Tank 241-AZ-101 Mixer Pump Test Vapor Sampling and Analysis Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
TEMPLETON, A.M.
2000-03-06
This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for vapor samples obtained during the operation of mixer pumps in tank 241-AZ-101. The primary purpose of the mixer pump test (MPT) is to demonstrate that the two 300 horsepower mixer pumps installed in tank 241-AZ-101 can mobilize the settled sludge so that it can be retrieved for treatment and vitrification. Sampling will be performed in accordance with Tank 241-AZ-101 Mixer Pump Test Data Quality Objective (Banning 1999) and Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissionsmore » Sampling and Analysis (Mulkey 1999). The sampling will verify if current air emission estimates used in the permit application are correct and provide information for future air permit applications.« less
Tank 241-AZ-101 Mixer Pump Test Vapor Sampling and Analysis Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
TEMPLETON, A.M.
2000-01-31
This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for vapor samples obtained during the operation of mixer pumps in tank 241-AZ-101. The primary purpose of the mixer pump test (MPT) is to demonstrate that the two 300 horsepower mixer pumps installed in tank 241-AZ-101 can mobilize the settled sludge so that it can be retrieved for treatment and vitrification Sampling will be performed in accordance with Tank 241-AZ-101 Mixer Pump Test Data Quality Objective (Banning 1999) and Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissionsmore » Sampling and Analysis (Mulkey 1999). The sampling will verify if current air emission estimates used in the permit application are correct and provide information for future air permit applications.« less
Tank 241-AZ-101 Mixer Pump Test Vapor Sampling and Analysis Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
TEMPLETON, A.M.
2000-04-10
This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for vapor samples obtained during the operation of mixer pumps in tank 241-AZ-101. The primary purpose of the mixer pump test (MPT) is to demonstrate that the two 300 horsepower mixer pumps installed in tank 241-AZ-101 can mobilize the settled sludge so that it can be retrieved for treatment and vitrification. Sampling will be performed in accordance with Tank 241-AZ-101 Mixer Pump Test Data Quality Objective (Banning 1999) and Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissionsmore » Sampling and Analysis (Mulkey 1999). The sampling will verify if current air emission estimates used in the permit application are correct and provide information for future air permit applications.« less
NHEXAS PHASE I MARYLAND STUDY--PAHS IN AIR ANALYTICAL RESULTS
The PAHs in Air data set contains analytical results for measurements of up to 11 PAHs in 127 air samples over 51 households. Twenty-four-hour samples were taken over a one-week period using a continuous pump and solenoid apparatus pumping a standardized air volume through an UR...
NHEXAS PHASE I MARYLAND STUDY--METALS IN AIR ANALYTICAL RESULTS
The Metals in Air data set contains analytical results for measurements of up to 4 metals in 458 air samples over 79 households. Twenty-four-hour samples were taken over a one-week period using a continuous pump and solenoid apparatus by pumping a standardized air volume through...
Sehmel, George A.
1979-01-01
An isokinetic air sampler includes a filter, a holder for the filter, an air pump for drawing air through the filter at a fixed, predetermined rate, an inlet assembly for the sampler having an inlet opening therein of a size such that isokinetic air sampling is obtained at a particular wind speed, a closure for the inlet opening and means for simultaneously opening the closure and turning on the air pump when the wind speed is such that isokinetic air sampling is obtained. A system incorporating a plurality of such samplers provided with air pumps set to draw air through the filter at the same fixed, predetermined rate and having different inlet opening sizes for use at different wind speeds is included within the ambit of the present invention as is a method of sampling air to measure airborne concentrations of particulate pollutants as a function of wind speed.
Huffman, Raegan L.
2002-01-01
Ground-water samples were collected in April 1999 at Naval Air Station Whidbey Island, Washington, with passive diffusion samplers and a submersible pump to compare concentrations of volatile organic compounds (VOCs) in water samples collected using the two sampling methods. Single diffusion samplers were installed in wells with 10-foot screened intervals, and multiple diffusion samplers were installed in wells with 20- to 40-foot screened intervals. The diffusion samplers were recovered after 20 days and the wells were then sampled using a submersible pump. VOC concentrations in the 10-foot screened wells in water samples collected with diffusion samplers closely matched concentrations in samples collected with the submersible pump. Analysis of VOC concentrations in samples collected from the 20- to 40-foot screened wells with multiple diffusion samplers indicated vertical concentration variation within the screened interval, whereas the analysis of VOC concentrations in samples collected with the submersible pump indicated mixing during pumping. The results obtained using the two sampling methods indicate that the samples collected with the diffusion samplers were comparable with and can be considerably less expensive than samples collected using a submersible pump.
NHEXAS PHASE I ARIZONA STUDY--METALS IN AIR ANALYTICAL RESULTS
The Metals in Air data set contains analytical results for measurements of up to 11 metals in 369 air samples over 175 households. Samples were taken by pumping standardized air volumes through filters at indoor and outdoor sites around each household being sampled. The primary...
U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--METALS IN AIR ANALYTICAL RESULTS
The Metals in Air data set contains analytical results for measurements of up to 11 metals in 344 air samples over 86 households. Samples were taken by pumping standardized air volumes through filters at indoor and outdoor sites around each household being sampled. The primary ...
A BATTERY-OPERATED AIR SAMPLER FOR REMOTE AREAS
An air sampling system developed to evaluate air quality in biosphere reserves or in other remote areas is described. The equipment consists of a Dupont P-4000 pump and a specially designed battery pack containing Gates batteries. This air sampling system was tested in Southern U...
Method and apparatus for sampling low-yield wells
Last, George V.; Lanigan, David C.
2003-04-15
An apparatus and method for collecting a sample from a low-yield well or perched aquifer includes a pump and a controller responsive to water level sensors for filling a sample reservoir. The controller activates the pump to fill the reservoir when the water level in the well reaches a high level as indicated by the sensor. The controller deactivates the pump when the water level reaches a lower level as indicated by the sensors. The pump continuously activates and deactivates the pump until the sample reservoir is filled with a desired volume, as indicated by a reservoir sensor. At the beginning of each activation cycle, the controller optionally can select to purge an initial quantity of water prior to filling the sample reservoir. The reservoir can be substantially devoid of air and the pump is a low volumetric flow rate pump. Both the pump and the reservoir can be located either inside or outside the well.
NHEXAS PHASE I MARYLAND STUDY--PESTICIDES IN AIR ANALYTICAL RESULTS
The Pesticides in Air data set contains analytical results for measurements of up to 9 pesticides in 127 air samples over 51 households. Samples were taken by pumping standardized air volumes through URG impactors with a 10 um cutpoint and polyurethane foam (PUF) filters at indo...
Venturi Air-Jet Vacuum Ejector For Sampling Air
NASA Technical Reports Server (NTRS)
Hill, Gerald F.; Sachse, Glen W.; Burney, L. Garland; Wade, Larry O.
1990-01-01
Venturi air-jet vacuum ejector pump light in weight, requires no electrical power, does not contribute heat to aircraft, and provides high pumping speeds at moderate suctions. High-pressure motive gas required for this type of pump bled from compressor of aircraft engine with negligible effect on performance of engine. Used as source of vacuum for differential-absorption CO-measurement (DACOM), modified to achieve in situ measurements of CO at frequency response of 10 Hz. Provides improvement in spatial resolution and potentially leads to capability to measure turbulent flux of CO by use of eddy-correlation technique.
View of Expedition 15 FE Anderson performing the ANITA Experiment in the Node 1
2007-10-06
ISS015-E-32200 (6 Oct. 2007) --- Astronaut Clay Anderson, Expedition 15 flight engineer, uses an air sample pump and 2.5 liter gas sample bag to gather and analyze air samples for the Analyzing Interferometer for Ambient Air (ANITA) experiment in the Unity node of the International Space Station.
Holloway, Owen G.; Waddell, Jonathan P.
2008-01-01
A borehole straddle packer was developed and tested by the U.S. Geological Survey to characterize the vertical distribution of contaminants, head, and hydraulic properties in open-borehole wells as part of an ongoing investigation of ground-water contamination at U.S. Air Force Plant 6 (AFP6) in Marietta, Georgia. To better understand contaminant fate and transport in a crystalline bedrock setting and to support remedial activities at AFP6, numerous wells have been constructed that include long open-hole intervals in the crystalline bedrock. These wells can include several discontinuities that produce water, which may contain contaminants. Because of the complexity of ground-water flow and contaminant movement in the crystalline bedrock, it is important to characterize the hydraulic and water-quality characteristics of discrete intervals in these wells. The straddle packer facilitates ground-water sampling and hydraulic testing of discrete intervals, and delivery of fluids including tracer suites and remedial agents into these discontinuities. The straddle packer consists of two inflatable packers, a dual-pump system, a pressure-sensing system, and an aqueous injection system. Tests were conducted to assess the accuracy of the pressure-sensing systems, and water samples were collected for analysis of volatile organic compound (VOCs) concentrations. Pressure-transducer readings matched computed water-column height, with a coefficient of determination of greater than 0.99. The straddle packer incorporates both an air-driven piston pump and a variable-frequency, electronic, submersible pump. Only slight differences were observed between VOC concentrations in samples collected using the two different types of sampling pumps during two sampling events in July and August 2005. A test conducted to assess the effect of stagnation on VOC concentrations in water trapped in the system's pump-tubing reel showed that concentrations were not affected. A comparison was conducted to assess differences between three water-sampling methods - collecting samples from the well by pumping a packer-isolated zone using a submersible pump, by using a grab sampler, and by using a passive diffusion sampler. Concentrations of tetrachloroethylene, trichloroethylene and 1,2-dichloropropane were greatest for samples collected using the submersible pump in the packed-isolated interval, suggesting that the straddle packer yielded the least dilute sample.
40 CFR 90.424 - Dilute sampling procedures-CVS calibration.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Air temperature at CVS pump inlet PTI °C ±1.11 °C. Pressure depression at CVS pump inlet PPI kPa ±0... pump inlet depression that will yield a minimum of six data points for the total calibration. Allow the...: PB = barometric pressure, kPa PPI = Pump inlet depression, kPa. (iii) The correlation function at...
40 CFR 90.424 - Dilute sampling procedures-CVS calibration.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... Air temperature at CVS pump inlet PTI °C ±1.11 °C. Pressure depression at CVS pump inlet PPI kPa ±0... pump inlet depression that will yield a minimum of six data points for the total calibration. Allow the...: PB = barometric pressure, kPa PPI = Pump inlet depression, kPa. (iii) The correlation function at...
40 CFR 90.424 - Dilute sampling procedures-CVS calibration.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Air temperature at CVS pump inlet PTI °C ±1.11 °C. Pressure depression at CVS pump inlet PPI kPa ±0... pump inlet depression that will yield a minimum of six data points for the total calibration. Allow the...: PB = barometric pressure, kPa PPI = Pump inlet depression, kPa. (iii) The correlation function at...
40 CFR 90.424 - Dilute sampling procedures-CVS calibration.
Code of Federal Regulations, 2013 CFR
2013-07-01
.... Air temperature at CVS pump inlet PTI °C ±1.11 °C. Pressure depression at CVS pump inlet PPI kPa ±0... pump inlet depression that will yield a minimum of six data points for the total calibration. Allow the...: PB = barometric pressure, kPa PPI = Pump inlet depression, kPa. (iii) The correlation function at...
40 CFR 90.424 - Dilute sampling procedures-CVS calibration.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Air temperature at CVS pump inlet PTI °C ±1.11 °C. Pressure depression at CVS pump inlet PPI kPa ±0... pump inlet depression that will yield a minimum of six data points for the total calibration. Allow the...: PB = barometric pressure, kPa PPI = Pump inlet depression, kPa. (iii) The correlation function at...
Remote possibly hazardous content container sampling device
Volz, David L.
1998-01-01
The present invention relates to an apparatus capable of sampling enclosed containers, where the contents of the container is unknown. The invention includes a compressed air device capable of supplying air pressure, device for controlling the amount of air pressure applied, a pneumatic valve, a sampling device having a hollow, sampling insertion needle suspended therein and device to communicate fluid flow between the container and a containment vessel, pump or direct reading instrument.
Vroblesky, Don A.; Joshi, Manish; Morrell, Jeff; Peterson, J.E.
2003-01-01
During March-April 2002, the U.S. Geological Survey, Earth Tech, and EA Engineering, Science, and Technology, Inc., in cooperation with the Air Force Center for Environmental Excellence, tested diffusion samplers at Andersen Air Force Base, Guam. Samplers were deployed in three wells at the Main Base and two wells at Marianas Bonins (MARBO) Annex as potential ground-water monitoring alternatives. Prior to sampler deployment, the wells were tested using a borehole flowmeter to characterize vertical flow within each well. Three types of diffusion samplers were tested: passive diffusion bag (PDB) samplers, dialysis samplers, and nylon-screen samplers. The primary volatile organic compounds (VOCs) tested in ground water at Andersen Air Force Base were trichloroethene and tetrachloroethene. In most comparisons, trichloroethene and tetrachloroethene concentrations in PDB samples closely matched concentrations in pumped samples. Exceptions were in wells where the pumping or ambient flow produced vertical translocation of water in a chemically stratified aquifer. In these wells, PDB samplers probably would be a viable alternative sampling method if they were placed at appropriate depths. In the remaining three test wells, the trichloroethene or tetrachloroethene concentrations obtained with the diffusion samplers closely matched the result from pumped sampling. Chloride concentrations in nylon-screen samplers were compared with chloride concentrations in dialysis and pumped samples to test inorganic-solute diffusion into the samplers across a range of concentrations. The test showed that the results from nylon-screen samplers might have underestimated chloride concentrations at depths with elevated chloride concentrations. The reason for the discrepancy in this investigation is unknown, but may be related to nylon-screen-mesh size, which was smaller than that used in previous investigations.
Sampling and Analyzing Air Pollution: An Apparatus Suitable for Use in Schools.
ERIC Educational Resources Information Center
Rockwell, Dean M.; Hansen, Tony
1994-01-01
Describes two variations of an air sampler and analyzer that are inexpensive to construct, easy to operate, and designed to be used in an educational program. Variations use vacuum cleaners and aquarium pumps, and white facial tissues serve as filters. Samples of air pollution obtained by this method may be used from early grade school to advanced…
NASA Astrophysics Data System (ADS)
Mattey, D.
2012-04-01
The concentration of CO2 in cave air is one of the main controls on the rate of degassing of dripwater and on the kinetics of calcite precipitation forming speleothem deposits. Measurements of cave air CO2reveal great complexity in the spatial distribution among interconnected cave chambers and temporal changes on synoptic to seasonal time scales. The rock of Gibraltar hosts a large number of caves distributed over a 300 meter range in altitude and monthly sampling and analysis of air and water combined with continuous logging of temperature, humidity and drip discharge rates since 2004 reveals the importance of density-driven seasonal ventilation which drives large-scale advection of CO2-rich air though the cave systems. Since 2008 we have deployed automatic CO2 monitoring systems that regularly sample cave air from up to 8 locations distributed laterally and vertically in St Michaels Cave located near the top of the rock at 275m asl and Ragged Staff Cave located in the heart of the rock near sea level. The logging system is controlled by a Campbell Scientific CR1000 programmable datalogger which controls an 8 port manifold connected to sampling lines leading to different parts of the cave over a distance of up to 250 meters. The manifold is pumped at a rate of 5l per minute drawing air through 6mm or 8mm id polythene tubing via a 1m Nafion loop to reduce humidity to local ambient conditions. The outlet of the primary pump leads to an open split which is sampled by a second low flow pump which delivers air at 100ml/minute to a Licor 820 CO2 analyser. The software selects the port to be sampled, flushes the line for 2 minutes and CO2 analysed as a set of 5 measurements averaged over 10 second intervals. The system then switches to the next port and when complete shuts down to conserve power after using 20 watts over a 30 minute period of analysis. In the absence of local mains power (eg from the show cave lighting system) two 12v car batteries will power the system for analysis at 4h intervals for about 1 month. Two logging systems sampling cave air from 13 locations over a vertical range of 275m have run continuously for up to 5 years and return a very detailed picture of cave ventilation patterns and their responses to local weather and seasonal change.
Benson, S.M.; Janik, C.J.; Long, D.C.; Solbau, R.D.; Lienau, P.J.
1984-01-01
A seven-week pumping and injection tests in the geothermal aquifer at Klamath Falls, Oregon, in 1983 provided new information on hydraulic properties of the aquifer. The Open-File Data Report on the tests includes graphs of water levels measured in 50 wells, temperature measurement in 17 wells , daily air-temperatures in relation to discharge of thermal water from more than 70 pumped and artesian wells, tables of monthly mean air temperatures and estimates of discharges of thermal water during a normal year, and tables of chemical and isotopic analyses on samples from 12 wells. The water-level measurements reflect the effects of pumping, injection, and recovery over about 1.7 square miles of the hot-well area of Klamath Falls. The pumped well, City Well No 1, and the injection well at the Klamath County Museum are components of a proposed District Heating Plan. The study was funded principally under contracts from the U.S. Department of Energy to the Lawrence Berkeley Laboratory, Stanford University, and the Oregon Institute of Technology, with coordination and chemical sampling provided under the Geothermal Research Program, U.S. Geological Survey. Support was received from the City of Klamath Falls, Klamath County Chamber of Commerce, Citizens for Responsible Geothermal Development, and many citizen volunteers. (USGS)
Vein-style air pumping tube and tire system and method of assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benedict, Robert Leon; Gobinath, Thulasiram; Lin, Cheng-Hsiung
An air pumping tube and tire system and method of assembling is provided in which a tire groove is formed to extend into a flexing region of a tire sidewall and a complementary air pumping tube inserts into the tire groove. In the green, uncured air pumping tube condition, one or more check valves are assembled into the air pumping tube through access shafts and align with an internal air passageway of the air pumping tube. Plug components of the system enclose the check valves in the air pumping tube and the check valve-containing green air pumping tube is thenmore » cured.« less
Exposure to regular gasoline and ethanol oxyfuel during refueling in Alaska.
Backer, L C; Egeland, G M; Ashley, D L; Lawryk, N J; Weisel, C P; White, M C; Bundy, T; Shortt, E; Middaugh, J P
1997-01-01
Although most people are thought to receive their highest acute exposures to gasoline while refueling, relatively little is actually known about personal, nonoccupational exposures to gasoline during refueling activities. This study was designed to measure exposures associated with the use of an oxygenated fuel under cold conditions in Fairbanks, Alaska. We compared concentrations of gasoline components in the blood and in the personal breathing zone (PBZ) of people who pumped regular unleaded gasoline (referred to as regular gasoline) with concentrations in the blood of those who pumped an oxygenated fuel that was 10% ethanol (E-10). A subset of participants in a wintertime engine performance study provided blood samples before and after pumping gasoline (30 using regular gasoline and 30 using E-10). The biological and environmental samples were analyzed for selected aromatic volatile organic compounds (VOCs) found in gasoline (benzene, ethylbenzene, toluene, m-/p-xylene, and o-xylene); the biological samples were also analyzed for three chemicals not found in gasoline (1,4-dichlorobenzene, chloroform, and styrene). People in our study had significantly higher levels of gasoline components in their blood after pumping gasoline than they had before pumping gasoline. The changes in VOC levels in blood were similar whether the individuals pumped regular gasoline or the E-10 blend. The analysis of PBZ samples indicated that there were also measurable levels of gasoline components in the air during refueling. The VOC levels in PBZ air were similar for the two groups. In this study, we demonstrate that people are briefly exposed to low (ppm and sub-ppm) levels of known carcinogens and other potentially toxic compounds while pumping gasoline, regardless of the type of gasoline used. Images Figure 1. Figure 2. Figure 3. PMID:9347900
Puls, Robert W.; Eychaner, James H.; Powell, Robert M.
1996-01-01
Investigations at Pinal Creek, Arizona, evaluated routine sampling procedures for determination of aqueous inorganic geochemistry and assessment of contaminant transport by colloidal mobility. Sampling variables included pump type and flow rate, collection under air or nitrogen, and filter pore diameter. During well purging and sample collection, suspended particle size and number as well as dissolved oxygen, temperature, specific conductance, pH, and redox potential were monitored. Laboratory analyses of both unfiltered samples and the filtrates were performed by inductively coupled argon plasma, atomic absorption with graphite furnace, and ion chromatography. Scanning electron microscopy with Energy Dispersive X-ray was also used for analysis of filter particulates. Suspended particle counts consistently required approximately twice as long as the other field-monitored indicators to stabilize. High-flow-rate pumps entrained normally nonmobile particles. Difference in elemental concentrations using different filter-pore sizes were generally not large with only two wells having differences greater than 10 percent in most wells. Similar differences (>10%) were observed for some wells when samples were collected under nitrogen rather than in air. Fe2+/Fe3+ ratios for air-collected samples were smaller than for samples collected under a nitrogen atmosphere, reflecting sampling-induced oxidation.
Galbán-Malagón, Cristóbal; Berrojalbiz, Naiara; Ojeda, María-José; Dachs, Jordi
2012-05-29
Semivolatile persistent organic pollutants have the potential to reach remote environments, such as the Arctic Ocean, through atmospheric transport and deposition. Here we show that this transport of polychlorinated biphenyls to the Arctic Ocean is strongly retarded by the oceanic biological pump. A simultaneous sampling of atmospheric, seawater and plankton samples was performed in July 2007 in the Greenland Current and Atlantic sector of the Arctic Ocean. The atmospheric concentrations declined during atmospheric transport over the Greenland Current with estimated half-lives of 1-4 days. These short half-lives can be explained by the high air-to-water net diffusive flux, which is similar in magnitude to the estimated settling fluxes in the water column. Therefore, the decrease of atmospheric concentrations is due to sequestration of atmospheric polychlorinated biphenyls by enhanced air-water diffusive fluxes driven by phytoplankton uptake and organic carbon settling fluxes (biological pump).
The purpose of this SOP is to describe the methods used to collect indoor and outdoor air samples for the determination of selected volatile organic compounds (VOC's) using a pump to draw air through a Carbotrap Sampler. Volatile organic compounds (VOCs) present in the air are p...
Investigations at Pinal Creek, Arizona, evaluated routine sampling procedures for determination of aqueous inorganic geochemistry and assessment of contaminant transport by colloidal mobility. Sampling variables included pump type and flow rate, collection under air or nitrogen,...
Improving Malaysian cocoa quality through the use of dehumidified air under mild drying conditions.
Hii, Ching L; Law, Chung L; Cloke, Michael; Sharif, Suzannah
2011-01-30
Various studies have been conducted in the past to improve the quality of Malaysian cocoa beans. However, the processing methods still remain crude and lack technological advancement. In terms of drying, no previous study has attempted to apply advanced drying technology to improve bean quality. This paper presents the first attempt to improve the quality of cocoa beans through heat pump drying using constant air (28.6 and 40.4 °C) and stepwise (step-up 30.7-43.6-56.9 °C and step-down 54.9-43.9 °C) drying profiles. Comparison was made against hot air drying at 55.9 °C. Product quality assessment showed significant improvement in the quality of Malaysian cocoa beans. Quality was found to be better in terms of lower acidity (higher pH) and higher degree of browning (cut test) for cocoa beans dried using the step-up profile. All heat pump-dried samples showed flavour quality comparable to that of Ghanaian and better than that of Malaysian and Indonesian commercial samples. Step-up-dried samples showed the best flavour profile with high level of cocoa flavour, low in sourness and not excessive in bitterness and astringency. Dried cocoa samples from the step-up drying profile showed the best overall quality as compared with commercial samples from Malaysia, Indonesia and Ghana. The improvement of Malaysian cocoa bean quality is thus achievable through heat pump drying. 2010 Society of Chemical Industry.
Alpha-environmental continuous air monitor inlet
Rodgers, John C.
2003-01-01
A wind deceleration and protective shroud that provides representative samples of ambient aerosols to an environmental continuous air monitor (ECAM) has a cylindrical enclosure mounted to an input on the continuous air monitor, the cylindrical enclosure having shrouded nozzles located radially about its periphery. Ambient air flows, often along with rainwater flows into the nozzles in a sampling flow generated by a pump in the continuous air monitor. The sampling flow of air creates a cyclonic flow in the enclosure that flows up through the cylindrical enclosure until the flow of air reaches the top of the cylindrical enclosure and then is directed downward to the continuous air monitor. A sloped platform located inside the cylindrical enclosure supports the nozzles and causes any moisture entering through the nozzle to drain out through the nozzles.
Differential atmospheric tritium sampler
Griesbach, O.A.; Stencel, J.R.
1987-10-02
An atmospheric tritium sampler is provided which uses a carrier gas comprised of hydrogen gas and a diluting gas, mixed in a nonexplosive concentration. Sample air and carrier gas are drawn into and mixed in a manifold. A regulator meters the carrier gas flow to the manifold. The air sample/carrier gas mixture is pulled through a first moisture trap which adsorbs water from the air sample. The moisture then passes through a combustion chamber where hydrogen gas in the form of H/sub 2/ or HT is combusted into water. The manufactured water is transported by the air stream to a second moisture trap where it is adsorbed. The air is then discharged back into the atmosphere by means of a pump.
Differential atmospheric tritium sampler
Griesbach, Otto A.; Stencel, Joseph R.
1990-01-01
An atmospheric tritium sampler is provided which uses a carrier gas comprised of hydrogen gas and a diluting gas, mixed in a nonexplosive concentration. Sample air and carrier gas are drawn into and mixed in a manifold. A regulator meters the carrier gas flow to the manifold. The air sample/carrier gas mixture is pulled through a first moisture trap which adsorbs water from the air sample. The mixture then passes through a combustion chamber where hydrogen gas in the form of H.sub.2 or HT is combusted into water. The manufactured water is transported by the air stream to a second moisture trap where it is adsorbed. The air is then discharged back into the atmosphere by means of a pump.
Tobin, John
1989-01-01
A sampling apparatus is provided which comprises a sampler for sampling air in the breathing zone of a wearer of the apparatus and a support for the sampler preferably in the form of a pair of eyeglasses. The sampler comprises a sampling assembly supported on the frame of the eyeglasses and including a pair of sample transport tubes which are suspended, in use, centrally of the frame so as to be disposed on opposite sides of the nose of the wearer and which each include an inlet therein that, in use, is disposed adjacent to a respective nostril of the nose of the wearer. A filter holder connected to sample transport tubes supports a removable filter for filtering out particulate material in the air sampled by the apparatus. The sample apparatus is connected to a pump for drawing air into the apparatus through the tube inlets so that the air passes through the filter.
Filter for on-line air monitor unaffected by radon progeny and method of using same
Phillips, Terrance D.; Edwards, Howard D.
1999-01-01
An apparatus for testing air having contaminants and radon progeny therein. The apparatus includes a sampling box having an inlet for receiving the air and an outlet for discharging the air. The sampling box includes a filter made of a plate of sintered stainless steel. The filter traps the contaminants, yet allows at least a portion of the radon progeny to pass therethrough. A method of testing air having contaminants and radon progeny therein. The method includes providing a testing apparatus that has a sampling box with an inlet for receiving the air and an outlet for discharging the air, and has a sintered stainless steel filter disposed within said sampling box; drawing air from a source into the sampling box using a vacuum pump; passing the air through the filter; monitoring the contaminants trapped by the filter; and providing an alarm when a selected level of contaminants is reached. The filter traps the contaminants, yet allows at least a portion of the radon progeny to pass therethrough.
A simple novel device for air sampling by electrokinetic capture
Gordon, Julian; Gandhi, Prasanthi; Shekhawat, Gajendra; ...
2015-12-27
A variety of different sampling devices are currently available to acquire air samples for the study of the microbiome of the air. All have a degree of technical complexity that limits deployment. Here, we evaluate the use of a novel device, which has no technical complexity and is easily deployable. An air-cleaning device powered by electrokinetic propulsion has been adapted to provide a universal method for collecting samples of the aerobiome. Plasma-induced charge in aerosol particles causes propulsion to and capture on a counter-electrode. The flow of ions creates net bulk airflow, with no moving parts. A device and electrodemore » assembly have been re-designed from air-cleaning technology to provide an average air flow of 120 lpm. This compares favorably with current air sampling devices based on physical air pumping. Capture efficiency was determined by comparison with a 0.4 μm polycarbonate reference filter, using fluorescent latex particles in a controlled environment chamber. Performance was compared with the same reference filter method in field studies in three different environments. For 23 common fungal species by quantitative polymerase chain reaction (qPCR), there was 100 % sensitivity and apparent specificity of 87%, with the reference filter taken as “gold standard.” Further, bacterial analysis of 16S RNA by amplicon sequencing showed equivalent community structure captured by the electrokinetic device and the reference filter. Unlike other current air sampling methods, capture of particles is determined by charge and so is not controlled by particle mass. We analyzed particle sizes captured from air, without regard to specific analyte by atomic force microscopy: particles at least as low as 100 nM could be captured from ambient air. This work introduces a very simple plug-and-play device that can sample air at a high-volume flow rate with no moving parts and collect particles down to the sub-micron range. In conclusion, the performance of the device is substantially equivalent to capture by pumping through a filter for microbiome analysis by quantitative PCR and amplicon sequencing.« less
A simple novel device for air sampling by electrokinetic capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordon, Julian; Gandhi, Prasanthi; Shekhawat, Gajendra
A variety of different sampling devices are currently available to acquire air samples for the study of the microbiome of the air. All have a degree of technical complexity that limits deployment. Here, we evaluate the use of a novel device, which has no technical complexity and is easily deployable. An air-cleaning device powered by electrokinetic propulsion has been adapted to provide a universal method for collecting samples of the aerobiome. Plasma-induced charge in aerosol particles causes propulsion to and capture on a counter-electrode. The flow of ions creates net bulk airflow, with no moving parts. A device and electrodemore » assembly have been re-designed from air-cleaning technology to provide an average air flow of 120 lpm. This compares favorably with current air sampling devices based on physical air pumping. Capture efficiency was determined by comparison with a 0.4 μm polycarbonate reference filter, using fluorescent latex particles in a controlled environment chamber. Performance was compared with the same reference filter method in field studies in three different environments. For 23 common fungal species by quantitative polymerase chain reaction (qPCR), there was 100 % sensitivity and apparent specificity of 87%, with the reference filter taken as “gold standard.” Further, bacterial analysis of 16S RNA by amplicon sequencing showed equivalent community structure captured by the electrokinetic device and the reference filter. Unlike other current air sampling methods, capture of particles is determined by charge and so is not controlled by particle mass. We analyzed particle sizes captured from air, without regard to specific analyte by atomic force microscopy: particles at least as low as 100 nM could be captured from ambient air. This work introduces a very simple plug-and-play device that can sample air at a high-volume flow rate with no moving parts and collect particles down to the sub-micron range. In conclusion, the performance of the device is substantially equivalent to capture by pumping through a filter for microbiome analysis by quantitative PCR and amplicon sequencing.« less
A simple novel device for air sampling by electrokinetic capture.
Gordon, Julian; Gandhi, Prasanthi; Shekhawat, Gajendra; Frazier, Angel; Hampton-Marcell, Jarrad; Gilbert, Jack A
2015-12-27
A variety of different sampling devices are currently available to acquire air samples for the study of the microbiome of the air. All have a degree of technical complexity that limits deployment. Here, we evaluate the use of a novel device, which has no technical complexity and is easily deployable. An air-cleaning device powered by electrokinetic propulsion has been adapted to provide a universal method for collecting samples of the aerobiome. Plasma-induced charge in aerosol particles causes propulsion to and capture on a counter-electrode. The flow of ions creates net bulk airflow, with no moving parts. A device and electrode assembly have been re-designed from air-cleaning technology to provide an average air flow of 120 lpm. This compares favorably with current air sampling devices based on physical air pumping. Capture efficiency was determined by comparison with a 0.4 μm polycarbonate reference filter, using fluorescent latex particles in a controlled environment chamber. Performance was compared with the same reference filter method in field studies in three different environments. For 23 common fungal species by quantitative polymerase chain reaction (qPCR), there was 100 % sensitivity and apparent specificity of 87 %, with the reference filter taken as "gold standard." Further, bacterial analysis of 16S RNA by amplicon sequencing showed equivalent community structure captured by the electrokinetic device and the reference filter. Unlike other current air sampling methods, capture of particles is determined by charge and so is not controlled by particle mass. We analyzed particle sizes captured from air, without regard to specific analyte by atomic force microscopy: particles at least as low as 100 nM could be captured from ambient air. This work introduces a very simple plug-and-play device that can sample air at a high-volume flow rate with no moving parts and collect particles down to the sub-micron range. The performance of the device is substantially equivalent to capture by pumping through a filter for microbiome analysis by quantitative PCR and amplicon sequencing.
2010-01-01
a vacuum controller. A vacuum of < 1 µ torr was achieved with a combination of a turbo pump and a scroll pump system. The sample probing is...the polymer was reprecipitated in heptane non-solvent. The filtered polymer was washed with heptane and was finally dried in vacuum at 100ºC for three...solution was added to a large excess of methanol to precipitate the polymer. After soxhlet extraction with methanol and vacuum drying, the polymer was
Lee, Eun Gyung; Lee, Taekhee; Kim, Seung Won; Lee, Larry; Flemmer, Michael M.; Harper, Martin
2015-01-01
This second, and concluding, part of this study evaluated changes in sampling efficiency of respirable size-selective samplers due to air pulsations generated by the selected personal sampling pumps characterized in Part I (Lee E, Lee L, Möhlmann C et al. Evaluation of pump pulsation in respirable size-selective sampling: Part I. Pulsation measurements. Ann Occup Hyg 2013). Nine particle sizes of monodisperse ammonium fluorescein (from 1 to 9 μm mass median aerodynamic diameter) were generated individually by a vibrating orifice aerosol generator from dilute solutions of fluorescein in aqueous ammonia and then injected into an environmental chamber. To collect these particles, 10-mm nylon cyclones, also known as Dorr-Oliver (DO) cyclones, were used with five medium volumetric flow rate pumps. Those were the Apex IS, HFS513, GilAir5, Elite5, and Basic5 pumps, which were found in Part I to generate pulsations of 5% (the lowest), 25%, 30%, 56%, and 70% (the highest), respectively. GK2.69 cyclones were used with the Legacy [pump pulsation (PP) = 15%] and Elite12 (PP = 41%) pumps for collection at high flows. The DO cyclone was also used to evaluate changes in sampling efficiency due to pulse shape. The HFS513 pump, which generates a more complex pulse shape, was compared to a single sine wave fluctuation generated by a piston. The luminescent intensity of the fluorescein extracted from each sample was measured with a luminescence spectrometer. Sampling efficiencies were obtained by dividing the intensity of the fluorescein extracted from the filter placed in a cyclone with the intensity obtained from the filter used with a sharp-edged reference sampler. Then, sampling efficiency curves were generated using a sigmoid function with three parameters and each sampling efficiency curve was compared to that of the reference cyclone by constructing bias maps. In general, no change in sampling efficiency (bias under ±10%) was observed until pulsations exceeded 25% for the DO cyclone. However, for three models of pumps producing 30%, 56%, and 70% pulsations, substantial changes were confirmed. The GK2.69 cyclone showed a similar pattern to that of the DO cyclone, i.e. no change in sampling efficiency for the Legacy producing 15% pulsation and a substantial change for the Elite12 producing 41% pulsation. Pulse shape did not cause any change in sampling efficiency when compared to the single sine wave. The findings suggest that 25% pulsation at the inlet of the cyclone as measured by this test can be acceptable for the respirable particle collection. If this test is used in place of that currently in European standards (EN 1232–1997 and EN 12919-1999) or is used in any International Organization for Standardization standard, then a 25% pulsation criterion could be adopted. This work suggests that a 10% criterion as currently specified in the European standards for testing may be overly restrictive and not able to be met by many pumps on the market. Further work is recommended to determine which criterion would be applicable to this test if it is to be retained in its current form. PMID:24064963
Lee, Eun Gyung; Lee, Taekhee; Kim, Seung Won; Lee, Larry; Flemmer, Michael M; Harper, Martin
2014-01-01
This second, and concluding, part of this study evaluated changes in sampling efficiency of respirable size-selective samplers due to air pulsations generated by the selected personal sampling pumps characterized in Part I (Lee E, Lee L, Möhlmann C et al. Evaluation of pump pulsation in respirable size-selective sampling: Part I. Pulsation measurements. Ann Occup Hyg 2013). Nine particle sizes of monodisperse ammonium fluorescein (from 1 to 9 μm mass median aerodynamic diameter) were generated individually by a vibrating orifice aerosol generator from dilute solutions of fluorescein in aqueous ammonia and then injected into an environmental chamber. To collect these particles, 10-mm nylon cyclones, also known as Dorr-Oliver (DO) cyclones, were used with five medium volumetric flow rate pumps. Those were the Apex IS, HFS513, GilAir5, Elite5, and Basic5 pumps, which were found in Part I to generate pulsations of 5% (the lowest), 25%, 30%, 56%, and 70% (the highest), respectively. GK2.69 cyclones were used with the Legacy [pump pulsation (PP) = 15%] and Elite12 (PP = 41%) pumps for collection at high flows. The DO cyclone was also used to evaluate changes in sampling efficiency due to pulse shape. The HFS513 pump, which generates a more complex pulse shape, was compared to a single sine wave fluctuation generated by a piston. The luminescent intensity of the fluorescein extracted from each sample was measured with a luminescence spectrometer. Sampling efficiencies were obtained by dividing the intensity of the fluorescein extracted from the filter placed in a cyclone with the intensity obtained from the filter used with a sharp-edged reference sampler. Then, sampling efficiency curves were generated using a sigmoid function with three parameters and each sampling efficiency curve was compared to that of the reference cyclone by constructing bias maps. In general, no change in sampling efficiency (bias under ±10%) was observed until pulsations exceeded 25% for the DO cyclone. However, for three models of pumps producing 30%, 56%, and 70% pulsations, substantial changes were confirmed. The GK2.69 cyclone showed a similar pattern to that of the DO cyclone, i.e. no change in sampling efficiency for the Legacy producing 15% pulsation and a substantial change for the Elite12 producing 41% pulsation. Pulse shape did not cause any change in sampling efficiency when compared to the single sine wave. The findings suggest that 25% pulsation at the inlet of the cyclone as measured by this test can be acceptable for the respirable particle collection. If this test is used in place of that currently in European standards (EN 1232-1997 and EN 12919-1999) or is used in any International Organization for Standardization standard, then a 25% pulsation criterion could be adopted. This work suggests that a 10% criterion as currently specified in the European standards for testing may be overly restrictive and not able to be met by many pumps on the market. Further work is recommended to determine which criterion would be applicable to this test if it is to be retained in its current form.
NASA Technical Reports Server (NTRS)
Randhawa, J.
1978-01-01
The chemiluminescent ozonesonde to be flown with the STRATCOM balloon flight consisted of two main parts: (1) A constant-volume sampling pump made from TEFLON was used for the intake of the air sample. Sample was drawn at a rate of 200 millimeters per minute. (2) Ozone was detected by the chemiluminescent process (Rhodamine - B). Ozone molecules in the air sample flowed over the detector and the photons produced by the destruction of ozone molecules on the chemiluminescent material were monitored by the photomultiplier tube, the output signal from which was transmitted to the ground receiver.
Kawakami, Tsuyoshi; Isama, Kazuo; Tanaka-Kagawa, Toshiko; Jinnno, Hideto
2017-11-10
The aim of this investigation is to clarify the types and concentrations of VOCs present in various commercial household water-based hand pump spray products used in Japan, and to estimate their average concentrations in indoor air when the spray product is used. We selected glycol and glycol ethers as the main target compounds, as these chemicals were detected at high frequencies and concentrations in a national survey of Japanese indoor air pollution. The extraction of these chemicals using graphite carbon cartridges was examined, with good recoveries and reproducibilities being obtained. Eighteen chemicals were analyzed in 54 commercial products and 8 chemicals were detected. More specifically, dipropylene glycol (DPG) was present in 44 samples (1.1 × 10 1 -1.8 × 10 4 μg/mL); propylene glycol (PG) was present in 22 samples (1.5 × 10 1 -2.9 × 10 4 μg/mL); diethylene glycol monoethyl ether (DGMEE) was found in 15 samples (trace amount-1.9 × 10 3 μg/mL); diethylene glycol (DEG) was present in 9 samples (1.0 × 10 1 -2.4 × 10 3 μg/mL); 1,3-butandiol (13BG) was found in 5 samples (trace amount-7.4 × 10 3 μg/mL); 2-ethyl-1-hexanol (2E1H) was detected in 5 samples (3.2 × 10 -1 -4.4 × 10 1 μg/mL); diethylene glycol monobutyl ether (DGMBE) was present in 4 samples (2.1 × 10 1 -7.1 × 10 1 μg/mL); and 3-methoxy-3-methylbutanol (MMB) was found in 2 samples (2.4 × 10 1 -4.7 × 10 2 μg/mL). In addition, the average concentrations of these chemicals in indoor air were estimated using their maximum concentrations observed in the spray product. The estimated average concentrations of the chemicals in indoor air were determined to range between 1.0 × 10 -2 and 1.0 mg/m 3 , with the exception of 2E1H and DGMBE. Furthermore, the estimated average concentrations of PG, 13BG, and DGMEE in indoor air were comparable to or higher than those reported in a national survey of Japanese indoor air pollution. It therefore appeared that household water-based hand pump sprays may contribute to the presence of these chemicals in indoor air. In contrast, estimated average concentrations of 2E1H in indoor air were low, its concentrations observed in a national survey of Japanese indoor air pollution are likely due to the use of plasticizers and paints.
Chong, Chien Hwa; Law, Chung Lim; Figiel, Adam; Wojdyło, Aneta; Oziembłowski, Maciej
2013-12-15
The objective of this study was to improve product quality of dehydrated fruits (apple, pear, papaya, mango) using combined drying techniques. This involved investigation of bioactivity, colour, and sensory assessment on colour of the dried products as well as the retention of the bio-active ingredients. The attributes of quality were compared in regard to the quality of dehydrated samples obtained from continuous heat pump (HP) drying technique. It was found that for apple, pear and mango the total colour change (ΔE) of samples dried using continuous heat pump (HP) or heat pump vacuum-microwave (HP/VM) methods was lower than of samples dried by other combined methods. However, for papaya, the lowest colour change exhibited by samples dried using hot air-cold air (HHC) method and the highest colour change was found for heat pump (HP) dehydrated samples. Sensory evaluation revealed that dehydrated pear with higher total colour change (ΔE) is more desirable because of its golden yellow appearance. In most cases the highest phenol content was found from fruits dried by HP/VM method. Judging from the quality findings on two important areas namely colour and bioactivity, it was found that combined drying method consisted of HP pre-drying followed by VM finish drying gave the best results for most dehydrated fruits studied in this work as the fruits contain first group of polyphenol compounds, which preferably requires low temperature followed by rapid drying strategy. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Prototype sampling system for measuring workplace protection factors for gases and vapors.
Groves, William A; Reynolds, Stephen J
2003-05-01
A prototype sampling system for measuring respirator workplace protection factors (WPFs) was developed. Methods for measuring the concentration of contaminants inside respirators have previously been described; however, these studies have typically involved continuous sampling of aerosols. Our work focuses on developing an intermittent sampling system designed to measure the concentration of gases and vapors during inspiration. This approach addresses two potential problems associated with continuous sampling: biased results due to lower contaminant concentrations and high humidity in exhaled air. The system consists of a pressure transducer circuit designed to activate a pair of personal sampling pumps during inspiration based on differential pressure inside the respirator. One pump draws air from inside the respirator while the second samples the ambient air. Solid granular adsorbent tubes are used to trap the contaminants, making the approach applicable to a large number of gases and vapors. Laboratory testing was performed using a respirator mounted on a headform connected to a breathing machine producing a sinusoidal flow pattern with an average flow rate of 20 L/min and a period of 3 seconds. The sampling system was adjusted to activate the pumps when the pressure inside the respirator was less than -0.1 inch H(2)O. Quantitative fit-tests using human subjects were conducted to evaluate the effect of the sampling system on respirator performance. A total of 299 fit-tests were completed for two different types of respirators (half- and full-facepiece) from two different manufacturers (MSA and North). Statistical tests showed no significant differences between mean fit factors for respirators equipped with the sampling system versus unmodified respirators. Field testing of the prototype sampling system was performed in livestock production facilities and estimates of WPFs for ammonia were obtained. Results demonstrate the feasibility of this approach and will be used in developing improved instrumentation for measuring WPFs.
77 FR 8178 - Test Procedures for Central Air Conditioners and Heat Pumps: Public Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-14
... distribution of those central air conditioning systems and heat pump systems manufactured after January 1, 2010... system central air conditioners and heat pumps be tested using ``the evaporator coil that is likely to... issued two guidance documents surrounding testing central air conditioner and heat pump systems utilizing...
Comparison of coarse coal dust sampling techniques in a laboratory-simulated longwall section.
Patts, Justin R; Barone, Teresa L
2017-05-01
Airborne coal dust generated during mining can deposit and accumulate on mine surfaces, presenting a dust explosion hazard. When assessing dust hazard mitigation strategies for airborne dust reduction, sampling is done in high-velocity ventilation air, which is used to purge the mining face and gallery tunnel. In this environment, the sampler inlet velocity should be matched to the air stream velocity (isokinetic sampling) to prevent oversampling of coarse dust at low sampler-to-air velocity ratios. Low velocity ratios are often encountered when using low flow rate, personal sampling pumps commonly used in underground mines. In this study, with a goal of employing mine-ready equipment, a personal sampler was adapted for area sampling of coarse coal dust in high-velocity ventilation air. This was done by adapting an isokinetic nozzle to the inlet of an Institute of Occupational Medicine (Edinburgh, Scotland) sampling cassette (IOM). Collected dust masses were compared for the modified IOM isokinetic sampler (IOM-MOD), the IOM without the isokinetic nozzle, and a conventional dust sampling cassette without the cyclone on the inlet. All samplers were operated at a flow rate typical of personal sampling pumps: 2 L/min. To ensure differences between collected masses that could be attributed to sampler design and were not influenced by artifacts from dust concentration gradients, relatively uniform and repeatable dust concentrations were demonstrated in the sampling zone of the National Institute for Occupational Safety and Health experimental mine gallery. Consistent with isokinetic theory, greater differences between isokinetic and non-isokinetic sampled masses were found for larger dust volume-size distributions and higher ventilation air velocities. Since isokinetic sampling is conventionally used to determine total dust concentration, and isokinetic sampling made a difference in collected masses, the results suggest when sampling for coarse coal dust the IOM-MOD may improve airborne coarse dust assessments over "off-the-shelf" sampling cassettes.
Comparison of coarse coal dust sampling techniques in a laboratory-simulated longwall section
Patts, Justin R.; Barone, Teresa L.
2017-01-01
Airborne coal dust generated during mining can deposit and accumulate on mine surfaces, presenting a dust explosion hazard. When assessing dust hazard mitigation strategies for airborne dust reduction, sampling is done in high-velocity ventilation air, which is used to purge the mining face and gallery tunnel. In this environment, the sampler inlet velocity should be matched to the air stream velocity (isokinetic sampling) to prevent oversampling of coarse dust at low sampler-to-air velocity ratios. Low velocity ratios are often encountered when using low flow rate, personal sampling pumps commonly used in underground mines. In this study, with a goal of employing mine-ready equipment, a personal sampler was adapted for area sampling of coarse coal dust in high-velocity ventilation air. This was done by adapting an isokinetic nozzle to the inlet of an Institute of Occupational Medicine (Edinburgh, Scotland) sampling cassette (IOM). Collected dust masses were compared for the modified IOM isokinetic sampler (IOM-MOD), the IOM without the isokinetic nozzle, and a conventional dust sampling cassette without the cyclone on the inlet. All samplers were operated at a flow rate typical of personal sampling pumps: 2 L/min. To ensure differences between collected masses that could be attributed to sampler design and were not influenced by artifacts from dust concentration gradients, relatively uniform and repeatable dust concentrations were demonstrated in the sampling zone of the National Institute for Occupational Safety and Health experimental mine gallery. Consistent with isokinetic theory, greater differences between isokinetic and non-isokinetic sampled masses were found for larger dust volume-size distributions and higher ventilation air velocities. Since isokinetic sampling is conventionally used to determine total dust concentration, and isokinetic sampling made a difference in collected masses, the results suggest when sampling for coarse coal dust the IOM-MOD may improve airborne coarse dust assessments over “off-the-shelf” sampling cassettes. PMID:27792474
A new device for dynamic sampling of radon in air
NASA Astrophysics Data System (ADS)
Lozano, J. C.; Escobar, V. Gómez; Tomé, F. Vera
2000-08-01
A new system is proposed for the active sampling of radon in air, based on the well-known property of activated charcoal to retain radon. Two identical carbon-activated cartridges arranged in series remove the radon from the air being sampled. The air passes first through a desiccant cell and then the carbon cartridges for short sampling times using a low-flow pump. The alpha activity for each cartridge is determined by a liquid scintillation counting system. The cartridge is placed in a holder into a vial that also contains the appropriate amount of scintillation cocktail, in a way that avoids direct contact between cocktail and charcoal. Once dynamic equilibrium between the phases has been reached, the vials can be counted. Optimum sampling conditions concerning flow rates and sampling times are determined. Using those conditions, the method was applied to environmental samples, straightforwardly providing good results for very different levels of activity.
Soo, Jhy-Charm; Lee, Eun Gyung; Lee, Larry A.; Kashon, Michael L.; Harper, Martin
2015-01-01
Lee et al. (Evaluation of pump pulsation in respirable size-selective sampling: part I. Pulsation measurements. Ann Occup Hyg 2014a;58:60–73) introduced an approach to measure pump pulsation (PP) using a real-world sampling train, while the European Standards (EN) (EN 1232-1997 and EN 12919-1999) suggest measuring PP using a resistor in place of the sampler. The goal of this study is to characterize PP according to both EN methods and to determine the relationship of PP between the published method (Lee et al., 2014a) and the EN methods. Additional test parameters were investigated to determine whether the test conditions suggested by the EN methods were appropriate for measuring pulsations. Experiments were conducted using a factorial combination of personal sampling pumps (six medium- and two high-volumetric flow rate pumps), back pressures (six medium- and seven high-flow rate pumps), resistors (two types), tubing lengths between a pump and resistor (60 and 90 cm), and different flow rates (2 and 2.5 l min−1 for the medium- and 4.4, 10, and 11.2 l min−1 for the high-flow rate pumps). The selection of sampling pumps and the ranges of back pressure were based on measurements obtained in the previous study (Lee et al., 2014a). Among six medium-flow rate pumps, only the Gilian5000 and the Apex IS conformed to the 10% criterion specified in EN 1232-1997. Although the AirChek XR5000 exceeded the 10% limit, the average PP (10.9%) was close to the criterion. One high-flow rate pump, the Legacy (PP = 8.1%), conformed to the 10% criterion in EN 12919-1999, while the Elite12 did not (PP = 18.3%). Conducting supplemental tests with additional test parameters beyond those used in the two subject EN standards did not strengthen the characterization of PPs. For the selected test conditions, a linear regression model [PPEN = 0.014 + 0.375 × PPNIOSH (adjusted R2 = 0.871)] was developed to determine the PP relationship between the published method (Lee et al., 2014a) and the EN methods. The 25% PP criterion recommended by Lee et al. (2014a), average value derived from repetitive measurements, corresponds to 11% PPEN. The 10% pass/fail criterion in the EN Standards is not based on extensive laboratory evaluation and would unreasonably exclude at least one pump (i.e. AirChek XR5000 in this study) and, therefore, the more accurate criterion of average 11% from repetitive measurements should be substituted. This study suggests that users can measure PP using either a real-world sampling train or a resistor setup and obtain equivalent findings by applying the model herein derived. The findings of this study will be delivered to the consensus committees to be considered when those standards, including the EN 1232-1997, EN 12919-1999, and ISO 13137-2013, are revised. PMID:25053700
The purpose of this SOP is to describe the methods used to collect indoor and outdoor air samples for the determination of selected volatile organic compounds (VOC's) using a pump to draw air through a Carbotrap Sampler. Volatile organic compounds (VOCs) present in the air are p...
NASA Technical Reports Server (NTRS)
James, John T.
2004-01-01
The toxicological assessments of SSAS and FMK analytical results are reported. Analytical methods have not changed from earlier reports. Surrogate standard recoveries from the SSAS tubes were 66-76% for 13C-acetone, 85-96% for fluorobenzene, and 73-89% for chlorobenzene. Post-flight flows were far below pre-flight flows and an investigation of the problem revealed that the reduced flow was caused by a leak at the interface of the pump inlet tube and the pump head. This resulted in degradation of pump efficiency. Further investigation showed that the problem occurred before the SSAS was operated on orbit and that use of the post-flight flows yielded consistent and useful results. Recoveries from formaldehyde control badges were 86 to 104%. The two general criteria used to assess air quality are the total-non-methane-volatile organic hydrocarbons (NMVOCs) and the total T-value (minus the CO2 and formaldehyde contributions). The T values will not be reported for these data due to the flow anomaly. Control of atmospheric alcohols is important to the water recovery system engineers, hence total alcohols (including acetone) are also shown for each sample. Octafluoropropane (OFP) is not efficiently trapped by the sorbents used in the SSAS. Because formaldehyde is quantified from sorbent badges, its concentration is also listed separately. These five indices of air quality are summarized.
A new static sampler for airborne total dust in workplaces.
Mark, D; Vincent, J H; Gibson, H; Lynch, G
1985-03-01
This paper describes the development and laboratory testing of a new static dust sampler for airborne total dust in workplaces. Particular attention is paid to designing the sampling head and entry consistent with the concept of inspirability which in turn defines a biologically-relevant aspiration efficiency. The sampling head has a small cylindrical body and a transverse entry slot with thin protruding lips forming an integral part of a weighable capsule containing a 37 mm filter which collects all of the sampled dust (without introducing errors due to external particle blow-off or internal wall losses). A battery-powered sampling pump provides both air suction at 3 L/min and rigid mounting for the sampling head. The sampling head is rotated continuously through 360 degrees at approximately 1.5 rpm by a simple electric drive, connected to the stationary pump through a rotating seal. Wind tunnel testing of the instrument showed it to display an entry efficiency very close to the inspirability curve of Vincent and Armbruster (now recommended by the ACGIH Technical Committee on Air Sampling Procedures for defining inspirable particulate matter (IPM] for particles of aerodynamic diameter up to 90 micron and for windspeeds in the range of one to three m/sec.
