoat drying time on the sampler's ability to measure monomeric and polymeric HDI emphasizes the importance of the speciation of diisocyanates in chemical analysis and the careful consideration for the selection of the air sampler to be used when measuring exposures during

  9. Auditing of sampling methods for air toxics at coal-fired power plants

    SciTech Connect

    Agbede, R.O.; Clements, J.L.; Grunebach, M.G.

    1995-11-01

    Advanced Technology Systems, Inc. (ATS) with subcontract assistance from international Technology Corporation (IT) has provided external audit activities for Phase II of the Department of Energy-Pittsburgh Energy Technology Center`s air emission test program. The objective of the audits is to help ensure that the data obtained from the emission tests are precise, accurate, representative, scientifically sound and legally defensible. This paper presents the criteria that were used to perform the external audits of the emission test program. It also describes the approach used by ATS and It in performing their audits. Examples of findings of the audits along with the actions take to correct problems and the subsequent effect of those actions on the test data are presented. The results of audit spikes performed at the Plant 1 test site are also discussed.

  10. Air modelling as an alternative to sampling for low-level radioactive airborne releases

    SciTech Connect

    Morgenstern, M.Y.; Hueske, K.

    1995-05-01

    This paper describes our efforts to assess the effect of airborne releases at one DOE laboratory using air modelling based on historical data. Among the facilities affected by these developments is Los Alamos National Laboratory (LANL) in New Mexico. RCRA, as amended by the Hazardous and Solid Waste Amendments (HSWA) in 1984, requires all facilities which involve the treatment, storage, and disposal of hazardous waste obtain a RCRA/HSWA waste facility permit. LANL complied with CEARP by initiating a process of identifying potential release sites associated with LANL operations prior to filing a RCRA/HSWA permit application. In the process of preparing the RCRA/HSWA waste facility permit application to the U.S. Environmental Protection Agency (EPA), a total of 603 Solid Waste Management Units (SWMUs) were identified as part of the requirements of the HSWA Module VIH permit requirements. The HSWA Module VIII permit requires LANL to determine whether there have been any releases of hazardous waste or hazardous constituents from SWMUs at the facility dating from the 1940`s by performing a RCRA Facility Investigation to address known or suspected releases from specified SWMUs to affected media (i.e. soil, groundwater, surface water, and air). Among the most troublesome of the potential releases sites are those associated with airborne radioactive releases. In order to assess health risks associated with radioactive contaminants in a manner consistent with exposure standards currently in place, the DOE and LANL have established Screening Action Levels (SALs) for radioactive soil contamination. The SALs for each radionuclide in soil are derived from calculations based on a residential scenario in which individuals are exposed to contaminated soil via inhalation and ingestion as well as external exposure to gamma emitters in the soil. The applicable SALs are shown.

  11. 6S Return Samples: Assessment of Air Quality in the International Space Station (ISS) Based on Solid Sorbent Air Sampler (SSAS) and Formaldehyde Monitoring Kit (FMK) Analyses

    NASA Technical Reports Server (NTRS)

    James, John T.

    2004-01-01

    The toxicological assessments of SSAS and FMK analytical results are reported. Analytical methods have not changed from earlier reports. Surrogate standard recoveries from the SSAS tubes were 66-76% for 13C-acetone, 85-96% for fluorobenzene, and 73-89% for chlorobenzene. Post-flight flows were far below pre-flight flows and an investigation of the problem revealed that the reduced flow was caused by a leak at the interface of the pump inlet tube and the pump head. This resulted in degradation of pump efficiency. Further investigation showed that the problem occurred before the SSAS was operated on orbit and that use of the post-flight flows yielded consistent and useful results. Recoveries from formaldehyde control badges were 86 to 104%. The two general criteria used to assess air quality are the total-non-methane-volatile organic hydrocarbons (NMVOCs) and the total T-value (minus the CO2 and formaldehyde contributions). The T values will not be reported for these data due to the flow anomaly.