Pirsa, Sajad
2017-04-01
A portable chromatography device and a method were developed to analyze a gas mixture. The device comprises a chromatographic column for separating components of a sample of the gas mixture. It has an air pump coupled to the inlet of a chromatographic column for pumping air and an injector coupled to the inlet of chromatographic column for feeding the sample using the air as a carrier gas. A detector is arranged downstream from and coupled to the outlet of the chromatographic column. The detector is a nanostructure semiconductive microfiber. The device further comprises an evaluation unit arranged and configured to evaluate each detected component to determine the concentration. The designed portable system was used for simultaneous detection of amines. The possibility of applying dispersive liquid-liquid microextraction for the determination of analytes in trace levels is demonstrated. The reproducibility of this method is acceptable, and good standard deviations were obtained. The relative standard deviation value is less than 6% for all analytes. Finally, the method was successfully applied to the extraction and determination of analytes in water samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Soo, Jhy-Charm; Lee, Eun Gyung; Lee, Larry A; Kashon, Michael L; Harper, Martin
2014-10-01
Lee et al. (Evaluation of pump pulsation in respirable size-selective sampling: part I. Pulsation measurements. Ann Occup Hyg 2014a;58:60-73) introduced an approach to measure pump pulsation (PP) using a real-world sampling train, while the European Standards (EN) (EN 1232-1997 and EN 12919-1999) suggest measuring PP using a resistor in place of the sampler. The goal of this study is to characterize PP according to both EN methods and to determine the relationship of PP between the published method (Lee et al., 2014a) and the EN methods. Additional test parameters were investigated to determine whether the test conditions suggested by the EN methods were appropriate for measuring pulsations. Experiments were conducted using a factorial combination of personal sampling pumps (six medium- and two high-volumetric flow rate pumps), back pressures (six medium- and seven high-flow rate pumps), resistors (two types), tubing lengths between a pump and resistor (60 and 90 cm), and different flow rates (2 and 2.5 l min(-1) for the medium- and 4.4, 10, and 11.2 l min(-1) for the high-flow rate pumps). The selection of sampling pumps and the ranges of back pressure were based on measurements obtained in the previous study (Lee et al., 2014a). Among six medium-flow rate pumps, only the Gilian5000 and the Apex IS conformed to the 10% criterion specified in EN 1232-1997. Although the AirChek XR5000 exceeded the 10% limit, the average PP (10.9%) was close to the criterion. One high-flow rate pump, the Legacy (PP=8.1%), conformed to the 10% criterion in EN 12919-1999, while the Elite12 did not (PP=18.3%). Conducting supplemental tests with additional test parameters beyond those used in the two subject EN standards did not strengthen the characterization of PPs. For the selected test conditions, a linear regression model [PPEN=0.014+0.375×PPNIOSH (adjusted R2=0.871)] was developed to determine the PP relationship between the published method (Lee et al., 2014a) and the EN methods. The 25% PP criterion recommended by Lee et al. (2014a), average value derived from repetitive measurements, corresponds to 11% PPEN. The 10% pass/fail criterion in the EN Standards is not based on extensive laboratory evaluation and would unreasonably exclude at least one pump (i.e. AirChek XR5000 in this study) and, therefore, the more accurate criterion of average 11% from repetitive measurements should be substituted. This study suggests that users can measure PP using either a real-world sampling train or a resistor setup and obtain equivalent findings by applying the model herein derived. The findings of this study will be delivered to the consensus committees to be considered when those standards, including the EN 1232-1997, EN 12919-1999, and ISO 13137-2013, are revised. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2014.
Dispersion in deep polar firn driven by synoptic-scale surface pressure variability
NASA Astrophysics Data System (ADS)
Buizert, Christo; Severinghaus, Jeffrey P.
2016-09-01
Commonly, three mechanisms of firn air transport are distinguished: molecular diffusion, advection, and near-surface convective mixing. Here we identify and describe a fourth mechanism, namely dispersion driven by synoptic-scale surface pressure variability (or barometric pumping). We use published gas chromatography experiments on firn samples to derive the along-flow dispersivity of firn, and combine this dispersivity with a dynamical air pressure propagation model forced by surface air pressure time series to estimate the magnitude of dispersive mixing in the firn. We show that dispersion dominates mixing within the firn lock-in zone. Trace gas concentrations measured in firn air samples from various polar sites confirm that dispersive mixing occurs. Including dispersive mixing in a firn air transport model suggests that our theoretical estimates have the correct order of magnitude, yet may overestimate the true dispersion. We further show that strong barometric pumping, such as at the Law Dome site, may reduce the gravitational enrichment of δ15N-N2 and other tracers below gravitational equilibrium, questioning the traditional definition of the lock-in depth as the depth where δ15N enrichment ceases. Last, we propose that 86Kr excess may act as a proxy for past synoptic activity (or paleo-storminess) at the site.
PUMP SETS NO. 5 AND NO. 4. Each pump set ...
PUMP SETS NO. 5 AND NO. 4. Each pump set consists of a Worthington Pump and a General Electric motor - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Flame Deflector Water System, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
Dynamic Performance of a Residential Air-to-Air Heat Pump.
ERIC Educational Resources Information Center
Kelly, George E.; Bean, John
This publication is a study of the dynamic performance of a 5-ton air-to-air heat pump in a residence in Washington, D.C. The effect of part-load operation on the heat pump's cooling and heating coefficients of performance was determined. Discrepancies between measured performance and manufacturer-supplied performance data were found when the unit…
Code of Federal Regulations, 2013 CFR
2013-01-01
... efficiency of commercial air conditioners and heat pumps. 431.96 Section 431.96 Energy DEPARTMENT OF ENERGY... Air Conditioners and Heat Pumps Test Procedures § 431.96 Uniform test method for the measurement of energy efficiency of commercial air conditioners and heat pumps. (a) Scope. This section contains test...
Code of Federal Regulations, 2014 CFR
2014-01-01
... efficiency of commercial air conditioners and heat pumps. 431.96 Section 431.96 Energy DEPARTMENT OF ENERGY... Air Conditioners and Heat Pumps Test Procedures § 431.96 Uniform test method for the measurement of energy efficiency of commercial air conditioners and heat pumps. (a) Scope. This section contains test...
Commercial liquid bags as a potential source of venous air embolism in shoulder arthroscopy.
Austin, Luke; Zmistowski, Benjamin; Tucker, Bradford; Hetrick, Robin; Curry, Patrick; Williams, Gerald
2010-09-01
Venous air embolism is a rare but potentially fatal complication of arthroscopy. Fatal venous air embolism has been reported with as little as 100 mL of air entering the venous system. During liquid-only arthroscopy, avenues for air introduction into the joint are limited. Therefore, we hypothesized that commercially prepared 3-L saline-solution bags are a source of potentially fatal amounts of gas that can be introduced into the joint by arthroscopic pumps. Eight 3-L arthroscopic saline-solution bags were obtained and visually inspected for air. The air was aspirated from four bags, and the volume of the air was recorded. A closed-system pump was prepared, and two 3-L bags were connected to it. The pump emptied into an inverted graduated cylinder immersed in a water bath. Both bags were allowed to run dry. Two more bags were then connected and also allowed to run dry. The air was quantified by the downward displacement of water. The experiment was then repeated with the four bags after the air had been aspirated from them. This experiment was performed at three institutions, with utilization of three pump systems and two brands of 3-L saline-solution bags. Air was visualized in all bags, and the bags contained between 34 and 85 mL of air. Arthroscopic pumps can pump air efficiently through the tubing. The total volumes of gas ejected from the tubing after the four 3-L bags had been emptied were 75, 80, and 235 mL. When bags from which the air had been evacuated were used, no air exited the system. Because a saline-solution arthroscopic pump is theoretically a closed system, venous air embolism has not been a concern. However, this study shows that it is possible to pump a fatal amount of air from 3-L saline-solution bags into an environment susceptible to the creation of emboli. Evacuation of air from the 3-L bags prior to use may eliminate this risk.
Cold Climate and Retrofit Applications for Air-to-Air Heat Pumps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baxter, Van D
2015-01-01
Air source heat pumps (ASHP) including air-to-air ASHPs are easily applied to buildings almost anywhere for new construction as well as retrofits or renovations. They are widespread in milder climate regions but their use in cold regions is hampered due to low heating efficiency and capacity at cold outdoor temperatures. Retrofitting air-to-air ASHPs to existing buildings is relatively easy if the building already has an air distribution system. For buildings without such systems alternative approaches are necessary. Examples are ductless, minisplit heat pumps or central heat pumps coupled to small diameter, high velocity (SDHV) air distribution systems. This article presentsmore » two subjects: 1) a summary of R&D investigations aimed at improving the cold weather performance of ASHPs, and 2) a brief discussion of building retrofit options using air-to-air ASHP systems.« less
10 CFR 431.95 - Materials incorporated by reference.
Code of Federal Regulations, 2014 CFR
2014-01-01
... INDUSTRIAL EQUIPMENT Commercial Air Conditioners and Heat Pumps Test Procedures § 431.95 Materials... Packaged Terminal Air-Conditioners and Heat Pumps,” published September 2004 (AHRI 310/380-2004), IBR... Single Package Vertical Air-Conditioners and Heat Pumps,” dated 2003, (AHRI 390-2003), IBR approved for...
10 CFR 431.95 - Materials incorporated by reference.
Code of Federal Regulations, 2013 CFR
2013-01-01
... INDUSTRIAL EQUIPMENT Commercial Air Conditioners and Heat Pumps Test Procedures § 431.95 Materials... Packaged Terminal Air-Conditioners and Heat Pumps,” published September 2004 (AHRI 310/380-2004), IBR... Single Package Vertical Air-Conditioners and Heat Pumps,” dated 2003, (AHRI 390-2003), IBR approved for...
35. VIEW LOOKING EAST IN PUMP ROOM. AIR COMPRESSOR ON ...
35. VIEW LOOKING EAST IN PUMP ROOM. AIR COMPRESSOR ON LEFT, FUEL OIL PUMP BEHIND ON LEFT, FUEL OIL HEATERS AND PUMPS IN BACKGROUND WITH DRAIN SYSTEM - Georgetown Steam Plant, South Warsaw Street, King County Airport, Seattle, King County, WA
The purpose of this SOP is to describe the in-field use of the particulate sampling system (pumping, control unit, and size selective inlet impactors) for collecting samples of particulate matter from the air during a predetermined time period during the Arizona NHEXAS project an...
10 CFR 431.95 - Materials incorporated by reference.
Code of Federal Regulations, 2010 CFR
2010-01-01
... INDUSTRIAL EQUIPMENT Commercial Air Conditioners and Heat Pumps Test Procedures § 431.95 Materials...) published in 2004, “Standard for Packaged Terminal Air-Conditioners and Heat Pumps,” IBR approved for § 431... for Commercial Air Conditioners and Heat Pumps,” Docket No. EE-RM/TP-99-460, 1000 Independence Avenue...
24 CFR 3280.702 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-04-01
... (in the case of a heat pump) heating system which includes the refrigerant pump (compressor) and the external heat exchanger. Air conditioning evaporator section means a heat exchanger used to cool or (in the case of a heat pump) heat air for use in comfort cooling (or heating) the living space. Air...
24 CFR 3280.702 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-04-01
... (in the case of a heat pump) heating system which includes the refrigerant pump (compressor) and the external heat exchanger. Air conditioning evaporator section means a heat exchanger used to cool or (in the case of a heat pump) heat air for use in comfort cooling (or heating) the living space. Air...
24 CFR 3280.702 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-04-01
... means that portion of a refrigerated air cooling or (in the case of a heat pump) heating system which includes the refrigerant pump (compressor) and the external heat exchanger. Air conditioning evaporator section means a heat exchanger used to cool or (in the case of a heat pump) heat air for use in comfort...
28. Main engine air pump located to port side of ...
28. Main engine air pump located to port side of main engine cylinder beside engine bed. Dynamo lies aft of air pump (at right), pipe at extreme left of image carries lake water to condenser valves. - Steamboat TICONDEROGA, Shelburne Museum Route 7, Shelburne, Chittenden County, VT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, R.C.
An integrated system of heat pumps is used to reject heat into or extract heat from circulating water from a shallow well adjacent to the river to demonstrate the efficiency and fuel cost savings of water-to-air heat pumps, without the expense of drilling a deep well. Water is returned unpolluted to the Guadalupe River and is circulated through a five-building complex at River Gardens Intermediate Care Facility for the Mentally Retarded in New Braunfels, Texas. The water is used as a heat source or sink for 122 heat pumps providing space heating and cooling, and for refrigeration and freezer units.more » The system was not installed as designed, which resulted in water pumping loads being higher than the original design. Electrical consumption for pumping water represented 36 to 37% of system electrical consumption. Without the water pumping load, the water-to-air system was an average of 25% more efficient in heating than a comparable air-to-air unit with resistance heating. With water pumping load included, the installed system averaged 17% less efficient in cooling and 19% more efficient in heating than the comparable unit.« less
Portable apparatus for the measurement of environmental radon and thoron
Negro, Vincent C.
2001-01-01
The radometer is a portable instrument for the measurement of the concentration of atmospheric radon/thoron in a test area. A constant velocity pump pulls the air from the outside at a constant flow rate. If the air is too moist, some or all of the sample is passed through a desiccant filter prior to encountering an electrostatic filter. The electrostatic filter prevents any charged particles from entering the sampling chamber. Once the sample has entered the chamber, the progeny of the decay of radon/thoron are collected on a detector and measured. The measured data is compiled by a computer and displayed.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., packaged terminal air conditioners, and packaged terminal heat pumps. 431.96 Section 431.96 Energy... EQUIPMENT Commercial Air Conditioners and Heat Pumps Test Procedures § 431.96 Uniform test method for the... heating equipment, packaged terminal air conditioners, and packaged terminal heat pumps. (a) Scope. This...
Code of Federal Regulations, 2012 CFR
2012-01-01
..., packaged terminal air conditioners, and packaged terminal heat pumps. 431.96 Section 431.96 Energy... EQUIPMENT Commercial Air Conditioners and Heat Pumps Test Procedures § 431.96 Uniform test method for the... heating equipment, packaged terminal air conditioners, and packaged terminal heat pumps. (a) Scope. This...
Campbell, Gene K.
1983-01-01
A pumping system is described for pumping fluids, such as water with entrained mud and small rocks, out of underground cavities such as drilled wells, which can effectively remove fluids down to a level very close to the bottom of the cavity and which can operate solely by compressed air pumped down through the cavity. The system utilizes a subassembly having a pair of parallel conduit sections (44, 46) adapted to be connected onto the bottom of a drill string utilized for drilling the cavity, the drill string also having a pair of coaxially extending conduits. The subassembly includes an upper portion which has means for connection onto the drill string and terminates the first conduit of the drill string in a plenum (55). A compressed air-driven pump (62) is suspended from the upper portion. The pump sucks fluids from the bottom of the cavity and discharges them into the second conduit. Compressed air pumped down through the first conduit (46) to the plenum powers the compressed air-driven pump and aerates the fluid in the second conduit to lift it to the earth's surface.
Exposure to chemical hazards in petrol pumps stations in Ahvaz City, Iran.
Zoleikha, Sayyahi; Mirzaei, Ramazan; Roksana, Mirkazemi
2017-01-02
The objective of this study was to assess the level of exposure to BTEX (benzene, toluene, ethylbenzene, xylenes) in petrol pump stations in Ahvaz City. Two of the biggest fuelling stations were selected randomly among total 12 fuel stations of Ahvaz City, Iran, during September 2013. Thirty air samples were taken from different positions in the fuelling stations and 15 samples were taken from the personal breathing zone of operators and of customers in fuelling stations. Measuring the ambient concentration of benzene, toluene, ethylbenzene, and xylenes was done according to the method advised by National Institute for Occupational Safety and Health (NIOSH) 1501. This study showed that the concentration of benzene was very high (compared with the Iranian occupational exposure limit [OEL] standard) in ambient air of petrol stations in Ahvaz, which is considered as a high risk to the health of workers. Controlling the level of benzene in petrol stations is necessary. A new designed petrol nozzle was proposed for this purpose.
NASA Technical Reports Server (NTRS)
Nolt, Gary D.
1988-01-01
Pump removes liquid seepage from small, restricted area and against large pressure head. Developed for moving small amounts of water and oil from sump pit 85 ft (25.91 m) deep. Fits in space only 6 1/2 in. (16.5 cm) in diameter and 18 in. (45.7 cm) long. In discharge part of pumping cycle, air forces liquid out of pump chamber through pipe. During filling part of pumping cycle, water enters pump chamber from sump pit. Float in chamber next to pump chamber controls pressurization through timer and solenoid valve.
Vainiotalo, Sinikka; Kuusimäki, Leea; Pekari, Kaija
2006-09-01
The exposure of gasoline pump repairers and inspectors to gasoline was studied at service stations and repair shops in Finland in April-June 2004. The average air temperature ranged from 7 degrees C to 16 degrees C and wind speed from 2.5 to 7 m/s. The gasoline blends contained mixtures of methyl tert-butyl ether (MTBE) and tert-amyl methyl ether (TAME), the total content of oxygenates being 11-12%. The content of benzene was <1%. Breathing zone air was collected during the work task using passive monitors. The mean sampling period was 4.5 h. The mean TWA-8 h concentrations for MTBE, TAME, hexane, benzene, toluene, ethylbenzene and xylene were 4.5, 1.3, 0.55, 0.23, 2.2, 0.26 and 1.1 mg/m3, respectively. None of the individual benzene concentrations exceeded the binding limit value for benzene (3.25 mg/m3). The sum concentration of MTBE and TAME in urine was between 8.9 and 530 nmol/l in individual post-shift samples. The individual sum concentrations of the metabolites tert-butyl alcohol and tert-amyl alcohol collected the following morning after the exposure ranged from 81 to 916 nmol/l. All individual results were below corresponding biological action levels. Exposure to aromatic hydrocarbons was estimated from post-shift urine samples, with benzene showing the highest concentration (range 4.4 and 35 nmol/l in non-smokers). The exposure levels were similar to those measured in previous studies during unloading of tanker lorries and railway wagons. The results indicated a slightly higher exposure for inspectors, who calibrated fuel pump gauges at the service stations, than for pump repairers. No significant skin exposure occurred during the study.
Tulum, Liz; Deag, Zoë; Brown, Matthew; Furniss, Annette; Meech, Lynn; Lalljie, Anja; Cochrane, Stella
2018-01-01
Exposure to airborne proteins can be associated with the development of immediate, IgE-mediated respiratory allergies, with genetic, epigenetic and environmental factors also playing a role in determining the likelihood that sensitisation will be induced. The main objective of this study was to determine whether airborne concentrations of selected common aeroallergens could be quantified in the air of homes using easily deployable, commercially available equipment and analytical methods, at low levels relevant to risk assessment of the potential to develop respiratory allergies. Additionally, air and dust sampling were compared and the influence of factors such as different filter types on allergen quantification explored. Low volume air sampling pumps and DUSTREAM ® dust samplers were used to sample 20 homes and allergen levels were quantified using a MARIA ® immunoassay. It proved possible to detect a range of common aeroallergens in the home with sufficient sensitivity to quantify airborne concentrations in ranges relevant to risk assessment (Limits of Detection of 0.005-0.03 ng/m 3 ). The methodology discriminates between homes related to pet ownership and there were clear advantages to sampling air over dust which are described in this paper. Furthermore, in an adsorption-extraction study, PTFE (polytetrafluoroethylene) filters gave higher and more consistent recovery values than glass fibre (grade A) filters for the range of aeroallergens studied. Very low airborne concentrations of allergenic proteins in home settings can be successfully quantified using commercially available pumps and immunoassays. Considering the greater relevance of air sampling to human exposure of the respiratory tract and its other advantages, wider use of standardised, sensitive techniques to measure low airborne protein concentrations and how they influence development of allergic sensitisation and symptoms could accelerate our understanding of human dose-response relationships and refine our knowledge of thresholds of allergic sensitisation and elicitation via the respiratory tract.
Woolfenden, Elizabeth
2010-04-16
Sorbent tubes/traps are widely used in combination with gas chromatographic (GC) analytical methods to monitor the vapour-phase fraction of organic compounds in air. Applications range from atmospheric research and ambient air monitoring (indoor and outdoor) to occupational hygiene (personal exposure assessment) and measuring chemical emission levels. Part 1 of this paper reviewed the main sorbent-based air sampling strategies including active (pumped) tube monitoring, diffusive (passive) sampling onto sorbent tubes/cartridges plus sorbent trapping/focusing of whole air samples that are either collected in containers (such as canisters or bags) or monitored online. Options for subsequent extraction and transfer to GC(MS) analysis were also summarised and the trend to thermal desorption (TD)-based methods and away from solvent extraction was explained. As a result of this trend, demand for TD-compatible sorbents (alternatives to traditional charcoal) is growing. Part 2 of this paper therefore continues with a summary of TD-compatible sorbents, their respective advantages and limitations and considerations for sorbent selection. Other analytical considerations for optimizing sorbent-based air monitoring methods are also discussed together with recent technical developments and sampling accessories which have extended the application range of sorbent trapping technology generally. Copyright 2010 Elsevier B.V. All rights reserved.
2009-02-01
with a combination of a turbo pump and a scroll pump system. The sample probing is accomplished with 3-axis molybdenum probing rod test fixture...thin films were carefully isolated by the addition of a non- solvent such as de-ionized, distilled water. The films were dried at ~ 0.1 torr vacuum ...1000ºC. The test station has a 100V/10A power supply, a temperature controller as well as a vacuum controller. A vacuum of < 1 µ torr is achieved
NASA Astrophysics Data System (ADS)
Kumarasubramanian, R.; Xavier, Goldwin; Nishanthi, W. Mary; Rajasekar, R.
2017-05-01
Considering the fuel crises today many work and research were conducted to reduce the fuel consumption of the internal combustion engine. The fuel consumption of an internal combustion engine can be relatively reduced by use of the electromagnetic clutch water pump and pneumatic compressor. Normally in an engine, the water pump is driven by the crankshaft, with an aid of belt, for the circulation of the water for the cooling process. The circulation of coolant is resisted by the thermostat valve, while the temperature inside the coolant jacket of the engine is below 375K the thermostat is closed only above 375K it tends to open. But water pump run continuously even when thermostat is closed. In pneumatic braking system, pneumatic or air compressor purpose is to compress the air and stored into the storage tank for the brake operation. When the air pressure of the storage tanks gets increases above its storage capacity pressure is regulated by governor, by passing them to atmosphere. Such unnecessary work of this water pump and air compressor can be minimized by use of the electromagnetic clutch water pump and air compressor. The European Driving Cycle is used to evaluate the performance of this water pump and air compressor when used in an engine. The result shows that the fuel economy of the engine while using electromagnetic water pump and pneumatic compressor were improved by 8.0% compared with conventional types which already exist. The application of these electromagnetic water pump and pneumatic compressor are expected to contribute for the improvement of engine performance because of their effect in reduction of the rate of fuel consumption.
Effects of air vessel on water hammer in high-head pumping station
NASA Astrophysics Data System (ADS)
Wang, L.; Wang, F. J.; Zou, Z. C.; Li, X. N.; Zhang, J. C.
2013-12-01
Effects of air vessel on water hammer process in a pumping station with high-head were analyzed by using the characteristics method. The results show that the air vessel volume is the key parameter that determines the protective effect on water hammer pressure. The maximum pressure in the system declines with increasing air vessel volume. For a fixed volume of air vessel, the shape of air vessel and mounting style, such as horizontal or vertical mounting, have little effect on the water hammer. In order to obtain good protection effects, the position of air vessel should be close to the outlet of the pump. Generally, once the volume of air vessel is guaranteed, the water hammer of a entire pipeline is effectively controlled.
Steam-jet Chiller for Army Field Kitchens
2009-08-01
Steam-Jet Test-Loop Schematic A vacuum pump removes air from the entire system on startup, and is occasionally used to expel air during...delivered to the tube and shell condenser. The steam is condensed and drains to the vacuum sump tank. 11 Periodically, the condensate pump ... Vacuum Roughing Pump The condenser must be held at vacuum to prevent air from insulating the condenser tubes or create a back-pressure that would
[Abortion using a bicycle pump on the mistress and unusual suicide of a blind man].
Holzer, F J
1973-01-01
In Tyrol a case of fatal air embolism after an abortion attempt with a bicycle pump, performed by a blind man who later committed suicide, is described. The bicycle tube was inserted into the vagina and air and a soapy solution were pumped in. Autopsies revealed internal bleeding, gas embolisms in the veins of the ovaries and heart, a bloody foamy liquid in the lungs, and an intact 14 cm male fetus. 3 similar cases of fatal air embolisms after abortion attempts with bicycle pumps are described. In 1 case a soapy solution had been injected. Abortion attempts with a pipe and a rubber catheter, reported here, also resulted in rapidly fatal air embolisms. In 1 case death occurred a few seconds after a partner blew air with his mouth into his pregnant mistress' vagina. It is concluded that under some conditions filling the vagina with air (tightly) can cause fatal air embolisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedewa, Andrew
A system is disclosed comprising an engine having coolant passages defined therethrough, a first coolant pump, and a first radiator. The system additionally comprises a second coolant pump, a second radiator, and a liquid-to-air heat exchanger configured to condition the temperature of intake air to the engine. The system further includes a coolant valve means. For a first configuration of the coolant valve means the first coolant pump is configured to urge coolant through the coolant passages in the engine and through the first radiator, and the second coolant pump is configured to urge coolant through the liquid-to-air heat exchangermore » and through the second radiator. For a second configuration of the coolant valve means the second coolant pump is configured to urge coolant through the coolant passages in the engine and through the liquid-to-air heat exchanger. A method for controlling the system is also disclosed.« less
Houck, Edward D.
1994-01-01
An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank.
Houck, E.D.
1994-10-11
An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to be decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank. 4 figs.
16 CFR 305.12 - Labeling for central air conditioners, heat pumps, and furnaces.
Code of Federal Regulations, 2010 CFR
2010-01-01
... pumps, and furnaces. (a) Layout. All energy labels for central air conditioners, heat pumps, and... the end of this part illustrating the basic layout. All positioning, spacing, type sizes, and line... calculated for heating Region IV for the standardized design heating requirement nearest the capacity...
16 CFR 305.12 - Labeling for central air conditioners, heat pumps, and furnaces.
Code of Federal Regulations, 2011 CFR
2011-01-01
... pumps, and furnaces. (a) Layout. All energy labels for central air conditioners, heat pumps, and... the end of this part illustrating the basic layout. All positioning, spacing, type sizes, and line... calculated for heating Region IV for the standardized design heating requirement nearest the capacity...
16 CFR 305.12 - Labeling for central air conditioners, heat pumps, and furnaces.
Code of Federal Regulations, 2013 CFR
2013-01-01
... pumps, and furnaces. (a) Layout. All energy labels for central air conditioners, heat pumps, and... end of this part illustrating the basic layout. All positioning, spacing, type sizes, and line widths... calculated for heating Region IV for the standardized design heating requirement nearest the capacity...
16 CFR 305.12 - Labeling for central air conditioners, heat pumps, and furnaces.
Code of Federal Regulations, 2012 CFR
2012-01-01
... pumps, and furnaces. (a) Layout. All energy labels for central air conditioners, heat pumps, and... the end of this part illustrating the basic layout. All positioning, spacing, type sizes, and line... calculated for heating Region IV for the standardized design heating requirement nearest the capacity...
Mathematical model development and simulation of heat pump fruit dryer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Achariyaviriya, S.; Soponronnarit, S.; Terdyothin, A.
2000-01-01
A mathematical model of a heat pump fruit dryer was developed to study the performance of heat pump dryers. Using the moisture content of papaya glace drying, the refrigerant temperature at the evaporator and condenser and the performance, was verified. It was found that the simulated results using closed loop heat pump dryer were close to the experimental results. The criteria for evaluating the performance were specific moisture extraction rate and drying rate. The results showed that ambient conditions affected significantly on the performance of the open loop dryer and the partially closed loop dryer. Also, the fraction of evaporatormore » bypass air affected markedly the performance of all heat pump dryers. In addition, it was found that specific air flow rate and drying air temperature affected significantly the performance of all heat pump dryers.« less
Delta 14CO2 Record from Vermunt, Austria, February 1959 - June 1983
Levin, Ingeborg [Institut fur Umweltphysik, University of Heidelberg, Germany; Kromer, Bernd [Institut fur Umweltphysik, University of Heidelberg, Germany; Schoch-Fischer, H. [Institut fur Umweltphysik, University of Heidelberg, Germany; Bruns, M. [Institut fur Umweltphysik, University of Heidelberg, Germany; Munnich, M. [Institut fur Umweltphysik, University of Heidelberg, Germany; Berdau, D. [Institut fur Umweltphysik, University of Heidelberg, Germany; Vogel, J. C. [Institut fur Umweltphysik, University of Heidelberg, Germany; Munnich, K. O. [Institut fur Umweltphysik, University of Heidelberg, Germany
1994-01-01
The sampling at Vermunt was discontinued in 1983. During sampling from 1959 to 1983, the sampling methods were modified twice (Levin et al. 1985). From 1959 through November 1965, three dishes with 1.5 L of 0.5 normal sodium hydroxide (NaOH) carbonate-free solution were exposed to the atmosphere for ~3 days, and the atmospheric CO2 absorbed during that time was recovered by acid evolution. From November 1965 through May 1975, samples were collected by pumping fresh air continuously for 10 days through a box containing 1.5 L of a 0.5 normal NaOH solution. The method has been described by Münnich and Vogel (1959). From May 1975 to the time sampling stopped, a technique described by Levin et al. (1980) was used. Air was pumped through a rotating glass tube filled with a packed bed of Raschig rings (hard glass) to enlarge the surface of the absorbing NaOH solution (200 ml of 4 normal NaOH). The CO2 absorption was quantitative and samples represent mean values of 10 days to 2 weeks. In the laboratory, the samples were extracted from the NaOH solution in a vacuum system by adding hydrochloric or sulfuric acid. The CO2 gas samples were purified over charcoal and counted in a proportional counter (Schoch et al. 1980). Delta 14C values are given relative to the NIST oxalic acid activity corrected for decay (Stuiver and Polach 1970).
Feasibility study on an energy-saving desiccant wheel system with CO2 heat pump
NASA Astrophysics Data System (ADS)
Liu, Yefeng; Meng, Deren; Chen, Shen
2018-02-01
In traditional desiccant wheel, air regeneration process occurs inside an open loop, and lots of energy is consumed. In this paper, an energy-saving desiccant wheel system with CO2 heat pump and closed loop air regeneration is proposed. The general theory and features of the desiccant wheel are analysed. The main feature of the proposed system is that the air regeneration process occurs inside a closed loop, and a CO2 heat pump is utilized inside this loop for the air regeneration process as well as supplying cooling for the process air. The simulation results show that the proposed system can save significant energy.
Demonstrations with a Vacuum: Old Demonstrations for New Vacuum Pumps.
ERIC Educational Resources Information Center
Greenslade, Thomas B., Jr.
1989-01-01
Explains mechanisms of 19th-century vacuum pumps. Describes demonstrations using the pump including guinea and feather tube, aurora tube, electric egg, Gassiots cascade, air mill, bell in vacuum, density and buoyancy of air, fountain in vacuum, mercury shower, palm and bladder glasses, Bacchus demonstration, pneumatic man-lifter, and Magdeburg…
Vapor compression heat pump system field tests at the TECH complex
NASA Astrophysics Data System (ADS)
Baxter, V. D.
1985-07-01
The Tennessee Energy Conservation In Housing (TECH) complex has been utilized since 1977 as a field test site for several novel and conventional heat pump systems for space conditioning and water heating. Systems tested include the Annual Cycle Energy System (ACES), solar assisted heat pumps (SAHP) both parallel and series, two conventional air-to-air heat pumps, an air-to-air heat pump with desuperheater water heater, and horizontal coil and multiple shallow vertical coil ground-coupled heat pumps (GCHP). A direct comparison of the measured annual performance of the test systems was not possible. However, a cursory examination revealed that the ACES had the best performance. However, its high cost makes it unlikely that it will achieve widespread use. Costs for the SAHP systems are similar to those of the ACES but their performance is not as good. Integration of water heating and space conditioning functions with a desuperheater yielded significant efficiency improvement at modest cost. The GCHP systems performed much better for heating than for cooling and may well be the most efficient alternative for residences in cold climates.
Vapor compression heat pump system field tests at the tech complex
NASA Astrophysics Data System (ADS)
Baxter, Van D.
1985-11-01
The Tennessee Energy Conservation In Housing (TECH) complex has been utilized since 1977 as a field test site for several novel and conventional heat pump systems for space conditioning and water heating. Systems tested include the Annual Cycle Energy System (ACES), solar assisted heat pumps (SAHP) both parallel and series, two conventional air-to-air heat pumps, an air-to-air heat pump with desuperheater water heater, and horizontal coil and multiple shallow vertical coil ground-coupled heat pumps (GCHP). A direct comparison of the measured annual performance of the test systems was not possible. However, a cursory examination revealed that the ACES had the best performance, however, its high cost makes it unlikely that it will achieve wide-spread use. Costs for the SAHP systems are similar to those of the ACES but their performance is not as good. Integration of water heating and space conditioning functions with a desuperheater yielded significant efficiency improvement at modest cost. The GCHP systems performed much better for heating than for cooling and may well be the most efficient alternative for residences in cold climates.
Ozone measurement system for NASA global air sampling program
NASA Technical Reports Server (NTRS)
Tiefermann, M. W.
1979-01-01
The ozone measurement system used in the NASA Global Air Sampling Program is described. The system uses a commercially available ozone concentration monitor that was modified and repackaged so as to operate unattended in an aircraft environment. The modifications required for aircraft use are described along with the calibration techniques, the measurement of ozone loss in the sample lines, and the operating procedures that were developed for use in the program. Based on calibrations with JPL's 5-meter ultraviolet photometer, all previously published GASP ozone data are biased high by 9 percent. A system error analysis showed that the total system measurement random error is from 3 to 8 percent of reading (depending on the pump diaphragm material) or 3 ppbv, whichever are greater.
40 CFR 86.605-88 - Maintenance of records; submittal of information.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., pressure increase across the pump, and the temperature set point of the temperature control system. (2... samples are being collected. (3) Humidity of dilution air. (4) Manufacturer, model, type and serial number..., ambient temperature and humidity. (2) Data and time of day. (ii) In lieu of recording test equipment...
40 CFR 86.605-88 - Maintenance of records; submittal of information.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., pressure increase across the pump, and the temperature set point of the temperature control system. (2... samples are being collected. (3) Humidity of dilution air. (4) Manufacturer, model, type and serial number..., ambient temperature and humidity. (2) Data and time of day. (ii) In lieu of recording test equipment...
40 CFR 86.605-88 - Maintenance of records; submittal of information.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., pressure increase across the pump, and the temperature set point of the temperature control system. (2... samples are being collected. (3) Humidity of dilution air. (4) Manufacturer, model, type and serial number..., ambient temperature and humidity. (2) Data and time of day. (ii) In lieu of recording test equipment...
Atmospheric Carbon Dioxide Record from In Situ Measurements at Baring Head (1970 - 1993)
Manning, M. R. [National Institute of Water and Atmospheric Research, Ltd., Lower Hutt, New Zealand; Gomez, A. J. [National Institute of Water and Atmospheric Research, Ltd., Lower Hutt, New Zealand; Pohl, K. P. [National Institute of Water and Atmospheric Research, Ltd. Lower Hutt, New Zealand
1994-01-01
Determinations of atmospheric CO2 mixing ratios are made using a Siemens Ultramat-3 nondispersive infrared (NDIR) gas analyzer. The NDIR CO2 analyzer is connected via a gas manifold consisting of stainless steel tubing and computer-controlled solenoid switches to 12 gas cylinders and 2 sample air lines. The NDIR analyzer compares ambient air CO2 mixing ratios relative to known CO2 mixing ratios in tanks of compressed reference gases. The analyzer operates in a differential mode, with a "zero" reference gas of CO2 mixing ratio 20 to 30 parts per million (ppm) below ambient air CO2 levels flowing continuously through one cell of the analyzer at ~10 mL/min. When atmospheric CO2 is measured, a diaphragm pump pulls air through a sampling line at ~5 L/min. A small fraction of this (180 mL/min) is dried cryogenically to a temperature of approximately ¬70° Celsius and passed through the sample cell of the CO2 analyzer. Both the "zero" and sample gas are exhausted into the observatory building.
Development of a syringe pump assisted dynamic headspace sampling technique for needle trap device.
Eom, In-Yong; Niri, Vadoud H; Pawliszyn, Janusz
2008-07-04
This paper describes a new approach that combines needle trap devices (NTDs) with a dynamic headspace sampling technique (purge and trap) using a bidirectional syringe pump. The needle trap device is a 22-G stainless steel needle 3.5-in. long packed with divinylbenzene sorbent particles. The same sized needle, without packing, was used for purging purposes. We chose an aqueous mixture of benzene, toluene, ethylbenzene, and p-xylene (BTEX) and developed a sequential purge and trap (SPNT) method, in which sampling (trapping) and purging cycles were performed sequentially by the use of syringe pump with different distribution channels. In this technique, a certain volume (1 mL) of headspace was sequentially sampled using the needle trap; afterwards, the same volume of air was purged into the solution at a high flow rate. The proposed technique showed an effective extraction compared to the continuous purge and trap technique, with a minimal dilution effect. Method evaluation was also performed by obtaining the calibration graphs for aqueous BTEX solutions in the concentration range of 1-250 ng/mL. The developed technique was compared to the headspace solid-phase microextraction method for the analysis of aqueous BTEX samples. Detection limits as low as 1 ng/mL were obtained for BTEX by NTD-SPNT.
Fluid structure interaction dynamic analysis of a mixed-flow waterjet pump
NASA Astrophysics Data System (ADS)
Pan, X. W.; Y Pan, Z.; Huang, D.; Shen, Z. H.
2013-12-01
In order to avoid resonance of a mixed-flow waterjet pump at run time and calculate the stress and deformation of the pump rotor in the flow field, a one-way fluid structure interaction method was applied to simulate the pump rotor using ANSYS CFX and ANSYS Workbench software. The natural frequencies and mode shapes of the pump rotor in the air and in the flow field were analyzed, and the stress and deformation of the impeller were obtained at different flow rates. The obtained numerical results indicated that the mode shapes were similar both in the air and in the flow field, but the pump rotor's natural frequency in the flow field was slightly smaller than that in the air; the difference of the pump rotor's natural frequency varied lightly at different flow rates, and all frequencies at different flow rates were higher than the safe frequency, the pump rotor under the effect of prestress rate did not occur resonance; The maximum stress was on the blade near the hub and the maximum deformation on the blade tip at different flow rates.
Al-Azmi, D; Snopek, B; Sayed, A M; Domanski, T
2004-01-01
Based on the different levels of solubility of radon gas in organic solvents and water, a bubbling system has been developed to transfer radon gas, dissolving naturally in water samples, to an organic solvent, i.e. olive oil, which is known to be a good solvent of radon gas. The system features the application of a fixed volume of bubbling air by introducing a fixed volume of water into a flask mounted above the system, to displace an identical volume of air from an air cylinder. Thus a gravitational flow of water is provided without the need for pumping. Then, the flushing air (radon-enriched air) is directed through a vial containing olive oil, to achieve deposition of the radon gas by another bubbling process. Following this, the vial (containing olive oil) is measured by direct use of gamma ray spectrometry, without the need of any chemical or physical processing of the samples. Using a standard solution of 226Ra/222Rn, a lowest measurable concentration (LMC) of radon in water samples of 9.4 Bq L(-1) has been achieved (below the maximum contaminant level of 11 Bq L(-1)).
Wangmaung, Nantawan; Promptmas, Chamras; Chomean, Sirinart; Sanchomphu, Chularat; Ittarat, Wanida
2013-06-01
Thalassemias are genetic hematologic diseases which the homozygous form of α-thalassemia can cause either death in utero or shortly after birth. It is necessary to accurately identify high-risk heterozygous couples. We developed a quartz crystal microbalance (QCM) to identify the abnormal gene causing the commonly found α-thalassemia1, [Southeast Asia (SEA) deletion]. This work is an improved method of our previous study by reducing both production cost and analysis time. A silver electrode on the QCM surface was immobilized with a biotinylated probe. The α-globin gene fragment was amplified and hybridized with the probe. Hybridization was indicated by changes of quartz oscillation. Each drying step was improved by using an air pump for 30 min instead of the overnight air dry. The diagnostic potency of the silver QCM was evaluated using 70 suspected samples with microcytic hypochromic erythrocytes. The silver QCM could clearly identify samples with abnormal α-globin genes, either homozygous or heterozygous, from normal samples. Thirteen out of 70 blood samples were identified as carrier of α-thalassemia1 (SEA deletion). Results were consistent with the standard agarose gel electrophoresis. Using silver instead of gold QCM could reduce the production expense 10-fold. An air pump drying the QCM surface could reduce the analysis time from 3 days to 4 h. The silver thalassemic QCM was specific, sensitive, rapid, cheap and field applicable. It could be used as a one-step definite diagnosis of α-thalassemia1 (SEA deletion) with no need for the preliminary screening test.
NASA Astrophysics Data System (ADS)
Fabian, T.; O'Hayre, R.; Litster, S.; Prinz, F. B.; Santiago, J. G.
In a typical air-breathing fuel cell design, ambient air is supplied to the cathode by natural convection and dry hydrogen is supplied to a dead-ended anode. While this design is simple and attractive for portable low-power applications, the difficulty in implementing effective and robust water management presents disadvantages. In particular, excessive flooding of the open-cathode during long-term operation can lead to a dramatic reduction of fuel cell power. To overcome this limitation, we report here on a novel air-breathing fuel cell water management design based on a hydrophilic and electrically conductive wick in conjunction with an electroosmotic (EO) pump that actively pumps water out of the wick. Transient experiments demonstrate the ability of the EO-pump to "resuscitate" the fuel cell from catastrophic flooding events, while longer term galvanostatic measurements suggest that the design can completely eliminate cathode flooding using less than 2% of fuel cell power, and lead to stable operation with higher net power performance than a control design without EO-pump. This demonstrates that active EO-pump water management, which has previously only been demonstrated in forced-convection fuel cell systems, can also be applied effectively to miniaturized (<5 W) air-breathing fuel cell systems.
14 CFR 29.1433 - Vacuum systems.
Code of Federal Regulations, 2010 CFR
2010-01-01
... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Miscellaneous Equipment § 29.1433 Vacuum systems. (a... the discharge lines from the vacuum air pump when the delivery temperature of the air becomes unsafe. (b) Each vacuum air system line and fitting on the discharge side of the pump that might contain...
Vroblesky, Don A.; Peters, Brian C.
2000-01-01
Volatile organic compound concentrations in water from diffusion samplers were compared to concentrations in water obtained by low-flow purging at 15 observation wells at the Naval Air Station North Island, San Diego, California. Multiple diffusion samplers were installed in the wells. In general, comparisons using bladder pumps and diffusion samplers showed similar volatile organic carbon concentrations. In some wells, sharp concentration gradients were observed, such as an increase in cis-1,2-dichloroethene concentration from 100 to 2,600 micrograms per liter over a vertical distance of only 3.4 feet. In areas where such sharp gradients were observed, concentrations in water obtained by low-flow sampling at times reflected an average concentration over the area of influence; however, concentrations obtained by using the diffusion sampler seemed to represent the immediate vicinity of the sampler. When peristaltic pumps were used to collect ground-water samples by low-flow purging, the volatile organic compound concentrations commonly were lower than concentrations obtained by using diffusion samplers. This difference may be due to loss of volatiles by degassing under negative pressures in the sampling lines induced while using the peristaltic pump, mixing in the well screen, or possible short-circuiting of water from an adjacent depth. Diffusion samplers placed in buckets of freephase jet fuel (JP-5) and Stoddard solvent from observation wells did not show evidence of structural integrity loss during the 2 months of equilibration, and volatile organic compounds detected in the free-phase fuel also were detected in the water from the diffusion samplers.
10 CFR 431.91 - Purpose and scope.
Code of Federal Regulations, 2010 CFR
2010-01-01
... EQUIPMENT Commercial Air Conditioners and Heat Pumps § 431.91 Purpose and scope. This subpart specifies test procedures and energy conservation standards for certain commercial air conditioners and heat pumps, pursuant...
10 CFR 431.91 - Purpose and scope.
Code of Federal Regulations, 2014 CFR
2014-01-01
... EQUIPMENT Commercial Air Conditioners and Heat Pumps § 431.91 Purpose and scope. This subpart specifies test procedures and energy conservation standards for certain commercial air conditioners and heat pumps, pursuant...
10 CFR 431.91 - Purpose and scope.
Code of Federal Regulations, 2012 CFR
2012-01-01
... EQUIPMENT Commercial Air Conditioners and Heat Pumps § 431.91 Purpose and scope. This subpart specifies test procedures and energy conservation standards for certain commercial air conditioners and heat pumps, pursuant...
10 CFR 431.91 - Purpose and scope.
Code of Federal Regulations, 2013 CFR
2013-01-01
... EQUIPMENT Commercial Air Conditioners and Heat Pumps § 431.91 Purpose and scope. This subpart specifies test procedures and energy conservation standards for certain commercial air conditioners and heat pumps, pursuant...
10 CFR 431.91 - Purpose and scope.
Code of Federal Regulations, 2011 CFR
2011-01-01
... EQUIPMENT Commercial Air Conditioners and Heat Pumps § 431.91 Purpose and scope. This subpart specifies test procedures and energy conservation standards for certain commercial air conditioners and heat pumps, pursuant...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-25
... Document for Packaged Terminal Air Conditioners and Packaged Terminal Heat Pumps AGENCY: Office of Energy... must identify the framework document for packaged terminal air conditioners and packaged terminal heat... packaged terminal air conditioners and packaged terminal heat pumps. 78 FR 12252. The document provided for...
Device for quickly sensing the amount of O2 in a combustion product gas
NASA Technical Reports Server (NTRS)
Singh, Jag J. (Inventor); Davis, William T. (Inventor); Puster, Richard L. (Inventor)
1990-01-01
A sensing device comprising an O2 sensor, a pump, a compressor, and a heater is provided to quickly sense the amount of O2 in a combustion product gas. A sample of the combustion product gas is compressed to a pressure slightly above one atmosphere by the compressor. Next, the heater heats the sample between 800 C and 900 C. Next, the pump causes the sample to be flushed against the electrode located in O2 sensor 6000 to 10,000 times per second. Reference air at approximately one atmosphere is provided to the electrode of O2 sensor. Accordingly, the O2 sensor produces a voltage which is proportional to the amount of oxygen in the combustion product gas. This voltage may be used to control the amount of O2 entering into the combustion chamber which produces the combustion product gas.
Code of Federal Regulations, 2010 CFR
2010-04-01
... dealer's cost of purchasing and installing a central air conditioning system or heat pump, if not... cost of purchasing and installing a central air conditioning system or heat pump, if not installed by...
Performance analysis of underwater pump for water-air dual-use engine
NASA Astrophysics Data System (ADS)
Xia, Jun; Wang, Yun; Chen, Yu
2017-10-01
To make water-air dual-use engine work both in air and under water, the compressor of the engine should not only meet the requirements of air flight, but also must have the ability to work underwater. To verify the performance of the compressor when the water-air dual-use engine underwater propulsion mode, the underwater pumping water model of the air compressor is simulated by commercial CFD software, and the flow field analysis is carried out. The results show that conventional air compressors have a certain ability to work in the water environment, however, the blade has a great influence on the flow, and the compressor structure also affects the pump performance. Compressor can initially take into account the two modes of water and air. In order to obtain better performance, the structure of the compressor needs further improvement and optimization.
Tsiropoulos, Nikolaos G; Bakeas, Evangelos B; Raptis, Vasilios; Batistatou, Stavroula S
2006-07-28
A methodology is described for greenhouse air analysis by sampling fenhexamid, pyrimethanil, malathion, metalaxyl-M and myclobutanil in solid sorbents. Pesticides were determined by gas chromatography with NP Detector. The trapping efficiency of XAD-2, XAD-4, Supelpak-2, Florisil and C-18 at different sampling conditions (rate, time and air humidity) and pesticides concentration levels has been evaluated. No breakthrough was observed in the range of concentration studied (0.10-75 microg of each pesticide). In almost all the cases good stability results were obtained. Personal pumps have been used with selected sorbents (Supelpak-2 and C-18) in order to sample malathion and fenhexamid in air of experimental greenhouse after their application in a tomato crop. The dissipation process of the analytes in various time periods after application has been studied. Malathion concentrations varied between 20.1 microg m(-3) just after application and 1.06 microg m(-3) 3 days later. Fenhexamid concentrations, determined by high performance liquid chromatography with UV detection, fall rapidly; after 12 h post-application being below 0.50 microg m(-3).
Zhao, Shanyu; Jiang, Bo; Maeder, Thomas; Muralt, Paul; Kim, Nayoung; Matam, Santhosh Kumar; Jeong, Eunho; Han, Yen-Lin; Koebel, Matthias M
2015-08-26
With growing public interest in portable electronics such as micro fuel cells, micro gas total analysis systems, and portable medical devices, the need for miniaturized air pumps with minimal electrical power consumption is on the rise. Thus, the development and downsizing of next-generation thermal transpiration gas pumps has been investigated intensively during the last decades. Such a system relies on a mesoporous membrane that generates a thermomolecular pressure gradient under the action of an applied temperature bias. However, the development of highly miniaturized active membrane materials with tailored porosity and optimized pumping performance remains a major challenge. Here we report a systematic study on the manufacturing of aerogel membranes using an optimized, minimal-shrinkage sol-gel process, leading to low thermal conductivity and high air conductance. This combination of properties results in superior performance for miniaturized thermomolecular air pump applications. The engineering of such aerogel membranes, which implies pore structure control and chemical surface modification, requires both chemical processing know-how and a detailed understanding of the influence of the material properties on the spatial flow rate density. Optimal pumping performance was found for devices with integrated membranes with a density of 0.062 g cm(-3) and an average pore size of 142.0 nm. Benchmarking of such low-density hydrophobic active aerogel membranes gave an air flow rate density of 3.85 sccm·cm(-2) at an operating temperature of 400 °C. Such a silica aerogel membrane based system has shown more than 50% higher pumping performance when compared to conventional transpiration pump membrane materials as well as the ability to withstand higher operating temperatures (up to 440 °C). This study highlights new perspectives for the development of miniaturized thermal transpiration air pumps while offering insights into the fundamentals of molecular pumping in three-dimensional open-mesoporous materials.
Woolfenden, Elizabeth
2010-04-16
Sorbent tubes/traps are widely used in combination with gas chromatographic (GC) analytical methods to monitor the vapour-phase fraction of organic compounds in air. Target compounds range in volatility from acetylene and freons to phthalates and PCBs and include apolar, polar and reactive species. Airborne vapour concentrations will vary depending on the nature of the location, nearby pollution sources, weather conditions, etc. Levels can range from low percent concentrations in stack and vent emissions to low part per trillion (ppt) levels in ultra-clean outdoor locations. Hundreds, even thousands of different compounds may be present in any given atmosphere. GC is commonly used in combination with mass spectrometry (MS) detection especially for environmental monitoring or for screening uncharacterised workplace atmospheres. Given the complexity and variability of organic vapours in air, no one sampling approach suits every monitoring scenario. A variety of different sampling strategies and sorbent media have been developed to address specific applications. Key sorbent-based examples include: active (pumped) sampling onto tubes packed with one or more sorbents held at ambient temperature; diffusive (passive) sampling onto sorbent tubes/cartridges; on-line sampling of air/gas streams into cooled sorbent traps; and transfer of air samples from containers (canisters, Tedlar) bags, etc.) into cooled sorbent focusing traps. Whichever sampling approach is selected, subsequent analysis almost always involves either solvent extraction or thermal desorption (TD) prior to GC(/MS) analysis. The overall performance of the air monitoring method will depend heavily on appropriate selection of key sampling and analytical parameters. This comprehensive review of air monitoring using sorbent tubes/traps is divided into 2 parts. (1) Sorbent-based air sampling option. (2) Sorbent selection and other aspects of optimizing sorbent-based air monitoring methods. The paper presents current state-of-the-art and recent developments in relevant areas such as sorbent research, sampler design, enhanced approaches to analytical quality assurance and on-tube derivatisation. Copyright 2009 Elsevier B.V. All rights reserved.
Automatic sequential fluid handling with multilayer microfluidic sample isolated pumping
Liu, Jixiao; Fu, Hai; Yang, Tianhang; Li, Songjing
2015-01-01
To sequentially handle fluids is of great significance in quantitative biology, analytical chemistry, and bioassays. However, the technological options are limited when building such microfluidic sequential processing systems, and one of the encountered challenges is the need for reliable, efficient, and mass-production available microfluidic pumping methods. Herein, we present a bubble-free and pumping-control unified liquid handling method that is compatible with large-scale manufacture, termed multilayer microfluidic sample isolated pumping (mμSIP). The core part of the mμSIP is the selective permeable membrane that isolates the fluidic layer from the pneumatic layer. The air diffusion from the fluidic channel network into the degassing pneumatic channel network leads to fluidic channel pressure variation, which further results in consistent bubble-free liquid pumping into the channels and the dead-end chambers. We characterize the mμSIP by comparing the fluidic actuation processes with different parameters and a flow rate range of 0.013 μl/s to 0.097 μl/s is observed in the experiments. As the proof of concept, we demonstrate an automatic sequential fluid handling system aiming at digital assays and immunoassays, which further proves the unified pumping-control and suggests that the mμSIP is suitable for functional microfluidic assays with minimal operations. We believe that the mμSIP technology and demonstrated automatic sequential fluid handling system would enrich the microfluidic toolbox and benefit further inventions. PMID:26487904
In-air PIXE analysis by means of glass capillary optics
NASA Astrophysics Data System (ADS)
Nebiki, Takuya; Kabir, M. Hasnat; Narusawa, Tadashi
2006-08-01
A novel technique to introduce high energy ion beams to atmospheric environment is presented, which enables in-air PIXE measurements. Slightly tapered glass capillary optics is applied to work as a differential pumping orifice as well as a focusing lens. The flux intensity is enhanced by at least one order of magnitude due to the focusing effect. Using capillaries of 10-20 μm outlet diameters, we obtain several hundreds pA of 4 MeV He2+ ion beam and apply it to PIXE analysis of the seabed sludge without any sample treatments. A comparison of spectra between wet and dry sludge samples suggests the usefulness of our new technique.
Device and method for measuring the energy content of hot and humid air streams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosen, H. N.; Girod, G. F.; Kent, A. C.
1985-12-24
a portable device and method for measuring enthalpy and humidity of humid air from a space or flow channel at temperatures from 80/sup 0/ to 400/sup 0/ F. is described. the device consists of a psychrometer for measuring wet-bulb temperature, a vacuum pump for inducing sample air flow through the unit, a water-heating system for accurate psychrometer readings, an electronic computer system for evaluation of enthalpy and humidity from corrected and averaged values of wet- and dry- bulb temperatures, and a monitor for displaying the values. The device is programmable by the user to modify evaluation methods as necessary.
Venturi air-jet vacuum ejectors for high-volume atmospheric sampling on aircraft platforms
NASA Technical Reports Server (NTRS)
Hill, Gerald F.; Sachse, Glen W.; Young, Douglas C.; Wade, Larry O.; Burney, Lewis G.
1992-01-01
Documentation of the installation and use of venturi air-jet vacuum ejectors for high-volume atmospheric sampling on aircraft platforms is presented. Information on the types of venturis that are useful for meeting the pumping requirements of atmospheric-sampling experiments is also presented. A description of the configuration and installation of the venturi system vacuum line is included with details on the modifications that were made to adapt a venturi to the NASA Electra aircraft at GSFC, Wallops Flight Facility. Flight test results are given for several venturis with emphasis on applications to the Differential Absorption Carbon Monoxide Measurement (DACOM) system at LaRC. This is a source document for atmospheric scientists interested in using the venturi systems installed on the NASA Electra or adapting the technology to other aircraft.
27. EXTENSION OF SURGE CHAMBER AND AIR PIPES TO PRESSURE ...
27. EXTENSION OF SURGE CHAMBER AND AIR PIPES TO PRESSURE LINE, HIGHLINE PUMPING PLANT. December 11, 1920 - Highline Canal & Pumping Station, South side of Salt River between Tempe, Phoenix & Mesa, Tempe, Maricopa County, AZ
Subsurface Thermal Energy Storage for Improved Heating and Air Conditioning Efficiency
2016-11-21
This project involved a field demonstration of subsurface thermal energy storage for improving the geothermal heat pump air conditioning efficiency... geothermal heat pump systems, undesirable heating of the ground may occur. This demonstration was performed at the MCAS, Beaufort, SC, where several...buildings with geothermal heat pump systems were exhibiting excessively high ground loop temperatures. These buildings were retrofitted with dry fluid
Novel technique for airless connection of artificial heart to vascular conduits.
Karimov, Jamshid H; Gao, Shengqiang; Dessoffy, Raymond; Sunagawa, Gengo; Sinkewich, Martin; Grady, Patrick; Sale, Shiva; Moazami, Nader; Fukamachi, Kiyotaka
2017-12-01
Successful implantation of a total artificial heart relies on multiple standardized procedures, primarily the resection of the native heart, and exacting preparation of the atrial and vascular conduits for pump implant and activation. Achieving secure pump connections to inflow/outflow conduits is critical to a successful outcome. During the connection process, however, air may be introduced into the circulation, traveling to the brain and multiple organs. Such air emboli block blood flow to these areas and are detrimental to long-term survival. A correctly managed pump-to-conduit connection prevents air from collecting in the pump and conduits. To further optimize pump-connection techniques, we have developed a novel connecting sleeve that enables airless connection of the Cleveland Clinic continuous-flow total artificial heart (CFTAH) to the conduits. In this brief report, we describe the connecting sleeve design and our initial results from two acute in vivo implantations using a scaled-down version of the CFTAH.
Reduced energy and volume air pump for a seat cushion
Vaughn, M.R.; Constantineau, E.J.; Groves, G.E.
1997-08-19
An efficient pump system is described for transferring air between sets of bladders in a cushion. The pump system utilizes a reversible piston within a cylinder in conjunction with an equalizing valve in the piston which opens when the piston reaches the end of travel in one direction. The weight of a seated user then forces air back across the piston from an inflated bladder to the previously deflated bladder until the pressure is equalized. In this fashion the work done by the pump is cut in half. The inflation and deflation of the different bladders is controlled to vary the pressure on the several pressure points of a seated user. A principal application is for wheel chair use to prevent pressure ulcers. 12 figs.
Reduced energy and volume air pump for a seat cushion
Vaughn, Mark R.; Constantineau, Edward J.; Groves, Gordon E.
1997-01-01
An efficient pump system for transferring air between sets of bladders in a cushion. The pump system utilizes a reversible piston within a cylinder in conjunction with an equalizing valve in the piston which opens when the piston reaches the end of travel in one direction. The weight of a seated user then forces air back across the piston from an inflated bladder to the previously deflated bladder until the pressure is equalized. In this fashion the work done by the pump is cut in half. The inflation and deflation of the different bladders is controlled to vary the pressure on the several pressure points of a seated user. A principal application is for wheel chair use to prevent pressure ulcers.
Schäfer, Karl-Christian; Balog, Júlia; Szaniszló, Tamás; Szalay, Dániel; Mezey, Géza; Dénes, Júlia; Bognár, László; Oertel, Matthias; Takáts, Zoltán
2011-10-15
Direct combination of cavitron ultrasonic surgical aspirator (CUSA) and sonic spray ionization mass spectrometry is presented. A commercially available ultrasonic surgical device was coupled to a Venturi easy ambient sonic-spray ionization (V-EASI) source by directly introducing liquified tissue debris into the Venturi air jet pump. The Venturi air jet pump was found to efficiently nebulize the suspended tissue material for gas phase ion production. The ionization mechanism involving solely pneumatic spraying was associated with that of sonic spray ionization. Positive and negative ionization spectra were obtained from brain and liver samples reflecting the primary application areas of the surgical device. Mass spectra were found to feature predominantly complex lipid-type constituents of tissues in both ion polarity modes. Multiply charged peptide anions were also detected. The influence of instrumental settings was characterized in detail. Venturi pump geometry and flow parameters were found to be critically important in ionization efficiency. Standard solutions of phospholipids and peptides were analyzed in order to test the dynamic range, sensitivity, and suppression effects. The spectra of the intact tissue specimens were found to be highly specific to the histological tissue type. The principal component analysis (PCA) and linear discriminant analysis (LDA) based data analysis method was developed for real-time tissue identification in a surgical environment. The method has been successfully tested on post-mortem and ex vivo human samples including astrocytomas, meningeomas, metastatic brain tumors, and healthy brain tissue. © 2011 American Chemical Society
Code of Federal Regulations, 2011 CFR
2011-10-01
..., DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES...) Five minutes. Walking, turning head, dipping chin; and (2) Five minutes. Pumping air with a tire pump...
Dual-Pump Coherent Anti-Stokes Raman Scattering Temperature and CO2 Concentration Measurements
NASA Technical Reports Server (NTRS)
Lucht, Robert P.; Velur-Natarajan, Viswanathan; Carter, Campbell D.; Grinstead, Keith D., Jr.; Gord, James R.; Danehy, Paul M.; Fiechtner, G. J.; Farrow, Roger L.
2003-01-01
Measurements of temperature and CO2 concentration using dual-pump coherent anti-Stokes Raman scattering, (CARS) are described. The measurements were performed in laboratory flames,in a room-temperature gas cell, and on an engine test stand at the U.S. Air Force Research Laboratory, Wright-Patterson Air Force Base. A modeless dye laser, a single-mode Nd:YAG laser, and an unintensified back-illuminated charge-coupled device digital camera were used for these measurements. The CARS measurements were performed on a single-laser-shot basis. The standard deviations of the temperatures and CO2 mole fractions determined from single-shot dual-pump CARS spectra in steady laminar propane/air flames were approximately 2 and 10% of the mean values of approximately 2000 K and 0.10, respectively. The precision and accuracy of single-shot temperature measurements obtained from the nitrogen part of the dual-pump CARS system were investigated in detail in near-adiabatic hydrogen/air/CO2 flames. The precision of the CARS temperature measurements was found to be comparable to the best results reported in the literature for conventional two-laser, single-pump CARS. The application of dual-pump CARS for single-shot measurements in a swirl-stabilized combustor fueled with JP-8 was also demonstrated.
Air Force Groundwater Contamination Cleanup: An Evaluation of the Pump- and-Treat Method.
1988-09-01
Other contaminants commonly detected at Air Force installations are benzene, mercury , pesticides, polychlori- nated biphenyls (PCBs), and Toxaphene...the air base experienced a 3000 gallon fuel (JP-4) spill at Fire Training Area 5 and contracted the DETOX company to conduct cleanup operations. After...several months of pumping, DETOX estimated that only 300 gallons of the fuel had been recovered. Wright-Patterson Air Force Base, unsatisfied with
Portable liquid collection electrostatic precipitator
Carlson, Duane C.; DeGange, John J.; Halverson, Justin E.
2005-10-18
A portable liquid collection electrostatic collection precipitator for analyzing air is provided which is a relatively small, self-contained device. The device has a tubular collection electrode, a reservoir for a liquid, and a pump. The pump pumps the liquid into the collection electrode such that the liquid flows down the exterior of the collection electrode and is recirculated to the reservoir. An air intake is provided such that air to be analyzed flows through an ionization section to ionize analytes in the air, and then flows near the collection electrode where ionized analytes are collected. A portable power source is connected to the air intake and the collection electrode. Ionizable constituents in the air are ionized, attracted to the collection electrode, and precipitated in the liquid. The precipitator may also have an analyzer for the liquid and may have a transceiver allowing remote operation and data collection.
Offenberg, John H; Lewandowski, Michael; Edney, Edward O; Kleindienst, Tadeusz E; Jaoui, Mohammed
2007-05-01
Organic carbon (OC) was measured semicontinuously in laboratory experiments of steady-state secondary organic aerosol formed by hydrocarbon + nitrogen oxide irradiations. Examination of the mass of carbon measured on the filter for various sample volumes reveals a systematic offset that is not observed when performing an instrumental blank. These findings suggest that simple subtraction of instrumental blanks determined as the standard analysis without sample collection (i.e., by cycling the pump and valves yet filtering zero liters of air followed by routine chemical analysis) from measured concentrations may be inadequate. This may be especially true for samples collected through the filtration of small air volumes wherein the influence of the systematic offset is greatest. All of the experiments show that filtering a larger volume of air minimizes the influence of contributions from the systematic offset. Application of these results to measurements of ambient concentrations of carbonaceous aerosol suggests a need for collection of sufficient carbon mass to minimize the relative influence of the offset signal.
The efficiency of the heat pump water heater, during DHW tapping cycle
NASA Astrophysics Data System (ADS)
Gużda, Arkadiusz; Szmolke, Norbert
2017-10-01
This paper discusses one of the most effective systems for domestic hot water (DHW) production based on air-source heat pump with an integrated tank. The operating principle of the heat pump is described in detail. Moreover, there is an account of experimental set-up and results of the measurements. In the experimental part, measurements were conducted with the aim of determining the energy parameters and measures of the economic efficiency related to the presented solution. The measurements that were conducted are based on the tapping cycle that is similar to the recommended one in EN-16147 standard. The efficiency of the air source heat pump during the duration of the experiment was 2.43. In the end of paper, authors conducted a simplified ecological analysis in order to determine the influence of operation of air-source heat pump with integrated tank on the environment. Moreover the compression with the different source of energy (gas boiler with closed combustion chamber and boiler fired by the coal) was conducted. The heat pump is the ecological friendly source of the energy.
Baraud, Laurent; Tessier, Didier; Aaron, Jean-Jacques; Quisefit, Jean-Paul; Pinart, Johann
2003-12-01
The extensive use of pesticides to protect agricultural crops can result in the transfer of these compounds into the atmosphere and their diffusion towards urban areas. Precise evaluation of the geographic impact of this type of pollution is important environmentally. In this paper, analytical methods for the sampling, characterization, and determination of agricultural pesticides in air were developed; the methods were then applied in the Paris and Champagne regions. Sixteen pesticides belonging to nine chemical families were monitored. Sampling was carried out in urban (Paris) and rural (Aube district) sites, utilizing either a high-volume pump (12.5 m3 h(-1)) (urban site) or a low-volume pump (2.3 m3 h(-1)) for the rural site. Quartz filters and polyurethane foams (PUF) were used for sampling in all cases. After extracting the samples and concentrating the recovered solutions, high-performance liquid chromatography (HPLC) analysis with UV detection was performed. Identification of the pesticides was confirmed by applying to the HPLC measurements a novel UV-detection procedure based on the normalized absorbance variation with wavelength (Noravawa procedure). The presence of metsulfuron methyl, isoproturon, linuron, deltamethrin (and/or malathion), and chlorophenoxy acids (2,4-D and MCPP) was found at the urban sampling site at levels ranging from about 1 to 1130 ng m(-3) of air, depending on the compound and sampling period. On the rural sampling site residues of isoproturon, deltamethrin (and/or malathion), MCPP, and 2,4-D were generally detected at higher levels (19-5130 ng m(-3)) than on the urban site, as expected. The effects of the weather conditions and agricultural activity on the atmospheric concentrations of pesticides are discussed, as are long-range atmospheric transfer processes for these pesticides.
Dobecki, Marek
2012-01-01
This paper reviews the requirements for measurement methods of chemical agents in the air at workstations. European standards, which have a status of Polish standards, comprise some requirements and information on sampling strategy, measuring techniques, type of samplers, sampling pumps and methods of occupational exposure evaluation at a given technological process. Measurement methods, including air sampling and analytical procedure in a laboratory, should be appropriately validated before intended use. In the validation process, selected methods are tested and budget of uncertainty is set up. The validation procedure that should be implemented in the laboratory together with suitable statistical tools and major components of uncertainity to be taken into consideration, were presented in this paper. Methods of quality control, including sampling and laboratory analyses were discussed. Relative expanded uncertainty for each measurement expressed as a percentage, should not exceed the limit of values set depending on the type of occupational exposure (short-term or long-term) and the magnitude of exposure to chemical agents in the work environment.
Variable temperature seat climate control system
Karunasiri, Tissa R.; Gallup, David F.; Noles, David R.; Gregory, Christian T.
1997-05-06
A temperature climate control system comprises a variable temperature seat, at least one heat pump, at least one heat pump temperature sensor, and a controller. Each heat pump comprises a number of Peltier thermoelectric modules for temperature conditioning the air in a main heat exchanger and a main exchanger fan for passing the conditioned air from the main exchanger to the variable temperature seat. The Peltier modules and each main fan may be manually adjusted via a control switch or a control signal. Additionally, the temperature climate control system may comprise a number of additional temperature sensors to monitor the temperature of the ambient air surrounding the occupant as well as the temperature of the conditioned air directed to the occupant. The controller is configured to automatically regulate the operation of the Peltier modules and/or each main fan according to a temperature climate control logic designed both to maximize occupant comfort during normal operation, and minimize possible equipment damage, occupant discomfort, or occupant injury in the event of a heat pump malfunction.
Practical demonstration of heat pumps for utilization of animal-generated heat
NASA Astrophysics Data System (ADS)
Amberg, H. U.
1980-09-01
Airconditioning of pigpens to eliminate effects of temperature extremes is reported. A stall air conditioner was installed as heat pump in a pigpen for final fattening. The heat, recovered from the exhaust air, is supplied to the outside air so that heated fresh air is blown into the stall. The test was accomplished on a farm with intensive pig breeding with 120 preliminary fattening places and 240 final fattening places. The stall air conditioner offers the possibility to attenuate the extreme temperature variations during the year.
NASA Astrophysics Data System (ADS)
Sabanskis, A.; Virbulis, J.
2016-04-01
Monitoring of temperature, humidity and air flow velocity is performed in 5 experimental buildings with the inner size of 3×3×3 m3 located in Riga, Latvia. The buildings are equipped with different heating systems, such as an air-air heat pump, air-water heat pump, capillary heating mat on the ceiling and electric heater. Numerical simulation of air flow and heat transfer by convection, conduction and radiation is carried out using OpenFOAM software and compared with experimental data. Results are analysed regarding the temperature and air flow distribution as well as thermal comfort.
TeGrotenhuis, Ward Evan
2013-11-05
A drying apparatus is disclosed that includes a drum and an open-loop airflow pathway originating at an ambient air inlet, passing through the drum, and terminating at an exhaust outlet. A passive heat exchanger is included for passively transferring heat from air flowing from the drum toward the exhaust outlet to air flowing from the ambient air inlet toward the drum. A heat pump is also included for actively transferring heat from air flowing from the passive heat exchanger toward the exhaust outlet to air flowing from the passive heat exchanger toward the drum. A heating element is also included for further heating air flowing from the heat pump toward the drum.
Hydrogeologic data from test drilling near Verna, Florida, 1978
Barker, Michael; Bowman, Geronia; Sutcliffe, Horace
1981-01-01
Four test wells were drilled in the vicinity of the city of Sarasota well field near Verna, Fla., to provide hydrologic and geologic information. An expedient and economical method of air lifting water samples from isolated water-producing zones while drilling was utilized. Lithologic logs of drill cuttings and geophysical logs, including point resistance and spontaneous potential electric logs, gamma-ray logs, and caliper logs, were made. Chemical quality of water was determined for principal producing zones at each well. Dissolved solids from composite water samples ranged from 313 milligrams per liter in test well 0-1 north of the well field to 728 milligrams per liter in test well 0-3 within the well field. Each test well was pumped to determine maximum discharge, water-level drawdown, and recovery time. A leaking pump column on test well 0-1 prevented accurate measurement of drawdown on the well. Test well 0-2, located east of the well field, had a pumping rate of 376 gallons per minute and 13.11 feet of drawdown after 3 hours and 50 minutes; test well 0-3 had a maximum yield of 320 gallons per minute, a drawdown of 31.91 feet after 2 hours and 35 minutes of pumping, had a recovery time of 20 minutes; and test well 0-4, south of the well field, had a pumping rate of 200 gallons per minute with 63.34 feet of drawdown after 2 hours and 35 minutes. (USGS)
Integration and Control of a Battery Balancing System
2013-12-01
2. Energy storage comparisons. From [2]. • Storage Technologies Pumped Storage CAES Flow Batteries: PSB VRB ZnBr Metal-Air NaS LHon Ni...Storage Technologies Pumped Storage CAES Flow Batteries: PSB VRB ZnBr Metal-Air NaS LHon Ni-Cd Other Advanced Batteries Lead-Acid
Lift-Off Performance in Flexure Pivot Pad and Hybrid Bearings
2008-12-01
and Dawson, M. P., 1998, "Experience in the Use of Flexure Pivot Tilt Pad Bearings in Boiler Feed Water Pumps ," Proc. of the 15th International...freely. Test Procedure 1) Turn on the pump to buffer water to the test bearing. 2) Turn on air to the air seal that prevents water flowing... Pump Users Symposium, Turbomachinery Laboratory, College Station, Texas, pp. 77-84. [6] Rodriguez, L., 2004, “Experimental Frequency-Dependent
Geothermal heat pumps for heating and cooling
NASA Astrophysics Data System (ADS)
Garg, Suresh C.
1994-03-01
Naval Facilities Engineering Service Center (NFESC) has been tasked by Naval Shore Facilities Energy Office to evaluate the NAS Patuxent River ground-source heat pump (GHP) installation. A large part of a building's energy consumption consists of heating and air conditioning for occupant comfort. The space heating requirements are normally met by fossil-fuel-fired equipment or electric resistance heating. Cooling is provided by either air conditioners or heat pumps, both using electricity as an energy source.
21 CFR 880.5725 - Infusion pump.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Infusion pump. 880.5725 Section 880.5725 Food and... Infusion pump. (a) Identification. An infusion pump is a device used in a health care facility to pump... means to detect a fault condition, such as air in, or blockage of, the infusion line and to activate an...
21 CFR 880.5725 - Infusion pump.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Infusion pump. 880.5725 Section 880.5725 Food and... Infusion pump. (a) Identification. An infusion pump is a device used in a health care facility to pump... means to detect a fault condition, such as air in, or blockage of, the infusion line and to activate an...
ENERGY STAR Certified Non-AHRI Central Air Conditioner Equipment and Air Source Heat Pump
Certified models meet all ENERGY STAR requirements as listed in the Version 5.0 ENERGY STAR Program Requirements for Air Source Heat Pump and Central Air Conditioner Equipment that are effective as of September 15, 2015. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=airsrc_heat.pr_crit_as_heat_pumps Listed products have been submitted to EPA by ENERGY STAR partners that do not participate in the AHRI certification program. EPA will continue to update this list with products that are certified by EPA-recognized certification bodies other than AHRI. The majority of ENERGY STAR products, certified by AHRI, can be found on the CEE/AHRI Verified Directory at http://www.ceedirectory.org/
Spin-Orbit Torque and Spin Pumping in YIG/Pt with Interfacial Insertion Layers (Postprint)
2018-05-03
Distribution Statement A. Approved for public release: distribution unlimited. © 2018 AMERICAN INSTITUTE OF PHYSICS (STINFO COPY) AIR FORCE RESEARCH ...SPONSORING/MONITORING AGENCY ACRONYM(S) Air Force Research Laboratory Materials and Manufacturing Directorate Wright-Patterson Air Force Base, OH... observe a large enhancement of Gilbert damping with the insertion of Py that cannot be accounted for solely by spin pumping, revealing significant spin
Magare, B; Nair, A; Khairnar, K
2017-10-01
Development of a simple and economical air sampler for isolation and enrichment of bacteriophages from air samples. A vacuum filtration unit with simple modifications was used for isolation of bacteriophages from air sampled in the lavatory. Air was sampled at the rate of 62 l min -1 by bubbling into Mcllvaine buffer for 30 min, which was used as bacteriophage solution for enrichment and plaque assessment against individual hosts. Alternatively, the aforementioned phage solution was enriched using a host consortium before plaque assessment. Phages were isolated in the range of 1-12 PFU per ml by the first method, whereas enrichment with host consortium gave phages around 10- to 1000-folds higher in number. Combining with established enrichment method, an improvement of about 10 times in phage isolation efficiency was attained. The method is very useful for studying the natural bacteriophages of air, requiring only a basic microbiological laboratory setup making it simple and economical. This study brings out a simple, economical air sampler for assessing air bacteriophages that can be employed by any microbial laboratory. Although various methods are available for studying bacteriophages in water and soil, very limited are available for air. To the best of our knowledge, the method developed in this study is unique in its design and concept for studying bacteriophages in air. The sampler is sterilizable by autoclaving and maintains a healthy rate of airflow provided by conventional vacuum pumps. The use of a nonspecific 'trapping solution' allows for the qualitative and quantitative study of air bacteriophages. © 2017 The Society for Applied Microbiology.
77 FR 40830 - Airworthiness Directives; Airbus Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-11
... proposed AD was prompted by reports of ram air turbine (RAT) pump failure. This proposed AD would require..., an A330 aeroplane experienced a RAT [ram air turbine] pump failure, as a result of which, the green hydraulic system could not be fully pressurized. Investigations concluded that this malfunction was due to...
DEVELOPMENT OF A LINEAR COMPRESSOR FOR AIR CONDITIONERS AND HEAT PUMPS
The report discusses the design, building, testing, and delivering to the Environmental Protection Agency of a linear compressor for operation in a 3.0- ton (10.5 kW) residential air-conditioning and heat pumping system. The compressor design evolved from a linear resonant piston...
ONE MILLION GALLON WATER TANK, PUMP HEADER PIPE (AT LEFT), ...
ONE MILLION GALLON WATER TANK, PUMP HEADER PIPE (AT LEFT), HEADER BYPASS PIPE (AT RIGHT), AND PUMPHOUSE FOUNDATIONS. Looking northeast - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Flame Deflector Water System, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
GENERAL VIEW OF PUMPHOUSE FOUNDATIONS, ALSO SHOWING THREE PUMPS STILL ...
GENERAL VIEW OF PUMPHOUSE FOUNDATIONS, ALSO SHOWING THREE PUMPS STILL ON THE PAD, AND THE ELECTRICAL SUBSTATION IN LEFT MIDDLE DISTANCE - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Flame Deflector Water System, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
NASA Astrophysics Data System (ADS)
Soloviev, A.; Dean, C.
2017-12-01
The artificial upwelling system consisting of the wave-inertia pumps driven by surface waves can produce flow of cold deep water to the surface. One of the recently proposed potential applications of the artificial upwelling system is the hurricane intensity mitigation. Even relatively small reduction of intensity may provide significant benefits. The ocean heat content (OHC) is the "fuel" for hurricanes. The OHC can be reduced by mixing of the surface layer with the cold water produced by wave-inertia pumps. Implementation of this system for hurricane mitigation has several oceanographic and air-sea interaction aspects. The cold water brought to the surface from a deeper layer has higher density than the surface water and, therefore, tends to sink back down. The mixing of the cold water produced by artificial upwelling depends on environmental conditions such as stratification, regional ocean circulation, and vertical shear. Another aspect is that as the sea surface temperature drops below the air temperature, the stable stratification develops in the atmospheric boundary layer. The stable atmospheric stratification suppresses sensible and latent heat air-sea fluxes and reduces the net longwave irradiance from the sea surface. As a result, the artificial upwelling may start increasing the OHC (though still reducing the sea surface temperature). In this work, the fate of the cold water in the stratified environment with vertical shear has been studied using computational fluid dynamics (CFD) tools. A 3D large eddy simulation model is initialized with observational temperature, salinity, and current velocity data from a sample location in the Straits of Florida. A periodic boundary condition is set along the direction of the current, which allows us to simulate infinite fetch. The model results indicate that the cold water brought to the sea surface by a wave-inertia pump forms a convective jet. This jet plunges into the upper ocean mixed layer and penetrates the thermocline. On the way down, the jet partially mixes with the surrounding water reducing the temperature of the upper ocean. The OHC thus can either reduce or increase, depending on the wave-inertia pump parameters. Based on the model results, we discuss feasibility of the implementation of the artificial upwelling system for hurricane intensity mitigation.
Sturges, W. T. [School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom; Wallington, T. J. [Ford Motor Company, Dearborn, Michigan; Hurley, M. D. [Ford Motor Company, Dearborn, Michigan; Shine, K. P. [Department of Meteorology, University of Reading, Reading, United Kingdom; Sihra, K. [Department of Meteorology, University of Reading, Reading, United Kingdom; Engel, A. [Institute for Meteorology and Geophysics, Johann Wolfgang Goethe University of Frankfurt, Frankfurt, Germany; Oram, D. E. [School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom; Penkett, S. A. [School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom; Mulvaney, R. [British Antarctic Survey, Natural Environmental Research Council, Cambridge, United Kingdom; Brenninkmeijer, C A. M. [Atmospheric Chemistry Division, Max Planck Institute for Chemistry, Mainz, Germany
2000-10-01
The sampling and analytical methods are described more fully in Sturges et al. (2000). In summary, air samples were pumped from consolidated deep snow (firn) at Dome Concordia (eastern Antarctica) in December 1998 and January 1999, from the surface to a depth of approximately 100 m. Air samples were analyzed with a gas chromatograph - mass spectrometer, with a detection limit of about 0.001 parts per trillion (ppt). A diffusive transport model was used to calculate the age of samples as a function of depth. Measurements of SF6 were used to determine the mean age of the firn air by comparison with extrapolated measurements from Cape Grim, Tasmania combined with estimates from industrial emissions (Maiss and Brenninkmeijer 1998, adapted by Sturges et al. 2000). Dates for SF5CF3 are different than for SF6 due to the lower diffusivity of SF5CF3: the SF6 ages were multiplied by the ratio of the free-air diffusion coefficient of SF5CF3 to that of SF6 (1.18). Free-air diffusion coefficients were determined by a semi-empirical formula based on molecular volumes (Fuller et al. 1966). Note that mean ages represent a very wide distribution of probable ages spanning many years, with an increasing spread of ages at increasing depth
123. UMBILICAL MAST PUMP ROOM (209), LSB (BLDG. 751). PUMP ...
123. UMBILICAL MAST PUMP ROOM (209), LSB (BLDG. 751). PUMP ON LEFT; HYDRAULIC CONTROL PANEL FOR UMBILICAL MAST AND TRENCH DOORS IN CENTER OF ROOM, FACING WEST. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
Large-capacity pump vaporizer for liquid hydrogen and nitrogen
NASA Technical Reports Server (NTRS)
Hauser, J. A.
1970-01-01
Pump vaporizer system delivers 500 standard cubic feet per minute of hydrogen or nitrogen, one system delivers both gases. Vacuum-jacketed pump discharges liquid hydrogen or liquid nitrogen into vaporizing system heated by ambient air. Principal characteristics of the flow and discharge system, pump, and vaporizer are given.
EP of a Different Class: The Challenges of Testing for MW Missions
2012-07-20
that the pumping capacity of the Large Vacuum Test Facility (LVTF) at PEPL (Figure 3) at 520,000 l/s on air makes it most suitable for initial checkout...evaluation of the thruster. NASA Glenn Research Center’s Vacuum Facility 5 (VF5) (Figure 4), with its increased pumping speed of 3,500,000 l/s on air...reader to Dr. Dan Goebel’s IEPC 2011 paper.41 IV. Facility Selection and Preparation Facility Size and Pumping High T/P thruster testing
2012-03-01
Revit object IFCExportType IFCExportAs Radiator Radiator IfcSpaceHeaterType Pump Circulator IfcPumpType Boiler Water IfcBoilerType Fan VaneAxial...modeling is assumed to be a traditional water-based system comprised of boilers and fan coil units (heating) and chillers and air handling units...the properties that a particular engineer would want to specify as part of the BIM model. For instance, the default pump families in Revit do not
Monolithic solid electrolyte oxygen pump
Fee, Darrell C.; Poeppel, Roger B.; Easler, Timothy E.; Dees, Dennis W.
1989-01-01
A multi-layer oxygen pump having a one-piece, monolithic ceramic structure affords high oxygen production per unit weight and volume and is thus particularly adapted for use as a portable oxygen supply. The oxygen pump is comprised of a large number of small cells on the order of 1-2 millimeters in diameter which form the walls of the pump and which are comprised of thin, i.e., 25-50 micrometers, ceramic layers of cell components. The cell components include an air electrode, an oxygen electrode, an electrolyte and interconnection materials. The cell walls form the passages for input air and for exhausting the oxygen which is transferred from a relatively dilute gaseous mixture to a higher concentration by applying a DC voltage across the electrodes so as to ionize the oxygen at the air electrode, whereupon the ionized oxygen travels through the electrolyte and is converted to oxygen gas at the oxygen electrode.
Analysis of the performance and space-conditioning impacts of dedicated heat-pump water heaters
NASA Astrophysics Data System (ADS)
Morrison, L.; Swisher, J.
1980-12-01
The operation of a newly marketed dedicated heat pump water heater (HPWH) which utilizes an air to water heat pump, costs about $1000 installed, and obtains a coefficient of performance (COP) of about 2.0 in laboratory and field tests, is a space conditioning benefit if an air conditioning load exists and a penalty if a space heating load exists. A simulation was developed to model the thermal performance of a residence with resistance baseboard heat, air conditioning, and either heat pump or resistance water heating. The building characteristics were adapted (Madison, Wisconsin; Washington, DC; and Ft. Worth, Texas) and the system was simulated for a year with typical weather data. For each city, HPWH COPs are calculated monthly and yearly. The water heating and space conditioning energy requirements of HPWH operation are compared with those of resistance water heater operation to determine the relative performance ratio of the HPWH.
1. Credit USAF, ca. 1942. Original housed in the Muroc ...
1. Credit USAF, ca. 1942. Original housed in the Muroc Flight Test Base, Unit History, 1 September 1942 - 30 June 1945. Alfred F. Simpson Historical Research Agency. United States Air Force. Maxwell AFB, Alabama. Historical view looks west southwest at construction of Building 4317, Deluge Water Pumping Station (then designated Pump House No. 3). This in-ground structure houses fire pumps which draw water from an in-ground reservoir, Building 4316 (See HAER photos CA-170-I). Pumping station was built in-ground to take advantage of gravity, since water flows from reservoir to prime the pumps, and fire system piping is underground. Opening in far wall is to stairs leading up to ground level. Earth mound in background is part of water reservoir construction (Building 4316). - Edwards Air Force Base, North Base, Deluge Water Pumping Station, Near Second & D Streets, Boron, Kern County, CA
A "place n play" modular pump for portable microfluidic applications.
Li, Gang; Luo, Yahui; Chen, Qiang; Liao, Lingying; Zhao, Jianlong
2012-03-01
This paper presents an easy-to-use, power-free, and modular pump for portable microfluidic applications. The pump module is a degassed particle desorption polydimethylsiloxane (PDMS) slab with an integrated mesh-shaped chamber, which can be attached on the outlet port of microfluidic device to absorb the air in the microfluidic system and then to create a negative pressure for driving fluid. Different from the existing monolithic degassed PDMS pumps that are generally restricted to limited pumping capacity and are only compatible with PDMS-based microfluidic devices, this pump can offer various possible configures of pumping power by varying the geometries of the pump or by combining different pump modules and can also be employed in any material microfluidic devices. The key advantage of this pump is that its operation only requires the user to place the degassed PDMS slab on the outlet ports of microfluidic devices. To help design pumps with a suitable pumping performance, the effect of pump module geometry on its pumping capacity is also investigated. The results indicate that the performance of the degassed PDMS pump is strongly dependent on the surface area of the pump chamber, the exposure area and the volume of the PDMS pump slab. In addition, the initial volume of air in the closed microfluidic system and the cross-linking degree of PDMS also affect the performance of the degassed PDMS pump. Finally, we demonstrated the utility of this modular pumping method by applying it to a glass-based microfluidic device and a PDMS-based protein crystallization microfluidic device.
A “place n play” modular pump for portable microfluidic applications
Li, Gang; Luo, Yahui; Chen, Qiang; Liao, Lingying; Zhao, Jianlong
2012-01-01
This paper presents an easy-to-use, power-free, and modular pump for portable microfluidic applications. The pump module is a degassed particle desorption polydimethylsiloxane (PDMS) slab with an integrated mesh-shaped chamber, which can be attached on the outlet port of microfluidic device to absorb the air in the microfluidic system and then to create a negative pressure for driving fluid. Different from the existing monolithic degassed PDMS pumps that are generally restricted to limited pumping capacity and are only compatible with PDMS-based microfluidic devices, this pump can offer various possible configures of pumping power by varying the geometries of the pump or by combining different pump modules and can also be employed in any material microfluidic devices. The key advantage of this pump is that its operation only requires the user to place the degassed PDMS slab on the outlet ports of microfluidic devices. To help design pumps with a suitable pumping performance, the effect of pump module geometry on its pumping capacity is also investigated. The results indicate that the performance of the degassed PDMS pump is strongly dependent on the surface area of the pump chamber, the exposure area and the volume of the PDMS pump slab. In addition, the initial volume of air in the closed microfluidic system and the cross-linking degree of PDMS also affect the performance of the degassed PDMS pump. Finally, we demonstrated the utility of this modular pumping method by applying it to a glass-based microfluidic device and a PDMS-based protein crystallization microfluidic device. PMID:22685507
NASA Technical Reports Server (NTRS)
Meneghelli, Barry; Parrish, Clyde; Barile, Ron; Lueck, Dale E.
1995-01-01
A Hydrazine Vapor Area Monitor (HVAM) system is currently being field tested as a detector for the presence of hydrazine in ambient air. The MDA/Polymetron Hydrazine Analyzer has been incorporated within the HVAM system as the core detector. This analyzer is a three-electrode liquid analyzer typically used in boiler feed water applications. The HVAM system incorporates a dual-phase sample collection/transport method which simultaneously pulls ambient air samples containing hydrazine and a very dilute sulfuric acid solution (0.0001 M) down a length of 1/4 inch outside diameter (OD) tubing from a remote site to the analyzer. The hydrazine-laden dilute acid stream is separated from the air and the pH is adjusted by addition of a dilute caustic solution to a pH greater than 10.2 prior to analysis. Both the dilute acid and caustic used by the HVAM are continuously generated during system operation on an "as needed" basis by mixing a metered amount of concentrated acid/base with dilution water. All of the waste water generated by the analyzer is purified for reuse by Barnstead ion-exchange cartridges so that the entire system minimizes the generation of waste materials. The pumping of all liquid streams and mixing of the caustic solution and dilution water with the incoming sample are done by a single pump motor fitted with the appropriate mix of peristaltic pump heads. The signal to noise (S/N) ratio of the analyzer has been enhanced by adding a stirrer in the MDA liquid cell to provide mixing normally generated by the high liquid flow rate designed by the manufacturer. An onboard microprocessor continuously monitors liquid levels, sample vacuum, and liquid leak sensors, as well as handles communications and other system functions (such as shut down should system malfunctions or errors occur). The overall system response of the HVAM can be automatically checked at regular intervals by measuring the analyzer response to a metered amount of calibration standard injected into the dilute acid stream. The HVAM system provides two measurement ranges (threshold limit value (TLV): 10 to 1000 parts per billion (ppb)/LEAK: 100 ppb to 10 parts per million (ppm)). The LEAK range is created by dilution of the sulfuric acid/hydrazine liquid sample with pure water. This dual range capability permits the analyzer to quantify ambient air samples whose hydrazine concentrations range from 10 ppb to as high as 10 ppm. The laboratory and field prototypes have demonstrated total system response times on the order of 10 to 12 minutes for samples ranging from 10 to 900 ppb in the lLV mode and is greater than 2 minutes for samples ranging from 100 to 1300 ppb in the LEAK mode. Service intervals of over 3 months have been demonstrated for continuous 24 hour/day, 7 day/week usage. The HVAM is made up of a purged cabinet that contains power supplies, RS422 signal transmission capabilities, a UPS, an on-site warning system, and a Line Replaceable Unit (LRU). The LRU includes all of the liquid flow system, the analyzer, the control/data system microprocessor and assorted flow and liquid-level sensors. The LRU is mounted on a track slide system so it can be serviced inplace or totally removed and quickly exchanged with another calibrated unit, thus minimizing analyzer downtime. Once an LRU is removed from an analyzer enclosure, it can be brought to a laboratory facility for complete calibration and periodic maintenance.
NASA Astrophysics Data System (ADS)
Janovcová, Martina; Jandačka, Jozef; Malcho, Milan
2015-05-01
Market with sources of heat and cold offers unlimited choice of different power these devices, design technology, efficiency and price categories. New progressive technologies are constantly discovering, about which is still little information, which include heat pumps powered by a combustion engine running on natural gas. A few pieces of these installations are in Slovakia, but no studies about their work and effectiveness under real conditions. This article deals with experimental measurements of gas heat pump efficiency in cooling mode. Since the gas heat pump works only in system air - water, air is the primary low - energy source, it is necessary to monitor the impact of the climate conditions for the gas heat pump performance.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Conditioning/Heat Pump Equipment Domestic and commercial air conditioning and refrigeration equipment fall... cooling/heat cycle. 8415.82.00 Other, incorporating a refrigerating unit— Self-contained machines and... refrigerating or freezing equipment, electric or other; heat pumps, other than air conditioning machines of...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Conditioning/Heat Pump Equipment Domestic and commercial air conditioning and refrigeration equipment fall... cooling/heat cycle. 8415.82.00 Other, incorporating a refrigerating unit— Self-contained machines and... refrigerating or freezing equipment, electric or other; heat pumps, other than air conditioning machines of...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Conditioning/Heat Pump Equipment Domestic and commercial air conditioning and refrigeration equipment fall... cooling/heat cycle. 8415.82.00 Other, incorporating a refrigerating unit— Self-contained machines and... refrigerating or freezing equipment, electric or other; heat pumps, other than air conditioning machines of...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Conditioning/Heat Pump Equipment Domestic and commercial air conditioning and refrigeration equipment fall... cooling/heat cycle. 8415.82.00 Other, incorporating a refrigerating unit— Self-contained machines and... refrigerating or freezing equipment, electric or other; heat pumps, other than air conditioning machines of...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Conditioning/Heat Pump Equipment Domestic and commercial air conditioning and refrigeration equipment fall... cooling/heat cycle. 8415.82.00 Other, incorporating a refrigerating unit— Self-contained machines and... refrigerating or freezing equipment, electric or other; heat pumps, other than air conditioning machines of...
Operation JANGLE. Particle Studies. Projects 2.5a-1, 2.5a-2, 2.5a-3, 2. 8,
1979-10-01
air with time. 26.1 Brookhaven Air Monitor A filter paper feed system traveling at 4 inches per hour combined with a vacuum pump (3.5 ou ft/min) was...Monitor This Instrument also employs an air pumping system (2.6 cu.ft/min) with filter paper 6 Inohes wide traveling at 7 inches per hour or multiples...JANGLE of the Portable Air Sampler (PAS) used previously by Test Division, CRL and Dug.way Proving Ground, Utah. Its purpose was to pro- vde an
Development of a solenoid pumped in situ zinc analyzer for environmental monitoring
Chapin, T.P.; Wanty, R.B.
2005-01-01
A battery powered submersible chemical analyzer, the Zn-DigiScan (Zn Digital Submersible Chemical Analyzer), has been developed for near real-time, in situ monitoring of zinc in aquatic systems. Microprocessor controlled solenoid pumps propel sample and carrier through an anion exchange column to separate zinc from interferences, add colorimetric reagents, and propel the reaction complex through a simple photometric detector. The Zn-DigiScan is capable of self-calibration with periodic injections of standards and blanks. The detection limit with this approach was 30 ??g L-1. Precision was 5-10% relative standard deviation (R.S.D.) below 100 ??g L-1, improving to 1% R.S.D. at 1000 ??g L-1. The linear range extended from 30 to 3000 ??g L-1. In situ field results were in agreement with samples analyzed by inductively coupled plasma mass spectrometry (ICPMS). This pump technology is quite versatile and colorimetric methods with complex online manipulations such as column reduction, preconcentration, and dilution can be performed with the DigiScan. However, long-term field deployments in shallow high altitude streams were hampered by air bubble formation in the photometric detector. ?? 2005 Elsevier B.V. All rights reserved.
Performance Analysis of Air-to-Water Heat Pump in Latvian Climate Conditions
NASA Astrophysics Data System (ADS)
Kazjonovs, Janis; Sipkevics, Andrejs; Jakovics, Andris; Dancigs, Andris; Bajare, Diana; Dancigs, Leonards
2014-12-01
Strategy of the European Union in efficient energy usage demands to have a higher proportion of renewable energy in the energy market. Since heat pumps are considered to be one of the most efficient heating and cooling systems, they will play an important role in the energy consumption reduction in buildings aimed to meet the target of nearly zero energy buildings set out in the EU Directive 2010/31/EU. Unfortunately, the declared heat pump Coefficient of Performance (COP) corresponds to a certain outdoor temperature (+7 °C), therefore different climate conditions, building characteristics and settings result in different COP values during the year. The aim of this research is to investigate the Seasonal Performance factor (SPF) values of air-to-water heat pump which better characterize the effectiveness of heat pump in a longer selected period of time, especially during the winter season, in different types of residential buildings in Latvian climate conditions. Latvia has four pronounced seasons of near-equal length. Winter starts in mid-December and lasts until mid-March. Latvia is characterized by cold, maritime climate (duration of the average heating period being 203 days, the average outdoor air temperature during the heating period being 0.0 °C, the coldest five-day average temperature being -20.7 °C, the average annual air temperature being +6.2 °C, the daily average relative humidity being 79 %). The first part of this research consists of operational air-towater heat pump energy performance monitoring in different residential buildings during the winter season. The second part of the research takes place under natural conditions in an experimental construction stand which is located in an urban environment in Riga, Latvia. The inner area of this test stand, where air-to-water heat pump performance is analyzed, is 9 m2. The ceiling height is 3 m, all external wall constructions (U = 0.16 W/(m2K)) have ventilated facades. To calculate SPF, the experimental stand is equipped with sensors which provide measurements for electricity consumption and gained heat energy.
Hybrid Geothermal Heat Pumps for Cooling Telecommunications Data Centers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beckers, Koenraad J; Zurmuhl, David P.; Lukawski, Maciej Z.
The technical and economic performance of geothermal heat pump (GHP) systems supplying year-round cooling to representative small data centers with cooling loads less than 500 kWth were analyzed and compared to air-source heat pumps (ASHPs). A numerical model was developed in TRNSYS software to simulate the operation of air-source and geothermal heat pumps with and without supplementary air cooled heat exchangers - dry coolers (DCs). The model was validated using data measured at an experimental geothermal system installed in Ithaca, NY, USA. The coefficient of performance (COP) and cooling capacity of the GHPs were calculated over a 20-year lifetime andmore » compared to the performance of ASHPs. The total cost of ownership (TCO) of each of the cooling systems was calculated to assess its economic performance. Both the length of the geothermal borehole heat exchangers (BHEs) and the dry cooler temperature set point were optimized to minimize the TCO of the geothermal systems. Lastly, a preliminary analysis of the performance of geothermal heat pumps for cooling dominated systems was performed for other locations including Dallas, TX, Sacramento, CA, and Minneapolis, MN.« less
21 CFR 878.4780 - Powered suction pump.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Powered suction pump. 878.4780 Section 878.4780...) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4780 Powered suction pump. (a) Identification. A powered suction pump is a portable, AC-powered or compressed air-powered device intended to be...
40 CFR 264.1052 - Standards: Pumps in light liquid service.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Standards: Pumps in light liquid... DISPOSAL FACILITIES Air Emission Standards for Equipment Leaks § 264.1052 Standards: Pumps in light liquid service. (a)(1) Each pump in light liquid service shall be monitored monthly to detect leaks by the...
40 CFR 264.1052 - Standards: Pumps in light liquid service.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Standards: Pumps in light liquid... DISPOSAL FACILITIES Air Emission Standards for Equipment Leaks § 264.1052 Standards: Pumps in light liquid service. (a)(1) Each pump in light liquid service shall be monitored monthly to detect leaks by the...
40 CFR 264.1052 - Standards: Pumps in light liquid service.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Standards: Pumps in light liquid... DISPOSAL FACILITIES Air Emission Standards for Equipment Leaks § 264.1052 Standards: Pumps in light liquid service. (a)(1) Each pump in light liquid service shall be monitored monthly to detect leaks by the...
40 CFR 265.1052 - Standards: Pumps in light liquid service.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Standards: Pumps in light liquid..., STORAGE, AND DISPOSAL FACILITIES Air Emission Standards for Equipment Leaks § 265.1052 Standards: Pumps in light liquid service. (a)(1) Each pump in light liquid service shall be monitored monthly to detect...
40 CFR 265.1052 - Standards: Pumps in light liquid service.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Standards: Pumps in light liquid..., STORAGE, AND DISPOSAL FACILITIES Air Emission Standards for Equipment Leaks § 265.1052 Standards: Pumps in light liquid service. (a)(1) Each pump in light liquid service shall be monitored monthly to detect...
40 CFR 265.1052 - Standards: Pumps in light liquid service.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Standards: Pumps in light liquid..., STORAGE, AND DISPOSAL FACILITIES Air Emission Standards for Equipment Leaks § 265.1052 Standards: Pumps in light liquid service. (a)(1) Each pump in light liquid service shall be monitored monthly to detect...
40 CFR 264.1052 - Standards: Pumps in light liquid service.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Standards: Pumps in light liquid... DISPOSAL FACILITIES Air Emission Standards for Equipment Leaks § 264.1052 Standards: Pumps in light liquid service. (a)(1) Each pump in light liquid service shall be monitored monthly to detect leaks by the...
40 CFR 265.1052 - Standards: Pumps in light liquid service.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Standards: Pumps in light liquid..., STORAGE, AND DISPOSAL FACILITIES Air Emission Standards for Equipment Leaks § 265.1052 Standards: Pumps in light liquid service. (a)(1) Each pump in light liquid service shall be monitored monthly to detect...
Exposure of hospital workers to airborne antineoplastic agents
DOE Office of Scientific and Technical Information (OSTI.GOV)
deWerk Neal, A.; Wadden, R.A.; Chiou, W.L.
Practices for handling antineoplastic drugs were surveyed, and ambient-air sampling for four antineoplastic agents was conducted in outpatient oncology clinics. A questionnaire was administered in 1981 to the nurse or pharmacist in charge of drug preparation at 10 hospital oncology clinics. At three sites, air samples were collected during working hours in medication-preparation rooms and nearby offices. The air-sampling pumps contained filters at breathing-zone height; room air was drawn through each filter for 40 hours. Extracts from the filters were assayed by high-performance liquid chromatography (HPLC) for fluorouracil and cyclophosphamide in seven sets of samples and methotrexate and doxorubicin inmore » five sets of samples. Mass spectrometry (MS) was used to confirm detection of fluorouracil. Total use of each monitored drug was recorded at each site. Nine clinics had no ventilation hood, and drugs were prepared by nurses in eight clinics. Routine use of gloves (three clinics) and masks (one clinic) was uncommon, and wastes were disposed of in uncovered receptacles in four of the clinics. Eating and drinking occurred in seven of the preparation rooms. At the main air-sampling site, fluorouracil (0.12-82.26 ng/cu m) was detected in air during 200 of the 320 hours monitored. Cyclophosphamide (370 ng/cu m) was present during 80 hours. In the two other sites, fluorouracil was detected by HPLC but not confirmed by MS, and no cyclophosphamide was detected. No detectable amounts of methotrexate and doxorubicin were present. Fluorouracil was the most frequently used drug, and cyclophosphamide was second. Results suggest that personnel handling antineoplastic drugs are subject to potential systemic absorption of these agents by inhalation.« less
Alcudia-León, M Carmen; Lucena, Rafael; Cárdenas, Soledad; Valcárcel, Miguel; Kabir, Abuzar; Furton, Kenneth G
2017-03-10
This article presents a novel unit that integrates for the first time air sampling and preconcentration based on the use of fabric phase sorptive extraction principles. The determination of Tuta absoluta sexual pheromone traces in environmental air has been selected as analytical problem. For this aim, a novel laboratory-built unit made up of commercial brass elements as holder of the sol-gel coated fabric extracting phase has been designed and optimized. The performance of the integrated unit was evaluated analyzing environmental air sampled in tomato crops. The unit can work under sampling and analysis mode which eliminates any need for sorptive phase manipulation prior to instrumental analysis. In the sampling mode, the unit can be connected to a sampling pump to pass the air through the sorptive phase at a controlled flow-rate. In the analysis mode, it is placed in the gas chromatograph autosampler without any instrumental modification. It also diminishes the risk of cross contamination between sampling and analysis. The performance of the new unit has been evaluated using the main components of the sexual pheromone of Tuta absoluta [(3E,8Z,11Z)-tetradecatrien-1-yl acetate and (3E,8Z)-tetradecadien-1-yl acetate] as model analytes. The limits of detection for both compounds resulted to be 1.6μg and 0.8μg, respectively, while the precision (expressed as relative standard deviation) was better than 3.7%. Finally, the unit has been deployed in the field to analyze a number of real life samples, some of them were found positive. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baxter, Van D.; Payne, W. Vance; Ling, Jiazhen
The IEA HPT Annex 40 "Heat pump concepts for Nearly Zero Energy Buildings" deals with the application of heat pumps as a core component of the HVAC system for Nearly or Net Zero energy buildings (nZEB). This report covers Task 2 on the system comparison and optimisation and Task 3 dedicated to the development of adapted technologies for nZEB and field monitoring results of heat pump systems in nZEB. In the US team three institutions are involved and have worked on the following projects: The Oak Ridge National Laboratory (ORNL) will summarize development activities through the field demonstration stage formore » several integrated heat pump (IHP) systems electric ground-source (GS-IHP) and air-source (AS-IHP) versions and an engine driven AS-IHP version. The first commercial GS-IHP product was just introduced to the market in December 2012. This work is a contribution to Task 3 of the Annex. The University of Maryland will contribute a software development project to Task 2 of the Annex. The software ThermCom evaluates occupied space thermal comfort conditions accounting for all radiative and convective heat transfer effects as well as local air properties. The National Institute of Standards and Technology (NIST) is working on a field study effort on the NIST Net Zero Energy Residential Test Facility (NZERTF). This residential building was constructed on the NIST campus and officially opened in summer 2013. During the first year, between July 2013 and June 2014, baseline performance of the NZERTF was monitored under a simulated occupancy protocol. The house was equipped with an air-to-air heat pump which included a dedicated dehumidification operating mode. Outdoor conditions, internal loads and modes of heat pump operation were monitored. Field study results with respect to heat pump operation will be reported and recommendations on heat pump optimization for a net zero energy building will be provided. This work is a contribution to Task 3 of the Annex.« less
Cox, S.E.
2002-01-01
Two low-cost innovative sampling procedures for characterizing trichloroethene (TCE) contamination in ground water were evaluated for use at McChord Air Force Base (AFB) by the U.S. Geological Survey, in cooperation with the U.S. Air Force McChord Air Force Base Installation Restoration Program, in 2001. Previous attempts to characterize the source of ground-water contamination in the heterogeneous glacial outwash aquifer at McChord site SS-34N using soil-gas surveys, direct-push exploration, and more than a dozen ground-water monitoring wells have had limited success. The procedures assessed in this study involved analysis of tree-tissue samples to map underlying ground-water contamination and deploying passive-diffusion samplers to measure TCE concentrations in existing monitoring wells. These procedures have been used successfully at other U.S. Department of Defense sites and have resulted in cost avoidance and accelerated site characterization. Despite the presence of TCE in ground water at site SS-34N, TCE was not detected in any of the 20 trees sampled at the site during either early spring or late summer sampling. The reason the tree tissue procedure was not successful at the McChord AFB site SS-34N may have been due to an inability of tree roots to extract moisture from a water table 30 feet below the land surface, or that concentrations of TCE in ground water were not large enough to be detectable in the tree tissue at the sampling point. Passive-diffusion samplers were placed near the top, middle, and bottom of screened intervals in three monitoring wells and TCE was observed in all samplers. Concentrations of TCE from the passive-diffusion samplers were generally similar to concentrations found in samples collected in the same wells using conventional pumping methods. In contrast to conventional pumping methods, the collection of ground-water samples using the passive-diffusion samples did not generate waste purge water that would require hazardous-waste disposal. In addition, the results from the passive-diffusion samples may show that TCE concentrations are stratified across some screened intervals. The overall results of the limited test of passive-diffusion samplers at site SS-34N were similar to more detailed tests conducted at other contaminated sites across the country and indicate that further evaluation of the use of passive-diffusion samplers at McChord site SS-34N is warranted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loveday, D.L.; Craggs, C.
Univariate stochastic modeling, using Box-Jenkins methods, is carried out for three air temperatures which can influence the performance of a solar-assisted heat pump system. In this system, external ambient air (the low grade source) is pre-heated by the conventional tiled roof of an occupied domestic residence. The air then crosses the evaporator of an electrically driven split heat pump which is situated in the roof space. Autocorrelation coefficients are presented for time series of the following dry-bulb temperatures: the external air, the residence internal (lounge) air, and the air in the roofspace after pre-heating but prior to crossing the heatmore » pump evaporator. Hourly data relating to a two-week period in the heating season was utilized, providing a 336-h dataset. Univariate models fitted to the first 300 observations were validated by forecasting ahead for the remaining 36 h in steps of 1 h. Comparison of forecasted and measured values showed good agreement, except for a 4-h period in which the intensity of solar radiation exceeded that which prevailed during the modeled period. It is concluded that the Box-Jenkins approach can be used to develop univariate mathematical models which adequately describe building and climate thermal behavior, and that the importance of solar radiation in this respect should not be overlooked.« less
Wavelength tunability of laser based on Yb-doped YGAG ceramics
NASA Astrophysics Data System (ADS)
Šulc, Jan; Jelínková, Helena; Jambunathan, Venkatesan; Miura, Taisuke; Endo, Akira; Lucianetti, Antonio; Mocek, TomáÅ.¡
2015-02-01
The wavelength tunability of diode pumped laser based on Yb-doped mixed garnet Y3Ga2Al3O12 (Yb:YGAG) ceramics was investigated. The tested Yb:YGAG sample (10% Yb/Y) was in the form of 2mm thick plane-parallel face-polished plate (without AR coatings). A fiber (core diameter 100 μm, NA= 0.22) coupled laser diode (LIMO, LIMO35-F100-DL980-FG-E) with emission at wavelength 969 nm, was used for longitudinal Yb:YGAG pumping. The laser diode was operating in the pulsed regime (2 ms pulse length, 10 Hz repetition rate). The duty-cycle 2% ensured a low thermal load even under the maximum diode pumping power amplitude 20W (ceramics sample was only air-cooled). The 145mm long semi-hemispherical laser resonator consisted of a flat pumping mirror (HR @ 1.01 - 1.09 μm, HT @ 0.97 μm) and curved (r = 150mm) output coupler with a reflectivity of ˜ 97% @ 1.01 - 1.09 μm. Wavelength tuning of the ytterbium laser was accomplished by using a birefringent filter (single 1.5mm thick quartz plate) placed inside the optical resonator at the Brewster angle between the output coupler and the laser active medium. The laser was continuously tunable over ˜ 58nm (from 1022nm to 1080 nm) and the tuning band was mostly limited by the free spectral range of used birefringent filter. The maximum output power amplitude 3W was obtained at wavelength 1046nm for absorbed pump power amplitude 10.6W. The laser slope efficiency was 34%.
Investigation of the tone-burst tube for duct lining attenuation measurement
NASA Technical Reports Server (NTRS)
Soffel, A. R.; Morrow, P. F.
1972-01-01
The tone burst technique makes practical the laboratory evaluation of potential inlet and discharge duct treatments. Tone burst apparatus requires only simple machined parts and standard components. Small, simply made, lining samples are quickly and easily installed in the system. Two small electromagnetric loudspeaker drivers produce peak sound pressure level of over 166 db in the 3-square-inch sample duct. Air pump available in most laboratories can produce air flows of over plus and minus Mach 0.3 in the sample duct. The technique uses short shaped pulses of sound propagated down a progressive wave tube containing the sample duct. The peak pressure level output of the treated duct is compared with the peak pressure level output of a substituted reference duct. The difference between the levels is the attenuation or insertion loss of the treated duct. Evaluations of resonant absorber linings by the tone burst technique check attenuation values predicted by empirical formulas based on full scale ducts.
7 CFR 1721.104 - Eligible purposes.
Code of Federal Regulations, 2014 CFR
2014-01-01
... measures: (i) Caulking; (ii) Weather-stripping; (iii) Heat pump systems (including water source heat pumps); (iv) Heat pumps, water heaters, and central heating or central air conditioning system replacements or modifications, which reduce energy consumption; (v) Ceiling insulation; (vi) Wall insulation; (vii) Floor...
7 CFR 1721.104 - Eligible purposes.
Code of Federal Regulations, 2012 CFR
2012-01-01
... measures: (i) Caulking; (ii) Weather-stripping; (iii) Heat pump systems (including water source heat pumps); (iv) Heat pumps, water heaters, and central heating or central air conditioning system replacements or modifications, which reduce energy consumption; (v) Ceiling insulation; (vi) Wall insulation; (vii) Floor...
7 CFR 1721.104 - Eligible purposes.
Code of Federal Regulations, 2010 CFR
2010-01-01
... measures: (i) Caulking; (ii) Weather-stripping; (iii) Heat pump systems (including water source heat pumps); (iv) Heat pumps, water heaters, and central heating or central air conditioning system replacements or modifications, which reduce energy consumption; (v) Ceiling insulation; (vi) Wall insulation; (vii) Floor...
7 CFR 1721.104 - Eligible purposes.
Code of Federal Regulations, 2013 CFR
2013-01-01
... measures: (i) Caulking; (ii) Weather-stripping; (iii) Heat pump systems (including water source heat pumps); (iv) Heat pumps, water heaters, and central heating or central air conditioning system replacements or modifications, which reduce energy consumption; (v) Ceiling insulation; (vi) Wall insulation; (vii) Floor...
7 CFR 1721.104 - Eligible purposes.
Code of Federal Regulations, 2011 CFR
2011-01-01
... measures: (i) Caulking; (ii) Weather-stripping; (iii) Heat pump systems (including water source heat pumps); (iv) Heat pumps, water heaters, and central heating or central air conditioning system replacements or modifications, which reduce energy consumption; (v) Ceiling insulation; (vi) Wall insulation; (vii) Floor...
Spencer, Austin P; Hill, Robert J; Peters, William K; Baranov, Dmitry; Cho, Byungmoon; Huerta-Viga, Adriana; Carollo, Alexa R; Curtis, Anna C; Jonas, David M
2017-06-01
In laser spectroscopy, high photon flux can perturb the sample away from thermal equilibrium, altering its spectroscopic properties. Here, we describe an optical beam scanning apparatus that minimizes repetitive sample excitation while providing shot-to-shot sample exchange for samples such as cryostats, films, and air-tight cuvettes. In this apparatus, the beam crossing point is moved within the focal plane inside the sample by scanning both tilt angles of a flat mirror. A space-filling spiral scan pattern was designed that efficiently utilizes the sample area and mirror scanning bandwidth. Scanning beams along a spiral path is shown to increase the average number of laser shots that can be sampled before a spot on the sample cell is resampled by the laser to ∼1700 (out of the maximum possible 2500 for the sample area and laser spot size) while ensuring minimal shot-to-shot spatial overlap. Both an all-refractive version and an all-reflective version of the apparatus are demonstrated. The beam scanning apparatus does not measurably alter the time delay (less than the 0.4 fs measurement uncertainty), the laser focal spot size (less than the 2 μm measurement uncertainty), or the beam overlap (less than the 3.3% measurement uncertainty), leading to pump-probe and autocorrelation signal transients that accurately characterize the equilibrium sample.
Energy storage by compressed air. [using windpowered pumps
NASA Technical Reports Server (NTRS)
Szego, G. C.
1973-01-01
The feasibility of windpower energy storage by compressed air is considered. The system is comprised of a compressor, a motor, and a pump turbine to store air in caverns or aquifiers. It is proposed that storage of several days worth of compressed air up to 650 pounds per square inch can be used to push the aquifier up closer to the container dome and thus initiate piston action by simply compressing air more and more. More energy can be put into it by pressure increase or pushing back the water in the aquifier. This storage system concept has reheat flexibility and lowest cost effectiveness.
NASA Astrophysics Data System (ADS)
Li, D. D.; Jiang, J.; Zhao, Z.; Yi, W. S.; Lan, G.
2013-12-01
We take a concrete pumping station as an example in this paper. Through the calculation of water hammer protection with a specific pumping station water supply project, and the analysis of the principle, mathematical models and boundary conditions of air vessel and over-pressure relief valve we show that the air vessel can protect the water conveyance system and reduce the transient pressure damage due to various causes. Over-pressure relief valve can effectively reduce the water hammer because the water column re-bridge suddenly stops the pump and prevents pipeline burst. The paper indicates that the combination set of air vessel and over-pressure relief valve can greatly reduce the quantity of the air valve and can eliminate the water hammer phenomenon in the pipeline system due to the vaporization and water column separation and re-bridge. The conclusion could provide a reference for the water hammer protection of long-distance water supply system.
A Simple Flotation De-Linking Experiment for the Recycling of Paper
ERIC Educational Resources Information Center
Venditti, Richard A.
2004-01-01
A laboratory exercise for the flotation de-linking of wastepaper is described, which consists of disintegrating printed wastepaper in a blender and then removing the ink or toner contaminants by pumping air bubbles through suspension using an aquarium pump or other source of air bubbles. The exercise has proven extremely reliable and consistent in…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-17
... any person wishing to bring a laptop computer into the Forrestal Building will be required to obtain a...; VRF water-source heat pumps at or greater than 135,000 Btu/h; and computer room air conditioners. DOE...-created classes of variable refrigerant flow air conditioners and heat pumps, ASHRAE 127 for computer room...
Photocopy of drawing (original drawing of Sewage Treatment Plant ...
Photocopy of drawing (original drawing of Sewage Treatment Plant - No. 1 Pump House in possession of MacDill Air Force Base, Civil Engineering, Tampa, Florida; 1940 architectural drawings by Construction Division, Office of the Quartermaster General) ELEVATIONS, SECTIONS, AND DETAILS - MacDill Air Force Base, Pump House No. 1, Hillsborough Garden Drive & Tampa Boulevard, Tampa, Hillsborough County, FL
Photocopy of drawing (original drawing of Sewage Treatment Plant ...
Photocopy of drawing (original drawing of Sewage Treatment Plant - No. 1 Pump House in possession of MacDill Air Force Base, Civil Engineering, Tampa, Florida; 1940 architectural drawings by Construction Division, Office of the Quartermaster General) FLOOR PLANS AND SECTIONS - MacDill Air Force Base, Pump House No. 1, Hillsborough Garden Drive & Tampa Boulevard, Tampa, Hillsborough County, FL
Fluid sampling system for a nuclear reactor
Lau, Louis K.; Alper, Naum I.
1994-01-01
A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump.
Fluid sampling system for a nuclear reactor
Lau, L.K.; Alper, N.I.
1994-11-22
A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump. 1 fig.
Experimental apparatus to test air trap valves
NASA Astrophysics Data System (ADS)
Lemos De Lucca, Y. de F.; de Aquino, G. A.; Filho, J. G. D.
2010-08-01
It is known that the presence of trapped air within water distribution pipes can lead to irregular operation or even damage to the distribution systems and their components. The presence of trapped air may occur while the pipes are being filled with water, or while the pumping systems are in operation. The formation of large air pockets can produce the water hammer phenomenon, the instability and the loss of pressure in the water distribution networks. As a result, it can overload the pumps, increase the consumption of electricity, and damage the pumping system. In order to avoid its formation, all of the trapped air should be removed through "air trap valves". In Brazil, manufacturers frequently have unreliable sizing charts, which cause malfunctioning of the "air trap valves". The result of these malfunctions causes accidents of substantial damage. The construction of a test facility will provide a foundation of technical information that will be used to help make decisions when designing a system of pipelines where "air trap valves" are used. To achieve this, all of the valve characteristics (geometric, mechanic, hydraulic and dynamic) should be determined. This paper aims to describe and analyze the experimental apparatus and test procedure to be used to test "air trap valves". The experimental apparatus and test facility will be located at the University of Campinas, Brazil at the College of Civil Engineering, Architecture, and Urbanism in the Hydraulics and Fluid Mechanics laboratory. The experimental apparatus will be comprised of various components (pumps, steel pipes, butterfly valves to control the discharge, flow meter and reservoirs) and instrumentation (pressure transducers, anemometer and proximity sensor). It should be emphasized that all theoretical and experimental procedures should be defined while taking into consideration flow parameters and fluid properties that influence the tests.
Air sampling with solid phase microextraction
NASA Astrophysics Data System (ADS)
Martos, Perry Anthony
There is an increasing need for simple yet accurate air sampling methods. The acceptance of new air sampling methods requires compatibility with conventional chromatographic equipment, and the new methods have to be environmentally friendly, simple to use, yet with equal, or better, detection limits, accuracy and precision than standard methods. Solid phase microextraction (SPME) satisfies the conditions for new air sampling methods. Analyte detection limits, accuracy and precision of analysis with SPME are typically better than with any conventional air sampling methods. Yet, air sampling with SPME requires no pumps, solvents, is re-usable, extremely simple to use, is completely compatible with current chromatographic equipment, and requires a small capital investment. The first SPME fiber coating used in this study was poly(dimethylsiloxane) (PDMS), a hydrophobic liquid film, to sample a large range of airborne hydrocarbons such as benzene and octane. Quantification without an external calibration procedure is possible with this coating. Well understood are the physical and chemical properties of this coating, which are quite similar to those of the siloxane stationary phase used in capillary columns. The log of analyte distribution coefficients for PDMS are linearly related to chromatographic retention indices and to the inverse of temperature. Therefore, the actual chromatogram from the analysis of the PDMS air sampler will yield the calibration parameters which are used to quantify unknown airborne analyte concentrations (ppb v to ppm v range). The second fiber coating used in this study was PDMS/divinyl benzene (PDMS/DVB) onto which o-(2,3,4,5,6- pentafluorobenzyl) hydroxylamine (PFBHA) was adsorbed for the on-fiber derivatization of gaseous formaldehyde (ppb v range), with and without external calibration. The oxime formed from the reaction can be detected with conventional gas chromatographic detectors. Typical grab sampling times were as small as 5 seconds. With 300 seconds sampling, the formaldehyde detection limit was 2.1 ppbv, better than any other 5 minute sampling device for formaldehyde. The first-order rate constant for product formation was used to quantify formaldehyde concentrations without a calibration curve. This spot sampler was used to sample the headspace of hair gel, particle board, plant material and coffee grounds for formaldehyde, and other carbonyl compounds, with extremely promising results. The SPME sampling devices were also used for time- weighted average sampling (30 minutes to 16 hours). Finally, the four new SPME air sampling methods were field tested with side-by-side comparisons to standard air sampling methods, showing a tremendous use of SPME as an air sampler.
A Discussion on Personnel Exposure to Posttest Byproducts from a 50-cal. Light Gas Gun
NASA Technical Reports Server (NTRS)
Henderson, Don; Rodriquez, Karen
2007-01-01
In January of 2002, employees working in the Hypervelocity Test Facility (HTF) at White Sands Test Facility (WSTF) began to notice common physical complaints. These included loss of smell, loss of taste, skin irritation, a burning sensation of the mucus membranes, and redness and chapping of the lips. These conditions extended to home during the weekends and throughout holiday breaks as well. Concerns about air contaminants were raised with regard to the operation of the .50-cal. two-stage light gas gun (2SLGG). Employees suspected that these conditions might be caused by air contaminants from small leaks at the gun pump tube joint at the breech, and exhaust gas entrainment into the WAC systems. The WSTF Industrial Hygienist (IH) was notified and samples were collected using the MIRAN infrared spectrometer (real time) air sampler on 08 January 2002 at the SO-cal. gun. The results from this screening test suggested the need for more detailed investigations with analytical sampling and analysis.
2013-08-08
Lay down plastic sheeting that is double the size of the mold covered in fabric in order to fully envelope the mold. o Line half of the sheet (in...the mold and connect to clay tape to create an air tight sealed bag with a hose leading to the outside pump. o Once the seal is created, turn on the...connected pump to remove all air from the bag that has been created. Ensure that as air is removed, the bag fits the form of the desired mold as
Raman conversion in intense femtosecond Bessel beams in air
NASA Astrophysics Data System (ADS)
Scheller, Maik; Chen, Xi; Ariunbold, Gombojav O.; Born, Norman; Moloney, Jerome; Kolesik, Miroslav; Polynkin, Pavel
2014-05-01
We demonstrate experimentally that bright and nearly collimated radiation can be efficiently generated in air pumped by an intense femtosecond Bessel beam. We show that this nonlinear conversion process is driven by the rotational Raman response of air molecules. Under optimum conditions, the conversion efficiency from the Bessel pump into the on-axis propagating beam exceeds 15% and is limited by the onset of intensity clamping and plasma refraction on the beam axis. Our experimental findings are in excellent agreement with numerical simulations based on the standard model for the ultrafast nonlinear response of air.
Primeau, John J.
1983-03-01
A self-starting, fuel-fired, air heating system including a vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with the provision of heat exchanger and circuitry for cooling the condensed fluid output from the pump prior to its return to the vapor generator.
Koueik, Joyce; Rocque, Brandon G; Henry, Jordan; Bragg, Taryn; Paul, Jennifer; Iskandar, Bermans J
2018-02-01
Continuous irrigation is an important adjunct for successful intraventricular endoscopy, particularly for complex cases. It allows better visualization by washing out blood and debris, improves navigation by expanding the ventricles, and assists with tissue dissection. A method of irrigation delivery using a centrifugal pump designed originally for cardiac surgery is presented. The BioMedicus centrifugal pump has the desirable ability to deliver a continuous laminar flow of fluid that excludes air from the system. A series of modifications to the pump tubing was performed to adapt it to neuroendoscopy. Equipment testing determined flow and pressure responses at various settings and simulated clinical conditions. The pump was then studied clinically in 11 endoscopy cases and eventually used in 310 surgical cases. Modifications of the pump tubing allowed for integration with different endoscopy systems. Constant flow rates were achieved with and without surgical instruments through the working ports. Optimal flow rates ranged between 30 and 100 ml/min depending on endoscope size. Intraoperative use was well tolerated with no permanent morbidity and showed consistent flow rates, minimal air accumulation, and seamless irrigation bag replacement during prolonged surgery. Although the pump is equipped with an internal safety mechanism to protect against pressure buildup when outflow obstructions occur, equipment testing revealed that flow cessation is not instantaneous enough to protect against sudden intracranial pressure elevation. A commonly available cardiac pump system was modified to provide continuous irrigation for intraventricular endoscopy. The system alleviates the problems of inconsistent flow rates, air in the irrigation lines, and delays in changing irrigation bags, thereby optimizing patient safety and surgical efficiency. Safe use of the pump requires good ventricular outflow and, clearly, sound surgical judgment.
Push pull microfluidics on a multi-level 3D CD.
Thio, Tzer Hwai Gilbert; Ibrahim, Fatimah; Al-Faqheri, Wisam; Moebius, Jacob; Khalid, Noor Sakinah; Soin, Norhayati; Kahar, Maria Kahar Bador Abdul; Madou, Marc
2013-08-21
A technique known as thermo-pneumatic (TP) pumping is used to pump fluids on a microfluidic compact disc (CD) back towards the CD center against the centrifugal force that pushes liquids from the center to the perimeter of the disc. Trapped air expands in a TP air chamber during heating, and this creates positive pressure on liquids located in chambers connected to that chamber. While the TP air chamber and connecting channels are easy to fabricate in a one-level CD manufacturing technique, this approach provides only one way pumping between two chambers, is real-estate hungry and leads to unnecessary heating of liquids in close proximity to the TP chamber. In this paper, we present a novel TP push and pull pumping method which allows for pumping of liquid in any direction between two connected liquid chambers. To ensure that implementation of TP push and pull pumping also addresses the issue of space and heating challenges, a multi-level 3D CD design is developed, and localized forced convection heating, rather than infra-red (IR) is applied. On a multi-level 3D CD, the TP features are placed on a top level separate from the rest of the microfluidic processes that are implemented on a lower separate level. This approach allows for heat shielding of the microfluidic process level, and efficient usage of space on the CD for centrifugal handling of liquids. The use of localized forced convection heating, rather than infra-red (IR) or laser heating in earlier implementations allows not only for TP pumping of liquids while the CD is spinning but also makes heat insulation for TP pumping and other fluidic functions easier. To aid in future implementations of TP push and pull pumping on a multi-level 3D CD, study on CD surface heating is also presented. In this contribution, we also demonstrate an advanced application of pull pumping through the implementation of valve-less switch pumping.
Push pull microfluidics on a multi-level 3D CD
Thio, Tzer Hwai Gilbert; Ibrahim, Fatimah; Al-Faqheri, Wisam; Moebius, Jacob; Khalid, Noor Sakinah; Soin, Norhayati; Kahar, Maria Kahar Bador Abdul; Madou, Marc
2013-01-01
A technique known as thermo-pneumatic (TP) pumping is used to pump fluids on a microfluidic compact disc (CD) back towards the CD center against the centrifugal force that pushes liquids from the center to the perimeter of the disc. Trapped air expands in a TP air chamber during heating, and this creates positive pressure on liquids located in chambers connected to that chamber. While the TP air chamber and connecting channels are easy to fabricate in a one-level CD manufacturing technique, this approach provides only one way pumping between two chambers, is real-estate hungry and leads to unnecessary heating of liquids in close proximity to the TP chamber. In this paper, we present a novel TP push and pull pumping method which allows for pumping of liquid in any direction between two connected liquid chambers. To ensure that implementation of TP push and pull pumping also addresses the issue of space and heating challenges, a multi-level 3D CD design is developed, and localized forced convection heating, rather than infra-red (IR) is applied. On a multi-level 3D CD, the TP features are placed on a top level separate from the rest of the microfluidic processes that are implemented on a lower separate level. This approach allows for heat shielding of the microfluidic process levels, and efficient usage of space on the CD for centrifugal handling of liquids. The use of localized forced convection heating, rather than infra-red (IR) or laser heating in earlier implementations allows not only for TP pumping of liquids while the CD is spinning but also makes heat insulation for TP pumping and other fluidic functions easier. To aid in future implementations of TP push and pull pumping on a multi-level 3D CD, study on CD surface heating is also presented. In this contribution, we also demonstrate an advanced application of pull pumping through the implementation of valve-less switch pumping. PMID:23774994
Liao, Wen-Jun; Chen, Wan-Wen; Wen, Zhang; Wu, Yue-Heng; Li, Dong-Feng; Zhou, Jia-Hui; Zheng, Jian-Yi; Lin, Zhan-Yi
2016-06-20
To improve Luo-Ye pump-based stress-forming system and optimize the stimulating effect on smooth muscle cells during cultivation of tissue-engineered blood vessels (TEBV). A new Luo-Ye pump-based TEBV 3D culture system was developed by adding an air pump to the output of the bioreactor. A pressure guide wire was used to measure the stress at different points of the silicone tube inside the TEBV bio-reactor, and fitting curves of the stress changes over time was created using Origin 8.0 software. The TEBVs were constructed by seeding vascular smooth muscle cells (VSMCs) isolated from human umbilical artery on polyglycolic acid (PGA) and cultured under dynamic conditions with 40 mmHg resistance (improved group), dynamic conditions without resistance (control group) or static condition (static group) for 4 weeks. The harvested TEBVs were then examined with HE staining, masson staining, α-SMA immunohistochemical staining, and scanning and transmission electron microscopy with semi-quantitative analysis of collagen content and α-SMA expression. The measured stress values and the fitting curves showed that the stress stimuli from the Luo-Ye pump were enhanced by adding an air pump to the output of the bioreactor. Histological analysis revealed improved VSMC density, collagen content and α-SMA expression in the TEBVs constructed with the improved method as compared with those in the control and static groups. Adding an air pump to the Luo-Ye pump significantly enhances the stress stimulation in the TEBV 3-D culture system to promote the secretion function of VSMCs.
Solar energy system performance evaluation report for Solaron-Duffield, Duffield, Virginia
NASA Technical Reports Server (NTRS)
1980-01-01
The Solaron Duffield Solar Energy System was designed to provide 51 percent of the space heating, and 49 percent of the domestic hot water (DHW) to a two story 1940 square foot area residence using air as the transport medium. The system consists of a 429 square foot collector array, a 265 cubic foot rock thermal storage bin, heat exchangers, an 80 gallon DHW preheat tank, pumps, blowers, controls, air ducting and associated plumbing. A air-to-liquid heat pump coupled with a 1,000gallon water storage tank provides for auxiliary space heating and can also be used for space cooling. A 52 gallon electric DHW tank using the solar preheated water provides domestic hot water to the residence. The solar system, which became operational July 1979, has the following modes of operation: First Stage: (1) collector to storage and DHW; (2)collector to space heating; (3) storage to load. Second Stage: (4) heat pump auxiliary direct; (5) auxiliary heat from heat pump storage. Third Stage: (6) electrical resistance (strip) heat.
Solar energy system performance evaluation report for Solaron-Duffield, Duffield, Virginia
NASA Astrophysics Data System (ADS)
1980-07-01
The Solaron Duffield Solar Energy System was designed to provide 51 percent of the space heating, and 49 percent of the domestic hot water (DHW) to a two story 1940 square foot area residence using air as the transport medium. The system consists of a 429 square foot collector array, a 265 cubic foot rock thermal storage bin, heat exchangers, an 80 gallon DHW preheat tank, pumps, blowers, controls, air ducting and associated plumbing. A air-to-liquid heat pump coupled with a 1,000gallon water storage tank provides for auxiliary space heating and can also be used for space cooling. A 52 gallon electric DHW tank using the solar preheated water provides domestic hot water to the residence. The solar system, which became operational July 1979, has the following modes of operation: First Stage: (1) collector to storage and DHW; (2)collector to space heating; (3) storage to load. Second Stage: (4) heat pump auxiliary direct; (5) auxiliary heat from heat pump storage. Third Stage: (6) electrical resistance (strip) heat.
White light supercontinuum generation in a Y-shaped microstructured tapered fiber pumped at 1064 nm.
Cascante-Vindas, J; Díez, A; Cruz, J L; Andrés, M V
2010-07-05
We report the generation of supercontinuum in a Ge-doped Y-shape tapered fiber pumped at 1064 nm in the ns pump regime. The taper was designed to have long taper transitions and a taper waist with a core diameter of 0.9 mum. The large air-filling fraction and diameter of the air-hole microstructure reduces the confinement loss at long wavelengths so, enabling the extension of the spectrum to longer wavelengths. Along the taper transition the zero-dispersion wavelength decreases as the diameter of the taper becomes smaller. The spectral components generated along the taper transition pump the taper waist, enhancing the generation of short wavelengths. A flat spectrum spanning from 420 nm to 1850 nm is reported.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-18
... applies to certain basic models of the Daikin Altherma system, which consists of an air-to-water heat pump... pumps, and an application for interim waiver. The Daikin Altherma system consists of an air-to-water... operates either as a split system with the compressor unit outdoors and the hydronic components in an...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-02
... Altherma system, which consists of an air-to-water heat pump that provides hydronic heating and cooling as... Altherma system consists of an air-to-water heat pump that provides hydronic space heating and cooling as well as domestic hot water functions. It operates either as a split system with the compressor unit...
Pump and Signal Taper for Airclad Fibers
2006-01-05
as follows: Crystal Fibre A/S will develop a taper/coupler solution to interface between a new polarization maintaining/polarizing amplifier fiber ...MM) pump combiner with a high NA air-clad output. The input side of the combiner is 7 individual MM pump delivery solid all- glass fibers . The NA of...pump combiner. MOTIVATION FINAL REPORT ITEM 0002 In a typical standard fused fiber coupler a number of all- glass 0.22 NA pump
NASA Astrophysics Data System (ADS)
Bent, J. D.; Sweeney, C.; Tans, P. P.; Newberger, T.; Higgs, J. A.; Wolter, S.
2017-12-01
Accurate estimates of point source gas emissions are essential for reconciling top-down and bottom-up greenhouse gas measurements, but sampling such sources is challenging. Remote sensing methods are limited by resolution and cloud cover; aircraft methods are limited by air traffic control clearances, and the need to properly determine boundary layer height. A new sampling approach leverages the ability of unmanned aerial systems (UAS) to measure all the way to the surface near the source of emissions, improving sample resolution, and reducing the need to characterize a wide downstream swath, or measure to the full height of the planetary boundary layer (PBL). The "Active-AirCore" sampler, currently under development, will fly on a fixed wing UAS in Class G airspace, spiraling from the surface to 1200 ft AGL around point sources such as leaking oil wells to measure methane, carbon dioxide and carbon monoxide. The sampler collects a 100-meter long sample "core" of air in an 1/8" passivated stainless steel tube. This "core" is run on a high-precision instrument shortly after the UAS is recovered. Sample values are mapped to a specific geographic location by cross-referencing GPS and flow/pressure metadata, and fluxes are quantified by applying Gauss's theorem to the data, mapped onto the spatial "cylinder" circumscribed by the UAS. The AirCore-Active builds off the sampling ability and analytical approach of the related AirCore sampler, which profiles the atmosphere passively using a balloon launch platform, but will add an active pumping capability needed for near-surface horizontal sampling applications. Here, we show design elements, laboratory and field test results for methane, describe the overall goals of the mission, and discuss how the platform can be adapted, with minimal effort, to measure other gas species.
Heat Pumps With Direct Expansion Solar Collectors
NASA Astrophysics Data System (ADS)
Ito, Sadasuke
In this paper, the studies of heat pump systems using solar collectors as the evaporators, which have been done so far by reserchers, are reviwed. Usually, a solar collector without any cover is preferable to one with ac over because of the necessity of absorbing heat from the ambient air when the intensity of the solar energy on the collector is not enough. The performance of the collector depends on its area and the intensity of the convective heat transfer on the surface. Fins are fixed on the backside of the collector-surface or on the tube in which the refrigerant flows in order to increase the convective heat transfer. For the purpose of using a heat pump efficiently throughout year, a compressor with variable capacity is applied. The solar assisted heat pump can be used for air conditioning at night during the summer. Only a few groups of people have studied cooling by using solar assisted heat pump systems. In Japan, a kind of system for hot water supply has been produced commercially in a company and a kind of system for air conditioning has been installed in buildings commercially by another company.
Cardoso-Neto, J.E.; Williams, D.W.
1995-01-01
A purge water management system is described for effectively eliminating the production of purge water when obtaining a groundwater sample from a monitoring well. In its preferred embodiment, the purge water management system comprises an expandable container, a transportation system, and a return system. The purge water management system is connected to a wellhead sampling configuration, typically permanently installed at the well site. A pump, positioned with the monitoring well, pumps groundwater through the transportation system into the expandable container, which expands in direct proportion with volume of groundwater introduced, usually three or four well volumes, yet prevents the groundwater from coming into contact with the oxygen in the air. After this quantity of groundwater has been removed from the well, a sample is taken from a sampling port, after which the groundwater in the expandable container can be returned to the monitoring well through the return system. The purge water management system prevents the purge water from coming in contact with the outside environment, especially oxygen, which might cause the constituents of the groundwater to oxidize. Therefore, by introducing the purge water back into the monitoring well, the necessity of dealing with the purge water as a hazardous waste under the Resource Conservation and Recovery Act is eliminated.
Cardoso-Neto, Joao E.; Williams, Daniel W.
1996-01-01
A purge water management system for effectively eliminating the production of purge water when obtaining a groundwater sample from a monitoring well. In its preferred embodiment, the purge water management system comprises an expandable container, a transportation system, and a return system. The purge water management system is connected to a wellhead sampling configuration, typically permanently installed at the well site. A pump, positioned with the monitoring well, pumps groundwater through the transportation system into the expandable container, which expands in direct proportion with volume of groundwater introduced, usually three or four well volumes, yet prevents the groundwater from coming into contact with the oxygen in the air. After this quantity of groundwater has been removed from the well, a sample is taken from a sampling port, after which the groundwater in the expandable container can be returned to the monitoring well through the return system. The purge water management system prevents the purge water from coming in contact with the outside environment, especially oxygen, which might cause the constituents of the groundwater to oxidize. Therefore, by introducing the purge water back into the monitoring well, the necessity of dealing with the purge water as a hazardous waste under the Resource Conservation and Recovery Act is eliminated.
Jacob, Soosan; Narasimhan, Smita; Agarwal, Amar; Agarwal, Athiya; A I, Saijimol
2017-08-01
To assess an air pump-assisted technique for graft centration, graft edge unfolding, and graft uncreasing while performing pre-Descemet endothelial keratoplasty (PDEK) using young donor grafts. Continuous pressurized air infusion was used for graft centration, graft edge unfolding, and graft unwrinkling. Ten eyes of 10 patients underwent PDEK with donors aged below 40 years. In all eyes, the donor scrolled into tight scrolls. In all cases, the air pump-assisted technique was effective in positioning and centering the graft accurately and in straightening infolded graft edges and smoothing out graft creases and wrinkles. Endothelial cell loss was 38.6%. Postoperative best-corrected visual acuity at 6 months was 0.66 ± 0.25 in decimal equivalent. Continuous pressurized air infusion acted as a third hand providing a continuous pressure head that supported the graft and prevented graft dislocation as well as anterior chamber collapse during intraocular maneuvering. Adequate maneuvering space was available in all cases, and bleeding, if any, was tamponaded successfully in all cases. Although very young donor grafts may be used for PDEK, they are difficult to center and unroll completely before floating against host stroma. An air pump-assisted technique using continuous pressurized air infusion allows successful final graft positioning even with very young donor corneas. It thus makes surgery easier as several key steps are made easier to handle. It additionally helps in tamponading hemorrhage during peripheral iridectomy, increasing surgical space, preventing fluctuations in the anterior chamber depth, and promoting graft adherence.
NASA Technical Reports Server (NTRS)
Sauer, Richard L.; Scheld, H. W.; Magnuson, J. W.
1989-01-01
Self-contained seed-sprouting system provides environment for sprouting seeds quickly and easily. Sprouting container standard 6-oz package for dehydrated food and drink mixes in Space Shuttle. About 4 g of dry alfalfa or radish seeds vacuum-sealed in each cup, like freeze-dried foods. Sixteen cups suspended in tray. Air-and-water inlet tube links each cup to system of tubes and solenoid valves alternately furnish air and water and remove stale air. Peristaltic pump supplies water from vinyl medical-fluid bag. Small diaphragm pump supplies and exhausts air. Small circuit board times movements of air and water. Kit offers advantages to home gardeners. Apartment dwellers use it for steady production of homegrown sprouts even though they have no garden space.
ATimer-Actuated, Immunoassay Cassette for Detecting Molecular Markers in Oral Fluids
Liu, Changchun; Qiu, Xianbo; Ongagna, Serge; Chen, Dafeng; Chen, Zongyuan; Abrams, William R.; Malamud, Daniel; Corstjens, Paul L.A.M.; Bau, Haim H.
2009-01-01
An inexpensive, hand-held, point-of-care, disposable, self-contained, immunoassay cassette comprised of air pouches for pumping, a metering chamber, reagents storage chambers, a mixer, and a lateral flow strip was designed, constructed, and tested. The assay was carried out in a consecutive flow format. The detection was facilitated with up-converting, phosphor (UCP) reporter particles. The automated, timely pumping of the various reagents was driven by a spring-loaded timer. The utility of the cassette was demonstrated by detecting antibodies to HIV in saliva samples and further evaluated with a non-contagious, haptenized DNA assay. The cassette has several advantages over dip sticks such as sample preprocessing, integrated storage of reagents, and automated operation that reduces operator errors and training. The cassette and actuator described herein can readily be extended to detect biomarkers of other diseases in body fluids and other fluids at the point of care. The system is particularly suitable for resource poor countries, where funds and trained personnel are in short supply. PMID:19255658
Interaction of cold radiofrequency plasma with seeds of beans (Phaseolus vulgaris)
Bormashenko, Edward; Shapira, Yekaterina; Grynyov, Roman; Whyman, Gene; Bormashenko, Yelena; Drori, Elyashiv
2015-01-01
The impact of cold radiofrequency air plasma on the wetting properties and water imbibition of beans (Phaseolus vulgaris) was studied. The influence of plasma on wetting of a cotyledon and seed coat (testa) was elucidated. It was established that cold plasma treatment leads to hydrophilization of the cotyledon and tissues constituting the testa when they are separately exposed to plasma. By contrast, when the entire bean is exposed to plasma treatment, only the external surface of the bean is hydrophilized by the cold plasma. Water imbibition by plasma-treated beans was studied. Plasma treatment markedly accelerates the water absorption. The crucial role of a micropyle in the process of water imbibition was established. It was established that the final percentage of germination was almost the same in the cases of plasma-treated, untreated, and vacuum-pumped samples. However, the speed of germination was markedly higher for the plasma-treated samples. The influence of the vacuum pumping involved in the cold plasma treatment on the germination was also clarified. PMID:25948708
An electrical sensor for long-term monitoring of ultrafine particles in workplaces
NASA Astrophysics Data System (ADS)
Lanki, Timo; Tikkanen, Juha; Janka, Kauko; Taimisto, Pekka; Lehtimäki, Matti
2011-07-01
Pegasor Oy Ltd. (Finland) has developed a diffusion charging measurement device that enables continuous monitoring of fine particle concentration at a low initial and lifecycle cost. The innovation, for which an international process and apparatus patent has been applied for, opens doors for monitoring nanoparticle concentrations in workplaces. The Pegasor Particle Sensor (PPS) operates by electrostatically charging particles passing through the sensor and then measuring the current caused by the charged particles as they leave the sensor. The particles never touch the sensor and so never accumulate on its surfaces or need to be cleaned off. The sensor uses an ejector pump to draw a constant sample flow into the sensing area where it is mixed with the clean, charged pump flow air (provided by an external source). The sample flow containing charged particles passes through the sensor. The current generated by the charge leaving the detection volume is measured and related to the particle surface area. This system is extremely simple and reliable - no contact, no moving parts, and all critical parts of the sensor are constantly cleaned by a stream of fresh, filtered air. Due to the ejector pump, the sample flow, and respectively the sensor response is independent of the flow and pressure conditions around the sampling inlet. Tests with the Pegasor Particle Sensor have been conducted in a laboratory, and at a workplace producing nanoparticles for glass coatings. A new measurement protocol has been designed to ensure that process workers are not exposed to unusually high nanoparticle concentrations at any time during their working day. One sensor is placed inside the process line, and a light alarm system indicates the worker not to open any protective shielding or ventilation systems before concentration inside has reached background levels. The benefits of PPS in industrial hygiene are that the same monitoring technology can be used at the source as well as at the worker breathing zone. Up to eight sensors can be installed in series for centralized monitoring of the whole process in real time.
In situ study of live specimens in an environmental scanning electron microscope.
Tihlaříková, Eva; Neděla, Vilém; Shiojiri, Makoto
2013-08-01
In this paper we introduce new methodology for the observation of living biological samples in an environmental scanning electron microscope (ESEM). The methodology is based on an unconventional initiation procedure for ESEM chamber pumping, free from purge-flood cycles, and on the ability to control thermodynamic processes close to the sample. The gradual and gentle change of the working environment from air to water vapor enables the study of not only living samples in dynamic in situ experiments and their manifestation of life (sample walking) but also its experimentally stimulated physiological reactions. Moreover, Monte Carlo simulations of primary electron beam energy losses in a water layer on the sample surface were studied; consequently, the influence of the water thickness on radiation, temperature, or chemical damage of the sample was considered.
NASA Astrophysics Data System (ADS)
Choi, Tae-Youl
Ultra-short pulsed laser radiation has been shown to be effective for precision materials processing and surface micro-modification. One of advantages is the substantial reduction of the heat penetration depth, which leads to minimal lateral damage. Other advantages include non-thermal nature of ablation process, controlled ablation and ideal characteristics for precision micro-structuring. Yet, fundamental questions remain unsolved regarding the nature of melting and ablation mechanisms in femtosecond laser processing of materials. In addition to micro engineering problems, nano-structuring and nano-fabrication are emerging fields that are of particular interest in conjunction with femtosecond laser processing. A comprehensive experimental study as well as theoretical development is presented to address these issues. Ultra-short pulsed laser irradiation was used to crystallize 100 nm amorphous silicon (a-Si) films. The crystallization process was observed by time-resolved pump-and-probe reflection imaging in the range of 0.2 ps to 100 ns. The in-situ images in conjunction with post-processed SEM and AFM mapping of the crystallized structure provide evidence for non-thermal ultra-fast phase transition and subsequent surface-initiated crystallization. Mechanisms of ultra-fast laser-induced ablation on crystalline silicon and copper are investigated by time-resolved pump-and-probe microscopy in normal imaging and shadowgraph arrangements. A one-dimensional model of the energy transport is utilized to predict the carrier temperature and lattice temperature as well as the electron and vapor flux emitted from the surface. The temporal delay between the pump and probe pulses was set by a precision translation stage up to about 500 ps and then extended to the nanosecond regime by an optical fiber assembly. The ejection of material was observed at several picoseconds to tens of nanoseconds after the main (pump) pulse by high-resolution, ultra-fast shadowgraphs. The ultrashort laser pulse accompanied by the pre-pulse induces air breakdown that can be detrimental to materials processing. A time-resolved pump-and-probe experiment provides distinct evidence for the occurrence of an air plasma and air breakdown. This highly nonlinear phenomenon takes place before the commencement of the ablation process, which is traced beyond elapsed time of the order of 10 ps with respect to the ablating pulse. The nonlinear refractive index of the generated air plasma is calculated as a function of electron density. The self-focusing of the main pulse is identified by the third order nonlinear susceptibility. A crystalline silicon sample is subjected to two optically separated ultra-fast laser pulses of full-width-half-maximum (FWHM) duration of about 80 femtoseconds. These pulses are delivered at wavelength, lambda = 800 nm. Femtosecond-resolved imaging pump-and-probe experiments in reflective and Schlieren configurations have been performed to investigate plasma dynamics and shock wave propagation during the sample ablation process. By using a diffractive optical element (DOE) for beam shaping, microchannels were fabricated. A super-long working distance objective lens was used to machine silicon materials in the sub-micrometer scale. As an extension of micro-machining, the finite difference time domain (FDTD) method is used to assess the feasibility of using near-field distribution of laser light. Gold coated films were machined with nano-scale dimensions and characterized with atomic force microscopy (AFM).
Microbial Groundwater Sampling Protocol for Fecal-Rich Environments
Harter, Thomas; Watanabe, Naoko; Li, Xunde; Atwill, Edward R; Samuels, William
2014-01-01
Inherently, confined animal farming operations (CAFOs) and other intense fecal-rich environments are potential sources of groundwater contamination by enteric pathogens. The ubiquity of microbial matter poses unique technical challenges in addition to economic constraints when sampling wells in such environments. In this paper, we evaluate a groundwater sampling protocol that relies on extended purging with a portable submersible stainless steel pump and Teflon® tubing as an alternative to equipment sterilization. The protocol allows for collecting a large number of samples quickly, relatively inexpensively, and under field conditions with limited access to capacity for sterilizing equipment. The protocol is tested on CAFO monitoring wells and considers three cross-contamination sources: equipment, wellbore, and ambient air. For the assessment, we use Enterococcus, a ubiquitous fecal indicator bacterium (FIB), in laboratory and field tests with spiked and blank samples, and in an extensive, multi-year field sampling campaign on 17 wells within 2 CAFOs. The assessment shows that extended purging can successfully control for equipment cross-contamination, but also controls for significant contamination of the well-head, within the well casing and within the immediate aquifer vicinity of the well-screen. Importantly, our tests further indicate that Enterococcus is frequently entrained in water samples when exposed to ambient air at a CAFO during sample collection. Wellbore and air contamination pose separate challenges in the design of groundwater monitoring strategies on CAFOs that are not addressed by equipment sterilization, but require adequate QA/QC procedures and can be addressed by the proposed sampling strategy. PMID:24903186
Major, Matthew J.; Caldwell, Ryan; Fatone, Stefania
2015-01-01
Vacuum-assisted suspension (VAS) of prosthetic sockets utilizes a pump to evacuate air from between the prosthetic liner and socket, and are available as mechanical or electric systems. This technical note describes a hybrid pump that benefits from the advantages of mechanical and electric systems, and evaluates a prototype as proof-of-concept. Cyclical bench testing of the hybrid pump mechanical system was performed using a materials testing system to assess the relationship between compression cycles and vacuum pressure. Phase 1 in vivo testing of the hybrid pump was performed by an able-bodied individual using prosthesis simulator boots walking on a treadmill, and phase 2 involved an above-knee prosthesis user walking with the hybrid pump and a commercial electric pump for comparison. Bench testing of 300 compression cycles produced a maximum vacuum of 24 in-Hg. In vivo testing demonstrated that the hybrid pump continued to pull vacuum during walking, and as opposed to the commercial electric pump, did not require reactivation of the electric system during phase 2 testing. The novelty of the hybrid pump is that while the electric system provides rapid, initial vacuum suspension, the mechanical system provides continuous air evacuation while walking to maintain suspension without reactivation of the electric system, thereby allowing battery power to be reserved for monitoring vacuum levels. PMID:27462383
Laser-induced damage thresholds of gold, silver and their alloys in air and water
NASA Astrophysics Data System (ADS)
Starinskiy, Sergey V.; Shukhov, Yuri G.; Bulgakov, Alexander V.
2017-02-01
The nanosecond-laser-induced damage thresholds of gold, silver and gold-silver alloys of various compositions in air and water have been measured for single-shot irradiation conditions. The experimental results are analyzed theoretically by solving the heat flow equation for the samples irradiated in air and in water taking into account vapor nucleation at the solid-water interface. The damage thresholds of Au-Ag alloys are systematically lower than those for pure metals, both in air and water that is explained by lower thermal conductivities of the alloys. The thresholds measured in air agree well with the calculated melting thresholds for all samples. The damage thresholds in water are found to be considerably higher, by a factor of ∼1.5, than the corresponding thresholds in air. This cannot be explained, in the framework of the used model, neither by the conductive heat transfer to water nor by the vapor pressure effect. Possible reasons for the high damage thresholds in water such as scattering of the incident laser light by the vapor-liquid interface and the critical opalescence in the superheated water are suggested. Optical pump-probe measurements have been performed to study the reflectance dynamics of the surface irradiated in air and water. Comparison of the transient reflectance signal with the calculated nucleation dynamics provides evidence that the both suggested scattering mechanisms are likely to occur during metal ablation in water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-09-01
BEETIT Project: Astronautics is developing an air conditioning system that relies on magnetic fields. Typical air conditioners use vapor compression to cool air. Vapor compression uses a liquid refrigerant to circulate within the air conditioner, absorb the heat, and pump the heat out into the external environment. Astronautics’ design uses a novel property of certain materials, called “magnetocaloric materials”, to achieve the same result as liquid refrigerants. These magnetocaloric materials essentially heat up when placed within a magnetic field and cool down when removed, effectively pumping heat out from a cooler to warmer environment. In addition, magnetic refrigeration uses nomore » ozone-depleting gases and is safer to use than conventional air conditioners which are prone to leaks.« less
Control of respiration in fish, amphibians and reptiles.
Taylor, E W; Leite, C A C; McKenzie, D J; Wang, T
2010-05-01
Fish and amphibians utilise a suction/force pump to ventilate gills or lungs, with the respiratory muscles innervated by cranial nerves, while reptiles have a thoracic, aspiratory pump innervated by spinal nerves. However, fish can recruit a hypobranchial pump for active jaw occlusion during hypoxia, using feeding muscles innervated by anterior spinal nerves. This same pump is used to ventilate the air-breathing organ in air-breathing fishes. Some reptiles retain a buccal force pump for use during hypoxia or exercise. All vertebrates have respiratory rhythm generators (RRG) located in the brainstem. In cyclostomes and possibly jawed fishes, this may comprise elements of the trigeminal nucleus, though in the latter group RRG neurons have been located in the reticular formation. In air-breathing fishes and amphibians, there may be separate RRG for gill and lung ventilation. There is some evidence for multiple RRG in reptiles. Both amphibians and reptiles show episodic breathing patterns that may be centrally generated, though they do respond to changes in oxygen supply. Fish and larval amphibians have chemoreceptors sensitive to oxygen partial pressure located on the gills. Hypoxia induces increased ventilation and a reflex bradycardia and may trigger aquatic surface respiration or air-breathing, though these latter activities also respond to behavioural cues. Adult amphibians and reptiles have peripheral chemoreceptors located on the carotid arteries and central chemoreceptors sensitive to blood carbon dioxide levels. Lung perfusion may be regulated by cardiac shunting and lung ventilation stimulates lung stretch receptors.
NASA Technical Reports Server (NTRS)
Brooks, R. L. (Inventor)
1979-01-01
A multipoint fluid sample collection and distribution system is provided wherein the sample inputs are made through one or more of a number of sampling valves to a progressive cavity pump which is not susceptible to damage by large unfiltered particles. The pump output is through a filter unit that can provide a filtered multipoint sample. An unfiltered multipoint sample is also provided. An effluent sample can be taken and applied to a second progressive cavity pump for pumping to a filter unit that can provide one or more filtered effluent samples. The second pump can also provide an unfiltered effluent sample. Means are provided to periodically back flush each filter unit without shutting off the whole system.
Jaipieam, Somsiri; Visuthismajarn, Parichart; Siriwong, Wattasit; Borjan, Marija; Robson, Mark G.
2009-01-01
This study investigated inhalation exposure to organophosphate pesticides (OPPs) and evaluated the associated health risks to vegetable growers living in the Bang-Rieng agricultural community. Air samples were collected by using personal sampling pumps with sorbent tubes placed in the vegetable growers' breathing zone. Samples were collected during both wet and dry seasons. Residues of organophosphate pesticides, that is, chlorpyrifos, dicrotofos, and profenofos, were analyzed from 33 vegetable growers and 17 reference subjects. Results showed that median concentrations of OPPs in air in farm areas were in the range of 0.022–0.056 mg/m3 and air in nonfarm areas in the range of <0.0016–<0.005 mg/m3. The concentration of the three pesticides in the vegetable growers was significantly higher than that of the references during both seasons. The results also indicate that the vegetable growers may be at risk for acute adverse effects via the inhalation of chlorpyrifos and dicrotofos during pesticide application, mixing, loading, and spraying. It is suggested that authorities and the community should implement appropriate strategies concerning risk reduction and risk management. PMID:20168980
Capillary pumping independent of the liquid surface energy and viscosity
NASA Astrophysics Data System (ADS)
Guo, Weijin; Hansson, Jonas; van der Wijngaart, Wouter
2018-03-01
Capillary pumping is an attractive means of liquid actuation because it is a passive mechanism, i.e., it does not rely on an external energy supply during operation. The capillary flow rate generally depends on the liquid sample viscosity and surface energy. This poses a problem for capillary-driven systems that rely on a predictable flow rate and for which the sample viscosity or surface energy are not precisely known. Here, we introduce the capillary pumping of sample liquids with a flow rate that is constant in time and independent of the sample viscosity and sample surface energy. These features are enabled by a design in which a well-characterized pump liquid is capillarily imbibed into the downstream section of the pump and thereby pulls the unknown sample liquid into the upstream pump section. The downstream pump geometry is designed to exert a Laplace pressure and fluidic resistance that are substantially larger than those exerted by the upstream pump geometry on the sample liquid. Hence, the influence of the unknown sample liquid on the flow rate is negligible. We experimentally tested pumps of the new design with a variety of sample liquids, including water, different samples of whole blood, different samples of urine, isopropanol, mineral oil, and glycerol. The capillary filling speeds of these liquids vary by more than a factor 1000 when imbibed to a standard constant cross-section glass capillary. In our new pump design, 20 filling tests involving these liquid samples with vastly different properties resulted in a constant volumetric flow rate in the range of 20.96-24.76 μL/min. We expect this novel capillary design to have immediate applications in lab-on-a-chip systems and diagnostic devices.
The influence of layering and barometric pumping on firn air transport in a 2-D model
NASA Astrophysics Data System (ADS)
Birner, Benjamin; Buizert, Christo; Wagner, Till J. W.; Severinghaus, Jeffrey P.
2018-06-01
Ancient air trapped in ice core bubbles has been paramount to developing our understanding of past climate and atmospheric composition. Before air bubbles become isolated in ice, the atmospheric signal is altered in the firn column by transport processes such as advection and diffusion. However, the influence of low-permeability layers and barometric pumping (driven by surface pressure variability) on firn air transport is not well understood and is not readily captured in conventional one-dimensional (1-D) firn air models. Here we present a two-dimensional (2-D) trace gas advection-diffusion-dispersion model that accounts for discontinuous horizontal layers of reduced permeability. We find that layering or barometric pumping individually yields too small a reduction in gravitational settling to match observations. In contrast, when both effects are active, the model's gravitational fractionation is suppressed as observed. Layering focuses airflows in certain regions in the 2-D model, which acts to amplify the dispersive mixing resulting from barometric pumping. Hence, the representation of both factors is needed to obtain a realistic emergence of the lock-in zone. In contrast to expectations, we find that the addition of barometric pumping in the layered 2-D model does not substantially change the differential kinetic fractionation of fast- and slow-diffusing trace gases. Like 1-D models, the 2-D model substantially underestimates the amount of differential kinetic fractionation seen in actual observations, suggesting that further subgrid-scale processes may be missing in the current generation of firn air transport models. However, we find robust scaling relationships between kinetic isotope fractionation of different noble gas isotope and elemental ratios. These relationships may be used to correct for kinetic fractionation in future high-precision ice core studies and can amount to a bias of up to 0.45 °C in noble-gas-based mean ocean temperature reconstructions at WAIS Divide, Antarctica.
Credit PSR. Northeast and southwest facades of Sewage Pumping Station ...
Credit PSR. Northeast and southwest facades of Sewage Pumping Station (Building 4330). Building retains its World War II construction materials and character. In the background at the extreme left is Building 4305 (Unicon Portable Hangar) - Edwards Air Force Base, North Base, Sewage Pumping Station, Southwest of E Street, Boron, Kern County, CA
Liquid jet pumped by rising gas bubbles
NASA Technical Reports Server (NTRS)
Hussain, N. A.; Siegel, R.
1975-01-01
A two-phase mathematical model is proposed for calculating the induced turbulent vertical liquid flow. Bubbles provide a large buoyancy force and the associated drag on the liquid moves the liquid upward. The liquid pumped upward consists of the bubble wakes and the liquid brought into the jet region by turbulent entrainment. The expansion of the gas bubbles as they rise through the liquid is taken into account. The continuity and momentum equations are solved numerically for an axisymmetric air jet submerged in water. Water pumping rates are obtained as a function of air flow rate and depth of submergence. Comparisons are made with limited experimental information in the literature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraybill, R.L.; Smart, G.R.; Bopp, F.
1985-09-04
A Problem Confirmation Study was performed at seven sites on Otis Air National Guard Base: the Current and Former Training Areas, the Base Landfill, the Nondestructive Inspection Laboratory, the Fuel Test Dump Site, the Railyard Fuel Pumping Station, and the Petrol Fuel Storage Area. The field investigation was conducted in two stages, in November 1983 through January 1984, and in October through December 1984. Resampling was performed at selected locations in April and July 1985. A total of 11 monitor wells were installed and sampled and test-pit investigations were conducted at six sites. In addition, the contents of a sumpmore » tank, and two header pipes for fuel-transmission lines were sampled. Analytes included TOC, TOX, cyanide, phenols, Safe Drinking Water metals, pesticides and herbicides, and in the second round, priority-pollutant volatile organic compounds and a GC fingerprint scan for fuel products. On the basis of the field-work findings, it is concluded that, to date, water-quality impacts on ground water from past activities have been minimal.« less
NASA Astrophysics Data System (ADS)
Mohr, Manuel; Laemmel, Thomas; Maier, Martin; Schindler, Dirk
2017-04-01
Commonly it is assumed that soil gas transport is dominated by molecular diffusion. Few recent studies indicate that the atmosphere above the soil triggers non-diffusive gas transport processes in the soil, which can enhance soil gas transport and therefore soil gas efflux significantly. During high wind speed conditions, the so called pressure pumping effect has been observed: the enhancement of soil gas transport through dynamic changes in the air pressure field above the soil. However, the amplitudes and frequencies of the air pressure fluctuations responsible for pressure pumping are still uncertain. Moreover, an in situ observation of the pressure pumping effect is still missing. To investigate the pressure pumping effect, airflow measurements above and below the canopy of a Scots pine forest and high-precision relative air pressure measurements were conducted in the below-canopy space and in the soil over a measurement period of 16 weeks. To monitor the soil gas transport, a newly developed gas measurement system was used. The gas measurement system continuously injects helium as a tracer gas into the soil until a diffusive steady state is reached. With the steady state concentration profile of the tracer gas, it is possible to inversely model the gas diffusion coefficient profile of the soil. If the gas diffusion coefficient profile differed from steady state, we deduced that the soil gas transport is not only diffusive, but also influenced by non-diffusive processes. Results show that the occurrence of small air pressure fluctuations is strongly dependent on the mean above-canopy wind speed. The wind-induced air pressure fluctuations have mean amplitudes up to 10 Pa and lie in the frequency range 0.01-0.1 Hz. To describe the pumping motion of the air pressure field, the pressure pumping coefficient (PPC) was defined as the mean change in pressure per second. The PPC shows a clear quadratic dependence on mean above-canopy wind speed. Empirical modelling of the measured topsoil helium concentration demonstrated that the PPC is the most important predictor for changes in the topsoil helium concentration. Comparison of time periods with high PPC and periods of low PPC showed that the soil gas diffusion coefficient in depths between 5-10 cm increased up to 30% during periods of high PPC compared to steady state. Thus, the air pressure fluctuations observed in the atmosphere and described by the PPC penetrate into the soil and influence the topsoil gas transport.
Custom Unit Pump Development for the EVA PLSS
NASA Technical Reports Server (NTRS)
Schuller, Michael; Kurwitz, Cable; Little, Frank; Oinuma, Ryoji; Larsen, Ben; Goldman, Jeff; Reinis, Filip; Trevino, Luis
2010-01-01
This paper describes the effort by the Texas Engineering Experiment Station (TEES) and Honeywell for NASA to design and test a pre-flight prototype pump for use in the Extra-vehicular activity (EVA) portable life support subsystem (PLSS). Major design decisions were driven by the need to reduce the pump s mass, power, and volume compared to the existing PLSS pump. In addition, the pump must accommodate a much wider range of abnormal conditions than the existing pump, including vapor/gas bubbles and increased pressure drop when employed to cool two suits simultaneously. A positive displacement, external gear type pump was selected because it offers the most compact and highest efficiency solution over the required range of flow rates and pressure drops. An additional benefit of selecting a gear pump design is that it is self priming and capable of ingesting non-condensable gas without becoming air locked. The chosen pump design consists of a 28 V DC, brushless, seal-less, permanent magnet motor driven, external gear pump that utilizes a Honeywell development that eliminates the need for magnetic coupling. The pump design was based on existing Honeywell designs, but incorporated features specifically for the PLSS application, including all of the key features of the flight pump. Testing at TEES verified that the pump meets the design requirements for range of flow rates, pressure drop, power consumption, working fluid temperature, operating time, gas ingestion, and restart capability under both ambient and vacuum conditions. The pump operated at 40 to 240 lbm/hr flow rate, 35 to 100 oF pump temperature, and 5 to 10 psid pressure rise. Power consumption of the pump controller at the nominal operating point in both ambient and vacuum conditions was 9.5 W, which was less than the 12 W predicted. Gas ingestion capabilities were tested by injecting 100 cc of air into the fluid line; the pump operated normally throughout this test.
Density assessment and mapping of microorganisms around a biocomposting plant in Sanandaj, Iran.
Rashidi, Sanaz; Shahmoradi, B; Maleki, Afshin; Sharafi, Kiomars; Darvishi, Ebrahim
2017-05-01
Exposure to microorganisms can cause various diseases or exacerbate the excitatory responses, inflammation, dry cough and shortness of breath, reduced lung function, chronic obstructive pulmonary disease, and allergic response or allergic immune. The aim of the present study was to investigate the density of microorganisms around the air of processing facilities of a biocomposting plant. Each experiment was carried out according to ASTM E884-82 (2001) method. The samples were collected from inhaled air in four locations of the plant, which had a high traffic of workers and employees, including screen, conveyor belt, aerated compost pile, and static compost pile. The sampling was repeated five times for each location selected. The wind speed and its direction were measured using an anemometer. Temperature and humidity were also recorded at the time of sampling. The multistage impactor used for sampling was equipped with a solidified medium (agar) and a pump (with a flow rate of 28.3 l/m) for passing air through the media. It was found that the mean density of total bacteria was >1.7 × 10 3 cfu/m 3 in the study area. Moreover, the mean densities of fungi, intestinal bacteria (Klebsiella), and Staphylococcus aureus were 5.9 × 10 3 , 3.3 × 10 3 , and 4.1 × 10 3 cfu/m 3 , respectively. In conclusion, according to the findings, the density of bacteria and fungi per cubic meter of air in the samples collected around the processing facilities of the biocomposting plant in Sanandaj City was higher than the microbial standard for inhaled air.
NASA Astrophysics Data System (ADS)
Abbatiello, L. A.; Nephew, E. A.; Ballou, M. L.
1981-03-01
The efficiency and life cycle costs of the brine chiller minimal annual cycle energy system (ACES) for residential space heating, air conditioning, and water heating requirements are compared with three conventional systems. The conventional systems evaluated are a high performance air-to-air heat pump with an electric resistance water heater, an electric furnace with a central air conditioner and an electric resistance water heater, and a high performance air-to-air heat pump with a superheater unit for hot water production. Monthly energy requirements for a reference single family house are calculated, and the initial cost and annual energy consumption of the systems, providing identical energy services, are computed and compared. The ACES consumes one third to one half ot the electrical energy required by the conventional systems and delivers the same annual loads at comparable costs.
24 CFR 3280.714 - Appliances, cooling.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Systems § 3280.714 Appliances, cooling. (a) Every air conditioning unit or a combination air conditioning...) Mechanical air conditioners shall be rated in accordance with the ARI Standard 210/240-89 Unitary Air Conditioning and Air Source Unitary Heat Pump Equipment and certified by ARI or other nationally recognized...
24 CFR 3280.714 - Appliances, cooling.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Systems § 3280.714 Appliances, cooling. (a) Every air conditioning unit or a combination air conditioning...) Mechanical air conditioners shall be rated in accordance with the ARI Standard 210/240-89 Unitary Air Conditioning and Air Source Unitary Heat Pump Equipment and certified by ARI or other nationally recognized...
Delta14 CO2 Atmospheric Record from Schauinsland, Germany
Levin, Ingeborg [Institut fur Umweltphysik, University of Heidelberg, Heidelberg, Germany; Kromer, Bernd [Institut fur Umweltphysik, University of Heidelberg, Heidelberg, Germany
1997-01-01
All air samples at Schauinsland have been collected from a ventilated intake stack approximately 7m above the ground. Bi-weekly integrated CO2 samples from about 15-20 m3 of air have been continuously collected by dynamic quantitative absorption in carbonate-free sodium hydroxide (NaOH) solution. Air has been pumped through a rotating glass tube filled with a packed bed of Raschig rings (hard glass) to enlarge the surface of the absorbing NaOH solution (200 ml of 4 normal NaOH). The CO2 absorption is quantitative and samples represent mean values of 10 days to 2 weeks. In the laboratory, the samples are extracted from the NaOH solution in a vacuum system by adding hydrochloric or sulfuric acid. 13C analyses of the CO2 are by mass spectrometry and 14C analyses are by high precision proportional counting, after purification of the CO2 sample over charcoal (Schoch et al. 1980, Kromer and Münnich 1992). δ13C values are given relative to the V-PDB standard (Hut 1987) with the overall precision of a single analysis reported to be +/- 0.15 per mil (Levin and Kromer 1997). δ14C data are given relative to the NIST oxalic acid activity corrected for decay (Stuiver and Polach 1977) with the precision of a single δ14C measurement reported to be +/- 3-5 per mil (Levin and Kromer 1997).
Contamination of successive samples in portable pumping systems
Robert B. Thomas; Rand E. Eads
1983-01-01
Automatic discrete sample pumping systems used to monitor water quality should deliver to storage all materials pumped in a given cycle. If they do not, successive samples will be contaminated, a severe problem with highly variable suspended sediment concentrations in small streams. The cross-contamination characteristics of two small commonly used portable pumping...
NASA Astrophysics Data System (ADS)
Delay, Jacques; Distinguin, Marc
ANDRA (Agence Nationale pour la Gestion de Déchets Radioactifs) has developed an integrated approach to characterizing the hydrogeology of the carbonate strata that encase the Callovo-Oxfordian argillite at the Meuse/Haute-Marne Laboratory site. The argillites are difficult to characterize due to their low permeability. The barrier properties of the argillites can be inferred from the flow and chemistry properties of the encasing Oxfordian and Dogger carbonates. Andras deep hole approach uses reverse air circulation drilling, geophysical logging, flow meter logging, geochemical sampling, and analyses of the pumping responses during sampling. The data support numerical simulations that evaluate the argillites hydraulic behaviour.
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
Case study of a DOE 2015 Housing Innovation Award winning custom home in the cold climate that got a HERS 30 without PV, with 2x8 24” on center walls with blown fiberglass and 4” polysio rigid foam; basement with 2” XPS interior, 4” under slab, 4” exterior of foundation wall; vented attic with R-100 blown cellulose; wo air-to-air heat pumps SEER 14.1; HSPF 9.6; heat pump water heater.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Uniform Test Method for Measuring the Energy Consumption of Central Air Conditioners and Heat Pumps M Appendix M to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App. M Appendix M to Subpart B of...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Uniform Test Method for Measuring the Energy Consumption of Central Air Conditioners and Heat Pumps M Appendix M to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App. M Appendix M to Subpart B of...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Uniform Test Method for Measuring the Energy Consumption of Central Air Conditioners and Heat Pumps M Appendix M to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App. M Appendix M to Subpart B of...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Uniform Test Method for Measuring the Energy Consumption of Central Air Conditioners and Heat Pumps M Appendix M to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App. M Appendix M to Subpart B of...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Uniform Test Method for Measuring the Energy Consumption of Central Air Conditioners and Heat Pumps M Appendix M to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App. M Appendix M to Subpart B of...
Indoor unit for electric heat pump
Draper, R.; Lackey, R.S.; Fagan, T.J. Jr.; Veyo, S.E.; Humphrey, J.R.
1984-05-22
An indoor unit for an electric heat pump is provided in modular form including a refrigeration module, an air mover module, and a resistance heat package module, the refrigeration module including all of the indoor refrigerant circuit components including the compressor in a space adjacent the heat exchanger, the modules being adapted to be connected to air flow communication in several different ways as shown to accommodate placement of the unit in various orientations. 9 figs.
Li, Yingjie; Xian, Qiming; Li, Li
2017-05-12
Polycyclic aromatic hydrocarbons (PAHs) are present in petroleum based products and are combustion by-products of organic matters. Determination of levels of PAHs in the indoor environment is important for assessing human exposure to these chemicals. A new short path thermal desorption (SPTD) gas chromatography/mass spectrometry (GC/MS) method for determining levels of PAHs in indoor air was developed. Thermal desorption (TD) tubes packed with glass beads, Carbopack C, and Carbopack B in sequence, were used for sample collection. Indoor air was sampled using a small portable pump over 7 days at 100ml/min. Target PAHs were thermally released and introduced into the GC/MS for analysis through the SPTD unit. During tube desorption, PAHs were cold trapped (-20°C) at the front end of the GC column. Thermal desorption efficiencies were 100% for PAHs with 2 and 3 rings, and 99-97% for PAHs with 4-6 rings. Relative standard deviation (RSD) values among replicate samples spiked at three different levels were around 10-20%. The detection limit of this method was at or below 0.1μg/m 3 except for naphthalene (0.61μg/m 3 ), fluorene (0.28μg/m 3 ) and phenanthrene (0.35μg/m 3 ). This method was applied to measure PAHs in indoor air in nine residential homes. The levels of PAHs in indoor air found in these nine homes are similar to indoor air values reported by others. Copyright © 2017 Elsevier B.V. All rights reserved.
Diode pumped tunable lasers based on Tm:CaF2 and Tm:Ho:CaF2 ceramics
NASA Astrophysics Data System (ADS)
Šulc, Jan; Němec, Michal; Jelinková, Helena; Doroshenko, Maxim E.; Fedorov, Pavel P.; Osiko, Vyacheslav V.
2014-02-01
The Tm:CaF2 (4% of TmF3) and Tm:Ho:CaF2 (2% of TmF3, 0.3% of HoF3) ceramics, prepared using hot pressing, and hot formation technique had been used as an active medium of diode pumped mid-infrared tunable laser. A fibre (core diameter 400 μm, NA = 0.22) coupled laser diode (LIMO, HLU30F400-790) was used to longitudinal pumping. The laser diode was operating in the pulsed regime (6 ms pulse length, 10 Hz repetition rate). The duty-cycle 6% ensures a low thermal load even under the maximum diode pumping power amplitude 25W (ceramics samples were only air-cooled). The laser diode emission wavelength was 786 nm. The 80mm long semi-hemispherical laser resonator consisted of a flat pumping mirror (HR @ 1.85 - 2.15 μm, HT @ 0.78 μm) and a curved (r = 150mm) output coupler with a reflectivity of ˜ 98% @ 1.85 - 2.0 μm for Tm:CaF2 laser or ˜ 99.5% @ 2.0 - 2.15 μm for Ho:Tm:CaF2. Tuning of the laser was accomplished by using a birefringent filter (single 1.5mm thick quartz plate) placed inside the optical resonator at the Brewster angle. Both samples offered broad and smooth tuning possibilities in mid-IR spectral range and the lasers were continuously tunable over ˜ 100 nm. The obtained Tm:CaF2 tunability ranged from 1892 to 1992nm (the maximum output energy 1.8mJ was reached at 1952nm for absorbed pumping energy 78 mJ). In case of Tm:Ho:CaF2 laser tunability from 2016 to 2111nm was reached (the maximum output energy 1.5mJ was reached at 2083nm for absorbed pumping energy 53 mJ). Both these material are good candidates for a future investigation of high energy, ultra-short, laser pulse generation.
9 CFR 590.540 - Spray process drying facilities.
Code of Federal Regulations, 2010 CFR
2010-01-01
... equipped with approved air intake filters. (d) Air shall be drawn into the drier from sources free from..., if used, shall be equipped with approved air filters at blower intake. (f) High-pressure pump heads...
9 CFR 590.540 - Spray process drying facilities.
Code of Federal Regulations, 2011 CFR
2011-01-01
... equipped with approved air intake filters. (d) Air shall be drawn into the drier from sources free from..., if used, shall be equipped with approved air filters at blower intake. (f) High-pressure pump heads...
[Biological contamination in office buildings related to ventilation/air conditioning system].
Bródka, Karolina; Sowiak, Małgorzata; Kozajda, Anna; Cyprowski, Marcin; Irena, Szadkowska-Stańczyk
2012-01-01
Indoor air is contaminated with microorganisms coming from both the atmospheric air and sources present in premises. The aim of this study was to analyze the concentrations of biological agents in office buildings, dependending on ventilation/air conditioning system and season. The study covered office buildings (different in the system of ventila-tion/air conditioning). Air samples for assessing the levels of inhalable dust, endotoxins and (1-->3)-beta-D-glucans, were taken at the selected stationary points of each building during summer and winter. The air was sampled for 6 h, using portable sets consisting of the GilAir 5 pump and the head filled with a filter of fiber glass. The samples for the presence of airborne bacteria and fungi were collected twice during the day using the impaction method. Average concentrations of inhalable dust, bacteria, fungi, endotoxins and (1-->3)-beta-D-glucans in office premises were 0.09 mg/m3, 6.00 x 10(2) cfu/m3, 4.59 x 10(1) cfu/m3, 0.42 ng/m3 and 3.91 ng/m3, respectively. Higher concentrations of the investigated agents were found in summer. In premises with air conditioning concentrations of airborne fungi, (1-->3)-beta-D-glucans and inhalable dust were significantly lower in winter. In summer the trend was reverse except for (1-->3)-beta-D-glucans. Concentrations of biological agents were affected by the season and the presence of air conditioning. Concentrations of inhalable dust, bacteria, fungi, endotoxins and (1-->3)-beta-D-glucans, observed inside the office buildings, were significantly higher in summer than in winter. The presence of the air conditioning system modified in various ways the levels of biological agents. Its influence was greater on the concentration of fungi and (1-->3)-beta-D-glucans than on that of bacteria and endotoxins.
A novel method to determine air leakage in heat pump clothes dryers
Bansal, Pradeep; Mohabir, Amar; Miller, William
2016-01-06
A heat pump clothes dryer offers the potential to save a significant amount of energy as compared with conventional vented electric dryers. Although heat pump clothes dryers (HPCD) offer higher energy efficiency; it has been observed that they are prone to air leakages, which inhibits the HPCD's gain in efficiency. This study serves to develop a novel method of quantifying leakage, and to determine specific leakage locations in the dryer drum and air circulation system. The basis of this method is the American Society of Testing and Materials (ASTM) standard E779 10, which is used to determine air leakage areamore » in a household ventilation system through fan pressurization. This ASTM method is adapted to the dryer system, and the leakage area is determined by an analysis of the leakage volumetric flow - pressure relationship. Easily accessible leakage points were quantified: the front and back crease (in the dryer drum), the leakage in the dryer duct, the air filter, and the remaining leakage in the drum. The procedure allows investigators to determine major components contributing to leakage in HPCDs, thus improving component design features that result in more efficient HPCD systems.« less
Deairing Techniques for Double-Ended Centrifugal Total Artificial Heart Implantation.
Karimov, Jamshid H; Horvath, David J; Byram, Nicole; Sunagawa, Gengo; Grady, Patrick; Sinkewich, Martin; Moazami, Nader; Sale, Shiva; Golding, Leonard A R; Fukamachi, Kiyotaka
2017-06-01
The unique device architecture of the Cleveland Clinic continuous-flow total artificial heart (CFTAH) requires dedicated and specific air-removal techniques during device implantation in vivo. These procedures comprise special surgical techniques and intraoperative manipulations, as well as engineering design changes and optimizations to the device itself. The current study evaluated the optimal air-removal techniques during the Cleveland Clinic double-ended centrifugal CFTAH in vivo implants (n = 17). Techniques and pump design iterations consisted of developing a priming method for the device and the use of built-in deairing ports in the early cases (n = 5). In the remaining cases (n = 12), deairing ports were not used. Dedicated air-removal ports were not considered an essential design requirement, and such ports may represent an additional risk for pump thrombosis. Careful passive deairing was found to be an effective measure with a centrifugal pump of this design. In this report, the techniques and design changes that were made during this CFTAH development program to enable effective residual air removal and prevention of air embolism during in vivo device implantation are explained. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
A novel method to determine air leakage in heat pump clothes dryers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bansal, Pradeep; Mohabir, Amar; Miller, William
A heat pump clothes dryer offers the potential to save a significant amount of energy as compared with conventional vented electric dryers. Although heat pump clothes dryers (HPCD) offer higher energy efficiency; it has been observed that they are prone to air leakages, which inhibits the HPCD's gain in efficiency. This study serves to develop a novel method of quantifying leakage, and to determine specific leakage locations in the dryer drum and air circulation system. The basis of this method is the American Society of Testing and Materials (ASTM) standard E779 10, which is used to determine air leakage areamore » in a household ventilation system through fan pressurization. This ASTM method is adapted to the dryer system, and the leakage area is determined by an analysis of the leakage volumetric flow - pressure relationship. Easily accessible leakage points were quantified: the front and back crease (in the dryer drum), the leakage in the dryer duct, the air filter, and the remaining leakage in the drum. The procedure allows investigators to determine major components contributing to leakage in HPCDs, thus improving component design features that result in more efficient HPCD systems.« less
Sampling and analysis of quaternary ammonium compounds (QACs) traces in indoor atmosphere.
Vincent, Guillaume; Kopferschmitt-Kubler, Marie Christine; Mirabel, Philippe; Pauli, Gabrielle; Millet, Maurice
2007-10-01
Quaternary Ammonium Compounds (QACs) are widely found in disinfectants used in hospitals. Benzalkonium chloride (BAC) and didecyldimethylammonium chloride (DDAC) predominate in the disinfecting formulations. These compounds are strong irritants and can play a role in the induction of Occupational Asthma among the professionals of health and cleaning. In order to evaluate the potential health effect of these quaternary ammonium compounds to hospital employers, the development of an analytical method for their quantification in indoor air was developed. DDAC aerosols are trapped by adsorption on XAD-2 resin SKC tube. The air in hospital buildings was sampled using a constant debit Gillian pump at a flow of 1.0 l/min (+/-5%). Ion Chromatography (IC) was chosen for the analysis of DDAC especially for its high sensitivity and specificity. The Limit of Detection (LOD) by IC for DDAC is 0.56 mug/ml. Therefore the LOD of atmospheric DDAC is 28 microg/m(3) with an air volume of 100 l and a desorption volume of 5 ml. All DDAC air samples were lower than the LOD of the analytical method by IC. Under the standard conditions of use of the disinfecting solutions (Surfanios, Ampholysine Plus and Amphospray 41), the insignificant volatility of DDAC would not seem to be able to contaminate the indoor hospital atmosphere during the disinfection process. However, the DDAC can contaminate working atmospheres if it is put in suspension by aerosolisation.
Reilly, Thomas E.
1994-01-01
An experiment was designed to evaluate the changing chemical composition of the water pumped from a well screened in a physically and chemically heterogenous aquifer. Well F453-63, at the U.S. Geological Survey Toxic-Substances Hydrology research site located on Cape Cod, Massachusetts, was selected because it was known that the screen penetrated both the oxic and anoxic zones of the sewage plume from the Otis Air Base sewage-disposal sand beds. The experiment was conducted on August 12, 1992. Well F453-63 was sampled over time as it was pumped continuously, and three multilevel samplers were used to document the vertical distribution of selected chemicals in the ground water in the immediate vicinity of the well. All water samples obtained during the experiment were analyzed in the field for specific conductance and pH. The samples were subsequently analyzed for concentrations of ferrous iron (Fe+2), boron, calcium, chloride, iron (Fe total), phosphorus, potassium, magnesium, manganese, sodium, zinc, and nitrogen species, including nitrous oxide, ammonium, nitrite and nitrate. The results of these chemical analyses along with appropriate physical measurements of the site and aquifer material are documented in this data report.
24 CFR 3280.714 - Appliances, cooling.
Code of Federal Regulations, 2013 CFR
2013-04-01
... refrigerating systems serving any air conditioning or comfort-cooling system installed in a manufactured home... Systems § 3280.714 Appliances, cooling. (a) Every air conditioning unit or a combination air conditioning... Conditioning and Air Source Unitary Heat Pump Equipment and certified by ARI or other nationally recognized...
24 CFR 3280.714 - Appliances, cooling.
Code of Federal Regulations, 2012 CFR
2012-04-01
... refrigerating systems serving any air conditioning or comfort-cooling system installed in a manufactured home... Systems § 3280.714 Appliances, cooling. (a) Every air conditioning unit or a combination air conditioning... Conditioning and Air Source Unitary Heat Pump Equipment and certified by ARI or other nationally recognized...
Armstrong, Jenna L; Fitzpatrick, Cole F; Loftus, Christine T; Yost, Michael G; Tchong-French, Maria; Karr, Catherine J
2013-09-01
This research describes the design, deployment, performance, and acceptability of a novel outdoor active air sampler to provide simultaneous measurements of multiple contaminants at timed intervals for the Aggravating Factors of Asthma in Rural Environment (AFARE) study-a longitudinal cohort of 50 children in Yakima Valley, Washington. The sampler was constructed of multiple sampling media connected to individual critical orifices and a rotary vane vacuum pump. It was connected to a timed control valve system to collect 24 hours samples every six days over 18 months. We describe a spatially representative approach with both quantitative and qualitative location criteria to deploy a network of 14 devices at participant residences in a rural region (20 × 60 km). Overall the sampler performed well, as the concurrent mean sample flow rates were within or above the ranges of recommended sampling rates for each exposure metric of interest. Acceptability was high among the study population of Hispanic farmworker participant households. The sampler design may prove useful for future urban and rural community-based studies with aims at collecting multiple contaminant data during specific time periods.
Measured Performance of a Low Temperature Air Source Heat Pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
R.K. Johnson
2013-09-01
A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor “boosted heat pump” technology. The Low Temperature Heat Pump system operates with four increasing levels of capacity (heat output) as the outdoor temperature drops.
NASA Astrophysics Data System (ADS)
Yang, J.; Mauzerall, D. L.
2017-12-01
During periods of high pollution in winter, household space heating can contribute more than half of PM2.5 concentrations in China's Beijing-Tianjin-Hebei (BTH) region. The majority of rural households and some urban households in the region still heat with small stoves and solid fuels such as raw coal, coal briquettes and biomass. Thus, reducing emissions from residential space heating has become a top priority of the Chinese government's air pollution mitigation plan. Electrified space heating is a promising alternative to solid fuel. However, there is little analysis of the air quality and climate implications of choosing various electrified heating devices and utilizing different electricity sources. Here we conduct an integrated assessment of the air quality, human health and climate implications of various electrified heating scenarios in the BTH region using the Weather Research and Forecasting model with Chemistry. We use the Multi-resolution Emission Inventory for China for the year 2012 as our base case and design two electrification scenarios in which either direct resistance heaters or air source heat pumps are installed to replace all household heating stoves. We initially assume all electrified heating devices use electricity from supercritical coal-fired power plants. We find that installing air source heat pumps reduces CO2 emissions and premature deaths due to PM2.5 pollution more than resistance heaters, relative to the base case. The increased health and climate benefits of heat pumps occur because they have a higher heat conversion efficiency and thus require less electricity for space heating than resistance heaters. We also find that with the same heat pump installation, a hybrid electricity source (40% of the electricity generated from renewable sources and the rest from coal) further reduces both CO2 emissions and premature deaths than using electricity only from coal. Our study demonstrates the air pollution and CO2 mitigation potential and public health benefits of using electrified space heating. In particular, we find air source heat pumps could bring more climate and health benefits than direct resistance heaters. Our results also support policies to integrate renewable energy sources with the reduction of solid fuel combustion for residential space heating.
Coelho, Lúcia H G; Melchert, Wanessa R; Rocha, Flavio R; Rocha, Fábio R P; Gutz, Ivano G R
2010-11-15
The analytical determination of atmospheric pollutants still presents challenges due to the low-level concentrations (frequently in the μg m(-3) range) and their variations with sampling site and time. In this work, a capillary membrane diffusion scrubber (CMDS) was scaled down to match with capillary electrophoresis (CE), a quick separation technique that requires nothing more than some nanoliters of sample and, when combined with capacitively coupled contactless conductometric detection (C(4)D), is particularly favorable for ionic species that do not absorb in the UV-vis region, like the target analytes formaldehyde, formic acid, acetic acid and ammonium. The CMDS was coaxially assembled inside a PTFE tube and fed with acceptor phase (deionized water for species with a high Henry's constant such as formaldehyde and carboxylic acids, or acidic solution for ammonia sampling with equilibrium displacement to the non-volatile ammonium ion) at a low flow rate (8.3 nL s(-1)), while the sample was aspirated through the annular gap of the concentric tubes at 2.5 mL s(-1). A second unit, in all similar to the CMDS, was operated as a capillary membrane diffusion emitter (CMDE), generating a gas flow with know concentrations of ammonia for the evaluation of the CMDS. The fluids of the system were driven with inexpensive aquarium air pumps, and the collected samples were stored in vials cooled by a Peltier element. Complete protocols were developed for the analysis, in air, of NH(3), CH(3)COOH, HCOOH and, with a derivatization setup, CH(2)O, by associating the CMDS collection with the determination by CE-C(4)D. The ammonia concentrations obtained by electrophoresis were checked against the reference spectrophotometric method based on Berthelot's reaction. Sensitivity enhancements of this reference method were achieved by using a modified Berthelot reaction, solenoid micro-pumps for liquid propulsion and a long optical path cell based on a liquid core waveguide (LCW). All techniques and methods of this work are in line with the green analytical chemistry trends. Copyright © 2010 Elsevier B.V. All rights reserved.
Wang, Jun; Tong, Yuxin; Yang, Qichang; Xin, Min
2016-01-01
The commercial use of a plant production system with artificial light (PPAL) is limited by its high initial construction and operation costs. The electric-energy consumed by heat pumps, applied mainly for cooling, accounts for 15–35% of the total electric-energy used in a PPAL. To reduce the electric-energy consumption, an air exchanger with low capacity (180 W) was used for cooling by introducing outdoor cold air. In this experiment, the indoor air temperature in two PPALs (floor area: 6.2 m2 each) was maintained at 25 and 20°C during photoperiod and dark period, respectively, for lettuce production. A null CO2 balance enrichment method was used in both PPALs. In one PPAL (PPALe), an air exchanger (air flow rate: 250 m3·h−1) was used along with a heat pump (cooling capacity: 3.2 kW) to maintain the indoor air temperature at the set-point. The other PPAL (PPALc) with only a heat pump (cooling capacity: 3.2 kW) was used for reference. Effects of introducing outdoor cold air on energy use efficiency, coefficient of performance (COP), electric-energy consumption for cooling and growth of lettuce were investigated. The results show that: when the air temperature difference between indoor and outdoor ranged from 20.2 to 30.0°C: (1) the average energy use efficiency of the air exchanger was 2.8 and 3.4 times greater than the COP of the heat pumps in the PPALe and PPALc, respectively; (2) hourly electric-energy consumption for cooling in the PPALe reduced by 15.8–73.7% compared with that in the PPALc; (3) daily supply of CO2 in the PPALe reduced from 0.15 to 0.04 kg compared with that in the PPALc with the outdoor air temperature ranging from −5.6 to 2.7°C; (4) no significant difference in lettuce growth was observed in both PPALs. The results indicate that using air exchanger to introduce outdoor cold air should be considered as an effective way to reduce electric-energy consumption for cooling with little effects on plant growth in a PPAL. PMID:27066012
A microfluidic two-pump system inspired by liquid feeding in mosquitoes
NASA Astrophysics Data System (ADS)
Marino, Andrew; Goad, Angela; Stremler, Mark; Socha, John; Jung, Sunghwan
Mosquitoes feed on nectar and blood using a two-pump system in the head-a smaller cibarial pump in line with a larger a pharyngeal pump, with a valve in between. To suck, mosquitoes transport the liquid (which may be a multi-component viscous fluid, blood) through a long micro-channel, the proboscis. In the engineering realm, microfluidic devices in biomedical applications, such as lab-on-a-chip technology, necessitate implementing a robust pump design to handle clogging and increase flow control compared to a single-pump system. In this talk, we introduce a microfluidic pump design inspired by the mosquito's two-pump system. The pumping performance (flow rate) in presence of impurities (air bubbles, soft clogs) is quantified as a function of phase difference and volume expansion of the pumps, and the elasticity of the valve.
Fluidics platform and method for sample preparation
Benner, Henry W.; Dzenitis, John M.
2016-06-21
Provided herein are fluidics platforms and related methods for performing integrated sample collection and solid-phase extraction of a target component of the sample all in one tube. The fluidics platform comprises a pump, particles for solid-phase extraction and a particle-holding means. The method comprises contacting the sample with one or more reagents in a pump, coupling a particle-holding means to the pump and expelling the waste out of the pump while the particle-holding means retains the particles inside the pump. The fluidics platform and methods herein described allow solid-phase extraction without pipetting and centrifugation.
Analysis of the performance and space conditioning impacts of dedicated heat pump water heaters
NASA Astrophysics Data System (ADS)
Morrison, L.; Swisher, J.
The development and testing of the newly-marketed dedicated heat pump water heater (HPWH) are described. This system utilizes an air-to-water heat pump, costs about $1,000 installed, and obtains a coefficient of performance (COP) of about 2.0 in laboratory and field tests. To investigate HPWH performance and space conditioning impacts, a simulation was developed to mode the thermal performance of a residence with resistance baseboard heat, air conditioning, and either heat pump or resistance water heating. The building characteristics are adapted for three U.S. geographical areas (Madison, Wisconsin; Washington, D.C.; and Ft. Worth, Texas), and the system is simulated for a year with typical weather data. The thermal network includes both a house node and a basement node so that the water heating equipment can be simulated in an unconditioned basement in Northern cities and in a conditioned first-floor utility room in Southern cities.
Continuous Manufacturing of Nitrocellulose by Magnesium Nitrate Method. Volume 1
1979-06-01
enters a scrubber . The scrubber removes entrained acid, water, and NC fines from the air before it enters a Roots water sealed (lobe type) vacuum pump...and is exhausted to the atmosphere. The air enters the bottom of the scrubber and is forced (by vacuum) sequentially through two weir arrangements...the panel from left to right, the Eimco dewatering filter drive, vacuum pressure, receiver, vacuum scrubber , and pump controls may be seen along with
Baxter, Van D.; Munk, Jeffrey D.
2017-11-08
By integrating multiple functions into a single system it offers potential efficiency and cost reduction benefits. Oak Ridge National Laboratory (ORNL) and its partners have designed, developed, and tested two air-source heat pump designs that not only provide space heating and cooling, but also water heating, dehumidification, and ventilation functions. Some details on the design, simulated performance, prototype field test, measured performance, and lessons learned are provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baxter, Van D.; Munk, Jeffrey D.
By integrating multiple functions into a single system it offers potential efficiency and cost reduction benefits. Oak Ridge National Laboratory (ORNL) and its partners have designed, developed, and tested two air-source heat pump designs that not only provide space heating and cooling, but also water heating, dehumidification, and ventilation functions. Some details on the design, simulated performance, prototype field test, measured performance, and lessons learned are provided.
Chen, Su; Palmer, James F; Zhang, Wei; Shao, Jing; Li, Si; Fan, Liu-Yin; Sun, Ren; Dong, Yu-Chao; Cao, Cheng-Xi
2009-06-01
This paper describes a novel free-flow electrophoresis (FFE), which is joined with gratis gravity, gas cushion injector (GCI) and self-balance collector instead of multiple channel pump, for the purpose of preparative purification. The FFE was evaluated by systemic experiments. The results manifest that (i) even though one-channel peristaltic pump is used for the driving of background buffer, there is still stable flow in the FFE chamber; (ii) the stable flow is induced by the gravity-induced pressure due to the difference of buffer surfaces in the GCI and self-balance collector; (iii) the pulse flow of background buffer induced by the peristaltic pump is greatly reduced by the GCI with good compressibility of included air; (iv) the FFE can be well used for zone electrophoretic separation of amino acids; (v) up to 20 inlets simultaneous sample injection and up to five to tenfold condensation of amino acid can be achieved by combining the FFE device with the method of moving reaction boundary. To the best of authors' knowledge, FFE has not been used for such separation and condensation of amino acids. The relevant results achieved in the paper have evident significance for the development of preparative FFE.
Crawl space assisted heat pump. [using stored ground heat
NASA Technical Reports Server (NTRS)
Ternes, M. P.
1980-01-01
A variety of experiments and simulations, currently being designed or underway, to determine the feasibility of conditioning the source air of an air to air heat pump using stored ground heat or cool to produce higher seasonal COP's and net energy savings are discussed. The ground would condition ambient air as it is drawn through the crawl space of a house. Tests designed to evaluate the feasibility of the concept, to determine the amount of heat or cool available from the ground, to study the effect of the system on the heating and cooling loads of the house, to study possible mechanisms which could enhance heat flow through the ground, and to determine if diurnal temperature swings are necessary to achieve successful system performance are described.
Examples of oil cavitation erosion in positive displacement pumps
NASA Technical Reports Server (NTRS)
Halat, J. A.; Ellis, G. O.
1974-01-01
The effects of cavitation flow on piston type, positive displacement, hydraulic pumps are discussed. The operating principles of the pump and the components which are most subject to erosion effects are described. The mechanisms of cavitation phenomena are identified from photographic records. Curves are developed to show the solubility of air in water, oil-water emulsion, and industrial hydraulic oil.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-12
... Refrigerant Flow (VRF) multi-split commercial heat pump models specified in Fujitsu's petition for waiver. As... to test and rate these AIRSTAGE V-II VRF multi-split commercial heat pumps. DATES: This Decision and...) Standard 1230-2010, ``Performance Rating of VRF Multi-Split Air-Conditioning and Heat Pump Equipment'' to...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jarrell, Mark
Cedarville School District retrofitted the heating and cooling systems in three campus areas (High School, Middle School, and Upper Elementary School) with geothermal heat pumps and ground source water loops, as a demonstration project for the effective implementation of geothermal heat pump systems and other energy efficiency and air quality improvements.
Vroblesky, Don A.; Pravecek, Tasha
2002-01-01
Field comparisons of chemical concentrations obtained from dialysis samplers, passive diffusion bag samplers, and low-flow samplers showed generally close agreement in most of the 13 wells tested during July 2001 at Hickam Air Force Base, Hawaii. The data for chloride, sulfate, iron, alkalinity, arsenic, and methane appear to show that the dialysis samplers are capable of accurately collecting a passive sample for these constituents. In general, the comparisons of volatile organic compound concentrations showed a relatively close correspondence between the two different types of diffusion samples and between the diffusion samples and the low-flow samples collected in most wells. Divergence appears to have resulted primarily from the pumping method, either producing a mixed sample or water not characteristic of aquifer water moving through the borehole under ambient conditions. The fact that alkalinity was not detected in the passive diffusion bag samplers, highly alkaline waters without volatilization loss from effervescence, which can occur when a sample is acidified for preservation. Both dialysis and passive diffusion bag samplers are relatively inexpensive and can be deployed rapidly and easily. Passive diffusion bag samplers are intended for sampling volatile organic compounds only, but dialysis samplers can be used to sample both volatile organic compounds and inorganic solutes. Regenerated cellulose dialysis samplers, however, are subject to biodegradation and probably should be deployed no sooner than 2 weeks prior to recovery. 1 U.S. Geological Survey, Columbia, South Carolina. 2 Air Florce Center for Environmental Excellence, San Antionio, Texas.
10 CFR 431.92 - Definitions concerning commercial air conditioners and heat pumps.
Code of Federal Regulations, 2014 CFR
2014-01-01
... measurement. Commercial package air-conditioning and heating equipment means air-cooled, water-cooled... Conditioner means a basic model of commercial package air-conditioning and heating equipment (packaged or split) that is: Used in computer rooms, data processing rooms, or other information technology cooling...
Active Hydrazine Vapor Sampler (AHVS)
NASA Technical Reports Server (NTRS)
Young, Rebecca C.; Mcbrearty, Charles F.; Curran, Daniel J.
1993-01-01
The Active Hydrazine Vapor Sampler (AHVS) was developed to detect vapors of hydrazine (HZ) and monomethylhydrazine (MMH) in air at parts-per-billion (ppb) concentration levels. The sampler consists of a commercial personal pump that draws ambient air through paper tape treated with vanillin (4-hydroxy-3-methoxybenzaldehyde). The paper tape is sandwiched in a thin cardboard housing inserted in one of the two specially designed holders to facilitate sampling. Contaminated air reacts with vanillin to develop a yellow color. The density of the color is proportional to the concentration of HZ or MMH. The AHVS can detect 10 ppb in less than 5 minutes. The sampler is easy to use, low cost, and intrinsically safe and contains no toxic material. It is most beneficial for use in locations with no laboratory capabilities for instrumentation calibration. This paper reviews the development, laboratory test, and field test of the device.
Rosenberger, Wolfgang; Beckmann, Bibiana; Wrbitzky, Renate
2016-04-15
This paper presents the strategy and results of in-flight measurements of airborne aldehydes during normal operation and reported "smell events" on commercial aircraft. The aldehyde-measurement is a part of a large-scale study on cabin-air quality. The aims of this study were to describe cabin-air quality in general and to detect chemical abnormalities during the so-called "smell-events". Adsorption and derivatization of airborne aldehydes on 2,4-dinitrophenylhydrazine coated silica gel (DNPH-cartridge) was applied using tailor-made sampling kits. Samples were collected with battery supplied personal air sampling pumps during different flight phases. Furthermore, the influence of ozone was investigated by simultaneous sampling with and without ozone absorption unit (ozone converter) assembled to the DNPH-cartridges and found to be negligible. The method was validated for 14 aldehydes and found to be precise (RSD, 5.5-10.6%) and accurate (recovery, 98-103 %), with LOD levels being 0.3-0.6 μg/m(3). According to occupational exposure limits (OEL) or indoor air guidelines no unusual or noticeable aldehyde pollution was observed. In total, 353 aldehyde samples were taken from two types of aircraft. Formaldehyde (overall average 5.7 μg/m(3), overall median 4.9 μg/m(3), range 0.4-44 μg/m(3)), acetaldehyde (overall average 6.5 μg/m(3), overall median 4.6, range 0.3-90 μg/m(3)) and mostly very low concentrations of other aldehydes were measured on 108 flights. Simultaneous adsorption and derivatization of airborne aldehydes on DNPH-cartridges to the Schiff bases and their HPLC analysis with UV absorbance detection is a useful method to measure aldehydes in cabin-air of commercial aircraft. Copyright © 2015 Elsevier B.V. All rights reserved.
Comfortable, high-efficiency heat pump with desiccant-coated, water-sorbing heat exchangers.
Tu, Y D; Wang, R Z; Ge, T S; Zheng, X
2017-01-12
Comfortable, efficient, and affordable heating, ventilation, and air conditioning systems in buildings are highly desirable due to the demands of energy efficiency and environmental friendliness. Traditional vapor-compression air conditioners exhibit a lower coefficient of performance (COP) (typically 2.8-3.8) owing to the cooling-based dehumidification methods that handle both sensible and latent loads together. Temperature- and humidity-independent control or desiccant systems have been proposed to overcome these challenges; however, the COP of current desiccant systems is quite small and additional heat sources are usually needed. Here, we report on a desiccant-enhanced, direct expansion heat pump based on a water-sorbing heat exchanger with a desiccant coating that exhibits an ultrahigh COP value of more than 7 without sacrificing any comfort or compactness. The pump's efficiency is doubled compared to that of pumps currently used in conventional room air conditioners, which is a revolutionary HVAC breakthrough. Our proposed water-sorbing heat exchanger can independently handle sensible and latent loads at the same time. The desiccants adsorb moisture almost isothermally and can be regenerated by condensation heat. This new approach opens up the possibility of achieving ultrahigh efficiency for a broad range of temperature- and humidity-control applications.
Ye, Jianglei
2017-09-08
A novel solid phase extraction (SPE) device driven by positive pressure was developed instead of negative pressure from a vacuum pump, in order to enrich organo chlorinated and pyrethroid pesticides in seawater. The water sampling bottles and the pipelines which touch water samples were made of plastic material without chlorine. In order to ensure the sealing and firmness, the whole device were tightened with nut and bolt. The inner pressure (0.1-0.3 MPa) in the water sampling bottle was provided by the small air pump (powered by 12 V cell) controlled by a microprogrammed control unit (MCU) and pressure sensor to keep the water flow rate (4.0-6.0 mL/min). The pre-conditioned SPE column can be used for the enrichment of pesticides within four weeks, and the loaded SPE column can be eluted for detection within six weeks with recoveries greater than 80%. The linearity of the method was good with the correlation coefficient more than 0.9. The limits of quantification (LOQs) were 0.8-6 ng/L. The recoveries of the pesticides at three spiked levels (3 parallel samples) were 86.1%-95.5% with the relative standard deviations less than 10%. The benzene hexachlorides (BHCs) and dichloro-diphenyl-trichloroethanes (DDTs) were detected in seawater samples. The device has good application in enriching organo chlorinated and pyrethroid pesticides in seawater.
New Noble Gas Studies on Popping Rocks from the Mid-Atlantic Ridge near 14°N
NASA Astrophysics Data System (ADS)
Kurz, M. D.; Curtice, J.; Jones, M.; Péron, S.; Wanless, V. D.; Mittelstaedt, E. L.; Soule, S. A.; Klein, F.; Fornari, D. J.
2017-12-01
New Popping Rocks were recovered in situ on the Mid-Atlantic Ridge (MAR) near 13.77° N, using HOV Alvin on cruise AT33-03 in 2016 on RV Atlantis. We report new helium, neon, argon, and CO2 step-crushing measurements on a subset of the glass samples, with a focus on a new procedure to collect seafloor samples with minimal exposure to air. Glassy seafloor basalts were collected in sealed containers using the Alvin mechanical arm and transported to the surface without atmospheric exposure. On the ship, the seawater was drained, the volcanic glass was transferred to stainless steel ultra-high-vacuum containers (in an oxygen-free glove box), which were then evacuated using a turbo-molecular pump and sealed for transport under vacuum. All processing was carried out under a nitrogen atmosphere. A control sample was collected from each pillow outcrop and processed normally in air. The preliminary step-crushing measurements show that the anaerobically collected samples have systematically higher 20Ne/22Ne, 21Ne/22Ne and 40Ar/36Ar than the control samples. Helium abundances and isotopes are consistent between anaerobically collected samples and control samples. These results suggest that minimizing atmospheric exposure during sample processing can significantly reduce air contamination for heavy noble gases, providing a new option for seafloor sampling. Higher vesicle abundances appear to yield a greater difference in neon and argon isotopes between the anaerobic and control samples, suggesting that atmospheric contamination is related to vesicle abundance, possibly through micro-fractures. The new data show variability in the maximum mantle neon and argon isotopic compositions, and abundance ratios, suggesting that the samples experienced variable outgassing prior to eruption, and may represent different phases of a single eruption, or multiple eruptions.
Acid mine water aeration and treatment system
Ackman, Terry E.; Place, John M.
1987-01-01
An in-line system is provided for treating acid mine drainage which basically comprises the combination of a jet pump (or pumps) and a static mixer. The jet pump entrains air into the acid waste water using a Venturi effect so as to provide aeration of the waste water while further aeration is provided by the helical vanes of the static mixer. A neutralizing agent is injected into the suction chamber of the jet pump and the static mixer is formed by plural sections offset by 90 degrees.
Solar Water-Heater Design and Installation
NASA Technical Reports Server (NTRS)
Harlamert, P.; Kennard, J.; Ciriunas, J.
1982-01-01
Solar/Water heater system works as follows: Solar--heated air is pumped from collectors through rock bin from top to bottom. Air handler circulates heated air through an air-to-water heat exchanger, which transfers heat to incoming well water. In one application, it may reduce oil use by 40 percent.
10 CFR 431.92 - Definitions concerning commercial air conditioners and heat pumps.
Code of Federal Regulations, 2013 CFR
2013-01-01
... expressed in identical units of measurement. Commercial package air-conditioning and heating equipment means... application. Computer Room Air Conditioner means a basic model of commercial package air-conditioning and heating equipment (packaged or split) that is: Used in computer rooms, data processing rooms, or other...
Efficiency and threshold pump intensity of CW solar-pumped solid-state lasers
NASA Technical Reports Server (NTRS)
Hwang, In H.; Lee, Ja H.
1991-01-01
The authors consider the relation between the threshold pumping intensity, the material properties, the resonator parameters, and the ultimate slope efficiencies of various solid-state laser materials for solar pumping. They clarify the relation between the threshold pump intensity and the material parameters and the relation between the ultimate slope efficiency and the laser resonator parameters such that a design criterion for the solar-pumped solid-state laser can be established. Among the laser materials evaluated, alexandrite has the highest slope efficiency of about 12.6 percent; however, it does not seem to be practical for a solar-pumped laser application because of its high threshold pump intensity. Cr:Nd:GSGG is the most promising for solar-pumped lasing. Its threshold pump intensity is about 100 air-mass-zero (AM0) solar constants and its slope efficiency is about 12 percent when thermal deformation is completely prevented.
[Spirograph for small laboratory animals].
Daniiarov, S B; Lanskiĭ, Iu M; Bebinov, E M
1986-10-01
A design of dry spirograph is described. It is characterized by greater precision, lack of inertia, high reliability, absence of respiration resistance, adequate form of recording, rapid resetting to any respiratory rate. The device consists of two similar injection syringes, photoelectric sensor for the identification of the initial moments of respiration stages, electromagnetic valves, two photoelectric converters of the air volume into the impulse signal, vacuum micro-pump, microcompressor and a system of air-driving tubes. In the initial position of pistons and valves the microcompressor pumps air into the inhalation cylinder and lifts the piston to the upper extreme position. With the signal marking the beginning of inspiration, the valves switch over and the piston lowers, pushing out the air, which moves into the animals' respiratory organs. Simultaneously, the signals of the inhaled air volume from the photoelectric transducer reach the recorder. During expiration the air pushes the piston down into the second cylinder and photoelectric transducer gives the information on the volume of the expired air.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klett, James; Klett, Lynn
An apparatus for maintaining the temperature of an article at a temperature that is below the ambient air temperature includes an enclosure having an outer wall that defines an interior chamber for holding a volume of sealed air. An insert is disposed inside of the chamber and has a body that is made of a porous graphite foam material. A vacuum pump penetrates the outer wall and fluidly connects the sealed air in the interior chamber with the ambient air outside of the enclosure. The temperatures of the insert and article is maintained at temperatures that are below the ambientmore » air temperature when a volume of a liquid is wicked into the pores of the porous insert and the vacuum pump is activated to reduce the pressure of a volume of sealed air within the interior chamber to a pressure that is below the vapor pressure of the liquid.« less
DURIP: Fast Oscilloscope and Detectors for Air Laser Research
2015-01-01
TEKTRONIX DPO73304D, 33 GHz Digital Phosphor Oscilloscope; 4 analog channels DPO70604C, 6 GHz Digital Phosphor Oscilloscope; 4 analog channels...when we focus in air intense UV pulses resonantly with two-photon transitions in atomic oxygen or nitrogen. The UV pump pulse (or an...two-‐photon UV pumping at 226nm for oxygen, and at 207 or 211nm for nitrogen is followed by
Indoor unit for electric heat pump
Draper, Robert; Lackey, Robert S.; Fagan, Jr., Thomas J.; Veyo, Stephen E.; Humphrey, Joseph R.
1984-01-01
An indoor unit for an electric heat pump is provided in modular form including a refrigeration module 10, an air mover module 12, and a resistance heat package module 14, the refrigeration module including all of the indoor refrigerant circuit components including the compressor 36 in a space adjacent the heat exchanger 28, the modules being adapted to be connected to air flow communication in several different ways as shown in FIGS. 4-7 to accommodate placement of the unit in various orientations.
Credit PSR. View looks north northeast (20°) at the concrete ...
Credit PSR. View looks north northeast (20°) at the concrete pad which forms the top of the sump pump facility. In the background stand Building 4303 (Air Compressor Building), Building 4307 (Supply and Equipment Warehouse) at left, Building 4305 (Unicon Portable Hangar) at center, and Building 4306 (Boiler House) at right. Sign marking Building 4302 was made from a disused road sign from somewhere on Edwards AFB - Edwards Air Force Base, North Base, Sump Pump, East of Second Street, Boron, Kern County, CA
DOE ZERH Case Study: Dwell Development, Reclaimed Modern, Seattle, WA
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
2015-09-01
Case study of a DOE 2015 Housing Innovation Award winning custom home in the cold climate that got a HERS 30 without PV, with 2x8 24” on center walls with blown fiberglass and 4” polysio rigid foam; basement with 2” XPS interior, 4” under slab, 4” exterior of foundation wall; vented attic with R-100 blown cellulose; wo air-to-air heat pumps SEER 14.1; HSPF 9.6; heat pump water heater.
Prototype continuous flow ventricular assist device supported on magnetic bearings.
Allaire, P E; Kim, H C; Maslen, E H; Olsen, D B; Bearnson, G B
1996-06-01
This article describes a prototype continuous flow pump (CFVAD2) fully supported in magnetic bearings. The pump performance was measured in a simulated adult human circulation system. The pump delivered 6 L/min of flow at 100 mm Hg of differential pressure head operating at 2,400 rpm in water. The pump is totally supported in 4 magnetic bearings: 2 radial and 2 thrust. Magnetic bearings offer the advantages of no required lubrication and large operating clearances. The geometry and other properties of the bearings are described. Bearing parameters such as load capacity and current gains are discussed. Bearing coil currents were measured during operation in air and water. The rotor was operated in various orientations to determine the actuator current gains. These values were then used to estimate the radial and thrust forces acting on the rotor in both air and water. Much lower levels of force were found than were expected, allowing for a very significant reduction in the size of the next prototype. Hemolysis levels were measured in the prototype pump and found not to indicate damage to the blood cells.
Kim, Yong-Hyun; Kim, Ki-Hyun
2012-10-02
To understand the ultimately lowest detection range of volatile organic compounds (VOCs) in air, application of a high sensitivity analytical system was investigated by coupling thermal desorption (TD) technique with gas chromatography (GC) and time-of-flight (TOF) mass spectrometry (MS). The performance of the TD-GC/TOF MS system was evaluated using liquid standards of 19 target VOCs prepared in the range of 35 pg to 2.79 ng per μL. Studies were carried out using both total ion chromatogram (TIC) and extracted ion chromatogram (EIC) mode. EIC mode was used for calibration to reduce background and to improve signal-to-noise. The detectability of 19 target VOCs, if assessed in terms of method detection limit (MDL, per US EPA definition) and limit of detection (LOD), averaged 5.90 pg and 0.122 pg, respectively, with the mean coefficient of correlation (R(2)) of 0.9975. The minimum quantifiable mass of target analytes, when determined using real air samples by the TD-GC/TOF MS, is highly comparable to the detection limits determined experimentally by standard. In fact, volumes for the actual detection of the major aromatic VOCs like benzene, toluene, and xylene (BTX) in ambient air samples were as low as 1.0 mL in the 0.11-2.25 ppb range. It was thus possible to demonstrate that most target compounds including those in low abundance could be reliably quantified at concentrations down to 0.1 ppb at sample volumes of less than 10 mL. The unique sensitivity of this advanced analytical system can ultimately lead to a shift in field sampling strategy with smaller air sample volumes facilitating faster, simpler air sampling (e.g., use of gas syringes rather than the relative complexity of pumps or bags/canisters), with greatly reduced risk of analyte breakthrough and minimal interference, e.g., from atmospheric humidity. The improved detection limits offered by this system can also enhance accuracy and measurement precision.
50. (Credit JTL) Locomotivetype steam driven air compressor built by ...
50. (Credit JTL) Locomotive-type steam driven air compressor built by Westinghouse Air Brake Company and located on west wall of old high service room. - McNeil Street Pumping Station, McNeil Street & Cross Bayou, Shreveport, Caddo Parish, LA
Sampling strategies exploiting multi-pumping flow systems.
Prior, João A V; Santos, João L M; Lima, José L F C
2003-04-01
In this work new strategies were exploited to implement multi-pumping flow systems relying on the utilisation of multiple devices that act simultaneously as sample-insertion, reagent-introduction, and solution-propelling units. The solenoid micro-pumps that were initially used as the only active elements of multi-pumping systems, and which were able to produce pulses of 3 to 25 microL, were replaced by syringe pumps with the aim of producing pulses between 1 and 4 microL. The performance of the developed flow system was assessed by using distinct sample-insertion strategies like single sample volume, merging zones, and binary sampling in the spectrophotometric determination of isoniazid in pharmaceutical formulations upon reaction with 1,2-naphthoquinone-4-sulfonate, in alkaline medium. The results obtained showed that enhanced sample/reagent mixing could be obtained with binary sampling and by using a 1 microL per step pump, even in limited dispersion conditions. Moreover, syringe pumps produce very reproducible flowing streams and are easily manipulated and controlled by a computer program, which is greatly simplified since they are the only active manifold component. Linear calibration plots up to 18.0 microg mL(-1), with a relative standard deviation of less than 1.48% (n=10) and a throughput of about 20 samples per hour, were obtained.
Study and Development of an Air Conditioning System Operating on a Magnetic Heat Pump Cycle
NASA Technical Reports Server (NTRS)
Wang, Pao-Lien
1991-01-01
This report describes the design of a laboratory scale demonstration prototype of an air conditioning system operating on a magnetic heat pump cycle. Design parameters were selected through studies performed by a Kennedy Space Center (KSC) System Simulation Computer Model. The heat pump consists of a rotor turning through four magnetic fields that are created by permanent magnets. Gadolinium was selected as the working material for this demonstration prototype. The rotor was designed to be constructed of flat parallel disks of gadolinium with very little space in between. The rotor rotates in an aluminum housing. The laboratory scale demonstration prototype is designed to provide a theoretical Carnot Cycle efficiency of 62 percent and a Coefficient of Performance of 16.55.
Operation and maintenance of the Sol-Dance Building solar system. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaultney, J.R.
1980-07-29
A 16,400 square foot general office facility has its primary heating provided by a flat plate solar system using hydronic storage and water-to-air transfer coils for distribution. Backup heat is provided by 10 individually controlled air source heat pumps ranging from 3 tons to 5 tons in capacity. These heat pumps also contain electric resistive elements for use during extremely low ambient temperatures. Cooling is also provided by the heat pumps. Each of the two buildings contains a separate domestic hot water system. Primary heat is provided by a closed loop solar unit with electric elements providing backup heat. Amore » 10,000 gallon black steel water tank provides heat storage.« less
PNEUMATIC PUMP TEST FOR DESIGN OF SOIL VACUUM EXTRACTION
In-situ pneumatic pumping tests were performed to estimate the pneumatic permeability at a site containing soils contaminated with aviation gasoline. Determination of pneumatic permeability was necessary to evaluate soil-air discharge or pore volume exchange rates. Pressure propa...
Decker, David L.; Lyles, Brad F.; Purcell, Richard G.; Hershey, Ronald Lee
2013-04-16
The present disclosure provides an apparatus and method for coupling conduit segments together. A first pump obtains a sample and transmits it through a first conduit to a reservoir accessible by a second pump. The second pump further conducts the sample from the reservoir through a second conduit.
Light propagation in the micro-size capillary injected by high temperature liquid
NASA Astrophysics Data System (ADS)
Li, Yan-jun; Li, Edward; Xiao, Hai
2016-11-01
The high temperature liquid is injected into the micro-size capillary and its light propagation behavior is investigated. We focus on two different liquid pumping methods. The first method can pump the high temperature liquid tin into the micro-size capillary by using a high pressure difference system. After pumping, a single mode fiber (SMF) connected with the optical carrier based microwave interferometry (OCMI) system is used to measure different liquid tin levels in the micro-size capillary. The second method can pump the room temperature engine oil into the capillary by using a syringe pump. This method can avoid the air bubbles when the liquids are pumped into the capillary.
Air source integrated heat pump simulation model for EnergyPlus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Bo; New, Joshua; Baxter, Van
An Air Source Integrated Heat Pump (AS-IHP) is an air source, multi-functional spacing conditioning unit with water heating function (WH), which can lead to great energy savings by recovering the condensing waste heat for domestic water heating. This paper summarizes development of the EnergyPlus AS-IHP model, introducing the physics, sub-models, working modes, and control logic. Based on the model, building energy simulations were conducted to demonstrate greater than 50% annual energy savings, in comparison to a baseline heat pump with electric water heater, over 10 US cities, using the EnergyPlus quick-service restaurant template building. We assessed water heating energy savingmore » potentials using AS-IHP versus both gas and electric baseline systems, and pointed out climate zones where AS-IHPs are promising. In addition, a grid integration strategy was investigated to reveal further energy saving and electricity cost reduction potentials, via increasing the water heating set point temperature during off-peak hours and using larger water tanks.« less
Nguyen, A; González de Alaiza Martínez, P; Déchard, J; Thiele, I; Babushkin, I; Skupin, S; Bergé, L
2017-03-06
We theoretically and numerically study the influence of both instantaneous and Raman-delayed Kerr nonlinearities as well as a long-wavelength pump in the terahertz (THz) emissions produced by two-color femtosecond filaments in air. Although the Raman-delayed nonlinearity induced by air molecules weakens THz generation, four-wave mixing is found to impact the THz spectra accumulated upon propagation via self-, cross-phase modulations and self-steepening. Besides, using the local current theory, we show that the scaling of laser-to-THz conversion efficiency with the fundamental laser wavelength strongly depends on the relative phase between the two colors, the pulse duration and shape, rendering a universal scaling law impossible. Scaling laws in powers of the pump wavelength may only provide a rough estimate of the increase in the THz yield. We confront these results with comprehensive numerical simulations of strongly focused pulses and of filaments propagating over meter-range distances.
NASA Astrophysics Data System (ADS)
Roubinet, Claire; Moreira, Manuel A.
2018-02-01
Noble gases in oceanic basalts always show the presence in variable proportions of a component having elemental and isotopic compositions that are similar to those of the atmosphere and distinct from the mantle composition. Although this component could be mantle-derived (e.g. subduction of air or seawater-derived noble gases trapped in altered oceanic crust and sediments), it is most often suggested that this air component is added after sample collection and probably during storage at ambient air, although the mechanism remains unknown. In an attempt to reduce this atmospheric component observed in MORBs, four experimental protocols have been followed in this study. These protocols are based on the hypothesis that air can be removed from the samples, as it appears to be sheltered in distinct vesicles compared to those filled with mantle gases. All of the protocols involve a glove box filled with nitrogen, and in certain cases, the samples are stored under primary vacuum (lower than 10-2 mbar) to pump air out or, alternatively, under high pressure of N2 to expel atmospheric noble gases. In all protocols, three components are observed: atmospheric, fractionated atmospheric and magmatic. The fractionated air component seems to be derived from the non-vitreous part of the pillow-lava, which has cooled more slowly. This component is enriched in Ne relative to Ar, reflecting a diffusive process. This contaminant has already been observed in other studies and thus seems to be relatively common. Although it is less visible, unfractionated air has also been detected in some crushing steps, which tends to indicate that despite the experiments, air is still present in the vesicles. This result is surprising, since studies have demonstrated that atmospheric contamination could be limited if samples were stored under nitrogen quickly after their recovery from the seafloor. Thus, the failure of the protocols could be explained by the insufficient duration of these protocols or by the inaccessibility of vesicles filled with air as assessed by (Ballentine and Barfod, 2000).
Aerosol Sampling Experiment on the International Space Station
NASA Technical Reports Server (NTRS)
Meyer, Marit E.
2017-01-01
The International Space Station (ISS) is a unique indoor environment which serves as both home and workplace to the astronaut crew. There is currently no particulate monitoring, although particulate matter requirements exist. An experiment to collect particles in the ISS cabin was conducted recently. Two different aerosol samplers were used for redundancy and to collect particles in two size ranges spanning from 10 nm to hundreds of micrometers. The Active Sampler is a battery operated thermophoretic sampler with an internal pump which draws in air and collects particles directly on a transmission electron microscope grid. This commercial-off-the-shelf device was modified for operation in low gravity. The Passive Sampler has five sampling surfaces which were exposed to air for different durations in order to collect at least one sample with an optimal quantity of particles for microscopy. These samples were returned to Earth for analysis with a variety of techniques to obtain long-term average concentrations and identify particle emission sources. Results are compared with the inventory of ISS aerosols which was created based on sparse data and the literature. The goal of the experiment is to obtain data on indoor aerosols on ISS for future particulate monitor design and development.
System for Continuous Deaeration of Hydraulic Oil
NASA Technical Reports Server (NTRS)
Anderson, Christopher W.
2006-01-01
A system for continuous, rapid deaeration of hydraulic oil has been built to replace a prior system that effected deaeration more slowly in a cyclic pressure/ vacuum process. Such systems are needed because (1) hydraulic oil has an affinity for air, typically containing between 10 and 15 volume percent of air and (2) in the original application for which these systems were built, there is a requirement to keep the proportion of dissolved air below 1 volume percent because a greater proportion can lead to pump cavitation and excessive softness in hydraulic-actuator force-versus-displacement characteristics. In addition to overcoming several deficiencies of the prior deaeration system, the present system removes water from the oil. The system (see figure) includes a pump that continuously circulates oil at a rate of 10 gal/min (38 L/min) between an 80-gal (303-L) airless reservoir and a tank containing a vacuum. When the circulation pump is started, oil is pumped, at a pressure of 120 psi (827 kPa), through a venturi tube below the tank with a connection to a stand-pipe in the tank. This action draws oil out of the tank via the standpipe. At the same time, oil is sprayed into the tank in a fine mist, thereby exposing a large amount of oil to the vacuum. When the oil level in the tank falls below the lower of two level switches, a vacuum pump is started, drawing a hard vacuum on the tank through a trap that collects any oil and water entrained in the airflow. When the oil level rises above higher of the two level switches or when the system is shut down, a solenoid valve between the tank and the vacuum pump is closed to prevent suction of oil into the vacuum pump. Critical requirements that the system is designed to satisfy include the following: 1) The circulation pump must have sufficient volume and pressure to operate the venturi tube and spray nozzles. 2) The venturi tube must be sized to empty the tank (except for the oil retained by the standpipe) and maintain a vacuum against the vacuum pump. 3) The tank must be strong enough to withstand atmospheric pressure against the vacuum inside and must have sufficient volume to enable exposure of a sufficiently large amount of sprayed oil to the vacuum. 4) The spray nozzles must be sized to atomize the oil and to ensure that the rate of flow of sprayed oil does not exceed the rate at which the venturi action can empty the tank. 5) The vacuum pump must produce a hard vacuum against the venturi tube and continue to work when it ingests some oil and water. 6) Fittings must be made vacuum tight (by use of O-rings) to prevent leakage of air into the system. The system is fully automatic, and can be allowed to remain in operation with very little monitoring. It is capable of reducing the air content of the oil from 11 to less than 1 volume percent in about 4 hours and to keep the water content below 100 parts per million.
14 CFR 25.1433 - Vacuum systems.
Code of Federal Regulations, 2010 CFR
2010-01-01
... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 25.1433 Vacuum systems. There... discharge lines from the vacuum air pump when the delivery temperature of the air becomes unsafe. [Doc. No...
40 CFR 455.21 - Specialized definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... stream and product washes, equipment and floor washes, water used as solvent for raw materials, water used as reaction medium, spent acids, spent bases, contact cooling water, water of reaction, air pollution control blowdown, steam jet blowdown, vacuum pump water, pump seal water, safety equipment...
3. Credit BG. Interior view looks northeast (46°) at fire ...
3. Credit BG. Interior view looks northeast (46°) at fire pumps, valves, and emergency generator (powered by an internal combustion engine). - Edwards Air Force Base, North Base, Deluge Water Pumping Station, Near Second & D Streets, Boron, Kern County, CA
Hybrid Heat Pumps Using Selective Water Sorbents (SWS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ally, M. R.
2006-11-30
The development of the ground-coupled and air-coupled Heating Ventilation and Air-Conditioning (HVAC) system is essential in meeting the goals of Zero Energy Houses (ZEH), a viable concept vigorously pursued under DOE sponsorship. ORNL has a large Habitat for Humanity complex in Lenoir City where modem buildings technology is incorporated on a continual basis. This house of the future is planned for lower and middle income families in the 21st century. The work undertaken in this CRADA is an integral part of meeting DOE's objectives in the Building America program. SWS technology is a prime candidate for reducing the footprint, costmore » and improve the performance of ground-coupled heat pumps. The efficacy of this technique to exchange energy with the ground is a topic of immense interest to DOE, builders and HVAC equipment manufacturers. If successful, the SWS concept will become part of a packaged ZEH kit for affordable and high-end houses. Lennox Industries entered into a CRADA with Oak Ridge National Laboratory in November 2004. Lennox, Inc. agreed to explore ways of using Selective Water Sorbent materials to boost the efficiency of air-coupled heat pumps whereas ORNL concentrated on ground-coupled applications. Lennox supplied ORNL with heat exchangers and heat pump equipment for use at ORNL's Habitat for Humanity site in Lenoir City, Tennessee. Lennox is focused upon air-coupled applications of SWS materials at the Product Development and Research Center in Carrollton, TX.« less
16 CFR Appendix H to Part 305 - Cooling Performance and Cost for Central Air Conditioners
Code of Federal Regulations, 2014 CFR
2014-01-01
... for Central Air Conditioners Manufacturer's rated cooling capacities (Btu's/hr.) Range of SEER's Low High Single Package Units Central Air Conditioners (Cooling Only): All capacities 10.6 16.5 Heat Pumps (Cooling Function): All capacities 10.6 16.0 Split System Units Central Air Conditioners (Cooling Only...
Dole-Olivier, Marie-José; Galassi, Diana M. P.; Hogan, John-Paul; Wood, Paul J.
2016-01-01
The hyporheic zone of river ecosystems provides a habitat for a diverse macroinvertebrate community that makes a vital contribution to ecosystem functioning and biodiversity. However, effective methods for sampling this community have proved difficult to establish, due to the inaccessibility of subsurface sediments. The aim of this study was to compare the two most common semi-quantitative macroinvertebrate pump-sampling techniques: Bou-Rouch and vacuum-pump sampling. We used both techniques to collect replicate samples in three contrasting temperate-zone streams, in each of two biogeographical regions (Atlantic region, central England, UK; Continental region, southeast France). Results were typically consistent across streams in both regions: Bou-Rouch samples provided significantly higher estimates of taxa richness, macroinvertebrate abundance, and the abundance of all UK and eight of 10 French common taxa. Seven and nine taxa which were rare in Bou-Rouch samples were absent from vacuum-pump samples in the UK and France, respectively; no taxon was repeatedly sampled exclusively by the vacuum pump. Rarefaction curves (rescaled to the number of incidences) and non-parametric richness estimators indicated no significant difference in richness between techniques, highlighting the capture of more individuals as crucial to Bou-Rouch sampling performance. Compared to assemblages in replicate vacuum-pump samples, multivariate analyses indicated greater distinction among Bou-Rouch assemblages from different streams, as well as significantly greater consistency in assemblage composition among replicate Bou-Rouch samples collected in one stream. We recommend Bou-Rouch sampling for most study types, including rapid biomonitoring surveys and studies requiring acquisition of comprehensive taxon lists that include rare taxa. Despite collecting fewer macroinvertebrates, vacuum-pump sampling remains an important option for inexpensive and rapid sample collection. PMID:27723819
Collection and analysis of NASA clean room air samples
NASA Technical Reports Server (NTRS)
Sheldon, L. S.; Keever, J.
1985-01-01
The environment of the HALOE assembly clean room at NASA Langley Research Center is analyzed to determine the background levels of airborne organic compounds. Sampling is accomplished by pumping the clean room air through absorbing cartridges. For volatile organics, cartridges are thermally desorbed and then analyzed by gas chromatography and mass spectrometry, compounds are identified by searching the EPA/NIH data base using an interactive operator INCOS computer search algorithm. For semivolatile organics, cartridges are solvent entracted and concentrated extracts are analyzed by gas chromatography-electron capture detection, compound identification is made by matching gas chromatogram retention times with known standards. The detection limits for the semivolatile organics are; 0.89 ng cu m for dioctylphlhalate (DOP) and 1.6 ng cu m for polychlorinated biphenyls (PCB). The detection limit for volatile organics ranges from 1 to 50 parts per trillion. Only trace quantities of organics are detected, the DOP levels do not exceed 2.5 ng cu m and the PCB levels do not exceed 454 ng cu m.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Withers, C.; Cummings, J.; Nigusse, B.
A new generation of full variable-capacity, central, ducted air-conditioning (AC) and heat pump units has come on the market, and they promise to deliver increased cooling (and heating) efficiency. They are controlled differently than standard single-capacity (fixed-capacity) systems. Instead of cycling on at full capacity and then cycling off when the thermostat is satisfied, they can vary their capacity over a wide range (approximately 40% to 118% of nominal full capacity), thus staying “on” for up to twice as many hours per day compared to fixed-capacity systems of the same nominal capacity. The heating and cooling capacity is varied bymore » adjusting the indoor fan air flow rate, compressor, and refrigerant flow rate as well as the outdoor unit fan air flow rate. Note that two-stage AC or heat pump systems were not evaluated in this research effort. The term dwell is used to refer to the amount of time distributed air spends inside ductwork during space-conditioning cycles. Longer run times mean greater dwell time and therefore greater exposure to conductive gains and losses.« less
Multiplexed microfluidic approach for nucleic acid enrichment
VanderNoot, Victoria A.; Langevin, Stanley Alan; Bent, Zachary; Renzi, Ronald F.; Ferko, Scott M.; Van De Vreugde, James L.; Lane, Todd; Patel, Kamlesh; Branda, Steven
2016-04-26
A system for enhancing a nucleic acid sample may include a one pump, a denaturing chamber; a microfluidic hydroxyapatite chromatography device configured for performing hydroxyapatite chromatography on the nucleic acid sample, a sample collector, and tubing connecting the pump with the denaturing chamber, the hydroxyapatite chromatography device and the sample collector such that the pump may be used to move the nucleic acid sample from the denaturing chamber to the hydroxyapatite chromatography device and then to the sample collector.
Air Quality measurements near the Gulf of Mexico Deep Water Horizon Oil Spill site in July 2010
NASA Astrophysics Data System (ADS)
Schade, G. W.; Rasmussen, R.; Conlee, D.; Seroka, G.; Delao, D.
2010-12-01
Eight whole air samples were acquired within several kilometers of the Deepwater Horizon well head location between 5 and 13 July 2010. A Teflon coated pump was used to pressurize 0.8 L volume stainless steel canisters to approximately 2 bar. Various amounts of oil were visible on the water surface during most sampling times, and some samples were accompanied by strong hydrocarbon smells. The air samples were analyzed over the next two months using high sensitivity GC-FID and GC-MS methods for C1-C30 hydrocarbons and selected hetero-atomic compounds. Highest concentrations reached several ppm for total hydrocarbons, comparable to concentrations in highway road tunnels. None of the samples showed elevated concentrations suggestive of hazardous concentrations, or near OSHA PEL or NIOSH REL levels. Consistent with studies of seawater methane concentrations at different depths, atmospheric methane mixing ratios were close to background abundances at 1.75-1.78 ppm, suggesting that the spill’s methane emissions had not reached the surface at that time. Non-methane hydrocarbons presented a highly complex mixture (100+ species) of dominantly alkanes, as expected. Linear alkanes were detected at elevated mixing ratios from C4 up to C30, and were dominated by nonane (C9). Aromatic hydrocarbons showed a pattern suggestive of a significant retention by seawater of benzene and toluene, the compounds with the highest water solubilities. While benzene was hardly and toluene only slightly elevated, lower solubility compounds such as the xylenes and naphthalene were clearly elevated. Data will be presented relative to an upwind sample taken on 5 July.
Llompart, M; Li, K; Fingas, M
1998-10-16
In this work we report the use of solid-phase microextraction (SPME) to extract and concentrate water-soluble volatile as well as semi-volatile pollutants. Both methods of exposing the SPME fibre were utilised: immersion in the aqueous solution (SPME) and in the headspace over the solution (HSSPME). The proposed HSSPME procedure was compared to conventional static headspace (HS) analysis for artificially spiked water as well as real water samples, which had been, equilibrated with various oil and petroleum products. Both techniques gave similar results but HSSPME was much more sensitive and exhibited better precision. Detection limits were found to be in the sub-ng/ml level, with precision better than 5% R.S.D. in most cases. To evaluate the suitability of SPME for relatively high contamination level analysis, the proposed HSSPME method was applied to the screening of run-off water samples that had heavy oil suspended in them from a tire fire incident. HSSPME results were compared with liquid--liquid extraction. Library searches were conducted on the resulting GC-MS total ion chromatograms to determine the types of compounds found in such samples. Both techniques found similar composition in the water samples with the exception of alkylnaphthalenes that were detected only by HSSPME. A brief study was carried out to assess using SPME for air monitoring. By sampling and concentrating the volatile organic compounds in the coating of the SPME fibre without any other equipment, this new technique is useful as an alternative to active air monitoring by means of sampling pumps and sorbent tubes.
19. Heat Pump, view to the southwest. This system provides ...
19. Heat Pump, view to the southwest. This system provides ventilation air heating and cooling throughout the powerhouse. - Washington Water Power Clark Fork River Noxon Rapids Hydroelectric Development, Powerhouse, South bank of Clark Fork River at Noxon Rapids, Noxon, Sanders County, MT
26. VIEW OF PUMP ROOM, SHOWING PORTIONS OF HIGH PRESSURE ...
26. VIEW OF PUMP ROOM, SHOWING PORTIONS OF HIGH PRESSURE AIR SYSTEM AT LEFT AND CENTER AND OVERFLOW STORAGE TANK AT RIGHT, LOOKING NORTHWEST - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT
NASA Technical Reports Server (NTRS)
Kirsten, C. C. (Inventor)
1976-01-01
A solar powered pump particularly suited for intermittently delivering a stream of water is reported. The pump is characterized by a housing adapted to be seated in a source of water having a water discharge port disposed above the water line of the source, a sump including a valved inlet port through which water is introduced to the sump, disposed beneath the water line, a displacer supported for vertical reciprocation in said housing, an air passageway extended between the vertically spaced faces of the displacer, and a tipple disposed adjacent to the water discharge port adapted to be filled in response to a discharge of water from the housing. Air above a displacer is expanded in response to solar energy impinging on the housing and transferred into pressurizing relation with the sump for forcing water from the sump.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pitts, Donald R.; Looper, Marshall G.
1979-08-15
A study of the use of a low-to-moderate temperature hydrothermal resource for space heating a 140-home residential community has been undertake. The approach centers on use of the existing culinary/potable water supply system to supply heated water to the homes, the culinary water being heated at a single pumping station and then distributed throughout the community through uninsulated, buried water mains. The heated potable water is pumped through individual house water-to-air heat exchangers using sealed, magnetic-drive house pumps and returned to the street distribution lines. These house heat exchangers are either add-on, wall mounted, convective heating units or coils addedmore » to existing forced air heating systems.« less
A UAV-based active AirCore system for measurements of greenhouse gases
NASA Astrophysics Data System (ADS)
Andersen, Truls; Scheeren, Bert; Peters, Wouter; Chen, Huilin
2018-05-01
We developed and field-tested an unmanned aerial vehicle (UAV)-based active AirCore for atmospheric mole fraction measurements of CO2, CH4, and CO. The system applies an alternative way of using the AirCore technique invented by NOAA. As opposed to the conventional concept of passively sampling air using the atmospheric pressure gradient during descent, the active AirCore collects atmospheric air samples using a pump to pull the air through the tube during flight, which opens up the possibility to spatially sample atmospheric air. The active AirCore system used for this study weighs ˜ 1.1 kg. It consists of a ˜ 50 m long stainless-steel tube, a small stainless-steel tube filled with magnesium perchlorate, a KNF micropump, and a 45 µm orifice working together to form a critical flow of dried atmospheric air through the active AirCore. A cavity ring-down spectrometer (CRDS) was used to analyze the air samples on site not more than 7 min after landing for mole fraction measurements of CO2, CH4, and CO. We flew the active AirCore system on a UAV near the atmospheric measurement station at Lutjewad, located in the northwest of the city of Groningen in the Netherlands. Five consecutive flights took place over a 5 h period on the same morning, from sunrise until noon. We validated the measurements of CO2 and CH4 from the active AirCore against those from the Lutjewad station at 60 m. The results show a good agreement between the measurements from the active AirCore and the atmospheric station (N = 146; R2CO2: 0.97 and R2CH4: 0.94; and mean differences: ΔCO2: 0.18 ppm and ΔCH4: 5.13 ppb). The vertical and horizontal resolution (for CH4) at typical UAV speeds of 1.5 and 2.5 m s-1 were determined to be ±24.7 to 29.3 and ±41.2 to 48.9 m, respectively, depending on the storage time. The collapse of the nocturnal boundary layer and the buildup of the mixed layer were clearly observed with three consecutive vertical profile measurements in the early morning hours. Besides this, we furthermore detected a CH4 hotspot in the coastal wetlands from a horizontal flight north to the dike, which demonstrates the potential of this new active AirCore method to measure at locations where other techniques have no practical access.
Evaluation of Magnetic Biomonitoring as a Robust Proxy for Traffic-Derived Pollution.
NASA Astrophysics Data System (ADS)
Mitchell, R.; Maher, B.
2008-12-01
Inhalation of particulate pollutants below 10 micrometers in size (PM10) is associated with adverse health effects. Here we examine the utility of magnetic remanence measurements of roadside tree leaves as a quantitative proxy for vehicle-derived PM, by comparing leaf magnetic remanences with the magnetic properties, particulate mass and particulate concentration of co-located pumped air samples (around Lancaster, UK). Leaf samples were collected in early autumn 2007 from sites in close proximity to a major ring road, with a few additionally from background and suburban areas. Leaves were collected from lime trees (Tilia platyphyllos) only, to avoid possible species-dependent differences in PM collection. Magnetic susceptibility values were small and negative, reflecting the diamagnetic nature of the leaves. Low- temperature remanence curves show significant falls in remanence between 114 and 127 K in all of the leaf samples. ÷ARM/SIRM ratios indicate that the dominant size of the leaf magnetic particles is between c. 0.1-2 micrometers. Analysis of leaf particles by SEM confirms that their dominant grain size is < 2 micrometers, with a significant number of iron-rich spherules < 1 micrometer in diameter. Particle loading is concentrated around ridges in the leaf surface; significant numbers of the finer particles (< 500 nm) are frequently agglomerated, most likely due to magnetic interactions between particles. Larger particles exhibit an irregular morphology, with high silica and aluminum content. Particle composition is consistent with exhaust outputs collected on a filter. Critically, leaf saturation remanence (SIRM) values exhibit strong correlation with the particulate mass and SIRM of co-located, pumped air samples, indicating they are an effective proxy for ambient particulate concentrations. Biomagnetic monitoring using tree leaves can thus potentially provide high spatial resolution data sets for assessment of particulate pollution loadings at pedestrian-relevant heights. Not only do leaf SIRM values increase with proximity to roads with higher traffic volumes, leaf SIRM values are c. 100 % higher at 0.3 m than at c. 1.5 to 2 m height.
Metal-air flow batteries using oxygen enriched electrolyte
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Jian-ping; Andrei, Petru; Shellikeri, Annadanesh
A metal air flow battery includes an electrochemical reaction unit and an oxygen exchange unit. The electrochemical reaction unit includes an anode electrode, a cathode electrode, and an ionic conductive membrane between the anode and the cathode, an anode electrolyte, and a cathode electrolyte. The oxygen exchange unit contacts the cathode electrolyte with oxygen separate from the electrochemical reaction unit. At least one pump is provided for pumping cathode electrolyte between the electrochemical reaction unit and the oxygen exchange unit. A method for producing an electrical current is also disclosed.
Metal-air flow batteries using oxygen enriched electrolyte
Zheng, Jian-ping; Andrei, Petru; Shellikeri, Annadanesh; Chen, Xujie
2017-08-01
A metal air flow battery includes an electrochemical reaction unit and an oxygen exchange unit. The electrochemical reaction unit includes an anode electrode, a cathode electrode, and an ionic conductive membrane between the anode and the cathode, an anode electrolyte, and a cathode electrolyte. The oxygen exchange unit contacts the cathode electrolyte with oxygen separate from the electrochemical reaction unit. At least one pump is provided for pumping cathode electrolyte between the electrochemical reaction unit and the oxygen exchange unit. A method for producing an electrical current is also disclosed.
Useful adjuncts for vitreoretinal surgery.
Gross, J. G.; Freeman, W. R.; Goldbaum, M. H.; Mendez, T. L.
1989-01-01
Many vitreoretinal procedures are performed in offices and hospitals where cost control is important. We describe three useful devices and techniques that facilitate these procedures at minimal expense and often greater convenience. These include an accurate method for localising the pars plana without the use of callipers, an inexpensive, reliable, pressure regulated air pump for fluid-air exchange, and an easy method for intraocular injection of silicone oil through 20 gauge instrumentation without the need for expensive pumps. These procedures and techniques should prove to be useful in the treatment of vitreoretinal disease. Images PMID:2751976
2011-12-01
burning of fossil fuels (e.g., oil , natural gas , coal), solid waste decay, and trees and wood products and also as a result of chemical reactions...to negative GHG effects. Methane. CH4 is a GHG that is emitted during the production and transport of coal, natural gas , and oil . Methane...the pump station (Facility 486); Control Room (Facility 487); and the oil -water separator (Facility 488). • Construction of a new Type III pump house
Cheng, Wen-Hsi; Huang, Hsiao-Lin; Chen, Kang-Shin; Chang, Yu-Jen
2017-10-15
The objective of this study was to measure the emission of, and personal exposure to workers, volatile organic compound (VOC) during paint spraying on a construction site. Needle trap samplers (NTSs), which are a green solid phase microextraction sampling technology, were used to obtain air samples at a large music exhibition center. The standard active sampling method using charcoal tubes and a personal air pump, Method 1501, was simultaneously utilized at the sampling sites to assess the workers' VOC exposures. Analysis of the data thus obtained showed that benzene, toluene, ethylenebenzene, and xylenes (BTEXs) were the main emission compounds. Acetone and isobutyl alcohol, which are used as thinning solvents, were detected as minor emission compounds. The emitted concentrations of most compounds were lower than the legal emission limits in Taiwan except that of benzene, for which the 2-ppm time weighted average short-term exposure limit was exceeded. The packed divinylbenzene (DVB) in the NTS was observed under an environmental scanning electron microscope, and many fine aerosols were found to be deposited on the surface of the DVB adsorbents, causing VOC extraction efficiencies after the fifth sampling in the field to decline. Workers on construction sites should be protected from emissions of VOC and fine particulates to preserve their occupational health.
Fluid driven reciprocating apparatus
Whitehead, J.C.
1997-04-01
An apparatus is described comprising a pair of fluid driven pump assemblies in a back-to-back configuration to yield a bi-directional pump. Each of the pump assemblies includes a piston or diaphragm which divides a chamber therein to define a power section and a pumping section. An intake-exhaust valve is connected to each of the power sections of the pump chambers, and function to direct fluid, such as compressed air, into the power section and exhaust fluid therefrom. At least one of the pistons or diaphragms is connected by a rod assembly which is constructed to define a signal valve, whereby the intake-exhaust valve of one pump assembly is controlled by the position or location of the piston or diaphragm in the other pump assembly through the operation of the rod assembly signal valve. Each of the pumping sections of the pump assemblies are provided with intake and exhaust valves to enable filling of the pumping section with fluid and discharging fluid therefrom when a desired pressure has been reached. 13 figs.
Fluid driven recipricating apparatus
Whitehead, John C.
1997-01-01
An apparatus comprising a pair of fluid driven pump assemblies in a back-to-back configuration to yield a bi-directional pump. Each of the pump assemblies includes a piston or diaphragm which divides a chamber therein to define a power section and a pumping section. An intake-exhaust valve is connected to each of the power sections of the pump chambers, and function to direct fluid, such as compressed air, into the power section and exhaust fluid therefrom. At least one of the pistons or diaphragms is connected by a rod assembly which is constructed to define a signal valve, whereby the intake-exhaust valve of one pump assembly is controlled by the position or location of the piston or diaphragm in the other pump assembly through the operation of the rod assembly signal valve. Each of the pumping sections of the pump assemblies are provided with intake and exhaust valves to enable filling of the pumping section with fluid and discharging fluid therefrom when a desired pressure has been reached.
Francey, R. J. [CSIRO Division of Atmospheric Research, Mordialloc, Victoria, Australia; Allison, C. E. [CSIRO Division of Atmospheric Research, Mordialloc, Victoria, Australia
1998-01-01
Since 1982, a continuous program of sampling atmospheric CO2 to determine stable isotope ratios has been maintained at the Australian Baseline Air Pollution Station, Cape Grim, Tasmania (40°, 40'56"S, 144°, 41'18"E). The process of in situ extraction of CO2 from air, the preponderance of samples collected in conditions of strong wind from the marine boundary layer of the Southern Ocean, and the determination of all isotope ratios relative to a common high purity CO2 reference gas with isotopic δ13C close to atmospheric values, are a unique combination of factors with respect to obtaining a globally representative signal from a surface site. Air samples are collected during baseline condition episodes at a frequency of around one sample per week. Baseline conditions are characterized by wind direction in the sector 190°-280°, condensation nucleus concentration below 600 per cm-3, and steady continuous CO2 concentrations (variation ± 0.2 ppmv per hour). A vacuum pump draws air from either the 10 m or 70 m intakes and sampling alternates between the two intakes. The air from the intake is dried with a trap immersed in an alcohol bath at about -80°C. Mass spectrometer analyses for δ13C and δ18O are carried out by CSIRO's Division of Atmospheric Research in Aspendale, usually one to three weeks following collection. This record is possibly the most accurate representation of global atmospheric 13C behavior over the last decade and may be used to partition the uptake of fossil-fuel carbon emissions between ocean and terrestrial plant reservoirs. Using these data, Francey et al. (1995) observed a gradual decrease in δ13C from 1982 to 1993, but with a pronounced flattening from 1988 to 1990; a trend that appears to involve the terrestrial carbon cycle.
Sump bay fever: inhalational fever associated with a biologically contaminated water aerosol.
Anderson, K; McSharry, C P; Clark, C; Clark, C J; Barclay, G R; Morris, G P
1996-01-01
OBJECTIVE: To investigate the clinical, serological, and environmental features of a work related inhalational fever associated with exposure to an aerosol generated from a biologically contaminated 130,000 gallon water pool in a building used for testing scientific equipment. METHOD: Cross sectional survey of all exposed subjects (n = 83) by symptom questionnaire, clinical examination, spirometry, and serology for antibody to Pseudomonads, pool water extract, and endotoxin. In symptomatic patients diffusion capacity was measured, and chest radiology was performed if this was abnormal. Serial peak flow was recorded in those subjects with wheeze. Bacterial and fungal air sampling was performed before and during operation of the water pool pump mechanism. Endotoxin was measured in the trapped waters and in the pumps. Serum cotinine was measured as an objective indicator of smoking. RESULTS: Of the 20 symptomatic subjects, fever was most common in those with the highest exposure (chi 2 42.7, P < 0.001) in the sump bay when the water was (torrentially) recirculated by the water pumps. Symptoms occurred late in the working day only on days when the water pumps were used, and were independent of the serum cotinine. Pulmonary function was normal in most subjects (spirometry was normal in 79/83, diffusion capacity was low in five subjects, chest radiology was normal). Peak flow recording did not suggest a work relation. The bacterial content of the aerosol rose from 6 to > 10,000 colony forming units per cubic metre (cfu/m3) (predominantly environmental Pseudomonads) when the pumps were operating. High endotoxin concentrations were measured in the waters and oil sumps in the pumps. Low concentrations of antibody to the organisms isolated were detected (apart from two subjects with high antibody) but there was no relation to exposure or the presence of symptoms and similar antibody was found in the serum samples from a non-exposed population. The fever symptoms settled completely with the simple expedient of changing the water and cleaning the pumps. CONCLUSION: Given the results of our study, the development of inhalational fever in this unique environment and clearly restricted cohort was closely related to the degree of exposure to contaminated aerosol and mainly occurred in the absence of distinct serological abnormality and independent of cigarette smoking. PMID:8777446
Solar Powered Liquid Desiccant Air Conditioner for Low-Electricity Humidity Control
2012-07-01
thermal comfort conditions. Liquid-desiccants are solutions that are hygroscopic but are easily able to be pumped and applied within heating, ventilating, and air conditioning (HVAC) equipment as necessary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, D.; Sutherland, K.; Chasar, D.
The U.S. Department of Energy (DOE) Building America program, in collaboration with Florida Power and Light (FPL), conducted a phased residential energy-efficiency retrofit program. This research sought to establish impacts on annual energy and peak energy reductions from the technologies applied at two levels of retrofit - shallow and deep, with savings levels approaching the Building America program goals of reducing whole-house energy use by 40%. Under the Phased Deep Retrofit (PDR) project, we have installed phased, energy-efficiency retrofits in a sample of 56 existing, all-electric homes. End-use savings and economic evaluation results from the phased measure packages and singlemore » measures are summarized in this report. Project results will be of interest to utility program designers, weatherization evaluators, and the housing remodel industry. Shallow retrofits were conducted in all homes from March to June 2013. The measures for this phase were chosen based on ease of installation, targeting lighting (CFLs and LED lamps), domestic hot water (wraps and showerheads), refrigeration (cleaning of coils), pool pump (reduction of operating hours), and the home entertainment center (smart plugs). Deep retrofits were conducted on a subset of ten PDR homes from May 2013 through March 2014. Measures included new air source heat pumps, duct repair, ceiling insulation, heat pump water heaters, variable speed pool pumps and learning thermostats. Major appliances such as refrigerators and dishwashers were replaced where they were old and inefficient.« less
Pressure control valve. [inflating flexible bladders
NASA Technical Reports Server (NTRS)
Lambson, K. H. (Inventor)
1980-01-01
A control valve is provided which is adapted to be connected between a pressure source, such as a vacuum pump, and a pressure vessel so as to control the pressure in the vessel. The valve comprises a housing having a longitudinal bore which is connected between the pump and vessel, and a transversely movable valve body which controls the air flow through an air inlet in the housing. The valve body includes cylindrical and conical shaped portions which cooperate with reciprocally shaped portions of the housing to provide flow control. A filter in the air inlet removes foreign matter from the air. The bottom end of the valve body is screwed into the valve housing control knob formed integrally with the valve body and controls translation of the valve body, and the opening and closing of the valve.
NASA Astrophysics Data System (ADS)
Gendelis, S.; Jakovičs, A.; Ratnieks, J.; Bandeniece, L.
2017-10-01
This paper focuses on the long-term monitoring of thermal comfort and discomfort parameters in five small test buildings equipped with different heating and cooling systems. Calculations of predicted percentage of dissatisfied people (PPD) index and discomfort factors are provided for the room in winter season running three different heating systems - electric heater, air-air heat pump and air-water heat pump, as well as for the summer cooling with split type air conditioning systems. It is shown that the type of heating/cooling system and its working regime has an important impact on thermal comfort conditions in observed room. Recommendations for the optimal operating regimes and choice of the heating system from the thermal comfort point of view are summarized.
Testing of refrigerant mixtures in residential heat pumps. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Judge, J.F.; Radermacher, R.
1995-08-01
To contribute to finding the proper substitute for R-22, a test facility was designed and built to measure the steady state and cyclic performance of two air-to-air heat pumps of 2 & 3 refrigeration-ton (RT) capacity. The performance of heat pumps is evaluated based on ASHRAE Standard 116-1983 {open_quotes}Method of Testing for Seasonal Efficiency of Unitary Air-conditioners and Heat Pumps{close_quotes} (47). This standard includes six steady-state tests; three cooling tests (A, B, and C) and three heating tests (High Temperature (47S), Frost Accumulation (35F), and Low Temperature (17L)). The standard also includes two cyclic tests; a cyclic cooling test (D)more » and a cyclic heating test (47C). The results of these tests are used to evaluate the seasonal performance of a heat pump. In the work presented here, two heat pumps (test units) are used. Test unit 1 is a 2 RT split heat pump system using a reciprocating compressor, a short tube, and a thermostatic expansion valve. Test unit 2 is a 3 RT split heat pump system using a scroll compressor and two thermostatic expansion valves. This study investigates four different possibilities for replacing R-22 with R-32/125/134a (30/10/60 wt.%) (Mixture 1) or R-32/125/134a (23/25/52 wt.%) (Mixture 2). The first and simplest scenario is the retrofit with no hardware modifications. The second possibility investigated is altering the refrigerant path to attain a near-counterflow configuration in the indoor coil for the heating mode. The third and most complex possibility is the soft optimization which consists of maximizing the COPs of R-22 and Mixture 2 in the heating and cooling modes by optimizing refrigerant charge and expansion devices. The fourth option investigated is the suction-line heat exchange (SLHX). In unit 1, the first, second, and third scenarios are investigated and in unit 2, the first, second, and fourth scenarios are investigated.« less
TRANSIENT AND STEADY STATE STUDY OF PURE AND MIXED REFRIGERANTS IN A RESIDENTIAL HEAT PUMP
The report gives results of an experimental and theoretical investigation of the transient and steady state performance of a residential air-conditioning/heat pump (AC/HP) operating with different refrigerants. (NOTE: The project was motivated by environmental concerns related to...
73. LIQUID NITROGEN PUMPING STATION ON WEST SIDE OF MST; ...
73. LIQUID NITROGEN PUMPING STATION ON WEST SIDE OF MST; NITROGEN EXCHANGERS ON RIGHT. SOUTHWEST CORNER OF MST VISIBLE; ENVIRONMENTAL CURTAIN SWING AND PLATFORM EXTENDED. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
18. LOWER OIL ROOM DIABLO POWERHOUSE: GRAVITY OIL PUMPS POWERED ...
18. LOWER OIL ROOM DIABLO POWERHOUSE: GRAVITY OIL PUMPS POWERED BY LINCOLN AC MOTORS ON THE RIGHT AND TURBINE AIR DRY APPARATUS ON THE LEFT, 1989. - Skagit Power Development, Diablo Powerhouse, On Skagit River, 6.1 miles upstream from Newhalem, Newhalem, Whatcom County, WA
Air Compressibility Effect on Bouwer and Rice Seepage Meter.
Peng, Xin; Zhan, Hongbin
2017-11-01
Measuring a disconnected streambed seepage flux using a seepage meter can give important streambed information and help understanding groundwater-surface water interaction. In this study, we provide a correction for calculating the seepage flux rate with the consideration of air compressibility inside the manometer of the Bouwer and Rice seepage meter. We notice that the effect of air compressibility in the manometer is considerably larger when more air is included in the manometer. We find that the relative error from neglecting air compressibility can be constrained within 5% if the manometer of the Bouwer and Rice seepage meter is shorter than 0.8 m and the experiment is done in a suction mode in which air is pumped out from the manometer before the start of measurement. For manometers longer than 0.8 m, the relative error will be larger than 5%. It may be over 10% if the manometer height is longer than 1.5 m and the experiment is done in a no-suction mode, in which air is not pumped out from the manometer before the start of measurement. © 2017, National Ground Water Association.
Azevedo, A; Etchepare, R; Rubio, J
2017-05-01
Raw water clarification by flotation was studied by injecting air into a centrifugal multiphase pump to generate microbubbles (MBs) and nanobubbles (NBs). Measurements of gas dispersion parameters were performed and optimal conditions were obtained using a pump pressure of 4 bar. Values showed a bubble Sauter diameter of 75 μm, an air holdup of 1.2%, a bubble surface area flux of 34 s -1 and an NB concentration of 1 × 10 8 NBs mL -1 (measuring 220 nm). Then, a study compared flotation with bubbles formed with the multiphase pump (F-MP) to lamellar settling at the clarification stage of a water treatment plant (WTP), in Brazil. The F-MP showed a higher separation efficiency at high hydraulic loads (9-15 m h -1 ), even without the use of a polymer, reaching 2 NTU (10-25 NTU raw water feed), which was much lower than the technical goal of the WTP (5 NTU). The results and the technical aspects are discussed, and it is concluded that the employment of MBs and NBs with pumps widens new research lines and applications in modern flotation.
Prototype Continuous Flow Ventricular Assist Device Supported on Magnetic Bearings.
Allaire, P E; Kim, H C; Maslen, E H; Olsen, D B; Bearnson, G B
1996-05-01
This article describes a prototype continuous flow pump (CFVAD2) fully supported in magnetic bearings. The pump performance was measured in a simulated adult human circulation system. The pump delivered 6 L/min of flow at 100 mm Hg of differential pressure head operating at 2,400 rpm in water. The pump is totally supported in 4 magnetic bearings: 2 radial and 2 thrust. Magnetic bearings offer the advantages of no required lubrication and large operating clearances. The geometry and other properties of the bearings are described. Bearing parameters such as load capacity and current gains are discussed. Bearing coil currents were measured during operation in air and water. The rotor was operated in various orientations to determine the actuator current gains. These values were then used to estimate the radial and thrust forces acting on the rotor in both air and water. Much lower levels of force were found than were expected, allowing for a very significant reduction in the size of the next prototype. Hemolysis levels were measured in the prototype pump and found not to indicate damage to the blood cells. © 1996 International Society for Artificial Organs.
Dynamic characteristics and mechatronics model for maglev blood pump
NASA Astrophysics Data System (ADS)
Sun, Kun; Chen, Chen
2017-01-01
Magnetic bearing system(MBs) has been developed in the new-generation blood pump due to its low power consumption, low blood trauma and high durability. However, MBs for a blood pump were almost influenced by a series of factors such as hemodynamics, rotation speeds and actuator response in working fluids, compared with those applied in other industrial fields. In this study, the dynamic characteristics of MBs in fluid environments, including the influence of the pumping fluid and rotation of the impeller on the radial dynamic model were investigated by measuring the frequency response to sinusoidal excitation upon coils, and the response of radial displacement during a raise in the speed. The excitation tests were conducted under conditions in which the blood pump was levitated in air and water and with or without rotation. The experimental and simulated results indicate that rotations of the impeller affected the characteristics of MBs in water apparently, and the vibration in water was decreased, compared with that in air due to the hydraulic force. During the start-up and rotation, the actuator failed to operate fully and timely, and the voltage supplied can be chosen under the consideration of the rotor displacement and consumption.
NASA Astrophysics Data System (ADS)
Bozeman, Richard J.; Akkerman, James W.; Aber, Greg S.; Vandamm, George A.; Bacak, James W.; Svejkovsky, Paul A.; Benkowski, Robert J.
1993-11-01
A rotary blood pump is presented. The pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial, and radial clearances of the blades associated with the flow straightener, inducer portion, impeller portion, and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with crosslinked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.
IEA HPT ANNEX 41 – Cold climate heat pumps: US country report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groll, Eckhard A.; Baxter, Van D.
In 2012 the International Energy Agency (IEA) Heat Pump Programme (now the Heat Pump Technologies (HPT) program) established Annex 41 to investigate technology solutions to improve performance of heat pumps for cold climates. Four IEA HPT member countries are participating in the Annex – Austria, Canada, Japan, and the United States (U.S.). The principal focus of Annex 41 is on electrically driven air-source heat pumps (ASHP) since that system type has the lowest installation cost of all heat pump alternatives. They also have the most significant performance challenges given their inherent efficiency and capacity issues at cold outdoor temperatures. Availabilitymore » of ASHPs with improved low ambient performance would help bring about a much stronger heat pump market presence in cold areas, which today rely predominantly on fossil fuel furnace heating systems.« less
NASA Technical Reports Server (NTRS)
Bozeman, Richard J. (Inventor); Akkerman, James W. (Inventor); Aber, Greg S. (Inventor); Vandamm, George A. (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)
1993-01-01
A rotary blood pump is presented. The pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial, and radial clearances of the blades associated with the flow straightener, inducer portion, impeller portion, and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with crosslinked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.
NASA Astrophysics Data System (ADS)
Kirkham, R.; Olsen, K.; Hayes, J. C.; Emer, D. F.
2013-12-01
Underground nuclear tests may be first detected by seismic or air samplers operated by the CTBTO (Comprehensive Nuclear-Test-Ban Treaty Organization). After initial detection of a suspicious event, member nations may call for an On-Site Inspection (OSI) that in part, will sample for localized releases of radioactive noble gases and particles. Although much of the commercially available equipment and methods used for surface and subsurface environmental sampling of gases can be used for an OSI scenario, on-site sampling conditions, required sampling volumes and establishment of background concentrations of noble gases require development of specialized methodologies. To facilitate development of sampling equipment and methodologies that address OSI sampling volume and detection objectives, and to collect information required for model development, a field test site was created at a former underground nuclear explosion site located in welded volcanic tuff. A mixture of SF-6, Xe127 and Ar37 was metered into 4400 m3 of air as it was injected into the top region of the UNE cavity. These tracers were expected to move towards the surface primarily in response to barometric pumping or through delayed cavity pressurization (accelerated transport to minimize source decay time). Sampling approaches compared during the field exercise included sampling at the soil surface, inside surface fractures, and at soil vapor extraction points at depths down to 2 m. Effectiveness of various sampling approaches and the results of tracer gas measurements will be presented.
Sun, Bo; Koh, Yee Kan
2016-06-01
Time-domain thermoreflectance (TDTR) is a pump-probe technique frequently applied to measure the thermal transport properties of bulk materials, nanostructures, and interfaces. One of the limitations of TDTR is that it can only be employed to samples with a fairly smooth surface. For rough samples, artifact signals are collected when the pump beam in TDTR measurements is diffusely scattered by the rough surface into the photodetector, rendering the TDTR measurements invalid. In this paper, we systemically studied the factors affecting the artifact signals due to the pump beam leaked into the photodetector and thus established the origin of the artifact signals. We find that signals from the leaked pump beam are modulated by the probe beam due to the phase rotation induced in the photodetector by the illumination of the probe beam. As a result of the modulation, artifact signals due to the leaked pump beam are registered in TDTR measurements as the out-of-phase signals. We then developed a simple approach to eliminate the artifact signals due to the leaked pump beam. We verify our leak-pump correction approach by measuring the thermal conductivity of a rough InN sample, when the signals from the leaked pump beam are significant. We also discuss the advantages of our new method over the two-tint approach and its limitations. Our new approach enables measurements of the thermal conductivity of rough samples using TDTR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Bo; Koh, Yee Kan, E-mail: mpekyk@nus.edu.sg; Centre of Advanced 2D Materials, National University of Singapore, Singapore 117542
Time-domain thermoreflectance (TDTR) is a pump-probe technique frequently applied to measure the thermal transport properties of bulk materials, nanostructures, and interfaces. One of the limitations of TDTR is that it can only be employed to samples with a fairly smooth surface. For rough samples, artifact signals are collected when the pump beam in TDTR measurements is diffusely scattered by the rough surface into the photodetector, rendering the TDTR measurements invalid. In this paper, we systemically studied the factors affecting the artifact signals due to the pump beam leaked into the photodetector and thus established the origin of the artifact signals.more » We find that signals from the leaked pump beam are modulated by the probe beam due to the phase rotation induced in the photodetector by the illumination of the probe beam. As a result of the modulation, artifact signals due to the leaked pump beam are registered in TDTR measurements as the out-of-phase signals. We then developed a simple approach to eliminate the artifact signals due to the leaked pump beam. We verify our leak-pump correction approach by measuring the thermal conductivity of a rough InN sample, when the signals from the leaked pump beam are significant. We also discuss the advantages of our new method over the two-tint approach and its limitations. Our new approach enables measurements of the thermal conductivity of rough samples using TDTR.« less
Simulation of Solar Heat Pump Dryer Directly Driven by Photovoltaic Panels
NASA Astrophysics Data System (ADS)
Houhou, H.; Yuan, W.; Wang, G.
2017-05-01
This paper investigates a new type of solar heat pump dryer directly driven by photovoltaic panels. In order to design this system, a mathematical model has been established describing the whole drying process, including models of key components and phenomena of heat and mass transfer at the product layer and the air. The results of simulation at different drying air temperatures and velocities have been calculated and it indicate that the temperature of drying air is crucial external parameter compared to the velocity, with the increase of drying temperature from 45°C to 55°C, the product moisture content (Kg water/Kg dry product) decreased from 0.75 Kg/Kg to 0.3 Kg/Kg.
77 FR 75908 - Airworthiness Directives; Gulfstream Aerospace Corporation
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-26
.... (d) Subject Joint Aircraft System Component (JASC)/Air Transport Association (ATA) of America Code... of the fuel boost pump and over-heat damage found on the internal components and external housing. This proposed AD would require doing an inspection to determine if fuel boost pumps having a certain...
40 CFR 80.35 - Labeling of retail gasoline pumps; oxygenated gasoline.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Labeling of retail gasoline pumps; oxygenated gasoline. 80.35 Section 80.35 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Oxygenated Gasoline § 80.35 Labeling...
40 CFR 80.35 - Labeling of retail gasoline pumps; oxygenated gasoline.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Labeling of retail gasoline pumps; oxygenated gasoline. 80.35 Section 80.35 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Oxygenated Gasoline § 80.35 Labeling...
40 CFR 80.35 - Labeling of retail gasoline pumps; oxygenated gasoline.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Labeling of retail gasoline pumps; oxygenated gasoline. 80.35 Section 80.35 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Oxygenated Gasoline § 80.35 Labeling...
40 CFR 80.35 - Labeling of retail gasoline pumps; oxygenated gasoline.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Labeling of retail gasoline pumps; oxygenated gasoline. 80.35 Section 80.35 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Oxygenated Gasoline § 80.35 Labeling...
40 CFR 80.35 - Labeling of retail gasoline pumps; oxygenated gasoline.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Labeling of retail gasoline pumps; oxygenated gasoline. 80.35 Section 80.35 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Oxygenated Gasoline § 80.35 Labeling...
128. TUBING FOR HYDRAULIC FLUID AT BACK OF HYDRAULIC CONTROL ...
128. TUBING FOR HYDRAULIC FLUID AT BACK OF HYDRAULIC CONTROL PANEL IN UMBILICAL MAST PUMP ROOM (209), LSB (BLDG. 751). PUMP ON RIGHT; ACCUMULATOR FOR MAST RETRACTION ON LEFT. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
40 CFR 63.769 - Equipment leak standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
....242-5. (5) Pumps in VHAP service, valves in gas/vapor and light liquid service, and pressure relief... section. (6) Pumps in VHAP service, valves in gas/vapor and light liquid service, and pressure relief...) National Emission Standards for Hazardous Air Pollutants From Oil and Natural Gas Production Facilities...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-07
... contractors in the product supply chain. The Department is considering these approaches or some combination of... Conditioners and Heat Pumps AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy... efficiency standards for residential furnaces and residential central air conditioners and heat pumps. DOE...
Krempa, Heather M.
2015-10-29
Relative percent differences between methods were greater than 10 percent for most analyzed trace elements. Barium, cobalt, manganese, and boron had concentrations that were significantly different between sampling methods. Barium, molybdenum, boron, and uranium method concentrations indicate a close association between pump and grab samples based on bivariate plots and simple linear regressions. Grab sample concentrations were generally larger than pump concentrations for these elements and may be because of using a larger pore sized filter for grab samples. Analysis of zinc blank samples suggests zinc contamination in filtered grab samples. Variations of analyzed trace elements between pump and grab samples could reduce the ability to monitor temporal changes and potential groundwater contamination threats. The degree of precision necessary for monitoring potential groundwater threats and application objectives need to be considered when determining acceptable variation amounts.
NASA Astrophysics Data System (ADS)
Iverach, Charlotte P.; Cendón, Dioni I.; Hankin, Stuart I.; Lowry, Dave; Fisher, Rebecca E.; France, James L.; Nisbet, Euan G.; Baker, Andy; Kelly, Bryce F. J.
2015-04-01
Unconventional gas developments pose a risk to groundwater quality and quantity in adjacent or overlying aquifers. To manage these risks there is a need to measure the background concentration of indicator groundwater chemicals and to map pathways of hydraulic connectivity between aquifers. This study presents methane (CH4) concentration and isotopic composition, dissolved organic carbon concentration ([DOC]) and tritium (3H) activity data from an area of expanding coal seam gas (CSG) exploration and production (Condamine Catchment, south-east Queensland, Australia). The target formation for gas production within the Condamine Catchment is the Walloon Coal Measures (WCM). This is a 700 m thick, low-rank CSG resource, which consists of numerous thin discontinuous lenses of coal separated by very fine-to medium-grained sandstone, siltstone, and mudstone, with minor calcareous sandstone, impure limestone and ironstone. The thickness of the coal makes up less than 10% of the total thickness of the unit. The WCM are overlain by sandstone formations, which form part of the Great Artesian Basin (GAB). The Condamine Alluvium fills a paleo-valley carved through the above formations. A combination of groundwater and degassing air samples were collected from irrigation bores and government groundwater monitoring boreholes. Degassing air samples were collected using an SKC 222-2301 air pump, which pumped the gas into 3 L Tedlar bags. The groundwater was analysed for 3H and [DOC]. A mobile CH4 survey was undertaken to continuously sample air in and around areas of agricultural and unconventional gas production. The isotopic signature of gas from the WCM was determined by sampling gas that was off-gassing from a co-produced water holding pond as it was the largest emission that could be directly linked to the WCM. This was used to determine the source signature of the CH4 from the WCM. We used Keeling plots to identify the source signature of the gas sampled. For the borehole samples these plots assume that there are only two sources of CH4, each with a unique isotopic signature. When the two sources mix in varying proportions they will plot along a straight line in the Keeling plot. Geometric mean displacement was used to fit a regression line and determine the intercept value. Within the Keeling plot, samples clustered according to their 3H and [DOC] values. One cluster is associated with near surface biological processes, while the other cluster can be attributed to gas sourced from the WCM. This indicates that in places there is hydraulic connectivity between the WCM and the overlying Condamine Alluvium. The results from this case study demonstrate that measuring 3H activity, [DOC] and CH4 concentrations in combination with CH4 isotopic analysis can provide an early indicator of hydraulic connectivity in areas of expanding unconventional gas development.
Chou, Su-Lien; Ling, Yong-Chien; Yang, Mo-Hsiung; Pai, Chung-Yen
2007-08-13
The marijuana leaves are usually mixed with tobaccos and smoked at amusement places in Taiwan. Recently, for investigation-legal purposes, the police asked if we can identify the marijuana smoke in a KTV stateroom (a private room at the entertainment spot for singing, smoking, alcohol drinking, etc.) without marijuana residues. A personal air-sampler pump fitted with the GC liner-tube packed with Tenax-TA adsorbent was used for air sampling. The GC-adsorbent tube was placed in the GC injector port and desorbed directly, followed by GC-MS analysis for the determination of delta9-tetrahydrocannabinol (delta9-THC) in indoor air. The average desorption efficiency and limit of detection for delta9-THC were 89% and 0.1 microg m(-3), respectively, approximately needing 1.09 mg of marijuana leaves smoked in an unventilated closed room (3.0 m x 2.4 m x 2.7 m) to reach this level. The mean delta9-THC contained in the 15 marijuana plants seized from diverse locations was measured to be 0.32%. The delta9-THC in room air can be successfully identified from mock marijuana cigarettes, mixtures of marijuana and tobacco, and an actual case. The characteristic delta9-THC peak in chromatogram can serve as the indicator of marijuana. Positive result suggests marijuana smoking at the specific scene in the recent past, facilitating the formulation of further investigation.
Malingappa, Pandurangappa; Yarradoddappa, Venkataramanappa
2014-01-01
A new chemosensor has been used to monitor atmospheric nitrogen oxides [NO + NO2] at parts per billion (ppb) level. It is based on the catalytic reaction of nitrogen oxides with rhodamine B hydrazide (RBH) to produce a colored compound through the hydrolysis of the amide bond of the molecule. A simple colorimeter has been used to monitor atmospheric nitrogen dioxide at ppb level. The air samples were purged through a sampling cuvette containing RBH solution using peristaltic pump. The proposed method has been successfully applied to monitor the ambient nitrogen dioxide levels at traffic junction points within the city limits and the results obtained are compared with the standard Griess-Ilosvay method.
Gas-driven pump for ground-water samples
Signor, Donald C.
1978-01-01
Observation wells installed for artificial-recharge research and other wells used in different ground-water programs are frequently cased with small-diameter steel pipe. To obtain samples from these small-diameter wells in order to monitor water quality, and to calibrate solute-transport models, a small-diameter pump with unique operating characteristics is required that causes a minimum alternation of samples during field sampling. A small-diameter gas-driven pump was designed and built to obtain water samples from wells of two-inch diameter or larger. The pump is a double-piston type with the following characteristics: (1) The water sample is isolated from the operating gas, (2) no source of electricity is ncessary, (3) operation is continuous, (4) use of compressed gas is efficient, and (5) operation is reliable over extended periods of time. Principles of operation, actual operation techniques, gas-use analyses and operating experience are described. Complete working drawings and a component list are included. Recent modifications and pump construction for high-pressure applications also are described. (Woodard-USGS)
Strandberg, Bo; Julander, Anneli; Sjöström, Mattias; Lewné, Marie; Koca Akdeva, Hatice; Bigert, Carolina
2018-01-01
Routine monitoring of workplace exposure to polycyclic aromatic hydrocarbons (PAHs) is performed mainly via active sampling. However, active samplers have several drawbacks and, in some cases, may even be unusable. Polyurethane foam (PUF) as personal passive air samplers constitute good alternatives for PAH monitoring in occupational air (8 h). However, PUFs must be further tested to reliably yield detectable levels of PAHs in short exposure times (1-3 h) and under extreme occupational conditions. Therefore, we compared the personal exposure monitoring performance of a passive PUF sampler with that of an active air sampler and determined the corresponding uptake rates (Rs). These rates were then used to estimate the occupational exposure of firefighters and police forensic specialists to 32 PAHs. The work environments studied were heavily contaminated by PAHs with (for example) benzo(a)pyrene ranging from 0.2 to 56 ng m -3 , as measured via active sampling. We show that, even after short exposure times, PUF can reliably accumulate both gaseous and particle-bound PAHs. The Rs-values are almost independent of variables such as the concentration and the wind speed. Therefore, by using the Rs-values (2.0-20 m 3 day -1 ), the air concentrations can be estimated within a factor of two for gaseous PAHs and a factor of 10 for particulate PAHs. With very short sampling times (1 h), our method can serve as a (i) simple and user-friendly semi-quantitative screening tool for estimating and tracking point sources of PAH in micro-environments and (ii) complement to the traditional active pumping methods. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
AN EVALUATION OF PERSONAL SAMPLING PUMPS IN SUB-ZERO TEMPERATURES
Personal sampling pumps suitable for industrial hygiene surveys were evaluated to discover their characteristics as a function of temperature for temperatures between 25 and -50C. The pumps evaluated were significantly influenced by low temperatures. In general, most provided a s...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rice, C Keith; Uselton, Robert B.; Shen, Bo
A residential-sized dual air-source integrated heat pump (AS-IHP) concept is under development in partnership between ORNL and a manufacturer. The concept design consists of a two-stage air-source heat pump (ASHP) coupled on the air distribution side with a separate novel water heating/dehumidification (WH/DH) module. The motivation for this unusual equipment combination is the forecast trend for home sensible loads to be reduced more than latent loads. Integration of water heating with a space dehumidification cycle addresses humidity control while performing double-duty. This approach can be applied to retrofit/upgrade applications as well as new construction. A WH/DH module capable of ~1.47more » L/h water removal and ~2 kW water heating capacity was assembled by the manufacturer. A heat pump system model was used to guide the controls design; lab testing was conducted and used to calibrate the models. Performance maps were generated and used in a TRNSYS sub-hourly simulation to predict annual performance in a well-insulated house. Annual HVAC/WH energy savings of ~35% are predicted in cold and hot-humid U.S. climates compared to a minimum efficiency baseline.« less
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr. (Inventor); Akkerman, James W. (Inventor); Aber, Gregory S. (Inventor); VanDamm, George Arthur (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)
1997-01-01
A rotary blood pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial and radial clearances of blades associated with the flow straightener, inducer portion, impeller portion and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with cross-linked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.
Conference on Fluid Machinery, 8th, Budapest, Hungary, Sept. 1987, Proceedings. Volumes 1 & 2
NASA Astrophysics Data System (ADS)
Szabo, A.; Kisbocskoi, L.
The present conference on turbomachine fluid mechanics gives attention to the analysis of labyrinth seals, irrigation turbomachinery, axial-flow fans, poppet valves, the generation of Karman vortices, self-rectifying Wells-type air turbines, computer simulations for water-supply systems, the computation of meridional flow in turbomachines, entrained air effects on vortex pump performance, the three-dimensional potential flow in a draft tube, and hydro powerplant diagnostic methods. Also discussed are a mathematical model for the initiation of cavitation wear, cryogenic flow in ejectors, flow downstream of guide vanes in a Kaplan turbine, unsteady flow in rotating cascades, novel methods for turbomachine vibration monitoring, cavitation breakdown in centrifugal pumps, test results for Banki turbines, centrifugal compressor return-channel flow, performance predictions for regenerative turbomachines, and secondary flows in a centrifugal pump.
Dual-Pump CARS Development and Application to Supersonic Combustion
NASA Astrophysics Data System (ADS)
Magnotti, Gaetano
Successful design of hypersonic air-breathing engines requires new computational fluid dynamics (CFD) models for turbulence and turbulence-chemistry interaction in supersonic combustion. Unfortunately, not enough data are available to the modelers to develop and validate their codes, due to difficulties in taking measurements in such a harsh environment. Dual-pump coherent anti-Stokes Raman spectroscopy (CARS) is a non-intrusive, non-linear, laser-based technique that provides temporally and spatially resolved measurements of temperature and absolute mole fractions of N2, O2 and H2 in H2-air flames. A dual-pump CARS instrument has been developed to obtain measurements in supersonic combustion and generate databases for the CFD community. Issues that compromised previous attempts, such as beam steering and high irradiance perturbation effects, have been alleviated or avoided. Improvements in instrument precision and accuracy have been achieved. An axis-symmetric supersonic combusting coaxial jet facility has been developed to provide a simple, yet suitable flow to CFD modelers. The facility provides a central jet of hot "vitiated air" simulating the hot air entering the engine of a hypersonic vehicle flying at Mach numbers between 5 and 7. Three different silicon carbide nozzles, with exit Mach number 1, 1.6 and 2, are used to provide flows with the effects of varying compressibility. H2 co-flow is available in order to generate a supersonic combusting free jet. Dual-pump CARS measurements have been obtained for varying values of flight and exit Mach numbers at several locations. Approximately one million Dual-pump CARS single shots have been collected in the supersonic jet for varying values of flight and exit Mach numbers at several locations. Data have been acquired with a H2 co-flow (combustion case) or a N 2 co-flow (mixing case). Results are presented and the effects of the compressibility and of the heat release are discussed.
46 CFR 35.35-45 - Auxiliary steam, air, or electric current-B/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Auxiliary steam, air, or electric current-B/ALL. 35.35... Cargo Handling § 35.35-45 Auxiliary steam, air, or electric current—B/ALL. When discharging cargo from one or more barges, the towing vessel may furnish steam, air, or electric current for pumps on barges...
46 CFR 35.35-45 - Auxiliary steam, air, or electric current-B/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Auxiliary steam, air, or electric current-B/ALL. 35.35... Cargo Handling § 35.35-45 Auxiliary steam, air, or electric current—B/ALL. When discharging cargo from one or more barges, the towing vessel may furnish steam, air, or electric current for pumps on barges...
46 CFR 35.35-45 - Auxiliary steam, air, or electric current-B/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Auxiliary steam, air, or electric current-B/ALL. 35.35... Cargo Handling § 35.35-45 Auxiliary steam, air, or electric current—B/ALL. When discharging cargo from one or more barges, the towing vessel may furnish steam, air, or electric current for pumps on barges...
46 CFR 35.35-45 - Auxiliary steam, air, or electric current-B/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Auxiliary steam, air, or electric current-B/ALL. 35.35... Cargo Handling § 35.35-45 Auxiliary steam, air, or electric current—B/ALL. When discharging cargo from one or more barges, the towing vessel may furnish steam, air, or electric current for pumps on barges...
46 CFR 35.35-45 - Auxiliary steam, air, or electric current-B/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Auxiliary steam, air, or electric current-B/ALL. 35.35... Cargo Handling § 35.35-45 Auxiliary steam, air, or electric current—B/ALL. When discharging cargo from one or more barges, the towing vessel may furnish steam, air, or electric current for pumps on barges...
[Fatal complications by air embolism in legal interruption of pregnancy].
Du Chesne, A
1974-12-13
Fatal air embolism as a complication of legal abortion in a 29-year-old woman is reported. After anesthesia had been induced and dilatation accomplished (Hegar 14), the suction tube was introduced into the uterus. The surgeon felt unusually heavy pressure when the pump was started, and heavy bleeding was observed. Aspiration was discontinued, and the abortion was completed by curettage. Irregular breathing and cardiovascular collapse occurred 4 minutes after the start of the operation, and resuscitation attempts were unsuccessful. Autopsy revealed pulmonary edema, pulmonary emphysema, and air bubbles in many areas of the vascular system, which confirmed the clinical diagnosis of air embolism. The hose of the suction cannula was found to have been attached to the exhaust outlet of the suction pump. It is suggested that the exhaust should be clearly differentiated from the intake valve in order to avoid similar accidents in the future.
NASA Astrophysics Data System (ADS)
Marsella, Adam M.; Huang, Jiping; Ellis, David A.; Mabury, Scott A.
1999-12-01
An undergraduate field experiment is described for the measurement of nicotine and various carbonyl compounds arising from environmental tobacco smoke. Students are introduced to practical techniques in HPLC-UV and GC-NPD. Also introduced are current methods in personal air sampling using small and portable field sampling pumps. Carbonyls (formaldehyde, acetaldehyde, acrolein, and acetone) are sampled with silica solid-phase extraction cartridges impregnated with 2,4-dinitrophenylhydrazine, eluted, and analyzed by HPLC-UV (360-380 nm). Nicotine is sampled using XAD-2 cartridges, extracted, and analyzed by GC-NPD. Students gain an appreciation for the problems associated with measuring ubiquitous pollutants such as formaldehyde, as well as the issue of chromatographic peak resolution when trying to resolve closely eluting peaks. By allowing the students to formulate their own hypothesis and sampling scheme, critical thinking and problem solving are developed in addition to analysis skills. As an experiment in analytical environmental chemistry, this laboratory introduces the application of field sampling and analysis techniques to the undergraduate lab.
Series-parallel solar-augmented rock-bed heat pump. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sowell, E.F.; Othmer, P.W.
1979-12-31
This report deals with a system representing an alternate arrangement of the components in an air-type, heat pump augmented solar heating system. In this system, referred to as Series-Parallel, the heat pump coils are at opposite ends of the rock bed, allowing heating and cooling of the air entering and leaving the bed. This allows a number of unique modes of operation, some of which allow off-peak use of the necessary utility power. Cooling modes are also available, including off-peak cooling-effect storage, night cooling, and free cooling (economizing). The system finds applications principally in single-family residences. The study examined themore » performance of this system at three locations (Sacramento, Albuquerque, and New York) by means of a simulation model. Seasonal heating and cooling performance factors of about 3 were obtained for Albuquerque for the system integrated into a 200 m/sup 2/ residence. Design integration studies suggest an installed cost of approximately $28,000 above a conventional heat pump system using commercially available components. This high cost is largely due to solar hardware, although system complexity also adds. Availability of low-cost air type collectors may make the system attractive. The study also addresses the general problem of predictive control necessary whenever off-peak storage is employed. An algorithm is presented, along with results.« less
Octave-spanning mid-infrared pulses by plasma generation in air pumped with an Yb:KGW source
Huang, Jinqing; Parobek, Alexander; Ganim, Ziad
2016-01-01
Femtosecond mid-infrared (IR) supercontinuum generation in gas media provides a broadband source suited for time-domain spectroscopies and microscopies. This technology has largely utilized <100 fs Ti:sapphire pump lasers. In this Letter, we describe the first plasma generation mid-IR source based on a 1030 nm, 171 fs Yb:KGW laser system; when its first three harmonics are focused in air, a conical mode supercontinuum is generated that spans <1000 to 2700 cm−1 with a 190 pJ pulse energy and 0.5% RMS stability. PMID:27805634
Hart, Roger C; Herring, G C; Balla, R Jeffrey
2007-06-15
Nonintrusive, off-body flow barometry in Mach 2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, the streamwise velocity and static gas temperature of the same spatially resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature, and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.
NASA Technical Reports Server (NTRS)
Hart, Roger C.; Herring, Gregory C.; Balla, Robert J.
2007-01-01
Nonintrusive, off-body flow barometry in Mach-2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, stream-wise velocity and static gas temperature of the same spatially-resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-04
...: Public Meeting and Availability of the Framework Document for Packaged Terminal Air Conditioners and... document for packaged terminal air conditioners and heat pumps. This notice corrects the date of the public... announcement of a public meeting and availability of the framework document for packaged terminal air...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-01
... the low-voltage transformer used when testing coil-only residential central air conditioners and heat... the Low-Voltage Transformer Used When Testing Coil- Only Central Air Conditioners and Heat Pumps and... metric, estimating off-mode energy consumption, and selecting the low- voltage transformer in the test...
Archfield, Stacey A.; LeBlanc, Denis R.
2005-01-01
To evaluate diffusion sampling as an alternative method to monitor volatile organic compound (VOC) concentrations in ground water, concentrations in samples collected by traditional pumped-sampling methods were compared to concentrations in samples collected by diffusion-sampling methods for 89 monitoring wells at or near the Massachusetts Military Reservation, Cape Cod. Samples were analyzed for 36 VOCs. There was no substantial difference between the utility of diffusion and pumped samples to detect the presence or absence of a VOC. In wells where VOCs were detected, diffusion-sample concentrations of tetrachloroethene (PCE) and trichloroethene (TCE) were significantly lower than pumped-sample concentrations. Because PCE and TCE concentrations detected in the wells dominated the calculation of many of the total VOC concentrations, when VOC concentrations were summed and compared by sampling method, visual inspection also showed a downward concentration bias in the diffusion-sample concentration. The degree to which pumped- and diffusion-sample concentrations agreed was not a result of variability inherent within the sampling methods or the diffusion process itself. A comparison of the degree of agreement in the results from the two methods to 13 quantifiable characteristics external to the sampling methods offered only well-screen length as being related to the degree of agreement between the methods; however, there is also evidence to indicate that the flushing rate of water through the well screen affected the agreement between the sampling methods. Despite poor agreement between the concentrations obtained by the two methods at some wells, the degree to which the concentrations agree at a given well is repeatable. A one-time, well-bywell comparison between diffusion- and pumped-sampling methods could determine which wells are good candidates for the use of diffusion samplers. For wells with good method agreement, the diffusion-sampling method is a time-saving and cost-effective alternative to pumped-sampling methods in a long-term monitoring program, such as at the Massachusetts Military Reservation.
Occupational exposure to airborne contaminants during offshore oil drilling.
Kirkhus, Niels E; Thomassen, Yngvar; Ulvestad, Bente; Woldbæk, Torill; Ellingsen, Dag G
2015-07-01
The aim was to study exposure to airborne contaminants in oil drillers during ordinary work. Personal samples were collected among 65 drill floor workers on four stationary and six moveable rigs in the Norwegian offshore sector. Air concentrations of drilling mud were determined based on measurements of the non-volatile mud components Ca and Fe. The median air concentration of mud was 140 μg m(-3). Median air concentrations of oil mist (180 μg m(-3)), oil vapour (14 mg m(-3)) and organic carbon (46 μg m(-3)) were also measured. All contaminants were detected in all work areas (drill floor, shaker area, mud pits, pump room, other areas). The highest air concentrations were measured in the shaker area, but the differences in air concentrations between working areas were moderate. Oil mist and oil vapour concentrations were statistically higher on moveable rigs than on stationary rigs, but after adjusting for differences in mud temperature the differences between rig types were no longer of statistical significance. Statistically significant positive associations were found between mud temperature and the concentrations of oil mist (Spearman's R = 0.46) and oil vapour (0.39), and between viscosity of base oil and oil mist concentrations. Use of pressure washers was associated with higher air concentrations of mud. A series of 18 parallel stationary samples showed a high and statistically significant association between concentrations of organic carbon and oil mist (r = 0.98). This study shows that workers are exposed to airborne non-volatilized mud components. Air concentrations of volatile mud components like oil mist and oil vapour were low, but were present in all the studied working areas.
NASA Astrophysics Data System (ADS)
Amin, R.; Izadi, H.; Quémerais, B.
2015-05-01
The aim of this study was to design a laboratory size exposure chamber for the testing of samplers used to collect personal exposure samples for nanoparticles. A polyethylene cylindrical container with a diameter of 42 cm and height of 60 cm was used as the testing chamber. The chamber was divided into 2 parts by an aluminium honey comb. Particles generated using a 1 jet Collison nebulizer (BGI) operating at a flow rate of 4L/min were inserted into the chamber via a tube located near to the top of the chamber. A heater was inserted just after the nebulizer to avoid condensation of water in the tubing, and dilution air, running at 10L/min was inserted just after the heater. As particle charge can dramatically affect sampling a particle neutralizer was attached to the generation system so as to neutralize the particles before they enter the chamber. A diffusion dryer was used to remove any water from the air stream prior to enter the chamber. A fan was used to mix and distribute the generated particles. After generation and mixing, the particles passed through the aluminium honeycomb which is essential to eliminate any turbulent or unwanted air flow. Six sampling ports along with a pressure gauge were placed on the walls 15 cm from the bottom of the chamber. The pressure gauge was added to ensure the desired pressure is achieved during sampling. The sampling ports allowed for the connection of five samplers and sampling pumps as well as the connection of an ultrafine particle counter. The exposure chamber was developed to assess various samplers for carbon nanotubes and cellulose nanocrystals. Results showed that the chamber was working properly and that mixing was sufficiently uniform to test samplers.
Innovative Monitoring of Atmospheric Gaseous Hydrogen Fluoride
Bonari, Alessandro; Pompilio, Ilenia; Monti, Alessandro; Arcangeli, Giulio
2016-01-01
Hydrogen fluoride (HF) is a basic raw material for a wide variety of industrial products, with a worldwide production capacity of more than three million metric tonnes. A novel method for determining particulate fluoride and gaseous hydrogen fluoride in air is presented herewith. Air was sampled using miniaturised 13 mm Swinnex two-stage filter holders in a medium-flow pumping system and through the absorption of particulate fluoride and HF vapours on cellulose ester filters uncoated or impregnated with sodium carbonate. Furthermore, filter desorption from the holders and the extraction of the pentafluorobenzyl ester derivative based on solid-phase microextraction were performed using an innovative robotic system installed on an xyz autosampler on-line with gas chromatography (GC)/mass spectrometry (MS). After generating atmospheres of a known concentration of gaseous HF, we evaluated the agreement between the results of our sampling method and those of the conventional preassembled 37 mm cassette (±8.10%; correlation coefficient: 0.90). In addition, precision (relative standard deviation for n = 10, 4.3%), sensitivity (0.2 μg/filter), and linearity (2.0–4000 μg/filter; correlation coefficient: 0.9913) were also evaluated. This procedure combines the efficiency of GC/MS systems with the high throughput (96 samples/day) and the quantitative accuracy of pentafluorobenzyl bromide on-sample derivatisation. PMID:27829835
European Regional Climate Zone Modeling of a Commercial Absorption Heat Pump Hot Water Heater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Vishaldeep; Shen, Bo; Keinath, Chris
2017-01-01
High efficiency gas-burning hot water heating takes advantage of a condensing heat exchanger to deliver improved combustion efficiency over a standard non-condensing configuration. The water heating is always lower than the gas heating value. In contrast, Gas Absorption Heat Pump (GAHP) hot water heating combines the efficiency of gas burning with the performance increase from a heat pump to offer significant gas energy savings. An ammonia-water system also has the advantage of zero Ozone Depletion Potential and low Global Warming Potential. In comparison with air source electric heat pumps, the absorption system can maintain higher coefficients of performance in coldermore » climates. In this work, a GAHP commercial water heating system was compared to a condensing gas storage system for a range of locations and climate zones across Europe. The thermodynamic performance map of a single effect ammonia-water absorption system was used in a building energy modeling software that could also incorporate the changing ambient air temperature and water mains temperature for a specific location, as well as a full-service restaurant water draw pattern.« less
Chemical pump study for Pioneer Venus program
NASA Technical Reports Server (NTRS)
Rotheram, M.
1973-01-01
Two chemical pumps were designed for the Pioneer Venus large probe mass spectrometer. Factors involved in the design selection are reviewed. One pump is designed to process a sample of the Venus atmosphere to remove the major component, carbon dioxide, so that the minor, inert components may be measured with greater sensitivity. The other pump is designed to promote flow of atmospheric gas through a pressure reduction inlet system. This pump, located downstream from the mass spectrometer sampling point, provides the pressure differential required for flow through the inlet system. Both pumps utilize the reaction of carbon dioxide with lithium hydroxide. The available data for this reaction was reviewed with respect to the proposed applications, and certain deficiencies in reaction rate data at higher carbon dioxide pressures noted. The chemical pump designed for the inert gas experiment has an estimated volume of 30 cu cm and weight of 80 grams, exclusive of the four valves required for the operation. The chemical pump for the pressure reduction inlet system is designed for a total sample of 0.3 bar liter during the Venus descent.
Residential Central Air Conditioning and Heat Pump Installation – Workshop Outcomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goetzler, William; Zogg, Robert; Young, Jim
DOE's Building Technologies Office works with researchers and industry partners to develop and deploy technologies that can substantially reduce energy consumption in residential and commercial buildings. This report aims to advance BTO’s energy savings, emissions reduction, and other program goals by identifying research and development (R&D), demonstration and deployment, and other non-regulatory initiatives for improving the design and installation of residential central air conditioners (CAC) and central heat pumps (CHP). Improving the adoption of CAC/CHP design and installation best practices has significant potential to reduce equipment costs, improve indoor air quality and comfort, improve system performance, and most importantly, reducemore » household energy consumption and costs for heating and cooling by addressing a variety of common installation issues.« less
Akers, D Brad; MacCarthy, Michael F; Cunningham, Jeffrey A; Annis, Jonathan; Mihelcic, James R
2015-03-03
Thousands of households in coastal Madagascar rely on locally manufactured pitcher-pump systems to provide water for drinking, cooking, and household use. These pumps typically include components made from lead (Pb). In this study, concentrations of Pb in water were monitored at 18 household pitcher pumps in the city of Tamatave over three sampling campaigns. Concentrations of Pb frequently exceeded the World Health Organization's provisional guideline for drinking water of 10 μg/L. Under first-draw conditions (i.e., after a pump had been inactive for 1 h), 67% of samples analyzed were in excess of 10 μg/L Pb, with a median concentration of 13 μg/L. However, flushing the pump systems before collecting water resulted in a statistically significant (p < 0.0001) decrease in Pb concentrations: 35% of samples collected after flushing exceeded 10 μg/L, with a median concentration of 9 μg/L. Based on measured Pb concentrations, a biokinetic model estimates that anywhere from 15% to 70% of children living in households with pitcher pumps may be at risk for elevated blood lead levels (>5 μg/dL). Measured Pb concentrations in water were not correlated at statistically significant levels with pump-system age, well depth, system manufacturer, or season of sample collection; only the contact time (i.e., flushed or first-draw condition) was observed to correlate significantly with Pb concentrations. In two of the 18 systems, Pb valve weights were replaced with iron, which decreased the observed Pb concentrations in the water by 57-89% in one pump and by 89-96% in the other. Both systems produced samples exclusively below 10 μg/L after substitution. Therefore, relatively straightforward operational changes on the part of the pump-system manufacturers and pump users might reduce Pb exposure, thereby helping to ensure the continued sustainability of pitcher pumps in Madagascar.
NASA Astrophysics Data System (ADS)
Wang, Hong; Duan, Huanlin; Chen, Aidong
2018-02-01
In this paper, the mine-water source heat pump system is proposed in residential buildings of a mining community. The coefficient of performance (COP) and the efficiency of exergy are analyzed. The results show that the COP and exergy efficiency of the mine-water source heat pump are improved, the exergy efficiency of mine-water source heat pump is more than 10% higher than that of the air source heat pump.The electric power conservation measure of “peak load shifting” is also emphasized in this article. It shows that itis a very considerable cost in the electric saving by adopting the trough period electricity to produce hot water. Due to the proper temperature of mine water, the mine-watersource heat pump unit is more efficient and stable in performance, which further shows the advantage of mine-water source heat pump in energy saving and environmental protection. It provides reference to the design of similar heat pump system as well.
Automated fluid analysis apparatus and techniques
Szecsody, James E.
2004-03-16
An automated device that couples a pair of differently sized sample loops with a syringe pump and a source of degassed water. A fluid sample is mounted at an inlet port and delivered to the sample loops. A selected sample from the sample loops is diluted in the syringe pump with the degassed water and fed to a flow through detector for analysis. The sample inlet is also directly connected to the syringe pump to selectively perform analysis without dilution. The device is airtight and used to detect oxygen-sensitive species, such as dithionite in groundwater following a remedial injection to treat soil contamination.
Heat Pump Water Heater Ducting Strategies with Encapsulated Attics in Climate Zones 2 and 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sweet, M. L.; Francisco, A.; Roberts, S. G.
The focus of this study is on the performance of HPWHs with several different duct configurations and their effects on whole building heating, cooling, and moisture loads. A.O. Smith 60 gallon Voltex (PHPT-60) heat pump water heaters (HPWHs) were included at two project sites and ducted to or located within spray foamed encapsulated attics. The effect of ducting a HPWH's air stream does not diminish its efficiency if the ducting does not reduce intake air temperature, which expands HPWH application to confined areas. Exhaust ducts should be insulated to avoid condensation on the exterior, however this imposes a risk ofmore » condensation occurring in the duct's interior near the HPWH due to large variation of temperatures between the compressor and the duct and the presence of bulk moisture around the condenser. The HPWH's air conditioning impact on HVAC equipment loads is minimal when the intake and exhaust air streams are connected to a sealed attic and not the living space. A HPWH is not suitable as a replacement dehumidifier in sealed attics as peak moisture loads were observed to only be reduced if the heat pump operated during the morning. It appears that the intake air temperature and humidity was the most dominant variable affecting HPWH performance. Different ducting strategies such as exhaust duct only, intake duct only, and exhaust and intake ducting did not have any effect on HPWH performance.« less
Liu, Bo-Wen; Hu, Ming-Lie; Fang, Xiao-Hui; Li, Yan-Feng; Chai, Lu; Wang, Ching-Yue; Tong, Weijun; Luo, Jie; Voronin, Aleksandr A; Zheltikov, Aleksei M
2008-09-15
Fiber dispersion and nonlinearity management strategy based on a modification of a photonic-crystal fiber (PCF) core with an air hole is shown to facilitate optimization of PCF components for a stable soliton frequency shift and subpetahertz sideband generation through four-wave mixing. Spectral recoil of an optical soliton by a red-shifted dispersive wave, generated through a soliton instability induced by high-order fiber dispersion, is shown to stabilize the soliton self-frequency shift in a highly nonlinear PCF with an air-hole-modified core relative to pump power variations. A fiber with a 2.3-microm-diameter core modified with a 0.9-microm-diameter air hole is used to demonstrate a robust soliton self-frequency shift of unamplified 50-fs Ti: sapphire laser pulses to a central wavelength of about 960 nm, which remains insensitive to variations in the pump pulse energy within the range from 60 to at least 100 pJ. In this regime of frequency shifting, intense high- and low-frequency branches of dispersive wave radiation are simultaneously observed in the spectrum of PCF output. An air-hole-modified-core PCF with appropriate dispersion and nonlinearity parameters is shown to provide efficient four-wave mixing, giving rise to Stokes and anti-Stokes sidebands whose frequency shift relative to the pump wavelength falls within the subpetahertz range, thus offering an attractive source for nonlinear Raman microspectroscopy.
Airborne contaminants during controlled residential fires.
Fent, Kenneth W; Evans, Douglas E; Babik, Kelsey; Striley, Cynthia; Bertke, Stephen; Kerber, Steve; Smith, Denise; Horn, Gavin P
2018-05-01
In this study, we characterize the area and personal air concentrations of combustion byproducts produced during controlled residential fires with furnishings common in 21 st century single family structures. Area air measurements were collected from the structure during active fire and overhaul (post suppression) and on the fireground where personnel were operating without any respiratory protection. Personal air measurements were collected from firefighters assigned to fire attack, victim search, overhaul, outside ventilation, and command/pump operator positions. Two different fire attack tactics were conducted for the fires (6 interior and 6 transitional) and exposures were compared between the tactics. For each of the 12 fires, firefighters were paired up to conduct each job assignment, except for overhaul that was conducted by 4 firefighters. Sampled compounds included polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs, e.g., benzene), hydrogen cyanide (HCN), and particulate (area air sampling only). Median personal air concentrations for the attack and search firefighters were generally well above applicable short-term occupational exposure limits, with the exception of HCN measured from search firefighters. Area air concentrations of all measured compounds decreased after suppression. Personal air concentrations of total PAHs and benzene measured from some overhaul firefighters exceeded exposure limits. Median personal air concentrations of HCN (16,300 ppb) exceeded the exposure limit for outside vent firefighters, with maximum levels (72,900 ppb) higher than the immediately dangerous to life and health (IDLH) level. Median air concentrations on the fireground (including particle count) were above background levels and highest when collected downwind of the structure and when ground-level smoke was the heaviest. No statistically significant differences in personal air concentrations were found between the 2 attack tactics. The results underscore the importance of wearing self-contained breathing apparatus when conducting overhaul or outside ventilation activities. Firefighters should also try to establish command upwind of the structure fire, and if this cannot be done, respiratory protection should be considered.
Custom Unit Pump Design and Testing for the EVA PLSS
NASA Technical Reports Server (NTRS)
Schuller, Michael; Kurwitz, Cable; Goldman, Jeff; Morris, Kim; Trevino, Luis
2009-01-01
This paper describes the effort by the Texas Engineering Experiment Station (TEES) and Honeywell for NASA to design and test a pre-flight prototype pump for use in the Extra-vehicular activity (EVA) portable life support subsystem (PLSS). Major design decisions were driven by the need to reduce the pump s mass, power, and volume compared to the existing PLSS pump. In addition, the pump must accommodate a much wider range of abnormal conditions than the existing pump, including vapor/gas bubbles and increased pressure drop when employed to cool two suits simultaneously. A positive displacement, external gear type pump was selected because it offers the most compact and highest efficiency solution over the required range of flow rates and pressure drops. An additional benefit of selecting a gear pump design is that it is self priming and capable of ingesting non-condensable gas without becoming air locked. The chosen pump design consists of a 28 V DC, brushless, sealless, permanent magnet motor driven, external gear pump that utilizes a Honeywell development that eliminates the need for magnetic coupling. Although the planned flight unit will use a sensorless motor with custom designed controller, the pre-flight prototype to be provided for this project incorporates Hall effect sensors, allowing an interface with a readily available commercial motor controller. This design approach reduced the cost of this project and gives NASA more flexibility in future PLSS laboratory testing. The pump design was based on existing Honeywell designs, but incorporated features specifically for the PLSS application, including all of the key features of the flight pump. Testing at TEES verified that the pump meets the design requirements for range of flow rates, pressure drop, power consumption, working fluid temperature, operating time, gas ingestion , and restart capability under both ambient and vacuum conditions. The pump operated between 40 and 240 lbm/hr flowrate, 35 to 100 F pump temperature range, and 5 to 10 psid pressure rise. Power consumption of the pump controller at the nominal operating point in both ambient and vacuum conditions was 9.5 W, which was less than the 12 W predicted. Gas ingestion capabilities were tested by injecting 100 cc of air into the fluid line; the pump operated normally throughout this test. The test results contained a number of anomalies, specifically power increases and a few flow stoppages, that prompted TEES and Honeywell to disassemble and inspect the pump. Inspection indicated contamination in the pump and fit issues may have played roles in the observed anomalies. Testing following reassembly indicated that the performance of the pump 1) matched both the predicted performance values, 2) the performance values measured prior to disassembly, and 3) was free of the anomalies noted in the pre-disassembly testing.
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr. (Inventor); Akkerman, James W. (Inventor); Aber, Gregory S. (Inventor); VanDamm, George A. (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)
1996-01-01
A rotary blood pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial and radial clearances of blades associated with the flow straightener, inducer portion, impeller portion and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with cross-linked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.
The effect of surface wettability on the performance of a piezoelectric membrane pump
NASA Astrophysics Data System (ADS)
Wang, Jiantao; Yang, Zhigang; Liu, Yong; Shen, Yanhu; Chen, Song; Yu, Jianqun
2018-04-01
In this paper, we studied the effect of surface wettability on the bubble tolerance of a piezoelectric membrane pump, by applying the super-hydrophilic or super-hydrophobic surface to the key elements on the pump. Wettability for the flow passage surface has a direct influence on the air bubbles flowing in the fluid. Based on the existing research results, we first analyzed the relationship between the flow passage surface of the piezoelectric pump and the bubbles in the fluid. Then we made three prototypes where pump chamber walls and valve plate surfaces were given different wettability treatments. After the output performance test, results demonstrate that giving super-hydrophilic treatment on the surface of key elements can improve the bubble tolerance of piezoelectric pump; in contrast, giving super-hydrophobic treatment will reduce the bubble tolerance.
Lewis-Brown, Jean C.; Carleton, Glen B.; Imbrigiotta, Thomas E.
2006-01-01
Volatile organic compounds, predominantly trichloroethylene and its degradation products, have been detected in ground water at the Naval Air Warfare Center (NAWC), West Trenton, New Jersey. An air-stripping pump-and-treat system has been in operation at the NAWC since 1998. An existing ground-water-flow model was used to evaluate the effect of a change in the configuration of the network of recovery wells in the pump-and-treat system on flow paths of contaminated ground water. The NAWC is underlain by a fractured-rock aquifer composed of dipping layers of sedimentary rocks of the Lockatong and Stockton Formations. Hydraulic and solute-transport properties of the part of the aquifer composed of the Lockatong Formation were measured using aquifer tests and tracer tests. The heterogeneity of the rocks causes a wide range of values of each parameter measured. Transmissivity ranges from 95 to 1,300 feet squared per day; the storage coefficient ranges from 9 x 10-5 to 5 x 10-3; and the effective porosity ranges from 0.0003 to 0.002. The average linear velocity of contaminated ground water was determined for ambient conditions (when no wells at the site are pumped) using an existing ground-water-flow model, particle-tracking techniques, and the porosity values determined in this study. The average linear velocity of flow paths beginning at each contaminated well and ending at the streams where the flow paths terminate ranges from 0.08 to 130 feet per day. As a result of a change in the pump-and-treat system (adding a 165-foot-deep well pumped at 5 gallons per minute and reducing the pumping rate at a nearby 41-foot-deep well by the same amount), water in the vicinity of three 100- to 165-foot-deep wells flows to the deep well rather than the shallower well.
Environmental DNA sampling protocol - filtering water to capture DNA from aquatic organisms
Laramie, Matthew B.; Pilliod, David S.; Goldberg, Caren S.; Strickler, Katherine M.
2015-09-29
Environmental DNA (eDNA) analysis is an effective method of determining the presence of aquatic organisms such as fish, amphibians, and other taxa. This publication is meant to guide researchers and managers in the collection, concentration, and preservation of eDNA samples from lentic and lotic systems. A sampling workflow diagram and three sampling protocols are included as well as a list of suggested supplies. Protocols include filter and pump assembly using: (1) a hand-driven vacuum pump, ideal for sample collection in remote sampling locations where no electricity is available and when equipment weight is a primary concern; (2) a peristaltic pump powered by a rechargeable battery-operated driver/drill, suitable for remote sampling locations when weight consideration is less of a concern; (3) a 120-volt alternating current (AC) powered peristaltic pump suitable for any location where 120-volt AC power is accessible, or for roadside sampling locations. Images and detailed descriptions are provided for each step in the sampling and preservation process.
Körzendörfer, Adrian; Temme, Philipp; Nöbel, Stefan; Schlücker, Eberhard; Hinrichs, Jörg
2016-07-01
The aim of the study was to investigate the effects of vibrations during yogurt fermentation. Machinery such as pumps and switching valves generate vibrations that may disturb the gelation by inducing large particles. Oscillation measurements on an industrial yogurt production line showed that oscillations are transferred from pumps right up to the fermentation tanks. An experimental setup (20L) was developed to study the effect of vibrations systematically. The fermenters were decoupled with air springs to enable reference fermentations under idle conditions. A vibration exciter was used to stimulate the fermenters. Frequency sweeps (25-1005Hz, periodic time 10s) for 20min from pH5.4 induced large particles. The number of visible particles was significantly increased from 35±4 (reference) to 89±9 particles per 100g yogurt. Rheological parameters of the stirred yogurt samples were not influenced by vibrations. Copyright © 2016 Elsevier Ltd. All rights reserved.
A linear motor and compact cylinder-piston driver for left ventricular bypass.
Qian, K X
1990-01-01
A simple, portable, reliable and noise-free pneumatic driver has been developed. It consists of a linear motor attached to a cylinder piston, in one unit. The motor coil is directly wound on the cylinder, and the permanent magnet is fixed to the piston. As a continuous voltage square wave is applied to the coil, the cylinder reciprocates on the piston periodically, producing air pressure and vacuum alternately. In conjunction with a locally made diaphragm pump, the driver was tested in vitro and in vivo. Results demonstrated that the device could drive the diaphragm pump and so support the circulation of an experimental animal. The driver weighs 12 kg. For 200 mmHg air pressure and -80 mmHg vacuum the power consumed is 30 W. Its noise is about 30 dB, less than that of an artificial valve and pump.
Dual-pump CARS of Air in a Heated Pressure Vessel up to 55 Bar and 1300 K
NASA Technical Reports Server (NTRS)
Cantu, Luca; Gallo, Emanuela; Cutler, Andrew D.; Danehy, Paul M.
2014-01-01
Dual-pump Coherent anti-Stokes Raman scattering (CARS) measurements have been performed in a heated pressure vessel at NASA Langley Research Center. Each measurement, consisting of 500 single shot spectra, was recorded at a fixed location in dry air at various pressures and temperatures, in a range of 0.03-55×10(exp 5) Pa and 300-1373 K, where the temperature was varied using an electric heater. The maximum output power of the electric heater limited the combinations of pressures and temperatures that could be obtained. Charts of CARS signal versus temperature (at constant pressure) and signal versus pressure (at constant temperature) are presented and fit with an empirical model to validate the range of capability of the dual-pump CARS technique; averaged spectra at different conditions of pressure and temperature are also shown.
Artificial neural networks for the performance prediction of heat pump hot water heaters
NASA Astrophysics Data System (ADS)
Mathioulakis, E.; Panaras, G.; Belessiotis, V.
2018-02-01
The rapid progression in the use of heat pumps, due to the decrease in the equipment cost, together with the favourable economics of the consumed electrical energy, has been combined with the wide dissemination of air-to-water heat pumps (AWHPs) in the residential sector. The entrance of the respective systems in the commercial sector has made important the modelling of the processes. In this work, the suitability of artificial neural networks (ANN) in the modelling of AWHPs is investigated. The ambient air temperature in the evaporator inlet and the water temperature in the condenser inlet have been selected as the input variables; energy performance indices and quantities characterising the operation of the system have been selected as output variables. The results verify that the, easy-to-implement, trained ANN can represent an effective tool for the prediction of the AWHP performance in various operation conditions and the parametrical investigation of their behaviour.
NASA Astrophysics Data System (ADS)
Ushimaru, Kenji
1990-08-01
Since 1983, technological advances and market growth of inverter-driven variable-speed heat pumps in Japan have been dramatic. The high level of market penetration was promoted by a combination of political, economic, and trade policies in Japan. A unique environment was created in which the leading domestic industries, microprocessor manufacturing, compressors for air conditioning and refrigerators, and power electronic devices, were able to direct the development and market success of inverter-driven heat pumps. As a result, leading U.S. variable-speed heat pump manufacturers should expect a challenge from the Japanese producers of power devices and microprocessors. Because of the vertically-integrated production structure in Japan, in contrast to the out-sourcing culture of the United States, price competition at the component level (such as inverters, sensors, and controls) may impact the structure of the industry more severely than final product sales.
Magnesium sulfate micro air pump suction for bronchiolitis treatment in infants under two years old.
Kan, R-X; Zhang, C-L; Zhen, Q; Chen, J
2016-01-01
To investigate the efficiency, clinical effects and nursing methods related to the use of magnesium sulfate micro air pump suction for treating infants under two years old suffering from bronchiolitis. From January 2014 to September 2014, ninety-six infants with capillary bronchitis were enrolled. Patients were randomly divided into two groups: experimental group (n=49) and control group (n=47). All patients went through conventional anti-inflammatory therapy. Based on this, infants in the control group were additionally treated with intravenous drip of magnesium sulfate while patients in the experimental group were treated with magnesium sulfate micro air pump suction. We recorded all changes in blood gas and clinical scores, the residence time of symptoms and signs of bronchiolitis, and hospitalization time. Results obtained on clinical effects and adverse reactions were compared and analyzed. The Variations of PaO2, PaCO2, SaO2 before treatment in both groups did not show any statistically significant differences (p>0.05); while after treatment analyses demonstrated that in both groups we had an increase in PaO2 and SaO2 and a decrease in PaCO2. The increase in PaO2 and SaO2 values were more pronounced while the decrease observed in PaCO2 was more significant in our experimental group. The total effective rate was significantly higher while the total adverse reaction rate, the resolution time of clinical symptoms and hospitalization time were significantly lower in our experimental group. Magnesium sulfate micro air pump suction was safe and effective in treating with bronchiolitis of infants below 2 years old, and its adverse reaction rate was low, nursing procedure was simple, and nursing difficulty level was low.
Visual Aspects of the Electric Environment. NECA Electrical Design Guidelines.
ERIC Educational Resources Information Center
National Electrical Contractors Association, Washington, DC.
New design opportunities afforded by modern high-intensity light sources, and the many ways of integrating package air-conditioners with the design of buildings, are discussed. A guide to unitary air-conditioners and heat pumps is included. (RK)
A versatile UHV transport and measurement chamber for neutron reflectometry under UHV conditions
NASA Astrophysics Data System (ADS)
Syed Mohd, A.; Pütter, S.; Mattauch, S.; Koutsioubas, A.; Schneider, H.; Weber, A.; Brückel, T.
2016-12-01
We report on a versatile mini ultra-high vacuum (UHV) chamber which is designed to be used on the MAgnetic Reflectometer with high Incident Angle of the Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum in Garching, Germany. Samples are prepared in the adjacent thin film laboratory by molecular beam epitaxy and moved into the compact chamber for transfer without exposure to ambient air. The chamber is based on DN 40 CF flanges and equipped with sapphire view ports, a small getter pump, and a wobble stick, which serves also as sample holder. Here, we present polarized neutron reflectivity measurements which have been performed on Co thin films at room temperature in UHV and in ambient air in a magnetic field of 200 mT and in the Q-range of 0.18 Å-1. The results confirm that the Co film is not contaminated during the polarized neutron reflectivity measurement. Herewith it is demonstrated that the mini UHV transport chamber also works as a measurement chamber which opens new possibilities for polarized neutron measurements under UHV conditions.
A versatile UHV transport and measurement chamber for neutron reflectometry under UHV conditions.
Syed Mohd, A; Pütter, S; Mattauch, S; Koutsioubas, A; Schneider, H; Weber, A; Brückel, T
2016-12-01
We report on a versatile mini ultra-high vacuum (UHV) chamber which is designed to be used on the MAgnetic Reflectometer with high Incident Angle of the Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum in Garching, Germany. Samples are prepared in the adjacent thin film laboratory by molecular beam epitaxy and moved into the compact chamber for transfer without exposure to ambient air. The chamber is based on DN 40 CF flanges and equipped with sapphire view ports, a small getter pump, and a wobble stick, which serves also as sample holder. Here, we present polarized neutron reflectivity measurements which have been performed on Co thin films at room temperature in UHV and in ambient air in a magnetic field of 200 mT and in the Q-range of 0.18 Å -1 . The results confirm that the Co film is not contaminated during the polarized neutron reflectivity measurement. Herewith it is demonstrated that the mini UHV transport chamber also works as a measurement chamber which opens new possibilities for polarized neutron measurements under UHV conditions.
Heat Pump Drying of Fruits and Vegetables: Principles and Potentials for Sub-Saharan Africa
Fayose, Folasayo; Huan, Zhongjie
2016-01-01
Heat pump technology has been used for heating, ventilation, and air-conditioning in domestic and industrial sectors in most developed countries of the world including South Africa. However, heat pump drying (HPD) of fruits and vegetables has been largely unexploited in South Africa and by extension to the sub-Saharan African region. Although studies on heat pump drying started in South Africa several years ago, not much progress has been recorded to date. Many potential users view heat pump drying technology as fragile, slow, and high capital intensive when compared with conventional dryer. This paper tried to divulge the principles and potentials of heat pump drying technology and the conditions for its optimum use. Also, various methods of quantifying performances during heat pump drying as well as the quality of the dried products are highlighted. Necessary factors for maximizing the capacity and efficiency of a heat pump dryer were identified. Finally, the erroneous view that heat pump drying is not feasible economically in sub-Saharan Africa was clarified. PMID:26904668
Stehouwer, Marco C; de Vroege, Roel; Hoohenkerk, Gerard J F; Hofman, Frederik N; Kelder, Johannes C; Buchner, Bas; de Mol, Bastian A; Bruins, Peter
2017-11-01
Recently, an oxygenator with an integrated centrifugal blood pump (IP) was designed to minimize priming volume and to reduce blood foreign surface contact even further. The use of this oxygenator with or without integrated arterial filter was compared with a conventional oxygenator and nonintegrated centrifugal pump. To compare the air removal characteristics 60 patients undergoing coronary artery bypass grafting were alternately assigned into one of three groups to be perfused with a minimized extracorporeal circuit either with the conventional oxygenator, the oxygenator with IP, or the oxygenator with IP plus integrated arterial filter (IAF). Air entering and leaving the three devices was measured accurately with a bubble counter during cardiopulmonary bypass. No significant differences between all groups were detected, considering air entering the devices. Our major finding was that in both integrated devices groups incidental spontaneous release of air into the arterial line in approximately 40% of the patients was observed. Here, detectable bolus air (>500 µm) was shown in the arterial line, whereas in the minimal extracorporeal circulation circuit (MECC) group this phenomenon was not present. We decided to conduct an amendment of the initial design with METC-approval. Ten patients were assigned to be perfused with an oxygenator with IP and IAF. Importantly, the integrated perfusion systems used in these patients were flushed with carbon dioxide (CO 2 ) prior to priming of the systems. In the group with CO 2 flush no spontaneous air release was observed in all cases and this was significantly different from the initial study with the group with the integrated device and IAF. This suggests that air spilling may be caused by residual air in the integrated device. In conclusion, integration of a blood pump may cause spontaneous release of large air bubbles (>500 µm) into the arterial line, despite the presence of an integrated arterial filter. CO 2 flushing of an integrated cardiopulmonary bypass system prior to priming may prevent spontaneous air release and is strongly recommended to secure patient safety. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Field Investigation of an Air-Source Cold Climate Heat Pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Bo; Abdelaziz, Omar; Rice, C Keith
In the U.S., there are approximately 2.6 million dwellings that use electricity for heating in cold and very cold regions with an annual energy consumption of 0.16 quads (0.17 EJ). A high performance cold climate heat pump (CCHP) would result in significant savings over current technologies (greater than 60% compared to electric resistance heating). We developed an air-source cold climate heat pump, which uses tandem compressors, with a single compressor rated for the building design cooling load, and running two compressors to provide, at -13 F (-25 C), 75% of rated heating capacity. The tandem compressors were optimized for heatingmore » operation and are able to tolerate discharge temperatures up to 280 F (138 C). A field investigation was conducted in the winter of 2015, in an occupied home in Ohio, USA. During the heating season, the seasonal COP was measured at 3.16, and the heat pump was able to operate down to -13 F (-25 C) and eliminate resistance heat use. The heat pump maintained an acceptable comfort level throughout the heating season. In comparison to a previous single-speed heat pump in the home, the CCHP demonstrated more than 40% energy savings in the peak heating load month. This paper illustrates the measured field performance, including compressor run time, frost/defrosting operations, distributions of building heating load and capacity delivery, comfort level, field measured COPs, etc.« less
NASA Astrophysics Data System (ADS)
Wiryadinata, Steven
Service life modeling was performed to gage the viability of unitary 3.5 kWt, ground-source terminal heat pumps (GTHP) employing horizontal directionally drilled geothermal heat exchangers (GHX) over air-source terminal heat pumps (PTHP) in hotels and motels and residential apartment building sectors in California's coastal and inland climates. Results suggest the GTHP can reduce hourly peak demand for the utility by 7%-25% compared to PTHP, depending on the climate and building type. The annual energy savings, which range from -1% to 5%, are highly dependent on the GTHP pump energy use relative to the energy savings attributed to the difference in ground and air temperatures (DeltaT). In mild climates with small ?T, the pump energy use may overcome any advantage to utilizing a GHX. The majority of total levelized cost savings - ranging from 0.18/ft2 to 0.3/ft 2 - are due to reduced maintenance and lifetime capital cost normally associated with geothermal heat pump systems. Without these reductions (not validated for the GTHP system studied), the GTHP technology does not appear to offer significant advantages over PTHP in the climate zones studied here. The GTHP levelized cost was most sensitive to variations in installed cost and in some cases, energy use (influenced by climate zone choice), which together highlights the importance of climate selection for installation, and the need for larger market penetration of ground-source systems in order to bring down installed costs as the technology matures.
Effects of Oxygen Partial Pressure on the Surface Tension of Liquid Nickel
NASA Technical Reports Server (NTRS)
SanSoucie, Michael P.; Rogers, Jan R.; Gowda, Vijaya Kumar Malahalli Shankare; Rodriguez, Justin; Matson, Douglas M.
2015-01-01
The NASA Marshall Space Flight Center's electrostatic levitation (ESL) laboratory has been recently upgraded with an oxygen partial pressure controller. This system allows the oxygen partial pressure within the vacuum chamber to be measured and controlled, theoretically in the range from 10-36 to 100 bar. The oxygen control system installed in the ESL laboratory's main chamber consists of an oxygen sensor, oxygen pump, and a control unit. The sensor is a potentiometric device that determines the difference in oxygen activity in two gas compartments (inside the chamber and the air outside of the chamber) separated by an electrolyte, which is yttria-stabilized zirconia. The pump utilizes coulometric titration to either add or remove oxygen. The system is controlled by a desktop control unit, which can also be accessed via a computer. The controller performs temperature control for the sensor and pump, PID-based current loop, and a control algorithm. Oxygen partial pressure has been shown to play a significant role in the surface tension of liquid metals. Oxide films or dissolved oxygen may lead to significant changes in surface tension. The effects of oxygen partial pressure on the surface tension of undercooled liquid nickel will be analyzed, and the results will be presented. The surface tension will be measured at several different oxygen partial pressures while the sample is undercooled. Surface tension will be measured using the oscillating drop method. While undercooled, each sample will be oscillated several times consecutively to investigate how the surface tension behaves with time while at a particular oxygen partial pressure.
NASA Astrophysics Data System (ADS)
Szabo, Zoltan; Oden, Jeannette H.; Gibs, Jacob; Rice, Donald E.; Ding, Yuan
2002-02-01
Particulates that move with ground water and those that are artificially mobilized during well purging could be incorporated into water samples during collection and could cause trace-element concentrations to vary in unfiltered samples, and possibly in filtered samples (typically 0.45-um (micron) pore size) as well, depending on the particle-size fractions present. Therefore, measured concentrations may not be representative of those in the aquifer. Ground water may contain particles of various sizes and shapes that are broadly classified as colloids, which do not settle from water, and particulates, which do. In order to investigate variations in trace-element concentrations in ground-water samples as a function of particle concentrations and particle-size fractions, the U.S. Geological Survey, in cooperation with the U.S. Air Force, collected samples from five wells completed in the unconfined, oxic Kirkwood-Cohansey aquifer system of the New Jersey Coastal Plain. Samples were collected by purging with a portable pump at low flow (0.2-0.5 liters per minute and minimal drawdown, ideally less than 0.5 foot). Unfiltered samples were collected in the following sequence: (1) within the first few minutes of pumping, (2) after initial turbidity declined and about one to two casing volumes of water had been purged, and (3) after turbidity values had stabilized at less than 1 to 5 Nephelometric Turbidity Units. Filtered samples were split concurrently through (1) a 0.45-um pore size capsule filter, (2) a 0.45-um pore size capsule filter and a 0.0029-um pore size tangential-flow filter in sequence, and (3), in selected cases, a 0.45-um and a 0.05-um pore size capsule filter in sequence. Filtered samples were collected concurrently with the unfiltered sample that was collected when turbidity values stabilized. Quality-assurance samples consisted of sequential duplicates (about 25 percent) and equipment blanks. Concentrations of particles were determined by light scattering.
1980-03-01
function even though the pump is pumping air into the blood manifold. R-2 is secured to the plate with two thumb screws, and when the syringes are...the scapula . The animals were allowed 2-4 weeks of surgical recovery before the acceleration studies were performed. Experimental Protocol--On the day
NASA Technical Reports Server (NTRS)
Clarke, V. C., Jr.
1977-01-01
Solar collectors on mountainside collect thermal energy for mountaintop powerplant. Sloped arrangement reduces heat-transport problem of level ground-based collector field. Heated air rises without mechanical pumps and buoyancy force supplies pumping power without further cost. Precision tracking requirement of power towers eliminated by butted-together Winston-type concentrator troughs. Low-cost native rock is used for heat storage.
The purpose of this SOP is to describe the procedures followed in the preparation of carbon-based multisorbent tubes for the collection of volatile organic compounds (VOCs) in air using actively-pumped samplers. This procedure was followed to ensure consistent data retrieval duri...
Jjunju, Fred P M; Maher, Simon; Li, Anyin; Syed, Sarfaraz U; Smith, Barry; Heeren, Ron M A; Taylor, Stephen; Cooks, R Graham
2015-10-06
A novel, lightweight (0.6 kg), solvent- and gas-cylinder-free, hand-held ion source based on desorption atmospheric pressure chemical ionization has been developed and deployed for the analysis of nitroaromatic explosives on surfaces in open air, offering portability for in-field analysis. A small, inexpensive, rechargeable lithium polymer battery was used to power the custom-designed circuitry within the device, which generates up to ±5 kV dc voltage to ignite a corona discharge plasma in air for up to 12 h of continuous operation, and allowing positive- and negative-ion mass spectrometry. The generated plasma is pneumatically transported to the surface to be interrogated by ambient air at a rate of 1-3.5 L/min, compressed using a small on-board diaphragm pump. The plasma source allows liquid or solid samples to be examined almost instantaneously without any sample preparation in the open environment. The advantages of low carrier gas and low power consumption (<6 W), as well as zero solvent usage, have aided in developing the field-ready, hand-held device for trigger-based, "near-real-time" sampling/ionization. Individual nitroaromatic explosives (such as 2,4,6-trinitrotoluene) can be easily detected in amounts as low as 5.8 pg with a linear dynamic range of at least 10 (10-100 pg), a relative standard deviation of ca. 7%, and an R(2) value of 0.9986. Direct detection of several nitroaromatic compounds in a complex mixture without prior sample preparation is demonstrated, and their identities are confirmed by tandem mass spectrometry fragmentation patterns.
Malingappa, Pandurangappa; Yarradoddappa, Venkataramanappa
2014-01-01
A new chemosensor has been used to monitor atmospheric nitrogen oxides [NO + NO2] at parts per billion (ppb) level. It is based on the catalytic reaction of nitrogen oxides with rhodamine B hydrazide (RBH) to produce a colored compound through the hydrolysis of the amide bond of the molecule. A simple colorimeter has been used to monitor atmospheric nitrogen dioxide at ppb level. The air samples were purged through a sampling cuvette containing RBH solution using peristaltic pump. The proposed method has been successfully applied to monitor the ambient nitrogen dioxide levels at traffic junction points within the city limits and the results obtained are compared with the standard Griess-Ilosvay method. PMID:25210422
Nejad, Mina Ghasemi; Faraji, Hakim; Moghimi, Ali
2017-04-01
In this study, AA-DLLME combined with UV-Vis spectrophotometry was developed for pre-concentration, microextraction and determination of lead in aqueous samples. Optimization of the independent variables was carried out according to chemometric methods in three steps. According to the screening and optimization study, 86 μL of 1-undecanol (extracting solvent), 12 times syringe pumps, pH 2.0, 0.00% of salt and 0.1% DDTP (chelating agent) were chosen as the optimum independent variables for microextraction and determination of lead. Under the optimized conditions, R = 0.9994, and linearity range was 0.01-100 µg mL -1 . LOD and LOQ were 3.4 and 11.6 ng mL -1 , respectively. The method was applied for analysis of real water samples, such as tap, mineral, river and waste water.
Takeuchi, Masaki; Tsunoda, Hiromichi; Tanaka, Hideji; Shiramizu, Yoshimi
2011-01-01
This paper describes the performance of our automated acidic (CH(3)COOH, HCOOH, HCl, HNO(2), SO(2), and HNO(3)) gases monitor utilizing a parallel-plate wet denuder (PPWD). The PPWD quantitatively collects gaseous contaminants at a high sample flow rate (∼8 dm(3) min(-1)) compared to the conventional methods used in a clean room. Rapid response to any variability in the sample concentration enables near-real-time monitoring. In the developed monitor, the analyte collected with the PPWD is pumped into one of two preconcentration columns for 15 min, and determined by means of ion chromatography. While one preconcentration column is used for chromatographic separation, the other is used for loading the sample solution. The system allows continuous monitoring of the common acidic gases in an advanced semiconductor manufacturing clean room. 2011 © The Japan Society for Analytical Chemistry
A 1.8K refrigeration cryostat with 100 hours continuous cooling
NASA Astrophysics Data System (ADS)
Xu, Dong; Li, Jian; Huang, Rongjin; Li, Laifeng
2017-02-01
A refrigeration cryostat has been developed to produce continuous cooling to a sample below 1.8 K over 100 hours by using a cryocooler. A two-stage 4K G-M cryocooler is used to liquefy helium gas from evacuated vapor and cylinder helium bottle which can be replaced during the cooling process. The liquid helium transfer into superfluid helium in a Joule-Thomson valve in connection with a 1000 m3/h pumping unit. The pressure of evacuated helium vapor is controlled by air bag and valves. A copper decompression chamber, which is designed as a cooling station to control the superfluid helium, is used to cool the sample attached on it uniformly. The sample connects to the copper chamber in cryostat with screw thread. The cryostat can reach the temperature of 1.7 K without load and the continuous working time is more than 100 hours.
Field Performance of Inverter-Driven Heat Pumps in Cold Climates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williamson, James; Aldrich, Robb
2015-08-01
CARB observed a wide range of operating efficiencies and outputs from site to site. Maximum capacities were found to be generally in line with manufacturer's claims as outdoor temperatures fell to -10°F. The reasons for the wide range in heating performance likely include: low indoor air flow rates, poor placement of outdoor units, relatively high return air temperatures, thermostat set back, integration with existing heating systems, and occupants limiting indoor fan speed. Even with lower efficiencies than published in other studies, most of the heat pumps here still provide heat at lower cost than oil, propane, or certainly electric resistancemore » systems.« less
Combined air and water pollution control system
NASA Technical Reports Server (NTRS)
Wolverton, Billy C. (Inventor); Jarrell, Lamont (Inventor)
1990-01-01
A bioaquatic air pollution control system for controlling both water and atmospheric pollution is disclosed. The pollution control system includes an exhaust for directing polluted gases out of a furnace and a fluid circulating system which circulates fluid, such as waste water, from a source, past the furnace where the fluid flow entrains the pollutants from the furnace. The combined fluid and pollutants are then directed through a rock/plant/microbial filtering system. A suction pump pumps the treated waste water from the filter system past the exhaust to again entrain more pollutants from the furnace where they are combined with the fluid (waste water) and directed to the filter system.
Do-It-Yourself Additives Recharge Auto Air Conditioning
NASA Technical Reports Server (NTRS)
2010-01-01
In planning for a return mission to the Moon, NASA aimed to improve the thermal control systems that keep astronauts comfortable and cool while inside a spacecraft. Goddard Space Flight Center awarded a Small Business Innovation Research (SBIR) contract to Mainstream Engineering Corporation, of Rockledge, Florida, to develop a chemical/mechanical heat pump. IDQ Inc., of Garland, Texas, exclusively licensed the technology and incorporates it into its line of Arctic Freeze products for automotive air conditioning applications. While working on the design, Mainstream Engineering came up with a unique liquid additive called QwikBoost to enhance the performance of the advanced heat pump design.
Air swallowing can be responsible for non-response of heartburn to high-dose proton pump inhibitor.
Zentilin, P; Accornero, L; Dulbecco, P; Savarino, E; Savarino, V
2005-06-01
Intraluminal electrical impedance is a novel technique, which is able for the first time to provide a qualitative assessment of refluxed material moving from the stomach to the oesophagus. In other words, the presence of air can be differentiated from that of liquid, because the former is characterised by high and the latter by low impedance compared with baseline. Moreover, the combined measurement of electrical impedance and pH-metry permits to distinguish acid from non-acid liquid reflux. One of the most important clinical applications of this method is to assess the reasons for poor response of GORD patients to high-dose proton pump inhibitors. This case report describes the results of impedance in the evaluation of a young woman, who did not respond to twice-daily doses of rabeprazole. She continued to complain of heartburn as major symptom and impedance allowed us to clarify that it was not related to acid or non-acid reflux, but to air swallowing. Therefore, this technique identified aerophagia to be responsible for persistent heartburn despite high-dose proton pump inhibitor and prevented the adoption of more aggressive, but probably unuseful therapies, such as the surgical one.
Comfortable, high-efficiency heat pump with desiccant-coated, water-sorbing heat exchangers
NASA Astrophysics Data System (ADS)
Tu, Y. D.; Wang, R. Z.; Ge, T. S.; Zheng, X.
2017-01-01
Comfortable, efficient, and affordable heating, ventilation, and air conditioning systems in buildings are highly desirable due to the demands of energy efficiency and environmental friendliness. Traditional vapor-compression air conditioners exhibit a lower coefficient of performance (COP) (typically 2.8-3.8) owing to the cooling-based dehumidification methods that handle both sensible and latent loads together. Temperature- and humidity-independent control or desiccant systems have been proposed to overcome these challenges; however, the COP of current desiccant systems is quite small and additional heat sources are usually needed. Here, we report on a desiccant-enhanced, direct expansion heat pump based on a water-sorbing heat exchanger with a desiccant coating that exhibits an ultrahigh COP value of more than 7 without sacrificing any comfort or compactness. The pump’s efficiency is doubled compared to that of pumps currently used in conventional room air conditioners, which is a revolutionary HVAC breakthrough. Our proposed water-sorbing heat exchanger can independently handle sensible and latent loads at the same time. The desiccants adsorb moisture almost isothermally and can be regenerated by condensation heat. This new approach opens up the possibility of achieving ultrahigh efficiency for a broad range of temperature- and humidity-control applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiaobing; Malhotra, Mini; Xiong, Zeyu
High initial costs and lack of public awareness of ground-source heat pump (GSHP) technology are the two major barriers preventing rapid deployment of this energy-saving technology in the United States. Under the American Recovery and Reinvestment Act (ARRA), 26 GSHP projects have been competitively selected and carried out to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. This paper highlights the findings of a case study of one of the ARRA-funded GSHP demonstration projects, a distributed GSHP system for providing all the space conditioning, outdoor air ventilation, and 100% domestic hot water tomore » the Wilders Grove Solid Waste Service Center of City of Raleigh, North Carolina. This case study is based on the analysis of measured performance data, construction costs, and simulations of the energy consumption of conventional central heating, ventilation, and air-conditioning (HVAC) systems providing the same level of space conditioning and outdoor air ventilation as the demonstrated GSHP system. The evaluated performance metrics include the energy efficiency of the heat pump equipment and the overall GSHP system, pumping performance, energy savings, carbon emission reductions, and cost-effectiveness of the GSHP system compared with conventional HVAC systems. This case study also identified opportunities for reducing uncertainties in the performance evaluation and improving the operational efficiency of the demonstrated GSHP system.« less
Thermal and economic assessment of ground-coupled storage for residential solar heat pump systems
NASA Astrophysics Data System (ADS)
Choi, M. K.; Morehouse, J. H.
1980-11-01
This study performed an analysis of ground-coupled stand-alone and series configured solar-assisted liquid-to-air heat pump systems for residences. The year-round thermal performance of these systems for space heating, space cooling, and water heating were determined by simulation and compared against non-ground-coupled solar heat pump systems as well as conventional heating and cooling systems in three geographic locations: Washington, D.C., Fort Worth, Tex., and Madison, Wis. The results indicate that without tax credits a combined solar/ground-coupled heat pump system for space heating and cooling is not cost competitive with conventional systems. Its thermal performance is considerably better than non-ground-coupled solar heat pumps in Forth Worth. Though the ground-coupled stand-alone heat pump provides 51% of the heating and cooling load with non-purchased energy in Forth Worth, its thermal performance in Washington and Madison is poor.
NASA Astrophysics Data System (ADS)
Choi, M. K.; Morehouse, J. H.; Hughes, P. J.
1981-07-01
An analysis is performed of ground-coupled stand-alone and series configured solar-assisted liquid-to-air heat pump systems for residences. The year-round thermal performance of these systems for space heating, space cooling, and water heating is determined by simulation and compared against non-ground-coupled solar heat pump systems as well as conventional heating and cooling systems in three geographic locations: Washington, DC; Fort Worth, Texas; and Madison, Wisconsin. The results indicate that without tax credits a combined solar/ground-coupled heat pump system for space heating and cooling is not cost competitive with conventional systems. Its thermal performance is considerably better than non-ground-coupled solar heat pumps in Fort Worth. Though the ground-coupled stand-alone heat pump provides 51 percent of the heating and cooling load with non-purchased energy in Fort Worth, its thermal performance in Washington and Madison is poor.
A black carbon air quality network
NASA Astrophysics Data System (ADS)
Kirchstetter, T.; Caubel, J.; Cados, T.; Preble, C.; Rosen, A.
2016-12-01
We developed a portable, power efficient black carbon sensor for deployment in an air quality network in West Oakland, California. West Oakland is a San Francisco Bay Area residential/industrial community adjacent to regional port and rail yard facilities, and is surrounded by major freeways. As such, the community is affected by diesel particulate matter emissions from heavy-duty diesel trucks, locomotives, and ships associated with freight movement. In partnership with Environmental Defense Fund, the Bay Area Air Quality Management District, and the West Oakland Environmental Indicators Project, we are collaborating with community members to build and operate a 100-sensor black carbon measurement network for a period of several months. The sensor employs the filter-based light transmission method to measure black carbon. Each sensor node in the network transmits data hourly via SMS text messages. Cost, power consumption, and performance are considered in choosing components (e.g., pump) and operating conditions (e.g., sample flow rate). In field evaluation trials over several weeks at three monitoring locations, the sensor nodes provided black carbon concentrations comparable to commercial instruments and ran autonomously for a week before sample filters and rechargeable batteries needed to be replaced. Buildup to the 100-sensor network is taking place during Fall 2016 and will overlap with other ongoing air monitoring projects and monitoring platforms in West Oakland. Sensors will be placed along commercial corridors, adjacent to freeways, upwind of and within the Port, and throughout the residential community. Spatial and temporal black carbon concentration patterns will help characterize pollution sources and demonstrate the value of sensing networks for characterizing intra-urban air pollution concentrations and exposure to air pollution.
Quétel, Christophe R; Zampella, Mariavittoria; Brown, Richard J C; Ent, Hugo; Horvat, Milena; Paredes, Eduardo; Tunc, Murat
2014-08-05
Data most commonly used at present to calibrate measurements of mercury vapor concentrations in air come from a relationship known as the "Dumarey equation". It uses a fitting relationship to experimental results obtained nearly 30 years ago. The way these results relate to the international system of units (SI) is not known. This has caused difficulties for the specification and enforcement of limit values for mercury concentrations in air and in emissions to air as part of national or international legislation. Furthermore, there is a significant discrepancy (around 7% at room temperature) between the Dumarey data and data calculated from results of mercury vapor pressure measurements in the presence of only liquid mercury. As an attempt to solve some of these problems, a new measurement procedure is described for SI traceable results of gaseous Hg concentrations at saturation in milliliter samples of air. The aim was to propose a scheme as immune as possible to analytical biases. It was based on isotope dilution (ID) in the liquid phase with the (202)Hg enriched certified reference material ERM-AE640 and measurements of the mercury isotope ratios in ID blends, subsequent to a cold vapor generation step, by inductively coupled plasma mass spectrometry. The process developed involved a combination of interconnected valves and syringes operated by computer controlled pumps and ensured continuity under closed circuit conditions from the air sampling stage onward. Quantitative trapping of the gaseous mercury in the liquid phase was achieved with 11.5 μM KMnO4 in 2% HNO3. Mass concentrations at saturation found from five measurements under room temperature conditions were significantly higher (5.8% on average) than data calculated from the Dumarey equation, but in agreement (-1.2% lower on average) with data based on mercury vapor pressure measurement results. Relative expanded combined uncertainties were estimated following a model based approach. They ranged from 2.2% to 2.8% (k = 2). The volume of air samples was traceable to the kilogram via weighing of water for the calibration of the sampling syringe. Procedural blanks represented on average less than 0.1% of the mass of Hg present in 7.4 cm(3) of air, and correcting for these blanks was not an important source of uncertainty.
Holographic optical tweezers for object manipulations at an air-liquid surface.
Jesacher, Alexander; Fürhapter, Severin; Maurer, Christian; Bernet, Stefan; Ritsch-Marte, Monika
2006-06-26
We investigate holographic optical tweezers manipulating micro-beads at a suspended air-liquid interface. Axial confinement of the particles in the two-dimensional interface is maintained by the interplay between surface tension and gravity. Therefore, optical trapping of the micro-beads is possible even with a long distance air objective. Efficient micro-circulation of the liquid can be induced by fast rotating beads, driven by the orbital angular momentum transfer of incident Laguerre-Gaussian (doughnut) laser modes. Our setup allows various ways of creating a tailored dynamic flow of particles and liquid within the surface. We demonstrate examples of surface manipulations like efficient vortex pumps and mixers, interactive particle flow steering by arrays of vortex pumps, the feasibility of achieving a "clocked" traffic of micro beads, and size-selective guiding of beads along optical "conveyor belts".
Ehleringer, J. R.; Cook, C. S.
1998-01-01
Isotope ratio analyses of atmospheric CO(2) at natural abundance have significant potential for contributing to our understanding of photosynthetic and respiration processes in forest ecosystems. Recent advances in isotope ratio mass spectrometry allow for rapid, on-line analysis of small volumes of CO(2) in air, and open new research opportunities at the ecophysiological, whole-organism, and atmospheric levels. Among the immediate applications are the carbon and oxygen isotope ratio analyses of carbon dioxide in atmospheric air. Routine analysis of carbon dioxide in air volumes of approximately 50-300 &mgr;l is accomplished by linking a commercially available, trace gas condenser and gas chromatograph to an isotope ratio mass spectrometer operated in continuous-flow mode. Samples collected in the field are stored in either gas-tight syringes or 100-ml flasks. The small sample volume required makes it possible to subsample the air in flasks for CO(2) and then to sample the remaining air volume for the analysis of the isotopic composition of either methane or nitrous oxide. Reliable delta(13)C and delta(18)O values can be obtained from samples collected and stored for 1-3 days. Longer-term storage, on the order of weeks, is possible for delta(13)C measurements without drift in the isotope ratio signal, and should also be possible for delta(18)O measurements. When linked with an infrared gas analyzer, pump and flask sampling system, it is feasible to sample CO(2) extensively in remote forest locations. The air-sampling system was used to measure the isotope ratios of atmospheric CO(2) and to conduct a regression analysis of the relationship between these two parameters. From the regression, we calculated the delta(13)C of ecosystem respiration of four coniferous ecosystems along a precipitation gradient in central Oregon. The ecosystems along the coast-to-interior Oregon (OTTER) gradient are dominated by spruce-hemlock forests at the wet, coastal sites (> 200 cm precipitation annually) to juniper woodlands (20 cm precipitation) at the interior, dry end of the transect. The delta(13)C values of ecosystem respiration along this transect differed by only 1.3 per thousand (range of -25.2 to -23.9 per thousand ) during August at the peak of the summer drought. Following autumn rains in September, the delta(13)C of ecosystem respiration in the four stands decreased; overall the difference in the carbon isotope ratio of ecosystem respiration among sites increased to 3.9 per thousand (-26.8 to -22.9 per thousand ).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raebiger, K.; Faculty of Advanced Technology, University of Glamorgan, Pontypridd, Wales; Maksoud, T.M.A.
In the investigation of the pumping behaviour of multiphase screw pumps, handling gas-liquid mixtures with very high gas volume fractions, theoretical and experimental analyses were performed. A new theoretical screw pump model was developed, which calculates the time-dependent conditions inside the several chambers of a screw pump as well as the exchange of mass and energy between these chambers. By means of the performed experimental analysis, the screw pump model was verified, especially at very high gas volume fractions from 90% to 99%. The experiments, which were conducted with the reference fluids water and air, can be divided mainly intomore » the determination of the steady state pumping behaviour on the one hand and into the analysis of selected transient operating conditions on the other hand, whereas the visualisation of the leakage flows through the circumferential gaps was rounded off the experimental analysis. (author)« less
Regenerative adsorbent heat pump
NASA Technical Reports Server (NTRS)
Jones, Jack A. (Inventor)
1991-01-01
A regenerative adsorbent heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system and at least a portion of the heat of adsorption. A series of at least four compressors containing an adsorbent is provided. A large amount of heat is transferred from compressor to compressor so that heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.
2009-03-30
seeded with 15 W of single-frequency laser light at 1064 nm and cladding -pumped of 700 W in the forward direction and 300 W in the opposite direction...57-W single-mode phosphate fiber laser Our early studies of phosphate fiber lasers taught us that adding an air-hole to the inner cladding and... cladding -pumped with a fiber-coupled laser diode at 977 nm through a dichroic beam splitter placed on the OC side. The fiber ends were cooled using the
Code of Federal Regulations, 2011 CFR
2011-07-01
...: compressor, condenser, evaporator, or auxiliary heat exchange coil; or any maintenance, service, or repair... in part or whole of a class I or class II ozone-depleting substance that is used for heat transfer... window air conditioners and packaged terminal air heat pumps), dehumidifiers, under-the-counter ice...
24 CFR 3280.702 - Definitions.
Code of Federal Regulations, 2010 CFR
2010-04-01
... a comfort cooling appliance where the condenser section is placed external to the manufactured home... a comfort cooling appliance where the condenser section is placed external to the manufactured home... case of a heat pump) heat air for use in comfort cooling (or heating) the living space. Air...
Vented spikes improve delivery from intravenous bags with no air headspace.
Galush, William J; Horst, Travis A
2015-07-01
Flexible plastic bags are the container of choice for most intravenous (i.v.) infusions. Under certain circumstances, however, the air-liquid interface present in these i.v. bags can lead to physical instability of protein biopharmaceuticals, resulting in product aggregation. In principle, the air headspace present in the bags can be removed to increase drug stability, but experiments described here show that this can result in incomplete draining of solution from the bag using gravity delivery, or generation of negative pressure in the bag when an infusion pump is used. It is expected that these issues could lead to incomplete delivery of medication to patients or pump-related problems, respectively. However, here it is shown that contrary to the standard pharmacy practice of using nonvented spikes with i.v. bags, the use of vented spikes with i.v. bags that lack air headspace allows complete delivery of the dose solution without impacting the physical stability of a protein-based drug. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Remote air lasing for trace detection
NASA Astrophysics Data System (ADS)
Dogariu, Arthur; Michael, James B.; Miles, Richard B.
2011-05-01
We demonstrate coherent light propagating backwards from a remotely generated high gain air laser. A short ultraviolet laser pulse tuned to a two-photon atomic oxygen electronic resonance at 226 nm simultaneously dissociates the oxygen molecules in air and excites the resulting atomic oxygen fragments. Due to the focal depth of the pumping laser, a millimeter long region of high gain is created in air for the atomic oxygen stimulated emission at 845nm. We demonstrate that the gain in excess of 60 cm-1 is responsible for both forward and backwards emission of a strong, collimated, coherent laser beam. We present evidence for coherent emission and characterize the backscattered laser beam while varying the pumping conditions. The optical gain and directional emission allows for six orders of magnitude enhancement for the backscattered emission when compared with the fluorescence emission collected into the same solid angle. . This opens new opportunities for the remote detection capabilities of trace species, and provides much greater range for the detection of optical molecular and atomic features from a distant target.
Unterdruck-Verdampfer-Brunnen (UVB): An in situ system for remediation of contaminated aquifers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simon, M.A.; Argus, R.R.; Hough, B.L.
Traditionally, contaminated groundwater is pumped to a surface facility for treatment, often by air stripping. An innovative technology, the Unterdruck-Verdampfer-Brunnen (UVB), German for Vacuum Vaporizing Well, is an in situ groundwater remediation technology that combines air-lift pumping and air stripping to clean aquifers contaminated with volatile compounds. Additionally, the developer claims that in some cases the technology is capable of simultaneous recovery of soil gas from the vadose zone. An evaluation of this process is discussed in this abstract. The UVB technology is a process patented by IEG mbH in Reutlingen, Germany. IEG Technologies, Inc., located in Charlotte, NC, marketsmore » the technology in North America. IEG teamed with Roy F. Weston, Inc. to demonstrate the UVB technology at March Air Force Base (AFB), CA. March AFB allowed the US EPA Superfund Innovative Technology Evaluation (SITE) program to evaluate the technology. The SITE program retained PRC Environmental, Inc. to evaluate the performance of the UVB system at March.« less
A pilot study of bioaerosol reduction using an air cleaning system during dental procedures.
Hallier, C; Williams, D W; Potts, A J C; Lewis, M A O
2010-10-23
Bioaerosols are defined as airborne particles of liquid or volatile compounds that contain living organisms or have been released from living organisms. The creation of bioaerosols is a recognized consequence of certain types of dental treatment and represents a potential mechanism for the spread of infection. The aims of the present study were to assess the bioaerosols generated by certain dental procedures and to evaluate the efficiency of a commercially available Air Cleaning System (ACS) designed to reduce bioaerosol levels. Bioaerosol sampling was undertaken in the absence of clinical activity (baseline) and also during treatment procedures (cavity preparation using an air rotor, history and oral examination, ultrasonic scaling and tooth extraction under local anaesthesia). For each treatment, bioaerosols were measured for two patient episodes (with and without ACS operation) and between five and nine bioaerosol samples were collected. For baseline measurements, 15 bioaerosol samples were obtained. For bioaerosol sampling, environmental air was drawn on to blood agar plates using a bioaerosol sampling pump placed in a standard position 20 cm from the dental chair. Plates were incubated aerobically at 37°C for 48 hours and resulting growth quantified as colony forming units (cfu/m³). Distinct colony types were identified using standard methods. Results were analysed statistically using SPSS 12 and Wilcoxon signed rank tests. The ACS resulted in a significant reduction (p = 0.001) in the mean bioaerosols (cfu/m³) of all three clinics compared with baseline measurements. The mean level of bioaerosols recorded during the procedures, with or without the ACS activated respectively, was 23.9 cfu/m³ and 105.1 cfu/m³ (p = 0.02) for cavity preparation, 23.9 cfu/m³ and 62.2 cfu/m³ (p = 0.04) for history and oral examination; 41.9 cfu/m³ and 70.9 cfu/m³ (p = 0.01) for ultrasonic scaling and 9.1 cfu/m³ and 66.1 cfu/m³ (p = 0.01) for extraction. The predominant microorganisms isolated were Staphylococcus species and Micrococcus species. These findings indicate potentially hazardous bioaerosols created during dental procedures can be significantly reduced using an air cleaning system.
1990-12-01
Volumetric Infusion Pump is conditionally acceptable for use. The Air -In- Line detector does not sense air bubbles 0.95 cm (3/8 inch) or smaller...been fitted with an improved brushless air circulation motor, Brailsford model T- 2NFR. Using the new motor, the 185 passed EMI and is acceptable for...USAF School of Aerospace Medicine, Human Systems Division, Air Force Systems Command, Brooks Air Force Base, Texas, under job order 7930-16- 12. This
Prototype of Self-Sensing Magnetic Bearing for Liquid Nitrogen Pump
NASA Astrophysics Data System (ADS)
Eguchi, Seiji; Komori, Mochimitsu; Okuhata, Taro
Recently, pumps used in extremely low temperature such as 77K are found to be necessary. They are expected to use for rocket engines and hydrogen stations for fueled vehicles. Generally, conventional magnetic bearings do not work in the extremely low temperature. Therefore, we have studied magnitic bearings for these pumps. Self-sensing technique is tried to apply to magnetic bearings. If self-sensing magnetic bearings were made, we could apply the self-sensing magnetic bearing to liquid nitrogen pumps. In this paper, we propose a prototype self-sensing magnetic bearing and study the static and dynamic characteristics. The dynamic characteristics in the air and in liquid nitrogen are also discussed.
Quality assured measurements of animal building emissions: gas concentrations.
Heber, Albert J; Ni, Ji-Qin; Lim, Teng T; Tao, Pei-Chun; Schmidt, Amy M; Koziel, Jacek A; Beasley, David B; Hoff, Steven J; Nicolai, Richard E; Jacobson, Larry D; Zhang, Yuanhui
2006-10-01
Comprehensive field studies were initiated in 2002 to measure emissions of ammonia (NH3), hydrogen sulfide (H2S), carbon dioxide (CO2), methane (CH4), nonmethane hydrocarbons (NMHC), particulate matter <10 microm in diameter, and total suspended particulate from swine and poultry production buildings in the United States. This paper focuses on the quasicontinuous gas concentration measurement at multiple locations among paired barns in seven states. Documented principles, used in air pollution monitoring at industrial sources, were applied in developing quality assurance (QA) project plans for these studies. Air was sampled from multiple locations with each gas analyzed with one high quality commercial gas analyzer that was located in an environmentally controlled on-farm instrument shelter. A nominal 4 L/min gas sampling system was designed and constructed with Teflon wetted surfaces, bypass pumping, and sample line flow and pressure sensors. Three-way solenoids were used to automatically switch between multiple gas sampling lines with > or =10 min sampling intervals. Inside and outside gas sampling probes were between 10 and 115 m away from the analyzers. Analyzers used chemiluminescence, fluorescence, photoacoustic infrared, and photoionization detectors for NH3, H2S, CO2, CH4, and NMHC, respectively. Data were collected using personal computer-based data acquisition hardware and software. This paper discusses the methodology of gas concentration measurements and the unique challenges that livestock barns pose for achieving desired accuracy and precision, data representativeness, comparability and completeness, and instrument calibration and maintenance.
Barro, Ruth; Ares, Sergio; Garcia-Jares, Carmen; Llompart, Maria; Cela, Rafael
2004-08-06
In this study, a combination of solid-phase extraction (SPE) and solid-phase microextraction (SPME) has been used to determine chlorobenzenes in air. Analytes were sampled by pumping a known volume of air through a porous polymer (Tenax TA). Then, the adsorbent was transferred into a glass vial and SPME was performed. The quantification was carried out using gas chromatography (GC)-electron-capture detection or GC-MS. Several SPME coatings (100 microm poly(dimethylsiloxane) (PDMS), 75 microm Carboxen (CAR)-PDMS, 65 microm PDMS-divinylbenzene (DVB), 65 microm PDMS-DVB and 85 microm polyacrylate (PA) were evaluated, obtaining the highest responses with Carbowax (CW)- PDMS for the most volatile chlorobenzenes, and with PDMS-DVB or CW-DVB fibers for the semivolatile compounds. To optimize some other factors that could affect the SPME step, a factorial design was used. Kinetic studies of the SPME process were also performed. Concerning the SPE step, breakthrough was studied, showing that 2.5 m3 of air could be processed without losses of the most volatile compounds. The performance of the method was evaluated. External calibration, which does not require the complete sampling process, demonstrated to be suitable, obtaining good linearity (R2 > 0.99) for all chlorobenzenes. Recovery studies were performed at two concentration levels (4 and 40 ng/m3), obtaining quantitative recoveries (>80%). Limits of detection at the sub ng/m3 were achieved for all the target compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
V. Kochkin, M. Sweet
The focus of this study is on the performance of HPWHs with several different duct configurations and their effects on whole building heating, cooling, and moisture loads. A.O. Smith 60 gallon Voltex (PHPT-60) heat pump water heaters (HPWHs) were included at two project sites and ducted to or located within spray foamed encapsulated attics. The effect of ducting a HPWH's air stream does not diminish its efficiency if the ducting does not reduce intake air temperature, which expands HPWH application to confined areas. Exhaust ducts should be insulated to avoid condensation on the exterior, however this imposes a risk ofmore » condensation occurring in the duct's interior near the HPWH due to large variation of temperatures between the compressor and the duct and the presence of bulk moisture around the condenser. The HPWH's air conditioning impact on HVAC equipment loads is minimal when the intake and exhaust air streams are connected to a sealed attic and not the living space. A HPWH is not suitable as a replacement dehumidifier in sealed attics as peak moisture loads were observed to only be reduced if the heat pump operated during the morning. It appears that the intake air temperature and humidity was the most dominant variable affecting HPWH performance. Different ducting strategies such as exhaust duct only, intake duct only, and exhaust and intake ducting did not have any effect on HPWH performance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
2017-02-01
The focus of this study is on the performance of HPWHs with several different duct configurations and their effects on whole building heating, cooling, and moisture loads. A.O. Smith 60 gallon Voltex (PHPT-60) heat pump water heaters (HPWHs) were included at two project sites and ducted to or located within spray foamed encapsulated attics. The effect of ducting a HPWH's air stream does not diminish its efficiency if the ducting does not reduce intake air temperature, which expands HPWH application to confined areas. Exhaust ducts should be insulated to avoid condensation on the exterior, however this imposes a risk ofmore » condensation occurring in the duct's interior near the HPWH due to large variation of temperatures between the compressor and the duct and the presence of bulk moisture around the condenser. The HPWH's air conditioning impact on HVAC equipment loads is minimal when the intake and exhaust air streams are connected to a sealed attic and not the living space. A HPWH is not suitable as a replacement dehumidifier in sealed attics as peak moisture loads were observed to only be reduced if the heat pump operated during the morning. It appears that the intake air temperature and humidity was the most dominant variable affecting HPWH performance. Different ducting strategies such as exhaust duct only, intake duct only, and exhaust and intake ducting did not have any effect on HPWH performance.« less
2. Credit BG. View looks west southwest (245°) at Building ...
2. Credit BG. View looks west southwest (245°) at Building 4317, Deluge Water Pumping Station. The machinery in this structure draws water from an inground reservoir, Building 4316, whose round roof is visible at left rear of this view. - Edwards Air Force Base, North Base, Deluge Water Pumping Station, Near Second & D Streets, Boron, Kern County, CA
Persistent wind-induced enhancement of diffusive CO2 transport in a mountain forest snowpack
D. R. Bowling; W. J. Massman
2011-01-01
Diffusion dominates the transport of trace gases between soil and the atmosphere. Pressure gradients induced by atmospheric flow and wind interacting with topographical features cause a small but persistent bulk flow of air within soil or snow. This forcing, called pressure pumping or wind pumping, leads to a poorly quantified enhancement of gas transport beyond the...
Orbital Transfer Vehicle Engine Technology High Velocity Ratio Diffusing Crossover
NASA Technical Reports Server (NTRS)
Lariviere, Brian W.
1992-01-01
High speed, high efficiency head rise multistage pumps require continuous passage diffusing crossovers to effectively convey the pumped fluid from the exit of one impeller to the inlet of the next impeller. On Rocketdyne's Orbital Transfer Vehicle (OTV), the MK49-F, a three stage high pressure liquid hydrogen turbopump, utilizes a 6.23 velocity ratio diffusing crossover. This velocity ratio approaches the diffusion limits for stable and efficient flow over the operating conditions required by the OTV system. The design of the high velocity ratio diffusing crossover was based on advanced analytical techniques anchored by previous tests of stationary two-dimensional diffusers with steady flow. To secure the design and the analytical techniques, tests were required with the unsteady whirling characteristics produced by an impeller. A tester was designed and fabricated using a 2.85 times scale model of the MK49-F turbopumps first stage, including the inducer, impeller, and the diffusing crossover. Water and air tests were completed to evaluate the large scale turbulence, non-uniform velocity, and non-steady velocity on the pump and crossover head and efficiency. Suction performance tests from 80 percent to 124 percent of design flow were completed in water to assess these pump characteristics. Pump and diffuser performance from the water and air tests were compared with the actual MK49-F test data in liquid hydrogen.
Hamsan, Hazwanee; Ho, Yu Bin; Zaidon, Siti Zulfa; Hashim, Zailina; Saari, Nazamid; Karami, Ali
2017-12-15
Tanjung Karang, Selangor, is widely known for its paddy cultivation activity and hosts the third largest paddy field in Malaysia. Pesticides contamination in agriculture fields has become an unavoidable problem, as pesticides are used to increase paddy productivity and reduce plant disease. Human exposure to agrichemicals is common and could results in both acute and chronic health effects, such as acute and chronic neurotoxicity. This study aims to determine the concentrations of commonly used pesticides (azoxystrobin, buprofezin, chlorantraniliprole, difenoconazole, fipronil, imidacloprid, isoprothiolane, pretilachlor, propiconazole, pymetrozine, tebuconazole, tricyclazole, and trifloxystrobin) in personal air samples and their associated health risks among paddy farmers. Eighty-three farmers from Tangjung Karang, Selangor were involved in this study. A solid sorbent tube was attached to the farmer's breathing zone with a clip, and an air pump was fastened to the belt to collect personal air samples. Pesticides collected in the XAD-2 resin were extracted with acetone, centrifuged, concentrated via nitrogen blowdown and reconstituted with 1mL of 3:1 ultrapure water/HPLC-grade methanol solution. The extract was analyzed using ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). The target compounds were detected with a maximum concentration reaching up to 462.5ngm -3 (fipronil). The hazard quotient (HQ) was less than 1 and the hazard index (HI) value was 3.86×10 -3 , indicating that the risk of pesticides related diseases was not significant. The lifetime cancer risk (LCR) for pymetrozine was at an acceptable level (LCR<10 -6 ) with 4.10×10 -8 . The results reported in this study can be beneficial in terms of risk management within the agricultural community. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Reolon, David; Jacquot, Maxime; Verrier, Isabelle; Brun, Gérald; Veillas, Colette
2006-12-01
In this paper we propose group refractive index measurement with a spectral interferometric set-up using a broadband supercontinuum generated in an air-silica Microstructured Optical Fibre (MOF) pumped with a picosecond pulsed microchip laser. This source authorizes high fringes visibility for dispersion measurements by Spectroscopic Analysis of White Light Interferograms (SAWLI). Phase calculation is assumed by a wavelet transform procedure combined with a curve fit of the recorded channelled spectrum intensity. This approach provides high resolution and absolute group refractive index measurements along one line of the sample by recording a single 2D spectral interferogram without mechanical scanning.
Evaluation And Application Of Biomagnetic Monitoring Of Traffic-Derived Particulate Pollution.
NASA Astrophysics Data System (ADS)
Maher, B.; Mitchell, R.
2009-05-01
Inhalation of particulate pollutants below 10 micrometres in size (PM10) is associated with adverse health effects. Here we examine the utility of magnetic remanence measurements of roadside tree leaves as a quantitative proxy for vehicle-derived PM, by comparing leaf magnetic remanences with the magnetic properties, particulate mass and particulate concentration of co-located pumped air samples (around Lancaster, UK). Leaf samples were collected in early autumn 2007 from sites in close proximity to a major ring road, with a few additionally from background and suburban areas. Leaves were collected from lime trees (Tilia platyphyllos) only, to avoid possible species-dependent differences in PM collection. Magnetic susceptibility values were small and negative, reflecting the diamagnetic nature of the leaves. Low- temperature remanence curves show significant falls in remanence between 114 and 127 K in all of the leaf samples. ×ARM/SIRM ratios indicate that the dominant size of the leaf magnetic particles is between c.0.1-1 micrometre. Analysis of leaf particles by SEM confirms that their dominant grain size is less than 1 micrometre, with a significant number of iron-rich spherules less than 0.1 micrometre in diameter. Particle loading is concentrated around ridges in the leaf surface; significant numbers of the finer particles (less than 500 nm) are frequently agglomerated, most likely due to magnetic interactions between particles. Larger particles exhibit an irregular morphology, with high silica and aluminum content. Particle composition is consistent with exhaust outputs collected on a filter. Critically, leaf SIRM values exhibit strong correlation with the particulate mass and SIRM of co-located, pumped air samples, indicating that leaf SIRMs are an effective proxy for ambient particulate concentrations. Biomagnetic monitoring using tree leaves can thus potentially provide high spatial resolution data sets for assessment of particulate pollution loadings at pedestrian-relevant heights. Not only do leaf SIRM values increase with proximity to roads with higher traffic volumes, leaf SIRM values are c. 100 % higher at 0.3 m than at c. 1.5 to 2 m height.
NASA Astrophysics Data System (ADS)
Mitchell, R.; Maher, B. A.
2009-04-01
Inhalation of particulate pollutants below 10 μm in size (PM10) is associated with adverse health effects. Here we examine the utility of magnetic remanence measurements of roadside tree leaves as a quantitative proxy for vehicle-derived PM, by comparing leaf magnetic remanences with the magnetic properties, particulate mass and particulate concentration of co-located pumped air samples (around Lancaster, UK). Leaf samples were collected in early autumn 2007 from sites in close proximity to a major ring road (Figure 1 c), with a few additionally from background and suburban areas. Leaves were collected from lime trees (Tilia platyphyllos) only, to avoid possible species-dependent differences in PM collection. Magnetic susceptibility values were small and negative, reflecting the diamagnetic nature of the leaves. Low-temperature remanence curves show significant falls in remanence between 114 and 127 K in all of the leaf samples. XARM/SIRM ratios indicate that the dominant size of the leaf magnetic particles is between c. 0.1-2 μm. Analysis of leaf particles by SEM confirms that their dominant grain size is < 2 μm, with a significant number of iron-rich spherules below 1 μm in diameter. Particle loading is concentrated around ridges in the leaf surface; significant numbers of the finer particles (< 500 nm) are frequently agglomerated, most likely due to magnetic interactions between particles. Larger particles exhibit an irregular morphology, with high silica and aluminum content. Particle composition is consistent with exhaust outputs collected on a filter. Critically, leaf saturation remanence (SIRM) values exhibit strong correlation with the particulate mass and SIRM of co-located, pumped air samples, indicating they are an effective proxy for ambient particulate concentrations. Biomagnetic monitoring using tree leaves can thus potentially provide high spatial resolution data sets for assessment of particulate pollution loadings at pedestrian-relevant heights. Not only do leaf SIRM values increase with proximity to roads with higher traffic volumes, leaf SIRM values are c. 100 % higher at 0.3 m than at c. 1.5 - 2 m height.
Rivard, Christine; Bordeleau, Geneviève; Lavoie, Denis; Lefebvre, René; Malet, Xavier
2018-03-06
Methane concentrations and isotopic composition in groundwater are the focus of a growing number of studies. However, concerns are often expressed regarding the integrity of samples, as methane is very volatile and may partially exsolve during sample lifting in the well and transfer to sampling containers. While issues concerning bottle-filling techniques have already been documented, this paper documents a comparison of methane concentration and isotopic composition obtained with three devices commonly used to retrieve water samples from dedicated observation wells. This work lies within the framework of a larger project carried out in the Saint-Édouard area (southern Québec, Canada), whose objective was to assess the risk to shallow groundwater quality related to potential shale gas exploitation. The selected sampling devices, which were tested on ten wells during three sampling campaigns, consist of an impeller pump, a bladder pump, and disposable sampling bags (HydraSleeve). The sampling bags were used both before and after pumping, to verify the appropriateness of a no-purge approach, compared to the low-flow approach involving pumping until stabilization of field physicochemical parameters. Results show that methane concentrations obtained with the selected sampling techniques are usually similar and that there is no systematic bias related to a specific technique. Nonetheless, concentrations can sometimes vary quite significantly (up to 3.5 times) for a given well and sampling event. Methane isotopic composition obtained with all sampling techniques is very similar, except in some cases where sampling bags were used before pumping (no-purge approach), in wells where multiple groundwater sources enter the borehole.
A New Approach on Sampling Microorganisms from the Lower Stratosphere
NASA Astrophysics Data System (ADS)
Gunawan, B.; Lehnen, J. N.; Prince, J.; Bering, E., III; Rodrigues, D.
2017-12-01
University of Houston's Undergraduate Student Instrumentation Project (USIP) astrobiology group will attempt to provide a cross-sectional analysis of microorganisms in the lower stratosphere by collecting living microbial samples using a sterile and lightweight balloon-borne payload. Refer to poster by Dr. Edgar Bering in session ED032. The purpose of this research is two-fold: first, to design a new system that is capable of greater mass air intake, unlike the previous iterations where heavy and power-intensive pumps are used; and second, to provide proof of concept that live samples are accumulated in the upper atmosphere and are viable for extensive studies and consequent examination for their potential weather-altering characteristics. Multiple balloon deployments will be conducted to increase accuracy and to provide larger set of data. This paper will also discuss visual presentation of the payload along with analyzed information of the captured samples. Design details will be presented to NASA investigators for professional studies
Simulation of deleterious processes in a static-cell diode pumped alkali laser
NASA Astrophysics Data System (ADS)
Oliker, Benjamin Q.; Haiducek, John D.; Hostutler, David A.; Pitz, Greg A.; Rudolph, Wolfgang; Madden, Timothy J.
2014-02-01
The complex interactions in a diode pumped alkali laser (DPAL) gain cell provide opportunities for multiple deleterious processes to occur. Effects that may be attributable to deleterious processes have been observed experimentally in a cesium static-cell DPAL at the United States Air Force Academy [B.V. Zhdanov, J. Sell, R.J. Knize, "Multiple laser diode array pumped Cs laser with 48 W output power," Electronics Letters, 44, 9 (2008)]. The power output in the experiment was seen to go through a "roll-over"; the maximum power output was obtained with about 70 W of pump power, then power output decreased as the pump power was increased beyond this point. Research to determine the deleterious processes that caused this result has been done at the Air Force Research Laboratory utilizing physically detailed simulation. The simulations utilized coupled computational fluid dynamics (CFD) and optics solvers, which were three-dimensional and time-dependent. The CFD code used a cell-centered, conservative, finite-volume discretization of the integral form of the Navier-Stokes equations. It included thermal energy transport and mass conservation, which accounted for chemical reactions and state kinetics. Optical models included pumping, lasing, and fluorescence. The deleterious effects investigated were: alkali number density decrease in high temperature regions, convective flow, pressure broadening and shifting of the absorption lineshape including hyperfine structure, radiative decay, quenching, energy pooling, off-resonant absorption, Penning ionization, photoionization, radiative recombination, three-body recombination due to free electron and buffer gas collisions, ambipolar diffusion, thermal aberration, dissociative recombination, multi-photon ionization, alkali-hydrocarbon reactions, and electron impact ionization.
Mielczarek, P; Silberring, J; Smoluch, M
In the present study we tested the application of compressed air instead of pure nitrogen as the nebulizing and drying gas, and its influence on the quality of electrospray ionization (ESI) mass spectra. The intensities of the signals corresponding to protonated molecules were significantly (twice) higher when air was used. Inspection of signal-to-noise (S/N) ratios revealed that, in both cases, sensitivity was comparable. A higher ion abundance after the application of compressed air was followed by a higher background. Another potential risk of using air in the ESI source is the possibility for sample oxidation due to the presence of oxygen. To test this, we selected five easily oxidizing compounds to verify their susceptibility to oxidation. In particular, the presence of methionine was of interest. For all the compounds studied, no oxidation was observed. Amodiaquine oxidizes spontaneously in water solutions and its oxidized form can be detected a few hours after preparation. Direct comparison of the spectra where nitrogen was used with the corresponding spectra obtained when air was applied did not show significant differences. The only distinction was slightly different patterns of adducts when air was used. The difference concerns acetonitrile, which forms higher signals when air is the nebulizing gas. It is also important that the replacement of nitrogen with air does not affect quantitative data. The prepared calibration curves also visualize an intensity twice as high (independent of concentration within tested range) of the signal where air was applied. We have used our system continuously for three months with air as the nebulizing and drying gas and have not noticed any unexpected signal deterioration caused by additional source contamination from the air. Moreover, compressed air is much cheaper and easily available using oil-free compressors or pumps.
Venturi vacuum systems for hypobaric chamber operations.
Robinson, R; Swaby, G; Sutton, T; Fife, C; Powell, M; Butler, B D
1997-11-01
Physiological studies of the effects of high altitude on man often require the use of a hypobaric chamber to simulate the reduced ambient pressures. Typical "altitude" chambers in use today require complex mechanical vacuum systems to evacuate the chamber air, either directly or via reservoir system. Use of these pumps adds to the cost of both chamber procurement and maintenance, and service of these pumps requires trained support personnel and regular upkeep. In this report we describe use of venturi vacuum pumps to perform the function of mechanical vacuum pumps for human and experimental altitude chamber operations. Advantages of the venturi pumps include their relatively low procurement cost, small size and light weight, ease of installation and plumbing, lack of moving parts, and independence from electrical power sources, fossil fuels and lubricants. Conversion of three hyperbaric chambers to combined hyper/hypobaric use is described.
Bowen, Amanda L; Martin, R. Scott
2010-01-01
A microfluidic approach that integrates peristaltic pumping from an on-chip reservoir with injection valves, microchip electrophoresis and electrochemical detection is described. Fabrication and operation of both the peristaltic pumps and injection valves were optimized to ensure efficient pumping and discrete injections. The final device uses the peristaltic pumps to continuously direct sample from a reservoir containing a mixture of analytes to injection valves that are coupled with microchip electrophoresis and amperometric detection. The separation and direct detection of dopamine and norepinephrine were possible with this approach and the utility of the device was demonstrated by monitoring the stimulated release of these neurotransmitters from a layer of cells introduced into the microchip. It is also shown that this pumping/reservoir approach can be expanded to multiple reservoirs and pumps, where one reservoir can be addressed individually or multiple reservoirs sampled simultaneously. PMID:20665914
Zuur, J. K.; Muller, S. H.; de Jongh, F. H. C.; van der Horst, M. J.; Shehata, M.; van Leeuwen, J.; Sinaasappel, M.
2007-01-01
The aim of this study is to develop a postlaryngectomy airway climate explorer (ACE) for assessment of intratracheal temperature and humidity and of influence of heat and moisture exchangers (HMEs). Engineering goals were within-device condensation prevention and fast response time characteristics. The ACE consists of a small diameter, heated air-sampling catheter connected to a heated sensor house, containing a humidity sensor. Air is sucked through the catheter by a controlled-flow pump. Validation was performed in a climate chamber using a calibrated reference sensor and in a two-flow system. Additionally, the analyser was tested in vivo. Over the clinically relevant range of humidity values (5–42 mg H2O/l air) the sensor output highly correlates with the reference sensor readings (R2 > 0.99). The 1–1/e response times are all <0.5 s. A first in vivo pilot measurement was successful. The newly developed, verified, fast-responding ACE is suitable for postlaryngectomy airway climate assessment. PMID:17629761
Air quality assessment on human well-being in the vicinity of quarry site
NASA Astrophysics Data System (ADS)
Ibrahim, W. H. W.; Marinie, E.; Yunus, J.; Asra, N.; Sukor, K. Mohd
2018-02-01
This study aims to investigate the variation of air pollutants associated with the quarry activities prior to classified distance from quarry site. Air pollutants were monitored with the use of instruments which are Rae System Multirae Lite Pumped (PGM-6208) to measure indoor air quality while TSI 8533 Dusttrack Drx Desktop Aerosol Monitor to measure outdoor air quality. Sampling will be replicated two times. The locations of quarry are at Bandar Saujana Putra and Taman Kajang Perdana 2, Selangor. The objectives of this study are to investigate the impact of quarry mining by preparing the suitable Indoor Air Quality Index and to prepare preventive measure for residential that caused from quarry mining activities. Both Qualitative and Quantitative approaches will be implemented in this study, which employed case study and interview survey. Both quarries identified previously will be the main case study. The Respondent’s interviews are from Local Authority and Quarry Management Staff while questionnaire surveys from selected residences. Measurement method will be used to measure the Particle Matter (PM2.5) for indoor and outdoor in selected resident’s area. However, this paper is primed to discuss the method used in this study. It is not only presents the beneficial information for future research on methodologies employed but also it is anticipated the benefit to environment which can increased residents’ well-being in the vicinity of quarry sites.
Application of solar energy to air conditioning systems
NASA Technical Reports Server (NTRS)
Nash, J. M.; Harstad, A. J.
1976-01-01
The results of a survey of solar energy system applications of air conditioning are summarized. Techniques discussed are both solar powered (absorption cycle and the heat engine/Rankine cycle) and solar related (heat pump). Brief descriptions of the physical implications of various air conditioning techniques, discussions of status, proposed technological improvements, methods of utilization and simulation models are presented, along with an extensive bibliography of related literature.
Design of Aircraft (Selected Chapters),
1986-09-22
9 - compressed air motor of the drive of the reverser of the thrust of fan; 10 - flexible drive shaft; 11 - gearbox and jack; 12 - moving ring; 13...24 - cutoff and control valve; 25 - main line of pneumatic system; 26 - pneumo-starter; 27 - given by compressed air motor hydraulic pump; 28...kilometer; p - mass air density; p, - on the surface of sea; .A=p/p°- relative density of air ; R - radius of the Earth, a radius turn/bank and so forth; S
Third harmonic from air breakdown plasma induced by nanosecond laser pulses
NASA Astrophysics Data System (ADS)
Stafe, M.; Negutu, C.; Puscas, N. N.
2018-06-01
Harmonic generation is a nonlinear optical effect consisting in frequency up-conversion of intense laser radiation when phase-matching conditions are fulfilled. Here, we study the mechanisms involved in the third harmonic (TH) generation process, the conversion efficiency, and the properties of TH radiation generated in air by focusing infrared linearly polarized nanosecond laser pulses at intensities of the order of TW/cm2. By analyzing the emission from the air breakdown plasma, we demonstrate that filamentary breakdown plasma containing molecular nitrogen ions acts as an optical nonlinear medium enabling generation of TH radiation in the axial direction. The data reveal important properties of the TH radiation: maximum conversion efficiency of 0.04%, sinc2 dependence of the TH intensity on the square root of the pump intensity, and three times smaller divergence and pulse duration of TH as compared to the pump radiation.
Control methods and systems for indirect evaporative coolers
Woods, Jason; Kozubal, Erik
2015-09-22
A control method for operating an indirect evaporative cooler to control temperature and humidity. The method includes operating an airflow control device to provide supply air at a flow rate to a liquid desiccant dehumidifier. The supply air flows through the dehumidifier and an indirect evaporative cooler prior to exiting an outlet into a space. The method includes operating a pump to provide liquid desiccant to the liquid desiccant dehumidifier and sensing a temperature of an airstream at the outlet of the indirect evaporative cooler. The method includes comparing the temperature of the airstream at the outlet to a setpoint temperature at the outlet and controlling the pump to set the flow rate of the liquid desiccant. The method includes sensing space temperature, comparing the space temperature with a setpoint temperature, and controlling the airflow control device to set the flow rate of the supply air based on the comparison.
NASA Astrophysics Data System (ADS)
Liu, Jianwei; Liu, Jiaquan; Wang, Fengyin; Wang, Cuiping
2018-03-01
The thermal environment parameters, like the temperature and air velocity, are measured to investigate the heat comfort status of metro staff working area in winter in Qingdao. The temperature is affected obviously by the piston wind from the train and waiting hall in the lower Hall, and the temperature is not satisfied with the least heat comfort temperature of 16 °C. At the same time, the heat produced by the electrical and control equipments is brought by the cooling air to atmosphere for the equipment safety. Utilizing the water-circulating heat pump, it is feasible to transfer the emission heat to the staff working area to improve the thermal environment. Analyzed the feasibility from the technique and economy when using the heat pump, the water-circulating heat pump could be the best way to realize the waste heat recovery and to help the heat comfort of staff working area in winter in the underground metro station in north China.
Room Air Conditioners; Appliance Repair--Advanced: 9027.04.
ERIC Educational Resources Information Center
Dade County Public Schools, Miami, FL.
This Quinmester course includes installations, electrical and mechanical servicing, reverse cycle air conditioning, malfunctions, troubleshooting and repair, discharge, pump down, and recharging the system. The course may be taught as a two or three Quinmester credit course. In each instance the course consists of six instructional blocks:…
40 CFR 86.605-88 - Maintenance of records; submittal of information.
Code of Federal Regulations, 2014 CFR
2014-07-01
... of the mixture of exhaust and dilution air entering the positive displacement pump, pressure increase... being collected. (3) Humidity of dilution air. (4) Manufacturer, model, type and serial number. (C... temperature and humidity. (2) Data and time of day. (ii) In lieu of recording test equipment information...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-07
... rating the Altherma products in Europe. The test procedures are EN 14511 ``Air conditioners, liquid chilling packages and heat pumps with electrically driven compressors for space heating and cooling'' and... rated according to European Standard EN 14511, ``Air conditioners, liquid chilling packages and heat...
DOE ZERH Case Study: Sunroc Builders, Bates Avenue, Lakeland, FL
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
2015-09-01
Case study of a DOE 2015 Housing Innovation Award winning affordable home in the hot-humid climate that got HERS 57 without PV, with 6.5” SIP walls and 8.25” SIP roof; uninsulated slab foundation; fresh air intake; SEER 16 ducted air source heat pump.
Standardized Curriculum for Heating and Air Conditioning.
ERIC Educational Resources Information Center
Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.
Standardized vocational education course titles and core contents for two courses in Mississippi are provided: heating and air conditioning I and II. The first course contains the following units: (1) orientation; (2) safety; (3) refrigeration gauges and charging cylinder; (4) vacuum pump service operations; (5) locating refrigerant leaks; (6)…
The Weston/IEG UVB technology is an in situ groundwater remediation technology that combines air-lift pumping and air stripping to clean aquifers contaminated with volatile organic compounds. A UVB system consists of a single well with two hydraulically separated screened interva...
Pump-probe nonlinear phase dispersion spectroscopy.
Robles, Francisco E; Samineni, Prathyush; Wilson, Jesse W; Warren, Warren S
2013-04-22
Pump-probe microscopy is an imaging technique that delivers molecular contrast of pigmented samples. Here, we introduce pump-probe nonlinear phase dispersion spectroscopy (PP-NLDS), a method that leverages pump-probe microscopy and spectral-domain interferometry to ascertain information from dispersive and resonant nonlinear effects. PP-NLDS extends the information content to four dimensions (phase, amplitude, wavelength, and pump-probe time-delay) that yield unique insight into a wider range of nonlinear interactions compared to conventional methods. This results in the ability to provide highly specific molecular contrast of pigmented and non-pigmented samples. A theoretical framework is described, and experimental results and simulations illustrate the potential of this method. Implications for biomedical imaging are discussed.
Pump-probe nonlinear phase dispersion spectroscopy
Robles, Francisco E.; Samineni, Prathyush; Wilson, Jesse W.; Warren, Warren S.
2013-01-01
Pump-probe microscopy is an imaging technique that delivers molecular contrast of pigmented samples. Here, we introduce pump-probe nonlinear phase dispersion spectroscopy (PP-NLDS), a method that leverages pump-probe microscopy and spectral-domain interferometry to ascertain information from dispersive and resonant nonlinear effects. PP-NLDS extends the information content to four dimensions (phase, amplitude, wavelength, and pump-probe time-delay) that yield unique insight into a wider range of nonlinear interactions compared to conventional methods. This results in the ability to provide highly specific molecular contrast of pigmented and non-pigmented samples. A theoretical framework is described, and experimental results and simulations illustrate the potential of this method. Implications for biomedical imaging are discussed. PMID:23609646